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Log canonical thresholds, F-pure
thresholds, and nonstandard extensions
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We present a new relation between an invariant of singularities in characteristic
zero (the log canonical threshold) and an invariant of singularities defined via
the Frobenius morphism in positive characteristic (the F-pure threshold). We
show that the set of limit points of sequences of the form (cp), where cp is the
F-pure threshold of an ideal on an n-dimensional smooth variety in characteristic
p, coincides with the set of log canonical thresholds of ideals on n-dimensional
smooth varieties in characteristic zero. We prove this by combining results of
Hara and Yoshida with nonstandard constructions.

1. Introduction

The connection between invariants of singularities in characteristic zero and positive
characteristic is a topic that has recently attracted a lot of attention. Typically, the
invariants of singularities that arise in birational geometry are defined via divisorial
valuations. In characteristic zero, one can use (log) resolutions of singularities to
compute such invariants. On the other hand, in commutative algebra in positive
characteristic one defines invariants using the action of the Frobenius morphism.
It turns out that these invariants have subtle connections, some of them proven,
and some still conjectural; see, for example, [Hara and Watanabe 2002; Hara and
Yoshida 2003; Mustat,ă et al. 2005]. The typical such connection involves reduction
from characteristic zero to positive characteristic. In this note we describe a different,
though related connection. We use nonstandard constructions to study limits of
invariants in positive characteristic, where the characteristic tends to infinity, in
terms of invariants in characteristic zero.

The invariants we study in this paper are the log canonical threshold (in charac-
teristic zero) and the F-pure threshold (in positive characteristic). The log canonical
threshold is an invariant that plays an important role in birational geometry; see
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[Kollár 1997; Ein and Mustat,ă 2006]. Given an irreducible, smooth scheme X
defined over a field k of characteristic zero, and a proper ideal a ⊂ OX , the log
canonical threshold of a is denoted by lct(a). For the precise definition in terms of a
log resolution of (X, a), we refer to Section 2. Given a point x ∈ V (a), one defines
lctx(a) to be lct(a|U ), where U is a small enough open neighborhood of x in X .

On the other hand, suppose that W is a smooth scheme of finite type over a
perfect field L of positive characteristic p. For a proper ideal a⊂ OW , the F-pure
threshold fpt(a) was introduced and studied in [Takagi and Watanabe 2004]. Given
x ∈ V (a), one defines as before the local version of this invariant, denoted fptx(a).
The original definition of the F-pure threshold involved notions and constructions
from tight closure theory. However, since we always assume that the ambient
scheme is smooth, one can use an alternative description, following [Mustat,ă et al.
2005; Blickle et al. 2008] (see Section 2 below). Part of the interest in the study
of the F-pure threshold comes from the fact that it shares many of the formal
properties of the log canonical threshold.

Before stating our main result, let us recall the fundamental connection between
log canonical thresholds and F-pure thresholds via reduction mod p. Suppose
that X and a⊂ OX are defined over k, as above. We may choose a subring A ⊂ k,
finitely generated over Z, and models X A and aA ⊂ OX A for X and a, respectively,
defined over A. In particular, given any closed point s ∈ Spec A, we may consider
the corresponding reductions Xs and as ⊂ OXs defined over the finite residue field
of s denoted k(s). One of the main results in [Hara and Yoshida 2003] implies the
following relation between log canonical thresholds and F-pure thresholds: after
possibly replacing A by a localization Aa for some nonzero a ∈ A,

i) lct(a)≥ fpt(as) for every closed point in s ∈ Spec A, and

ii) there is a sequence of closed points sm∈Spec A with limm→∞ char(k(sm))=∞

and such that limm→∞ fpt(asm )= lct(a).

It is worth pointing out that a fundamental open problem in the field predicts that in
this setting there is a dense set of closed points S⊂Spec A such that lct(a)= fpt(as)

for every s ∈ S.
We now turn to the description of our main result. For every n ≥ 1, let Ln be

the set of all lct(a), where the pair (X, a) is as above, with dim(X)= n. Similarly,
given n and a prime p, let F(p)n be the set of all fpt(a), where (W, a) is as above,
with dim(W )= n, and W defined over a field of characteristic p. The following is
our main result.

Theorem 1.1. For every n ≥ 1, the set of limit points of all sequences (cp), where
cp ∈ F(p)n for every prime p, coincides with Ln .

A key ingredient in the proof of Theorem 1.1 is provided by ultraproduct con-
structions. Note that if c ∈ Ln is given as c = lct(a), then the above mentioned
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results in [Hara and Yoshida 2003] (more precisely, property ii) above) imply that
c = limp→∞ cp, where for p� 0 prime, cp is the F-pure threshold of a suitable
reduction as ⊂ OXs with char(k(s)) = p. Thus the interesting statement in the
above theorem is the converse: given pairs (Wm, am) over Lm with dim(Wm)= n,
limm→∞ char(Lm) =∞, and with limm→∞ fpt(am) = c, there is a pair (X, a) in
characteristic zero with dim(X)= n and such that c = lct(a).

It is easy to see that we may assume that each Wm = Spec(Lm[x1, . . . , xn]) and
cm = fpt0(am) for some am ⊆ (x1, . . . , xn). If we put a

(d)
m = am + (x1, . . . , xn)

d ,
we have |fpt(a(d)m )− fpt(am)| ≤ n/d for all m and d. Ultraproduct constructions
give nonstandard extensions of our algebraic structures. In particular, we get a field
k = [Lm] of characteristic zero. Since all ideals a

(d)
m are generated in degree less

than or equal to d, they determine an ideal a(d) in k[x1, . . . , xn]. The key point
is to show that for every ε > 0, we have | lct0(a(d))− fpt0(am)| < ε for infinitely
many m. This easily implies that limd→∞ lct0(a(d))= c, and since Ln is closed by
[de Fernex and Mustat,ă 2009, Theorem 1.3] (incidentally, this is proved in loc. cit.
also by nonstandard arguments), we conclude that c ∈ Ln .

As in [Hara and Yoshida 2003], the result relating the log canonical threshold of
a(d) and the F-pure thresholds of a

(d)
m follows from a more general result relating

the multiplier ideals of a(d) and the test ideals of a
(d)
m (see Theorem 4.1 below). We

prove this by following, with some simplifications, the main line of argument in
[ibid.] in our nonstandard setting.

The use of ultraproduct techniques in commutative algebra has been pioneered
by Schoutens; see [Schoutens 2010] and the list of references therein. This point
of view has been particularly effective for passing from positive characteristic to
characteristic zero in an approach to tight closure theory and to its applications. Our
present work combines ideas of Schoutens [2005] with the nonstandard approach to
studying limits of log canonical thresholds and F-pure thresholds from [de Fernex
and Mustat,ă 2009] and [Blickle et al. 2009], respectively.

The paper is structured as follows. In Section 2 we review the definitions of
multiplier ideals and test ideals, and recall how the log canonical threshold and the
F-pure threshold appear as the first jumping numbers in these families of ideals. In
Section 3 we review the basic definitions involving ultraproducts. For the benefit
of the reader, we also describe in detail how to go from schemes, morphisms, and
sheaves over an ultraproduct of fields to sequences of similar objects defined over
the corresponding fields. The proof of Theorem 1.1 is given in Section 4.

2. Multiplier ideals and test ideals

In this section we review the basic facts that we will need about multiplier ideals
and test ideals. Both these concepts can be defined under mild assumptions on the
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singularities of the ambient space. However, since our main result only deals with
smooth varieties, we will restrict to this setting in order to simplify the definitions.

2A. Multiplier ideals and the log canonical threshold. In what follows we recall
the definition and some basic properties of multiplier ideals and log canonical thresh-
olds. For details and further properties, we refer the reader to [Lazarsfeld 2004, §9].

