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On common values of φ(n) and σ(n), II
Kevin Ford and Paul Pollack

For each positive-integer valued arithmetic function f , let V f ⊂ N denote the
image of f , and put V f (x) := V f ∩ [1, x] and V f (x) := #V f (x). Recently Ford,
Luca, and Pomerance showed that Vφ ∩Vσ is infinite, where φ denotes Euler’s
totient function and σ is the usual sum-of-divisors function. Work of Ford shows
that Vφ(x)� Vσ (x) as x→∞. Here we prove a result complementary to that of
Ford et al. by showing that most φ-values are not σ -values, and vice versa. More
precisely, we prove that, as x→∞,

#{n 6 x : n ∈ Vφ ∩Vσ }6
Vφ(x)+ Vσ (x)
(log log x)1/2+o(1) .

1. Introduction

1A. Summary of results. For each positive-integer valued arithmetic function f ,
let V f denote the image of f , and put V f (x) :=V f ∩[1, x] and V f (x) := #V f (x). In
this paper we are primarily concerned with the cases when f = φ, the Euler totient
function, and when f = σ , the usual sum-of-divisors function. When f = φ, the
study of the counting function V f goes back to Pillai [1929], and was subsequently
taken up in [Erdős 1935; 1945; Erdős and Hall 1973; 1976; Pomerance 1986; Maier
and Pomerance 1988; Ford 1998a] (with an announcement in [Ford 1998b]). From
the sequence of results obtained in these papers, we mention Erdős’s asymptotic
formula [1935] for log(V f (x)/x), namely

V f (x)=
x

(log x)1+o(1) (x→∞),
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and the much more intricate determination of the precise order of magnitude by Ford,

V f (x)�
x

log x
exp

(
C(log3 x− log4 x)2+D log3 x− (D+ 1

2 −2C) log4 x
)
. (1-1)

Here logk denotes the k-th iterate of the natural logarithm, and the constants C and
D are defined as follows: Let

F(z) :=
∞∑

n=1

anzn, where an = (n+ 1) log(n+ 1)− n log n− 1. (1-2)

Since each an > 0 and an ∼ log n as n→∞, it follows that F(z) converges to a
continuous, strictly increasing function on (0, 1), and F(z)→∞ as z ↑ 1. Thus,
there is a unique real number % for which

F(%)= 1 (% = 0.542598586098471021959 . . . ). (1-3)

In addition, F ′ is strictly increasing, and F ′(%)= 5.697758 . . . . Then

C = 1
2 |log %|

= 0.817814 . . .

D = 2C(1+ log F ′(%)− log(2C))− 3
2 = 2.176968 . . . .

In [Ford 1998a], it is also shown that (1-1) holds for a wide class of φ-like functions,
including f = σ . Consequently, Vφ(x)� Vσ (x).

Erdős [1959, p. 172] asked if it could be proved that infinitely many natural
numbers appear in both Vφ and Vσ (see also [Erdős and Graham 1980]). This
question was recently answered by Ford, Luca, and Pomerance [Ford et al. 2010].
Writing Vφ,σ (x) for the number of common elements of Vφ and Vσ up to x , they
proved that

Vφ,σ (x)> exp((log log x)c)

for some positive constant c>0 and all large x (in [Garaev 2011] this is shown for all
constants c> 0). This lower bound is probably very far from the truth. For example,
if p and p+2 form a twin prime pair, then φ(p+2)= p+1= σ(p); a quantitative
form of the twin prime conjecture then implies that Vφ,σ (x)� x/(log x)2. In Part I
of this article [Ford and Pollack 2011], we showed that a stronger conjecture of the
same type allows for an improvement. Roughly, our result is as follows:

Theorem A. Assume a strong uniform version of Dickson’s prime k-tuples conjec-
ture. Then as x→∞,

Vφ,σ (x)=
x

(log x)1+o(1) .

Theorem A suggests that Vφ,σ (x) is much larger than we might naively expect.
This naturally leads one to inquire about what can be proved in the opposite direction;
for instance, could it be that a positive proportion of φ-values are also σ -values?
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N Vφ(N ) Vσ (N ) Vφ,σ (N )
Vφ,σ (N )
Vφ(N )

Vφ,σ (N )
Vσ (N )

10000 2374 2503 1368 0.5762426 0.5465441
100000 20254 21399 11116 0.5488299 0.5194635
1000000 180184 189511 95145 0.5280436 0.5020553
10000000 1634372 1717659 841541 0.5149017 0.4899348
100000000 15037909 15784779 7570480 0.5034264 0.4796063
1000000000 139847903 146622886 69091721 0.4940490 0.4712206

Table 1. Data on φ-values, σ -values, and common values up to
N = 10k , from k = 5 to k = 9.

The numerical data up to 109, exhibited in Table 1, suggests that the proportion of
common values is decreasing, but the observed rate of decrease is rather slow.

Our principal result is the following estimate, which implies in particular that
almost all φ-values are not σ -values, and vice versa.

Theorem 1.1. As x→∞,

Vφ,σ (x)6
Vφ(x)+ Vσ (x)
(log log x)1/2+o(1) .

The proof of Theorem 1.1 relies on the detailed structure theory of totients as
developed in [Ford 1998a]. It would be interesting to know the true rate of decay
of Vφ,σ (x)/Vφ(x).

1B. Sketch. Since the proof of Theorem 1.1 is rather intricate and involves a num-
ber of technical estimates, we present a brief outline of the argument in this section.

We start by discarding a sparse set of undesirable φ and σ -values. More precisely,
we identify (in Lemma 3.2) convenient sets Aφ and Aσ with the property that almost
all φ-values less than or equal to x have all their preimages in Aφ and almost all
σ -values less than or equal to x have all their preimages in Aσ . This reduces us to
studying how many φ and σ -values arise as solutions to the equation

φ(a)= σ(a′), where a ∈Aφ, a′ ∈Aσ .

Note that to show that Vφ,σ (x)/Vφ(x)→ 0, we need only count the number of
common φ-σ -values of this kind, and not the (conceivably much larger) number of
pairs (a, a′) ∈Aφ ×Aσ corresponding to these values.

What makes the sets Aφ and Aσ convenient for us? The properties imposed in
the definitions of these sets are of two types, anatomical and structural. By anatom-
ical considerations, we mean general considerations of multiplicative structure as
commonly appear in elementary number theory (for example, consideration of the
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number and size of prime factors). By structural considerations, we mean those
depending for their motivation on the fine structure theory of totients developed by
Ford [1998a].

Central to our more anatomical considerations is the notion of a normal prime.
Hardy and Ramanujan [1917] showed that almost all natural numbers 6 x have
∼ log log x prime factors, and Erdős [1935] showed that the same holds for almost
all shifted primes p− 1 6 x . Moreover, sieve methods imply that if we list the
prime factors of p− 1 on a double-logarithmic scale, then these are typically close
to uniformly distributed in [0, log log p]. Of course, all of this remains true with
p+1 in place of p−1. We assume that the numbers belonging to Aφ and Aσ have
all their prime factors among this set of normal primes.

If we assume that numbers n all of whose prime factors are normal generate
“most” f -values (for f ∈ {φ, σ }), we are led to a series of linear inequalities among
the (double-logarithmically renormalized) prime factors of n. These inequalities
are at the heart of the structure theory of totients as developed in [Ford 1998a].
As one illustration of the power of this approach, mapping the L largest prime
factors of n (excluding the largest) to a point in RL , the problem of estimating
V f (x) reduces to the problem of finding the volume of a certain region of RL ,
called the fundamental simplex. In broad strokes, this is how one establishes Ford’s
bound (1-1). We incorporate these linear inequalities into our definitions of Aφ and
Aσ . One particular linear combination of renormalized prime factors appearing in
the definition of the fundamental simplex is of particular interest to us (see condition
(8) in the definition of A f in Section 3 below); that we can assume this quantity is
less than 1 is responsible for the success of our argument.

