
Algebra &
Number
Theory

msp

Volume 6

2012
No. 8

On the refined ramification filtrations in the equal
characteristic case

Liang Xiao



msp
ALGEBRA AND NUMBER THEORY 6:8 (2012)

dx.doi.org/10.2140/ant.2012.6.1579

On the refined ramification filtrations in
the equal characteristic case

Liang Xiao

Let k be a complete discrete valuation field of equal characteristic p>0. Using the
tools of p-adic differential modules, we define refined Artin and Swan conductors
for a representation of the absolute Galois group Gk with finite local monodromy;
this leads to a description of the subquotients of the ramification filtration on Gk .
We prove that our definition of the refined Swan conductors coincides with that
given by Saito, which uses étale cohomology. We also study its relation with the
toroidal variation of Swan conductors.
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Introduction

The ramification theory for a complete discrete valuation field k with possibly
imperfect residue field κk was first studied by K. Kato [1989]; he used étale co-
homology and Milnor K -theory to give a detailed description of the ramification
of a character of the absolute Galois group Gk , or equivalently of its maximal
abelian quotient Gab

k . A. Abbes and T. Saito [2002; 2003] extended Kato’s work
by providing Gk with the ramification filtration FilaGk and the log ramification
filtration FilalogGk satisfying certain properties. Saito [2009] later defined a natural
injective homomorphism

rsw : Hom(FilalogGk/Fila+logGk, Fp)→�1
Ok
(log)⊗Ok π

−a
k κ

alg
k
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for each a ∈Q>0, where Ok is the ring of integers of k, πk is a uniformizer, κk is the
residue field, and �1

k(log) is the module of logarithmic differentials; he called it the
refined Swan conductor homomorphism. This provides some further information
about the subquotients for the log ramification filtration on Gk .

Along a different path, G. Christol, B. Dwork, S. Matsuda, Z. Mebhkout, and
their collaborators used p-adic differential modules to give an interpretation of
the Swan conductors of representations of Gk when the residue field κk is perfect.
They associated a p-adic differential module over an annulus to any continuous
representation of Gk , and proved that the Swan conductor of the representation is
related to the radii of convergence of the local solutions for the differential module.
K. Kedlaya [2007] generalized this approach to include the case in which the
residue field is imperfect, by giving the definitions of Artin conductors and Swan
conductors for a representation of Gk . The author [Xiao 2010] verified that this pair
of definitions coincide with those naturally associated to the ramification filtration
and log ramification filtration of Abbes and Saito [2002; 2003]. An important
consequence of this comparison result is the Hasse–Arf theorem for the ramification
filtration and the log one [Xiao 2010, Theorem 4.4.1], which states that the Artin
conductors and Swan conductors are all integers.

In this paper, we give an alternative definition of the refined Swan conductor
homomorphism as well as their nonlog counterparts, using p-adic differential
modules, and we will compare our definition with that of Saito. Let us describe the
basic idea of the definition. In this introduction, we assume for simplicity that κk

has a finite p-basis {b̄1, . . . , b̄m}. Let K be the fraction field of the Cohen ring of κk

with respect to b̄1, . . . , b̄m . Let B1, . . . , Bm denote the canonical lifts of b̄1, . . . , b̄m

to K , respectively. Let A1
K (η0, 1) be the annulus over K with coordinate T and

with radii in (η0, 1) for some η0 ∈ (0, 1). By the aforementioned series of work,
one can associate to an irreducible p-adic representation ρ of Gk with finite image
a differential module E over A1

K (η0, 1) for the differential operators ∂0 = ∂/∂T
and ∂1 = ∂/∂B1, . . . , ∂m = ∂/∂Bm . Let π =−p1/(p−1) denote a Dwork pi and put
K ′ = K (π). When ρ is of pure ramification break b, that is, when ρ(Filb+Gk)

is trivial but ρ(FilbGk) is not, the following naïve picture is helpful as a guide
to intuition. Suppose that there exists a basis of E⊗K K ′, with respect to which
∂0, ∂1, . . . , ∂m act per the prescription:

∂0 = πT−b−1 N0, ∂1 = πT−b N1, . . . , ∂m = πT−b Nm, (0.0.1)

where N0, . . . , Nm are matrices in OK ′[[T ]]. For each j ∈ {0, . . . ,m}, we use N j

to denote reduction of N j modulo the ideal (π , T ); these matrices commute and
have coefficients in κk . Take a common (generalized) eigenbasis e1, . . . , ed for all
N j ; set θi, j to be the (generalized) eigenvalue of N j associated to ei , viewed as an
element in κalg

k . One may then define the multiset of refined Swan conductors of ρ
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to be{
π−b

k

(
θi,0

dπk
πk
+θi,1db̄1+· · ·+θi,mdb̄m

)
: i = 1, . . . , d

}
⊂�1

Ok
(log)⊗Ok π

−b
k κ

alg
k .

(A multiset is a set where we allow elements to have multiplicity.) Of course,
such a nice basis of E ⊗K K ′ over the annulus A1

K ′[η0, 1) with the described
properties might not exist in general. In practice, we need the following two
technical arguments to read off the multiset of refined Swan conductors.

(a) The above picture can be better described over a field. Namely, we have
the description of the actions of ∂0, . . . , ∂m as in (0.0.1) over the completion
of K (T ) with respect to the η-Gauss norm for any η ∈ [η0, 1). By taking
common eigenvalues as explained above, we can define a version of refined
Swan conductors, called the refined radii, of the differential module at each
radius η. We then show that the refined radii, as we vary the radius of the Gauss
norm, also vary in a nice way when η is sufficiently close to 1: they form a
unique multiset consisting of elements of �1

Ok
(log)⊗Ok π

−b
k κ

alg
k , independent

of the choice of η. We then just simply define this multiset to be the multiset
of refined Swan conductors of the representation ρ; this does not require any
good matrices representing the actions of ∂ j over the entire annulus.

(b) When the spectral norms of the differential operators are smaller than their
operator norms over the base field, the description (0.0.1) requires some
modification. Over the completion of K (T ) for the η-Gauss norm, we may
find a basis such that the matrix for ∂ pr

j with an appropriate r ∈ N acts by
some nice matrix as in (0.0.1). We then take the common eigenvalues of those
matrices and define the refined radii to be the pr -th roots of these eigenvalues.
When trying to prove results in this case, we use a technique called Frobenius
antecedents developed in [Kedlaya and Xiao 2010], which reduces the question
at hand to the case when the spectral norms are bigger than the operator norms.

We can also define the notion of refined Artin conductors using a variant of the
definition of the refined Swan conductors, in which the effect of log structure is
removed, which amounts to replacing the factor T−b−1 by T−b in (0.0.1).

Part of the content in this paper on refined Swan conductors has been already
included in the author’s thesis [Xiao 2009]. However, we feel the present paper
provides a better context for our development of refined Swan conductors. We also
fill in some gaps in the thesis.

To compare our definition of refined Swan conductors with Saito’s, we proceed
as in [Xiao 2010] by introducing the thickening spaces which tie the p-adic dif-
ferential equations together with the rigid analytic spaces considered by Abbes
and Saito. More precisely, we may first realize a finite Galois extension l of k
as the corresponding extension of the function fields of a finite étale extension of
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smooth affine varieties Y → X . We may further assume that both X and Y lift to
smooth formal schemes X and Y . The differential module associated to a p-adic
representation of Gal(l/k) lives over the a subspace of the tube of X embbeded
diagonally in X × X , which is a rigid analytic subspace of the generic fiber of
X×X and is called the thickening space. We carefully study the construction of the
differential module and compare that with Saito’s description of the special fiber
of the formal scheme Y . The core of the comparison result is to identify the data
defining an Artin–Schreier cover of Am

κk
with the data coming from the associated

Dwork isocrystals as a differential module.
We also remark that when k is an n-dimensional higher local field of characteristic

p > 0, the refined conductors induce a ramification filtration on Gk indexed by Qn

with lexicographic order. This is expected to be compatible with certain filtration
on the Milnor K -groups via Kato’s class field theory.

Finally, we study the relation of the refined Swan conductors with the variation of
intrinsic radii (certain form of Swan conductors) over a polyannulus. We prove that
the valuations of the refined Swan conductors at a vertex of the polygon associated
to the polyannulus encode some information about the slopes of the log-affine
functions of the intrinsic radii at that vertex. For the precise statement, we refer to
Proposition 4.3.13.

Plan of the paper. Section 1 is devoted to developing the theory of refined radii, the
analog of refined conductors over a complete nonarchimedean field. In the first two
subsections, we set up notation and recall some basic results on differential modules
from [Kedlaya and Xiao 2010]. We define the refined radii in Section 1.3 and prove
a decomposition result (Theorem 1.3.26) that separates pieces with different refined
radii in a differential module. In Section 1.4 we consider the case where we allow
multiple derivations to interact. In Section 1.5 we study how the refined radii vary
on an annulus or a disc, when the radii are log-affine functions. We then define the
refined conductors for solvable differential modules over an annulus in Section 1.6.

In Section 2 we apply the theory of refined conductors for solvable differential
modules to define refined conductors for Galois representations. In the first two
subsections we recall the construction of differential modules following [Kedlaya
2007], and deduce some basic properties. In Section 2.3 we define the refined
conductor homomorphism. Section 2.4 briefly discusses an application to higher
local fields.

In Section 3 we compare our definition with that of Saito, which is reviewed
in Section 3.1. In Section 3.2 we realize the extension of fields as a finite étale
cover of varieties and lift them to rigid analytic spaces over K . In Section 3.3 we
do a crucial calculation on the differential module structure of Dwork isocrystals
to determine their refined radii; this calculation forms the heart of our proof of
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the comparison theorem. We wrap up Section 3 with a proof of the comparison
Theorem 3.4.1 in Section 3.4.

In Section 4 we focus on the interplay of refined Swan conductors with the
toroidal variation of Swan conductors. A few technical lemmas are discussed in
Section 4.2, and the main theorems are proved in Section 4.3.

1. Theory of differential modules

Our systematic study of differential modules proceeds in two stages: first over a
complete nonarchimedean field, and then over an annulus over a complete nonar-
chimedean field. In the former case, the spectral norm, or equivalently the radius
of convergence, of the differential operator is a very important invariant; when the
differential module has pure radii, we will focus on certain secondary information
of the differential module, called the refined radii. In the latter case, it was proved
in [Kedlaya and Xiao 2010] that the radii of convergence of a differential module
over an annulus give rise to piecewise log-affine functions as one varies the radii
on the annulus; we will again focus on the secondary data: the refined radii. In the
case when the aforementioned piecewise log-affine functions are in fact log-affine,
we prove that the multisets of refined radii of the differential module at all radii are
the same, if we naturally identify the spaces where these refined radii live.

1.1. Setup. This subsection is mainly to explain our convention on notations; how-
ever, the commutative algebra Lemma 1.1.10 will become a very useful tool later
as explained in Remark 1.1.11.

Notation 1.1.1. By a multiset S, we mean a set where we allow elements to have
multiplicity. For s ∈ S, the multiplicity of s in S is denoted by multis(S). When S
consists of a single element (with multiplicity), we call it pure.

Notation 1.1.2. For any field K that will be considered in this paper, K alg will
denote a fixed algebraic closure. We let K sep denote the separable closure of K
inside K alg. Set G K = Gal(K sep/K ). For a finite Galois extension L/K (inside
K sep), we denote its Galois group by GL/K = Gal(L/K ).

For e ∈ N, we use µe to denote the set of e-th roots of unity in K alg.

Notation 1.1.3. By a nonarchimedean field, we mean a field K equipped with a
nonarchimedean norm | · | = | · |K : K×→ R×+. A subring of K (with the induced
norm and topology) is called a nonarchimedean ring.

For a nonarchimedean field K , denote the ring of integers of K by

OK = {x ∈ K : |x | ≤ 1}

and the maximal ideal of OK by mK = {x ∈ K : |x |< 1}; denote the residue field
of K by κK = OK /mK . We reserve the letter p for the characteristic of κK . If
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char κK = p > 0 and char K = 0, we normalize the norm on K so that |p| = 1/p.
For an element a ∈ OK , we denote its image in κK under the reduction map by ā.
In case K is discretely valued, let πK denote a uniformizer of OK and let vK ( · ) be
the corresponding valuation on K , normalized so that vK (πK )= 1.

For a nonarchimedean field K and s ∈ R, we set

m
(s)
K = {x ∈ K : |x | ≤ e−s

}, m
(s)+
K = {x ∈ K : |x |< e−s

}, κ
(s)
K =m

(s)
K /m

(s)+
K .

If s ∈ −log |K×|, there exists a noncanonical isomorphism κK ' κ
(s)
K . For a ∈ K

with |a|≤e−s , we sometimes denote its image in κ(s)K by ā(s). In particular, κ(0)K =κK

and ā(0) = ā if v(a)≥ 0.

Notation 1.1.4. Let J be an index set. We use eJ to denote a tuple (e j ) j∈J . For
another tuple u J , set ueJ

J =
∏

j∈J ue j
j , if all but finitely many of the e j are equal

to 0. We also use
∑n

eJ=0 to denote the sum over e j ∈ {0, 1, . . . , n} for each j ∈ J
provided e j 6= 0 for only finitely many j ; for notational simplicity, we may suppress
the range of the summation when it is clear. If J is finite, put

|eJ | =
∑
j∈J
|e j | and (eJ )! =

∏
j∈J
(e j !).

Convention 1.1.5. Throughout this paper, all derivations on topological modules
will be assumed to be continuous; in particular, �1

R/S will denote the module of
continuous differentials on the (topological) ring R relative to the (topological) base
ring S; we may suppress S from the notation when S = Fp, Z or Zp. Moreover, all
derivations on nonarchimedean rings will be assumed to be bounded (that is, to
have bounded operator norms). All connections considered will be assumed to be
integrable.

Notation 1.1.6. For a matrix A= (Ai j ) with coefficients in a nonarchimedean ring,
we use |A| to denote the supremum among the norms of the entries Ai j of A.

Hypothesis 1.1.7. For the rest of this subsection, we assume that K is a complete
nonarchimedean field.

Notation 1.1.8. Let I ⊂ [0,+∞) be an interval and let n ∈ N. Let

An
K (I )= {(x1, . . . , xn) ∈ K alg

: |xi | ∈ I for i = 1, . . . , n}

denote the polyannulus of dimension n with radii in I . (We do not impose any
rationality condition on the endpoints of I , so this space should be viewed as an
analytic space in the sense of Berkovich [1990].) If I is written explicitly in terms of
its endpoints (e.g., [α, β] ), we suppress the parentheses around I (e.g., An

K [α, β] ).
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Notation 1.1.9. Let 0< α ≤ β <+∞. We put

K 〈α/t, t/β〉 =
{∑

n∈Z

antn
: |an|η

n
→ 0 as n→±∞, for any η ∈ [α, β]

}
,

K 〈α/t, t/β}} =
{∑

n∈Z

antn
: |an|η

n
→ 0 as n→±∞, for any η ∈ [α, β)

}
,

K {{α/t, t/β]]0 =
{∑

n∈Z

antn
: |an|η

n
→ 0 and |an|β

n is bounded

as n→±∞, for any η ∈ (α, β)
}
.

K 〈t/β〉 =
{
∞∑

n=0
antn

: |an|β
n
→ 0 as n→+∞

}
,

K {{t/β}} =
{
∞∑

n=0
antn

: |an|η
n
→ 0 as n→+∞, for any η ∈ [0, β)

}
,

K [[t/β]]0 =
{
∞∑

n=0
antn
: |an|β

n is bounded as n→∞
}
.

For I = {1, . . . , n} and a nonarchimedean ring R, we use R〈u I 〉 to denote the Tate
algebra, consisting of formal power series

∑
eI≥0 aeI u

eI
I with aeI ∈ R and |aeI |→ 0

as |eI |→+∞. For (ηi )i∈I ∈ (0,+∞)n , the ηI -Gauss norm on the polynomial ring
R[tI ] is the norm | · |ηI given by∣∣∣∣∑

eI

aeI t
eI
I

∣∣∣∣
ηI

=max
eI
{|aeI | · η

eI
I } ;

this norm extends uniquely to multiplicative norms on Frac(R[tI ]), and on R〈tI 〉 in
case |ηi | ≤ 1 for any i ∈ I .

For η ∈ [α, β], the η-Gauss norm on K [t] extends to multiplicative norms on
K 〈α/t, t/β〉 and K [[t/β]]0, on K 〈α/t, t/β}} in case η 6= β, and on K {{α/t, t/β]]0
in case η 6= α.

We record here a lemma in commutative algebra which will be frequently used
(implicitly) when gluing decompositions.

Lemma 1.1.10. Let
R //

��

S

��
T // U

be a commuting diagram of inclusions of integral domains, such that the intersection
S ∩ T within U is equal to R. Let M be a finite locally free R-module. Then the
intersection of M ⊗R S and M ⊗R T within M ⊗R U is equal to M.

Proof. See [Kedlaya and Xiao 2010, Lemma 2.3.1]. �
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Remark 1.1.11. We explain how this lemma is used in this paper. We often apply
this lemma to the R-module End(M) over R for a differential module M . More
precisely, we often encounter the situation when we can write both M ⊗R S and
M⊗R T as direct sums of two submodules such that both direct sum decompositions,
when tensored with U , give the same direct sum decomposition of M ⊗R U . We
view the projections constituting the direct sum decompositions as elements in
End(M)⊗R S, End(M)⊗R T , and End(M)⊗R U , respectively. By Lemma 1.1.10,
we see that the projections above are actually the images of one element of End(M)
under the natural maps; this element defines a direct sum decomposition of M
which when tensored with S or T yields the given direct sum decomposition of
M ⊗R S or M ⊗R T , respectively. In other words, we can “glue” the direct sum
decompositions of M ⊗R S and of M ⊗R T along M ⊗R U to get a direct sum
decomposition of M (over R).

1.2. Differential modules and radii of convergence. The starting point of the the-
ory of nonarchimedean differential modules is to understand differential modules
over a nonarchimedean field. One of the important tools is the Newton polygon
associated to a cyclic vector, which gives much numerical information if the spectral
norm of the differential operator is strictly bigger than the operator norm on the base
field. To extend interesting results across the threshold imposed by the operator
norm mentioned above, we restrict ourselves to the case when the differential
operator is of rational type, that is, its metric properties resemble d/d X acting
on the completion of Qp(X) with respect to the 1-Gauss norm; in this case, we
may entirely remove the restriction on spectral norms by considering the Frobenius
antecedents of the differential modules.

Definition 1.2.1. Let K be a differential ring, that is, a ring equipped with a
derivation ∂ . Let K {T } denote the (noncommutative) ring of twisted polynomials
over K [Ore 1933]; its elements are finite formal sums

∑
i≥0 ai T i with ai ∈ K ,

multiplied according to the rule T a = aT + ∂(a) for a ∈ K .
A ∂-differential module over K is a finite projective K -module V equipped

with an action of ∂ (subject to the Leibniz rule); any ∂-differential module over K
inherits a left action of K {T } where T acts via ∂ . The rank of V is the rank of V
as a K -module. The module dual V∨ = HomK (V, K ) of V may be viewed as a
∂-differential module by setting (∂ f )(v)= ∂( f (v))− f (∂(v)). We say V is free if
V is free as a module over K . We say V is trivial if it is isomorphic to K⊕d for
some d ∈ N as a ∂-differential module.

For a ∂-differential module V free of rank d over K , an element v ∈ V is called
a cyclic vector if v, ∂v, . . . , ∂d−1v form a basis of V as a K -module. A cyclic
vector defines an isomorphism V ' K {T }/K {T }P of ∂-differential modules, where
P ∈ K {T } is some monic twisted polynomial of degree d, and the ∂-action on
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K {T }/K {T }P is the left multiplication by T . If K is a differential field of charac-
teristic 0, V always has a cyclic vector; see [Dwork et al. 1994, Theorem III.4.2;
Kedlaya 2010, Theorem 5.4.2].

For a ∂-differential module V , we put H 0
∂ (V )= Ker ∂ .

Hypothesis 1.2.2. For the rest of this subsection, we assume that K is a complete
nonarchimedean field of characteristic zero, equipped with a derivation ∂ with
operator norm |∂|K <∞, and that V is a nonzero ∂-differential module over K .

Definition 1.2.3. Let p denote the residual characteristic of K ; we conventionally
set

ω =

{
1 if p = 0,
p−1/(p−1) if p > 0.

The spectral norm of ∂ on V is defined to be |∂|sp,V = limn→∞ |∂
n
|
1/n
V for any

fixed K -compatible norm | · |V on V . Define the generic ∂-radius of V to be
R∂(V ) = ω|∂|−1

sp,V ; note that R∂(V ) > 0. Let V1, . . . , Vd be the Jordan–Hölder
constituents of V as a K {T }-module. We define the multiset R∂(V ) of (extrinsic)
subsidiary ∂-radii of V to be the collection of R∂(Vi ) with multiplicity dim Vi for
i = 1, . . . , d . Let R∂(V ; 1)≤ · · · ≤ R∂(V ; dim V ) denote the elements of R∂(V ) in
nondecreasing order. We say that V has pure ∂-radii if R∂(V ) is pure as a multiset;
in other words, it consists of dim V copies of R∂(V ).

Definition 1.2.4. Let R be a complete K -algebra. For v ∈ V and x ∈ R, we define
the ∂-Taylor series of v with respect to x to be

T(v; ∂; x)=
∞∑

n=0

∂n(v)

n!
xn
∈ V ⊗K R, (1.2.5)

in case this series converges. When V = K , the ∂-Taylor series (1.2.5) with respect
to a fixed x ∈ R gives a homomorphism K → R of rings, if it converges for all
v ∈ V = K . For general V , the ∂-Taylor series (1.2.5) with respect to the same
fixed x ∈ R gives a homomorphism of K -modules V → V ⊗K R respecting the
aforementioned ring homomorphism, if both homomorphisms converge.

Lemma 1.2.6. Let V , V1, and V2 be nonzero ∂-differential modules over K .

(a) If 0→ V1→ V → V2→ 0 is exact, then we have R∂(V )=R∂(V1)∪R∂(V2).

(b) We have R∂(V∨)=R∂(V ).

(c) We have R∂(V1 ⊗ V2) ≥ min {R∂(V1), R∂(V2)}. If V1 is irreducible and
R∂(V1) < R∂(V2), then V1⊗ V2 has pure ∂-radius R∂(V1).

(d) Let f : K → K [[T/u]]0 be the homomorphism given by f (x) = T(x; ∂; T ).
Then f ∗V = V ⊗K , f K [[T/u]]0 is a ∂T = ∂/∂T -differential module over
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K [[T/u]]0. For r ∈ (0, R∂(K )), R∂(V ) ≥ r if and only if f ∗V restricts to a
trivial ∂T -differential module over A1

K [0, r).

Proof. The statements (a)–(c) are [Kedlaya and Xiao 2010, Lemma 1.2.9] and the
statement (d) is [ibid., Proposition 1.2.14]. �

Definition 1.2.7. For P(T ) =
∑

i ai T i
∈ K [T ] or K {T } a nonzero (possibly

twisted) polynomial, define the Newton polygon of P as the lower convex hull of
the set {(−i,−log |ai |)} ⊂ R2.

Proposition 1.2.8 (Christol–Dwork). Suppose that V ' K {T }/K {T }P , and let s
be the lesser of −log |∂|K and the least slope of the Newton polygon of P. Then
max{|∂|K , |∂|sp,V } = e−s . More generally, the multiplicity of any s ′ <−log |∂|K as
a slope of the Newton polygon of P coincides with the multiplicity of ωes′ in R∂(V ).

Proof. This is [Kedlaya 2010, Theorem 6.5.3]. �

Definition 1.2.9. We say a derivation ∂ on K is of rational type if there exists
u ∈ K such that the following conditions hold (in this case, we call u a rational
parameter for ∂):

(i) we have ∂(u)= 1 and |∂|K = |u|−1, and

(ii) for each positive integer n, |∂n/n!|K ≤ |∂|nK .

If ∂ is of rational type, the inequalities in (ii) are in fact equalities, which yields
that |∂|sp,K = ω|∂|K ; see [Kedlaya and Xiao 2010, Definition 1.4.1].

Lemma 1.2.10. Let ∂ be a derivation on K of rational type with u as a rational
parameter and let L/K be a finite tamely ramified extension. Then the unique
extension of ∂ to L is of rational type with u again as a rational parameter.

Proof. This is [Kedlaya and Xiao 2010, Lemma 1.4.5]. �

Remark 1.2.11. We sometimes need to replace K by the completion of K (x) with
respect to the η-Gauss norm for some η ∈ R>0, where x is transcendental over K
and we set ∂x = 0. The derivation ∂ is again of rational type when acting on the
new field.

Definition 1.2.12. When ∂ is of rational type, it is more convenient to consider
∂-radii with a different normalization, as follows. For V a ∂-differential module,
we define the intrinsic ∂-radius of V to be IR∂(V )= |∂|sp,K /|∂|sp,V = |∂|K · R∂(V ).
We define the multiset of intrinsic subsidiary ∂-radii to be IR∂(V )= |∂|K ·R∂(V ).
We put IR∂(V ; i)= |∂|K · R∂(V ; i) for i = 1, . . . , dim V . We say that V has pure
intrinsic ∂-radii if IR∂(V ) is pure as a multiset.

Hypothesis 1.2.13. For the rest of this subsection, we assume that K is a complete
nonarchimedean field of characteristic zero and residual characteristic p, equipped
with a derivation ∂ of rational type. We fix u ∈ K a rational parameter of ∂ . We
also assume p > 0 unless otherwise specified.
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Construction 1.2.14. We construct the ∂-Frobenius as follows. If K contains a
primitive p-th root of unity ζp, we may define an isometric action of the group
Z/pZ on K using ∂-Taylor series:

x (i) = T(x; ∂; (ζ i
p − 1)u) (i ∈ Z/pZ, x ∈ K );

in particular, u(i) = ζ i
pu. Let K (∂) be the fixed subfield of K under this action; in

particular, u p
∈ K (∂). Hence, we have a Galois extension K/K (∂) generated by u

with Galois group Z/pZ. If K does not contain all p-th roots of unity, we may still
define K (∂) by first constructing (K (µp))

(∂) and then applying the Galois descent;
in this case, the extension K/K (∂) may not be Galois.

We call the inclusion ϕ(∂)∗ : K (∂) ↪→ K the ∂-Frobenius morphism (homomor-
phism). We view K (∂) as being equipped with the derivation ∂ ′ = ∂/(pu p−1); it is
a derivation on K (∂) because a simple calculation shows that (∂(x))(i) = ζ i

p∂(x
(i))

for any x ∈ K , yielding that ∂ ′(x) is invariant under the Z/pZ-action if x ∈ K (∂).
By [Kedlaya and Xiao 2010, Lemma 1.4.9], ∂ ′ is of rational type on K (∂).

We sometimes use ϕ(∂,n) : K (∂,n) ↪→ K to denote the pn-th ∂-Frobenius (homo-
morphism) obtained by applying the above construction n times; if K contains a
primitive pn-th root of unity ζpn , this is the same as the fixed field for the natural
action of Z/pnZ on K given by x (i) = T(x; ∂; (ζ i

pn − 1)u) for i ∈ Z/pnZ.

Remark 1.2.15. We point out that the definitions of ∂-Frobenius and K (∂) depend
on the choice of the rational parameter u.

Lemma 1.2.16. The residue field κK (∂) contains κ p
K .

Proof. We know that K is generated by u over K (∂). If |u| /∈ |K (∂)×
|, K (∂) will

have the same residue field as K does. If |u| ∈ |K (∂)×
|, let x ∈ K (∂) be an element

such that |x | = |u|. Then κK is generated over κK (∂) by u/x , whose p-th power lies
in κK (∂) . The statement follows. �

Definition 1.2.17. Given a ∂ ′-differential module V ′ over K (∂), its ∂-Frobenius
pullback is the ∂-differential module ϕ(∂)∗V ′ = V ′⊗K (∂) K over K , where

∂(v′⊗ x)= pu p−1∂ ′(v′)⊗ x + v′⊗ ∂(x) (v′ ∈ V ′, x ∈ K ).

For a ∂-differential module V over K , we define the ∂-Frobenius descendant
of V to be the K (∂)-module ϕ(∂)∗ V obtained from V by restriction along ϕ(∂)∗ :
K (∂)
→ K and viewed as a ∂ ′-differential module over K (∂) with the action given

by ∂ ′(v)= ∂(v)/pu p−1 for any v ∈ V .
Let V be a ∂-differential module over K such that IR∂(V ) > p−1/(p−1). A ∂-

Frobenius antecedent of V (which always exists as is shown in Lemma 1.2.18(c)) is a
∂ ′-differential module V ′ over K (∂) such that V ∼=ϕ(∂)∗V ′ and IR∂ ′(V ′)> p−p/(p−1).
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Lemma 1.2.18. The ∂-Frobenius pullbacks and descendants have the following
properties.

(a) For V ′ a ∂ ′-differential module over K (∂), we have

IR∂(ϕ(∂)∗V ′)≥min{IR∂ ′(V ′)1/p, p IR∂ ′(V ′)}.

Moreover, if IR∂ ′(V ′) 6= p−p/(p−1), the above inequality is in fact an equality.

(b) For V a ∂-differential module over K , there is a canonical isomorphism
ϕ(∂)∗ϕ

(∂)
∗ V ∼= V⊕p.

(c) For i = 0, . . . , p − 1, let W (∂)
i be the ∂ ′-differential module over K (∂) with

one generator v (which is a proxy of ui ), such that ∂ ′(v)= (i/p)u−pv. Then
IR∂ ′(W

(∂)
i ) = p−p/(p−1) for i = 1, . . . , p− 1. For any ∂-differential module

V over K , we have canonical isomorphisms ιi : (ϕ
(∂)
∗ V ) ⊗ W (∂)

i
∼= ϕ

(∂)
∗ V

for i = 0, . . . , p − 1. Moreover, a submodule U of ϕ(∂)∗ V is itself the ∂-
Frobenius descendant of a submodule of V if and only if ιi (U ⊗W (∂)

i )=U for
i = 0, . . . , p− 1.

For V1 and V2 ∂-differential modules over K , we have

ϕ(∂)
∗

V1⊗ϕ
(∂)
∗

V2 =
(
ϕ(∂)
∗
(V1⊗ V2)

)⊕p
.

For V ′ a ∂ ′-differential module over K (∂), we have

ϕ(∂)
∗
ϕ(∂)∗V ′ ∼= V ′⊕

p−1⊕
i=1

V ′⊗W (∂)
i .

(d) (Christol–Dwork) Let V be a ∂-differential module over K such that

IR∂(V ) > p−1/(p−1).

Then there exists a unique ∂-Frobenius antecedent V ′ of V . Moreover, we have
IR∂ ′(V ′)= IR∂(V )p.

(e) Let V be a ∂-differential module over K . Then

IR∂ ′(ϕ
(∂)
∗

V )=
⋃

r∈IR∂ (V )



{
r p, p−p/(p−1), . . . , p−p/(p−1)︸ ︷︷ ︸

p−1 times

}
if r > p−1/(p−1),

{
p−1r, . . . , p−1r︸ ︷︷ ︸

p times

}
if r ≤ p−1/(p−1).