Let k be a field of characteristic zero, and X an irreducible and smooth scheme
of finite type over k. Given a nonzero ideal1 a on X , its multiplier ideals are
defined as follows. Let us fix a log resolution of the pair (X, a): this is a projective,
birational morphism π : Y→ X with Y smooth and a·OY =OY (−F) for an effective
divisor F such that F +Exc(π) is a divisor with simple normal crossings. Here
Exc(π) denotes the exceptional divisor of π . Such resolutions exist by Hironaka’s
theorem, since we are in characteristic zero. Recall that KY/X denotes the relative
canonical divisor of π : this is an effective divisor supported on Exc(π) such that
OY (KY/X )'ωY⊗ f ∗(ω−1

X ). With this notation, the multiplier ideal of a of exponent
λ ∈ R≥0 is defined by

J(aλ) := π∗OY (KY/X −bλFc). (1)

Here, for a divisor with real coefficients E =
∑

i ai Ei , we write bEc =
∑

ibaicEi ,
where baic is the largest integer≤ai . It is a basic fact that the definition of multiplier
ideals is independent of resolution.

Let us consider some easy consequences of the definition (1). If λ < µ, then
J(aµ) ⊆ J(aλ). Furthermore, given λ, there is ε > 0 such that J(aλ) = J(aµ)

whenever λ≤ µ≤ λ+ ε. A positive λ is a jumping number of a if J(aλ) 6= J(aµ)

for all µ < λ. If we write F =
∑

i ai Ei , it follows from (1) that if λ is a jumping
number, then λai ∈ Z for some i . In particular, we see that the jumping numbers of
a form a discrete set of rational numbers.

Suppose now that a 6= OX . The smallest jumping number of a is the log
canonical threshold lct(a). Note that if 0 ≤ λ � 1, then J(aλ) = OX , hence
lct(a) = min{λ | J(aλ) 6= OX } (this is finite since a 6= OX ). If a ⊆ b, then
J(aλ) ⊆ J(bλ) for all λ; in particular, we have lct(a) ≤ lct(b). We make the
convention lct(0)= 0 and lct(OX )=∞.

It is sometimes convenient to also have available a local version of the log
canonical threshold. If x ∈ X , then we put lctx(a) := maxV lct(a|V ), where the
maximum ranges over all open neighborhoods V of x . Equivalently, we have

lctx(a)=min{λ | J(aλ) ·OX,.x 6= OX,x}

(with the convention that this is 0 if a= (0), and it is infinite if x 6∈ V (a)). Note that
given a proper ideal a on X , there is a closed point x ∈ X such that lct(a)= lctx(a).

1Every ideal sheaf that we consider is assumed to be coherent.
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The definition of multiplier ideals commutes with extension of the base field, as
follows. For a proof, see the proof of [de Fernex and Mustat,ă 2009, Propositions 2.9].

Proposition 2.1. Let a be an ideal on X. If k ⊂ k ′ is a field extension, and
ϕ : X ′ = X ×Spec k Spec k ′ → X and a′ = a · OX ′ , then J(a′λ) = J(aλ) · OX ′ for
every λ ∈ R≥0. In particular, lctx ′(a

′)= lctϕ(x ′)(a) for every x ′ ∈ X ′.

Recall from Section 1 that Ln consists of all nonnegative rational numbers of the
form lct(a), where a is a proper ideal on an n-dimensional smooth variety over a field
k of characteristic zero. It is clear that equivalently, we may consider the invariants
lctx(a), where (X, a) is as above, and x ∈ X is a closed point. Furthermore, by
Proposition 2.1 we may assume that k is algebraically closed. One can show that in
this definition we can fix the algebraically closed field k and assume that X = An

k
and obtain the same set; see [ibid., Propositions 3.1 and 3.3]. Furthermore, we will
make use of the fact that Ln is a closed set; see [ibid., Theorem 1.3].

2B. Test ideals and the F-pure threshold. In this section we assume that X is an
irreducible, Noetherian, regular scheme of characteristic p > 0. We also assume
that X is F-finite, that is, the Frobenius morphism F : X→ X is finite (in fact, most
of the time X will be a scheme of finite type over a perfect field, in which case this
assumption is clearly satisfied). Recall that for an ideal J on X , the e-th Frobenius
power J [p

e
] is generated by u pe

, where u varies over the (local) generators of J .
Suppose that b is an ideal on X . Given a positive integer e, one can show that

there is a unique smallest ideal J such that b ⊆ J [p
e
]. This ideal is denoted by

b[1/pe
]. Given a nonzero ideal a and λ ∈ R≥0, one has

(adλpe
e)[1/pe

]
⊆ (adλpe+1

e)[1/pe+1
]

for all e ≥ 1 (here due denotes the smallest integer greater than or equal to u).
By the Noetherian property, it follows that there is an ideal τ(aλ) that is equal to
(adλpe

e)[1/pe
] for all e� 0. This is the test ideal of a of exponent λ. For details and

basic properties of test ideals, we refer to [Blickle et al. 2008].
It is again clear that if λ < µ, then τ(aµ)⊆ τ(aλ). It takes a little argument to

show that given any λ, there is ε>0 such that τ(aλ)= τ(aµ)whenever λ≤µ≤λ+ε;
see [ibid., Proposition 2.14]. We say that λ > 0 is an F-jumping number of a if
τ(aλ) 6= τ(aµ) for every µ < λ. It is proved in [ibid., Theorem 3.1] that if X is a
scheme of finite type over an F-finite field, then the F-jumping numbers of a form
a discrete set of rational numbers.

The smallest F-jumping number of a is the F-pure threshold fpt(a). Since
τ(aλ)= OX for 0≤ λ� 1, the F-pure threshold is characterized by

fpt(a)=min{λ | τ(aλ) 6= OX }.
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Note that this is finite if and only if a 6= OX . We make the convention that fpt(a)= 0
if a= (0).

We have a local version of the F-pure threshold: given x ∈ X , we put fptx(a) :=

maxV fpt(a|V ), where the maximum is over all open neighborhoods V of x . It can
be also described by

fptx(a)=min{λ | τ(aλ) ·OX,x 6= OX,x},

and it is finite if and only if x ∈ V (a). Note that given any a, there is x ∈ X such
that fpt(a)= fptx(a).

We will make use of the following two properties of F-pure thresholds.

Proposition 2.2 [Blickle et al. 2008, Proposition 2.13]. If a is an ideal on X
and S = ÔX,x is the completion of the local ring of X at a point x ∈ X , then
τ(aλ) · S = τ((a · S)λ) for every λ≥ 0. In particular, fptx(a)= fpt(a · S).

Proposition 2.3 [Blickle et al. 2009, Corollary 3.4]. If a and b are ideals on X , and
x ∈ V (a)∩V (b) is such that a ·OX,x +mr

= b ·OX,x +mr for some r ≥ 1, where m

is the maximal ideal in OX,x , then

|fptx(a)− fptx(b)| ≤
dim(OX,x)

r
.

The local F-pure threshold admits the following alternative description, following
[Mustat,ă et al. 2005]. If a is an ideal on X and x ∈ V (a), let ν(e) denote the largest
r such that ar

·OX,x 6⊆m[p
e
], where m is the maximal ideal in OX,x (we make the

convention ν(e)= 0 if a= 0). One can show that

fptx(a)= lim
e→∞

ν(e)
pe (2)

(see [Blickle et al. 2008, Proposition 2.29]). This immediately implies the assertion
in the following proposition.

Proposition 2.4. Let L ⊂ L ′ be a field extension of F-finite fields of positive
characteristic. If a ⊆ L[x1, . . . , xn] is an ideal vanishing at the origin, and a′ =

a · L ′[x1, . . . , xn], then fpt0(a)= fpt0(a
′).