Suppose now that we have a solution to φ(a)= σ(a′), where (a, a′) ∈Aφ×Aσ .
We write a = p0 p1 p2 · · · and a′ = q0q1q2 · · · , where the sequences of pi and q j

are nonincreasing. We cut the first of these lists in two places; at the k-th prime pk

and at the L-th prime pL . The precise choice of k and L is somewhat technical;
one should think of the primes pi larger than pk as the “large” prime divisors of a,
those smaller than pk but larger than pL as “small”, and those smaller than pL as
“tiny”. The equation φ(a)= σ(a′) can be rewritten in the form

(p0− 1)(p1− 1)(p2− 1) · · · (pk−1− 1) f d

= (q0+ 1)(q1+ 1)(q2+ 1) · · · (qk−1+ 1)e, (1-4)

where

f := φ(pk · · · pL−1), d := φ(pL pL+1 · · · ), and e := σ(qkqk+1 · · · ). (1-5)

To see that (1-4) correctly expresses the relation φ(a)= σ(a′), we recall that the
primes p1, . . . , pk are all large, so that by the “anatomical” constraints imposed
in the definition of Aφ , each appears to the first power in the prime factorization
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of a. An analogous statement holds for the primes q1, . . . , qk ; this follows from the
general principle, established below, that pi ≈ qi provided that either side is not too
small. There is one respect in which (1-5) may not be quite right: Since pL is tiny,
we cannot assume a priori that pL 6= pL−1, and so it may be necessary to amend
the definition of d somewhat; we ignore this (ultimately minor) difficulty for now.

To complete the argument, we fix d and estimate from above the number of
solutions (consisting of p0, . . . , pk−1, q0, . . . , qk−1, e, f ) to the relevant equations
of the form (1-4); then we sum over d . The machinery facilitating these estimates
is encoded in Lemma 4.1, which is proved by a delicate, iterative sieve argument
of a kind first introduced in [Maier and Pomerance 1988] and developed in [Ford
1998a, §5]. The hypotheses of that lemma include several assumptions about the
pi and q j , and about e, f , and d. All of these rather technical hypotheses are, in
our situation, consequences of our definitions of Aφ and Aσ ; we say more about
some of them in a remark following Lemma 4.1.

Notation. Let P+(n) denote the largest prime factor of n, understood so that
P+(1) = 1, and let �(n,U, T ) denote the total number of prime factors p of
n such that U < p 6 T , counted according to multiplicity. Constants implied by
the Landau O and the Vinogradov� and� symbols are absolute unless otherwise
specified. Symbols in boldface type indicate vector quantities.

2. Preliminaries

2A. Anatomical tools. We begin with two tools from the standard chest. The first
is a form of the upper bound sieve and the second concerns the distribution of
smooth numbers.

Lemma 2.1 (see, e.g., [Halberstam and Richert 1974, Theorem 4.2]). Suppose
A1, . . . , Ah are positive integers and B1, . . . , Bh are integers such that

E =
h∏

i=1

Ai

∏
16i< j6h

(Ai B j − A j Bi ) 6= 0.

Then

#{n6 x : Ai n+Bi prime (16 i6h)}�
x

(log x)h
∏
p|E

1− ν(p)
p

(1− 1
p )

h
�

x(log2(|E | + 2))h

(log x)h
,

where ν(p) is the number of solutions of the congruence
∏
(Ai n+Bi )≡ 0 (mod p),

and the implied constant may depend on h.

Let 9(x, y) denote the number of n 6 x for which P+(n)6 y. The following
estimate is due to Canfield, Erdős, and Pomerance:



1674 Kevin Ford and Paul Pollack

Lemma 2.2 [Canfield et al. 1983]. Fix ε > 0. If 26 y 6 x and u = log x
log y

, then

9(x, y)= x/uu+o(u)

for u 6 y1−ε , as u→∞.

The next lemma supplies an estimate for how often �(n) is unusually large; this
may be deduced from the theorems in Chapter 0 of [Hall and Tenenbaum 1988].

Lemma 2.3. The number of integers n 6 x for which �(n)> α log2 x is

�α

{
x(log x)−Q(α) if 1< α < 2,
x(log x)1−α log 2 log2 x if α > 2,

where Q(λ)=
∫ λ

1 log t dt = λ log(λ)− λ+ 1.

In the remainder of this section, we give a precise meaning to the term “normal
prime” alluded to in the introduction and draw out some simple consequences. For
S > 2, a prime p is said to be S-normal if the following two conditions hold for
each f ∈ {φ, σ }:

�( f (p), 1, S)6 2 log2 S,

and, for every pair of real numbers (U, T ) with S 6U < T 6 f (p), we have∣∣�( f (p),U, T )− (log2 T − log2 U )
∣∣<√log2 S log2 T . (2-1)

This definition is slightly weaker than the corresponding definition on [Ford 1998a,
p. 13], and so the results from that paper remain valid in our context. As a straightfor-
ward consequence of the definition, if p is S-normal, f ∈{φ, σ }, and f (p)> S, then

�( f (p))6 3 log2 f (p). (2-2)

The following lemma is a simple consequence of [Ford 1998a, Lemma 2.10] and
(1-1):

Lemma 2.4. For each f ∈ {φ, σ }, the number of f -values less than or equal to x
which have a preimage divisible by a prime that is not S-normal is

� V f (x)(log2 x)5(log S)−1/6.

We also record the observation that if p is S-normal, then P+( f (p)) cannot be
too much smaller than p, on a double-logarithmic scale.

Lemma 2.5. If 56 p 6 x is an S-normal prime and f (p)> S, then

log2 P+( f (p))
log2 x

>
log2 p
log2 x

−
log3 x+log 4

log2 x
.
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Proof. We have

P+( f (p))> f (p)
1

�( f (p)) > f (p)
1

3 log2 f (p) > p
1

4 log2 x .

The result follows upon taking the double logarithm of both sides. �

2B. Structural tools. In this section, we describe more fully some components
of the structure theory of totients alluded to in the introduction. Given a natural
number n, write n = p0(n)p1(n)p2(n) · · · , where p0(n) > p1(n) > p2(n) > · · ·
are the primes dividing n (with multiplicity). For a fixed x , we put

xi (n; x)=
{
(log2 pi (n))/(log2 x) if i <�(n) and pi (n) > 2,
0 if i >�(n) or pi (n)= 2.

Suppose L > 2 is fixed and that ξi > 0 for 0 6 i 6 L − 1. Recall the definition
of the ai from (1-2) and let SL(ξ) be the set of (x1, . . . , xL) ∈ RL with 06 xL 6
xL−1 6 · · ·6 x1 6 1 and

(I0) a1x1+ a2x2+ · · ·+ aL xL 6 ξ0,

(I1) a1x2+ a2x3+ · · ·+ aL−1xL 6 ξ1x1,

...
...

(IL−2) a1xL−1+ a2xL 6 ξL−2xL−2.

Define TL(ξ) as the volume (L-dimensional Lebesgue measure) of SL(ξ). For
convenience, let 1= (1, 1, . . . , 1), SL =SL(1) (the “fundamental simplex”), and
let TL be the volume of SL . Let

L0(x) :=
⌊

2C(log3 x − log4 x)
⌋
,

where C is defined as in the introduction. The next lemma allows us to locate the
preimages of almost all f -values within suitable sets of the form SL(ξ).

Lemma 2.6 [Ford 1998a, Theorem 15]. Write L0 = L0(x). Suppose 069 < L0,
L = L0−9, and let

ξi = ξi (x)= 1+ 1
10(L0−i)3

(06 i 6 L − 2).

The number of f -values v 6 x with a preimage n for which

(x1(n; x), . . . , xL(n; x)) /∈SL(ξ) is � V f (x) exp(−92/4C).

For future use, we collect here some further structural lemmas from [Ford 1998a].
The next result, which follows immediately from our (1-1) and Lemma 4.2 of
that article, concerns the size of sums of the shape appearing in the definition of
inequality (I0) above.
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Lemma 2.7. Suppose that L > 2, 0 < ω < 1
10 , and x is sufficiently large. The

number of f -values v 6 x with a preimage satisfying

a1x1(n; x)+ · · ·+ aL xL(n; x)> 1+ω

is� V f (x)(log2 x)5(log x)−ω
2/(150L3 log L).

We will make heavy use of the following (purely geometric) statement about the
simplices SL(ξ), which appears as [Ford 1998a, Lemma 3.10]. Recall from (1-3)
that % = 0.542598 . . . denotes the unique real number with

∑
∞

n=1 an%
n
= 1.