In particular, we have IR∂ ′(ϕ
(∂)
∗ V )=min{p−1IR∂(V ), p−p/(p−1)

}.

Proof. For (a), see [Kedlaya and Xiao 2010, Lemma 1.4.11 and Corollary 1.4.20].
(b) and (c) are straightforward. For (d), see [Kedlaya 2010, Theorem 10.4.2]. For
(e), see [Kedlaya and Xiao 2010, Theorem 1.4.19]. �
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Remark 1.2.19. As in [Kedlaya 2010, Theorem 10.4.4], one can form a version of
Lemma 1.2.18(d) for differential modules over discs or annuli.

For the following theorem, we do not assume p > 0.

Theorem 1.2.20. Let V be a ∂-differential module over K . Then there exists a
unique decomposition of ∂-differential modules:

V =
⊕

r∈(0,1]

Vr ,

where every subquotient of Vr has pure intrinsic ∂-radii r . Moreover, Vr = 0
if r /∈ |K×|Q.

Proof. For the decomposition, see [Kedlaya and Xiao 2010, Theorem 1.4.21]. The
rationality of those r such that Vr 6= 0 follows from Proposition 1.2.8 when r < ω
and from taking ∂-Frobenius antecedents in the general case. �

Definition 1.2.21. We call ⊕r∈(0,ω)Vr the visible part of V and ⊕r∈[ω,1]Vr the
nonvisible part of V . If V consists of only its visible part, we say V has visible
(intrinsic) ∂-radii; similarly, if V consists of only its nonvisible part, we say V has
nonvisible (intrinsic) ∂-radii.

Remark 1.2.22. Let V be a ∂-differential module over K with pure intrinsic ∂-radii
IR∂(V ) > p−1/(p−1). By Lemma 1.2.18(d), V has a ∂-Frobenius antecedent V ′. By
Lemma 1.2.18(c),

ϕ(∂)
∗

V = ϕ(∂)
∗
ϕ(∂)∗V ′ ∼= V ′⊕

( p−1⊕
i=1

V ′⊗W (∂)
i

)
.

This decomposition coincides with the one obtained by applying Theorem 1.2.20
to ϕ(∂)∗ V .

1.3. Refined radii. When a ∂-differential module V has pure ∂-radii, we will define
the multiset of refined ∂-radii, certain secondary information for the differential
module. Similar to the case of ∂-radii, we may canonically write V as a direct sum
of ∂-differential submodules such that the multiset of refined ∂-radii for each direct
summand consists of elements pairwise-conjugate under the action of Gal(K alg/K ).

Hypothesis 1.3.1. In this subsection, let K be a complete nonarchimedean field of
characteristic zero and residual characteristic p (possibly p = 0), equipped with
a derivation ∂ of rational type. We fix u ∈ K a rational parameter for ∂ . Unless
otherwise specified, we assume that V is a ∂-differential module of rank d over K
with pure intrinsic ∂-radii IR∂(V ). Put s =−log(ωR∂(V )−1)=−log |∂|sp,V .
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Notation 1.3.2. For P(T )= T d
+a1T d−1

+· · ·+ad ∈ K [T ] a polynomial whose
Newton polygon has pure slope s, the multiset of the reduced roots of P consists
of the reductions of the roots of P in κ(s)K alg , counted with multiplicity. If P is the
characteristic polynomial of a matrix A ∈Mat(m(s)

K ), we call the reduced roots of
P the reduced eigenvalues of A.

Notation 1.3.3. For b∈ (0, 1] (a proxy of IR∂(V )), we define λ=λ(b) and r = r(b)
as follows.

(i) When b < ω (which happens if V has pure visible intrinsic ∂-radii), we let
λ(b)= 0 and r(b)= 1.

(ii) When b ∈ [ω, 1) and hence p > 0 (which happens if V has pure nonvisible
∂-radii), let λ(b) denote the unique positive integer such that

b ∈
[

p
−1

pλ(b)−1(p−1) , p
−1

pλ(b)(p−1)
)
,

and put r(b)= pλ(b).

(iii) When b= 1, we let λ(b)= r(b)=∞.

Definition 1.3.4. Let b ∈ (0, 1]. A K -norm | · |V on V is called b-good (or simply
good if b = IR∂(V )), if it admits an orthogonal (not necessarily orthonormal)
basis, and

(i) when b<ω (which happens when b= IR∂(V ) for V visible), we have |∂|V ≤
ω(b|u|)−1,

(ii) when b ∈ [ω, 1) and hence p > 0 (which happens when b = IR∂(V ) for V
nonvisible), we have∣∣∣∂ i

i !

∣∣∣
V
≤ |∂|iK for i = 1, . . . , r − 1,

∣∣∣∂r

r !

∣∣∣
V
≤ p−1/(p−1)(b|u|)−r , (1.3.5)

(iii) when b= 1, we have |∂ i/ i !|V ≤ |∂|iK for all i ≥ 0.

One may summarize the conditions (i)–(iii) by writing

(iv)
∣∣∂ i/ i !

∣∣
V ≤max

{
|∂|iK , (ωb−1

|u|−1)i/|i !|
}

for i = 1, . . . , r.

Indeed, the equivalence of (1) or (iii) with (iv) is straightforward and the equivalence
of (ii) and (iv) (when necessarily p > 0) follows from the observation that the
maximum above is equal to |∂|iK if i < r and to p−1/(p−1)(b|u|)−r if i = r . From
condition (iv), it is obvious that a b-good norm is also b′-good for any b′ ≤ b.

For the rest of this definition, we assume that b= IR∂(V ) < 1. By Lemma 1.3.9
below there exists a good norm for V .

Using this good norm, we define the multiset of refined ∂-radii of V , denoted by
2∂(V ), as follows. Enlarge the value group of K in the sense of Remark 1.2.11 so
that V admits an orthonormal basis. Let Nr be the matrix of ∂r with respect to the
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chosen basis. If α1, . . . , αd are the reduced eigenvalues of Nr , viewed as elements
in κ(rs)

K alg , we put

2∂(V, | · | )=
{
α

1/r
1 , . . . , α

1/r
d

}
as the multiset consisting of elements in κ(s)K alg (note that there is no ambiguity of
taking r -th roots for elements in κ(rs)

K alg when p > 0). We will see in Lemmas 1.3.11
and 1.3.12 that the multiset of refined ∂-radii is independent of the choices of the
good norm and the orthonormal basis of V . After these lemmas, we will abbreviate
2∂(V, | · | ) to 2∂(V ). When 2∂(V ) is pure as a multiset, we say that V has pure
refined ∂-radii.

We remark that2∂(V ) does not depend on the choice of the rational parameter u.
But it is sometimes convenient to use the multiset of intrinsic refined ∂-radii
I2∂(V )= u2∂(V ) for a fixed rational parameter u ∈ K .

Finally, in the case when IR∂(V ) = 1, we conventionally define 2∂(V ) and
I2∂(V ) to be the multisets consisting of 0 with multiplicity dim V .

Remark 1.3.6. In the definition of refined ∂-radii, we first enlarged K to K ′, the
completion of K (x1, . . . , xn) for some (η1, . . . , ηn)-Gauss norm. However, the
multiset of refined ∂-radii 2∂(V, | · | ) is still composed of elements in κ(s)K alg . Indeed,
since the construction is canonical, for any θ ∈2∂(V, |·| ), we have gθ ∈2∂(V, |·| )
for any automorphism g of K ′ fixing K . But2∂(V, |·| ) is a finite multiset. So it can
consist only of elements in κ(s)K alg . Alternatively, we can carefully keep track of the
new variables we introduced in the computation of reduced eigenvalues; from this,
we can also see that the multiset of refined ∂-radii is composed of elements in κ(s)K alg .

Remark 1.3.7. We also remark that when p > 0 and b = ω1/pλ , the condition
(1.3.5) for i = 1, . . . , pλ−1 is equivalent to (1.3.5) for i = 1, . . . , pλ. But we need
the matrix Npλ to define refined ∂-radii. For example, when b= IR∂(V )= ω, we
will see in Lemma 1.3.9 below that the twisted polynomial from Proposition 1.2.8
gives us a good norm on V . However, one cannot compute the refined ∂-radii by
taking the reduced roots of this twisted polynomial. Instead, one has to find the
matrix for ∂ p.

Remark 1.3.8. For a good norm, one can show that the inequalities in (1.3.5) are in
fact equalities, but we will not use this fact later; see [Kedlaya 2010, Lemma 6.2.4]
for a proof of similar flavor.

Lemma 1.3.9. Let V be as in Hypothesis 1.3.1. Assume that b≤ IR∂(V ), and that
b < 1 if p > 0. Then V admits a b-good norm. In particular, any V with pure
intrinsic radii IR∂(V ) < 1 admits a good norm.

Proof. We first assume that b ≤ ω. We take a cyclic vector v ∈ V with twisted
polynomial P . By Proposition 1.2.8, the lesser of−log |∂|K and the least slope of the
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Newton polygon of P equals min{s,−log |∂|K } ≥ −log(ωb−1
|u|−1). Then we can

define a b-good norm on V by taking the orthogonal basis to be v, ∂v, . . . , ∂d−1v

with |∂ iv| = ωi (b|u|)−i for i = 0, . . . , d − 1. When b = ω, as pointed out in
Remark 1.3.7, our bound |∂|V ≤ |u|−1 alone implies condition (1.3.5) for r =
1, . . . , p when p > 0, and condition (iii) in Definition 1.3.4 when p = 0.

The remaining case is when p > 0 and b ∈ (p−1/(p−1), 1). We let n = λ− 1 if
b= p−1/(pλ−1(p−1)) and n=λ otherwise. In other words, n is the unique nonpositive
integer such that

b ∈
(

p
−1

pn−1(p−1) , p
−1

pn(p−1)
]
.

Let ϕ(∂,n) : K (∂,n)
→ K be the pn-th ∂-Frobenius and let ∂̃ = ∂/(pnu pn

−1) be
the corresponding derivation on K (∂,n). Since IR∂(V ) ≥ b > p−1/(pn−1(p−1)), by
repeatedly applying Lemma 1.2.18(d), we obtain an n-fold ∂-Frobenius antecedent
W over K (∂,n); it has intrinsic ∂̃-radii

IR∂̃(W )= IR∂(V )pn
≥ bpn

∈

(
p
−p
p−1 , p

−1
p−1

]
.

In particular, W has a bpn
-good norm by the argument in the previous paragraph.

We have∣∣u pn
∂̃
∣∣
W ≤ p−1/(p−1)b−pn

∈ [1, p)

⇒
∣∣u∂∣∣W = p−n

∣∣u pn
∂̃
∣∣
W

{
< p−n

· p = pλ−1 when n = λ,
≤ p−n

· 1= pλ−1 when n = λ− 1.
(1.3.10)

This norm on W gives rise to a K -norm | · |V on V , which we will show is b-good.
By (1.3.10), we have |u∂ − i |V = |u∂ − i |W ≤ |i | for i = 1, . . . , pλ− 1. Hence we
have, for i = 1, . . . , pλ,∣∣∣ui∂ i

i !

∣∣∣
V
=

∣∣∣ui∂ i

i !

∣∣∣
W
=

∣∣∣u∂(u∂−1) · · · (u∂−(i−1))
i !

∣∣∣
W
≤

∣∣∣u∂i ∣∣∣W
=

∣∣∣ pn

i
u pn

∂̃

∣∣∣
W


≤ 1 if i = 1, . . . , pλ− 1,
≤ p−1/(p−1)b−pn

= p−1/(p−1)b−pλ if i = pλ and n = λ,
≤ p−p/(p−1)b−pn

= p−1 if i = pλ and n = λ− 1.

This verifies (1.3.5). �

Lemma 1.3.11. Assume that IR∂(V ) < 1. Let | · | be a good norm on V . Then the
multiset of refined ∂-radii 2∂(V, | · | ) is well-defined.

Proof. By possibly enlarging K in the sense of Remark 1.2.11, we have two orthonor-
mal bases e and e′ for | · |V such that e′ = eA for a transition matrix A ∈ GLd(OK ).
For i = 1, . . . , r , let Ni denote the matrix of ∂ i with respect to e; by (1.3.5), we



On the refined ramification filtrations in the equal characteristic case 1595

have |Ni/ i !| ≤ |∂|iK for i = 1, . . . , r − 1. Then

∂r (e′)
r !
=
∂r (eA)

r !
=

r∑
i=0

∂ i (e)
i !

∂r−i (A)
(r−i)!

= e′A−1
( r∑

i=0

Ni
i !
∂r−i (A)
(r−i)!

)
.

If A−1 M A denote the matrix of ∂r/r ! with respect to e′, we have

M = Nr
r !
+

r−1∑
i=0

Ni
i !
∂r−i (A)A−1

(r−i)!
.

Note that |Ni/ i !| ≤ |∂|iK and

|∂r−i (A)A−1/(r − i)!| ≤ |∂|r−i
K |A| |A

−1
| ≤ |∂|r−i

K

imply that |M − Nr/r !| ≤ |∂|rK < ωR∂(V )−r , which is smaller than any singular
value of Nr/r !. By [Kedlaya 2010, Theorem 4.2.2], the reduced eigenvalues of
Nr/r ! coincide with those of A−1 M A. Therefore, 2∂(V, | · |) does not depend on
the choice of an orthogonal basis for | · |. �

Lemma 1.3.12. Assume that IR∂(V ) < 1. Let | · |1 and | · |2 be two good norms on
V . Then 2∂(V, | · |1)=2∂(V, | · |2).

Proof. By possibly enlarging K as in Remark 1.2.11, we may choose orthonor-
mal bases e and f of | · |1 and | · |2, respectively, so that eA = f with A =
Diag{a11, . . . , add}.

Let Ni denote the matrix of ∂ i with respect to e; by (1.3.5), we have |Ni/ i !| ≤ 1
for i = 1, . . . , r − 1. Then

∂r ( f )
r !
=
∂r (eA)

r !
=

r∑
i=0

∂ i (e)
i !

∂r−i (A)
(r−i)!

= f A−1
( r∑

i=0

Ni
i !
∂r−i (A)
(r−i)!

A−1
)

A.

It suffices to show that Nr/r ! has the same reduced eigenvalues as
r∑

i=0

Ni
i !
∂r−i (A)
(r−i)!

A−1.

This is true by [Kedlaya 2010, Theorem 4.4.2] since∣∣∣Ni
i !
∂r−i (A)
(r−i)!

A−1
∣∣∣= ∣∣∣Ni

i !

∣∣∣ · ∣∣∣Diag
(
∂r−i (a11)

(r−i)!
a−1

11 , . . . ,
∂r−i (add)

(r−i)!
a−1

dd

)∣∣∣
≤ |∂|iK · |∂|

r−i
K < ωR∂(V )−1,

for i = 0, . . . , r − 1. �

Corollary 1.3.13. Assume that V has pure visible ∂-radii. For any cyclic vector
v ∈ V , the multiset of the reduced roots of the twisted polynomial associated to v is
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exactly the multiset of refined ∂-radii of V . In particular, this multiset is composed
of nonzero elements of κ(s)K alg .

More generally, we may drop the hypothesis that V has pure ∂-radii, and only
assume that V has visible ∂-radii R∂(V ) = ωes . Let h denote the multiplicity of
R∂(V ) in the multiset R∂(V ). In this case, for any cyclic vector v ∈ V , if we write
the associated monic twisted polynomial as Xd

+a1 Xd−1
+· · ·+ad , then |ai | ≤ e−is

for i ≤ h and |ah| = e−hs . Moreover, if Vωes is the direct summand of V with pure
∂-radii ωes as given by Theorem 1.2.20, then2∂(Vωes ) consists of the reduced roots
of the polynomial Xh

+ a1 Xh−1
+ · · ·+ ah = 0.

Proof. As already pointed out in Remark 1.3.7, we emphasize again that the case
IR∂(V )=ω is not included in the statement. We first treat the case when V has pure
visible ∂-radii. We can construct the good norm using the twisted polynomial as in
Lemma 1.3.9. This twisted polynomial is then exactly the characteristic polynomial
of the matrix of ∂ with respect to this basis. The claim follows.

For V not necessarily pure of ∂-radii, the bound for norms on ai follows from
Proposition 1.2.8. For the statement about refined ∂-radii, we need to dig into the
proof of Theorem 1.2.20 a bit more. By [Kedlaya 2009, Corollary 3.2.4], we can
write P = Q R where Q and R are monic twisted polynomials such that the Newton
polygon of Q = Xh

+a′1 Xh−1
+· · ·+a′h has pure slopes s and the Newton polygon

of R has slope strictly bigger than s. Moreover, we have Vωes = K {T }/QK {T }. The
upshot is that the formal multiplication satisfies |ai −a′i |< eis for any i = 1, . . . , h.
Therefore, the reduced roots of Xh

+ a1 Xh−1
+ · · · + ah = 0 are the same as the

reduced roots of Xh
+ a′1 Xh−1

+ · · ·+ a′h = 0, which are the same as the elements
of 2∂(V ) by the discussion in the previous paragraph. �

Lemma 1.3.14. Fix b∈ (0, 1) and set r = r(b), λ=λ(b), and s=−log(ω(b|u|)−1).
Let V ′ be a ∂-differential module over K of rank d, equipped with a basis e, with
respect to which the action of ∂ satisfies the conditions in Definition 1.3.4 with
the chosen b. Assume that the reduced eigenvalues of the matrix Nr ∈Mat(m(rs)

K )

of ∂r on V ′ are all nonzero in κ(rs)
K alg . Then V ′ has pure intrinsic ∂-radii b. As a

consequence, 2∂(V ′) is exactly the multiset of the reduced eigenvalues of Nr .

Proof. Since Nr ∈ Mat(m(rs)
K ), we have IR∂(V ′) ≥ b. Suppose that V ′ does not

have pure intrinsic ∂-radii b. Enlarging K as in Remark 1.2.11 if needed, we may
apply Theorem 1.2.20 and Lemma 1.3.9 to V ′ and its Jordan–Hölder constituents
to find a basis f for which the conditions in Definition 1.3.4 hold and the matrix

Ñr ∈Mat(m(rs)
K ) of ∂r is degenerate modulo m

(rs)+
K alg (when identifying κ(rs)

K with
κK ). Now, the same argument in the proof of Lemma 1.3.12 implies that Nr and
Ñr must have the same multiset of reduced eigenvalues. But zero is a reduced
eigenvalue of Ñr but not of Nr , which is a contradiction. Hence V ′ has pure intrinsic
∂-radii b. The last statement is Definition 1.3.4. �
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Lemma 1.3.15. We have 2∂(V∨)=−2∂(V )= {−θ | θ ∈2∂(V )}.

Proof. This is straightforward. �

We will prove in Theorem 1.3.26 a direct sum decomposition of V parametrized
by the multiset of refined ∂-radii. For this, we start with some basic properties of
refined ∂-radii when V has visible ∂-radii.

Lemma 1.3.16. Let V and W be two ∂-differential modules over K with pure and
visible ∂-radii R∂(V )= R∂(W ). Then the following two statements are equivalent.

(1) The refined ∂-radii of V and W are distinct, that is, 2∂(V )∩2∂(W )=∅.

(2) The tensor product V ⊗W∨ has pure ∂-radii R∂(V ).

Moreover, if either statement holds, we have an equality of multisets:

2∂(V ⊗W∨)= {θ1− θ2 : θ1 ∈2∂(V ), θ2 ∈2∂(W )}.

As corollaries, we have the following:

(a) If2∂(V )∩2∂(W )=∅, then any homomorphism f :W→ V of ∂-differential
modules is zero.

(b) If 2∂(W ) has pure refined ∂-radii θ ∈ κ(s)K alg , then θ ∈ 2∂(V ) if and only if
V ⊗W∨ does not have pure ∂-radii R∂(V ).

(c) If 2∂(V ) and 2∂(W ) both have the same pure ∂-radii θ ∈ κ(s)K alg , then we have
R∂(V ⊗W∨) > R∂(V ).

Proof. By Lemma 1.3.15, we have 2∂(W∨)=−2∂(W ). We may enlarge K as in
Remark 1.2.11 so that we have good norms on both V and W∨ given by orthonormal
bases. Equip V ⊗W∨ with the tensor product norm. Let N0, N1 ∈Mat(m(s)

K ) be
the matrices of ∂ acting on V and W∨ with respect to the given bases, respectively.
By Definition 1.3.4, 2∂(V ) and −2∂(W ) are the multisets of reduced eigenvalues
of N0 and N1, respectively. Then the multiset of reduced eigenvalues of the matrix
N = N0⊗ 1+ 1⊗ N1 is exactly {θ1− θ2 : θ1 ∈2∂(V ), θ2 ∈2∂(W )}.

If (1) holds, then all reduced eigenvalues of N are nonzero and hence |N n
|= e−ns

for all n ∈N. Moreover, the reduction of N n in Md
(
κ
(ns)
K alg

)
has full rank if we identify

κ
(ns)
K alg with κK alg . Therefore, V ⊗W∨ has pure ∂-radii R∂(V ) by Lemma 1.3.14,

proving (2).
Conversely, if (2) holds, then the tensor product norm is a good norm on V ⊗W∨

already and the multiset of reduced eigenvalues of N is the multiset of refined
∂-radii of V ⊗W∨. By Corollary 1.3.13, 0 /∈2∂(V ⊗W∨). This implies (1).

We now prove (a). Since V ⊗ W∨ has pure ∂-radii R∂(V ) < ω, we have
H 0
∂ (V ⊗W∨)= 0 and hence there is no nonzero homomorphism of ∂-differential

modules from W to V .
Statement (b) is just (a special case of) the inverse statement of (1)⇔ (2).
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For (c), we know that N0 and N1 have pure reduced eigenvalues θ and −θ ,
respectively. Hence N = N0⊗ 1+ 1⊗ N1 reduces to a matrix in κ(s)K alg with zero
eigenvalues (if we identify κ(s)K alg with κK alg). It is then nilpotent, that is,

N n
∈Mat

(
m
(ns)+
K alg

)
for n ≥ dim V · dim W.

This implies that R∂(V ⊗W∨) > R∂(V ). �

Lemma 1.3.17. Let V and W be two ∂-differential modules over K . Assume that V
has pure and visible ∂-radii and R∂(V ) < R∂(W ). Then V ⊗W∨ has pure ∂-radii
R∂(V ) and multiset of refined ∂-radii is composed of dim W copies of2∂(V ⊗W∨).

Proof. By Theorem 1.2.20, we may assume that W has pure ∂-radii. By Lemma 1.3.9
we may find a b-good norm on W with b=min{IR∂(W ), ω}> IR∂(V ).

We proceed as in Lemma 1.3.16. If N0 and N1 are the matrices of ∂ with respect to
some orthonormal bases of V and W∨, respectively, then we have N1 ∈Mat

(
m
(s)+
K

)
and that N0 has pure reduced eigenvalue 2∂(V ). Hence the multiset of reduced
eigenvalues of N0⊗ 1+ 1⊗ N1 is simply composed of dim W copies of the set of
reduced eigenvalues of N0. The lemma follows. �

The refined ∂-radii of a nonvisible ∂-differential module is closely related to the
∂ ′-radii of its Frobenius antecedent; we can save much computation by using this
fact. To establish this relation explicitly, it is more convenient to work with the
refined intrinsic ∂-radii.

Proposition 1.3.18. Assume p > 0. Let ϕ(∂) : K (∂)
→ K be the ∂-Frobenius with

respect to the parameter u.

(a) Assume that IR∂(V ) ∈ (p−1/(p−1), 1), and then Lemma 1.2.18(d) implies that
V = ϕ(∂)∗W for some ∂ ′-differential module W on K (∂) such that

IR∂ ′(W )= IR∂(V )p.

We have

2∂(V )=
{
−(pθ ′)1/p

: θ ′ ∈2∂ ′(W )
}
.

(b) Assume that IR∂(V )= p−1/(p−1), and then ϕ(∂)∗ (V ) has pure intrinsic ∂ ′-radii
p−p/(p−1). The elements in I2∂ ′(ϕ

(∂)
∗ (V )) can be grouped into p-tuples(

θ

p
,
θ+1

p
, . . . ,

θ+ p−1
p

)
with θ ∈ κK alg , and I2∂(V ) is the multiset composed of (θ p

−θ)1/p
∈ κK alg for

each p-tuple above.
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(c) Assume IR∂(V ) < p−1/(p−1). Then we have

I2∂ ′(ϕ
(∂)
∗

V )=
{

p−1θ, . . . , p−1θ︸ ︷︷ ︸
p times

: θ ∈ I2∂(V )
}
.

Proof. (a) By Lemma 1.3.9 and by possibly enlarging K as in Remark 1.2.11,
we can take an orthonormal basis e on W which defines a good norm. The norm
induces a good norm on V by the explicit construction in Lemma 1.3.9. Let λ be
as in Notation 1.3.3. We have

u pλ∂ pλ
= u∂(u∂−1) · · · (u∂− pλ+1)= pu p∂ ′(pu p∂ ′−1) · · · (pu p∂ ′− pλ+1)

= p pλ−1
u pλ∂ ′p

λ−1
pλ−1∏

i=1,p - i

(pu p∂ ′− i);

this operator also acts on W . Since |u p∂ ′|W ≤ max{1, p−1/(p−1)IR∂ ′(W )} < p,
we have ∣∣u pλ∂ pλ

− p pλ−1(
(−1) · · · (−p+ 1)

)pλ−1

u pλ∂ ′p
λ∣∣

W <
∣∣u pλ∂ pλ

∣∣
W .

Therefore, the matrix of ∂ pλ with respect to e is congruent to the matrix of

(−1)pλ−1(p−1)(p!)pλ−1
∂ ′p

λ−1
modulo m

(pλs)+
K .

We then must have

2∂(V, | · | )=
{(
(−1)(p−1)(p!)θ

)1/p ∣∣ θ ∈2∂ ′(W )
}
=
{
−
(

pθ
)1/p ∣∣ θ ∈2∂ ′(W )

}
.

(b) When IR∂(V ) = p−1/(p−1), Lemma 1.2.18(e) implies that ϕ(∂)∗ V has pure in-
trinsic ∂ ′-radii p−p/(p−1). By Lemma 1.2.18(e) and Lemma 1.3.16, the elements in
I2∂ ′(ϕ

(∂)
∗ (V )) can be grouped into p-tuples(

θ

p
,
θ+1

p
, . . . ,

θ+ p−1
p

)
with θ ∈ κK alg . (Note: explicit computation shows that I2∂ ′(W

(∂)
i ) = { i

p }.) By
possibly enlarging K in the sense of Remark 1.2.11, we may assume that ϕ(∂)∗ V
admits a good norm defined by an orthonormal basis e. Let N be the matrix of
pu p∂ ′ with respect to e. Then u p∂ p acts on ϕ(∂)∗ϕ(∂)∗ (V )= V⊕p according to

u∂(u∂ − 1) · · · (u∂ − p+ 1)= pu p∂ ′(pu p∂ ′− 1) · · · (pu p∂ ′− p+ 1).

Hence the matrix for this action with respect to e is congruent to the product
N (N−1) · · · (N− p+1) modulo pOK (∂) since |pu p∂ ′|K (∂) = p−1; then the multiset
of its reduced eigenvalues is composed of θ p

− θ with multiplicity p for each tuple(
θ

p
,
θ+1

p
, . . . ,

θ+ p−1
p

)
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in the multiset of reduced eigenvalues of N . The statement follows.

(c) By Lemma 1.2.18(e), ϕ(∂)∗ V has pure intrinsic ∂ ′-radii

p−1IR∂(V )≤ p−p/(p−1).

Since u p∂ ′ = u∂/p, we can take a good norm of ϕ(∂)∗ V and deduce that

I2∂ ′(ϕ
(∂)
∗

V )= 1
p

I2∂
(
ϕ(∂)∗ϕ(∂)

∗
V
)
,

which in turn equals 1
p I2∂(V⊕p) by Lemma 1.2.18(b). The statement follows. �

Proposition 1.3.19. Lemma 1.3.16 holds only assuming IR∂(V ) = IR∂(W ) < 1
instead of the visible hypothesis. Similarly, Lemma 1.3.17 holds with only assuming
IR∂(V ) < 1 instead of the visible hypothesis on V .

Proof. It suffices to check the remaining cases: p > 0 and IR∂(V )≥ p−1/(p−1). If
IR∂(V ) > p−1/(p−1), the statements for V and W follow from the statements on
their ∂-Frobenius antecedents by Proposition 1.3.18(a). If IR∂(V )= p−1/(p−1), the
statements for V and W follow from the statements on their ∂-Frobenius descendants
by Proposition 1.3.18(b) and Lemma 1.2.18(c). �

The following is an example of ∂-differential modules with pure refined ∂-radii.
It will serve as a testing object later.

Our convention is to use Gothic letter s instead of s when discussing intrinsic
radii of convergence; we will never use both s and s together.

Example 1.3.20. Fix s ∈ −log |K×|Q such that s< 0 if p = 0, and s< 1
p log p if

p > 0. Let θ ∈ κ(s)K alg be a nonzero element.

(1) If p = 0, then we have s ∈ −log |(K ′)×| and θ ∈ κ(s)K ′ for some finite tamely
ramified extension K ′ of K . Let x be a lift of θ to m

(s)
K ′ . Put d = 1 and n = 0.

(2) If p>0, there exists n∈N such that θ pn
∈(κ

(pn−1s)
K ′ )p with pn−1s∈−log |(K ′)×|

for some finite tamely ramified extension K ′ of K . By Lemma 1.2.16, we may
find a lift

x ∈ u−pn
m
(pns)

K ′(∂)

of u−pn
θ pn

, where the extra u−pn
reflects the different normalizations of refined

intrinsic ∂-radii and refined ∂-radii. Put d = pn .

Let Lx,(n) be the ∂-differential module over K ′ of rank d with basis {e1, . . . , ed},
where the ∂-action is given by ∂ei = ei+1 for i = 1, . . . , d − 1 and ∂ed = xe1.

Remark 1.3.21. When p > 0, we point out that s < 1
p log p also includes some

part of the nonvisible range. The restriction s< 1
p log p in Example 1.3.20 is linked

with the choice x ∈ u−pn
m
(pns)

K ′(∂) . In general, we may extend the range of s to be



On the refined ramification filtrations in the equal characteristic case 1601

(
−∞,

( 1
p−1

−
1

pc(p−1)

)
log p

)
for some c ∈ N, but the price we pay is to take x ∈ u−pn

m
(pns)

K ′(∂,c) lifting u−pn
θ pn

for
some n ∈N and some finite tamely ramified extension K ′ of K . However, as c gets
larger, we need to enlarge n to guarantee the existence of such a lift x . This is why
we may not assume that s< 1

p−1 log p.

Remark 1.3.22. In the nonvisible case, one can construct a ∂-differential module
with pure refined ∂-radii by simply pulling back a ∂ ′-differential module over K (∂)

with appropriate refined ∂ ′-radii. However, such a naïve construction does not help
our later study of the one-dimensional variation of refined ∂-radii. We will construct
Example 1.5.7, a family version of Example 1.3.20, which looks similar in both
visible and nonvisible ranges.