Recall that we have introduced in Section 1 the set F(p)n consisting of all invari-
ants of the form fpt(a), where a is a proper ideal on an irreducible, n-dimensional
smooth scheme of finite type over L , with L a perfect field of characteristic p. We
can define two other related subsets of R≥0. Let F(p)′n be the set of invariants
fpt0(a), where a ⊂ L[x1, . . . , xn] is an ideal vanishing at the origin, and L is an
algebraically closed field of characteristic p. We also put F(p)′′n for the set of all
fpt(a), where a is a proper ideal on an irreducible, regular, n-dimensional F-finite
scheme of characteristic p. We clearly have the following inclusions:

F(p)′n ⊆ F(p)n ⊆ F(p)′′n. (3)
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Proposition 2.5. F(p)′n is dense in F(p)′′n (hence also in F(p)n).

This implies that in Theorem 1.1 we may replace the sets F(p)n by F(p)′n or
by F(p)′′n .

Proof of Proposition 2.5. Suppose that a is a proper ideal on X , where X is
irreducible, regular, F-finite, n-dimensional, and of characteristic p. Let c= fpt(a).
We can find x ∈ X such that c = fptx(a). By Proposition 2.2, we have

c = fpt(a · ÔX,x).

Note that by Cohen’s theorem, we have an isomorphism ÔX,x ' L[[x1, . . . , xd ]],
with L an F-finite field, and d ≤ n. If m is the maximal ideal in ÔX,x and ci =

fpt(a · ÔX,x +mi ), then Proposition 2.3 gives c = limi→∞ ci . On the other hand,
there are ideals bi ⊂ L[x1, . . . , xd ] such that bi · ÔX,x = a · ÔX,x +mi , and another
application of Proposition 2.2 gives ci = fpt0(bi ). It is easy to see (for example, from
formula (2)) that ci = fpt0(bi · L[x1, . . . , xn]). It now follows from Proposition 2.4
that ci = fpt0(bi · L[x1, . . . , xn]), where L is an algebraic closure of L . Therefore
all ci lie in F(p)′n , which proves the proposition. �

In Section 4 we will use a slightly different description of the test ideals that
we now present. More precisely, we give a different description of b[1/pe

], when
b is an arbitrary ideal on X . Suppose that X is an irreducible, smooth scheme of
finite type over a perfect field L of characteristic p. Let ωX = ∧

n�X/L , where
n = dim(X). Recall that the Cartier isomorphism (see [Deligne and Illusie 1987])
gives in particular an isomorphism ωX 'Hn(F∗�•X/L), where F is the (absolute)
Frobenius morphism, and �•X/L is the de Rham complex of X . In particular, we
get a surjective OX -linear map tX : F∗ωX → ωX . This can be explicitly described
in coordinates, as follows. Suppose that u1, . . . , un ∈ OX,x form a regular system
of parameters, where x ∈ X is a closed point. We may assume that u1, . . . , un are
defined in an affine open neighborhood U of x , and that du= du1∧· · ·∧dun gives a
basis of ωX on U . Furthermore, we may assume that OU is free over O

p
U , with basis

{ui1
1 · · · u

in
n | 0≤ i j ≤ p− 1 for 1≤ j ≤ n}

(note that the residue field of OX,x is a finite extension of L , hence it is perfect).
In this case tX is characterized by the fact that tX (h pw) = h · tX (w) for every
h ∈ OX (U ), and on the above basis over OX (U )p it is described by

tX (u
i1
1 · · · u

in
n du)=

{
du if i j = p− 1 for all j,
0 otherwise.

(4)

Iterating e times tX gives te
X : Fe

∗
ωX → ωX . These maps are functorial in the

following sense. If π : Y → X is a proper birational morphism between irreducible
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smooth varieties as above, then we have a commutative diagram

π∗(Fe
∗
(ωX ))

π∗(te
X )

−−−→ π∗(ωX )y yψ
Fe
∗
(ωY )

te
Y

−−−→ ωY ,

(5)

where ψ is the canonical morphism induced by pulling-back n-forms, and the left
vertical map is the composition

π∗(Fe
∗
(ωX ))−−−→ Fe

∗
(π∗(ωX ))

Fe
∗ (ψ)
−−−→ Fe

∗
(ωY ).

Suppose now that X is as above, and b is an ideal on X . Since ωX is a line
bundle, it follows that the image of Fe

∗
(b ·ωX ) by te

X can be written as J ·ωX for
a unique ideal J on X . It is an easy consequence of the description of b[1/pe

] in
[Blickle et al. 2008, Proposition 2.5] and of formula (4) that in fact J = b[1/pe

]; see
also [Blickle et al. 2010, Proposition 3.10].

3. A review of nonstandard constructions

We begin by reviewing some general facts about ultraproducts. For a detailed
introduction to this topic, the reader is referred to [Goldblatt 1998]. We then explain
how geometric objects over an ultraproduct of fields correspond to sequences
of such geometric objects over the fields we are starting with, up to a suitable
equivalence relation. Most of this material is well-known to the experts, and can
be found, for example, in [Schoutens 2005, §2]. However, we prefer to give a
detailed presentation for the benefit of those readers having little or no familiarity
with nonstandard constructions.

3A. Ultrafilters and ultraproducts. Recall that an ultrafilter on the set of positive
integers N is a nonempty collection U of subsets of N that satisfies the following
properties:

(i) If A and B lie in U, then A∩ B lies in U.

(ii) If A ⊆ B and A is in U, then B is in U.

(iii) The empty set does not belong to U.

(iv) Given any A ⊆ N, either A or N r A lies in U.

An ultrafilter U is nonprincipal if no finite subsets of N lie in U. It is an easy
consequence of Zorn’s Lemma that nonprincipal ultrafilters exist, and we fix one
such ultrafilter U. Given a property P(m), where m ∈ N, we say that P(m) holds
for almost all m if {m ∈ N | P(m) holds} lies in U.
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Given a sequence of sets (Am)m∈N, the ultraproduct [Am] is the quotient of∏
m∈N Am by the equivalence relation given by (am)∼ (bm) if am = bm for almost

all m. We write the class of (am) in [Am] by [am]. Note that the element [am] is
well-defined even if am is only defined for almost all m. Similarly, the set [Am] is
well-defined if we give Am for almost all m.

If Am = A for all m, then one writes ∗A instead of [Am]. This is the nonstandard
extension of A. Note that there is an obvious inclusion A ↪→ ∗A that takes a ∈ A to
the class of the constant sequence (a).

The general principle is that if all Am have a certain algebraic structure, then so
does [Am], by defining the corresponding structure component-wise on

∏
m∈N Am .

For example, if we consider fields (Lm)m∈N, then k := [Lm] is a field. In par-
ticular, the nonstandard extension ∗R of R is an ordered field. Furthermore, it is
easy to see that if all Lm are algebraically closed, then so is k. Note also that if
limm→∞ char(Lm)=∞, then char(k)= 0.

Given a sequence of maps fm : Am → Bm for m ∈ N, we get a map [ fm] :

[Am] → [Bm] that takes [am] to [ fm(am)]. In particular, given a map f : A→ B,
we get a map ∗ f : ∗A→∗B that extends f . If each Am is a subset of Bm , we can
identify [Am] to a subset of [Bm] via the corresponding map. The subsets of [Bm]

of this form are called internal.
We will use in Section 4 the following notion. Suppose that u = [um] ∈

∗R is
bounded (this means that there is M ∈ R>0 such that ∗|u| ≤ M , that is, |um | ≤ M
for almost all m). In this case, there is a unique real number, the shadow sh(u) of
u, with the property that for every positive real number ε, we have ∗|u− sh(u)|< ε,
that is, |sh(u) − um | < ε for almost all m. We refer to [Goldblatt 1998, §5.6]
for a discussion of shadows. A useful property is that if (cm)m∈N is a convergent
sequence, with limm→∞ cm = c, then sh([cm])= c ; see [ibid., Theorem 6.1]. On
the other hand, it is a consequence of the definition that sh([cm]) is the limit of a
suitable subsequence of (cm)m∈N.