Lemma 2.8. If x ∈ SL(ξ) and ξ L
0 ξ

L−1
1 · · · ξ 2

L−2 6 1.1, then x j 6 3% j−i xi when
i < j , and x j < 3% j for 16 j 6 L.

Define RL(ξ ; x) as the set of integers n with �(n)6 L and

(x0(n; x), x1(n; x), . . . , xL−1(n; x)) ∈SL(ξ).

For f ∈ {φ, σ }, put

R( f )
L (ξ ; x)=

∑
n∈RL (ξ ,x)

1
f (n)

.

The next lemma, extracted from [Ford 1998a, Lemma 3.12], relates the magnitude
of R( f )

L (ξ ; x) to the volume of the fundamental simplex TL , whenever ξ is suitably
close to 1. In that article, it plays a crucial role in the proof of the upper-bound
aspect of (1-1).

Lemma 2.9. If 1/(1000k3) 6 ωL0−k 6 1/(10k3) for 1 6 k 6 L0, ξi = 1+ωi for
each i , and L 6 L0, then

R( f )
L (ξ ; x)� (log2 x)L TL

for both f = φ and f = σ .

While only the case f = φ of Lemma 2.9 appears in the statement of [ibid.,
Lemma 3.12], the f = σ case follows trivially, since σ(n) > φ(n). In order to
apply Lemma 2.9, we need estimates for the volume TL ; this is handled by the next
lemma, extracted from [ibid., Corollary 3.4].

Lemma 2.10. Assume 16 ξi 6 1.1 for 06 i 6 L−2 and that ξ L
0 ξ

L−1
1 · · · ξ 2

L−2 � 1.
If L = L0−9 > 0, then

(log2 x)L TL(ξ)� Y (x) exp(−92/4C).

Here

Y (x) := exp
(
C(log3 x − log4 x)2+ D log3 x − (D+ 1

2 − 2C) log4 x
)
. (2-3)
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We conclude this section with the following technical lemma, which will be
needed when we select the sets Aφ and Aσ in Section 3.

Lemma 2.11. For f ∈ {φ, σ } and y > 20,∑
v∈V f

P+(v)6y

1
v
�

log2 y
log3 y

Y (y), (2-4)

where Y is as defined in (2-3). Moreover, for any b > 0,

Y (exp((log x)b))�b Y (x)
( log3 x

log2 x

)−2C log b
. (2-5)

Proof. We split the left-hand sum in (2-4) according to whether or not v 6 ylog2 y .
The contribution of the large v is O(1) and so is negligible: Indeed, for t> ylog2 y , we
have log t/log y> log2 y. Thus, by Lemma 2.2, we have 9(t, y)� t/(log t)2 (say),
and the O(1) bound follows by partial summation. We estimate the sum over small v
by ignoring the smoothness condition. Put X = ylog2 y . Since V f (t)� (t/ log t)Y (t),
partial summation gives that∑

v∈V f
v6X

1
v
� 1+

∫ X

3

Y (t)
t log t

dt = (1+ o(1))Y (X) log2 X
log3 X

,

as y→∞. (The last equality follows, for instance, from L’Hôpital’s rule.) Since
log2 X/ log3 X ∼ log2 y/ log3 y and Y (X) ∼ Y (y), we have (2-4). Estimate (2-5)
follows from the definition of Y and a direct computation; here it is helpful to
note that if we redefine X := exp((log x)b), then log3 X = log3 x + log b and
log4 X = log4 x + Ob(1/ log3 x). �

3. Definition of the sets Aφ and Aσ

We continue fleshing out the introductory sketch, giving precise definitions to the
preimage sets Aφ and Aσ . Put

L :=
⌊

L0(x)− 2
√

log3 x
⌋
, ξi := 1+ 1

10(L0−i)3
(16 i 6 L). (3-1)

The next lemma is a final technical preliminary.

Lemma 3.1. Let f ∈ {φ, σ }. The number of f -values v 6 x with a preimage n
for which

(i) (x1(n; x), . . . , xL(n; x)) ∈SL(ξ) and

(ii) n has fewer than L + 1 odd prime divisors (counted with multiplicity)

is� V f (x)/ log2 x.
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Proof. We treat the case when f = φ; the case when f = σ requires only small
modifications. We can assume that x/ log x 6 n 6 2x log2 x , where the last inequal-
ity follows from known results on the minimal order of the Euler function. By
Lemma 2.3, we can also assume that �(n)6 10 log2 x . Put pi := pi (n), as defined
in Section 2B. Since (x1(n; x), . . . , xL(n; x)) ∈SL(ξ) by hypothesis, Lemma 2.8
gives that x2 < 3%2 < 0.9, and so p2 6 exp((log x)0.9). Thus,

n/(p0 p1)= p2 p3 · · ·6 exp(10(log2 x)(log x)0.9)= xo(1),

and so p0 > x2/5 (say) for large x . In particular, we can assume that p2
0 - n.

Suppose now that n has exactly L0 − k + 1 odd prime factors, where we fix
k > L0− L . Then

v = (p0− 1)φ(p1 p2 · · · pL0−k)2s

for some integer s > 0. Using the prime number theorem to estimate the number
of choices for p0 given p1 · · · pL0−k and 2s , we obtain that the number of v of this
form is

�
x

log x

∑
p1···pL0−k

1
φ(p1 · · · pL0−k)

∑
s>0

1
2s .

(We use here that x/(φ(p1 · · · pL0−k)2s)� p0 > x2/5.) The sum over s is � 1.
To handle the remaining sum, we observe that p1 · · · pL0−k belongs to the set
RL0−k(ξk, x), where ξk :=(ξ0, . . . , ξL0−k−2). Thus, the remaining sum is bounded by

R(φ)L0−k(ξk; x)=
∑

m∈RL0−k(ξk ,x)

1
φ(m)

.

So by Lemmas 2.9 and 2.10, both of whose hypotheses are straightforward to verify,

R(φ)L0−k(ξk; x)� (log2 x)L0−k TL0−k6 (log2 x)L0−k TL0−k(ξk)�Y (x) exp(−k2/4C).

Collecting our estimates, we obtain a bound of

�
x

log x
Y (x) exp(−k2/4C)� Vφ(x) exp(−k2/4C).

Now since L0− L > 2
√

log3 x , summing over k > L0− L gives a final bound
which is

� Vφ(x) exp(−(log3 x)/C)� Vφ(x)/ log2 x,

as desired. �

For the rest of this paper, we fix ε > 0 and assume that x > x0(ε). Put

S := exp((log2 x)36), δ :=

√
log2 S
log2 x

, ω := (log2 x)−1/2+ε/2. (3-2)
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For f ∈ {φ, σ }, let A f be the set of n = p0(n)p1(n) · · · satisfying f (n)6 x and

(0) n > x/ log x ,

(1) every squarefull divisor m of n or f (n) satisfies m 6 log2 x ,

(2) all of the primes p j (n) are S-normal,

(3) �( f (n))6 10 log2 x and �(n)6 10 log2 x ,

(4) if d ‖ n and d > exp((log2 x)1/2), then �( f (d))6 10 log2 f (d),

(5) (x1(n; x), . . . , xL(n; x)) ∈SL(ξ),

(6) n has at least L + 1 odd prime divisors,

(7) P+( f (p0))> x1/(log2 x), p1(n) < x1/(100 log2 x),

(8) a1x1(n; x)+ · · ·+ aL xL(n; x)6 1−ω.

The following lemma asserts that a generic f -value has all of its preimage in A f .

Lemma 3.2. For each f ∈ {φ, σ }, the number of f -values 6 x with a preimage
n 6∈A f is

� V f (x)(log2 x)−1/2+ε .

Remarks. (i) The A f not only satisfy Lemma 3.2 but do so economically. In
fact, from condition (5) and the work of [Ford 1998a, §4], we have that
#A f � V f (x). Thus, on average, an element of V f (x) has only a bounded
number of preimages from A f . So when we turn in Sections 4 and 5 to counting
φ-values arising from solutions to φ(a)= σ(a′), with (a, a′) ∈Aφ ×Aσ , we
expect not to be (excessively) overcounting.

