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On the rank of the fibers of rational elliptic
surfaces

Cecília Salgado

We consider an elliptic surface π : E→ P1 defined over a number field k and
study the problem of comparing the rank of the special fibers over k with that
of the generic fiber over k(P1). We prove, for a large class of rational elliptic
surfaces, the existence of infinitely many fibers with rank at least equal to the
generic rank plus two.

1. Introduction

Let k be a number field, B a projective curve and π : E→ B an elliptic surface
over k, that is, a projective surface endowed with a morphism π such that almost
all fibers are genus-one curves and such that there is a section σ of π defined
over k that will be fixed as the zero section. The generic fiber Eη is an elliptic
curve over the function field k(B). Since k(B) is finitely generated over Q, the
Mordell–Weil Theorem is still valid in this context (Lang–Néron), and hence the
set of k(B)-rational points of Eη is a finitely generated abelian group. Since all but
finitely many fibers of π are elliptic curves over the number field k, it is natural to be
interested in comparing the rank r of Eη(k(B)) and the rank rt of the Mordell–Weil
group of a fiber Et(k) for t ∈ B(k).

A theorem on specializations by Néron [1956] or its refinement by Silverman
[1994, Theorem III.11.4; 1983] in the case where the base is a curve tells us that if
E is nonsplit, then for all but finitely many fibers we have rt ≥ r .

Billard [1998, Theorem C] showed that if we assume E to be Q-rational (birational
to P2 over Q) and nonisotrivial, then

#{t ∈ B(k) | rt ≥ r + 1} =∞.

Three natural questions arise:

1) Can we replace Q by an arbitrary number field k and the hypothesis that E is
k-rational by the hypothesis that E is k-unirational?

MSC2010: primary 14J27; secondary 11G05, 14D99.
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1290 Cecília Salgado

2) Can we improve the bound, that is, have rt ≥ r+2 for infinitely many t ∈ B(k)?

3) Can we obtain a similar result for elliptic surfaces that are geometrically rational
(that is, fixed an algebraic closure k̄ of k, E is k̄-rational) but not k-rational or
for non(geometrically) rational elliptic surfaces, such as K3 surfaces?

We remind the reader that a geometrically irreducible algebraic variety V is said
to be k-unirational if there is a rational map of finite degree Pn 99K V defined over k.

We will give a positive answer to question 1) and a partial answer to questions
2) and 3) in this article. Question 3) for K3 surfaces is addressed in the author’s
Ph.D. thesis [Salgado 2009] and will be explored in another article.

Let X be a smooth projective rational surface. We denote by ω2
X the self-

intersection number of the canonical sheaf on X . This will be called the degree
of X and will be denoted by dX or by d when the dependency on X is clear. The
corollary to the following theorem answers question 1).

Theorem 1.1. Let π : E→ B ' P1 be a k-unirational elliptic surface defined over
a number field k. There is a curve C→ B such that C 'k P1 and

rank EC(k(C))≥ rank E(k(B))+ 1,

where EC = E×B C.

Since the curve C has infinitely many k-rational points, an application of Néron’s
or Silverman’s Specialization Theorem yields the following corollary.

Corollary 1.2. Let π : E→ B be a k-unirational elliptic surface. Then

#{t ∈ B(k) | rt ≥ r + 1} =∞.

Remark 1. Since rational surfaces of degree dX ≥ 3 such that X (k) 6= ∅, and
del Pezzo surfaces of degree 2 having a k-rational point outside a certain divisor
are always k-unirational, we conclude, from the remark above, that the class of
rational elliptic surfaces to which Theorem 1.1 applies is quite large. For example,
it contains all rational elliptic surfaces defined over k with three distinct types of
reducible fiber and/or a fiber with a double component not of type I ∗0 . But surfaces
with generic rank over k equal to zero and no reducible fibers always have as
k-minimal models del Pezzo surfaces of degree one and are therefore excluded
from the hypothesis of Theorem 1.1.

Remark 2. Showing a result such as the above corollary for a rational elliptic
surface having a del Pezzo surface of degree one as a k-minimal model is equivalent
to showing that the k-rational points on X are Zariski dense, a well known open
problem. In [Ulas 2008] one can find partial results towards that direction.

The following theorems, or more precisely their corollary, answer question 2)
after strengthening the hypothesis of Theorem 1.1. In order to state them we



On the rank of the fibers of rational elliptic surfaces 1291

introduce the following terminology: if f : X → Y is a birational morphism of
surfaces, passing to an algebraic closure, it is composed of monoidal transformations
or blow ups of points; we will refer to the set of k̄-points where f −1 is not defined
as the blow up locus of f . We will denote it by Bl( f ). Note that if X is a rational
elliptic surface and Y a rational model obtained after contracting (−1)-curves, then
Bl( f ) contains dY not necessarily distinct points, thus # Bl( f )≤dY where # denotes
the number of distinct points. If f is defined over k, the set Bl( f ) is composed of
Gal(k̄|k)-orbits.

Theorem 1.3. Let π : E→ B ' P1 be a rational elliptic surface defined over a
number field k such that there is a k-birational morphism f : E→ P2 in which
the zero section of E is contracted to a point p1 ∈ P2(k). Suppose that the blow
up locus of f contains at least one orbit distinct from the one given by p1 whose
points are, together with p1, in general position. Suppose also that E has at most
one nonreduced fiber.

Then there exists a finite covering C → B such that C(k) is infinite and the
surface EC = E×B C satisfies

rank EC(k(C))≥ rank E(k(B))+ 2.

Remark 3. It is simple to construct examples of rational elliptic surfaces satisfying
the hypothesis of Theorem 1.3. Let f and g be two arbitrary cubics in P2 whose
equations have coefficients in k. Suppose that they pass through two k-rational
points p1 and p2. Then the elliptic surface given by the blow up of the intersection
locus of f and g is certainly in this class.

Remark 4. The assumption that E has at most one nonreduced fiber excludes only
one configuration of singular fibers, namely, (I ∗0 , I ∗0 ). This case is left out because
the surface might become trivial after a quadratic base change; see Lemma 2.1.

The result above also holds for some rational elliptic surfaces whose k-minimal
models, after contracting the zero section, are not isomorphic to P2 but to other
rational surfaces defined over k. These are the subject of the next theorem.

Theorem 1.4. Let π : E→ B ' P1 be a rational elliptic surface defined over a
number field k. Suppose E does not have reducible fibers. Let X be a k-minimal
model of E such that there exists a birational morphism f : E→ X in which the
zero section of E is contracted. Suppose that X has degree d and satisfies one of the
following:

i) d = 4, 5 or 8.

ii) d = 6, # Bl( f )= 6 and the largest Gal(k̄|k)-orbit in it has at most four points.
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Then there exists a finite covering C→ B such that C(k) is infinite and the surface
EC = E×B C satisfies

rank EC(k(C))≥ rank E(k(B))+ 2.

Elliptic surfaces satisfying the hypothesis of the previous theorem are always
the blow up of a del Pezzo surface Y . Indeed, let Y be the surface obtained after
contracting the zero section of E. Since Y is a rational surface, all we have to check
is that −KY is ample. In fact, the anticanonical divisor of Y satisfies (−KY )

2 > 0
and −KY .D > 0. The former because K 2

E = 0 and Y is obtained by contracting
a curve in E. The latter follows from the fact that E has no reducible fibers and
thus −KE.C ≥ 0 for all C ∈ Div(E) with equality if and only if C ≡−KE. By the
Nakai–Moishezon Theorem −KY is ample.

Once again an application of Néron–Silverman’s Specialization Theorem yields
the following corollary to Theorems 1.3 and 1.4.

Corollary 1.5. Let π : E→ B be an elliptic surface as in Theorem 1.3 or 1.4. For
t ∈ B(k), let rt be the rank of the fiber above the point t and r the generic rank.
Then

#{t ∈ B(k) | rt ≥ r + 2} =∞.

Remark 5. Since geometrically, that is, over k̄, a rational elliptic surface is isomor-
phic to the blow up of nine not necessarily distinct points in P2 (see Proposition 2.2),
a k-minimal model X of a rational elliptic surface satisfies 1 ≤ ω2

X ≤ 9. As we
suppose that the elliptic surface always has a section defined over the base field k
which is contractible, X also verifies X (k) 6=∅.

Remark 6. Theorems 1.3 and 1.4 are valid for a larger class of rational elliptic
surfaces. The choice of the cases stated was made for the sake of simplicity.
The reader is invited to consult the appendix for examples of cases to which the
conclusion of Theorems 1.3 and 1.4 still applies.

This text is divided as follows: Sections 2 and 3 contain geometric and arithmetic
preliminaries, respectively. Section 4 is dedicated to the proof of Theorem 1.1. It
contains a key proposition that reduces the proof of this theorem to the construction
of a linear pencil of genus zero curves defined over the base field k. The proofs
of Theorems 1.3 and 1.4 are given in Section 5, where we give a case-by-case
construction of two pencils of curves of genus zero satisfying certain geometric
conditions. The last section sheds some light from analytic number theory into
the problem. There, we combine the results obtained in this article with analytic
conjectures to get better, but conditional, bounds for the ranks.
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2. Geometric preliminaries

2A. Base change. Let π : E→ B be an elliptic surface endowed with a section
and ι :C ′⊂E an irreducible curve. Let ν :C→C ′ be its normalization. If C ′ is not
contained in a fiber, the composition ϕ = π ◦ ι ◦ ν is a finite covering ϕ : C→ B.

E

π

��
C

ν //

ϕ

??C ′ //

ι

>>

B

We obtain a new elliptic surface by taking the following fibered product:

πC : EC = E×B C→ C.

Each section σ of E naturally induces a section in EC :

(σ, id) : C = B×B C→ E×B C.

We call these sections old sections. The surface EC has also a new section
given by

σ new
C = (ι ◦ ν, id) : C→ E×B C.

Remark 7. Given a smooth elliptic surface E, the elliptic surface obtained after a
base change of E is not necessarily smooth. When this is the case, we will replace
the base-changed surface by its relatively minimal model without further notice.

Remark 8. If C is not contained in a fiber nor in a section, then the new section
is different from the old ones, but it is not necessarily linearly independent in the
Mordell–Weil group.

Remark 9. Since we want B(k) to be infinite, we are naturally led to consider
the base curves B such that B ' P1, or with geometric genus g(B) = 1 and
rank B(k)≥ 1.

If E is a rational elliptic surface then, in general, after a quadratic base change we
obtain an elliptic K3 surface E′; nevertheless, if E has a nonreduced fiber, that is, a
fiber of type ∗, and the base change is ramified above the place corresponding to this
fiber and above the place corresponding to a reduced fiber, then the base-changed
surface E′ is still rational.

Lemma 2.1. Let E → B be a rational elliptic surface. Let ϕ : C → B be a
degree-two morphism where C is rational. Then one of the following occurs:

i) E has a nonreduced fiber, that is, a fiber of type ∗, and the morphism ϕ is
ramified above the place corresponding to it and above the place corresponding
to a reduced fiber. In this case, EC = E×B C is a rational elliptic surface.
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ii) E has two nonreduced fibers, which are necessarily of type I ∗0 , and the mor-
phism ϕ is ramified above both nonreduced fibers. In this case EC ' E × D
where E is an elliptic curve and D is a curve of genus zero.

iii) EC is a K3 surface.

Proof. Let v be a place of B and w be a place of C above it. If w is not ramified,
then the type of the fiber (EC)w is the same as that of (E)v. In this case, since the
degree of ϕ is two, there are two places w,w′ above v. If w ramifies above v and
Ev is a singular fiber, then fiber type changes, namely:

a) A fiber (E)v of type ∗ induces a fiber (EC)w whose contribution is dw=2dv−12,
where dv denotes the contribution of (E)v , that is, the local Euler number of Ev .

b) A reduced fiber, that is, a fiber (E)v of type In, I I, I I I or I V transforms to a
fiber (EC)w whose contribution to the Euler number of the surface is dw = 2dv .

Since E is rational, we have ∑
v∈B

dv = 12.

Thus if E has a fiber, (E)v, of type ∗, and ϕ is ramified above the place corre-
sponding to it and above the place corresponding to a reduced fiber, then the Euler
number of EC is

∑
w∈C dw = 2dv − 12+ 2(12− dv) = 12, implying that EC is

rational.
If E has two nonreduced fibers Ev1 and Ev2 , then since each contributes at least

6 to the Euler number, which is 12, we have that the contribution of each must be
exactly 6. This implies that each nonreduced fiber is of type I ∗0 and moreover, that
these are the only singular fibers of E. If ϕ ramifies above both Ev1 and Ev2 then by
a) they both become nonsingular fibers. Since these were the unique singular fibers,
the base-changed surface EC has only smooth fibers. This entails EC ' E × D
where E is an elliptic curve and d is a curve of genus zero.

Otherwise, that is, if ϕ is ramified only above reduced fibers, then the Euler
number of EC is 2dv + 2(12− dv)= 24, and hence EC is a K3 surface. �

2B. Construction of rational elliptic surfaces. Let F and G be two distinct cubic
curves in P2. We will also denote by F and G the two homogeneous cubic
polynomials associated to these curves. Suppose F is smooth.

The pencil of cubics generated by F and G,

0 := {t F + uG | (t : u) ∈ P1
},

has nine base points (counted with multiplicities), namely the intersection points of
the curves F and G. The blow up of these points in P2 defines a rational elliptic
surface E0.
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Conversely, over an algebraically closed field, we have the following proposition.

Proposition 2.2 [Miranda 1980]. Over k̄, every rational elliptic surface with a
section is isomorphic to a surface E0 for a pencil of cubics 0 as above.

This proposition motivates the following definition.

Definition 2.3. Let E be a rational elliptic surface. We say that a cubic pencil 0 in
P2 induces E if E is k̄-isomorphic to P2 blown up at the base locus of 0.

The choice of the pencil 0 is noncanonical.
Suppose 0 induces E and p1, . . . , pr are the distinct base points of 0. The Picard

group of E is generated by the strict transform of a cubic in 0, the exceptional curves
above each pi and some of the (−2)-curves obtained in the process of blowing up
the pi in case the points have multiplicity strictly larger than one as base points or
are in a nongeneral position (for example, three on a line or six on a conic). As
the exceptional curves are the sections of the elliptic fibration, the above gives us
the following information about the (geometric) Mordell–Weil group of E.

Lemma 2.4. Let 0 be a pencil of cubics in P2 and E the elliptic surface induced by
0. Let s be the number of distinct base points of 0 and r̄ be the geometric Mordell–
Weil rank of E, that is, the rank of the Mordell–Weil group over the algebraic closure
k̄. Then r̄ ≤ s− 1.

Over a number field, a rational elliptic surface may have a minimal model other
than P2. Hence we cannot assure the existence of a k-birational morphism between
E and P2. We treat this situation in Section 3A.

2C. Néron–Tate height in elliptic surfaces. In [Shioda 1990], Shioda developed
the theory of Mordell–Weil lattices. He remarked that the Néron–Severi and the
Mordell–Weil groups modulo torsion have a lattice structure endowed with a pairing
given essentially by the intersection pairing on the surface. In the Mordell–Weil
group it coincides with the Néron–Tate height.

To define this pairing we need to introduce some notation:
Let2v be a fiber with mv components denoted by2v,i . Let2v,0 be the zero com-

ponent (the one that intersects the zero section) and Av = ((2v,i .2v, j ))1≤i, j≤mv−1

a (negative definite) matrix. The pairing is given by the following formula:

〈P, Q〉 = χ + (P.O)+ (Q.O)− (P.Q)−
∑
v∈R

contrv(P, Q),

where χ is the Euler characteristic of the surface, R is the set of reducible fibers,
(P.Q) the intersection of the sections given by P and Q, and contrv(P, Q) gives
the local contribution at v according to the intersection of P and Q with the fiber
2v: if P intersects 2v,i and Q intersects 2v, j then contrv(P, Q) = −(A−1

v )i, j if
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i, j ≥ 1 and contrv(P, Q)= 0 if one of the sections cuts the zero component. For a
table of all possible values of contrv according to the fiber type of 2v; see [Shioda
1990].

We will only use the fact that the Néron–Tate height of a section can be computed
in terms of its numerical class.

3. Arithmetic preliminaries

3A. Minimal models over perfect fields. The theory in this subsection was devel-
oped by Enriques, Manin [1966; 1967] and Iskoviskikh [1979]. We state the main
results. For proofs, we invite the reader to look at the bibliography cited above.

Theorem 3.1. Let X be a smooth minimal rational surface defined over a perfect
field k and let Pic(X) denote its Picard group over k. Then X is isomorphic to a
surface in one of the following families:

I. A del Pezzo surface with Pic(X)' Z.

II. A conic bundle such that Pic(X)' Z⊕Z.

Reciprocally, if X belongs to family I then it is (automatically) minimal. If X belongs
to family II then it is not minimal if , and only if , d = 3, 5, 6 or d = 8 and X is
isomorphic to the ruled surface F1. There are no minimal surfaces with d = 7.

Some surfaces endowed with a conic fibration are at the same time del Pezzo
surfaces, namely, if d = 3, 5, 6 or d = 1, 2, 4 and X has two distinct conic fibrations,
or d = 8 and X̄ = X ×k k̄ ' P1

×P1 or P2 blown up in one point.

Definition 3.2. We say that a surface X is k-birationally trivial or k-rational if there
is a birational map P2 99K X defined over k.

Theorem 3.3. Every minimal rational surface such that d ≤ 4 is k-birationally
nontrivial.

Theorem 3.4. Every rational surface X of degree at least five such that X (k) 6=∅ is
k-rational and every rational surface X with d ≥ 3 and X (k) 6=∅ is k-unirational.

Remark 10. A priori most k-minimal surfaces with d ≥ 1 and X (k) 6=∅ can be a
k-minimal model of a rational elliptic surface. The condition X (k) 6=∅ comes from
the zero section that is defined over k and is contracted to a k-rational point. We will
exclude the conic bundles such that X̄ = X ×k k̄ is isomorphic to P(OP1 ⊕OP1(n))
with n ≥ 3 since these surfaces contain a curve with self intersection −n and a
rational elliptic surface contains no curves with self intersection −n for n ≥ 3.
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Remark 11. If a surface X of degree d = ω2
X is a k-minimal model of a rational

elliptic surface E, then E is isomorphic to the blow up of X in d points which form
a Galois invariant set.

We finish this subsection giving a sufficient condition for k̄-rational elliptic
surfaces to be k-unirational.

Lemma 3.5. Let E be a k̄-rational elliptic surface defined over a perfect field k. If
rank Pic(E|k)≥ 5 then E is k-unirational.

Proof. Since the Picard group of k-minimal rational surfaces has rank one or two,
any k-minimal model of E will be obtained after contracting at least three (−1)-
curves. Hence if X is a k-minimal model of E then K 2

X ≥ 3. Moreover, X (k) 6=∅
since the image of the zero section will provide at least one k-rational point. It
follows then from Theorem 3.4 that X is k-unirational. �

3B. Kummer theory. Let K be a number field or a function field and A an abelian
variety. Let P ∈ A(K ) be a point of infinite order. We say that P is indivisible by
n if for all Q ∈ A(K ) such that there exists a divisor d of n with [d]Q = P , we
have d =±1.

Remark 12. In [Hindry 1988], Hindry defines a point as being indivisible if it is
indivisible by all natural numbers m > 1. One can replace this definition by the one
introduced above, that is, P indivisible by m in the hypothesis of [Hindry 1988,
Lemme 14]. In fact, let P be a point indivisible by m. We can write P = [l]P1 with
P1 indivisible as in [Hindry 1988] and (l,m)= 1. There exist u, v ∈ N such that
ul + vm = 1, which allows us to write

P1 = [u]P + [vm]P1,

and thus
K
( 1

m P
)
⊆ K

( 1
m P1

)
= K

( u
m P

)
⊆ K

( 1
m P

)
.

Hence K ( 1
m P1)= K ( 1

m P). In the rest of this subsection we state some of the results
that can be found in [Hindry 1988] about the degree of the extension K ( 1

m P) taking
this remark into account, that is, replacing the hypothesis P indivisible, by the
hypothesis P indivisible by m.

Let n ∈N and P be a point indivisible by m where m divides n. Denote by An

the set of n-torsion points in A(K̄ ) and 1
m P a point Q ∈ A(k̄) such that [m]Q = P .

The Galois group Gn,K ,(1/m)P of the extension

K
(

An,
1
m P

)
| K (An)

can be viewed as a subgroup of Am . Kummer theory for abelian varieties tells us
that if K is a number field the group Gn,K , 1

m P is actually almost the whole group
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Am , that is, its image inside Am by an injective map is of finite index which is
bounded by a constant independent of P and m.

This theory was studied in full generality by Ribet, Bertrand, Bashmakov and
others. We restrict ourselves to elliptic curves. For us k is a number field and
K = k(B) is the function field of a projective curve B.

We now state a typical result of Kummer theory for elliptic curves. This is valid
in a more general context; see [Ribet 1979].

Theorem 3.6. Let E be an elliptic curve defined over a number field k, n ∈ N

and P ∈ E(k) a point indivisible by m where m divides n. There exists a positive
constant f0 = f0(E, k) such that |Gn,k,(1/m)P | ≥ f0.m.

Proof. See [Hindry 1988, Appendix 2] for when P is an indivisible point. �

Let π : E→ B be an elliptic surface and P a point indivisible by n in the generic
fiber. Since Galois groups become smaller after specialization, after applying the
previous theorem to a fiber E = π−1(t) defined over the number field k, we have

|Gn,k(B),(1/m)P | ≥ |Gn,k,(1/m)P |,

which gives us a theorem as Theorem 3.6 for elliptic curves over function fields.

Theorem 3.7. Let E be an elliptic curve defined over a function field K , n ∈ N

and P ∈ E(K ) a point indivisible by m where m divides n. There exists a positive
constant f0 = f0(E, K ) such that |Gn,K ,(1/m)P | ≥ f0.m.

Remark 13. If the surface E above is not isotrivial then the endomorphism ring
of the generic fiber E is Z and the result above is stronger, namely, the group
Gn,K ,(1/m)P is almost all the set of m-torsion points Em , that is, its image inside the
m-torsion subgroup under an injective map is of finite index, bounded by a constant
independent of P and m; see [Hindry 1988, Proposition 1].

We finish this subsection with a lemma about torsion points on elliptic curves
that will be used in the next section during the proof of Proposition 4.2. See [Serre
1972] for a proof and more results on torsion points on elliptic curves.

Lemma 3.8. Let E be an elliptic curve defined over a field k, which is either a
number field or a function field, and P ∈ E(k̄)[m] \ E(k) a point of order m. Then
there exists an α > 0 and a constant cE,k independent of the point P such that

[k(P) : k] ≥ cE .mα.

4. Proof of Theorem 1.1

Let π : E→ B be as in Section 2. In the first subsection we show that given a
nonconstant pencil of curves in E that are not contained in a fiber of π : E→ B,
then all but finitely many curves in it yield, after base change (see Section 2A), a
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new section that is independent of the old sections. The proof of Theorem 1.1 then
depends only on a construction of a family of irreducible curves defined over k
with infinitely many k-rational points, that is, P1 or genus-one curves with positive
Mordell–Weil rank. This construction will be given in the second subsection.

4A. A key proposition. First we state the most useful criteria for us to determine
when a new section is independent of the old ones.

Lemma 4.1. An irreducible curve C ⊂ E that is not a component of a fiber induces
a new section on E×B C independent of the old ones if and only if for every section
C0 ⊂ E and every n ∈ N∗, the curve C is not a component of [n]−1(C0).

Let C be a family of curves in a projective surface X . We call C a numerical
family if all its members belong to the same numerical class in the Néron–Severi
group. We prove that in a numerical family it is enough to check the conditions of the
lemma for a bounded n and a finite number of sections. Thus if the family is infinite,
all but finitely many members induce new independent sections after base change.

Proposition 4.2. Let E→ B be an elliptic surface defined over a number field k.
Let C be a numerical family of curves inside E. There exist an n0(C)∈N and a finite
subset 60(C)⊂ Sec(E) such that for C in the family C, the new section induced by
C is linearly dependent of the old ones if , and only if , [n]C ∈60 for some n ≤ n0.

Proof. Suppose [n]C = C0 for some section C0. We may assume such n to be
minimal, that is, there does not exist n′ < n such that the curve [n′]C is a section.
The proof is divided in two parts: bounding n from above using Kummer theory
(see Section 3B), and then, for a fixed n such that C0 = [n]C , showing that the set
of sections in the same numerical class is finite by Néron–Tate height theory.

1) Bounding n: We define the degree of a curve in E by its intersection with a fiber:

deg(C)= (C.F).

If C0 is a section we have deg(C0)= (C0.F)= 1. The degree of C , which will
be denoted by h, is fixed within the family, since all curves belong to the same
numerical class.

The map [n] is not a morphism defined on the whole surface, but on an open
set U ⊆ E which excludes the singular points in the fibers. Since sections do not
intersect the fibers in singular points, they are contained in U . This allows us
to write

deg([n]−1C0)= (([n]−1C0).F)= n2(C0.F)= n2.

Thus, limn→∞ deg[n]−1(C0)=∞.
Denote by K the field k(B), by E the generic fiber of E and by P0 the point

in E(K ) corresponding to the section C0. Let P ∈ E(K̄ ) be such that [n]P = P0
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where n is minimal with respect to the expression above. We now show that n is
bounded by a constant n0 that depends only on E , K and h.

Note first that if P is a torsion point, we know by Lemma 3.8 that its order m is
bounded by cE .mα

≤ [K (P) : K ] = h.
Now suppose P is of infinite order. Let m be the smallest positive integer such

that there exist P1 ∈ E(K ) and T a torsion point satisfying [m]P = P1+ T . We
claim that P1 is indivisible by m. If l is a divisor of m such that [l]Q = P1 with
Q ∈ E(K ), then

[l][m/ l]P = [l]Q+ T

and hence there exists a torsion point T1 such that [m/ l]P = Q + T1. By the
minimality of m with respect to the equation above, we must have l =±1.

Let m′ = mm1 where m1 is the order of the torsion point T . Let T ′ be such
that [m]T ′ = T and put P ′ = P + T ′; then [m]P ′ = P1 and T ′ ∈ Em′ . Applying
Theorem 3.7 we obtain

[K (P ′, Em′) : K (Em′)] ≥ m. f1. (1)

Now, note that K (P, Em′)= K (P ′, Em′) hence

h = [K (P) : K ] ≥ [K (P, Em′) : K (Em′)] = [K (P ′, Em′) : K (Em′)] ≥ f1.m,

and thus m is bounded. Since T is defined over K (P), its order m1 is also bounded
in terms of h, and thus [mm1]P =m1 P1 ∈ E(K ) with n ≤mm1 bounded as stated.

2) The numerical class of a section: Fix C1, . . . ,Cr generators of the Mordell–Weil
group.

For a fixed n, the intersection multiplicity (([n]C).Ci ) is also fixed, say equal
to ni , and it depends only on the numerical class of C . The same holds for the
intersection of C with the zero section, say equal to m0 and for the intersection with
the fiber components 2v, say equal to lv, jv . The Néron–Tate height in an elliptic
surface is uniquely determined by the intersection numbers above. The set

60 = { sections C0 | (C0.Ci )= ni , i = 1, . . . , r, (C0.O)= m0, (C0.2v, jv )= lv, jv }

is finite since it is a set of points with bounded Néron–Tate height, thus there are
only finitely many possible sections C0 such that C ⊂ [n]−1C0. �

Corollary 4.3. Let E be an elliptic surface and L a nonconstant numerical family
of curves on E whose members are not contained in the fibers of E. Then for almost
all member C of the pencil, the new section induced by C is independent of the
old sections.

Proof of Theorem 1.1. Let ψ : P2 99K E be a k-unirational map. Let L be given by
the set of lines in P2. Then Lψ

= {ψ(L) | L ∈ L} is an infinite family of curves in
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E defined over k, whose general member is integral and of geometric genus zero.
These curves cannot be all contained in a fiber of E as the family is infinite, with
irreducible members, and there is only a finite number of reducible fibers for the
elliptic fibration in E.

The theorem follows from an application of Corollary 4.3 to the family Lψ . �

5. Proof of Theorems 1.3 and 1.4

To prove Theorems 1.3 and 1.4 we need to produce two families of curves defined
over k. These families must not only have infinitely many k-rational points, but also
be such that the fibered product of two curves in different families is irreducible.
The first subsection is devoted to the construction of such families, first done in the
context of Theorem 1.3, that is, over P2, then in the settings of Theorem 1.4, that is,
over other k-minimal surfaces. The proof of irreducibility of the generic member
of the constructed families is given in the second subsection and is followed by the
verification that such curves contain indeed infinitely many k-rational points. Finally,
all is assembled in Section 5D to conclude the proofs of Theorems 1.3 and 1.4.

5A. Construction of linear pencils of rational curves. The results presented in
this subsection are technical and may be skipped by the reader willing to accept the
existence of two linear pencils of conics, that is, copies of P1 intersecting the fibers
with multiplicity two in the surfaces satisfying the hypothesis of Theorem 1.3. Here
we provide “case-by-case”, depending on the configuration of blown up points,
constructions of linear pencils of curves on E to which we apply Corollary 4.3.
We construct two linear pencils of rational curves defined over k in a k-minimal
model of the rational elliptic surface E→ B. Since the base-changed surface fibers
over the fibered product of these two curves over B, we fabricate those curves in
a way that their fibered product has genus at most one. We state below sufficient
conditions for this.

Lemma 5.1. Let C1 and C2 be two smooth projective rational curves given with
two distinct morphisms ϕi : Ci → B of degree 2 to a genus zero curve B. Then
g(C1×B C2)≤ 1.

Proof. It is a simple application of the Hurwitz formula. �

We can proceed to the constructions. They depend on the degree of the k-minimal
model considered, as well as on the configuration of the blown up points under
the action of the absolute Galois group Gal(k̄|k). We start with the simplest case,
namely, when E has a minimal model isomorphic to P2.

a) A minimal model k-isomorphic to P2. Let p1, . . . , p9 be the nine not necessarily
distinct points in the blow up locus. Since the zero section is defined over k, at least
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one of the points above is k-rational, say p1. If C is a curve of degree d in P2 with
multiplicity mi through pi then its genus satisfies

g(C)≤ (d−1)(d−2)
2

−

∑
i

mi (mi−1)
2

.

Denote by C ′ its strict transform under the blow up E→ P2. Then the degree of
the map given by the restriction of π to C ′ is given by

deg(C ′→ B)= (F.C ′)= 3d −
∑

i

mi

where F is a fiber of the elliptic fibration π .
Let L1 be the pencil of lines in P2 through p1. Let L′1 be the pencil of curves in

E given by the strict transforms of the curves in L1 and C ′ a curve in L′1 — from
now on the superscript ′ will denote the pencil or curve in the elliptic surface given
by the strict transform of that in the minimal model. Then

deg(C ′→ B)= 3.1− 1= 2.

We now construct a second pencil of rational curves L2 such that the curves in the
pencil of strict transforms induced in E satisfy Lemma 5.1.

Since the blow up is defined over k, the set formed by the other points is invariant
under the action of Gal(k̄|k). The construction depends on the size of the smallest
orbit different from p1 whose points are, together with p1, in general position, that
is, no three are collinear, no six lie in a conic and there is no cubic through eight of
the points singular at one of them.

i) One other k-rational point p2.
In this case we can construct L2 in a similar way as we did for L1: take

L2 = {l a line in P2 through p2}.

Any curve in L′2 together with any curve in L′1 satisfies Lemma 5.1.

ii) Two conjugate (under Gal(k̄|k)) points p2, p3.
Let 3 be a pencil of cubics in P2 inducing E such that p1, p2, p3 are base

points of it. Since we suppose that points are in general position, p1, p2 and p3

are not collinear. Let us first suppose that there are no other base points and
thus that the multiplicities (m1,m2,m3) of p1, p2, p3 as base points of 3
are (1, 4, 4), (3, 3, 3), (5, 2, 2) or (7, 1, 1). In the first case, every cubic in 3
shares the same tangent line, say l2, through p2 as well as the same tangent
line, say l3, through p3. We consider L2, the set of conics through p2, p3 with
tangents li through pi , for i = 2, 3. Let C be a conic in L2. Then C intersects
the cubics of3 in p2 and p3 with intersection multiplicity two and intersects in
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two other points. Hence, the morphism from the strict transform ϕC ′ :C ′→ B,
given by the restriction of the fibration to C ′, has degree two. In the remaining
three cases all cubics of 3 share a tangent line, say l1, through p1. We take L2

to be the set of conics through p1, p2, p3 with prescribed tangent l1 through p1.
It is a linear pencil of conics, since the space of conics in P2 has dimension 5.
A conic C in L2 also intersects the cubics in 3 at the point p1 twice, at the
points p2, p3 and at two other points. Thus if C is a conic in L2 then the
morphism ϕC ′ from C ′ to B also has degree two. As in i), any curve in L′2
together with any curve in L′1 satisfies the hypothesis of Lemma 5.1.

Now suppose there are other base points. If there is another orbit with
two or four points one may apply construction iv) below independently of the
configuration of these extra points. If there are three, five or six other conjugate
base points then apply constructions iii), v), or vi), respectively, below.

iii) Three conjugate points p2, p3, p4.
The construction here is simpler. The pencil of conics L2 through p1, p2,

p3 and p4 is such that for every curve C ∈L2 the morphism ϕ′C has degree two.

iv) Four conjugate points p2, p3, p4, p5.
As in the previous case, but now we let L2 be the pencil of conics through

p2, p3, p4 and p5.

v) Five conjugate points p2, p3, p4, p5, p6.
Take L2 to be the pencil of cubics through p1, . . . , p6 with a singularity at

p1. The degree of the morphism ϕC for C ∈L2 is two (9−5−2= 2). So that
together with a curve in L′1 the curve C satisfies the hypothesis of Lemma 5.1.

vi) Six conjugate points p2, . . . , p7.
Consider L2 to be the pencil of quintics singular at each p2, . . . , p7 that

passes through p1 as well. Since dim(H 0(P2,O(5)))=21 and we have imposed
19 conditions, L2 forms at least a linear pencil. The curves in it are rational
since g ≤ 6− 6= 0.

The degree of ϕ′C for C ∈ L2 is equal to 5.3− 6.2− 1= 2.

vii) Seven conjugate points p2, . . . , p8.
Consider L2 the space of quartics through the seven points p2, . . . , p8 with

multiplicity at least three at p1. That gives at most 13 conditions in a space
of dimension 15. So L2 is at least a linear pencil. Its curves are rational and
the degree of the induced morphism to B is equal to 4.3− 7− 3= 2.

viii) Eight conjugate points p2, . . . , p9.
We consider highly singular curves. Take L2 to be the set of curves of

degree 17 such that:

– The eight points p2, . . . , p9 are singular with multiplicity at least six.
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– It passes through p1.
This gives us at most 169 conditions in a 171-dimensional space and thus at
least a linear pencil. The degree of the morphism is also two and the curves
have genus zero as in the previous cases.

Irreducibility of the curves constructed above: Since the points considered are
in general position the curves constructed above are irreducible. This is trivially
verified in cases i)–iv). In cases v)–viii) one can easily check that if the pencil is
generically reducible then either its base points are in nongeneral position, that is,
there are three collinear points, six lie on a conic or eight on a cubic singular at one
of them, or the Galois orbits break into smaller orbits.

We now focus on the other possible minimal models over k. As observed after
the statement of Theorem 1.4, we may suppose X is a del Pezzo surface. Let us
first recall some geometric and arithmetic facts about those surfaces.

Since we are dealing with surfaces whose Picard group over k is small (isomorphic
to Z.ωX ), the most natural place to look for curves defined over k is H 0(X, ω−n

X ).
We now recall the dimension of these spaces and the genus of the curves in them.

Lemma 5.2. Let X be a k-minimal del Pezzo surface of degree 1≤ (ωX .ωX )=d≤8
defined over a number field k. Given points p1, . . . , p j in X (k̄) and nonnegative
integers n1, . . . , n j , let L = {s ∈ H 0(X, ω−n

X ) | m pi ≥ ni } where m pi denotes the
multiplicity at the point pi of the curve given by the divisor of zeros of the section s.
The following hold:

i) dim(L)≥ d(n2
+n)

2
+ 1−

∑
i

n2
i +ni

2
.

ii) If L ∈ L then g(L)≤ d(n2
−n)

2
+ 1−

∑ n2
i −ni

2
.

iii) If π : E→ B is an elliptic surface obtained by blowing up p1, . . . , p j and L ′

is the strict transform of L in E then deg(π |L ′ : L ′→ B)= nd −
∑

m pi .

Proof. See [Kollár 1996, Chapter III Lemma 3.2.2]. �

We can now proceed to the construction of linear pencils on the k-minimal
models. We recall that at least one point in the blow up locus of f : E→ X is
k-rational, the one that comes from the contraction of the zero section. We suppose
that E has no reducible fibers. It follows that all the points on the locus of f are
distinct since the blow up of infinitely near points gives rise to (−2)-curves, and
these are always components of reducible fibers. For (i) of Theorem 1.4 it is clearly
sufficient to do the construction in the case where there are two orbits by the action
of the Galois group: the one of the k-rational point and another one with the other
d − 1 points. As in the case where P2 was a k-minimal model, we will look for
curves satisfying the hypothesis of Lemma 5.1.



On the rank of the fibers of rational elliptic surfaces 1305

b) A minimal model isomorphic to a del Pezzo surface of degree eight: Let p2,. . . , p9

be the points on the blow up locus of f : E→ X . Let p2 be the k-rational point.
We consider the following pencils of curves in X :

L1 = {s ∈ H 0(X, ω−8
X ) | m p2(s)≥ 13, m pi (s)≥ 7 for i = 3, . . . , 9},

L2 = {s ∈ H 0(X, ω−22) | m p2(s)≥ 13, m pi (s)≥ 23 for i = 3, . . . , 9}.

If C ′1 ∈ L′1 then by Lemma 5.2

g(C ′1)≤ 8(64−8)
2
+ 1− (169−13)

2
− 7(49−7)

2
= 0

and deg(ϕC1)= 64− 13− 49= 2. If C ′2 ∈ L′2 then

g(C ′2)≤ 8(222
−22)
2

+ 1− (169−13)
2

− 7(232
−23)
2

= 0

and deg(ϕC2)= 22.8− 13− 7.23= 2.
Thus C ′1 and C ′2 satisfy the hypothesis of Lemma 5.1. Since, by Lemma 5.2 (i),

they belong to a linear pencil of curves, by Corollary 4.3 they can be chosen in a
way such that the new sections induced by them in the base-changed surface are
independent of the old sections and of each other.

Since there are no minimal rational surfaces of degree seven we now pass to
surfaces of degree six.

c) A minimal model isomorphic to a del Pezzo surface of degree six. Let p4, . . . , p9

be the points on the blow up locus of f . We consider the possible orbits under the
action of the absolute Galois group. We denote the cases by (n1, . . . , nr ) where r is
the number of distinct orbits and ni is the multiplicity of the points in the same orbit.

i) If the points lie in a (1, 2, 3)-configuration, then the blow up of the two points
in the same orbit produces a surface of degree four to which we apply the
constructions in e).

ii) If (1, 1, n3, n4), let p4 and p5 be the k-rational points. The blow up of p4

produces a surface of degree five to which we can apply the constructions in d).

d) A minimal model isomorphic to a del Pezzo surface of degree five: Here we
consider the pencils

L1 = {s ∈ H 0(X, ω−2
X ) | m p5(s)≥ 4, m pi (s)≥ 1 for i = 6, . . . , 9}

L2 = {s ∈ H 0(X, ω−10
X ) | m p5(s)≥ 4, m pi (s)≥ 11 for i = 6, . . . , 9}.

We have

dim(L1)≥ 16− 10− 4= 2, g(C1)= 6− 6= 0,

deg( f : C ′1→ D)= 10−4−4= 2, dim(L2)≥ 5(110)/2+1−10−4(66)= 2.
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e) A minimal model isomorphic to a del Pezzo surface of degree four: The pencils
that we consider to prove Theorem 1.3 are

L1 = {s ∈ H 0(X, ω−1
X ) | m p1(s)≥ 2},

L2 = {s ∈ H 0(X, ω−7
X ) | m p1(s)≥ 2,m pi (s)≥ 8, i = 2, 3, 4}.

5B. Irreducibility of the curves. We prove that if E satisfies the hypothesis of
Theorem 1.4 the curves constructed in the previous subsection are irreducible.
First, we show that a series of Cremona transformations, that is, the blow up of
three distinct and noncollinear points followed by the contraction of the three
lines through them, reduces each pencil of curves produced above to a pencil of
lines in P2 passing through a point. Cremona transformations are not in general
automorphisms of the surface, but they are automorphisms of the Picard group. In
particular a class is represented by a connected curve if and only if the transformed
one under a Cremona transformation is represented by an connected curve. We
then use the fact that E has no reducible fibers to show that the curves constructed
are irreducible. (See [Testa 2009] for more on irreducibility of spaces of curves on
del Pezzo surfaces.)

Lemma 5.3. Let E be a rational elliptic surface with no reducible fibers, X a
k-minimal model of E as in Theorem 1.4 and let L be one of the pencils of curves
constructed in the previous subsection. Then the generic member of L is an irre-
ducible curve with geometric genus zero.

Proof. Let d be the degree of X . Let f : E→ X be the map corresponding to the
blow up of a Gal(k̄|k)-invariant set of distinct points

P1, . . . , Pd ∈ X (k̄).

Since E has no reducible fibers, the exceptional curves above Pi , for i = 1, . . . , d ,
are all independent in the Mordell–Weil group of E. Therefore, they provide a subset
of a set of generators of the Picard group of E. We can fix a basis for the geometric
Picard group of E to be {L0, . . . , L9} where L0 is the total transform of a line l in
P2, L1, . . . , Ld are the exceptional curves above P1, . . . , Pd and Ld+1, . . . , L9 are
also exceptional curves in E×k k̄.

Let g : E→ P2 be a blow up presentation, defined over k̄, factoring through f .
We represent a curve C in E by its numerical type, that is, by the list of coordinates
of its divisor class in the basis given by {L0, . . . , L9} of the Picard group:

(d,m1, . . . ,m9),

where d is the degree of the image of C in P2 with respect to g : E → P2,
mi = m Pi (C), the multiplicity of the curve C at the point Pi , i = 1, . . . , 9.
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Let C be a curve in X . Then the strict transform of C through f is a curve in E

given by
f −1(C)−

∑
i=1,...,d

m pi (C)L i .

We define the numerical type of C as the numerical type of its strict transform in E.
For example if X = P2, lines in P2 through the point p1 are represented by the

class (1, 1, 0, . . . , 0). If X is a del Pezzo surface of degree five, curves in L′1, where

L1 = {s ∈ H 0(X, ω−2
X ) | m P5(s)≥ 4,m Pi (s)≥ 1, i = 6, . . . , 9},

are represented by (6, 2, 2, 2, 2, 4, 1, 1, 1, 1).
Since Cremona transformations are given by composing birational maps, to show

that a curve is connected, it is sufficient to verify that curves constructed in the
previous subsection can be (Cremona-)transformed into a curve whose numerical
type is one of (1, 1, 0, . . . , 0), . . . , (1, 0, . . . , 0, 1), that is, into a line through one
of the pi .

After applying Cremona transformations successively, one can check that all
curves constructed in the previous subsection are in the same class as a line through
a point and are thus connected curves.

We give below the result of Cremona transformations applied to curves in L′1
where L1 = {s ∈ H 0(X, ω−2

X ) | m p5(s) ≥ 4,m pi (s) ≥ 1, i = 6, . . . , 9} and X is a
del Pezzo surface of degree five.

Curves in this family are encoded by (6, 2, 2, 2, 2, 4, 1, 1, 1, 1). Applying Cre-
mona transformations successively, these become (4, 0, 0, 2, 2, 2, 1, 1, 1, 1), then
(2, 0, 0, 0, 0, 0, 1, 1, 1, 1), and finally, (1, 0, 0, 0, 0, 0, 0, 0, 0, 1).

Now that we have verified that the curves constructed in the previous subsec-
tion are connected, we still have to show that the only connected component is
irreducible.

Let C be a curve in one of the families constructed previously. Then C.F = 2
and C has geometric genus zero. Thus if C is a reducible curve then it satisfies one
of the following:

i) C = C1 ∪ C2 ∪ (F1 + · · · + Fm) where C1 and C2 are sections and Fi are
components of reducible fibers.

ii) C = D ∪ (G1+ · · · +Gm) where D is an irreducible genus zero curve such
that D.F = 2 and G j are components of reducible fibers.

By Proposition 4.2, case i) can only occur for finitely many curves in a numerical
family. Thus, we may suppose that the generic members of the families constructed
satisfy case ii). As there are only finitely many reducible components of the fibers,
the curve D in case ii) is such that dim |D| ≥ 1. Since E has no reducible fibers,
both pencils L1 and L2 constructed have irreducible generic members. �
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5C. Infinitely many rational points on the new base. In order to prove the corol-
laries we must show that the base curve of the new elliptic surface (the base-changed
one) has infinitely many k-rational points. To prove Corollary 1.2 one needs only
one base change, thus one has to prove that infinitely many among the rational curves
constructed in the previous section have a k-rational point. This is assured since
the surface X where the pencil is constructed is k-unirational [Manin and Tsfasman
1986, Theorem 3.5.1] so, in particular, has a Zariski dense set of k-rational points.

Lemma 5.4. Suppose E(k) is Zariski dense in E. Let {Dt }t∈P1 be a nonconstant
pencil of genus zero curves defined over k in E. Then infinitely many of its curves
are k-rational.

For Corollary 1.5 the base curve is in general an elliptic curve. Since our
constructions give us families of possible new bases, we look at these families as
elliptic surfaces and we show that these elliptic surfaces have a nontorsion section.

Theorem 5.5. Let π : E→ B be a rational elliptic surface defined over a number
field k. Let L1 = {Ct | t ∈ P1

} and L2 = {Du | u ∈ P1
} be two base point free linear

systems of k-rational curves in E defined over k with Ct(k), Du(k) 6=∅ for infinitely
many t, u, such that the morphism given by the restriction of the elliptic fibration to
it has degree two. Then for infinitely many t ∈ P1(k) and infinitely many u ∈ P1(k)
we have #(Ct ×B Du)(k)=∞.

Proof. Let C ∈L1 be such that the base-changed elliptic surface EC = E×B C has
generic rank strictly larger than the generic rank of E. The surface EC admits a
second elliptic fibration (since L2 is base point free it is not necessary to blow up
points to have the fibration), namely, EC → P1(u) where P1(u) is the index-set of
the pencil of curves L2. The fibers of the latter are exactly the curves Du ×B C .
We will show that infinitely many among them have positive rank by showing that
this fibration is covered by an elliptic fibration of positive rank.

The natural morphism C→ P1(u) gives us the surface EC ×P1(u) C→ C . Fix
(id, id, id) : C → EC ×P1(u) C as the zero section. The involution ι on C with
respect to the double cover ϕC : C→ B gives us another section for the fibration
EC ×P1(u) C → C , namely, (ι, id, id). It intersects the zero section on the points
corresponding to the ramification points a and b of the morphism C → B. The
intersection (Qi , Qi , Qi ) where Qi = ϕ

−1
C (ti ), is a singular point on the fiber where

it is located if and only if ti is also a ramification point for ϕDti
: Dti → B, see

[Grothendieck 1960, Corollaire 3.2.7, pp.108]. We have two possibilities:

(i) The intersection point is not a ramification point for ϕDti
: Dti → B.

Since torsion sections do not meet at a nonsingular point (see for example [Miranda
and Persson 1989, Lemma 1.1]) the section given by (ι, id, id) has infinite order.
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The fibration EC ×P1(u) C → C has positive generic rank and thus, by Néron–
Silverman’s specialization theorem, infinitely many fibers with positive rank. Hence
the fibration EC → P1(u) has also infinitely many fibers with positive rank.

(ii) The intersection point is a ramification point for ϕDti
: Dti → B.

In this case the curve C ×B Dti is rational. We must consider two cases:

(iia) The curve Dti induces an independent new section in E×B Dti and we are done.

(iib) The generic rank of E×B Dti is equal to the generic rank of E.

Choose another curve C ∈ L1 in the beginning of the proof. Since only finitely
many Du do not contribute with an extra section after base change by Corollary 4.3,
if (iib) holds for almost all curves Ct ∈ L1 then the set

R =
⋃
t∈P1

{b ∈ B(k) | φt : Ct → B is ramified above b}

is finite. By Lemma 5.6 below we conclude n that all morphisms φt : Ct → B
ramify above the same points. In this case we start over by fixing a curve D ∈ L2

such that the surface ED has generic rank strictly larger than the generic rank of
E. The curves Ct ×B D where Ct varies in L1 induce an elliptic fibration on ED.
Since infinitely many of them contribute with a new independent section, we will
be either in case (i) or case (iia). �

Lemma 5.6. Let π : X→ B be a fibration on curves from a smooth proper surface
X defined over a number field k to a smooth proper curve B. Let f : X→ P1 be a
genus zero fibration on X such that the fibers of f are not fibers of π . Let πt be the
restriction of π to the fiber f −1(t), for t ∈ P1(k). Let

R =
⋃
t∈P1

{b ∈ B(k) | πt is ramified above b}.

Then R is either infinite or equal to {b ∈ B(k) | πt0 is ramified above b} for any
t0 ∈ B(k).

5D. Proof of Theorems 1.3 and 1.4. Let E be as in the hypothesis of Theorem 1.3
or Theorem 1.4. Let L′1 = {Ct }{t∈P1} and L′2 = {Du}{u∈P1} be the two pencils of
rational curves constructed in the previous subsections according to the possible
minimal models of E. By Corollary 4.3 all but finitely many curves Ct ∈L1 induce
a new section in ECt independent of the old sections. For each t ∈ P1

k the pencil
L′2,t = {Du ×B Ct } of curves in ECt also satisfies Corollary 4.3 and thus for all
but finitely many u ∈ P1

k the curve Du ×B Ct induces a new section in EDu×BCt

independent of the old sections coming from ECt . Thus, after excluding finitely
many t ∈ P1 and finitely many u ∈ P1, the surface EDu×BCt satisfies

rk(EDu×BCt (k(Du ×B Ct)))≥ rk(ECt (k(Ct)))+ 1≥ rk(E(k(B)))+ 2.
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Moreover, since we excluded only finitely many of each t and u, by Theorem 5.5 we
may choose the curve Du ×B Ct such that it has infinitely many k-rational points.

Remark 14. The proof of Theorem 1.4 breaks down if the k-minimal model
considered, X , is a surface of degree 6 such that the blow up locus of f contains a
Galois orbit with 5 points, or if it has degree 3 or 2. Although we are still able to
construct a (family of) rational curve(s) defined over the ground field, the generic
member of such a family has two connected components, which cannot be used to
finish the proof of the theorem. Moreover, X has no families of irreducible conics
(that is, rational curves intersecting the anticanonical divisor of the rational elliptic
surface with multiplicity two) defined over the ground field.

6. Corollaries from analytic number theory

To an elliptic curve E over a number field k, we can associate a sign W (E |k)
intrinsically via the product of local signs Wv(E |k) (for a complete definition of
the local sign, see for example [Rohrlich 1993]).

The parity conjecture may be stated in the following form:

Conjecture 6.1. Let E be an elliptic curve over a number field k. Let r be the rank
of its Mordell Weil group. Then W (E |k)= (−1)r .

Remark 15. The previous conjecture is a weak version of the Birch–Swinnerton-
Dyer conjecture.

Over the field Q we know from the work of Wiles that E is modular and that
W (E |k) is the sign of the functional equation of the L-function L(E, s).

Let π : E→ B be an elliptic surface over k and U ⊆ B an affine open subset
over which E is an abelian scheme. Note

U±(k)= {t ∈U (k) |W (Et)=±1}.

Modulo the parity conjecture, we also have U+(k)= {t ∈U (k) | rank Et(k) is even}
and U−(k)= {t ∈U (k) | rank Et(k) is odd}.

There are examples for which W (Et) is constant, but they all correspond to
isotrivial surfaces; see for example [Cassels and Schinzel 1982]. In the nonisotrivial
case and for B'P1, H. Helfgott [2003] has shown, under classical conjectures, that
the sets U±(k) are infinite. This is established unconditionally in some interesting
cases by Helfgott [2003; 2004] and Manduchi [1995]. Much less has been done in
the case B is a genus one curve such that B(k) is infinite. But, from previous work
cited above, it seems reasonable to conjecture the following:

Conjecture 6.2. Let E→ B be a nonisotrivial elliptic surface defined over a number
field k such that g(B)= 1 and B(k) is infinite. Then U+(k) and U−(k) are infinite.

This allows us to state the following better but conditional result.
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Theorem 6.3 (modulo Conjectures 6.2 and 6.1). Let E→ B be a rational elliptic
surface satisfying the hypothesis of Theorem 1.3. Then

#{t ∈ B(k) | rt ≥ r + 3} =∞,

where r is the generic rank and rt the rank of the fiber π−1(t).

Appendix

In this appendix we deal with rational elliptic surfaces with one nonreduced fiber.
If the blown up points are in nongeneral position, then the constructions given in

Section 5A may yield reducible curves. Nevertheless, we are still able to deal with
some of these cases since some of the special Galois invariant configurations of the
base points of a pencil of cubic curves in the plane yield elliptic surfaces with fiber
types that are easier to treat, namely, nonreduced fibers.

If the surface has a unique nonreduced fiber, then, depending on the structure of
a pencil inducing E, we will be able to prove the rank jumps for infinitely many
fibers by first base-changing by a curve in L′1 where L1 is the pencil of lines
through p1 constructed in i) of Section 5A. The proposition below tells us that the
resulting base-changed elliptic surface is still rational and satisfies the hypothesis
of Theorem 1.1, that is, it is a k-unirational elliptic surface.

Proposition 6.4. Let E→ B be a rational elliptic surface defined over a number
field k such that there is a k-birational morphism E→ P2 contracting the zero
section to a point p1 ∈ P2(k). Suppose E has a unique fiber of type ∗, induced
by a cubic curve of the form 3m or m ∪ 2l where m is a line through p1 and l is
another line.

Then for all but finitely many L1 ∈ L1 the morphism L ′1→ B is ramified over
the place corresponding to the fiber of type ∗. Moreover, the surface E×B L ′1 is
k-unirational for all but finitely many L ′1 ∈ L′1.

Proof. Let F be the nonreduced fiber of E given in the hypothesis.
Suppose first that F is induced by the triple line 3m where m is a line through p1.

Note that p1 is a base point with multiplicity at least 3 and thus f factors through
the blow up of p1 and two infinitely near points to it. The first blow up of p1

transforms 3m into 3m′+ 2E1 where E1 is the exceptional curve above p1 and m′

is the strict transform of m. The strict transform of L1 intersects 2E1, but does
not intersect the curve 3m′. The second blow up is that of p′1, the intersection
point of 3m′ and 2E1. Since the strict transform of L1 by the first blow up does
not pass through p′1, this curve or its intersection with other divisors is unaffected
by the remaining blow ups. Thus L ′1, the strict transform of L1 by f , intersects
the multiplicity-two component of F in a single point. This assures that the map
ϕL1 : L

′

1→ B is ramified above the place corresponding to F .
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Now suppose that F is induced by m ∪ 2l where l is another line. We may
suppose that L1 does not pass through other base points and hence L1 intersects 2l
at a point that is not in the blow up locus of f . This implies that L ′1 intersects F
at the double component corresponding to the strict transform of 2l, and thus ϕL1

ramifies above the place corresponding to F .
By Lemma 2.1, E×B L ′1 is rational. The existence of a nonreduced fiber in

E assures that rank(Pic(E)|k) ≥ 4, since the components of the fiber that do not
intersect the zero section contribute with at least two divisors to the Picard group
over k. By Corollary 4.3, the rank of the surface E×B L ′1 over k is strictly larger
than that of E, for all but finitely many L1 ∈L1, and thus rank(Pic(E×B L ′1)|k)≥ 5.
By Lemma 3.5, E×B L ′1 is k-unirational. �

We apply Theorem 1.1 to the surfaces satisfying the hypothesis of the previous
proposition. This gives us the following theorem.

Theorem 6.5. Let E→ B be a rational elliptic surface as in Proposition 6.4. Then
there is a finite covering C→ B such that C 'k P1, and the surface EC = E×B C
satisfies rank EC(k(C))≥ rank E(k(B))+ 2.

As before, we get the following corollary.

Corollary 6.6. Let π : E→ B be an elliptic surface as in Proposition 6.4. For
t ∈ B(k), let rt be the rank of the fiber above the point t and r the generic rank.
Then

#{t ∈ B(k) | rt ≥ r + 2} =∞.
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Néron’s pairing and
relative algebraic equivalence

Cédric Pépin

Let R be a complete discrete valuation ring with algebraically closed residue field
k and fraction field K . Let X K be a proper smooth and geometrically connected
scheme over K . Néron defined a canonical pairing on X K between 0-cycles
of degree zero and divisors which are algebraically equivalent to zero. When
X K is an abelian variety, and if one restricts to those 0-cycles supported on K -
rational points, Néron gave an expression of his pairing involving intersection
multiplicities on the Néron model A of AK over R. When X K is a curve, Gross
and Hriljac gave independently an analogous description of Néron’s pairing, but
for arbitrary 0-cycles of degree zero, by means of intersection theory on a proper
flat regular R-model X of X K .

We show that these intersection computations are valid for an arbitrary scheme
X K as above and arbitrary 0-cycles of degree zero, by using a proper flat normal
and semifactorial model X of X K over R. When X K = AK is an abelian variety,
and X = A is a semifactorial compactification of its Néron model A, these
computations can be used to study the relative algebraic equivalence on A/R. We
then obtain an interpretation of Grothendieck’s duality for the Néron model A, in
terms of the Picard functor of A over R. Finally, we give an explicit description of
Grothendieck’s duality pairing when AK is the Jacobian of a curve of index one.
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1. Introduction

Let R be a complete discrete valuation ring with algebraically closed residue field
k and fraction field K . Let X K be a proper smooth and geometrically connected
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scheme over K . Denote by Z0
0(X K ) the group of 0-cycles of degree zero on X K ,

and by Div0(X K ) the group of divisors which are algebraically equivalent to zero
on X K . For each cK ∈ Z0

0(X K ) and DK ∈ Div0(X K ) with disjoint supports, Néron
attached a rational number

〈cK , DK 〉 ∈Q,

by using the unique (up to constant) Néron function associated to DK . This defines
a bilinear pairing 〈 · , · 〉; see [Néron 1965, II 9.3].

Suppose first that X K = AK is an abelian variety, and denote by A its Néron
model over R. By definition of A, any K -rational point of AK extends to a section
of A over R. Then, if cK is supported on K -rational points, Néron showed that the
pairing attached to AK can be decomposed as follows:

〈cK , DK 〉 = i(cK , DK )+ j (cK , DK ), (1)

where i(cK , DK ) is the intersection multiplicity (cK .DK ) ∈ Z of the schematic
closures in A, and j (cK , DK ) ∈Q depends only on the specialization of cK on the
group 8A of connected components of the special fiber Ak ; see [Néron 1965, III
4.1; Lang 1983, 11.5.1].

Suppose now that X K is a curve, and denote by X a proper flat regular model
of X K over R. Let M be the intersection matrix of the special fiber Xk of X/R:
if 01, . . . , 0ν are the irreducible components of Xk equipped with their reduced
scheme structure, the (i, j)-th entry of M is the intersection number (0i ·0 j ). Let
DK ∈ Div0(X K ) and let DK be its closure in X . Computing the degree (DK .0i )

of DK along each 0i , we get a vector ρ(DK ) ∈ Zν . Next, as a consequence of
intersection theory on X , there exists a vector V ∈ Qν such that ρ(DK ) = MV .
Denote again by V the Q-linear combination of the 0i where the coefficient of 0i

is the i-th entry of V . Then, for any cK ∈ Z0
0(X K ) whose support is disjoint from

that of DK , the following formula holds:

〈cK , DK 〉 = (cK .DK )+ (cK .(−V )), (2)

where the second intersection number is defined by Q-linearity from the (cK .0i ).
See [Gross 1986; Hriljac 1985; Lang 1988, III 5.2]. Now let JK be the Jacobian of
X K and let J be its Néron model over R. Following the point of view of Bosch
and Lorenzini [2002, 4.3], it results from Raynaud’s theory of the Picard functor
PicX/R [Raynaud 1970, Section 8] that the term (cK .(−V )) depends only on the
specialization of (cK ) ∈ JK (K ) into the group of components 8J of Jk .

In Section 2, we provide a unified approach to these two descriptions of Néron’s
pairing. More precisely, for an arbitrary proper geometrically normal and geome-
trically connected scheme X K , there always exists some proper flat normal semi-
factorial model X of X K over R [Pepin 2011, Theorem 2.6]. Recall that X/R is
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semifactorial if the restriction homomorphism on Picard groups Pic(X)→Pic(X K )

is surjective. Note that a regular model is semifactorial. Using the theory of the
Picard functor of semifactorial models, we define a pairing [ · , · ] on X K involving
intersection multiplicities on X (Definition 2.1.1). It turns out that this pairing
depends only on X K , and coincides with Néron’s pairing when the latter is defined,
that is, when X K is smooth:

〈 · , · 〉 = [ · , · ] (3)

(Theorem 2.2.1). If X K = AK is an abelian variety and X = A is a semifactorial
compactification of its Néron model A, then equality (3) provides decomposition
(1) for 0-cycles supported on K -rational points. If X K is a curve and X a proper
flat regular model of X K , then the intersection matrix of Xk is defined, and equality
(3) is exactly formula (2).

In Section 3, we consider an abelian variety AK , with dual A′K . By definition,
the abelian variety A′K parametrizes the divisors on AK which are algebraically
equivalent to zero, that is, A′K = Pic0

AK /K . Now, let A′/R be the Néron model of
A′K , and denote by (A′)0 its identity component. By restricting to the generic fiber,
the group of sections (A′)0(R) can be viewed as a subgroup of A′K (K ). On the other
hand, let A be a normal semifactorial compactification of A, let PicA/R be its relative
Picard functor, and let Pic0

A/R
be the component of the zero section. By restricting to

the generic fiber, the group Pic0
A/R
(R) can be viewed as a subgroup of Pic0

AK /K (K ).
In Theorem 3.2.1, we investigate the relationship between the two groups

(A′)0(R) and Pic0
A/R
(R) (contained in A′K (K )= Pic0

AK /K (K )).

We show that they are equal as soon as the duality conjecture of Grothendieck about
A and A′ is true [SGA 7 I 1972, IX 1.3]. More precisely, Grothendieck defined a
pairing between the component groups of the special fibers of A and A′, and he
conjectured that this pairing is perfect. This duality statement has been proved in
many situations (see the introduction of [Bosch and Lorenzini 2002] for a detailed
list of the known cases, and also [Loerke 2009]), but it remains open in equal
characteristic p > 0. Here, we give an equivalent formulation of Grothendieck’s
conjecture, in terms of Cartier divisors on A. As a consequence, when the conjecture
is true, we obtain the equality (A′)0(R)= Pic0

A/R
(R). As a Cartier divisor on A is

said to be algebraically equivalent to zero relative to R if its image into PicA/R(R)
is contained Pic0

A/R
(R), the latter equality says that these divisors are parametrized

by (A′)0. The main ingredients for the proof are a theorem of Bosch and Lorenzini
about Néron’s and Grothendieck’s pairings [Bosch and Lorenzini 2002, 4.4], and
the study of the pairing [ · , · ] introduced above, especially for 0-cycles supported
on nonrational points (Proposition 3.4.2).
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In Section 4, we examine the relationship between Néron’s and Grothendieck’s
pairing for the Jacobian of a curve, following Bosch and Lorenzini [2002, 4.6] and
Lorenzini [2008, 3.4]. Here we take into account the index of the curve (Theorem
4.1.1). As a consequence, we obtain the perfectness of Grothendieck’s pairing when
this index is prime to the characteristic of the residue field k (Corollary 4.1.2).

2. Néron’s pairing and intersection multiplicities

In this article, let us adopt the following terminology: a divisor on a scheme will
always be a Cartier divisor.

2.1. A canonical pairing computed on semifactorial models. Let R be a discrete
valuation ring with fraction field K and residue field k. We assume R complete and
k algebraically closed. Let X K be a proper geometrically normal and geometrically
connected scheme over K . From [Pepin 2011, Theorem 2.6], there exists a model
X/R of X K , that is, an R-scheme with generic fiber X K , which is proper, flat,
normal and semifactorial: every invertible sheaf on X K can be extended to an
invertible sheaf on X . To each 0-cycle cK ∈ Z0

0(X K ) and divisor DK ∈ Div0(X K )

with support disjoint from that of cK , we will attach a number [cK , DK ]X ∈Q using
intersection multiplicities on X . For this purpose, let us first recall some definitions
and one result.

Intersection multiplicities. Let X/R be a proper R-scheme. Let cK be a 0-cycle on
the generic fiber X K . Denote by cK its schematic closure in X : if cK =

∑
i ni [xK ,i ],

then cK =
∑

i ni [x K ,i ], where x K ,i is the closure in X of the closed point xK ,i

of X K . On the other hand, let 1 be a divisor on X whose support does not meet
that of cK . The intersection multiplicity (cK .1) of cK and 1 on X is defined as
follows. Let xK be a point of the support of cK . Let Z := x K be its schematic
closure in X . This is an integral scheme, finite and flat over R, which is local
because R is henselian. Set xk := Z ∩ Xk . If f ∈ K (X) is a local equation for 1 in
a neighborhood of xk , then (cK .1)xk is the order of f |Z at xk : writing f |Z = a/b
with regular a, b ∈ O(Z), then

(cK .1)xk = lengthO(Z)
(
O(Z)/(a)

)
− lengthO(Z)

(
O(Z)/(b)

)
[Fulton 1998, page 8]. The whole intersection multiplicity (cK .1) is defined by
Z-linearity.

Let us also give another description of (cK .1)xk , which will be useful in the
sequel. As R is excellent, the normalization Z̃→ Z is finite. Moreover, as k is
algebraically closed,

lengthO(Z)
(
O(Z)/(a)

)
= lengthR

(
O(Z)/(a)

)
,
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for any regular a ∈ O(Z), and the same formula holds with Z replaced by Z̃ [loc.
cit., Appendix A.1.3]. But

lengthR
(
O(Z)/(a)

)
= lengthR

(
O(Z̃)/(a)

)
for any regular a ∈ O(Z); see [Bosch et al. 1990, end of page 237]. Thus, if
f ∈ K (X) is a local equation for 1 in a neighborhood of xk , we have obtained that

(cK .1)xk =

{
lengthO(Z̃)

(
O(Z̃)/( f )

)
if f |Z̃ ∈ O(Z̃),

−lengthO(Z̃)
(
O(Z̃)/( f −1)

)
otherwise.

Relative algebraic equivalence and relative τ -equivalence [Raynaud 1970, 3.2d;
SGA 6 1971, XIII 4]. If G is a commutative group scheme locally of finite type
over a field, the identity component G0 of G is the open subscheme of G whose
underlying topological space is the connected component of the identity element of
G. The τ -component of G is open subgroup scheme Gτ of G which is the inverse
image of the torsion subgroup of G/G0. When G is a commutative group functor
over a scheme T , whose fibers are representable by schemes locally of finite type,
the identity component and τ -component of G are the subfunctors Gτ of G whose
fibers are the G0

t , t ∈ T and Gτ
t , t ∈ T , respectively. Note that G0

⊆ Gτ .
Let Z→T be a proper morphism of schemes. Then the fibers of the Picard

functor PicZ/T are representable by schemes locally of finite type [Murre 1964; Oort
1962]. Let L be an invertible OZ -module. The sheaf L is said to be algebraically
equivalent to zero relative to T if its image into PicZ/T (T ) belongs to the subgroup
Pic0

Z/T (T ), that is Lt ∈ Pic0
Z t/t(t) for all t ∈ T . When there is no ambiguity about

the base scheme T , we will just say that L is algebraically equivalent to zero.
Similarly, the sheaf L is said to be τ -equivalent to zero relative to T if its image
into PicZ/T (T ) belongs to the subgroup PicτZ/T (T ), that is Lt ∈ PicτZ t/t(t) for all
t ∈ T . If D is a divisor on Z , it is algebraically equivalent to zero, or τ -equivalent
to zero, respectively, relative to T if the associated invertible sheaf OZ (D) is. We
denote by Div0(Z/T ) and Divτ (Z/T )) the groups of divisors on Z which are
algebraically equivalent to zero and τ -equivalent to zero, respectively, relative to T .
Then Div0(Z/T )⊆ Divτ (Z/T ).

Relative algebraic equivalence and semifactoriality. Let X/R be a proper flat
semifactorial R-scheme. Suppose that the generic fiber X K is geometrically normal
and geometrically connected. Its Picard variety Pic0

X K /K ,red is then an abelian variety
[FGA VI 1966, 3.2]. Let A/R be its Néron model, and let n be the exponent of the
component group of the special fiber of A. In this situation, [Pepin 2011, Corollary
3.14] can be read as follows: for any divisor DK on X K which is algebraically
equivalent to zero, there exists a divisor 1 on X which is algebraically equivalent
to zero relative to R and whose generic fiber 1K is equal to nDK .
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Definition 2.1.1. Let X K be a proper, geometrically normal and geometrically
connected scheme over K . Let X/R be a proper, flat, normal and semifactorial
model of X K over R.

Consider cK ∈ Z0
0(X K ) and DK ∈ Divτ (X K ) with disjoint supports. Let cK be

the schematic closure of cK in X . Choose any (n,1)∈ (Z \{0})×Divτ (X/R) such
that 1K = nDK . Then set

[cK , DK ]X :=
1
n
(cK .1) ∈Q .

This definition makes sense because 1
n1 ∈ Divτ (X/R)⊗Z Q is uniquely de-

termined by DK , up to a rational multiple of the principal divisor Xk . Indeed,
if (n′,1′) is another choice in Definition 2.1.1, then the divisor n′1 − n1′ is
τ -equivalent to zero on X and equal to zero on X K . Thus, as X is normal, this
difference is a rational multiple of Xk [Raynaud 1970, 6.4.1 3]. Now note that
(cK .Xk) is equal to the degree of cK , which is zero, so that 1

n (cK .1)=
1
n′ (cK .1

′).
Next, one checks easily that the symbol [ · , · ]X is bilinear (in its definition

domain). To prove that this pairing does not depend on the choice of X , we will
use the following lemma.

We will denote by (·)∗ and (·)∗ the push-forward of cycles and the pull-back
of divisors respectively; see [Fulton 1998, 20.1.3] and [Liu 2002, 7.1.29, 7.1.33,
7.1.34], respectively.

Lemma 2.1.2. Let X and X ′ be integral schemes, proper over R. Let ϕ : X→ X ′

be an R-morphism. Let cK ∈ Z0
0(X K ) and let cK be its schematic closure in X.

Let 1′ be a divisor on X ′ whose support does not meet that of (ϕK )∗cK . Then the
following projection formula holds:

cK .ϕ
∗1′ = ϕ∗cK .1

′ .

In particular, let X and X ′ be proper, flat, normal and semifactorial schemes
over R, with geometrically normal and geometrically connected generic fibers,
so that [ · , · ]X and [ · , · ]X ′ are defined. Let ϕ : X→ X ′ be an R-morphism. Let
cK ∈ Z0

0(X K ), and let D′K ∈Divτ (X ′K )whose support does not meet that of (ϕK )∗cK .
Then the following equality holds:

[cK , (ϕK )
∗D′K ]X = [(ϕK )∗cK , D′K ]X ′ .

Proof. Let us first note that the divisors ϕ∗1′ (and (ϕK )
∗D′K ) are well-defined.

Indeed, as ϕ is proper, its image Y is a closed subset of X ′. Endow Y with its
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reduced scheme structure. As X is reduced, ϕ factors through Y :

X
ψ //

ϕ   

Y � _

ι

��
X ′.

Now, by hypothesis, the support of1′ is disjoint from that of (ϕK )∗cK . In particular,
Y is not contained in the support of 1′. So the pullback ι∗1′ is well-defined. Next,
X and Y being integral and ψ dominant, ϕ∗1′ := ψ∗(ι∗1′) is well-defined.

Let us now recall the proof of the projection formula cK .ϕ
∗1′ = ϕ∗cK .1

′ . Let
xK be a closed point of the support of cK , let Z be its schematic closure in X , set
xk := Z ∩ Xk and let Z̃ be the normalization of Z . The reduced scheme V := ϕ(Z)
is the schematic closure of ϕ(xK ) and we have ϕ(xk)= V ∩ Xk . Denote by Ṽ the
normalization of V . The morphism ϕ induces a finite surjective morphism Z→ V ,
which in turn induces a finite surjective morphism Z̃→ Ṽ (R is excellent). Let f ′

be a local equation of 1′ at ϕ(xk). Suppose for example that f ′|Ṽ ∈ O(Ṽ ). The
equality (ϕ∗cK .1

′)xk = (cK .ϕ
∗1′)xk to be proved can be written as

[K (Z) : K (V )] · length
(
O(Ṽ )/( f ′)

)
= length

(
O(Z̃)/(ϕ∗ f ′)

)
.

But [K (Z) : K (V )] is equal to the ramification index of the discrete valuation rings
extension O(Ṽ )→O(Z̃). Consequently, the above formula is true.

Now, when the pairings [ · , · ]X and [ · , · ]X ′ are defined, the projection formula
can be written as the equality [cK , (ϕK )

∗D′K ]X = [(ϕK )∗cK , D′K ]X ′ . Indeed, let 1′

be a divisor which is τ -equivalent to zero on X ′ and let n′ be a nonzero integer
such that (1′)K = n′D′K . The direct image ϕ∗cK of the schematic closure of cK

coincides with the schematic closure of (ϕK )∗cK . Thus, by definition,

n′[(ϕK )∗cK , D′K ]X ′ = ϕ∗cK .1
′ .

The divisor ϕ∗1′ is τ -equivalent to zero on X , and satisfies (ϕ∗1′)K = n′(ϕK )
∗D′K .

Hence, by definition,

n′[cK , (ϕK )
∗D′K ]X = cK .ϕ

∗1′ . �

In the situation of Definition 2.1.1, let X ′ be another proper flat normal semifac-
torial R-model of X K . Consider the graph 0 of the rational map X 99K X ′ induced
by the identity on the generic fibers. By definition, this is the schematic closure of
the graph of the identity morphism X K→ X ′K in X ×R X ′. In particular, this is a
closed subscheme of X×R X ′, proper and flat over R, with generic fiber isomorphic
to X K . Applying [Pepin 2011, Theorem 2.6], we can find an R-scheme X̃ which is
proper flat normal and semifactorial, together with an R-morphism X̃→0 which
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is an isomorphism on the generic fibers. Composing with the two projections from
X ×R X ′ to X and X ′, we get arrows

X̃

����
X X ′

which are isomorphisms on the generic fibers. Now, Lemma 2.1.2 shows that the
pairings [ · , · ]X and [ · , · ]X ′ both coincide with [ · , · ]X̃ . In conclusion, the pairing
[ · , · ]X depends only on X K , and not on the choice of X .

Let us summarize the above considerations:

Proposition 2.1.3. Let X K be a proper, geometrically normal and geometrically
connected scheme over K . There exists a pairing

[ · , · ] : Z0
0(X K )×Divτ (X K )→Q,

defined for the pairs (cK , DK ) such that the supports of cK and DK are disjoint,
and which can be computed as follows.

Let X/R be any proper flat normal and semifactorial model of X K over R. Let
cK be the schematic closure of cK in X. Choose (n,1) ∈ (Z \{0})×Divτ (X/R)
such that 1K = nDK . Then we have

[cK , DK ] =
1
n
(cK .1) ∈Q .

2.2. Comparison with Néron’s pairing. As before, let R be a complete discrete
valuation ring with fraction field K and algebraically closed residue field k. Let
X K be a proper smooth and geometrically connected scheme over K . Let v be
the normalized valuation on K , which maps any uniformizing element of R to
1 ∈ Z. We fix an algebraic closure K of K , and we still denote by v the unique
valuation on K extending v. Néron attached to X K a pairing 〈 · , · 〉 with respect to
the valuation v [Néron 1965, II 9.3]. This is a pairing

〈 · , · 〉 : Z0
0(X K )×Divτ (X K )→R,

defined for (cK , DK ) when the supports of cK and DK are disjoint (the definition of
Néron’s pairing is briefly reviewed at the beginning of the proof of Theorem 2.2.1).
Actually, Néron considers the subgroup Div0(X K )⊆Divτ (X K ) to consist of divisors
which are algebraically equivalent to zero on X K . However, the group (R,+)
being divisible, the real number 〈cK , DK 〉 is naturally defined when DK is only
τ -equivalent to zero. Néron shows in [loc. cit., III 4.2] that the pairing takes values
in Q. This fact will be recovered and made more precise below (Corollary 2.2.2).
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Our goal in this subsection is to prove the following common generalization of
Néron [1965, III 4.1], Gross [1986], Hriljac [1985], Lang [1988, III 5.2] and Bosch–
Lorenzini [2002, 4.3], over a complete discrete valuation ring R with algebraically
closed residue field k and fraction field K .

Theorem 2.2.1. For every proper, smooth and geometrically connected scheme
over K , the pairing [ · , · ] defined in Proposition 2.1.3 coincides with Néron’s
pairing 〈 · , · 〉 defined in [Néron 1965, II.9, Theorem 3].

In particular, the pairing [ · , · ] generalizes Néron’s pairing to K -schemes which
are proper geometrically normal and geometrically connected, but not necessarily
smooth.

Before proving the theorem, let us note a consequence of Proposition 2.1.3.

Corollary 2.2.2. Let X K be a proper, geometrically normal and geometrically
connected scheme over K . Let n be the exponent of the component group of the
special fiber of the Néron model of the Picard variety AK = Pic0

X K /K ,red. Then
Néron’s pairing on Z0

0(X K )×Div0(X K ) takes values in (1/n)Z.

Proof. As recalled before Definition 2.1.1, the exponent n has the following
property: for any DK ∈ Div0(X K ) and any proper flat normal and semifactorial
model X of X K , there exists 1 ∈ Div0(X/R) such that 1K = nDK . In particular,
for any DK ∈ Div0(X K ), we can choose this integer n, together with a divisor
1 ∈ Div0(X/R), to compute

[cK , DK ] =
1
n
(cK .1) ∈

1
n

Z .

Now Theorem 2.2.1 asserts that 〈cK , DK 〉 = [cK , DK ]. �

Corollary 2.2.2 provides a refinement of [Néron 1965, III 4.2]. More precisely,
Néron shows that the pairing

〈 · , · 〉 : Z0
0(X K )×Div0(X K )→R

takes values in (1/2n′ab)Z, where n′, a and b are defined as follows. The integer n′

is the exponent of the component group of the special fiber of the Néron model of the
Albanese variety A′K of X K . Conjecturally, n′ is equal to n; see Section 3.1. Next,
a is the smallest positive integer such that there exists a map h : X K→ A′K from
X K to its Albanese variety, with the property that for any divisor DK ∈ Div0(X K ),
there exists a divisor WK ∈ Div0(A′K ) such that h∗WK is linearly equivalent to
aDK . We can have a > 1 if X K (K ) is empty. Finally, b is the smallest degree of a
polarization of the Albanese variety A′K .

In [Mazur and Tate 1983, (1.5) and (2.3); Lang 1983, 11.5.1-11.5.2], it is proved
that 〈cK , DK 〉 belongs to (1/n′)Z when X K is an abelian variety and if cK is
supported on rational points. This statement is also a consequence of [Bosch and
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Lorenzini 2002, 4.4]. Moreover, note that Néron’s pairing can take the value 1/n,
for instance when X K is an elliptic curve; see [loc. cit., Example 5.8].

Let us go back to Theorem 2.2.1. To prove the theorem, we will use the charac-
terization of Néron’s pairing given in [Lang 1983, 11.3.2] and that we recall now.

An element cK of Z0
0(X K ) can be written uniquely as a difference of two positive

0-cycles with disjoint supports: cK = c+K − c−K . Denoting by deg the degree of a
0-cycle, let us set

deg+ cK := deg(c+K )= deg(c−K )≥ 0.

Lemma 2.2.3 [Lang 1983, 11.3.2]. Suppose that for each projective smooth and
geometrically connected scheme X K over K , we are given a bilinear pairing

Z0
0(X K )×Div0(X K )→R

(cK , DK ) 7→ δ(cK , DK )

such that the following properties are true:

(1) If DK is a principal divisor on X K , then δ(cK , DK )= 0.

(2) Let ϕK : X K→ X ′K be a K -morphism. For all cK ∈ Z0
0(X K ), and for all

D′K ∈Div0(X ′K ) whose support does not meet that of the 0-cycle (ϕK )∗cK , the
following equality holds:

δ(cK , (ϕK )
∗D′K )= δ((ϕK )∗cK , D′K ).

(3) For DK ∈ Div0(X K ) fixed and deg+ cK bounded, the values δ(cK , DK ) are
bounded.

Then δ(cK , DK )= 0 for all cK , DK and X K .

Remark 2.2.4. In the statement of [Lang 1983, 11.3.2], one reads “projective
variety V over K ” instead of “projective smooth and geometrically connected
scheme X K over K ”. According to the general conventions of [loc. cit., page
21], a “variety over K ” is a “geometrically integral scheme of finite type over K ”.
However, the given proof of [loc. cit., 11.3.2] works if and only if the Albanese
variety of each V is an abelian variety. The latter is true, for example, if each V is
geometrically normal, or if each V is smooth. For our purposes, namely the proof
of Theorem 2.2.1, we need the version of the lemma where all the V are smooth.

Proof of Theorem 2.2.1. Starting from the existence of Néron functions on a proper
smooth and geometrically connected K -scheme X K [Néron 1965, II 8.2], let us
recall the definition of Néron’s pairing. Let

cK =
∑

i

ni [xK ,i ] ∈ Z0
0(X K )
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and take DK ∈Div0(X K ) whose support Supp(DK ) does not contain any of the xK ,i .
Let λDK : (X K −Supp(DK ))(K )→R be a Néron function associated to DK . For
each i , the scheme xK ,i ⊗K K is supported on some K -points xK , ji , ji = 1, . . . , si ,
where si is the separable degree of K (xK ,i )/K . Denoting by li the inseparable
degree of K (xK ,i )/K , then

λDK (xK ,i ) :=

si∑
ji=1

liλDK (xK , ji ) and 〈cK , DK 〉 :=
∑

i

niλDK (xK ,i ).

The real number 〈cK , DK 〉 is well-defined because λDK is unique up to constant
and cK has degree zero.

Comparison of the pairings for a principal divisor DK . Let us keep the previous
notation, and suppose that DK = divX K f for a nonzero f ∈ K (X K ). Let z ∈
(X K − Supp(divX K f ))(K ), mapping to a closed point xK ∈ X K . The evaluation
of f at z is defined by the pull-back z∗ : OX K ,xK → K , that is, f (z) := z∗ f . The
formula λ f (z)= v( f (z)) then defines a Néron function for the divisor divX K f .