Lemma 1.3.23. Keep the notation as in Example 1.3.20. Then Lx,(n) has pure
intrinsic ∂-radii IR∂(Lx,(n))= ωes and pure refined intrinsic ∂-radii θ .

Proof. We may replace K by the completion of K (z) with respect to the |u|−1e−s-
Gauss norm (and set ∂z = 0).

We first assume that either we have p = 0 or we have p > 0 and s< 0, that is,
we consider the visible ∂-radii case. We note that e1, z−1e2, . . . , z−(d−1)ed together
define a good norm on Lx,(n); it is a straightforward computation to check that the
statement in this case.

We now tackle the case when p > 0 and s ∈
[
0, 1

p log p
)
. For i = 1, . . . , p,

we have

∂ i el = ei+l when i + l ≤ pn, and ∂ i epn−l = ∂
i−l(xe1) when i ≥ l.

We will show that {e1, z−1e2, . . . , z−(p
n
−1)epn } defines a good norm on Lx,(n).

Indeed, for i = 1, . . . , p, the matrix of ∂ i with respect to this basis is

Ni =



0 0 · · · zi 0 · · · 0
0 0 · · · 0 zi

· · · 0
...

...
. . .

...
...
. . .

...

0 0 · · · 0 0 · · · zi

z−pn
+i x 0 · · · 0 0 · · · 0

z−pn
+i∂x z−pn

+i x · · · 0 0 · · · 0
...

...
. . .

...
...
. . .

...

z−pn
+i∂ i−1x (i − 1)z−pn

+i∂ i−2x · · · 0 0 · · · 0


(1.3.24)

Note that
|∂|K (∂) = p−1

|u|p−1
|∂ ′|K (∂) = p−1

|u|−1
≤ ω|z|< |z|.
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Hence, modulo m
(−log |z|)+
K , the nonzero terms of Ni are the zi and z−pn

+i x in
(1.3.24); they form a 2-by-2 block matrix

Ni
(−log |z|)

=

(
0 zi

· I(pn−i)×(pn−i)

z−pn
+i x · Ii×i 0

)
∈Matpn×pn

(
κ
(−log |z|)
K

)
.

Note that |z−pn
+i x | = |z|i . By Lemma 1.3.14, we have IR∂(Lx,(n))= ωes and that

this basis defines a good norm on V . Moreover, the multiset of reduced eigenvalues
of Np is composed of the element x1/pn−1

with multiplicity pn . This implies that
I2∂(V )= {θ (pn times)} by the choice of x in Example 1.3.20. �

Lemma 1.3.25. Let V be a ∂-differential module over K with pure visible ∂-radii
R∂(V )= ωes . Then we have the following.

(a) For any subquotient V0 of V , all elements in 2∂(V0) appear in 2∂(V ).

(b) For any θ ∈ κ(s)K alg , there is a unique maximal ∂-differential submodule of V
which has pure refined ∂-radii θ .

Proof. For θ ∈ κ(s)K alg such that θ /∈ 2∂(V ), let Lx,(n) be the ∂-differential module
constructed in Example 1.3.20. By Lemmas 1.3.23 and 1.3.16, V ⊗ L∨x,(n) has
pure ∂-radii R∂(V ), and so does V0 ⊗ L∨x,(n). By the same lemmas again, we
have θ /∈ 2∂(V0). This proves (a). We point out that this, however, does not
prove the inclusion 2∂(V0) ⊆ 2∂(V ) as a multiset, which will be a corollary of
Theorem 1.3.26 below.

The second statement follows from the observation that if two submodules V1

and V2 of V both have pure refined ∂-radii θ , so does their sum V1+ V2 because it
is a quotient of V1⊕ V2. �

Similarly to the direct sum decomposition by intrinsic ∂-radii, we have a direct
sum decomposition by refined intrinsic ∂-radii. The latter is in fact deduced from
the former by twisting ∂-differential modules of the form Lx,(n).

Theorem 1.3.26. Let K and V be as in Hypothesis 1.3.1. Then V admits a unique
direct sum decomposition

V =
⊕
{θ}⊂κ

(s)
K alg

V{θ}, (1.3.27)

where the direct sum runs through all Gal(K alg/K )-orbits {θ} in κ(s)K alg , such that
the refined ∂-radii of V{θ} is a multiset consisting of the Gal(K alg/K )-orbit {θ} with
appropriate multiplicities.

Moreover, if K ′ is a finite tamely ramified extension of K such that all the θ in
the above decomposition belong to

⋃
n

(
κ
(pns)
K ′

)1/pn

, then we have a unique direct
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sum decomposition
V ⊗K K ′ =

⊕
θ∈κ

(s)
K ′alg

Vθ

of ∂-differential modules over K ′ such that each Vθ has pure refined ∂-radii θ .

Proof. The statement is void if IR∂(V ) = 1. We assume IR∂(V ) < 1 from now
on. We first replace K by the K ′ in the theorem; using the uniqueness of such a
direct sum decomposition and Galois descent, we may recover the statement over
K . Note that Lemma 1.2.10 implies that ∂ is still a derivation of rational type.

We first assume that either p = 0, or p > 0 and IR∂(V ) < p−1/(p−1). For each
θ ∈2∂(V ), we construct Lx,(n) as in Example 1.3.20, which is a rank d ∂-differential
module with pure ∂-radii R∂(V ) and pure refined radii θ . By Lemma 1.3.16(b),
V ⊗L∨x,(n) does not have pure radii R∂(V ). Theorem 1.2.20 then gives rise to a
decomposition V ⊗L∨x,(n) =W0⊕W1, where R∂(W0) > R∂(V ) and W1 has pure
∂-radii R∂(V ).

Put W̃0 =W0⊗Lx,(n) and W̃1 =W1⊗Lx,(n). Consider the following homomor-
phisms of ∂-differential modules:

V

i ++
V ⊗L∨x,(n)⊗Lx,(n)

∼ //

j

gg W̃0⊕ W̃1,

where i is induced by the diagonal embedding K ↪→ L∨x,(n) ⊗ Lx,(n) and j is
induced by the trace map L∨x,(n) ⊗Lx,(n) � K normalized so that j i = id. Let
p0 and p1 be the projections from V ⊗L∨x,(n)⊗Lx,(n) to the factors W̃0 and W̃1,
respectively, viewed as submodules of the source. We then have p2

0 = p0, p2
1 = p1,

and p0+ p1 = 1.
We claim that j p0i and j p1i are projectors on V . Indeed, Lemma 1.3.16(c)

implies that R∂(L∨x,(n)⊗Lx,(n)) > R∂(V ). By Lemma 1.3.17, V ⊗L∨x,(n)⊗Lx,(n)

and hence W̃0 and W̃1 have pure ∂-radii R∂(V ). Lemma 1.3.17 also implies that
2∂(W̃0) consists of solely θ , and by the “moreover” part of Lemma 1.3.16, we have

2∂(W̃1)=
{
θ1+ θ (with multiplicity d)

∣∣ θ1 ∈2∂(W1)
}
.

In particular, we have θ /∈ 2∂(W̃1). Hence any homomorphism of ∂-differential
modules between W̃0 and W̃1 has to be zero by Lemma 1.3.16(a). In particular,
p1i j p0 = p0i j p1 = 0. Thus, we have

( j p0i)( j p0i)= j p0i j (1− p1)i = j p0i( j i)− j (p0i j p1)i = j p0i,

( j p1i)( j p1i)= j p1i j (1− p0)i = j p1i( j i)− j (p1i j p0)i = j p1i,

j p0i + j p1i = j (p0+ p1)i = j i = 1.
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This proves V = j p0i(V )⊕ j p1i(V ). Moreover, by Lemma 1.3.25(i), 2∂( j p0i(V ))
consists of only θ since it is a quotient of W̃0, and 2∂( j p1i(V )) does not contain θ
since it is a quotient of W̃1. Applying this process to each of θ ∈2∂(V ) gives the
desired decomposition (1.3.27).

The uniqueness of the direct sum decomposition follows from Lemma 1.3.25(b).
Now if p > 0 and IR∂(V )= p−1/(p−1), the decomposition (1.3.27) comes from

the decomposition of its ∂-Frobenius descendent, via the relation described in
Proposition 1.3.18(b). If p> 0 and IR∂(V ) > p−1/(p−1), the decomposition (1.3.27)
comes from the decomposition of its ∂-Frobenius antecedent, via the relation
described in Proposition 1.3.18(a). �

Now we prove some fundamental properties for tensor products of ∂-differential
modules with pure ∂-radii and pure refined ∂-radii. One can combine this with
Theorems 1.2.20 and 1.3.26 to obtain corresponding results for general ∂-differential
modules.

Proposition 1.3.28. Let V and W be two ∂-differential modules over K with pure
∂-radii R∂(V )= R∂(W ) < |u|−1 and pure refined ∂-radii θV and θW , respectively.

(a) Then W∨ has pure refined ∂-radii −θW .

(b) If θV = θW , then we have R∂(V ⊗W∨) > R∂(V ).

(c) If θV 6= θW , then V ⊗W∨ has pure ∂-radii R∂(V ) and pure refined ∂-radii
θV − θW .

(d) Moreover, if we do not assume that V and W have pure refined ∂-radii and let
U denote the maximal submodule of V ⊗W∨ that has ∂-radii strictly larger
than R∂(V ), then we have

dim U =
∑

θ∈κ
(s)
K alg

multiθ (2∂(V )) ·multiθ (2∂(W )).

Proof. (a) is straightforward, and (d) follows from (b) and (c) by the decomposi-
tion (1.3.27).

When IR∂(V )= IR∂(W )<ω, (b) follows from Lemma 1.3.16(c), and (c) follows
from the “moreover” part of the same lemma.

When p> 0 and IR∂(V )= IR∂(W ) > p−1/(p−1), (b) and (c) for V and W follow
from the same statement for the ∂-Frobenius antecedents of V and W , by the
relation described in Proposition 1.3.18(a).

We now prove (b) and (c) in the case when p > 0 and I R∂(V ) = I R∂(W ) =

p−1/(p−1). First, Lemma 1.2.18(3) implies that

ϕ(∂)
∗

V ⊗
(
ϕ(∂)
∗

W )∨ =
(
ϕ(∂)
∗
(V ⊗W∨)

)⊕p
.
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Note that Proposition 1.3.18(2) implies that the multiset of refined intrinsic ∂-radii
of V is composed of all the solutions to( x

p

)p
−

x
p
= uθV ,

each with multiplicity dim V , and that the multiset of refined intrinsic ∂-radii of W
is composed of all the solutions to( x

p

)p
−

x
p
= uθW ,

each with multiplicity dim W . If θV 6= θW , by (c) in the visible case together
with Theorem 1.3.26, the multiset of refined intrinsic ∂ ′-radii of ϕ(∂)∗ V ⊗ (ϕ(∂)∗ W )∨

consists of roots of ( x
p

)p
−

x
p
= u(θV − θW ),

each with multiplicity p dim V dim W . Statement (c) then follows from Proposition
1.3.18(b). If θV = θW , by (b) in the visible case together with Theorem 1.3.26,
ϕ
(∂)
∗ V ⊗ϕ(∂)∗ W has a submodule of dimension (p−1) dim V dim W whose intrinsic
∂ ′-radius is strictly larger than p−p/(p−1). By Lemma 1.2.18(e), this can happen
only if IR∂(V ⊗W ) > p−1/(p−1), which is what we need to prove in (b). �

Remark 1.3.29. We remark that if we do not assume that ∂ is of rational type but
assume that R∂(V ) < |∂|−1

K instead, all the results in the subsection still hold (note
that we do not need Frobenius antecedent in the visible case).

1.4. Multiple derivations. Having studied the situation of one single derivation,
we now let multiple commuting derivations interact. This essentially amounts to
putting the information from each derivation together. To give the refined radii for
multiple derivations a more canonical definition, we will represent the multiset of
refined radii as a multiset of differential forms.

Notation 1.4.1. In this subsection, we put J = {1, . . . ,m}.

Definition 1.4.2. Let K be a differential ring of order m, that is, a ring equipped
with m commuting derivations ∂1, . . . , ∂m . A ∂J -differential module, or simply a
differential module, is a finite projective K -module V equipped with commuting
actions of ∂1, . . . , ∂m . We will apply the results in previous subsections to each ∂ j

separately.

Definition 1.4.3. Let K and V be as above, and let R be a complete K -algebra.
For v ∈ V and T1, . . . , Tm ∈ R, we define the ∂J -Taylor series to be

T(v; ∂J ; T1, . . . , Tm)=

∞∑
eJ=0

∂
eJ
J (v)

(eJ )!
T eJ

J ∈ V ⊗K R,
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if it converges.

We will need the following tautological lemma in the proof of Theorem 1.4.20.

Lemma 1.4.4. Let ∂ = α1∂1+ · · ·+αm∂m be another derivation, with α1, . . . , αm

in K . To simplify the notation, we formally write α j = ∂(u j ) for any j ∈ J (and one
can check that the formula (1.4.5) can be written with no reference to u j ). Then, for
any x ∈ V , we have

T
(
x; ∂J ;T(u1; ∂; δ)− u1, . . . ,T(um; ∂; δ)− um

)
= T(x; ∂; δ), (1.4.5)

as formal power series in V ⊗K K [[δ]].

Proof. Since (1.4.5) is a tautological statement, we may assume that K is Z-torsion
free. It suffices to show that (1.4.5) is true modulo δn for any ∂J -differential module
V and for any x ∈ V , by induction on n. This is clear for n = 1. Assume that we
have proved this claim for n and we need to prove it for n+ 1. It suffices to prove
the equality

∂

∂δ
T
(
x; ∂J ;T(u1; ∂; δ)−u1, . . . ,T(um; ∂; δ)−um

)
=
∂

∂δ
T(x; ∂; δ)=T(∂(x); ∂; δ)

modulo δn (note that the derivation reduces the exponents on δ by 1). We compute
the left hand side as follows.
∂

∂δ
T
(
x; ∂J ;T(u1; ∂; δ)− u1, . . . ,T(um; ∂; δ)− um

)
=

∞∑
eJ=0

∂
eJ
J (x)
(eJ )!

∂

∂δ

((
T(u1; ∂; δ)− u1

)e1
· · ·
(
T(um; ∂; δ)− um

)em
)

=

∞∑
eJ=0

∂
eJ
J (x)
(eJ )!

(∑
j∈J

e j ·
(
T(u1; ∂; δ)− u1

)e1
· · ·
(
T(u j ; ∂; δ)− u j

)e j−1

· · ·
(
T(um; ∂; δ)− um

)em
·
∂

∂δ
T(u j ; ∂; δ)

)
=

∑
j∈J

∞∑
eJ=0

∂
eJ
J

(
∂ j (x)

)
(eJ )!

((
T(u1; ∂; δ)− u1

)e1

· · ·
(
T(um; ∂; δ)− um

)em
·
∂

∂δ
T(u j ; ∂; δ)

)
By the induction hypothesis, modulo δn , this is congruent to∑

j∈J

T(∂ j (x); ∂; δ) ·
∂

∂δ
T(u j ; ∂; δ)=

∑
j∈J

T(∂ j (x); ∂; δ) ·T(∂(u j ); ∂; δ)

= T

(∑
j∈J

∂ j (x)∂(u j ); ∂; δ

)
= T(∂(x); ∂; δ).

This finishes the induction and proves the lemma. �
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Definition 1.4.6. Let K be a complete nonarchimedean differential field of order
m and characteristic zero, and let V be a nonzero ∂J -differential module over K .
Define the intrinsic radius of V to be

IR(V )=min
j∈J

{
IR∂ j (V )

}
=min

j∈J

{
|∂ j |sp,K /|∂ j |sp,V

}
.

For j ∈ J , we say ∂ j is dominant for V if IR∂ j (V )= IR(V ). We define the multiset of
intrinsic subsidiary radii IR(V )={IR(V ; 1), . . . , IR(V ; dim V )} by collecting and
ordering intrinsic radii from the Jordan–Hölder constituents, as in Definition 1.2.3.
We again say that V has pure intrinsic radii if IR(V ) is pure as a multiset.

We similarly define the extrinsic radius ER(V ) to be the minimum of R∂ j (V ) and
the multiset of extrinsic subsidiary radii ER(V )= {ER(V ; 1), . . . ,ER(V ; dim V )}
by collecting and ordering extrinsic radii from the Jordan–Hölder constituents.

Definition 1.4.7. Let K be a complete nonarchimedean differential field of order
m and characteristic zero. We say that K is of rational type with respect to a set
of parameters {u j : j ∈ J } if each ∂ j is of rational type with respect to u j , and
∂i (u j )= 0 for i 6= j in J .

Hypothesis 1.4.8. For the rest of this subsection, let K be a complete nonar-
chimedean field of characteristic zero, equipped with commuting derivations ∂J of
rational type with respect to parameters u J . Let V be a ∂J -differential module with
pure ∂ j -radii for each j ∈ J . We assume moreover that IR(V ) < 1.

Notation 1.4.9. For each j , put s j = −log(ωR∂ j (V )
−1), λ j = λ(IR∂ j (V )), and

r j = r(IR∂ j (V )). By Theorem 1.2.20, we have s j ∈Q · log |K×| for any j .

Definition 1.4.10. By Theorem 1.3.26, we may replace K by a finite tamely rami-
fied extension such that V admits a direct sum decomposition V =⊕VθJ , where each
direct summand VθJ has pure refined ∂ j -radii θ j for any j ∈ J . Define the multiset
of refined radii of V , denoted by 2(V ), to be the collection of ϑ =

∑
j∈J θ j du j

with multiplicity dim VθJ , where ϑ is viewed as an element of⊕
j∈J

κ
(s j )

K alg du j .

The reason that we write the refined radii in the form of differentials will be justified
later, in Theorem 1.4.20.

We will also consider cases where the derivations with larger radii of convergence
are ignored.

(i) Let I2(V ) be the multiset consisting of elements
∑
θ j du j with multiplicity

dim VθJ , where the sum is taken over those j such that IR∂ j (VθJ )= IR(VθJ );
this is called the multiset of refined intrinsic radii. Often, we view it as a
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multiset of elements in⊕
j∈J

κ
(s)
K alg

du j

u j
for s=−log(ωIR(V )−1).

We remark that this definition does not depend on the field extension of K we
made earlier.

(ii) Let E2(V ) be the multiset consisting of elements
∑
θ j du j with multiplicity

dim VθJ , where the sum is only taken over those j such that R∂ j (VθJ )= R(VθJ ).
We call it the refined extrinsic radii.

Definition 1.4.11. Let (b1, . . . , bm) ∈ (0, 1]m . A norm | · |V on V is (b1, . . . , bm)-
good (or simply good if b j = IR∂ j (V ) for all j ∈ J ) if it is b j -good with respect to
∂ j for all j ∈ J .

Remark 1.4.12. In contrast to the single derivation case, we do not know if a good
norm exists in general, unless we assume that K is discretely valued, in which
case, Lemma 1.4.14 below gives an affirmative answer. Hypothesis 1.4.13 below
may not be necessary for some of the results later in this subsection, as one might
get around using some approximation process. Since we will work with complete
discrete valuation field in most applications, we restrict ourselves here to this case.

Hypothesis 1.4.13. For the rest of this subsection, we assume that K is discretely
valued.

Lemma 1.4.14. Assume that b j ∈ (0, IR∂ j (V )] for any j ∈ J , and that b j < 1 for
all j if p > 0. Then the differential module V admits a (b1, . . . , bm)-good norm.

Proof. We first remark that if I R∂ j(V )<1, Theorem 1.2.20 implies I R∂ j(V )∈|K
×
|
Q.

To prove the lemma, we may assume b j = IR∂ j (V ).
By the same argument as in Lemma 1.3.9 using Frobenius antecedent, it suffices

to prove the lemma under the assumption that b j ≤ ω for any j ∈ J . Note that the
∂ j -Frobenius antecedent is compatible with ∂ j ′ for j ′ 6= j . Let K ′ be the completion
of K (x J ) with respect to the e−sJ -Gauss norm, where we set ∂ j (x j ′) = 0 for all
j, j ′ ∈ J and s j = −log(ω(b|u|)−1). In particular, K ′ is discretely valued since
e−s j ∈ |K×|Q for any j ∈ J .

We first show that V ′ := V ⊗ K ′ has a (b1, . . . , bn)-good norm. For this, it
suffices to show that given any norm | · |V ′ with orthonormal basis e1, . . . , ed , the
submodule M ′ of V ′ generated by{

xaJ
J ∂

aJ
J ei : a j ∈ Z≥0 for any j ∈ J and i ∈ {1, . . . , d}

}
over OK ′ is a finite OK ′-module; if so, M ′ gives rise to a norm on V ′, under which
|∂ j | ≤ |x j | = e−s j for all j verify the conditions of (b1, . . . , bn)-good norm in
Definition 1.3.4. To prove that M ′ is a finite OK ′-submodule, it suffices to prove
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that |xn
j ∂

n
j |V ′ is bounded for each j as n→+∞ (we used here the fact that K ′ is

discretely valued, otherwise boundness may not imply finiteness). It is then enough
to verify this boundness condition for any K ′-norm on V ′. In particular, for each of
∂ j , we can choose a b j -good norm by Lemma 1.3.9, for which |xn

j ∂
n
j |V ′ ≤ 1. Thus

M ′ is finite over OK ′ and hence we have a (b1, . . . , bn)-good norm on V ′.
This norm restricts to a K -norm on V satisfying all the norm conditions in

Definition 1.3.4. We use the following lattice lemma to show that it admits an
orthogonal basis. �

Lemma 1.4.15. Let F be a complete discrete valuation field and let V be a finite
dimensional vector space, equipped with a norm compatible with F. Assume
moreover that the valuation group log |V − {0}|V of V is also discrete. Then V
admits an orthogonal basis.

Proof. The proof is almost the same as [Kedlaya 2010, Lemma 1.3.7]. For com-
pleteness and the convenience of the reader, we reproduce it here.

We use induction on the dimension n = dim V . When n = 1, the statement
is obvious; any nonzero vector forms an orthogonal basis. Now assuming the
statement for n− 1, we will prove it for an n-dimensional F-normed vector space
(V, |·|V )whose valuation group is discrete. Pick a nonzero vector v1∈V and denote
W = V/Fv1, provided with the quotient norm | · |W ; this is again F-compatible and
has discrete valuation group. By the inductive hypothesis, W admits an orthogonal
basis v̄2, . . . , v̄n . For i = 2, . . . , n, we pick vi ∈ V that lifts v̄i ∈ W such that
|vi |V = |v̄i |W (this is possible because V has discrete valuation group). We claim
that v1, . . . , vn form an orthogonal basis of V .

We need to prove that |v|V =maxi {|xi ||vi |V } for any v = x1v1+· · ·+ xnvn ∈ V .
It is clear that |v|V is less than or equal to the right hand side; we need to show
|v|V ≥maxi {|xi ||vi |V }. We prove it the following two cases separately.

(i) If the maximum above is achieved by some i ≥ 2, we have

|v|V ≥ |v mod Fv1|W = |x2v̄2+ · · ·+ xn v̄n|W

=maxn
i=2{|xi ||v̄i |W } =maxn

i=1{|xi ||vi |V }.

(ii) We have |x1||v1| > |xi ||vi | for all i = 2, . . . , n. In this case, we have
|v| = |x1||v1| =maxi {|xi ||vi |V }.

This shows that v1, . . . , vn form an orthogonal basis of V and finishes the proof
of the lemma. �

Remark 1.4.16. One may hope to find an analog of Example 1.3.20 for ∂J -
differential modules. This, however, amounts to carefully choosing the element x
in Example 1.3.20 so that the actions of ∂J commutes. For this, we might need to
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restrict the possible intrinsic refined radii to a subset of⊕
j∈J

κ
(s)
K alg

du j

u j
, where s=−log(ωIR(V )−1).

Unfortunately, we do not know how to identify this subset in general. Proposition
1.4.17 below partly answers this question.

It would be interesting to know, when p > 0, whether any element in⊕
j∈J

κ
(s)
K alg

du j

u j

can appear in the multiset of refined intrinsic radii of some differential module. The
referee also pointed out that the reduction of ∂ j may give rise to a D-module in
characteristic p. We do not know if this construction is independent of the choice of
good norms. But we suspect that this is related to the reduction of some arithmetic
D-module when the differential module comes from one.

Proposition 1.4.17. Assume that IR(V )<ω and that either p=0 or d= rank V =1.
Let s=−log(ωIR(V )−1). Note that the action of u j∂ j on K induces a derivation
on κ(s)K unr . If

ϑ =
∑
j∈J

θ j
du j

u j
∈ I2(V ),

then for i, j ∈ J , we have ui∂iθ j = u j∂ jθi in κ(s)K unr .

Proof. By possibly replacing K by a finite tamely ramified extension, we reduce to
the case when V is irreducible with a good norm given by an orthonormal basis,
and when V has pure refined intrinsic radii

∑
j∈J θ j (du j/u j ). The u j∂ j -action

with respect to this basis is given by a matrix N j ∈Matd×d(m
(s)
K ). Since ∂i and ∂ j

commute with each other for any i, j ∈ J , we have

Ni N j + ui∂i (N j )= N j Ni + u j∂ j (Ni ). (1.4.18)

Taking the trace of (1.4.18) gives d ·ui∂iθ j = d ·u j∂ jθi , which yields the proposition
because d is invertible in κK . �

Before proceeding, we need some notation to use in Theorem 1.4.20 below.

Notation 1.4.19. If p>0, we can write an integer n∈N as n=a0+pa1+· · ·+pkak

with a1, . . . , ak ∈ {0, . . . , p−1}. Put σp(n)= a0+· · ·+ak if p> 0, and σp(n)= 0
if p = 0. It is straightforward to check that σp(n1)+ σp(n2) ≥ σp(n1 + n2) for
n1, n2 ∈ N, and that |n!| = ωn−σp(n) for n ∈ N.

The following theorem explains how refined radii change when we consider a
different set of derivations, and hence justifies the reason we wrote refined radii in
the form of differentials in Definition 1.4.10.
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Theorem 1.4.20. Assume that V has pure refined ∂ j -radii θ j ∈ κ
(s j )

K alg for any j ∈ J .
Let K ′ be a complete discrete valuation field containing K . Let ∂ be a derivation on
K ′, extending the action of α1∂1+ · · ·+αm∂m on K to K ′, where α1, . . . , αm ∈ K ′.
In fact, we have α j = ∂(u j ) for any j ∈ J . We assume that ∂ is a derivation of
rational type on K ′. Set s = min j∈J {s j −log |α j |} and let J0 be a subset of J
consisting of j for which s = s j − log |α j |. Assume moreover that IR j (V ) < 1 if
j ∈ J0. Put θ =

∑
j∈J0

α jθ j ∈ κ
(s)
K ′alg .

Then R∂(V ⊗K K ′) ≤ ωes , and the equality is achieved if and only if θ 6= 0 in
κ
(s)
K ′alg . Moreover, when equivalent statement is verified, V ⊗K K ′ has pure ∂-radii
ωes and pure refined ∂-radii θ .

Proof. For j ∈ J , the equality α j = ∂(u j ) follows from applying ∂ to u j .
By Lemma 1.4.14 and by possibly enlarging K and K ′, we may assume that V

admits a norm given by some orthonormal basis e such that, for any j ∈ J ,

(i) if IR j (V ) < 1, the norm is good with respect to ∂ j , and

(ii) if IR j (V )= 1, the norm is b j -good with respect to ∂ j for some b j in

( |α j |es−s j , 1)∩ |K×|Q.

In this case, instead of taking the usual definitions of r j , λ j , and s j , we set
r j = r(b j ), λ j = λ(b j ), and s j = s−log(b j |α j |

−1). Note that s j −log |α j |> s
still holds.

Similarly to Notation 1.3.3, we define integers r and λ as follows.

(x) When |∂|K ′ωes < ω we denote λ= 0 and r = 1.

(xx) When |∂|K ′ωes
∈ [ω, 1) and p> 0, let λ denote the unique nonnegative integer

such that
|∂|K ′ωes

∈
[

p−1/pλ−1(p−1), p−1/pλ(p−1)),
and put r = pλ. In this case, we have (|∂|K ′ωes)pk

≤ ω for k < λ and hence
(|∂|K ′ωes)i ≤ ωσp(i) for i = 1, . . . , r − 1.

For each j ∈ J , we have∣∣∣∣ ∂ i
j

i !

∣∣∣∣
V
≤ |∂ j |

i
K , for i = 1, . . . , r j − 1, and |∂r j

j |V ≤ |u j |
−r j e−r j s j .

For i = 1, . . . , r , the action of ∂ i on an element x of e can be expressed in terms of
the actions of ∂J , according to the coefficients of δi on the left hand side of (1.4.5),
applied to x . More precisely, for any j ∈ J and any i ∈ N, the coefficient of δi in
T(u j ; ∂; δ)−u j has norm less than or equal to |∂(u j )| |∂|

i−1
K ′ = |α j | |∂|

i−1
K ′ . For any
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coefficient that arises in the ∂J -Taylor series expansion, if we put e j = c j + d jr j

with c j ∈ {0, . . . , r j − 1} and d j ∈ Z≥0 for any j ∈ J , then we have∣∣∣∣∂eJ
J (x)
(eJ )!

∣∣∣∣
V
≤

∏
j∈J

∣∣∣∣ ∂d j r j
j

(d jr j )!

∣∣∣∣
V
·

∏
j∈J

∣∣∣∣∂c j
j (x)
(c j )!

∣∣∣∣
V

≤ |x |V ·
∏
j∈J

|∂ j |
c j
K ·
∏
j∈J

(
e−d j r j s jω−d j r j+σp(d j r j )

)
,

Putting these two bounds together, we see that if a δi -term on the left hand side of
(1.4.5) arises in a term that includes ∂eJ

J (x)/(eJ )! (which particularly implies that
i ≥ e1+ · · ·+ em), then its norm is smaller than or equal to

|x ||∂|i−e1−···−em
K ′

∏
j∈J

|α j |
e j
∏
j∈J

|∂ j |
c j
K ·
∏
j∈J

(
e−d j r j s jω−d j r j+σp(d j r j )

)
= |x ||∂|i−e1−···−em

K ′
∏
j∈J

(
|∂ j |K |α j |

)c j
·

∏
j∈J

((
|α j |K e−s j

)d j r j
ω−d j r j+σp(d j r j )

)
≤ |x ||∂|i−e1−···−em

K ′
∏
j∈J

|∂|
c j
K ′ ·

∏
j∈J

(
e−d j r j sω−d j r j+σp(d j r j )

)
(note |∂|K ′ ≥ |∂(u j )||u j |

−1
= |α j ||∂ j |K )

≤ |x ||∂|iK ′(|∂|K ′ωes)−
∑

j d j r jωσp(
∑

j d j r j ).