(ii) Of the nine conditions defining A f , conditions (0)–(4) are, in the nomenclature
of the introduction, purely anatomical, while conditions (5)–(8) depend to
some degree on the fine structure theory of [Ford 1998a]. Condition (8) is
particularly critical. It is (8) which ensures that the sieve bounds developed in
Section 4 result in a nontrivial estimate for Vφ,σ (x). Our inability to replace
the exponent 1

2 on log2 x in Lemma 3.2 (or in Theorem 1.1) by a larger number
is also rooted in (8).

Proof. It is clear that the number of values of f (n) corresponding to n failing
(0) or (1) is � x log2 x/ log x , which (recalling (1-1)) is permissible for us. By
Lemma 2.4 and our choice of S, the number of values of f (n) coming from n
failing (2) is� V f (x)/ log2 x . The same holds for values coming from n failing
(3), by Lemma 2.3.

Suppose now that n fails condition (4). Then n has a unitary divisor d >
exp((log2 x)1/2) with �( f (d))> 10 log2 f (d). Put w := f (d). Then w | f (n), and
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f (n)� x log2 x . So if w > x1/2, then the number of possibilities for f (n) is

� x log2 x
∑
w>x1/2

�(w)>10 log2 w

1
w
�

x log2 x
log x

,

using Lemma 2.3 to estimate sum over w. If w 6 x1/2, we observe that f (n)/w =
f (n/d) ∈ V f ; hence, with Y (x) defined as in (2-3), the number of corresponding
values of f (n) is

�

∑
exp((log2 x)1/3)6w6x1/2

�(w)>10 log2 w

V f (x/w)�
x

log x
Y (x)

∑
w>exp((log2 x)1/3)
�(w)>10 log2 w

1
w
�

V f (x)
log2 x

.

By Lemma 2.6, the number of f -values with a preimage failing (5) is

�
V f (x)
log2 x

.

According to Lemma 3.1, the number of f -values with a preimage satisfying (5)
but not (6) is also� V f (x)/ log2 x .

Suppose now that n satisfies (0)–(6). In what follows, we write xi = xi (n; x).
From (5), we have ξ0 > a1x1+ a2x2 > (a1+ a2)x2, and so x2 6 0.8. So from (3),

n
p0(n)p1(n)

= p2(n)p3(n) · · ·6 exp(10(log2 x)(log x)0.8) < x1/100. (3-3)

In particular, p0 > x1/3
+ 1 and f (p0) > x1/3, so that v := f (p1 p2 · · · ) 6 x2/3.

The prime p0 satisfies f (p0) 6 x/v. For z with x1/3 < z 6 x , the number of
primes p0 with f (p0) 6 z and P+( f (p0)) 6 x1/ log2 x is (crudely) bounded by
9(z, x1/ log2 x) � z/(log x)2, by Lemma 2.2. So the number of values of f (n)
coming from n with P+( f (p0))6 x1/ log2 x is

�

∑
v6x2/3

v∈V f

∑
p: f (p)6x/v

P+( f (p))6x1/ log2 x

1� x
(log x)2

∑
v6x2/3

v∈V f

1
v
�

x
(log x)2−ε

.

To handle the second condition in (7), observe that since f (p0)6 x/v, the prime
number theorem (and the bound v 6 x2/3) shows that given v, the number of
possibilities for p0 is � x/(v log x). Suppose that p1(n) > x1/(100 log2 x). Then
x1 = x1(n; x)> 0.999, and we conclude from

∑
i>1 ai xi 6 ξ0 that either x2 6 %3/2

or x3 6 %5/2. Writing v2 for f (p2 p3 · · · ) and v3 for f (p3 p4 · · · ), we see that the
number of such f -values is
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�
x

log x

∑
p1

1
p1

( ∑
P+(v2)

6exp((log x)%
3/2
)

1
v2
+

∑
p2

1
p2

∑
P+(v3)

6exp((log x)%
5/2
)

1
v3

)

�
x

log x
log3 x

(
Y (x)

( log3 x
log2 x

)1/2
+ (log2 x)Y (x)

( log3 x
log2 x

)3/2)
�

V f (x)
(log2 x)1/2−ε

,

using Lemma 2.11 to estimate the sums over v2 and v3.
Finally, we consider n for which (0)–(7) hold but where condition (8) fails. By

Lemma 2.7, we can assume that a1x1+ · · ·+ aL xL < 1+ω, since the number of
exceptional f -values is

� V (x) exp(−(log2 x)ε/2)� V (x)
log2 x

.

Thus,
1−ω < a1x1+ · · ·+ aL xL < 1+ω, (3-4)

while by condition (I1) in the definition of SL(ξ), a1x2+· · ·+aL−1xL 6 ξ1x1. We
claim that if J is fixed large enough depending on ε, then there is some 26 j 6 J
with x j 6 % j−ε/3. If not, then for large enough J ,

ξ1x1 >
J−1∑
j=1

a j x j+1 > %
1−ε/3(a1%+ a2%

2
+ · · ·+ aJ%

J ) > %1−ε/4.

Thus, x1>%1−ε/4 ξ−1
1 >%

1−ε/5, and so ξ0>%−ε/5(a1%+a2%
2
+· · ·+aJ%

J )>%−ε/6,
which is false. This proves the claim. We assume below that j ∈ [2, J ] is chosen
as the smallest index with x j 6 % j−ε/3; by condition (1), this implies that all of
p1, . . . , p j−1 appear to the first power in the prime factorization of n.

Now given x2, . . . , xL , we have from (3-4) that x1 ∈ [α, α+ 2ω] for a certain α.
Thus, ∑

p1

1
p1
� ω log2 x = (log2 x)1/2+ε/2.

So the number of f -values that arise from n satisfying (0)–(7) but failing (8) is

�
x

log x

J∑
j=2

∑
p1,...,p j−1

1
p1 · · · p j−1

∑
P+(v)6exp((log x)%

j−ε/3
)

v∈V f

1
v

�
x

log x

J∑
j=2

(log2 x) j−3/2+ε/2Y (x)
( log3 x

log2 x

)−1+ j−ε/3
� V f (x)(log2 x)−1/2+ε .

This completes the proof of Lemma 3.2. �
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As a corollary of Lemma 3.2, we have that Vφ,σ (x) is bounded, up to an additive
error of� (Vφ(x)+Vσ (x))/(log2 x)1/2−ε , by the number of values φ(a) that appear
in solutions to the equation

φ(a)= σ(a′), where (a, a′) ∈Aφ ×Aσ .

In Sections 4 and 5, we develop the machinery required to estimate the number of
such values. Ultimately, we find that it is smaller than (Vφ(x)+ Vσ (x))/(log2 x)A

for any fixed A, which immediately gives Theorem 1.1.

4. The fundamental sieve estimate

Lemma 4.1. Let y be large, k > 1, l > 0, 30 6 S 6 vk 6 vk−1 6 · · · 6 v0 = y,
and u j 6 v j for 0 6 j 6 k − 1. Put δ =

√
log2 S/ log2 y, ν j = log2 v j/ log2 y,

µ j = log2 u j/ log2 y. Suppose that d is a natural number for which P+(d) 6 vk .
Moreover, suppose that both of the following hold:

(a) For 2 6 j 6 k − 1, either (µ j , ν j ) = (µ j−1, ν j−1) or ν j 6 µ j−1 − 2δ. Also,
νk 6 µk−1− 2δ.

(b) For 16 j 6 k− 2, we have ν j > ν j+2.

The number of solutions of

(p0− 1) · · · (pk−1− 1) f d = (q0+ 1) · · · (qk−1+ 1)e 6 y (4-1)

in p0, . . . , pk−1, q0, . . . , qk−1, e, f satisfying

(i) pi and qi are S-normal primes,

(ii) ui 6 P+(pi − 1), P+(qi + 1)6 vi for 06 i 6 k− 1,

(iii) neither φ(
∏k−1

i=0 pi ) nor σ(
∏k−1

i=0 qi ) is divisible by r2 for a prime r > vk ,

(iv) P+(e f )6 vk ; �( f )6 4l log2 vk ,

(v) p0− 1 has a divisor > y1/2 which is composed of primes > v1

is

�
y
d
(c log2 y)6k(k+ 1)�(d)(log vk)

8(k+l) log (k+1)+1(log y)−2+
∑k−1

i=1 aiνi+E ,

where E = δ
∑k

i=2 (i log i + i)+ 2
∑k−1

i=1 (νi −µi ). Here c is an absolute positive
constant.