Fix an i . There is a 1-1 correspondence between the xK , ji and the K -embeddings
of the residue field extension K (xK ,i )/K into K/K . By pulling back the valuation
v, each of these embeddings induces a valuation on K (xK ,i ). However, as R is com-
plete, these valuations are equal to the unique valuation on K (xK ,i ) which extends
the normalized valuation on K , and that we can also denote by v. Consequently,

λ f (xK ,i )=

si∑
ji=1

liv( f (xK ,i ))= [K (xK ,i ) : K ]v( f (xK ,i ))

where f (xK ,i ) is the image of f by the canonical surjection OX K ,xK ,i → K (xK ,i ).
Now, take the schematic closure Zi of xK ,i in X , denote by Z̃i its normalization

and set xk,i := Xk∩Zi . The ring O(Z̃i ) is a discrete valuation ring with fraction field
K (xK ,i ). So it is precisely the valuation ring of v in K (xK ,i ). As k is algebraically
closed, its ramification index over R is equal to [K (xK ,i ) :K ]. From this observation,
we get

v( f (xK ,i ))=

{
1/[K (xK ,i ) : K ] lengthO(Z̃i )

(
O(Z̃i )/( f )

)
if f |Z̃i

∈ O(Z̃i ),

−1/[K (xK ,i ) : K ] lengthO(Z̃i )

(
O(Z̃i )/( f −1)

)
otherwise.

We have thus obtained [K (xK ,i ) : K ]v( f (xK ,i ))= (cK .divX f )xk,i (recall the begin-
ning of Section 2.1). But divX f is a divisor on X which is τ -equivalent to zero
and extends divX K f . The desired equality 〈cK , divX K f 〉 = [cK , divX K f ] follows.

Functoriality of the pairing [ · , · ]. Let ϕK : X K→ X ′K be a K -morphism of proper
smooth and geometrically connected schemes over K . Let us show that for all
cK ∈ Z0

0(X K ), and for all D′K ∈Divτ (X ′K ) whose support does not meet that of the
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0-cycle (ϕK )∗cK , the following equality holds

[cK , (ϕK )
∗D′K ] = [(ϕK )∗cK , D′K ].

Let X/R (resp. X ′/R) be a proper flat normal semifactorial model of X K (resp.
X ′K ). Consider the graph 0 of the rational map X 99K X ′ defined by ϕK . Applying
Theorem 2.6 of [Pepin 2011] to 0, we obtain a proper flat normal semifactorial
X̃/R and R-morphisms

X̃
α

��

β

��
X X ′

such that on the generic fibers, α is an isomorphism and β coincides with ϕK .
In particular, the pairing [ · , · ] for X K can be computed on X̃ , and the desired
functoriality follows from Lemma 2.1.2 applied to β.

The pairing δ( · , · ). At this point, we recall that for any proper smooth and geomet-
rically connected scheme X K over K , there exists a nonzero integer a and a map
X K→ A′K from X K to its Albanese variety, with the property that for any divisor
DK ∈ Divτ (X K ), there exists a divisor WK ∈ Div0(A′K ) such that h∗WK is well-
defined and linearly equivalent to aDK [Néron 1965, II 2.1]. Let cK ∈ Z0

0(X K ) and
DK ∈ Divτ (X K ) with disjoint supports. Keep the previous notation. After moving
WK on the projective smooth scheme A′K if necessary (see [Liu 2002, 9.1.11], for
example), we can assume that the support of h∗WK does not meet that of cK . Then,
using the functoriality of [ · , · ], we can write

a[cK , DK ] = [cK , h∗WK ] + [cK , divX K f ] = [h∗cK ,WK ] + [cK , divX K f ]

for some nonzero f ∈ K (X K ). By definition, Néron’s pairing has the same functo-
riality property as [ · , · ]. And we have seen that both pairings coincide for principal
divisors. Consequently, as A′K is projective smooth geometrically connected over
K , Theorem 2.2.1 is proved if we know that both pairings coincide on such schemes.
So, until the end of the proof, we will only consider the pairings for projective
smooth geometrically connected schemes. Furthermore, by Z-linearity, we can only
consider divisors which are algebraically equivalent to zero.

Now, both [ · , · ] and 〈 · , · 〉 are bilinear in their definition domain, and they
coincide for principal divisors. Using a moving lemma on the projective smooth
scheme X K , we see that

δ(cK , DK ) := 〈cK , DK 〉− [cK , DK ]

is well-defined on the whole product Z0
0(X K )×Div0(X K ). And conditions (1) and

(2) of Lemma 2.2.3 are satisfied by δ.
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Condition (3) of Lemma 2.2.3 is satisfied by δ( · , · ). Denote by R the valuation
ring of v in K .

Fix DK ∈ Div0(X K ). Let (n,1) ∈ (Z \{0})×Divτ (X K ) satisfying 1K = nDK .
Represent the divisor 1 by a family (Ut , gt)t=1,...,m , where the Ut are affine open
subsets of X and the gt are rational functions on X . Let Et be the set of K -
points of X K which extend to R-points of Ut . As X is proper over R, we see that
X (K )= ∪m

t=1 Et . The family (Ut,K , gt)t=1,...,m represents the divisor nDK on X K .
Let us choose a Néron function λnDK on X K . By definition, we can find some
v-continuous locally bounded functions αt :Ut,K (K )→R such that

λnDK (z)= v(gt(z))+αt(z)

for all z ∈ (Ut,K −Supp(DK ))(K ). As Et is bounded in Ut(K ) (by construction),
the function αt is bounded on Et .

Let cK =
∑

i ni [xK ,i ]∈ Z0
0(X K )whose support does not meet that of DK . Fix an i ,

let Zi be the schematic closure of xK ,i in X , set xk,i := Xk∩Zi and let ti be such that
Zi ⊂Uti . The same local computation as in the case of a principal divisor shows that

(cK .1)xk,i = [K (xK ,i ) : K ]v(gti (xK ,i ))=

si∑
ji=1

liv(gti (xK ,i )).

On the other hand, keeping the same notation as in the beginning of the proof,

〈cK , nDK 〉 =
∑

i

ni

si∑
ji=1

liλnDK (xK , ji ).

Consequently,

nδ(cK , DK )=
∑

i

ni

si∑
ji=1

liαti (xK , ji ).

By construction, the K -point xK , ji of X K belongs to Eti . Denoting by | · | the usual
absolute value on R, and setting

B := max
t=1,...,m

(sup
Et

|αt |) ∈ R,

we obtain

|δ(cK , DK )| ≤
1
|n|

∑
i

|ni |[K (xK ,i ) : K ]B =
2B
|n|

deg+cK .

As the divisor DK is fixed, the numbers n and B are fixed, and so the right-hand
side of the above inequality is bounded if deg+cK is. �

Let us note the following properties of the pairing [ · , · ], and consequently of
Néron’s pairing.
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Proposition 2.2.5. Let X K be a proper, geometrically normal and geometrically
connected scheme over K . Let cK ∈ Z0

0(X K ) and let DK ∈ Divτ (X K ) with disjoint
supports. If cK or DK is rationally equivalent to zero, then [cK , DK ] ∈ Z.

Proof. The case where DK is rationally equivalent to zero follows directly from
the definition of [ · , · ]: if DK = divK f with f ∈ K (X K )\ {0}, then [cK , divK f ] =
(cK .div f ) ∈ Z.

Let us now suppose that cK is rationally equivalent to zero. As [, DK ] is Z-linear,
we have to show that if cK = (ϕK )∗divCK f for some K -morphism

ϕK : CK→ X K

from a proper normal connected curve CK to X K , and some nonzero f ∈ K (CK ),
then

[cK , DK ] ∈ Z .

As R is excellent, there exists a proper flat regular model C/R of CK . On the
other hand, let us consider a proper flat normal semifactorial model X/R of X K .
After replacing C by a desingularization of the graph of the rational map C 99K X
induced by ϕK , we can suppose that ϕK extends to an R-morphism ϕ : C→ X . If
1 is a divisor on X which is τ -equivalent to zero and such that 1K = nDK for
some integer n 6= 0, then

[cK , DK ] :=
1
n
(
(ϕK )∗divCK f .1

)
=

1
n
(
divCK f .ϕ∗1

)
by the projection formula (Lemma 2.1.2). Let us write

divC f = divCK f − V and ϕ∗1= (ϕK )∗1K −W

for some vertical divisors V and W on C/R. Denote by 01, . . . , 0ν the reduced
irreducible components of Ck , by M the intersection matrix associated to Ck (as
defined in the introduction), and by ρ : Pic(C)→Zν the degree homomorphism
(E) 7→ (E · 0i )i=1,...,ν . Following [Bosch et al. 1990, 9.2/13], the divisor E on
the R-curve C is algebraically equivalent to zero if and only if (E) belongs to the
kernel of ρ. Therefore the τ -equivalence relation and the algebraic equivalence
relation on C/R are the same, and the linear equivalence classes of ϕ∗1 and divC f
belongs to the kernel of ρ. Thus we get:

ρ
(
divCK f

)
= ρ(V )= MV and ρ

(
(ϕK )∗1K

)
= ρ(W )= MW,

where we have identified a vertical divisor on C/R with an element of Zν . Next,
we use that the matrix M is symmetric to obtain(

divCK f .W
)
=

t Wρ
(
divCK f

)
=

t W MV = t V MW =
(
(ϕK )∗1K .V

)
.
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Then it follows that

[cK , DK ] =
1
n
(
(ϕK )∗1K .divC f

)
=
(
(ϕK )∗DK .divC f

)
∈ Z . �

Remark 2.2.6. Let us keep the notation of the proof of 2.2.5. If the curve CK is
geometrically normal and geometrically connected, the pairing [ · , · ] is defined on
CK and (

(ϕK )∗DK .divC f
)
= [(ϕK )

∗DK , divCK f ].

In other words, in this case, the proof consists in using the functoriality of the
pairing [ · , · ], then showing that it is symmetric for curves, and finally applying
the definition of the pairing for a principal divisor. The symmetry property of
Néron’s pairing 〈 · , · 〉 for such a curve is well-known: for example see [Lang 1983,
11.3.6 and 11.3.7]. But here, there is no reason for the curve CK coming from
the rational equivalence relation to satisfy the above geometric hypotheses. So
we could not use directly the properties of the pairing 〈 · , · 〉. However, over an
excellent discrete valuation ring, there is no need of these geometric hypotheses on
CK for the existence of the regular model C/R. So we have been able to prove the
proposition for the pairing [ · , · ], and thus also for Néron’s pairing 〈 · , · 〉 thanks to
Theorem 2.2.1.

3. Duality and algebraic equivalence for models of abelian varieties

3.1. Grothendieck’s duality for Néron models. Let us recall here Grothendieck’s
duality theory for Néron models of abelian varieties, as developed in [SGA 7 I 1972,
VII, VIII, IX].

Let R be a discrete valuation ring with perfect residue field k and fraction field
K . Let AK be an abelian variety over K , with dual A′K . Let A/R, A′/R be the
Néron models of AK , A′K , and 8A, 8A′ be the étale k-group schemes of connected
components of the special fibers Ak , A′k .

By definition, the abelian variety A′K represents the identity component Pic0
AK /K

of the Picard functor of AK , and the canonical isomorphism A′K = Pic0
AK /K is

given by the Poincaré sheaf PK on AK ×K A′K birigidified along the unit sections
of AK and A′K . Now, this sheaf is canonically endowed with the structure of a
biextension of (AK , A′K ) by Gm,K [loc. cit., VII 2.9.5]. Then the duality theory for
Néron models is to understand how this biextension extends at the level of Néron
models. For this, Grothendieck attached to PK a canonical pairing

〈 · , · 〉 :8A×k 8A′→Q /Z,

which measures the obstruction to extending PK as a biextension of (A, A′) by
Gm,R . The duality statement is: this pairing is a perfect duality [loc. cit., IX 1.3]. As
mentioned in the introduction, it has been proved in various situations, including the
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semistable case [SGA 7 I 1972, IX 11.4; Werner 1997] and the mixed characteristic
case [Bégueri 1980]. In general, the duality statement remains a conjecture.

3.2. Duality and Picard functor. Keep the notation of the previous subsection. By
[Pepin 2011, Corollary 2.23], it is always possible to find an R-compactification of A,
that is, an open R-immersion of A into a proper R-scheme A with dense image, such
that A/R is flat, A is normal and the canonical map Pic(A)→Pic(A) is surjective.
Note that, in particular, A/R is semifactorial: the map Pic(A)→Pic(AK ) is surjec-
tive because A is regular, so that Pic(A)→Pic(AK ) is surjective by composition.
As A/R is proper, it makes sense to consider the notion of algebraic equivalence
on A relative to R using the identity component of the Picard functor PicA/R , as
defined in Section 2.1. Our goal in this section is to understand the duality from the
point of view of algebraic equivalence, starting from the canonical isomorphism
A′K = Pic0

AK /K . To do this, we need the following notions.

Q-divisors and relative τ -equivalence. Let Z be a normal locally noetherian
scheme, so that the canonical homomorphism from the group of divisors on Z
into that of 1-codimensional cycles is injective [EGA IV4 1967, 21.6.9(i)]. A
1-codimensional cycle C on Z is said to be a Q-divisor if there exists n ∈ Z \{0}
such that nC is a divisor.

Let Z→ T be a proper morphism of schemes, with Z locally noetherian and
normal. A Q-divisor C on Z is said to be τ -equivalent to zero relative to T (or
τ -equivalent to zero if there is no ambiguity on the base scheme T ) if there exists
n ∈Z \{0} such that nC is a divisor on Z which is τ -equivalent to zero relative to T
(see Section 2.1). The group of classes of Q-divisors on Z which are τ -equivalent to
zero relative to T , modulo the principal divisors, will be denoted by PicQ,τ (Z/T ).

When Z = A, the restriction to the generic fiber induces an injective morphism

PicQ,τ (A/R) ↪→ PicτAK /K (K )= Pic0
AK /K (K )= A′K (K ).

The fact that PicτAK /K (K )=Pic0
AK /K (K ) can be found in [Mumford 1974, (v) p. 75].

To see that the above morphism is injective, let (C) be in its kernel. After modifying
C by a principal divisor if necessary, we can assume that CK = 0, that is, the support
of C is contained in the special fiber Ak of A/R. Let n be a nonzero integer such
that nC is a divisor on A which is τ -equivalent to zero relative to R. As Ak admits
at least one irreducible component 0 with multiplicity 1 (the component containing
the unit element of Ak), the vertical divisor nC is principal [Raynaud 1970, 6.4.1
3]. In other words, there exists an integer m such that nC = mdiv(π), where π
is a uniformizing element of R. Taking the associated cycles, and comparing the
coefficients of 0, we obtain that n divides m. Consequently, the Q-divisor C is a
principal divisor, whence the injectivity.
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By definition, the group PicQ,τ (A/R) contains the group Pic0(A/R) of classes
of divisors on A which are algebraically equivalent to zero relative to R, modulo
principal divisors. Now, when R is complete with algebraically closed residue field,
we know from [Pepin 2011, Corollary 3.14] that the image of the composition

Pic0(A/R) ↪→ PicQ,τ (A/R) ↪→ A′K (K )

contains the subgroup (A′)0(R) of A′K (K ).
Conversely, we will show that Grothendieck’s duality statement for A and A′

is equivalent to the following assertion: the image of PicQ,τ (A/R) ↪→ A′K (K ) is
contained in the subgroup (A′)0(R).

Theorem 3.2.1. Let R be a complete discrete valuation ring with algebraically
closed residue field k and fraction field K . Let AK be an abelian variety over K ,
with dual A′K . Let A and A′ be the Néron models of AK and A′K , respectively, over
R. Let A be a proper flat normal model of AK over R, equipped with a dense open
R-immersion A→ A, such that the induced map Pic(A)→Pic(A) is surjective.
Let PicQ,τ (A/R) be the group of Q-divisors on A which are τ -equivalent to zero
relative to R, modulo the principal divisors. Then, the duality statement recalled in
3.1 is equivalent to the following:

The image of the restriction map PicQ,τ (A/R) ↪→ A′K (K ) is contained in the
subgroup (A′)0(R).

Let Pic0(A/R) be the group of divisors on A which are algebraically equivalent to
zero relative to R, modulo the principal divisors. Then, when the duality statement
is true, the inclusion Pic0(A/R) ↪→ PicQ,τ (A/R) is an equality, and there is a
canonical commutative diagram

Pic0(AK )
∼ // A′K (K )

Pic0(A/R)
∼ //

?�

OO

(A′)0(R)
?�

OO

where the vertical maps are injective, and the horizontal maps are bijective.

See the end of Section 3.4 for the proof.

Remark 3.2.2. With the notation of Theorem 3.2.1, the canonical morphisms of
abstract groups

Pic0(AK )→Pic0
AK /K (K ), Pic0(A/R)→Pic0

A/R
(R)

are isomorphisms. For the second one, note that PicA/R can be defined using the
étale topology, and that R is strictly henselian. Note also that, when A is locally
factorial (e.g., regular), the group PicQ,τ (A/R) coincides with the group Picτ (A/R)
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of divisors on A which are τ -equivalent to zero relative to R, modulo the principal
divisors, which in turn can be identified with the group Picτ

A/R
(R).

The last assertion of Theorem 3.2.1 provides a refinement of [Pepin 2011, Corol-
lary 3.14] in the present case X = A. Here, when Grothendieck’s duality holds,
we obtain a necessary and sufficient condition for an invertible sheaf which is
algebraically equivalent to zero on AK to extend into an invertible sheaf on A
which is algebraically equivalent to zero relative to R: the corresponding point
a′K ∈ A′K (K ) must extend in the identity component of A′. Thus, conjecturally, the
group (A′)0(R) parametrizes the invertible sheaves on A which are algebraically
equivalent to zero relative to R.

To make the link between Grothendieck’s duality for A and A′, and algebraic
equivalence on A, we need some preparation about nonrational 0-cycles on AK ,
especially those which are supported on inseparable points over K .

3.3. About nonrational 0-cycles on abelian varieties. Let K be a field, and denote
by K its algebraic closure. Let AK be an abelian variety over K . Let d be a positive
integer and let Hilbd

AK /K be the Hilbert scheme of points of degree d on AK . The
Grothendieck–Deligne norm map

σd : Hilbd
AK /K→ A(d)K

defined in [SGA 4 III 1973, (6.3.4.1) on p. 435 = XVII-184] (see also [Bosch et al.
1990, pages 252–254]) maps Hilbd

AK /K to the d-fold symmetric product A(d)K . On
the other hand, the map

Ad
K→ AK , (x1, . . . , xd) 7→ x1+ · · ·+ xd ,

induces a map

md : A(d)K → AK .

Let us set
Sd := md ◦ σd : Hilbd

AK /K→ AK .

Let aK ∈ AK be a closed point of degree d, that is to say, the residue field
extension K (aK )/K has degree d . It corresponds to a rational point

h(aK ) ∈ Hilbd
AK /K (K ).

We will need an explicit description of its image Sd(h(aK )) ∈ AK (K ), when
considered as an element of AK (K ).

Let us consider the artinian K -scheme aK ⊗K K . It is supported on some
a j ∈ AK (K ), j = 1, . . . , s, where s is the separable degree of K (aK )/K . The length
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of each local component of aK⊗K K is equal to the inseparable degree of K (aK )/K ,
and will be denoted by l. So the effective 0-cycle associated to aK ⊗K K is

s∑
j=1

l[a j ] ∈ Z0(AK ).

We are going to show that

Sd(h(aK ))=

s∑
j=1

la j ∈ AK (K ).

Note that, in particular, this will show that the right-hand-side of the equality belongs
to AK (K ).

Lemma 3.3.1. Let C be an artinian algebra over an algebraically closed field K .
Let C1, . . . ,Cs be the local components of C , with respective lengths l1, . . . , ls , and
let u j : C j→ K be the canonical surjection from C j to its residue field. Then, for
all

c = (c1, . . . , cs) ∈ C = C1× · · ·×Cs,

the following formula holds for the norm of c over K :

NC/K (c)=
s∏

i=1

(u j (c j ))
l j .

Proof. We can assume that C is local, with length l. Let m be the maximal ideal of C .
Let n be the smallest integer such that mn

= 0. Choose a basis E=E0
∐
· · ·
∐

En−1

of C over K which is adapted to the filtration

0=mn
⊂mn−1

⊂ · · · ⊂m⊂ C,

i.e., Ei is contained in mi
\mi+1 and induces a basis of the K -vector space mi/mi+1.

Fix c ∈ C and let M be the matrix of multiplication-by-c in the basis E. Write
c = λ+ ε with λ ∈ K and ε ∈m. Then M is a l × l lower triangular matrix, with
all diagonal entries equal to λ. Hence NC/K (c)= λ

l , as required. �

We use the lemma to compute σd(h(aK )), considered as an element of A(d)
K
(K ).

Let C be the K -algebra of global sections of the scheme aK ⊗K K . Set

TSd
K
(C) := (C⊗d)Sd ⊆ C⊗d

where Sd is the symmetric group acting on C⊗d by permuting factors. By definition,
the point σd(h(aK )) ∈ (aK ⊗K K )(d)(K )⊂ A(d)

K
(K ) corresponds to the unique K -

algebra homomorphism

TSd
K
(C)→ K , c⊗d

7→ NC/K (c).



1334 Cédric Pépin

Now, from Lemma 3.3.1, this homomorphism is induced by the point(
a1, . . . , a1, a2, . . . , a2, . . . , as, . . . , as

)
∈ Ad

K
(K ),

where a j is repeated l times.
Next, the element Sd(h(aK )) ∈ AK (K ) is just the sum

md(σd(h(aK )))=

s∑
j=1

la j ∈ AK (K ),

as claimed.

Notation 3.3.2. The above K -morphisms Sd induce a homomorphism

S : Z0(AK )→ AK (K )

from the group of 0-cycles on AK to that of K -rational points: if aK ∈ AK is a closed
point of degree d , defining h(aK ) ∈ Hilbd

AK /K (K ), then S([aK ]) := Sd(h(aK )).

We will also need to “translate divisors on AK by nonrational points”.
Let DivAK /K be the scheme of relative effective divisors on AK [FGA VI 1966,

4.1]. Fix a positive integer d and consider the map

Ad
K ×K DivAK /K→DivAK /K

which is given by the functorial formula

((a1, . . . , ad), D) 7→ Da1 + · · ·+ Dad ,

where Da is obtained from D by translation by the section a. By symmetry, it
induces a map

A(d)K ×K DivAK /K→DivAK /K .

By composing with the norm map σd , the latter gives rise to a map

Hilbd
AK /K ×K DivAK /K→DivAK /K .

Let aK ∈ AK be a closed point of degree d and let DK be an effective divisor on
AK . Denote by (DK )aK ∈ DivAK /K (K ) the image of (h(aK ), DK ) by the previous
arrow. As above, write

d∑
r=1

[aK ,r ]

for the 0-cycle associated to aK ⊗K K . In this expression, repetitions are allowed.
Then, using the above computation of σd(h(aK )), we see that (DK )aK , as an element
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of the group DivAK /K (K ), is equal to

d∑
r=1

(DK )aK ,r
,

where DK denotes the pull-back of DK on AK . When aK is étale over K , it is
easy to see that the latter divisor descends on AK . But this turns out to be true in
general because of the above construction. Moreover, this description shows that
the formation of (DK )aK is additive in DK . We can thus associate a divisor (DK )aK

on AK to any divisor DK in the following way: identifying divisors on AK with
1-codimensional cycles, first use the above to define (DK )aK when DK is a prime
cycle, and then extend by Z-linearity.

Notation 3.3.3. If cK is a 0-cycle on AK and DK a divisor on AK , define the
divisor (DK )cK on AK by Z-linearity from the above situation where cK is a closed
point.

3.4. Relative algebraic equivalence on semifactorial compactifications. Our goal
in this subsection is to prove Theorem 3.2.1. So, until the end of the subsection, we
fix a complete discrete valuation ring R with algebraically closed residue field k
and fraction field K .

The starting point is the link between Grothendieck’s pairing and Néron’s pairing,
which has been established by Bosch and Lorenzini: Grothendieck’s pairing is the
specialization of Néron’s pairing.

Theorem 3.4.1 [Bosch and Lorenzini 2002, 4.4]. Keep the notation of Theorem
3.2.1. Moreover, let 8A and 8A′ be the groups of connected components of Ak and
A′k , respectively. On the one hand, consider Grothendieck’s pairing [SGA 7 I 1972,
IX 1.3]

〈 · , · 〉 :8A×8A′→Q /Z,

and on the other hand, consider Néron’s pairing [Néron 1965, II 9.3]

〈 · , · 〉 : Z0
0(AK )×Div0(AK )→Q

(defined for (cK , DK ) when the supports of cK and DK are disjoint).
Let (a, a′) ∈8A×8A′ . Fix a point aK ∈ AK (K ) specializing to a, and a divisor

D′K ∈ Div0(AK ) whose image in A′K (K ) specializes to a′. Assume that aK and 0K

do not belong to the support of D′K . Then

〈a, a′〉 = −〈 [aK ] − [0K ] , D′K 〉 mod Z .

The following is a key result about the pairing [ · , · ] defined in Proposition 2.1.3.
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Proposition 3.4.2. Let X K be a proper geometrically normal and geometrically
connected scheme over K . Let X be a proper flat normal semifactorial model of
X K over R. Let ν be the number of irreducible components of the special fiber Xk .
There exist some 0-cycles of degree zero cK ,1, . . . , cK ,ν on X K , with the following
property:

If DK is a divisor on X K which is τ -equivalent to zero, whose support is disjoint
from those of the cK ,i , and if [cK ,i , DK ] is an integer for all i = 1, . . . , ν, then
there exists a Q-divisor on X which is τ -equivalent to zero relative R, with generic
fiber DK .

Proof. Let U be the open subset of X consisting of the regular points. As X is
normal, for any irreducible closed subset C of codimension 1 in X , the intersection
C ∩U is a dense open subset of C . Furthermore, for any 1-codimensional cycle C
on X , the restriction C |U is a divisor on U .

Next, let 01, . . . ,0ν be the reduced irreducible components of Xk . Let ξ1, . . . , ξν

be the generic points of 01, . . . , 0ν . Set di := length(OXk ,ξi ). From [Raynaud
1970, 7.1.2], there exists, for all i = 1, . . . , ν, an R-immersion ui : Zi→U , with
Zi finite and flat over R, with rank di , such that ui,k(Zi,k) is a point xi,k of 0i .
Then the intersection multiplicity of Zi and 0 j ∩U is equal to 1 if i = j , and 0
otherwise. In particular, the generic fiber of Zi is a closed point xK ,i ∈UK of degree
di . Moreover, as Zi is proper over R, the immersion Zi→ X is closed. Finally,
setting d := gcd(di , i = 1, . . . , ν), an appropriate Z-linear combination of the xK ,i

provides a 0-cycle cK on X K of degree d. We set

cK ,i := [xK ,i ] −
di
d

cK ∈ Z0
0(X K ).

Let DK ∈ Divτ (X K ) whose support is disjoint from those of the cK ,i . Choose
1 ∈ Divτ (X/R) with a nonzero integer n such that 1K = nDK . Denoting by DK

the schematic closure of DK in X , we can view 1 as a 1-codimensional cycle on
X , and write

1= nDK +

ν∑
i=1

ni0i

for some integers n1, . . . , nν . Set V :=
∑ν

i=1 ni0i . As the schematic closures cK ,i

of the cK ,i in X are contained in U (by construction), the following computation is
valid:

cK ,i .1= n(cK ,i .DK )+ (x K ,i .V )−
di

d
(cK .V )= n(cK ,i .DK )+ ni −

di

d
(cK .V ).
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Assume that [cK ,i , DK ] belongs to Z. Then, the left-hand side of the above equality
belongs to n Z. Consequently, there exists ri ∈ Z such that

nri = ni −
di
d
(cK .V ).

Now, consider the vertical cycle (with integral coefficients)

W := (cK .V )
1
d
[Xk].

By definition,

V −W = n
ν∑

i=1

ri0i , that is, 1−W = n(DK −

ν∑
i=1

ri0i ).

The cycle D := DK −
∑ν

i=1 ri0i is equal to DK on the generic fiber. This is a
Q-divisor on X which is τ -equivalent to zero because dnD is a divisor on X which
is τ -equivalent to zero. �

Keep the notation of Proposition 3.4.2. Even if X/R admits a section, so that d
is equal to 1, the closed point xK ,i is not rational as soon as the special fiber Xk is
not reduced at the generic point of the irreducible component 0i . Therefore, if we
want to combine Theorem 3.4.1 and Proposition 3.4.2 when X = A (notation of
Theorem 3.2.1), we need to compare the values of Néron’s pairing on the abelian
variety AK for 0-cycles which are supported on nonrational points, with its values
for 0-cycles of the form [aK ] − [0K ], with aK ∈ AK (K ). Here we will use the
constructions of Section 3.3, together with some biduality argument. To take care
of the conditions on supports involved in the computations of Néron’s pairings, let
us first note the following lemma.

Lemma 3.4.3. Let AK be an abelian variety over K with dual A′K . Let a′K∈ A′K (K )
and let E be a finite set of closed points of AK . Then there exists a Poincaré divisor
on AK ×K A′K , that is, a divisor such that the invertible sheaf OAK×K A′K (P) is a
Poincaré sheaf which is birigidified along 0K ∈ AK (K ) and 0′K ∈ A′K (K ), satisfying
the following conditions:

(1) P0K := P|0K×K A′K and P0′K := P|AK×K 0′K are well-defined and equal to zero.

(2) Pa′K := P|AK×K a′K is well-defined, and its support does not meet E.

(3) For all aK ∈ E, PaK := P|aK×K A′K is well-defined, and its support does not
meet {0′K , a′K }.

Proof. Consider the finite set F whose elements are the following closed points of
the product AK ×K A′K :

aK ×K 0′K or aK ×K a′K , with aK ∈ ({0K }
∐

E).
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Let P be a Poincaré sheaf on AK ×K A′K , birigidified along 0K ∈ AK (K ) and
0′K ∈ A′K (K ). Choose an arbitrary divisor Q such that OAK×K A′K (Q)' P. Using a
moving lemma on the product AK ×K A′K if necessary [Liu 2002, 9.1.11], one can
assume that the support of Q is disjoint from the finite set F. As 0K ×K 0′K ∈ F,
the divisors Q|0K×K A′K and Q|AK×K 0′K are well-defined, and are principal. Then

P := Q− p∗2(Q|0K×K A′K )− p∗1(Q|AK×K 0′K )

(where p1 : AK ×K A′K→ AK and p2 : AK ×K A′K→ A′K are the projections) is a
Poincaré divisor again.

Now, let aK ∈ ({0K }
∐

E). Then aK ×K a′K does not belong to the support
Supp(Q) of Q because aK ×K a′K ∈ F. Next, aK ×K a′K /∈ Supp(p∗2(Q|0K×K A′K )):
indeed, 0K ×K a′K ∈F by definition, hence 0K ×K a′K /∈ Supp(Q), and consequently
a′K /∈ Supp(Q|0K×K A′K ). Finally aK ×K a′K /∈ Supp(p∗1(Q|AK×K 0′K )), because oth-
erwise aK ∈ Supp(Q|AK×K 0′K ) and aK ×K 0′K ∈ Supp(Q), which is not the case
because aK ×K 0′K ∈ F. We have thus shown that the point aK ×K a′K does not
belong to the support of P . Similarly, the point aK ×K 0′K does not belong to the
support of P . In conclusion:

(1) P|0K×K A′K and P|AK×K 0′K are well-defined, and are equal to zero, by definition
of P .

(2) P|AK×K a′K is well-defined, and its support does not meet E, because aK×K a′K /∈
Supp(P) for all aK ∈ E.

(3) P|aK×K A′K is well-defined for all aK ∈E, and its support does not meet {0′K , a′K },
because aK ×K a′K /∈ Supp(P) and aK ×K 0′K /∈ Supp(P) for all aK ∈ E. �

We can now proceed to the announced comparison of some values of Néron’s
pairing.

Proposition 3.4.4. Let AK be an abelian variety with dual A′K . Let cK ∈ Z0
0(AK )

and D′K ∈Div0(AK ). Assume that the support of D′K is disjoint from that of cK and
that of [S(cK )]− [0K ] (Notation 3.3.2). Then the following relation between values
of Néron’s pairing on AK is true:

〈cK , D′K 〉 ≡ 〈 [S(cK )] − [0K ] , D′K 〉 mod Z .

Proof. Let a′K ∈ A′K (K ) corresponding to D′K . Let E be a finite set of closed points
of AK , containing the supports of cK and [S(cK )] − [0K ]. From Lemma 3.4.3,
there exists a Poincaré divisor P satisfying the following conditions:

(1) P0K := P|0K×K A′K and P0′K := P|AK×K 0′K are well-defined and equal to zero.

(2) Pa′K := P|AK×K a′K is well-defined, and its support does not meet E.

(3) PaK := P|aK×K A′K is well-defined for all aK ∈ E, and its support does not meet
{0′K , a′K }.
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Then, the divisors D′K and Pa′K are linearly equivalent. Consequently, we can
assume D′K = Pa′K (Proposition 2.2.5).

Write cK = c+K−c−K where c+K and c−K are positive 0-cycles with disjoint supports.
Let L/K be a finite field extension such that

c+K ⊗K L =
d∑

r=1

[ar,+] and c−K ⊗K L =
d∑

r=1

[ar,−]

where d := deg c+K = deg c−K and with ar,+, ar,− in AL(L) (repetitions allowed).
Computing Néron’s pairings over K and over L with normalized valuations, we get

〈cK , Pa′K 〉AK =
1
eL

〈 d∑
r=1

[ar,+] −

d∑
r=1

[ar,−] , (PL)a′L

〉
AL

,

where PL is the pull-back of P over L , the point a′L ∈ A′L(L) is the image of
a′K ∈ A′K (K ) by the inclusion A′K (K )⊆ A′L(L), and eL is the ramification index of
L/K . As (PL)0′L = 0, the reciprocity law for Néron’s pairing [Lang 1983, 11.4.2]1

asserts that the right-hand side of the equality is equal to the (well-defined) quantity

1
eL

〈
[a′L ] − [0

′

L ] ,

d∑
r=1

(PL)ar,+−

d∑
r=1

(PL)ar,−

〉
A′L

.

Now, with Notation 3.3.3, the divisor
∑d

r=1(PL)ar,+−
∑d

r=1(PL)ar,− is precisely
the pull-back over L of the divisor PcK on A′K . Furthermore, as the Poincaré map

AL(L)→Pic0
A′L/L(L)

is a group homomorphism, the divisors PcK and PS(cK ) are linearly equivalent
on A′L , and thus on A′K (because Pic0

A′K /K (K ) is contained in Pic0
A′K /K (L)). Let

f ∈ K (A′K ) be such that PcK − PS(cK ) = div( f ). As the normalized valuation on
K takes values in Z, the (well-defined) pairing

1
eL
〈 [a′L ] − [0

′

L ] , (div( f ))L〉A′L = 〈 [a
′

K ] − [0
′

K ] , div( f )〉A′K

is an integer. Consequently,

〈cK , Pa′K 〉AK ≡ 〈 [a
′

K ] − [0
′

K ] , PS(cK )〉A′K mod Z .

As P0K = 0 and P0′K = 0, we conclude by using once again the reciprocity law. �

1Here we use the reciprocity law in the case where the divisorial correspondence is the Poincaré
divisor PL . By using a definition of Néron’s pairing relying on the Poincaré biextension (see [Zahrin
1972, §5; Mazur and Tate 1983, §2]), the reciprocity law for PL is a direct consequence of the
biduality of abelian varieties.
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We can now interpret Grothendieck’s obstruction (Section 3.1) in terms of relative
algebraic equivalence.

Theorem 3.4.5. Keep the notation of Theorem 3.2.1. Moreover, let 8A and 8A′ be
the group of connected components of Ak and A′k , respectively.

Let a′ ∈8A′ . Lift a′ to a point a′K ∈ A′K (K ), representing the linear equivalence
class of a divisor D′K on AK . Then the homomorphism

〈 · , a′〉 :8A→Q /Z

induced by Grothendieck’s pairing is identically zero if and only if D′K can be
extended to a Q-divisor on A which is τ -equivalent to zero relative to R.

Proof. Suppose that the obstruction 〈 · , a′〉 vanishes. Choose 0-cycles of degree
zero cK ,1, . . . , cK ,ν on AK satisfying the conclusion of Proposition 3.4.2 when
applied to the model A/R of AK . To prove that D′K extends to a Q-divisor on A
which is τ -equivalent to zero, we can replace D′K by any divisor on AK which is
linearly equivalent to D′K . In particular, using moving lemma [Liu 2002, 9.1.11],
we can assume that the support of D′K does not meet the finite set

{0K , S(cK ,1), . . . , S(cK ,ν)}

ν∐
i=1

Supp(cK ,i ).

Then, as 〈 · , a′〉 = 0, we get from Bosch–Lorenzini’s Theorem 3.4.1 that

〈 [S(cK ,i )] − [0K ] , D′K 〉 ∈ Z

for all i = 1, . . . , ν. Proposition 3.4.4 and Theorem 2.2.1 then imply that

[cK ,i , D′K ] ∈ Z

for all i = 1, . . . , ν. Due to the choice of the cK ,i , the divisor D′K can then be
extended to a Q-divisor on A which is τ -equivalent to zero.

Conversely, suppose that there is a Q-divisor D′ on A which is τ -equivalent to
zero, with generic fiber D′K . To prove that 〈 · , a′〉 = 0, we can assume that 0K does
not belong to the support of D′K , by adding to D′ the divisor of a rational function
on A if needed. Let n′ be a nonzero integer such that 1′ := n′D′ is a divisor on A
which is τ -equivalent to zero. For each aK ∈ AK (K ) which is not in the support of
D′K , we get:

[ [aK ] − [0K ] , D′K ] =
1
n′
(
[aK ] − [0K ].1

′
)
=
(
[aK ] − [0K ].D′

)
∈ Z .

The first equality holds by definition of the pairing [ · , · ], and the second one is
true because [aK ]− [0K ] is contained in the regular locus of A. Now observe that
an element a ∈ 8A can always be lifted to a point aK ∈ AK (K ) which is not in
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the support of D′K . Thus, it follows from Theorem 2.2.1 and Bosch–Lorenzini’s
Theorem 3.4.1 that the obstruction 〈 · , a′〉 vanishes. �

Proof of Theorem 3.2.1. By biduality of abelian varieties, Grothendieck’s duality
statement is equivalent to the following: the obstruction 〈 · , a′〉 vanishes if and only
if a′ = 0.

Suppose that this assertion is true. Let (C) ∈ PicQ,τ (A/R) and let a′K be its
canonical image in A′K (K ). By Theorem 3.4.5, the obstruction 〈 · , a′〉 vanishes.
Hence a′ = 0, that is, aK ′ ∈ (A′)0(R).

Conversely, suppose that the canonical image of PicQ,τ (A/R) in A′K (K ) is
contained in (A′)0(R). Let a′ ∈8A′ , and assume that the corresponding obstruction
〈 · , a′〉 vanishes. Choose a lifting a′K ∈ A′K (K ) of a′. Then, by Theorem 3.4.5, the
point a′K belongs to the image of PicQ,τ (A/R). In particular, it belongs to (A′)0(R),
and a′ = 0.

Thus, we have proved that Grothendieck’s conjecture is equivalent to the fact
that the image of PicQ,τ (A/R) in A′K (K ) is contained in (A′)0(R). Now suppose
that the conjecture is true. Then, from [Pepin 2011, Corollary 3.14], we obtain
isomorphisms

Pic0(A/R)−→∼ PicQ,τ (A/R)−→∼ (A′)0(R).

The last assertion of Theorem 3.2.1 follows. �

4. Grothendieck’s pairing for Jacobians

4.1. Statement of the results. Let R be a complete discrete valuation ring with
algebraically closed residue field k and fraction field K . Let X K be a proper smooth
geometrically connected curve over K , and let JK := Pic0

X K /K be its Jacobian.
Denote by J and J ′ the Néron models of JK and J ′K over R, respectively, and
8J and 8J ′ the groups of connected components of the special fiber of J/R and
J ′/R, respectively. Theorems 3.4.1 and 2.2.1 describe Grothendieck’s pairing
associated to JK in terms of intersection multiplicities on some compactification J
of J . It is natural to wonder if these computations can be replaced by intersection
computations on a proper flat regular model X of X K .

Assume that X K (K ) is nonempty. In this case, the curve X K can be embedded
into JK , and can be used to define a classical theta divisor on JK . Then, using
Theorem 3.4.1, Bosch and Lorenzini described Grothendieck’s pairing associated to
JK in terms of the Néron pairing on X K , and so in terms of intersection multiplicities
on X , thanks to Gross’s and Hriljac’s Theorems [Gross 1986; Hriljac 1985]. Their
precise result is as follows. Let M be the intersection matrix of the special fiber
of X/R: if 01, . . . , 0ν are the irreducible components of Xk equipped with their
reduced scheme structure, the (i, j)-th entry of M is the intersection number (0i ·0 j ).
Denote by 8M the torsion part of the cokernel of M : Zν→Zν . According to
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Raynaud’s work on the sheaf PicX/S , there is a canonical isomorphism 8J =8M ;
see [Bosch et al. 1990, 9.6/1]. Now, on the product8M×8M , there is the canonical
pairing

〈 · , · 〉M :8M ×8M→Q /Z

(T , T ′) 7→ ( tS/n)M(S′/n′) mod Z

for any n, n′ ∈ Z \{0} and S, S′ ∈ Zν such that M S = nT , M S′ = n′T ′. Now let
(a, a′) ∈8J ×8J ′ . By identifying JK and J ′K with the help of the opposite of the
canonical principal polarization defined by a theta divisor, Grothendieck’s pairing
of a and a′ can be computed by the formula

〈a, a′〉 = 〈a, a′〉M

[Bosch and Lorenzini 2002, Theorem 4.6].
Now assume that X K (K ) is empty. Choosing a field extension L/K such that

X K (L) is nonempty, one can consider a theta divisor on JL , and it is a classical
fact that the associated canonical principal polarization is defined over K . Using
its opposite, one can still identify 8J with 8J ′ , and thus 8J ′ with 8M (as k is
algebraically closed, the identification 8J = 8M holds without assuming that
X K (K ) is nonempty). Then the authors of [Bosch and Lorenzini 2002] ask if both
pairings 〈 · , · 〉 and 〈 · , · 〉M still coincide in this situation [loc. cit., Remark 4.9]. In
[Lorenzini 2008, Theorem 3.4], Lorenzini gives a positive answer to this question
when the special fiber of X/R admits two irreducible components Ci and C j with
multiplicities di and d j such that (Ci ·C j ) > 0 and gcd(di , d j )= 1. Here we show
that this result still holds if we only assume that the global gcd of the multiplicities
of the irreducible components of Xk is equal to 1. Note that, due to the hypotheses
on R and on X , this global gcd coincides with the index of the curve X K , that is,
the smallest positive degree of a divisor on X K [Raynaud 1970, 7.1.6 1].

Theorem 4.1.1. Let R be a complete discrete valuation ring with algebraically
closed residue field k and fraction field K . Let X K be a proper smooth geometrically
connected curve over K , with index d. Let JK be the Jacobian of X K , identified
with its dual using the opposite of its canonical principal polarization. Let X/R be
a proper flat regular model of X K . The following relation between Grothendieck’s
pairing for JK and the above pairing defined by the intersection matrix M of Xk is
true:

d〈a, a′〉 = d〈a, a′〉M .

In particular, we get the following partial answers to Grothendieck’s conjecture
[SGA 7 I 1972, IX 1.3] in this case:

Corollary 4.1.2. Keep the notation of Theorem 4.1.1. Then:

• The kernel of Grothendieck’s pairing for JK is killed by d.
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• If d is prime to the characteristic of k, then Grothendieck’s pairing for JK is
perfect.

Proof. From [Bosch and Lorenzini 2002, Theorem 1.3], the pairing 〈 · , · 〉M is a
perfect duality. So the first point follows directly from Theorem 4.1.1. For the
second point, denote by p the characteristic of k. Then Grothendieck’s pairing is
perfect when restricted to the prime-to-p parts of the component groups: [SGA 7 I
1972, IX 11.3; Bertapelle 2001, Theorem 1]. Consequently, the second point follows
again from the perfectness of 〈 · , · 〉M and Theorem 4.1.1. �

4.2. Proof of Theorem 4.1.1. Here are two lemmas to prepare the proof of the
theorem.

Recall that, as R is complete with algebraically closed residue field, a classical
result of Lang asserts that the Brauer group of K is zero, whence Pic0(X K)= JK(K ).

Lemma 4.2.1. Let a, a′ ∈8J =8M , and choose divisors DK , D′K on X K with dis-
joint supports, such that aK := (DK ), a′K := (D

′

K ) ∈ JK (K )= Pic0(X K ) specialize
to a, a′. The relationship between the pairing 〈 · , · 〉M and Néron’s pairing on X K

is given by:

〈a, a′〉M =−〈DK , D′K 〉 mod Z .

Proof. This is an immediate consequence of the definitions, and of the description
of Néron’s pairing for the curve X K in terms of intersection multiplicities on
X . Indeed, let ρ : Pic(X)→Zν be the degree morphism (Z) 7→ (Z · 0i )i=1,...,ν .
Denote by DK the schematic closure of DK in X . By definition of Raynaud’s
isomorphism 8J = 8M , the image of ρ(DK ) ∈ Zν in Zν / Im M is contained in
the torsion part 8M , and the resulting element is precisely the image of a ∈ 8J

under the isomorphism. In particular, there are n, n′ ∈ Z \{0} and S, S′ ∈ Zν such
that M S = nρ(DK ), M S′ = n′ρ(D′K ), and by definition of the symmetric pairing
〈 · , · 〉M , we get

〈a, a′〉M = (t S′/n′)ρ(DK ) mod Z .

Under the identification
⊕ν

i=1 Z0i ' Zν , the right-hand side can also be written as
an intersection multiplicity:

〈a, a′〉M =
1
n′
(DK .S′)=−

1
n′
(
DK .(n′D′K − S′)

)
∈Q /Z .

Now, the equality M S′ = n′ρ(D′K ) means that the divisor n′D′K − S′ on X is
algebraically equivalent to zero relative to R ([Bosch et al. 1990] 9.2/13). Applying
Theorem 2.2.1 to the curve X K , we conclude that

〈a, a′〉M =−[DK , D′K ] = −〈DK , D′K 〉 ∈Q /Z . �
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Next, the index d of X K divides g− 1 where g is the genus of X K [Raynaud
1970, 9.5.1]. Let us fix a divisor E of degree d on X K , and consider the linear
equivalence class of divisors of degree g− 1 given by

tK := (g− 1)d−1(E) ∈ Picg−1
X K /K (K ).

The canonical image of the (g−1)-fold symmetric product X (g−1)
K in Picg−1

X K /K can be
translated by tK to a divisor on JK , which we will denote by 2. Then, by extending
K and reducing to the case where X K (K ) is nonempty, one sees that the canonical
principal polarization ϕ of JK can be written explicitly here as ϕ(z)=−(2z −2),
where 2z is obtained from 2 by translation by the point z. On the other hand,
denoting by1 the diagonal of X K×K X K , the divisor d1−E×K X K on X K×K X K

defines an element of Pic0
X K /K (X K ), hence a K -morphism h : X K→Pic0

X K /K = JK .

Lemma 4.2.2. The following diagram of K -morphisms is commutative:

J ′K
h∗

  
JK

−ϕ
>>

d // JK

The commutativity can be stated as follows. Let z ∈ JK (K ). Let Z be any divisor
of degree 0 on X K , whose linear equivalence class (Z) corresponds to z via the
canonical isomorphism Pic0(X K )= JK (K ). Then the following relation holds:

h∗(2z −2)= d(Z) ∈ Pic0(X K )= JK (K ).

In particular, there is a nonempty open subset UK of JK such that h∗2z is a well-
defined divisor on X K for all z ∈UK (K ), and whose degree does not depend on the
point z.

Proof. To check that the diagram is commutative, one can replace K by its algebraic
closure, and so we can assume that K is algebraically closed. As the pull-back by
the multiplication-by-d on JK acts as multiplication-by-d on the group Pic0(JK ),
the lemma then follows from the classical situation where X K can be embedded
into JK using a rational point of X K . �

Proof of Theorem 4.1.1. Let (a, a′) ∈8J ×8J . Choose a point aK ∈ JK (K ) which
specializes to a ∈ 8J . The point aK corresponds, under the equality JK (K ) =
Pic0(X K ), to the linear equivalence class of a divisor D(a)K of degree 0 on X K .
Write D(a)K = D(a)+K − D(a)−K with D(a)+K and D(a)−K positive with disjoint
supports. Let L/K be a finite field extension such that

D(a)+K ⊗K L =
α∑

r=1

[ar,+] and D(a)−K ⊗K L =
α∑

r=1

[ar,−],
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where α := deg D(a)+K = deg D(a)−K and with ar,+, ar,− in X L(L) (repetitions
allowed).

Next, still denoting by UK the open subset of JK provided by Lemma 4.2.2,
one can find a′K and zK in UK (K ) specializing respectively to a′ and 0 in 8J , and
such that

daK , 0K /∈ Supp(2a′K −2zK )

ār,+, ār,− /∈ Supp((2a′K −2zK )L) for all r = 1, . . . , α,

where ār,+ := h(ar,+) and ār,− := h(ar,−). The points a′K and zK correspond to
the classes of some divisors D(a′)K and D(0)K on X K , under the identification
JK (K )= Pic0(X K ). From Lemma 4.2.2, we get:

h∗(2a′K −2zK )= d(D(a′)K − D(0)K )= d(a′K − zK )

in Pic0(X K ) = JK (K ). And by construction, the K -point d(a′K − zK ) of JK

specializes to da′ ∈8J . As a consequence, Lemma 4.2.1 provides the formula:

〈a, da′〉M =−〈D(a)K , h∗(2a′K −2zK )〉X K mod Z

(note that h∗(2a′K −2zK ) is a well-defined divisor, and not only a class, because
a′K , zK ∈UK (K )).

Still working with normalized valuations to compute Néron’s pairing, and using
functoriality, we obtain:

〈a, da′〉M =−
1
eL

〈 α∑
r=1

[ār,+] − [ār,−] , (2a′K −2zK )L

〉
JL

mod Z,

where eL is the ramification index of L/K . Then we apply the reciprocity law for
Néron’s pairing with the divisorial correspondence (δ∗2− p∗12− p∗22)L , where δ,
p1 and p2: JK ×K JK→ JK are the difference map and the two projections, to get:

〈a, da′〉M =−
1
eL

〈
[a′L ] − [zL ] ,

α∑
r=1

(2L)
−

ār,+
− (2L)

−

ār,−

〉
JL

mod Z .

Here (2L)
− stands for [−1]∗(2L).

Now, with Notation 3.3.3, the divisor
∑α

r=1(2L)
−

ār,+
− (2L)

−

ār,−
is the pull-back

on JL of the divisor (2−)h∗D(a) defined on JK . On the other hand,

α∑
r=1

ār,+− ār,− =

α∑
r=1

(d[ar,+] − EL)− (d[ar,−] − EL)

= d(D(a)L) ∈ JK (L)

= daK ∈ JK (K ).
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Therefore the theorem of the square on JL shows that the two divisors (2−)h∗D(a)

and 2−daK
−2− on JK are linearly equivalent over L , hence also over K (J ′K (K )

injects into J ′L(L)). From this observation, and the fact that the normalized valuation
on K takes values in Z, we deduce that

〈a, da′〉M =−〈 [a′K ] − [zK ] ,2
−

daK
−2−〉JK mod Z .

Applying once more the reciprocity law, we find

〈a, da′〉M =−〈 [daK ] − [0K ] ,2a′K −2zK 〉 mod Z .

Finally, note that (2a′K −2zK )=−ϕ(a
′

K − zK ) ∈ J ′(K ) and a′K − zK specializes
to a′ ∈8J . Consequently, if we use −ϕ to identify JK with its dual, Theorem 3.4.1
tells us that

−〈 [daK ] − [0K ] ,2a′K −2zK 〉 = 〈da, a′〉 mod Z .

Whence 〈a, da′〉M = 〈da, a′〉, as claimed. �
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Free subalgebras of quotient rings
of Ore extensions

Jason P. Bell and Daniel Rogalski

Let K be a field extension of an uncountable base field k, let σ be a k-auto-
morphism of K , and let δ be a k-derivation of K . We show that if D is one
of K (x; σ) or K (x; δ), then D either contains a free algebra over k on two
generators, or every finitely generated subalgebra of D satisfies a polynomial
identity. As a corollary, we show that the quotient division ring of any iterated
Ore extension of an affine PI domain over k is either again PI, or else it contains
a free algebra over its center on two variables.

1. Introduction

Many authors have noted that it is often the case that noncommutative division
algebras have free subobjects. For example, the existence of nonabelian free groups
inside the multiplicative group D× of a division algebra D has been studied in
several papers (see [Reichstein and Vonessen 1995; Chiba 1996] and the references
therein). It is now known that if D is noncommutative and has uncountable center,
then D× contains a free subgroup on two generators [Chiba 1996].

The question of when a division k-algebra D contains a free k-subalgebra on
two generators has also attracted much attention. The first result in this direction
was obtained by Makar-Limanov [1983], who showed that if

A1(k)= k{x, y}/(xy− yx − 1)

is the Weyl algebra over a field k of characteristic 0, then its quotient division algebra
D1(k) does indeed contain such a free subalgebra. This result is perhaps surprising
to those only familiar with localization in the commutative setting, and is in fact
a good demonstration of how noncommutative localization is less well-behaved.
In particular, the Weyl algebra A is an algebra of quadratic growth; that is, if we
let V denote the k-vector subspace of A spanned by 1 and the images of x and y

Bell was supported by NSERC grant 31-611456. Rogalski was supported by NSF grant DMS-
0900981.
MSC2010: primary 16K40; secondary 16S10, 16S36, 16S85.
Keywords: free algebra, division algebra, Ore extension, skew polynomial ring.
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in A, then the dimension of V n is a quadratic function of n. On the other hand, a
free algebra on two generators has exponential growth. This is a good example
of the principle that there is no nice relationship, in general, between the growth
of a finitely generated algebra and the growth of other subalgebras of its quotient
division algebra.

We note that by Lemma 1 of [Makar-Limanov and Malcolmson 1991], if a
division k-algebra D contains a free k-subalgebra on two generators, then it contains
a free F-subalgebra on two generators for any central subfield F . Thus the choice
of base field is not an important consideration when considering the existence of
free subalgebras, and need not even be mentioned. Now there are certain division
algebras which cannot contain copies of free algebras on more than one generator for
trivial reasons, for example, division algebras which are algebraic over their centers.
Note also that a free algebra on two generators does not satisfy a polynomial identity.
We say that a k-algebra R is locally PI if every finitely generated k-subalgebra of R
is a polynomial identity ring (this is also easily seen to be independent of the choice
of central base field k). An obvious necessary condition for a division algebra D
to contain a noncommutative free algebra is that D not be locally PI. On the other
hand, there are no known examples of division algebras which do not contain a free
algebra on two generators, except locally PI ones.

In light of the discussion above, we say that a division algebra D satisfies the
free subalgebra conjecture if D contains a free subalgebra on two generators if
and only if D is not locally PI. Makar-Limanov [1984a] annunciated the FOFS
(full of free subobjects) conjecture, one part of which was the statement that every
division algebra D which is finitely generated (as a division algebra) and infinite-
dimensional over its center contains a free subalgebra on two generators. It is easy
to see, using a bit of PI theory, that this statement is equivalent to what we have
called the free subalgebra conjecture here. Toby Stafford independently formulated
a similar conjecture, as we have learned from Lance Small. As Makar-Limanov also
notes, the conjecture is a bit provocative as stated, because it implies the resolution
of the Kurosh problem for division rings. However, we will study the conjecture
here only for special types of division rings in any case.

Since Makar-Limanov’s original breakthrough, many authors have used his
ideas to demonstrate the existence of free subalgebras on two generators in the
quotient division algebras of many special classes of rings, especially certain Ore
extensions, group algebras, and enveloping algebras of Lie algebras [Figueiredo
et al. 1996; Lichtman 1999; Lorenz 1986; Makar-Limanov 1983; 1984b; 1984c;
Makar-Limanov and Malcolmson 1991; Shirvani and Gonçalves 1998; 1999]. Our
main aim here is to further develop the Ore extension case. Suppose that D is a
division ring with automorphism σ : D→ D and σ -derivation δ, and let D(x; σ, δ)
be the quotient division ring of the Ore extension D[x; σ, δ]. Lorenz [1986] showed
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that k(t)(x; σ) contains a free subalgebra on two generators when σ has infinite
order. Shirvani and J. Z. Gonçalves [1999] showed that if R is a k-algebra which is
a UFD with field of fractions K and the property that R× = k×, and σ : R→ R is
a k-automorphism such that the σ -fixed subring of R is k, then K (x; σ) contains a
free subalgebra on two generators (in fact, even a free group algebra of rank |k|).

In this paper, we first give in Section 2 some new criteria for the existence of
a free k-subalgebra on two generators in a division ring D(x; σ, δ), following the
main idea of Makar-Limanov’s original method. We then use these criteria to
completely settle the free subalgebra conjecture for the case of Ore extensions of
fields, assuming an uncountable base field. Our main results are the following.

Theorem 1.1. Let K/k be a field extension and σ : K → K a k-automorphism.

(1) If k is uncountable, then the following are equivalent:

(i) K (x; σ) contains a free k-subalgebra on two generators.
(ii) K (x; σ) is not locally PI.

(iii) K has an element lying on an infinite σ -orbit.

(2) If k is countable, the same conclusion as in (1) holds if either K/k is infinitely
generated as a field extension, or if σ is induced by a regular k-automorphism
of a quasiprojective k-variety with function field K .

We expect that the free subalgebra conjecture for K (x; σ) is always true, with no
restrictions on k; in any case, the theorem above certainly covers the cases one is
most likely to encounter.

We also study the derivation case, which is in fact easier and requires no assump-
tion on the base field.

Theorem 1.2. Let K be a field extension of a field k. If δ : K→ K is a k-derivation,
then K (x; δ) contains a free k-subalgebra on two generators if and only if it is not
locally PI.

See Theorem 4.1 for a characterization of when K (x; δ) is locally PI.
In fact, a general Ore extension K [x; σ, δ] of a field K is isomorphic to one with

either σ = 1 or with δ = 0. So as a rather quick consequence of the theorems above,
we obtain the following result.

Theorem 1.3. The quotient division algebra of any iterated Ore extension of a
PI domain which is affine over an uncountable field satisfies the free subalgebra
conjecture.

We note that our proofs are largely independent of past work in this subject, except
that we assume Makar-Limanov’s original result. Some authors have considered the
more general question of the existence of k-free group algebras in a division ring
D, and have also studied the cardinality of the rank of the largest such free group
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algebra. For simplicity, we stick to the context of the free subalgebra conjecture
here. We mention that Shirvani and Gonçalves [1996] have shown that if the center
k of D is uncountable, then the existence of a free group k-algebra of rank 2 in D
is implied by the existence of a free k-algebra on two generators.

In this paper, we have tried to make as few assumptions as possible on the ground
field k. In a follow-up paper [Bell and Rogalski 2011], we give stronger criteria
for existence of free subalgebras, and thus verify the free subalgebra conjecture for
some additional classes of algebras, in case k is uncountable.

2. Criteria for existence of free subalgebras of a division algebra

In this section we use ideas of Makar-Limanov to give a simple criterion that
guarantees that a division algebra D contains a copy of a free algebra on two
generators. We work over an arbitrary field k. As we noted in the introduction, the
question of whether D contains a free k-subalgebra on two generators is independent
of the choice of central subfield k.

Notation 2.1. We use the following notation:

(1) We let D denote a division algebra over a field k.

(2) We let σ : D→ D denote a k-algebra automorphism of D.

(3) We let δ : D→ D denote any σ -derivation of D over k, that is, a k-linear map
satisfying δ(ab)= σ(a)δ(b)+ δ(a)b for all a, b ∈ D.

(4) We let ψ = (σ − 1)+ δ : D→ D (this is also a σ -derivation) and set

E = {u ∈ D : ψ(u)= 0},

which is a division subring of D.

(5) We let D[x; σ, δ] be the Ore extension generated by D and the indeterminate
x with relations xa = σ(a)x + δ(a) for a ∈ D, and let D(x; σ, δ) denote its
quotient division algebra. As usual, if σ = 1 we omit σ from the notation, and
if δ = 0 we omit δ from the notation.

We now prove a sufficient condition for the ring D(x; σ, δ) to contain a free
subalgebra. Compared to the original method of Makar-Limanov’s, we choose a
slightly different pair of elements, and we avoid the use of power series. We note
that the characteristic of the base field has no effect in the following criterion.

Theorem 2.2. Assume Notation 2.1 and let b ∈ D. If

(1) b 6∈ σ(E), and

(2) for all u ∈ D, ψ(u) ∈ σ(E)+ σ(E)b implies u ∈ E ,

then the k-algebra generated by b(1− x)−1 and (1− x)−1 is a free subalgebra of
D(x; σ, δ).
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Proof. Let

S=
{
(i1, . . . , ir ) : r ≥ 1, i1, . . . , ir ∈ {0, 1}

}
∪ {∅}, (2.1)

and for nonempty I = (i1, . . . , ir ) ∈ S, define length(I ) := r and

WI := bi1(1− x)−1bi2(1− x)−1
· · · bir (1− x)−1. (2.2)

If I = ∅, we define length(∅) := 0 and W∅ := 1. Note that the WI are exactly
the words in the generators b(1− x)−1, (1− x)−1, and so our task is to show that
{WI | I ∈ S} is linearly independent over k. It is also useful to define

VI := (1− x)−1bi1(1− x)−1
· · · bir (1− x)−1, (2.3)

for nonempty I ∈ S, and to set V∅ := (1− x)−1.
For nonempty I = (i1, i2, . . . , ir ), we define its truncation as I ′ = (i2, . . . , ir ),

with the convention that if I has length 1, then I ′ =∅. Note then that trivially from
the definitions we have

(1− x)VI =WI = bi1 VI ′, for I 6=∅. (2.4)

We claim that to prove that the WI are k-independent. It is enough to prove that
{VI | I ∈ S} is left D-independent. To see this, suppose the VI are D-independent
and that we have a nontrivial relation

∑
I∈S cI WI = 0, with cI ∈ k not all 0. We can

assume that c∅ = 0 by multiplying our relation through on the right by (1− x)−1.
Then

0=
∑
I∈S

cI WI =
∑
I 6=∅

cI bi1 VI ′ = 0.

This forces, for each nonempty I ∈ S, the equation cI bi1+cH b1−i1 = 0, where H is
the other element of S which has truncation I ′. But then cI = cH = 0, since {1, b}
is certainly k-independent, given that b 6∈ σ(E). This contradicts the nontriviality
of our chosen relation and the claim is proved.

The strategy is to prove by contradiction that {VI | I ∈ S} is left D-independent.
In fact, it is more convenient to prove the seemingly stronger statement that this set
is D-independent in the left factor D-space D(x; σ, δ)/D[x; σ, δ]. In other words,
we work modulo polynomials. Equivalently, we suppose that we have a relation∑

I∈S αI VI = p(x) ∈ D[x; σ, δ], with αI ∈ D not all 0. Among all such relations,
we pick one with a minimal value of d =min(length(I ) |αI 6= 0). Moreover, among
these, we select one with the smallest number of nonzero αI with length(I )= d.
Note that certainly d ≥ 1. By multiplying our relation by a nonzero element of D,
we may also assume that αJ = 1, for some J of length d .

Now for nonempty I , (2.4) can be rewritten as xVI = VI −bi1 VI ′ , and for I =∅,
we have xVI = VI −1. Multiplying our relation on the left by x and applying these
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formulas, we obtain

x
∑
I∈S

αI VI =
∑
I∈S

[
σ(αI )x + δ(αI )

]
VI

=

∑
I∈S

[
σ(αI )+ δ(αI )

]
VI −

∑
I 6=∅

σ(αI )bi1 VI ′ − σ(α∅)

= xp(x) ∈ D[x; σ, δ].

Subtracting the original relation
∑
αI VI = p(x), we get∑

I∈S

[
σ(αI )−αI+δ(αI )

]
VI−

∑
I 6=∅

σ(αI )bi1 VI ′ = (x−1)p(x)+σ(α∅)∈ D[x; σ, δ].

(2.5)
But notice that since αJ = 1, the coefficient of VJ in this relation is now 0, while no
new nonzero coefficients associated to VI with I of length d have appeared. Thus
by our assumption that we originally picked a minimal relation, all coefficients of
the VI on the left-hand side of (2.5) are 0. In particular,

ψ(αI )= σ(αI )−αI + δ(αI )= 0,

so αI ∈E , for all I of length d . Also, if H is the other element of S with truncation J ′,
then the coefficient of VJ ′ in (2.5) is

σ(αJ ′)−αJ ′ + δ(αJ ′)− σ(αJ )b j1 − σ(αH )b1− j1 = 0.

Since H and J have length d, for u = αJ ′ we obtain

ψ(u)= σ(u)− u+ δ(u) ∈ σ(E)b+ σ(E).

Note that also ψ(u) 6= 0, as the assumption b 6∈ σ(E) implies that σ(E)b+ σ(E)
is direct, and σ(αJ ) = 1. The existence of such a u violates the hypothesis, so
we have achieved a contradiction. Thus b(1− x)−1 and (1− x)−1 generate a free
subalgebra of D(x; σ, δ), as claimed. �

The interaction between δ and σ in the criterion of the preceding theorem seems
to make it hard to analyze in general. In practice, we will only use the theorem later
in the special cases where δ = 0 or σ = 1. In the rest of this section, we examine
the criterion for the special case of D(x; σ) more closely. As mentioned in the
introduction, Makar-Limanov [1983] proved that the Ore quotient ring of the first
Weyl algebra, D1(k), contains a free k-subalgebra on two generators when k has
characteristic 0 (see also [Krause and Lenagan 2000, Theorem 8.17]). It is standard
that D1(k) ∼= k(u)(x; σ), where σ(u) = u + 1, but we note that Theorem 2.2, as
stated, does not recover Makar-Limanov’s result. More specifically, taking D=k(u),
σ(u)= u+ 1, and δ = 0 in Notation 2.1, it is easy to see that E = k, but we have
σ(u)− u ∈ k with u 6∈ k; thus the criterion in Theorem 2.2 cannot be satisfied
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regardless of b. In fact, our criterion seems to be most useful when we combine it
with Makar-Limanov’s known result to give the following stronger criterion.

Theorem 2.3. Assume the notation from Notation 2.1, with δ = 0. Suppose that
either k has characteristic 0, or else k has characteristic p > 0 and we have the
additional condition that

{a ∈ D | σ p(a)= a} = E .

If there is b ∈ D \ E such that the equation

σ(u)− u ∈ b+ E (2.6)

has no solutions for u ∈ D, then the k-algebra generated by b(1−x)−1 and (1−x)−1

is a free subalgebra of D(x; σ).

Proof. Choose b as in the hypothesis. If σ(u)−u ∈ E+ Eb has no solutions except
for u ∈ E , then we are done by Theorem 2.2. So we may assume there is a solution
of the form σ(u)− u = α+βb with α, β ∈ E not both zero. As long as β 6= 0, we
may replace u by β−1u and thus assume that β = 1, and so (2.6) has a solution,
contradicting the hypothesis. Thus β = 0. Then α 6= 0 and y = uα−1 satisfies
σ(y)= y+ 1. Then the elements z = yx−1 and x satisfy the relation xz− zx = 1.
If char k = 0, then we see that the k-subalgebra R of D(x; σ) generated by x and
z is isomorphic to a factor of the Weyl algebra A1(k). Since the Weyl algebra is
simple, R ∼= A1(k), and so D(x; σ) must contain a copy of D1(k), and hence a free
k-algebra on two generators [Makar-Limanov 1983]. If instead char k = p> 0, then
we have σ p(y) = y. It follows by the hypothesis that y ∈ E , but this contradicts
σ(y)= y+ 1. �

We end this section with a valuation-theoretic criterion that will be especially
useful later when D is a field. Recall that a discrete valuation of a division ring D is
a function ν :D×→Z such that ν(xy)=ν(x)+ν(y) and ν(x+y)≥min(ν(x), ν(y))
for all x, y ∈ D×. It is easy to see that ν(x + y)=min(ν(x), ν(y)) if ν(x) 6= ν(y).
The valuation ν is trivial if ν(x)= 0 for all x ∈ D×.

Lemma 2.4. Assume the notation from Notation 2.1, with δ = 0. Suppose that D
has a nontrivial discrete valuation ν : D×→ Z, such that (i) ν(a)= 0 for all a ∈ E ;
and (ii) for all a ∈ D×, ν(σ n(a)) = 0 for all n � 0 and all n � 0. If char k = 0,
or if char k = p > 0 and {y ∈ D | σ p(y) = y} = E , then D(x; σ) contains a free
subalgebra on two generators.

Proof. For any given u ∈ D, by hypothesis Xu = {n ∈ Z | ν(σ n(u)) < 0} is a finite
set, and if Xu 6= ∅, we call `(u) = max Xu −min Xu the length of u. If Xu 6= ∅,
then it is easy to see that `(u− σ(u))= `(u)+ 1.

By nontriviality, we can pick b ∈ D such that Xb 6=∅. Among all such b, choose
one of minimal length, say `(b)= d. We claim that there are no solutions to the
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equation u− σ(u)= b+ e with u ∈ D and e ∈ E . Suppose (u, e) does give such
a solution. It is easy to see that `(b+ e) = `(b) = d, since ν(σ n(e)) = 0 for all
n by hypothesis (i). Now Xu = ∅ is clearly impossible, so u has a length. By
minimality, `(u)≥ d , and so `(u− σ(u))≥ d + 1, a contradiction. The result now
easily follows from Theorem 2.3. �

3. The automorphism case

In this section, the goal is to use the criteria developed in the previous section to
study when K (x; σ) contains a free subalgebra, where K is a field, and thus to
prove Theorem 1.1. In terms of Notation 2.1, we now write D = K for a field K
containing the base field k with k-automorphism σ : K→ K , and assume that δ= 0.
Then K (x; σ) is also an algebra over the fixed subfield E = {a ∈ K | σ(a) = a},
and as already mentioned, we may change the base field to any central subfield
without affecting the question of the existence of free subalgebras. Thus, it does no
harm to replace k by E , and we assume that the base field k is the σ -fixed field for
the rest of this section. We will frequently use in this section the exponent notation
bσ := σ(b) for the action of an automorphism on an element.

The difficult direction of Theorem 1.1 is to prove that K (x; σ) contains a free
subalgebra on two generators if K contains an element a lying on an infinite σ -
orbit. In this case, letting K ′ = k(. . . , aσ

−2
, aσ

−1
, a, aσ , . . . ) be the subfield of K

generated over k by the σ -orbit of a, it suffices to prove that K ′(x; σ) contains a
noncommutative free subalgebra. Thus, in this section, we will often assume the
following hypothesis.

Hypothesis 3.1. Let K be a field with automorphism σ : K → K , and let k be the
fixed field of σ . Assume that there is an element a ∈ K on an infinite σ -orbit such
that K = k(aσ

n
| n ∈ Z).

The proof that K (x; σ) satisfying Hypothesis 3.1 contains a free subalgebra
naturally breaks up into two cases, depending on whether or not K/k is finitely
generated as a field extension. The infinitely generated case is rather easily dis-
patched. We thank the referee very much for suggesting the elegant proof of the
following proposition, which gives a simpler and more direct method for handling
the infinitely generated case than our original.

Proposition 3.2. Assume Hypothesis 3.1, and suppose that K is infinitely generated
as a field extension of k. Then K (x; σ) contains a free k-subalgebra on two
generators.

Proof. Write a j = aσ
j

for all j ∈ Z. Suppose first that k(ai | i ≥ 0) is still an
infinitely generated field extension of k. In this case, we will show that in fact
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the countable system of elements {ax j
| j ≥ 1} generates a free k-subalgebra of

K (x; σ).
Let y j = ax j for all j ≥ 1. Then an arbitrary monomial in the y j looks like

y j1 y j2 . . . y jn = a0a j1a j1+ j2 . . . a j1+ j2+···+ jn−1 x j1+ j2+···+ jn ,

for some j1, . . . , jn ≥ 1. We claim that the set

S = {a0ai1ai2 . . . aim | m ≥ 1, 0< i1 < i2 < · · ·< im} ∪ {a0}

is linearly independent over k. Suppose not, and pick a linear dependency relation
over k in which the maximum n such that an appears in this relation is as small as
possible. Clearly n ≥ 1. Since every element of S is a product of distinct ai , the
dependency relation has the form p an+q = 0, where p, q are linear combinations
of elements of S involving only ai with i < n. If p = 0, we contradict the choice
of n. Thus an = q/p ∈ k(a0, a1, . . . , an−1). Applying σ , this easily implies by
induction that k(a0, a1, . . . , an−1) = k(ai | i ≥ 0), contradicting the assumption
that the latter field is infinitely generated as an extension of k. This establishes the
claim that S is linearly independent over k. Together with the K -independence of
the powers of x , this implies that the distinct monomials y j1 y j2 . . . y jn are linearly
independent over k. In other words, the yi generate a free subalgebra of K (x; σ)
as required.

Suppose instead that k(ai | i ≤ 0) is an infinitely generated field extension of k.
A symmetric argument to the above shows that {ax j

| j ≤ −1} generates a free
subalgebra of K (x; σ). Finally, if both k(ai | i ≤ 0) and k(ai | i ≥ 0) are finitely
generated field extensions of k, then K = k(ai | i ∈ Z) is also a finitely generated
extension of k, contradicting the hypothesis. �

Now we begin to tackle the case where K/k is a finitely generated field extension.
The idea in this case is to construct an appropriate valuation satisfying the hypothesis
of Lemma 2.4, using algebraic geometry, which we do in the next proposition. All
geometric notions we use will be standard ones as defined in [Hartshorne 1977].
Though sometimes we cite passages in that reference that belong to sections with a
blanket hypothesis that the base field k is algebraically closed, one can check in
each case that this restriction is unnecessary.

Before proving the proposition, we review some basic geometric facts that we
will need in particular, and prove a lemma. For convenience, we work only with
quasiprojective varieties over the field k, as defined in [Hartshorne 1977, Section
I.2], and for brevity we simply call these k-varieties. While for the most part we
do not need schemes, it will be convenient occasionally to think of a variety as a
scheme, as in [Hartshorne 1977, Proposition II.2.6], so that we may use the notion
of the generic point of an irreducible subvariety.
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Let X be a k-variety. Recall that there is a bijective correspondence between
birational maps φ : X 99K X and automorphisms of the field k(X) of rational
functions on X [Hartshorne 1977, Theorem I.4.4]. More explicitly, given a birational
map φ : X 99K X , for f ∈ k(X) we write φ( f ) = f φ = f ◦ φ ∈ k(X); then
f 7→ f φ is the corresponding automorphism of k(X), and we call this automorphism
φ : k(X)→ k(X) as well. Conversely, if we begin with an automorphism τ : K→ K
of a finitely generated field extension K/k, we may be able to choose a k-variety X
with function field k(X)= K such that the corresponding birational map τ : X 99K X
is not just birational, but in fact a regular k-automorphism of X . In this case we
say that τ : K → K is induced by a regular k-automorphism of X . In general,
however, it could be that no such choice of X exists; see, for example, [Rogalski
2009, Section 3] for more discussion of this issue.

Suppose that X is a normal k-variety. Then for any prime divisor (that is,
codimension-1 irreducible subvariety) C of X , there is a corresponding discrete
valuation vC of K = k(X) such that vC( f ) is the order of vanishing of f along C
[Hartshorne 1977, Section II.6]. Recall that Div X is the free abelian group with
basis the distinct prime divisors C on X . Given a rational function f ∈ k(X), we
define its corresponding principal divisor in Div X as

( f )=
∑

C

vC( f )C.

Now suppose that σ : X 99K X is a birational map of a normal projective k-variety.
Then by Zariski’s main theorem, the closed set where σ is undefined is at least
codimension 2 in X . In other words, given any prime divisor C on X , σ is defined
at the generic point η of C [Hartshorne 1977, Lemma V.5.1], or equivalently, σ is
defined on an open subset of the points of C . We write σ(C) to mean the closure
of σ(η). Since σ is merely birational, σ(C) may be a closed subset of codimension
greater than 1 in X , in which case we say that σ contracts C . On the other hand,
if σ(C) is again of codimension 1, then the birational map σ−1 must be defined
at the generic point σ(η) of σ(C), and we conclude that σ is a local isomorphism
from an open neighborhood of η to an open neighborhood of σ(η).

Lemma 3.3. Let σ : X 99K X be a birational map of a normal projective k-variety.
If C is a prime divisor not contracted by σ , then vσ(C) = vC ◦ σ . Moreover, if
f ∈ K = k(X) has the property that σ−1 contracts no prime divisor appearing with
nonzero coefficient in D = ( f ), and σ contracts no prime divisor appearing with
nonzero coefficient in E = ( f σ ), then E = σ−1(D).

Proof. Let C be a prime divisor not contracted by σ , so that σ is a local isomorphism
from a neighborhood of the generic point η of C to a neighborhood of the generic
point σ(η) of σ(C). The formula vσ(C) = vC ◦ σ follows, since by definition,
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vσ(C)( f ) depends only on the image of f in the local ring OX,σ (η) of functions
defined in a neighborhood of σ(η).

For the second statement, suppose that C is a prime divisor such that vC( f ) 6= 0.
Then by hypothesis, σ−1 does not contract C , and so B = σ−1(C) is another prime
divisor which is not contracted by σ , and using the previous paragraph, we have
that vB( f σ ) = vσ(B)( f ) = vC( f ) 6= 0. Conversely, if B is a prime divisor with
vB( f σ ) 6= 0, then by hypothesis, C = σ(B) is another prime divisor and again
vC( f )=vσ(B)( f )=vB( f σ ) 6=0. It follows that if B1, . . . , Bm are the distinct prime
divisors occurring with nonzero coefficient in ( f σ ), then C1 = σ(B1), . . . ,Cm =

σ(Bm) are the distinct prime divisors occurring with nonzero coefficient in ( f ).
Thus

E = ( f σ )=
m∑

i=1

vBi ( f σ )Bi =

m∑
i=1

vσ(Bi )( f )Bi

=

m∑
i=1

vCi ( f )σ−1(Ci )= σ
−1
( m∑

i=1

vCi ( f )Ci

)
= σ−1(D),

as required. �

We remark that a similar (but easier) argument shows that if instead σ : X→ X is
a regular k-automorphism of any normal k-variety, then the formulas vσ(C)= vC ◦σ

and ( f σ )= σ−1
[( f )] as in the previous result always hold for any prime divisor C

and any f ∈ k(X).
The assumption in the next result that K/k is totally transcendental (that is, that

every element b ∈ K \ k is transcendental over k) will be easily removed in the
proof of Theorem 1.1.

Proposition 3.4. Assume Hypothesis 3.1, and that K/k is a totally transcendental
finitely generated field extension of k. Suppose that either k is uncountable, or that
there is a quasiprojective k-variety X with function field K such that σ : K → K
is induced by a regular k-automorphism of X. Then K (x; σ) contains a free
subalgebra on two generators.

Proof. Note that if an element b in K has finite order under σ , it is algebraic
over k, and thus in k by the assumption that K/k is totally transcendental. Thus
all elements in K/k have infinite order under σ . In particular, K/k must have
transcendence degree at least 1.

Assume first that there is a quasiprojective k-variety X with function field K
such that σ : K → K is induced by a regular k-automorphism of X , which we give
the same name σ : X→ X . An automorphism of a variety induces an automorphism
of its normalization, by the universal property of the normalization [Hartshorne
1977, Exercise II.3.8]. Thus by replacing X with its normalization (which is again
quasiprojective by a standard result), we can assume that X is normal. Suppose



1360 Jason P. Bell and Daniel Rogalski

that X has an prime divisor C lying on an infinite σ -orbit of divisors. Then we
take the valuation vC of K , which satisfies the hypotheses of Lemma 2.4 since
vσ i (C) = vC ◦ σ

i by the remark following Lemma 3.3, and since a rational function
has a pole or zero along at most finitely many of the divisors σ i (C). We conclude
by that lemma that K (x; σ) contains a free k-algebra on two generators. (Note that
the extra hypothesis of Lemma 2.4 in characteristic p holds since K/k is totally
transcendental.)

Otherwise, all prime divisors C of X lie on finite σ -orbits. We now apply a
similar argument as in [Bell et al. 2010, Theorem 5.7] to show that this implies the
existence of a σ n-eigenvector in K \k for some n. Note that X certainly has infinitely
many distinct prime divisors, since dim X ≥ 1. Thus we can pick a sequence of
rational functions f1, f2, · · · ∈ K \ k such that for each i , fi has a zero or pole
along some prime divisor not appearing in ( f j ) for all 1≤ j < i . Note that for any
i , if n is a multiple of the order under σ of all of the divisors appearing in ( fi ),
then ( f σ

n

i )= σ−n
[( fi )] = ( fi ) (using the remark following Lemma 3.3), and thus

ui = f σ
n

i / fi has principal divisor (ui )= 0. In other words, ui is in G = 0(X,OX )
∗,

the units group of the ring of global regular functions on X . Now H = G/(k
∗
∩G)

is a finitely generated abelian group [Bell et al. 2010, Lemma 5.6(2)] which is
easily seen to be torsion-free, where k is the algebraic closure of k. (We note
that in order to apply this result of Bell et al., we need X to be quasiprojective.)
In fact, since K/k is totally transcendental, we have that H = G/(k∗ ∩ G); say
this group has rank d. Then we can choose n > 0 such that ( f σ

n

i ) = ( fi ) for all
1 ≤ i ≤ d + 1, and so ui = f σ

n

i / fi is in G for all 1 ≤ i ≤ d + 1. This forces
λ= ua1

1 ua2
2 . . . u

ad+1
d+1 ∈ k for some integers ai , not all 0. Then g = f a1

1 f a2
2 . . . f ad+1

d+1
satisfies σ n(g) = λg. Moreover, g 6∈ k, because otherwise ( fd+1) would involve
only prime divisors occurring among the ( fi ) with 1 ≤ i < d + 1. Now if λ is a
root of 1, then σm(g)= g for some m > 0, which implies that g is algebraic over
k, contradicting that K/k is totally transcendental. So λ has infinite multiplicative
order. Then L = k(g) is a rational function field over k to which the automorphism
σ n restricts as an infinite order automorphism, and it suffices to show that L(x; σ n)

contains a free subalgebra on two generators. This follows from another application
of Lemma 2.4 to L and its automorphism σ n

|L , choosing the valuation associated
to the maximal ideal (g− 1) of k[g], which lies on an infinite σ n

|L -orbit.
Next, we assume instead that k is uncountable. In this case, we will have to

work with a birational map of a variety only, but will be able to perform a similar
argument to the above by choosing fi such that ( fi ) avoids the places where the
birational map is not an isomorphism. Since K/k is finitely generated, it is well-
known that we can choose a normal projective k-variety X such that k(X) = K .
The automorphism σ : K → K corresponds to a birational map σ : X 99K X . Since
σ is an isomorphism on some open subset of X , σ must contract at most finitely
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many prime divisors. Thus the set S of prime divisors on X which are contracted
by some σ n with n ∈ Z is countable.

We now show that we can find a plentiful supply of rational functions whose
σ -iterates have divisors entirely avoiding the bad set S. Pick any element h ∈ K \ k.
Consider h+λ as λ ∈ k varies. The divisors along which h+λ1 and h+λ2 have a
zero are disjoint if λ1 6= λ2. For a given i ∈ Z, there are countably many λ such
that hσ

i
+ λ has a zero along a divisor in S. Since k is uncountable, there are

uncountably many λ such that hσ
i
+ λ has zeroes only along divisors not in S, for

all i . Fix such a λ and put g = 1/(h+ λ); thus gσ
i

has poles only along divisors
not in S, for all i . By the same argument, for uncountably many µ, the rational
functions gσ

i
+µ have no zeroes in S, for all i . Let fµ = g+µ. By construction,

there are uncountably many µ ∈ k such that f σ
i

µ has no zeroes or poles in S, for all
i ; and moreover, fµ1 and fµ2 have disjoint zeroes if µ1 6= µ2.