When i = 1, . . . , r − 1, the coefficient of this δi -term has norm less than or equal
to |∂|iK ′ |x | by condition (xx). When i = r , this δi -term has norm less than or equal
to |∂|rK ′

(
(|∂|K ′ωes)−rω

)
|x | = ω−r+1e−rs

|x |; the equality can happen only when∑
j d jr j = r and σp(

∑
j d jr j ) =

∑
j σp(d jr j ), which together yield e j = r for

some j ∈ J0 and e j ′ = 0 for j ′ 6= j . When equality of norms is achieved, the
corresponding δi -term is αr

j∂
r
j (x)/r ! . Therefore, modulo m

(rs)+
K ′ , the matrix of

∂r with respect to e is congruent to
∑

j∈J0
αr

j∂
r
j ; this is a sum of matrices with

single eigenvalues αr
jθ

r
j for j ∈ J0 (note that, again, IR∂ j (V ) < 1 for all j ∈ J0).

By Lemma 1.3.14, we have R∂(V ) ≤ ωes and this is an equality if and only if∑
j∈J0

αr
jθ

r
j 6= 0 in κ(rs)

K ′alg , which is equivalent to
∑

j∈J0
α jθ j 6= 0 in κ(s)K ′alg ; note that

r is always 1 or a power of p. Moreover, if the equivalent condition is satisfied, V
has pure refined ∂-radii(∑

j∈J0

θr
jα

r
j

)1/r

=

∑
j∈J0

θ jα j = θ ∈ κ
(s)
K ′alg . �

Corollary 1.4.21. Let V be a ∂-differential module over K and let

f = T( · ; ∂; T ) : K → K [[T/u]]0
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and f ∗V be as in Lemma 1.2.6(d). For η ∈ [0, |u|), let Fη denote the completion of
K (T ) with respect to the η-Gauss norm.

(a) If η∈ (0, R∂(V )], f ∗V⊗Fη has pure intrinsic ∂T -radius 1; if η∈ (R∂(V ), |u|),
f ∗V ⊗ Fη has (extrinsic) ∂T -radius R∂(V ).

(b) When η ∈ (R∂(V ), |u|), we have 2∂T ( f ∗V ⊗ Fη)=2∂(V ).

Proof. For any x ∈ V , f ∗(∂(x)) = ∂T ( f ∗(x)). The first statement follows from
this immediately, and the second statement follows from Theorem 1.4.20. (When
IR∂(V )= 1, (b) is void.) �

Remark 1.4.22. Similar to Remark 1.3.29, if we do not assume that ∂1, . . . , ∂n are
of rational type (but only commuting), the results from this subsection still hold if,
for any ∂ j for which the refined ∂ j -radii are relevant, we have R∂ j (V )≤ |∂ j |

−1
K .

1.5. One-dimensional variation of refined radii. Having established the results
for differential modules over a field, we now study the case of a differential module
over a rigid analytic annulus or a rigid analytic disc. It is particularly interesting to
study how the multisets of (subsidiary) radii of the differential module with respect to
different Gauss norms vary as we change the radii which define the Gauss norm. Ked-
laya and the author had proved various results on this in [Kedlaya 2010, Chapter 11;
Kedlaya and Xiao 2010, Section 2], essentially stating that the (subsidiary) radii are
piecewise log-affine functions in the radii of the annulus. In this subsection, we will
characterize how the refined radii change as we change the radii for the Gauss norm,
in the case when the functions given by the subsidiary radii are in fact log-affine.

Hypothesis 1.5.1. Throughout this subsection, we assume that K is a complete
nonarchimedean field of characteristic zero and residual characteristic p. We also
assume that K is equipped with derivations ∂1, . . . , ∂m of rational type with respect
to u1, . . . , um .

Notation 1.5.2. Put J = {1, . . . ,m} and J+= J ∪{0}. For η > 0, let Fη denote the
completion of K (t) under the η-Gauss norm |·|η. Set ∂0 = d/dt on K [t]; it extends
by continuity to Fη and ring of functions on discs or annuli. The derivations ∂J+

are of rational type on Fη.

Notation 1.5.3. Fix j ∈ J+ and an interval I ⊆ [0,∞). We say that I is an open
interval in [0,∞) if it is of the form [0, β) or (α, β), where 0 < α < β. Put
İ = I\{0}. For M a ∂ j -differential module of rank d over A1

K (I ), r ∈ −log İ , and
i ∈ {1, . . . , d}, we put

f ( j)
i (M, r)=−log R∂ j (M⊗Fe−r ; i), F ( j)

i (M, r)= f ( j)
1 (M, r)+· · ·+ f ( j)

i (M, r).

Theorem 1.5.4. Fix j ∈ J+ and an interval I ⊆[0,+∞). Let M be a ∂ j -differential
module of rank d over A1

K (I ).
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(a) (linearity) For i = 1, . . . , d , the functions f ( j)
i (M, r) and F ( j)

i (M, r) are con-
tinuous. They are piecewise affine on the locus where f ( j)

i (M, r) >−log |u j |

if j ∈ J ; and they are piecewise affine on all of −log İ if j = 0.

(b) (weak integrality)
(b1) Suppose p= 0 or j = 0. If i = d or f ( j)

i+1(M, r0) < f ( j)
i (M, r0), the slopes

of F ( j)
i (M, r) in some neighborhood of r = r0 belong to Z. Consequently,

the slopes of each f ( j)
i (M, r) and F ( j)

i (M, r) belong to 1
1 Z∪ · · · ∪ 1

d Z.
(b2) Suppose p > 0 and j ∈ J . If f ( j)

i (M, r0) > 1/(pn(p−1)) log p− log|u j |

for some n ∈ Z≥0, then the slopes of each f ( j)
i (M, r) and F ( j)

i (M, r) in
some neighborhood of r0 belong to 1

pnd!Z.

(c) (monotonicity) Suppose 0 ∈ I and suppose either j ∈ J , or j = 0 and
f (0)i (M, r0) > r0. Then the slopes of F ( j)

i (M, r0) are nonpositive in a neigh-
borhood of r0.

(d) (convexity) For i = 1, . . . , d, the function F ( j)
i (M, r) is convex.

(e) (decomposition) Assume that I is an open interval in [0,+∞). Suppose that
for some i ∈ {1, . . . , d}, F ( j)

i (M, r) is affine and f ( j)
i (M, r) > f ( j)

i+1(M, r)
for r ∈ −log I . Then we can write M uniquely as the direct sum of two ∂ j -
differential submodules M1 and M2, such that, for any η ∈ I , the multiset of
∂ j -radii of M1⊗ Fη exactly consists of the smallest i elements in the multiset
of ∂ j -radii of M ⊗ Fη.

Proof. This is [Kedlaya and Xiao 2010, Theorems 2.2.5, 2.2.6, and 2.3.5]. �

Notation 1.5.5. Let I ⊆ [0,+∞) be an interval and let M be a ∂J+-differential
module of rank d on A1

K (I ). For r ∈ −log İ and i ∈ {1, . . . , d}, we put

fi (M, r)=−log IR(M ⊗ Fe−r ; i) and Fi (M, r)= f1(M, r)+ · · ·+ fi (M, r).

Suppose that I ⊆ [0, 1) and that |u j | = 1 for any j ∈ J , we put

f̂i (M, r)=−log ER(M ⊗ Fe−r ; i) and F̂i (M, r)= f̂1(M, r)+ · · ·+ f̂i (M, r).

Theorem 1.5.6. Fix an interval I ⊆ [0,+∞). Let M be a ∂J+-differential module
of rank d over A1

K (I ).

(a) (linearity) For i = 1, . . . , d, the functions fi (M, r) and Fi (M, r) are continu-
ous and piecewise affine.

(b) (integrality) If i = d or fi (M, r0) > fi+1(M, r0), then the slopes of Fi (M, r)
in some neighborhood of r0 belong to Z. Consequently, the slopes of each
fi (M, r) and Fi (M, r) belong to 1

1 Z∪ · · · ∪ 1
d Z.

(c) (monotonicity) Suppose that 0∈ I . Then the slopes of Fi (M, r) are nonpositive,
and each Fi (M, r) is constant for r sufficiently large.
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(d) (convexity) For i = 1, . . . , d, the function Fi (M, r) is convex.

(e) (decomposition) Suppose that I is an open interval in (0,+∞), and suppose
that, for some i ∈ {1, . . . , d−1}, the function Fi (M, r) is affine and fi (M, r)>
fi+1(M, r) for r ∈ −log İ . Then M can be uniquely written as the direct sum
of two ∂J+-differential submodules M1 and M2 such that, for any η ∈ İ , the
multiset of intrinsic radii of M1⊗ Fη exactly consists of the smallest i elements
in the multiset of intrinsic radii of M ⊗ Fη.

(f) (dichotomy) Suppose that I is an open interval in [0,+∞) and that M is not
the direct sum of two nonzero ∂J+-differential submodules. If f1(M, r) is affine
for r ∈ −log İ , then, for each j ∈ J+,
(1) either M⊗ Fη has pure intrinsic ∂ j -radii and the intrinsic ∂-radius equals

I R(M ⊗ Fη) for all η ∈ İ , or
(2) we have IR∂ j (M ⊗ Fη) > IR(M ⊗ Fη) for all η ∈ İ .

Moreover, if |u j | = 1 for any j ∈ J and if I ⊆ [0, 1), then the same statements
above except (c) hold for f̂i (M, r) and F̂i (M, r) in place of fi (M, r) and Fi (M, r),
respectively. In this case, the following statement holds.

(c′) (monotonicity) Suppose that 0 ∈ I . For i = 1, . . . , d, for any point r0 where
f̂i (M, r0) > r0, the slopes of F̂i (M, r) are nonpositive in some neighborhood
of r0. We also have f̂i (M, r)= r for r sufficiently large.

Proof. Statements (a)–(e) for fi (M, r) and Fi (M, r) are proved in [Kedlaya and
Xiao 2010, Theorems 2.4.4 and 2.5.1]. Statements (a), (b), (c′), (d), and (e) for
f̂i (M, r) and F̂i (M, r) can be proved similarly as follows.

Let K̃ denote the completion of K (x J ) with respect to the (1, . . . , 1)-Gauss
norm. For I = [α, β) ⊆ [0, 1), the Taylor series defines an injective continuous
homomorphism f̃ ∗ : K 〈α/t, t/β}}→ K̃ 〈α/t, t/β}} such that f̃ ∗(u j )= u j+x j t (as
in [Kedlaya and Xiao 2010, Notation 2.4.1]). For η ∈ (α, β), we use F̃η to denote
the completion of K̃ (t) with respect to the η-Gauss norm. Then f̃ ∗ extends to an
injective isometric homomorphism f̃ ∗ : Fη ↪→ F̃η.

We view f̃ ∗M as a ∂0-differential module on A1
K̃
[α, β). Since

∂0| f̃ ∗M = ∂0|M +
∑
j∈J

x j∂ j |M ,

we have

R∂0(M ⊗ F̃η)= min
j∈J+

{
R∂ j (M ⊗ Fη)

}
= ER(M ⊗ Fη), for any η ∈ [α, β).

In other words, f (0)i ( f̃ ∗M, r)= f̂i (M, r) for r ∈ (−logβ,−logα). The theorem fol-
lows from Theorem 1.5.4; to obtain the decomposition in (e), we use Lemma 1.1.10
and Remark 1.1.11 to glue the decompositions over A1

K̃
[α, β) and over Fη for some

η ∈ (α, β).
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We now prove (f) for the intrinsic radii; the proof for the extrinsic radii is similar.
Fix j ∈ J+. Assume that we are not in case (2). Then IR∂ j (M⊗Fη)= IR(M⊗Fη)

for some η ∈ İ . By Theorem 1.5.4(d), the that that f ( j)
1 (M, r) is convex forces

IR∂ j (M⊗Fη)= IR(M⊗Fη) for all η∈ İ . Now, if IR∂ j (M⊗Fη; 2)> IR(M⊗Fη) for
all η ∈ (α, β), the decomposition (e) would imply that M is decomposable, which
contradicts the assumption. Therefore, we have IR∂ j (M ⊗ Fη; 2) = IR(M ⊗ Fη)
for some η ∈ İ . By Theorem 1.5.4(d) again, we have the equality for all η ∈ İ .
Continuing this argument for the third smallest and other subsidiary ∂ j -radii leads
us to case (1). �

Next, we discuss how the multiset of refined ∂ j -radii of the ∂ j -differential module
M changes when we base change the ∂ j -differential module M to the completions
with respect to different Gauss norms, in the case when

f ( j)
1 (M, r)= · · · = f ( j)

rank M(M, r)

is affine. Before proving general results, we first look at an example of ∂ j -differential
module with pure refined ∂ j -radii when base changed to any completion with respect
to the Gauss norm. It is a 1-dimensional family analog of Example 1.3.20.

Example 1.5.7. Let j ∈ J+ and let (α, β)⊆ (0,∞) be an open interval. Fix b ∈Q

and θ ∈ κ(a)K alg , where a ∈ −log |K×|Q. Assume that

eaαb, eaβb <

{
1 if p = 0,
p1/p if p > 0.

(1.5.8)

We will see that this includes some nonvisible radii. As noted in Remark 1.3.21,
we cannot loosen the restriction in (1.5.8) from p1/p to p1/(p−1).

Let e be the prime-to-p part of the denominator of b. We have the following:

(i) If p = 0, then a ∈ −log |(K ′)×| and θ ∈ κ(a)K ′ for some finite tamely ramified
extension K ′/K . Let x ∈ m

(a)
K ′ be a lift of θ . We set n = 0 and d = 1 in this

case.

(ii) If p > 0 and j = 0, there exists n ∈ N such that

θ pn
∈ κ

(pna)
K ′ with pna ∈ −log |(K ′)×| and pneb ∈ pZ,

for some finite tamely ramified extension K ′/K . Let x ∈m
(pna)
K ′ be a lift of θ pn

.
We set d = pn .

(ii′) If p> 0 and j ∈ J , there exists n ∈N such that θ pn
∈ (κ

(pn−1a)
K ′ )p and pneb ∈Z

with pn−1a ∈ −log |(K ′)×| for some finite tamely ramified extension K ′/K .
Let x ∈m

(pna)
K ′(∂ j )

be a lift of θ pn
; this is possible by Lemma 1.2.16.
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Let A1
K ′(α

1/e, β1/e) be the open annulus with coordinate t1/e. Let L
( j)
x,b,(n) denote

the ∂ j -differential module over A1
K ′(α

1/e, β1/e) of rank d with basis {e1, . . . , ed},
on which ∂ j acts per description

∂ j ei = ei+1 for i = 1, . . . , d − 1 and ∂ j ed =

{
xt−dbu−d

j e1 if j ∈ J,
xt−d(b+1)e1 if j = 0.

We added u−d
j and t−d in the definition to balance the different normalizations on

intrinsic ∂ j -radii.

Lemma 1.5.9. Keep the notation as in Example 1.5.7. If we set F ′e−r = Fe−r (t1/e),
then for any r ∈ (−logβ,−logα), L

( j)
x,b,(n)⊗F ′e−r has pure intrinsic ∂ j -radii ωea−br

and pure refined ∂ j -radii θ t−b.

Proof. Comparing this with Example 1.3.20 shows that for any r , L
( j)
x,b,(n)⊗ F ′e−r

is isomorphic to Lxt−dbu−d
j ,(n) if j ∈ J , and to Lxt−d(b+1),(n) if j = 0. Applying

Lemma 1.3.23 to this ∂ j -differential module yields the result; note that the condi-
tion (1.5.8) corresponds to the condition on s in Example 1.3.20. �

Theorem 1.5.10. Fix j ∈ J+. Let M be a ∂ j -differential module over an open
annulus A1

K (α, β) such that M ⊗ Fe−r has pure intrinsic ∂ j -radii ωea−br < 1 for
any r ∈ (−logβ,−logα) (this implies that f ( j)

1 (M, r)= · · · = f ( j)
dim M(M, r) is an

affine function with slope b). Let e be the prime-to-p part of the denominator of b.
Then there exists a unique direct sum decomposition

M =
⊕

{µeθ}⊆κ
(a)
K alg

M{µeθ}

of ∂ j -differential modules over A1
K(α,β)where the sum is over allµeoGal(K alg/K )-

orbits of κ(a)K alg , and the refined ∂ j -radii of M{µeθ}⊗Fη for any η∈ (α, β) is a multiset
consisting of the µe o Gal(K alg/K )-orbits {t−bθ} with appropriate multiplicities.

Moreover, if K ′ is a finite tamely ramified tension of K such that all the θ in the
above decomposition belong to

⋃
n(κ

(pns)
K ′ )1/pn

, then we have a unique direct sum
decomposition

M ⊗K {{α/t,t/β}} K ′{{α1/e/t1/e, t1/e/β1/e
}} =

⊕
θ∈κ

(a)
K alg

Mθ

of ∂ j -differential modules over A1
K ′(α

1/e, β1/e) such that Mθ ⊗ K ′F ′η has pure
refined ∂ j -radii t−bθ for any η ∈ (α, β).

Proof. First of all, since defining a ∂ j -differential module only needs finite data, we
may assume that Q · log |K×| 6= R.
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The decomposition as stated in the theorem, if it exists, is determined by the
decomposition of M ⊗ Fe−r for each r ∈ (−logβ,−logα); it is hence unique. We
may always replace M by M ⊗K {{α/t,t/β}} K ′{{α1/e/t1/e, t1/e/β1/e

}} for e and any
finite tamely ramified extension K ′ of K , and we may recover the result for M
using Galois descent. In particular, we may assume that e = 1. Moreover, using
Lemma 1.1.10 and Remark 1.1.11, it suffices to first obtain the decomposition
in a neighborhood of each radius in (α, β) and then glue the decompositions on
overlaps.

Let r0 ∈ (−logβ,−logα) be a point. We first assume that IR∂ j (M ⊗ Fe−r0 ) < 1
when p= 0, and IR∂ j (M⊗Fe−r0 )< p−1/p(p−1) when p> 0 (note that this restriction
still allows some nonvisible radii). By shrinking the interval (α, β) to a smaller
neighborhood of r0, we may assume that the condition above at r0 holds for all
points in (−logβ,−logα). Pick a point r1 ∈ (−logβ,−logα) which does not
belong to Q · log |K×|.

Let θ t−b
∈ I2∂ j (M ⊗ Fe−r1 ) be an element in the multiset of refined intrinsic

∂ j -radii, with multiplicity µ. Since M ⊗ Fe−r1 has pure intrinsic ∂ j -radii ωea−br1 ,
we have

θ t−b
∈ κ

(a−br1)

Falg
e−r1

∼= t−bκ
(a)
K alg;

here the latter isomorphism follows from our choice r1 /∈ Q · log |K×|. We may
replace K by a finite tamely ramified extension so that

θ ∈
⋃
n

(
κ
(pna)
K

)1/pn

.

The construction in Example 1.5.7 gives a ∂ j -differential module L
( j)
x,b,(n) over

A1
K (α, β) such that L

( j)
x,b,(n) ⊗ Fe−r has pure ∂ j -radii ωea−br and pure intrinsic

∂ j -radii θ t−b for any r ∈ (−logβ,−logα).
If we set N = M ⊗ (L( j)

x,b,(n))
∨, then we have IR∂ j (N ⊗ Fe−r )≤ ωea−br for any

r ∈ (−logβ,−logα). Moreover, Proposition 1.3.19 and Theorem 1.3.26 together
imply that

f ( j)
1 (M, r1)= f ( j)

1 (N , r1)= f ( j)
(dim M−µ)d(N , r1) > f ( j)

(dim M−µ)d+1(N , r1).

By Theorem 1.5.6(d), the same inequality holds for all r ∈ (−logβ,−logα) in
place of r1 because a convex function below a linear function is same as the linear
function if and only if the two functions touch at some point. By Theorem 1.5.4(e),
we have a unique decomposition of ∂ j -differential modules N = N0 ⊕ N1 such
that, for any r ∈ (−logβ,−logα), N0 ⊗ Fe−r has pure intrinsic ∂ j -radii ωea−br

and IR∂ j (N1⊗ Fe−r ) > ωea−br. By the same argument as in Theorem 1.3.26, this
implies that M admits a decomposition of ∂ j -differential modules M = Mθ ⊕M ′

over A1
K (α, β) such that Mθ ⊗ (L

( j)
x,b,(n))

∨
= N1 and M ′ ⊗ (L( j)

x,b,(n))
∨
= N0. By
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Proposition 1.3.28 and Lemma 1.5.9, for any r ∈ (−logβ,−logα), Mθ ⊗ Fe−r has
pure refined intrinsic ∂ j -radii θ t−b, and the multiset of refined intrinsic ∂ j -radii of
M ′⊗ Fe−r does not contain θ t−b. We obtain the decomposition in the theorem by
applying this argument to every θ .

To finish the proof, it suffices to consider the case when p > 0 and

IR∂ j (M ⊗ Fe−r ) ∈
[

p−1/p(p−1), 1
)
.

But in this case, the ∂ j -Frobenius antecedent of M exists over the annulus with
radii in a neighborhood of r . The decomposition follows from the decomposition
of the ∂ j -Frobenius antecedents of M (applied iteratively until the intrinsic ∂ j -radii
fall in the range above). �

Remark 1.5.11. The artificial reduction to the case Q · log |K×| 6= R is to deduce
θ ∈ κ

(a)
K alg . This fact can also be proved using Newton polygons if the f ( j)

1 (M, r) is
not constantly p−1/(p−1), in which case one may alternatively use the Frobenius
pushforward to reduce to the visible case.

Theorem 1.5.12. Let I be an open interval of [0,+∞) and let M be a ∂J+-
differential module over A1

K (I ) such that M⊗Fe−r has pure intrinsic radiiωea−br<1
for r ∈−log( İ ). Let e denote the prime-to-p part of the denominator of b. Then there
exists a unique direct sum decomposition M =

⊕
{µeϑ}

M{µeϑ} of ∂J+-differential
modules over A1

K (I ), where the sum is taken over all µe o Gal(K alg/K )-orbits of⊕
j∈J
κ
(a)
K alg

du j

u j
⊕ κ

(a)
K alg

dt
t
,

and the refined intrinsic radii of M{µeϑ} ⊗ Fη for any η ∈ −log İ is a multiset
consisting of the µe o Gal(K alg/K )-orbits {t−bϑ} with appropriate multiplicities.

Moreover, there exists a finite tamely ramified tension K ′ of K such that we have
a unique direct sum decomposition

M ⊗K [t] K ′[t1/e
] =

⊕
ϑ∈

⊕
j∈J

κ
(a)
K alg

du j
u j

⊕
κ
(a)
K alg

dt
t

Mϑ (1.5.13)

of ∂J+-differential modules over A1
K ′(I

1/e) such that Mϑ ⊗ K ′F ′η has pure refined
intrinsic radii t−bϑ for any η ∈ −log İ .

Proof. We first treat the case when 0 /∈ I . Without loss of generality, we assume
that M is not a direct sum of two nonzero sub-∂J+-modules, which implies the
dichotomy given by Theorem 1.5.6(f). We may apply Theorem 1.5.10 to the ∂ j for
which case (f1) of Theorem 1.5.6 holds for M and note that the decompositions for
different ∂ j given by Theorem 1.5.10 are compatible. This gives rise to the desired
decomposition.
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Now, we consider the case when I = [0, β). Since we have already proved the
theorem over (α, β) for any α>0, it suffices to find the decomposition for I =[0, α)
for some α ∈ (0, 1). Note that when α is sufficiently small, M⊗ A1

K [0, α) is trivial
as a ∂0-differential module and hence is the pullback of a ∂J -differential module
M0 over K along the natural morphism K→ K {{t/α}}. The decomposition (1.5.13)
follows from the decomposition of M0 given by Theorem 1.3.26. �

We have a similar result for refined extrinsic radii, but only over A1
K (I ); this is

because adjoining t1/e would change the extrinsic radii. This subtlety also comes
up when considering differential modules over discs (as opposed to annuli) and
trying to extend the decomposition into the center of the disc: this is only possible
if the functions defined by the extrinsic radii are “constant”.

Theorem 1.5.14. Assume that |u j | = 1 for all j ∈ J . Let M be a ∂J+-differential
module over an open annulus A1

K (I ) with I ⊆ (0, 1). Assume that M ⊗ Fe−r has
pure extrinsic radii ωea−br < e−r for r ∈ −log( İ ). Let e denote the prime-to-p part
of the denominator of b. Then there exists a unique direct sum decomposition

M =
⊕
{µeϑ̂}

M
{µeϑ̂}

(1.5.15)

of ∂J+-differential modules over A1
K (I ), where the direct sum is taken over all

µe o Gal(K alg/K )-orbits

{µeϑ̂} in
⊕
j∈J
κ
(a)
K alg du j ⊕ κ

(a)
K alg dt,

and the multiset of refined extrinsic radii of M
{µeϑ̂}
⊗ Fη exactly consists of the

µe o Gal(K alg/K )-orbits {t−bµeϑ̂} with appropriate multiplicities, for any η ∈ İ .

Proof. The proof is the same as Theorem 1.5.12. �

Proposition 1.5.16. Fix j ∈ J+. Let M be a ∂ j -differential module over an open
disc A1

K [0, α) such that M ⊗ Fη for any η in a neighborhood of η = α has pure
∂ j -radii ωes , where ωes is independent of η, and is strictly less than |u j | if j ∈ J
and less than α if j = 0. Then there exists a unique direct sum decomposition
M =

⊕
{θ}⊂κ

(s)
K

M{θ} of ∂ j -differential modules over A1
K [0, α), where the direct sum

is taken over all Gal(K alg/K )-orbits {θ} of κ(s)K , and the multiset of refined ∂ j -radii
of M{θ}⊗ Fη consists of the Gal(K alg/K )-orbits {θ} with appropriate multiplicities,
for any η ∈ (0, α) if j ∈ J and for any η ∈ (ωes, α) if j = 0.

Proof. Theorem 1.5.4(c) implies that M⊗Fη has pure ∂ j -radii ωes , for any η∈ (0, α]
if j ∈ J and for any η ∈ (ωes, α] if j = 0. The proposition then follows from
the same argument as in Theorem 1.5.10, but invoking [Kedlaya and Xiao 2010,
Theorem 2.3.10] in place of Theorem 1.5.4(e) when making the decomposition by
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extrinsic radii. Note also that we will only make use of the ∂ j -differential module
L
( j)
x,0,(n) in the proof which is defined over the entire disc A1

K [0, α). �

Proposition 1.5.17. Assume that |u j |= 1 for any j ∈ J . Let M be a ∂J+-differential
module over an open disc A1

K [0, α) with α < 1. Assume that M ⊗ Fe−r has pure
extrinsic radii min{ωes, e−r

} for any r >−logα, where ωes < α. Then there exists
a unique direct sum decomposition M =

⊕
{ϑ̂} M

{ϑ̂} of ∂J+-differential modules
over A1

K [0, α), where the direct sum is taken over all Gal(K alg/K )-orbits {ϑ̂} in⊕
j∈J
κ
(s)
K alg du j ⊕ κ

(s)
K alg dt,

such that the multiset of refined extrinsic radii of M
{ϑ̂}⊗ Fη exactly consists of the

Gal(K alg/K )-orbits {ϑ̂} with appropriate multiplicities, for any η > ωes .

Proof. Without loss of generality, we assume that M is not a direct sum of
two nonzero ∂J+-differential modules. We first show a dichotomy, similar to
Theorem 1.5.6(f): for each ∂ j , either M ⊗ Fη has pure ∂ j -radii ωes for all η > ωes ,
or R∂ j (M ⊗ Fη) < ωes for all η > ωes . Assume that we are not in the latter
case. Then R∂ j (M ⊗ Fη) = ER(M ⊗ Fη) for some η ∈ (ωes, α). By parts (c)
and (d) of Theorem 1.5.4, the monotonicity and convexity of f ( j)

1 (M, r) forces
R∂ j (M⊗Fη)=ER(M⊗Fη) for all η∈ (0, α). Now, if R∂ j (M⊗Fη; 2)>ER(M⊗Fη)
for all η ∈ (ωes, α), we may use [Kedlaya and Xiao 2010, Theorem 2.3.10] to
decompose M to split off the smallest ∂ j -radii, which contradicts the indecom-
posability assumption on M . Therefore, R∂ j (M ⊗ Fη; 2)= ER(M ⊗ Fη) for some
η ∈ (ωes, α). Continuing this argument for the third and other subsidiary ∂ j -radii
leads us to the former case of the claim. The proposition now follows from applying
Proposition 1.5.16 to each ∂ j that satisfies the former condition of the claim. �

Remark 1.5.18. We do not expect a decomposition theorem analogous to Proposi-
tion 1.5.17 in the case when the functions for extrinsic radii are linear with negative
slopes. The reason is that, when η is sufficiently close to 0, E R(M⊗ Fη) is always
the same as η, and hence no information about the ∂ j -radii of M⊗Fη is reflected in
the extrinsic radii. In contrast, in the situation of Proposition 1.5.17 if the functions
of extrinsic radii stay constant before the they become equal to −log η, all dominant
∂ j must have constant ∂ j -radii by the monotonicity (Theorem 1.5.4(c)).

1.6. Refined differential conductors. Differential modules defined over an open
annulus with outer radius 1 are historically considered very important, in particular
those whose intrinsic radii approach 1, as we base change to the completion with
respect to the Gauss norms with radii approaching to 1; this is known as the solvable
case. In particular, the rate of the such change of intrinsic radii is related to the
Swan conductors if the differential modules come from a Galois representation
of GFp((t)). In this subsection, we focus on this situation and define differential
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conductors, as well as refined differential conductors if the differential module has
pure differential conductors.

We continue to assume Hypothesis 1.5.1. Moreover, we assume p > 0 in this
subsection.

Definition 1.6.1. Let M be a ∂J+-differential module of rank d over A1
K (η0, 1) for

some η0 ∈ (0, 1). We say that M is solvable if IR(M ⊗ Fη)→ 1 as η→ 1−.

Theorem 1.6.2. Suppose M is a solvable ∂J+-differential module of rank d over
A1

K (η0, 1), for some η0 ∈ (0, 1). Then by making η0 sufficiently close to 1, there
exists a unique direct sum decomposition M = M1⊕ · · ·⊕Mγ over A1

K (η0, 1) and
nonnegative distinct rational numbers b1, . . . , bγ with bi · rank(Mi ) ∈ Z, such that
Mi ⊗ Fη has pure intrinsic radii ηbi for any i = 1, . . . , γ and any η ∈ (η0, 1).

Keep the same hypothesis and assume moreover that |u j | = 1 for all j ∈ J . Then
by making η0 sufficiently close to 1, there exists a unique direct sum decomposition
M = M̂1 ⊕ · · · ⊕ M̂γ̂ over A1

K (η0, 1) and nonnegative distinct rational numbers
b̂1, . . . , b̂γ̂ with b̂i · rank(M̂i ) ∈ Z, such that M̂i ⊗ Fη has pure extrinsic radii ηb̂i

for any i = 1, . . . , γ̂ and any η ∈ (η0, 1).

Proof. By parts (a), (b), and (d) of Theorem 1.5.6, for l = 1, . . . , d, the functions
d!Fl(M, r) and d! F̂l(M, r) on (0,−log η0) are continuous, convex, and piecewise
affine with integer slopes. The assumption d!Fl(M, r) → 0 also implies that
d! F̂l(M, r)→ 0 as r→ 0+; because of this and the fact that d!Fl(M, r)≥ 0 and
d! F̂l(M, r) ≥ 0 for all r , the slopes of Fl(M, r) and F̂l(M, r) are forced to be
nonnegative. Hence there is a least such slope; that is, d!Fl(M, r) and d! F̂l(M, r)
are linear in a right neighborhood of r = 0.