Remarks. Since the lemma statement is very complicated, it may be helpful to
elaborate on how it will be applied in Section 5 below. Given (a, a′) ∈Aφ ×Aσ

satisfying φ(a)= σ(a′), rewrite the corresponding equation in the form (1-4), with
d, e, and f as in (1-5). (Here L is as in (3-1), and k, given more precisely in the
next section, satisfies k ≈ L/2.) We are concerned with counting the number of
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values φ(a) which arise from such solutions. We partition the solutions according
to the value of d , which describes the contribution of the “tiny” primes to φ(a), and
by the rough location of the primes pi and qi , which we encode in the selection of
intervals [ui , vi ] (cf. Lemma 2.5). Finally, we apply Lemma 4.1 and sum over both
d and the possible selections of intervals; this gives an estimate for the number of
φ(a) which is smaller than (Vφ(x)+ Vσ (x))/(log2 x)A, for any fixed A.

In our application, conditions (i)–(v) of Lemma 4.1 are either immediate from
the definitions, or are readily deduced from the defining properties of Aφ and Aσ .
Conditions (a) and (b) are rooted in the observation that while neighboring primes
in the prime factorization of a (or a′) may be close together (requiring us to allow
[ui+1, vi+1] = [ui , vi ]), the primes pi (a) and pi+2(a) are forced to be far apart
on a double-logarithmic scale. Indeed, since (x1(a; x), . . . , xL(a; x)) ∈ SL(ξ),
Lemma 2.8 shows that xi+2 < 3%2xi < 0.9xi .

Proof. We consider separately the prime factors of each shifted prime lying in each
interval (vi+1, vi ]. For 06 j 6 k− 1 and 06 i 6 k, let

si, j (n)=
∏

pa
‖(p j−1)
p6vi

pa, s ′i, j (n)=
∏

pa
‖(q j+1)
p6vi

pa, si = d f
k−1∏
j=0

si, j = e
k−1∏
j=0

s ′i, j .

Also, for 06 j 6 k− 1 and 16 i 6 k, let

ti, j =
si−1, j

si, j
, t ′i, j =

s ′i−1, j

s ′i, j
, ti =

k−1∏
j=0

ti, j =

k−1∏
j=0

t ′i, j .

For each solution A = (p0, . . . , pk−1, f, q0, . . . , qk−1, e) of (4-1), let

σi (A )= {si ; si,0, . . . , si,k−1, f ; s ′i,0, . . . , s ′i,k−1, e},

τi (A )= {ti ; ti,0, . . . , ti,k−1, 1; t ′i,0, . . . , t ′i,k−1, 1}.

Defining multiplication of (2k+ l + 2)-tuples component-wise, we have

σi−1(A )= σi (A )τi (A ). (4-2)

Let Si denote the set of σi (A ) arising from solutions A of (4-1) and Ti the
corresponding set of τi (A ). By (4-2), the number of solutions of (4-1) satisfying
the required conditions is

|S0| =
∑
σ1∈S1

∑
τ1∈T1
σ1τ1∈S0

1. (4-3)

First, fix σ1 ∈S1. By assumption (v) in the lemma, t1,0 > y1/2. Also,

t1 = t1,0 = t ′1,0 6 y/s1,
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t1 is composed of primes > v1, and s1,0t1 + 1 and s ′1,0t1 − 1 are prime. Write
t1 = t ′1 Q, where Q = P+(t1). Since p0 is an S-normal prime, (2-2) gives that

Q > t1/�(t1)
1 > t1/�(p0−1)

1 > y1/(2�(p0−1)) > y1/(6 log2 y),

Given t ′1, Lemma 2.1 implies that the number of Q is O(y(log2 y)6/(s1t ′1 log3 y)).
Moreover,∑ 1

t ′1
6

∏
v1<p6y

(
1+ 1

p
+

1
p2 + · · ·

)
�

log y
log v1

= (log y)1−ν1 .

Consequently, for each σ1 ∈S1,∑
τ1∈T1
σ1τ1∈S0

1�
y(log2 y)6

s1(log y)2+ν1
. (4-4)

Next, suppose 26 i 6 k. We now apply an iterative procedure: If vi < vi−1, we
use the identity ∑

σi−1∈Si−1

1
si−1
=

∑
σi∈Si

1
si

∑
τi∈Ti

σi τi∈Si−1

1
ti
. (4-5)

If vi = vi−1, then (4-5) remains true but contains no information, and in this case
we use the alternative identity∑

σi−1∈Si−1

1
si−1
=

∑
σi+1∈Si+1

1
si+1

∑
τi+1∈Ti+1

σi+1τi+1∈Si−1

1
ti+1

. (4-6)

We consider first the simpler case when vi < vi−1. Suppose σi ∈ Si , τi ∈ Ti

and σiτi ∈Si−1. By assumption (ii), ti = ti,0 · · · ti,i−1 = t ′i,0 · · · t
′

i,i−1. In addition,
si,i−1ti,i−1+ 1 = pi−1 and s ′i,i−1t ′i,i−1− 1 = qi−1 are prime. Let Q := P+(ti,i−1),
Q′ := P+(t ′i,i−1), b := ti,i−1/Q and b′ := t ′i,i−1/Q′.

We consider separately Ti,1, the set of τi with Q = Q′ and Ti,2, the set of τi with
Q 6= Q′. First,

61 :=
∑
τi∈Ti,1

σi τi∈Si−1

1
ti
6
∑

t

h(t)
t

max
b,b′

∑
Q

1
Q
,

where h(t) denotes the number of solutions of ti,0 · · · ti,i−2b = t = t ′i,0 · · · t
′

i,i−2b′,
and in the sum on Q, si,i−1bQ+1 and s ′i,i−1b′Q−1 are prime. By Lemma 2.1, the
number of Q6 z is� z(log z)−3(log2 y)3 uniformly in b, b′. By partial summation,∑

Q>ui−1

1
Q
� (log2 y)3(log y)−2µi−1 .
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Also, h(t) is at most the number of dual factorizations of t into i factors each, that
is, h(t)6 i2�(t). By (2-1), �(t)6 i(νi−1−νi+δ) log2 y=: I . Also, by assumption
(iii), t is squarefree. Thus, ∑

t

h(t)
t
6
∑
j6I

i2 j H j

j !
,

where ∑
vi<p6vi−1

1
p
6 (νi−1− νi ) log2 y+ 1=: H.

By assumption (a), νi−1− νi > 2δ, hence I 6 3
2 i H 6 3

4 i2 H . Hence,∑
t

h(t)
t
6
( i2 H

I

)I ∑
j6I

I j

j !
< i I exp(I )= (log y)(i+i log i)(νi−1−νi+δ). (4-7)

This gives
61� (log2 y)3(log y)−2µi−1+(i+i log i)(νi−1−νi+δ).

For the sum over Ti,2, set ti = t Q Q′. Note that t Q′ = ti,0 · · · ti,i−2b and
t Q= t ′i,0 · · · t

′

i,i−2b′, so Q | t ′i,0 · · · t
′

i,i−2b′ and Q′ | ti,0 · · · ti,i−2b. If we fix the factors
divisible by Q and by Q′, then the number of possible ways to form t is 6 i2�(t)

as before. Then

62 :=
∑
τi∈Ti,2

σi τi∈Si−1

1
ti
6
∑

t

i2�(t)+2

t
max
b,b′

∑
Q,Q′

1
Q Q′

,

where si,i−1bQ + 1 and s ′i,i−1b′Q′− 1 are prime. By Lemma 2.1, the number of
Q 6 z (respectively Q′ 6 z) is� z(log z)−2(log2 y)2. Hence,∑

Q,Q′

1
Q Q′

� (log2 y)4(log y)−2µi−1 .