Now we may essentially repeat the argument of the first half of the proof. If
there is a prime divisor C not in S which lies on an infinite σ -orbit, then since
the equation vσ i (C) = vC ◦ σ

i holds for all i ∈ Z, by Lemma 3.3, this allows us
to apply Lemma 2.4 to the valuation vC to conclude that K (x; σ) contains a free
subalgebra on two generators. Otherwise, by the construction of the fµ, we may
choose a sequence of rational functions f1, f2, . . . from among the uncountably
many fµ’s whose σ -iterates all avoid the set S, such that each ( fi ) has a zero along
some prime divisor not appearing in ( f j ), for all 1≤ j < i . Lemma 3.3 implies that
the equation ( f σ

n

i )= σ−n
[( fi )] = ( fi ), which was needed in the third paragraph of

the proof, still holds for any n which is a multiple of the (necessarily finite) order
under σ of the prime divisors occurring in ( fi ). Thus, the same argument as in the
third paragraph of the proof goes through to construct a free subalgebra of K (x; σ)
in this case also. �

Proof of Theorem 1.1. Let σ : K → K be an automorphism of K/k. If every
element of K lies on a finite σ -orbit, then setting Kn = {x ∈ K | σ n(x) = x}, we
will have K =

⋃
n≥1 Kn , and thus K (x; σ) =

⋃
n≥1 Kn(x; σ) is a directed union

of PI algebras. Thus it is locally PI, and cannot possibly contain a free subalgebra
on two generators.

To complete the proof, we assume that there is an element a ∈ K lying on an
infinite σ -orbit, and need to prove that K (x; σ) contains a free subalgebra. We have
seen that we may assume the conditions in Hypothesis 3.1, so that k is the fixed field
of σ and K = k(aσ

n
| n ∈Z). If K/k is infinitely generated as a field extension, then

we are done by Proposition 3.2, with no assumptions on the base field k necessary.
Suppose instead that K/k is finitely generated, and that we have either that (i) k is
uncountable, or (ii) there is a k-automorphism σ of a quasiprojective k-variety X
with k(X) = K inducing σ : K → K (we may assume that X is normal, just as
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in the proof of Proposition 3.2). To apply Proposition 3.4, we need to reduce to
the totally transcendental case. If L ⊆ K is the subfield of elements algebraic over
k, then L/k is also finitely generated, and thus [L : k] <∞. The elements in L
have finite order under σ , and thus there is a single power σ d such that σ d(b)= b
for all b ∈ L . Let K ′ := k(aσ

nd
| n ∈ Z). We now replace (K , σ ) by (K ′, σ d). By

construction, K ′ is still generated by the σ d-iterates of a single element a on an
infinite orbit. The field k ′ = {b ∈ K | σ d(b)= b} certainly contains L; in fact, k ′ is
algebraic over the field k of σ -fixed elements, and so k ′ = L . Thus the fixed field
of σ d

: K ′→ K ′ is now K ′∩ L , and the field extension K ′/(K ′∩ L) is now totally
transcendental. If we have hypothesis (ii), then X is an L-variety since rational
functions which are algebraic over k must be global regular functions (X is normal),
and σ d

: X→ X is now an L-automorphism. Thus in either case (i) or (ii), replacing
the triple (K/k, σ, a) with (K ′/(K ′∩ L), σ d , a) preserves the hypothesis, and now
K ′/(K ′ ∩ L) is totally transcendental. By Proposition 3.4, K ′(x; σ d) contains a
free k-subalgebra on two generators, and thus so does the larger division algebra
K (x; σ). �

We close this section with a few remarks related to the main theorem.

Remark 3.5. Consider an arbitrary (possibly countable) base field k, and k-auto-
morphism σ : K → K , where K contains an element a lying on an infinite σ -
orbit. Although our methods do not in full generality allow us to conclude that
K (x; σ) contains a free subalgebra on two generators, we may always conclude
that K (t1, . . . , tn)(x; σ) contains a free subalgebra on two generators for some n,
where the ti are commuting indeterminates and we extend σ to K (t1, . . . , tn) by
setting σ(ti ) = ti for all i . To see this, note that adjoining an uncountable set of
indeterminates {tα} to K , we can consider K ({tα})(x; σ) as an algebra over the
uncountable field k({tα}). Then Theorem 1.1 applies and shows that K ({tα})(x; σ)
contains a free subalgebra on two generators; but note that these generators live in
K (t1, . . . , tn)(x; σ) for some finite subset {t1, . . . , tn} of {tα}.

In characteristic 0, we can do even better and conclude that K (t)(x; σ) contains
a free subalgebra. This easily follows from an application of Lemma 2.4 to the
discrete valuation v of K (t) corresponding to the maximal ideal (t −a) of K [t]. In
[Bell and Rogalski 2011, Theorem 2.6], we show how this idea provides an alternate
proof of Theorem 1.1 when k is uncountable of characteristic 0, since when k is
uncountable, we prove that a division k-algebra D contains a free subalgebra on
two generators if and only if D(t) does [Bell and Rogalski 2011, Proposition 2.1].

Remark 3.6. The division rings K (x; σ) really can be only locally PI rather than
PI. For example, let K = C(y1, y2, . . . ) be a function field in infinitely many
indeterminates and define an automorphism σ : K → K which fixes C and has
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σ(yn)= ζn yn for a primitive n-th root of unity ζn . If Kn = C(yn), then it is easy to
check that Kn(x; σ) is a subdivision ring of K (x; σ) with PI degree exactly n.

4. The derivation case

Assume Notation 2.1, with K = D a field extension of k, σ = 1, and δ : K → K
a k-derivation, so E = {a ∈ K | δ(a) = 0}. In this section, we show that K (x; δ)
satisfies the free subalgebra conjecture. Since K (x; δ) is an E-algebra, as usual we
can and do replace the base field k by the central subfield E . In fact, the analysis
of K (x; δ) is much easier than the automorphism case. In characteristic 0, this
reduces rather trivially to the case of the Weyl algebra (as other authors have also
observed). So our main contribution here is to consider the characteristic p case.

Theorem 4.1. Let δ : K→ K be a derivation of a field, where k={a∈ K | δ(a)=0}.

(1) If char k = 0, then K (x; δ) contains a free subalgebra if and only if δ 6= 0.

(2) If char k = p > 0, then K (x; δ) contains a free subalgebra if and only if there
is an element a ∈ K such that setting Fi = k

(
a, δ(a), . . . , δi−1(a)

)
, one has

Fi ( Fi+1 for all i ≥ 0.

Proof. (1) If δ 6= 0, say δ(a) 6= 0, take y = a and z = x(δ(a))−1. Then yz− zy = 1,
so D contains a copy of the Weyl algebra A1(k), and hence a free algebra on two
generators by Makar-Limanov’s original result [1983]. On the other hand, if δ = 0,
then K (x; δ)∼= K (x) is commutative and cannot contain a noncommutative free
subalgebra.

(2) Since char k= p, note that δ(bp)= 0 for all b∈ K , so k contains all p-th powers.
Now fix a ∈ K and consider the fields Fi = k

(
a, δ(a), . . . , δi−1(a)

)
. For each i ≥ 1,

if Fi−1 ( Fi , then since [δi−1(a)]p ∈ k ⊆ Fi−1, we must have [Fi : Fi−1] = p and
Fi−1 ⊆ Fi is a purely inseparable simple extension.

Suppose that Fi−1 ( Fi for all i ≥ 1, let F =
⋃

i≥0 Fi , and note that F is closed
under δ; so it is enough to prove that F(x; δ) contains a free subalgebra. Write
bi = δ

i (a). By the analysis of the previous paragraph, it easily follows that F has a
k-basis consisting of all words in the bi of the form

{be1
0 be2

1 . . . b
em
m | 0≤ e j ≤ p− 1}.

Now we apply the criterion of Theorem 2.2, with the choice b = b0 = a. Thus it is
sufficient to prove the claim that if u ∈ F satisfies δ(u) ∈ k + kb, then u ∈ k. To
obtain this claim, suppose that u satisfies δ(u) ∈ k+ kb with u 6∈ k, so there exists
some d ≥ 0 such that u ∈ Fd+1 \ Fd . We can write u as

u =
p−1∑
i=0

ui bi
d ,
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where each ui ∈ Fd and ui 6= 0 for some i > 0. Thus we see that

δ(u)=
p−1∑
i=0

iui bi−1
d bd+1+

p−1∑
i=0

δ(ui )bi
d ,

where the second sum is contained in Fd+1. Since some ui 6= 0 with i 6= 0, we have
δ(u) 6∈ Fd+1, contradicting the assumption δ(u) ∈ k + kb. This proves the claim,
and so K (x; δ) contains a free algebra on two generators.

On the other hand, suppose that for some a ∈ K , the sequence of fields

Fi = k
(
a, δ(a), . . . , δi−1(a)

)
has Fi = Fi+1 for some i . Then it is easy to see that Fn = Fi for all n ≥ i , and so
Fi is a δ-invariant subfield, of finite degree over k. If this happens for every a ∈ K ,
then every finite subset of K is contained in a δ-invariant subfield F of finite degree
over k, and so is contained in the PI division ring F(x; δ). Thus K (x; δ) is locally
PI and does not contain a noncommutative free subalgebra. �

Proof of Theorem 1.2. Examining the proofs of parts (1) and (2) of Theorem 4.1,
we see that K (x; δ) contains a free subalgebra if and only if it is not locally PI. �

An interesting example of part (2) of Theorem 4.1 is obtained by taking K =
Fp(x0, x1, . . . ) to be a rational function field in infinitely many indeterminates over
the field of p elements, and defining δ(xi )= xi+1 for all i ≥ 0. The ring K (x; δ)
then contains a free algebra in two generators over Fp. This ring has appeared
before in the literature and has other interesting properties. In particular, Resco and
Small [1993] studied this ring as an example of a noetherian affine algebra which
becomes non-noetherian after base field extension.

5. Summary theorems

In this section, we apply our results to show that the free subalgebra conjecture
holds for a large class of algebras formed from iterated Ore extensions. We state
our summary theorems over an uncountable field for convenience, though they hold
over an arbitrary field whenever the iterated Ore extension is built out of extensions
satisfying Theorem 1.1(2).

Before proving our main theorem, we make an easy observation. The reason
that we have not yet considered Ore extensions with both an automorphism and
derivation is the following fact.

Lemma 5.1. Let D be a PI division algebra with automorphism σ and σ -deriv-
ation δ. Then D[x; σ, δ] is isomorphic either to D[x ′; σ ′] for some other automor-
phism σ ′, or else to D[x ′; δ′] for some derivation δ′.
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Proof. This is presumably well-known, but we sketch the proof since it is elementary.
Let Z = Z(D). For any a ∈ D, b ∈ Z , we have δ(ab)= δ(ba), and so

σ(a)δ(b)+ δ(a)b = σ(b)δ(a)+ δ(b)a. (5.7)

Since σ(b) ∈ Z also, we have δ(a)[b−σ(b)] = δ(b)a−σ(a)δ(b). Then if there is
any b∈ Z such that σ(b) 6= b, we must have δ(a)= (b−σ(b))−1

[δ(b)a−σ(a)δ(b)]
for all a ∈ D. In this case, making the change of variable x ′= x+(b−σ(b))−1δ(b),
one easily checks that D[x; σ, δ] ∼= D[x ′; σ, 0].

Otherwise, σ(b)= b for all b ∈ Z ; in other words, σ is trivial on the center. By
the Skolem–Noether theorem, σ is an inner automorphism of D, say σ(a)= d−1ad
for all a and some d ∈ D×. Then the change of variable x ′ = dx gives

D[x; σ, δ] ∼= D[x ′; 1, dδ]. �

Theorem 5.2. Let k be an uncountable field. The following results hold:

(1) Let A be any PI domain which is a k-algebra with automorphism σ and σ -
derivation δ (over k). Then the quotient division algebra of A[x; σ, δ] satisfies
the free subalgebra conjecture.

(2) If A is any affine k-algebra which is an Ore domain such that Q(A) satisfies
the free subalgebra conjecture, then Q(A[x; σ, δ]) also satisfies the conjecture.

Proof. (1) Let D be the quotient division algebra of A, so that R has quotient
ring Q(R)= D(x; σ, δ). By Lemma 5.1, it is enough to consider the two special
cases D(x; σ) and D(x; δ). If K = Z(D), then σ restricts to K and D is finite
over K since D is PI. It is easy to see that it is enough to prove the free subalgebra
conjecture for K (x; σ). Now Theorem 1.1 gives the result.

Similarly, considering D(x; δ), we have δ(K )⊆ K (use (5.7)), and so we easily
reduce to the case of K (x; δ). We are done by Theorem 1.2.

(2) If A is not locally PI, then by assumption, Q(A) contains a free subalgebra on
two generators. Then there is an embedding Q(A)⊆ Q(A[x; σ, δ]), and of course
Q(A[x; σ, δ]) is also not locally PI, so we are done in this case. If instead A is
locally PI, then it is actually PI by the assumption that A is affine. Now part (1)
applies. �

Proof of Theorem 1.3. An easy induction using parts (1) and (2) of Theorem 5.2
shows that any iterated Ore extension of an affine PI domain over an uncountable
field has a quotient division algebra satisfying the free subalgebra conjecture. �
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Classes de cycles motiviques étales
Bruno Kahn

Résumé. Soit X une variété lisse sur un corps k et soit l un nombre premier. On construit
une suite exacte

0→ H 0(X,H3
cont(Zl(2)))⊗Q/Z→ H 0(X,H3

ét(Ql/Zl(2)))→ Ctors→ 0

où Hi
ét(Ql/Zl(2)) et Hi

cont(Zl(2)) sont les faisceaux Zariski associés aux cohomologies
étale et continue et C est le conoyau de la classe de cycle l-adique définie par Jannsen
sur CH2(X)⊗Zl si l 6= car k et une variante de celle-ci si l= car k. Si k=C, cela fournit
une autre démonstration d’un théorème de Colliot-Thélène–Voisin, qui évite l’utilisation
de la conjecture de Bloch–Kato en degré 3. Si k est séparablement clos et l 6= car k, on
obtient, toujours dans l’esprit de Colliot-Thélène et Voisin, une suite exacte

0→ Griff2(X,Zl)tors→ H 3
tr(X,Zl(2))⊗Q/Z

→ H 0(X,H3
cont(Zl(2)))⊗Q/Z→ Griff2(X,Zl)⊗Q/Z→ 0

où H 3
tr(X,Zl(2)) est le quotient de la cohomologie l-adique par le premier cran de la

filtration par le coniveau et Griff2(X,Zl) est un groupe de Griffiths l-adique.
Si k est la clôture algébrique d’un corps fini et si X est « de type abélien » et vérifie

la conjecture de Tate, alors Griff2(X,Zl) est de torsion et H 0(X,H3
ét(Ql/Zl(2))) est

fini si H 3
tr(X,Ql(2))= 0. D’autre part, un théorème de Schoen donne un exemple où

H 0(X,H3
ét(Ql/Zl(2))) est fini mais H 3

tr(X,Ql(2)) 6= 0.
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Abstract. Let X be a smooth variety over a field k, and l be a prime number. We
construct an exact sequence

0→ H 0(X,H3
cont(Zl(2)))⊗Q/Z→ H 0(X,H3

ét(Ql/Zl(2)))→ Ctors→ 0

where Hi
ét(Ql/Zl(2)) and Hi

cont(Zl(2)) are the Zariski sheaves associated to étale and
continuous étale cohomology and C is the cokernel of Jannsen’s l-adic cycle class on
CH2(X)⊗Zl if l 6= char k or a variant of it if l = char k. If k = C, this gives another
proof of a theorem of Colliot-Thélène and Voisin, avoiding a recourse to the Bloch–Kato
conjecture in degree 3. If k is separably closed and l 6= char k, still in the spirit of
Colliot-Thélène and Voisin we get an exact sequence

0→ Griff2(X,Zl)tors→ H 3
tr(X,Zl(2))⊗Q/Z

→ H 0(X,H3
cont(Zl(2)))⊗Q/Z→ Griff2(X,Zl)⊗Q/Z→ 0

where H 3
tr(X,Zl(2)) is the quotient of l-adic cohomology by the first step of the coniveau

filtration and Griff2(X,Zl) is an l-adic Griffiths group.
If k is the algebraic closure of a finite field and X is “of abelian type” and satisfies the

Tate conjecture, Griff2(X,Zl) is torsion and H 0(X,H3
ét(Ql/Zl(2))) is finite provided

H 3
tr(X,Ql(2)) = 0. On the other hand, a theorem of Schoen gives an example where

H 0(X,H3
ét(Ql/Zl(2))) is finite but H 3

tr(X,Ql(2)) 6= 0.

1. Introduction

Soient k un corps, X une k-variété lisse et l un nombre premier différent de car k.
Uwe Jannsen [1988, Lemma 6.14] a défini une classe de cycle l-adique

CH2(X)⊗Zl
cl2
−→ H 4

cont(X,Zl(2)) (1-1)

à valeurs dans sa cohomologie étale continue. En imitant sa construction à partir
d’un théorème de Geisser et Levine [2000], on obtient une variante p-adique de
(1-1) si k est de caractéristique p> 0, où le second membre est une version continue
de la cohomologie de Hodge–Witt logarithmique. Notons H3

ét(Ql/Zl(2)) (resp.
H3

cont(Zl(2))) le faisceau Zariski associé au préfaisceau U 7→ H 3
ét(U,Ql/Zl(2))

(resp. U 7→ H 3
cont(U,Zl(2))). Le but de cet article est de démontrer l’analogue

l-adique d’un théorème de Jean-Louis Colliot-Thélène et Claire Voisin [2010,
théorème 3.6] :

Théorème 1.1. Soit l un nombre premier quelconque et soit C le conoyau de (1-1).
On a une suite exacte

0→ H 0(X,H3
cont(Zl(2)))⊗Q/Z

f
−→ H 0(X,H3

ét(Ql/Zl(2)))
g
−→ Ctors→ 0.

Noter que Ctors est fini si H 4
ét(X,Zl(2)) est un Zl-module de type fini : ceci
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se produit pour l 6= p si k est fini, ou plus généralement si les groupes de co-
homologie galoisienne de k à coefficients finis sont finis, par exemple (comme
me l’a fait remarquer J.-L. Colliot-Thélène) si k est un corps local [supérieur] ou
un corps séparablement clos. Dans ces cas, le théorème 1.1 implique donc que
H 0(X,H3

ét(Ql/Zl(2))) est extension d’un groupe fini par un groupe divisible. (Pour
l = p, Ctors est fini si k est fini et X projective d’après [Gros et Suwa 1988a, p. 589,
proposition 4.18].)

Lorsque k = C, ceci donne une autre démonstration du théorème de Colliot-
Thélène–Voisin en utilisant l’isomorphisme de comparaison entre cohomologies de
Betti et l-adique et sa compatibilité aux classes de cycles respectives.

La démonstration de Colliot-Thélène et Voisin utilise l’exactitude du complexe
de faisceaux Zariski de cohomologie de Betti

0→H3
cont(Z(2))→H3

cont(Q(2))→H3
ét(Q/Z(2))→ 0.

Son exactitude à gauche découle du théorème de Merkurjev–Suslin, c’est-à-dire
la conjecture de Bloch–Kato en degré 2 ; celle à droite découle de la conjecture
de Bloch–Kato en degré 3, dont la démonstration a été conclue récemment par
Voevodsky et un certain nombre d’auteurs.

La démonstration donnée ici évite le recours à cette dernière conjecture : elle
ne repose que sur le théorème de Merkurjev–Suslin plus un formalisme triangulé
un peu sophistiqué, mais dont, je pense, la sophistication est bien inférieure aux
ingrédients de la preuve du théorème de Voevodsky et al.

Son principe est le suivant. La classe de cycle (1-1) se prolonge en une classe
« étale »

H 4
ét(X,Z(2))⊗Zl→ H 4

ét(X,Zl(2)) (1-2)

où le terme de gauche est un groupe de cohomologie motivique étale de X . Le
théorème de comparaison de la cohomologie motivique étale à coefficients finis avec
la cohomologie étale des racines de l’unité tordues ou de Hodge–Witt logarithmique
(théorème 2.6 a) et b)) implique que (1-2) est de noyau divisible et de conoyau sans
torsion. On en déduit une surjection g de noyau divisible dans le théorème 1.1 à
l’aide de la suite exacte

0→ CH2(X)→ H 4
ét(X,Z(2))→ H 0(X,H3

ét(Q/Z(2)))→ 0,

qui est rappelée/établie dans la proposition 2.9. Ceci est fait au §3B. La détermination
du noyau est plus technique et je renvoie au §3F pour les détails.

Pour justifier la structure du noyau et du conoyau de (1-2), il faut considérer le
« cône » de l’application classe de cycle : ceci est expliqué au §3A.

On obtient de plus des renseignements supplémentaires sur le groupe

H 0(X,H3
cont(Zl(2)))⊗Q/Z :
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1. Si k est fini et X projective lisse, dans la classe BTate(k) de [Kahn 2003, définition
1 b)] ce groupe est nul (§5A).

2. Si k est séparablement clos et l 6= car k, toujours dans l’esprit de [Colliot-Thélène
et Voisin 2010] on a une suite exacte (corollaire 4.7) :

0→ H 3
tr(X,Zl(2))→ H 0(X,H3

cont(Zl(2)))→ Griff2(X,Zl)→ 0

où Griff2(X,Zl) est le groupe des cycles de codimension 2 à coefficients l-adiques,
modulo l’équivalence algébrique, dont la classe de cohomologie l-adique est
nulle, et H 3

tr(X,Zl(2)) est le quotient de H 3
cont(X,Zl(2)) par le premier cran de

la filtration par le coniveau.

Comme le groupe H 0(X,H3
cont(Zl(2))) est sans torsion (lemme 3.12), on en

déduit une suite exacte (proposition 4.12) :

0→ Griff2(X,Zl)tors→ H 3
tr(X,Zl(2))⊗Q/Z

→ H 0(X,H3
cont(Zl(2)))⊗Q/Z→ Griff2(X,Zl)⊗Q/Z→ 0.

3. Si k est la clôture algébrique d’un corps fini k0 et que X provient de la classe
BTate(k0) de [Kahn 2003], le groupe Griff2(X,Zl) est de torsion et la suite exacte
ci-dessus se simplifie en :

0→Griff2(X,Zl)→ H 3
tr(X,Zl(2))⊗Q/Z→ H 0(X,H3

cont(Zl(2)))⊗Q/Z→ 0

(théorème 5.2).

En particulier, H 0(X,H3
ét(Ql/Zl(2))) est fini dès que H 3

tr(X,Ql(2))= 0 (ceci
est conjecturalement vrai sur tout corps séparablement clos, cf. remarque 4.13),
mais un exemple de Schoen montre que cette condition n’est pas nécessaire
(proposition 5.5 et théorème 5.6).

2. Groupes de Chow supérieurs

Cette section comporte presque exclusivement des rappels sur les groupes de
Chow supérieurs : le lecteur au courant peut la parcourir rapidement. Elle a pour but
principal de fournir une preuve complète de la proposition 2.9, évitant le complexe
0(2) de Lichtenbaum.

2A. Groupes de Chow supérieurs. Soit k un corps. Bloch [1986] associe à tout
k-schéma algébrique X des complexes de groupes abéliens zn(X, · ) (n≥ 0), concen-
trés en degrés (homologiques) ≥ 0 : rappelons qu’on pose

1p
= Spec k[t0, . . . , tp]/

(∑
ti − 1

)
,
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que zn(X, p) est le groupe abélien libre sur les fermés intègres de codimension n de
X×k1

p qui rencontrent les faces proprement, et que la différentielle dp est obtenue
comme somme alternée des intersections avec les faces de dimension p− 1. Les
groupes d’homologie CHn(X, p) de zn(X, · ) sont les groupes de Chow supérieurs
de X : on a CHn(X, 0)= CHn(X) par construction.

Les zn(X, · ) sont contravariants pour les morphismes plats, en particulier étales ;
ils définissent en fait des complexes de faisceaux sur le petit site étale d’un schéma
lisse X donné. Ils sont aussi covariants pour les morphismes propres, en particulier
pour les immersions fermées.

Si Y est un fermé de X , on notera ici

zn
Y (X, · )= Fib

(
zn(X, · )

j∗
−→ zn(X − Y, · )

)
,

CHn
Y (X, p)= Hp(zn

Y (X, · )),

où j : X − Y → X est l’immersion ouverte complémentaire et Fib désigne la fibre
homotopique (décalé du mapping cone). Si on tensorise par un groupe abélien A,
on écrit CHn

Y (X, p, A).
On a le théorème fondamental suivant, qui est une vaste généralisation du lemme

de déplacement de Chow ([Bloch 1986, théorèmes 3.1 et 4.1], preuves corrigées
dans [Bloch 1994]) :

Théorème 2.1. a) Les groupes de Chow supérieurs sont contravariants pour
les morphismes quelconques de but lisse entre variétés quasi-projectives. Ils
commutent aux limites projectives filtrantes à morphismes de transition affines.

b) Soient X un k-schéma quasi-projectif équidimensionnel, i : Y → X un fermé
équidimensionnel et j :U→ X l’ouvert complémentaire. Soit d la codimension
de Z dans X. Alors le morphisme naturel

zn−d(Y, · )
i∗
−→ zn

Y (X, · )

est un quasi-isomorphisme.

c) On dispose de produits d’intersection

CHm(X, p)×CHn(X, q)→ CHm+n(X, p+ q) (2-1)

pour X quasi-projectif lisse.

De la partie b) de ce théorème, on déduit que pour tout groupe abélien A, la
théorie cohomologique à supports

(X, Z) 7→ CHn
Z (X, · , A)
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définie sur la catégorie des k-schémas quasi-projectifs lisses [Colliot-Thélène et al.
1997, Definition 5.1.1 a)] vérifie l’axiome COH1 de loc. cit., p. 53. D’après loc.
cit., théorème 7.5.2, on a donc des isomorphismes pour tout (n, p)

CHn(X, p, A)−→∼ H−p
Zar (X, zn(−, · )⊗ A)−→∼ H−p

Nis (X, zn(−, · )⊗ A)

pour X quasi-projectif lisse.
Si X est seulement lisse, le second isomorphisme persiste.

Définition 2.2. Soit X un k-schéma lisse (essentiellement de type fini), et soit τ
une topologie de Grothendieck moins fine que la topologie étale sur la catégorie
des k-schémas lisses de type fini : en pratique τ ∈ {Zar,Nis, ét}. On note AX (n)τ le
complexe de faisceaux zn(−, · )⊗ A[−2n] sur Xτ et H∗τ (X, A(n)) l’hypercohomo-
logie de X à coefficients dans le complexe AX (n) (pour la topologie τ ). C’est la
cohomologie motivique de poids n à coefficients dans A pour la topologie concernée.

Pour simplifier, on supprime τ de la notation si τ = Zar ou Nis (voir ci-dessus).

On a donc un isomorphisme, pour X quasi-projectif lisse :

CHn(X, 2n− i)−→∼ H i (X, A(n)). (2-2)

On a

ZX (0)= Z, (2-3)

ZX (1)' O∗X [−1]. (2-4)

([Bloch 1986, corollaire 6.4] pour le second quasi-isomorphisme).
L’isomorphisme (2-4) se généralise ainsi :

Théorème 2.3 [Nesterenko et Suslin 1989; Totaro 1992]. Supposons que X =
Spec K , où K est un corps. L’isomorphisme (2-4) et les produits (2-1) induisent des
isomorphismes

K M
n (K )−→∼ H n(K ,Z(n)),

K M
n (K )/m −→∼ H n(K ,Z/m(n)),

pour m > 0, où K M
n désigne la K -théorie de Milnor.

Démonstration. Voir les travaux cités pour le premier énoncé ; le second s’en déduit
puisque H n+1(K ,Z(n))= 0. �

Remarque 2.4. L’isomorphisme (2-2) vaut pour i ≥ 2n, même si X n’est pas quasi-
projectif. En effet, le terme de droite est l’aboutissement d’une suite spectrale de
coniveau [Colliot-Thélène et al. 1997, Remark 5.1.3 (3)] qui, grâce au théorème 2.1,
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prend la forme suivante :

E p,q
1 =

⊕
x∈X (p)

Hq−p(k(x), A(n− p))⇒ H p+q(X, A(n)).

On a H i (F, A(r)) = 0 pour i > r et tout corps F , car AF (r) est un complexe
concentré en degrés ≤ r . On en déduit déjà que H i (X, A(n))= 0 pour i > 2n, et
on a évidemment CHn(X, p, A)= 0 pour p< 0. Quant à H 2n(X, A(n)), il s’insère
dans une suite exacte

En−1,n
1

d1
−→ En,n

1 → H 2n(X, A(n))→ 0

qui s’identifie à la suite exacte⊕
x∈X(1)

k(x)∗⊗ A
Div
−→

⊕
x∈X(0)

A→ CHn(X)⊗ A→ 0

via (2-3) et (2-4) (l’identification de la différentielle d1 à l’application diviseurs
est facile à partir du théorème 2.1 appliqué pour n = 1). D’autre part, on calcule
aisément que CHn(X, 0, A)= CHn(X)⊗ A sans supposer X quasi-projectif.

Le lemme suivant raffine une partie de la remarque 2.4 : sa démonstration est
moins élémentaire.

Lemme 2.5. Le complexe ZX (n) est concentré en degrés ≤ n : autrement dit,
Hi (ZX (n))= 0 pour i > n. �

Démonstration. La théorie cohomologique à supports

(X, Y ) 7→ H∗Y (X,Z(n))

vérifie les axiomes COH1 et COH3 de [Colliot-Thélène et al. 1997] : le premier,
« excision étale », résulte facilement du théorème 2.1 b) et le second, invariance
par homotopie, est démontré dans [Bloch 1986, théorème 2.1]. Il résulte alors
de [Colliot-Thélène et al. 1997, Corollary 5.1.11] qu’elle vérifie la conjecture de
Gersten (c’est déjà démontré dans [Bloch 1986, théorème 10.1]). En particulier,
les faisceaux Hi (Z(n)) s’injectent dans leur fibre générique, et on est réduit au cas
évident d’un corps de base. �

2B. Comparaisons. À partir de maintenant, X désigne un k-schéma lisse.

Théorème 2.6. a) Si m est inversible dans k, il existe un quasi-isomorphisme
canonique

(Z/m)X (n)ét −→
∼ µ⊗n

m .
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b) Si k est de caractéristique p > 0 et r ≥ 1, il existe un quasi-isomorphisme
canonique

(Z/pr )X (n)ét −→
∼ νr (n)[−n]

où νr (n) est le n-ème faisceau de Hodge–Witt logarithmique.

c) Soit α la projection de Xét sur XZar. Alors la flèche d’adjonction

QX (n)→ Rα∗QX (n)ét

est un isomorphisme.

Démonstration. a) et b) sont dus à Geisser–Levine : a) est [2001, Theorem 1.5] et b)
est [2000, Theorem 8.5] (si k est parfait : voir le corollaire A.7 en général). 1 Quant
à c), c’est un fait général pour un complexe de faisceaux Zariski C de Q-espaces
vectoriels sur un schéma normal S : on se ramène au cas où S est local et où
C = A[0] est un faisceau concentré en degré 0. Alors A est un faisceau constant de
Q-espaces vectoriels et cela résulte de [Deninger 1988, Theorem 2.1]. �

Définition 2.7. Soit n ≥ 0. Pour l premier différent de car k, on note

Ql/Zl(n)= lim
−→

r
µ⊗n

lr .

Pour l = car k, on note

Ql/Zl(n)= lim
−→

r
νr (n)[−n].

Enfin, on note
Q/Z(n)=

⊕
l

Ql/Zl(n).

C’est un objet de la catégorie dérivée des groupes abéliens sur le gros site étale de
Spec k.

Le théorème 2.6 montre qu’on a un isomorphisme, pour tout X lisse sur k :

(Q/Z)X (n)ét −→
∼ (Q/Z)(n)|X . (2-5)

Nous utiliserons cette identification dans la suite sans mention ultérieure.
On a alors :

Corollaire 2.8. Pour tout i > n+ 1, l’homomorphisme de faisceaux Zariski

Hi−1(Rα∗Q/Z(n))→Hi (Rα∗ZX (n)ét)

émanant du théorème 2.6 a) et b) est un isomorphisme.

1. Cette dernière référence indique que l’hypothèse « X lisse sur k » devrait être remplacée par
« X régulier de type fini sur k » dans une grande partie de ce texte.
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Démonstration. Dans la suite exacte de faisceaux Zariski

Hi−1(Rα∗QX (n)ét)→Hi−1(Rα∗Q/Z(n))→Hi(Rα∗ZX (n)ét)→Hi(Rα∗QX (n)ét)

les deux termes extrêmes sont nuls d’après le théorème 2.6 c) et le lemme 2.5. �

2C. Cohomologie étale de complexes non bornés. Si X est un schéma de dimen-
sion cohomologique étale a priori non finie et si C est un complexe de faisceaux
étales sur X , non borné inférieurement, la considération de l’hypercohomologie
H∗ét(X,C) soulève au moins trois difficultés : 1) une définition en forme ; 2) la com-
mutation aux limites ; 3) la convergence de la suite spectrale d’hypercohomologie.

Le premier problème est maintenant bien compris : il faut prendre une résolution
K-injective, ou fibrante, de C ; voir par exemple [Spaltenstein 1988, Theorem 4.5
et Remark 4.6].

Le second et le troisième problèmes sont plus délicats. Dans le cas de Z(n), le
second et implicitement le troisième est résolu dans [Kahn 1997, §B.3 p. 1114]
(pour la cohomologie motivique de Suslin–Voevodsky). Rappelons l’argument : en
utilisant le théorème 2.6, on peut insérer Rα∗ZX (n)ét dans un triangle exact

Rα∗ZX (n)ét→QX (n)→ Rα∗(Q/Z)X (n)ét
+1
−→ .

Si X est de dimension de Krull finie, l’hypercohomologie Zariski du second terme
se comporte bien, et celle du troisième terme aussi puisque c’est l’hypercohomologie
étale d’un complexe borné.

2D. Conjecture de Beilinson–Lichtenbaum. Cette conjecture concerne la compa-
raison entre H∗(X, A(n)) et H∗ét(X, A(n)), pour A = Z/m, cf. [Geisser et Levine
2001, Theorem 1.6]. Si m est une puissance d’un nombre premier l 6= car k, elle est
équivalente d’après [Geisser et Levine 2001] à la conjecture de Bloch–Kato en poids
n (pour le nombre premier l) ; donc en poids 2, au théorème de Merkurjev–Suslin.
Sur un corps de caractéristique zéro, ceci avait été antérieurement démontré dans
[Suslin et Voevodsky 2000].

De plus, pour l = car k, une version de cette conjecture est démontrée par Geisser
et Levine [2000] ; voir théorème A.5. En ajoutant à tout ceci le théorème 2.6 c), la
conjecture de Beilinson–Lichtenbaum en poids n se retraduit en un triangle exact
[Voevodsky 2003, Theorem 6.6]

ZX (n)→ Rα∗ZX (n)ét→ τ≥n+2 Rα∗ZX (n)ét→ ZX (n)[1]. (2-6)

Ce triangle exact contient l’énoncé (« Hilbert 90 en poids n ») :

Hn+1(Rα∗ZX (n)ét)= 0.
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2E. Une suite exacte.

Proposition 2.9. Notons H3
ét(Q/Z(2)) le faisceau Zariski associé au préfaisceau

U 7→ H 3
ét(U,Q/Z(2)). Pour toute k-variété lisse X , on a une suite exacte courte :

0→ CH2(X)→ H 4
ét(X,Z(2))→ H 0(X,H3

ét(Q/Z(2)))→ 0. (2-7)

Démonstration. En prenant l’hypercohomologie de Zariski de X à valeurs dans le
triangle (2-6) pour n = 2, on trouve une suite exacte

0→ H 4(X,Z(2))→ H 4
ét(X,Z(2))→ H 0(X, R4α∗Z(2)ét)→ H 5(X,Z(2)).

D’après la remarque 2.4, on a H 4(X,Z(2)) = CH2(X) et H 5(X,Z(2)) = 0.
D’autre part, le triangle exact

ZX (2)ét→QX (2)ét→ (Q/Z)X (2)ét

provenant du théorème 2.6 donne une longue suite exacte de faisceaux

R3α∗QX (2)ét→ R3α∗(Q/Z)X (2)ét→ R4α∗ZX (2)ét→ R4α∗QX (2)ét.

On a R3α∗QX (2)ét = R4α∗QX (2)ét = 0 puisque ZX (2) est concentré en degrés
≤ 2, d’après le théorème 2.6 c). Ce qui conclut, via l’isomorphisme (2-5). �

Remarques 2.10. 1) La suite exacte (2-7) apparaît dans [Kahn 1996, théorème 1.1,
équation (9)], avec Z(2) remplacé par le complexe de Lichtenbaum 0(2) ; à la 2-
torsion près, elle est déjà chez Lichtenbaum [1990, Theorem 2.13 et Remark 2.14].
Il est probable qu’on a un isomorphisme

0(2, X)' τ≥1
(
z2(X, · )[−4]

)
(2-8)

dans D(XZar) pour tout k-schéma lisse X . 2 Une fonctorialité suffisante de cet
isomorphisme impliquerait qu’il peut s’étalifier. Dans [Block 1995, Theorem 7.2],
un isomorphisme (2-8) est construit pour X = Spec k. Mais (2-8) ne semble pas
apparaître dans la littérature en général.

2) En se reposant sur la conjecture de Bloch–Kato en poids 3, on obtient de la
même manière une suite exacte

0→ H 2(X,K3)→ H 5
ét(X,Z(3))→ H 0(X,H4

ét(Q/Z(3))

→ CH3(X)→ H 6
ét(X,Z(3)).

Cette suite apparaît dans [Kahn 2003, remarque 4.10], sauf que le premier terme
est H 5(X,Z(3)) ; son identification avec H 2(X,K3) se fait à l’aide de la suite
spectrale de coniveau de la remarque 2.4.

2. Par ailleurs, la conjecture de Beilinson–Soulé prédit que Z(2) → τ≥1Z(2) est un quasi-
isomorphisme, mais elle n’a pas d’importance pour ce travail.
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2F. D’autres suites exactes.

Proposition 2.11. On a des suites exactes

0→ H 3(X,Z/m(2))→ H 3
ét(X,Z/m(2))→ H 0(X,H3

ét(Z/m(2)))

→ CH2(X)⊗Z/m→ H 4
ét(X,Z/m(2))

(m > 0),

0→ H 3(X,Q/Z(2))→ H 3
ét(X,Q/Z(2))→ H 0(X,H3

ét(Q/Z(2)))

→ CH2(X)⊗Q/Z→ H 4
ét(X,Q/Z(2)).

Démonstration. Elles s’obtiennent comme dans la preuve de la proposition 2.9 en
prenant la cohomologie des triangles exacts

Z/m(2)→ Rα∗(Z/m)ét(2)→ τ≥3 Rα∗(Z/m)ét(2)
+1
−→

Q/Z(2)→ Rα∗(Q/Z)ét(2)→ τ≥3 Rα∗(Q/Z)ét(2)
+1
−→

obtenus en tensorisant (2-6) par Z/m ou Q/Z au sens dérivé. �

On reconnaît donc dans H 3(X,Z/m(2)) le groupe NH3
ét(X,Z/m(2)) de Suslin

[1987, §4]. On peut sans doute montrer que la seconde suite exacte coïncide avec
celle de [Colliot-Thélène et al. 1983, p. 790, Remark 2].

3. Cohomologie l-adique et p-adique

Dans cette section, k est un corps quelconque, de caractéristique p ≥ 0.

3A. Classe de cycle l-adique et p-adique. Soit l un nombre premier quelconque.
Pour toute k-variété lisse X , on a des applications « classe de cycle l-adique »

H i
ét(X,Z(n))⊗Zl→ H i

cont(X,Zl(n)). (3-1)

Ces homomorphismes proviennent d’un morphisme de complexes (dans la caté-
gorie dérivée de la catégorie des complexes de faisceaux sur Xét)

ZX (n)ét
L
⊗Zl→ Zl(n)cX (3-2)

où

Zl(n)cX =
{

R lim
←−

µ⊗n
lr si l 6= p

R lim
←−

νr (n)[−n] si l = p.

Cette construction est décrite dans [Kahn 2002, §1.4, en particulier (1.8)] pour
l 6= p et dans [Kahn 2003, §3.5] pour l= p. Elle repose sur celles de Geisser–Levine
aux crans finis ([2001] pour l 6= p et [2000, démonstration du théorème 8.3] pour
l = p).
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Remarque 3.1. Pour l 6= p et i = 2n, la composée de (3-1) avec l’homomorphisme
CHn(X)⊗ Zl → H 2n

ét (X,Z(n))⊗ Zl (2-7) n’est autre que la classe de cycle de
Jannsen [1988, Lemma 6.14] : cela résulte de la construction même dans [Geisser et
Levine 2001] de l’isomorphisme du théorème 2.6 a). Pour l = p, il est moins clair
que (3-1) soit compatible avec la classe de cycle de Gros [1985, p. 50, définition 4.1.7
et p. 55, proposition 4.2.33]. Cela doit pouvoir se vérifier directement ; comme je
n’en aurai pas besoin, je laisse cet « exercice »aux lecteurs intéressés.

Notons les isomorphismes évidents :

Zl(n)cX
L
⊗Z/ lr

−→∼

{
µ⊗n

lr si l 6= p
νr (n)[−n] si l = p.

(3-3)

Définition 3.2. On note respectivement K X (n)ét et K X (n) le choix d’un cône du
morphisme (3-2) et du morphisme composé

ZX (n)
L
⊗Zl→ Rα∗ZX (n)ét

L
⊗Zl→ Rα∗Zl(n)cX

de sorte qu’on a un morphisme

K X (n)→ Rα∗K X (n)ét

compatible avec le morphisme ZX (n)
L
⊗Zl→ Rα∗ZX (n)ét

L
⊗Zl .

Remarque 3.3. Rappelons que K X (n) et K X (n)ét ne sont uniques qu’à isomor-
phisme non unique près ; le morphisme K X (n)→ Rα∗K X (n)ét n’a pas non plus
d’unicité particulière. En particulier, ces choix ne sont fonctoriels en X que pour
les immersions ouvertes : cela suffira pour nos besoins ici. Toutefois, on pourrait
faire des choix plus rigides (fonctoriels pour les morphismes quelconques entre
schémas lisses), quitte à travailler dans des catégories de modèles convenables.

En vertu du théorème 2.6, (3-3) implique immédiatement :

Proposition 3.4. Le morphisme (3-2)⊗Z/ lr est un isomorphisme pour tout entier
r ≥ 1. Autrement dit, les faisceaux de cohomologie de K X (n)ét sont uniquement
l-divisibles. �

Corollaire 3.5. Pour tout (X, i, n), le noyau de (3-1) est l-divisible et son conoyau
est sans l-torsion.

Démonstration. On a une suite exacte

H i−1
ét (X, K (n))→ H i

ét(X,Z(n))⊗Zl→ H i
cont(X,Zl(n))→ H i

ét(X, K (n))

(où H∗ét(X, K (n)) :=H∗ét(X, K X (n)ét)), dont les termes extrêmes sont uniquement
divisibles. �
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3B. Démonstration du théorème 1.1 : première partie. On va démontrer :

Proposition 3.6. Soit C le conoyau de (1-1). On a une surjection

H 0(X,H3
ét(Ql/Zl(2)))−→→ Ctors (3-4)

de noyau divisible.

Démonstration. Utilisons la suite exacte (2-7) : en chassant dans le diagramme
commutatif de suites exactes

0→ K −−−→ CH2(X)⊗Zl −−−→ H 4
cont(X,Zl(2)) −−−→ C →0y y =

y y
0→Két −−−→ H 4

ét(X,Z(2))⊗Zl −−−→ H 4
cont(X,Zl(2)) −−−→ Cét→0

(définissant K , Két, C et Cét), on en déduit une suite exacte

0→ K → Két→ H 0(X,H3
ét(Ql/Zl(2)))→ C→ Cét→ 0. (3-5)

On conclut en utilisant le corollaire 3.5. �

3C. Suites spectrales de coniveau. Soit C un complexe de faisceaux Zariski sur
X . Par une technique bien connue remontant à Grothendieck et Hartshorne (cf.
[Colliot-Thélène et al. 1997, 1.1]) on obtient une suite spectrale

E p,q
1 =

⊕
x∈X (p)

H p+q
x (X,C)⇒ H p+q(X,C).

Cette suite spectrale est clairement naturelle en C ∈ D(XZar). On notera de
manière suggestive :

E p,q
2 = Ap(X, Hq(C))

de sorte qu’on a des morphismes « edge »

H n(X,C)→ A0(X, H n(C)). (3-6)

Lorsque C vérifie la conjecture de Gersten, on a des isomorphismes canoniques

Ap(X, Hq(C))' H p(X,Hq(C)).

D’après [Colliot-Thélène et al. 1997, Corollary 5.1.11] c’est le cas pour C =
Rα∗Zl(n)cX . En effet, pour l 6= p, la théorie cohomologique à supports correspon-
dante vérifie les axiomes COH1 (excision étale, on dit maintenant Nisnevich) et
COH3 (invariance par homotopie) de [Colliot-Thélène et al. 1997] ; pour l = p,
elle vérifie COH1 et COH5. Ce dernier axiome est la « formule du fibré projectif » :
il résulte de [Gros 1985]. Si k est un corps fini, il faut adjoindre à ces axiomes
l’axiome COH6 de [Colliot-Thélène et al. 1997, p. 64] (existence de transferts pour
les extensions finies) : il est standard.
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C’est également le cas pour C = ZX (n), cf. preuve du lemme 2.5. Par contre
ce n’est pas clair pour C = K X (n) : en effet, la règle (X, Y ) 7→ H∗Y (X, K (n)) ne
définit pas une théorie cohomologique à supports sans un choix cohérent des cônes
K X (n). Plus précisément, cette règle n’est pas a priori fonctorielle en (X, Y ) pour
les morphismes quelconques de paires. On ne peut donc pas lui appliquer la théorie
de Bloch–Ogus–Gabber développée dans [Colliot-Thélène et al. 1997]. La considé-
ration des suites spectrales de coniveau nous permettra de contourner ce problème.

3D. Un encadrement de la cohomologie non ramifiée. L’identification du noyau
de (3-4) est plus délicate. À titre préparatoire, on va pousser l’analyse du §3A un
peu plus loin en faisant intervenir la conjecture de Bloch–Kato en degré n.

Par l’axiome de l’octaèdre (et la conjecture de Bloch–Kato, cf. (2-6)), on a un
diagramme commutatif de triangles distingués dans D(XZar), où K X (n) et K X (n)ét

ont été introduits dans la définition 3.2 :

ZX (n)
L
⊗Zl −−−→ Rα∗Zl(n)cX −−−→ K X (n)y =

y f
y

Rα∗ZX (n)ét
L
⊗Zl −−−→ Rα∗Zl(n)cX −−−→ Rα∗K X (n)éty y y

τ≥n+2 Rα∗ZX (n)ét
L
⊗Zl −−−→ 0 −−−→ C

et où C est par définition « le » cône de f . On a donc un zig-zag d’isomorphismes

C
∼
−→ τ≥n+2 Rα∗ZX (n)ét

L
⊗Zl[1]

∼
←− τ≥n+1 Rα∗(Ql/Zl)(n)ét

où l’isomorphisme de gauche provient du diagramme ci-dessus, et celui de droite
provient du corollaire 2.8. D’où un triangle exact

K X (n)→ Rα∗K X (n)ét→ τ≥n+1 Rα∗(Ql/Zl)(n)ét
+1
−→ .

Comme le deuxième terme est uniquement divisible (proposition 3.4) et que le
troisième est de torsion, cela montre que

K X (n)⊗Q−→∼ Rα∗K X (n)ét. (3-7)

On en déduit :

Lemme 3.7. Soit l 6= p. Sous la conjecture de Bloch–Kato en degré n, le groupe
H i (X, K (n)) est uniquement divisible pour i ≤ n et on a une suite exacte courte

0→H n+1(X,K (n))⊗Q/Z→H 0(X,Hn+1(Ql/Zl(n)))→H n+2(X,K (n))tors→0.

Le même énoncé vaut pour l = p, en utilisant le théorème A.5. �
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Le point est maintenant d’identifier les termes extrêmes de la suite du lemme 3.7
à des groupes plus concrets : nous n’y parvenons que pour n = 2 au §3F. Mais pour
n quelconque, notons la suite exacte

0→ Coker
(
H n+2(X,Z(n))⊗Zl→ H n+2

cont (X,Zl(n))
)

→ H n+2(X, K (n))→ H n+3(X,Z(n))⊗Zl (3-8)

et les homomorphismes évidents :

H n+1(X, K (n))
α
→ A0(X, H n+1(K (n)))

β
← A0(X, H n+1

cont (Zl(n))) (3-9)

où α est l’homomorphisme (3-6). La suite exacte (3-8) en induit une sur les sous-
groupes de torsion. Pour n = 2, le dernier terme est nul : on retrouve ainsi la
proposition 3.6. Pour n > 2, la première flèche de (3-8) n’a plus de raison d’être
surjective sur la torsion. Notons tout de même que pour n = 3, le dernier terme de
(3-8) n’est autre que CH3(X)⊗Zl (comparer aux remarques 2.10).

D’autre part :

Lemme 3.8. L’homomorphisme β de (3-9) est un isomorphisme pour tout n ≥ 0.

Démonstration. Dans le diagramme commutatif⊕
x∈X (0)

H n+1
x (X,Zl(n)) −−−→

⊕
x∈X (1)

H n+2
x (X,Zl(n))y y⊕

x∈X (0)

H n+1
x (X, K (n)) −−−→

⊕
x∈X (1)

H n+2
x (X, K (n))

les deux flèches verticales sont des isomorphismes. En effet, elle s’insèrent dans
des suites exactes du type

H n+1
x (X,Z(n))⊗Zl→H n+1

x (X,Zl(n))→H n+1
x (X, K (n))→H n+2

x (X,Z(n))⊗Zl

H n+2
x (X,Z(n))⊗Zl→H n+2

x (X,Zl(n))→H n+2
x (X, K (n))→H n+3

x (X,Z(n))⊗Zl

où dans la première suite, x est de codimension 0 et dans la seconde suite, x est de
codimension 1. Sans perte de généralité, on peut supposer X connexe et alors, pour
son point générique η (cf. théorème 2.1 a)) :

H i
η(X,Z(n)) := lim

−→
U

H i (U,Z(n))−→∼ H i (k(X),Z(n))= 0 pour i > n.

Pour x de codimension 1, on a

H i
x(X,Z(n)) := lim

−→
U3x

H i
ZU
(U,Z(n))
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où ZU = {x} ∩U . Grâce au théorème 2.1 b) et a), cette limite devient

lim
−→
U3x

H i−2(ZU ,Z(n− 1))= H i−2(k(x),Z(n− 1))= 0 pour i − 2> n− 1.

Le lemme en découle. �

3E. Cohomologie à supports de K (n). On aura aussi besoin des deux lemmes
suivants au prochain numéro :

Lemme 3.9. Soit l 6= car k.
Soit Y ⊂ X un couple lisse de codimension d. Alors il existe des isomorphismes

H i−2d
Zar (Y, K (n− d))−→∼ H i

Y (X, K (n)) (n ≥ 0, i ∈ Z)

contravariants pour les immersions ouvertes U ↪→ X.

Attention : ce lemme affirme l’existence d’isomorphismes de pureté, mais ne
dit rien sur leur caractère canonique ou fonctoriel au-delà de la contravariance
énoncée. (On peut faire en sorte qu’ils soient contravariants pour les morphismes
quelconques entre variétés lisses, mais c’est plus technique et inutile ici.)

Démonstration. Notons i l’immersion fermée Y → X . On remarque que le dia-
gramme de D(YZar)

Z(n− d)Y ⊗Zl[−2d]
cln−d

Y
−−−→ Rα∗Zl(n− d)cY [−2d]

f
y g

y
Ri !ZarZ(n)X ⊗Zl

clnX
−−−→ Rα∗Ri !étZl(n)cX

où f est induit par le théorème 2.1 b) et g est donné par le théorème de pureté en
cohomologie étale, est commutatif : cela résulte tautologiquement de la construction
des classes de cycles motiviques dans [Geisser et Levine 2001]. Par conséquent, ce
diagramme s’étend en un diagramme commutatif de triangles exacts

Z(n− d)Y ⊗Zl[−2d]
cln−d

Y
−−−→ Rα∗Zl(n− d)cY [−2d]→K (n− d)Y [−2d]

+1
−→

f
y g

y h

y
Ri !ZarZ(n)X ⊗Zl

clnX
−−−→ Rα∗Ri !étZl(n)cX → Ri !ZarK (n)X

+1
−→

(Rien n’est dit sur un choix privilégié de h.) Comme f et g sont des quasi-
isomorphismes, h en est un aussi, d’où l’énoncé.

Comme h est un morphisme dans la catégorie dérivée des faisceaux Zariski sur
Y , la contravariance annoncée est tautologique pour U ↪→ X tel que U ∩Y 6=∅, et
elle est sans contenu lorsque U ∩ Y =∅. �
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Lemme 3.10. Soit l = p = car k. Soit Y ⊂ X un couple lisse de codimension d.
Alors il existe des homomorphismes

H i−2d(Y, K (n− d))
hi

−→ H i
Y (X, K (n)) (n ≥ 0, i ∈ Z)

contravariants pour les immersions ouvertes U ↪→ X. Ce sont des isomorphismes
pour i ≤ n+ d.

Démonstration. On raisonne comme dans la démonstration du lemme 3.9, en utilisant
cette fois le théorème 2.6 b) et les résultats de Gros [1985]. D’après [Gros 1985,
(3.5.3) et théorème 3.5.8], on a

Rq i !νr (n)=
{

0 si q 6= d, d + 1
νr (n− d) si q = d .

(3-10)

La formule (3-10) et sa compatibilité aux classes de cycles motiviques (elle est à
la base de leur construction) fournit un diagramme commutatif dans D(YZar)

Z(n− d)Y ⊗Zp −−−→ Rα∗Zp(n− d)c[−2d]

f
y g

y
Ri !ZarZ(n)X ⊗Zp −−−→ Rα∗Ri !étZp(n)c.

(3-11)

Il en résulte un morphisme

K (n− d)Y
h
−→ Ri !ZarK (n)X

complétant le carré ci-dessus en un diagramme commutatif de triangles exacts. Ceci
fournit les homomorphismes hi du lemme.

Dans le diagramme (3-11), f est un isomorphisme (théorème 2.1 b)). Par (3-10),
le cône de g est acyclique en degrés ≤ n + d. Par conséquent, le cône de h est
acyclique en degrés ≤ n+ d , ce qui donne la bijectivité de hi pour i ≤ n+ d . �

3F. Fin de la démonstration du théorème 1.1. On prend maintenant n = 2. Le
résultat principal est :

Proposition 3.11. Pour n = 2, l’homomorphisme α de (3-9) est surjectif de noyau
A1(X, H 2(K (2))), uniquement divisible.

Démonstration. Notons Ea,b
2 = Aa(X, H b(K (n)) : c’est la cohomologie d’un certain

complexe de Cousin.
En utilisant les lemmes 3.9 et 3.10, on trouve que Ea,b

1 = 0 pour

l 6= p: a > 2 et a+ b < 2a ; a = 2 et a+ b ≤ 4.

l = p: a > 2 et a+ b < 2+ a ; a = 2 et a+ b ≤ 4.
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(En particulier, E2,2
2 = 0 puisque K (0)= 0 !) On en déduit une suite exacte

0→ A1(X, H 2(K (2)))→ H 3(X, K (2))→ A0(X, H 3(K (2)))→ 0. (3-12)

Mais A1(X, H 2(K (2))) est l’homologie du complexe

E0,2
1 → E1,2

1 → E2,2
1

dont tous les termes sont encore dans le domaine d’application des lemmes 3.9
et 3.10 (isomorphismes de pureté). D’après le lemme 3.7, ils sont uniquement
divisibles, ainsi donc que E1,2

2 . �

Le théorème 1.1 résulte maintenant de la proposition 3.6, du lemme 3.7, du
lemme 3.8 et de la proposition 3.11. �

3G. Un complément. Notons pour conclure :

Lemme 3.12. Le Zl-module H 0(X,H3
cont(Zl(2))) est sans torsion.

Démonstration. On fait comme dans [Colliot-Thélène et Voisin 2010, théorème 3.1]
(cet argument remonte à [Bloch et Srinivas 1983] pour la cohomologie de Betti) :
le théorème de Merkurjev–Suslin implique que le faisceau H3

cont(Zl(2)) est sans
torsion. (Pour l = p, utiliser [Geisser et Levine 2000].) �

4. Cas d’un corps de base séparablement clos

Soient k un corps séparablement clos et X une k-variété lisse. On veut préciser
le théorème 1.1 dans ce cas, toujours dans l’esprit de [Colliot-Thélène et Voisin
2010].

4A. Lien avec les cycles de Tate. Le lemme suivant est démontré dans [Colliot-
Thélène et Kahn 2011]. Il montre que les cycles de Tate entiers fournissent un bon
analogue des cycles de Hodge entiers considérés dans [Colliot-Thélène et Voisin
2010] :

Lemme 4.1. Soient G un groupe profini et M un Zl-module de type fini muni d’une
action continue de G. Soit

M (1)
=

⋃
U

MU

où U décrit les sous-groupes ouverts de G. Alors M/M (1) est sans torsion.

On en déduit :

Lemme 4.2. Supposons que k soit la clôture séparable d’un corps de type fini et
que l 6= car k. Alors le groupe fini Ctors du théorème 1.1 est aussi le sous-groupe de
torsion de

Coker
(
CH2(X)⊗Zl→ H 4

cont(X,Zl(2))(1)
)
.
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Sous la conjecture de Tate, ce conoyau est entièrement de torsion (pour X non
nécessairement propre, cf. [Jannsen 1990, p. 114, Theorem 7.10 a)]). �

On peut d’ailleurs supprimer l’hypothèse que k soit la clôture séparable d’un
corps de type fini. En général, écrivons k=

⋃
α kα , où kα décrit l’ensemble (ordonné

filtrant) des clôtures séparables des sous-corps de type fini de k sur lesquels X est
définie. Pour tout α, notons Xα le kα-modèle de X correspondant. Si kα ⊂ kβ , on a
des isomorphismes

H 4
cont(Xα,Zl(2))−→∼ H 4

cont(Xβ,Zl(2))−→∼ H 4
cont(X,Zl(2))

et on peut définir

H 4
cont(X,Zl(2))(1) := lim

−→
α

H 4
cont(Xα,Zl(2))(1).

Il s’agit en fait d’une limite inductive d’isomorphismes puisque, si X est définie
sur k0

α ⊂ kα de type fini et de clôture séparable kα et que kβ ⊃ kα , l’homomorphisme
Gal(kβ/kβk0

α)→ Gal(kα/k0
α) est surjectif.

4B. Lien avec le groupe de Griffiths. Si k=C et X est projective, Colliot-Thélène
et Voisin ont établi un lien entre H 0(X,H3(Q/Z(2))) et le groupe de Griffiths dans
[Colliot-Thélène et Voisin 2010, §4.2]. Reprenons cette idée en l’amplifiant un peu.

Voici d’abord une définition de groupes de Griffiths et de groupes d’équivalence
homologique dans le contexte l-adique. Supposons k séparablement clos si l 6= car k,
et k algébriquement clos si l = car k. Par un argument bien connu [Bloch et Ogus
1974, Lemma 7.10 ; Bloch 2010, Lecture 1, Lemma 1.3]), pour toute k-variété lisse
X , le sous-groupe de CHn(X) formé des cycles algébriquement équivalents à zéro
est l-divisible ; les diagrammes commutatifs

CHn(X)⊗Zl
cln
−−−→ H 2n

cont(X,Zl(n))y y
CHn(X)⊗Z/ ls clns

−−−→ H 2n
ét (X,Z/ ls(n))

et l’isomorphisme

H 2n
cont(X,Zl(n))−→∼ lim

←−
s

H 2n
ét (X,Z/ ls(n)) (4-1)

montrent donc que clns et cln se factorisent à travers l’équivalence algébrique.
(Précisons. L’isomorphisme (4-1) est valable pourvu que le système projectif

(H 2n−1
ét (X,Z/ ls(n)))s≥1 soit de Mittag-Leffler. Pour l 6= car k c’est vrai parce que

les termes sont finis ; pour l = car k et X projective c’est expliqué dans [Colliot-
Thélène et al. 1983, p. 783], donc il faut a priori supposer X projective dans ce
cas.)
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Ceci donne un sens à :

Définition 4.3. Soit X une k-variété lisse où k est séparablement clos si l 6= car k et
algébriquement clos si l = car k ; dans ce dernier cas, on suppose aussi X projective.
Soit A ∈ {Zl,Ql,Z/ ln,Ql/Zl}. On note

Griffn(X, A)= Ker
(

An
alg(X)⊗ A

cln
−→ H 2n

cont(X, A(n))
)

An
hom(X, A)= Im

(
An

alg(X)⊗ A
cln
−→ H 2n

cont(X, A(n))
)
.

Remarque 4.4. Si k =C, on a Griffn(X,Zl)=Griffn(X)⊗Zl par l’isomorphisme
de comparaison entre cohomologies de Betti et l-adique, où Griffn(X) est défini à
l’aide de la cohomologie de Betti.

On a la version l-adique de [Bloch et Ogus 1974, Theorem 7.3] :

Proposition 4.5. Supposons l 6= car k. Notons An
alg(X) le groupe des cycles de

codimension n sur X modulo l’équivalence algébrique. Dans la suite spectrale de
coniveau

E p,q
r ⇒ H p+q(X,Zl(n))

pour la cohomologie l-adique de X , on a un isomorphisme

An
alg(X)⊗Zl −→

∼ En,n
2

induit par l’isomorphisme

Zn(X)⊗Zl −→
∼ En,n

1

donné par les isomorphismes de pureté.

Démonstration. C’est la même que celle de [Bloch et Ogus 1974, preuve du théo-
rème 7.3], mutatis mutandis. Plus précisément, la première étape est identique. Dans
la deuxième étape, on remplace la désingularisation à la Hironaka des cycles de
codimension n de X par une désingularisation à la de Jong [1996, Theorem 4.1] ;
pour obtenir des résultats entiers, on utilise le théorème de Ofer Gabber (travail
en cours) disant qu’on peut trouver une telle désingularisation de degré premier à
l. Enfin, l’argument transcendant de Bloch–Ogus pour prouver que équivalences
algébrique et homologique coïncident pour les diviseurs sur une variété lisse Y
est remplacé par le suivant : par [Bloch et Ogus 1974, Lemma 7.10], le noyau de
CHn(Y )→ An

alg(Y ) est l-divisible, donc les suites exactes de Kummer

Pic(X)
ln

−→ Pic(X)→ H 2(X,Z/ ln(1))

définissent des injections

0→ A1
alg(X)/ ln

→ H 2(X,Z/ ln(1))
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d’où à la limite
0→ A1

alg(X)⊗Zl→ H 2
cont(X,Zl(1))

puisque A1
alg(X) est un Z-module de type fini. �

Notons que ces arguments ne nécessitent pas que X soit projective (pour le
dernier, voir [Kahn 2006, théorème 3]). Si le théorème de Gabber n’évitait pas
l = p, la démonstration s’étendrait à ce nombre premier.

Convention 4.6. À partir de maintenant, l est supposé différent de car k sauf men-
tion expresse du contraire. La raison essentielle pour cela est que cette restriction
apparaît dans la proposition 4.5 (cf. le commentaire ci-dessus).

Corollaire 4.7 [Colliot-Thélène et Voisin 2010, Theorem 2.7]. On a une suite
exacte

H 3
cont(X,Zl(2))

α
−→ H 0(X,H3

cont(Zl(2)))→ Griff2(X,Zl)→ 0.

Démonstration. Cela résulte de la suite exacte

H 3
cont(X,Zl(2))→ E0,3

2 → E2,2
2

c
−→ H 4

cont(X,Zl(2))

provenant de la suite spectrale de Bloch–Ogus en poids 2, de l’identification de
E0,3

2 à H 0(X,H3
cont(Zl(2))), de celle de E2,2

2 à A2
alg(X)⊗Zl (proposition 4.5) et de

celle de c à l’application classe de cycle. �

L’analogue complexe du corollaire suivant devrait figurer dans [Colliot-Thélène
et Voisin 2010] :

Corollaire 4.8. a) On a une suite exacte, modulo des groupes finis :

H 3
cont(X,Zl(2))⊗Q/Z→ H 0(X,H3(Ql/Zl(2)))→Griff2(X,Zl)⊗Q/Z→ 0

(cf. définition 4.3).

b) Le groupe H 0(X,H3(Ql/Zl(2))) est dénombrable.

c) Si car k = 0, il existe X/k projective lisse telle que son corang soit infini pour
l convenable.

(Précisons : « modulo des groupes finis » signifie « dans la localisation de la
catégorie des groupes abéliens relative à la sous-catégorie épaisse des groupes
abéliens finis ».)

Démonstration. a) résulte du théorème 1.1 et du corollaire 4.7. Pour b), le terme
de gauche dans la suite de a) est de cotype fini, donc dénombrable, et le terme de
droite l’est aussi (propriété classique des cycles modulo l’équivalence algébrique).
Enfin, d’après [Schoen 2002], on a des exemples de X et de nombres premiers
l (même sur Q̄) où Griff2(X)/ l est infini ; en utilisant [Colliot-Thélène et Voisin
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2010, Proposition 4.1] (voir aussi corollaire 4.15 du présent article), on en déduit
que Griff2(X)⊗Ql/Zl est de corang infini. �

4C. Quelques calculs de groupes de torsion. On veut maintenant préciser le co-
rollaire 4.8 a) en décrivant explicitement le noyau de l’application

H 3
cont(X,Zl(2))⊗Q/Z→ H 0(X,H3

cont(Zl(2)))⊗Q/Z.

Définition 4.9. Soit A un Zl-module de la forme Zl,Ql,Z/ ln,Ql/Zl . On note
N H 3

cont(X, A) le premier cran de la filtration par le coniveau sur H 3
cont(X, A) et

H 3
tr(X, A)=

H 3
cont(X, A)

NH3
cont(X, A)

.

Si on a un twist à la Tate, on note NH3
cont(X, A(n)) := N H 3

cont(X, A)(n).

Notons que NH3
cont(X, A(2))= H 3(X, A(2)) (cohomologie motivique de Nisne-

vich) pour A = Z/ ln ou Ql/Zl , d’après la proposition 2.11.

Remarque 4.10. Si X est propre, les Zl-modules H 3
tr(X, A) sont des invariants

birationnels de X , avec l’action de Gal(k/k0) si X est défini sur un sous-corps k0

de clôture séparable k. C’est dû à Grothendieck [1968, 9.4].

Le lemme 3.12 implique :

Lemme 4.11. Le Zl-module de type fini H 3
tr(X,Zl(2)) est sans torsion. �

Par définition de NH3
cont(X,Zl(2)), la suite exacte du corollaire 4.7 se raffine en

une suite exacte :

0→ H 3
tr(X,Zl(2))→ H 0(X,H3

cont(Zl(2)))→ Griff2(X,Zl)→ 0

qui montre incidemment que Griff2(X,Zl) est un invariant birationnel pour X
propre et lisse (cf. remarque 4.10). En réutilisant le lemme 3.12, on en déduit :

Proposition 4.12. On a une suite exacte

0→ Griff2(X,Zl)tors→ H 3
tr(X,Zl(2))⊗Q/Z

→ H 0(X,H3
cont(Zl(2)))⊗Q/Z→ Griff2(X,Zl)⊗Q/Z→ 0.�

Remarque 4.13. Dans cette remarque, nous adoptons la convention contravariante
pour les motifs purs sur un corps. Supposons que X , de dimension d, vérifie la
conjecture standard C et la conjecture de nilpotence suivante : l’idéal

Ker
(
CHd(X × X)⊗Q→ Ad

num(X × X)⊗Q
)

de l’anneau des correspondances de Chow est nilpotent. Ces propriétés sont vérifiées
par exemple si X est une variété abélienne : voir [Kleiman 1968] pour la première
(résultat de Lieberman et Kleiman) et [Kimura 2005] pour la seconde. Alors le
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motif numérique de X admet une décomposition de Künneth, qui se relève en une
décomposition de Chow–Künneth de son motif de Chow :

h(X)=
2d⊕

i=0

hi (X).

Mais le théorème de semi-simplicité de Jannsen [1992] implique que chaque
facteur numérique hi

num(X) admet une décomposition plus fine, provenant de sa
décomposition isotypique :

hi
num(X)=

i/2⊕
j=0

hi, j
num(X)(− j)

où hi, j
num(X) est effectif mais aucun facteur simple de hi, j

num(X)(1) n’est effectif.
Cette décomposition se relève de nouveau pour donner une décomposition de
Chow–Künneth raffinée (voir [Kahn et al. 2007, théorème 7.7.3]) :

h(X)=
2d⊕

i=0

i/2⊕
j=0

hi, j (X)(− j).

Notons Ab la catégorie des groupes abéliens, A le quotient de Ab par la sous-
catégorie épaisse des groupes abéliens d’exposant fini et, pour tout anneau com-
mutatif R, Chow(k, R) la catégorie des motifs de Chow à coefficients dans R. On
observe que le foncteur

Hom(−,−) : Chow(k,Z)op
×Chow(k,Z)→ Ab

s’étend en un foncteur

Hom(−,−) : Chow(k,Q)op
×Chow(k,Q)→A.

Par construction, H 3
tr(X,Ql)= H∗cont(h

3,0(X),Ql). Au moins si d = 3, on peut
montrer que, d’autre part,

Griff2(X,Zl)' Hom(h3,0(X), L)⊗Zl

où L est le motif de Lefschetz et l’isomorphisme est dans A. Ainsi, la proposition 4.12
et le théorème 1.1 montrent que (si d = 3) la nullité de h3,0(X) entraîne la finitude
de H 0(X,H3(Ql/Zl(2))).

D’autre part, la conjecture de Bloch–Beilinson–Murre [Jannsen 1994] implique
que la nullité de h3,0(X) découle de celle de H 3

tr(X,Ql) : conjecturalement, celle-ci
est donc suffisante pour impliquer la finitude du groupe H 0(X,H3(Ql/Zl(2))) (au
moins si dim X = 3).
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Ceci est une variante de la conjecture 4.5 de [Colliot-Thélène et Voisin 2010].
On verra au théorème 5.2 c) qu’elle est vraie si k est la clôture algébrique d’un
corps fini k0 et que X provient de la classe BTate(k0) de [Kahn 2003].

On peut se demander si la réciproque est vraie. Elle est fausse (théorème 5.6).

Le lemme 4.11 et la proposition 2.11 donnent un diagramme commutatif de
suites exactes

0→NH3
cont(X,Zl(2))⊗Q/Z→H 3

cont(X,Zl(2))⊗Q/Z→H 3
tr(X,Zl(2))⊗Q/Z→0

a

y y b

y
0→ H 3

Nis(X,Ql/Zl(2)) → H 3
ét(X,Ql/Zl(2)) → H 3

tr(X,Ql/Zl(2)) →0

(4-2)

dans lequel la flèche verticale centrale est injective de conoyau fini, isomorphe à
H 4

cont(X,Zl(2))tors. Par le lemme du serpent, on en déduit :

Proposition 4.14. Avec les notations de (4-2), a est injective et on a une suite
exacte

0→ Ker b→ Coker a→ H 4
cont(X,Zl(2))tors→ Coker b→ 0.

Voici une application de la proposition 4.14.

Corollaire 4.15. Soit H 3(X,Ql/Zl(2))0 le noyau de la composition

H 3(X,Ql/Zl(2))→ H 3
ét(X,Ql/Zl(2))→ H 4

cont(X,Zl(2))tors.

Alors Im a ⊂ H 3(X,Ql/Zl(2))0 (notations de (4-2)) et on a un isomorphisme

Griff2(X,Zl)tors −→
∼ Ker b −→∼ Coker a0

où a0
: NH3

cont(X,Zl(2))⊗Q/Z
a
−→ H 3(X,Ql/Zl(2))0 est l’application induite

par a.

Démonstration. La première assertion est évidente. Notons a0 l’application induite :
la suite exacte de la proposition 4.14 induit donc un isomorphisme

Ker b −→∼ Coker a0.

D’autre part, la suite exacte de la proposition 4.12 s’insère dans un diagramme
commutatif de suites exactes

0→ Griff2(X,Zl)tors→H 3
tr(X,Zl(2))⊗Q/Z→H 0(X,H3

cont(Zl(2)))⊗Q/Z

b

y c
y

H 3
tr(X,Ql/Zl(2)) → H 0(X,H3

cont(Ql/Zl(2)))

Comme le faisceau H3
cont(Zl(2)) est sans torsion, la suite

0→ H 0(X,H3
cont(Zl(2)))→ H 0(X,H3

cont(Ql(2)))→ H 0(X,H3
cont(Ql/Zl(2)))
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est exacte, ce qui signifie que c est injective dans le diagramme ci-dessus. On en
déduit un isomorphisme

Griff2(X,Zl)tors −→
∼ Ker b,

d’où le corollaire. �

4D. Les homomorphismes de groupes A2
hom(X, Zl)⊗Ql/Zl→ A2

hom(X, Ql/Zl)

et Griff2(X, Zl)⊗Ql/Zl →Griff2(X, Ql/Zl). On garde les notations de la défi-
nition 4.3.

Proposition 4.16. On a des suites exactes

A2
hom(X,Zl)tors→ Griff2(X,Zl)⊗Ql/Zl→ Griff2(X,Ql/Zl)

→ A2
hom(X,Zl)⊗Ql/Zl→ A2

hom(X,Ql/Zl)→ 0

et
Ctors→ A2

hom(X,Zl)⊗Ql/Zl→ A2
hom(X,Ql/Zl),

où C est comme dans (1-1) (voir théorème 1.1). En particulier, l’application

Griff2(X,Zl)⊗Ql/Zl→ Griff2(X,Ql/Zl)

est de noyau et de conoyau finis.

Démonstration. On a un diagramme commutatif de suites exactes

A2
hom(X,Zl)tors→Griff2(X,Zl)⊗Q/Z→A2

alg(X,Zl)⊗Q/Z→A2
hom(X,Zl)⊗Q/Z→0y o

y y
0 → Griff2(X,Ql/Zl) → A2

alg(X,Ql/Zl) → A2
hom(X,Ql/Zl) →0

qui donne la première suite de la proposition, par application du lemme du serpent.
Pour la seconde, on utilise le diagramme commutatif de suites exactes(

H 4
cont(X,Zl(2))

N 2 H 4
cont(X,Zl(2))

)
tors
→A2

hom(X,Zl)⊗Q/Z→H 4
cont(X,Zl)⊗Q/Zy y

0 → A2
hom(X,Ql/Zl) → H 4

ét(X,Ql/Zl(2))

en remarquant que la flèche verticale de droite est injective. �

4E. Le sous-groupe de torsion de CH2(X, Zl)alg. Terminons cette analyse de la
torsion en déterminant celle de CH2(X,Zl)alg, sous-groupe de CH2(X)⊗Zl formé
des classes de cycles algébriquement équivalentes à zéro, lorsque X est propre :
voir corollaire 4.21. Pour cela nous avons besoin de la proposition suivante :
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Proposition 4.17. Supposons k séparablement clos, X/k propre et lisse et i < 2n.
Soit l un nombre premier ; si l = car k, on suppose k algébriquement clos. Alors
l’image de l’application cycle (3-1) est égale à H i

cont(X,Zl(n))tors. En particulier,
H i

ét(X,Z(n)) est extension d’un groupe de torsion (fini pour l 6= p) par un groupe
divisible, et

H i
ét(X,Z(n))⊗Ql/Zl = 0.

Démonstration. Étant donné le corollaire 3.5, il suffit de montrer que (3-1) a une
image de torsion. On reprend les arguments de Colliot-Thélène et Raskind [1985] :
d’après le théorème 2.1 a) et le §2C, on a

H i
ét(X,Z(n))= lim

−→
α

H i
ét(Xα,Z(n))

où Xα parcourt un ensemble ordonné filtrant de modèles de X sur des sous-corps
Fα de type fini sur le corps premier. Il suffit donc de savoir que H i (X,Zl(n))G est
de torsion, où G est le groupe de Galois absolu de F p−∞

α . On le voit en se ramenant
au cas d’un corps de base fini par changement de base propre et lisse (SGA4 pour
l 6= p, [Gros et Suwa 1988a, p. 590, théorème 2.1] pour l = p), où cela résulte de
la démonstration par Deligne de la conjecture de Weil [Deligne 1974] pour l 6= p
et du complément de Katz et Messing [1974] pour l = p. �

Remarque 4.18. Supposons n = 2. En utilisant la suite spectrale de coniveau de
la remarque 2.4, on obtient un isomorphisme H i (X,Z(2))' H i−2(X,K2) : alors
l’énoncé n’est autre que celui de [Colliot-Thélène et Raskind 1985, Theorem 1.8
et 2.2] pour l 6= p, et de [Gros et Suwa 1988a, p. 604, corollaire 2.2 et p. 605,
théorème 3.1] pour l = p.

Corollaire 4.19. Sous ces hypothèses, les homomorphismes

H 3(X,Ql/Zl(2))→ CH2(X){l},

H 3
ét(X,Ql/Zl(2))→ H 4

ét(X,Z(2)){l}

sont bijectifs.

Démonstration. Pour le second, cela résulte de la suite exacte des coefficients
universels et de la proposition 4.17 appliquée pour (i, n)= (3, 2). Pour le premier,
même raisonnement en utilisant le fait que l’homomorphisme

H i (X,Z(2))→ H i
ét(X,Z(2))

est bijectif pour i ≤ 3 par (2-6) (qui résulte en poids 2 du théorème de Merkurjev–
Suslin). �

En particulier, on obtient une injection

H 3
cont(X,Zl(2))⊗Ql/Zl ↪−→ H 4

ét(X,Z(2)). (4-3)
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Corollaire 4.20. Sous les mêmes hypothèses, soit N le noyau de l’homomorphisme
H 4

ét(X,Z(2))⊗Zl→ H 4
cont(X,Zl(2)). Alors (4-3) induit un isomorphisme

H 3
cont(X,Zl(2))⊗Ql/Zl −→

∼ Ntors.

Corollaire 4.21. Sous les mêmes hypothèses, on a un isomorphisme canonique :

CH2(X,Zl)alg{l} −→∼ NH3
cont(X,Zl(2))⊗Q/Z.

Démonstration. On va réutiliser le complexe K (2) de la définition 3.2. Considérons
le diagramme commutatif de suites exactes :

0y
H 3

cont(X,Zl(2))torsy
0→ NH3

cont(X,Zl(2))→ H 3
cont(X,Zl(2)) →H 0(X,H3

cont(Zl(2)))→Griff2(X,Zl)→0

θ

y y o

y
0→H 1(X,H2(K (2)))→ H 3(X, K (2)) → H 0(X,H3

cont(K (2))→ 0y
CH2(X,Zl)homy

0

où CH2(X,Zl)hom est le noyau de la classe de cycle sur CH2(X)⊗Zl . L’exactitude
à gauche de la suite verticale découle de la proposition 4.17, celle de la première
suite horizontale du corollaire 4.7, la seconde suite horizontale est (3-12), enfin
l’isomorphisme vertical est le lemme 3.8. La flèche θ est induite par le diagramme.

Tout d’abord, le lemme 3.12 implique via ce diagramme que

NH3
cont(X,Zl(2))tors −→

∼ H 3
cont(X,Zl(2))tors.

Appliquons maintenant le lemme du serpent aux deux suites exactes horizontales :
on obtient un isomorphisme

Ker θ −→∼ H 3
cont(X,Zl(2))tors

et une suite exacte

0→ Coker θ→ CH2(X,Zl)hom
φ
−→ Griff2(X,Zl)→ 0
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et on calcule que φ est la projection naturelle. Finalement on obtient une suite
exacte

0→ NH3
cont(X,Zl(2))/tors→ H 1(X,H2(K (2)))→ CH2(X,Zl)alg→ 0.

et l’isomorphisme du corollaire découle maintenant de la proposition 3.11 et de la
suite exacte des Tor à coefficients Q/Z. �

Remarque 4.22. Si k est la clôture algébrique d’un corps fini, alors CHn(X,Zl)alg

est un groupe de torsion pour toute k-variété projective lisse X et tout n ≥ 0
(réduction au cas d’une courbe par l’argument de correspondances de Bloch, cf.
[Schoen 1995, preuve de la proposition 2.7]). En particulier, le corollaire 4.21 décrit
le groupe CH2(X,Zl)alg tout entier. (Voir aussi §5C.)

5. Cas d’un corps de base fini et de sa clôture algébrique

5A. Cas d’un corps fini. Soit k un corps fini. Rappelons d’abord la classe BTate(k)
de [Kahn 2003, définition 1 b)]

Définition 5.1. Une k-variété projective lisse X est dans BTate(k) si

(i) Il existe une k-variété abélienne A et une extension finie k ′/k telles que le
motif de Chow de Xk′ à coefficients rationnels soit facteur direct de celui de
Ak′ .

(ii) X vérifie la conjecture de Tate (sur l’ordre des pôles de ζ(X, s) aux entiers
≥ 0).

On sait montrer qu’étant donné (i), (ii) est conséquence de (donc équivalent à) la
conjecture de Tate cohomologique pour la cohomologie l-adique, pour un nombre
premier l donné pouvant être égal à la caractéristique de k (cela résulte de [Kahn
2003, lemme 1.9], cf. [Colliot-Thélène et Kahn 2011, remarque 3.10]).

Considérons les notations de la preuve de la proposition 3.6. Si k est fini et
si X ∈ BTate(k), Két et Cét sont finis (ibid., théorème 3.6 et lemme 3.7), donc
K = Két = Cét = 0 et (3-5) devient un isomorphisme

H 0(X,H3
ét(Ql/Zl(2)))−→∼ C. (5-1)

En particulier, H 0(X,H3
ét(Ql/Zl(2))) est fini et H 0(X,H3

cont(Zl(2)))⊗Q/Z= 0
(théorème 1.1). En réalité, même le groupe H 0(X,H3

ét(Q/Z(2))) est fini : cela
résulte de la proposition 2.9 et de la génération finie de H 4

ét(X,Z(2)) [Kahn 2003,
corollaire 3.8 c) et e)].

Conjecturalement, toute variété projective lisse est dans BTate(k).
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5B. Cas de la clôture algébrique d’un corps fini. Le but de ce numéro est de
démontrer :

Théorème 5.2. Soient k la clôture algébrique d’un corps fini k0, X0 ∈ BTate(k0),
X = X0⊗k0 k et l 6= car k.

a) Griff2(X,Zl) est de torsion.

b) On a une suite exacte

0→Griff2(X,Zl)→H 3
tr(X,Zl(2))⊗Q/Z→H 0(X,H3

cont(Zl(2)))⊗Q/Z→0.

c) Si H 3
tr(X,Ql(2))= 0, le groupe H 0(X,H3(Ql/Zl(2))) est fini ; dans ce cas, il

est isomorphe à Ctors.

Remarque 5.3. Le corollaire 4.15 donne une autre description de Griff2(X,Zl).