We can thus choose η0 ∈ (0, 1) so that d!Fl(M, r) and d! F̂l(M, r) are linear
on (0,−log η0) for l = 1, . . . , d. The desired decomposition is constructed in
Theorem 1.5.6(e) and the integrality of bi · rank(Mi ) and b̂i · rank(M̂i ) follows
from the fact that Fdim Mi (Mi , r) and F̂dim M̂i

(M̂i , r) have integral slopes, again by
Theorem 1.5.6(b). �

Definition 1.6.3. Let M be a solvable ∂J+-differential module of rank d over
A1

K (η0, 1) for some η0 ∈ (0, 1). Define the multiset of differential log-breaks
of M to be the multiset consisting of bi from Theorem 1.6.2 with multiplicity
rank Mi ; we use blog(M; 1)≥ · · · ≥ blog(M; d) to denote the differential log-breaks
in decreasing order. We define the differential Swan conductor of M to be the
sum of the differential log-breaks, that is, Swan(M) =

∑r
i=1 bi · rank(Mi ); it is

a nonnegative integer by Theorem 1.6.2. We say that M has pure differential
log-breaks if all differential log-breaks are equal.

When M has pure differential log-breaks, we define the multiset of refined Swan
conductors of M , denoted by I2(M), to be the multiset consisting of ϑ in (1.5.13)
with multiplicity rank Mϑ .
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Similarly, when |u j |=1 for all j ∈ J , we define the multiset of differential nonlog-
breaks to be the multiset consisting of b̂i from Theorem 1.6.2 with multiplicity
rank M̂i ; we use bnlog(M; 1)≥ · · · ≥ bnlog(M; d) to denote the differential nonlog-
breaks in decreasing order. We define the differential Artin conductor of M to
be the sum of the differential nonlog-breaks; it is also a nonnegative integer by
Theorem 1.6.2. We say that M has pure differential nonlog-breaks if all differential
nonlog-breaks are equal.

When M has pure differential nonlog-breaks, we define the multiset of refined
Artin conductors of M , denoted by E2(M), to be the multiset of µe oGal(K sep/K )-
orbits {µeϑ̂} in (1.5.15) with multiplicity equal to the multiplicities of {t−bµeϑ̂} in
M
{µeϑ̂}
⊗ Fη for any η ∈ (η0, 1).

2. Refined differential conductors for Galois representations

One of the most important applications of p-adic differential modules is to provide
an interpretation of the Swan conductors of representations of Gk , where k is a
complete discrete valuation field of equal characteristic p > 0 with perfect residue
field. This idea was later generalized by Kedlaya [2007] to the case when the
residue field of k need not to be perfect, and by the author [Xiao 2010] to relate the
differential modules to the Swan conductors in the sense of Abbes and Saito [2002].
In this section, we further develop the theory on the differential module side to
incorporate the study of refined differential conductors, which will be related to
Saito’s definition [2009] of refined Swan conductors, as proved in the next section.

Throughout this section, we assume that p > 0 is a prime number.

2.1. Construction of differential modules. This subsection is dedicated to the con-
struction of the differential modules associated to representations of Gk , where k is
a complete discrete valuation field of equal characteristic p > 0.

Definition 2.1.1. For a field κ of characteristic p > 0, a p-basis of κ is a set
(b j ) j∈J ⊂ κ such that the products beJ

J , where e j ∈ {0, 1, . . . , p− 1} for all j ∈ J
and e j = 0 for all but finitely many j , form a basis of the vector space κ over κ p.

Notation 2.1.2. Let k be a complete discrete valuation field of characteristic p > 0.
Let πk be a uniformizer of k, generating the maximal ideal mk in the ring of
integers Ok . Let κ = κk denote the residue field. Let κ̄ = κalg denote an algebraic
closure of κ . We choose and fix a noncanonical isomorphism k ' κ((πk)). We fix
a p-basis b̄J of κ and let bJ ⊂ k be the preimage of them via the isomorphism
above. Then {bJ , πk} form a p-basis of k, which we refer to as a lifted p-basis.
Let k0 =

⋂
n∈N κ

pn
=
⋂

n∈N k pn
. We know that dπk and dbJ form a basis of �1

Ok

over Ok .
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Let OK denote the Cohen ring of κ with respect to b̄J and let BJ ⊂ OK be the
canonical lifts of the p-basis. Put K = Frac OK . We use OK0 to denote the ring of
Witt vectors of k0, viewed as a subring of OK and we put K0 = OK0

[ 1
p

]
.

Notation 2.1.3. For an extension k ′/k of a complete discrete valuation field, the
(naïve) ramification degree of k ′/k is simply the index of the valuation of k in that
of k ′.

We say that k ′/k is tamely ramified if p - e and the residue field extension κk′/κk

is separable, that is, κk′ is algebraic and separable over κk(xα;α ∈ 3) for some
transcendental elements xα and an index set 3. If moreover, e = 1, we say k ′/k is
unramified.

Notation 2.1.4. By a representation of Gk , we mean a continuous homomorphism
ρ : Gk → GL(Vρ), where Vρ is a vector space over a (topological) field F of
characteristic zero. We say that ρ is a p-adic if F is a finite extension of Qp.

Let F be a finite extension of Qp, let O denote its ring of integers, and let Fq

denote the residue field of O, where q is a power of p. Put Zq = W (Fq) and
Qq =Zq

[ 1
p

]
. By an O-representation of Gk , we mean a continuous homomorphism

ρ : Gk→ GL(3ρ) with 3ρ a finite free O-module.
For ρ a p-adic representation or an O-representation, we say that ρ has finite

local monodromy if the image of the inertia group Ik is finite.
We assume that Fq ⊆ k0. Put K ′ = K F . Since F/Qq is totally ramified, we have

OK ′ ∼= OK ⊗Zq O.

Notation 2.1.5. We put R
η

K ′ = K ′〈η/T, T }} for η ∈ (0, 1) and RK ′ =
⋃
η∈(0,1) R

η

K ′ ;
the latter ring is commonly called the Robba ring over K ′. Let Rint

K ′ be the subring of
RK ′ consisting of elements whose 1-Gauss norm is bounded by 1; it is a Henselian
discrete valuation ring, with residue field k if we identify the reduction of T with
πk . For η ∈ (0, 1), we use F ′η to denote the completion of K ′(T ) with respect to
the η-Gauss norm.

A Frobenius lift φ is an endomorphism of Rint
K ′ which lifts the natural q-th power

Frobenius on k. Any Frobenius lift extends by continuity to an action on RK ′ . A
standard Frobenius lift is a Frobenius lift which sends T to T p and B j to B p

j for
any j ∈ J .

The differentials

�1
Rint

K ′
, �1

RK ′
and �1

R
η

K ′

for any η∈ (0, 1) admit a basis given by dBJ and dT . We set ∂0=∂/∂T, ∂ j =∂/∂B j

with j ∈ J for the dual basis. Then a ∇-module over RK ′ is just a ∂J+-differential
module.
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Definition 2.1.6. Let φ be a Frobenius lift. For R =RK ′ , R
η

K ′ , or Rint
K ′ , a (φ,∇)-

module M over R is a ∂J+-differential module together with an isomorphism
8 : φ∗M→ M of ∂J+-differential modules.

Theorem 2.1.7. For any Frobenius lift φ, we have an equivalence of categories
between the category of O-representations with finite local monodromy and the cate-
gory of (φ,∇)-modules over Rint

K ′ . Moreover, all (φ,∇)-modules can be realized
over R

η

K ′ for some η ∈ (0, 1). This (φ,∇)-module is independent of the choice of
the p-basis.

Proof. The functor is constructed in [Kedlaya 2007, Section 3; Xiao 2010, Sec-
tion 2.2]. �

Definition 2.1.8. For a p-adic representation ρ of Gk with finite local monodromy,
we choose an O-lattice 3ρ of Vρ , stable under the action of Gk ; this gives an
O-representation of Gk . Theorem 2.1.7 then produces a (φ,∇)-module over Rint

K ′ ,
whose base change to RK ′ is called the differential module associated to ρ, denoted
by Eρ . This Eρ does not depend on the choice of the lattice 3ρ .

For the rest of this subsection, we assume the following.

Hypothesis 2.1.9. The residue field κ has a finite p-basis b̄J , where J ={1, . . . ,m}.
We put J+ = J ∪ {0}.

Proposition 2.1.10. Let φ be the standard Frobenius lift on Rint
K ′ . Then the Frobe-

nius φ : F ′ηq → F ′η is the same as the iterative Frobenius ϕ(∂0,λ) ◦ · · · ◦ ϕ(∂m ,λ) in
Construction 1.2.14, where q = pλ.

Proof. We may assume that K ′ contains ζq , a q-th root of unity. It suffices to
show that the image φ(F ′ηq ) is stable under the action of (Z/qZ)m+1 in the sense of
Construction 1.2.14, where each ∂ j -Frobenius corresponds to a factor Z/qZ, and
that the degree of F ′η over φ(F ′ηq ) is qm+1.

For i = (i0, . . . , im) ∈ (Z/qZ)m+1, we have T (i)
= ζ

i0
q T and (B j )

(i)
= ζ

i j
q B j for

any j ∈ J . Hence ( · )(i) ◦φ for all i are continuous homomorphisms from OK [[T ]]
to itself, sending B j to Bq

j and T to T q . By the functoriality of Cohen rings (see
[Xiao 2010, Proposition 2.1.8]), these homomorphisms are all the same. Hence
the image of φ is stable under the (Z/qZ)m+1-action. It is evident that F ′η has rank
qm+1 over φ(F ′ηq ); this forces the two homomorphisms to be the same. �

Proposition 2.1.11. Let φ be the standard Frobenius lift on Rint
K ′ and let E be a

(φ,∇)-module over A1
K ′[η0, 1) for some η0 ∈ (0, 1). Then E is solvable.

Proof. This is well-known to the experts; we include a proof for the convenience of
the reader. By Lemma 1.2.18(a), we have

fi (φ
∗M, r)

=max
{

p−λ fi (M, qr), p1−λ( fi (M, qr)−log p), . . . , fi (M, qr)− λ log p
}
,
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where λ= logp q . Since φ∗M −→∼ M , the function gi (M)= lim supr→0+ fi (M, r)
satisfies

gi (M)=max
{

p−λgi (M), p1−λ(gi (M)− log p), . . . , gi (M)− λ log p
}
.

This forces gi (M) to be zero. By the continuity of fi (M, r) and the convexity of
Fi (M, r) in Theorem 1.5.6, limr→0+ fi (M, r)= 0. In other words, E is solvable. �

Proposition 2.1.12. Let φ be the standard Frobenius lift and let φ′ be another
Frobenius lift on Rint

K ′ . Assume that E is a (φ,∇)-module over A1
K ′[η0, 1) for some

η0 ∈ (0, 1). Then the restriction of E to A1
K ′[η, 1) for some η ∈ [η0, 1) is naturally

equipped with a (φ′,∇)-module structure.

Proof. Define the Frobenius structure for φ′ by Taylor series as follows. For v ∈ E,

φ′(v)

=

∞∑
eJ+=0

(φ′(T )−φ(T ))e0
∏

j∈J (φ
′(B j )−φ(B j ))

e j

(eJ+)!
φ
(
∂e0

∂T e0

∂e1

∂Be1
1
· · ·

∂em

∂Bem
m
(v)
)
.

Since |φ′(T )−φ(T )|1 < 1 and |φ′(B j )−φ(B j )|1 < 1 for all j ∈ J , we have the
same inequality using η-Gauss norm when η ∈ [η′0, 1] for some η′0 sufficiently close
to 1. Hence the expression for φ′ converges on A1

K ′[η
′

0, 1) and gives the restriction
of E to A1

K ′[η
′

0, 1) a structure of (φ′,∇)-module. �

Remark 2.1.13. One may also approach the results of this subsection without
referring to the standard Frobenius but instead using a generalized version of
Lemma 1.2.18(a) for noncentered Frobenius. This point of view is taken in [Kedlaya
2010, Chapter 17].

2.2. Differential conductors. Combining the results from Section 1.6 and Propo-
sition 2.1.11, we can define differential conductors for a representation of Gk with
finite local monodromy. To make this definition more robust, we will introduce the
break with respect to each element of the p-basis, and the break of the differential
module is just the maximum among all breaks for each element of the p-basis, after
appropriate normalization. This point of view is in particular useful when we try to
understand how the conductors change when restricting a Galois representation to
Gl for some (explicit) finite extension l of k.

Definition 2.2.1. We first assume that k satisfies Hypothesis 2.1.9. Let ρ be a
representation of Gk with finite local monodromy. The log-breaks of ρ are defined
to be the differential log-breaks of Eρ , as a solvable ∂J+-differential module. Put
blog(ρ; l)= blog(Eρ; l) for l = 1, . . . , dim ρ. Similarly, the nonlog-breaks of ρ are
defined to be the differential nonlog-breaks of Eρ/ρ Ik together with the element
0 with multiplicity dim ρ Ik , where ρ Ik is the maximal subrepresentation of ρ on
which Ik acts trivially. Put bnlog(ρ; l)= bnlog(Eρ/ρ Ik ; l) for l = 1, . . . , dim(ρ/ρ Ik ),
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and bnlog(ρ; dim(ρ/ρ Ik )+ 1)= · · · = bnlog(ρ; dim ρ)= 0.
For simplicity, we also put bnlog(ρ)= bnlog(ρ; 1) and blog(ρ)= blog(ρ; 1); they

are called the highest nonlog-break and the highest log-break, respectively.
We now consider a general k. For a p-adic representation ρ of Gk with finite

local monodromy, let l be the extension of k corresponding to Ker ρ via Galois
theory. We may choose a p-basis {cJ , πl} of l such that πl is a uniformizer and
cJ ⊂ O×l , and such that cJ\J0 ⊂ Ok for some finite subset J0 ⊂ J . If we use k∧ to
denote the completion of k(c1/pn

J\J0
; n ∈ N), then k∧ verifies Hypothesis 2.1.9. We

define the nonlog-breaks and log-breaks of ρ to be, respectively, those of ρ|Gk∧
.

Their sums are called the Artin conductors and, respectively, Swan conductors of ρ,
denoted by Art(ρ) and Swan(ρ). These do not depend on the choice of the p-basis
or of J0, by [Kedlaya 2007, Proposition 2.6.6].

Definition 2.2.2. Put Fil0Gk = Gk and FilaGk = Ik for a ∈ (0, 1]. For a > 1, let
Ra be the set of finite image representations ρ with nonlog-break strictly less than a.
Put FilaGk =

⋂
ρ∈Ra

(
Ik∩ker(ρ)

)
and set Fila+Gk to be the closure of

⋃
b>a FilbGk .

This defines a filtration on Gk such that for any representation ρ with finite image,
ρ(FilaGk) is trivial if and only if ρ ∈ Ra .

Similarly, put Fil0logGk = Gk . For a > 0, let Ra,log be the set of finite image
representations ρ with log-break less than a. Put FilalogGk =

⋂
ρ∈Ra,log

(
Ik ∩ ker(ρ)

)
and set Fila+logGk to be the closure of

⋃
b>a FilblogGk . This defines a filtration on Gk

such that for any representation ρ with finite image, ρ(FilalogGk) is trivial if and
only if ρ ∈ Ra,log.

For a finite Galois extension l of k, the above filtrations induce filtrations on the
Galois group Gl/k by

Ga
l/k,(log) = GlFila(log)Gk/Gl and Ga+

l/k,(log) = GlFila+(log)Gk/Gl,

for a ≥ 0. We define the (log-)ramification breaks of the extension l/k to be the
numbers b for which Gb

l/k(,log) 6= Gb+
l/k(,log). We order them as

b(n)log(l/k)= b(n)log(l/k; 1)≥ b(n)log(l/k; 2)≥ · · · .

In particular, if ρ is a faithful representation of Gl/k , we have b(n)log(ρ)=b(n)log(l/k).

Theorem 2.2.3. The differential conductors satisfy the following properties:

(a) For any representation ρ of finite local monodromy,

Art(ρ)=
∑

a∈Q≥0

a · dim
(
V Fila+Gk
ρ /V Fila Gk

ρ

)
∈ Z≥0,

Swan(ρ)=
∑

a∈Q≥0

a · dim
(
V

Fila+log Gk
ρ /V

FilalogGk
ρ

)
∈ Z≥0.

(b) Let k ′/k be a (not necessarily finite) extension of complete discretely valued
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fields. If k ′/k is unramified, then FilaGk′ = FilaGk for a > 0. If k ′/k is
tamely ramified with naïve ramification index e<∞, then Filea

logGk′ = FilalogGk

for a > 0.

(c) For a > 0, we have Fila+1Gk ⊆ FilalogGk ⊆ FilaGk .

(d) For graded pieces we have, for a > 1,

FilaGk/Fila+Gk =

{
0 if a /∈Q,

an abelian group killed by p if a ∈Q,

and for a > 0,

FilalogGk/Fila+logGk =

{
0 if a /∈Q,

an abelian group killed by p if a ∈Q.

(e) These filtrations on Gk agree with the ones defined in [Abbes and Saito 2002,
2003].

Proof. Using the comparison [Xiao 2010, Theorem 4.4.1] of the arithmetic and
differential conductors, this follows from their basic properties as stated in [Xiao
2010, Theorem 2.4.1 and Proposition 4.1.7]. We refer to [Xiao 2010; Abbes and
Saito 2002] for the definition of Abbes and Saito’s filtrations. �

We now study the break for each element of the p-basis. We assume the validity
of Hypothesis 2.1.9 for the rest of the subsection.

Proposition 2.2.4. For each j ∈ J+, there is a ramification break b j (ρ) associated
to b j ( j ∈ J ) or πk ( j = 0), such that R∂ j (Eρ ⊗ F ′η) = η

b j (ρ) for any η ∈ (η0, 1)
with some η0 < 1. Moreover,

bnlog(ρ)= max
j∈J+
{b j (ρ)}, blog(ρ)=max{b0(ρ)− 1; b j (ρ) for j ∈ J }.

Proof. By applying the same argument of Proposition 2.1.11 to intrinsic ∂ j -radii,
we know that

IR∂ j (Eρ ⊗ F ′ηq )= IR∂ j (Eρ ⊗ F ′η)
q

as η→ 1−. Therefore, by the convexity given by Theorem 1.5.4(d), f ( j)
1 (Eρ, r) is

affine as r→ 0+. The proposition follows. �

Definition 2.2.5. We call bJ+(ρ) the breaks by p-basis of ρ with respect to the
lifted p-basis bJ and the uniformizer πk .

Remark 2.2.6. Rigorously speaking, the breaks by p-basis depend on the choice of
the dual basis ∂0, . . . , ∂m of the differential forms. So when we change the choices
of the lifted p-basis and the uniformizer, the breaks by basis b j (ρ) may change
accordingly.
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Lemma 2.2.7. Fix j0 ∈ J . Let b′J+(ρ) be the breaks by p-basis of ρ with respect
to the lifted p-basis {bJ\{ j0}, b j0 +πk} and the uniformizer πk . Then b′j (ρ)= b j (ρ)

for j ∈ J and

b′0(ρ)
{
=max{b0(ρ), b j0(ρ)} if b0(ρ) 6= b j0(ρ),

≤ b0(ρ) if b0(ρ)= b j0(ρ).

Proof. Let ∂ ′J+ denote the derivations dual to the basis d BJ\{ j0}, dT, d(B j0 + T ) of
�1

Rint
K ′

. Then ∂ ′J = ∂J and ∂ ′0 = ∂0− ∂ j0 . The lemma follows immediately. �

Remark 2.2.8. This lemma is in fact much stronger than it appears. Applying the
same argument to b j0 + απk for all α ∈ k0 implies that, for all but possibly one
α ∈ k0, b′0(ρ) ≥ b j0(ρ). So, vaguely speaking, the equality b0(ρ) = b(ρ) holds
“generically”; this motivates the following lemma.

Lemma 2.2.9. Fix j0 ∈ J . Let k̃ be the completion of k(x) with respect to the
1-Gauss norm, equipped with the lifted p-basis {bJ\{ j0}, b j0 + xπk, x}. Let ρ̃ be
the representation G k̃ → Gk

ρ
→ GL(Vρ). Let b̃J+∪{m+1}(ρ̃) denote the breaks by

p-basis with respect to the aforementioned lifted p-basis and the uniformizer π ,
where b̃J\{ j0}(ρ̃) corresponds to bJ\{ j0}, b̃ j0(ρ̃) corresponds to b j0 + xπk , b̃0(ρ̃)

corresponds to πk , and b̃m+1(ρ̃) corresponds to x. Then b̃ j (ρ
′)= b j (ρ) for j ∈ J ,

b̃m+1(ρ̃)= b j0(ρ)− 1, and b̃0(ρ̃)=max{b0(ρ), b j0(ρ)}. In particular, b̃nlog(ρ̃)=

bnlog(ρ).

Proof. Let K̃ ′ denote the completion of K ′(X) with respect to the 1-Gauss norm,
where X is the canonical lift of x . Let f : A1

K̃ ′
[η0, 1)→ A1

K ′[η0, 1) be the natural
morphism. Then f ∗Eρ is the differential module associated to ρ ′. Let ∂̃J+∪{m+1}

be the differential operators corresponding to the p-basis (bJ\{ j0}, b j0 + xπk, πk).
Then under the identification by f ∗, we have

∂̃J = ∂J , ∂̃m+1 = T ∂ j0, ∂̃0 = ∂0− X∂ j0 . (2.2.10)

The lemma follows from this because X is transcendental over K ′. �

Lemma 2.2.11. Fix j0 ∈ J . Set k ′ = k(b1/p
j0 ), equipped with the lifted p-basis

{bJ\{ j0}, b1/p
j0 }. Let b′J+(ρ|Gk′

) be the breaks by p-basis of ρ|Gk′
with respect to

the aforementioned p-basis and uniformizer πk . Then b′j (ρ|Gk′
) = b j (ρ) for j ∈

J+\{ j0} and b′j0(ρ|Gk′
)= 1

p b j0(ρ).

Proof. Replacing k by k ′ is equivalent to pulling back the differential module Eρ
along ϕ(∂ j ). The lemma follows from applying Lemma 1.2.18(a) to E⊗ F ′η when
η→ 1−. �

Lemma 2.2.12. Fix j0∈ J . Let k ′ denote the completion of k(b1/pn

j0 ; n∈N) equipped
with lifted p-basis bJ\{ j0}. Let b′J+(ρ|Gk′

) be the breaks by p-basis of ρ|Gk′
with
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respect to this p-basis and the uniformizer πk . Then we have b′j (ρ|Gk′
)= b j (ρ) for

j ∈ J+\{ j0}.

Proof. Replacing k with k ′ is equivalent to simply forgetting the j0-direction. �

Situation 2.2.13. Now, we study a particular case of base change, which will
be useful in the comparison Theorem 3.4.1. This type of base change was first
considered by Saito [2009].

Fix e ∈ N possibly divisible by p. Let k be as above, and let k ′ be the com-
pletion of k(x) with respect to the 1-Gauss norm, with uniformizer πk′ = πk .
Put k̃ = k ′[u]/(ue

− x−1πk). The residue field of k̃ is κ(x̄); we consider the
p-basis (bJ , x̄) and the uniformizer πk̃ = u of k̃. We choose the unique isomor-
phism κ(x̄)((u))' k̃ that is compatible with the chosen isomorphism κ(πk)' k in
Notation 2.1.2 and that sends x̄ to x . This gives rise to the lifted p-basis (bJ , x, u)
of k̃.

Proposition 2.2.14. The natural homomorphism G k̃ → Gk induces a homomor-
phism Filea

logG k̃→ FilalogGk for any a ∈Q≥0. Moreover, the induced homomorphism

Filea
logG k̃/Filea+

log G k̃→ FilalogGk/Fila+logGk

is surjective for any a ∈Q>0.

Proof. It suffices to show that, for a p-adic representation of Gk with finite local
monodromy and pure log-break blog(ρ), the induced representation

ρ̃ : G k̃→ Gk→ GL(Vρ)

also has the same log-break. Let K̃ ′ be the completion of K ′(X) with respect
to the 1-Gauss norm, where X is the canonical lift of x̄ . We then have a natural
map f : A1

K̃ ′
[η1/e, 1)→ A1

K ′[η, 1) for η→ 1−, sending T to XU e, where U is the
coordinate of the former annulus.

Let b̃0(ρ̃), . . . , b̃m+1(ρ̃) be the breaks by p-basis with respect to bJ , x and the
uniformizer πk̃ = u. Then f ∗Eρ is the differential module associated to ρ̃, with the
actions of ∂̃0 = ∂/∂U , ∂̃J = ∂/∂BJ , and ∂̃m+1 = ∂/∂X . We have

∂̃J = ∂J , ∂̃0 = eXU e−1∂0, and ∂̃m+1 =U e∂0. (2.2.15)

By Theorem 1.4.20, we have b̃J (ρ̃) = ebJ (ρ), b̃0(ρ̃) ≤ eb0(ρ) − (e − 1), and
b̃m+1(ρ̃)= eb0(ρ)− e (when e is prime to p, the inequality becomes an equality).
In particular, we have b̃m+1(ρ̃)≥ b̃0(ρ̃)− 1. Hence we conclude that

blog(ρ̃)=max
{
b̃0(ρ̃)−1, b̃J (ρ̃), b̃m+1(ρ̃)

}
=max

{
ebJ (ρ), eb0(ρ)−e

}
= eblog(ρ).

This proves the proposition. �
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2.3. Refined differential conductors. In this subsection, we define the refined dif-
ferential conductors, which provides additional information about the subquotient
Fila(log)Gk/Fila+(log)Gk of the ramification filtrations.

We keep the notation as in previous subsections but we drop Hypothesis 2.1.9.

Notation 2.3.1. Fix a Dwork pi π = (−p)1/(p−1).

Notation 2.3.2. We put �1
Ok
(log)=�1

Ok
+Ok

dπk
πk
⊂�1

k . If we choose a p-basis b̄J

of κ as in Notation 2.1.2, we have

�1
Ok
(log)= Ok

dπk
πk
⊕

(⊕
j∈J

Ok db j

)
.

Construction 2.3.3. Let ρ be a p-adic representation of Gk with finite local mon-
odromy and with pure break b= bnlog(ρ) or log-break b= blog(ρ). We may replace
k by the completion of an inseparable extension as in Definition 2.2.1 and then
assume Hypothesis 2.1.9. Let Eρ denote the (φ,∇)-module associated to ρ. By
Theorem 1.5.6(e), there exists η0 ∈ (0, 1) such that Eρ ⊗ F ′η has pure extrinsic or
intrinsic, respectively, radii ηb for any η ∈ [η0, 1).

We define the multiset of refined Artin conductors of ρ to be

rar(ρ)=
{ 1
π
ϑπ−b

k : ϑ ∈ I2(Eρ)
}
⊂�1

Ok
⊗Ok π

−b
k κ̄ .

Similarly, we define the multiset of refined Swan conductors of ρ to be

rsw(ρ)=
{ 1
π
ϑπ−b

k : ϑ ∈ I2(Eρ)
}
⊂�1

Ok
(log)⊗Ok π

−b
k κ̄ .

Remark 2.3.4. There is a unique primitive p-th root of unity ζp such that

π ≡ (ζp − 1)mod (ζp − 1)2.

The definition of refined conductors above is unchanged if we replace π by ζp − 1.

Lemma 2.3.5. In Construction 2.3.3, the definition of the refined Artin and Swan
conductors does not depend on the choices of the lifted p-basis of k and the uni-
formizer πk .

Proof. We may assume Hypothesis 2.1.9 since only finitely many elements in the
p-basis appear in the refined Artin and Swan conductors.

For another choice of lifted p-bases and uniformizers, we will consider another
set of differential operators: ∂ ′j = ∂/∂B ′j for j ∈ J and ∂ ′0 = ∂/∂T ′. We put

dB j =
∑
j ′∈J

α j, j ′dB ′j ′+α j,0dT ′ for j ∈ J, and dT =
∑
j ′∈J

α0, j ′dB j ′+α0,0dT ′,

where α j, j ′ ∈ OK ′[[T ]] for j, j ′ ∈ J+. Moreover, we have α0, j ∈ T ·OK ′[[T ]].
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We may assume that Eρ has pure differential nonlog-break, or pure differential
log-break. So there exists η0 ∈ (0, 1) such that Eρ ⊗ F ′η has pure extrinsic (resp.
intrinsic) radii ηb for all η ∈ [η0, 1).

Consider η ∈ (η0, 1)∩ pQ so that F ′η is discretely valued. Theorem 1.4.20 then
implies that, for any j ∈ J+ such that R∂ ′j (V ⊗ F ′η)= ER(V ⊗ F ′η), we have

2∂ ′j (Eρ ⊗ F ′η)=
{
πT−b(α0, jθ0+ · · ·+αm, jθm) :

πT−b(θ0dT + θ1d B1+ · · ·+ θmd Bm) ∈ E2(Eρ ⊗ F ′η)
}
,

and for any j ∈ J+ such that IR∂ ′j (V ⊗ F ′η)= IR(V ⊗ F ′η),

2∂ ′j (Eρ ⊗ F ′η)=
{
πT−b

(α0, j

T
θ0+ · · ·+αm, jθm

)
:

πT−b
(
θ0

dT
T
+ θ1d B1+ · · ·+ θmd Bm

)
∈ I2(Eρ ⊗ F ′η)

}
.

Note also that(
α0,0θ0+ · · ·+αm,0θm

)
dT ′+

∑
j∈J

(
α0, jθ0+ · · ·+αm, jθm

)
d B ′j

= θ0dT + θ1d B1+ · · ·+ θmd Bm .

Combining these two formulas, we conclude that E2(V ) (resp. I2(V )) for ∂J+

is the same as that for ∂ ′J+ . Hence the refined Artin and Swan conductors are
well-defined. �

Lemma 2.3.6. Let k ′/k be a tamely ramified extension of ramification degree
e = ek′/k and let ρ be a p-adic representation of Gk with finite local monodromy
and with pure log-break b= blog(ρ). Then ρ|Gk′

has pure log-break eb. Moreover, if
we identify �1

Ok
(log)⊗Ok π

−b
k κ̄ with �1

Ok′
(log)⊗Ok′

π−eb
k′ κ̄ , then rsw(ρ) is the same

as rsw(ρ|gk′
).

Proof. This follows immediately from the fact that Eρ|Gk′
is just the base change

of Eρ along A1
K ′[η

1/e, 1)→ A1
K ′[η, 1), where the coordinate for the first annulus

is t1/e. �

Theorem 2.3.7. Let k be a complete discrete valuation field of equal characteristic
p > 0.