Combined with (4-7), this gives 62� i2(log2 y)4(log y)−2µi−1+(i+i log i)(νi−1−νi+δ).
From (a) and (b), i2 6 k2 6 (log2 y)2. Adding 61 and 62 shows that for each σi ,∑

τi∈Ti
σi τi∈Si−1

1
ti
� (log2 y)6(log y)−2µi−1+(i log i+i)(νi−1−νi+δ). (4-8)

We consider now the case when vi = vi−1. Set Q1 := P+(ti+1,i−1), Q2 :=

P+(ti+1,i ), Q3 := P+(t ′i+1,i−1), and Q4 := P+(t ′i+1,i ). From (iii), we have that
Q1 6= Q2 and Q3 6= Q4. Moreover, letting bi denote the cofactor of Qi in each
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case, we have that

si+1,i−1b1 Q1+ 1= pi−1, s ′i+1,i−1b3 Q3− 1= qi−1,

si+1,i b2 Q2+ 1= pi , s ′i+1,i b4 Q4− 1= qi .
(4-9)

Since there are now several ways in which the various Qi may coincide, the
combinatorics is more complicated than in the case when vi < vi−1. We index
the cases by fixing the incidence matrix (δi j ) with δi j = 1 if Qi = Q j and δi j = 0
otherwise.

Write D = gcd(Q1 Q2, Q3 Q4), and let Q := Q1 Q2/D and Q′ := Q3 Q4/D, so
that D, Q, and Q′ are formally determined by (δi j ). Then Q Q′ | ti+1, and writing
ti+1/D = t Q Q′, we have

t Q = ti+1,0ti+1,1 · · · ti+1,i−2b3b4, (4-10)

t Q′ = t ′i+1,0t ′i+1,1 · · · t
′

i+1,i−2b1b2. (4-11)

We now choose which terms on the right-hand sides of (4-10) and (4-11) contain
the prime factors of Q and Q′, respectively; since �(Q)6 2 and �(Q′)6 2, this
can be done in at most (i+1)4 ways. Having made this choice, the number of ways
to form t is bounded by (i + 1)2�(t), and so∑

τi+1∈Ti+1
σi+1τi+1∈Si−1

1
ti+1
6
∑

t

(i+1)2�(t)+4

t
max

b1,b2,b3,b4

∑ 1
DQ Q′

. (4-12)

It is easy to check that DQ Q′ =
∏

j∈J Q j , where J indexes the distinct Q j . For
each j ∈J , let n j be the number of linear forms appearing in (4-9) involving Q j .
Since each of these n j linear forms in Q j is prime, as is Q j itself, Lemma 2.1
implies that the number of possibilities for Q j 6 z is� z(log z)−n j−1(log2 y)n j+1,
and so ∑

Q j >ui−1

1
Q j
� (log2 y)n j+1(log ui−1)

−n j � (log2 y)n j+1(log y)−n jµi−1,

uniformly in the choice of the b’s. Since
∑

j∈J n j = 4 and
∑

j∈J 16 4,

∑ 1
DQ Q′

6
∏
j∈J

( ∑
Q j >ui−1

1
Q j

)
� (log2 y)8(log y)−4µi−1 . (4-13)

The calculation (4-7), with i replaced by i + 1, shows that∑
t

(i+1)2�(t)

t
6 (log y)((i+1)+(i+1) log(i+1))(νi−νi+1+δ). (4-14)
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Combining (4-12), (4-13), and (4-14) shows that∑
τi+1∈Ti+1

σi+1τi+1∈Si−1

1
ti+1
6 (i + 1)4(log2 y)8(log y)−4µi−1+((i+1)+(i+1) log(i+1))(νi−νi+1+δ)

6 (log2 y)12(log y)−2µi−1+(i log i+i)(νi−νi−1)−2µi+((i+1) log(i+1)+(i+1))(νi+1−νi+δ),

(4-15)

where in the last line we use that vi−1 = vi and (i + 1)4 6 k4 6 (log2 y)4.
Using (4-3), (4-5), and (4-6) together with the inequalities (4-4), (4-8), and

(4-15), we find that the number of solutions of (4-1) is

� y(c log2 y)6k(log y)−2−ν1+
∑k

i=2(νi−1−νi+δ)(i log i+i)−2µi−1
∑
σk∈Sk

1
sk
,

where c is some positive constant. Note that the exponent of log y is

6−2+
k−1∑
i=1

aiνi + E .

It remains to treat the sum on σk . Given s ′k = sk/d , the number of possible σk is
at most the number of factorizations of s ′k into k+ 1 factors times the number of
factorizations of ds ′k into k+ 1 factors, which is at most (k+ 1)�(ds′k)(k+ 1)�(s

′

k).
By assumptions (i) and (iv), �(s ′k)6 4(k+ l) log2 vk . Thus,∑

σk∈Sk

1
sk
6 (k+1)�(d)(k+1)8(k+l) log2 vk

d

∑
P+(s′k)6vk

1
s ′k

�
(k+1)�(d)(log vk)

8(k+l) log(k+1)+1

d
. �

5. Counting common values: Application of Lemma 4.1

In this section we prove the following proposition, which combined with Lemma 3.2
immediately yields Theorem 1.1. Throughout the rest of this paper, we adopt the
definitions of L , the ξi , S, δ, and ω from (3-1) and (3-2).

Proposition 5.1. Fix A > 0. For large x , the number of distinct values of φ(a) that
arise from solutions to the equation

φ(a)= σ(a′), with (a, a′) ∈Aφ ×Aσ ,

is smaller than (Vφ(x)+ Vσ (x))/(log2 x)A.

Let us once again recall the strategy outlined in the introduction and in the
remarks following Lemma 4.1. Let (a, a′)∈Aφ×Aσ be a solution to φ(a)= σ(a′).
Let pi := pi (a) and qi := pi (a′), in the notation of Section 2B. We choose a cutoff
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k so that all of p0, . . . , pk−1 and q0, . . . , qk−1 are “large”. Then by condition (1)
in the definition of the sets A f , neither p2

i | a nor q2
i | a

′, for 06 i 6 k− 1. Fixing
a notion of “small” and “tiny”, we rewrite the equation φ(a)= σ(a′) in the form

(p0− 1) · · · (pk−1− 1) f d = (q0+ 1) · · · (qk−1+ 1)e, (5-1)

where f is the contribution to φ(a) from the “small” primes, d is the contribution
from the “tiny” primes, and e is the contribution of both the “small” and “tiny”
primes to σ(a′).

We then fix d and numbers ui and vi , chosen so that ui 6 P+(pi − 1), P+(qi +

1)6 vi for each 06 i 6 k− 1. With these fixed, Lemma 4.1 provides us with an
upper bound on the number of corresponding solutions to (5-1). Such a solution
determines the common value φ(a)= σ(a′) ∈ Vφ ∩Vσ . We complete the proof of
Proposition 5.1 by summing the upper bound estimates over all choices of d and
all selections of the ui and vi .

We carry out this plan in four stages, each of which is treated in more detail below:

• Finalize the notions of “small” and “tiny”, and so also the choices of d, e,
and f .

• Describe how to choose the ui and vi so that the intervals [ui , vi ] capture
P+(pi − 1) and P+(qi + 1) for all 06 i 6 k− 1.

• Check that the hypotheses of Lemma 4.1 are satisfied.

• Take the estimate of Lemma 4.1 and sum over d and the choices of ui and vi .

5A. “Small” and “tiny”. Suppose we are given a solution (a, a′) ∈Aφ ×Aσ to
φ(a)=σ(a′). Set x j = x j (a; x) and y j = x j (a′; x), in the notation of Section 2B, so
that (from the definition of A f ) the sequences x= (x1, . . . , xL) and y= (y1, . . . , yL)

belong to SL(ξ).

Lemma 5.2. With {z j }
L
j=1 denoting either of the sequences {x j } or {y j }, we have

(i) z j < 3% j for 16 j 6 L ,

(ii) zL− j >
3

100%
− j/ log2 x for 06 j < L.

(iii) z j+2 6 0.9z j for 16 j 6 L − 2.

Proof. Claim (i) is repeated verbatim from Lemma 2.8. By the same lemma,
z j 6 3% j−i zi for 1 6 i < j 6 L . This immediately implies (iii), since %2 < 0.9.
Moreover, fixing j = L , condition (6) in the definition of A f gives that

zi >
1
3%

i−L zL >
log2 3

3
%i−L/ log2 x > 3

100%
i−L/ log2 x,

which is (ii) up to a change of variables. �
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Lemma 5.3. The minimal index k0 6 L for which

log2 P+(pk0 − 1) < (log2 x)1/2+ε/10

satisfies k0 ∼ (1/2− ε/10)L as x→∞.