3B. Schemes, morphisms, and sheaves over an ultraproduct of fields. Suppose
that U is a nonprincipal ultrafilter on N as in the previous section, and suppose
that (Lm)m∈N is a sequence of fields. We denote the corresponding ultraproduct
by k = [Lm]. Let us temporarily fix n ≥ 1, and consider the polynomial rings
Rm = Lm[x1, . . . , xn]. We write k[x1, . . . , xn]int for the ring [Rm], the ring of
internal polynomials in n variables (we emphasize, however, that the elements of
this ring are not polynomials). Given a sequence of ideals (am ⊆ Rm)m∈N, we get
the internal ideal [am] in k[x1, . . . , xn]int.

We have an embedding k[x1, . . . , xn] ↪→ k[x1, . . . , xn]int. Its image consists of
those g = [gm] ∈ k[x1, . . . , xn]int for which there is d ∈ N such that deg(gm) ≤ d
for almost all m (in this case we say that g has bounded degree). We say that an
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ideal b ⊆ k[x1, . . . , xn]int is generated in bounded degree if it is generated by an
ideal in k[x1, . . . , xn] (in which case b is automatically an internal ideal). Given an
ideal a in k[x1, . . . , xn], we put aint := a · k[x1, . . . , xn]int.

The connection between k[x1, . . . , xn] and k[x1, . . . , xn]int is studied in [van den
Dries and Schmidt 1984]. In particular:

Theorem 3.1 [van den Dries and Schmidt 1984, Theorem 1.1]. The extension
k[x1, . . . , xn] ↪→ k[x1, . . . , xn]int is faithfully flat. In particular, given any ideal a

in k[x1, . . . , xn], we have aint ∩ k[x1, . . . , xn] = a.

It follows from the theorem that ideals of k[x1, . . . , xn]int generated in bounded
degree are in order-preserving bijection with the ideals in k[x1, . . . , xn]. Fur-
thermore, note that every such ideal of k[x1, . . . , xn]int is of the form [am] for a
sequence (am)m∈N that is generated in bounded degree, that is, such that for some
d , am ⊆ Lm[x1, . . . , xn] is generated by polynomials of degree less than or equal to
d for almost all m. Of course, we have [am] = [bm] if and only am = bm for almost
all m. Given such a sequence (am)m∈N, we call [am] ∩ k[x1, . . . , xn] the ideal of
polynomials corresponding to the sequence.

Our next goal is to describe how to associate to a geometric object over k a
sequence of corresponding objects over each of Lm (in fact, an equivalence class
of such sequences). Given a separated scheme X of finite type over k, we will
associate to it an internal scheme [Xm], by which we mean the following: we have
schemes Xm of finite type over Lm for almost all m; furthermore, two such symbols
[Xm] and [Ym] define the same equivalence class if Xm = Ym for almost all m. An
internal morphism [ fm] : [Xm] → [Ym] between internal schemes consists of an
equivalence class of sequences of morphisms of schemes fm : Xm→ Ym (defined
for almost all m), where [ fm] = [gm] if fm = gm for almost all m.

We want to define a functor X→ X int from separated schemes of finite type over
k to internal schemes. We first consider the case when X is affine. In this case let
us choose a closed embedding X ↪→AN

k , defined by the ideal a⊆ k[x1, . . . , xN ]. If
aint = [am], then we take Xm to be defined in AN

Lm
by am . Note that X int := [Xm] is

well defined. We also put O(X)int := [Lm[x1, . . . , xN ]/am], and note that we have a
canonical ring homomorphism ηX : O(X)→ O(X)int. Suppose now that we have a
morphism f : Y→ X of affine schemes as above, and closed embeddings Y ↪→AN

k
and X ↪→ AM

k . We have a homomorphism ϕ : k[x1, . . . , xM ] → k[x1, . . . , xN ]

that induces f , and that extends to an internal morphism k[x1, . . . , xM ]int →

k[x1, . . . , xN ]int. This induces morphisms fm : Ym→ Xm for almost all m, hence
an internal morphism Yint→ X int. It is easy to see that this is independent of the
choice of the lifting ϕ and that it is functorial.

The first consequence is that if we replace X ↪→ AN
k by a different embedding

X ↪→AM
k , then the two internal schemes that we obtain are canonically isomorphic.
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We use this to extend the above definition to the case when X is not necessarily
affine, as follows. Note first that if Lm is an algebraic closure of Lm , and if k=[Lm],
then k is an algebraically closed field containing k, and for every affine X as above,
with X int = [Xm], we have a natural bijection of sets X (k)' [Xm(Lm)].

Lemma 3.2. Let X be an affine scheme as above, U ⊂ X an affine open subset,
and write X int = [Xm] and Uint = [Um].

(i) The induced maps Um→ Xm are open immersions for almost all m.

(ii) If X =U1 ∪ · · · ∪Ur is an affine open cover, and (Ui )int = [Ui,m] for every i ,
then Xm =U1,m ∪ · · · ∪Ur,m for almost all m.

Proof. The first assertion is clear in the case when U is a principal affine open subset
corresponding to f ∈ O(X): if the image of f in O(X)int is [ fm], then for almost
all m we have that Um is the principal affine open subset of Xm corresponding to
Um . The assertion in (ii) is clear, too, when all Ui are principal affine open subsets
in X : once we know that the Ui,m are open in Xm , to get the assertion we want it is
enough to look at the k-valued points of X .

We now obtain the assertion in (i) in general, since we may cover U by finitely
many principal affine open subsets in X (hence also in U ). We then deduce (ii) in
general from (i) by considering the k-valued points of X . �

Given any scheme X , separated and of finite type over k, consider an affine
open cover X = U1 ∪ · · · ∪Ur , and let (Ui )int = [Ui,m]. The intersection Ui ∩U j

is affine and open in both Ui and U j , hence by Lemma 3.2, Ui,m ∩U j,m is affine
and open in both Ui,m and U j,m for almost all m. We get Xm by gluing, for all i
and j , the open subsets Ui,m and U j,m along (Ui ∩U j )m , and put X int = [Xm]. It
is straightforward to check that X int is independent of the choice of cover (up to a
canonical isomorphism). Similarly, given a morphism of schemes f : Y → X we
get an internal morphism fint = [ fm] : Yint→ X int by gluing the internal morphisms
obtained by restricting f to suitable affine open subsets. Therefore we have a
functor from the category of separated schemes of finite type over k to the category
of internal schemes and internal morphisms. This has the property that given
Lm-algebras Am for almost all m, if A = [Am], then we have a natural bijection
of sets

Hom(Spec A, X)' [Hom(Spec Am, Xm)], (6)

where X int = [Xm]. In particular, we have a bijection X (k)' [Xm(Lm)].
We do not attempt to give a comprehensive account of the properties of this

construction, but list in the following proposition a few that we will need.

Proposition 3.3. Let X and Y be separated schemes of finite type over k, and
X int = [Xm] and Yint = [Ym] the corresponding internal schemes.
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(i) For every affine open subset U of X , the ring homomorphism

ηU : OX (U )→ OX (U )int

is faithfully flat.

(ii) X is reduced or integral if and only if Xm has the same property for almost
all m.

(iii) The internal scheme corresponding to X × Y is [Xm × Ym].

(iv) If f : Y → X is an open or closed immersion, then the induced morphisms
fm : Ym→ Xm have the same property for almost all m. In particular, Xm is
separated for almost all m.

(v) If X (1), . . . , X (r) are the irreducible components of X , and X (i)
int = [X

(i)
m ], then

X (1)
m , . . . , X (r)

m are the irreducible components of Xm for almost all m.