(a) Let ρ be a p-adic representation of Gk with finite local monodromy and
with pure log-break b = blog(ρ) > 0. Then there exists a unique direct sum
decomposition of ρ as ρ ∼=⊕{ϑ}⊂rsw(ρ)ρ{ϑ}, where the direct sum is taken over
all µe o Gk-orbits {ϑ} in rsw(ρ), and rsw(ρ{ϑ}) consists of the Galois orbits
{ϑ} with appropriate multiplicities. Moreover, there exists a finite tamely
ramified extension k ′/k of naïve ramification degree e such that we have a
unique direct sum decomposition of representations of Gk′ over some finite
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extension F ′ of F : ρ|Gk′
⊗ F ′ ∼=

⊕
ϑ∈rsw(ρ) ρϑ , such that ρϑ has pure refined

Swan conductors

ϑ ∈�1
Ok′
(log)⊗Ok′

π−eb
k′ κ̄ ∼=�

1
Ok
(log)⊗Ok π

−b
k κ̄ .

(b) Choose the p-th root of unity ζp as in Remark 2.3.4. Then there exists an
injective homomorphism for any b ∈Q>0,

rsw= rswk : Hom
(
FilblogGk/Filb+logGk, Fp

)
→�1

Ok
(log)⊗Ok π

−b
k κ̄, (2.3.8)

such that, when viewing the left hand side as a subset of

Hom
(
FilblogGk/Filb+logGk,Qp(ζp)

×
)

via the identification of 1 ∈ Fp with ζp, we have, for any p-adic representation
ρ of Gk with finite local monodromy and with pure log-break b, the images
of the summands of ρ|FilblogGk

under the homomorphism rsw exactly form the
multiset of refined Swan conductors of ρ. Moreover, the homomorphism (2.3.8)
does not depend on the choices of the Dwork pi.

Proof. For both (a) and (b), we may assume that Hypothesis 2.1.9 holds, since only
finitely many elements in a p-basis matter.

(a) Using the identification given in Lemma 2.3.6, we may first replace k and Frac O

by a tamely ramified extension of k and a finite extension of Frac O, respectively,
so that the decomposition of the ∇-module Eρ given by (1.5.13) of Eρ can be
realized over RK ′ , and that Fq ⊆ k0. Since this decomposition is canonical, it is
also a decomposition of (φ,∇)-modules. By the slope filtration [Kedlaya 2007,
Theorem 3.4.6], the Frobenius action on each direct summand of Eρ is étale,
yielding the decomposition of the representation via the equivalence of categories
in Theorem 2.1.7.

(b) The following are immediate corollaries of Proposition 1.3.19.

(i) For any p-adic representations ρ and ρ ′ of Gk with finite local monodromy,
same pure log-break b, and same pure refined Swan conductor ϑ , the log-break
of ρ⊗ ρ ′∨ is strictly smaller than b.

(ii) For any p-adic representations ρ and ρ ′ of Gk with finite local monodromy,
same pure log-break b, but different pure refined Swan conductor ϑ 6= ϑ ′, re-
spectively, ρ⊗ρ ′∨ has pure log-break b and pure refined Swan conductor ϑ−ϑ ′.

We also need the following easy fact about Galois representations.

(iii) For any homomorphism χ : FilblogGk/Filb+logGk→ Fp ↪→Qp(ζp)
×, there exist

a finite tamely ramified extension k ′ of k with naïve ramification degree e and
a representation ρχ of Gk′ with finite local monodromy, pure log-break eb,
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and pure refined Swan conductor, such that ρχ |FilblogGk/Filb+logGk
contains χ as a

direct summand.

Proof of (iii): The chosen p-th root of unity ζp in Remark 2.3.4 promotes χ to
the homomorphism

χ : FilblogGk/Filb+logGk→ Fp→Qp(ζp)
×

by identifying 1 with ζp. Since Gk/Filb+logGk is a profinite group, there exists a
normal subgroup H of Gk of finite index containing Filb+logGk , such that χ factors
through

I = FilblogGk/(H ∩FilblogGk).

Put ρ ′ = IndGk/H
I χ ; then ρ ′|FilbGk

contains χ as a direct summand. We may use (a)
to write ρ ′|Gk′

for some finite tamely ramified extension k ′ of k as the direct sum of
representations with pure refined Swan conductors. Then χ appears in at least one
of the direct summand, which we take to be our chosen ρχ .

Having established (iii), we define rsw to be the morphism sending χ to the
unique refined Swan conductor of ρχ , which is an element of

�1
Ok′
(log)⊗Ok′

π−eb
k′ κ̄ ∼=�

1
Ok
(log)⊗Ok π

−b
k κ̄,

via the identification in Lemma 2.3.6. This map is well-defined by (iv) below and it
is clearly a homomorphism. Its injectivity will follow from (v).

(iv) For any two representations ρχ and ρ ′χ satisfying (iii), they must have the same
refined Swan conductor.

Suppose the contrary, that is, ρχ and ρ ′χ have distinct pure refined Swan conductors
ϑ and ϑ ′. This in particular implies that ρχ⊗ρ ′∨χ has pure Swan conductor b by (ii).
However, the construction of ρχ and ρ ′χ implies that ρχ ⊗ ρ ′∨χ |Gk′

contains a direct
summand trivial on Fileb

logGk′ ; this is a contradiction.

(v) For two distinct homomorphisms χ, χ ′ : FilblogGk/Filb+logGk → Fp, the repre-
sentations ρχ and ρχ ′ given by (iii) have distinct refined Swan conductors.

Suppose the contrary. Then (i) implies that ρχ ⊗ ρ∨χ ′ would have log-break strictly
less than eb. However, ρχ ⊗ ρ∨χ ′ , when restricted to

FilblogGk/Filb+logGk = Fileb
logGk′/Fileb+

log Gk′,

has a direct summand isomorphic to χ ⊗χ ′∨, which is nontrivial. This is a contra-
diction.

We now prove the independence on the choice of the Dwork pi. If we choose
another Dwork pi, we would need to use another primitive p-th root of unity ζ i

p for
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some i ∈ 1, . . . , p− 1. On one hand, the refined Swan conductor is multiplied by
(ζ i

p − 1)/(ζp − 1)≡ i mod (ζp − 1). On the other hand, the p-adic representation

FilblogGk/Filb+logGk→Qp(ζp)
×

becomes χ i . Hence we need to take ρ⊗i
χ as our p-adic representation of Gk′ to

define the homomorphism rsw. This representation has refined Swan conductor
rsw(ρ⊗i

χ ) = i · rsw(ρχ ), which is the same as the refined Swan conductor of ρ
computed using the old Dwork pi. �

Remark 2.3.9. It is interesting to point out that the choice of a Dwork pi is related
to the choice of the Artin–Scheier `-adic sheaf in [Saito 2009]; they both amount
to choosing a primitive p-th root of unity. The difference is that we consider it as
an element in Qp whereas Saito viewed it as an element in Ql .

Proposition 2.3.10. Let k be a complete discrete valuation field of equal character-
istic p > 0. Then for b ∈Q>0, the conjugation action of

Fil0+logGk/FilblogGk on FilblogGk/Filb+logGk

is trivial. In other words, FilblogGk/Filb+logGk lies in the center of Fil0+logGk/Filb+logGk .

Proof. This proposition is proved in [Abbes and Saito 2003, Theorem 1]. We give
an alternative proof using differential modules.

It suffices to prove the following: for a p-adic representation ρ of Gk with finite
local monodromy and with pure log-break b, if it is absolutely irreducible under
any tamely ramified extension, then

ρ|FilblogGk/Filb+logGk

is a direct sum of a single character χ : FilblogGk/Filb+logGk→ O×. This is equivalent
to showing that the action of FilblogGk on ρ⊗ ρ∨ is trivial, and hence to showing
that the log-break of ρ⊗ ρ∨ is strictly smaller than b.

As usual, we may assume Hypothesis 2.1.9. By Theorem 2.3.7(a), the irreducibil-
ity condition on ρ implies that ρ must have pure refined Swan conductor and hence
the log-break ρ⊗ ρ∨ must be strictly less than b. We are done. �

Proposition 2.3.11. Keep the notation as in Situation 2.2.13. Then the refined Swan
conductor homomorphism rswk for k factors as

Hom(FilblogGk/Filb+logGk, Fp)−→ Hom(Fil
ek̃/kb
log G k̃/Fil

ek̃/kb+
log G k̃, Fp)

rswk̃
−−→�1

Ok̃
(log)⊗Ok̃

π−eb
k̃

κk̃alg . (2.3.12)

Proof. Keep the notation as in Proposition 2.2.14, let F̃ ′η be the completion of K̃ ′(U )
with respect to the η1/e-Gauss norm in U . Fix η0 ∈ (0, 1) such that IR(Eρ⊗F ′η)=η

b
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for η ∈ [η0, 1). Then (2.2.15) implies that, for any η ∈ [η0, 1)∩ pQ and for any
j ∈ {0, . . . ,m+ 1} such that IR∂ j ( f ∗Eρ ⊗ F̃ ′η)= IR(Eρ ⊗ F̃ ′η), we have

2∂ j ( f ∗Eρ ⊗ F̃ ′η)=


2∂ j (E⊗ F ′η) if j ∈ J,
eXU e−12∂0(E⊗ F ′η) if j = 0 and hence p - e,
U e2∂m+1(E⊗ F ′η) if j = m+ 1,

using Theorem 1.4.20 to compute the refined radii. The proposition follows. �

One may want to prove analogs of Theorem 2.3.7 and Proposition 2.3.10 for
refined Artin conductors. This however needs to take a bit more effort because there
may not be a representation of Gk with pure refined Artin conductor. Instead, we
reduce to the classical case, where the results for refined Artin conductors follows
from those for refined Swan conductors.

Theorem 2.3.13. Let k be a complete discrete valuation field of equal characteristic
p > 0.

(a) Choose the p-th root of unity ζp as in Remark 2.3.4. Then there exists an
injective homomorphism for any b ∈Q>1,

rar= rark : Hom(FilbGk/Filb+Gk, Fp)→�1
Ok
⊗Ok π

−b
k κ̄, (2.3.14)

such that, when viewing the left hand side as a subset of

Hom(FilbGk/Filb+Gk,Qp(ζp)
×)

via the identification of 1 ∈ Fp with ζp, we have, for any p-adic representation
ρ of Gk with finite local monodromy and with pure nonlog-break b, the images
of the summands of ρ|FilbGk

under rar exactly form the multiset of refined Artin
conductors of ρ. Moreover, this homomorphism does not depend on the choices
of the Dwork pi.

(b) For any b ∈Q>1, the conjugation action of

Fil1+Gk/FilbGk on FilbGk/Filb+Gk

is trivial. That is, FilbGk/Filb+Gk lies in the center of Fil1+Gk/Filb+Gk .

Proof. For both (a) and (b), we may assume Hypothesis 2.1.9. Moreover, we assume
that J is not empty because otherwise we are in the classical case, and both (a) and
(b) follow from their log-version counterpart: Theorem 2.3.7 and Proposition 2.3.10,
respectively.

We perform a base change similar to the one in Lemma 2.2.9. Let k ′ be the
completion of k(x1, . . . , xm) with respect to the (1, . . . , 1)-Gauss norm and let k̃
be the completion of

k ′
(
(b j + x jπk)

1/pn
, x1/pn

j ; n ∈ N; j ∈ J
)
,
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equipped with the uniformizer πk̃=πk . It is in fact a complete discrete valuation field
with perfect residue field. By Lemmas 2.2.9 and 2.2.11, the natural homomorphism
G k̃→ Gk induces a surjective homomorphism

FilaG k̃/Fila+G k̃ −→ FilaGk/Fila+Gk .

Dualizing this gives an injective homomorphism

µ : Hom(FilaGk/Fila+Gk, Fp)→ Hom(FilaG k̃/Fila+G k̃, Fp).

For ρ a representation of Gk with finite local monodromy and with pure nonlog-
break b we let ρ̃ denote the representation G k̃→ Gk

ρ
→ GL(Vρ). Let K ′′ denote

the completion of K ′(X J ) with respect to the (1, . . . , 1)-Gauss norm, where X j is
a lift of x j for j ∈ J . Let K̃ denote the completion of

K ′′
(
(B j + X j T )1/pn

, X1/pn

j ; n ∈ N, j ∈ J
)
.

Let f : A1
K̃
[η0, 1)→ A1

K ′[η0, 1) denote the natural morphism. Then f ∗Eρ is the
differential module associated to ρ̃. Let ∂̃ denote the differential operator on f ∗Eρ
dual to the basis dT . Similar to (2.2.10), we have

∂̃ = ∂0− X1∂1− · · ·− Xm∂m .

If we let F̃η denote the completion of K̃ (T ) with respect to the η-Gauss norm, we
have

R∂̃( f ∗E⊗ F̃η)= min
j∈J+

{
R∂ j (E⊗ F ′η)

}
.

Hence ρ̃ has pure nonlog-break b and, by Theorem 1.4.20, its multiset of refined
Artin conductors is

rar(ρ̃)=
{
(θ0− X1θ1−· · ·− Xmθm)dπk

∣∣ θ0dπk+ θ1db1+· · ·+ θmdbm ∈ rar(ρ)
}
.

In other words, if we consider the κ̄-linear injective homomorphism

λ :�1
Ok
⊗Ok π

−b
k κ→ π−b

k κk̃algdπk

given by λ(db j ) = −X j dπk and λ(dπk) = dπk , then rar(ρ̃) = λ(rar(ρ)). This
together with the injectivity of µ reduce (a) and (b) for Gk to that of G k̃ , which is
already known as we explained earlier. In particular, we have λ◦rswk = rswk̃ ◦µ. �

2.4. Multi-indexed ramification filtrations for higher local fields. When k is an
n-dimensional local field, the refined Artin and Swan conductors give more refined
filtrations on the Galois group Gk , indexed by Qn with lexicographic order. We
restrict ourselves to the equal characteristic p > 0 case.
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Definition 2.4.1. We say that a complete discrete valuation field k of character-
istic p > 0 is an (m + 1)-dimensional local field if there is a chain of fields
k = km+1, km, . . . , k0, where ki+1 is a complete discrete valuation field with residue
field ki for i = 0, . . . ,m. Contrary to most literature, we do not assume that k0 is a
perfect field. Let {b j } j∈J be a set of lifts of a p-basis of k0 to Ok .

An (m+1)-tuple of elements t0, . . . , tm ∈ k is called a system of local parameters
of k if ti ∈ Ok is a lift of a uniformizer of km+1−i all the way up to k. Such a choice
gives a (noncanonical) isomorphism k ' k0((tm)) · · · ((t0)). In this case, we have

�1
Ok′
(log)=

m⊕
i=0

Ok′
dti
ti
⊕

⊕
j∈J

Ok′
db j

b j
and �1

Ok′
=

m⊕
i=0

Ok′ dti ⊕
⊕
j∈J

Ok′ db j .

Equip Qm+1 with the lexicographic order: i=(i1, . . . , im+1)< j=( j1, . . . , jm+1)

if and only if, for some l ≤ m+ 1,

il < jl, il+1 = jl+1, . . . , im+1 = jm+1.

For a∈Q, we use Qm+1
>a to denote the subset of Qm+1 consisting of i=(i1, . . . , im+1)

such that im+1 > a.
Given a system of local parameters, we define a multi-indexed valuation as

follows, denoted by v= (v1, . . . , vm+1) : k×→Zm+1
⊂Qm+1, where vm+1= vkm+1

and recursively we have, downwards from i = m + 1 to i = 1, that vi−1(α) =

vki−1(αi−1) with αi−1 equal to the reduction of αi t
−vi (αi )
m+1−i in ki−1. Note that the

definition of v depends on the choice of local parameters t0, . . . , tm .

Definition 2.4.2. For λ=
∑m

i=0 αi dti +
∑

j∈J β j db j ∈�
1
Ok
⊗Ok k, we set

vnlog(λ)=min{v(α0), . . . , v(αm), v(β j ); j ∈ J }.

This gives a multi-indexed valuation on �1
Ok
⊗Ok t−im+1

0 κ for im+1 ∈Q.

For λ=
∑m

i=0 αi
dti
ti
+
∑

j∈J β j
db j
b j
∈�1

Ok
(log)⊗Ok k, we set

vlog(λ)=min{v(α0), . . . , v(αm), v(β j ); j ∈ J }.

This gives a multi-indexed valuation on �1
Ok
(log)⊗Ok t−im+1

0 κ for im+1 ∈Q.
For i = (i1, . . . , im+1)∈Qm+1

>1 , we define Fili Gk to be the subgroup of Filim+1 Gk

given by the intersection of the kernels of characters

χ : Filim+1 Gk→ Filim+1 Gk/Filim+1+Gk→ Fp

for which vnlog(χ)>−i . We similarly define Fili Gk for i = (i1, . . . , im+1)∈Qm+1
>0

by adding subscripts log to the definition above.
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Remark 2.4.3. The abstract filtrations do not depend on the choices of local pa-
rameters, but the indexings do. Set OK = {x ∈ K : v(x)≥ (0, . . . , 0)}. It might be
more natural to index the above filtrations by “rational powers of fractional ideals
of K ” of the form I 1/n , where I is an OK -submodule of K containing OK , n is an
integer, and I 1/n is equivalent to I ′1/n′ if I n′

= I ′n as OK -submodules of K .

Remark 2.4.4. When k0 is a finite field, this filtration is expected to be compatible
with an easily defined filtration on the Milnor K -groups via class field theory for
higher local fields. This may be verified by comparing the filtration on the Milnor
K-groups with Kato’s refined Swan conductors, which is equivalent to Saito’s
definition by [Abbes and Saito 2009, Theorem 9.1.1] and hence to our definition by
Theorem 3.4.1 proved later. For more along this line, the reader may refer to the
recipe in Kato’s masterpiece [Kato 1989].

3. Comparison with Saito’s definition

In this section, we compare our definition of the refined Swan conductor homomor-
phism with the one given by Saito in [Saito 2009]. Since the reader who is only
interested in one side of the story may use this result (Theorem 3.4.1) as a black box,
we present the proof assuming that the reader is familiar with the definition of arith-
metic ramification filtrations; see for instance [Saito 2009, Section 1; Xiao 2010].

The proof of the comparison theorem is of a geometric nature. We explain the
rough idea here. We first realize the given finite extension l of k as the corresponding
extension of function fields of a finite étale extension of smooth affine varieties
Y → X . Our main object is some version of infinitesimal neighborhood of the
generic fiber over k of the diagonal embedding of Y into Y × Y , viewed as a
rigid analytic space over k. The refined Swan conductor homomorphism defined
by Saito makes use of the stable formal model of such an object, whereas our
definition using differential modules is closely related to some object over the
generic point of a smooth model over OK lifting the aforementioned rigid space.
The crucial calculation we performed in Section 3.3 relates these objects, in which
case it boils down to some explicit computation on a higher dimensional analog of
the Artin–Scheier cover, and on the associated `-adic sheaves and overconvergent
F-isocrystals.

We assume p > 0 is a prime number throughout this section.

3.1. Review of Saito’s definition. In this subsection, we review the definition of
the ramification filtrations and the refined Swan conductors defined by Abbes and
Saito in [Abbes and Saito 2002; 2003; Saito 2009]. Instead of introducing the
general construction, we will focus on a special case which is used in the comparison
theorem. For more details and a complete treatment, one may consult [Saito 2009].
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Construction 3.1.1. Let l be a finite Galois extension of k. We consider a closed
immersion Spec Ol → P into a smooth (affine) scheme P over Spec Ok . Put
I= Ker (OP → Ol).

For r = a/b ∈ Q with a, b > 0, let P [a/b]Ok
→ P be the blowup at the ideal

Ib
+ma

k OP and let P (a/b)Ok
⊂ P [a/b]Ok

be the complement of the support of(
IaOP [a/b]Ok

+mb
kOP [a/b]Ok

)
/mb

kOP [a/b]Ok
.

Let P (r)Ok
be the normalization of P (a/b)Ok

; it does not depend on a and b but only on
their ratio. Let P (r)k and P (r)κ denote the generic fiber and the special fiber of P (r)Ok

,
respectively. Let P̂ (r)k denote the generic fiber of completing P (r)Ok

along P (r)κ . The
immersion Spec Ol→ P is uniquely lifted to an immersion Spec Ol→ P (r)Ok

.
By the finiteness theorem of Grauert–Remmert cited in [Abbes and Saito 2003,

Theorem 1.10], there exists a finite separable extension k ′/k of naïve ramification
degree e = ek′/k such that the normalization P (er)

Ok′
of P (r)Ok

×Ok Ok′ has reduced
geometric fibers over Spec Ok′ , which we call a stable model of P (r)Ok

. We put

P (r)κ̄ = P (er)
Ok′
×Ok′

κ̄;

this is called the stable special fiber of P (r)Ok
and it does not depend on the choice

of k ′.

We defer the discussion of the properties of this construction until later when we
have a concrete example at hand.

For the rest of this section, we make the following geometric assumption.

Hypothesis 3.1.2 (Geom). There exists an affine smooth variety X over k0 and an
irreducible divisor D, smooth over k0 with generic point ξ , such that Ok ∼= O∧X,ξ ,
where the latter is the completion of the local ring at ξ . In particular, Hypothesis 2.1.9
is fulfilled.

Remark 3.1.3. This hypothesis is essentially the same as the hypothesis of the
same name in [Saito 2009, p. 786], except that our k is the completion of the
Henselian local field considered in Saito’s paper.

Construction 3.1.4. After replacing X (and hence D) by an étale neighborhood of
ξ if necessary, there exists a finite flat morphism f : Y → X of smooth varieties
over k0 such that V = Y ×X U →U = X\D is finite étale with Galois group Gl/k

and that Y ×X Spec O∧X,ξ = Spec Ol .
Let (X× X)′ be the blowup of X×k0 X along D×k0 D, and let (X× X)∼ denote

the complement of the proper transforms of X ×k0 D and D ×k0 X in (X × X)′.
The diagonal embedding 1X : X → X ×k0 X naturally lifts to an embedding
1̃X : X→ (X × X)∼. Now, pulling back the whole picture along f : Y → X gives
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the commutative diagram

(Y × X)∼
f×1 //

πY

��

(X × X)∼

πX

��

Y
f //

1Y **

1̃Y
44

X
1X

**

1̃X

44

Y ×k0 X
f×1

//

p1

��

X ×k0 X

p1

��

p2 // X

Y
f // X

(3.1.5)

where (Y × X)∼ is the fiber product of the big square, and all parallelograms are
Cartesian.

Put

P = (X×X)∼×p2◦πX ,X Spec O∧X,ξ and Q= (Y×X)∼×p2◦πX◦( f×1),X Spec O∧X,ξ .

Taking the Cartesian product of the top part of (3.1.5) with Spec O∧X,ξ = Spec Ok

over X ×k0 X along p2 then gives the following commutative diagram.

Spec Ol

f
��

1̃Y // Q

f×1
��

Spec Ok
1̃X // P

p2 // Spec Ok

(3.1.6)

Let I denote the ideal of the immersion 1̃X . We will view P and Q as schemes
over Ok via p2.

We can now apply Construction 3.1.1 to the embeddings 1̃X and 1̃Y to define

P (er)
O′k

, P (er)
k′ , P̂ (er)

k′ , P (er)
κ̄ and Q(er)

O′k
, Q(er)

k′ , Q̂(er)
k′ , Q(er)

κ̄ ,

respectively, where k ′/k is a finite separable extension of naïve ramification degree
e. We still use p1 to denote the morphism P (er)

Ok′
→ P

p1
−→ Spec Ok . By functoriality

of Construction 3.1.1, we have a morphism f (r) : Q(er)
Ok′
→ P (er)

Ok′
.

Remark 3.1.7. The field extension k ′ serves as the role of a “coefficient field”; we
only use it to provide reasonable integral structures of our spaces over Ok′ , and also
to make er an integer. We can make k ′ as large as we need.

In contrast, the extension l/k pulled back from p1 : X ×k0 X→ X encodes the
arithmetic information.

We collect together some properties of these spaces.
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Proposition 3.1.8. Let k ′/k be a finite separable extension of naïve ramification
degree e.

(a) When er is an integer, the space P (er)
Ok′

is defined to be
∑

i≥0 π
−ier
k′ ·I

i
⊂OP⊗Ok k ′.

It is smooth over Ok′ , and its closed fiber P (er)
κk′ can be canonically identified

with the κk′-vector space �1
Ok
(log)⊗Ok π

−er
k′ κk′ . The rigid space

P̂ (er)
k′ is isomorphic to Sp

(
k ′〈π−er−e

k′ δ0, π
−er
k′ δJ 〉

)
,

where δ0, . . . , δm form a dual basis of �1
Ok

.

(b) The generic fiber Q(er)
k′ of Q(er)

Ok′
is isomorphic to P (er)

k′ ⊗p1,k l. In particular,
Q(er)

k′ is finite and étale over P (er)
k′ with Galois group Gl/k , and the same is

true for
Q̂(er)

k′ over P̂ (er)
k′ .

(c) Let Spf OQ∧ be the completion of Q along Spec Ol . If er is an integer, then

Q̂(er)
k′ is the affinoid variety X j

log(OQ∧→ Ol)k′

defined in [Abbes and Saito 2003, Section 4.2] for j = r .

(d) If the highest log-break blog(l/k) is less than or equal to r , then Q(r)
κ̄ is an

element of the category (FE/P (r)κ̄ )alg, defined below in Definition 3.1.9.

(e) The highest log-break blog(l/k) is strictly less than r if and only if the number
of connected components of Q(r)

κ̄ is [l : k].

Proof. For (a), see [Saito 2009, Lemma 1.10]. The claim (b) follows from the
fact that f : V →U is finite and étale with Galois group Gl/k . For (c), see [ibid.,
Example 1.21]. The statements (d) and (e) follow from [ibid., Lemma 1.13 and
Theorem 1.24]. �

Definition 3.1.9. For an κ̄-vector space W of finite dimensional, let (FE/W )alg be
the full subcategory of (FE/W ) whose objects are finite étale morphisms g : Z→W
such that Z admits a structure of algebraic group scheme and such that g is a
morphism of algebraic groups.

Remark 3.1.10. By the argument just before [ibid., Lemma 1.23], the category
(FE/W )alg is a Galois category associated to the Galois group π alg

1 (W ), which is
a quotient of the fundamental group π1(W ). This group can be identified with
the Pontrjagin dual of the extension group Ext1(W, Fp) in the category of smooth
algebraic groups over κ̄ . The map W∨ = Homκ̄(W, κ̄)→ Ext1(W, Fp) sending a
linear form f :W → A1

κ̄ to the pullback along f of the Artin–Scheier sequence

0→ Fp→ A1
κ̄

t→t p
−t

−−−−→ A1
κ̄→ 0
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is an isomorphism.

Proposition 3.1.11. We have a surjective homomorphism

π
alg
1 (P (b)κ̄ )� FilblogGk/Filb+logGk;

it induces an injective homomorphism

rsw′ : Hom(FilblogGk/Filb+logGk, Fp)−→�1
Ok
(log)⊗Ok π

−b
k κ̄ .

Proof. For the first half of the proposition, see [Saito 2009, Theorem 1.24]. The
second half follows from Remark 3.1.10. �

In the following special case, we give a more detailed description of these spaces.

Situation 3.1.12. Let l/k be a finite totally ramified Galois extension, which is
not tamely ramified. Assume that the highest log-break b = blog(l/k) is a positive
integer. Assume moreover that Filb−1

log Gk/(Filb−1
log Gk ∩ Gl) ' Fp; in particular,

the second highest log-break blog(l/k; 2) is strictly less than blog(l/k)− 1. By
Proposition 3.1.11, Q(b)

κ̄ consists of [l : k]/p copies of the same Artin–Scheier cover
of P (b)κ̄ , at least if we forget about the algebraic group structure. Assume that this
cover is given by

z̄ p
− z̄+

(
ᾱ0π

−b−1
k δ0+ ᾱ1π

−b
k δ1+ · · ·+ ᾱmπ

−b
k δm

)
= 0 (3.1.13)

for some ᾱJ+ ∈ κ̄ , where the coordinates of P (b)κ̄ are given by π−b−1
k δ0 and π−b

k δJ .
These elements ᾱ0, . . . , ᾱm are determined up to multiplication by i ∈ F×p , in
accordance with the choice of z̄ up to multiplication by the same i ∈ F×p .

Let k ′/k be a finite separable extension of ramification degree e > 1, such that
Q(eb)

Ok′
is a stable model. By possibly enlarging k ′, we may assume that ᾱJ+ ∈ κk′

and that Q(eb)
κk′ is the disjoint union of [l : k]/p copies of the aforementioned Artin–

Scheier cover of P (eb)
κk′ .

Lemma 3.1.14. The space Q(eb)
Ok′

is the disjoint union of [l : k]/p copies of the same
space R(eb)

Ok′
. Let R̂(eb)

Ok′
denote the completion of R(eb)

Ok′
along its special fiber and let

R̂(eb)
k′ denote the generic fiber, viewed as a rigid analytic space. Then Q̂(eb−1)

k′ is
the disjoint union of [l : k]/p copies of a same space R̂(eb−1)

k′ , which is the normal
closure of P̂ (eb−1)

k′ in R̂(eb)
k′ and is finite and étale over P̂ (eb−1)

k′ .

Proof. There is a Gl/k-equivariant one-to-one correspondence between the con-
nected components of Q(eb)

κk′ and the connected components of Q(eb)
Ok′

.
Since the second highest log-break blog(l/k; 2) is strictly less than blog(l/k)− 1,

by [Abbes and Saito 2002, Remark 3.13], the number of connected components
of Q̂(eb−1)

k′ is [l : k]/p. Note that each connected component of Q̂(eb−1)
k′ , which is
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automatically finite and étale over P̂ (eb−1)
k′ , can be also characterized as the normal

closure of P̂ (eb−1)
k′ in R̂(eb)

k′ ; this normal closure is the space R̂(eb−1)
k′ we sought. �

Proposition 3.1.15. Let αJ+ ⊂ Ok′ lift ᾱJ+ ⊂ κk′ . We can choose a lift z of z̄ to
R̂(eb)

Ok′
such that its minimal polynomial over P̂ (eb)

Ok′
= Spf Ok′〈π

−eb−e
k′ δ0, π

−eb
k′ δJ 〉 is

z p
− z+

(
α0π

−eb−e
k′ δ0+α1π

−eb
k′ δ1+ · · ·+αmπ

−eb
k′ δm

)
= 0. (3.1.16)

Then the element z generates R̂(eb)
Ok′

over P̂ (eb)
Ok′

. Moreover, the element z extends to

a section over R̂(eb−1)
k′ and it generates R̂(eb−1)

k′ over P̂ (eb−1)
k′ .

Proof. We first pick any lift z′ of z̄ to R̂(eb)
Ok′

; it must satisfy an equation of the form

z′p + a1z′p−1
+ · · · + ap = 0, where a1, . . . , ap ∈ Ok′〈π

−eb−e
k′ δ0, π

−eb
k′ δJ 〉 and the

reduction of this equation is exactly (3.1.13). For the given αJ+ ⊂ Ok′ , we have

ε = z′p − z′+
(
α0π

−eb−e
k′ δ0+α1π

−eb
k′ δ1+ · · ·+αmπ

−eb
k′ δm

)
∈ πk′OR̂(eb)

Ok′
.