Proof. Lemma 5.2(i) shows that the least K with log2 pK <(log2 x)1/2+ε/10 satisfies
K 6 (1/2− ε/10+ o(1))L , as x →∞. Since log2 P+(pK − 1) 6 log2 pK , this
gives the asserted upper bound on k0. The lower bound follows in a similar fashion
from Lemma 5.2(ii) and Lemma 2.5. �

Recall the definition of δ from (3-2), and put

η := 10Lδ, so that η � (log3 x)3/2(log2 x)−1/2.

We choose our “large”/“small” cutoff point k by taking k = k0 if xk0−1− xk0 > 20η,
and taking k = k0−1 otherwise. For future use, we note that with this choice of k,

xk−1− xk > 20η. (5-2)

This inequality is immediate if k = k0; in the opposite case, by Lemma 5.2(iii),

xk−1− xk = xk0−2− xk0−1 > xk0−2− xk0 − 20η

> 0.1xk0−2− 20η > 0.1(log2 x)−1/2+ε/10
− 20η > 20η.

Note that with this choice of k, we have log2 pi >(log2 x)1/2+ε/10 for 06 i6k−1,
and so condition (1) in the definition of Aφ guarantees that each pi divides a to the
first power only, for 0 6 i 6 k − 1. Moreover, from Lemmas 5.2(ii) and 5.3, we
have log2 qi > (log2 x)1/2+ε/11 for 06 i 6 k− 1. So each qi divides a′ only to the
first power, for 06 i 6 k− 1. Now take

f := φ(pk pk+1 · · · pL−1), d :=
{
φ(pL pL+1 · · · ) if pL−1 6= pL ,

pL
φ(pL )

φ(pL pL+1 · · · ) if pL−1 = pL ,
(5-3)

and
e := σ(qkqk+1 · · · ),

and observe that (5-1) holds.

5B. Selection of the u j and v j . Rather than choose the u j and v j directly, it
is more convenient to work with the µ j and ν j ; then u j and v j are defined by
u j := exp((log x)µ j ) and v j := exp((log x)ν j ). Put

ζ0 := 1− log3 x+log 100
log2 x

and ζ j := ζ0− jη ( j > 1), (5-4)

and note that with ν0 := 1 and µ0 := ζ0, we have

u0 = x1/(100 log2 x) < x1/ log2 x 6 P+(p0− 1), P+(q0+ 1)6 x = v0,
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by condition (7) in the definitions of Aφ and Aσ . To choose the remaining µ j and
ν j , it is helpful to know that p j and q j are close together (renormalized on a double
logarithmic scale) for 16 j 6 k. This is the substance of the following lemma.

Lemma 5.4. If p j > S and q j > S, then |x j−y j |6 (2 j+1)δ <η. These hypotheses
hold if L − j > 2C log4 x + 12, and so in particular for 16 j 6 k.

Proof. Suppose for the sake of contradiction that y j > x j + (2 j + 1)δ; since the pi

and qi are all S-normal, this would imply that

( j + 1)(y j − x j − δ)6
�(σ(a′), p j , q j )

log2 x
=
�(φ(a), p j , q j )

log2 x
6 j (y j − x j + δ),

which is false. We obtain a similar contradiction if we suppose x j > y j + (2 j+1)δ.
The second half of the lemma follows from Lemma 5.2 and a short calculation,
together with the estimate k ∼ (1/2− ε/10)L of Lemma 5.3. �

We choose the intervals [µ j , ν j ] for 1 6 j 6 k − 1 successively, starting with
j = 1. (We select νk last, by a different method.) Say that the pair {x j , x j+1} is
well-separated if x j − x j+1 > 10η, and poorly separated otherwise.

In the well-separated case, among all ζi (with i > 0), choose ζ minimal and ζ ′

maximal with

ζ ′ log2 x 6 log2 min{P+(p j − 1), P+(q j + 1)}

6 log2 max{P+(p j − 1), P+(q j + 1)}6 ζ log2 x,

and put
µ j := ζ, ν j := ζ

′.

In the poorly separated case, j < k−1, by (5-2). We select [µ j , ν j ] = [µ j+1, ν j+1]

by a similar recipe: Among all ζi (with i>0), choose ζ minimal and ζ ′ maximal with

ζ ′ log2 x 6 log2 min{P+(p j − 1), P+(q j + 1), P+(p j+1− 1), P+(q j+1+ 1)}

6 log2 max{P+(p j − 1), P+(q j + 1), P+(p j+1− 1), P+(q j+1+ 1)}6 ζ log2 x,

and put
ν j = ν j+1 = ζ, and µ j = µ j+1 = ζ

′.

To see that these choices are well-defined, note that by (7) in the definition of
A f , we have x j , y j 6 ζ0, which implies that a suitable choice of ζ above exists in
both cases. Also, for 16 i 6 k, we have xi , yi > (log2 x)−1/2+ε/11 (by Lemma 5.3
and 5.2(ii)). So by Lemma 2.5,

log2 min{P+(pi − 1), P+(qi + 1)}/ log2 x > (log2 x)−1/2+ε/12,

say. Since neighboring ζi are spaced at a distance η � (log2 x)−1/2(log3 x)3/2, a
suitable choice of ζ ′ also exists in both cases.
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For our application of Lemma 4.1, it is expedient to keep track at each step of
the length of the intervals [µ j , ν j ], as well as the distance between the left-endpoint
of the last interval chosen and the right-endpoint of the succeeding interval (if any).
In the well-separated case, Lemmas 5.4 and 2.5 show that

ν j 6max{x j , y j }+ η 6 x j + 2η,

while

µ j >min{x j , y j }−
log3 x+log 4

log2 x
− η > x j − 3η, (5-5)

so that ν j −µ j 6 5η. Also, if a succeeding interval exists (so that j + 16 k− 1),
then ν j+1 6max{x j+1, y j+1}+ η 6 x j+1+ 2η, and the separation between µ j and
ν j+1 satisfies the lower bound

µ j − ν j+1 > x j − x j+1− 5η > 5η. (5-6)

In the poorly separated case, we have

ν j 6max{x j , y j , x j+1, y j+1}+ η =max{x j , y j }+ η 6 x j + 2η,

as before, but the lower bound on µ j takes a slightly different form;

µ j >min{x j , y j , x j+1, y j+1}−
log3 x+log 4

log2 x
− η

> (x j+1− η)−
log3 x+log 4

log2 x
− η > x j+1− 3η > x j − 13η, (5-7)

so that ν j −µ j 6 15η. In this case, since ν j = ν j+1 and µ j =µ j+1, the succeeding
interval (if it exists) is [µ j+2, ν j+2]. By Lemma 5.2(iii),

x j − x j+2 > 0.1x j > 0.1(log2 x)−1/2+ε/10 > 20η,

say. Thus, ν j+2 6max{x j+2, y j+2}+ η 6 x j+2+ 2η 6 x j − 18η, and so

µ j+1− ν j+2 = µ j − ν j+2 > (x j − 13η)− (x j − 18η)> 5η. (5-8)

At this point we have selected intervals [µ j , ν j ], for all 06 j 6 k−1. We choose
νk = ζ , where ζ is the minimal ζi satisfying ζ > xk + η. Note that

log2 S/ log2 x = 36 log3 x/ log2 x < (log2 x)−1/2+ε/11 6 xk < ζ = νk 6 xk + 2η.