Démonstration. a) ⇒ b) par la proposition 4.12 et b) ⇒ c) par le théorème 1.1.
Montrons a). Soit k1 une extension finie de k0, et X1 = X0⊗k0 k1. D’après [Kahn
2003, théorème 3.6 et corollaire 3.8 e)], l’homomorphisme

H 4
ét(X1,Z(2))⊗Zl→ H 4

cont(X1,Zl(2))

est bijectif. D’après (2-7), l’homomorphisme

CH2(X1)⊗Zl→ H 4
cont(X1,Zl(2))

est donc injectif. Or dans la suite exacte

0→H 1(G1,H 3
cont(X,Zl(2)))→H 4

cont(X1,Zl(2))→H 4
cont(X,Zl(2))G1→ 0 (5-2)

(où G1 =Gal(k/k1)), le groupe de gauche est fini d’après Weil I [Deligne 1974]. Il
en résulte que le noyau de

CH2(X1)⊗Zl→ H 4
cont(X,Zl(2))

est fini pour tout k1, d’où la conclusion en passant à la limite. �

5C. Un exemple de Schoen. J’avais initialement pensé que la réciproque du théo-
rème 5.2 c) est vraie. En réalité elle est fausse : cela résulte d’un calcul de C. Schoen
[1995]. Dans cet article, Schoen considère X = E3 sur k = F̄p, où E est la courbe
elliptique d’équation x3

+ y3
+ z3
= 0, et montre que, si p ≡ 1 (mod 3) :

Griff2(X){l} ' (Ql/Zl)
2

pour l ≡−1 (mod 3) [Schoen 1995, Theorem 0.1]. Le groupe Griff2(X) est défini
comme le quotient du groupe des cycles à coefficients entiers qui sont homologi-
quement équivalents à zéro par le sous-groupe de ceux qui sont algébriquement
équivalents à zéro. Commençons par clarifier le lien entre ce groupe et Griff2(X,Zl) :
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Proposition 5.4. Soient k0 un corps fini de clôture algébrique k, X0 ∈ BTate(k0) et
X = X0⊗k0 k. Alors, pour tout n ≥ 0, l’homomorphisme évident

Griffn(X)⊗Zl→ Griffn(X,Zl)

est bijectif.

Démonstration. Soit A un groupe abélien quelconque. Pour une variété lisse X sur
un corps quelconque, on peut définir les cycles à coefficients dans A modulo l’équi-
valence rationnelle, ou algébrique. Notons ces groupes CH∗(X, A) et A∗alg(X, A).
Je dis que les homomorphismes

CH∗(X)⊗ A→ CH∗(X, A),

A∗alg(X)⊗ A→ A∗alg(X, A)

sont bijectifs : par exemple on peut décrire An
alg(X, A) comme le conoyau d’un

homomorphisme ⊕
(V,v0,v1)

⊕
x∈((X×V )(n))′

A
s∗0−s∗1
−→

⊕
x∈X (n)

A

où (V, v0, v1) décrit l’ensemble des classes d’isomorphismes de k-variétés lisses V
munies de deux points rationnels v0 et v1.

Plaçons-nous maintenant dans la situation de la proposition. Notons CHn(X)hom

le noyau de cln : CHn(X)→ H 2n
cont(X,Zl(n)). Je dis que l’isomorphisme

CHn(X)⊗Zl −→
∼ CHn(X,Zl)

envoie CHn(X)hom⊗Zl sur CHn(X,Zl)hom. En effet, soit x ∈CHn(X,Zl)hom. Écri-
vant x=

∑
αi xi avec αi ∈Zl , xi ∈CHn(X), on peut (quitte à augmenter k0) supposer

que x provient de x0 ∈ CHn(X0,Zl). On a évidemment x0 ∈ CHn(X0,Zl)hom ; le
même raisonnement que dans la preuve du théorème 5.2 (utilisant le fait que
X0 ∈ BTate(k0)) montre alors que x0 est de torsion. Mais, pour tout groupe abélien
M , on a des isomorphismes

M{l} −→∼ M{l}⊗Zl −→
∼ (M ⊗Zl){l}

puisque (M/M{l})⊗Zl est sans l-torsion. Donc x0∈CHn(X0)hom et x ∈CHn(X)hom.
Il résulte de ceci que l’homomorphisme induit

Griffn(X)⊗Zl = An
alg(X)hom⊗Zl→ An

alg(X,Zl)hom = Griffn(X,Zl)

est surjectif, donc bijectif, d’où l’énoncé. �

Proposition 5.5. Sous les hypothèses de la proposition 5.4, les conditions suivantes
sont équivalentes :

(i) H 0(X,H3(Ql/Zl(2))) est fini.
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(ii) Le monomorphisme Griff2(X,Zl)→ H 3
tr(X,Zl(2))⊗Ql/Zl du théorème 5.2 b)

est surjectif.

(iii) corang Griff2(X,Zl)≥ dim H 3
tr(X,Ql(2)).

(iv) L’application b de (4-2) est nulle.

(v) H 3
tr(X,Ql/Zl(2)) est fini, quotient de H 4

cont(X,Zl)tors.

Si X est une variété abélienne (il suffit que H 3(X,Zl) et H 4(X,Zl) soient sans
torsion), ces conditions sont encore équivalentes à :

(vi) Pour tout n ≥ 1, l’homomorphisme H 3
ét(X,Z/ ln)→ H 3

ét(k(X),Z/ ln) est nul.

Démonstration. Les équivalences (i)⇐⇒ (ii)⇐⇒ (iii) résultent du théorème 5.2 b) et
du théorème 1.1. Les équivalences (ii)⇐⇒ (iv)⇐⇒ (v) résultent du théorème 5.2 a),
du corollaire 4.15 et de la proposition 4.14 (ou plus directement du diagramme
(4-2)).

Si (vi) est vrai, il est vrai stablement (c’est-à-dire à coefficients Ql/Zl), ce qui est
équivalent à la nullité de H 3

tr(X,Ql/Zl), d’où (iv). Réciproquement, montrons que
(v) H⇒ (vi) si H 3

cont(X,Zl) et H 4
cont(X,Zl) sont sans torsion. De (v) on déduit que

H 3
tr(X,Ql/Zl(2))= 0, ce qui donne (vi) stablement. Pour l’obtenir à coefficients

finis, considérons le diagramme commutatif aux lignes exactes :

0→H 2
Nis(X,Ql/Zl(2))/ ln

→H 3
Nis(X,Z/ ln(2))→ln H 3

Nis(X,Ql/Zl(2))→0y y o

y
0→ H 2

ét(X,Ql/Zl(2))/ ln
→ H 3

ét(X,Z/ ln(2))→ ln H 3
ét(X,Ql/Zl(2))→0.

Comme H 3
cont(X,Zl) est sans torsion, H 2

ét(X,Ql/Zl(2)) est divisible et le terme
en bas à gauche est nul. La flèche verticale centrale est donc surjective, ce qui donne
l’énoncé pour H 3

ét(X,Z/ ln(2)). �

Théorème 5.6. Soient p un nombre premier ≡ 1 (mod 3), k = F̄p, et E la courbe
elliptique sur k d’équation x3

+ y3
+ z3
= 0. Posons X = E3. Si l ≡−1 (mod 3),

les conditions de la proposition 5.5 sont vérifiées.

Démonstration. Pour commencer, observons que X ∈ BTate(Fp). Cela résulte du
théorème de Spieß [1999], ou simplement de [Soulé 1984, théorème 3] puisque
dim X = 3.

Montrons (iii). D’après [Schoen 1995, Theorem 0.1] et la proposition 5.4, on
a Griff2(X,Zl) ' (Ql/Zl)

2 ; il faut donc montrer que H 3
tr(X,Zl) est de rang ≤ 2.

Comme X est une variété abélienne, on a un isomorphisme

33 H 1
cont(X,Ql)−→

∼ H 3
cont(X,Ql).

L’hypothèse sur p assure que E est ordinaire (cf. [Schoen 1995, p. 46]). Soient
α, β les nombres de Weil de E sur Fp : on a αβ = p, et K :=Q(α)=Q(µ3) (ibid.).
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L’espace vectoriel H 1
cont(X,Ql) est somme de trois exemplaires de H 1

cont(E,Ql) :
il est donc de rang 6. Soit (v1, v2, v3, w1, w2, w3) une base du Ql⊗K -module libre
H 1

cont(X,Ql)⊗ K formée de vecteurs propres pour l’action du Frobenius φ, avec
φvi = αvi , φwi = βwi . Le Ql ⊗ K -module H 3

cont(X,Ql)⊗ K est libre de rang 20,
de base les tenseurs purs de degré 3 construits sur les vi , w j . Par construction, cette
base B est formée de vecteurs propres pour l’action de Frobenius.

Soit b ∈ B. Si b /∈ {v1 ∧ v2 ∧ v3, w1 ∧w2 ∧w3}, b est divisible par c = vi ∧w j

pour un couple (i, j). La valeur propre de c ∈ H 2
cont(X,Ql)⊗ K est égale à p ; en

particulier, c ∈ H 2
cont(X,Ql). Par le théorème de Tate (dû dans ce cas particulier

à Deuring), c⊗Ql(1) ∈ H 2
cont(X,Ql(1)) est de la forme cl(γ ) pour un diviseur

γ ∈ Pic(X)⊗Zl : il en résulte que b ∈ NH3
cont(X,Ql).

Ceci montre que H 3
tr(X,Ql)⊗ K est engendré par b = v1 ∧ v2 ∧ v3 et b′ =

w1 ∧w2 ∧w3, et donc que dim H 3
tr(X,Ql)≤ 2. �

Remarque 5.7. Comme H∗cont(X,Zl)→ H∗ét(X,Z/ ln) est surjectif, le calcul fait
dans la preuve du théorème 5.6 montre a priori que l’image de H 3

ét(X,Z/ ln)

dans H 3(F,Z/ ln) est de rang ≤ 2, où F = k(X). On aimerait bien démontrer sa
nullité (l’énoncé (vi) de la proposition 5.5) directement : il s’agit de voir que, si
x1, x2, x2 ∈ H 1

ét(X,Z/ ln), le cup-produit x1 · x2 · x3 est nul dans H 3
ét(F,Z/ ln).

On peut se limiter aux triplets (x1, x2, x3) tels que

xi ∈ Im
(
H 1

ét(E,Z/ ln)
π∗i
−→ H 1

ét(X,Z/ ln)
)

pour une valeur de i , où πi est la i-ème projection, et sans perte de généralité,
supposer i=1. Alors x1 définit une isogénie f : E ′→ E de degré ln . Soit F ′= k(X ′),
où X ′ = E ′ × E × E : d’après Merkurjev–Suslin, la nullité de x1 · x2 · x3 dans
H 3

ét(F,Z/ ln) équivaut au fait que x2 · x3 ∈ H 2(F,Z/ ln)' ln Br(F) est une norme
dans l’extension F ′/F . Peut-on montrer ceci directement ?

5D. Autres corps. Si cd(k)≤ 1, la suite exacte (5-2) persiste [Jannsen 1988, Theo-
rem 3.3]. Malheureusement, elle ne semble pas apporter d’informations supplémen-
taires très utiles, sauf peut-être dans le cas d’un corps quasi-fini que je n’ai pas
exploré.

Considérons les notations de la preuve de la proposition 3.6. Si k est de type
fini mais n’est pas fini, je ne sais pas s’il faut espérer que K est de torsion, même
sous toutes les conjectures habituelles (Jannsen le suggère dans [Jannsen 1994,
Lemma 2.7]). On peut remplacer H 4

cont(X,Zl(2)) par le groupe plus fin

H̃ 4
cont(X,Zl(2))= lim

−→
H 4

cont(X,Zl(2))

où X décrit les modèles réguliers de X , de type fini sur Spec Z (cf. [Jannsen 1990,
(11.6.1)]). En caractéristique p, par passage à la limite, la conjecture de Tate–
Beilinson implique alors que Két est de torsion [Kahn 2005, théorème 60, (iii)]. De
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plus, cette conjecture implique que CH2(X) est de type fini (comme quotient de
CH2(X) pour un modèle X lisse de type fini), donc que K est fini. Par contre, elle
n’implique pas a priori que H 4

ét(X,Z(2)) est de type fini (dans les suites exactes de
Gysin pour un diviseur, le terme suivant est de la forme H 3

ét(Z ,Z(1))= Br(Z). . .)
donc il se pourrait fort bien que Két ait une partie divisible non triviale.

Le bon objet avec lequel travailler pour des variétés ouvertes sur un corps fini
est H 4

W (X,Z(2)) (cohomologie Weil-étale) : c’est celui qui permet d’attraper tout
H̃ 4

cont(X,Zl(2)) pour l 6= p [Kahn 2005, théorème 64]. Mais cela a l’air compliqué,
cf. [Kahn 2003, (3.2)] ou [Kahn 2005, théorème 62 (ii)].

Annexe : Cohomologie de Hodge–Witt logarithmique sur des corps
imparfaits

Dans [Geisser et Levine 2000], Geisser et Levine comparent la cohomologie
motivique modulo p d’un corps de caractéristique p quelconque avec sa coho-
mologie de Hodge(-Witt) logarithmique, mais n’en déduisent une comparaison
globale que pour des variétés lisses sur un corps parfait. Le but de ce numéro est de
rappeler les bases de cette comparaison et de se débarrasser de manière « triviale »
de l’hypothèse de perfection, à l’aide d’une observation classique de Quillen [1973,
p. 133, démonstration du théorème 5.11].

Cohomologie de Hodge–Witt logarithmique. Soit X un schéma de caractéristique
p. On lui associe son pro-complexe de de Rham–Witt [Illusie 1979, p. 548, 1.12]

(Wr�
·
X )r≥1

qui est un système projectif de faisceaux d’algèbres différentielles graduées sur
Xét, prolongeant (pour · = 0) le pro-faisceau des vecteurs de Witt et (pour r = 1) le
complexe des différentielles de Kähler. Il est muni d’un opérateur F : Wr�

n
X →

Wr−1�
n
X [Illusie 1979, p. 562, théorème 2.17].

Si X est défini sur un corps parfait k, on a évidemment

Wr�
·
X =Wr�

·
X/k .

On a des applications « de Teichmüller » (multiplicatives)

OX →Wr OX , x 7→ x = (x, 0, . . . , 0, . . . )

[Illusie 1979, p. 505, (1.1.7)], qu’on utilise pour définir les homomorphismes

d log : O∗X/(O
∗

X )
pr
→Wr�

1
X , x 7→ dx/x (A-1)

[Illusie 1979, p. 580, (3.23.1)]. On définit alors Wr�
n
X,log comme le sous-faisceau

de Wr�
n
X engendré localement pour la topologie étale par les sections de la forme
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d log x1 ∧ · · · ∧ d log xn [Illusie 1979, p. 596, (5.7.1)] ; comme dans [Geisser et
Levine 2000], nous noterons simplement ce faisceau νr (n)X .

Lemme A.1. Pour tout x ∈ 0(X,OX ) et pour tout r ≥ 1, on a

x ∧ 1− x = 0 ∈ 0(X,Wr�
2
X ).

Démonstration. (Illusie) Le morphisme X→ A1
Fp

défini par x nous ramène au cas
universel X = Spec Fp[t], x = t . Mais alors Wr�

2
X = 0 puisque dim X = 1. �

Le symbole logarithmique. Supposons X=Spec k, où k est un corps. Le lemme A.1
implique que l’homomorphisme d log de (A-1) induit un symbole logarithmique

d log : K M
n (k)/pr

→ νr (n)k, (A-2)

{x1, . . . , xn} 7→ d log(x1)∧ · · · ∧ d log(xn).

Soit K le corps des fonctions d’un k-schéma lisse X , où k est parfait de carac-
téristique p. Un point x de codimension 1 de X définit une valuation discrète v
sur K , de corps résiduel E = k(x). Le théorème de pureté de Gros [1985, p. 46,
théorème 3.5.8] et la longue suite exacte de cohomologie à supports définissent des
homomorphismes résidus

νr (n)K
∂v
−→ νr (n− 1)E . (A-3)

Lemme A.2. Le diagramme

K M
n (K )/pr ∂v

−−−→ K M
n−1(E)/pr

d log
y d log

y
νr (n)K

∂v
−−−→ νr (n− 1)E

où la flèche horizontale du haut est le résidu en K -théorie de Milnor, est commutatif
au signe près.

Démonstration. Pour n = 1, 2 c’est fait dans [Gros et Suwa 1988b, p. 625, lemme
4.11]. La démonstration ne se propage pas tout à fait à n > 2 car elle utilise la
formule explicite donnant ∂({x, y}) pour x, y ∈ K ∗. Pour la propager, il suffit
toutefois de remarquer que K M

n (K ) est engendré par les symboles de la forme
{u1, . . . , un−1, x} avec ui ∈ O∗v et x ∈ K ∗. �

Le morphisme de comparaison. Supposons X lisse sur un corps parfait k. D’après
[Illusie 1979, p. 597, théorème 5.7.2], on a une suite exacte de pro-faisceaux étales

0→ ν·(n)X →W·�n
X

1−F
−→W·�n

X → 0

qui en fait n’interviendra pas ici. De plus, on a le théorème suivant, dû à Gros et
Suwa :



Classes de cycles motiviques étales 1403

Théorème A.3. On a une suite exacte de faisceaux zariskiens

0→ α∗νr (n)X →
⊕

x∈X (0)

(
νr (n)k(x)

)
{x}

∂
−→

⊕
x∈X (1)

(
νr (n− 1)k(x)

)
{x}

∂
−→ · · ·

où α désigne la projection Xét → XZar et les différentielles ∂ sont construites à
partir des résidus (A-3).

Démonstration. Voir [Gros et Suwa 1988b, corollaire 1.6] ou [Colliot-Thélène et al.
1997, p. 70, Example 7.4 (3)]. �

Supposons maintenant X régulier de type fini sur un corps k (de caractéristique p).
Supposons d’abord k de type fini sur Fp : alors X admet un modèle X régulier, donc
lisse, de type fini sur Fp. Soit j : X→X la pro-immersion ouverte correspondante :
on a évidemment

νr (n)X = j∗νr (n)X

puisque les anneaux semi-locaux de X sont certains anneaux semi-locaux de X.
Interprétons maintenant K M

n (K )/pn comme H n(K ,Z/p(n)), cf. théorème 2.3.
Vu la remarque 2.4 et le théorème A.3, les homomorphismes (A-2) et le lemme A.2
induisent des homomorphismes de faisceaux

Hn(Z/pr (n)X)→ α∗νr (n)X

et donc des morphismes dans D−(XZar)

Z/pr (n)X→ α∗νr (n)X[−n]

puisque Hi (Z/pr (n)X)= 0 pour i > n (lemme 2.5).
D’où, en appliquant j∗, des morphismes dans D−(XZar)

Z/pr (n)X → α∗νr (n)X [−n]. (A-4)

Si k est quelconque, écrivons

k = lim
−→
α

kα et X = lim
←−
α

Xα,

où les kα sont de type fini sur Fp et Xα est un kα-schéma régulier de type fini, de
sorte que kα ⊂ kβ induise un isomorphisme Xβ −→∼ Xα ⊗kα kβ . On a évidemment :

νr (n)X = lim
−→
α

π∗ανr (n)Xα ,

Hn(Z/pr (n)X )= lim
−→
α

π∗αHn(Z/pr (n)Xα ),

où πα : X→ Xα est le morphisme canonique. Ceci étend la définition de (A-4) au
cas où le corps de base est quelconque. On voit de même :
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Proposition A.4 (cf. [Quillen 1973, démonstration du théorème 5.11]). La suite
exacte du théorème A.3 s’étend à tout X régulier de type fini sur un corps. �

Le théorème de Geisser–Levine.

Théorème A.5. Soit X un schéma régulier de type fini sur un corps k de caracté-
ristique p. Alors le morphisme (A-4) est un isomorphisme.

Démonstration. Il s’agit de voir que

Hi (Z/pr (n)X )'

{
0 si i 6= n,
α∗νr (n)X si i = n,

le dernier isomorphisme étant induit par (A-4). L’énoncé est clair pour i > n, cf.
lemme 2.5.

1) X = Spec k : c’est le théorème de Bloch–Gabber–Kato pour i = n [Bloch et Kato
1986, p. 117, corollaire 2.8] et celui de Geisser–Levine [2000, théorème 1.1] pour
i < n.

2) X lisse sur k parfait : on se réduit à 1) en utilisant le théorème A.3, le lemme A.2
et la conjecture de Gersten pour la cohomologie motivique, cf. preuve du lemme 2.5.

3) k de type fini sur Fp : on se ramène à 2) par la technique du numéro précédent.

4) k quelconque : on se ramène à 3) par passage à la limite. �

Remarque A.6. On pourrait court-circuiter les étapes 2) et 3), dans l’esprit de la
proposition A.4.

Corollaire A.7. Soit X un schéma régulier de type fini sur un corps k de caracté-
ristique p. Alors le morphisme α∗ (A-4) est un isomorphisme, où α est la projection
Xét→ XZar. �
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Higher-order Maass forms
Roelof Bruggeman and Nikolaos Diamantis

The spaces of Maass forms of even weight and of arbitrary order are studied.
It is shown that, if we allow exponential growth at the cusps, these spaces are
as large as algebraic restrictions allow. These results also apply to higher-order
holomorphic forms of even weight.

1. Introduction

Occasionally, invariants of classical holomorphic modular forms can be studied
effectively by means of generating functions that are nonanalytic. An example is
the Eisenstein series modified with modular symbols. It is defined by

E∗(z, s)=
∑

γ∈0∞\00(N )

〈 f, γ 〉 Im(γ z)s, (1-1)

where 0∞ is the subgroup of translations of the congruence group 00(N ), f is
a weight-2 newform, and 〈 f, γ 〉 denotes its modular symbol −2π i

∫ γ∞
∞

f (w) dw.
The function E∗(−, s) is not analytic, but rather an eigenfunction of the Laplace
operator −y2∂2

y− y2∂2
x with eigenvalue s−s2. Its study has led to important results

about modular symbols, such as the proof that the suitably normalized modular
symbols follow the normal distribution [Petridis and Risager 2004]. A crucial
feature of E∗(−, s) is that it is not invariant under the action of 00(N ), but instead
it is 00(N )-invariant of order 2.

This function was one of the motivating examples for the systematic study of
invariants of order q for a 0-module V (over C), that is, v ∈ V satisfying

v |(1− γ1)(1− γ2) . . . (1− γq)= 0 (1-2)

for all γ1, . . . , γq ∈ 0. The usual space of invariants V 0 consists of the invariants
of order 1. Also, E∗(−, s) is invariant of order 2 in terms of the right regular
representation of 00(N ) on the space of functions on H that are eigenfunctions of
the Laplacian.

MSC2010: primary 11F12; secondary 11F37, 11F99, 30F35.
Keywords: higher-order automorphic forms, Maass forms.
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Although higher-order invariants have been classified in several cases and from
various perspectives [Chinta et al. 2002; Diamantis and O’Sullivan 2008; Diamantis
and Sim 2008; Deitmar 2008; 2009], the real-analytic case to which the important
function E∗(−, s) belongs has not been fully addressed up to now. This is per-
haps not surprising, given that such functions can contain very rich and complex
information, as the example of E∗(−, s) shows. The resolution of the problem
of classification of higher-order Maass forms is the subject of the present paper.
This task includes various aspects that are often automatic in the classification
of higher-order invariants of other spaces, and it requires new techniques from
the theory of families of automorphic forms and perturbation theory. The most
important of these aspects, all of independent interest, are:

Firstly, while in the setting of [Diamantis and O’Sullivan 2008] the “size” of the
space of higher-order invariants is expressed by its (finite) dimension, in the present
case a different concept is required because the relevant spaces are, in general,
infinitely dimensional. This concept is maximal perturbability. Specifically, let
V 0,q be the space of invariants of order q of a general group 0 and a 0-module V .
If 0 is finitely generated, there is an exact sequence

0−→ V 0,q
−→ V 0,q+1

−→ (V 0)n(0,q), (1-3)

where the natural number n(0, q) is determined by the structure of 0. If for every
q ≥ 1 the map in (1-3) is surjective, we call the 0-module V maximally perturbable.
Our choice of the word “perturbable” stems from the fact that derivatives of families
of automorphic form can lead to higher-order automorphic forms; see Section 4C3.
A derivative of order q leads to an invariant v of order q+1 with the special property
that there is an invariant w ∈ V 0 such that for all choices of γ1, . . . , γq ∈ 0, there
is µ(γ1, . . . , γq) ∈ C with

v |(γ1− 1) . . . (γq − 1)= µ(γ1, . . . , γq)w. (1-4)

We call v a perturbation of w. On the other hand, the existence of perturbations in
which µ(γ1, . . . , γq) is not symmetric in the γ j implies that not all perturbations
come from differentiation of families.

Secondly, the choice of the space V is a nontrivial matter. The obvious choice
of functions with polynomial growth at the cusps leads to modules that are not
maximally perturbable; we have to allow exponential growth. See Theorems 4.3
and 4.2.

Finally, Fourier expansions are not straightforward extensions of their classical
counterparts either, because of the lack of usual invariance. Indeed, Section 7 is
devoted to the development of a higher-order version of the theory of Fourier terms
and expansions.

Our results imply that if V is maximally perturbable, an invariant in V 0 has
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“many” perturbations. At the same time, the complexity of the constructions partly
explains why it is surprisingly difficult, even in simple situations, to explicitly
construct perturbations of a given invariant. In Section 4C we investigate this for
the simplest example of an automorphic form that one can think of, the constant
function 1. We succeed in giving a basis for all holomorphic perturbations and for
all harmonic perturbations of 1 up to order 3.

As in the classical case, the general Maass setting discussed so far includes
holomorphic higher-order invariants. Important examples of the latter emerge
from problems in the theory of classical modular forms: in [Goldfeld 1995] and
[Diamantis 1999], certain “period integrals” are associated to derivatives of L-
functions of weight-2 cusp forms in a way analogous to the link between values of
L-functions and modular integrals [Manin 1972]. Specifically, let f be a newform
of weight 2 for 00(N ), and let L f (s) be its L-function. If L f (1)= 0, then L ′f (1)
can be written as a linear combination of integrals of the form∫ γ (0)

0
f (z)u(z) dz, γ ∈ 00(N ), (1-5)

plus some “lower-order terms”. Here u(z) := log η(z)+ log η(N z), where η is the
Dedekind eta function. The differential f (z)u(z) dz is not 00(N )-invariant. It does
satisfy a transformation law which is reminiscent of (1-2) with q = 2, but is not
quite 00(N )-invariant, as it has an additional term. If it were invariant, the value
of the derivative at 1 would be expressed as the value of the actual L-function
of second-order 00(N ) at 1. That could be advantageous for the study of L ′f (1)
in terms of the outstanding conjectures (Beilinson, Birch–Swinnerton-Dyer, etc.),
especially since there is now evidence that a motivic structure underlies higher-order
forms (see [Diamantis and Sreekantan 2006; Sreekantan 2009]).

Here we show that it is indeed possible to obtain a second-order 00(N )-invariant
function from u(z), provided we move to a different domain. This domain is the
universal covering group G̃, defined in detail in Section 5A. It was convenient and
more general to carry out the entire study (that is, of both Maass and holomorphic
higher-order invariants) on G̃.

The main theorems of the paper (Theorems 6.5 and 6.8) classify the spaces into
which we incorporate the above two important examples (E∗(−, s) and u(z)), in
the sense that we show that these spaces are as large as they can a priori be.

2. Structure of the paper

In Section 3, we first discuss higher-order invariants for general groups and modules.
Here we define the property of maximal perturbability.

In Section 4, Maass forms on H (both general and holomorphic) are defined,
and the first two main theorems of the paper (4.2 and 4.3) are stated. Since
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hom(0mod,C) = {0}, there are no higher-order invariants for the full modular
group 0mod= PSL2(Z). For examples, we go to a subgroup of order 6 and show that
some well-known functions lead to higher-order invariants. To get all perturbations
of 1 up to order 3, we have to look also at less known functions.

In Section 5, the universal covering group G̃ is introduced, and basic facts about
G̃ are given. Section 6 starts with the interpretation of log η as a second-order form
on the universal covering group G̃ for the inverse image 0̃mod of the modular group
in G̃. We define Maass forms on the universal covering group in Section 6, and, in
Theorems 6.5 and 6.8, we state the counterparts of Theorems 4.2 and 4.3 for forms
on the universal covering group. The section concludes with concrete examples of
low-order forms for the discrete subgroup 0̃mod of G̃.

Section 7 is of independent interest. A theory of Fourier expansions for higher-
order forms is developed. Working on the universal covering group, we have to
handle invariants for the commutative group generated by a parabolic element and
the center of G̃. So all perturbations we meet are commutative.

The proof of Theorems 6.5 and 6.8 is the content of Section 8. We start with the
maximal perturbability of the space of all functions on G̃. Step by step, we impose
more and more analytic restrictions, such as smoothness, growth behavior at cusps,
and the behavior under certain differential operators. For each step, we show that
maximal perturbability is preserved. For several steps, this involves induction with
respect to the order. At the end, we complete the proof of our main results by an
application of spectral theory.

3. Higher-order invariants

In this section, we discuss higher-order invariants in general and then specialize
their study to discrete cofinite subgroups 0 ⊂ PSL2(R). We introduce the concept
of a maximally perturbable 0-module to make precise the statement that there are
as many higher-order invariants of a given type as one can expect.

3A. Higher-order invariants on general groups. The concept of higher-order
invariant functions on the upper half-plane is a special case of the concept of
higher-order invariants for any group 0 and any 0-module V . We work with right
0-modules, and write the action as v 7→ v |γ . It should be clear from the context
when we refer to this general meaning of | and when to the more narrow meaning
given in the Introduction. We define the higher-order invariants inductively:

V 0,1
= V 0

= {v ∈ V : v |γ = v for all γ ∈ 0},

V 0,q+1
= {v ∈ V : v |(γ − 1) ∈ V 0,q for all γ ∈ 0}.

(3-1)

We set V 0,0
= {0}.

Now let 0 be finitely generated and let I be the augmentation ideal in the group
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ring C[0], generated by γ − 1 with γ ∈ 0r {1}. A fundamental role in this paper
will be played by the map

mq : V 0,q+1
→ homC[0](I q+1

\I q , V 0).

To define it, we first quote from [Deitmar 2009] (before Proposition 1.2):

V 0,q ∼= homC[0](I q
\C[0], V ). (3-2)

The isomorphism is induced by the map ϕ 7→ ϕ(1) from homC[0](C[0], V ) to V .
Next, we note that I q+1

\I q is generated by

I q+1
+ (γ1− 1) . . . (γq − 1),

with γi ∈ 0. To each v ∈ V 0,q+1 we associate the map on I q+1
\I q sending this

element to v |(γ1− 1) . . . (γq − 1). This map is well-defined because

v |(γ1− 1) . . . (γq+1− 1)= 0.

In this way, we obtain a map mq from V 0,q+1 to

homC[0](I q+1
\I q , V )∼= homC[0](I q+1

\I q , V 0)

(since the action induced on I q+1
\I q by the operation of 0 is trivial). It is easy to

see that the kernel of mq is V 0,q , and thus we obtain the exact sequence

0−→ V 0,q
−→ V 0,q+1 mq

−→ homC[0](I q+1
\I q , V ). (3-3)

The map mq may or may not be surjective, and we will interpret the phrase “as
large as possible” as surjectivity of mq for all q ∈ N.

Definition 3.1. Let 0 be a finitely generated group. We will call a 0-module V
maximally perturbable if the linear map mq : V 0,q+1

→ homC[0](I q+1
\I q , V 0) is

surjective for all q ≥ 1.

A reformulation of this definition, which is occasionally easier to use, uses the
finite dimension

n(0, q) := dimC(I q+1
\I q). (3-4)

V is maximally perturbable if and only if V 0,q+1/V 0,q ∼= (V 0)n(0,q) for all q ∈ N.
The numbers n(0, q) are determined by the algebraic structure of the group 0,

and increase quickly with q for many discrete 0 ⊂ PSL2(R). For a maximally
perturbable 0-module with a nonzero space V 0 of invariants, the sizes of the spaces
of higher-order invariants V 0,q also increase quickly, restricted only by the exact
sequence in (3-3).

In [Diamantis and Sim 2008], higher-order cusp forms of weight k for a dis-
crete group 0 are considered in the space of holomorphic functions on H with
exponential decay at the cusps that moreover are invariant under the parabolic
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transformations. The dimensions of these spaces are computed and generally turn
out to be strictly smaller than n(0, q) times the dimension of the spaces of invariants.
So the corresponding 0-module is not maximally perturbable.

The map ϕ 7→
(
(γ1, . . . , γ1) 7→ ϕ

∣∣ (γ1−1) . . . (γq−1)
)

induces an isomorphism
homC[0](I q+1

\I q , V 0)∼=Multq(0, V 0), where Multq(0, V 0) is the space of maps
0q
→ V 0 inducing group homomorphisms 0→ C on each of their coordinates.

For a finitely generated group 0, Multq(0, V 0) ∼= Multq(0,C) ⊗C V 0, where
Multq(0,C) is the q-th tensor power of hom(0,C). This description suggests that
it may be useful to consider the following special higher-order invariants:

Definition 3.2. Let q ∈ N. For any group 0 and any 0-module V , we call f ∈
V 0,q a perturbation of ϕ ∈ V 0 if there exists µ f ∈Multq(0,C) such that for all
γ1, . . . , γq ∈ 0,

f |(γ1− 1) . . . (γq − 1)= µ f (γ1, . . . , γq)ϕ. (3-5)

We call a perturbation commutative if µ f is invariant under all permutations of
its arguments. If not, we call it noncommutative.

3B. Canonical generators. In this section, we recall the “canonical generators” of
cofinite discrete subgroups of PSL2(R), and use them to show that certain modules
are maximally perturbable.

Let 0⊂PSL2(R) be a cofinite discrete group of motions in the upper half-plane H.
A system of canonical generators for 0 consists of:

• Parabolic generators P1, . . . , Pnpar , each conjugate in PSL2(R) to ±
(

1 1
0 1

)
. We

shall assume that 0 has cusps: npar ≥ 1.

• Elliptic generators E1, . . . , Enell , with nell ≥ 0. Each E j is conjugate to
±
( cos(π/v j ) sin(π/v j )

− sin(π/v j ) cos(π/v j )

)
in PSL2(R) for some v j ≥ 2.

• Hyperbolic generators H1, . . . , H2g, with g ≥ 0, each conjugate in PSL2(R)

to the image ±
( t 0

0 t−1

)
, t > 1, of a diagonal matrix.

See, for example, [Lehner 1964, Chapter VII.4, p. 241] or [Petersson 1948, §3].
The relations are given by the condition that each Ev j

j equals Id for j = 1, . . . , nell,
and one large relation

P1 . . . Pnpar E1 . . . Enell [H1, H2] . . . [H2g−1 H2g] = Id. (3-6)

The choice of canonical generators is not unique, but the numbers npar, nell and g,
and the elliptic orders v1, . . . , vnell , are uniquely determined by 0.

Each group homomorphism 0→ C vanishes on the E j , and is determined by its
values on H1, . . . , H2g, P1, . . . , Pnpar−1; hence, since 0 has cusps,

dim hom(0,C)= npar− 1+ 2g. (3-7)
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We put t (0) = npar + 2g and denote P1 by A1, . . . , Pnpar−1 by Anpar−1, H1

by Anpar , . . . , H2g by At (0)−1. The group 0 is generated by E1, . . . , Enell and
A1, . . . , At (0)−1.

For the modular group, we have npar = 1, P1 =±
(

1 1
0 1

)
, nell = 2, E1 =±

( 1 1
−1 0

)
,

E2 =±S := ±
( 0 −1

1 0

)
, g = 0, and hence hom(0mod,C)= {0} and t (0mod)= 1.

In the sequel, we will need a basis for I q+1
\I q . Arguing as in Lemma 2.1

in [Deitmar 2009], we can deduce that the elements

b(i)= (Ai(1)− 1) . . . (Ai(q)− 1), (3-8)

where i runs over all (t (0)− 1)-tuples of elements of {1, . . . , t (0)− 1}, form a
basis of I q+1

\I q . We do not give a proof here, since it follows from the more
general result in Proposition 5.1.

4. Maass forms

We turn to spaces of functions on the upper half-plane that contain the classical
holomorphic automorphic forms and the more general Maass forms. The first main
results of this paper are stated in Theorems 4.2 and 4.3. In Section 4C, we give
some explicit examples of higher-order Maass forms.

4A. General Maass forms. Let 0 be a cofinite discrete subgroup 0 of the group
G = PSL2(R). For each cusp κ , we choose gκ ∈ PSL2(R) such that

κ = gκ∞ and g−1
κ 0κgκ =

{
±
(

1 n
0 1

)
: n ∈ Z

}
. (4-1)

Here, 0κ is the set of elements of 0 fixing κ . The elements gκ are determined up
to right multiplication by elements ±

( a b
0 a−1

)
∈ G. We choose the gκ for cusps in

the same 0-orbit so that gγ κ ∈ γ gκ0∞.
We further consider a generalization of the action | considered in the last section.

For a fixed k and for a f : H→ C, we set

f
∣∣
k

(
a b
c d

)
(z)= (cz+ d)−k f

(az+b
cz+d

)
. (4-2)

We finally set

Lk =−y2∂2
x − y2∂2

y + iky∂x − ky∂y +
k
2

(
1− k

2

)
. (4-3)

With this notation, we have:

Definition 4.1. Let k ∈ 2Z and λ ∈ C.

i) Mk(0, λ) denotes the space of smooth functions f :H→C such that Lk f = λ f
and for which there is some a ∈ R such that

f (gκ(x + iy))= O(ya), (y→∞) (4-4)
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uniformly for x in compact sets in R, for all cusps κ of 0.

ii) Ek(0, λ) denotes the space of smooth functions f such that Lk f = λ f and for
which there is some a ∈ R such that

f (gκ(x + iy))= O(eay), (y→∞) (4-5)

uniformly for x in compact sets in R, for all cusps κ of 0.

iii) We denote the invariants in these spaces by

Ek(0, λ) := Ek(0, λ)
0 and Mk(0, λ) :=Mk(0, λ)

0. (4-6)

We call the elements of Ek(0, λ) (resp. Mk(0, λ)) Maass forms of polynomial
(resp. exponential) growth of weight k and eigenvalue λ ∈ C for 0.

Remarks. i) Since Lk is elliptic, all its eigenfunctions are automatically real-
analytic. (See, for example, [Lang 1975, §5 of Appendix A4], and the ref-
erences therein.) If f is holomorphic, then it is an eigenfunction of Lk with
eigenvalue (k/2)(1− k/2).

ii) The space Mk(0, λ) is known to have finite dimension. The space Ek(0, λ)

has, for groups 0 with cusps, infinite dimension. The subspace of Ek(0, λ)

corresponding to a fixed value of a in the bound O(eay) has finite dimension.
(The first statement is due to Maass. See [Maass 1983, p. 190, Theorem 28]
for the case that 0 ⊂ PSL2(Z). The three statements hold for all 0. See, for
instance, the discussion in Section 9.5 of [Bruggeman 1994].)

iii) In an alternative definition, suitable for functions not necessarily holomorphic,
one replaces the Maass forms f as defined above by h(z)= yk/2 f (z). Then
invariance under (4-2) becomes invariance under the action

f
∣∣
k

(
a b
c d

)
(z)= e−ik arg(cz+d) f

(az+b
cz+d

)
, (4-7)

and the eigenproperty in terms of the Laplacian(
−y2∂2

x − y2∂2
y + iky∂x

)
h = λh. (4-8)

The formulation of the growth conditions remains unchanged. Now antiholo-
morphic automorphic forms a(z) of weight k give Maass forms h(z)= yk/2a(z)
of weight −k.

Our main result for general Maass forms on H is:

Theorem 4.2. Let 0 be a cofinite discrete group of motions in H with cusps. Then
the 0-module Ek(0, λ) is maximally perturbable for each k ∈ 2Z and each λ ∈ C.

In the course of the proof in Section 8, we will see that even if we start with Maass
forms with polynomial growth, the construction of higher-order invariants will lead
us to functions that have exponential growth.
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4B. Holomorphic automorphic forms. For even k, the space Ek(0, λk), with λk =

(k/2)(1−k/2), contains the subspace Ehol
k (0, λk), where the condition Lk f = λk f

is replaced by the stronger condition that f is holomorphic. In the alternative
definition, condition (4-8) is replaced by the condition that z 7→ y−k/2 f (z) is
holomorphic. The space Ehol

k (0, λk) is a 0-submodule of Ek(0, λk). We also have
the 0-submodule Mhol

k (0, λk)=Mk(0, λk)∩Ehol
k (0, λk) of Mk(0, λk).

The space Mhol
k (0, λk)

0 is the usual space of entire weight-k automorphic forms
for 0, and Ehol

k (0, λk)
0 is the space of meromorphic automorphic forms with

singularities only at cusps. Sometimes, as in [Bruinier et al. 2008], the elements of
Ehol

k (0, λk)
0 are called weakly holomorphic. There the elements of Ek(0, λk)

0 are
called harmonic weak Maass forms. We prefer to use the term harmonic for Maass
forms in Ek(0, 0)0. (Note that λk 6= 0 for k 6= 0, 2.)

Our main result for holomorphic automorphic forms on H is:

Theorem 4.3. Let 0 be a cofinite discrete group of motions in H with cusps. Then
Ehol

k (0, k/2− k2/4) is maximally perturbable for each k ∈ 2Z.

4C. Examples of harmonic and holomorphic forms of orders 2 and 3. According
to Theorems 4.2 and 4.3, there are plenty of examples of higher-order Maass forms
for cofinite groups with cusps for which dimC hom(0,C)≥ 1. (See the discussion
following Definition 3.1.) It is, however, not very easy to exhibit explicit examples.

For the modular group 0mod = PSL2(Z), the space hom(0mod,C) is zero. Hence,
it does not accept higher-order invariants. For the commutator subgroup 0com =

[0mod, 0mod], we will employ three different approaches to exhibit full sets of
perturbations of 1 (as defined in Definition 3.2) of orders 2 and 3. A reader only
interested in the existence of higher-order forms may prefer to skip this subsection.

4C1. Holomorphic perturbation of 1. In [Lehner 1964, Chapter XI, §3E, p. 362],
one finds various facts concerning 0com. It is freely generated by D =±

(
2 1
1 1

)
and

C = ±
( 2 −1
−1 1

)
. It has no elliptic elements, and one cuspidal orbit 0com∞= P1

Q
.

The group (0com)∞ fixing∞ is generated by ±
(

1 6
0 1

)
. We have t (0com)= 3.

The space of holomorphic cusp forms of weight 2 has dimension g = 1. We use
the basis element η4 (power of the Dedekind eta function). The map

H(z)=−2π i
∫ z

∞

η(τ)4 dτ =−6eπ i z/3
+O

(
e7π i z/3) (4-9)

induces an embedding of 0com\H into an elliptic curve, which can be described as
C/3, with

3=$ Z[ρ], $ = π1/20
( 1

6

)/(
6
√

30
(2

3

))
, ρ = eπ i/3. (4-10)
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(See computations in [Bruggeman 1994, §15.2–3].) The map H maps H onto Cr3,
and satisfies for γ ∈ 0com

H(γ z)= H(z)+ λ(γ ), λ(γ )=−2π i
∫ γ∞

∞

η(τ)4 dτ, (4-11)

where λ(C)= ρ$ and λ(D)= ρ̄$ . So the lattice 3 is the image of λ : 0com→ C,
and hom(0com,C) =Mult1(0com,C) has λ, λ̄ as a basis. We note that the kernel
ker(λ) is a subgroup with infinite index in 0com; it is in fact the commutator subgroup
of 0com. The element ±

(
1 6
0 1

)
generating the subgroup of 0com fixing∞ is in ker(λ).

Since ker(λ) has no elliptic elements, composition with H gives a bijection from
the holomorphic functions on C r3 to the holomorphic ker(λ)-invariant functions
on H.

Clearly, H is a holomorphic second-order perturbation of 1 with linear form λ.
It is also a harmonic perturbation of 1, that is, a perturbation which is harmonic as
a function. By conjugation, we obtain the antiholomorphic harmonic perturbation
of 1 with linear form λ̄.

According to Theorem 4.3, there should also be a holomorphic second-order
perturbation of 1 with a linear form that is linearly independent of λ. Here we can
use the Weierstrass zeta function

ζ(u;3)= 1
u
+

∑
ω∈3

′
( 1

u−ω
+

1
ω
+

u
ω2

)
. (4-12)

See, for example, [Koecher and Krieg 1998, Chapter I, §6]. It is holomorphic on
Cr3 and satisfies ζ(u+ω;3)=ζ(u;3)+h(ω) for allω∈3, where h∈hom(3,C)

is linearly independent of ω 7→ ω. (The classical notation for h is η. We write h to
avoid confusion with the Dedekind eta function.) Pulling back this zeta function
to H, we get a second-order holomorphic perturbation of 1:

W (z)= ζ(H(z);3), (4-13)

with the linear form γ 7→ h(λ(γ )). The Laurent expansion of the Weierstrass zeta
function at 0 starts with ζ(u;3)= u−1

+O(u3). Hence, W has a Fourier expansion
at∞ starting with

W (z)=− 1
6 e−π i z/3

+O(eπ i z). (4-14)

This shows that W has exponential growth at the cusps.
We may carry this out also for holomorphic forms of order 3, to obtain the

following commutative perturbations of 1 of order 3:

f H(z)2 H(z)W (z) W (z)2

µ f 2 λ⊗ λ λ⊗ (h ◦ λ)+ (h ◦ λ)⊗ λ 2(h ◦ λ)⊗ (h ◦ λ)
(4-15)
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We know that there also exist noncommutative holomorphic perturbations of
order 3. To find an explicit example, we have to work on H, since the group 3
acting on C is abelian.

The closed holomorphic 1-forms

ω =−2π iη(τ)4 dτ and ω1 =−2π iW (τ ) η(τ )4 dτ

on H transform as follows under 0com:

ω |γ = ω, ω1 |γ = ω1+ h(λ(γ ))ω. (4-16)

For an arbitrary base point z0 ∈ H, we put

K (z)=
∫ z

z0

ω1. (4-17)

This defines a holomorphic function on H that satisfies, for γ ∈ 0com,

K |(γ − 1)(z)=
∫ γ z

z
ω1,

and hence for γ, δ ∈ 0com,

K |(γ − 1)(δ− 1)(z)=
(∫ γ δz

γ z
−

∫ δz

z

)
ω1 =

∫ δz

z
ω1 |γ −

∫ δz

z
ω1

= h(λ(γ ))

∫ δz

z
ω = h(λ(γ ))λ(δ).

Thus, we have a holomorphic third-order noncommutative perturbation K of 1 with
nonsymmetric multilinear form (h ◦λ)⊗λ. Since holomorphic forms are harmonic
in weight zero, these perturbations are also harmonic perturbations of 1.

4C2. Iterated integrals. The construction of the third-order form K in (4-17) is
closely related to the iterated integrals used in [Diamantis and Sreekantan 2006] to
prove maximal perturbability of spaces of smooth functions.

The idea is that we have two closed 0com-invariant differential forms on H,
d H(z)= ω =−2π iη(z)4 dz and

ω0 = dW (z)=−℘(H(z)) d(H(z)),

where ℘(u;3) = −(d/du)ζ(u;3) is the Weierstrass ℘-function. If t 7→ z(t),
0≤ t ≤ 1 is a path in H from z0 to z1, then∫ 1

t2=0

∫ t2

t1=0
ω0(z(t1))ω(z(t2))=

∫ 1

t2=0

(
W (z(t2))−W (z0)

)
dH(z(t2))

=−2π i
∫ 1

t=0
W (z(t))η(z(t))4z′(t) dt

−W (z0)
(
H(z1)− H(z0)

)
= K (z1)−W (z0)

(
H(z1)− H(z0)

)
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depends only on z0 and z1, not on the actual path. For a fixed base point z0, the
holomorphic function z1 7→ W (z0)

(
H(z1)− H(z0)

)
is invariant of order 2. So

up to lower-order terms, the invariant K is given by an iterated integral, as in (3)
of [Diamantis and Sreekantan 2006]; see also [Chen 1971].

4C3. Differentiation of families. We start by considering a general finitely gener-
ated group 0 acting on a space X . We will use the notation f |γ (x)= f (γ x) for
the action induced on functions defined on X . We consider a family of characters
of 0 of the form χr (γ ) = eir ·α(γ ), where r · α(γ ) = r1α1(γ )+ · · · + rnαn(γ ) for
α1, . . . , αn ∈ hom(0,R) and r varying over an open set U in Rn . In this way, χr is
a family of unitary characters.

We consider a C∞ family r 7→ fr on a neighborhood U ⊂ Rn of 0 of functions
X→ C that satisfy

fr (γ x)= χr (γ ) fr (x), (γ ∈ 0). (4-18)

We assume that χ0 is the trivial character and that f0 is a 0-invariant function f .
We now set h(x)= ∂r j fr (x)

∣∣
r=0, for one of the coordinates of r . The transfor-

mation behavior gives h(γ x)= iα j (γ ) f (x)+ h(x), or, rewritten,

h |γ − h = iα j (γ ) f.

The function h is a second-order perturbation of f , with iα j as the corresponding
element of hom(0,C). This can be generalized using a routine inductive argument:

Proposition 4.4. For all multi-indices a ∈ Nn , the derivative

f (a)(x) := ∂a
r fr (x)

∣∣
r=0

is a commutative perturbation of f with order 1+ |a|. Here ∂a
r = ∂

a1
r1
. . . ∂

an
rn and

|a| = a1+ a2+ · · ·+ an .

Remark. Proposition 4.4 shows that commutative perturbations can arise as infini-
tesimal perturbations of a family of automorphic forms. That is our motivation to
use the word perturbation in Definition 3.2.

Application to harmonic perturbations of 1. We use the method of differentiation
of families to produce explicit harmonic higher-order forms for 0com of order 3. We
employ families studied in [Bruggeman 1994].

Since 0com is free on the generators C=±
( 2 −1
−1 1

)
and D=±

(
2 1
1 1

)
, the character

group of 0com is isomorphic to C∗×C∗. We can parametrize the characters by

χv,w(γ )= eivλ(γ )+iwλ(γ ), (4-19)

where (v,w) runs through C2, and where λ ∈ hom(0com,C) is as defined in (4-11).
We are interested only in (v,w) in a neighborhood of 0 ∈ C2.
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In [Bruggeman 1994, §15.5], it is shown that there is a meromorphic Eisenstein
family E(v,w, s) of automorphic forms for 0com, with the character χv,w and
eigenvalue 1

4 − s2 for ω0 =−y2(∂2
x + ∂

2
y ). (In [Bruggeman 1994], the discussion of

the family E is made in the context of families of automorphic forms of varying
weight which are thus defined on the covering group 0̃com. However, in §15.5 the
weight is zero, and the automorphic forms are, in effect, on the discrete group 0com.)
The restriction to s = 1

2 exists [Bruggeman 1994, §15.6] and forms a meromorphic
family (v,w) 7→ f (v,w; z) on C2 such that f (v,w; γ z)=χv,w(γ ) f (v,w; z), and
L0 f (v,w; z)= 0 for the dense set of (v,w) at which f is holomorphic. There is a
meromorphic family (v,w) 7→ h(v,w; · ) on C such that

f (v,w; z)= h(v,w; H(z)),

satisfying h(v,w; u+λ)= eivλ+iwλ̄h(v,w; u) [Bruggeman 1994, §15.1–6]. Chap-
ter 15 of [Bruggeman 1994] gives a complicated but explicit construction (obtained
with the help of D. Zagier) of such a family h with Jacobi theta functions.

Specifically, in §15.6.11, the function h is expressed as a sum

h(v,w; u)= G(v+w)$/2π (u, w)+G−(v+w)$/2π (−ū,−v), (4-20)

where the function Gµ(u, w), for µ 6∈ Z and 0< Im u < 1
2$
√

3, is given by

Gµ(u, w)=
∞∑

m=−∞

1
µ+m

ξµ+m

ηqm−1
, (4-21)

with q = −e−π
√

3, ξ = e2π iu/$ , and η = e−w$
√

3. We compute a part of the
expansion in powers of v and w at v = w = 0. With the substitution u = H(z), the
coefficients provide us with higher-order harmonic modular forms for 0com. Some
of these we have seen above. Denoting f =−2π/$ 2

√
3, we find:

term of on C on H

1 f f (constant function)
v i f u i f H(z)
w i f ū i f H(z)
v2 (− f/2)u2 (− f/2)H(z)2

w2 (− f/2)ū2 (− f/2)H(z)
2

(4-22)

The coefficient of vw gives a third-order form

b1,1(u) :=
π
√

3

(( u
$
−

i
√

3
2

)2
+

( ū
$
+

i
√

3
2

)2
+ 1

)
+ S(u)+ S($ρ− u)+ S(−ū)+ S($ρ+ ū),

(4-23)
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with

S(u) :=
∞∑

m=1

e2π imu/$

m (qm−1)
, ρ =

1
2
+

i
2

√
3.

By B1,1(z) = b1,1(H(z)) we denote the corresponding harmonic third-order per-
turbation of 1 on H. The way B1,1 has been derived, together with the proof of
Proposition 4.4, ensures that it is a perturbation of 1 with a multilinear form that is
a multiple of λ⊗ λ̄+ λ̄⊗ λ.

However, b1,1(u) is represented by (4-23) only on the region 0< Im u < 1
2$
√

3.
By further computations, we arrive at expressions for it on larger regions, and can
determine the associated bilinear form. We then see that the pull-back − f −1 B1,1 =

− f −1b1,1 ◦H is a harmonic commutative perturbation of 1 for the multilinear form
µ determined by the following values at the generators C and C D of 0com:

µ(g, h)=
{

2$ 2 if g = h = C or C D,
$ 2 if g = C, h = C D, or if g = C D, h = C.

(4-24)

We have used the values of λ given below (4-11). With these values at the generators,
µ coincides with λ⊗ λ̄+ λ̄⊗λ as predicted above by the way B1,1 was constructed.

Proposition 4.4 shows that differentiation of families produces only commutative
perturbations. However, by Theorem 4.2, there are noncommutative third-order
harmonic perturbations of 1. We can obtain such perturbations from B1,1 upon
decomposing it as B1,1 = A+ B for a holomorphic function A and an antiholomor-
phic function B. Specifically, in view of (4-23), for those z ∈ H for which H(z) is
in the upper half of the fundamental hexagon for C/3, we can set

A(z)= π

2
√

3
+
π
√

3

(
H(z)
$
−

i
√

3
2

)2

+ S(H(z))+ S
(
$ρ− H(z)

)
,

B(z)= π

2
√

3
+
π
√

3

(
H(z)
$
+

i
√

3
2

)2

+ S
(
−H(z)

)
+ S

(
$ρ+ H(z)

)
.

(4-25)

More computations lead to the conclusion that − f −1 A is a noncommutative
holomorphic third-order holomorphic perturbation of 1 with multilinear form λ̄⊗λ,
and that the multilinear form of the anticommutative third-order perturbation of 1
given by − f −1 B =− f −1(B1,1− A) is

(
λ⊗ λ̄+ λ̄⊗ λ

)
− λ̄⊗ λ= λ⊗ λ̄.

5. Universal covering group

5A. Universal covering group of SL2(R). For our purpose, it suffices to describe
the universal covering group G̃ of SL2(R) as the Lie group with underlying ana-
lytic space the product H×R with the group operations uniquely defined by the
requirements that (i, 0) be the unit element and that
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pr2(z, ϑ)=
(√y x/

√
y

0 1/
√

y

)( cosϑ sinϑ
− sinϑ cosϑ

)
(5-1)

be a surjective group homomorphism pr2 : G̃→ SL2(R). We will often use the lift
g 7→ g̃ : SL2(R)→ G̃ given by

( ã b
c d

)
=

(ai+b
ci+d

,− arg(ci + d)
)
,

with the convention that the argument takes values in (−π, π]. It satisfies, for all
(z, ϑ) ∈ G̃, ( ã b

c d

)
(z, ϑ)=

(az+b
cz+d

, ϑ − arg(cz+ d)
)
. (5-2)

By pr : G̃→ PSL2(R) we denote the composition of pr2 and the natural map
SL2(R)→ PSL2(R).

We will use the following homomorphisms of Lie groups:

n : R→ G̃, n(x)= (x + i, 0), pr n(x)=
[

1 x
0 1

]
,

a : R∗>0→ G̃, a(y)= (iy, 0), pr a(y)=
[√

y 0
0 1/

√
y

]
,

k : R→ G̃, k(ϑ)= (0, ϑ), pr k(ϑ)=
[

cosϑ sinϑ
− sinϑ cosϑ

]
.

(5-3)

The Lie algebra of G̃ is isomorphic to the Lie algebra of SL2(R) and of PSL2(R).
A basis of the complex Lie algebra is W , E+, E−, with W corresponding to

( 0 1
−1 0

)
in the Lie algebra of SL2(R), and E± corresponding to

( 1 0
0 −1

)
± i

(
0 1
1 0

)
. The

corresponding left-invariant differential operators are, in the coordinates (x+ iy, ϑ)
on G̃:

W = ∂ϑ , E± = e±2iϑ(±2iy∂x + 2y∂y ∓ i∂ϑ). (5-4)

The Casimir operator

ω =− 1
4 E±E∓+ 1

4 W2
∓

i
2

W =−y2∂2
y − y2∂2

x + y∂x∂ϑ (5-5)

generates the center of the enveloping algebra of the Lie algebra, and determines a
differential operator that commutes with left and with right translation.

5B. Cofinite discrete subgroups. To a cofinite discrete subgroup 0 of PSL2(R) we
associate its inverse image 0̃ := pr−1 0 in G̃. This gives a bijective correspondence
between cofinite discrete subgroups of PSL2(R) and cofinite discrete subgroups
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of G̃ that contain the center Z̃ = 〈ζ 〉, where ζ := k(π). The projection pr induces
an isomorphism 0 ∼= 0̃/Z̃ .

As an example, we consider the modular group 0mod = PSL2(Z), with corre-
sponding group 0̃mod ⊂ G̃. It is known that PSL2(Z) is presented by the generators
S =±

( 0 −1
1 0

)
and T =±

(
1 1
0 1

)
and relations S2

= (T S)2 = I .
Set

s := k(−π/2)=
(

0̃ −1
1 0

)
and t := n(1)=

(
1̃ 1
0 1

)
,

with pr(s)= S and pr(t)= T . Then s2
= k(−π)= ζ−1

∈ Z̃ , so s and t generate 0̃mod.
To determine the relations s2t = ts2 and tstst = s, one carries out a computation
using (5-2). This implies that the linear space hom(0̃mod,C) has dimension 1, and
is generated by α : t 7→ π/6, α : s 7→ −π/2. For reasons that will become clear
later, we take this basis element, and not an integral-valued one.

5C. Canonical generators. The canonical generators of 0 induce canonical gen-
erators of 0̃:

• Elements π1, . . . , πnpar of the form π j = g̃κ j n(1)g̃
−1
κ j

fixing a system of repre-
sentatives κ1, . . . , κnpar of the 0̃-orbits of cusps.

• Elements ε1, . . . , εnell conjugate in G̃ to k(π/v j ) with v j ≥ 2.

• Elements η1, . . . , η2g conjugate in G̃ to elements a(t j ) with t j > 1.

• The generator ζ = k(π) of the center Z̃ of 0̃.

The relations are:

ζ is central,

ε
v j
j = ζ for 1≤ j ≤ nell,

π1 . . . πnparε1 . . . εnell[η1, η2] . . . [η2g−1, η2g] = ζ
2g−2+npar+nell .

(5-6)

The integer 2g− 2+ npar+ nell is always positive. For these facts, see [Bruggeman
1994, §3.3]

If nell > 0 or if 2g− 2+ npar = 1 and nell = 0, we do not need ζ as a generator.
If nell = 0, the group 0̃ is free on π1, . . . , πnpar−1, η1, . . . , η2g, ζ .

Among the canonical generators we single out the following elements: α1 = π1,
. . . , αnpar−1 = πnpar−1, αnpar = η1, . . . , αt (0)−1 = η2g, αt (0) = ζ . (We recall that
t (0) = npar+ 2g.) The α j together with the ε j generate 0̃, with εv j

j = ζ and the
centrality of ζ as the sole relations.

For the modular group 0̃mod, we have npar = 1, nell = 2, g = 0, and t (0mod)= 1.
We may take π1 = t = n(1), ε1 = t−1s−1, and ε2 = s−1

= k(π/2)= p−1k(π/3)p,
with p = n

(
−

1
2

)
a
(√3

2

)
.
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By I we now denote the augmentation ideal of the group ring C[0̃]. In C[0̃] we
have the elements

b(i)= (αi(1)− 1) . . . (αi(q)− 1), i ∈ {1, . . . , t (0)}q . (5-7)

We allow ourselves to use the same notation as in (3-8), since from now on we will
use 0̃. The centrality of ζ allows us to move (ζ − 1) through the product. So it
suffices to consider only q-tuples i for which all i(l)= t (0) occur at the end. Such
q-tuples we will call 0̃-q-tuples.

Proposition 5.1. A C-basis of I q+1
\I q is induced by the elements

b(i)= (αi(1)− 1) . . . (αi(q)− 1), (5-8)

where i runs over the 0̃-q-tuples.

Proof. The ideal I q is generated by the products of the form (γ1− 1) . . . (γq − 1),
with γ1, . . . , γq ∈ 0̃ [Deitmar 2009, Lemma 1.1]. With the relation

(γ δ− 1)= (γ − 1)(δ− 1)+ (γ − 1)+ (δ− 1),

we can take the γ j in a system of generators, for instance α1, . . . , αt (0), ε1, . . . , εnell .
For the elliptic elements ε j , we use ζ − 1=

∑v j−1
k=0 ε

k
j (ε j − 1)≡ v j (ε j − 1) mod I 2

to see that the α j suffice. (Note that v j is invertible in C.) Since αt (0)= ζ is central,
we can move all occurrences of ζ−1 to the right to see that the b(i) in the proposition
generate I q+1

\I q .
To see that the b(i) are linearly independent over C, we proceed in rewriting

terms ξ(αi(1)− 1) . . . (αi(q)− 1) by replacing ξ ∈ R := C[0̃] by n+ η, with n ∈ C

and η ∈ I . In this way, we express each element of I q as a C-linear combination
of products of q factors α j − 1 plus a term in I N , with N > q. To eliminate I N ,
we consider the I -adic completion R̂ of C[0̃], with closure Î q of I q . Each element
of Î ⊃ I is a countable sum of products of a complex number and finitely many
factors α j −1. Since Î q+1

\ Î q and I q+1
\I q are isomorphic, it suffices to prove that

the b(i) are linearly independent as elements of Î q+1
\ Î q .

We suppose that there are xi ∈ C for all q-tuples i such that∑
i

xi (αi(1)− 1) . . . (αi(q)− 1) ∈ Î q+1. (5-9)

We can write this element of Î q+1 as
∑

j c j ξ j , with c j ∈C and ξ j running over the
countably many products (α j(1)−1) . . . (α j(m)−1)with m-tuples from {1, . . . , t (0)}
for all m > q .

We form the ring N = C〈41, . . . , 4t (0)〉 of power series in the noncommuting,
algebraically independent (over C) variables 41, . . . , 4t , and the two-sided ideal



1426 Roelof Bruggeman and Nikolaos Diamantis

Z in N generated by the commutators

4 j 4t (0)−4t (0)4 j , for 1≤ j ≤ t (0) .

The quotient ring M := N/Z is noncommutative if t (0) ≥ 3. The relations
between the generators imply that there is a group homomorphism ϕ : 0̃→ M∗

given by ϕ(α j )= 1+4 j for 1≤ j ≤ t (0), and

ϕ(ε j )= (1+4t (0))
1/v j =

∑
l≥0

(
1/v j

l

)
4l

t (0).

This group homomorphism induces a ring homomorphism ϕ̂ : R̂→ M , for which

ϕ̂(ξi )= ϕ̂(αi(1)− 1) ϕ̂(αi(2)− 1) . . . ϕ̂(αi(|i |)− 1)=4i
:=4i(1)4i(2) . . . 4i(|i |).

Now we have∑
i

xi4
i
= ϕ̂

(∑
i

xi ξi

)
= ϕ̂

(∑
j

c jξ j

)
=

∑
j

c j4
j ,

where i runs over q-tuples and j runs over countably many tuples with length
strictly larger than q . Hence, all xi (and c j ) vanish. �

So for 0̃ with cusps, the trivial 0̃-module I q+1
\I q is always nontrivial. The

dimension is equal to the number of all 0̃-q-tuples. Thus we have

dimC(I q+1
\I q)= n(0̃, q)

=

q∑
m=0

(t (0)− 1)m =


1 if t (0)= 1,

q + 1 if t (0)= 2,
(t (0)−1)q+1

−1
t (0)−2

if t (0)≥ 3.

(5-10)

We obtain, for each 0̃-module V , an exact sequence

0−→ V 0̃,q
−→ V 0̃,q+1 mq

−→ (V 0̃)n(0̃,q),

with
(mq f )i = f |(αi(1)− 1) . . . (αi(q)− 1). (5-11)

For the modular group, we have npar = 1, nell = 2, and g = 0, and hence
t (0mod)= 1 and n(0̃mod, q)= 1 for all q. So in contrast to 0mod, for 0̃mod we may
hope for nontrivial higher-order automorphic forms.
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6. Maass forms with generalized weight on the universal covering group

6A. The logarithm of the Dedekind eta function. In the Introduction, we men-
tioned that one of the motivating objects for the study of higher-order forms on the
universal covering group is the logarithm of the Dedekind eta function. Its branch
is fixed by the second of the following expressions:

log η(z)= π i z
12
+

∞∑
n=1

log(1− e2π inz)=
π i z
12
−

∞∑
n=1

σ−1(n) e2π inz, (6-1)

where σu(n)=
∑

d | n du . One can show that its behavior under 0mod is given by

log η(z+ 1)= log η(z)+ π i
12
, log η

(
−

1
z

)
= log η(z)+ 1

2 log z− π i
4
. (6-2)

Except for the term 1
2 log z, this looks like a second-order holomorphic modular

form of weight 0. In the next few sections, we make this precise by generalizing
the concept of weight of Maass forms, and replacing the group 0mod by the discrete
subgroup 0̃mod of the universal covering group of SL2(R), using the notation we
introduced in the last section.

We first define the following function on H×R:

L(z, ϑ)= 1
2 log y+ 2 log η(z)+ iϑ. (6-3)

With (6-2), we check easily that L(γ (z, ϑ))= L(z, ϑ)+ iα(γ ) for γ = t and γ = s,
where α : 0̃mod→ (π/6)Z is the group homomorphism at the end of Section 5B.
Thus, L has the transformation behavior of a second-order invariant in the functions
on G̃ for the action by left translation.

Routine computations show that L satisfies E−L = 0, W L = i , and ωL = 1
2 .

6B. General Maass forms on the universal covering group. The considerations
on the function L on G̃ induced by the logarithm of the eta functions lead us to the
definition of Maass forms on G̃.

We first establish appropriate notions of weight and holomorphicity. We say
that a function f on G̃ has (strict) weight r ∈ C if f (z, ϑ) = eirϑ f (z, 0). Such
a function is completely determined by the function fr (z) = f (z, 0) on H and
satisfies W f = ir f .

The left translation of f by g̃, with g =
(

a b
c d

)
∈ SL2(Z), induces an action | of

G̃ on the space of functions of strict weight on G̃. On the other hand, G̃ acts on
the space of corresponding functions fr on H via

fr | g̃(z)= e−ir arg(cz+d) fr

(az+b
cz+d

)
.
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The latter action corresponds to (4-7) when r ∈ Z. In general, this is an action of G̃,
not of SL2(R). The map f 7→ fr defined above on the space of functions of strict
weight is then equivariant in terms of these actions.

Many important functions on G̃, such as L , are not eigenfunctions of the op-
erator W , but they are annihilated by a power of W . This suggests the following
definition.

Definition 6.1. An f ∈ C∞(G̃) has generalized weight r ∈ C if (W − ir)n f = 0
for some n ∈ N.

Thus, L and all its powers have generalized weight 0.
Next, holomorphy of Fr = y−r/2 fr corresponds to the property E− f = 0.

Definition 6.2. We call any differentiable function f on G̃ holomorphic (resp.
antiholomorphic) if E− f = 0 (resp. E+ f = 0). We call any twice differentiable
function f on G̃ harmonic if it satisfies ω f = 0.

Note that, for functions of nonzero weight, this definition of harmonicity does not
correspond to the use of the word in “harmonic weak Maass forms” in [Bruinier
et al. 2008], for example.

With these definitions, we set:

Definition 6.3. Let k, λ ∈ C. Let 0̃ be a discrete cofinite subgroup of G̃.

i) The space Ẽk(0̃, λ) consists of the smooth functions f :H×R→C satisfying:

a) (eigenfunction Casimir operator) ω f = λ f .
b) (generalized weight) (W − ik)n f = 0 for some n ∈ N.
c) (exponential growth) There exists a ∈ R such that for all compact sets X

and 2⊂ R and for all cusps κ of 0̃, we have

f (g̃κ(x + iy, ϑ))= O(eay) (6-4)

as y→∞ uniformly in x ∈ X and ϑ ∈2.

ii) We set

Ẽk(0̃, λ) := Ẽk(0̃, λ)
0̃

(where 0̃ acts by left translation). The elements of Ẽk(0̃, λ) are called Maass
forms on G̃ of generalized weight k and eigenvalue λ for 0̃.

The space Ẽr (0̃, λ) is infinite-dimensional. Further, since ω and W commute
with left translations in G̃, the space Ẽk(0̃, λ) is invariant under left translation by
elements of 0̃.

When k ∈ 2Z, the space Ek(0, λ) can be identified with Ẽk(0̃, λ). We prove the
following slightly stronger statement.
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Theorem 6.4. Let 0̃ be a cofinite discrete subgroup of G̃, and let k, λ ∈ C. If
Ẽk(0̃, λ)

Z̃ contains a nonzero element f , then k ∈ 2Z and ∂ϑ f (z, ϑ)= ik f (z, ϑ).
If k ∈ 2Z, then the elements f ∈ Ẽk(0̃, λ) correspond bijectively to the Maass

forms F ∈ Ek(0, λ) by
f (z, ϑ)= yk/2 F(z)eikϑ .

So the condition of Z̃ -invariance implies that the weight k is even, and that the
weight is strict, that is, condition b) holds with n = 1.

Proof of Theorem 6.4. Any smooth function f ∈ C∞(H × R) satisfying b) in
Definition 6.3 can be written in the form f (z, ϑ) =

∑n−1
j=0 ϕ j (z) eikϑ ϑ j , with

ϕ j ∈ C∞(H).
If such a function is left-invariant under Z̃ , then the action of k(πm) ∈ Z̃ ⊂ 0̃

implies, for each m ∈ Z,

eπ ikm
∑

j

ϕ j (z)eikϑ(ϑ +πm) j
=

∑
j

ϕ j (z)eikϑϑ j , for all m ∈ Z.

With induction, this gives k∈2Z and ϕ j =0 for j≥1, and hence f (z, ϑ)=ϕ0(z)eikϑ .
Moreover, the stronger condition f ∈ Ẽk(0̃, λ)= Ẽk(0̃, λ)

0̃ can be checked to be
equivalent to Fk ∈ Ek(0, λ) for Fk(z)= y−k/2 f (z, 0). �

We have the following generalization of Theorem 4.2.

Theorem 6.5. Let 0̃ be a cofinite discrete subgroup of G̃ with cusps. Then the
0̃-module Ẽk(0̃, λ) is maximally perturbable for each k ∈ 2Z and each λ ∈ C.

In Section 8 we will prove this theorem. In this section we will show that it implies
the corresponding result for Ek(0, λ). We first give some facts that are of more
general interest.

The map identifying Ek(0, λ) and Ẽk(0̃, λ) can be extended to an isomorphism

µ : Ek(0, λ)→ Ẽk(0̃, λ)
Z̃ .

Since the center Z̃ of 0̃ acts trivially on Ẽk(0̃, λ)
Z̃ , it can be considered as a 0-

module. With this interpretation, we obtain an identification of the 0-modules
Ek(0, λ) and Ẽk(0̃, λ)

Z̃ . Specifically, for F ∈ Ek(0, λ), g ∈ Ẽk(0̃, λ)
Z̃ we have

(µ f )(z, ϑ)= yk/2 F(z)eikϑ ,

(µ−1g)(z)= y−k/2g(z, 0),

µ(F |kγ )= µ(F)|ν(γ ) (γ ∈ 0),

µ−1(g | Z̃δ)= µ−1(g)|kν−1(Z̃δ) (δ ∈ 0̃),

(6-5)

where ν denotes the isomorphism identifying 0 with Z̃\0̃.
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Proposition 6.6. Let 0 be a cofinite discrete subgroup of G with cusps, and let
0̃ = pr−1 0. If the 0̃-module V is maximally perturbable, then the subspace V Z̃ ,
considered as a 0-module, is maximally perturbable.

Proof. The projection pr : 0̃ → 0 induces linear maps pr : C[0̃] → C[0] be-
tween the group rings, pr : I0̃ → I0 between the augmentation ideals, and pr :
I q+1
0̃
\I q
0̃
→ I q+1

0 \I q
0 for all q ∈N. Since pr(Ai )= αi , on the basis elements b0̃(i)

in Proposition 5.1 and b0(i) in (3-8), we have for 0̃-q-tuples:

pr b0̃(i)=
{

b0(i) if i(l) < t (0) for l = 1, . . . , q,
0 if i(q)= t (0).

(6-6)

This means that we have the commutative diagram

0 // V 0̃,q // V 0̃,q+1
mq // hom

(
I q+1
0̃
\I q
0̃
, V 0̃

)
// 0

0 // (V Z̃ )0,q // (V Z̃ )0,q+1
mq // hom

(
I q+1
0 \I q

0 , (V
Z̃ )0

)
,

OO

where the vertical arrow sends f : I q+1
0 \I q

0 → (V Z̃ )0 = V 0̃ to f̃ : I q+1
0̃
\I q
0̃
→ V 0̃

such that f̃ (b0̃(i))= f (b0(i)) if i ∈{1, . . . , t (0)−1}q , and f̃ (b0̃(i))=0 otherwise.
We want to write a given f : I q+1

0 \I q
0 → (V Z̃ )0 as mqv0 with v0 ∈ (V Z̃ )0,q+1.

By assumption, there is an element v ∈ V 0̃,q+1 such that mqv = f̃ . If v |(ζ−1)= 0,
then v ∈ V 0̃,q+1

∩ V Z̃
= (V Z̃ )0,q+1, and we are done.

Suppose that w= v |(ζ−1) 6= 0. Take r ∈ [1, q] minimal such that w ∈ V 0̃,r . We
will show that we can replace v by another element v1 ∈ v+V 0̃,q with v1 |(ζ −1)∈
V 0̃,r1 and r1 < r . Repeating this process brings us eventually to v j |(ζ −1)= 0. For
this v j , we will have mqv j = f̃ and v j |(ζ−)= 0, which, according to the remark
of the last paragraph, suffices to prove the proposition.

From

w |(γ1− 1) . . . (γq−1− 1)= v |(γ1− 1) . . . (γq−1− 1)(ζ − 1)

= f̃ (γ1, . . . , γq−1, ζ )= 0,

we conclude that r ≤ q − 1. Define g̃ ∈ hom(I r+1
0̃
\I r
0̃
, V 0̃) by

g̃(b0̃( j))= w |(α j(1)− 1) . . . (α j(r−1)− 1)

if the 0̃-r-tuple j satisfies j(r) = t (0), and g̃(b0̃( j)) = 0 otherwise. There is
u ∈ V 0̃,r+1

⊂ V 0̃,q with mr u = g̃. We take v1 = v− u ∈ v+ V 0̃,q . We check that
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for all 0̃-(r − 1)-tuples j ,

v1 |(ζ − 1)(α j(1)− 1) . . . (α j(r−1)− 1)

= w |(α j(1)− 1) . . . (α j(r−1)− 1)− u |(α j(1)− 1) . . . (α j(r−1)− 1)(ζ − 1)

= 0.

This shows that v1 |(ζ − 1) has order less than r . �

Proof of Theorem 4.2. From Theorem 6.5, V = Ẽk(0̃, λk) is maximally perturbable.
Therefore, by Proposition 6.6, the space Ẽk(0̃, λk)

Z̃ ∼= Ek(0, λk) is maximally
perturbable too. �

This proof illustrates the fact that, for groups with cusps, there are really more
higher-order forms with generalized weight than with strict weight: the basis in
Proposition 5.1 is for all such discrete groups larger than the corresponding basis in
Section 3B.

6C. Holomorphic forms on the universal covering group.
Definition 6.7. For k ∈2Z, we define Hk(0̃) as the space of elements of C∞(H×R)

that satisfy:

i) (Holomorphy): E− f = 0.

ii) (Generalized weight): (W − ik)n f = 0, for some n ∈ N.

iii) (Exponential growth): as described in condition c) in Definition 6.3.

This is a 0̃-module for the action by left translation. We denote by H
p
k (0̃) (resp.

Hc
k(0̃)) the space of f ∈ Hk(0̃) satisfying f (g̃κ(x + iy, ϑ)) = O(yC) for some

C ∈ R (resp. f (g̃κ(x + iy, ϑ))= O(eay) for some a < 0) instead of (6-4).
We will prove:

Theorem 6.8. Let 0̃ be a cofinite discrete subgroup of G̃ with cusps. Then the
0̃-module Hk(0̃) is maximally perturbable for each k ∈ 2Z.

Proof of Theorem 4.3. As in the case of general Maass forms, we can show that,
for k ∈ 2Z, Ehol

k (0, λk)∼=Hk(0̃)
Z̃ . Then Proposition 6.6 implies Theorem 4.3. �

Second-order forms and derivatives of L-functions. With this definition, L is a
second-order invariant belonging to H0(0̃mod)

0̃mod,2. (Incidentally, this example
shows that, for generalized weight k, the space Hk(0̃) need not be contained in
Ẽk(0̃, λk).)

Based on L , we can construct a second-order form which is related to derivatives
of classical modular forms. Specifically, for positive integer N , denote by G N the
group generated by g̃, g ∈ 〈00(N ),WN 〉, where

WN :=

(
0 −

√
N
−1

√
N 0

)
.
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Set
L1(z, ϑ)= L(z, ϑ)+ L(N z, ϑ).

Using the transformation law for L and the identity
(

N 0
0 1

)(
a b

Nc d

)
=
(

a Nb
c d

)(
N 0
0 1

)
, a

routine calculation implies that, for some β ∈ Hom(G N ,C),

L1(γ (z, ϑ))= L1(z, ϑ)+ iβ(γ ), for all γ ∈ G N .

Now let f be in the space S2(G N ) of cusp forms of weight 2 for G N . An example
of such an f is a weight-2 newform for 00(N ) of which the L-function L f (s)
vanishes at 1, because then f (WNw)d(WNw)= f (w)dw. For all ϑ ∈ R,∫

∞

0
f (iy)L1(iy, ϑ) diy =−

∫ WN∞

WN 0
f (iy)L1(iy, ϑ) diy

=−

∫
∞

0
f (WN iy)L1(WN iy, ϑ) d(WN iy)

=−

∫
∞

0
f (iy)L1(WN iy, ϑ) diy.

(6-7)

Since L1(z, ϑ+x)= L1(z, ϑ)+2i x and L f (1)= 2π
∫
∞

0
f (iy) dy = 0, our integral

is independent of ϑ . It further equals

−

∫
∞

0
f (iy)L1(W̃N (iy, 0)) diy =−

∫
∞

0
f (iy)

(
L1(iy, 0)+ iβ(W̃N )

)
diy

=−

∫
∞

0
f (iy)L1(iy, 0) diy.

(6-8)

Therefore,
∫
∞

0
f (iy)L1(iy, 0) dy =−

∫
∞

0
f (iy)L1(iy, 0) dy, that is,∫

∞

0
f (iy)L1(iy, 0) dy = 0,

and hence ∫
∞

0
f (iy) log y dy+ 2

∫
∞

0
f (iy)u(iy) dy = 0,

where u(z) := log(η(z)) + log(η(N z)). From this we see that, since L ′f (s) =
2π
∫
∞

0 f (iy) log(y)dy, we can retrieve, from an alternative perspective, the formula

L ′f (1)=−4π
∫
∞

0
f (iy)u(iy) dy,

first derived in [Goldfeld 1995].
Thus, Goldfeld’s expression of L ′f (1) is equivalent to the orthogonality of L1 ∈

H
p
0 (G N )

G N ,2 to the space S2(G N ) ↪→Hc
2(G N )

G N in terms of the pairing

〈 · , · 〉 :Hc
2(G N )

G N ×H
p
0 (G N )

G N ,2→ C
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defined by
〈g, h〉 =

∫
∞

0
g(iy, 0)h(iy, 0)dy

y
.

6D. Examples of higher-order forms for the full modular group. Theorems 6.5
and 6.8 show that there are perturbations of 1 for the full original 0̃mod of SL2(Z)

in the universal covering group. Since t (0mod) = 1, all these perturbations are
commutative (see (5-10)).

1) The function L can lead to second-order harmonic perturbations of 1. Specifically,
although L 6∈ Ẽ0(0)0̃,2 (because ω L = 1

2 ), the imaginary part Im L : (z, ϑ) 7→
2 Im log η(z)+ϑ is harmonic, has second order, and corresponds to the linear form
α ∈Mult1(0̃mod,C). It has generalized weight 0, and it is not holomorphic.

2) Set χr = eirα, r ∈ C, where α ∈ hom(0̃mod,C) is given by α(n(1)) = π/6 and
α(k(π/2))= π/2. The family

r 7→ er L(z,ϑ)
= yr/2η(z)2r eirϑ (6-9)

consists of elements of Hr (0̃) that are 0̃mod-invariant under the action given by

( f |γ )(z)= f (γ z)χr (γ ).

By Proposition 4.4, for k ≥ 1 the derivative

∂k
r er L(z,ϑ)

∣∣
r=0 = L(z, ϑ)k

is a holomorphic perturbation of 1 of order k+ 1. The corresponding element of
Multk(0̃mod,C) is ikk!α⊗k .

3) It is possible to obtain a more or less explicit description of a harmonic per-
turbation of 1 of order 3. We sketch how this can be done with the meromorphic
continuation of the Eisenstein series in weight and spectral parameter jointly. This
family is studied in [Bruggeman 1986]. In that work, automorphic forms are
described as functions on H transforming according to a multiplier system of 0mod.
These correspond to functions on G̃ that transform according to a character of 0̃mod.
Carrying out the reformulation, we can rephrase §2.18 in [Bruggeman 1986] as
stating that there is a meromorphic family of Maass forms on U ×C, where U
is some neighborhood of (−12, 12) in C. We retrieve the exact family studied in
[Bruggeman 1986] by considering z 7→ E(r, s; z, 0). For each (r, s) ∈ U ×C at
which E is not singular, it is an automorphic form of weight r for the character
χr = eirα of 0̃mod with eigenvalue λs =

1
4 − s2. It is a meromorphic family of

automorphic forms on 0̃mod with character χr with a Fourier expansion of the form

E(r, s)=µr

( r
12
, s
)
+C0(r, s)µr

( r
12
,−s

)
+

∑
n 6=0

Cn(r, s)ωr

(
n+ r

12
, s
)
, (6-10)
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where the Cn(r, s) are meromorphic functions, and where we use the following
notations:

ωr (ν, s; z, ϑ)= e2π iνx Wr Sign(Re ν)/2,s(4πν Sign(Re ν)y)eirϑ ,

µr (ν, s; z, ϑ)= e2π iνz y1/2+s
1F1

(1
2
+ s− r

2
; 1+ 2s; 4πνy

)
eirϑ .