Now, z = z′+ ε+ ε p
+ ε p2

+ · · · converges and satisfies (3.1.16).
Since z generates a subalgebra of OR̂(eb)

Ok′
which is finite and étale over OP̂(eb)

Ok′
of

the same degree p, this subalgebra has to equal OR̂(eb)
Ok′

.

For the similar statement for eb− 1 in place of eb, we argue as follows. Since
R̂(eb−1)

k′ is the normal closure of P̂ (eb−1)
k′ in R̂(eb)

k′ by Lemma 3.1.14, the element z
extends to a section over R̂(eb−1)

k′ with the same minimal polynomial (3.1.16). Again,
since z generates a subalgebra of OR̂(eb−1)

k′
which is finite and étale over OP̂(eb−1)

k′
of

same degree, it has to generate the whole ring. This finishes the proof. �

3.2. Lifting rigid spaces. The definition of the refined Swan conductor homomor-
phism using differential modules makes use of spaces and modules over the field
K . Following the idea of [Xiao 2010], we formally lift the picture of the previous
subsection from k to some annulus A1

K [η, 1). This construction is a local version
of Berthelot’s definition [1996] of rigid cohomology.

Construction 3.2.1. Replacing X by an open Zariski neighborhood of ξ if neces-
sary, there exists a finite morphism f : Y → X between two affine smooth formal
schemes of topologically finite type over OK0 , such that f reduces to f modulo
p and such that the induced map Y \ f −1(D)→ X \ D is finite étale with Galois
group Gl/k . In particular, the special fibers of X and Y are X and Y , respectively.

Let NX : X→ X ×Spf OK0
X be the diagonal embedding, and put NY = (id, f ) :

Y → Y ×Spf OK0
X . Let p1 and p2 denote the projections from X ×Spf OK0

X to the
first and the second factors, respectively.

Let X∧ denote the completion of X ×Spf OK0
X along the diagonal embedding

NX ; it can be identified with the completion of the cotangent bundle of X along its
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zero section. Set Y∧= X∧⊗p1,X Y ; it is the same as the completion of Y×Spf OK0
X

along the embedding NY .
For η∈ (0, 1), we set Rint

K ,η to be the subring of R
η

K consisting of elements having
1-Gauss norm ≤ 1; it is complete with respect to the η′-Gauss norm for η′ ∈ [η, 1].
On one hand, this ring does not give rise to a formal scheme; on the other hand, it is
good to keep the geometric intuition. Hence we introduce the geometric incarnation
Sp Rint

K ,η, which is just a symbol. Any morphism between geometric incarnations
should be thought of as ring homomorphisms; in particular, the fiber product is
simply the (completed) tensor product. We also point out that we will only consider
affine schemes and there is no question of gluing.

We may compare the following commutative diagram with (3.1.5).

Y
f //

NY

��

X

NX

��
Y∧

f×1 //

��

X∧

p1

��

p2 // X Sp Rint
K ,η

ioo

Y
f // X

(3.2.2)

where i : Sp Rint
K ,η→ X is the geometric incarnation of the natural homomorphism

O∧X,ξ →Rint
K ,η, for some η ∈ (0, 1)∩ pQ. We have

Sp Rint
K ,η×X Y = Sp Rint

L ,η1/el/k

for η sufficiently close to 1−. Put

Pη = X∧×p2,X,i Sp Rint
K ,η and Qη = Y∧×p2◦( f×1),X,i Sp Rint

K ,η.

Again, both Pη and Qη should be thought of as geometric incarnations of OPη and
O Qη

, the completed tensor products of corresponding rings of functions. We then
have the following Cartesian diagram

Sp Rint
L ,η1/el/k

f
��

NY // Qη

f×1

��
Sp Rint

K ,η
NX // Pη

(3.2.3)

Lemma 3.2.4. The morphism p1 : Pη → Sp(Rint
K ,η) is given by the continuous

homomorphism ψ : Rint
K ,η → Rint

K ,η[[δ0/T, δ1, . . . , δm]] such that ψ(T ) = T + δ0,
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ψ(B j )= B j + δ j for j ∈ J . More precisely, for x ∈Rint
K ,η, we have

ψ(x)=
+∞∑

eJ+=0

∂
eJ+

J+ (x)
(eJ+)!

δ
eJ+

J+ .

Proof. The first statement follows from the description of X∧ above and the second
statement follows by the uniqueness of such a homomorphism. �

Construction 3.2.5. Let k ′/k be a finite separable extension of naïve ramification
degree e. Since Rint

K is Henselian, there exists Rint
K ′ corresponding to the extension

k ′/k, where K ′ is the fraction field of a Cohen ring of κk′ . For η sufficiently close
to 1−, the extension Rint

K ′ of Rint
K descends to a finite étale algebra Rint

K ′,η1/e over
Rint

K ,η for some η sufficiently close to 1. Fix such an η. Let T ′ denote the coordinate
of Rint

K ′,η1/e .
Let r ∈ N (be a proxy of eb or eb− 1). Let

P (r)K ′,η = Sp
(
Rint

K ′,η1/e〈T ′−r−eδ0, T ′−rδJ 〉
)

be the geometric incarnation of a closed-disc bundle (with changing radii) over
Sp Rint

K ′,η1/e ; it may be viewed as a subspace of Pη (in the sense of geometric
incarnation). Let Q(r)

K ′,η be the preimage (in the sense of geometric incarnation) of
P (r)K ′,η under the morphism Qη→ Pη.

Proposition 3.2.6. Let ρ be a p-adic representation of Gl/k . Let

Fρ =
(
( f × 1)∗O Qη

⊗ Vρ
)Gl/k

be the differential module over Pη and for r ∈ N, let

F(r)
ρ,K ′ =

(
( f × 1)∗O Q(r)

K ′,η
⊗ Vρ

)Gl/k

be the corresponding differential module over P (r)K ′,η. Then Fρ and F(r)
ρ,K ′ are the

pullbacks of Eρ along p1 : Pη→ Sp Rint
K ,η and p1 : P (r)K ′,η→ Sp Rint

K ,η, respectively.

Proof. This follows from the following Gl/k-equivariant Cartesian diagram of
geometric incarnated morphisms.

Q(r)
K ′,η

//

f×1
��

Qη
p1 //

f×1

��

Sp Rint
L ,η1/el/k

f
��

P (r)K ′,η
// Pη

p1 // Sp Rint
K ,η �

Corollary 3.2.7. For a ∈ Q<b and η ∈ (0, 1) ∩ pQ, let Fη,a denote the comple-
tion of K (T, δJ+) with respect to the (η, ηa+1, ηa, . . . , ηa)-Gauss norm and let
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F ′η,a = Fη,a ⊗Rint
K ,η

Rint
K ′,η1/e . Assume that ρ has pure log-break b and pure refined

Swan conductor

ϑ = π−b
k

(
ᾱ0

dπk
πk
+ ᾱ1

db̄1

b̄1
+ · · ·+ ᾱm

db̄m

b̄m

)
,

where ᾱJ+ ∈ κ̄ . If r < ea < eb and η is sufficiently close to 1−, then Fρ ⊗ F ′η,a =
F(r)
ρ,K ′ ⊗ F ′η,a as a ∂/∂δJ+-differential module has pure intrinsic radii ηb and pure

refined intrinsic radii

T−b
(
ᾱ0

dδ0
T
+ ᾱ1

dδ1
B1
+ · · ·+ ᾱm

dδm
Bm

)
.

Proof. By Lemma 3.2.4 and Proposition 3.2.6, F(r)
ρ,K ′ is the pullback of Eρ along the

multidimensional analog of the generic point homomorphism as in Corollary 1.4.21.
However, the calculation of the refined ∂ j -radii can be computed independently for
each of the ∂ j . Hence the statement follows from Corollary 1.4.21. �

Before proceeding, we briefly recall the lifting construction in [Xiao 2010,
Section 1], which lifts a rigid analytic space over κk′ to a rigid analytic space over
A1

K ′[η
1/e, 1) for η ∈ pQ

∩ (0, 1) sufficiently close to 1−.

Construction 3.2.8. Let Z be a rigid analytic space over k ′ with ring of analytic
functions Ak′ = k ′〈u1, . . . , us〉/Ik′ . Let IK ′ ⊂ OK ′〈u1, . . . , us〉((T ′)) be an ideal
such that OK ′〈u1, . . . , us〉((T ′))/IK ′ is flat over OK ′ and IK ′ ⊗OK ′

k ′ = Ik′ . We call
Xη = Spf

(
Rint

K ′,η〈u1, . . . , us〉/IK ′
)

a lifting space of X .

Proposition 3.2.9. Fix r ∈ N.

(a) The space Q(r)
K ′,η is a lifting space of Q̂(r)

k′ .

(b) Suppose Q(r)
Ok′

is a stable model and r = eb or eb− 1. Then for η sufficiently
close to 1−, Q(r)

K ′,η has [l : k]/p connected components, each of which is
isomorphic to a formal scheme R(r)K ′,η finite and étale over P (r)K ′,η of degree p.

(c) Fix a Dwork pi π = (−p)1/(p−1) and fix α J+ ⊂ Rint
K ′(π),η1/e lifts of αJ+ . By

making η closer to 1− if needed, we may choose a lift z of z to R(r)K ′(π),η whose
minimal polynomial over P (r)K ′,η is of the form

1
pπ
(
(1+π z)p

−1− pπ(α0T ′−eb−eδ0+α1T ′−eb
+· · ·+αm T ′−eb )

)
= 0. (3.2.10)

Proof. The first statement follows from the construction. The second statement
follows from [Xiao 2010, Proposition 1.2.11]; the fact that all the connected com-
ponents are isomorphic to the same R(r)K ′(π),η is a corollary of (c), proved below.

For (c), pick a lift z1 of z to R(r)K ′(π),η whose minimal polynomial reduces to
(3.1.16) modulo π . (Note that K is absolutely unramified.) We define the following
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substitution process. Assume that we have defined zi . We set

λi =
1

pπ
(
(1+π zi )

p
− 1− pπ(α0T ′−eb−eδ0+α1T ′−eb

+ · · ·+αm T ′−eb)
)
.

and set zi+1 = zi −λi . Hence we have

λi+1 =
1

pπ
(
(1+π zi −πλi )

p
− (1+π zi )

p
+ pπλi

)
=
(
1− (1+π zi )

p−1)λi +

p−1∑
n=2

1
pπ

( p
n

)
(1+π zi )

p−n(−πλi )
n
+ (−1)p−1λ

p
i .

Since |λ1|1 ≤ p−1/(p−1), by continuity, |λ1|η < 1 for η ∈ [η0, 1] for some η0

sufficiently close to 1−. Thus,

|λi+1|η ≤max
{

p−1/(p−1)
|λi |η, |λi |

p
η

}
for η ∈ [η0, 1).

As a consequence, this substitution process converges with respect to all η-Gauss
norms for η ∈ [η0, 1]. The limit z = limi→+∞ zi satisfies (3.2.10). By the same
argument as in Proposition 3.1.15, the limit z generates R(r)K ′(π),η over P (r)K ′(π),η when
η is sufficiently close to 1−. �

3.3. Dwork isocrystals. In this subsection, we single out a calculation of refined
radii for the differential modules coming from a higher dimensional Artin–Scheier
cover. This is the heart of the comparison Theorem 3.4.1. We will state it in a
slightly general form because it has its own interest in the study of differential
modules.

Hypothesis 3.3.1. In this subsection, let K be a complete discrete valuation field
of characteristic zero, containing π . Let κ denote its residue field, which has
characteristic p > 0.

Situation 3.3.2. Let P denote the formal scheme Spf Rint
K ,η〈δ0, . . . , δm〉, and let T

be the coordinate of Rint
K ,η. Let R be a finite extension of P generated by z satisfying

the relation
(1+π z)p

= 1+ pπT−r (α0δ0+ · · ·+αmδm),

where r ∈N and α j ∈Rint
K ,η for j = 1, . . . ,m. Let α j ∈ κ be the reduction of α j for

any j . We assume that not all α j are zero. Let f : R→ P be the natural morphism,
which is finite and étale.

Construction 3.3.3. We reproduce a multidimensional version of the construction
in [Kedlaya 2005, Lemma 5.4.7]. The pushforward f∗O Q decomposes as the direct
sum of p differential modules of rank 1, with respect to ∂ j = ∂/∂δ j for j = 0, . . . ,m.

Let Ei be the differential module given by (1+π z)i for i = 1, . . . , p− 1. (The
trivial submodule of f∗O Q is not of interest to us.)
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Notation 3.3.4. For η ∈ (0, 1), let Fη be the completion of K (T, δ0, . . . , δm) with
respect to the (η, 1, . . . , 1)-Gauss norm.

Proposition 3.3.5. For η sufficiently close to 1−, the intrinsic radius IR(Ei ⊗ Fη)
is equal to ηr and the refined intrinsic radius of Ei for i = 1, . . . , p− 1 is given by

I2(Ei ⊗ Fη)=
{
iπT−r (α0dδ0+ · · ·+αmdδm)

}
.

Proof. Since

p
d(1+π z)i

(1+π z)i
= i

d
(
1+ pπT−r (α0δ0+ · · ·+αmδm)

)
1+ pπT−r (α0δ0+ · · ·+αmδm)

,

Ei is isomorphic to a differential module given by

∇v = iπT−r(1+ pπT−r (α0δ0+ · · ·+αmδm)
)−1
v⊗

(
α0dδ0+ · · ·+αmdδm

)
.

Fix j = 0, . . . ,m. Using the proof of [Kedlaya 2005, Lemma 5.4.7], when η is
sufficiently close to 1− (e.g., η > p−1/r ), viewed as a ∂ j -differential module, this
is the same as

∂ jw j = iπα j T−rw j ,

where w j is a section of Ei , dependent on j . Hence ∂n
j (w j )= (iπα j T−r )nw j , and

the proposition follows immediately. �

3.4. Comparison. In this subsection, we assemble the results from previous sub-
sections to prove the following comparison theorem.

Theorem 3.4.1. Assume Hypothesis (Geom). Then for b∈Q>0, the homomorphism
rsw :Hom(FilblogGk/Filb+logGk, Fp)→�1

k(log)⊗π−b
k κ̄ in Theorem 2.3.7 is the same

as the homomorphism rsw′ in Proposition 3.1.11.

Proof. Let k̃ be as in Proposition 2.2.14. By [Saito 2009, Lemma 1.22], rsw′ for k
factors as

Hom(FilblogGk/Filb+logGk, Fp)→ Hom(Fil
ek̃/kb
log G k̃/Fil

(ek̃/kb)+
log G k̃, Fp)

rsw′
k̃

−−→�1
Ok̃
(log)⊗Ok̃

π
−ek̃/kb

k̃
κk̃alg .

The same factorization is also valid for rsw as in (2.3.12). Hence we may choose
ek̃/k divisible by the denominator of b and reduce to the case when b is an integer.
We also remark that, for the same reason, we may feel free to replace k by a finite
tamely ramified extension.

Fix ζp a p-th root of unity. Let χ : FilblogGk/Filb+logGk → Fp be a nontrivial
character and put

rsw′(χ)= π−b
k

(
ᾱ0

dπk
πk
+ ᾱ1db̄1+ · · ·+ ᾱmdb̄m

)
,
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where ᾱ0, . . . , ᾱm ∈ κ . By identifying 1 ∈ Fp with ζp ∈ Qp(ζp), we get a homo-
morphism

FilblogGk/Filb+logGk
χ
→ Fp→Qp(ζp)

×
;

we still use χ to denote the composition. By the argument and the result of
Theorem 2.3.7 and by possibly replacing k by a finite tamely ramified extension,
we can find a p-adic representation ρ of Gk with finite image and pure log-break b
such that ρ|FilblogGk

is a direct sum of copies of χ . Moreover, we may assume that ρ
is irreducible when restricted to any finite tamely ramified extension of k ′ of k. The
representation ρ factors exactly through l/k, a finite Galois extension. It must be
true that FilblogGk/Gl ∩FilblogGk ' Fp. By possibly making another tamely ramified
extension of k, we may assume that the second highest log-break of l/k is strictly
less than b− 1; thus Filb−1

log Gk/Gl ∩Filb−1
log Gk ' Fp.

We shall now use the results and notation from previous subsections. By
Proposition 3.2.9, Q(eb−1)

K ′,η is a disjoint union of [l : k]/p copies of R(eb−1)
K ′,η , which

is finite and étale over P (eb−1)
K ′,η , generated by z with minimal polynomial (3.2.10).

(Here, we made a choice of z and z in accordance with the algebraic group structure
on Qb

κ̄ ; see the remarks after (3.1.13).) By Proposition 3.3.5, this implies that
Feb−1
ρ,K ′ ⊗ F ′η,b−1/2e as η→ 1− has pure refined intrinsic radii

πT−b
(
ᾱ0

dδ0
T
+ ᾱ1dδ1+ · · ·+ ᾱmdδm

)
.

(Here we made a choice of Dwork pi π so that π ≡ ζp − 1 mod (ζp − 1)2 as in
Remark 2.3.4.) By Corollary 3.2.7, the refined Swan conductor of Eρ has to be
π−b

k (ᾱ0
dπk
πk
+ ᾱ1db̄1+ · · ·+ ᾱmdb̄m), the same as rsw′. �

Remark 3.4.2. By [Abbes and Saito 2009, Theorem 9.1.1], the two definitions of
refined Swan conductors above are the same as Kato’s definition in [Kato 1989],
when the representation is one-dimensional. So all three definitions agree. This
result is also implicitly contained in [Chiarellotto and Pulita 2009].

4. Refined Swan conductors and variation of intrinsic radii on polyannuli

When we have a differential module over a polyannulus or a polydisc, similar to the
one-dimensional situation, we may study how the multiset of intrinsic radii of the
differential module changes as we complete the module with respect to different
Gauss norms. Kedlaya and the author [2010] proved that the partial sums of the log
of intrinsic radii form continuous convex piecewise affine functions. The purpose
of this section is to prove that the slopes at some point of such affine functions
are related to the refined intrinsic radii of the differential module, completed with
respect to the corresponding Gauss norm. Again, the proof proceeds in two steps,
first over an annulus or a disc (Section 4.2) and then over a polyannulus or a polydisc
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(Section 4.3). The first subsection focuses on some technical results which will be
used in the following two subsections.

Hypothesis 4.0.1. We assume Hypothesis 1.5.1 and keep the notation of Section 1.
We also assume that K is discretely valued throughout this section. We do not insist
p > 0 in this section unless otherwise specified.

4.1. Partial decomposition for differential modules. In Section 1.5, we deliber-
ately restricted ourselves to the situation over open annuli. In many applications, it
is equally important to understand the theory of differential modules over a bounded
analytic ring, for example K {{α/t, t]]0. This subsection is devoted to developing a
parallel theory in this case, which is not addressed in [Kedlaya and Xiao 2010].

We fix some α ∈ (0, 1) for this subsection.

Notation 4.1.1. We define E to be the completion of Frac
(
K {{α/t, t]]0

)
with re-

spect to the 1-Gauss norm; it is isomorphic to the p-adic completion of OK ((t))[ 1p ],
and it contains F1 as a subfield.

If s ∈−log |K×|, we can find an element x ∈ K× with |x | = e−s . This x defines
an isomorphism

κ
(s)
E
·x−1

−−→ κE ∼= κK ((t)).

Hence we have a canonical valuation vs( · ) on κ(s)E given by the t-valuation; this
does not depend on the choice of x ∈ K×. This valuation extends naturally to κ(s)Ealg

for s ∈Q · log |K×|.

Notation 4.1.2. Let j ∈ J+. For M a ∂ j -differential module over K {{α/t, t]]0 of
rank d and i ∈ {1, . . . , d}, we put

f ( j)
i (M, 0)=−log R∂ j(M ⊗ E; i), F ( j)

i (M, 0)= f ( j)
1 (M, 0)+ · · ·+ f ( j)

i (M, 0).

We similarly define fi (M, 0) and Fi (M, 0) if M is a ∂J+-differential module over
K {{α/t, t]]0.

Proposition 4.1.3. Fix j ∈ J+. Let M be a ∂ j - (resp. ∂J+-) differential module of
rank d over K {{α/t, t]]0.

(a) The functions f ( j)
i (M, r) and F ( j)

i (M, r) are continuous, and are affine if
f ( j)
i (M, 0) >−log |u j |; the functions fi (M, r) and Fi (M, r) are affine.

(b) Suppose for some i ∈ {1, . . . , d − 1}, the function F ( j)
i (M, r) (resp. Fi (M, r)

is affine), and f ( j)
i (M, r) > f ( j)

i+1(M, r) (resp. fi (M, r) > fi+1(M, r)) for
r ∈ [0,−logα). Then M admits a unique direct sum decomposition M0⊕M1

over K {{α/t, t]]0 such that
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(i) for any η ∈ (0,−logα), the multisets of subsidiary ∂ j -radii (resp. intrinsic
radii) of M0⊗ Fη exactly consist of the i smallest elements of the multisets
of subsidiary ∂ j -radii (resp. intrinsic radii) of M ⊗ Fη, and

(ii) the multisets of subsidiary ∂ j -radii (resp. intrinsic radii) of M0⊗E exactly
consist of the i smallest elements of the multisets of subsidiary ∂ j -radii
(resp. intrinsic radii) of M ⊗ E.

Proof. The statement (a) for ∂ j -radii follows from the exact same argument as
[Kedlaya and Xiao 2010, Theorem 2.2.6(a)], which follows immediately from the
corresponding properties of the associated twisted polynomial. We now explain how
we deduce (a) for intrinsic radii. Firstly, by parts (a), (b) and (d) of Theorem 1.5.6,
d! · Fi (M, r) is convex and piecewise affine of integer slopes for r ∈ (0,−logα).
We need only to check continuity at r = 0, which follows from exactly the same
argument as in Step 1 of the proof of [ibid., Theorem 2.3.9].

The statement (b) is proved in [ibid., Theorems 2.3.9, 2.5.5, and Remarks 2.3.11,
2.5.7]. �

Note that the statement (b) of the above proposition excludes the case when
f ( j)
i (M, r) > f ( j)

i+1(M, r) for r ∈ (0,−logα) and f ( j)
i (M, 0)= f ( j)

i+1(M, 0), and the
similar case with the superscript ( j) removed. The rest of this subsection is devoted
to extending the conclusion of (b) to this case.

Notation 4.1.4. Set R =
⋂
α∈(0,1) K {{α/t, t}} and Rbd

=
⋂
α∈(0,1) K {{α/t, t]]0,

where the latter can be identified with the subring of the former consisting of
elements with finite 1-Gauss norm.

Hypothesis 4.1.5. We assume that |u j | = 1 for j ∈ J .

This hypothesis is just to make our presentation simpler. We can always reduce
to this case by replacing K by the completion of K (x1, . . . , xm) with respect to the
(|u1|, . . . , |um |)-Gauss norm and by replacing u j by u j/x j , where ∂ j (x j ′)= 0 for
j, j ′ ∈ J . Note that K is still discretely valued.

Lemma 4.1.6. The ring Rbd is a field. A sequence ( fn)n∈N ⊂ K {{α/t, t]]0 is con-
vergent if it is convergent for the r-Gauss norm for all r ∈ (α, 1) and is bounded for
the 1-Gauss norm.

Proof. The first statement is well-known; see [Kedlaya 2005, Lemma 3.5.2]. We
remark that this would be false if K were not discretely valued. To see the second
statement, we observe that ( fn)n∈N converges in K {{α/t, t}}. The limit has bounded
coefficients and hence lies in K {{α/t, t]]0. �

Lemma 4.1.7. Fix j ∈ J+. Let Rbd
{T } be the ring of twisted polynomials as

in Definition 1.2.1, where T stands for ∂ j if j ∈ J and for d/dt if j = 0. Let
P = T d

+ai T d−1
+· · ·+ad ∈Rbd

{T } be a monic twisted polynomial whose Newton
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polygon has pure slope s < 1. Let {b1, . . . , br } be the set of vs-valuations of the
reduced roots of P (not counting multiplicity, with either increasing or decreasing
order), when we view P as a twisted polynomial in E{T }. Then P admits a unique
factorization P = Q1 · · · Qr as products of monic twisted polynomials such that
all the reduced roots of Qi , when viewed as twisted polynomials in E{T }, have
vs-valuations bi .

Proof. We assume that b1, . . . , br are in decreasing order. It then suffices to show
that we can write P = Q R as a product of two monic polynomials such that the
reduced roots of Q and R, when viewed as twisted polynomials in E{T }, have
pure vs-valuations b1 and strictly less than b1, respectively. We can also write
it as P = RQ satisfying the same condition, but with different Q and R. By
Lemma 4.1.6, the claim follows from [Kedlaya 2009, Proposition 3.2.2] because
the sequences {Pl} and {Ql} there are bounded under the 1-Gauss norm. �

Lemma 4.1.8. Fix j ∈ J . Let M be a ∂ j -differential module of rank d over
K {{α/t, t]]0 such that M⊗E has pure intrinsic ∂ j -radii IR∂ j (M⊗E)<ω. By choos-
ing a cyclic vector of M ⊗Rbd, we may identify M ⊗Rbd with Rbd

{T }/Rbd
{T }P ,

where P is a twisted polynomial in Rbd
{T }. Then for η sufficiently close to 1−,

the slopes of the Newton polygon of P (for the η-Gauss norm) are the log of the
subsidiary ∂ j -radii of M ⊗ Fη minus logω.

Proof. The identification M ⊗Rbd
'Rbd

{T }/Rbd
{T }P descends to

M ⊗ K {{β/t, t]]0 ' K {{β/t, t]]0{T }/K {{β/t, t]]0{T }P

for β sufficiently close to 1−. Note that for η sufficiently close to 1−, all ∂ j -radii
of M ⊗ Fη are visible. The lemma follows from Proposition 1.2.8. �

The following theorem also holds without assume Hypothesis 4.1.5.

Theorem 4.1.9. Fix j ∈ J+. Let M be a ∂ j - (resp. ∂J+-) differential module of rank
d over K {{α/t, t]]0 such that M ⊗ E has pure intrinsic ∂ j -radii IR∂ j (M ⊗ E) < 1
(resp. intrinsic radii IR(M⊗ E) < 1). Suppose that for some i ∈ {1, . . . , d−1}, the
function F ( j)

i (M, r) (resp. Fi (M, r)) is affine and f ( j)
i (M, r) > f ( j)

i+1(M, r) (resp.
fi (M, r) > fi+1(M, r)) for any r ∈ (0,−logα). Then M admits a unique direct
sum decomposition M0⊕M1 of ∂ j - (resp. ∂J+-) differential module over K {{α/t, t]]0
such that, for any η ∈ (0,−logα), the multiset of ∂ j -radii (resp. intrinsic radii) of
M0⊗ Fη exactly consists of the smallest i elements of the multiset of ∂ j -radii (resp.
intrinsic radii) of M ⊗ Fη.

Proof. We first deduce the ∂ j -differential module case. By Theorem 1.5.4(e), it
suffices to obtain the decomposition over K {{β/t, t]]0 for β ∈ (α, 1) sufficiently
close to 1 and then we may apply Lemma 1.1.10 and Remark 1.1.11 to glue this
decomposition with the decomposition given by Theorem 1.5.4(e).
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To start, we assume that IR∂ j (M ⊗ E) < ω. By making β closer to 1, we may
assume that IR∂ j (M ⊗ Fη) < ω for all η ∈ (β, 1) as well. It is also very easy to
reduce to the case when Hypothesis 4.1.5 holds. Since Rbd is a field, we can find
a cyclic vector to identify M ⊗Rbd with Rbd

{T }/Rbd
{T }P for a monic twisted

polynomial P as in Lemma 4.1.7. Applying Lemma 4.1.7 to M ⊗Rbd with the b’s
in decreasing order, we can find a submodule M0 of M such that the multiset of
∂ j -radii of M0⊗ Fη exactly consists of the smallest i elements in the multiset of
∂ j -radii of M ⊗ Fη when η sufficiently close to 1−. Applying Lemma 4.1.7 again
with the b’s increasing, we can find a quotient M ′0 of M satisfying exactly the same
condition on M0 as above. Then the kernel of M→ M ′0 together with M0 gives the
direct sum decomposition required in the theorem.

We next assume that p > 0 and IR∂ j (M ⊗ E) = p−1/(p−1). If j ∈ J , the ∂ j -
Frobenius ϕ(∂ j ) : K (∂ j )→ K naturally extends to

ϕ(∂ j ) : K (∂ j ){{α/t, t]]0→ K {{α/t, t]]0;

if j = 0, we have ϕ(∂0) : K {{α p/t p, t p
]]0→ K {{α/t, t]]0. Then the desired decompo-

sition follows from the decomposition of ϕ(∂ j )
∗ M . Note that ϕ(∂ j )∗ϕ

(∂ j )
∗ M ∼= M⊕p.

If p > 0 and IR∂ j (M ⊗ E) > p−1/(p−1), we may assume that

IR∂ j (M ⊗ Fη) > p
−1
p−1

for all η ∈ (β, 1), and the decomposition follows from that of the ∂ j -Frobenius
antecedent of M .

Finally, we show that the ∂J+-differential module case follows from the ∂ j -
differential module case. By Theorem 1.5.6(e), it suffices to find the decomposition
over K {{β/t, t]]0 for β ∈ (α, 1) sufficiently close to 1 and then, to glue the de-
compositions using Lemma 1.1.10 and Remark 1.1.11. By Proposition 4.1.3(a)
and Theorem 1.5.4(a), there exists β ∈ (α, 1) such that, if IR∂ j (M ⊗ E; i) < 1 for
some j , then the function f ( j)

i (M, r) for this j is affine over [0,−logβ). By the
decompositions given by Proposition 4.1.3(b) and this theorem for ∂ j , the restriction
of M to K {{β/t, t]]0 is the direct sum of ∂J+-differential modules Ml such that, for
any j ∈ J+ with IR∂ j (Ml ⊗ E) < 1, the ∂ j -differential module Ml ⊗ Fη has pure
∂ j -radii for any η ∈ (β, 1). Since we already know that M ⊗ E has pure intrinsic
radii < 1, we may take β sufficiently close to 1 such that each direct summand
above has pure intrinsic radii equal to the ∂ j -radii for some j , when tensored with
Fη for any η ∈ (β, 1). Hence regrouping the direct summands gives the direct sum
decomposition we are looking for. �

Remark 4.1.10. The condition IR∂ j (M ⊗ E) < 1 is crucial. As pointed out in
[Kedlaya 2010, Remark 12.5.4], one may give counterexamples in the case IR∂ j (M⊗
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E)= 1 using the theory of crystals. However, in the presence of a Frobenius, one
may still get the decomposition.

Proposition 4.1.11. Let M be a ∂J+-differential module over K {{α/t, t]]0 (resp.
K [[t]]0) of rank d. We put f̂i (M, 0)=−log ER(M ⊗ E; i) and

F̂i (M, 0)= f̂1(M, 0)+ · · ·+ f̂i (M, 0) for i = 1, . . . , d.

(a) The functions f̂i (M, r) and F̂i (M, r) are affine at r = 0.