Thus, vk > S. From (5-5) and (5-7), µk−1 > xk−1− 3η, so that also

µk−1− νk > xk−1− xk − 5η > 15η, (5-9)

where the last estimate uses (5-2).
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5C. Verification of hypotheses. We now check that Lemma 4.1 may be applied
with y = x . By construction, S 6 vk 6 vk−1 6 · · · 6 v0 = x , and ui 6 vi for all
06 i 6 k−1. Moreover, if [µ j , ν j ] 6= [µ j−1, ν j−1] (where 26 j 6 k−1), then from
(5-6) and (5-8), µ j−1−ν j > 5η= 50Lδ > 2δ, and from (5-9), µk−1−νk > 15η> 2δ.
Thus, condition (a) of Lemma 4.1 is satisfied. It follows from our method of selecting
the µ j and ν j that if ν j = ν j+1, then (again by (5-8)) ν j+26µ j+1−5η<ν j+1= ν j ,
which shows that condition (b) is also satisfied. Moreover, since νk > xk , we have
P+(d)6 pL 6 pk < vk . So we may focus our attention on hypotheses (i)–(v) of
Lemma 4.1. We claim that these hypotheses are satisfied with our choices of d, e,
and f from Section 5A and with

l := L − k. (5-10)

Property (i) is contained in (2) from the definition of A f . By construction,

ui 6 P+(pi − 1), P+(qi + 1)6 vi

for all 0 6 i 6 k − 1, which is (ii). Since vk > S > log y, property (iii) holds by
(1) in the definition of A f . The verification of (iv) is somewhat more intricate.
Recalling that νk > xk , it is clear from (5-3) that

P+( f ) < pk 6 vk .

To prove the same estimate for P+(e), we can assume e 6= 1. Let r = P+(e), and
observe that r | σ(R), for some prime power R with R ‖ qkqk+1 · · · . If R is a proper
prime power, then from (1) in the definition of A f , we have

r 6 σ(R)6 2R 6 2(log x)2 < vk .

So we can assume that R is prime, and so R6qk and r 6 P+(R+1)6max{3, R}6
qk . But by Lemma 5.4,

log2 qk/ log2 x = yk 6 xk + (2k+ 1)δ < xk + η 6 νk .

Thus, P+(e) = r 6 vk . Hence, P+(e f ) 6 vk . Turning to the second half of (iv),
write pk · · · pL−1 = AB, where A is squarefree, B is squarefull and gcd(A, B)= 1.
Recalling (2-2), we see that

�(φ(A))6 3�(A) log2 vk 6 3l log2 vk,

with l as in (5-10). Let B ′ be the largest divisor of a supported on the primes
dividing B, so that B ′ is squarefull and B | B ′. By (1) in the definition of A f , we
have B ′ 6 (log x)2. If B ′ 6 exp((log2 x)1/2), then (estimating crudely)

�(φ(B))6�(φ(B ′))6 2 logφ(B ′)6 2 log B ′ 6 2(log2 x)1/2.
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On the other hand, if B ′ > exp((log2 x)1/2), then by (4) in the definition of A f ,

�(φ(B))6�(φ(B ′))6 10 log2 φ(B
′)6 10 log2 B ′� log3 x .

Since log2 vk = νk log2 x > η log2 x > (log2 x)1/2, we have we have �(φ(B)) 6
2 log2 vk in either case. Hence,

�( f )=�(φ(A))+�(φ(B))6 (3l + 2) log2 vk 6 4l log2 vk,

which completes the proof of (iv). Finally, we prove (v): Suppose that b> x1/3 is a
divisor of p0− 1. Recalling again (2-2),

P+(b)> b1/�(p0−1) > b
1

3 log2 x > x
1

9 log2 x > x
1

100 log2 x > v1.

Thus, setting b to be the largest divisor of p0− 1 supported on the primes 6 v1, we
have b < x1/3. From (3-3) and conditions (0) and (7) in the definition of Aφ ,

p0 =
a

p1 p2 p3 · · ·
>

x/ log x
x1/100 p1

> x0.95,

say. Thus, (p0− 1)/b is a divisor of p0− 1 composed of primes greater than v1

and of size at least (p0− 1)x−1/3 > x9/10x−1/3 > x1/2.

5D. Denouement. We are now in a position to establish Proposition 5.1 and so
also Theorem 1.1. Suppose that k and the µi and νi are fixed, as is d; this also
fixes l = L − k. By Lemma 4.1, whose hypotheses were verified above, the
number of values φ(a) coming from corresponding solutions to φ(a)= σ(a′), with
(a, a′) ∈Aφ ×Aσ , is

�
x
d
(c log2 x)6k(k+ 1)�(d)(log vk)

8(k+l) log (k+1)+1(log x)−2+
∑k−1

i=1 aiνi+E

6
x
d

exp(O((log3 x)2))L�(d)(log vk)
L2
(log x)−2+

∑k−1
i=1 ai xi+E ′, (5-11)

where

E ′ := E +
k−1∑
i=1

ai (νi − xi )= δ

k∑
i=2

(i log i + i)+ 2
k−1∑
i=1

(νi −µi )+

k−1∑
i=1

ai (νi − xi ).

By our choice of νi and µi in Section 5B, we have νi −µi � η and νi − xi � η.
Hence,

E ′� δL2 log L + η
(

L +
k−1∑
i=1

ai

)
� δL2 log L + ηL2 log L � δL3 log L .
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In combination with (8) from the definition of Aφ , this shows that the exponent of
log x on the right-hand side of (5-11) is at most −1−ω+ E ′ 6−1−ω/2, and so

(log x)−2+
∑k−1

i=1 ai xi+E ′ 6 (log x)−1 exp
(
−

1
2(log2 x)1/2+ε/2

)
.

Moreover, by Lemma 5.3 and Lemma 5.2(i),

νk 6 xk + 2η 6 (log2 x)−1/2+ε/9
+ 2η 6 (log2 x)−1/2+ε/5, (5-12)

and hence

(log vk)
L2
= exp(L2(log2 x)νk)6 exp((log2 x)1/2+ε/4).

Inserting all of this back into (5-11), we obtain an upper bound which is

�
x

log x
exp

(
−

1
3(log2 x)1/2+ε/2

)L�(d)

d
. (5-13)

Now we sum over the parameters previously held fixed. We have k < L; also,
for i > 0, each µi and νi has the form ζ j of (5-4). Thus, the number of possibilities
for k and the µi and νi is

6 L(1+bη−1
c)2L 6 exp(O((log3 x)2)). (5-14)

Next, we prove that
�(d)� (log2 x)1/2 (5-15)

uniformly for the d under consideration, so that

L�(d) 6 exp(O((log2 x)1/2 log4 x)). (5-16)

Put m := pL pL+1 · · · . Suppose first that pL 6= pL−1, so that m is a unitary divisor
of a and d = φ(m). If m 6 exp((log2 x)1/2), then (5-15) follows from the crude
bound �(d)� log d. On the other hand, if m > exp((log2 x)1/2), then from (4)
in the definition of Aφ , we have �(d) = �(φ(m))� log2 m. But by (3) in the
definition of Aφ and Lemma 5.2(i),

log2 m 6 log2 p10 log2 x
L � log3 x + log2 pL � log3 x + %L log2 x

� log3 x + %−2
√

log3 x%L0 log2 x � %−2
√

log3 x log3 x � exp(O(
√

log3 x)),

which again gives (5-15). Suppose now that pL = pL−1. In this case, let m′ be
the largest divisor of a supported on the primes dividing m. Then d |φ(m′), and
so �(d)6�(φ(m′)). Write m′ = p j

Lm′′, where j > 2 and pL - m′′; both p j
L and

m′′ are unitary divisors of a. We have �(φ(m′′))� (log2 x)1/2, by mimicking the
argument used for m in the case when pL 6= pL−1. Also, �(φ(p j

L))� (log2 x)1/2
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except possibly if p j
L > exp((log2 x)1/2), in which case, invoking (1) and (4) in the

definition of Aφ ,

�(φ(p j
L))6 10 log2 φ(p

j
L)6 10 log2 p j

L 6 10 log2 (log2 x)� log3 x .

So
�(d)6�(φ(m′))=�(φ(p j

L))+�(φ(m
′′))� (log2 x)1/2,

confirming (5-15).
Referring back to (5-13), we see that it remains only to estimate the sum of 1/d .

Since P+(d) 6 vk , (5-12) shows that every prime dividing d belongs to the set
P := {p : log2 p 6 (log2 x)1/2+ε/5}. Thus,∑ 1

d
6
∏
p∈P

(
1+ 1

p
+

1
p2 + · · ·

)
� exp((log2 x)1/2+ε/5). (5-17)

Combining the estimates (5-13), (5-14), (5-16), and (5-17), we find that

#{φ(a) : a ∈Aφ, a′ ∈Aσ , φ(a)= σ(a′)} �
x

log x
exp

(
−

1
4(log2 x)1/2+ε/2

)
,

which completes the proof of Proposition 5.1 and of Theorem 1.1.
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