(vi) If X is affine and f : Y → X is a projective morphism, then fm : Ym→ Xm is
projective for almost all m.

(vii) If dim(X)= d, then dim(Xm)= d for almost all m.

Proof. The assertion in (i) follows from definition and Theorem 3.1. The assertions
in (ii) follow from definition and the fact that if a is an ideal in k[x1, . . . , xN ], then
a is prime or radical if and only if a · k[x1, . . . , xn]int has the same property; see
[van den Dries and Schmidt 1984, Theorem 2.5, Corollary 2.7]. Properties (iii) and
(iv) are easy consequences of the definition (note that we have already checked the
assertion regarding open immersions when both X and Y are affine). The second
assertion in (iv) follows from the fact that the diagonal map X→ X × X being a
closed immersion implies that Xm→ Xm × Xm is a closed immersion for almost
all m. We obtain (v) from (ii), (iv), and the fact that X (1)

m , . . . , X (r)
m cover Xm for

almost all m. This follows by computing the k-points of X , and using (6).
In order to prove (vi), note that (PN

k )int ' [P
N
Lm
]. Therefore a closed embedding

ι : Y ↪→ X ×PN
k induces by (iii) and (iv) closed embeddings ιm : Ym ↪→ Xm ×PN

Lm

for almost all m.
We prove (vii) by induction on dim(X). Using (v), we reduce to the case when

X is irreducible. After replacing X by Xred, we see that we may assume, in fact,
that X is integral, hence by (ii), for almost all m we have Xm integral. It is enough
to prove the assertion for an affine open subset U of X , hence we may assume that
X = Spec A is affine, and let us write Xm = Spec Am . If f ∈ O(X) is nonzero, then
dim(A/( f )) = dim(A)− 1. Let [ fm] = ηX ( f ) ∈ O(X)int, hence for almost all m
we have fm 6= 0 and dim(Am/( fm)) = dim(Am)− 1. Since the internal scheme
corresponding to Spec A/( f ) is [Spec Am/( fm)], we conclude by induction. �
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Remark 3.4. We emphasize that to an arbitrary internal scheme [Xm] we do not
associate a scheme over k. In order to illustrate the problems that arise when trying
to do this, consider the following two examples.

1) Let Xm = Spec(Rm), where Rm = Lm[x1, . . . , xm].

2) Let Ym be the closed subscheme of Spec(Lm[x, y]) defined by ( fm), where
fm = x2

+ ym .

The only reasonable schemes to associate to [Xm] and [Ym] are X =Spec([Rm]) and
Y = Spec(k[x, y]int/( f )), respectively, where f = [ fm] = x2

+ yω, with ω being
the nonstandard integer corresponding to (1, 2, 3, . . . ). In this case, the internal
k-valued points of X and Y are in natural bijection with [Xm(Lm)] and [Ym(Lm)],
respectively. However, since both X and Y are far from being of finite type over k,
we will not further consider such general constructions.

Suppose now that X is a scheme over k as above, and F is a coherent sheaf on X .
If X int = [Xm], we define an internal coherent sheaf on [Xm] to be a symbol [Fm],
where Fm is defined for almost all m and is a coherent sheaf of Xm . Furthermore,
two such symbols [Fm] and [F′m] are identified precisely when Fm =F′m for almost
all m. A morphism of internal coherent sheaves is defined in a similar way, and we
get an abelian category consisting of internal coherent sheaves on [Xm].

We now define a functor F→ Fint from the category of coherent sheaves on X
to that of internal coherent sheaves on X int. Given an affine open subset U of X and
the corresponding internal scheme Uint = [Um], we consider the OX (U )int-module
TU := F(U )⊗OX (U ) OX (U )int. We claim that this is equal to [Mm] for suitable
OXm (Um)-modules Mm . Indeed, this follows by considering a finite free presentation

OX (U )⊕r ϕ
→ OX (U )⊕s

→ F(U )→ 0.

If ϕ is defined by a matrix (ai, j )i, j and if we write ηU (ai, j )= [ai, j,m], then we may
take each Mm to be the cokernel of the map OXm (Um)

⊕r
→ OXm (Um)

⊕s defined
by the matrix (ai, j,m)i, j . We put Fm(U )= Mm for almost all m. It is now easy to
see that the Fm(U ) glue together for almost all m to give coherent sheaves Fm on
Xm . Therefore we get an internal coherent sheaf Fint on X int. Given a morphism
of coherent sheaves on X , we clearly get a corresponding morphism of internal
coherent sheaves. It follows from definition and Proposition 3.3 (i) that this functor
is exact in a strong sense: a bounded complex of coherent sheaves on X is acyclic
if and only if the corresponding complexes of coherent sheaves on Xm are acyclic
for almost all m. Note also that the functor is compatible with tensor product:
if Fint = [Fm] and Gint = [Gm], then (F⊗OX G)int is canonically isomorphic to
[Fm ⊗OXm

Gm]. We collect in the following proposition a few other properties of
this functor that we will need.
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Proposition 3.5. Let X be a separated scheme of finite type over k, and F a
coherent sheaf on X. Consider X int = [Xm] and Fint = [Fm].

(i) F is locally free of rank r if and only if Fm has the same property for almost
all m.

(ii) If F is an ideal in OX defining the closed subscheme Z of X , and Z int = [Zm],
then Fm is (isomorphic to) the ideal defining Zm in Xm for almost all m.

(iii) If f : Y → X is a morphism of schemes as above, and fint = [ fm], then we
have a canonical isomorphism f ∗(F)int ' [ f ∗m(Fm)].

(iv) If g : Y → X is a projective morphism of schemes as above, and gint =

[gm] : [Ym] → [Xm], then for every i ≥ 0 we have a canonical isomorphism

Ri f∗(F)int ' [Ri ( fm)∗(Fm)].

(v) If f is as in (iv), X is affine, and F is a line bundle on X that is (very) ample
over X , then Fm is (very) ample over Xm for almost all m.

Proof. The first assertion follows from Proposition 3.3 (i) and the fact that given
a faithfully flat ring homomorphism A→ B, a finitely generated A-module M is
locally free of rank r if and only if the B-module M ⊗A B is locally free of rank
r . Assertion (ii) is an immediate consequence of the definitions. In order to prove
(iii) it is enough to consider the case when both X and Y are affine. In this case the
assertion follows from the natural isomorphism [Mm]⊗[Am ] [Bm] ' [Mm ⊗Am Bm]

whenever Am→ Bm are ring homomorphisms and the Mm are finitely generated
Am-modules.

Let us now prove (iv). Suppose first that X is affine. The first step is to construct
canonical morphisms

H i (Y,F)int→ [H i (Ym,Fm)]. (7)

This can be done by computing the cohomology as Čech cohomology with respect
to a finite affine open cover of Y , and the corresponding affine open covers of Ym

(and by checking that the definition is independent of the cover). It is enough to
prove that the maps (7) are isomorphisms: if X is not affine, then we simply glue
the corresponding isomorphisms over a suitable affine open cover of X . Since
Y is isomorphic to a closed subscheme of some X × PN

k , it is enough to prove
that the morphisms (7) are isomorphisms when Y = PN

X . Explicit computation
of cohomology implies that (7) is an isomorphism when F = OPN

X
(`) (note that

OPN
X
(`)int ' [OPN

Xm
(`)]).

We now prove that (7) is an isomorphism by descending induction on i , the case
i > N being trivial. Given any F, there is an exact sequence

0→ G→ OPN
X
(`)⊕r

→ F→ 0,
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for some ` and r . We use the induction hypothesis, the long exact sequence in
cohomology and the 5-lemma to show first that (7) is surjective for all F. Applying
this for G, we then conclude that (7) is also injective for all F. This completes the
proof of (iv). The assertion in (v) follows using (iii) and Proposition 3.3 (iv), from
the fact that if Y =PN

X and F= OY (1), then Ym 'PN
Xm

and Fm ' OYm (1) for almost
all m. �

We will need the following uniform version of asymptotic Serre vanishing; see
also [Schoutens 2005, Corollary 2.16].