(b) Suppose for some i ∈ {1, . . . , d − 1}, the function F̂i (M, r) is affine and
f̂i (M, r) > f̂i+1(M, r) for r ∈ (0,−logα) (resp. whenever f̂i (M, r) > r ), and
suppose that f̂i (M, 0) > 0. Then M admits a unique direct sum decomposition
M0⊕M1 over K {{α/t, t]]0 (resp. K [[t]]0) such that the multiset of extrinsic radii
of M⊗ Fη for any η ∈ (0,−logα) (resp. for any η > 0 such that f̂i (M, r) > r )
consists of the smallest i elements of the multiset of extrinsic radii of M ⊗ Fη.

Proof. (a) follows from exactly the same argument as in Proposition 4.1.3. We
now prove (b). By the extrinsic version of Theorem 1.5.6(e), it suffices to find
the decomposition over K {{β/t, t]]0 for β ∈ (α, 1) sufficiently close to 1 and then
we may apply Lemma 1.1.10 and Remark 1.1.11 to glue the decompositions. By
Proposition 4.1.3(b) and Theorem 4.1.9 for ∂ j -differential modules, there exists
β ∈ (α, 1) such that when we tensor M with K {{β/t, t]]0, it is a direct sum of
differential modules Ml such that either for any j ∈ J+ with R∂ j (Ml ⊗ E) < 1,
Ml ⊗ Fη has pure ∂ j -radii for all η ∈ (β, 1), or we have ER(Ml ⊗ E) = 1. The
proposition then follows from regrouping these direct summands. �

4.2. Refined radii and the log-slopes of the radii. For a differential module over
an annulus or a disc, the slopes of the functions coming from the radii of convergence
are determined by the multiset of refined radii for the differential module completed
for the corresponding Gauss norm. We also give a refined radii decomposition
result for differential modules over bounded analytic rings.

Theorem 4.2.1. Fix j ∈ J+ and let M be a ∂ j -differential module over K {{α/t, t]]0
of rank d. Assume that f ( j)

i (M, r) for all i are the same and are affine of slope b
in r ∈ [0,−logα). Moreover, we assume that R∂ j (M ⊗ E) = ωes is strictly less
than |u j |

−1 if j ∈ J and is strictly less than 1 if j = 0. Then the vs-valuation of any
element in the multiset of refined ∂ j -radii of M ⊗ E is −b.

Proof. We may assume that |u j | = 1. We first consider the case when M ⊗ E has
pure visible intrinsic ∂ j -radii IR∂ j (M⊗ E) < ω. By making α closer to 1−, we may
assume that the function f ( j)

i (M, r) >−logω for each i is affine over [0,−logα).
As in Theorem 4.1.9, we may identify M⊗Rbd

K with Rbd
{T }/Rbd

{T }P for some
twisted polynomial P = T d

+a1T d−1
+· · ·+ad ∈Rbd

{T }. Since M⊗ E has pure
∂ j -radii ωes , the Newton polygon of P with respect to the 1-Gauss norm has pure
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slope s and the multiset 2∂ j (M ⊗ E) is just the multiset of reduced roots of this
twisted polynomial. We put

P = T d
+ ā(s)1 T d−1

+ · · ·+ ā(ds)
d ,

where ā(is)
i ∈ κ

(is)
K ((t)).

When η is sufficiently close to 1−, the Newton polygon of P with respect to
the η-Gauss norm is determined by the Newton polygon of P in the following
sense: it is the lower convex hull of the set {(−i,−log |ai |1− v(ā(is)

i ) log η)}. By
Lemma 4.1.8, this implies that the collection of all slopes of functions f ( j)

i (M, r)
for all i at r = 0 is exactly the collection of the vs-valuations of the roots of P , which
in turn equals the collection of the vs-valuations of the elements of the multiset of
refined ∂ j -radii of M ⊗ E .

Now, it suffices to reduce to the case above using ∂ j -Frobenius. Assume p > 0
from now on. It is easier to work with intrinsic radii and refined intrinsic radii. So
we put gi (M, r) = f ( j)

i (M, r)+ log |u j | if j ∈ J and gi (M, r) = f ( j)
i (M, r)− r

if j = 0. We will use g′i (M, ·) to denote the derivative of the function gi (M, ·).
Moreover, we set s ′ =−log(ωIR∂ j (V )

−1).

If IR∂ j (M ⊗ E)= ω = p−1/(p−1), we set M1 = ϕ
(∂ j )
∗ M . Then Lemma 1.2.18(d)

implies that if j ∈ J ,{
g′i (M1, 0)

}
=

{
{pg′i (M, 0) (d times), 0 ((p− 1)d times)} if g′i (M, 0) < 0,
{g′i (M, 0) (pd times)} if g′i (M, 0)≥ 0,

and if j = 0,{
g′i (M1, 0)

}
=

{
{g′i (M, 0), 0 (p− 1 times)} if g′i (M, 0) < 0,
{

1
p g′i (M, 0) (p times)} if g′i (M, 0)≥ 0.

By Proposition 1.3.18, the elements in the multiset I2∂ ′j (M1⊗E (∂ j )) can be grouped
into p-tuples (

θ

p
,
θ+1

p
, . . . ,

θ+ p−1
p

)
,

and the multiset I2∂(M⊗E) is composed of (θ p
−θ)1/p for each p-tuple above with

the same multiplicity, where θ ∈ κEalg . Elementary calculation shows the following
relation between the v0-valuations of (θ p

− θ)1/p and the v−log p-valuation of θ :

• when v0(θ) < 0, we have v−log p((θ + l)/p)= v0(θ) for l = 0, . . . , p− 1, and
v0((θ

p
− θ)1/p)= v0(θ);

• when v0(θ) ≥ 0, we have v−log p((θ + l)/p) = 0 for l = 1, . . . , p − 1, and
v0((θ

p
− θ)1/p)= (1/p)v0(θ).

Hence the statement for M1 with v−log p implies that for M with v0.
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If IR∂ j (M ⊗ E) > ω, by Lemma 1.2.18(d) and Remark 1.2.19, M has a ∂ j -
Frobenius antecedent M0 if α is sufficiently close to 1−. By Lemma 1.2.18(d) and
Proposition 1.3.18, we have

gi (M0, r)= pgi (M, r) for any i,

and I2∂ ′j (M0⊗ E (∂ j ))=
{
(−θ)p/p : θ ∈ I2∂ j (M ⊗ E)

}
, if j ∈ J ;

gi (M0, pr)= pgi (M, r) for any i,

and I2∂ ′j (M0⊗ E (∂ j ))=
{
(−θ)p/p : θ ∈ I2∂ j (M ⊗ E)

}
, if j = 0.

Since v(ps′−log p)((−θ)
p/p)= pvs′(θ), the statement for M with vs′(−log p) follows

from the statement for M0 with vps′−log p if j ∈ J and with 1
p vps′−log p if j = 0

(note that t p is the coordinate in the latter case). �

Corollary 4.2.2. Fix j ∈ J+ and let M be a ∂ j -differential module over K {{α/t, t]]0.
Assume that M⊗ E has pure ∂ j -radii R∂ j (M⊗ E)=ωes , which is strictly less than
|u j |
−1 if j ∈ J and is strictly less than 1 if j = 0. Then the following two multisets

are the same:

(i) the multiset composed of the vs-valuations of the elements in the multiset of
refined ∂ j -radii of M ⊗ E , that is,

{
vs(θ) : θ ∈2∂ j (M ⊗ E)

}
;

(ii) the multiset composed of the negatives of the slopes of f ( j)
i (M, r) at r = 0, for

i = 1, . . . , d.

Proof. This follows from combining Theorems 4.1.9 and 4.2.1. �

Notation 4.2.3. For any s∈Q·log |K×|, the valuation vs on κ(s)E induces a valuation
on

κ
(s)
E

dt
t
⊕

⊕
j∈J

κ
(s)
E

du j

u j
,

still denoted by vs, by setting

vs

(
θ0

dt
t
+ θ1

du1
u1
+ · · ·+ θm

dum
um

)
= min

j∈J+

{
vs(θ j )

}
, for θ0, . . . , θm ∈ κ

(s)
E .

Corollary 4.2.4. Let M be a ∂J+-differential module over K {{α/t, t]]0. Assume
that M ⊗ E has pure intrinsic radii IR(M ⊗ E)= ωes < 1. Then the following two
multisets are the same:

(i) the valuations of the refined intrinsic radii of M⊗E ,
{
vs(θ) : θ ∈I2(M⊗E)

}
;

(ii) the negatives of the slopes of fi (M, r) at r = 0, for i = 1, . . . , d.

Proof. This follows from combining Theorems 4.1.9 and 4.2.1. �

Similar to Theorem 1.3.26, we have the following decomposition by refined
radii.
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Theorem 4.2.5. Fix j ∈ J+ and let M be a ∂ j -differential module of rank d over
K {{α/t, t]]0. Assume that M⊗ Fη, for η ∈ (α, 1), and M⊗ E all have pure ∂ j -radii,
and assume that the function f ( j)

1 (M, r) is affine with slope b for r ∈ [0,−logα).
Let e be the prime-to-p part of the denominator of b. Moreover, assume that
R∂ j (M ⊗ E)= ωes is strictly less than |u j |

−1 if j ∈ J and is strictly less than 1 if
j = 0. Then there exists a finite tamely ramified extension K ′ of K and a unique
direct sum decomposition

M ⊗ K ′{{α1/e/t1/e, t1/e
]]0 =

⊕
θ∈κ

(s)
K alg

Mθ

of ∂ j -differential modules such that

(i) Mθ ⊗ Fη has pure refined ∂ j -radii θ t−b for all η ∈ (α, 1), and

(ii) every element in the multiset of refined ∂ j -radii of Mθ⊗E is congruent to θ t−b

modulo elements in κ(s)K alg with vs-valuation strictly bigger than vs(θ t−b)=−b.

Moreover, this decomposition descents to a unique decomposition of M itself by
Galois descent, satisfying analogous properties, but in the fashion stated in terms of
µe o Gal(K alg/K )-orbits.

Proof. The proof is identical to that of Theorem 1.5.10, except that we use decom-
position Theorem 4.1.9 in place of Theorem 1.5.4. �

Theorem 4.2.6. Let M be a ∂J+-differential module of rank d over K {{α/t, t]]0.
Assume that M ⊗ Fη, for η ∈ (α, 1), and M ⊗ E all have pure intrinsic radii,
and assume that the function f1(M, r) is affine with slope b for r ∈ [0,−logα).
Let e be the prime-to-p part of the denominator of b. Moreover, assume that
IR(M ⊗ E)= ωes < 1. Then there exists a finite tamely ramified extension K ′ of K
and a unique direct sum decomposition

M ⊗ K ′{{α1/e/t1/e, t1/e
]]0 =

⊕
ϑ∈

⊕
j∈J

κ
(s)

K alg
du j
u j
⊕κ

(s)

K alg
dt
t

Mϑ

of ∂J+-differential modules such that

(i) Mϑ ⊗ Fη has pure refined intrinsic radii ϑ t−b for all η ∈ (α, 1), and

(ii) every element in the multiset of refined intrinsic radii of Mϑ ⊗ E is congruent
to ϑ t−b modulo those elements in⊕

j∈J

κ
(s)
K alg

du j

u j
⊕ κ

(s)
K alg

dt
t

with vs-valuation strictly bigger than vs(ϑ t−b)=−b.
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Moreover, this decomposition descents to a unique decomposition of M itself by
Galois descent, satisfying analogous properties, but in the fashion stated in terms of
µe o Gal(K alg/K )-orbits.

Proof. The proof is identical to that of Theorem 1.5.12, except that we invoke
Theorem 4.2.5 in place of Theorem 1.5.4. �

Corollary 4.2.7. Let M be a ∂J+-differential module of rank d over K {{α/t, t]]0.
Assume that M⊗ E has pure intrinsic radii IR(M⊗ E)=ωes< 1 and that the func-
tion fi (M, r) for each i = 1, . . . , d is affine over [0,−logα). Let M =

⊕
b∈Q Mb

be the unique direct sum decomposition of M over A1
K (α, 1) such that f1(Mb, r)=

· · · = fdim Mb(Mb, r) has slope b. Then the following two multisets are the same:

(i) The multiset composed of all elements in

I2(Mb⊗ Fη)⊂
⊕
j∈J+

t−bκ
(s)
K alg

du j

u j
⊕ t−bκ

(s)
K alg

dt
t

for all b and for some fixed η ∈ (α, 0) (this is independent of the choice of η);

(ii) The multiset composed of ϑ̄ for all ϑ ∈2∂ j (V ), where ϑ̄ is the reduction of

ϑ ∈
⊕
j∈J+

t−bκ
(s)
K alg

du j

u j
⊕ t−bκ

(s)
K alg

dt
t

modulo those elements with vs-valuation strictly bigger than vs(ϑ).

Proof. It follows from the decomposition Theorems 4.1.9 and 4.2.6. �

We have similar results for extrinsic radii.

Theorem 4.2.8. Assume that |u j |= 1 for all j ∈ J . For s ∈R, let v̂s be the valuation
on κ(s)E dt ⊕

⊕
j∈J κ

(s)
E du j given by

v̂s
(
θ0dt + θ1du1+ · · ·+ θmdum

)
= min

j∈J+

{
vs(θ j )

}
.

Let M be a ∂J+-differential module of rank d over K {{α/t, t]]0. Assume that M⊗Fη,
for η ∈ (α, 1), and M⊗E all have pure extrinsic radii, and assume that the function
f̂1(M, r) is affine with slope b for r ∈[0,−logα). Let e be the prime-to-p part of the
denominator of b. Moreover, assume that ER(M⊗ E)= ωes < 1. Then there exists
a unique direct sum decomposition M =

⊕
{µeϑ̂}

M
{µeϑ̂}

of ∂J+-differential modules
over K {{α/t, t]]0, where the direct sum runs through all µe o Gal(K sep/K )-orbits
{µeϑ̂} in

⊕
j∈J κ

(s)
K algdu j ⊕ κ

(s)
K algdt such that

(i) for all η ∈ (α, 1), the multiset of refined extrinsic radii of M{µeϑ} ⊗ Fη is
composed of the µe o Gal(K alg/K )-orbit {µeϑ̂ t−b

} with the appropriate mul-
tiplicity, and
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(ii) the multiset consisting of the reductions of elements in the multiset of refined
extrinsic radii of M

{µeϑ̂}
⊗E modulo those elements with v̂s-valuation is strictly

bigger than −b, is composed of the µe o Gal(K alg/K )-orbit {µeϑ̂ t−b
} with

the appropriate multiplicity.

Proof. The proof is identical to that of Theorem 1.5.14, except that we use invoke
Theorem 4.2.5 in place of Theorem 1.5.4. �

Corollary 4.2.9. Assume that |u j | = 1 for all j ∈ J . Let M be a ∂J+-differential
module of rank d over K [[t]]0. Assume that ER(M ⊗ E) = ωes < 1. Let Me

denote the unique ∂J+-differential submodule of M⊗ E that has pure extrinsic radii
ER(M ⊗ E); put l = dim Me. Then:

(a) The v̂s-valuations of elements in 2(Me⊗ E) are all nonnegative.

(b) There exists a unique direct sum decomposition

M =
⊕
{ϑ̂}

M
{ϑ̂}⊕M0

of ∂J+-differential modules over K [[t]]0, where the first direct sum is taken over
all Gal(κsep

K /κK )-orbits {ϑ̂} ⊂
⊕

j∈J κ
(s)
K alg du j ⊕ κ

(s)
K alg dt such that

(i) for all η< 1, M
{ϑ̂}⊗Fη has pure extrinsic radii min{ωes, η} and, when η∈

(ωes, 1), the multiset 2(M{ϑ}⊗ Fη) is composed of {ϑ̂} with multiplicity,
(ii) the multiset consisting of reductions of elements in the multiset of refined ex-

trinsic radii of M{ϑ}⊗ E modulo those elements with positive v̂s-valuation
is composed of {ϑ̂} with appropriate multiplicity, and

(iii) for any r > 0 satisfying f̂1(M0, r) < r , we have f̂1(M0, r) < ωes .

Proof. (a) By Proposition 4.1.11(a) together with Theorem 1.5.6(c′), we know
that the functions f1(M, r), . . . , fl(M, r) are linear in a neighborhood of r with
nonpositive slopes. Then applying the decomposition in Proposition 4.1.11(b) and
Theorem 4.2.8 together with description (ii) in Theorem 4.2.8, we conclude that
the v̂s-valuations of elements in 2(Me) are all nonnegative.

(b) Let l ′ denote the number of elements in 2(Me) whose v̂s-valuation is zero.
By the proof of (a), we see that the derivatives f̂ ′1(M, 0)= · · · = f̂ ′l ′(M, 0) are equal
to 0, and that f ′l ′+1(M, 0) > 0 or f̂l ′+1(M, 0) > f̂l(M, 0) in case l = l ′. By items
(c′) and (d) of Theorem 1.5.6, we know that

f̂1(M, 0)= f̂1(M, r)= · · · = f̂l ′(M, r) > f̂l ′+1(M, r)

for any r < f̂1(M, 0). We may then apply Proposition 4.1.11 to split off the desired
M0. Now, we may apply the standard technique (Lemma 1.1.10 and Remark 1.1.11)
to glue the decomposition given by Theorem 4.2.8 and Proposition 1.5.17; this
gives the further decompositions by M{θ}. �
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4.3. Variation over polyannuli. In this subsection, we study differential modules
over a polyannulus or a polydisc. In particular, we are interested in studying the
functions coming from the radii of convergence when we complete the differential
module with respect to various Gauss norms. We relate the slopes of such functions
with the valuations of the refined intrinsic radii.

In this subsection, we assume Hypothesis 1.5.1 and we assume that K is discretely
valued.

Definition 4.3.1. A subset C ⊆ Rn is called nondegenerate if it contains an open
subset of Rn . Its interior is denoted by C int.

An integral affine functional on Rn is a map λ : Rn
→ R of the form

λ(x1, . . . , xn)= a1x1+ · · ·+ anxn + b

for some a1, . . . , an ∈ Z and b ∈ −log |K×|Q.
A subset C ⊆ Rn is rational polyhedral (or RP for short) if it is bounded and

there exist integral affine functionals λ1, . . . , λr such that

C = {x ∈ Rn
: λi (x)≥ 0 for i = 1, . . . , r}.

For C ⊆ Rn an RP subset of Rn , a function f : C → Rn is integral polyhe-
dral if there exist finitely many integral affine functionals λ′1, . . . , λ

′

d such that
f (x)=max{λ′1(x), . . . , λ

′

d(x)} for any x ∈ C.

Remark 4.3.2. Our convention slightly differs from that of [Kedlaya and Xiao
2010], where RP subsets are not assumed to be bounded. However, some of the
statements below still hold for unbounded RP, and they are often simple corollaries
of the statements in the bounded case. We leave this as an exercise for the reader.

Notation 4.3.3. We put I = {1, . . . , n}. We use a to denote the n-tuple (a, . . . , a).

Definition 4.3.4. For a subset C ⊆ Rn , let e−C denote the closure in Rn of the
subset {e−rI : rI ∈ C}. A subset S of [0,+∞)n is called log-RP if S = e−C for
some RP subset C of Rn; it is called nondegenerate if C is so.

For S a log-RP subset of [0,+∞)n , define AK (Sint) to be the subspace of the
(Berkovich) analytic n-space with coordinates t1, . . . , tn satisfying the condition
(|t1|, . . . , |tn|) ∈ e−C int

. We use K {{S}} to denote its ring of functions, and use
K [[S]]0 to denote the subring of K {{S}} consisting of functions that are bounded on
|tI | ∈ e−C int

.
One cannot literally equate Sint with e−C int

; the problem is that we cannot take
the log for a zero coordinate in S-space. But, in practice, one can view the two
spaces the same, just being careful when stating a result.

Notation 4.3.5. Let S be a nondegenerate log-RP subset of [0,+∞)n and let R
denote either K {{S}} or K [[S]]0. Let M be a ∂I∪J -differential module over R of rank
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d , with respect to the derivations ∂1, . . . , ∂m and ∂m+1 = ∂/∂t1, . . . , ∂m+n = ∂/∂tn .
For an element ηI in (η1, . . . , ηn)∈ S (Sint if R= K {{S}}), let FηI be the completion
of Frac(R) with respect to the ηI -Gauss norm. We remark that for ηI on the
boundary of S, FηI “looks different” (more like E than Fη in the 1-dimensional case).

For an element rI in −log S (or −log Sint if R = K {{S}}), put

fl(M, rI )=−log IR(M⊗Fe−rI ; l) and Fl(M, rI )= f1(M, rI )+· · ·+ fl(M, rI )

for l = 1, . . . , d .

Theorem 4.3.6. Keep the notation as above. We have the following:

(a) (Polyhedrality) The functions d!Fl(M, rI ), for l = 1, . . . , d−1, and Fd(M, rI )

are integral polyhedral functions.

(b) (Decomposition) Suppose that for some l ∈{1, . . . , d}, the function Fl(M, rI ) is
affine, and suppose that fl(M, rI ) > fl+1(M, rI ) for any rI ∈−log S. Then M
admits a unique direct sum decomposition M∼=M0⊕M1 of differential modules
such that for any ηI ∈ −log Sint, the multiset of intrinsic radii of M0 exactly
consists of the smallest l elements in the multiset of intrinsic radii of M ⊗ FηI .

(c) (Refined radii) Assume that R = K {{S}} and that

f1(M, rI )= · · · = fd(M, rI )=−logω− s+ b1r1+ · · ·+ bnrn

are affine functions on −log Sint. Let ei denote the prime-to-p part of the
denominator of bi for all i ∈ I . Then there exists a finite tamely ramified
extension K ′ of K and a multiset

I2(M)⊂
⊕
i∈I

κ
(s)
K ′

dti
ti

⊕⊕
j∈J

κ
(s)
K ′

du j

u j

such that we have a unique direct sum decomposition of differential modules

M ⊗R R[t1/e1
1 , . . . , t1/en

n ] =

⊕
ϑ∈I2(M)

Mϑ ,

such that each Mϑ⊗FηI [t
1/e1
1 , . . . , t1/en

n ] has pure refined intrinsic radii t−bI
I ϑ .

Proof. For (a) and (b), see [Kedlaya and Xiao 2010, Theorems 3.3.9 and 3.4.4, and
Remark 3.4.7]. (c) follows from the same argument but using Theorem 1.5.12 as
the decomposition tool. �

To extend (c) of the theorem above to the boundary is a little tricky. We will
prove it in a special case and leave the general case as an exercise for the reader.

Situation 4.3.7. Consider the subset C =
{
(x I )⊂ Rn

: x I ≥ 0, x1+ · · ·+ xn ≤ 1
}
.

Put S= e−C , and R= K [[S]]0. Let M be a differential module over K [[S]]0. Assume
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moreover that f1(M, 0)= · · · = fd(M, 0)=−logω− s with s< 0. We define the
following two multisets.

(1) Choose x ∈m
(s)
K \m

(s)+
K to identify κ(s)F1

·x−1

−−→ κF1 and embed the latter into the
higher local field κK ((t1)) · · · ((tn)), which is equipped with a multi-indexed
valuation with respect to the parameters (tn, . . . , t1). This gives rise to a valua-
tion vs : κ

(s)
F1
→ Zn

⊂Qn , where the latter is equipped with the lexicographical
order; this does not depend on the choice of x . Define the following valuation
on ⊕

i∈I

κ
(s)

Falg
1

dti
ti
⊕

⊕
j∈J

κ
(s)

Falg
1

du j

u j
,

still denoted by vs, by taking the minimum of vs over the coefficients. We
consider the multiset A =

{
(v(ϑ), ϑ̄)

∣∣ϑ ∈ I2(M ⊗ F1)
}
, where ϑ̄ is the

reduction of t−vs(ϑ)I ϑ to⊕
i∈I

κ
(s)
K alg

dti
ti
⊕

⊕
j∈J

κ
(s)
K alg

du j

u j
.

(2) By Theorem 4.3.6(a), there exists an RP subset C ′ of C which is adjacent to
the cells t1= · · · = ti = 0 for i = 1, . . . , n−1, such that the function fl(M, rI )

for each l is affine in rI over C ′. Then, over e−C ′int
, we have a unique direct

sum decomposition of differential modules M =
⊕

bI∈Qn MbI such that

f1(MbI , rI )= · · · = fdim MbI
(MbI , rI )=−logω− s+ b1r1+ · · ·+ bnrn.

We put

B =
{
(−b1, . . . ,−bn, ϑ) : bI ∈Qn, t−b1

1 · · · t−bn
n ϑ ∈ I2(M ⊗ FηI )

}
,

for some ηI ∈ C ′int and this set does not depend on the choice of ηI by
Theorem 4.3.6(c).

Choose integers e1, . . . , en ∈ N coprime to p such that ei bi ∈ Z for any i and for
any (−b1, . . . ,−bn, ϑ) ∈ B. Put R′ = K [[C ′]]0[t

1/e1
1 , . . . , t1/en

n ].

Theorem 4.3.8. The two multisets A and B are the same (for any C ′ that satisfies
the condition in (2)). Moreover, there exists a finite tamely ramified extension K ′/K
and a unique direct sum decomposition

M ⊗ R′⊗ K ′ =
⊕

(bI ,ϑ)∈B

M(bI ,ϑ)

such that, if we put F ′e−rI = Fe−rI [t
1/e1
1 , . . . , t1/en

n ]⊗ K ′,
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(i) for all rI ∈C ′int, M(bI ,ϑ)⊗ F ′e−rI has pure intrinsic radii ωe−b1r1−···−bnrn+s and
pure refined intrinsic radii t−bI

I ϑ , and

(ii) any element in I2(M ⊗ F ′1) is congruent to t−bI
I ϑ modulo elements with

vs-valuation strictly bigger than (−b1, . . . ,−bn).

Proof. We first construct the decomposition that satisfies condition (i). For this, we
may replace K by a finite tamely ramified extension such that all ϑ appearing in B
lie in ⊕

i∈I

κ
(s)
K

dti
ti
⊕

⊕
j∈J

κ
(s)
K

du j

u j

for an appropriate s. In this case, we construct the decomposition of M ⊗ R′ using
the same argument as in [Kedlaya and Xiao 2010, Theorem 3.4.4] by invoking
Theorems 4.1.9 and 4.2.6 at appropriate places.

Now we check condition (ii) for this direct sum decomposition; this is equivalent
to identifying the multisets A with B for each MbI ,ϑ . Note that we already know
that MbI ,ϑ ⊗ Fe−rI has pure intrinsic radii ωe−b1r1−···−bnrn+s . For simplicity, we put
M = MbI ,ϑ . We do induction on the dimension n. When n = 0 there is nothing to
prove. We assume that the theorem is proved for n−1. Let D denote the face t1= 0
of C . Put C̃ = C ∩ D, C̃ ′ = C ′ ∩ D, S̃ = e−C̃ , and R̃ = K̃ [[S̃]]0 with coordinates
t2, . . . , tn , where K̃ is the completion of Frac

(
K [[t1]]0

)
with respect to the 1-Gauss

norm.
By applying the induction hypothesis to M̃ = M⊗R R̃, the multiset A is equal to

A′ =
{(

vs(ϑ
′),−b2, . . . ,−bn, t−vs(ϑ ′)

1 ϑ ′
) ∣∣ (−b2, . . . ,−bn) ∈Qn−1,

t−b2
2 · · · t−bn

n ϑ ′ ∈ I2(M ⊗ FηI )
}
,

for any (r2, . . . , rn) ∈ C̃ ′, where vs is the valuation on⊕
i∈I

κ
(s)
K̃ alg

dti
ti
⊕

⊕
j∈J

κ
(s)
K̃ alg

du j

u j

as in Notation 4.2.3, and t−vs(ϑ ′)
1 ϑ ′ is the reduction of t−vs(ϑ

′)
1 ϑ ′ in⊕

i∈I

κ
(s)
K alg

dti
ti
⊕

⊕
j∈J

κ
(s)
K alg

du j

u j
.

It suffices to identify the multiset A′ with B. When rI ∈Qn
∩C ′, this follows

from applying Corollary 4.2.7 to the line which passes through the point rI and is
parallel to the t1-axis. In particular, this says that for any ϑ ′ above,

t−vs(ϑ ′)
1 ϑ ′ is the same as ϑ.
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When rI is not rational, the same statement follows from the “continuity” result in
Theorem 4.3.6(c). �

Remark 4.3.9. One can also describe the intrinsic radii of MbI ,ϑ at the point
(rI ) ∈ C ′ with r1 = · · · = rl = 0 for some l ∈ {1, . . . , d − 1}. We leave this as an
exercise for interested readers.

Next we consider the situation for solvable differential modules.

Definition 4.3.10. Let C=
{
(x I )⊂Rn

: x I ≥0, x1+· · ·+xn=1
}
. For [α, β]∈ (0, 1),

we put S[α,β] =
{
ρC
: ρ ∈ [α, β]

}
and R[α,β] = K [[S[α,β]]]0. For α ∈ (0, 1), we put

Rα =
⋂
β∈(α,1) R[α,β].

Fix α ∈ (0, 1). Let M be a differential module over Rα. Assume that M is
solvable, that is, for each x I ∈ C , we have f1(M, ρx I )→ 0 as ρ→ 1−.

By Theorem 1.6.2, for x I ∈ C , there exists b1(M, x I ), . . . , bd(M, x I ) such that
fl(M,−x I log ρ)= ρbl (M,x I ) when ρ→ 1−, for l = 1, . . . , d. Put

Bl(M, x I )= b1(M, x I )+ · · ·+ bl(M, x I )

for l = 1, . . . , d .

Proposition 4.3.11. Keep the notation as above. Then the functions d!Bl(M, x I )

and Bd(M, x I ) are integral polyhedral functions.

Proof. See [Kedlaya 2011, Theorem 3.3.3]. The proposition also follows from
Theorem 4.3.6(a). �

Construction 4.3.12. Keep the notation as above.
Let x = (0, . . . , 1) ∈ C be the point. Let F be the completion of the fraction

field of OK ((t1)) · · · ((tn−1)); it is a higher dimensional local field. We have a natural
embedding Rα ↪→F{{η/tn, tn}}= F̃η, if η ∈ (α, 1). This means to restrict the picture
to the line (0, . . . , 0, ρ) for ρ ∈ (η, 1). We assume that M⊗F̃η has pure-log break b.

Recall that, as in Situation 4.3.7, we have a valuation

v :
⊕
i∈I

κFalg
dti
ti
⊕

⊕
j∈J

κFalg
du j

u j
→Qn.

Proposition 4.3.13. Keep the notation as above. The following two multisets of
(n− 1)-tuples are the same.

(i) The multiset composed of valuations v of the elements of (1/π)I2(M ⊗ F̃η),
where π is a Dwork pi.

(ii) The multiset of slopes of bl(M, x I ), for l = 1, . . . , d, on a RP subset of C
which is adjacent to the cells

{
t1 = · · · = ti = 0, ti+1 + · · · + tn = 1

}
for all

i = 1, . . . , n.

Proof. It follows from Theorem 4.3.8. �
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Remark 4.3.14. One may interpret the above proposition geometrically, as in
[Kedlaya 2011]. We will come back to this discussion in a future work.
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