(6-11)

This family and its Fourier coefficient C0 satisfy the following functional equations:

E(r,−s)= C0(r,−s)E(r, s),

E(r, s;−x + iy,−ϑ)= E(−r, s; x + iy, ϑ).
(6-12)

Further, the restriction of this family to the (complex) line r = 0 exists, and gives a
meromorphic family of automorphic forms depending on one parameter s. This is
a family of weight 0, so it does not depend on the parameter ϑ on G̃. The resulting
family on H is the meromorphic continuation of the Eisenstein series for 0mod in
weight 0, with Fourier expansion

E(0, s)= µ0(0, s)+
√
π0(s)ζ(2s)

0
(
s+ 1

2

)
ζ(2s+ 1)

µ0(0,−s)

+
π s+1/2

0
(
s+ 1

2

)
ζ(2s+ 1)

∑
n 6=0

σ2s(|n|)
|n|s+1/2 ω0(n, s), (6-13)

where

µ0(0, s; z, ϑ)= y1/2+s,

ω0(n, s; z, ϑ)= e2π inx W0,s(4π |n|y)= e2π inx 2|n|1/2Ks(2π |n|y).

At
(
0,−1

2

)
, the family E is holomorphic in both variables r and s, with a constant

as its value at
(
0,− 1

2

)
; this is a consequence of Proposition 6.5 ii) in [Bruggeman

1986]. So in principle, we obtain higher-order harmonic perturbations of 1 by
differentiating r 7→ E(r,−1

2). Here we encounter the problem that we have an
explicit Fourier expansion (6-13) only for E(0, s), and thus we cannot describe the
derivatives in the direction of r directly. To overcome this problem, we use the fact
that for r near 0, we have

E
(

r,−1−r
2
; z, ϑ

)
= Hr (z, ϑ)= er L(z,ϑ),

E
(

r,−1+r
2
; z, ϑ

)
= H−r (−z̄,−ϑ)= e−r L(z,ϑ).

(6-14)

The proof of the first equality is contained in 6.10 in [Bruggeman 1986]. The
second one follows from the second functional equation in (6-12). Now we use the
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Taylor expansion of E of degree 2 at (r, s)=
(
0,− 1

2

)
:

E(r, s)

= 1+r A1,0+
(
s+ 1

2

)
A0,1+

1
2r2 A2,0+r

(
s+ 1

2

)
A1,1+

1
2

(
s+ 1

2

)2 A0,2+ . . . . (6-15)

By Proposition 4.4, the coefficients A1,0 and A2,0 are harmonic perturbations of 1
of order 2 and 3, respectively. From (6-14), we obtain the following results:

A1,0 = i Im L , A0,1 = 2 Re L ,

A2,0+
1
4 A0,2 = Re L2, A1,1 = i Im L2.

(6-16)

This confirms that Im L is a second-order harmonic perturbation of 1. Differentiation
in the direction of s preserves 0̃mod-invariance. So A0,1 = 2 Re L and A0,2 are 0̃mod-
invariant. However, these functions are not in the kernel of ω.

Thanks to the identity A2,0+
1
4 A0,2 = Re L2, to determine the third-order har-

monic perturbation A2,0 it suffices to explicitly compute A0,2, because Re L2 is
known in a fairly explicit way. The function A0,2 can be obtained as the coefficient
of 1

2

(
s+ 1

2

)2 in the Taylor expansion of E(0, s) at s =− 1
2 . As a by-product of this

computation, we will also obtain the 0̃mod-invariant function A0,1 as the coefficient
of s+ 1

2 in the same expansion.
We examine each term in the Fourier expansion (6-13) separately. We use the

functional equation of the Riemann zeta function and its expansion at the point 0.
We also use an integral representation of the Whittaker function W0,s . This leads to

A0,1(z, 0)= log y− π
3

y− 2
∑
n≥1

∑
d |n

1
d
(qn
+ q̄n)

= 2 Re
(

1
2 log y+ π i

6
z−

∞∑
n=1

σ−1(n) qn
)
= 2 Re L(z, 0),

A0,2(z, 0)= (log y)2+
(

8b1−
4πa0

3
+

2π
3

log y
)

y

+

∞∑
n=1

(
−4a0 σ−1(n)(qn

+q̄n)+ 2σ−1(n) (q−n
+q̄−n) 0(0, 4πny)

− 2(qn
+q̄n)

∑
d |n

log(d2/n)
d

)
,

(6-17)

with the notation q = e2π i z .
A remarkable aspect of this computation is that we have used an explicit compu-

tation of the derivatives of the Eisenstein series in weight 0 to compute the second
derivative in the r-direction of the more complicated Eisenstein family in two
variables. The basic observation is (6-14), which shows that the Eisenstein family
has easy derivatives in two directions. The Taylor expansion of E at

(
0,−1

2

)
has
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three monomials in order 2. So it suffices to compute a second-order derivative
in one more direction to get hold of all terms. Higher-order terms in the Taylor
expansion have too many monomials for this method to work. We do not know
how to compute all harmonic perturbations of 1 of higher order.

7. Higher-order Fourier expansions

This section is needed for the constructions on which the proofs of Theorems 6.5
and 6.8 are based, but it is also of independent interest. It provides a higher-order
analogue of the classical Fourier expansions.

7A. Fourier expansion of Maass forms. If f is in Ẽr (0̃, λ), then for each cusp κ
of 0 there is a Fourier expansion

f (g̃κg)=
∑
ν

Fκ,ν f (g), Fκ,ν f (g)=
∫ 1

0
e−2π iνx f (g̃κn(x)g) dx, (7-1)

where ν runs through a class in C mod Z determined by χ and the cusp κ . The
function Fν f satisfies Fκ,ν f (z, ϑ)= e2π iνx Fκ,ν f (iy, 0)eirϑ and ωFκ,ν f =λFκ,ν f .

For each given ν, r , and s, set

Wr (ν, s) :=
{

f : G̃→C;ω f =
( 1

4−s2) f and f (z, θ)=e2π iνx+irθ f (iy, 0)
}
. (7-2)

Because of the second relation in the definition, f ∈Wr (ν, s) can be thought of
as a function of y. Therefore, the space Wr (ν, s) is isomorphic to the space of
f : R→ C satisfying

−y2h′′(y)+
(
4π2ν2 y2

− 2πνr y− 1
4 + s2) h(y)= 0. (7-3)

It is convenient to write λ = λs =
1
4 − s2 with s ∈ C. We can choose a fixed s

with Re s ≥ 0 corresponding to the eigenvalue λ = λs under consideration. The
spaces Wr (ν, s) are two-dimensional. We will use the basis elements in §4.2 of
[Bruggeman 1994].

• For Re ν 6= 0, a basis of Wr (ν, s) is formed by

ωr (ν, s; z, ϑ)= e2π iνx Wr Sign(Re ν)/2,s(4πν Sign(Re ν)y)eirϑ ,

ω̂r (ν, s; z, ϑ)= e2π iνx W−r Sign(Re ν)/2,s(−4πν Sign(Re ν)y)eirϑ .
(7-4)

Here Wµ,s(t) is the Whittaker function that decreases exponentially as t →∞.
We use the branch of Wκ,s(z) that is holomorphic for −π/2< arg z < 3π/2. The
asymptotic behavior as y→∞, by §4.2.1 in [Slater 1960], is:

ωr (ν, s; z, ϑ)∼ (4πνεy)rε/2e2πν(i x−εy)+irϑ , (7-5)

ω̂r (ν, s; z, ϑ)∼ e−π irε/2(4πενy)−rε/2e2πν(i x+εy)+irϑ , (7-6)
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where ε denotes Sign(Re ν). The subspace of Wr (ν, s) generated by ωr (ν, s) is
denoted by W0

r (ν, s).

• For ν = 0, a basis is given by {y1/2+seirϑ , y1/2−seirϑ
} if s 6= 0 and {y1/2eirϑ ,

y1/2 log yeirϑ
} if s = 0.

The next proposition allows for Fourier expansions of functions with exponential
growth. (See [Bruggeman 1994], §4.1–3 for a proof.)

Proposition 7.1. Let k ∈ 2Z, Re s ≥ 0. Suppose that the function f ∈ C∞(0̃\G̃)
satisfies ω f = λs f and W f = ik f . Then it has at each cusp κ an absolutely
converging Fourier expansion

f (g̃κg)=
∑
n∈Z

Fκ,n f (g), (7-7)

with Fκ,n f ∈Wk(n, s). Moreover, f ∈ Ẽk(0̃, λs) if and only if there exists N > 0
such that all Fourier terms Fκ,n f with |n| ≥ N are in W0

k(n, s) for all cusps κ .

7B. Higher-order Fourier terms. The higher-order invariants of Vk(n, s) that we
will define now are the higher-order analogues of the classical Fourier terms.

Definition 7.2. Let k ∈ 2Z, n ∈ Z, and s ∈ C. By Vk(n, s) we denote the space of
functions f on G̃ that satisfy ω f = λs f , have generalized weight k, and satisfy
(∂x − 2π in)m f = 0 for some m ∈ N (which may depend on f ).

For n 6= 0, we denote by V0
k(n, s) the subspace of f ∈ Vk(n, s) satisfying

f (z, ϑ)= O(ya e−2π |n|y) as y→∞ for some a ∈ R.

The free Abelian group 1̃ generated by τ = n(1) and ζ = k(π) acts on these
spaces by left translation.

Proposition 7.3. Let k, n, s be as above. The 1̃-modules Vk(n, s) and V0
k(n, s)

are maximally perturbable.
For each q ∈ N, the elements f ∈ Vk(n, s)1̃,q satisfy for each δ > 0

f (z, ϑ)�δ e(2π |n|+δ)y, (y→∞) (7-8)

uniformly for x and ϑ in compact sets. If n 6= 0, then for each q ∈ N, the elements
f ∈ V0

k(n, s)1̃,q satisfy for each δ > 0

f (z, ϑ)�δ e(δ−2π |n|)y, (y→∞) (7-9)

uniformly for x and ϑ in compact sets.
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Proof. To prove that Vk(n, s) is maximally perturbable, we start with a characteriza-
tion of the space Vk(n, s)1̃. We first note that Wk(n, s)⊂Vk(n, s)1̃. Conversely, if
f ∈Vk(n, s)1̃, then the reasoning in the proof of Theorem 6.4 shows that the weight
of f is strict, and also that ∂x f = 2π in f , and hence f (z, ϑ)= e2π inx f (iy, ϑ). So
f ∈Wk(n, s). If, for n 6= 0, the function f is also exponentially decreasing, it has
to be a multiple of ωk(n, s). Therefore, V0

k(n, s)1̃ =W0
k(n, s).

Let f be an arbitrary element of Wk(n, s). Since each of the basis elements
of Wk(n, s) is a specialization of a holomorphic family of elements of Wr (ν, s),
there is a holomorphic family of h(r, ν) ∈Wr (ν, s) such that h(k, n)= f . We have
h
(
r, ν; n(ξ)k(`π)(z, ϑ)

)
= e2π iνξ+π ir`h(r, ν; z, ϑ) for ξ ∈ R and ` ∈ Z.

Next, consider the polynomials Qq ∈Q[X ] of degree q, defined by

Q0 = 1,

Qq+1(X + 1)− Qq+1(X)= Qq(X),

Qq(0)= 0, for q ≥ 1.

(7-10)

Then for each m = (m1,m2), m j ≥ 0, set

hm
k (n, s)= Qm1

( 1
π i
∂r

)
Qm2

( 1
2π i

∂ν

)
h(r, ν)

∣∣
ν=n, r=k . (7-11)

Applying the differential operator (1/2π i)∂a
ν on h(r, ν)|(τ−1)= (e2π iν

−1)h(r, ν)
we obtain

Qm2

( 1
2π i

∂ν

)
h(r, ν)

∣∣ (τ − 1)=
(

Qm2

( 1
2π i

∂ν + 1
)
− Qm2

( 1
2π i

∂ν

))
h(r, ν)

= Qm2−1

( 1
2π i

∂ν

)
h(r, ν).

(7-12)
Since τ, ζ commute, this implies hm

k (n, s)|(τ − 1) = h(m1,m2−1)
k (n, s). Likewise,

we obtain the transformation law hm
k (n, s)|(ζ − 1) = h(m1−1,m2)

k (n, s). Therefore,
for l1+ l2 = m1+m2 (l1, l2 ≥ 0),

h(m1,m2)
k (n, s)|(ζ − 1)l1(τ − 1)l2 = δm1,l1δm2,l2 f, (7-13)

thus obtaining the maximal perturbability of Vk(n, s). For convenience, we shall
call perturbations satisfying the transformation law (7-13) perturbations of type m.

Based on V0
k(n, s)1̃ =W0

k(n, s), we deduce in an analogous way the maximal
perturbability of V0

k(n, s).
To prove (7-8) and (7-9), we first note that the maximal perturbability we have

just shown implies that the functions hm constructed from elements f ranging over
a basis of Wk(n, s) (resp. W0

k(n, s)) induce a basis of the quotients V1̃,q+1/V1̃,q .
Therefore, it suffices to show (7-8) and (7-9) for hm only. In the case n 6= 0, the
family h may be taken to be ωr (ν, s) or ω̂r (ν, s) in (7-4). For these functions, the
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question reduces to the asymptotic behavior of ∂ j
t ∂

l
κWκ,s(t), since the factors e2π iνx

and eirϑ produce polynomials in x and ϑ , which yield constants when they vary
through compact sets. The differentiation of 4π Sign(Re ν)νy yields only a power
of y, which can be absorbed by the factor eδy .

Differentiation of Wκ,s(t) with respect to t does not change the exponential part
of the asymptotic behavior, since derivatives of Wκ,s(t) are linear combinations of
Wκ,s(t) and Wκ+1,s(t) with powers of t in the factors [Slater 1960, (2.4.24)]. So
we have to look only at differentiation with respect to κ . Then the bounds are a
consequence of the integral representation

Wκ,s(t)=
−1
2π i

0
(
κ+ 1

2−s
)
e−t/2tκ

∫
∞

(0+)
e−x(−x)s−κ−1/2

(
1+ x

t

)s+κ−1/2
dx, (7-14)

for t ∈ R with t > 0, κ − 1
2 − s 6= −1,−2, . . . (see (3.5.18) in [Slater 1960]).

Here the contour comes from∞ along a line slightly above the positive real axis,
encircles 0 with radius δ < 1, and then goes back to∞ on a line slightly below the
positive real axis. If κ − 1

2 − s =−1,−2, . . . , we use the representation

Wκ,s(t)=
e−(1/2)t tκeiϕ(s−κ+1/2)

0
(
s+ 1

2−κ
) ∫

∞

0
e−eiϕuus−κ−1/2(1+eiϕu/t

)s+κ−1/2du, (7-15)

for some 0< ϕ < π/2.
All these estimates, taken together, prove (7-8) and (7-9) (when n 6= 0). They

further show that the derivatives of a family with exponential decay have exponential
decay, and thus V0

k(n, s) is also maximally perturbable.
If n = 0, we argue directly that we can find functions hm

k (0, s) in Vk(0, s) of
the form pm(x, y, ϑ)y1/2±2eikϑ , where pm is a polynomial in three variables with
degree m1 in ϑ and degree m2 in x . If the coefficient of ϑm1 xm2 in this polynomial
does not depend on y, this leads to a perturbation of y1/2±seikϑ of type m. Such
functions satisfy the required estimates, with a polynomial factor y A instead of eδy .
The remaining task is to check that they can be chosen to satisfy(

ω− 1
4 + s2)hm

k (0, s)= 0.

We do this by induction in the degrees in ϑ and x . We check that(
ω− 1

4 + s2)xm2 y1/2±s+aϑm1eikϑ

=−a(a± 2s)xm2 y1/2±s+aϑm1eikϑ
+ terms of lower degree in x or ϑ.

With a= 0, this gives the top coefficient of pm. Moreover, the terms of lower degree
all are multiples of x m̃2 y1/2±s+aϑ m̃1eikϑ with m̃ j ≤m j , m̃1 <m1, or m̃2 <m2, and
a ∈ Z≥0. Successively we can determine the lower-degree terms, and arrange for
hm

k (0, s) to be an eigenfunction of ω with eigenvalue 1
4 − s2.
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This takes care of the case n = 0, except if s = 0. It that case we also have to
perform a computation involving y1/2+a log y, which we leave to the reader. �

Holomorphic Fourier terms on G̃ are multiples of

ηr (ν; z, ϑ)= yr/2e2π iνzeirϑ . (7-16)

Thus we have the spectral parameter s =±(r − 1)/2. For real values of ν and r ,
we have

ηr (ν)=


(4πν)−r/2ωr

(
ν,±

r−1
2

)
if ν > 0,

µr

(
0, r−1

2

)
if ν = 0,

e−π ir (4π |ν|)−r/2ω̂r

(
ν,±

r−1
2

)
if ν < 0,

(7-17)

with notations as in (7-4) and (6-11). The functions

ηm
k (n; z, ϑ)= Qm1

(2iϑ+log y
2π i

)
Qm2(z)ηk(n; z, ϑ) (7-18)

satisfy
mm1+m2η

m
k : (ζ − 1)l1(τ − 1)l2 7→ δm1,l1δm2,l2ηk(n) (7-19)

for l1+ l2=m1+m2, and as y→∞, their growth is of order O(e(δ−2πn)y). For the
commutative group 1̃ and for a fixed m, they yield a basis of the space of forms of
order m1+m2+ 1 modulo lower-order forms.

As an example, we note that the Fourier expansion (6-1) can be written in the
following way:

L(z, ϑ)= π iη(1,0)0 (0; z, ϑ)+ π i
6
η
(0,1)
0 (0; z, ϑ)− 2

∑
n≥1

σ−1(n)η
(0,0)
0 (n; z, ϑ).

(7-20)

8. Proofs of Theorems 6.5 and 6.8

The method of the proof is highly inductive. At each step, we use the maximal
perturbability of other spaces, which has been proved in a previous step. The starting
point for this process is the space Map(0̃,C), whose maximal perturbability is
proved based on general algebraic principles in Proposition 8.1. This implies
directly the maximal perturbability of the 0̃-module Map(H×R,C). We proceed
by imposing increasingly stringent regularity conditions on the functions H×R→C.
We consider C∞(H×R)= C∞(G̃), the subspace C∞k (G̃) of functions in C∞(G̃)
with generalized weight k, and the subspace Ck of C∞k (G̃) of functions that have
compact support modulo 0̃. In Section 7, we considered higher-order invariant
functions for the group 1̃ generated by n(1) and k(π). These functions are related
to the Fourier expansions of Maass forms. After proving that some more auxiliary
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subspaces of C∞k (H×R) are maximally perturbable, we finally prove in Section 8E
the maximal perturbability of Ẽk(0̃, λ) and Hk(0̃).

8A. Higher-order invariants in maps on 0̃.

Proposition 8.1. If 0̃ is a discrete cofinite subgroup of G̃ with cusps, then the
0̃-module Map(0̃,C) (with the action by left translation) is maximally perturbable.

Proof. We first define gi on the free subgroup 0̃0 of 0̃ generated by α1, . . . , αt (0)−1

for i ∈ {1, . . . , t (0)− 1}q by the relations

g() = 1,

g( j,i) |(α j − 1)= gi ,

gi |(α j − 1)= 0, if i(1) 6= j,

gi (1)= 0, if |i | ≥ 1.

(8-1)

By |i | we denote the length of the tuple i .
Let ϕ0 : 0̃→ 0̃0 be the surjective group homomorphism given by ϕ0(α j )= α j for

1≤ j ≤ t (0)−1, ϕ0(ζ )= 1, and ϕ0(ε j )= 1 for 1≤ j ≤ nell. For 1≤ j ≤ t (0), we
define ψ j ∈ hom(0̃,C) such that ψ j (α j ′)= δ j, j ′ . This determines ψ j completely,
because values on elliptic generators are given by ψ j (ε j ) = (1/v j )ψ j (ζ ). For
i = (i ′, t (0), . . . , t (0)), where there are m coordinates t (0) at the end and where
i ′ ∈ {1, . . . , t (0)− 1}q−m , we put

fi (γ )= gi ′(ϕ0(γ ))Qm(ψt (0)(γ )), (8-2)

where Qn are the polynomials defined in (7-10). Now we can check the following
properties of fi :

f() = 1 (empty tuple, q = 0); (8-3)

fi (1)= 0 if |i | ≥ 1; (8-4)

fi |(ζ − 1)=
{

fi ′ if i = (i ′, t (0)),
0 if i does not end with a t (0);

(8-5)

fi |(α j − 1)=
{

fi ′ if i = ( j, i ′) with j < t (0),
0 if j < t (0), j 6= i(1).

(8-6)

Using this, we can see that

(mq fi )(b( j))= δi, j . (8-7)

Now, the choice of the basis b(i) in (5-7) for 0̃-q-tuples i shows that to prove
that Map(0̃,C) is maximally perturbable, it suffices to prove that for each i and for
each function f on 0̃\G̃, a function h i ∈Map(G̃,C) such that, for all 0̃-q-tuples j ,

h i |(α j(1)− 1) . . . (α j(q)− 1)= δi, j · f. (8-8)
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To construct such functions, we choose a strict fundamental domain F0̃ ⊂ G̃
for 0̃\G̃, that is, a set meeting each 0̃-orbit exactly once. A choice for the sought
function h i is then

h i (γ g)= fi (γ ) f (g), γ ∈ 0, g ∈ F0̃ (8-9)

or
h i (g)=

∑
γ∈0̃

fi (γ ) f (g)ψ(γ−1g), (8-10)

where ψ is the characteristic function of F0̃. �

8B. Higher-order invariants in smooth functions on G̃. We will use essentially
the same construction as in the last section to prove:

Proposition 8.2. The 0̃-module C∞(G̃) is maximally perturbable.

Proof. In order to show that C∞(G̃) is a maximally perturbable 0̃-module, we need
to have (8-8) with h i ∈ C∞(G̃) for each f ∈ C∞(0̃\G̃). We consider functions
ψ ∈ C∞(H× R) such that

∑
γ∈0̃ ψ(γ

−1(z, ϑ)) = 1 for all (z, ϑ) ∈ H× R as a
locally finite sum. If we define (8-10) with such a function ψ and f ∈ C∞(0̃\G̃),
then the sum is locally finite, and the h i are smooth. �

8C. Higher-order invariants and generalized weight. Set

C∞k (G̃)= { f ∈ C∞(G̃), of generalized weight k}. (8-11)

Proposition 8.3. Let k ∈ 2Z. Then the 0̃-module C∞k (G̃) is maximally perturbable.

Proof. As with the previous proofs, our approach is to show that for every 0̃-q-tuple
i = (i ′, t (0), . . . , t (0)) with exactly m occurrences of t (0) at the end and for
every f ∈ C∞k (0̃\G̃), there exists h i ∈ C∞k (G̃) satisfying Equation (8-8) for all
0̃-q-tuples j . We note that, by Theorem 6.4, the 0̃-invariance of f implies that its
weight k is strict, that is, f (gk(ϑ))= f (g)eikϑ .

We will define the function h i by an analogue of (8-10). We first define for
each g ∈ G̃ the point w(g)= pr(g)i ∈ H and the real number 2(g) ∈ R such that
g = (w(g),2(g)) ∈ G̃ = H×R. We also recall that 0 = 0̃/Z̃ . Since the group
homomorphism φ0 defined in the proof of Proposition 8.1 is trivial on Z̃ = 〈ζ 〉,
it induces a homomorphism on 0. Now we take ψ(z, ϑ) to be a bounded locally
finite partition of unity ψ0 on H. (Compare Lemma 1 in §3 of [Kra 1969].) So the
function (z, ϑ) 7→ ψ(γ−1(z, ϑ)) obtained by left translation depends only on the
image of γ ∈ 0̃ in 0 ∼= 0̃/Z̃ . Let, as in the proof of Proposition 8.1, ψt (0) be the
function 0̃→ R such that ψt (0)(α j ′)= δt (0), j ′ . For a given γ ∈ 0̃, we have

ψt (0)(ζγ )= ψt (0)(γ )+ 1
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and 2((ζγ )−1g)=2(γ−1g)−π . So ψt (0)(γ )+2(γ
−1g)/π is well-defined on

0 = 0̃/Z̃ . We can therefore set

h i (g)=
∑
γ∈0

gi ′(ϕ0(γ ))Qm
(
ψt (0)(γ )+2(γ

−1g)/π
)

f (g)ψ(γ−1g). (8-12)

The support property of the partition of unity ψ ensures convergence; it is even a
locally finite sum with a bounded number of nonzero terms. All factors depend
smoothly on g. So h i ∈ C∞(G̃).

We consider (W − ik)h i . Since Wψ = 0, we need only consider

(∂ϑ − ik)Qm
(
ψt (0)(γ )+2(γ

−1gk(ϑ))/π
)

f (gk(ϑ))

= Qm
(
ψt (0)(γ )+2(γ

−1gk(ϑ))/π
)
(∂ϑ − ik) f (gk(ϑ))

+ f (gk(ϑ))∂ϑQm
(
ψt (0)(γ )+2(γ

−1g)/π +ϑ/π
)

= 0+π−1 Q′m
(
ψt (0)(γ )+2(γ

−1g)/π +ϑ/π
)

f (gk(ϑ)).

(8-13)

Repeating this, we obtain

(W − ik)m+1 Qm
(
ψt (0)(γ )+2(γ

−1g)/π
)

f (g)

= π−m−1 Q(m+1)
m ( . . . ) . . .

= 0,
(8-14)

since the degree of Qm is m. So h i ∈ C∞k (G̃). �

Remark. As A. Deitmar has pointed out, the last two propositions should also
follow from [Deitmar 2008]. We have opted for explicit methods of proof because
they are necessary for later parts of the paper.

8D. Higher-order invariants with support conditions. We discuss the motivation
for the introduction of the invariants we will be dealing with. If Definition 6.3 of the
space Ẽk(0̃, λ) did not include a growth condition at the cusps, we could consider
Ẽk(0̃, λ) as the kernel K in the exact sequence

0−→ K−→ C∞k (G̃)
ω−λ
−→ C∞k (G̃).

With exponential growth, one might want to try to replace C∞k (G̃) by its subspace
C∞l (0̃)

eg of functions with exponential growth at the cusps of 0̃. This would lead
to an exact sequence

0−→ Ẽk(0̃, λ)−→ C∞k (0̃)
eg ω−λ
−→ C∞k (0̃)

eg,

for which we might try to show that for each q ∈ N,

0−→ Ẽk(0̃, λ)
0̃,q
−→ (C∞k (0̃)

eg)0̃,q
ω−λ
−→ (C∞k (0̃)

eg)0̃,q
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is exact. For this to be of use, it seems that we need surjectivity of the map

ω− λ : (C∞k (0̃)
eg)0̃→ (C∞k (0̃)

eg)0̃,

which we did not succeed in proving, and which may not hold. For this reason, we
will instead work with other, better behaved subspaces of the spaces appearing in
the exact sequence. We will therefore define subspaces Ck,Dk(λ)⊂ C∞k (G̃) and
E′k(λ)⊂ Ek(0̃, λ), related by an exact sequence

0−→ Ẽ′k(λ)−→ Dk(λ)
ω−λ
−→ Ck . (8-15)

8D1. The spaces Ck . For each cusp κ = g̃κ∞ and each a > 0, we call

Dκ(a)= g̃κ{(z, ϑ) : Im z ≥ a, ϑ ∈ R} (8-16)

a horocyclic set. There is a number A0 such that for each a ≥ A0, the Dκ(a) are
disjoint for different cusps. The sets

G̃a =
{
(z, ϑ) ∈ H×R : (z, ϑ) 6∈ Dκ(a) for all κ

}
(8-17)

satisfy 0̃G̃a = G̃a . This follows from the fact that the gκ have been chosen so that

γ 0̃κ g̃κ = g̃γ κ 0̃∞, (8-18)

for all cusps κ and for γ ∈ 0̃. Here 0̃κ := pr−1 0κ = {γ ∈ 0̃ : γ κ = κ}.

Definition 8.4. Let k ∈ 2Z. The space Ck consists of the f ∈ C∞k (G̃) supported in
G̃a for some a ≥ A0. (The a may depend on f ).

So Ck consists of the smooth functions with generalized weight k whose supports
project to compact subsets of 0\H. Clearly, the space Ck is 0̃-invariant. If we
apply the construction of h i in the proof of Proposition 8.3 to functions f ∈ C0̃k ⊂

C∞k (0̃\G̃), then the support of each h i is contained in the same set G̃a that contains
Supp( f ). This implies:

Proposition 8.5. Let k ∈ 2Z. Then the 0̃-module Ck is maximally perturbable.

8D2. The spaces Dk(λ). We will define Dk(λ) essentially as the space of functions
that accept higher-order analogues of Fourier expansions at the cusps. To make this
formal, we study spaces of functions defined for y0 > 0 on regions of the form

S(y0)=
{
(x + iy, ϑ) ∈ H×R : y > y0

}
. (8-19)

Definition 8.6. Let k ∈ 2Z, λ ∈ C, and y0 > 0. We denote by Ek(y0, λ) the space
of those f ∈C∞(S(y0)) that satisfy ω f = λ f and (W − ik)n f = 0 for some n ∈N,
and have at most exponential growth as y→∞, uniform for x and ϑ in compact
sets. We denote by Ehol

k (y0) the space of holomorphic functions on S(y0) with
generalized weight k and at most exponential growth as y→∞.
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Proposition 8.7. Let k ∈ 2Z, s ∈C, and y0> 0. The spaces Ek(y0, λs) and Ehol
k (y0)

are maximally perturbable 1̃-modules.
Let q ∈ N. Each f ∈ Ek(y0, λs)

1̃,q has an absolutely convergent expansion

f (z, ϑ)=
∑
n∈Z

fn(z, ϑ) (8-20)

on S(y0) with fn ∈ Vk(n, s)1̃,q for all n, and fn ∈ V0
k(n, s)1̃,q for almost all n.

Each f ∈ Ehol
k (y0)

1̃,q has an absolutely convergent expansion on S(y0) of the
form

f (z, ϑ)=
∑

m,m1+m2<q

∑
n

cn
mη

m
k (n; z, ϑ), (8-21)

where the inner sum ranges from some, possible negative, integer to infinity.

Proof. We start with the holomorphic case. Let f ∈ Ehol
k (y0)

1̃. Then the function
z 7→ y−k/2 f (z, 0) is holomorphic on {z ∈ H : y > y0} with period 1. So it has an
expansion of the form

∑
n ane2π inz , finite to the left and converging absolutely on

y > y0. For each y1 > y0, we have an = O(e2πny1) as n→∞.
Hence, f (z, ϑ)=

∑
n anηk(n; z, ϑ) converges absolutely on y > y0, and

f m(z, ϑ) :=
∑

n≥−N

anη
m
k (n; z, ϑ)

converges absolutely on S(y0), and the convergence is uniform on any set y ≥ y1

with y1 > y0, with x and ϑ in compact sets. These functions satisfy f m
|(τ − 1)=

f (m1,m2−1), f m
|(ζ−1)= f (m1−1,m2), and f (0,0)= f , since all ηm

k have this property.
Thus f m, with m such that m1+m2< q , is a perturbation of type m, and we deduce
that Ehol

k (y0) is maximally perturbable. An arbitrary element h ∈ Ehol
k (y0)

1̃,q can
be written as a finite linear combination of such f m, which all have expansions of
the type given in (8-21).

For f ∈ Ek(y0, λs)
1̃ we proceed similarly. By Proposition 7.1 and the integrality

of k, there is an absolutely convergent Fourier expansion

f (z, ϑ)=
∑
n∈Z

fn(z, ϑ)

on S(y0) with fn ∈Wk(n, s). By the exponential growth, fn ∈W0
k(n, s) for |n|> N ,

for some N ∈ N.
For |n| > N , we have fn = anωk(n, s), and from (7-5) we conclude that an =

O(e2π |n|y1) as |n| →∞ for each y1 > y0. So by (7-5), the series∑
n, |n|>N

anω
m
k (n, s)

converges absolutely on S(y0) and uniformly on each set y ≥ y1 with y1 > y0, and
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gives an exponentially decreasing function as y→∞. It is a λs-eigenfunction of ω,
since the decay allows differentiation inside the sum. To produce a perturbation
f m of f , we pick f m

n ∈ Vk(n, s)1̃,m1+m2+1 such that f m
n |(τ − 1) = f (m1,m2−1)

n ,
f m
n |(ζ − 1) = f (m1−1,m2)

n , and f (0,0)n = fn for the finitely many n with |n| ≤ N .
The estimate (7-8) shows that the growth of these terms is at most of the order
O(e(2πN+δ)y) as y→∞ for each δ > 0. Thus we get (nonuniquely) a perturbation
of type m in Ek(y0, λs):

f m
=

∑
|n|≤N

f m
n +

∑
|n|>N

anω
m
k (n, s).

Thus we get (8-20) and the maximal perturbability of Ek(y0, λs). �

We are now ready to define Dk(λ) and Dhol
k .

Definition 8.8. Let k ∈ 2Z and λ ∈ C. We define Dk(λ) as the space of functions
f ∈C∞k (G̃) (hence with generalized weight k) for which there exist b≥ A0 , a ∈R,
and q ∈ N such that for each cusp κ of 0̃, the function (z, ϑ) 7→ f (g̃κ(z, ϑ)) is an
element of Ek(b, λ)1̃,q and satisfies a bound O(eay) as y→∞.

We define Dhol
k similarly, with (z, ϑ) 7→ f (g̃κ(z, ϑ)) in Ehol

k (b)1̃,q , with bound
O(eay).

Remark 8.9. The numbers a, b, and q may depend on the function f .

Remark 8.10. Definition 8.6 of Ek(b, λ) implies that elements of Dk(λ) are λ-
eigenfunctions of ω on the set

⊔
κ Dκ(b). Similarly, elements of Dhol

k are holomor-
phic functions on

⊔
κ Dκ(b). In both cases, we have exponential growth at each

cusp. The definition requires that the order of this exponential growth stay bounded
when we vary the cusp.

The space Ck is contained in Dk(λ) and in Dhol
k . Indeed, for given f ∈Ck , we can

take b large so that
⊔
κ Dκ(b) is outside the support of f . Elements f of Ẽk(0̃, λ)

0̃

restricted to Dκ(b) induce elements (z, ϑ) 7→ f (g̃κ(z, ϑ)) in Ek(b, λ)1̃ for each
cusp κ , and similarly in the holomorphic case. Hence

Ẽk(0̃, λ)
0̃
⊂ Dk(λ)

0̃, Hk(0̃)
0̃
⊂ (Dhol

k )0̃. (8-22)

Maximal perturbability of Dk(λ) and Dhol
k . We need a technical lemma in order to

relate 1̃-invariants to 0̃-invariants.
We first note that if∞ is a cusp of 0̃ and if g̃∞ = 1, then 1̃= 0̃∞. In general,

the group 0̃κ can be conjugated to g̃−1
κ 0̃κ g̃κ = 1̃ in g̃−1

κ 0̃g̃κ . So we can assume
here that 1̃⊂ 0̃.

The abelian group 1̃ is free on the generators τ = n(1) and ζ = k(π). The
dimension of Map(1̃,C)1̃,q+1 is (q+1)(q+2)/2, with an explicit basis described
as follows. Define a sequence of maps on 1̃ by setting
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ϕ(l,m) |(ζ − 1)= ϕ(l−1,m),

ϕ(l,m) |(τ − 1)= ϕ(l,m−1),
(8-23)

ϕ(0,0) = 1, ϕ(l,m) = 0, for l or m negative,

and

ϕ(l,m)(1)= 0, for l,m ≥ 0, l +m > 0.

Then

(mqϕ
(l,m))

(
(ζ r
− 1)(τ s

− 1)
)
= δl,rδm,s

for l +m = r + s = q, and therefore the ϕ(l,m) with l,m ≥ 0, l +m ≤ q is a basis
of Map(1̃,C)1̃,q+1.

Let R be a system of representatives of 0̃/1̃; so R ⊂ 0̃. Consider the system
{ f j }| j |=q ⊂Map(0̃,C)0̃,q+1 in the proof of Proposition 8.1. If | j | = q, then for
every γ ∈ 0̃, δ 7→ f j (γ δ) is a function on 1̃ of order at most q + 1. Hence, there
are functions a j

l,m on R such that for all ρ ∈ R and δ ∈ 1̃,

f j (ρδ)=
∑

l,m≥0
l+m≤q

a j
l,m(ρ)ϕ

(l,m)(δ). (8-24)

Lemma 8.11. Let a j
l,m be as in (8-24), and suppose that we have functions ψ (l,m) ∈

Map(1̃,C) satisfying

ψ (0,0) = 0,

ψ (l,m) |(τ − 1)= ψ (l−1,m) for l ≥ 1,

ψ (l,m) |(ζ − 1)= ψ (l,m−1) for m ≥ 1.

(8-25)

Then

f (ρδ)=
∑

l,m≥0
l+m≤q

a j
l,m(ρ)ψ

(l,m)(δ), (ρ ∈ R, δ ∈ 1̃) (8-26)

defines an element of Map(0̃,C)0̃,q .

Proof. We proceed by induction in q = | j |. If q = 0, then m = n = 0, so
f (ρδ)= a j

0,0(ρ) ·ψ
(0,0)
= 0 ∈Map(0̃,C)0̃,0 = {0}.

It is clear that (8-26) gives a well-defined map on 0̃. It suffices to prove that, for
any generator α j of 0̃, f |(α j − 1) ∈Map(0̃,C)q−1. Suppose first that j = ( j, j ′).
For each ρ ∈ R, there are unique ρ1 ∈ R and δ1 ∈ 1̃ such that α j ρ = ρ1δ1.
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From (8-24), it follows that

f j |(α j(1)− 1)(ρδ)=
∑

l,m≥0
l+m≤q

a j
l,m(ρ1)ϕ

(l,m)
|(δ1− 1)(δ)

+

∑
l,m≥0

l+m≤q

(
a j

l,m(ρ1)− a j
l,m(ρ)

)
ϕ(l,m)(δ). (8-27)

By (8-6), the left-hand side equals∑
l,m≥0

l+m≤q−1

a j ′
l,m(ρ)φ

(l,m)(δ).

The function ϕ(l,m) |(δ1 − 1) is a linear combination, depending on ρ, of ϕ(a,b)

with 0 ≤ a ≤ l, 0 ≤ b ≤ m, and a + b ≤ q − 1. Thus we get an expression for
the a j ′

l,m(ρ) in terms of the a j
l,m(ρ). The form of this expression depends on the

relations (8-23), but not on the specific value of the constant basis element ϕ(0,0).
The relations of (8-23) hold for ψ (l,m) too. Therefore, the right-hand side of (8-27),
upon replacement of φ by ψ , equals∑

l,m≥0
l+m≤q−1

a j ′
l,m(ρ)ψ

(l,m)(δ) (ρ ∈ R, δ ∈ 1̃),

which, by induction, is in Map(0̃,C)0̃,q−1. Since it follows from (8-26) that the
right-hand side of (8-27) with ϕ replaced by ψ equals f |(α j − 1) too, we deduce
that f |(α j − 1) ∈Map(0̃,C)0̃,q−1.

In the same way, we deduce that f |(α j − 1) ∈Map(0̃,C)0̃,q−1 when j = t (0)
or j < t (0) and j 6= j(1). �

Proposition 8.12. The 0̃-modules Dk(λ) and Dhol
k are maximally perturbable for

all k ∈ 2Z and λ ∈ C.

Proof. It suffices to construct, for a given f ∈ Dk(λ)
0̃, a given q ∈ N, and a given

0̃-q-tuple i , an element ηi ∈Dk(λ) such that ηi |(αi ′(1)−1) . . . (αi ′(q)−1)= δi,i ′ f
for all 0̃-q-tuples j .

We will write f = fcpt+
∑

κ fκ , with κ running over a set C of representatives
of the 0̃-orbits of cusps, where fcpt ∈ (Ck)

0̃ and fκ ∈ Dk(λ)
0̃. We will produce

perturbations for each of these components.
We choose a strict fundamental domain F0̃ for 0̃\G̃ such that

F0̃ ∩ D∞(b)=
{
(x + iy, ϑ) : 0≤ x < 1, y ≥ b, 0≤ ϑ < π

}
.

Definition 8.8 provides b ≥ A0 and r ∈ N such that vκ(z, ϑ) = f (g̃κ(z, ϑ)) is in
Ek(b, λ)1̃,r for each cusp κ . Furthermore, b can be chosen large enough for the
sets F0̃ ∩ Dκ(b) (κ ∈ C) to be pairwise disjoint. Since f is 0̃-invariant, we even
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have vκ ∈ Ek(b, λ)1̃. We choose a function χ ∈ C∞(0,∞) that is equal to 0 on(
0, b+ 1

2

]
and equal to 1 on [b+ 1,∞), and define for κ ∈ C

fκ(z, ϑ)=
{

0 if (z, ϑ) ∈ F0̃ − Dκ(b),
χ(Im(z1))vκ(z1, ϑ1) if (z, ϑ)= g̃κ(z1, ϑ1) ∈ F0̃ ∩ Dκ(b).

(8-28)

Extend to G̃ by 0̃-linearity. So fκ is equal to 0 outside 0̃Dκ(b), and equal to f on
0̃Dκ(b+ 1). We check in Definition 8.8 that fκ ∈ Dκ(λ). The function

fcpt = f −
∑
κ∈C

fκ

is 0̃-invariant and vanishes on Dκ(b+ 1) for all cusps κ; hence fcpt ∈ C0̃k .
Proposition 8.5 implies that there is h i ∈ Ck ⊂ Dk(λ) satisfying the conditions

h i |(αi(1) − 1) . . . (αi(q) − 1) = fcpt and h i ′ |(αi ′(1) − 1) . . . (αi ′(q) − 1) = 0 for
0̃-q-tuples i ′ 6= i . So we can restrict our attention to the fκ .

Since the supports of the fκ with κ ∈ C are disjoint, we can consider each of
the fκ separately. Without loss of generality, we can assume that∞ is a cusp of 0̃
with g̃κ = 1, and take∞∈ C . Conjugation by the original g̃κ then gives the same
result for a general κ ∈ C .

The function v∞ used in (8-28) is an element of Ek(b, λ)1̃. The proof of
Proposition 8.7 shows that for each m ∈ N2

0, there is a perturbation

vm
∞
∈ Ek(b, λ)1̃,m1+m2+1

of (z, ϑ) 7→ f∞(z, ϑ) of type m. We define ηi by ηi = 0 on G̃b and on all 0̃Dκ(b)
for all κ ∈ C r {∞}, and

ηi (ρ(x + iy, ϑ))=
∑

l,m≥0
l+m≤q

χ(y)a i
l,m(ρ)v

(l,m)
∞

(x + iy, ϑ) (8-29)

for y ≥ b and ρ in a system of representatives R of 0̃/1̃. The functions a i
l,m are

as in (8-24). Since the sets ρD∞(b) are disjoint, this defines a smooth function,
which can be checked to be an element of Dk(λ).

For each fixed g = (x + iy, ϑ) with y ≥ b, the function δ 7→ v
(l,m)
∞ (δg) on 1̃

satisfies the same relations as δ 7→ ϕ(l,m)(δ) v∞(g) in (8-23). So their difference,
as a function of δ, satisfies (8-25).

Ignoring smoothness for a moment, we have f∞ ∈Map(G̃,C)0̃ . Equation (8-9)
gives a function h i on G̃ such that h i |(αi ′(1)− 1) . . . (αi ′(q)− 1)= δi,i ′ f∞ for all
0̃-q-tuples i ′. With our choice of fundamental domain, and using (8-24), we find
for ρ ∈ R, δ ∈ 1̃, and g = (x + iy, ϑ) with y ≥ b:

h i (ρδg)=
∑

l,m≥0
l+m≤q

a i
l,m(ρ)ϕ

(l,m)(δ)χ(y)v∞(g). (8-30)
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Outside 0̃D∞(b), the functions f∞, h i are zero. With Lemma 8.11, we conclude
that the function induced by

(ηi − h i )(ρδg)=
∑

l,m≥0
l+m≤q

a i
l,m(ρ)χ(y)

(
v(l,m)
∞

(δg)−ϕ(l,m)(δ)v∞(g)
)

(8-31)

is in Map(G̃,C)0̃,q . This implies that

ηi ∈
(
h i +Map(G̃,C)0̃,q

)
∩Dk(λ)= Dk(λ)

0̃,q+1,

and behaves in the desired way under (αi ′(1)−1) . . . (αi ′(q)−1) for all 0̃-q-tuples i ′.
Thus, we have proved that Dk(λ) is maximally perturbable.

Everywhere in this proof, we can replace Ek(b, λ) by Ehol
k (b), and Dk(λ) by Dhol

k .
In that way, we also obtain the maximal perturbability of Dhol

k , thus completing the
proof of Proposition 8.12. �

8D3. Relations between the spaces Ck and Dk(λ). By Remark 8.10, for each
f ∈ Dk(λ), the support of (ω − λ) f is contained in some set G̃b, and hence
(ω− λ) f ∈ Ck . So the differential operator ω− λ maps Dk(λ) to Ck . Since the
operator ω commutes with the action of 0̃, we have (ω− λ)Dk(λ)

0̃,q
⊂ C

0̃,q
k for

all q ≥ 1. Similarly, E−(Dhol
k )0̃,q ⊂ C

0̃,q
k−2 for all q ≥ 1.

Proposition 8.13. Let λ ∈ C and k ∈ 2Z. The following maps are surjective:

i) ω− λ : Dk(λ)
0̃
→ C0̃k ,

ii) E− : (Dhol
k )0̃→ C0̃k−2.

Before presenting the proof we give a corollary:

Corollary 8.14. For each q ≥ 1, the maps ω− λ : Dk(λs)
0̃,q
→ C

0̃,q
k and E− :

(Dhol
k )0̃,q → C

0̃,q
k are surjective.

Proof. Proposition 8.13 gives the case q=1. The rows in the following commutative
diagram are exact by Propositions 8.5 and 8.12. See (5-11) for mq .

0 // Dk(λ)
0̃,q //

ω−λ��

Dk(λ)
0̃,q+1

mq //

ω−λ��

(Dk(λ)
0̃)n(0̃,q) //

ω−λ��

0

0 // C
0̃,q
k

//

��

C
0̃,q+1
k

mq //

��

(C0̃k )
n(0̃,q) //

��

0

0 coker(ω− λ) 0

(8-32)

The third column is exact by Proposition 8.13. With the exactness of the first
column as induction hypothesis, we obtain the vanishing of coker(ω− λ), and thus
the surjectivity of ω− λ : Dk(λ)

0̃,q+1
→ C

0̃,q+1
k , by the snake lemma.
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The case of E− : (Dhol
k )0̃,q → C

0̃,q
k is similar. �

8D4. Proof of Proposition 8.13. We first note that the spaces Dk(λ)
0̃ and C0̃k are

invariant under Z̃ . Hence, the weight k is strict and we are dealing with functions
on G = PSL2(R). (See the first statement in Theorem 6.4.) We use the spectral
theory of automorphic forms to prove Proposition 8.13.

We work with the space of square integrable functions on 0̃\G̃ = 0\G of strict
weight k ∈ 2Z, where G = PSL2(R). We can view the elements of the Hilbert
space Hk = L2(0̃\G̃)k = L2(0\G)k as functions z 7→ f (z, 0) on H, transforming
according to weight k as indicated in (4-7). The inner product in Hk is given by

( f, f1)=

∫
F

f (z, 0) f1(z, 0) dx dy
y2 .

Here F can be any fundamental domain for 0\H. We take it so that for each b> A0 ,
it has a decomposition

F= Fb t
⊔
κ∈C

Vκ , Vκ =
{
gκ(x + iy) : xκ ≤ x ≤ xκ + 1, y ≥ b

}
, (8-33)

with C a system of representatives of the 0-orbits of cusps, and xκ ∈ R depending
on F and on the earlier choice of the gκ . The set Fb has compact closure in H.

The differential operator ωk = −y2∂2
y − y2∂2

x + iky∂x in (4-8) determines a
densely defined self-adjoint operator Ak in Hk . The spectral theory of automorphic
forms gives the decomposition of this operator Ak in terms of Maass forms. One
may consult Chapters 4 and 7 in [Iwaniec 1995] for weight 0. For other weights,
the proofs are almost completely similar. (See [Roelcke 1966; 1967].)

The spectral decomposition gives the Parseval formula

( f, f1)=
∑
`

a`k( f ) a`k( f1)+
∑
κ

1
2π

∫
∞

0
eκk ( f ; i t)eκk ( f1; i t) dt, (8-34)

with κ running through a set of representatives of the cuspidal orbit and ` indexing
a maximal orthonormal system of eigenfunctions ψ`k of Ak , with eigenvalue λ` ∈R.
(These eigenvalues are discrete in R, with finite multiplicities.) For each f ∈ Hk ,
we have a`k( f )= ( f, ψ`k ). If f is sufficiently regular, then the functions eκk ( f ; · )
are obtained by integration against the Eisenstein series Eκk (i t) at the cusp κ .
The Parseval formula (8-34) shows that the Hilbert space Hk is isomorphic to
the direct sum of the subspace spanned by the ψk and a number of copies of
L2
(
(0,∞), dt/2π

)
. The operator Ak corresponds to a multiplication operator. For

f in its domain, we have a`k(Ak f )= λk ak( f ) and

eκk (Ak f ; i t)=
( 1

4 + t2)eκk (t; i t).
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For the smooth, modulo 0 compactly supported elements f ∈ C0̃k , we have
a`k( f )=O((|λk |+ 1)−a) and eκk κ( f ; i t)=O((1+ t)−1) for each a ∈ R. Moreover,
ek( f ; · ) extends as a holomorphic function on some neighborhood of iR in C.

Solving (Ak − λ) f1 = f with unknown f1 ∈ Hk for a given f ∈ C0k can be
done by dividing by the factor λk − λ, respectively 1

2 + i t2
− λk in the spectral

decomposition, if these divisions are possible. The requirements are:

i) a`k( f )= 0 if λ` = λ. This condition occurs for at most finitely many indices `.

ii) eκk (t; i tλ)= 0 for all κ if λ= 1
4 + t2

λ with tλ ∈ (0,∞).

iii) s 7→ eκk ( f ; s) has a double zero at s = 0 for all κ if λ= 1
4 .

These requirements impose finitely many linear conditions on f . So there is a
subspace Ck(0, λ) of C0k such that for f ∈ Ck(0, λ), the equation (Ak − λ) f1 = f
can be solved with f1 ∈ Hk . This means that (ω− λ) f1 = f holds in the sense of
distributions, and hence f1 is in C∞(H) with the transformation behavior (4-7). It
need not be in C0k . However, we have ωk f1 = λk1 on the sets {gκ z ∈ H : Im z > b}
for some b depending on the support of f . The square integrability of f1 ensures
that it has less than exponential growth at the cusps, and hence f1 ∈ Dk(λ)

0.
So we are done with the proof of part i) for the subspace Ck(0, λ) of C0̃k of finite

codimension.

Lemma 8.15. Let κ be the cusp that we keep fixed. Suppose that λ is in the spectrum
of Ak . Then there is a finite set X ⊂ Z such that, for each n ∈ X , there exist hn ∈C0̃k
of the form

hn(γ g̃κ(z, ϑ))=
{

e2π inxχn(y)eikϑ on 0̃Dκ(A0),
0 elsewhere,

(8-35)

for some χn ∈ C∞c (A0,∞), such that {hn +Ck(0, λ)}n spans C0̃k /Ck(0, λ).

Proof. We shall examine each of the three cases for the eigenvalues of Ak on Hk

separately:

• λ = 1
4 − s2

6∈
[ 1

4 ,∞
)
. Assume Re s > 0. There are finitely many indices

`1, . . . , `m such that λ` j = λ. The ψ` j
k form a basis of ker(Ak − λ). Each of

these m linearly independent square integrable automorphic forms is given by its
Fourier expansion at the fixed cusp κ . By Proposition 7.1, the Fourier terms of
nonzero order are multiples of ωk(n, s). The Fourier term of order zero is a multiple
of y1/2−seikϑ . We choose a set X of m elements in Z such that the m×m-matrix
whose columns are the n-th Fourier coefficients of ψ` j

k (1≤ j ≤ m), with n ∈ X , is
invertible. We choose the χn ∈ C∞c , n ∈ X , in the statement of the lemma, in such
a way that

∫
∞

A0
χn(y)ωk(n, s)(iy, 0)dy/y2

6= 0 or
∫
∞

A0
χn(y) y1/2−s dy/y2

6= 0, as
the case may be. Consider the linear form on the space A2

k(λ) of square integrable
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automorphic forms with eigenvalue λ given by

ψ 7→ (hn, ψ)=

∫
F
hn(z, 0)ψ(z, 0) dxdy

y2

=

∫
∞

A0

∫ 1/2

−1/2
χn(y)e2π inx ā0 y1/2−s̄ dxdy

y2

+

∑
m 6=0

ām

∫
∞

A0

∫ 1/2

−1/2
χn(y)e2π inxωk(m, s)(iy, 0) dxdy

y2 .

This depends only on the Fourier coefficient of ψ of order n in the expansion at κ .
Therefore, the m×m-matrix with the scalar product (hn, ψ

` j
k ) at position ( j, n) is

invertible. (Here j runs from 1 to m, and n runs through X .) Hence, there are com-
plex numbers b j,p (with 1≤ j ≤ m, p ∈ X ) such that

∑
n∈X b j,n(hn, ψ

` j ′

k )= δ j, j ′ .
Setting

cn( f )=
m∑

j ′=1

( f, ψ
` j ′

k )b j ′,n

for f ∈ C0̃k , we obtain for 1≤ j ≤ m:∑
n∈X

cn( f )(hn, ψ
` j )= ( f, ψ` j

k ).

So f −
∑

n cn( f ) hn is indeed in Ck(0, λ).

• λ= 1
4 + t2, t ∈ R r {0}. A basis of ker(Ak −λ) in this case consists of Eisenstein

series Eνk (i t, · ) (ν ∈ C) and possibly cusp forms ψ` j
k with λ` j = λ. The proof

of the previous case can be applied with the obvious adjustments (for example,
replacing scalar products by integrals for the terms corresponding to Eνk ) to give
the result. The only essential modification is that we have to use the space A∗k(λ)
of automorphic forms with polynomial growth and eigenvalue λ in place of A2

k(λ),
because the Eisenstein series are not square integrable. This can be done because
(conjugates of) elements of A∗k(λ) appear only integrated against elements of C0̃k ,
which have compact support modulo 0̃.

• λ= 1
4 . Now we have the condition that eκk ( f −

∑
n hn; i t) should have a double

zero at t = 0 or, equivalently, that the first two terms of the Taylor expansion at
s = 0 should vanish. Since the first two Taylor terms of Eκk (−; z) are linearly
independent from the other functions in A∗k

( 1
4

)
, a choice of χn with the desired

properties is again possible. �

Now we turn to the task of solving (ω− λs) f1 = hn with f1 ∈ Dk(λ)
0̃ for hn as

in Lemma 8.15. We aim at f1 with support in 0̃Dκ(A0). Writing

f1(g̃κ(z, ϑ))= e2π inx h(y)eikϑ ,
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the differential equation (ω− λ) f1 = hn becomes

−y2h′′(y)+
(
4π2n2 y2

− 2πnky− 1
4 + s2)h(y)= χn(y).

(Compare (7-3).) This ordinary differential equation is regular on y ≥ A0. It has
a unique solution for the initial conditions h(A0)= h′(A0)= 0. It is zero below
the support of χn . Since χn has compact support, the function h thus obtained is a
solution of the homogeneous Equation (7-3) on (b,∞) for some b> A0 depending
on Supp(χn). Thus, we see that (z, ϑ) 7→ f1(g̃κ(z, ϑ)) is an element of Wk(n, s).
Hence, it may have exponential growth of order e(2π |n|+δ)y . This is the point where
the need to work with exponentially growing functions arises.

We extend f1 by 0̃-invariance, and check that it is an element of Dk(λs). This
completes the proof of the first statement in Proposition 8.13.

Let us denote by E−k the unbounded operator Hk → Hk−2 given by the dif-
ferential operator E−, and similarly E+k−2 : Hk−2 → Hk . For the surjectivity of
E− : (Dhol

k )0̃→ C0̃k−2, we first note that, on an eigenfunction of ω in weight k− 2
with eigenvalue λ, the operator E−k E+k−2 acts as multiplication by −4

(
λ− k

2 +
k2

4

)
.

See (5-5). We will use E+k−2 to “invert” E−k .
We can arrange the choice of the orthonormal systems of square integrable

eigenfunctions in Hk−1 and Hk in such a way that E−ψ`k =−
√

k2− 2k+ 4λk ψ
`
k−2.

We have k2
−2k+4λk ≥0. This factor can be zero for finitely many `, corresponding

to a system of holomorphic automorphic forms of weight k. For these `, there is no
corresponding eigenfunction ψ`k−2. Also there can be finitely many indices ` such
that ψ`k−2 does not occur as image of some ψ`k−2, corresponding to antiholomorphic
automorphic forms. Anyhow, this leads to a`k(E

+ f ) =
√

k2− 2k+ 4λ` a`k−2( f ),
with k2

−2k+4λ` 6= 0 except for finitely many `. For the Eisenstein series, we have
eκk (E

+ f ; s)= (2s+k−1)eκk−2( f, s). Here the factor is nonzero for all s ∈ i[0,∞).
So for f in a subspace of finite codimension in C0̃k−2, we can find by the method
used for the first part a smooth element f1 ∈ Hk with E− f1 = f . It is smooth, and
near all cusps it is annihilated by E−, and hence it is holomorphic near the cusps.
So it is in (Dhol

k )0̃.
We are left with finitely many ` for which E+k−2ψ

`
k−2 = 0. We form functions hn

as in Lemma 8.15, corresponding to a set X of Fourier term orders such that elements
of Ha

k−2 are determined by the Fourier coefficients in X . Solving E−k f1 = hn leads
to the differential equation

(−2iy∂x + 2y∂y − k)e2π inxϕ(y)= χ(y),

ϕ(y0)= ϕ
′(y0)= 0,

with which we proceed as in the previous case.
This establishes the surjectivity of E− : (Dhol

k )0̃→ C0̃k−2 in Proposition 8.13.
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8E. Higher-order invariants and Maass forms. We now will derive the main re-
sults of this paper, Theorems 6.5 and 6.8, from the following result:

Proposition 8.16. The 0̃-modules

Ẽ′k(λ) := ker
(
ω− λ : Dk(λ)→ Ck

)
(8-36)

and
H′k := ker

(
E− : Dhol

k → Ck−2
)

(8-37)

are maximally perturbable.

Proof. We have the following extension of the commutative diagram (8-32):

0 // Ẽ′k(λ)
0̃,q //

��

Ẽ′k(λ)
0̃,q+1

mq //

��

(Ẽ′k(λ)
0̃)n(0̃,q)

��

0 // Dk(λ)
0̃,q //

ω−λ��

Dk(λ)
0̃,q+1

mq //

ω−λ��

(Dk(λ)
0̃)n(0̃,q) //

ω−λ��

0

0 // C
0̃,q
k

//

��

C
0̃,q+1
k

mq //

��

(C0̃k )
n(0̃,q) //

��

0

0 0 0

(8-38)

The exactness of the columns follows from the definition of Ẽ′k(λ), (3-2), the left-
exactness of the functor homC[0](I q

\C[0],−), and Corollary 8.14. Propositions
8.3 and 8.12 imply that the second and third row are exact. The snake lemma then
implies that the first row is exact and that

mq : Ẽ
′

k(λ)
0̃,q+1

→ (Ẽ′k(λ)
0̃)n(0̃,q)

is surjective.
Replacing in this diagram the space Ẽ′l(λ) by H′k and the map ω− λ by E−, we

obtain the maximal perturbability of H′k . �

Proof of Theorems 6.5 and 6.8. The 0̃-module Ẽ′k(λ) is contained in Ẽk(0̃, λ). See
Definition 6.3. It is a smaller space than Ẽk(0̃, λ), since elements of Dk(λ) have a
special structure near the cusps. With (8-22), Ẽk(0̃, λ)

0̃ is a subspace of Ẽ′k(λ)
0̃.

Therefore Ẽk(0̃, λ)
0̃
= Ẽ′k(λ)

0̃, and thus

0 // Ẽ′k(λ)
0̃,q //

��

Ẽ′k(λ)
0̃,q+1 //

��

(Ẽ′k(λ)
0̃)n(0̃,n) // 0

0 // Ẽk(0̃, λ)
0̃,q // Ẽk(0̃, λ)

0̃,q+1 // (Ẽk(0̃, λ)
0̃)n(0̃,q)
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with exact rows. Induction with respect to q and the snake lemma show that
Ẽk(0̃, λ)

0̃,q is equal to Ẽ′k(λ)
0̃,q for all q . Hence, the space Ẽk(0̃, λ) is maximally

perturbable.
The proof of Theorem 6.8 is completely similar. �

Index of commonly used notation

a(y) Section 5A

a`k( f ) (8-34)

α Section 5B

αi Section 5C

b(i) (3-8), (5-7)

C∞k (G̃) (8-11)

Ck Definition 8.4

Dκ(a) (8-16)

Dk(λ),D
hol
k Definition 8.8

εi Section 5C

Ei Section 3B

Ek(0,λ) Definition 4.1

Ehol
k (0,λk) Section 4B

E± (5-4)

eκk ( f ;i t) (8-34)

Ek(y0,λ),E
hol
k (y0)

Definition 8.6

Ẽk(0̃,λ) Definition 6.3

Ẽr (0̃,χ,λ) Definition 6.3

Ek(0,λ) Definition 4.1

fi (8-2)

gκ (4-1)

G̃ Section 5A

G̃a (8-17)

h i (8-9), (8-10)

Hi Section 3B

hm
k (n,s) (7-11)

Hk(0̃),H
p
k (0̃),H

c
k(0̃)

Section 6C

ηi Section 5C

ηr (n;z,ϑ) (7-16)

ηk(n) (7-17)

ηm
k (n;z,ϑ) (7-18)

k(ϑ) Section 5A

κi Section 5C

Lk (4-3)

L(z,ϑ) (6-3)

mq (3-3)

Mk(0,λ) Definition 4.1

Mk(0,λ) Definition 4.1

Mhol
k (0,λk) Section 4B

µ f (3-5)

nell,npar Section 3B

n(x) Section 5A

n(0,q) (3-4)

Pi Section 3B

pr, pr2 Section 5A

πi Section 5C

Qn (7-10)

s Section 5B

S(y0) (8-19)

t Section 5B

t (0) Section 3B

Vk(n,s),V0
k(n,s)
Definition 7.2

Wr (ν,s) (7-2)

W (5-4)

ζ Section 5B

ω (5-5)

ωr ,ω̂r (7-4)
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Log canonical thresholds, F-pure
thresholds, and nonstandard extensions

Bhargav Bhatt, Daniel J. Hernández,
Lance Edward Miller and Mircea Mustat,ă

We present a new relation between an invariant of singularities in characteristic
zero (the log canonical threshold) and an invariant of singularities defined via
the Frobenius morphism in positive characteristic (the F-pure threshold). We
show that the set of limit points of sequences of the form (cp), where cp is the
F-pure threshold of an ideal on an n-dimensional smooth variety in characteristic
p, coincides with the set of log canonical thresholds of ideals on n-dimensional
smooth varieties in characteristic zero. We prove this by combining results of
Hara and Yoshida with nonstandard constructions.

1. Introduction

The connection between invariants of singularities in characteristic zero and positive
characteristic is a topic that has recently attracted a lot of attention. Typically, the
invariants of singularities that arise in birational geometry are defined via divisorial
valuations. In characteristic zero, one can use (log) resolutions of singularities to
compute such invariants. On the other hand, in commutative algebra in positive
characteristic one defines invariants using the action of the Frobenius morphism.
It turns out that these invariants have subtle connections, some of them proven,
and some still conjectural; see, for example, [Hara and Watanabe 2002; Hara and
Yoshida 2003; Mustat,ă et al. 2005]. The typical such connection involves reduction
from characteristic zero to positive characteristic. In this note we describe a different,
though related connection. We use nonstandard constructions to study limits of
invariants in positive characteristic, where the characteristic tends to infinity, in
terms of invariants in characteristic zero.

The invariants we study in this paper are the log canonical threshold (in charac-
teristic zero) and the F-pure threshold (in positive characteristic). The log canonical
threshold is an invariant that plays an important role in birational geometry; see

Hernández was partially supported by RTG grant 0502170. Mustat,ă was partially supported by NSF
grant DMS-0758454 and a Packard Fellowship.
MSC2010: primary 13A35; secondary 13L05, 14B05, 14F18.
Keywords: F-pure threshold, log canonical threshold, ultrafilters, multiplier ideals, test ideals.
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[Kollár 1997; Ein and Mustat,ă 2006]. Given an irreducible, smooth scheme X
defined over a field k of characteristic zero, and a proper ideal a ⊂ OX , the log
canonical threshold of a is denoted by lct(a). For the precise definition in terms of a
log resolution of (X, a), we refer to Section 2. Given a point x ∈ V (a), one defines
lctx(a) to be lct(a|U ), where U is a small enough open neighborhood of x in X .

On the other hand, suppose that W is a smooth scheme of finite type over a
perfect field L of positive characteristic p. For a proper ideal a⊂ OW , the F-pure
threshold fpt(a) was introduced and studied in [Takagi and Watanabe 2004]. Given
x ∈ V (a), one defines as before the local version of this invariant, denoted fptx(a).
The original definition of the F-pure threshold involved notions and constructions
from tight closure theory. However, since we always assume that the ambient
scheme is smooth, one can use an alternative description, following [Mustat,ă et al.
2005; Blickle et al. 2008] (see Section 2 below). Part of the interest in the study
of the F-pure threshold comes from the fact that it shares many of the formal
properties of the log canonical threshold.

Before stating our main result, let us recall the fundamental connection between
log canonical thresholds and F-pure thresholds via reduction mod p. Suppose
that X and a⊂ OX are defined over k, as above. We may choose a subring A ⊂ k,
finitely generated over Z, and models X A and aA ⊂ OX A for X and a, respectively,
defined over A. In particular, given any closed point s ∈ Spec A, we may consider
the corresponding reductions Xs and as ⊂ OXs defined over the finite residue field
of s denoted k(s). One of the main results in [Hara and Yoshida 2003] implies the
following relation between log canonical thresholds and F-pure thresholds: after
possibly replacing A by a localization Aa for some nonzero a ∈ A,

i) lct(a)≥ fpt(as) for every closed point in s ∈ Spec A, and

ii) there is a sequence of closed points sm∈Spec A with limm→∞ char(k(sm))=∞

and such that limm→∞ fpt(asm )= lct(a).

It is worth pointing out that a fundamental open problem in the field predicts that in
this setting there is a dense set of closed points S⊂Spec A such that lct(a)= fpt(as)

for every s ∈ S.
We now turn to the description of our main result. For every n ≥ 1, let Ln be

the set of all lct(a), where the pair (X, a) is as above, with dim(X)= n. Similarly,
given n and a prime p, let F(p)n be the set of all fpt(a), where (W, a) is as above,
with dim(W )= n, and W defined over a field of characteristic p. The following is
our main result.

Theorem 1.1. For every n ≥ 1, the set of limit points of all sequences (cp), where
cp ∈ F(p)n for every prime p, coincides with Ln .

A key ingredient in the proof of Theorem 1.1 is provided by ultraproduct con-
structions. Note that if c ∈ Ln is given as c = lct(a), then the above mentioned
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results in [Hara and Yoshida 2003] (more precisely, property ii) above) imply that
c = limp→∞ cp, where for p� 0 prime, cp is the F-pure threshold of a suitable
reduction as ⊂ OXs with char(k(s)) = p. Thus the interesting statement in the
above theorem is the converse: given pairs (Wm, am) over Lm with dim(Wm)= n,
limm→∞ char(Lm) =∞, and with limm→∞ fpt(am) = c, there is a pair (X, a) in
characteristic zero with dim(X)= n and such that c = lct(a).

It is easy to see that we may assume that each Wm = Spec(Lm[x1, . . . , xn]) and
cm = fpt0(am) for some am ⊆ (x1, . . . , xn). If we put a

(d)
m = am + (x1, . . . , xn)

d ,
we have |fpt(a(d)m )− fpt(am)| ≤ n/d for all m and d. Ultraproduct constructions
give nonstandard extensions of our algebraic structures. In particular, we get a field
k = [Lm] of characteristic zero. Since all ideals a

(d)
m are generated in degree less

than or equal to d, they determine an ideal a(d) in k[x1, . . . , xn]. The key point
is to show that for every ε > 0, we have | lct0(a(d))− fpt0(am)| < ε for infinitely
many m. This easily implies that limd→∞ lct0(a(d))= c, and since Ln is closed by
[de Fernex and Mustat,ă 2009, Theorem 1.3] (incidentally, this is proved in loc. cit.
also by nonstandard arguments), we conclude that c ∈ Ln .

As in [Hara and Yoshida 2003], the result relating the log canonical threshold of
a(d) and the F-pure thresholds of a

(d)
m follows from a more general result relating

the multiplier ideals of a(d) and the test ideals of a
(d)
m (see Theorem 4.1 below). We

prove this by following, with some simplifications, the main line of argument in
[ibid.] in our nonstandard setting.

The use of ultraproduct techniques in commutative algebra has been pioneered
by Schoutens; see [Schoutens 2010] and the list of references therein. This point
of view has been particularly effective for passing from positive characteristic to
characteristic zero in an approach to tight closure theory and to its applications. Our
present work combines ideas of Schoutens [2005] with the nonstandard approach to
studying limits of log canonical thresholds and F-pure thresholds from [de Fernex
and Mustat,ă 2009] and [Blickle et al. 2009], respectively.

The paper is structured as follows. In Section 2 we review the definitions of
multiplier ideals and test ideals, and recall how the log canonical threshold and the
F-pure threshold appear as the first jumping numbers in these families of ideals. In
Section 3 we review the basic definitions involving ultraproducts. For the benefit
of the reader, we also describe in detail how to go from schemes, morphisms, and
sheaves over an ultraproduct of fields to sequences of similar objects defined over
the corresponding fields. The proof of Theorem 1.1 is given in Section 4.

2. Multiplier ideals and test ideals

In this section we review the basic facts that we will need about multiplier ideals
and test ideals. Both these concepts can be defined under mild assumptions on the
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singularities of the ambient space. However, since our main result only deals with
smooth varieties, we will restrict to this setting in order to simplify the definitions.

2A. Multiplier ideals and the log canonical threshold. In what follows we recall
the definition and some basic properties of multiplier ideals and log canonical thresh-
olds. For details and further properties, we refer the reader to [Lazarsfeld 2004, §9].

Let k be a field of characteristic zero, and X an irreducible and smooth scheme
of finite type over k. Given a nonzero ideal1 a on X , its multiplier ideals are
defined as follows. Let us fix a log resolution of the pair (X, a): this is a projective,
birational morphism π : Y→ X with Y smooth and a·OY =OY (−F) for an effective
divisor F such that F +Exc(π) is a divisor with simple normal crossings. Here
Exc(π) denotes the exceptional divisor of π . Such resolutions exist by Hironaka’s
theorem, since we are in characteristic zero. Recall that KY/X denotes the relative
canonical divisor of π : this is an effective divisor supported on Exc(π) such that
OY (KY/X )'ωY⊗ f ∗(ω−1

X ). With this notation, the multiplier ideal of a of exponent
λ ∈ R≥0 is defined by

J(aλ) := π∗OY (KY/X −bλFc). (1)

Here, for a divisor with real coefficients E =
∑

i ai Ei , we write bEc =
∑

ibaicEi ,
where baic is the largest integer≤ai . It is a basic fact that the definition of multiplier
ideals is independent of resolution.

Let us consider some easy consequences of the definition (1). If λ < µ, then
J(aµ) ⊆ J(aλ). Furthermore, given λ, there is ε > 0 such that J(aλ) = J(aµ)

whenever λ≤ µ≤ λ+ ε. A positive λ is a jumping number of a if J(aλ) 6= J(aµ)

for all µ < λ. If we write F =
∑

i ai Ei , it follows from (1) that if λ is a jumping
number, then λai ∈ Z for some i . In particular, we see that the jumping numbers of
a form a discrete set of rational numbers.

Suppose now that a 6= OX . The smallest jumping number of a is the log
canonical threshold lct(a). Note that if 0 ≤ λ � 1, then J(aλ) = OX , hence
lct(a) = min{λ | J(aλ) 6= OX } (this is finite since a 6= OX ). If a ⊆ b, then
J(aλ) ⊆ J(bλ) for all λ; in particular, we have lct(a) ≤ lct(b). We make the
convention lct(0)= 0 and lct(OX )=∞.

It is sometimes convenient to also have available a local version of the log
canonical threshold. If x ∈ X , then we put lctx(a) := maxV lct(a|V ), where the
maximum ranges over all open neighborhoods V of x . Equivalently, we have

lctx(a)=min{λ | J(aλ) ·OX,.x 6= OX,x}

(with the convention that this is 0 if a= (0), and it is infinite if x 6∈ V (a)). Note that
given a proper ideal a on X , there is a closed point x ∈ X such that lct(a)= lctx(a).

1Every ideal sheaf that we consider is assumed to be coherent.
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The definition of multiplier ideals commutes with extension of the base field, as
follows. For a proof, see the proof of [de Fernex and Mustat,ă 2009, Propositions 2.9].

Proposition 2.1. Let a be an ideal on X. If k ⊂ k ′ is a field extension, and
ϕ : X ′ = X ×Spec k Spec k ′ → X and a′ = a · OX ′ , then J(a′λ) = J(aλ) · OX ′ for
every λ ∈ R≥0. In particular, lctx ′(a

′)= lctϕ(x ′)(a) for every x ′ ∈ X ′.

Recall from Section 1 that Ln consists of all nonnegative rational numbers of the
form lct(a), where a is a proper ideal on an n-dimensional smooth variety over a field
k of characteristic zero. It is clear that equivalently, we may consider the invariants
lctx(a), where (X, a) is as above, and x ∈ X is a closed point. Furthermore, by
Proposition 2.1 we may assume that k is algebraically closed. One can show that in
this definition we can fix the algebraically closed field k and assume that X = An

k
and obtain the same set; see [ibid., Propositions 3.1 and 3.3]. Furthermore, we will
make use of the fact that Ln is a closed set; see [ibid., Theorem 1.3].

2B. Test ideals and the F-pure threshold. In this section we assume that X is an
irreducible, Noetherian, regular scheme of characteristic p > 0. We also assume
that X is F-finite, that is, the Frobenius morphism F : X→ X is finite (in fact, most
of the time X will be a scheme of finite type over a perfect field, in which case this
assumption is clearly satisfied). Recall that for an ideal J on X , the e-th Frobenius
power J [p

e
] is generated by u pe

, where u varies over the (local) generators of J .
Suppose that b is an ideal on X . Given a positive integer e, one can show that

there is a unique smallest ideal J such that b ⊆ J [p
e
]. This ideal is denoted by

b[1/pe
]. Given a nonzero ideal a and λ ∈ R≥0, one has

(adλpe
e)[1/pe

]
⊆ (adλpe+1

e)[1/pe+1
]

for all e ≥ 1 (here due denotes the smallest integer greater than or equal to u).
By the Noetherian property, it follows that there is an ideal τ(aλ) that is equal to
(adλpe

e)[1/pe
] for all e� 0. This is the test ideal of a of exponent λ. For details and

basic properties of test ideals, we refer to [Blickle et al. 2008].
It is again clear that if λ < µ, then τ(aµ)⊆ τ(aλ). It takes a little argument to

show that given any λ, there is ε>0 such that τ(aλ)= τ(aµ)whenever λ≤µ≤λ+ε;
see [ibid., Proposition 2.14]. We say that λ > 0 is an F-jumping number of a if
τ(aλ) 6= τ(aµ) for every µ < λ. It is proved in [ibid., Theorem 3.1] that if X is a
scheme of finite type over an F-finite field, then the F-jumping numbers of a form
a discrete set of rational numbers.

The smallest F-jumping number of a is the F-pure threshold fpt(a). Since
τ(aλ)= OX for 0≤ λ� 1, the F-pure threshold is characterized by

fpt(a)=min{λ | τ(aλ) 6= OX }.



1464 Bhargav Bhatt, Daniel Hernández, Lance Edward Miller and Mircea Mustat,ă

Note that this is finite if and only if a 6= OX . We make the convention that fpt(a)= 0
if a= (0).

We have a local version of the F-pure threshold: given x ∈ X , we put fptx(a) :=

maxV fpt(a|V ), where the maximum is over all open neighborhoods V of x . It can
be also described by

fptx(a)=min{λ | τ(aλ) ·OX,x 6= OX,x},

and it is finite if and only if x ∈ V (a). Note that given any a, there is x ∈ X such
that fpt(a)= fptx(a).

We will make use of the following two properties of F-pure thresholds.

Proposition 2.2 [Blickle et al. 2008, Proposition 2.13]. If a is an ideal on X
and S = ÔX,x is the completion of the local ring of X at a point x ∈ X , then
τ(aλ) · S = τ((a · S)λ) for every λ≥ 0. In particular, fptx(a)= fpt(a · S).

Proposition 2.3 [Blickle et al. 2009, Corollary 3.4]. If a and b are ideals on X , and
x ∈ V (a)∩V (b) is such that a ·OX,x +mr

= b ·OX,x +mr for some r ≥ 1, where m

is the maximal ideal in OX,x , then

|fptx(a)− fptx(b)| ≤
dim(OX,x)

r
.

The local F-pure threshold admits the following alternative description, following
[Mustat,ă et al. 2005]. If a is an ideal on X and x ∈ V (a), let ν(e) denote the largest
r such that ar

·OX,x 6⊆m[p
e
], where m is the maximal ideal in OX,x (we make the

convention ν(e)= 0 if a= 0). One can show that

fptx(a)= lim
e→∞

ν(e)
pe (2)

(see [Blickle et al. 2008, Proposition 2.29]). This immediately implies the assertion
in the following proposition.

Proposition 2.4. Let L ⊂ L ′ be a field extension of F-finite fields of positive
characteristic. If a ⊆ L[x1, . . . , xn] is an ideal vanishing at the origin, and a′ =

a · L ′[x1, . . . , xn], then fpt0(a)= fpt0(a
′).

Recall that we have introduced in Section 1 the set F(p)n consisting of all invari-
ants of the form fpt(a), where a is a proper ideal on an irreducible, n-dimensional
smooth scheme of finite type over L , with L a perfect field of characteristic p. We
can define two other related subsets of R≥0. Let F(p)′n be the set of invariants
fpt0(a), where a ⊂ L[x1, . . . , xn] is an ideal vanishing at the origin, and L is an
algebraically closed field of characteristic p. We also put F(p)′′n for the set of all
fpt(a), where a is a proper ideal on an irreducible, regular, n-dimensional F-finite
scheme of characteristic p. We clearly have the following inclusions:

F(p)′n ⊆ F(p)n ⊆ F(p)′′n. (3)
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Proposition 2.5. F(p)′n is dense in F(p)′′n (hence also in F(p)n).

This implies that in Theorem 1.1 we may replace the sets F(p)n by F(p)′n or
by F(p)′′n .

Proof of Proposition 2.5. Suppose that a is a proper ideal on X , where X is
irreducible, regular, F-finite, n-dimensional, and of characteristic p. Let c= fpt(a).
We can find x ∈ X such that c = fptx(a). By Proposition 2.2, we have

c = fpt(a · ÔX,x).

Note that by Cohen’s theorem, we have an isomorphism ÔX,x ' L[[x1, . . . , xd ]],
with L an F-finite field, and d ≤ n. If m is the maximal ideal in ÔX,x and ci =

fpt(a · ÔX,x +mi ), then Proposition 2.3 gives c = limi→∞ ci . On the other hand,
there are ideals bi ⊂ L[x1, . . . , xd ] such that bi · ÔX,x = a · ÔX,x +mi , and another
application of Proposition 2.2 gives ci = fpt0(bi ). It is easy to see (for example, from
formula (2)) that ci = fpt0(bi · L[x1, . . . , xn]). It now follows from Proposition 2.4
that ci = fpt0(bi · L[x1, . . . , xn]), where L is an algebraic closure of L . Therefore
all ci lie in F(p)′n , which proves the proposition. �

In Section 4 we will use a slightly different description of the test ideals that
we now present. More precisely, we give a different description of b[1/pe

], when
b is an arbitrary ideal on X . Suppose that X is an irreducible, smooth scheme of
finite type over a perfect field L of characteristic p. Let ωX = ∧

n�X/L , where
n = dim(X). Recall that the Cartier isomorphism (see [Deligne and Illusie 1987])
gives in particular an isomorphism ωX 'Hn(F∗�•X/L), where F is the (absolute)
Frobenius morphism, and �•X/L is the de Rham complex of X . In particular, we
get a surjective OX -linear map tX : F∗ωX → ωX . This can be explicitly described
in coordinates, as follows. Suppose that u1, . . . , un ∈ OX,x form a regular system
of parameters, where x ∈ X is a closed point. We may assume that u1, . . . , un are
defined in an affine open neighborhood U of x , and that du= du1∧· · ·∧dun gives a
basis of ωX on U . Furthermore, we may assume that OU is free over O

p
U , with basis

{ui1
1 · · · u

in
n | 0≤ i j ≤ p− 1 for 1≤ j ≤ n}

(note that the residue field of OX,x is a finite extension of L , hence it is perfect).
In this case tX is characterized by the fact that tX (h pw) = h · tX (w) for every
h ∈ OX (U ), and on the above basis over OX (U )p it is described by

tX (u
i1
1 · · · u

in
n du)=

{
du if i j = p− 1 for all j,
0 otherwise.

(4)

Iterating e times tX gives te
X : Fe

∗
ωX → ωX . These maps are functorial in the

following sense. If π : Y → X is a proper birational morphism between irreducible
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smooth varieties as above, then we have a commutative diagram

π∗(Fe
∗
(ωX ))

π∗(te
X )

−−−→ π∗(ωX )y yψ
Fe
∗
(ωY )

te
Y

−−−→ ωY ,

(5)

where ψ is the canonical morphism induced by pulling-back n-forms, and the left
vertical map is the composition

π∗(Fe
∗
(ωX ))−−−→ Fe

∗
(π∗(ωX ))

Fe
∗ (ψ)
−−−→ Fe

∗
(ωY ).

Suppose now that X is as above, and b is an ideal on X . Since ωX is a line
bundle, it follows that the image of Fe

∗
(b ·ωX ) by te

X can be written as J ·ωX for
a unique ideal J on X . It is an easy consequence of the description of b[1/pe

] in
[Blickle et al. 2008, Proposition 2.5] and of formula (4) that in fact J = b[1/pe

]; see
also [Blickle et al. 2010, Proposition 3.10].

3. A review of nonstandard constructions

We begin by reviewing some general facts about ultraproducts. For a detailed
introduction to this topic, the reader is referred to [Goldblatt 1998]. We then explain
how geometric objects over an ultraproduct of fields correspond to sequences
of such geometric objects over the fields we are starting with, up to a suitable
equivalence relation. Most of this material is well-known to the experts, and can
be found, for example, in [Schoutens 2005, §2]. However, we prefer to give a
detailed presentation for the benefit of those readers having little or no familiarity
with nonstandard constructions.

3A. Ultrafilters and ultraproducts. Recall that an ultrafilter on the set of positive
integers N is a nonempty collection U of subsets of N that satisfies the following
properties:

(i) If A and B lie in U, then A∩ B lies in U.