Corollary 3.6. Let f : Y → X be a projective morphism of schemes over k as
above, with X affine. If F is a coherent sheaf on Y and L is a line bundle on Y that
is ample over X and such that H i (Y,F⊗L j )= 0 for all i ≥ 1 and all j ≥ j0, then
for almost all m we have H i (Ym,Fm ⊗L

j
m) = 0 for all i ≥ 1 and j ≥ j0, where

Yint = [Ym], Fint = [Fm], and Lint = [Lm].

Proof. Note first that we may assume that L is very ample. Indeed, if N is such that
LN is very ample, then we may apply the very ample case to the line bundle LN and
to the sheaves F,F⊗L, . . . ,F⊗LN−1 to obtain the assertion in the corollary. Let
r = dim(Y ). It follows from Proposition 3.5 (iv) that if i ≥ 1 and j ≥ j0 are fixed,
then H i (Ym,Fm⊗L

j
m)= 0 for almost all m. In particular, for almost all m we have

H i (Ym,Fm⊗L
j
m)= 0 for 1≤ i ≤ dim(Ym)= r and j0 ≤ j ≤ j0+r −1. For every

such m, it follows that Fm is ( j0+r)-regular in the sense of Castelnuovo–Mumford
regularity, hence H i (Ym,Fm ⊗L

j
m) = 0 for every i ≥ 1 and j ≥ j0 + r − i ; see

[Lazarsfeld 2004, Chapter 1.8.A]. This completes the proof of the corollary. �

Proposition 3.7. If X is a separated scheme of finite type over k and X int = [Xm],
then there is a canonical isomorphism (�X/k)int ' [�Xm/Lm ]. In particular, X is
smooth of pure dimension n if and only if Xm is smooth of pure dimension n for
almost all m.

Proof. It is enough to give a canonical isomorphism (�X/k)int = [�Xm/Lm ] when
X is affine. Note that we have such an isomorphism when X = AN

k . In general,
if X is a closed subscheme of AN

k defined by the ideal a, the sheaf �X/k is the
cokernel of a morphism a/a2

→�AN
k
|X . If a= [am], then for almost all m we have

an analogous description of each �Xm/Lm in terms of the embedding Xm ↪→ AN
Lm

given by am . Therefore we obtain the desired isomorphism, and one can then check
that this is independent of the embedding.

Recall that X is smooth of pure dimension n if and only if dim(X)= n and �X/k

is locally free of rank n. The second assertion in the proposition now follows from
the first one, together with Proposition 3.3 (vii) and Proposition 3.5 (i). �

Suppose that X is a smooth scheme over k as above, and D=a1 D(1)
+· · ·+ar D(r)

is a divisor on X . It follows from Proposition 3.3 (ii), (vii) that if D(i)
int = [D

(i)
m ],
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then D(i)
m is a prime divisor on Xm for almost all m. For all such m we put

Dm = a1 D(1)
m + · · ·+ ar D(r)

m .

Remark 3.8. Note that in the case when D is effective, and thus can be considered
as a subscheme of X , the above convention is compatible with our previous definition
via Dint = [Dm]. Indeed, if we define the Dm via the latter formula, then it follows
from definition that since D is locally defined by one nonzero element, the same
holds for Dm for almost all m. Furthermore, Proposition 3.3 (v) implies that
D(1)

m , . . . , D(r)
m are the irreducible components of Dm for almost all m. We also see

that the coefficient of D(i)
m in Dm is equal to ai for almost all m: this follows from

the fact that this coefficient is the largest nonnegative integer di such that di D(i)
m is

a subscheme of Dm .

We thus see that for every divisor D, we have O(D)int = [O(Dm)]. Indeed, when
−D is effective, this follows from the above remark and Proposition 3.5 (ii). The
general case follows easily by reducing to the case when X is affine, and replacing
D by D+ div( f ) for a suitable f ∈ O(X) such that −D− div( f ) is effective.

Proposition 3.9. Let X be a smooth, separated scheme over k, and D =
∑N

i=1 D(i)

an effective divisor on X , with simple normal crossings, where the D(i) are distinct
prime divisors. If X int = [Xm] and Dint = [Dm], then Dm has simple normal
crossings for almost all m.

Proof. Note that Xm is smooth over Lm for almost all m by Proposition 3.7. Since
D has simple normal crossings, for every r and every 1 ≤ i1 < · · · < ir ≤ N the
subscheme D(i1) ∩ · · · ∩ D(ir ) is smooth over k (possibly empty). It follows from
definition that we have

(D(i1) ∩ · · · ∩ D(ir ))int = [D(i1)
m ∩ · · · ∩ D(ir )

m ],

hence D(i1)
m ∩· · ·∩D(ir )

m is smooth over Lm for almost all m, by another application
of Proposition 3.7. Thus Dm has simple normal crossings for almost all m. �

4. Limits of F-pure thresholds

The following is our main result. As we will see, it easily implies the theorem
stated in Section 1.

Theorem 4.1. Let (Lm)m∈N be a sequence of fields of positive characteristic such
that limm→∞ char(Lm)=∞. We fix a nonprincipal ultrafilter on N, and let k=[Lm].
If am ⊆ Lm[x1, . . . , xn] are nonzero ideals generated in bounded degree, and if
a ⊆ k[x1, . . . , xn] is the ideal of polynomials corresponding to (am)m≥1, then for
every λ ∈ R≥0 we have

J(aλ)int = [τ(a
λ
m)].
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Corollary 4.2. If (am)m∈N and a are as in the above theorem, and am vanishes at
the origin for almost all m, then

lct0(a)= sh([fpt0(am)]).

Proof. Note first that since am ⊆ (x1, . . . , xn)Lm[x1, . . . , xn] for almost all m, we
have a⊆ (x1, . . . , xn)k[x1, . . . , xn]. By definition, we have

lct0(a)=min{λ ∈ R≥0 | J(a
λ)⊆ (x1, . . . , xn)}.

Since J(aλ) ⊆ (x1, . . . , xn) if and only if J(aλ)int ⊆ (x1, . . . , xn)int, it follows
from Theorem 4.1 that this is the case if and only if τ(aλm) ⊆ (x1, . . . , xn) for
almost all m. This is further equivalent to λ ≥ fpt0(am) for almost all m. We
conclude that lct0(a) ≥ fpt0(am) for almost all m. In addition, for every ε ∈ R>0,
we have J(alct0(a)−ε)int 6⊆ (x1, . . . , xn)int, and using again Theorem 4.1 we deduce
that τ(alct0(a)−ε

m ) 6⊆ (x1, . . . , xn) for almost all m. By definition, this means that
fpt0(am)≥ lct0(a)−ε for almost all m. This proves the assertion in the corollary. �

The result stated in Section 1 is an easy consequence of the above corollary.

Proof of Theorem 1.1. Suppose first that we have a sequence (cm)m∈N with
cm ∈ F(pm)n for all m, and such that limm→∞ pm =∞ and c = limm→∞ cm . We
need to show that c ∈Ln . By Proposition 2.5, we may assume that there are alge-
braically closed fields Lm of characteristic pm , and ideals am ⊆ Lm[x1, . . . , xn] van-
ishing at the origin, such that cm= fpt0(am). For every d , let a(d)m =am+(x1, . . . , xn)

d.
It follows from Proposition 2.3 that |fpt0(am)− fpt0(a

(d)
m )| ≤ n

d .
Let U be a nonprincipal ultrafilter on N. We put k = [Lm], and for every d, we

denote by a(d) ⊆ k[x1, . . . , xn] the ideal of polynomials associated to the sequence
of ideals generated in bounded degree (a(d)m )m∈N. Given any ε ∈ R>0, let d � 0
be such that n

d < ε. By Corollary 4.2, we have |fpt0(a
(d)
m )− lct0(a(d))|< ε− n

d for
almost all m. Therefore |fpt0(am)− lct0(a(d))|< ε for infinitely many m. Since this
holds for every ε ∈R>0, we conclude that c lies in the closure of {lct0(a(d)) | d ≥ 1}.
As we have mentioned in Section 2A, Ln is closed, hence c ∈ Ln .