(ii) If A ⊆ B and A is in U, then B is in U.

(iii) The empty set does not belong to U.

(iv) Given any A ⊆ N, either A or N r A lies in U.

An ultrafilter U is nonprincipal if no finite subsets of N lie in U. It is an easy
consequence of Zorn’s Lemma that nonprincipal ultrafilters exist, and we fix one
such ultrafilter U. Given a property P(m), where m ∈ N, we say that P(m) holds
for almost all m if {m ∈ N | P(m) holds} lies in U.
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Given a sequence of sets (Am)m∈N, the ultraproduct [Am] is the quotient of∏
m∈N Am by the equivalence relation given by (am)∼ (bm) if am = bm for almost

all m. We write the class of (am) in [Am] by [am]. Note that the element [am] is
well-defined even if am is only defined for almost all m. Similarly, the set [Am] is
well-defined if we give Am for almost all m.

If Am = A for all m, then one writes ∗A instead of [Am]. This is the nonstandard
extension of A. Note that there is an obvious inclusion A ↪→ ∗A that takes a ∈ A to
the class of the constant sequence (a).

The general principle is that if all Am have a certain algebraic structure, then so
does [Am], by defining the corresponding structure component-wise on

∏
m∈N Am .

For example, if we consider fields (Lm)m∈N, then k := [Lm] is a field. In par-
ticular, the nonstandard extension ∗R of R is an ordered field. Furthermore, it is
easy to see that if all Lm are algebraically closed, then so is k. Note also that if
limm→∞ char(Lm)=∞, then char(k)= 0.

Given a sequence of maps fm : Am → Bm for m ∈ N, we get a map [ fm] :

[Am] → [Bm] that takes [am] to [ fm(am)]. In particular, given a map f : A→ B,
we get a map ∗ f : ∗A→∗B that extends f . If each Am is a subset of Bm , we can
identify [Am] to a subset of [Bm] via the corresponding map. The subsets of [Bm]

of this form are called internal.
We will use in Section 4 the following notion. Suppose that u = [um] ∈

∗R is
bounded (this means that there is M ∈ R>0 such that ∗|u| ≤ M , that is, |um | ≤ M
for almost all m). In this case, there is a unique real number, the shadow sh(u) of
u, with the property that for every positive real number ε, we have ∗|u− sh(u)|< ε,
that is, |sh(u) − um | < ε for almost all m. We refer to [Goldblatt 1998, §5.6]
for a discussion of shadows. A useful property is that if (cm)m∈N is a convergent
sequence, with limm→∞ cm = c, then sh([cm])= c ; see [ibid., Theorem 6.1]. On
the other hand, it is a consequence of the definition that sh([cm]) is the limit of a
suitable subsequence of (cm)m∈N.

3B. Schemes, morphisms, and sheaves over an ultraproduct of fields. Suppose
that U is a nonprincipal ultrafilter on N as in the previous section, and suppose
that (Lm)m∈N is a sequence of fields. We denote the corresponding ultraproduct
by k = [Lm]. Let us temporarily fix n ≥ 1, and consider the polynomial rings
Rm = Lm[x1, . . . , xn]. We write k[x1, . . . , xn]int for the ring [Rm], the ring of
internal polynomials in n variables (we emphasize, however, that the elements of
this ring are not polynomials). Given a sequence of ideals (am ⊆ Rm)m∈N, we get
the internal ideal [am] in k[x1, . . . , xn]int.

We have an embedding k[x1, . . . , xn] ↪→ k[x1, . . . , xn]int. Its image consists of
those g = [gm] ∈ k[x1, . . . , xn]int for which there is d ∈ N such that deg(gm) ≤ d
for almost all m (in this case we say that g has bounded degree). We say that an
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ideal b ⊆ k[x1, . . . , xn]int is generated in bounded degree if it is generated by an
ideal in k[x1, . . . , xn] (in which case b is automatically an internal ideal). Given an
ideal a in k[x1, . . . , xn], we put aint := a · k[x1, . . . , xn]int.

The connection between k[x1, . . . , xn] and k[x1, . . . , xn]int is studied in [van den
Dries and Schmidt 1984]. In particular:

Theorem 3.1 [van den Dries and Schmidt 1984, Theorem 1.1]. The extension
k[x1, . . . , xn] ↪→ k[x1, . . . , xn]int is faithfully flat. In particular, given any ideal a

in k[x1, . . . , xn], we have aint ∩ k[x1, . . . , xn] = a.

It follows from the theorem that ideals of k[x1, . . . , xn]int generated in bounded
degree are in order-preserving bijection with the ideals in k[x1, . . . , xn]. Fur-
thermore, note that every such ideal of k[x1, . . . , xn]int is of the form [am] for a
sequence (am)m∈N that is generated in bounded degree, that is, such that for some
d , am ⊆ Lm[x1, . . . , xn] is generated by polynomials of degree less than or equal to
d for almost all m. Of course, we have [am] = [bm] if and only am = bm for almost
all m. Given such a sequence (am)m∈N, we call [am] ∩ k[x1, . . . , xn] the ideal of
polynomials corresponding to the sequence.

Our next goal is to describe how to associate to a geometric object over k a
sequence of corresponding objects over each of Lm (in fact, an equivalence class
of such sequences). Given a separated scheme X of finite type over k, we will
associate to it an internal scheme [Xm], by which we mean the following: we have
schemes Xm of finite type over Lm for almost all m; furthermore, two such symbols
[Xm] and [Ym] define the same equivalence class if Xm = Ym for almost all m. An
internal morphism [ fm] : [Xm] → [Ym] between internal schemes consists of an
equivalence class of sequences of morphisms of schemes fm : Xm→ Ym (defined
for almost all m), where [ fm] = [gm] if fm = gm for almost all m.

We want to define a functor X→ X int from separated schemes of finite type over
k to internal schemes. We first consider the case when X is affine. In this case let
us choose a closed embedding X ↪→AN

k , defined by the ideal a⊆ k[x1, . . . , xN ]. If
aint = [am], then we take Xm to be defined in AN

Lm
by am . Note that X int := [Xm] is

well defined. We also put O(X)int := [Lm[x1, . . . , xN ]/am], and note that we have a
canonical ring homomorphism ηX : O(X)→ O(X)int. Suppose now that we have a
morphism f : Y→ X of affine schemes as above, and closed embeddings Y ↪→AN

k
and X ↪→ AM

k . We have a homomorphism ϕ : k[x1, . . . , xM ] → k[x1, . . . , xN ]

that induces f , and that extends to an internal morphism k[x1, . . . , xM ]int →

k[x1, . . . , xN ]int. This induces morphisms fm : Ym→ Xm for almost all m, hence
an internal morphism Yint→ X int. It is easy to see that this is independent of the
choice of the lifting ϕ and that it is functorial.

The first consequence is that if we replace X ↪→ AN
k by a different embedding

X ↪→AM
k , then the two internal schemes that we obtain are canonically isomorphic.
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We use this to extend the above definition to the case when X is not necessarily
affine, as follows. Note first that if Lm is an algebraic closure of Lm , and if k=[Lm],
then k is an algebraically closed field containing k, and for every affine X as above,
with X int = [Xm], we have a natural bijection of sets X (k)' [Xm(Lm)].

Lemma 3.2. Let X be an affine scheme as above, U ⊂ X an affine open subset,
and write X int = [Xm] and Uint = [Um].

(i) The induced maps Um→ Xm are open immersions for almost all m.

(ii) If X =U1 ∪ · · · ∪Ur is an affine open cover, and (Ui )int = [Ui,m] for every i ,
then Xm =U1,m ∪ · · · ∪Ur,m for almost all m.

Proof. The first assertion is clear in the case when U is a principal affine open subset
corresponding to f ∈ O(X): if the image of f in O(X)int is [ fm], then for almost
all m we have that Um is the principal affine open subset of Xm corresponding to
Um . The assertion in (ii) is clear, too, when all Ui are principal affine open subsets
in X : once we know that the Ui,m are open in Xm , to get the assertion we want it is
enough to look at the k-valued points of X .

We now obtain the assertion in (i) in general, since we may cover U by finitely
many principal affine open subsets in X (hence also in U ). We then deduce (ii) in
general from (i) by considering the k-valued points of X . �

Given any scheme X , separated and of finite type over k, consider an affine
open cover X = U1 ∪ · · · ∪Ur , and let (Ui )int = [Ui,m]. The intersection Ui ∩U j

is affine and open in both Ui and U j , hence by Lemma 3.2, Ui,m ∩U j,m is affine
and open in both Ui,m and U j,m for almost all m. We get Xm by gluing, for all i
and j , the open subsets Ui,m and U j,m along (Ui ∩U j )m , and put X int = [Xm]. It
is straightforward to check that X int is independent of the choice of cover (up to a
canonical isomorphism). Similarly, given a morphism of schemes f : Y → X we
get an internal morphism fint = [ fm] : Yint→ X int by gluing the internal morphisms
obtained by restricting f to suitable affine open subsets. Therefore we have a
functor from the category of separated schemes of finite type over k to the category
of internal schemes and internal morphisms. This has the property that given
Lm-algebras Am for almost all m, if A = [Am], then we have a natural bijection
of sets

Hom(Spec A, X)' [Hom(Spec Am, Xm)], (6)

where X int = [Xm]. In particular, we have a bijection X (k)' [Xm(Lm)].
We do not attempt to give a comprehensive account of the properties of this

construction, but list in the following proposition a few that we will need.

Proposition 3.3. Let X and Y be separated schemes of finite type over k, and
X int = [Xm] and Yint = [Ym] the corresponding internal schemes.
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(i) For every affine open subset U of X , the ring homomorphism

ηU : OX (U )→ OX (U )int

is faithfully flat.

(ii) X is reduced or integral if and only if Xm has the same property for almost
all m.

(iii) The internal scheme corresponding to X × Y is [Xm × Ym].

(iv) If f : Y → X is an open or closed immersion, then the induced morphisms
fm : Ym→ Xm have the same property for almost all m. In particular, Xm is
separated for almost all m.

(v) If X (1), . . . , X (r) are the irreducible components of X , and X (i)
int = [X

(i)
m ], then

X (1)
m , . . . , X (r)

m are the irreducible components of Xm for almost all m.

(vi) If X is affine and f : Y → X is a projective morphism, then fm : Ym→ Xm is
projective for almost all m.

(vii) If dim(X)= d , then dim(Xm)= d for almost all m.

Proof. The assertion in (i) follows from definition and Theorem 3.1. The assertions
in (ii) follow from definition and the fact that if a is an ideal in k[x1, . . . , xN ], then
a is prime or radical if and only if a · k[x1, . . . , xn]int has the same property; see
[van den Dries and Schmidt 1984, Theorem 2.5, Corollary 2.7]. Properties (iii) and
(iv) are easy consequences of the definition (note that we have already checked the
assertion regarding open immersions when both X and Y are affine). The second
assertion in (iv) follows from the fact that the diagonal map X→ X × X being a
closed immersion implies that Xm→ Xm × Xm is a closed immersion for almost
all m. We obtain (v) from (ii), (iv), and the fact that X (1)

m , . . . , X (r)
m cover Xm for

almost all m. This follows by computing the k-points of X , and using (6).
In order to prove (vi), note that (PN

k )int ' [P
N
Lm
]. Therefore a closed embedding

ι : Y ↪→ X ×PN
k induces by (iii) and (iv) closed embeddings ιm : Ym ↪→ Xm ×PN

Lm

for almost all m.
We prove (vii) by induction on dim(X). Using (v), we reduce to the case when

X is irreducible. After replacing X by Xred, we see that we may assume, in fact,
that X is integral, hence by (ii), for almost all m we have Xm integral. It is enough
to prove the assertion for an affine open subset U of X , hence we may assume that
X = Spec A is affine, and let us write Xm = Spec Am . If f ∈ O(X) is nonzero, then
dim(A/( f )) = dim(A)− 1. Let [ fm] = ηX ( f ) ∈ O(X)int, hence for almost all m
we have fm 6= 0 and dim(Am/( fm)) = dim(Am)− 1. Since the internal scheme
corresponding to Spec A/( f ) is [Spec Am/( fm)], we conclude by induction. �
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Remark 3.4. We emphasize that to an arbitrary internal scheme [Xm] we do not
associate a scheme over k. In order to illustrate the problems that arise when trying
to do this, consider the following two examples.

1) Let Xm = Spec(Rm), where Rm = Lm[x1, . . . , xm].

2) Let Ym be the closed subscheme of Spec(Lm[x, y]) defined by ( fm), where
fm = x2

+ ym .

The only reasonable schemes to associate to [Xm] and [Ym] are X =Spec([Rm]) and
Y = Spec(k[x, y]int/( f )), respectively, where f = [ fm] = x2

+ yω, with ω being
the nonstandard integer corresponding to (1, 2, 3, . . . ). In this case, the internal
k-valued points of X and Y are in natural bijection with [Xm(Lm)] and [Ym(Lm)],
respectively. However, since both X and Y are far from being of finite type over k,
we will not further consider such general constructions.

Suppose now that X is a scheme over k as above, and F is a coherent sheaf on X .
If X int = [Xm], we define an internal coherent sheaf on [Xm] to be a symbol [Fm],
where Fm is defined for almost all m and is a coherent sheaf of Xm . Furthermore,
two such symbols [Fm] and [F′m] are identified precisely when Fm =F′m for almost
all m. A morphism of internal coherent sheaves is defined in a similar way, and we
get an abelian category consisting of internal coherent sheaves on [Xm].

We now define a functor F→ Fint from the category of coherent sheaves on X
to that of internal coherent sheaves on X int. Given an affine open subset U of X and
the corresponding internal scheme Uint = [Um], we consider the OX (U )int-module
TU := F(U )⊗OX (U ) OX (U )int. We claim that this is equal to [Mm] for suitable
OXm (Um)-modules Mm . Indeed, this follows by considering a finite free presentation

OX (U )⊕r ϕ
→ OX (U )⊕s

→ F(U )→ 0.

If ϕ is defined by a matrix (ai, j )i, j and if we write ηU (ai, j )= [ai, j,m], then we may
take each Mm to be the cokernel of the map OXm (Um)

⊕r
→ OXm (Um)

⊕s defined
by the matrix (ai, j,m)i, j . We put Fm(U )= Mm for almost all m. It is now easy to
see that the Fm(U ) glue together for almost all m to give coherent sheaves Fm on
Xm . Therefore we get an internal coherent sheaf Fint on X int. Given a morphism
of coherent sheaves on X , we clearly get a corresponding morphism of internal
coherent sheaves. It follows from definition and Proposition 3.3 (i) that this functor
is exact in a strong sense: a bounded complex of coherent sheaves on X is acyclic
if and only if the corresponding complexes of coherent sheaves on Xm are acyclic
for almost all m. Note also that the functor is compatible with tensor product:
if Fint = [Fm] and Gint = [Gm], then (F⊗OX G)int is canonically isomorphic to
[Fm ⊗OXm

Gm]. We collect in the following proposition a few other properties of
this functor that we will need.
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Proposition 3.5. Let X be a separated scheme of finite type over k, and F a
coherent sheaf on X. Consider X int = [Xm] and Fint = [Fm].

(i) F is locally free of rank r if and only if Fm has the same property for almost
all m.

(ii) If F is an ideal in OX defining the closed subscheme Z of X , and Z int = [Zm],
then Fm is (isomorphic to) the ideal defining Zm in Xm for almost all m.

(iii) If f : Y → X is a morphism of schemes as above, and fint = [ fm], then we
have a canonical isomorphism f ∗(F)int ' [ f ∗m(Fm)].

(iv) If g : Y → X is a projective morphism of schemes as above, and gint =

[gm] : [Ym] → [Xm], then for every i ≥ 0 we have a canonical isomorphism

Ri f∗(F)int ' [Ri ( fm)∗(Fm)].

(v) If f is as in (iv), X is affine, and F is a line bundle on X that is (very) ample
over X , then Fm is (very) ample over Xm for almost all m.

Proof. The first assertion follows from Proposition 3.3 (i) and the fact that given
a faithfully flat ring homomorphism A→ B, a finitely generated A-module M is
locally free of rank r if and only if the B-module M ⊗A B is locally free of rank
r . Assertion (ii) is an immediate consequence of the definitions. In order to prove
(iii) it is enough to consider the case when both X and Y are affine. In this case the
assertion follows from the natural isomorphism [Mm]⊗[Am ] [Bm] ' [Mm ⊗Am Bm]

whenever Am→ Bm are ring homomorphisms and the Mm are finitely generated
Am-modules.

Let us now prove (iv). Suppose first that X is affine. The first step is to construct
canonical morphisms

H i (Y,F)int→ [H i (Ym,Fm)]. (7)

This can be done by computing the cohomology as Čech cohomology with respect
to a finite affine open cover of Y , and the corresponding affine open covers of Ym

(and by checking that the definition is independent of the cover). It is enough to
prove that the maps (7) are isomorphisms: if X is not affine, then we simply glue
the corresponding isomorphisms over a suitable affine open cover of X . Since
Y is isomorphic to a closed subscheme of some X × PN

k , it is enough to prove
that the morphisms (7) are isomorphisms when Y = PN

X . Explicit computation
of cohomology implies that (7) is an isomorphism when F = OPN

X
(`) (note that

OPN
X
(`)int ' [OPN

Xm
(`)]).

We now prove that (7) is an isomorphism by descending induction on i , the case
i > N being trivial. Given any F, there is an exact sequence

0→ G→ OPN
X
(`)⊕r

→ F→ 0,
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for some ` and r . We use the induction hypothesis, the long exact sequence in
cohomology and the 5-lemma to show first that (7) is surjective for all F. Applying
this for G, we then conclude that (7) is also injective for all F. This completes the
proof of (iv). The assertion in (v) follows using (iii) and Proposition 3.3 (iv), from
the fact that if Y =PN

X and F= OY (1), then Ym 'PN
Xm

and Fm ' OYm (1) for almost
all m. �

We will need the following uniform version of asymptotic Serre vanishing; see
also [Schoutens 2005, Corollary 2.16].

Corollary 3.6. Let f : Y → X be a projective morphism of schemes over k as
above, with X affine. If F is a coherent sheaf on Y and L is a line bundle on Y that
is ample over X and such that H i (Y,F⊗L j )= 0 for all i ≥ 1 and all j ≥ j0, then
for almost all m we have H i (Ym,Fm ⊗L

j
m) = 0 for all i ≥ 1 and j ≥ j0, where

Yint = [Ym], Fint = [Fm], and Lint = [Lm].

Proof. Note first that we may assume that L is very ample. Indeed, if N is such that
LN is very ample, then we may apply the very ample case to the line bundle LN and
to the sheaves F,F⊗L, . . . ,F⊗LN−1 to obtain the assertion in the corollary. Let
r = dim(Y ). It follows from Proposition 3.5 (iv) that if i ≥ 1 and j ≥ j0 are fixed,
then H i (Ym,Fm⊗L

j
m)= 0 for almost all m. In particular, for almost all m we have

H i (Ym,Fm⊗L
j
m)= 0 for 1≤ i ≤ dim(Ym)= r and j0 ≤ j ≤ j0+r −1. For every

such m, it follows that Fm is ( j0+r)-regular in the sense of Castelnuovo–Mumford
regularity, hence H i (Ym,Fm ⊗L

j
m) = 0 for every i ≥ 1 and j ≥ j0 + r − i ; see

[Lazarsfeld 2004, Chapter 1.8.A]. This completes the proof of the corollary. �

Proposition 3.7. If X is a separated scheme of finite type over k and X int = [Xm],
then there is a canonical isomorphism (�X/k)int ' [�Xm/Lm ]. In particular, X is
smooth of pure dimension n if and only if Xm is smooth of pure dimension n for
almost all m.

Proof. It is enough to give a canonical isomorphism (�X/k)int = [�Xm/Lm ] when
X is affine. Note that we have such an isomorphism when X = AN

k . In general,
if X is a closed subscheme of AN

k defined by the ideal a, the sheaf �X/k is the
cokernel of a morphism a/a2

→�AN
k
|X . If a= [am], then for almost all m we have

an analogous description of each �Xm/Lm in terms of the embedding Xm ↪→ AN
Lm

given by am . Therefore we obtain the desired isomorphism, and one can then check
that this is independent of the embedding.

Recall that X is smooth of pure dimension n if and only if dim(X)= n and �X/k

is locally free of rank n. The second assertion in the proposition now follows from
the first one, together with Proposition 3.3 (vii) and Proposition 3.5 (i). �

Suppose that X is a smooth scheme over k as above, and D=a1 D(1)
+· · ·+ar D(r)

is a divisor on X . It follows from Proposition 3.3 (ii), (vii) that if D(i)
int = [D

(i)
m ],
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then D(i)
m is a prime divisor on Xm for almost all m. For all such m we put

Dm = a1 D(1)
m + · · ·+ ar D(r)

m .

Remark 3.8. Note that in the case when D is effective, and thus can be considered
as a subscheme of X , the above convention is compatible with our previous definition
via Dint = [Dm]. Indeed, if we define the Dm via the latter formula, then it follows
from definition that since D is locally defined by one nonzero element, the same
holds for Dm for almost all m. Furthermore, Proposition 3.3 (v) implies that
D(1)

m , . . . , D(r)
m are the irreducible components of Dm for almost all m. We also see

that the coefficient of D(i)
m in Dm is equal to ai for almost all m: this follows from

the fact that this coefficient is the largest nonnegative integer di such that di D(i)
m is

a subscheme of Dm .

We thus see that for every divisor D, we have O(D)int = [O(Dm)]. Indeed, when
−D is effective, this follows from the above remark and Proposition 3.5 (ii). The
general case follows easily by reducing to the case when X is affine, and replacing
D by D+ div( f ) for a suitable f ∈ O(X) such that −D− div( f ) is effective.

Proposition 3.9. Let X be a smooth, separated scheme over k, and D =
∑N

i=1 D(i)

an effective divisor on X , with simple normal crossings, where the D(i) are distinct
prime divisors. If X int = [Xm] and Dint = [Dm], then Dm has simple normal
crossings for almost all m.

Proof. Note that Xm is smooth over Lm for almost all m by Proposition 3.7. Since
D has simple normal crossings, for every r and every 1 ≤ i1 < · · · < ir ≤ N the
subscheme D(i1) ∩ · · · ∩ D(ir ) is smooth over k (possibly empty). It follows from
definition that we have

(D(i1) ∩ · · · ∩ D(ir ))int = [D(i1)
m ∩ · · · ∩ D(ir )

m ],

hence D(i1)
m ∩· · ·∩D(ir )

m is smooth over Lm for almost all m, by another application
of Proposition 3.7. Thus Dm has simple normal crossings for almost all m. �

4. Limits of F-pure thresholds

The following is our main result. As we will see, it easily implies the theorem
stated in Section 1.

Theorem 4.1. Let (Lm)m∈N be a sequence of fields of positive characteristic such
that limm→∞ char(Lm)=∞. We fix a nonprincipal ultrafilter on N, and let k=[Lm].
If am ⊆ Lm[x1, . . . , xn] are nonzero ideals generated in bounded degree, and if
a ⊆ k[x1, . . . , xn] is the ideal of polynomials corresponding to (am)m≥1, then for
every λ ∈ R≥0 we have

J(aλ)int = [τ(a
λ
m)].
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Corollary 4.2. If (am)m∈N and a are as in the above theorem, and am vanishes at
the origin for almost all m, then

lct0(a)= sh([fpt0(am)]).

Proof. Note first that since am ⊆ (x1, . . . , xn)Lm[x1, . . . , xn] for almost all m, we
have a⊆ (x1, . . . , xn)k[x1, . . . , xn]. By definition, we have

lct0(a)=min{λ ∈ R≥0 | J(a
λ)⊆ (x1, . . . , xn)}.

Since J(aλ) ⊆ (x1, . . . , xn) if and only if J(aλ)int ⊆ (x1, . . . , xn)int, it follows
from Theorem 4.1 that this is the case if and only if τ(aλm) ⊆ (x1, . . . , xn) for
almost all m. This is further equivalent to λ ≥ fpt0(am) for almost all m. We
conclude that lct0(a) ≥ fpt0(am) for almost all m. In addition, for every ε ∈ R>0,
we have J(alct0(a)−ε)int 6⊆ (x1, . . . , xn)int, and using again Theorem 4.1 we deduce
that τ(alct0(a)−ε

m ) 6⊆ (x1, . . . , xn) for almost all m. By definition, this means that
fpt0(am)≥ lct0(a)−ε for almost all m. This proves the assertion in the corollary. �

The result stated in Section 1 is an easy consequence of the above corollary.

Proof of Theorem 1.1. Suppose first that we have a sequence (cm)m∈N with
cm ∈ F(pm)n for all m, and such that limm→∞ pm =∞ and c = limm→∞ cm . We
need to show that c ∈Ln . By Proposition 2.5, we may assume that there are alge-
braically closed fields Lm of characteristic pm , and ideals am ⊆ Lm[x1, . . . , xn] van-
ishing at the origin, such that cm= fpt0(am). For every d , let a(d)m =am+(x1, . . . , xn)

d.
It follows from Proposition 2.3 that |fpt0(am)− fpt0(a

(d)
m )| ≤ n

d .
Let U be a nonprincipal ultrafilter on N. We put k = [Lm], and for every d, we

denote by a(d) ⊆ k[x1, . . . , xn] the ideal of polynomials associated to the sequence
of ideals generated in bounded degree (a(d)m )m∈N. Given any ε ∈ R>0, let d � 0
be such that n

d < ε. By Corollary 4.2, we have |fpt0(a
(d)
m )− lct0(a(d))|< ε− n

d for
almost all m. Therefore |fpt0(am)− lct0(a(d))|< ε for infinitely many m. Since this
holds for every ε ∈R>0, we conclude that c lies in the closure of {lct0(a(d)) | d ≥ 1}.
As we have mentioned in Section 2A, Ln is closed, hence c ∈ Ln .

In order to prove the converse, let us consider c ∈Ln . Consider a sequence of
prime integers (pm)m∈N with limit infinity, and let Lm be an algebraically closed
field of characteristic pm . We fix, as above, a nonprincipal ultrafilter on N, and let
k = [Lm]. As pointed out in Section 2A, since k is algebraically closed, we can
find an ideal b ⊂ k[x1, . . . , xn] vanishing at the origin, such that c = lct0(b). Let
us write bint = [bm]. It follows from Corollary 4.2 that c is the limit of a suitable
subsequence of (fpt0(bm))m∈N. This completes the proof of the theorem. Note that
the second implication also follows from the results of [Hara and Yoshida 2003]
discussed in the introduction. �
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Before giving the proof of Theorem 4.1, we describe the approach from [Hara
and Yoshida 2003] for proving the equality of multiplier ideals with test ideals in a
fixed positive characteristic. The main ingredients are due independently to Hara
[1998] and Mehta and Srinivas [1997]. We simplify somewhat the approach in
[Hara and Yoshida 2003], avoiding the use of local cohomology, which is important
in our nonlocal setting.

Suppose that L is a perfect field of positive characteristic p, and W is a smooth, ir-
reducible, n-dimensional affine scheme over L . We consider a nonzero ideal b on W ,
and suppose that we have given a log resolution π : W̃→W of b. Let Z be the effec-
tive divisor on W̃ such that b̃ :=b·OW̃ =OW̃ (−Z), and let E= E1+· · ·+EN be a sim-
ple normal crossings divisor on W̃ such that both KW̃/W and Z are supported on E .
For every λ≥0, we put J(bλ)=π∗OW̃ (KW̃/W−bλZc) (it is irrelevant for us whether
this is independent of the given resolution). In this setting, it is shown in [Hara and
Yoshida 2003] that the test ideals are always contained in the multiplier ideals.

Proposition 4.3. With the above notation, we have τ(bλ)⊆ J(bλ) for all λ ∈ R≥0.

Proof. We give a proof using the description of test ideals at the end of Section 2,
since the approach will be relevant also when considering the reverse inclusion. We
show that

(bm)[1/pe
]
⊆ J(bm/pe

) (8)

for every m ≥ 0 and e ≥ 1. This is enough: given λ ∈ R≥0, we have for e� 0

τ(bλ)= (bdλpe
e)[1/pe

]
⊆ J(bdλpe

e/pe
)= J(bλ).

Note that the last equality follows from the fact that 0≤ (dλpe
e/pe)− λ� 1 for

e� 0.
The commutative diagram (5) induces a commutative diagram

Fe
∗
(ωW )

te
W

−−−→ ωW

η=Fe
∗ (ρ)

y yρ
Fe
∗
π∗(ωW̃ )

π∗(te
W̃
)

−−−→ π∗(ωW̃ ),

(9)

where the vertical maps are isomorphisms. Note that te
W̃

induces a (surjective) map
Fe
∗
(ωW̃ (−m Z))→ ωW̃ (−b(m/pe)Zc), and thus a map

Fe
∗
π∗(ωW̃ (−m Z))→ π∗

(
ωW̃

(
−

⌊ m
pe Z

⌋))
.

Since

(bm)[1/pe
]ωW = te

W (F
e
∗
(bmωW ))
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and η(Fe
∗
(bmωW ))⊆ Fe

∗
π∗(ωW̃ (−m Z)), while

ρ−1
(
π∗

(
ωW̃

(
−

⌊ m
pe Z

⌋)))
= J

(
bm/pe)

ωW ,

we see that (8) follows from the fact that te
W Fe
∗
(bmωW ) = (b

m)[1/pe
]ωW and the

commutativity of (9). �

We now explain a criterion for the reverse inclusion J(bλ)⊆ τ(bλ) to hold. We
start with the following proposition.

Proposition 4.4. Suppose that W̃ is a smooth, irreducible, n-dimensional variety
over the perfect field L of positive characteristic p. If E is a simple normal crossings
divisor on W̃ , and G is a Q-divisor supported on E such that −G is effective, then
the canonical morphism

0(W̃ , Fe
∗
(ωW̃ (dp

eGe)))→ 0(W̃ , ωW̃ (dGe)) (10)

is surjective for every e ≥ 1, provided that the following two conditions hold:

(A) H i (W̃ , �n−i
W̃
(log E)(−E +dp`Ge))= 0 for all i ≥ 1 and `≥ 1.

(B) H i+1(W̃ , �n−i
W̃
(log E)(−E +dp`Ge))= 0 for all i ≥ 1 and `≥ 0.

This is applied as follows. Suppose that λ ∈ R≥0 is fixed, and we have a rational
number µ>λ such that J(bλ)=J(bµ) (note that if Z =

∑
i ai Ei , then it is enough

to take µ such that µ−λ<(bλaic+1−λai )/ai for all i with ai >0). Let us consider
now a Q-divisor D on W̃ such that D is ample over W , and −D is effective.2 We
will apply the above proposition with G =µ(D− Z). We may and will assume that
dGe = d−µZe (again this condition only depends on µ and the coefficients of Z ;
since −D is effective, it is always satisfied if we replace D by εD, with 0< ε� 1).

Proposition 4.5. With the above notation, if (10) is surjective for every e ≥ 1, then
J(bλ)⊆ τ(bλ).

Proof. We use again the commutative diagram (9). This induces a commutative
diagram

Fe
∗
π∗(ωW̃ (dp

eGe))
π∗(te

W̃
)

−−−→ π∗(ωW̃ (dGe))= π∗(ωW̃ (−bµZc))

η−1

y yρ−1

Fe
∗
ωW

te
W

−−−→ ωW

(11)

in which the top horizontal map is surjective by assumption (recall that W is affine),
and the image of the right vertical map is J(bµ)ωW . The image of the left vertical

2Such a divisor always exists: if we express W̃ as the blow-up of W along a suitable ideal, then
we may take D to be the negative of the exceptional divisor.
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map can be written as Fe
∗
(JeωW ), where Je = π∗OW̃ (KW̃/W + dp

eGe), and we
deduce from the commutativity of (11) that

J(bµ)⊆ J [1/pe
]

e .

By Lemma 4.6 below, there is r such that J(bm) ⊆ bm−r for every m ≥ r . Since
−D is effective, by letting e� 0, we get

Je = π∗OW̃ (KW̃/W −bp
eµ(Z − D)c)⊆ J

(
bµpe)

⊆ bbµpe
c−r ,

and therefore

J(bλ)= J(bµ)⊆
(
bbµpe

c−r)[1/pe
]
⊆ τ

(
b
bµpe
c−r

pe
)
⊆ τ(bλ),

since lime→∞(bµpe
c− r)/pe

= µ > λ. This completes the proof. �

Lemma 4.6. With the above notation, there is r such that J(bm)⊆ bm−r for every
integer m ≥ r .

Proof. It is enough to prove, more generally, that for every coherent sheaf F on W̃ ,
the graded module M := ⊕m≥00(W̃ ,F(−m Z)) is finitely generated over the Rees
algebra S := ⊕m≥0b

m . We may factor π as

W̃
g
−→ B

f
−→W,

where B is the normalized blow-up of W along b (that is, B = Proj(S′), where S′

is the normalization of S). The line bundle b ·OB = OB(−T ) is ample over W , and
using the projection formula we see that M =⊕m≥00(B, π∗(F)⊗OB(−mT )) is
finitely generated over S′ =⊕m≥00(B,OB(−mT )). Since S′ is a finite S-algebra,
it follows that M is a finitely generated S-module. �

We recall, for completeness, the proof of Proposition 4.4, which makes use of the
de Rham complex �•

W̃
(log(E)) with log poles along the simple normal crossings

divisor E . Note that while this complex does not have OW̃ -linear differentials,
its Frobenius push-forward F∗�•W̃ (log(E)) does have this property. In particular,
we may tensor this complex with line bundles. If L is a line bundle, then by the
projection formula we have

(F∗�i
W̃ (log E))⊗L' F∗(�i

W̃ (log E)⊗Lp).

The following facts are the key ingredients in the proof of Proposition 4.4.

(1) The Cartier isomorphism: There is a canonical isomorphism (see [Deligne and
Illusie 1987, Theorem 1.2])

C−1
: �i

W̃ (log E)'Hi F∗(�•W̃ (log E)).
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(2) Insensitivity to small effective twists: Suppose that B is an effective divisor
supported on E , with all coefficients less than p. We have a twisted de
Rham complex with log poles �•

W̃
(log E)(B) (it is enough to check that the

differential of the de Rham complex of meromorphic differential forms on X
preserves these subsheaves). In this case, the natural inclusion

�•W̃ (log E) ↪→�•W̃ (log E)(B)

is a quasiisomorphism; see [Hara 1998, Lemma 3.3; Mehta and Srinivas 1997,
Corollary 4.2] for a proof. Combining this with the Cartier isomorphism, we
find

�i
W̃ (log E)'Hi (F∗(�•W̃ (log E)(B))). (12)

Proof of Proposition 4.4. Note first that it is enough to prove the case e = 1.
Indeed, if αG,e is the morphism (10), we see that αG,e = αG,1◦αpG,1◦· · ·◦αpe−1G,1,
and the hypothesis implies that we may apply the condition for e = 1 to each of
G, pG, . . . , pe−1G. Therefore from now on we assume that e= 1 (and in this case
we will only need condition (A) for `= 1 and condition (B) for `= 0).

Let

B := (p− 1)E +dpGe− pdGe = (p− 1)E + pb−Gc− b−pGc.

Since −G is effective, it follows from the second expression that B is effective,
and its coefficients are less than p. Let K • := F∗�•W̃ (log E)(−E + dpGe). By
tensoring (12) with OW̃ (−E +dGe), and using the projection formula, we get

�i
W̃ (log E)(−E +dGe)'Hi (F∗(�•W̃ (log E)(B− pE + pdGe)))=Hi (K •).

Note that the morphism αG,1 is identified to 0(W̃ , K n)→ 0(W̃ ,Hn(K •)). It is
then straightforward to show, by breaking K • into short exact sequences, and using
the corresponding long exact sequences for cohomology, that αG,1 is surjective if
H i (W̃ , K n−i ) = 0 and H i+1(W̃ ,Hn−i (K •)) = 0 for all i ≥ 1. By what we have
seen, these are precisely conditions (A) with `= 1 and (B) with `= 0. �

We will also make use of the following version of the Kodaira–Akizuki–Nakano
vanishing theorem (in characteristic zero).

Theorem 4.7. Let Y be a smooth, irreducible variety over a field k of characteristic
zero. If Y is projective over an affine scheme X , E is a reduced simple normal
crossings divisor on Y , and G is a Q-divisor on Y such that G−bGc is supported
on E and G is ample over X , then

H i (Y, � j
Y (log E)(−E +dGe))= 0 if i + j > dim(X).
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Proof. This is proved when char(k)= p > 0 in [Hara 1998, Corollary 3.8] under
the assumption that p> dim(X) and that both Y and E admit a lifting to the second
ring of Witt vectors W2(k) of k. The proof relies on an application of the results
from [Deligne and Illusie 1987]. It is then standard to deduce the assertion in
characteristic zero; see, for example, the proof of [ibid., Corollary 2.7]. �

We can now give the proof of our main result.

Proof of Theorem 4.1. Let pm=char(Lm). We have by hypothesis limm→∞ pm=∞,
hence char(k)= 0. In particular, there is a log resolution π : Y → X =An

k of a. We
write a ·OY = OY (−Z), and let E be a simple normal crossings divisor on Y such
that both Z and KY/X are supported on E . Let [πm] : [Ym]→ [Xm] = [A

n
Lm
] be the

corresponding morphism of internal schemes. It follows from Proposition 3.5 (iii)
that if Z int = [Zm], then am ·OYm = O(−Zm) for almost all m. On the other hand, it
is easy to deduce from Proposition 3.7 that (KY/X )int = [KYm/Xm ]. If Eint = [Em],
then Em has simple normal crossings for almost all m by Proposition 3.9, and we
conclude that πm is a log resolution of am for almost all m. Moreover, if we use πm

to define J(aλm) on Xm , then we have J(aλ)int = [J(a
λ
m)] by Proposition 3.5 (iv).

For every m such that πm gives a log resolution of am we have τ(aλm)⊆J(aλm) by
Proposition 4.3. We now choose a rational number µ> λ such that J(aλ)= J(aµ),
so that J(aλm)= J(a

µ
m) for almost all m. We also choose a Q-divisor D supported

on E such that −D is effective, D is ample over X , and dµ(D− Z)e = d−µZe.
We write G =µ(D− Z), and denote by Dm and respectively Gm the corresponding
divisors on Ym . It is clear that for almost all m the divisor −Dm is effective, Dm is
ample over Xm (see Proposition 3.3 (v)), and dGme = d−µZme. We deduce from
Propositions 4.4 and 4.5 that J(aλm)⊆ τ(a

λ
m) if the following conditions hold:

(Am) H i (Ym, �
n−i
Ym
(log Em)(−Em +dp`mGme))= 0 for all i ≥ 1 and `≥ 1.

(Bm) H i+1(Ym, �
n−i
Ym
(log Em)(−Em +dp`mGme))= 0 for all i ≥ 1 and `≥ 0.

It follows that in order to complete the proof, it is enough to show that conditions
(Am) and (Bm) hold for almost all m.

Note first that by Theorem 4.7, we have H i+1(Y, �n−i
Y (log E)(−E +dGe))= 0

for all i ≥ 0. Using Proposition 3.5 (iv), we deduce that

H i+1(Ym, �
n−i
Ym
(log Em)(−Em +dGme))= 0

for all i ≥ 0 and almost all m (since these groups vanish automatically when i ≥ n,
we only need to consider finitely many such i). This takes care of the condition
(Bm) for `= 0.

We now treat the remaining conditions. Let us fix a positive integer d such that dG
is an integral divisor. Let F1, . . . ,FM denote the sheaves �t

Y (log E)(−E+dsGe),
for integers 0≤ s ≤ d − 1 and 0≤ t ≤ n. Since dG is ample over the affine variety
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X , there is j0 such that H i (Y,Ft( jdG)) = 0 for every j ≥ j0, every i ≥ 1 and
every t ≤ M . If m is such that pm ≥ ( j0 + 1)d, and if for ` ≥ 1 we take s with
0≤ s ≤ d − 1 such that p`m ≡ s (mod d), then

dp`mGe =
p`m − s

d
(dG)+dsGe and

p`m − s
d
≥

pm − s
d
≥ j0.

We deduce from Corollary 3.6 that the vanishings in (Am) and (Bm) hold when
`≥ 1 for almost all m (note that for such m we may assume that pm ≥ ( j0+ 1)d).
This completes the proof of the theorem. �
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[Blickle et al. 2009] M. Blickle, M. Mustat,ă, and K. E. Smith, “F-thresholds of hypersurfaces”,
Trans. Amer. Math. Soc. 361:12 (2009), 6549–6565. MR 2011a:13006 Zbl 1193.13003

[Blickle et al. 2010] M. Blickle, K. Schwede, S. Takagi, and W. Zhang, “Discreteness and rationality
of F-jumping numbers on singular varieties”, Math. Ann. 347:4 (2010), 917–949. MR 2011k:13008
Zbl 1198.13007

[Deligne and Illusie 1987] P. Deligne and L. Illusie, “Relèvements modulo p2 et décomposition du
complexe de de Rham”, Invent. Math. 89:2 (1987), 247–270. MR 88j:14029 Zbl 0632.14017

[van den Dries and Schmidt 1984] L. van den Dries and K. Schmidt, “Bounds in the theory of polyno-
mial rings over fields: A nonstandard approach”, Invent. Math. 76:1 (1984), 77–91. MR 85i:12016
Zbl 0539.13011
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The semistable reduction problem for
the space of morphisms on Pn

Alon Levy

We restate the semistable reduction theorem from geometric invariant theory in
the context of spaces of morphisms from Pn to itself. For every complete curve C
downstairs, we get a Pn-bundle on an abstract curve D mapping finite-to-one onto
C , whose trivializations correspond to not necessarily complete curves upstairs
with morphisms corresponding to identifying each fiber with the morphism the
point represents. Finding a trivial bundle is equivalent to finding a complete D
upstairs mapping finite-to-one onto C ; we prove that in every space of morphisms,
there exists a curve C for which no such D exists. In the case when D exists,
we bound the degree of the map from D to C in terms of C for C rational and
contained in the stable space.

1. Introduction and the statement of the problem

The moduli spaces of dynamical systems on Pn are the spaces of morphisms, and
more generally rational maps, defined by polynomials of degree d; the case we will
study is d > 1, in which case the morphisms are not automorphisms (that is, they
do not have inverses that are morphisms). For each n and d , we write each rational
map ϕ as (ϕ0 : · · · : ϕn), so that the space is parametrized by the coefficients of the
monomials of each ϕi and is naturally isomorphic to a large projective space, PN .
By an elementary computation, N = (n + 1)

(n+d
d

)
− 1. As we will not consider

more than one of these moduli spaces at a time, there is no ambiguity in writing
just N , without explicit dependence on n and d. Thus, in the remainder of this
paper, N will invariably be used for the dimension of the moduli space of self-maps
on Pn defined by polynomials of degree d .

Within the space of rational maps, the space of morphisms is an affine open
subvariety, denoted Homn

d . The group PGL(n+ 1) acts on PN by conjugation, cor-
responding to coordinate change, that is, A maps ϕ to AϕA−1; this action preserves
Homn

d , since the property of being a morphism is independent of coordinate change.

MSC2010: primary 14L24; secondary 37P45, 37P55.
Keywords: semistable reduction, moduli space, dynamical system, GIT, geometric invariant theory.
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We study the quotient of the action using geometric invariant theory [Mumford
and Fogarty 1982]. To do this, we need to replace PGL(n + 1) with SL(n + 1),
which projects onto PGL(n+ 1) finite-to-one. Geometric invariant theory defines
stable and semistable loci for the SL(n+1)-action. To take the quotient, we need to
remove the unstable locus, defined as the complement of the semistable locus. The
quotient of Homn

d by SL(n+1) is denoted Mn
d , and parametrizes morphisms on Pn

up to coordinate change. The stable and semistable loci for the action of SL(n+ 1)
on PN are denoted by Homn,s

d and Homn,ss
d , and their quotients are denoted by Mn,s

d
and Mn,ss

d .
It is a fact that every regular map is in the stable locus. More precisely, we have

the following prior results [Silverman 1998; Petsche et al. 2009; Levy 2011]:

Theorem 1.1. Homn,s
d and Homn,ss

d are open subvarieties of PN such that Homn
d (

Homn,s
d ⊆Homn,ss

d ( PN . The middle containment is an equality if and only if n= 1
and d is even.

Theorem 1.2. The stabilizer group in PGL(n+1) of each element of Homn
d is finite

and bounded in terms of d and n.

Mn,ss
d is a proper variety, as it is the quotient of the largest semistable subspace

of PN for the action of SL(n+ 1). We make the following simplifying definition.

Definition 1.3. A rational map ϕ ∈PN is called semistable if it is in the semistable
space Homn,ss

d .

The semistable reduction theorem states the following, answering in the affirma-
tive a conjecture for P1 in [Szpiro et al. 2010]:

Theorem 1.4. If C is a complete curve with K (C) its function field, and if ϕK (C) is a
semistable rational map on Pn

K (C), then there exists a curve D mapping finite-to-one
onto C with a Pn-bundle P(E) on D with a self-map 8 such that:

(1) The restriction ϕx of 8 to the fiber of each x ∈ D is a semistable rational
self-map.

(2) 8 is a semistable map over K (D), and is equivalent to ϕK (D) under coordinate
change.

This is a classical result of geometric invariant theory; for one proof of a result
that implies it, see [Zhang 1996]. We will include the proof in Section 2, along
with other general facts about geometric invariant theory, including a description of
the stable and semistable spaces Homn,s

d and Homn,ss
d .

Theorem 1.4 leads to the natural question of which vector bundle classes can
occur for each C ⊆Mn,ss

d , and more generally, for each choice of n and d. One
interesting subquestion is whether, for every C , we can choose the bundle to be
trivial. Equivalently, given C , it asks whether we can find a proper D ⊆ Homn,ss

d
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that maps finite-to-one onto C . For most curves upstairs, the answer should be
positive, by simple dimension counting: as demonstrated in [Silverman 1998] and
[Levy 2011], the complement of Homn,ss

d has high codimension, equal to about half
of N . However, it turns out that the answer is sometimes negative, and in fact, for
every n and d , we can find a C with only nontrivial bundle classes. More precisely:

Theorem 1.5. For every n and d, there exists a curve with no trivial bundle class
satisfying semistable reduction.

Remark 1.6. An equivalent formulation for Theorem 1.5 is that for every n and d ,
we can find a curve C ⊆Mn,ss

d such that there does not exist a curve D ⊆ Homn,ss
d

mapping onto C under π .

Although most curves in Homn,ss
d can be completed, this does not imply that we

can find a nontrivial bundle on an open dense set of the Chow variety of Mn,ss
d . In

fact, as we will see in Section 5, there exist components of the Chow variety of
Mn,ss

d where, at least generically, a nontrivial bundle is required.
Our study of bundle classes now splits into two cases. In the case of curves satis-

fying semistable reduction with a trivial bundle, the reformulation of Remark 1.6,
in its positive form, means that we can study D directly as a curve in PN . We can
bound the degree of the map from D to C in terms of the stabilizer groups that
occur on D. More precisely:

Proposition 1.7. Let X be a projective variety over an algebraically closed field
with an action by a geometrically reductive linear algebraic group G. Using the
terminology of geometric invariant theory, let D be a complete curve in the stable
space X s whose quotient by G is a complete curve C ; say the map from D to C has
degree m. Suppose the stabilizer is generically finite of size h, and either D or C is
normal. Then there exists a finite subgroup SD ⊆ G, of order equal to mh, such that
for all x ∈ D and g ∈ G, gx ∈ D if and only if g ∈ SD .

Corollary 1.8. With the same notation and conditions as in Proposition 1.7, the
map from D to C is ramified precisely at points x ∈ D where the stabilizer group is
larger than h, and intersects SD in a larger subgroup than in the generic case.

If the genus of C is 0, then the only way the map from D to C could have high
degree is if it ramifies over many points; therefore, Corollary 1.8 forces the degree
to be small, at least as long as C is contained in the stable locus.

In the case of curves that only satisfy semistable reduction with a nontrivial
bundle, we do not have a description purely in terms of coordinates. Instead, we
will study which bundle classes can be attached to every curve C . The question
of which bundles occur is an invariant of C ; therefore, it is essentially an invariant
that we can use to study the scheme Hom(C,Mn,ss

d ). In the sequel, we will study
the scheme using the bundle class set and height invariants.
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For the study of which nontrivial bundle classes can occur, first observe that fixing
a D for which a bundle exists, we can apply the reformulation of Theorem 2.11 to
obtain a unique extension of ϕ locally. This can be done at every point, so it is true
globally, so we have:

Proposition 1.9. Using the notation of Theorem 1.4, the bundle class P(E) depends
only on D and its trivialization Ui , Ui ↪→ Homn,ss

d .

Note that the bundle class does not necessarily depend only on D, regarded as
an abstract curve with a map to C . The reason is that a point of D may not be
stable, which means it may correspond to one of several different orbits, whose
closures intersect. However, there are only finitely many orbits corresponding to
each point, so the bundle class depends on D up to a finite amount; if C happens to
be contained in the stable locus, then it depends only on D.

Thus we can study which bundle classes occur for a given C . We will content
ourselves with rational curves, for which there is a relatively easy description of
all projective bundles. Recall that every vector bundle over P1 splits as a direct
sum of line bundles, and that the bundle

⊕
i O(mi ) is projectively equivalent to⊕

i O(l +mi ) for all l ∈ Z. In other words, a Pn-bundle over P1 can be written as
O⊕O(m1)⊕· · ·⊕O(mn); if the mi ’s are in nondecreasing order, then the expression
uniquely determines the bundle’s class. We will show that:

Proposition 1.10. There exists a curve C for which multiple nonisomorphic bundle
classes can occur. In fact, suppose C is isomorphic to P1, and there exists U ⊆
Homn,ss

d mapping finite-to-one into C such that U is a projective curve minus a
point. Then there are always infinitely many possible classes: if the class of U is
thought of as splitting as P(E)= O⊕O(m1)⊕· · ·⊕O(mn), where mi ∈N, then for
every integer l the class O⊕O(lm1)⊕ · · ·⊕O(lmn) also occurs.

Proposition 1.10 frustrated our initial attempt to obtain an easy classification of
bundles based on curves. However, it raises multiple interesting questions instead.
First, the construction uses a rational D mapping finite-to-one onto C , and going
to higher m involves raising the degree of the map D→ C . It may turn out that
bounding the degree bounds the bundle class; we conjecture that if we fix the degree
of the map, then we obtain only finitely many bundle classes. Furthermore, in
analogy with the consequences of Corollary 1.8, we should conversely be able to
bound the degree of the map in terms of C and the bundle class, at least for rational
C .

Second, it is nontrivial to find the minimal mi ’s for which a bundle splitting as
O⊕ O(m1)⊕ · · · ⊕ O(mn) would satisfy semistable reduction; the case of n = 1
could be stated particularly simply, as the question would be about the minimal m
for which O⊕O(m) occurs.
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In Sections 3 and 4 we will illustrate Theorem 1.5: in Section 3 we will give
some examples and compute the bundle classes that occur, proving Proposition 1.10
on the way, while in Section 4 we will prove Theorem 1.5. In Section 5 we will
focus on the trivial bundle case, proving Proposition 1.7 and defining the height
function, which will impose constraints on which curves admit a trivial bundle; this
will allow us to obtain a large family of curves C in Mss

2 with no trivial bundle.

2. A description of the stable and semistable spaces

Unless another reference is given, the general geometric invariant theory results
given in this section are all from [Mumford and Fogarty 1982].

Recall that when a geometrically reductive linear algebraic group G has a linear
action on a projectivized vector space P(V ), we have:

Definition 2.1. A point x ∈ V is called semistable (resp. stable) if any of the
following equivalent conditions hold:

(1) There exists a G-invariant homogeneous section s such that s(x) 6= 0 (resp.
same condition, and the action of G on x is closed).

(2) The closure of G · x does not contain 0 (resp. G · x is closed).

(3) Every one-parameter subgroup T acts on x with both nonnegative and nonpos-
itive weights (resp. negative and positive weights).

Remark 2.2. The last condition in the definition is equivalent to having nonpositive
(resp. negative) weights. This is because if we can find a subgroup acting with only
negative weights, then we can take its inverse and obtain only positive weights.

Observe that for every nonzero scalar k, x is stable (resp. semistable) if and
only if kx is. So the same definitions of stability and semistability hold for points
of P(V ). The definitions also descend to every G-invariant projective variety
X ⊆ P(V ); in fact, in [Mumford and Fogarty 1982] they are defined for X in terms
of a G-equivariant line bundle L . When L is ample, as in the case of the space
under discussion in this paper, this reduces to the above definition.

The importance of stability is captured in the following results:

Proposition 2.3. The space of all stable points, X s , and the space of all semistable
points, X ss , are both open and G-invariant.

Theorem 2.4. There exists a quotient Y = X ss//G, called a good categorical
quotient (in the category of separated schemes), with a natural map π : X → Y ,
satisfying the following properties:

(1) π is a G-equivariant map, where G acts on Y trivially.

(2) Every G-equivariant map X → W , where G acts on W trivially, factors
through π .
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(3) π is an open submersion.

(4) π(x1)= π(x2) if and only if the closures of G · x1 and G · x2 intersect.

(5) For every open U ⊆ Y , OU = O(π−1(U ))G .

In addition, Y is proper.

Theorem 2.5. There exists a quotient Z = X s//G, called a good geometric quotient,
with a natural map π : X → Z satisfying all enumerated conditions of a good
categorial quotient, as well as the following:

(1) π(x1)= π(x2) if and only if G · x1 = G · x2.

(2) Z is naturally an open subset of X ss//G.

Theorem 2.6. On X s , the dimension of the stabilizer group StabG(x) is constant.

Returning to our case of self-maps of Pn , we write the stable and semistable
spaces for the conjugation action as Homn,s

d and Homn,ss
d . This involves a fair

amount of abuse of notation, since those two spaces are open subvarieties of PN

and in fact properly contain Homn
d , which consists only of regular maps.

In [Levy 2011] we proved the fact that Homn
d ( Homn,s

d by describing Homn,s
d

and Homn,ss
d more or less explicitly. We will recapitulate the results, which are very

technical but help us answer the question of when we can obtain a trivial bundle
class in the semistable reduction problem and when we cannot.

We use the Hilbert–Mumford criterion, the last condition in Definition 2.1.
In more explicit terms, the criterion for semistability (resp. stability) states that
for every one-parameter subgroup T ≤ SL(n + 1), the action of T on ϕ can be
diagonalized with eigenvalues taI and at least one aI is nonpositive (resp. negative).
Now, assume by conjugation that this one-parameter subgroup is in fact diagonal,
with diagonal entries ta0, . . . , tan , and that a0 ≥ · · · ≥ an; we may also assume that
the ai ’s are coprime, as dividing throughout by a common factor would not change
the underlying group. Note also that a0+· · ·+an = 0. Our task is made easy by the
fact that our standard coordinates for AN+1 are the monomials, on which T already
acts diagonally. Throughout this analysis, we fix a = (a0, . . . , an), and similarly
for x and d.

Now, T acts on the xd0
0 . . . xdn

n monomial of the i-th polynomial, ϕi , with weight
ai−a·d. A map ϕ ∈PN is unstable (resp. not stable) if and only if, after conjugation,
there exists a choice of ai ’s such that whenever the xd-coefficient of ϕi satisfies
a · d ≤ ai (resp. <), it is equal to zero.

Remark 2.7. While in principle there are infinitely many possible T ’s, parametrized
by a hyperplane in Pn(Q), in practice there are up to conjugation only finitely many.
This is because each diagonal T imposes conditions of the form “the xd-coefficient
of ϕi is zero,” and there are only finitely many such conditions. Thus the stable and
semistable spaces are indeed open in PN .
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Remark 2.8. The conjugation conditions we have chosen for T are such that the
conditions they impose for ϕ to be unstable (or merely not stable) are the most
stringent on ϕn and least stringent on ϕ0, and are the most stringent on monomials
with high x0-degrees and least stringent on monomials with high xn-degrees.

If n = 1, we have a simpler description:

Theorem 2.9 [Silverman 1998]. ϕ ∈ PN is unstable (resp. not stable) if and only if
it is equivalent under coordinate change to a map

x 7→
a0xd
+ · · ·+ ad yd

b0xd + · · ·+ bd yd ,

such that:

(1) ai = 0 for all i ≤ (d − 1)/2 (resp. <).

(2) bi = 0 for all i ≤ (d + 1)/2 (resp. <).

The description for n = 1 can be thought of as giving a dynamical criterion for
stability and semistability. A point ϕ ∈ PN is unstable if there exists a point x ∈ P1

where ϕ has a bad point of degree more than (d + 1)/2, or ϕ has a bad point of
degree more than (d− 1)/2 where it in addition has a fixed point. Following Rahul
Pandharipande’s unpublished reinterpretation of [Silverman 1998], we define “bad
point” as a vertical component of the graph 0ϕ ⊆ P1

×P1, and “fixed point” as a
fixed point of the unique nonvertical component of 0ϕ . When n = 1, d = 2, this
condition reduces to having a fixed point at a bad point, or alternatively, a repeated
bad point.

The conditions for higher n are not as geometric. However, if we interpret fixed
points liberally enough, there are still strong parallels with the n = 1 case. One
can show that the unstable space for n = 2 and d = 2 consists of two irreducible
components, which roughly generalize the n = 1, d = 2 condition of having a fixed
point at a bad point; in this case, one needs to define a limit of the value of ϕ(x)
as x approaches the bad point, though this limit can be defined purely in terms of
degrees of polynomials, without needing to resort to a specific metric on the base
field.

Finally, let us prove semistable reduction. Let us restate Theorem 1.4:

Theorem 2.10. If C is a complete curve with K (C) its function field, and if ϕK (C)

is a semistable rational map on Pn
K (C), then there exists a curve D mapping finite-

to-one onto C with a Pn-bundle P(E) on D with a self-map 8 such that:

(1) The restriction ϕx of 8 to the fiber of each x ∈ D is a semistable rational
self-map.

(2) 8 is a semistable map over K (D), and is equivalent to ϕK (D) under coordinate
change.
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Semistable reduction can be thought of as extending a rational map defined over
a field K to a rational map defined over a discrete valuation ring R whose fraction
field is K , in a way that is not too degenerate. The reason a discrete valuation
ring suffices is that once we know we can extend to a discrete valuation ring, we
can extend to some larger integral domain. In other words, it suffices to show the
following, more general statement:

Theorem 2.11. Let G be a geometrically reductive group acting on a projective
variety X whose stable and semistable spaces are X s and X ss , respectively. Let R
be a discrete valuation ring with fraction field K , and let xK ∈ X s

K . Then for some
finite extension K ′ of K , with R′ the integral closure of R in K ′, xK has an integral
model over R′ with semistable reduction modulo the maximal ideal. In other words,
we can find some A ∈ G(K ) such that A · xK has semistable reduction. If xK ∈ X ss

K ,
then the same result is true, except that xR′ could be an integral model for some x ′K ′
mapping to the same point of X ss//G such that x ′K ′ /∈ G · xK .

Proof. We follow the method used in [Zhang 1996]. Let C be the Zariski closure
of xK in X ss

R //G, and reduce it modulo the maximal ideal to obtain xk , where
k is the residue field of R. Observe that C is a one-dimensional subscheme of
X ss

R //G and is isomorphic to Spec R, and is as a result connected. Since G is
connected, the preimage π−1(C) is also connected: when xK is stable, this follows
from the fact that π−1(C) is the Zariski closure of G · xK in X ss , and even when it
is not, π−1(C) is the union of connected orbits whose closures intersect. Further,
since π−1(C) surjects onto C , we can find an integral one-dimensional subscheme
mapping surjectively to C . This subscheme necessarily maps finite-to-one onto C
by dimension counting, so it is isomorphic to some finite extension ring R′, giving
us K ′ as its fraction field. �

Remark 2.12. Theorem 2.11 can also be proven in a much more explicit way,
producing for each ϕK ∈ Homn,ss

d a sequence of A’s conjugating it to a model with
semistable reduction.

Remark 2.13. Szpiro et al. [2010] study semistable reduction for the moduli space
of self-maps of P1 and raise a conjecture that Theorems 1.4 and 2.11 answer in the
affirmative.

3. Examples of nontrivial bundles

In the case n = 1, we follow [Silverman 1998] and write Ratd for Hom1
d and Md

for M1
d . The space Rat2 and its quotient M2 have been analyzed with more success

than the larger spaces, yielding the following prior structure result:
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Theorem 3.1 [Milnor 2006; Silverman 1998]. M2 =A2; Ms
2 =Mss

2 =P2. The first
two elementary symmetric polynomials in the multipliers of the fixed points realize
both isomorphisms.

Recall that within PN
= P5, a map (a0x2

+a1xy+a2 y2)/(b0x2
+b1xy+b2 y2)

is unstable if and only if it is in the closure of the PGL(2)-orbit of the subvariety
a0 = b0 = b1 = 0. In other words, it is unstable if and only if there the map is
degenerate and has a double bad point, or a fixed point at a bad point.

Definition 3.2. A map on P1 is a polynomial if and only if there exists a totally
invariant fixed point. Taking such a point to infinity turns the map into a polynomial
in the ordinary sense. In Ratd , or generally in PN

= P2d+1, a map is polynomial
if and only if it is in the closure of the PGL(2)-orbit of the subvariety defined by
zeros in all coefficients in the denominator except the yd -coefficient.

Remark 3.3. A totally invariant fixed point is not necessarily a totally fixed point.
A totally invariant fixed point is one that is totally ramified. A totally fixed point is
the root of the fixed point polynomial when it is unique, that is, when the polynomial
is a power of a linear term. In fact by an easy computation, a map has a totally
invariant, totally fixed point x if and only if it is degenerate linear with bad point of
multiplicity d−1 at x , in which case it is necessarily unstable.

The polynomial maps define a curve in Mss
2 ; we will show:

Proposition 3.4. The polynomial curve in Mss
2 only satisfies semistable reduction

with nontrivial bundles.

Proof. First, note that in P5, the polynomial maps are those that can be conjugated
to the form (a0x2

+ a1xy + a2 y2)/b2 y2, in which case the totally invariant fixed
point is ∞= (1 : 0). We will call the polynomial map locus X . If a0 = 0, then
the map is unstable; we will show that every curve in X contains a map for which
a0 = 0. Clearly, the set of all maps with a given totally invariant fixed point is
isomorphic to P3, and the unstable locus within it is isomorphic to P2 as a linear
subvariety, so for there to be any hope of a trivial bundle, a curve in X cannot lie
entirely over one totally invariant point.

Now, the fixed point equation for a map of the form f/g is f y − gx = 0;
the homogeneous roots of this equation are the fixed points, with the correct
multiplicities. For our purposes, when the totally invariant point is∞, the fixed
point equation is a0x2 y+ (a1− b2)xy2

+ a2 y3
= 0. We get that a0 = 0 if and only

if the totally invariant point is a repeated root of the fixed point equation.
There exists a map from X to P1

×P2, mapping ϕ to its totally invariant point
in P1, and to the two elementary symmetric polynomials in the two other fixed
points in P2. Write (x : y) for the image in P1 and (a : b : c) for the image in P2.
Now (x : y) is a repeated root if ax2

+ bxy + cy2
= 0. The equation defines an
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ample divisor, so every curve in P1
×P2 will meet it. Finally, a curve in X maps

either to a single point in P1
×P2, in which case it must contain points with a0 = 0

as above, or to a curve, in which case it intersects the divisor ax2
+ bxy+ cy2

= 0.
In both cases, the curve contains unstable points. Thus there is no global semistable
curve D in Ratss

2 mapping down to C . �

Note that in the above proof, maps conjugate to x2 have two totally invariant
points, so a priori the map from X to P1

×P2 is not well-defined at them. However,
for any curve D in X , there is a well-defined completion of this map, whose value at
x2 on the P1 factor is one of the two totally invariant points. Thus this complication
does not invalidate the above proof.

Let us now compute the vector bundle classes that do occur for the polynomial
curve. We work with the description x2

+ c, which yields an affine curve that
maps one-to-one into C , missing only the point at infinity, which is conjugate to
(x2
− x)/0. To hit the point at infinity, we choose the alternative parametrization

cx2
− cx + 1, which, when c =∞, corresponds to the unique (up to conjugation)

semistable degenerate constant map. For any c, this map is conjugate to x2
−cx+c

and thence x2
+ c/2− c2/4, using the transition function [c,−1

2 ; 0, 1]. Thus the
bundle splits as O⊕O(1).

This bundle depends on the choice of D. In fact, if we choose another para-
metrization for D, for example c2x2

− c2x + 1, then the transition function is
[c2,−1

2 ; 0, 1], which leads to the bundle O⊕O(2). This is not equivalent to O⊕O(1).
This then leads to the question of which classes of bundles can occur over each C .
In the example we have just done, the answer is every nontrivial class: for every
positive integer m, we can use cm x2

− cm x + 1 as a parametrization, leading to
O⊕O(m), which exhausts all nontrivial projective bundle classes.

Recall the result of Proposition 1.10:

Proposition 3.5. Suppose C is isomorphic to P1, and there exists U ⊆ Homn,ss
d

mapping finite-to-one into C such that U is a projective curve minus a point. Then
there are always infinitely many possible classes: if the class of U is thought of
as splitting as P(E) = O⊕ O(m1)⊕ · · · ⊕ O(mn), where mi ∈ N, then for every
integer l, the class O⊕O(lm1)⊕ · · ·⊕O(lmn) also occurs.

Proof. Imitating the analysis of the polynomial curve above, we can parametrize C
by one variable, say c, and choose coordinates such that the sole bad point in the
closure of U corresponds to c =∞. Now, we can by assumption find a piece U ′

above the infinite point with a transition function determining the vector bundle
O⊕O(m1)⊕· · ·⊕O(mn). Now let V be the composition of U ′ with the map c 7→ cl .
Then U and V determine a vector bundle satisfying semistable reduction, of class
O⊕O(lm1)⊕ · · ·⊕O(lmn), as required. �

The example in Proposition 3.4, of polynomial maps, is equivalent to a multiplier
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condition. When d = 2, a map is polynomial if and only if it has a superattracting
fixed point, that is, one whose multiplier is zero; see the description in the first
chapter of [Silverman 2007]. One can imitate the proof that semistable reduction
does not hold for a more general curve, defined by the condition that there exists
a fixed point of multiplier t 6= 1. In that case, the condition b1 = 0 is replaced by
b1 = ta0, and the point is a repeated root of the fixed point equation if and only if
a0 = b1, in which case we clearly have a0 = b1 = 0 and the point is unstable.

When the multiplier is 1, the fixed point in question is automatically a repeated
root, with b1 = a0. The condition that the point be the only fixed point corresponds
to b2 = a1, which by itself does not imply that the map fails to be a morphism, let
alone that it is unstable.

Instead, the condition that gives us b1 = a0 = 0 is the condition that the fixed
point be totally invariant. Specifically, the fixed point’s two preimages are itself
and one more point; when the fixed point is∞, the extra point is −b2/b1. Now we
can map X to P1

×P1, where the first coordinate is the fixed point and the second
is its preimage. This map is well-defined on all of X because only one point can be
a double root of a cubic. Now the diagonal is ample in P1

×P1, so the only way a
curve D can avoid it is by mapping to a single point; but in that case, D lies in a
fixed variety isomorphic to P3 where the unstable locus is P2, so it will intersect
the unstable locus.

The fact that any condition of the form “there exists a fixed point of multiplier t”
induces a curve for which semistable reduction requires a nontrivial bundle means
that there is no hope of enlarging the semistable space in a way that ensures we
always have a trivial bundle. We really do need to think of semistable reduction as
encompassing nontrivial bundle classes as well as trivial ones.

Specifically: it is trivial to show that the closure of the polynomial locus in Rat2
includes all the unstable points (fix∞ to be the totally invariant point and let a0 go
to zero). At least some of those unstable points will also arise as closures of other
multiplier-t conditions. However, different multiplier-t conditions limit to different
points in Mss

2 \M2.

4. The general case

So far we have talked about nontrivial classes in M2. But we have a stronger result,
restating Theorem 1.5:

Theorem 4.1. For all n and d, over any base field, there exists a curve with no
trivial bundle class satisfying semistable reduction.

Proof. In all cases, we will focus on polynomial maps, which we will define to be
maps that are PGL(n+ 1)-conjugate to maps for which the last polynomial ϕn has
zero coefficients in every monomial except possibly xd

n .
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Lemma 4.2. The set of polynomial maps, defined above, is closed in Homn
d = PN .

Proof. Clearly, the set of polynomial maps with respect to a particular hyperplane —
for example, xn = 0 — is closed. Now, for each hyperplane a0x0+ · · ·+ anxn = 0,
we can check by conjugation to see that the condition that the map be polynomial
corresponds to the condition that a0ϕ0+· · ·+anϕn = c(a0x0+· · ·+anxn)

d , where c
may be zero. As Pn is proper, it suffices to show that the condition “ϕ is polynomial
with respect to a0x0+ · · ·+ anxn = 0” is closed in (Pn)∗×PN .

Now, we may construct a rational function f from (Pn)∗×PN to Symd(Pn)×

Symd(Pn) by
(
(a0x0+ . . .+anxn), ϕ

)
7→
(
(a0x0+· · ·+anxn)

d , a0ϕ0+· · ·+anϕn
)
.

The map ϕ is polynomial with respect to a0x0+ · · · + anxn = 0 if and only if f
is ill-defined at

(
(a0x0 + · · · + anxn), ϕ

)
or f

(
(a0x0 + · · · + anxn), ϕ

)
∈ 1, the

diagonal subvariety. The ill-defined locus of f is closed, and the preimage of 1 is
closed in the well-defined locus. �

In fact, the condition of ϕ being polynomial with respect to r distinct hyperplanes
in general position, where r is a fixed integer — in other words, the condition that
ϕ be conjugate to a map for which ϕi = ci xd

i for all i > d − r — is more or less
closed as well. It is not closed, but a sufficiently good condition is closed. Namely:

Lemma 4.3. For each 1 ≤ i ≤ n, consider the PGL(n + 1)-orbit of the space of
maps in which, for each j ≥ i , ϕ j has zero coefficients in every monomial containing
any term xk with k < j . This orbit is closed in PN .

Proof. Observe that the above-defined space of maps consists of maps that are
polynomial with respect to xn = 0, such that the induced map on the totally invariant
hyperplane xn = 0 is polynomial with respect to xn−1 = 0, and so on until we reach
the induced map on the totally invariant subspace xi+1 = · · · = xn = 0.

Now we use descending induction. Lemma 4.2 is the base case, when i = n.
Now suppose it is true down to i . Then for i−1, the condition of having no nonzero
xk term in ϕi−1 with k < i − 1 is equivalent to the condition that the induced map
on the totally invariant subspace xi = xi+1 = . . . = xn = 0 be polynomial; this
condition is closed in the space of all maps that are polynomial down to xi , which
we assume closed by the induction hypothesis. �

Definition 4.4. We call maps of the form in Lemma 4.3 polynomial with respect
to B, where B is the Borel subgroup preserving the ordered basis of conditions. In
the case above, B is the upper triangular matrices.

We need one final result to make computations easier:

Lemma 4.5. Let X be a curve of polynomial maps, all with respect to a Borel
subgroup B, and let ϕ be a semistable map in PGL(n+ 1) · X. Then ϕ ∈ B · X.
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Proof. Let C be the closure of the image of X in Mn,ss
d . By semistable reduction,

there exists some affine curve Y 3 ϕ mapping finite-to-one to C , that is, dominantly.
We need to find some open Z ⊆ Y containing ϕ and some f : Z→ PGL(n+1) such
that f (ϕ) is the identity matrix, and Z ′ = {( f (z) · z)} consists of maps which are
polynomial with respect to B. Such a map necessarily exists: we have a map h from
Y to the flag variety of Pn sending each y to the subgroup with respect to which it
is polynomial (possibly involving some choice if generically y is polynomial with
respect to more than one flag), which then lifts to G, possibly after deleting finitely
many points. Generically, a point of X maps to a point of C that is in the image
of Z ; therefore, picking the correct points in X , we get that ϕ ∈ B · X . �

With the above lemmas, let us now prove Theorem 4.1 for n = 1, which is
slightly easier than the higher-n case, where the more complicated Lemma 4.3 is
required. We will use the family xd

+ c, where c ∈ A1. In projective notation, this
is (a0xd

+ ad yd)/bd yd , which is a one-dimensional family modulo conjugation.

Lemma 4.6. Let V be the closure of the PGL(2)-orbit of the family

a0xd
+ ad yd

bd yd

in PN . Then:

(1) In characteristic 0 or p - d , every ϕ ∈ V is actually in the PGL(2)-orbit of the
family, or else it is a degenerate linear map, conjugate to

ad−1xyd−1
+ ad yd

bd yd .

(2) In characteristic p | d , with pm
‖ d and pm

6= d , every ϕ ∈ V is in the PGL(2)-
orbit of the family or is a degenerate map conjugate to

ad−pm xyd−pm
+ ad yd

bd yd .

(3) In characteristic p with d = pm , set V to be the closure of the orbit of the
family (a0xd

+ ad−1xyd−1)/bd yd ; then every ϕ ∈ V is actually in the orbit of
the family, or else it is a degenerate linear map, conjugate to

ad−1xyd−1
+ ad yd

bd yd ,

and furthermore, ad−1 = bd .

Proof. Observe that the first two cases are really the same: case (2) is reduced to
case (1) viewed as a degree-(d/pm) map in (x pm

: y pm
). So it suffices to prove

case (1) to prove (2); we will start with the family (a0xd
+ ad yd)/bd yd and see
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what algebraic equations its orbit satisfies. As polynomials are closed in Ratd ,
every point in the closure of the orbit is a polynomial. We may further assume it is
polynomial with respect to y = 0; therefore, by Lemma 4.5, it suffices to look at
the action of upper triangular matrices. Further, the condition of being within the
family (a0xd

+ ad yd)/bd yd is stabilized by diagonal matrices; therefore, it suffices
to look at the action of matrices of the form [1, t; 0, 1].

Now, the conjugation action of [1, t; 0, 1] fixes bd yd and maps a0xd
+ ad yd to

a0(x−t y)d+(ad+tbd)yd . Clearly, there is no hope of obtaining any condition on bd

or ad . Now, the conditions on the terms a0, . . . , ad−1 are that for some t , they fit into
the pattern a0(xd

−dtxd−1 y+· · ·±dtd−1xyd−1), that is, ai = (−t)i
(d

i

)
a0. To remove

the dependence on t , note that when i+ j = k+ l, we have
(d

i

)(d
j

)
ai a j =

(d
k

)(d
l

)
akal ,

as long as i, j, k, l < d .
Let us now look at what those conditions imply. Setting j = i, k= i−1, l = i+1,

we get conditions of the form
(d

i

)2
a2

i =
( d

i−1

)( d
i+1

)
ai−1ai+1, whenever i + 1< d . If

a0 6= 0, then the value of a1 uniquely determines the value of a2 by the condition
with i = 1; the value of a2 uniquely determines a3 by the condition with i = 2;
and so on, until we uniquely determine ad−1. In this case, choosing t =−a1/da0

will conjugate this map back to the family (a0xd
+ ad yd)/bd yd . If a0 = 0, then

the equation with i = 1 will imply that a1 = 0; then the equation with i = 2 will
imply that a2 = 0; and so on, until we set ad−2 = 0. We cannot ensure ad−1 = 0
because ad−1 always appears in those equations multiplied by a different ai , instead
of squared. Hence we could get a degenerate-linear map.

In case (3), we again look at the action of matrices of the form [1, t; 0, 1]. Such
matrices map (a0xd

+ ad−1xyd−1)/bd yd to

a0xd
+ ad−1xyd−1

+ (−a0td
− ad−1t + bd t)yd

bd yd .

Now the only way a map of the form (a0xd
+ ad−1xyd−1

+ ad yd)/bd yd could
degenerate is if the image of the polynomial map t 7→−a0td

−ad−1t+bd t misses ad ,
which could only happen if the polynomial were constant, that is, a0 = 0 and
ad−1 = bd , giving us a degenerate-linear map. �

Remark 4.7. The importance of the lemma is that in all degenerate cases, the map
is necessarily unstable, since d − 1 (or, in case (2), d − pm) is always at least as
large as d/2.

We can now prove Theorem 4.1 when n = 1. So if we can always find a
D ⊆ Homn,ss

d that works globally, we can find one over a family in which every
map is conjugate to (a0xd

+ ad yd)/bd yd , or, in characteristic p with d = pm ,

a0xd
+ ad−1xyd−1

bd yd .
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It suffices to show that there exists a map with a0 = 0. For this, we use the fixed
point polynomial, which is well-defined on this family. If the polynomial is fixed,
then all maps in the family may be simultaneously conjugated to the form

a0xd
+ ad yd

bd yd

(or (a0xd
+ ad−1xyd−1)/bd yd ), and then one map must have a0 = 0. If the polyno-

mial varies, then some map will have the point at infinity colliding with another
fixed point. This will force the map to be ill-defined at infinity; recall that totally
invariant points are simple roots of the fixed point polynomial, unless they are bad.
This will force a0 to be zero, again.

For higher n, the proof is similar. The lemma we need is similar to Lemma 4.6,
but is somewhat more complicated:

Lemma 4.8. Let V be the closure of the PGL(n+ 1)-orbit of the family

(c0xd
0 + bxd

1 : ϕ1 : . . . : ϕn),

where ϕi is x j -free for all j < i .

(1) If the characteristic does not divide d, then every ϕ ∈ V is actually in the
PGL(n + 1)-orbit of the family, or else it is a degenerate map, whose only
possible nonzero coefficients in ϕ0 are those without an x0 term and those of
the form x0 p0, where there is no nonzero x0-term in p0.

(2) If the characteristic p satisfies p | d , with d 6= pm
‖ d , then the same statement

as in case (1) holds as long as each ϕi is in terms of x pm

j , but with x0 p0 replaced
by x pm

0 p0.

(3) If the characteristic p satisfies d = pm , then changing the family to

(c0xd
0 + bx0xd−1

1 : ϕ1 : . . . : ϕn),

with ϕi in terms of xd
j as in case (2), the same statement as in case (1) holds.

Proof. As in the one-dimensional case, case (2) is reducible to case (1) with d
replaced with d/pm and xi with x pm

i . By Lemma 4.5, we only need to conjugate
by upper triangular matrices. Further, we only need to conjugate by matrices of
the family E , with first row (1, t1, . . . , tn) and other rows the same as the identity
matrix. This is because we can control the diagonal elements because the condition
of being in the family is diagonal matrix-invariant, and we can control the rest by
projecting any curve Z of unipotent upper triangular matrices onto E .

Set ad to be the xd-coefficient in ϕ0. For all vectors i , j , k, l with i+ j = k+ l ,
we have

(d
i
)(d

j
)
ai a j =

(d
k
)(d

l
)
akal , as long as none of i , j , k, or l is in the span of ei
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for i > 0. Note that i and i are two separate quantities, one an index of coordinates
and one an index of monomials.

As in the one-dimensional case, we may set j = i and k = i − e0 + ei . If
c0 = a(d,0,...,0) 6= 0, then by the same argument as before, the values of the xd−1

0 xi -
coefficients determine all the rest, and we can conjugate the map back to the desired
form. And if c0 = 0, then the value of every coefficient that can occur as i in
the above construct is zero; the only coefficients that cannot are those with no x0

component and those with a linear x0 component.
In case (3), we restrict to matrices of the same form as in case (1), and observe that

those matrices only generate extra xd
i and xi xd−1

1 in ϕ0. The statement is vacuous
if c0 = 0, so assume c0 6= 0. For i = 1, this is identical to the one-dimensional case,
so if c0 6= 0, then we can find an appropriate t1. For higher i , if b 6= 0, then we
can extract ti from the xi xd−1

1 coefficient, which will necessarily work for the xd
i

coefficient as well, making the map conjugate to the family; if b= 0, then the same
equations as for i = 1 hold for higher i , and we can again find ti ’s conjugating the
map to the family. �

While we could also control the terms involving a linear (or p-power) x0 coeffi-
cient in the above construction, it is not necessary for our purposes.

To finish the proof of Theorem 4.1, first note that in the closure of the family
above, any map for which c0 = 0 is unstable. Indeed, the one-parameter subgroup
of PGL(n+1) with diagonal coefficients t0= n, ti =−1 for i > 0, shows instability.
Recall that a map is unstable with respect to such a family if ti > t0d0+ · · ·+ tndn

whenever the xd0
0 . . . xdn

n -coefficient of ϕi is nonzero. With the above one-parameter
subgroup, we have t0d0+ · · ·+ tndn =−d <−1 for the only nonzero monomials
in ϕi with i > 0; in ϕ0, the maximal value of t0d0+ · · · + tndn is t0+ ti (d − 1)=
n− (d − 1) < n.

Now we need to show only that for some map in the family, c0 will indeed be
zero. So suppose on the contrary that c0 is never zero. Then all maps are, after
conjugation, in the family (c0xd

0 + bxd
1 : ϕ1 . . . : ϕn), where the linear subvariety

ϕi = ϕi+1 = · · · = ϕn is totally invariant. Now look at the action on the line
x2 = · · · = xn = 0. Every morphism will induce a morphism on this line, so there
will be three fixed points on it, counting multiplicity. We now imitate the proof in
the one-dimensional case: the totally invariant fixed point on this line, (1 : 0 : . . . : 0),
will collide with another fixed point, so the map will be ill-defined at it. This means
that (1 : 0 : . . . : 0) is a bad point, which cannot happen unless c0 = 0. �

Trivially, the above theorem for curves shows the same for higher-dimensional
families in Mn,ss

d . An interesting question could be to generalize semistable reduc-
tion to higher-dimensional families, for which we may get projective vector bundles
just like in the case of curves. Trivially, if we have two proper subvarieties of Mn,ss

d ,
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V1⊆ V2, and a bundle class occurs for V2, then its restriction to V1 occurs for V1. In
particular, if we have the trivial class over V2, then we also have it over V1, as well
as any other subvariety of V2. This leads to the following question: if the trivial
class occurs for every proper closed subvariety of V2, does it necessarily occur for
V2? What if we weaken the condition and only require the trivial class to occur for
subvarieties that cover V2?

5. The trivial bundle case

For most curves C ⊆Mn,ss
d , there occurs a trivial bundle. Since the complement of

Homn,ss
d in PN has high codimension, this is true by simple dimension counting.

Therefore, it is useful to analyze those curves separately, as we have more tools
to work with. Specifically, we can use more machinery from geometric invariant
theory. We will start by proving Proposition 1.7, restated below:

Proposition 5.1. Let X be a projective variety over an algebraically closed field
with an action by a geometrically reductive linear algebraic group G. Using the
terminology of geometric invariant theory, let D be a complete curve in the stable
space X s whose quotient by G is a complete curve C ; say the map from D to C has
degree m. Suppose the stabilizer is generically finite, of size h, and either D or C is
normal. Then there exists a finite subgroup SD ⊆ G, of order equal to mh, such that
for all x ∈ D and g ∈ G, gx ∈ D if and only if g ∈ SD .

Proof. For x ∈ D, we define SD(x)= {g ∈ G : gx ∈ D}. This is a map of sets from
an open dense subset of D to Symmh(G), and is regular on an open dense subset.
We have:

Lemma 5.2. The map from Symmh(G)×X s to Symmh(X s)×X s defined by sending
each

(
{g1, . . . , gmh}, x

)
to
(
{g1 · x, . . . , gmh · x}, x

)
is proper.

Proof. By standard geometric invariant theory, the map from G× X s to X s
× X s ,

(g, x) 7→ (g ·x, x), is proper. Thus the map from Gmh
×(X s)mh to (X s)mh

×(X s)mh

defined by (gi , xi ) 7→ (gi · xi , xi ) is also proper, as the product of proper maps.
Now closed immersions are proper, so the map remains proper if we restrict it to
Gmh
×X s , where we embed X s into (X s)mh diagonally; the image of this map lands

in (X s)mh
× X s . Finally, we quotient out by the symmetric group Smh , obtaining

Gmh
× X s //

π

��

(X s)mh
× X s

π

��
Symmh(G)× X s // Symmh(X s)× X s
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The map on the bottom is already separated and finite-type; we will show it is
universally closed. Extend it by some arbitrary scheme Y . If

V ⊆ Symmh(G)× X s
× Y

is closed, then so is π−1(V )⊆Gmh
×X s
×Y . The map on top is universally closed,

so its image is closed in (X s)mh
× X s

× Y . But the map on the right is proper, so
the image of V is also closed in Symmh(X s)× X s

× Y . �

Now, the rational map fD(x) = SD(x) · x ∈ Symmh(D) can be extended to a
morphism on all of D, since both D and Symmh(D) are proper. This is trivial if D
is normal; if it is not normal, but C is normal, then observe that the map factors
through C since it is constant on orbits, and then analytically extend it through C .
But now ( fD(x), x) embeds into Symmh(X s)×X s as a proper curve. The preimage
in Symmh(G)× X s of this curve is also proper; for each ( fD(x), x), it is a finite
set of points of the form (S, x) satisfying S · x = fD(x), including (SD(x), x).
Projecting onto the Symmh(G) factor, we still get a proper set, which means it must
be a finite set of points, as Symmh(G) is affine. One of these points will be SD,
which is then necessarily finite.

Finally, if g, h ∈ SD and x ∈ D, then g · h · x ∈ g · D = D; therefore SD is a
group. �

Remark 5.3. The proposition essentially says that the cover D→ C is necessarily
Galois. The generic stabilizer is necessarily a group H , normal in SD .

Corollary 5.4. With the same notation and conditions as in Proposition 5.1, the
map from D to C ramifies precisely at points x ∈ D such that Stab(x) intersects SD

in a strictly larger group than H. Furthermore, the ramification degree is exactly
[Stab(x)∩ SD : H ].

For high n or d , the stabilized locus of Homn
d is of high codimension. Furthermore,

most curves in Homn,ss
d lie in Homn,s

d . Therefore, generically not only is H trivial,
but also there are no points on D with nontrivial stabilizer. Thus for most C and
D, the map D→ C must be unramified. Thus, when C is rational, generically the
degree is 1.

It’s based on this observation that we conjecture the bounds for the nontrivial
bundle case in both directions — that is, that if we fix C and the bundle class P(E),
then the degree of the map π : D→ C is bounded.

Using the structure result on Mss
2 = P2, we can prove much more:

Proposition 5.5. If C is a generic line in Mss
2 , then it requires a nontrivial bundle.

Proof. Generically, C is not the line consisting of the resultant locus, Mss
2 \M2. So

it intersects this line at exactly one point. Furthermore, since the resultant Res2

is an SL(2)-invariant section, we have D.Res2 = m ·C.Res2; we abuse notation
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and use Resn
d to refer to the resultant divisor both upstairs and downstairs. Since

the degree of the resultant upstairs is (n+ 1)dn
= 4 [Jouanolou 1991], we obtain

4 · D.O(1)= m. In other words, m ≥ 4.
However, using Proposition 5.1, we will show m ≤ 2 generically. The generic

stabilizer is trivial, and the stabilized locus is a cuspidal cubic in P2, on which the
stabilizer is isomorphic to Z/2Z, except at the cusp, where it is S3. The generic
line C will intersect this cuspidal curve at three points, none of which is the cusp.
Therefore, h= 1, and there are at most three points of ramification, with ramification
degree 2. By Riemann–Hurwitz, the maximum m is 2, contradicting m ≥ 4. �
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Grothendieck’s trace map for arithmetic
surfaces via residues and higher adèles

Matthew Morrow

We establish the reciprocity law along a vertical curve for residues of differential
forms on arithmetic surfaces, and describe Grothendieck’s trace map of the surface
as a sum of residues. Points at infinity are then incorporated into the theory and
the reciprocity law is extended to all curves on the surface. Applications to adelic
duality for the arithmetic surface are discussed.

1. Introduction

Grothendieck’s trace map for a smooth, projective curve over a finite field can be
expressed as a sum of residues over all closed points of the curve; see [Hartshorne
1977, III.7.14]. This result was generalised to algebraic surfaces by A. Parshin
[1976] using his theory of two-dimensional adèles and residues for two-dimensional
local fields. The theory for arbitrary-dimensional algebraic varieties is essentially
contained in A. Beilinson’s short paper [1980] on higher-dimensional adèles, with
considerable additional work by J. Lipman [1984], V. Lomadze [1981], D. Osipov
[1997], A. Yekutieli [1992], et al. In all these existing cases one restricts to varieties
over a field. The purpose of this paper (together with [Morrow 2010]) is to provide
the first extension of the theory to nonvarieties, namely to arithmetic surfaces, even
taking into account the points “at infinity”.

In the standard approach to Grothendieck duality of algebraic varieties using
residues, there are three key steps. Firstly one must define suitable local residue
maps, either on spaces of differential forms or on local cohomology groups (the
latter approach is followed by E. Kunz [2008] using Grothendieck’s residue symbol
[Hartshorne 1966, III.§9]). Secondly, the local residue maps are used to define
the dualising sheaf, and finally the local residue maps must be patched together
to define Grothendieck’s trace map on the cohomology of the dualising sheaf. In
[Morrow 2010], we carried out most of the first two steps for arithmetic surfaces,
as we now explain.

MSC2010: primary 14H25; secondary 14B15, 14F10.
Keywords: reciprocity laws, higher adèles, arithmetic surfaces, Grothendieck duality, residues.
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Section 2 provides a detailed summary of the required results from [Morrow
2010], while also establishing several continuity and vanishing results which are
required later. Briefly, given a two-dimensional local field F of characteristic zero
and a fixed local field K ≤ F , we introduced (see Section 2A) a relative residue
map

ResF :�
cts
F/K → K ,

where �cts
F/K is a suitable space of “continuous” relative differential forms. In the

case F ∼= K ((t)), this is the usual residue map; but if F is of mixed characteristic,
then this residue map is new (though versions of it appear in I. Fesenko’s two-
dimensional adelic analysis [2010, §27, Proposition] and in D. Osipov’s geometric
counterpart [1997, Definition 5] to this paper). Then the reciprocity law for two-
dimensional local rings was proved, justifying our definition of the relative residue
map for mixed characteristic fields. For example, suppose A is a characteristic zero,
two-dimensional, normal, complete local ring with finite residue field, and fix the
ring of integers of a local field OK ≤ A. To each height-one prime y ⊂ A, one
associates the two-dimensional local field Frac Ây and thus obtains a residue map
Resy :�

1
Frac A/K → K (see Section 2B). We showed∑

y

Resy ω = 0

for all ω ∈�1
Frac A/K . The main new result in Section 2 is Lemma 2.8, stating that

the residue map Resy is continuous with respect to the m-adic topology on A.
Geometrically, if π : X→ Spec OK is an arithmetic surface and one chooses a

closed point x ∈ X and an irreducible curve y ⊂ X passing through x , then one
obtains a residue map

Resx,y :�
1
K (X)/K → Kπ(x),

where Kπ(x) is the completion of K at the prime sitting under x (see Section 2D
for details). The established reciprocity law now takes the form∑

y : y3x

Resx,y ω = 0,

where one fixes ω ∈�1
K (X)/K and the summation is taken over all curves y passing

through a fixed point x .
As discussed, the second step in a residue-theoretic approach to Grothendieck

duality is a suitable description of the dualising sheaf. This was also given in
[Morrow 2010]: if π : X→ Spec OK is an arithmetic surface (the precise require-
ments are those given at the start of Section 3), then the dualising sheaf ωπ of π
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can be described as follows:

ωπ (U )= {ω ∈�1
K (X)/K : Resx,y( f ω) ∈ ÔK ,π(x) for all x ∈ y ⊂U and f ∈ OX,y}

where x runs over all closed points of X inside U and y runs over all curves of U
containing x .

This paper treats the third step of the process. In order to patch the local residues
together to define the trace map on cohomology, one must, just as in the basic case
of a smooth, projective curve, establish certain reciprocity laws. For an arithmetic
surface, these take the form∑

y : y3x

Resx,y ω = 0,
∑

x : x∈y

Resx,y ω = 0.

In both cases one fixes ω ∈�1
K (X)/K , but the first summation is taken over all curves

passing through a fixed point x while the second summation is over all closed points
of a fixed vertical curve y. The first of these laws, namely reciprocity around a
point, has already been discussed, while Section 3 establishes the reciprocity law
along a vertical curve: the key idea of the proof is to reduce to the case when OK is
a complete discrete valuation ring and then combine the reciprocity law around a
point with the usual reciprocity law along the generic fibre.

Section 4 uses the Parshin–Beilinson higher adèles for coherent sheaves to express
Grothendieck’s trace map

trπ : H 1(X,ωπ )→ OK

as a sum of the residue maps (Resx,y)x,y . Indeed, the reciprocity laws imply that
our residue maps descend to cohomology: the argument is analogous to the case of
a smooth, projective curve, except we must work with adèles for two-dimensional
schemes rather than the more familiar adèles of a curve. Remark 4.11 explains the
basic framework of the theory in arbitrary dimensions.

Whereas the material discussed above is entirely scheme-theoretic, the final part
of the paper is the most important and interesting from an arithmetic perspective as
it incorporates archimedean points (points at infinity). It is natural to ask whether
there exists a reciprocity law for all curves on X , not merely the vertical ones, when
OK is the ring of integers of a number field. By compactifying Spec OK and X to
include archimedean points in Section 5, we indeed prove a reciprocity law for any
horizontal curve y on X . Owing to the nonexistence (at least naïvely) of Spec F1,
this takes the form ∏

x : x∈y

ψx,y(ω)= 1,

where ψx,y : �
1
K (X)/K → S1 are absolute residue maps (additive characters) and

ω lies in�1
K (X)/K . This provides detailed proofs of various claims made in [Fesenko
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2010, §27, §28] concerning the foundations of harmonic analysis and adelic duality
for arithmetic surfaces, and extends Parshin’s absolute reciprocity laws for algebraic
surfaces to the arithmetic case. Essentially this yields a framework which encodes
both arithmetic duality of K and Grothendieck duality of X→ S, and which would
be equivalent to Serre duality were X a geometric surface; a comparison of these
results with Arakelov theory has yet to be carried out but there is likely an interesting
connection.

Combined with [Morrow 2010], which should be seen as a companion to this
article and which contains a much more extensive introduction to the subject, these
results provide a theory of residues and explicit duality for arithmetic surfaces. The
analogous theory for an algebraic surface fibred smoothly over a curve is due to
Osipov [1997], who proved, using Parshin’s reciprocity laws for an algebraic surface,
the analogues of our reciprocity laws around a point and along a vertical curve, and
also showed that the sum of residues induces the trace map on cohomology.

Notation. When differential forms appear in this paper, they will be 1-forms, so
we write �A/R in place of �1

A/R to ease notation. Frac denotes the total ring of
fractions; that is, if R is a commutative ring then Frac R = S−1 R, where S is the
set of regular elements in R. The maximal ideal of a local ring A is usually denoted
mA; an exception to this rule is when A = OF is a discrete valuation ring with
fraction field F , in which case we prefer the notation pF .

When X is a scheme and n ≥ 0, we write Xn for the set of codimension-
n points of X . X0 denotes the closed points of X . Typically, X will be two-
dimensional, in which case we will often identify any y ∈ X1 with the corresponding
irreducible subscheme {y}; moreover, “x ∈ y” then more precisely means that x is
a codimension-1 point of {y}. “Curve” usually means “irreducible curve”. Given
z ∈ X , the maximal ideal of the local ring OX,z is written mX,z .

I ⊂1 A means that I is a height-one ideal of the ring A.

2. Relative residue maps in dimension two

In [Morrow 2010], a theory of residues on arithmetic surfaces was developed; we
repeat here the main definitions and properties, also verifying several new results
which will be required later.

2A. Two-dimensional local fields. Suppose first that F is a two-dimensional local
field (that is, a complete discrete valuation field whose residue field F is a local
field1) of characteristic zero, and that K ≤ F is a local field (this local field K will

1In this paper our local fields always have finite residue fields, though many of the calculations
continue to hold in the case of perfect residue fields.
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appear naturally in the geometric applications); write

�cts
F/K =�

sep
OF/OK

⊗OF F

(for a module over a local ring A, we write M sep
=M/

⋂
n≥0 mn

A M for the maximal
separated quotient of M). Let kF be the algebraic closure of K inside F ; this is a
finite extension of K and hence is also a local field.

If F has equal characteristic then any choice of a uniformiser t ∈ F induces a
unique kF -isomorphism F ∼= kF ((t)), and �sep

OF/OK
= OF dt . The relative residue

map, which does not depend on t , is the usual residue map which appears in the
theory of curves over a field (e.g., [Serre 1988, II.7]):

resF :�
cts
F/K → kF , f dt 7→ coeftt−1 f,

where the notation means that f is to be expanded as a series in powers of t and
the coefficient of t−1 is to be taken.

If F is a mixed characteristic two-dimensional local field then F/kF is an infinite
extension of complete discrete valuation fields, and F is called standard if and only
if e(F/kF )= 1. If F is standard then any choice of a first local parameter t ∈ OF

(that is, t̄ is a uniformiser in the local field F) induces a unique kF -isomorphism
F ∼= kF {{t}} (defined to be the completion of Frac(OkF [[t]]) at the discrete valuation
corresponding to the prime ideal pkF OkF [[t]]; see [Morrow 2010, Example 2.10]),
and �sep

OF/OK
= OF dt ⊕Tors�sep

OF/OK
; so we may define

resF :�
cts
F/K → kF , f dt 7→ − coeft t−1 f,

which was shown in [ibid., Proposition 2.19] not to depend on the choice of t . (The
notation again means that f is to be expanded as a series in powers in t , but this
time in the field kF {{t}}, and the coefficient of t−1 taken). If F is not necessarily
standard, then choose a subfield M ≤ F which is a standard two-dimensional local
field such that F/M is a finite extension, and which satisfies kM = kF . The relative
residue map in this case is defined by

resF = resM ◦TrF/M :�
cts
F/K → kF ,

which was shown in [ibid., Lemma 2.21] not to depend on M .
In both cases, it is also convenient to write ResF = TrkF/K ◦ resF :�

cts
F/K → K .

Also note that resF is kF -linear, and that therefore ResF is K -linear. The expected
functoriality result holds:

Lemma 2.1. Let L be a finite extension of K . Then �cts
L/K is naturally isomorphic

to �cts
F/K ⊗F L , so that there is a trace map TrL/F : �

cts
L/K → �cts

F/K . If ω ∈ �cts
L/K ,

then
ResF (TrL/F ω)= ResL ω in K .
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Proof. In the equal characteristic case this is classical; see, for example, [Serre
1988, II.12 Lemma 5]. For the mixed characteristic case, see [Morrow 2010,
Proposition 2.22]. �

Next we show a couple of results on the continuity of residues which, though
straightforward, will be frequently employed. Lemma 2.8 is a stronger, similar
result.

Lemma 2.2. Suppose that ω ∈ �cts
F/K is integral, that is, belongs to the image of

�
sep
OF/OK

. Then resF ω∈OkF and so ResF ω∈OK ; in fact, if F is equal characteristic,
then resF ω = 0.

Proof. In the equal characteristic or standard case this follows immediately from
the definitions. In the nonstandard, mixed characteristic case, one picks a standard
subfield M as above and uses a classical formula for the different of OF/OM to
show that the trace map �cts

F/K →�cts
M/K may be pulled back to �sep

OF/OK
→�

sep
OM/OK

,
from which the result follows. See [Morrow 2010, §2.3.4] for the details. �

Remark 2.3. It was also shown in [ibid., Corollary 2.23] that, when F has mixed
characteristic, the following diagram commutes:

�
sep
OF/OK

ResF //

��

OK

��
�F/K e(F/K )ResF

// K

The top horizontal arrow here makes sense by the previous lemma, and the lower
horizontal arrow is the ramification degree e(F/K ) times the residue map for the
local field F of finite characteristic, which contains the finite field K .

Corollary 2.4. Fix ω ∈�cts
F/K . Then

F→ K , f 7→ ResF ( f ω)

is continuous with respect to the discrete valuation topologies on F and K ; in fact,
if F is equal characteristic, then it is even continuous with respect to the discrete
topology on K .

Proof. After multiplying ω by a nonzero element of F , we may assume that ω
is integral in the sense of the previous lemma. If F is equal characteristic then
Ker( f 7→ resF ( f ω)) contains the open set OF , proving continuity with respect to
the discrete topology on K . Now assume F has mixed characteristic and let π be a
uniformiser of K ; since F/K is an extension of complete discrete valuation fields,
we may put e = e(F/K )= νF (π) > 0. Then the previous lemma implies

ResF (p
es
F ω)= ResF (π

sOFω)= π
s ResF (OFω)⊆ ps

K
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for all s ∈Z, proving continuity with respect to the discrete valuation topologies. �

2B. Two-dimensional complete rings. Let A be a two-dimensional, normal, com-
plete, local ring of characteristic zero, with a finite residue field of characteristic p;
set F = Frac A. Then there is a unique ring homomorphism Zp→ A and it is a
closed embedding; let OK be a finite extension of Zp inside A; that is, OK is the
ring of integers of K , which is a finite extension of Qp.

If y ⊂ A is a height-one prime (we often write y ⊂1 A), then Ây is a complete
discrete valuation ring; its field of fractions Fy := Frac Ây is a two-dimensional
local field containing K . Moreover, there is a natural isomorphism

�
sep
A/OK
⊗A Ây ∼=�

sep
Ây/K

(see [ibid., Lemma 3.8]); so we define Resy :�
sep
A/OK
⊗A F→K to be the composition

�
sep
A/OK
⊗A F −→�

sep
A/OK
⊗A Fy ∼=�

cts
Fy/K

ResFy
−−−→ K .

The definition of the residue maps is justified by the following reciprocity law:

Theorem 2.5. Let ω∈�sep
A/OK
⊗A F ; then for all but finitely many height-one primes

y ⊂ A the residue Resy ω is zero, and∑
y⊂1 A

Resy ω = 0.

Proof. See [ibid., Theorem 3.10]. �

As is often the case, the residue law was reduced to a special case by taking
advantage of functoriality:

Lemma 2.6. Suppose that C is a finite extension of A which is also normal; set
L = Frac C. Then for any ω ∈ �sep

C/OK
⊗C L and any height-one prime y ⊂ A, we

have

Resy(TrL/F ω)=
∑
Y |y

ResY ω,

where Y varies over the finitely many height-one primes of C which sit over y.

Proof. See [ibid., Theorem 3.9]. �

The proof of the reciprocity theorem also required certain results on the continuity
of the residues whose proofs were omitted in [ibid.]; we shall require similar such
results several times in this article and now is a convenient opportunity to establish
them:
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Lemma 2.7. Set B = OK [[t]], M = Frac B and let ω ∈�sep
B/OK
⊗B M ; then, for any

height-one prime y ⊂ B, the map

B→ K , f 7→ Resy f ω

is continuous with respect to the mB-adic topology on B and the discrete valuation
topology on K .

Proof. We first consider the case when y = ρB is generated by an irreducible
Weierstrass polynomial ρ(t) ∈ OK [t]. Let K ′ be a sufficiently large finite extension
of K such that ρ splits into linear factors in K ′; the decomposition has the form
ρ(t)=

∏d
i=1(t−λi ) with d=deg ρ and λi ∈pK ′ since h is a Weierstrass polynomial.

Put B ′ = OK ′[[t]] and M ′ = Frac B ′. According to functoriality of residues (the
previous lemma), we have

Resy TrM ′/M ω =

d∑
i=1

ResYi ω

for all ω ∈�sep
B ′/OK
⊗B ′ M ′, where Yi = (t − λi )B ′. Since multiplication by f ∈ B

commutes with the trace map, it is now enough to prove that

B ′→ K , f 7→ ResYi f ω

is continuous for all i and all ω ∈�sep
B ′/OK
⊗B ′ M ′. In other words, replacing K by

K ′ and B by B ′, we have reduced to the case when ρ(t) is a linear polynomial:
ρ(t) = t − λ, with λ ∈ pK . After another reduction, we will prove the continuity
claim in this case.

Let π be a uniformiser for K . It is well-known that �sep
B/OK
= B dt and that any

element of M can be written as a finite sum of terms of the form
πng
hr ,

with h ∈ OK [t] an irreducible Weierstrass polynomial, r > 0, n ∈ Z, and g ∈ B
(a proof was given in [Morrow 2010, Lemma 3.4]). By continuity of addition
K × K

+
−→ K and of the multiplication maps B ×g

−−→ B, K ×πn
−−→ K , it is enough to

treat the case ω= h−r dt , where h ∈ OK [t] is an irreducible Weierstrass polynomial.
Now return to y = ρB, ρ = t −λ. If h 6= ρ, then h−r dt ∈�sep

B/OK
⊗B By , and so

Resy(Bω) = 0 by Lemma 2.2, which is certainly enough. Else h = ρ, which we
now consider. To obtain more suggestive notation, we write ty := ρ(t)= t−λ; thus

ω = h−r dt = t−r
y dty .

Let m ≥ 0; we claim that if n ≥ m+ r then Resy(m
n
Bω)⊆ pm

K . Since λ is divisible
by π , the maximal ideal of B is generated by π and ty: mB = 〈π, t〉 = 〈π, ty〉.
Therefore an arbitrary element of mn

B is a sum of terms of the form παtβy g, with
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g ∈ B, α, β ≥ 0, and α+ β ≥ n, and so it is enough to consider such an element.
Moreover, again since π divides λ, there is a unique continuous isomorphism

OK [[ty]] −→
∼ OK [[t]], ty 7→ t − λ,

and therefore g ∈ B may be written as g =
∑r−1

j=0 a j t
j
y + tr

y g1 with a j ∈ OK and
g1 ∈ B (we could extend this expansion to infinity, of course, but since we are
trying to prove continuity, it is better not to risk confusion between “formal series”
and “convergent series”). Then

Resy(π
αtβy gω)= πα Resy

(
tβ−r
y

r−1∑
j=0

a j t j
y dty

)
+πα Resy(tβy g1 dty). (†)

The second residue is zero by Lemma 2.2 again since tβy g1 ∈ B. If β ≥ r then the
first residue is zero for the same reason; but if β < r then it follows that α > m,
whence the first residue is παar−β−1 ∈ pαK ⊆ pm

K . So in any case, (†) belongs to pm
K ,

completing the proof of our claim and thereby showing the desired continuity result
for y = ρB.

Having treated the case of a prime y generated by a Weierstrass polynomial,
we must secondly consider y = πB. By exactly the same argument as above, we
may assume that ω = h−r dt , with h an irreducible Weierstrass polynomial. Then
My = K {{t}} and h−r

∈ By ; hence h−r may be written as a series

h−r
=

∑
j∈Z

a j t j
∈ OK {{t}}

where a j → 0 in OK as j →−∞. Let m ≥ 0 be fixed, and pick J > 2 such that
a j ∈ pm

K whenever j ≤−J . We claim that if n ≥ J −2+m then Resy(m
n
Bω)⊆ pm

K .
Since an arbitrary element of mn

B is a sum of terms of the form παtβg, with g ∈ B,
α, β≥0, and α+β≥n, it is enough it consider such an element; write g=

∑
∞

i=0 bi t i .
Then

Resy(π
αtβgω)= Resy(π

αtβgh−r dt)=−πα coeftt−1

(
tβ
∞∑

i=0

bi t i
∑
j∈Z

a j t j
)

=−πα
∞∑

i=0

bi a−i−β−1 ∈

{
pα+m

K if β ≥ J − 2
pαK in any case.

But α+β ≥ J−2+m and so if it is not the case that β ≥ J−2, then it follows that
α ≥m; so, regardless of which inequality holds, we obtain Resy(π

αtβgω) ∈ pm
K , as

required. �
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Now we extend the lemma to the general case of our two-dimensional, normal,
complete, local ring A. This result is a significant strengthening of Corollary 2.4,
since the mA-adic topology on A is considerably finer than the y-adic topology, for
any y ⊂1 A.

Lemma 2.8. Let ω ∈�sep
A/OK
⊗A F ; then, uniformly in y, the map

A→ K , f 7→ Resy f ω

is continuous with respect to the mA-adic topology on A and the discrete valuation
topology on K .

Proof. Firstly, it is enough to prove that the given map is continuous for any fixed
y; the uniformity result then follows from the fact that, for almost all y ⊂1 A, ω
belongs to �sep

Ay/OK
and y does not contain pK ; for such primes, Resy Aω = 0 by

Lemma 2.2.
By Cohen structure theory [1946] (the details of the argument are in [Morrow

2010, Lemma 3.3]), there is a subring B ≤ A containing OK which is isomorphic
to OK [[t]] and such that A is a finitely generated B-module; set M = Frac B. Write
ω = gω0 for some g ∈ F and ω0 ∈�

sep
B/OK
⊗B M .

Now we make some remarks on continuity of the trace map. TrF/M(Ag) is a
finitely generated B-module and so there exists g0∈M× such that TrF/M(Ag)⊆ Bg0.
Moreover, since A/B is a finite extension of local rings, one has ms

A ⊆ mB A for
some s > 0. Hence TrF/M(m

ns
A g)⊆mn

B g0 for all n ≥ 0, meaning that the restriction
of the trace map to Ag→ Bg0 is continuous with respect to the m-adic topologies
on each side. It immediately follows that

τ : A→ B, f 7→ TrF/M( f g)g−1
0

is both well defined and continuous.
Functoriality (Lemma 2.6) implies that for any y ⊂1 B,∑

Y |y

ResY f ω = Resy TrF/M( f ω)

for all f ∈ A, where Y varies over the finitely many height-one primes of A which
sit over y. The right side may be rewritten as

Resy(τ ( f ) g0ω0)

where g0ω0 ∈�
sep
B/OK
⊗B M ; according to the previous lemma, this is a continuous

function of f . In conclusion,

A→ K , f 7→
∑
Y |y

ResY f ω (†)
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is continuous, which we will now use to show that each map f 7→ ResY f ω is
individually continuous, thereby completing the proof. Fix m ≥ 0.

Let Y1, . . . , Yl be the height-one primes of A sitting over y, and let ν1, . . . , νl

denote the corresponding discrete valuations of F . If l = 1 then there is nothing
more to show, so assume l > 1. Since the map

FYi → K , f 7→ ResYi ( f ω)

is continuous with respect to the discrete valuation topologies on each side (Corollary
2.4), there exists S > 0 (which we may obviously assume is independent of i) such
that ResYi ( f ω)⊆ pm

K whenever νi ( f )≥ S. According to the approximation theorem
for discrete valuations, there exists an element e ∈ F which satisfies ν1(e− 1)≥ S
and νi (e)≥ S for i = 2, . . . , l. Now, since (†) remains continuous if we replace ω
by eω, there also exists J > 0 such that∑

Y |y

ResY ( f eω) ∈ pm
K whenever f ∈mJ

A.

So, if f ∈mJ
A then

ResY1( f ω)= ResY1( f (1− e)ω)−
l∑

i=2

ResYi ( f eω)+
l∑

i=1

ResYi ( f eω)

belongs to pm
K since ν1( f (1− e)) ≥ S and νi ( f e) ≥ S for i = 2, . . . , l. That is,

ResY1(m
J
Aω)⊆ pm

K , which proves the desired continuity result. �

Remark 2.9. Lemma 2.8 can be reformulated as saying that the residue map

ResFy :�
cts
Fy/K → K

is continuous with respect to the valuation topology on K and the vector space
topology on �cts

Fy/K , where Fy is equipped with its two-dimensional local field
topology [Madunts and Zhukov 1995].

Finally, regarding vanishing of the residue of a differential form:

Lemma 2.10. Suppose that ω ∈�sep
A/OK
⊗A F is integral, in the sense that it belongs

to the image of �sep
A/OK

, and let y ⊂1 A. Then Resy ω ∈ pK . If y does not contain p
or if y is the only height-one prime of A containing p, then Resy ω = 0.

Proof. If y does not contain p then Fy is equal characteristic and we have already
proved a stronger result in Lemma 2.2: Resy vanishes on the image of�sep

A/OK
⊗A Ay .

If instead y is the only height-one prime of A containing p, then the vanishing
claim follows from the reciprocity law and the previous case.

Finally, suppose y contains p but do not assume that it is the only height-one
prime to do so. Using functoriality of differential forms and Remark 2.3, we have a
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commutative diagram:

�
sep
A/OK

//

��

�
sep
OFy /OK

ResFy //

��

OK

��
�(A/y)/K // �F y/K

e(Fy/K )ResF y

// K

The residue map ResF y
on the characteristic p local field F y vanishes on integral

differential forms; since A/y belongs to the ring of integers of F y , it follows
immediately from the diagram that Resy ω ∈ pK . �

Example 2.11. This example will show that the previous lemma cannot be im-
proved. We consider the “simplest” A in which p splits. Set B = Zp[[T ]], with
field of fractions M , and let A = B[α] where α is a root of f (X)= X2

− T X − p,
with field of fractions F . Since f (X) does not have a root in B/T B = Zp, it does
not have a root in B, and so F/M is a degree two extension. Since A is a finitely
generated B-module, it is also a two-dimensional, complete local ring, and we leave
it to the reader to check that A is regular, hence normal.

In A, p completely splits as p = α(T −α), and therefore, setting y = αA, the
natural map Qp{{T }} = MpB→ Fy is an isomorphism. Indeed, f (X) splits in the
residue field BpB/pBpB = Fp((T )) into distinct factors and so Hensel’s lemma
implies that f (X) splits in B̂pB ; that is, α ∈ B̂pB ⊂ MpB .

One readily checks that α ≡−pT−1 mod p2 in B̂pB = Ây , which implies that
Resy(α dT ) ≡ −p mod p2. In particular, Resy(α dT ) 6= 0 even though α dT is
integral.

2C. Two-dimensional, finitely generated rings. Next suppose that OK is a Dedekind
domain of characteristic zero and with finite residue fields, and that B is a two-
dimensional, normal, local ring, which we assume is the localisation of a two-
dimensional, finitely generated OK -algebra. Set A = B̂mB and s =mB ∩OK . Then
A satisfies all the conditions introduced at the start of the previous subsection and
contains Os := ÔK ,s , which is the ring of integers of the local field Ks := Frac ÔK ,s .
Moreover, there is a natural identification �B/OK ⊗B A=�sep

A/Os
(see [Morrow 2010,

Lemma 3.11]). For each height-one prime y ⊂ B, we may therefore define

Resy :�Frac B/K → Ks

to be the composition

�Frac B/K // �Frac B/K ⊗Frac B Frac A ∼=�sep
A/Os
⊗A Frac A

∑
y′|y Resy′

// Ks,

where y′ varies over the finitely many primes of A, necessarily of height one, which
sit over y.
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The reciprocity law remains true in this setting:

Theorem 2.12 [Morrow 2010, Theorem 3.13]. Let ω ∈�Frac B/K ; then for all but
finitely many height-one primes y ⊂ B the residue Resy ω is zero, and∑

y⊂1 B

Resy ω = 0.

The following vanishing identity will be useful:

Lemma 2.13. Let y ⊂1 B and suppose that ω ∈�Frac B/K belongs to the image of
�By/OK . Then Resy ω ∈ Os . In fact, Resy ω = 0 in either of the following two cases:
if y is horizontal (that is, y ∩ OK = 0); or if y is the only height-one prime of B
which is vertical (that is, containing s) and ω is in the image of �A/OK .

Proof. The first claims follow from Lemma 2.2, since y being horizontal is equivalent
to the two-dimensional local fields Frac Ây′ , with y′ ⊂ A sitting over y, being
equicharacteristic. The second claim follows from the previous reciprocity law
since any prime is either vertical or horizontal. �

2D. Geometrisation. Continue to let OK be a Dedekind domain of characteristic
zero and with finite residue fields. Let X be a two-dimensional, normal scheme,
flat and of finite type over S = Spec OK , and let �X/S =�

1
X/S be the relative sheaf

of one forms. Let x ∈ X2 be a closed point sitting over a closed point s ∈ S0,
and let y ⊂ X be an irreducible curve containing x . Identify y with its local
equation (that is, corresponding prime ideal) y ⊂1OX,x and note that OX,x satisfies
all the conditions which B did in the previous subsection. Define the residue map
Resx,y :�K (X)/K → Ks (= Frac ÔK ,s) to be

Resy :�Frac OX,x/K −→ Ks .

The reciprocity law now states that, for any fixed ω ∈�K (X)/K ,∑
y⊂X
y3x

Resx,y ω = 0

in Ks , where the sum is taken over all curves in X which pass through x . For a few
more details, see [Morrow 2010, §4].

3. Reciprocity along vertical curves

As explained in the introduction, residues on a surface should satisfy two reciprocity
laws, one as we vary curves through a fixed point, and another as we vary points
along a fixed curve. The first was explained immediately above and now we will
prove the second.
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Let OK be a Dedekind domain of characteristic zero and with finite residue fields;
denote by K its field of fractions. Let X be an OK -curve; more precisely, X is a
normal scheme, proper and flat over S = Spec OK , whose generic fibre is a smooth,
geometrically connected curve.

The aim of this section is to establish the following reciprocity law for vertical
curves on X :

Theorem 3.1. Let ω ∈�K (X)/K , and let y ⊂ X be an irreducible component of a
special fibre Xs , where s ∈ S0. Then∑

x∈y

Resx,y ω = 0

in Ks , where the sum is taken over all closed points x of y.

Here, as usual, Os = ÔK ,s and Ks = Frac Os . The proof will consist of several
steps. We begin with a short proof of a standard adelic condition:

Lemma 3.2. Let y ⊂ X be an irreducible curve, let f ∈ OX,y , and let r ≥ 1. Then
f ∈ OX,x +mr

X,y for all but finitely many closed points x ∈ y.
The result also holds after completion: if f ∈ ÔX,y , then f ∈ OX,x +mr

X,yÔX,y

for almost all x.

Proof. Let U = Spec A be an open affine neighbourhood of (the generic point of) y,
let p⊂ A be the prime ideal defining y, and set P = A∩ prAp, B = A/P . If b ∈ B
is not a zero divisor, then B/bB is zero-dimensional and so has only finitely many
primes; hence only finitely many primes of B contain b. Set

f := f mod mr
X,y ∈ Ap/p

rAp = Frac B;

by what we have just proved, f belongs to Bq for all but finitely many primes
q⊂ B, that is f ∈ OX,x+mr

X,y for all but finitely many x ∈ y∩U . Since U contains
all but finitely many points of y, we have finished.

The complete version now follows from the identity

ÔX,y/m
r
X,yÔX,y = OX,y/m

r
X,y . �

The lemma lets us prove that the theorem makes sense:

Lemma 3.3. Let ω ∈ �K (X)/K , and let y ⊂ X be an irreducible component of a
special fibre Xs , where s ∈ S0. Then the sum

∑
x∈y Resx,y ω converges in the s-adic

valuation topology on Ks (we will see that only countably many terms are nonzero).
Moreover, the map

K (X)→ Ks, h 7→
∑
x∈y

Resx,y(hω)

is continuous with respect to the topology on K (X) induced by the discrete valuation
ν associated to y, and the s-adic valuation topology on Ks .
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Proof. For any point z ∈ X , let �z denote the image of �OX,z/OK inside �K (X)/K .
Let r ≥ 0.

Let π ∈ OK be a uniformiser at s, fix ω ∈ �K (X)/K and pick a ≥ 0 such that
πaω ∈ �y . Then it easily follows from the previous lemma that πaω lies in
�x +π

r�y for almost all closed points x ∈ y. But Lemma 2.13 implies that if x is
any closed point of y then Resx,y(�y)⊆ Os , and moreover that if x does not lie on
any other irreducible component of the fibre Xs then Resx,y(�x)= 0. We deduce
that

Resx,y π
aω ∈ πr Os

for almost all closed points x ∈ y. So Resx,y ω ∈ π
r−aOs for almost all x ∈ y; since

this holds for all r ≥ 0 we see that∑
x∈y

Resx,y ω

converges and also that
∑

x∈y Resx,y ω ∈ π
−aOs .

If h ∈ K (X) satisfies ν(h) ≥ b for some b ∈ Z, then we may write h = πbu
for some u ∈ OX,y . This implies that πa−bhω ∈ �y and so, by what we have
just shown,

∑
x∈y Resx,y hω ∈ πb−aOs . This proves that h 7→

∑
x∈y Resx,y hω is

continuous. �

Remark 3.4. The analogous vertical reciprocity law in the geometric setting is
[Osipov 1997, Proposition 6], where Osipov gives an example to show that it really
is possible for the sum of residues along the points of y ⊂ Xs to contain infinitely
many nonzero terms.

We aim to reduce the vertical reciprocity law to the case of OK being a complete
discrete valuation ring by using several lemmas on the functoriality of residues.

Let s be a nonzero prime of OK , and set Os = ÔK ,s , Ks = Frac Os as usual.
Set X̂ = X ×OK Os and let p : X̂ → X be the natural map. Then p induces an
isomorphism of the special fibres X̂s ∼= Xs and, for any point x ∈ Xs , p induces
an isomorphism of the completed local rings ÔX,p(x) ∼= ÔX̂ ,x (see, e.g., [Liu 2002,
Lemma 8.3.49]). From the excellence of X it follows that OX̂ ,x is normal for all
x ∈ X̂s , and therefore X̂ is normal. So X̂ is a Os-curve, in the same sense as at the
start of the section.

Lemma 3.5. Let y ⊂ X be an irreducible curve and suppose x is a closed point of
y over s. Then the following diagram commutes:

�K (X̂)/Ks ∑
y′|y Resx ′,y′

((
�K (X)/K

Resx,y

//

OO

Ks
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where y′ varies over the irreducible curves of X̂ whose generic point sits over the
generic point of y, and x ′ is the unique closed point sitting over x (that is, p(x ′)= x).

Proof. This essentially follows straight from the original definitions of the residue
maps in sections 2C and 2D. Indeed, set B = OX,x and let y ⊂ B be the local
equation for y at x , so that

Resx,y =
∑

y′′⊂1 B̂
y′′|y

Resy′′ :�
sep
B̂/Os
⊗B̂ Frac B̂→ Ks,

where y′′ varies over the height-one primes of B̂ sitting over y.
But we remarked above that there is a natural Os-isomorphism ÔX̂ ,x ′

∼= B̂, and
this expression for the residues remains valid if B is replaced by OX̂ ,x ′ and y is
replaced by some y′ sitting over y. Therefore

Resx,y =
∑

y′′⊂1 B̂
y′′|y

Resy′′ =
∑

y′⊂1OX̂ ,x ′

y′|y

∑
y′′⊂1 B̂
y′′|y′

Resy′′ =
∑

y′⊂1OX̂ ,x ′

y′|y

Resy′ =
∑
y′|y

Resx ′,y′,

as required. �

Corollary 3.6. Let y ⊂ X be an irreducible component of the special fibre Xs and
let x be a closed point of y; let x ′ = p−1(x), y′ = p−1(y) be the corresponding
point and curve on X̂s ∼= Xs . Then the following diagram commutes:

�K (X̂)/Ks
Resx ′,y′

((
�K (X)/K

Resx,y

//

OO

Ks

Informally, this means that residues along the special fibre Xs may be computed
after completing OK .

Proof. The unique irreducible curve of X̂ sitting over y is y′, so this follows from
the previous lemma. �

Corollary 3.7. If the vertical reciprocity law holds for X̂/Os (for all s ∈ S0), then it
holds for X/OK .

Proof. This immediately follows from the previous corollary. �

In the remainder of the section (except Remark 3.9), we replace X by X̂ and OK

by Os , so that the base is a now a complete, discrete valuation ring (of characteristic
zero, with finite residue field, with field of fractions K being a local field).

The horizontal curves on X are all of the form {z} for a uniquely determined
closed point z of the generic fibre Xη. Moreover, because our base ring is now
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complete, {z} meets the special fibre Xs at a unique point r(z), which is necessarily
closed and is called the reduction of z.

Lemma 3.8. For any ω ∈�K (X)/K =�K (Xη)/K ,

Resr(z),{z} ω = Resz ω,

where the left residue is the two-dimensional residue on X associated to the point
and curve r(z) ∈ {z}, and the right residue is the usual residue for the K -curve Xη
at its closed point z.

Proof. This is a small exercise in chasing the definitions of the residue maps. Set
B = OX,r(z) and let p be the local equation for {z} at r(z). For any n ≥ 0, B/pn is a
finite OK -algebra, hence is complete. This implies that

B̂/pB̂ = B/p,

whence p′ = pB̂ is prime in B̂, and also that

B̂p′/p
′n B̂p′ = Bp/p

n Bp.

Therefore ̂̂Bp′ = lim
←−

n
B̂p′/p

′n B̂p′ = lim
←−

n
Bp/p

n Bp = B̂p = ÔXη,z.

Then F := Frac ̂̂Bp′ is the two-dimensional local field used to define the residue
at the flag r(z) ∈ {z}; it has equal characteristic, and we have just shown it is
equal to Frac OXη,z . But the residue map on a two-dimensional local field of equal
characteristic was exactly defined to be the familiar residue map for a curve. �

Remark 3.9. If OK is not necessarily a complete, discrete valuation ring, as at
the start of the section, then the above lemma remains valid when reformulated as
follows: Let z be a closed point of the generic fibre, and Xs a special fibre. For any
ω ∈�K (X)/K =�K (Xη)/K , ∑

x∈{z}∩Xs

Resx,{z} ω = Resz ω

where the left is the sum of two-dimensional residues on X associated to the flags
x ∈ {z} where x runs over the finitely many points in {z}∩ Xs , and the right residue
is the usual residue at the closed point z on the curve Xη. This may easily be
deduced from the previous lemma using Lemma 5.1 below.

Proof of Theorem 3.1. We may now prove the vertical reciprocity law. Let

y1(= y), y2, . . . , yl

be the irreducible components of the fibre Xs .
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Firstly, combining the usual reciprocity law for the curve Xη with the previous
lemma yields ∑

z∈(Xη)0

Resr(z),{z} ω = 0,

where the sum is taken over closed points of the generic fibre and only finitely
many terms of the summation are nonzero. Since {z}, for z ∈ (Xη)0, are all the
irreducible horizontal curves of X , we may rewrite this as∑

x∈X0

( ∑
Y⊂X horiz.

Y3x

Resx,Y ω

)
= 0.

Moreover, according to the reciprocity law around a point from Section 2D, if
x ∈ X0 is a closed point then ∑

Y⊂X
Y3x

Resx,Y ω = 0,

where only finitely many terms in the summation are nonzero. We deduce that∑
x∈X0

( ∑
Y⊂X vert.

Y3x

Resx,Y ω

)
= 0,

where the sum is now taken over the irreducible vertical curves in X . That is,

l∑
i=1

∑
x∈yi

Resx,yi ω = 0, (†)

where the rearrangement of the double summation is justified by Lemma 3.3, which
says that each internal sum of (†) converges in K .

If Xs is irreducible, this is exactly the sum over the closed points of y1 =

y and we have finished. Else we must proceed by a “weighting” argument as
in Lemma 2.8. Let ν1, . . . , νl be the discrete valuations on K (X) associated to
y1, . . . , yl respectively. For m > 0, pick fm ∈ K (X) such that ν1( fm − 1)≥ m and
νi ( fm)≥ m for i = 2, . . . , l; this exists because the (νi )i are inequivalent discrete
valuations. Replacing ω by fmω in (†) yields

l∑
i=1

∑
x∈yi

Resx,yi fmω = 0.

Letting m→∞ and applying the continuity part of Lemma 3.3 yields
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l∑
i=1

∑
x∈yi

Resx,yi fmω = 0−→
∑
x∈y1

Resx,y1 ω as m −→∞.

This completes the proof of Theorem 3.1. �

4. Trace map via residues on higher adèles

We are now ready to adelically construct Grothendieck’s trace map

H 1(X,ω)→ OK

as a sum of our residues, where π : X → Spec OK is an arithmetic surface and
ω=ωπ is its relative dualising sheaf. The key idea is to use the reciprocity laws
to show that sums of residues descend to cohomology.

Remark 4.1. Passing from local constructions to global or cohomological objects
is always the purpose of reciprocity laws. Compare with the reciprocity law around
a point in K. Kato and S. Saito’s [1983, §4] two-dimensional class field theory.
Sadly, using reciprocity laws for the reciprocity map of two-dimensional local
class field theory to construct two-dimensional global class field theory has not
been written down in detail anywhere, but a sketch of how it should work in the
geometric case was given by Parshin [1978]. More details, which are also valid in
the arithmetic case, can be found in [Fesenko 2010, Chapter 2].

4A. Adèles of a curve. We begin with a quick reminder of adèles for curves. Let
X be a one-dimensional, Noetherian, integral scheme with generic point η; we will
be interested in both the case when X is smooth over a field and when X is the
spectrum of the ring of integers of a number field. If E is a coherent sheaf on X ,
then the adelic resolution of E is the following flasque resolution:

0→ E→ iη(Eη)⊕
∏

x∈X0

ix(Êx)→
∏′

x∈X0

ix(Êx ⊗OX,x K (X))→ 0.

Here iη(Eη) is the constant Eη sheaf on X , Êx is the mX,x -adic completion of Ex

and ix(Êx) is the corresponding skyscraper sheaf at x , and the “restricted product”
term

∏
′ is the sheaf whose sections on an open set U ⊆ X are

∏′

x∈U0

Êx⊗OX,x K (X)=
{
( fx) ∈

∏
x∈U0

Êx ⊗OX,x K (X) : fx is in the image of Êx for
all but finitely many x ∈U0

}
.

The Zariski cohomology of E is therefore exactly the cohomology of the adelic
complex A(X, E):
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0→ Eη⊕
∏

x∈X0

Êx →
∏′

x∈X0

Êx ⊗OX,x K (X)→ 0

(g, ( fx)) 7→ (g− fx)

These observations remain valid if we do not bother completing E at each point x ,
leading to the rational adelic complex a(X, E) (classically called repartitions, see
for example [Serre 1988, II.5]):

0→ Eη⊕
∏

x∈X0

Ex →
∏′

x∈X0

Eη→ 0

whose cohomology also equals the Zariski cohomology of E .

Remark 4.2. The reader who is about to encounter adelic spaces for surfaces for
the first time may find it useful to see the following equality for the curve X :∏
′

x∈X0

Eη

:= {( fx) ∈
∏

x∈X0

Eη : fx is in the image of Ex for all but finitely many x ∈ X0}

= {( fx) ∈
∏

x∈X0

Eη : ∃ a coherent submodule M ⊆ iη(Eη) such that fx ∈ Mx

for all x ∈ X0}

4B. Rational adelic spaces for surfaces. The theory of adèles for curves was
generalised to algebraic surfaces by Parshin (see [Parshin 1976], for example)
and then to arbitrary Noetherian schemes by Beilinson [1980]. The main source
of proofs is A. Huber’s paper [1991]. We will describe the rational (that is, no
completions are involved) adelic spaces, defined in [Huber 1991, §5.2], associated
to a coherent sheaf E on a surface X . More precisely, X is any two-dimensional,
Noetherian, integral scheme, with generic point η and function field F = K (X).
The quasicoherent sheaf which is constantly F will be denoted F .

Remark 4.3. We choose to use the rational, rather than completed, adelic spaces
to construct the trace map only for the sake of simplicity of notation. There is
no substantial difficulty in extending the material of this section to the completed
adèles, which becomes essential for the dualities discussed in Remark 5.6.

Adelic groups 0, 1, and 2. The first rational adelic groups are defined as follows:

a(0)= F, a(1)=
∏

y∈X1

OX,y, a(2)=
∏

x∈X2

OX,x .

More generally, if E is a coherent sheaf on X , then we define

a(0, E)= Eη, a(1, E)=
∏

y∈X1

Ey, a(2, E)=
∏

x∈X2

Ex .



Grothendieck’s trace map via residues and higher adèles 1523

Adelic group 01. Next we have the 01 adelic group:

a(01)
=
{
( fy) ∈

∏
y∈X1

F : ∃ a coherent submodule M ⊆ F such that fy ∈ My for all y
}

= lim
−→

M⊆F

a(1,M)

where the limit is taken over all coherent submodules M of the constant sheaf F .
This ring is commonly denoted using restricted product notation: a(01)=

∏
′

y∈X1 F .
Again more generally, if E is an arbitrary coherent sheaf, we put

a(01, E)
=
{
( fy) ∈

∏
y∈X1

Eη : ∃ a coherent submodule M ⊆ Eη such that fy ∈ My for all y
}

= lim
−→

M⊆Eη

a(1,M),

where the limit is taken over all coherent submodules M of the constant sheaf
associated to Eη.

Adelic group 02. Next,

a(02)
=
{
( fx) ∈

∏
x∈X2

F : ∃ a coherent submodule M ⊆ F such that fx ∈ Mx for all x
}

= lim
−→

M⊆F

a(2,M),

where the limit is taken over all coherent submodules M of F . This ring is commonly
denoted

∏
′

x∈X2 F . We leave it to the reader to write down the definition of a(02, E),
for E an arbitrary coherent sheaf.

Adelic group 12.

Remark 4.4. We first require some notation. If z ∈ X is any point and N is a OX,z

module, then we write
[N ]z = jz∗(Ñ ),

where jz : Spec OX,z ↪→ X is the natural morphism and Ñ is the quasicoherent sheaf
on Spec OX,z induced by N . For example, F = [OX,η]η.

We may now introduce

a(12)=
∏

y∈X1

ay(12),
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where

ay(12)=
{
( fx) ∈

∏
x∈y

OX,y : ∃ a coherent submodule M ⊆ [OX,y]y such that
fx ∈ Mx for all x ∈ y

}
= lim
−→

M⊆[OX,y ]y

a(2,M),

where the limit is taken over all coherent submodules M of [OX,y]y . Recall our
convention that if y ∈ X1 then “x ∈ y” means that x is a codimension-one point of
the closure of y; more precisely, x ∈ X2

∩ {y}.
We again leave it to the reader to write down the definition of a(12, E) for an

arbitrary coherent sheaf E (just replace OX,y by Ey everywhere in the construction).
This is a convenient place to make one observation concerning an adelic condition

which holds for a(12, E):

Lemma 4.5. Let E be a coherent sheaf on X , fix y ∈ X1, r ≥ 0, and let ( fx)x∈y ∈

ay(12, E); then fx ∈ Ex +mr
X,y Ey for all but finitely many x ∈ y.

Proof. There is a coherent submodule M ⊆ [Ey]y such that fx ∈ Mx for all x ∈ y.
Let U = Spec A be an affine open neighbourhood of (the generic point of) y, and let
p⊂ A be the prime ideal defining y. Then M(U ) is a finitely generated A-submodule
of Ep and therefore M(U ) ⊆ f E for some f ∈ Ap. For any r ≥ 0, the argument
of Lemma 3.2 shows that f ∈ Am+ prAp for all but finitely many of the maximal
ideals m of A containing p; for such maximal ideals we have Mm ⊆ Em+ pr Ep.
Since U contains all but finitely many of the points of {y}, this is enough. �

Adelic group 012. Finally,

a(012)= lim
−→

M⊆F

a(12,M)⊆
∏

y∈X1

∏
x∈y

F.

(and we similarly define a(012, E) for any coherent E by taking the limit over
coherent submodules M of the constant sheaf Eη).

Simplicial structure and cohomology. Consider the following homomorphisms of
rings:

F

vv ((∏
y∈X1 F //

∏
y∈X1

∏
x∈y F

∏
x∈X2 Foo

∏
y∈X1 OX,y //

88

∏
y∈X1

∏
x∈y OX,y

OO

∏
x∈X2 OX,xoo

ff

where the three ascending arrows are the obvious inclusions and the remaining
arrows are diagonal embeddings. These homomorphisms restrict to the rational
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adelic groups just defined to give a commutative diagram of ring homomorphisms:

a(0)
∂0

01

yy

∂0
02

%%
a(01)

∂01
012 // a(012) a(02)

∂02
012oo

a(1)
∂1

12

//

∂1
01

99

a(12)

∂12
012

OO

a(2)
∂2

12

oo

∂2
02

ee

(and similarly with any coherent sheaf E in place of OX ). For example, to see
that ∂1

12 is well defined, once must check that if f ∈ OX,y then there is a coherent
submodule M of [OX,y]y such that fx ∈ Mx for all x ∈ y; but f may be viewed as
a global section of [OX,y]y and therefore M := OX f ⊆ [OX,y]y suffices.

We reach the analogue for X of the rational adelic complex which we saw for a
curve in Section 4A above:

Theorem 4.6. Let E be a coherent sheaf on X ; then the Zariski cohomology of E
is equal to the cohomology of the complex

0−→ a(0, E)⊕ a(1, E)⊕ a(2, E)

−→ a(01, E)⊕ a(02, E)⊕ a(12, E)−→ a(012, E)−→ 0,

where the nontrivial arrows are given respectively by

( f0, f1, f2) 7→ (∂0
01 f0− ∂

1
01 f1, ∂

2
02 f2− ∂

0
02 f0, ∂

1
12 f1− ∂

2
12 f2),

(g01, g02, g12) 7→ ∂01
012g01+ ∂

02
012g02+ ∂

12
012g12.

(This is the total complex associated to the simplicial group given above.)

Proof. This is due to Parshin [1976]; the general case of higher-dimensional X is
due to Beilinson [1980] and Huber [1991]. �

4C. Construction of the trace map. Let OK be a Dedekind domain of characteristic
zero with finite residue fields; its field of fractions is K . Let π : X→ S = Spec OK

be an OK -curve as at the start of Section 3. According to the main result of [Morrow
2010], the relative dualising sheaf ω of π is explicitly given by, for open U ⊆ X ,

ω(U )={ω∈�K (X)/K :Resx,y( f ω)∈ ÔK ,π(x) for all x ∈ y⊂U and f ∈OX,y} (†)

where x runs over all closed points of X inside U and y runs over all curves of U
containing x .

As previously, closed points of S are denoted s, and we put Os = ÔK ,s and
Ks = Frac Os .
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Proposition 4.7. If ω = (ωx,y)x∈y ∈ a(012,ω) and s ∈ S0, then

Ress(ω) :=
∑
x,y

x∈y∩Xs

Resx,y ωx,y (‡)

converges in Ks , where the sum is taken over all points x and curves y in X for
which x ∈ y ∩ Xs . Moreover, Ress(ω) ∈ Os for all but finitely many s ∈ S0.

If ω ∈ ∂12
012a(12,ω) then all terms of the sum, hence also Ress(ω), belong to Os .

Proof. Let E be a coherent submodule of the constant sheaf ωη = ωK (X)/K such
that ω ∈ a(12, E); then E and ω are equal at the generic point (replacing E by
E +ω, if necessary), hence on an open set, and therefore Ey = ωy for all but
finitely many y ∈ X1. We call the remaining finitely many y bad.

If y is a horizontal curve which is not bad and x ∈ y, then ωx,y ∈ Ey = ωy

and so Resx,y ωx,y = 0 (indeed, if π ∈ OK ,s is a uniformiser at s then π−1
∈ OX,y

and so the definition of ω implies that π−m Resx,y ωx,y ∈ Os for all m ≥ 0; this is
only possible if Resx,y ωx,y = 0). Therefore, only finitely many horizontal curves
contribute to the summation in (‡); so it is enough to prove that if y is an irreducible
component of Xs then ∑

x∈y

Resx,y ωx,y

converges. This is straightforward, using Lemma 4.5 and arguing exactly as in
Lemma 3.3, and completes the proof that Ress(ω) is well defined.

Secondly, for any curve y, each of ωy and Ey are (nonzero) finitely generated
OX,y submodules of �K (X)/K , and therefore there exists r ≥ 0 such that mr

X,y Ey ⊆

ωy ; clearly we may pick r so that this inclusion holds for all bad y. Then Lemma 4.5
tells us that for all but finitely many x in any bad curve y, we have

Ey ⊆ Ex +mr
X,y Ey ⊆ Ex +ωy .

Next, if y1, y2 are two horizontal curves, then y1 and y2 will have a common point
of intersection on a vertical curve Y for only finitely many Y (for else y1∩ y2 would
be infinite). It follows that there is an open set U ⊆ X consisting of fibres such that
any x ∈U satisfies one of the following conditions:

(i) x sits on no bad curve, or

(ii) x sits on exactly one bad curve y; y is horizontal and Ey ⊆ Ex +ωy .

Note that U contains all but finitely many of the fibres Xs , for s ∈ S0, and to prove
our second claim it is enough to show that for any closed point x on a fibre Xs

belonging to U , and curve y passing through x , one has Resx,y ωx,y ∈ Os . There
are two cases to consider:

(i) y is not bad. Then ωx,y ∈ Ey =ωy , whence Resx,y ωx,y ∈ Os by (†).
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(ii) y is bad. Then y is horizontal by construction of U and so Resx,y ωy = 0 (as
argued in the previous paragraph); therefore condition (ii) on U implies that
Resx,y ωx,y = Resx,y ζ for some ζ ∈ Ex . If Y is any curve through x apart
from y then ζ ∈ Ex ⊆ EY =ωY and so (†) now implies that Resx,Y ζ ∈ Os .
But the reciprocity law about a point from Section 2D shows that

Resx,y ζ =−
∑

Y

Resx,Y ζ,

where the sum is taken over all curves Y passing through x apart from y;
therefore Resx,y ζ ∈ Os .

This completes the proof that Ress ω belongs to Os for all but finitely many s ∈ S0.
Finally, if ω is in the image of the boundary map ∂12

012 then ωx,y ∈ωy for all
flags x ∈ y; so (†) implies that Resx,y ωx,y ∈ Os . This proves the final claim. �

Let

AS =
∏′

s∈S0

Ks =

{
(as) ∈

∏
s∈S0

Ks : as ∈ Os for all but finitely many s
}

and

AS(0)=
∏
s∈S0

Os

be the rings of (finite) adèles and integral adèles of K respectively (we will incor-
porate archimedean information in the final section). The adelic complex for S, as
discussed in Section 4A, is

0−→ K ⊕AS(0)−→ AS −→ 0

(λ, (as)) 7→ (λ− as)

Corollary 4.8. The map

Res : a(012,ω)→ AS, ω 7→ (Ress(ω))s∈S0

is well defined, and restricts to Res ◦∂12
012 : a(12,ω)→ AS(0).

Proof. This is exactly the content of the previous proposition. �

Define a map

Res′ : a(01,ω)⊕ a(02,ω)⊕ a(12,ω)→ K ⊕AS(0)

(ω′, ω′′, ω) 7→

(∑
z∈Xη

Resz ω
′

z,Res(∂12
012ω)

)
where the first sum is taken over closed points z of Xη or, equivalently, horizontal
curves in X , and Resz denotes the usual residue for Xη as a smooth curve over K
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(note that this makes sense as ωη = �K (Xη)/K ). In the remainder of the paper, z
will always denote a closed point of Xη.

The key application of the reciprocity laws is to deduce that taking sums of
residues induces a morphism of adelic complexes:

Proposition 4.9. The following maps give a homomorphism of adelic complexes
from X to S:

0 // a(0,ω)⊕a(1,ω)⊕a(2,ω) //

��

a(01,ω)⊕a(02,ω)⊕a(12,ω) //

Res′

��

a(012,ω) //

Res

��

0

0 // K⊕AS(0) // AS // 0

Proof. Commutativity of the first square is equivalent to the following results:

(i) If ω ∈ a(0,ω)=�K (X)/K then
∑

z∈Xη Resz ω = 0.

(ii) If ω = (ωy)y∈X1 ∈ a(1,ω) then
∑

z∈Xη Resz ωz = 0 and Res(∂12
012∂

1
12ω)= 0.

(iii) If ω ∈ a(2,ω) then Res(∂12
012∂

2
12ω)= 0.

(i) is the usual reciprocity law for the curve Xη/K . The first vanishing claim in
(ii) holds since ωz ∈ωz =�Xη/K ,z and the residue of a differential form on Xη at
a point where it is regular is zero. For the second vanishing claim in (ii), note that
if s ∈ S0 then

Ress(∂
01
012∂

1
01ω)=

∑
y⊆Xs

∑
x∈y

Resx,y ωy +
∑

horiz. y

∑
x∈Xs∩y

Resx,y ωy,

where we have split the summation (‡) (of Proposition 4.7) depending on whether y
is an irreducible component of Xs or is horizontal. But the first double summation
is zero, according to the reciprocity law along a vertical curve (Theorem 3.1), while
every term in the second double summation is zero since they are residues along
horizontal curves y of forms in ωy (see the second paragraph of the previous proof).
We will return to (iii) in a moment.

Commutativity of the second square is almost automatic since Res′ was obtained
by restricting Res to a(01,ω) and a(12,ω); it remains only to check that if
ω ∈ a(02,ω) then Res ∂02

012ω = 0. This follows immediately from the reciprocity
law around a point from Section 2D. This also establishes (iii), since if ω ∈ a(2,ω)
then ∂12

012∂
2
12ω = ∂

02
012∂

2
02ω ∈ ∂

02
012a(02,ω). �

Noting that H 0 of the adelic complex for S is simply OK and that H 1 of the
adelic complex for X is H 1(X,ω) (by Theorem 4.6), the proposition implies that
there is an induced map

Res : H 1(X,ω)→ OK .
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Our construction would be irrelevant without the final theorem:

Theorem 4.10. Res is equal to Grothendieck’s trace map trπ .

Proof. There is a natural morphism from the rational adelic complex of X for
the coherent sheaf ω to the rational adelic complex of Xη for the coherent sheaf
�Xη/K :

0 // a(0,ω)⊕a(1,ω)⊕a(2,ω) //

(ω0,ω1,ω2) 7→(ω0,p1(ω1))

��

a(01,ω)⊕a(02,ω)⊕a(12,ω) //

(ω01,ω02,ω12) 7→p01(ω01)

��

a(012,ω) //

��

0

0 // �K (X)/K⊕
∏

z∈Xη
�Xη/K ,z //

∏
′

z∈Xη
�K (X)/K // 0

This is given by the identity a(0,ω)=�K (X)/K , the projection

a(1,ω)=
∏

y∈X1

ωy =
∏

z∈Xη

�Xη/K ,z ×
∏

y∈X1

vertical

ωy
p1
�

∏
z∈Xη

�Xη/K ,z,

and the restriction of the projection∏
y∈X1

ωη =

∏
z∈Xη

�K (X)/K×
∏

y∈X1

vertical

�K (X)/K �
∏

z∈Xη

�K (X)/K

to the adelic spaces a(01,ω)
p01
�
∏
′

z∈Xη �K (X)/K .
By the functoriality of adèles, the resulting map H∗(X,ω)→ H∗(Xη, �Xη/K )

is the natural map on cohomology induced by the restriction ω|Xη =�Xη/K . Using
this, we will now show that

H 1(X,ω) //

Res
��

H 1(Xη, �Xη/K )

tr
��

OK // K

(∗)

commutes, where the right vertical arrow is the trace map for the K -curve Xη.
Indeed, from the definition of Res′ above, the following diagram certainly commutes:

Ker〈a(01,ω)⊕a(02,ω)⊕a(12,ω)→ a(012,ω)〉

Res′

��

(ω01,ω02,ω12) 7→ p01(ω01) //
∏
′

z∈Xη
�K (X)/K

(ωz) 7→
∑

z∈Xη
Reszωz

��
Ker〈K⊕AS(0)→ AS〉 = OK // K
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Passing to cohomology groups, we deduce that

H 1(X,ω) //

Res

��

H 1(Xη, �Xη/K ) = Coker
〈
�K (X)/K ⊕

∏
z∈Xη

�Xη/K ,z→
∏
′

z∈Xη
�K (X)/K

〉
(ωz) 7→

∑
z∈Xη

Resz ωz

��
OK // K

commutes; but the vertical map on the right is the trace map for Xη, by the familiar
result (which we are generalising!) that the trace map of a smooth projective curve
is represented by the sum of residues. This completes the proof that (∗) commutes.

Finally, the diagram (∗) also commutes if Res is replaced by trπ , since trace
maps commute with localisation of the base ring. Therefore Res= trπ . �

Remark 4.11. Before complicating matters by incorporating archimedean data,
this is a convenient opportunity to explain how the previous material should fit into
a general framework.

A flag of points on a scheme X is a sequence of points ξ = (x0, . . . , xn) such
that xi−1 ∈ {xi } for i = 1, . . . , n. By a process of successive completions and
localisations, the flag ξ yields a ring Fξ . More generally, to any quasicoherent sheaf
E , one obtains a module Eξ over Fξ ; for details, see [Huber 1991, §3.2].

Now let f : X → Y be a morphism of S-schemes, where S is a Noetherian
scheme (perhaps Cohen–Macaulay), and notice that we may push forward any flag
from X to Y ,

f∗(ξ) := ( f (x0), . . . , f (xn)),

resulting in an inclusion of rings F f∗(ξ) ⊆ Fξ . Let ωX , ωY denote the dualising
sheaves of X , Y over S. If f is proper (and probably Cohen–Macaulay) of fibre
dimension d , then we expect there to exist a residue map

Resξ :ωX,ξ →ωY, f∗(ξ)

which is the trace map when f is a finite morphism and which is transitive when
given another proper, CM morphism Y→ Z . Globally, taking sums of these residue
maps will induce a morphism of degree −d on the adelic complexes

ResX/Y : A(X,ωX )→ A(Y,ωY ).

The patching together of the local residue maps to induce a morphism of complexes
is equivalent to a collection of reciprocity laws being satisfied. In turn, this induces
maps on the cohomology

H∗(X,ωX )= H∗(A(X,ωX ))−→ H∗−d(A(Y,ωY ))= H∗−d(Y,ωY ),

which will be nothing other than Grothendieck’s trace map.
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When S is a field this framework more or less follows from [Lomadze 1981] and
[Yekutieli 1992], though it has not been written down carefully. This article and
the author’s previous [Morrow 2010] focus on the case where Y = S = Spec OK

and X is a surface.
The fully general case requires a rather careful development of relative residue

maps in arbitrary dimensions, and becomes a technically difficult exercise quite
quickly. The Hochschild homology-theoretic description of residue maps [Hübl
1989; Lipman 1987] may be the key to a smoother approach.

5. Archimedean reciprocity along horizontal curves

We continue to study an OK -curve X in the sense introduced at the start of Section 3,
but we now assume that K is a number field and OK its ring of integers (with generic
point η). If∞ is an infinite place of K then we write X∞ = X ×OK K∞ where K∞
is the completion of K at∞; so X∞ is a smooth projective curve over R or C.

The natural morphism

X∞ = X ×OK K∞
ρ
−→Xη = X ×OK K

can send a closed point to the generic point; but there are only finitely many points
over any closed point. Indeed, let z ∈ Xη be a closed point; then the fibre over z is

X∞×Xη k(z)= (K∞×K Xη)×Xη k(z)= Spec(K∞⊗K k(z)),

which is a finite reduced scheme.
If y is a horizontal curve on X then y = {z} for a unique closed point z ∈ Xη.

We say that a closed point x ∈ X∞ sits on y if and only if ρ(x)= z. Hence there
are only finitely many points on X∞ which sit on y, and we will allow ourselves to
denote this set of points by y∩ X∞. Such points are the primes of K∞⊗K k(z) and
therefore correspond to the infinite places of the number field k(z) extending the
place∞ on K . Note that each x ∈ X∞ sits on at most one horizontal curve, which
may seem strange at first.

In this situation, we define the archimedean residue map Resx,y :�K (X)/K→ K∞
to be

�K (X)/K −→�K (X∞)/K∞
Resx
−−→ K∞,

where Resx is the usual one-dimensional residue map associated to the closed point
x on the smooth curve X∞ over K∞.

The following easy lemma was used in Remark 3.9; since we need it again, let’s
state it accurately:

Lemma 5.1. Let C be a smooth, geometrically connected curve over a field K of
characteristic zero, let L be an arbitrary extension of K , and let z be a closed point
of C.
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(i) Let x ∈ CL be a closed point sitting over z; then the following diagram
commutes:

�K (CL )/L
resx // k(x)

�K (C)/K
resz //

OO

k(z)

OO

(Notation: resx is the residue map�K (C)/K→k(x), and Resx=Trk(x)/K ◦ resx ;
similarly for other points.)

(ii) With x now varying over all the closed points of CL sitting over z, the following
diagram commutes:

�K (CL )/L

∑
x |z Resx

// L

�K (C)/K
Resz //

OO

K

OO

Proof. If t ∈ K (C) is a local parameter at z then it is also a local parameter at x , and
the characteristic zero assumption implies that there are compatible isomorphisms
K (CL)x ∼= k(x)((t)), K (C)z ∼= k(z)((t)); the first claim easily follows. Secondly
k(z)⊗K L ∼=

⊕
x |z k(x), so that Trk(z)/K =

∑
x |z Trk(x)/L ; hence, for ω ∈�K (C)/K ,

part (i) lets us use the usual argument:∑
x |z

Resx(ω)=
∑
x |z

Trk(x)/L resx(ω)=
∑
x |z

Trk(x)/L resz(ω)

= Trk(z)/K resz(ω)= Resz(ω) �

We obtain an analogue of Remark 3.9:

Corollary 5.2. Returning to the notation before the lemma, if∞ and y = {z} are
fixed, and ω ∈�K (X)/K , then∑

x∈y∩X∞

Resx,y ω = Resz ω.

Proof. Apply the previous lemma with C = Xη and L = K∞. �

Write S = Spec OK ∪ {∞’s} for the “compactification” of S = Spec OK by the
infinite places (in fact, the notation s ∈ S will always mean that s is a place of K ,
never the generic point of S) and let

AS =
∏′

s∈S

Ks = AS ×
∏
∞

K∞
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be the usual ring of adèles of the number field K . Let

ψ =⊗s∈S ψs : AS→ S1 (= the circle group2)

be a continuous additive character which is trivial on the global elements K ⊂ AS
[Tate 1967, Lemma 4.1.5].

Note that, if y is a horizontal curve on X , then even with our definition of points
at infinity, it does not make sense to consider a reciprocity law

“
∑
x∈y

Resx,y ω = 0”

since the residues appearing live in different local fields. This problem is fixed by
using the “absolute base” S1:

Definition 5.3. Let y be a curve on X and x ∈ y a closed point sitting over s ∈ S
(this includes the possibility that y is horizontal and s is an infinite place). Define
the absolute residue map

ψx,y :�K (X)/K → S1

to be the composition

�K (X)/K
Resx,y
−−−→ Ks

ψs
−→ S1.

We may now establish the reciprocity law on X along any curve, including the
horizontal ones:

Theorem 5.4. Let y be a curve on X and ω ∈ �K (X)/K . Then for all but finitely
many closed points x ∈ y the absolute residue ψx,y(ω) is 1, and∏

x∈y

ψx,y(ω)= 1 in S1.

Proof. First consider the case that y is an irreducible component of a special fibre
Xs (here s ∈ S0). Then Kerψs is an open subgroup of Ks , and so the proof of
Lemma 3.3 shows that Resx,y ω ∈ Kerψs for all but finitely many x ∈ y. Also,∏

x∈y

ψx,y(ω)= ψs

(∑
x∈y

Resx,y(ω)

)
,

which is ψs(0) = 1 according to the reciprocity law along the vertical curve y
(Theorem 3.1).

Secondly suppose that y = {z} is a horizontal curve; here z is a closed point of
Xη. The proof of Proposition 4.7 shows that Resx,y ω ∈ Oπ(x) for all but finitely
many x ∈ y (here x is a genuine schematic point on X ); since Kerψs contains Os

2We never consider the set of codimension-one points of S = Spec OK , so this shouldn’t cause
confusion.
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for all but finitely many s ∈ S0, it follows that ψx,y(ω)= 1 for all but finitely many
x ∈ y. It also follows that

f :=
( ∑

x∈y∩Xs

Resx,y ω

)
s∈S

belongs to AS , and clearly∏
x∈y

ψx,y(ω)=
∏
s∈S

ψs

( ∑
x∈y∩Xs

Resx,y ω

)
= ψ( f ).

But Remark 3.9 (for s ∈ S0) and the previous corollary (for s infinite) imply that f
is the global adèle Resz ω ∈ K . As ψ was chosen to be trivial on global elements,
the proof is complete. �

Remark 5.5. The reciprocity law around a point x ∈ X2 stated in Section 2D
obviously implies that the absolute residue maps satisfy a similar law:∏

y⊂X :y3x

ψx,y(ω)= 1.

Therefore we have absolute reciprocity laws for all points and for all curves,
which are analogues for an arithmetic surface of the reciprocity laws established by
Parshin [1976] for an algebraic surface.

Remark 5.6. Let Fx,y be the finite product of two-dimensional local fields attached
to a flag x ∈ y; that is, Fx,y = Frac Âp, where A = ÔX,x , p= yOX,x , and y ⊂ OX,x

also denotes the local equation for y at x ; so Fx,y =
∏

y′|y Fx,y′ where y′ varies
over the finitely many height-one primes of A over y, and Fx,y′ = Frac Ây′ .

By the local construction of the residue maps we see that ψx,y is really the
composition

�K (X)/K −→�K (X)/K ⊗K (X) Fx,y =
⊕
y′|y

�cts
Fx,y′/Ks

∑
y′|y ResFx,y′
−−−−−−−→ Ks

ψs
−→ S1

(s ∈ S0 is the point under x as usual), and each ψs ◦ ResFx,y′
: Fx,y′ → S1 is

a continuous (with respect to the two-dimensional topology; see Remark 2.9)
character on the two-dimensional local field Fx,y′ . This character will induce self-
duality of the topological group Fx,y′ , which in turn will induce various dualities
on the (complete) adelic groups; for some results in this direction, see [Fesenko
2010, §27, §28].

Remark 5.7. Taking S = Spec Z, it would be very satisfying to have an extension
of the framework discussed in Remark 4.11 to include archimedean points. The
main existing problem is the lack at present of a good enough theory of adèles in
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arbitrary dimensions which includes the points at infinity. The author is currently
trying to develop such a theory and hopes that this will allow the dualities discussed
in the previous remark to be stated more precisely and in greater generality (in all
dimensions and including points at infinity).
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Crystalline extensions and the weight part
of Serre’s conjecture
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Let p>2 be prime. We complete the proof of the weight part of Serre’s conjecture
for rank-two unitary groups for mod p representations in the totally ramified
case by proving that any Serre weight which occurs is a predicted weight. This
completes the analysis begun by Barnet-Lamb, Gee, and Geraghty, who proved
that all predicted Serre weights occur. Our methods are a mixture of local and
global techniques, and in the course of the proof we use global techniques (as well
as local arguments) to establish some purely local results on crystalline extension
classes. We also apply these local results to prove similar theorems for the weight
part of Serre’s conjecture for Hilbert modular forms in the totally ramified case.
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1. Introduction

The weight part of generalisations of Serre’s conjecture has seen significant progress
in recent years, particularly for (forms of) GL2. Conjectural descriptions of the
set of Serre weights were made in increasing generality in [Buzzard et al. 2010;
Schein 2008; Gee et al. 2012], and cases of these conjectures were proved in [Gee
2011; Gee and Savitt 2011a]. Most recently, significant progress was made towards
completely establishing the conjecture for rank-two unitary groups in [Barnet-Lamb
et al. 2011]. We briefly recall this result. Let p > 2 be prime, F a CM field, and

The authors were partially supported by NSF grants DMS-0841491 (Gee), DMS-0901360 (Liu), and
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Keywords: Serre’s conjecture, p-adic Hodge theory, automorphy lifting theorems.
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r̄ : G F → GL2(Fp) a modular representation (see [Barnet-Lamb et al. 2011] for
the precise definition of “modular”, which is in terms of automorphic forms on
compact unitary groups). There is a conjectural set W ?(r̄) of Serre weights in
which r̄ is predicted to be modular, which is defined in Section 2, following [Gee
et al. 2012]. Then the main result of [Barnet-Lamb et al. 2011] is that under mild
technical hypotheses, r̄ is modular of every weight in W ?(r̄). We note that this
result is rather more general than anything that has been proved for inner forms
of GL2 over totally real fields, where there is a parity obstruction due to the unit
group; algebraic Hilbert modular forms must have paritious weight. This problem
does not arise for the unitary groups considered here, which is why we use them,
rather than making use of the more obvious choice of an inner form. In the absence
of a mod p functoriality principle, it is not known that the results for inner and
outer forms of GL2 are equivalent, and at present the theory for outer forms is in a
better state.

It remains to show that if r̄ is modular of some Serre weight, then this weight
is contained in W ?(r̄). It had been previously supposed that this was the easier
direction; indeed, just as in the classical case, the results of [Barnet-Lamb et al.
2011] reduce the weight part of Serre’s conjecture for these unitary groups to a
purely local problem in p-adic Hodge theory. However, this problem has proved to
be difficult, and so far only fragmentary results are known. In the present paper we
resolve the problem in the totally ramified case, so that in combination with [ibid.]
we resolve the weight part of Serre’s conjecture in this case, proving the following
theorem (see Theorem 6.1.2).

Theorem A. Let F be an imaginary CM field with maximal totally real subfield F+,
and suppose that F/F+ is unramified at all finite places, that ζp /∈ F , and that
[F+ :Q] is even. Suppose that p > 2, and that r̄ : G F → GL2(Fp) is an irreducible
modular representation with split ramification such that r̄(G F(ζp)) is adequate.
Assume that for each place w|p of F , Fw/Qp is totally ramified.

Let a ∈ (Z2
+
)S

0 be a Serre weight. Then aw ∈W ?(r̄ |G Fw
) if and only if r̄ is modular

of weight a.

(See the body of the paper, especially Section 2.2, for any unfamiliar notation
and terminology.) While [Barnet-Lamb et al. 2011] reduced this result to a purely
local problem, our methods are not purely local; in fact we use the main result of
[ibid.], together with potential automorphy theorems, as part of our proof.

In the case that r̄ |G Fw
is semisimple for each placew|p, the result was established

(in a slightly different setting) in [Gee and Savitt 2011a]. The method of proof
was in part global, making use of certain potentially Barsotti–Tate lifts to obtain
conditions on r̄ |G Fw

. We extend this analysis in the present paper to the case that
r̄ |G Fw

is reducible but nonsplit, obtaining conditions on the extension classes that



Crystalline extensions and the weight part of Serre’s conjecture 1539

can occur; we show that (other than in one exceptional case) they lie in a certain
set Lflat, defined in terms of finite flat models. We are also able to apply our final
local results to improve on the global theorems proved in [Gee and Savitt 2011a];
see Theorem 6.1.3 below.

In the case that r̄ |G Fw
is reducible the definition of W ? also depends on the

extension class; it is required to lie in a set Lcrys, defined in terms of reducible
crystalline lifts with specified Hodge–Tate weights. To complete the proof, we
show that Lcrys = Lflat, except in one exceptional case that we handle separately in
Proposition 5.2.9. An analogous result was proved in generic unramified cases in
Section 3.4 of [Gee 2011] by means of explicit calculations with Breuil modules;
our approach here is less direct, but has the advantage of working in nongeneric
cases, and requires far less calculation.

We use a global argument to show that Lcrys ⊂ Lflat. Given a class in Lcrys, we
use potential automorphy theorems to realise the corresponding local representation
as part of a global modular representation, and then apply the main result of [Barnet-
Lamb et al. 2011] to show that this representation is modular of the expected weight.
Standard congruences between automorphic forms then show that this class is also
contained in Lflat.

To prove the converse inclusion, we make a study of different finite flat models
to show that Lflat is contained in a vector space of some dimension d. A standard
calculation shows that Lcrys contains a space of dimension d , so equality follows. As
a byproduct, we show that both Lflat and Lcrys are vector spaces. We also show that
various spaces defined in terms of crystalline lifts are independent of the choice of
lift (see Corollary 5.2.8). The analogous property was conjectured in the unramified
case in [Buzzard et al. 2010].

It is natural to ask whether our methods could be extended to handle the general
case, where Fw/Qp is an arbitrary extension. Unfortunately, this does not seem
to be the case, because in general the connection between being modular of some
Serre weight and having a potentially Barsotti–Tate lift of some type is less direct.
We expect that our methods could be used to reprove the results of Section 3.4 of
[Gee 2011], but we do not see how to extend them to cover the unramified case
completely. In particular, we are unsure as to when the equality Lflat = Lcrys holds
in general.

We now explain the structure of the paper. In Section 2 we recall the definition
of W ?, and the global results from [Barnet-Lamb et al. 2011] that we will need.
In Section 3 we recall (and give a concise proof of) a potential automorphy result
from [Gee and Kisin 2012], allowing us to realise a local mod p representation
globally. Section 4 contains the definitions of the spaces Lcrys and Lflat and the
proof that Lcrys ⊂ Lflat, and in Section 5 we carry out the necessary calculations
with Breuil modules to prove our main local results. All of these results are in
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the reducible case, the irreducible case being handled in [Gee and Savitt 2011a].
Finally, in Section 6 we combine our local results with the techniques of [ibid.] and
the main result of [Barnet-Lamb et al. 2011] to prove Theorem A, and we deduce a
similar result in the setting of [Gee and Savitt 2011a].

Notation. If M is a field, we let G M denote its absolute Galois group. Let ε denote
the p-adic cyclotomic character, and ε̄ the mod p cyclotomic character. If M is a
global field and v is a place of M , let Mv denote the completion of M at v. If M is
a finite extension of Q l for some l, we write IM for the inertia subgroup of G M . If
R is a local ring we write mR for the maximal ideal of R.

Let K be a finite extension of Qp, with ring of integers OK and residue field k.
We write ArtK : K×→ W ab

K for the isomorphism of local class field theory, nor-
malised so that uniformisers correspond to geometric Frobenius elements. For each
σ ∈ Hom(k, Fp) we define the fundamental character ωσ corresponding to σ to be
the composite

IK // W ab
K

Art−1
K

// O×K
// k×

σ
// F×p .

In the case that k ∼= Fp, we will sometimes write ω for ωσ . Note that in this case
we have ω[K :Qp] = ε.

We fix an algebraic closure K of K . If W is a de Rham representation of G K

over Qp and τ is an embedding K ↪→Qp then the multiset HTτ (W ) of Hodge–Tate
weights of W with respect to τ is defined to contain the integer i with multiplicity

dimQp
(W ⊗τ,K K̂ (−i))G K ,

with the usual notation for Tate twists. Thus for example HTτ (ε)= {1}.

2. Serre weight conjectures: definitions

2.1. Local definitions. We begin by recalling some generalisations of the weight
part of Serre’s conjecture. We begin with some purely local definitions. Let K be a
finite totally ramified extension of Qp with absolute ramification index e, and let
ρ : G K → GL2(Fp) be a continuous representation.

Definition 2.1.1. A Serre weight is an irreducible Fp-representation of GL2(Fp).
Up to isomorphism, any such representation is of the form

Fa := det a2 ⊗Syma1−a2 F
2
p

where 0≤ a1− a2 ≤ p− 1. We also use the term Serre weight to refer to the pair
a = (a1, a2).
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We say that two Serre weights a and b are equivalent if and only if Fa ∼= Fb

as representations of GL2(Fp). This is equivalent to demanding that we have
a1− a2 = b1− b2 and a2 ≡ b2 (mod p− 1).