In order to prove the converse, let us consider c ∈Ln . Consider a sequence of
prime integers (pm)m∈N with limit infinity, and let Lm be an algebraically closed
field of characteristic pm . We fix, as above, a nonprincipal ultrafilter on N, and let
k = [Lm]. As pointed out in Section 2A, since k is algebraically closed, we can
find an ideal b ⊂ k[x1, . . . , xn] vanishing at the origin, such that c = lct0(b). Let
us write bint = [bm]. It follows from Corollary 4.2 that c is the limit of a suitable
subsequence of (fpt0(bm))m∈N. This completes the proof of the theorem. Note that
the second implication also follows from the results of [Hara and Yoshida 2003]
discussed in the introduction. �
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Before giving the proof of Theorem 4.1, we describe the approach from [Hara
and Yoshida 2003] for proving the equality of multiplier ideals with test ideals in a
fixed positive characteristic. The main ingredients are due independently to Hara
[1998] and Mehta and Srinivas [1997]. We simplify somewhat the approach in
[Hara and Yoshida 2003], avoiding the use of local cohomology, which is important
in our nonlocal setting.

Suppose that L is a perfect field of positive characteristic p, and W is a smooth, ir-
reducible, n-dimensional affine scheme over L . We consider a nonzero ideal b on W ,
and suppose that we have given a log resolution π : W̃→W of b. Let Z be the effec-
tive divisor on W̃ such that b̃ :=b·OW̃ =OW̃ (−Z), and let E= E1+· · ·+EN be a sim-
ple normal crossings divisor on W̃ such that both KW̃/W and Z are supported on E .
For every λ≥0, we put J(bλ)=π∗OW̃ (KW̃/W−bλZc) (it is irrelevant for us whether
this is independent of the given resolution). In this setting, it is shown in [Hara and
Yoshida 2003] that the test ideals are always contained in the multiplier ideals.

Proposition 4.3. With the above notation, we have τ(bλ)⊆ J(bλ) for all λ ∈ R≥0.

Proof. We give a proof using the description of test ideals at the end of Section 2,
since the approach will be relevant also when considering the reverse inclusion. We
show that

(bm)[1/pe
]
⊆ J(bm/pe

) (8)

for every m ≥ 0 and e ≥ 1. This is enough: given λ ∈ R≥0, we have for e� 0

τ(bλ)= (bdλpe
e)[1/pe

]
⊆ J(bdλpe

e/pe
)= J(bλ).

Note that the last equality follows from the fact that 0≤ (dλpe
e/pe)− λ� 1 for

e� 0.
The commutative diagram (5) induces a commutative diagram

Fe
∗
(ωW )

te
W

−−−→ ωW

η=Fe
∗ (ρ)

y yρ
Fe
∗
π∗(ωW̃ )

π∗(te
W̃
)

−−−→ π∗(ωW̃ ),

(9)

where the vertical maps are isomorphisms. Note that te
W̃

induces a (surjective) map
Fe
∗
(ωW̃ (−m Z))→ ωW̃ (−b(m/pe)Zc), and thus a map

Fe
∗
π∗(ωW̃ (−m Z))→ π∗

(
ωW̃

(
−

⌊ m
pe Z

⌋))
.

Since

(bm)[1/pe
]ωW = te

W (F
e
∗
(bmωW ))
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and η(Fe
∗
(bmωW ))⊆ Fe

∗
π∗(ωW̃ (−m Z)), while

ρ−1
(
π∗

(
ωW̃

(
−

⌊ m
pe Z

⌋)))
= J

(
bm/pe)

ωW ,

we see that (8) follows from the fact that te
W Fe
∗
(bmωW ) = (b

m)[1/pe
]ωW and the

commutativity of (9). �

We now explain a criterion for the reverse inclusion J(bλ)⊆ τ(bλ) to hold. We
start with the following proposition.

Proposition 4.4. Suppose that W̃ is a smooth, irreducible, n-dimensional variety
over the perfect field L of positive characteristic p. If E is a simple normal crossings
divisor on W̃ , and G is a Q-divisor supported on E such that −G is effective, then
the canonical morphism

0(W̃ , Fe
∗
(ωW̃ (dp

eGe)))→ 0(W̃ , ωW̃ (dGe)) (10)

is surjective for every e ≥ 1, provided that the following two conditions hold:

(A) H i (W̃ , �n−i
W̃
(log E)(−E +dp`Ge))= 0 for all i ≥ 1 and `≥ 1.

(B) H i+1(W̃ , �n−i
W̃
(log E)(−E +dp`Ge))= 0 for all i ≥ 1 and `≥ 0.

This is applied as follows. Suppose that λ ∈ R≥0 is fixed, and we have a rational
number µ>λ such that J(bλ)=J(bµ) (note that if Z =

∑
i ai Ei , then it is enough

to take µ such that µ−λ<(bλaic+1−λai )/ai for all i with ai >0). Let us consider
now a Q-divisor D on W̃ such that D is ample over W , and −D is effective.2 We
will apply the above proposition with G =µ(D− Z). We may and will assume that
dGe = d−µZe (again this condition only depends on µ and the coefficients of Z ;
since −D is effective, it is always satisfied if we replace D by εD, with 0< ε� 1).

Proposition 4.5. With the above notation, if (10) is surjective for every e ≥ 1, then
J(bλ)⊆ τ(bλ).

Proof. We use again the commutative diagram (9). This induces a commutative
diagram

Fe
∗
π∗(ωW̃ (dp

eGe))
π∗(te

W̃
)

−−−→ π∗(ωW̃ (dGe))= π∗(ωW̃ (−bµZc))

η−1

y yρ−1

Fe
∗
ωW

te
W

−−−→ ωW

(11)

in which the top horizontal map is surjective by assumption (recall that W is affine),
and the image of the right vertical map is J(bµ)ωW . The image of the left vertical

2Such a divisor always exists: if we express W̃ as the blow-up of W along a suitable ideal, then
we may take D to be the negative of the exceptional divisor.
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map can be written as Fe
∗
(JeωW ), where Je = π∗OW̃ (KW̃/W + dp

eGe), and we
deduce from the commutativity of (11) that

J(bµ)⊆ J [1/pe
]

e .

By Lemma 4.6 below, there is r such that J(bm) ⊆ bm−r for every m ≥ r . Since
−D is effective, by letting e� 0, we get

Je = π∗OW̃ (KW̃/W −bp
eµ(Z − D)c)⊆ J

(
bµpe)

⊆ bbµpe
c−r ,

and therefore

J(bλ)= J(bµ)⊆
(
bbµpe

c−r)[1/pe
]
⊆ τ

(
b
bµpe
c−r

pe
)
⊆ τ(bλ),

since lime→∞(bµpe
c− r)/pe

= µ > λ. This completes the proof. �

Lemma 4.6. With the above notation, there is r such that J(bm)⊆ bm−r for every
integer m ≥ r .

Proof. It is enough to prove, more generally, that for every coherent sheaf F on W̃ ,
the graded module M := ⊕m≥00(W̃ ,F(−m Z)) is finitely generated over the Rees
algebra S := ⊕m≥0b

m . We may factor π as

W̃
g
−→ B

f
−→W,

where B is the normalized blow-up of W along b (that is, B = Proj(S′), where S′

is the normalization of S). The line bundle b ·OB = OB(−T ) is ample over W , and
using the projection formula we see that M =⊕m≥00(B, π∗(F)⊗OB(−mT )) is
finitely generated over S′ =⊕m≥00(B,OB(−mT )). Since S′ is a finite S-algebra,
it follows that M is a finitely generated S-module. �

We recall, for completeness, the proof of Proposition 4.4, which makes use of the
de Rham complex �•

W̃
(log(E)) with log poles along the simple normal crossings

divisor E . Note that while this complex does not have OW̃ -linear differentials,
its Frobenius push-forward F∗�•W̃ (log(E)) does have this property. In particular,
we may tensor this complex with line bundles. If L is a line bundle, then by the
projection formula we have

(F∗�i
W̃ (log E))⊗L' F∗(�i

W̃ (log E)⊗Lp).

The following facts are the key ingredients in the proof of Proposition 4.4.

(1) The Cartier isomorphism: There is a canonical isomorphism (see [Deligne and
Illusie 1987, Theorem 1.2])

C−1
: �i

W̃ (log E)'Hi F∗(�•W̃ (log E)).
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(2) Insensitivity to small effective twists: Suppose that B is an effective divisor
supported on E , with all coefficients less than p. We have a twisted de
Rham complex with log poles �•

W̃
(log E)(B) (it is enough to check that the

differential of the de Rham complex of meromorphic differential forms on X
preserves these subsheaves). In this case, the natural inclusion

�•W̃ (log E) ↪→�•W̃ (log E)(B)

is a quasiisomorphism; see [Hara 1998, Lemma 3.3; Mehta and Srinivas 1997,
Corollary 4.2] for a proof. Combining this with the Cartier isomorphism, we
find

�i
W̃ (log E)'Hi (F∗(�•W̃ (log E)(B))). (12)

Proof of Proposition 4.4. Note first that it is enough to prove the case e = 1.
Indeed, if αG,e is the morphism (10), we see that αG,e = αG,1◦αpG,1◦· · ·◦αpe−1G,1,
and the hypothesis implies that we may apply the condition for e = 1 to each of
G, pG, . . . , pe−1G. Therefore from now on we assume that e= 1 (and in this case
we will only need condition (A) for `= 1 and condition (B) for `= 0).

Let

B := (p− 1)E +dpGe− pdGe = (p− 1)E + pb−Gc− b−pGc.

Since −G is effective, it follows from the second expression that B is effective,
and its coefficients are less than p. Let K • := F∗�•W̃ (log E)(−E + dpGe). By
tensoring (12) with OW̃ (−E +dGe), and using the projection formula, we get

�i
W̃ (log E)(−E +dGe)'Hi (F∗(�•W̃ (log E)(B− pE + pdGe)))=Hi (K •).

Note that the morphism αG,1 is identified to 0(W̃ , K n)→ 0(W̃ ,Hn(K •)). It is
then straightforward to show, by breaking K • into short exact sequences, and using
the corresponding long exact sequences for cohomology, that αG,1 is surjective if
H i (W̃ , K n−i ) = 0 and H i+1(W̃ ,Hn−i (K •)) = 0 for all i ≥ 1. By what we have
seen, these are precisely conditions (A) with `= 1 and (B) with `= 0. �

We will also make use of the following version of the Kodaira–Akizuki–Nakano
vanishing theorem (in characteristic zero).

Theorem 4.7. Let Y be a smooth, irreducible variety over a field k of characteristic
zero. If Y is projective over an affine scheme X , E is a reduced simple normal
crossings divisor on Y , and G is a Q-divisor on Y such that G−bGc is supported
on E and G is ample over X , then

H i (Y, � j
Y (log E)(−E +dGe))= 0 if i + j > dim(X).
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Proof. This is proved when char(k)= p > 0 in [Hara 1998, Corollary 3.8] under
the assumption that p> dim(X) and that both Y and E admit a lifting to the second
ring of Witt vectors W2(k) of k. The proof relies on an application of the results
from [Deligne and Illusie 1987]. It is then standard to deduce the assertion in
characteristic zero; see, for example, the proof of [ibid., Corollary 2.7]. �

We can now give the proof of our main result.

Proof of Theorem 4.1. Let pm=char(Lm). We have by hypothesis limm→∞ pm=∞,
hence char(k)= 0. In particular, there is a log resolution π : Y → X =An

k of a. We
write a ·OY = OY (−Z), and let E be a simple normal crossings divisor on Y such
that both Z and KY/X are supported on E . Let [πm] : [Ym]→ [Xm] = [A

n
Lm
] be the

corresponding morphism of internal schemes. It follows from Proposition 3.5 (iii)
that if Z int = [Zm], then am ·OYm = O(−Zm) for almost all m. On the other hand, it
is easy to deduce from Proposition 3.7 that (KY/X )int = [KYm/Xm ]. If Eint = [Em],
then Em has simple normal crossings for almost all m by Proposition 3.9, and we
conclude that πm is a log resolution of am for almost all m. Moreover, if we use πm

to define J(aλm) on Xm , then we have J(aλ)int = [J(a
λ
m)] by Proposition 3.5 (iv).

For every m such that πm gives a log resolution of am we have τ(aλm)⊆J(aλm) by
Proposition 4.3. We now choose a rational number µ> λ such that J(aλ)= J(aµ),
so that J(aλm)= J(a

µ
m) for almost all m. We also choose a Q-divisor D supported

on E such that −D is effective, D is ample over X , and dµ(D− Z)e = d−µZe.
We write G =µ(D− Z), and denote by Dm and respectively Gm the corresponding
divisors on Ym . It is clear that for almost all m the divisor −Dm is effective, Dm is
ample over Xm (see Proposition 3.3 (v)), and dGme = d−µZme. We deduce from
Propositions 4.4 and 4.5 that J(aλm)⊆ τ(a

λ
m) if the following conditions hold:

(Am) H i (Ym, �
n−i
Ym
(log Em)(−Em +dp`mGme))= 0 for all i ≥ 1 and `≥ 1.

(Bm) H i+1(Ym, �
n−i
Ym
(log Em)(−Em +dp`mGme))= 0 for all i ≥ 1 and `≥ 0.

It follows that in order to complete the proof, it is enough to show that conditions
(Am) and (Bm) hold for almost all m.

Note first that by Theorem 4.7, we have H i+1(Y, �n−i
Y (log E)(−E +dGe))= 0

for all i ≥ 0. Using Proposition 3.5 (iv), we deduce that

H i+1(Ym, �
n−i
Ym
(log Em)(−Em +dGme))= 0

for all i ≥ 0 and almost all m (since these groups vanish automatically when i ≥ n,
we only need to consider finitely many such i). This takes care of the condition
(Bm) for `= 0.

We now treat the remaining conditions. Let us fix a positive integer d such that dG
is an integral divisor. Let F1, . . . ,FM denote the sheaves �t

Y (log E)(−E+dsGe),
for integers 0≤ s ≤ d − 1 and 0≤ t ≤ n. Since dG is ample over the affine variety
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X , there is j0 such that H i (Y,Ft( jdG)) = 0 for every j ≥ j0, every i ≥ 1 and
every t ≤ M . If m is such that pm ≥ ( j0 + 1)d, and if for ` ≥ 1 we take s with
0≤ s ≤ d − 1 such that p`m ≡ s (mod d), then

dp`mGe =
p`m − s

d
(dG)+dsGe and

p`m − s
d
≥

pm − s
d
≥ j0.

We deduce from Corollary 3.6 that the vanishings in (Am) and (Bm) hold when
`≥ 1 for almost all m (note that for such m we may assume that pm ≥ ( j0+ 1)d).
This completes the proof of the theorem. �
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