We write Z2
+

for the set of pairs of integers (n1, n2) with n1 ≥ n2, so that
a Serre weight a is by definition an element of Z2

+
. We say that an element

λ ∈ (Z2
+
)HomQp (K ,Qp) is a lift of a Serre weight a ∈ Z2

+
if there is an element

τ ∈ HomQp(K ,Qp) such that λτ = a, and for all other τ ′ ∈ HomQp(K ,Qp) we
have λτ ′ = (0, 0).

Definition 2.1.2. Let K/Qp be a finite extension, let λ ∈ (Z2
+
)HomQp (K ,Qp), and let

ρ : G K → GL2(Qp) be a de Rham representation. Then we say that ρ has Hodge
type λ if for each τ ∈ HomQp(K ,Qp) we have HTτ (ρ)= {λτ,1+ 1, λτ,2}.

In particular, we will say that ρ has “Hodge type 0” if its Hodge–Tate weights
are (0, 1) with respect to each embedding. Following [Gee et al. 2012] (which in
turn follows [Buzzard et al. 2010; Schein 2008]), we define an explicit set of Serre
weights W ?(ρ).

Definition 2.1.3. If ρ is reducible, then a Serre weight a ∈ Z2
+

is in W ?(ρ) if and
only if ρ has a crystalline lift of the form(

χ1 ∗

0 χ2

)
which has Hodge type λ for some lift λ ∈ (Z2

+
)HomQp (K ,Qp) of a.

In particular, if a ∈ W ?(ρ) then by Lemma 6.2 of [Gee and Savitt 2011a] it is
necessarily the case that there is a decomposition Hom(Fp, Fp)= J q J c and an
integer 0≤ δ ≤ e− 1 such that

ρ|IK
∼=

ωδ ∏σ∈J
ωa1+1
σ

∏
σ∈J c

ωa2
σ ∗

0 ωe−1−δ∏
σ∈J c ωa1+1

σ

∏
σ∈J ω

a2
σ .


We remark that this definition in terms of crystalline lifts is hard to work with
concretely, and this is the reason for most of the work in this paper. We also remark
that while it may seem strange to consider the single element set Hom(Fp, Fp), this
notation will be convenient for us (note that we always assume that the residue field
of K is Fp).

Definition 2.1.4. Let K ′ denote the quadratic unramified extension of K inside K ,
with residue field k ′ of order p2.

If ρ is irreducible, then a Serre weight a ∈ Z2
+

is in W ?(ρ) if and only if there is
a subset J ⊂ Hom(k ′, Fp) of size 1, and an integer 0 ≤ δ ≤ e− 1 such that if we
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write Hom(k ′, Fp)= J q J c, then

ρ|IK
∼=


∏
σ∈J

ωa1+1+δ
σ

∏
σ∈J c

ωa2+e−1−δ
σ 0

0
∏
σ∈J c

ωa1+1+δ
σ

∏
σ∈J

ωa2+e−1−δ
σ

 .
We remark that by Lemma 4.1.19 of [Barnet-Lamb et al. 2011], if a ∈ W ?(ρ)

and ρ is irreducible then ρ necessarily has a crystalline lift of Hodge type λ for
any lift λ ∈ (Z2

+
)HomQp (K ,Qp) of a. Note also that if a and b are equivalent and

a ∈W ?(ρ) then b ∈W ?(ρ).

Remark 2.1.5. If θ : G K → F
×

p is an unramified character, then

W ?(r̄)=W ?(r̄ ⊗ θ).

2.2. Global conjectures. The point of the local definitions above is to allow us to
formulate global Serre weight conjectures. Following [Barnet-Lamb et al. 2011],
we work with rank-two unitary groups which are compact at infinity. As we will
not need to make any arguments that depend on the particular definitions made in
that article, and our main results are purely local, we simply recall some notation
and basic properties of the definitions, referring the reader to [Barnet-Lamb et al.
2011] for precise formulations.

We emphasise that our conventions for Hodge–Tate weights are the opposite of
the ones there; for this reason, we must introduce a dual into the definitions.

Fix an imaginary CM field F , and let F+ be its maximal totally real subfield.
We assume that each prime of F+ over p has residue field Fp and splits in F . We
define a global notion of Serre weight by taking a product of local Serre weights in
the following way.

Definition 2.2.1. Let S denote the set of places of F above p. If w ∈ S lies over a
place v of F+, write v = wwc. Let (Z2

+
)S

0 denote the subset of (Z2
+
)S consisting

of elements a = (aw)w∈S such that aw,1+ awc,2 = 0 for all w ∈ S. We say that an
element a ∈ (Z2

+
)S

0 is a Serre weight if for each w|p we have

p− 1≥ aw,1− aw,2.

Let r̄ :G F→GL2(Fp) be a continuous irreducible representation. Definition 2.1.9
of [Barnet-Lamb et al. 2011] states what it means for r̄ to be modular, and more
precisely for r̄ to be modular of some Serre weight a; roughly speaking, r̄ is modular
of weight a if there is a cohomology class on some unitary group with coefficients
in the local system corresponding to a whose Hecke eigenvalues are determined by
the characteristic polynomials of r̄ at Frobenius elements. Since our conventions
for Hodge–Tate weights are the opposite of those of Barnet-Lamb et al., we make
the following definition.
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Definition 2.2.2. Suppose that r̄ : G F → GL2(Fp) is a continuous irreducible
modular representation. Then we say that r̄ is modular of weight a ∈ (Z2

+
)S

0 if r̄∨ is
modular of weight a in the sense of Definition 2.1.9 of [Barnet-Lamb et al. 2011].

We remark that the definition of “modular” in that reference includes the hypothe-
ses that F/F+ is unramified at all finite places, that every place of F+ dividing p
splits in F , and that [F+ :Q] is even.

If r̄ is modular then r̄ c ∼= r̄∨⊗ ε. We globalise the definition of the set W ?(ρ) in
the following natural fashion.

Definition 2.2.3. If r̄ : G F → GL2(Fp) is a continuous representation, then we
define W ?(r̄) to be the set of Serre weights a ∈ (Z2

+
)S

0 such that for each place w|p
the corresponding Serre weight aw ∈ Z2

+
is an element of W ?(r̄ |G Fw

).

One then has the following conjecture.

Conjecture 2.2.4. Suppose that r̄ : G F → GL2(Fp) is a continuous irreducible
modular representation, and that a ∈ (Z2

+
)S

0 is a Serre weight. Then r̄ is modular of
weight a if and only if a ∈W ?(r̄).

If r̄ : G F →GL2(Fp) is a continuous representation, then we say that r̄ has split
ramification if any finite place of F at which r̄ is ramified is split over F+. We will
frequently place ourselves in the following situation.

Hypothesis 2.2.5. Let F be an imaginary CM field with maximal totally real
subfield F+, and let r̄ :G F→GL2(Fp) be a continuous representation. Assume that:

• p > 2,

• [F+ :Q] is even,

• F/F+ is unramified at all finite places,

• Fw/Qp is totally ramified for each place w|p of F , and

• r̄ is an irreducible modular representation with split ramification.

We point out that the condition that any place above p in F+ splits in F , which
is assumed throughout [ibid.], is implied by the third and fourth conditions above.
The following result is Theorem 5.1.3 of [ibid.], one of the main theorems of that
paper, specialised to the case of interest to us where Fw/Qp is totally ramified
for each place w|p of F . (Note that in [ibid.], the set of Serre weights W ?(r̄) is
referred to as W explicit(r̄).)

Theorem 2.2.6. Suppose that Hypothesis 2.2.5 holds. Suppose further that ζp 6∈ F
and r̄(G F(ζp)) is adequate. Let a ∈ (Z2

+
)S

0 be a Serre weight. Assume that a ∈W ?(r̄).
Then r̄ is modular of weight a.
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Here adequacy is a group-theoretic condition, introduced in [Thorne 2011], that
for subgroups of GL2(Fp)with p>5 is equivalent to the usual condition that r̄ |G F(ζp )

is
irreducible. For a precise definition, see [Barnet-Lamb et al. 2011, Definition A.1.1].

Theorem 2.2.6 establishes one direction of Conjecture 2.2.4, and we are left with
the problem of “elimination,” that is, the problem of proving that if r̄ is modular of
weight a, then a ∈W ?(r̄). We believe that this problem should have a purely local
resolution, as we now explain.

The key point is the relationship between being modular of weight a, and the
existence of certain de Rham lifts of the local Galois representations r̄ |G Fw

with
w|p. The link between these properties is provided by local-global compatibility
for the Galois representations associated to the automorphic representations under
consideration; rather than give a detailed development of this connection, we simply
summarise the key results of [Barnet-Lamb et al. 2011].

Proposition 2.2.7 [Barnet-Lamb et al. 2011, Corollary 4.1.8]. Suppose Hypothesis
2.2.5 holds. Let a ∈ (Z2

+
)S

0 be a Serre weight. If r̄ is modular of weight a, then for
each place w|p of F , there is a crystalline representation ρw : G Fw → GL2(Qp)

lifting r̄ |G Fw
such that ρw has Hodge type λw for some lift λw ∈ (Z2

+
)HomQp (Fw,Qp)

of a.

We stress that Proposition 2.2.7 does not complete the proof of Conjecture 2.2.4
because the representation ρw may be irreducible (compare with Definition 2.1.3).
However, in light of this result, it is natural to make the following purely local conjec-
ture, which together with Theorem 2.2.6 would essentially resolve Conjecture 2.2.4.

Conjecture 2.2.8. Let K/Qp be a finite totally ramified extension, and let ρ :
G K →GL2(Fp) be a continuous representation. Let a ∈ Z2

+
be a Serre weight, and

suppose that for some lift λ ∈ (Z2
+
)HomQp (K ,Qp), there is a continuous crystalline

representation ρ : G K → GL2(Qp) lifting ρ such that ρ has Hodge type λ.
Then a ∈W ?(r̄).

We do not know how to prove this conjecture, and we do not directly address
the conjecture in the rest of this paper. Instead, we proceed more indirectly.
Proposition 2.2.7 is a simple consequence of lifting automorphic forms of weight
a to forms of weight λ; we may also obtain nontrivial information by lifting to
forms of weight 0 and nontrivial type. In this paper, we will always consider
principal series types. Recall that if K/Qp is a finite extension the inertial type of
a potentially semistable Galois representation ρ : G K →GLn(Qp) is the restriction
to IK of the corresponding Weil–Deligne representation. In this paper we normalise
this definition as in the appendix to [Conrad et al. 1999], so that, for example,
the inertial type of a finite order character is just the restriction to inertia of that
character. We refer the reader to Definition 2.1.2 and the discussion immediately
following it for our definition of “Hodge type 0.”
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Proposition 2.2.9. Suppose that Hypothesis 2.2.5 holds. Let a ∈ (Z2
+
)S

0 be a Serre
weight. If r̄ is modular of weight a, then for each place w|p of F , there is a
continuous potentially semistable representation ρw : G Fw → GL2(Qp) lifting
r̄ |G Fw

, such that ρw has Hodge type 0 and inertial type ω̃a1 ⊕ ω̃a2 . (Here ω̃ is the
Teichmüller lift of ω.) Furthermore, ρw is potentially crystalline unless

a1− a2 = p− 1 and r̄ |G Fw
∼=

(
χε ∗

0 χ

)
for some character χ .

Proof. This is proved in exactly the same way as [Gee and Savitt 2011a, Lemma
3.4], working in the setting of [Barnet-Lamb et al. 2011] (cf. the proof of Lemma
3.1.1 there). Note that if ρw is not potentially crystalline, then it is necessarily a
twist of an extension of the trivial character by the cyclotomic character. �

3. Realising local representations globally

3.1. We now recall a result from [Gee and Kisin 2012], which allows us to realise
local representations globally, in order to apply the results of Section 2.2 in a purely
local setting.

Theorem 3.1.1. Suppose that p > 2, that K/Qp is a finite extension, and let
r̄K : G K → GL2(Fp) be a continuous representation. Then there is an imaginary
CM field F and a continuous irreducible representation r̄ : G F → GL2(Fp) such
that, if F+ denotes the maximal totally real subfield of F ,

• each place v|p of F+ splits in F and has F+v ∼= K ,

• for each place v|p of F+, there is a place ṽ of F lying over F+ with r̄ |G Fṽ

isomorphic to an unramified twist of r̄K ,

• ζp /∈ F ,

• r̄ is unramified outside of p,

• r̄ is modular in the sense of [Barnet-Lamb et al. 2011], and

• r̄(G F(ζp)) is adequate.

Proof. We give a brief (but complete) proof; a more detailed version appears in [Gee
and Kisin 2012, Appendix A.1.5]. The argument is a straightforward application of
potential modularity techniques. First, an application of Proposition 3.2 of [Calegari
2012] supplies a totally real field L+ and a continuous irreducible representation
r̄ : GL+→ GL2(Fp) such that

• for each place v|p of L+, L+v ∼= K and r̄ |L+v
∼= r̄K ,

• for each place v|∞ of L+, det r̄(cv)=−1, where cv is a complex conjugation
at v, and

• there is a nontrivial finite extension F/Fp such that r̄(GL+)= GL2(F).
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By a further base change one can also arrange that r̄ |GL+v
is unramified at each finite

place v - p of L+.
By Lemma 6.1.6 of [Barnet-Lamb et al. 2012] and the proof of Proposition 7.8.1

of [Snowden 2009], r̄K admits a potentially Barsotti–Tate lift, and one may then
apply Proposition 8.2.1 of [Snowden 2009] to deduce that there is a finite totally real
Galois extension F+/L+ in which all primes of L+ above p split completely, such
that r̄ |G F+

is modular in the sense that it is congruent to the Galois representation
associated to some Hilbert modular form of parallel weight 2.

By the theory of base change between GL2 and unitary groups (see Section 2 of
[Barnet-Lamb et al. 2011]), it now suffices to show that there is a totally imaginary
quadratic extension F/F+ and a character θ : G F → F

×

p such that r̄ |G F ⊗ θ has
multiplier ε −1 and such that for each place v|p of F+, there is a place ṽ of F lying
over v with θ |G Fṽ

unramified. The existence of such a character is a straightforward
exercise in class field theory, and follows for example from Lemma 4.1.5 of [Clozel
et al. 2008]. �

4. Congruences

4.1. Having realised a local mod p representation globally, we can now use the
results explained in Section 2 to deduce nontrivial local consequences.

Proposition 4.1.1. Let p > 2 be prime, let K/Qp be a finite totally ramified exten-
sion, and let ρ : G K → GL2(Fp) be a continuous representation. Let a ∈W ?(ρ) be
a Serre weight. Then there is a continuous potentially semistable representation
ρ : G K → GL2(Qp) lifting ρ, such that ρ has Hodge type 0 and inertial type
ω̃a1 ⊕ ω̃a2 . Furthermore, ρ is potentially crystalline unless

a1− a2 = p− 1 and ρ ∼=

(
χε ∗

0 χ

)
for some character χ .

Proof. By Theorem 3.1.1, there is an imaginary CM field F and a modular repre-
sentation r̄ : G F → GL2(Fp) such that

• for each place v|p of F+, v splits in F as ṽ ṽc, and we have Fṽ ∼= K , and r̄ |G Fṽ

is isomorphic to an unramified twist of ρ,

• r̄ is unramified outside of p,

• ζp /∈ F , and

• r̄(G F(ζp)) is adequate.

Now, since the truth of the result to be proved is obviously unaffected by making an
unramified twist (if ρ is replaced by a twist by an unramified character θ , one may
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replace ρ by a twist by an unramified lift of θ ), we may without loss of generality
suppose that r̄ |G Fw

∼=ρ. Let b∈ (Z2
+
)S

0 be the Serre weight such that b ṽ = a for each
place v|p of F+, where S denotes the set of places of F above p. By Remark 2.1.5,
b ∈ W ?(r̄). Then by Theorem 2.2.6, r̄ is modular of weight b. The result now
follows from Proposition 2.2.9. �

4.2. Spaces of crystalline extensions. We now specialise to the reducible setting
of Definition 2.1.3. As usual, we let K/Qp be a finite totally ramified extension
with residue field k = Fp, ramification index e, and uniformiser π . We fix a Serre
weight a ∈ Z2

+
. Note that all the subsequent constructions that we make (such as

the definitions of the spaces Lflat and Lcrys below) will depend on this choice. We
fix a continuous representation ρ : G K → GL2(Fp), and we assume that there is:

• a decomposition Hom(Fp, Fp)= J q J c, and

• an integer 0≤ δ ≤ e− 1 such that

ρ|IK
∼=

ωδ ∏σ∈J
ωa1+1
σ

∏
σ∈J c

ωa2
σ ∗

0 ωe−1−δ∏
σ∈J c ωa1+1

σ

∏
σ∈J ω

a2
σ

 .
Note that in general there might be several choices of J , δ. Consider pairs of
characters χ1, χ2 : G K →Q

×

p with the properties that:

(1) ρ ∼=
(
χ1 ∗

0 χ2

)
,

(2) χ1 and χ2 are crystalline, and

(3) if we let S denote the set of HomQp(K ,Qp), then there exist J , δ as above
such that either

(i) J is nonempty, and there is one embedding τ ∈ S with HTτ (χ1)= a1+ 1
and HTτ (χ2)= a2, there are δ embeddings τ ∈ S with HTτ (χ1)= 1 and
HTτ (χ2)= 0, and for the remaining e− 1− δ embeddings τ ∈ S we have
HTτ (χ1)= 0 and HTτ (χ2)= 1, or

(ii) J = ∅, and there is one embedding τ ∈ S with HTτ (χ1) = a2 and
HTτ (χ2) = a1 + 1, there are δ embeddings τ ∈ S with HTτ (χ1) = 1
and HTτ (χ2)= 0, and for the remaining e− 1− δ embeddings τ ∈ S we
have HTτ (χ1)= 0 and HTτ (χ2)= 1.

Note that these properties do not uniquely determine the characters χ1 and χ2,
even in the unramified case, as one is always free to twist either character by an
unramified character which is trivial mod p. We point out that the Hodge type of
any de Rham extension of χ2 by χ1 will be a lift of a. Conversely, by Lemma 6.2
of [Gee and Savitt 2011a] any χ1, χ2 satisfying (1) and (2) such that the Hodge
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type of χ1⊕χ2 is a lift of a will satisfy (3) for a valid choice of J and δ (unique
unless a = 0).

Suppose now that we have fixed two such characters χ1 and χ2, and we now
allow the (line corresponding to the) extension class of ρ in ExtG K (χ2, χ1) to vary.
We naturally identify ExtG K (χ2, χ1) with H 1(G K , χ1χ

−1
2 ) from now on.

Definition 4.2.1. Let Lχ1,χ2 be the subset of H 1(G K , χ1χ
−1
2 ) such that the corre-

sponding representation ρ has a crystalline lift ρ of the form(
χ1 ∗

0 χ2

)
.

We have the following variant of Lemma 3.12 of [Buzzard et al. 2010].

Lemma 4.2.2. Lχ1,χ2 is an Fp-vector subspace of H 1(G K , χ1χ
−1
2 ) of dimension

|J | + δ unless χ1 = χ2, in which case it has dimension |J | + δ+ 1.

Proof. Let χ =χ1χ
−1
2 . Recall H 1

f (G K ,Zp(χ)) is the preimage of H 1
f (G K ,Qp(χ))

under the natural map η : H 1(G K ,Zp(χ))→ H 1(G K ,Qp(χ)), so that Lχ1,χ2 is the
image of H 1

f (G K ,Zp(χ)) in H 1(G K , χ). The kernel of η is precisely the torsion
part of H 1(G K ,Zp(χ)). Since χ 6= 1, e.g., by examining Hodge–Tate weights, this
torsion is nonzero if and only if χ = 1, in which case it has the form κ−1Zp/Zp for
some κ ∈mZp

. (To see this, note that if χ 6= 1 is defined over E , then the long exact
sequence associated to 0→ OE(χ)→ OE(χ)→ kE(χ)→ 0 identifies kE(χ)

G K

with the $ -torsion in ker(η).)
By Proposition 1.24(2) of [Nekovář 1993] we see that

dimQp
H 1

f (G K ,Qp(χ))= |J | + δ,

again using χ 6= 1. Since H 1(G K ,Zp(χ)) is a finitely generated Zp-module, the
result follows. �

Definition 4.2.3. If χ1 and χ2 are fixed, we define Lcrys to be the subset of
H 1(G K , χ1χ

−1
2 ) given by the union of the Lχ1,χ2 over all χ1 and χ2 as above.

Note that Lcrys is a union of subspaces of possibly varying dimensions, and
as such it is not clear that Lcrys is itself a linear subspace. Note also that the
representations ρ corresponding to elements of Lcrys are by definition precisely
those for which a ∈W ?(ρ). Note also that Lcrys depends only on ρss and a.

Definition 4.2.4. Let Lflat be the subset of H 1(G K , χ1χ
−1
2 ) consisting of classes

with the property that if

ρ ∼=

(
χ1 ∗

0 χ2

)
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is the corresponding representation, then there is a finite field kE ⊂ Fp and a finite
flat kE -vector space scheme over OK (π1/(p−1)) with generic fibre descent data to K
of type ωa1 ⊕ωa2 (see Definition 5.1.1) whose generic fibre is ρ.

Note that Lflat depends only on ρss and a.

Proposition 4.2.5. Provided that a1− a2 6= p− 1 or that χ1χ
−1
2 6= ε, Lcrys ⊂ Lflat.

Proof. Take a class in Lcrys, and consider the corresponding representation

ρ ∼=

(
χ1 ∗

0 χ2

)
.

As remarked above, a ∈W ?(ρ), so by Proposition 4.1.1, ρ has a crystalline lift of
Hodge type 0 and inertial type ω̃a1 ⊕ ω̃a2 , and this representation can be taken to
have coefficients in the ring of integers OE of a finite extension E/Qp. Let $ be a
uniformiser of OE , and kE the residue field. Such a representation corresponds to a
p-divisible OE -module with generic fibre descent data, and taking the $ -torsion
gives a finite flat kE -vector space scheme with generic fibre descent data whose
generic fibre is ρ. By Corollary 5.2 of [Gee and Savitt 2011b] this descent data has
type ωa1 ⊕ωa2 . �

In the next section we will make calculations with finite flat group schemes in
order to relate Lflat and Lcrys.

5. Finite flat models

5.1. We work throughout this section in the following setting:

• K/Qp is a finite extension with ramification index e, ring of integers OK ,
uniformiser π and residue field Fp.

• χ1, χ2 are characters G K → F
×

p .

• a ∈ Z2
+

is a Serre weight.

• There is a decomposition Hom(Fp, Fp)= J q J c, and an integer 0≤ δ ≤ e−1
such that

χ1|IK = ω
δ
∏
σ∈J

ωa1+1
∏
σ∈J c

ωa2,

χ2|IK = ω
e−1−δ

∏
σ∈J c

ωa1+1
∏
σ∈J

ωa2 .

Note in particular that (χ1χ2)|IK = ω
a1+a2+e.

Let K1 := K (π1/(p−1)). Let kE be a finite extension of Fp such that χ1, χ2 are
defined over kE ; for the moment kE will be fixed, but eventually it will be allowed
to vary.
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We wish to consider the representations

ρ ∼=

(
χ1 ∗

0 χ2

)
such that there is a finite flat kE -vector space scheme G over OK1 with generic fibre
descent data to K of type ωa1 ⊕ωa2 (see Definition 5.1.1), whose generic fibre is
ρ. In order to do so, we will work with Breuil modules with descent data from K1

to K . We recall the necessary definitions from [Gee and Savitt 2011b].
Fix π1, a (p−1)-st root of π in K1. Write e′ = e(p−1). The category BrModdd

consists of quadruples (M,Fil1M, φ1, {ĝ}) where:

• M is a finitely generated free kE [u]/ue′ p-module,

• Fil1M is a kE [u]/ue′ p-submodule of M containing ue′M,

• φ1 : Fil1M→M is kE -linear and φ-semilinear (where

φ : Fp[u]/ue′ p
→ Fp[u]/ue′ p

is the p-th power map) with image generating M as a kE [u]/ue′ p-module, and

• ĝ :M→M for each g ∈Gal(K1/K ) are additive bijections that preserve Fil1M,
commute with the φ1-, and kE -actions, and satisfy ĝ1 ◦ ĝ2 = ĝ1 ◦ g2 for all
g1, g2 ∈ Gal(K1/K ); furthermore 1̂ is the identity, and if a ∈ kE , m ∈M then
ĝ(aui m)= a((g(π)/π)i )ui ĝ(m).

The category BrModdd is equivalent to the category of finite flat kE -vector space
schemes over OK1 together with descent data on the generic fibre from K1 to K
(this equivalence depends on π1); see [Savitt 2008], for instance. We obtain the
associated G K -representation (which we will refer to as the generic fibre) of an
object of BrModdd,K1 via the covariant functor T K

st,2 (which is defined immediately
before Lemma 4.9 of [Savitt 2005]).

Definition 5.1.1. Let M be an object of BrModdd such that the underlying kE -
module has rank two. We say that the finite flat kE -vector space scheme corre-
sponding to M has descent data of type ωa1 ⊕ωa2 if M has a basis e1, e2 such that
ĝ(ei )= ω

ai (g)ei . (Here we abuse notation by identifying an element of G K with
its image in Gal(K1/K ).)

We now consider a finite flat group scheme with generic fibre descent data G

as above. By a standard scheme-theoretic closure argument, χ1 corresponds to a
finite flat subgroup scheme with generic fibre descent data H of G, so we begin by
analysing the possible finite flat group schemes corresponding to characters.

Suppose now that M is an object of BrModdd. The rank one objects of BrModdd

are classified as follows.
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Proposition 5.1.2. With our fixed choice of uniformiser π , every rank-one object
of BrModdd has the form:

• M= (kE [u]/ue′ p) · v,

• Fil1M= ux(p−1)M,

• φ1(ux(p−1)v)= cv for some c ∈ k×E , and

• ĝ(v)= ω(g)kv for all g ∈ Gal(K1/K ),

where 0≤ x ≤ e and 0≤ k < p− 1 are integers.
Then T K

st,2(M)= ω
k+x
· urc−1 , where urc−1 is the unramified character taking an

arithmetic Frobenius element to c−1.

Proof. This is a special case of Proposition 4.2 and Corollary 4.3 of [Gee and Savitt
2011b]. �

Let M (or M(x)) be the rank-one Breuil module with kE -coefficients and de-
scent data from K1 to K corresponding to H, and write M in the form given by
Proposition 5.1.2. Since G has descent data of type ωa1 ⊕ ωa2 , we must have
ωk
∈ {ωa1, ωa2}.

5.2. Extensions. Having determined the rank-one objects, we now go further and
compute the possible extension classes. By a scheme-theoretic closure argument,
the Breuil module P corresponding to G is an extension of N by M, where M is as
in the previous section, and N (or N(y)) is defined by

• N= (kE [u]/ue′ p) ·w,

• Fil1N= u y(p−1)N,

• φ1(u y(p−1)v)= dw for some d ∈ k×E , and

• ĝ(v)= ω(g)lv for all g ∈ Gal(K1/K ),

where 0≤ y ≤ e and 0≤ l < p− 1 are integers. Now, as noted above, the descent
data for G is of type ωa1⊕ωa2 , so we must have that either ωk

= ωa1 and ωl
= ωa2 ,

or ωk
= ωa2 and ωl

= ωa1 . Since by definition we have (χ1χ2)|IK = ω
a1+a2+e, we

see from Proposition 5.1.2 that

x + y ≡ e (mod p− 1).

We have the following classification of extensions of N by M.

Proposition 5.2.1. Every extension of N by M is isomorphic to exactly one of the
form

• P= (kE [u]/ue′ p) · v+ (kE [u]/ue′ p) ·w,

• Fil1P= (kE [u]/ue′ p) · ux(p−1)v+ (kE [u]/ue′ p) · (u y(p−1)w+ νv),

• φ1(ux(p−1)v)= cv, φ1(u y(p−1)w+ νv)= dw,
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• ĝ(v)= ωk(g)v and ĝ(w)= ωl(g)w for all g ∈ Gal(K1/K ),

where ν ∈ umax{0,(x+y−e)(p−1)}kE [u]/ue′ p has all nonzero terms of degree congruent
to l−k modulo p−1, and has all terms of degree less than x(p−1), unless χ1=χ2

and x ≥ y, in which case it may additionally have a term of degree px − y.

Proof. This is a special case of Theorem 7.5 of [Savitt 2004] with the addition of
kE -coefficients. When K (in the notation of loc. cit.) is totally ramified, the proof
of that theorem with coefficients added proceeds in the same manner with only the
following changes, where l corresponds to p in our present paper.

• Replace Lemma 7.1 of loc. cit. (i.e., Lemma 5.2.2 of [Breuil et al. 2001]) with
Lemma 5.2.4 of [Breuil et al. 2001] (with k ′ = kE and k = Fp in the notation
of that lemma). In particular replace t l with φ(t) wherever it appears in the
proof, where φ is the kE -linear endomorphism of kE [u]/ue′l sending ui to uli .

• Instead of applying Lemma 4.1 of [Savitt 2004], note that the cohomology
group H 1(Gal(K1/K ), kE [u]/ue′l) vanishes because Gal(K1/K ) has prime-
to-l order while kE [u]/ue′l has l-power order.

• Every occurrence of T l
i in the proof (for any subscript i) should be replaced

with Ti .

• The coefficients of h, t are permitted to lie in kE (that is, they are not constrained
to lie in any particular proper subfield). �

The formulas for (P,Fil1P, φ1, {ĝ}) in the statement of Proposition 5.2.1 define a
Breuil module with descent data provided that Fil1P contains ue′P and is preserved
by each ĝ. This is the case as long as ν lies in umax{0,(x+y−e)(p−1)}kE [u]/ue′ p and
has all nonzero terms of degree congruent to l − k modulo p − 1 (compare the
discussion in Section 7 of [Savitt 2004]); denote this Breuil module by P(x, y, ν).
Note that c is fixed while x determines k, since we require ωk+x

· urc−1 = χ1;
similarly d is fixed and y determines l. So this notation is reasonable.

We would like to compare the generic fibres of extensions of different choices of
M and N. To this end, we have the following result. Write χ1|IK =ω

α , χ2|IK =ω
β .

Proposition 5.2.2. The Breuil module P(x, y, ν) has the same generic fibre as the
Breuil module P′, where

• P′ = (kE [u]/ue′ p) · v′+ (kE [u]/ue′ p) ·w′,

• Fil1P′ = (kE [u]/ue′ p) · ue(p−1)v′+ (kE [u]/ue′ p) · (w′+ u p(e−x)+yνv′),

• φ1(ue(p−1)v′)= cv′, φ1(w
′
+ u p(e−x)+yνv′)= dw′,

• ĝ(v′)= ωα−e(g)v′ and ĝ(w′)= ωβ(g)w′ for all g ∈ Gal(K1/K ).

Proof. Consider the Breuil module P′′ defined by

• P′′ = (kE [u]/ue′ p) · v′′+ (kE [u]/ue′ p) ·w′′,
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• Fil1P′′ = (kE [u]/ue′ p) · ue(p−1)v′′+ (kE [u]/ue′ p) · (u y(p−1)w′′+ u p(e−x)νv′′),

• φ1(ue(p−1)v′′)= cv′′, φ1(u y(p−1)w′′+ u p(e−x)νv′′)= dw′′,

• ĝ(v′′)= ωk+x−e(g)v′′ and ĝ(w′′)= ωl(g)w′′ for all g ∈ Gal(K1/K ).

(One checks without difficulty that this is a Breuil module. For instance the condition
on the minimum degree of terms appearing in ν guarantees that Fil1P′′ contains
ue′P′′.) Note that k + x ≡ α (mod p− 1), l + y ≡ β (mod p− 1). We claim that
P, P′ and P′′ all have the same generic fibre. To see this, one can check directly
that there is a morphism P→ P′′ given by

v 7→ u p(e−x)v′′, w 7→ w′′,

and a morphism P′→ P′′ given by

v′ 7→ v′′, w′ 7→ u pyw′′.

By Proposition 8.3 of [Savitt 2004], it is enough to check that the kernels of these
maps do not contain any free kE [u]/(ue′ p)-submodules, which is an immediate
consequence of the inequalities p(e− x), py < e′ p. �

Remark 5.2.3. For future reference, while the classes in H 1(G K , χ1χ
−1
2 ) realised

by P(x, y, ν) and P′ may not coincide, they differ at most by multiplication by
a kE -scalar. To see this, observe that the maps P→ P′′ and P′ → P′′ induce
kE -isomorphisms on the one-dimensional sub- and quotient characters.

We review the constraints on the integers x, y: they must lie between 0 and e, and
if we let k, l be the residues of α− x, β − y (mod p− 1) in the interval [0, p− 1)
then we must have {ωk, ωl

} = {ωa1, ωa2}. Call such a pair x, y valid.

Corollary 5.2.4. Let x ′, y′ be another valid pair. Suppose that x ′ + y′ ≤ e and
p(x ′−x)+(y− y′)≥ 0. Then P(x, y, ν) has the same generic fibre as P(x ′, y′, ν ′),
where ν ′ = u p(x ′−x)+(y−y′)ν.

Proof. The Breuil module P(x ′, y′, ν ′) is well-defined: one checks, for example
from the relation l− k ≡ β−α+ x− y (mod p−1), that the congruence condition
on the degrees of the nonzero terms in ν ′ is satisfied, while since x ′+ y′ ≤ e there
is no condition on the lowest degrees appearing in ν ′. Now the result is immediate
from Proposition 5.2.2, since u p(e−x)+yν = u p(e−x ′)+y′ν ′. �

Recall that x + y ≡ e (mod p− 1), so that x and e− y have the same residue
modulo p−1. It follows that if x, y is a valid pair of parameters, then so is e− y, y;
and similarly for x, e − x . Let X be the largest value of x over all valid pairs
x, y, and similarly Y the smallest value of y. Then on the one hand X ≥ e− Y by
definition of X , while on the other hand e− X ≥ Y by definition of Y . It follows
that X + Y = e.
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Corollary 5.2.5. The module P(x, y, ν) has the same generic fibre as P(X, Y, µ)
where µ ∈ kE [u]/ue′ p has all nonzero terms of degree congruent to β −α+ X − Y
modulo p− 1, and has all terms of degree less than X (p− 1), unless χ1 = χ2, in
which case it may additionally have a term of degree pX − Y .

Proof. Since X + Y = e and p(X − x)+ (y − Y ) ≥ 0 from the choice of X, Y ,
Corollary 5.2.4 shows that P(x, y, ν) has the same generic fibre as some P(X, Y, ν ′);
by Proposition 5.2.1 there exists µ as in the statement such that P(x, y, µ) has the
same generic fibre as P(X, Y, ν ′). (Note that if χ1 = χ2 then automatically X ≥ Y ,
because in this case if (x, y) is a valid pair then so is (y, x).) �

Proposition 5.2.6. Let X be as above, that is, X is the maximal integer such that
• 0≤ X ≤ e, and

• either χ1|IK = ω
a1+X or χ1|IK = ω

a2+X .

Then Lflat is an Fp-vector space of dimension at most X , unless χ1 = χ2, in which
case it has dimension at most X + 1.

Proof. Let Lflat,kE ⊂ Lflat consist of the classes η such that the containment η ∈ Lflat

is witnessed by a kE -vector space scheme with generic fibre descent data. By
Corollary 5.2.5 and Remark 5.2.3, these are exactly the classes arising from the
Breuil modules P(X, Y, µ) with kE -coefficients as in Corollary 5.2.5. These classes
form a kE -vector space (since they are all the extension classes arising from exten-
sions of N(Y ) by M(X)), and by counting the (finite) number of possibilities for µ
we see that dimkE Lflat,kE is at most X or, when χ1 = χ2, X + 1.

Since Lflat,kE ⊂ Lflat,k′E if kE ⊂ k ′E it follows easily that Lflat = ∪kE Lflat,kE is an
Fp-vector space of dimension at most X or X + 1, respectively. �

We can now prove our main local result, the relation between Lflat and Lcrys.

Theorem 5.2.7. If either a1− a2 6= p− 1 or χ1χ
−1
2 6= ε, we have Lflat = Lcrys.

Proof. Before we begin the proof, we remind the reader that the spaces Lcrys and
Lflat depend on the fixed Serre weight a and the fixed representation ρss, and that
we are free to vary J and δ in our arguments. By Proposition 4.2.5, we know
that Lcrys ⊂ Lflat, so by Proposition 5.2.6 it suffices to show that Lcrys contains
an Fp-subspace of dimension X (respectively X + 1 if χ1 = χ2). Since Lcrys is
the union of the spaces Lχ1,χ2 , it suffices to show that one of these spaces has the
required dimension. Let X be as in the statement of Proposition 5.2.6, so that X is
maximal in [0, e] with the property that either χ1|IK = ω

a1+X or χ1|IK = ω
a2+X .

Note that by the assumption that there is a decomposition Hom(Fp, Fp)= J q J c,
and an integer 0≤ δ ≤ e− 1 such that

ρ|IK
∼=

ωδ ∏σ∈J
ωa1+1
σ

∏
σ∈J c

ωa2
σ ∗

0 ωe−1−δ∏
σ∈J c ωa1+1

σ

∏
σ∈J ω

a2
σ

 ,
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we see that if X = 0 then χ1|IK = ω
a2 .

If χ1|IK = ω
a2+X then we can take J to be empty and we take δ = X ; otherwise

X > 0 and χ1|IK = ω
a1+X , and we can take J c to be empty and δ = X − 1. In

either case, we may define characters χ1 and χ2 as in Section 4.2, and we see from
Lemma 4.2.2 that dimFp

Lχ1,χ2 = X unless χ1 = χ2, in which case it is X +1. The
result follows. �

As a consequence of this result, we can also address the question of the rela-
tionship between the different spaces Lχ1,χ2 for a fixed Serre weight a ∈W ?(ρ). If
e is large, then these spaces do not necessarily have the same dimension, so they
cannot always be equal. However, it is usually the case that the spaces of maximal
dimension coincide, as we can now see.

Corollary 5.2.8. If either a1−a2 6= p− 1 or χ1χ
−1
2 6= ε, then the spaces Lχ1,χ2 of

maximal dimension are all equal.

Proof. In this case dimFp
Lχ1,χ2 = dimFp

Lcrys by the proof of Theorem 5.2.7, so
we must have Lχ1,χ2 = Lcrys. �

Finally, we determine Lcrys in the one remaining case, where the spaces Lχ1,χ2

of maximal dimension no longer coincide.

Proposition 5.2.9. If a1− a2 = p− 1 and χ1χ
−1
2 = ε, then Lcrys = H 1(G K , ε).

Proof. We adapt the proof of [Barnet-Lamb et al. 2012, Lemma 6.1.6]. By twisting
we can reduce to the case (a1, a2)= (p−1, 0). Let L be a given line in H 1(G K , ε),
and choose an unramified character ψ with trivial reduction. Let χ be some fixed
crystalline character of G K with Hodge–Tate weights p, 1, . . . , 1 such that χ = ε.
Let E/Qp be a finite extension with ring of integers O, uniformiser $ and residue
field F, such that ψ and χ are defined over E and L is defined over F (that is,
there is a basis for L which corresponds to an extension defined over F). Since any
extension of 1 by χψ is automatically crystalline, it suffices to show that we can
choose ψ so that L lifts to H 1(G K ,O(ψχ)).

Let H be the hyperplane in H 1(G K , F) which annihilates L under the Tate
pairing. Let δ1 : H 1(G K , F(ε))→ H 2(G K ,O(ψχ)) be the map coming from the
exact sequence

0→ O(ψχ)
$
→ O(ψχ)→ F(ε)→ 0

of G K -modules. We need to show that δ1(L)= 0 for some choice of ψ .
Let δ0 be the map

H 0(G K , (E/O)(ψ−1χ−1ε))→ H 1(G K , F)

coming from the exact sequence

0→ F→ (E/O)(ψ−1χ−1ε)
$
→ (E/O)(ψ−1χ−1ε)→ 0
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of G K -modules. By Tate local duality, the condition that L vanishes under the map
δ1 is equivalent to the condition that the image of the map δ0 is contained in H . Let
n ≥ 1 be the largest integer with the property that ψ−1χ−1ε ≡ 1 (mod$ n). Then
we can write ψ−1χ−1ε(x)= 1+$ nαψ(x) for some function αψ : G K → O. Let
αψ denote αψ (mod$) : G K → F. Then αψ is a group homomorphism (that is a
1-cocycle), and the choice of n ensures that it is nontrivial. It is straightforward to
check that the image of the map δ0 is the line spanned by αψ . If αψ is in H for
some ψ , we are done. Suppose this is not the case. We break the rest of the proof
into two cases.

Case 1: L is très ramifié. To begin, we observe that it is possible to have chosenψ
so that αψ is ramified. To see this, let m be the largest integer with the property that
(ψ−1χ−1ε)|IK ≡ 1 (mod$m). Note that m exists since the Hodge–Tate weights
of ψ−1χ−1ε are not all 0. If m = n then we are done, so assume instead that m > n.
Let g ∈ G K be a fixed lift of FrobK . We claim that

ψ−1χ−1ε(g)= 1+$ nαψ(g) such that αψ(g) 6≡ 0 (mod$).

In fact, if

αψ(g)≡ 0 (mod$) then ψ−1χ−1ε(g) ∈ 1+$ n+1OK .

Since m > n we see that ψ−1χ−1ε(G K ) ⊂ 1+$ n+1OK and this contradicts the
selection of n. Now let ψ ′ be the unramified character sending our fixed g to
1+$ nαψ(g). Then ψ ′ has trivial reduction, and after replacing ψ by ψψ ′ we see
that n has increased but m has not changed. After finitely many iterations of this
procedure we have m = n, completing the claim.

Suppose, then, that αψ is ramified. The fact that L is très ramifié implies that H
does not contain the unramified line in H 1(G K , F). Thus there is a unique x ∈ F×

such that αψ + ux ∈ H where ux : G K → F is the unramified homomorphism
sending FrobK to x . Replacing ψ with ψ times the unramified character sending
FrobK to (1+$ nx)−1, for x a lift of x , we are done.

Case 2: L is peu ramifié. Making a ramified extension of O if necessary, we can
and do assume that n ≥ 2 (for example, replacing E by E($ 1/2) has the effect
of replacing n by 2n). The fact that L is peu ramifié implies that H contains the
unramified line. It follows that if we replaceψ withψ times the unramified character
sending FrobK to 1+$ , then we are done (as the new αψ will be unramified). �

6. Global consequences

6.1. We now deduce our main global results, using the main theorems of [Barnet-
Lamb et al. 2011] together with our local results to precisely determine the set of
Serre weights for a global representation in the totally ramified case.
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Theorem 6.1.1. Suppose that Hypothesis 2.2.5 holds. Let a ∈ (Z2
+
)S

0 be a Serre
weight such that r̄ is modular of weight a. Let w be a place of F dividing p, write
aw = (a1, a2), and write ω for the unique fundamental character of IFw of niveau
one. Then aw ∈W ?(r̄ |G Fw

).

Proof. Let e be the ramification degree of Fw. Suppose first that r̄ |G Fw
is irreducible.

Then the proof of Lemma 5.5 of [Gee and Savitt 2011a] goes through unchanged,
and gives the required result. So we may suppose that r̄ |G Fw

is reducible. In this
case the proof of Lemma 5.4 of [ibid.] goes through unchanged, and shows that

r̄ |G Fw
∼=

(
χ1 ∗

0 χ2

)
where (χ1χ2)|IK = ω

a1+a2+e, and either χ1|IK = ω
a1+z or χ1|IK = ω

a2+e−z for
some 1≤ z ≤ e, so we are in the situation of Section 4.2. Consider the extension
class in H 1(G Fw , χ1χ

−1
2 ) corresponding to r̄ |G Fw

. By Proposition 2.2.9, either
a1− a2 = p− 1 and χ1χ

−1
2 = ε, or this extension class is in Lflat. In either case,

by Theorem 5.2.7 and Proposition 5.2.9, the extension class is in Lcrys, so that
aw ∈W ?(r̄ |G Fw

), as required. �

We remark that we have stated Theorem 6.1.1 only when Fw/Qp is totally rami-
fied for all placesw|p of F in order to avoid recalling the definition of Serre weights
in any greater generality; however, the above argument would prove essentially the
same result at any totally ramified place w|p of F , even if not all places w|p are
totally ramified (just modify Proposition 2.2.9 suitably).

Combining Theorem 6.1.1 with Theorem 5.1.3 of [Barnet-Lamb et al. 2011], we
obtain our main global result.

Theorem 6.1.2. Suppose that Hypothesis 2.2.5 holds. Suppose further that ζp 6∈ F
and r̄(G F(ζp)) is adequate. Let a ∈ (Z2

+
)S

0 be a Serre weight. Then aw ∈W ?(r̄ |G Fw
)

for all places w|p of F if and only if r̄ is modular of weight a.

Finally, we may apply our local results to the case of inner forms of GL2, as
considered in [Gee and Savitt 2011a]. Here is an example of the kind of theorem
that one can prove. We refer the reader to [ibid.] for the notion of ρ as below being
modular (of some weight).

Theorem 6.1.3. Let F be a totally real field, let p ≥ 7 be prime, and suppose that
p is totally ramified in F , and that [F(ζp) : F] > 4. Let ρ : G F → GL2(Fp) be a
continuous modular representation, and suppose that ρ|G F(ζp )

is irreducible. Let
a ∈ Z2 be a Serre weight. Let v be the unique place of F lying over p, and assume
that ρ|ss

G Fv
6∼= εωa1 ⊕ωa2 , εωa2 ⊕ωa1 . Then ρ is modular of weight a if and only if

a ∈W ?(ρ|G Fv
), where v is the unique place of F lying over p.
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Proof. This follows easily from Theorem 5.2.7 together with (the proof of) Corol-
lary 7.3 of [ibid.], replacing the use of Theorem 7.1 of [ibid.] with an appeal to
Theorem 6.1.9 of [Barnet-Lamb et al. 2012]. �
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Annihilating the cohomology
of group schemes

Bhargav Bhatt

Our goal in this note is to show that cohomology classes with coefficients in
finite flat group schemes can be killed by finite covers of the base scheme, and
similarly for abelian schemes with “finite covers” replaced by “proper covers.”
We apply this result to commutative algebra to give by a conceptual proof of
Hochster–Huneke’s theorem on the existence of big Cohen–Macaulay algebras
in positive characteristic; all previous proofs of this result were equational or
cocycle-theoretic in nature.

1. Introduction

Given a scheme S with a sheaf G and class α ∈ H n(S,G) for n > 0, a natural
question one may ask is if there exist covers π : T → S such that π∗α = 0? Of
course, as stated, the answer is trivially yes as we may take T to be a disjoint union
of suitable opens occurring in a Čech cocycle representing α. However, the question
becomes interesting if we require geometric conditions on π , such as properness
or even finiteness. Our goal is to study such questions for fppf cohomology in the
case that G is either a finite flat commutative group scheme or an abelian scheme.
Our main results are:

Theorem 1.1. Let S be a noetherian excellent scheme, and let G be a finite flat
commutative group scheme over S. Then classes in H n

fppf(S,G) can be killed by
finite surjective maps to S for n > 0.

Theorem 1.2. Let S be a noetherian excellent scheme, and let A be an abelian
scheme over S. Then classes in H n

fppf(S, A) can be killed by proper surjective maps
to S for n > 0. Moreover, there exists an example of a normal affine scheme S that
is essentially of finite type over C, and an abelian scheme A→ S with a class in
H 1

fppf(S, A) that cannot be killed by finite surjective maps to S.

MSC2010: primary 14L15; secondary 13D45, 14K05, 14F20.
Keywords: group schemes, abelian varieties, étale cohomology, fppf cohomology, big

Cohen–Macaulay algebras.
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We stress that there are no assumptions on the residue characteristics of S in
either theorem above.

Our primary motivation for proving the preceding results was to obtain a bet-
ter understanding of the Hochster–Huneke proof of the existence of big Cohen–
Macaulay algebras in positive characteristic commutative algebra; see [Hochster
and Huneke 1992]. We have succeeded in this endeavour as we can give a new
and essentially topological proof of the Hochster–Huneke result by using the
cohomology-annihilation results discussed above in lieu of the more traditional
equational approaches; see Section 5 for more. We are hopeful that a similar
approach, coupled with the constructions in [Fontaine 1994] of mixed characteristic
rings admitting Frobenius actions, will eventually provide an approach to Hochster’s
homological conjectures in mixed characteristic commutative algebra; we refer the
interested reader to [Hochster 2007] for further information.

An informal summary of the proofs: To prove Theorem 1.1, we first use a theorem
of Raynaud to embed a finite flat group scheme into an abelian scheme; this
permits a reduction to from fppf cohomology to étale cohomology by a theorem
of Grothendieck. Next, using an observation due to Gabber, we reduce from étale
cohomology to Zariski cohomology, and then we solve the problem by hand. For
Theorem 1.2, we reduce as before to Zariski cohomology, and then solve the problem
using de Jong’s alterations results combined with an observation concerning rational
sections of an abelian scheme over a regular base scheme. The example referred to
in Theorem 1.2 is discussed in Section 6, and relies on a construction of Raynaud.
Lastly, the Hochster–Huneke theorem is reproved by first reformulating it as a
suitable cohomology-annihilation statement for the higher local cohomology of the
structure sheaf, and then deducing this statement from Theorem 1.1 by using finite
flat subgroup schemes of Ga defined by additive polynomials in Frobenius.

Notations and conventions. All group schemes occurring in this note are commu-
tative; all the cohomology groups occurring in this note are computed in the fppf
topology unless otherwise specified. For a scheme X , the big site of X equipped
with the étale topology is denoted (Sch/X)ét, while the small site is denoted Xét;
similarly for other topologies like the fppf and Zariski topologies.

Organisation of this note. In Section 2 we recall Gabber’s observation alluded
to above. Using this observation, we prove Theorem 1.1 in Section 3, and the
first half of Theorem 1.2 in Section 4. Next, in Section 5, we explain how to use
Theorem 1.1 to give a new proof of the Hochster–Huneke theorem. We close in
Section 6 by giving an example that illustrates the necessity of “proper” in the first
half of Theorem 1.2 and finishes its proof.
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2. An observation of Gabber

In this section, we recall a result of Gabber concerning the local structure of the étale
topology. This observation permits reduction of étale cohomological considerations
to those in finite flat cohomology and those in Zariski cohomology. We begin with
an elementary lemma on extending covers that will be used repeatedly in the sequel.

Lemma 2.1. Fix a noetherian scheme X. Given an open dense subscheme U → X
and a finite (surjective) morphism f : V → U , there exists a finite (surjective)
morphism f : V → X such that f U is isomorphic to f . Given a Zariski open
cover U= { ji :Ui → X} with a finite index set, and finite (surjective) morphisms
fi : Vi → Ui , there exists a finite (surjective) morphism f : Z → X such that fUi

factors through fi . The same claims hold if “finite (surjective)” is replaced by
“proper (surjective)” everywhere.

Proof. We first explain how to deal with the claims for finite morphisms. For the
first part, Zariski’s main theorem [Grothendieck 1966, Théorème 8.12.6] applied
to the morphism V → X gives a factorisation V ↪→W → X where V ↪→W is an
open immersion, and W → X is a finite morphism. The scheme-theoretic closure
V of V in W provides the required compactification in view of the fact that finite
morphisms are closed.

For the second part, by the above, we may extend each ji ◦ fi : Vi→ X to a finite
surjective morphism f i : V i→ X such that f i restricts to fi over Ui ↪→ X . Setting
W to be the fibre product over X of all the V i is then seen to solve the problem.

To deal with the case of proper (surjective) morphisms instead of finite (surjec-
tive), we repeat the same argument as above replacing the reference to Zariski’s
main theorem by one to Nagata’s compactification theorem; see [Conrad 2007,
Theorem 4.1]. �

Next, we state Gabber’s result (see [Hoobler 1982, Lemma 5; Stacks, 02LH]):

Lemma 2.2. Let f :U→ X be a surjective étale morphism of affine schemes. Then
there exists a finite flat map g : X ′→ X , and a finite Zariski open cover {Ui ↪→ X ′}
such that the natural map

⊔
i Ui → X factors through U → X.

For completeness, we sketch a proof when X is local; this will be enough for
applications.

Sketch of proof. We only explain the proof when X = Spec(A) is the spectrum
of a local ring A, and U = Spec(B) is the spectrum of a local étale A-algebra B.
The structure theorem for étale morphisms (see [Grothendieck 1962, Exposé I,
Théorème 7.6]) implies that B = Cm where

C = A[x]/( f (x)) with f (x)= xn
+ a1xn−1

+ · · ·+ an
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a monic polynomial, and m⊂ C a maximal ideal with f ′(x) /∈m. We define

D = A[x1, . . . , xn]/(σi (x1, . . . , xn)− (−1)n−i ai )

where σ1, . . . , σn are the elementary symmetric polynomials in the xi . This ring
is finite free over A of rank n! , admits an action of Sn that is transitive on the
maximal ideals, and formalises the idea that the coefficients of f (x) can be written
as elementary symmetric functions in its roots. In particular, there is a natural
morphism C→ D sending x to x1. As both C and D are finite free over A, there is
a maximal ideal m1⊂D lying over m⊂C . Thus, there is a natural map a : B→Dm1 .
By the Sn-action, for every maximal ideal n⊂ D, there is an automorphism D→ D
sending m1 to n. Composing such an automorphism with a, we see that for every
maximal ideal n ⊂ D, the structure map A→ Dn factorises through A→ B for
some map B→ Dn; the claim follows. �

Actually, we use a slight weakening of Gabber’s result — relaxing finite flat to
finite surjective — that remains true when the schemes under consideration are no
longer assumed to be affine.

Lemma 2.3. Let f :U→ X be a surjective étale morphism of noetherian schemes.
Then there exists a finite surjective map g : X ′→ X , and a finite Zariski open cover
{Ui ↪→ X ′} such that the natural map

⊔
i Ui → X factors through U → X.

Proof. We can solve the problem locally on X by Lemma 2.2 and a “smearing
out” argument. This means that there exists a Zariski open cover {Vi ↪→ X}, finite
surjective (even flat) maps Wi → Vi , and Zariski covers {Yi j ↪→ Wi } such that⊔

Yi j → Vi factors through U ×X Vi → Vi . By Lemma 2.1, we may find a single
finite surjective map W → X such that W ×X Vi → Vi factors through Wi → Vi .
Setting X ′ = W and pulling back the covers {Yi j → Wi } to W ×X Vi then solves
the problem. �

3. The theorem for finite flat commutative group schemes

In this section we prove Theorem 1.1 following the plan explained in the introduction.
To carry that program out, we first explain how to relate the fppf cohomology of
finite flat group schemes to étale cohomology; it turns out that they are almost the
same.

Proposition 3.1. Let S be the spectrum of a strictly henselian local ring, and let G
be a finite flat commutative group scheme over S. Then H i (S,G)= 0 for i > 1.

Proof. We first explain the idea informally. Using a theorem of Raynaud, we can
embed G into an abelian scheme, which allows us to express the cohomology of
G in terms of that of abelian schemes. As abelian schemes are smooth, a result
of Grothendieck ensures that their fppf cohomology coincides with their étale
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cohomology. As the latter vanishes when S is strictly henselian, we obtain the
desired conclusion.

Now for the details: a construction of Raynaud (see [Berthelot et al. 1982,
Théorème 3.1.1]) gives the existence of an abelian scheme A→ S and an S-closed
immersion G ↪→ A of group schemes. By Deligne’s theorem [Tate and Oort 1970,
§1, Theorem], we have G ⊂ A[n] where n is the order of G. The quotient map
A/G → A/A[n] ' A of fppf sheaves is an A[n]/G-torsor. Since A[n]/G is a
finite group scheme [Raynaud 1967, Théorème 1.1 (v)], the map A/G→ A is fppf
locally representable by a finite morphism of schemes. Since the quotient A is a
scheme, fppf descent for finite morphisms shows that A/G is also a scheme. The
map A/G→ A is finite, so A/G is proper over S and acquires the structure of an
S-group scheme by functoriality. Using the faithful flatness of A→ A/G (as it is a
G-torsor) and A→ S, one concludes:

• A/G→ S is faithfully flat by an elementary flatness argument.

• A/G→ S has geometrically regular fibres as these fibres admit a finite flat
cover that is smooth.

• A/G→ S has geometrically connected fibres as these fibres are dominated by
those of A→ S.

These properties show that A/G→ S is an abelian scheme. Hence, we have a short
exact sequence

0→ G→ A→ A/G→ 0

of abelian sheaves on the fppf site of S relating the finite flat commutative group
scheme G to the abelian schemes A and A/G. This gives rise to a long exact
sequence

· · · → H n−1(S, A/G)→ H n(S,G)→ H n(S, A)→ · · ·

of fppf cohomology groups. By Grothendieck’s theorem [1968b, Théorème 11.7],
fppf cohomology coincides with étale cohomology when the coefficients are smooth
group schemes. Applying this to A and A/G shows H i (S, A)= H i (S, A/G)= 0
for i > 0 as S is strictly henselian. The claim about G now follows from the
preceding exact sequence. �

Remark 3.2. Proposition 3.1 may be reformulated topologically to say for a scheme
X and a finite flat group scheme G → X , we have Ri f∗G = 0 for i ≥ 2, where
f : (Sch/X)fppf→ (Sch/X)ét is the morphism of (big) topoi defined by viewing
étale covers as fppf covers. The Leray spectral sequence then reduces to a long
exact sequence

· · · → H i
ét(X,G)→ H i

fppf(X,G)→ H i−1
ét (X,R1 f∗G)→ · · · .
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Next, we explain how to deal with Zariski cohomology with coefficients in a
finite flat group scheme.

Proposition 3.3. Let S be a normal noetherian scheme, and let G→ S be a finite
flat commutative group scheme. Then H n

Zar(S,G)= 0 for n > 0.

Proof. We may assume that S is connected. As constant sheaves on irreducible
topological spaces are acyclic, it will suffice to show that G restricts to a constant
sheaf on the small Zariski site of S, that is, that the restriction maps G(S)→ G(U )
are bijective for any nonempty open subset U ↪→ S. Injectivity follows from the
density of U ↪→ S and the separatedness of G→ S. To show surjectivity, we note
that given a section U → G of G over U , we can simply take the scheme-theoretic
closure of U in G to obtain an integral closed subscheme S′ ↪→ G such that the
projection map S′→ S is finite and an isomorphism over U . By the normality of
S, this forces S′ = S. Thus, G restricts to a constant sheaf on S, as claimed. �

We can now complete the proof of Theorem 1.1 by following the outline sketched
in the introduction.

Proof of Theorem 1.1. Let S be a noetherian excellent scheme, and let G→ S be a
finite flat commutative group scheme. We need to show that classes in H n(S,G)
can be killed by finite covers for S for n > 0. We deal with the n = 1 case on its
own, and then proceed inductively.

For n = 1, note that classes in H 1(S,G) are represented by fppf G-torsors T
over S. By faithfully flat descent for finite flat morphisms, such schemes T → S are
also finite flat. Passing to the total space of T trivialises the G-torsor T . Therefore,
classes in H 1(S,G) can be killed by finite flat covers of S.

We now fix an integer n > 1 and a cohomology class α ∈ H n(S,G). By
Proposition 3.1, we know that there exists an étale cover of S over which α trivialises.
By Lemma 2.3, after replacing S by a finite cover, we may assume that there exists
a Zariski cover U= {Ui ↪→ S} such that α|Ui is Zariski locally trivial. The Čech
spectral sequence for this cover is

H p(U, Hq(G))⇒ H p+q(S,G)

where Hq(G) is the Zariski presheaf V 7→ Hq(V,G). By construction, the class α
comes from some α′ ∈ H n−q(U, Hq(G)) with q < n. The group H n−q(U, Hq(G))
is the (n− q)-th cohomology group of the standard Čech complex∏

i

Hq(Ui ,G)→
∏
i< j

Hq(Ui j ,G)→ · · ·

By the inductive assumption and the fact that q < n, terms of this complex can be
annihilated by finite covers of the corresponding schemes. By Lemma 2.1, we may
refine these finite covers by one that comes from all of S. In other words, we can find
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a finite surjective cover S′→ S such that α′|S′ = 0. After replacing S with S′, the
Čech spectral sequence then implies that α comes from some H n−q ′(U, Hq ′(G))
with q ′ < q. Proceeding in this manner, we can reduce the second index q all the
way down to 0, that is, assume that the class α lies in the image of the map

H n(U,G)→ H n(S,G).

Now we are reduced to the situation in Zariski cohomology that was tackled in
Proposition 3.3. �

Remark 3.4. The proof given above for Theorem 1.1 used the intermediary of
abelian schemes to connect fppf cohomology and étale cohomology with coefficients
in a finite flat commutative group scheme G (see Proposition 3.1). When the
coefficient group scheme G is smooth (or equivalently étale), this reduction follows
directly from Grothendieck’s theorem. In general, one can avoid abelian schemes
by using a trick due to Messing to embed the group scheme in a smooth affine
group: any commutative finite flat S-group scheme G may be realised as a closed
subgroup of A = ResG∨/S(Gm) where G∨ denotes the Cartier dual of G; the map
G→ A is the tautological one coming from the definition G∨ =Hom(G,Gm); see
[Messing 1972, §IV.1] for more. One can then show that A and A/G are S-smooth
and representable, so the rest of the proof of Proposition 3.1 goes through. We
thank Brian Conrad for pointing this out.

Remark 3.5. If G is a finite flat group scheme over S which is not necessarily
abelian, the H 1 part of Theorem 1.1 remains valid since one can trivialise a G-torsor
π : T → S using the finite flat morphism π .

Example 3.6. We give an example showing that Zariski, étale, and fppf cohomolo-
gies can differ. Let k = Fp, and G = µp×µn where n is prime to p.

• H 1
Zar(Spec(k),G) = 0. Indeed, Spec(k) is a Zariski point, so the higher

(Zariski) cohomology of all sheaves vanishes.

• H 1
ét(Spec(k),G)= k∗/(k∗)n . This follows from the Kummer sequence

0→ µn→ Gm→ Gm→ 0,

Hilbert’s theorem 90, and the fact that µp ' 0 on the small étale site of k.

• H 1
fppf(Spec(k),G) = k∗/(k∗)n × k∗/(k∗)p. This follows from the Kummer

sequence for both µn and µp; we need the flat topology to get right exactness
of the Kummer sequence for µp.

4. The theorem for abelian schemes

Our goal in this section is to prove the first half of Theorem 1.2. The arguments
here essentially mirror those for finite flat commutative group schemes presented in
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Section 3. The key difference is that annihilating Zariski cohomology requires more
complicated constructions when the coefficients are abelian schemes. We handle
this by proving a generalisation of Weil’s extension lemma (see Proposition 4.2).
This generalisation requires strong regularity assumptions on S and is one of the
two places in our proof of Theorem 1.2 that we need proper covers instead of finite
ones; the other is the case of H 1.

We begin by recording an elementary criterion for a map to an abelian variety to
be constant.

Lemma 4.1. Let A be an abelian variety over an algebraically closed field k, and
let C be a reduced variety over k. Fix an integer ` invertible on k. A map g :C→ A
is constant if and only if it induces the 0 map H 1

ét(A,Q`)→ H 1
ét(C,Q`).

Proof. It suffices to show that a map like g that induces the 0 map on H 1 is
trivial. As any k-variety is covered by curves, it suffices to show that the map
g is constant on all curves in C . Thus, we reduce to the case that C is a curve.
We may also clearly assume that C is normal, that is, smooth. Let C denote the
canonical smooth projective model of C . Since A is proper, the map g factors
through a map g : C→ A. Since C and C are normal, the map π1(C)→ π1(C) is
surjective. Hence, the map H 1

ét(C,Q`)→ H 1
ét(C,Q`) is injective. Thus, to answer

the question, we may assume that C = C is a smooth projective curve.
Let A ↪→ Pn be a closed immersion corresponding to a very ample line bundle

L. The map g : C → A will be constant if we can show that g∗L is not ample,
that is, has degree 0. As the `-adic cohomology of an abelian variety is generated
in degree 1 (see [Milne 2008, §12]), the hypothesis on H 1 implies that the map
H 2

ét(A,Q`)→ H 2(C,Q`) is also 0. In particular, g∗(c1L) = 0, where c1(L) ∈

H 2(A,Q`(1)) ' H 2(A,Q`) is the first Chern class of the line bundle L. Since
applying g∗ commutes with taking the first Chern class, it follows that c1(g∗L)= 0,
hence g∗L has degree 0 as desired. �

We now prove the promised extension theorem for maps into abelian schemes.

Proposition 4.2. Let S be a regular connected excellent noetherian scheme, and
let f : A→ S be an abelian scheme. For any nonempty open U ⊂ S, the restriction
map A(S)→ A(U ) is bijective.

Proof. Let j :U → S denote the open immersion defined by U . The bijectivity of
A(S)→ A(U ) will follow by taking global sections if we can show that the natural
map of presheaves a : A→ j∗(A|U ) is an isomorphism on the small Zariski site of
S. As both the source and the target of a are actually sheaves for the étale topology
on S, we may localise to assume that S is the spectrum of a strictly henselian local
ring R. In this setting, we will show that A(S)→ A(U ) is bijective using `-adic
cohomology.
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The injectivity of A(S)→ A(U ) follows from the density of U ⊂ S and the sep-
aratedness of A→ S. To show surjectivity, by the valuative criterion of properness,
we may assume that the complement S \U has codimension at least 2 in S. Let
s :U → A be a section of A over U . By taking the normalised scheme-theoretic
closure of s(U ) ⊂ A, we obtain a proper birational map p : S′ → S that is an
isomorphism over U , and an S-map i : S′→ A extending s over U . The desired
surjectivity then reduces to showing that i is constant on the fibres of p. Since
p∗OS′ = OS , the rigidity lemma (see [Mumford et al. 1994, Proposition 6.1]) shows
that it suffices to show that i collapses the reduced special fibre S′s , where s ∈ S
is the closed point. By Lemma 4.1, it is enough to check that the induced map
H 1(As,Q`)→ H 1(S′s,Q`) is trivial for some integer ` invertible on S. Note that
we have the following commutative diagram:

H 1(A,Q`)
//

��

H 1(As,Q`)

��
H 1(S′,Q`)

// H 1(S′s,Q`).

The horizontal maps are isomorphisms by the proper base change theorem in étale
cohomology (see [Deligne 1977, Arcata IV-1, Théorème 1.2]) as S is a strictly
henselian local scheme. Hence, it suffices to show that H 1(A,Q`)→ H 1(S′,Q`)

is 0. Since H 1(S′,Q`)=Homconts(π1(S′),Q`), it suffices to check that π1(S′)= 0.
As S′ is normal, we know that π1(U )→ π1(S′) is surjective. Moreover, by Zariski–
Nagata purity (see [Grothendieck 1968a, Exposé X, Théorème 3.4]), we know that
π1(U )' π1(S) since S \U has codimension ≥ 2 in S. Since S is strictly henselian,
we have π1(S)= 0 and hence π1(S′)= 0 as desired. �

Remark 4.3. The main idea for the proof of Proposition 4.2 comes from obstruction
theory in topology. Consider the universal family π :Ug→Ag of abelian varieties
over the stack Ag of abelian varieties. Proposition 4.2 can be rephrased as asking if
every map S→Ag with a specified lift U→Ug over a dense open U ⊂ S admits an
extension S→Ug provided S is smooth. Since the stack Ug is a classifying space
for its fundamental group (since the same is true for Ag and the fibres of π), the
answer at the level of homotopy types would be yes if and only if π1(U )→ π1(Ug)

factors through π1(U )→ π1(S). This is essentially what is verified above using
purity; Lemma 4.1 allows us to go from this homotopy-theoretic conclusion to a
geometric one.

Remark 4.4. Proposition 4.2 can be considered a generalisation of Weil’s extension
lemma when applied to abelian varieties. Recall that this lemma says that the domain
of definition of rational maps from a smooth variety to a group variety has pure
codimension 1. In case the target is proper, that is, an abelian variety A, this reduces
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to the statement that A(X) ' A(U ) for any smooth variety X , and dense open
U ↪→ X .

Remark 4.5. Our proof of Proposition 4.2 is topological as explained in Remark 4.3.
As pointed out to us by János Kollár after the present work was completed, one
can also give a more geometric proof of Proposition 4.2 as follows: a theorem of
Abhyankar (see [Kollár 1996, §VI.1, Theorem 1.2]) implies that for any proper
modification p : S′→ S with S noetherian regular excellent, the positive dimensional
fibres of p contain nonconstant rational curves. Applying this theorem to the closure
S′ of the graph of a rational map defined by a section U → A over an open U ⊂ S
gives our desired claim as abelian varieties do not contain rational curves. We
prefer the cohomological approach as a slight variation on it (using cohomology of
the structure sheaf OS instead of the constant sheaf in the proof of Proposition 4.2
and Lemma 4.1) shows that Proposition 4.2 remains valid in characteristic 0 if S
has rational singularities. This also suggests a question to which we do not know
the answer: if S is a scheme in positive characteristic satisfying some definition of
rational singularities (such F-rationality), does Proposition 4.2 hold for S?

Example 4.6. We give an example to show that the regularity condition on S cannot
be weakened too much in Proposition 4.2. Let (E, e)⊂P2 be an elliptic curve, and
let S be the affine cone on E with origin s. Note that S is a hypersurface singularity
of dimension 2 with 0 dimensional singular locus. In particular, it is normal. Let
A = S × E denote the constant abelian scheme on E over S. Then U = S \ {s}
can be identified with the total space of the Gm-torsor O(−1)|E − 0(E) over E .
Thus, there exists a nonconstant section of A(U ). On the other hand, all sections
S→ A are constant. Indeed, every point in S lies on an A1 containing s. As all
maps A1

→ E are constant, the claim follows. Thus, we obtain an example of
a normal hypersurface singularity S and an abelian scheme A→ S such that the
conclusion of Proposition 4.2 fails for S. Of course, S is not a rational singularity,
a fact supported by Remark 4.5.

Next, we point out how to use Proposition 4.2 to prove the version of Theorem 1.2
involving Zariski cohomology under strong regularity assumptions on the base
scheme S; the proof is trivial.

Corollary 4.7. Let S be a regular excellent noetherian scheme, and let f : A→ S
be an abelian scheme. Then H n

Zar(S, A)= 0 for n > 0.

Proof. By Proposition 4.2, we know that A restricts to a constant sheaf on the small
Zariski site of each connected component of S. By the vanishing of the cohomology
of a constant sheaf on an irreducible topological space, the claim follows. �

We are now in a position to complete the proof of Theorem 1.2.
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Proof of Theorem 1.2. Let S be a noetherian excellent scheme, and let A→ S be
an abelian scheme. We will show that cohomology classes in H n(S, A) are killed
by proper surjective maps by induction on n provided n > 0. We may assume that
S is integral.

For n = 1, classes in H 1(S, A) are represented by étale A-torsors T over S.
As T is an fppf S-scheme, there exists a quasifinite dominant morphism U → S
such that T (U ) is nonempty. By picking an S-map U → T and taking the closure
of the image, we obtain a proper surjective cover S′→ S such that T (S′) is not
empty. This implies that the cohomology class associated to T dies on passage to
S′, proving the claim.

We next proceed exactly as in the proof of Theorem 1.1 to reduce down to the case
of a Čech cohomology class associated to a Zariski cover. The only difference is that
the references to Proposition 3.1 should be replaced by references to Grothendieck’s
theorem [1968b, Théorème 11.7] which, in particular, implies that cohomology
classes in H n

fppf(S, A) trivialise over an étale cover; we omit the details.
To show the claim for a Čech cohomology class associated to a Zariski cover,

assume first that S is of finite type over Z. In this case, thanks to de Jong’s theorems
[1997], we can find a proper surjective cover of S with regular total space. Passing
to this cover and applying Corollary 4.7 then solves the problem. In the case that S is
no longer of finite type over Z, we reduce to the finite type case using approximation.
Indeed, the data (S, A, α) comprising of the base scheme S, the abelian scheme
A→ S, and a Čech cohomology class α ∈ H n(U, A) associated to a finite Zariski
open cover U of S can be approximated by similar data with all schemes involved
of finite type over Z. Given such an approximating triple (S′, A′, α′) with S′ of
finite type over Z, we can find a proper surjective map S′′→ S′ killing α′ by the
earlier argument. By functoriality, the pullback S′′×S′ S→ S is a proper surjective
cover of S killing α. �

Remark 4.8. Theorem 1.2 admits a topological reformulation as follows. Given a
noetherian scheme S and an abelian scheme G over S, let (Sch/S)prop, (Sch/S)fppf

and (Sch/S)prop,fppf denote the (big) topoi associated to the category of schemes over
S equipped with the topology generated respectively by proper surjective maps, fppf
maps, and both proper surjective and fppf maps. There are natural forgetful maps of
topoi a : (Sch/S)prop,fppf→ (Sch/S)prop and b : (Sch/S)prop,fppf→ (Sch/S)fppf of
topoi. Given an abelian scheme G→ S, let G also denote the sheafification of the
representable presheaf associated to G in all of the above topologies. Theorem 1.2
can be reformulated as saying that the sheaves Ri a∗G vanish for i > 0. Since
schemes are sheaves for the fppf topology, one can easily show that a∗a∗G = G.
Thus, Theorem 1.2 can be reformulated saying that G'Ra∗G. Note a consequence:
since cohomology on sites is computed using hypercovers by Verdier’s theorem
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[Artin and Mazur 1969, Theorem 8.16], we see that for a class α ∈ H n(Sfppf,G)
with n > 0, there exists a proper hypercover f• : T•→ S and a map of simplicial
schemes φ : T• → K (G, n) representing b∗α. If G is instead a finite flat group
scheme, then the same remarks apply for Theorem 1.1, except that we replace
proper maps by finite ones.

5. An application: big Cohen–Macaulay algebras in positive characteristic

Let (R,m) be an excellent noetherian local domain containing Fp. A fundamental
theorem of Hochster–Huneke [1992] asserts that the absolute integral closure R+

(the integral closure of R in a fixed algebraic closure of its fraction field) is a
Cohen–Macaulay algebra. This result and the ideas informing it form the bedrock
of tight closure theory and huge swathes of positive characteristic commutative
algebra.

Our goal in this section is to give a new proof of the Hochster–Huneke theorem
using Theorem 1.1. We hasten to remark that there already exist alternative proofs in
the literature, all cocycle-theoretic or equational at the core. The approach adopted
here follows closely the relatively recent approach from [Huneke and Lyubeznik
2007], the essential new feature being the use of cohomology-annihilation result
proven in Theorem 1.1 in place of explicit cocycle manipulations.

We begin by recording a coherent cohomology-annihilation result one can deduce
from Theorem 1.1; this can be considered as the analogue of the “equational lemma”
of [Hochster and Huneke 1992]; see also [Huneke and Lyubeznik 2007, Lemma 2.2].

Proposition 5.1. Let (R,m) be a noetherian excellent local Fp-algebra, and let
M ⊂ H i

m(R) be a Frobenius stable finite length R-submodule for some i > 0. Then
there exists a module-finite extension f : R → S such that f ∗(M) = 0 where
f ∗ : H i

m(R)→ H i
m(S) is the induced map.

Proof. After normalising R, we may assume that i > 1. With U = Spec(R)−{m},
we have a Frobenius equivariant identification

H i−1(U,O)' H i
m(R)

which allows us to view M as a submodule of H i−1(U,O). The Frobenius action
endows H i−1(U,O) with the structure of a R{X p

}-module, where R{X p
} is the

noncommutative polynomial ring over R with one generator X p satisfying the
commutation relation X pr = r p X p for r ∈ R. The finite length assumption implies
that for each m ∈ M , there exists some monic additive polynomial g(X p) ∈ R{X p

}

such that g(m)= 0. As g is additive and monic, we have a short exact sequence

0→ ker(g)→ O
g
→ O→ 0
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of abelian sheaves on Spec(R)fppf. Moreover, the monicity of g also shows that
the sheaf ker(g) is representable by a finite flat commutative group scheme over
Spec(R). As g(m) = 0, we see that m comes from a cohomology class m′ ∈
H i−1(U, ker(g)). Since i − 1 > 0, Theorem 1.1 shows that there exists a finite
surjective map π : V →U such that π∗m′ = 0. Setting S to be the (global sections
of the) normalisation of R in V is then seen to solve the problem. �

Using Proposition 5.1, we can give a proof that R+ is Cohen–Macaulay. The
argument given below is based entirely on [Huneke and Lyubeznik 2007, Theorem
2.1] and simply recorded here for convenience.

Theorem 5.2. Let (R,m) be a noetherian excellent local Fp-domain that admits
a dualising complex, and let R+ be its absolute integral closure. Then R+ is
Cohen–Macaulay.

Proof. We first briefly review local duality and set up some notation. The local dual-
ity functor D (sometimes referred to as Matlis duality) is defined by HomR(−, E)
where E is an injective hull of the residue field R/m. Once a dualising complex ω•R
has been fixed (normalised as usual to have the dualising sheaf ωR in homological
degree dim(R)), the hull E may be identified with R0m(ω

•

R) in Db(R). This functor
is exact, contravariant, length preserving (on finite length R-modules), and trans-
forms ind-artinian R-modules to pro-artinian R-modules. Moreover, local duality
asserts that for finite R-modules M , one has D(Ext−i

R (M, ω
•

R))' H i
m(M) and

D(H i
m(M))'

̂Ext−i
R (M, ω

•

R),

where N̂ denotes the m-adic completion of N . For more details, see [Hartshorne
1966, Chapter V, §6; Brodmann and Sharp 1998, §10].

We need the compatibility between duality and localisation, which we recall
next. Let d = dim(R), and for a prime p ∈ Spec(R), we set dp = dim(Rp) and
cp = d − dp. One has

(
ω•R)p ' ω

•

Rp
[cp], which leads to the formula

Ext−i
R (M, ω

•

R)p ' Extcp−i
Rp

(Mp, ω
•

Rp
)

for finite R-modules M . This gives a direct connection between H i
m(R) and

H i−cp
p (Rp) which will be exploited in the proof below; see [Grothendieck 1968a,

Exposé VIII, Théorème 2.1] for another application.
To show that R+ is Cohen–Macaulay, we will show by induction on d that

there exists a module-finite extension R→ S which kills local cohomology outside
degree d . By the local duality as explained above, it suffices to find a module-finite
extension R→ S such that the induced map Ext−i

R (S, ω
•

R)→ Ext−i
R (R, ω

•

R) is 0
for i < d . The case d = 0 being vacuous, we assume d > 0 and pick a nonnegative
integer i < d. Let p1, . . . , pn be the set of all of nonmaximal associated primes
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of Ext−i
R (R, ω

•

R). For each such prime p j , induction constructs a module-finite
extension Rp j → S j that kills H i−cp j

p j (Rp j ); note that i − cp j < dp j since i < d.
Setting S to be the normalisation of R in a compositum of all the S j then shows
that the map R → S induces a map f∗ : Ext−i

R (S, ω
•

R)→ Ext−i
R (R, ω

•

R) whose
localisation at p j is the 0 map (as it is a map of finite Rp j -modules that is 0 after p j -
adic completion). Since the only other possible associated prime of Ext−i

R (R, ω
•

R) is
m, it follows that im( f∗) is a finite length submodule of Ext−i

R (R, ω
•

R). By duality,
the image of f ∗ : H i

m(R)→ H i
m(S) is a finite length R-submodule M of H i

m(S)
which is moreover Frobenius stable. Hence, the S-submodule of H i

m(S)' H i
mS(S)

generated by M is also Frobenius stable with finite length. Since mS is a finite
colength ideal in S, Proposition 5.1 gives a module-finite extension S→ T killing
M ; the composite R→ T then kills H i

m(R). �

6. An example of a torsor not killed by finite covers

Theorem 1.2 lets one construct proper covers annihilating cohomology with coef-
ficients in an abelian scheme. We will show that “proper” cannot be replaced by
“finite” in the preceding statement.

Example 6.1. In [Raynaud 1970, Example 3.2, Chapter XIII], one finds an example
of a semilocal normal connected noetherian affine S of dimension 2, an abelian
scheme A→ S, and an A-torsor X → S (in the category of fppf sheaves) that
is Zariski locally trivial, and defines an infinite order element α ∈ H 1(S, A). By
transfers (see Corollary 6.3), it follows that α cannot be trivialised by passing to a
finite cover T → S.

Example 6.1 relies on the existence of certain “transfer” maps whose construction
we now explain. Fix a normal connected base scheme S, and a locally finitely
presented algebraic space A→ S that represents an abelian sheaf on the category
of S-schemes. Our goal is to explain why étale cohomology with coefficients in
A carries natural pushforward maps. As a corollary, when A→ S is smooth, we
obtain pushforwards maps in fppf cohomology as well.

Proposition 6.2. Let f : T → S be a finite surjective map with T normal and
equidimensional. There exists a map of abelian sheaves Nm( f ) : f∗ f ∗A→ A on
the small étale site of S such that the composite

A
f ∗
−−→ f∗ f ∗A

Nm( f )
−−−→ A

is multiplication by d = deg( f ).

Proposition 6.2 is well-known, but we do not know a reference, so we sketch
a proof.
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Sketch of proof. We first construct the map on global sections, and then show it
sheafifies.

Assume first that T is connected, and f : T → S is generically Galois with
group G of cardinality d. By normality of S, we identify T/G ' S, where the
quotient T/G is computed in the category of algebraic spaces (or schemes). Given
a T -point a ∈ A(T ), we obtain a natural map T → Map(G, A) ' Ad given by
t 7→ (g 7→ a(g(t))). The group Sd = S#G acts on Map(G, A), and the preceding
map T →Map(G, A) is equivariant for the natural embedding G→ Sd given by
left translation. Taking quotients as algebraic spaces, we get a map

b : S ' T/G→ Ad/Sd = Symd(A).

The d-fold multiplication map Ad
→ A is an Sd-equivariant map to an algebraic

space, and hence factors as Ad
→ Symd(A) m

−→ A. Composing m with b gives a
map S→ A that we declare to be the norm Nm( f )(S)(a).

Assume now that T is connected and f : T → S has degree d, but is not
necessarily generically Galois. Then the arguments of [Suslin and Voevodsky 1996,
Theorem 6.7, page 81] ensure that Symd(T )→ S has a natural section s constructed
from f . Given a ∈ A(T ), we obtain a map

S
s
−→ Symd(T )

Symd (a)
−−−−→ Symd(A)

m
−→ A

that we declare to be the norm Nm( f )(S)(a).
In the general case, we perform the preceding construction on each connected

component of T . The composite map A(S)→ A(T )→ A(S) is easily seen to be
multiplication by d using the fact that A 1

−→Ad
→Symd(A) m

−→A is multiplication
by d . Finally, we observe that all hypotheses are stable under étale base change on S,
so the preceding construction gives map of sheaves on the small étale site of S. �

Corollary 6.3. Let f : T → S be a finite surjective morphism with T normal and
equidimensional. Assume that A→ S is smooth. Then there exist pushforward
maps H i

fppf(T, A)→ H i
fppf(S, A) such that the composite

H i
fppf(S, A)→ H i

fppf(T, A)→ H i
fppf(S, A)

is multiplication by d.

Proof. Let f ét
: Tét→ Sét be the induced map of small étale sites. Acyclicity for

finite morphisms shows that H i
ét(S, f ét

∗
f ét,∗A)= H i

ét(T, f ét,∗A). Grothendieck’s
theorem [1968b, Théorème 11.7] and the smoothness of A show that

H i
ét(T, f ét,∗A)= H i

fppf(T, A),

where the right hand side is defined by viewing A as a sheaf on the big fppf site of
(Sch/S)fppf. The claim now follows from Proposition 6.2. �
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