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Powers of ideals and the cohomology of
stalks and fibers of morphisms

Marc Chardin

À Jean-Pierre Jouanolou, avec admiration et amitié

We first provide here a very short proof of a refinement of a theorem of Kodiyalam
and Cutkosky, Herzog and Trung on the regularity of powers of ideals. This result
implies a conjecture of Hà and generalizes a result of Eisenbud and Harris
concerning the case of ideals primary for the graded maximal ideal in a standard
graded algebra over a field. It also implies a new result on the regularities of
powers of ideal sheaves. We then compare the cohomology of the stalks and the
cohomology of the fibers of a projective morphism to the effect of comparing the
maximums over fibers and over stalks of the Castelnuovo–Mumford regularities
of a family of projective schemes.

1. Introduction

An important result of Kodiyalam and Cutkosky, Herzog and Trung states that the
Castelnuovo–Mumford regularity of the power I t of an ideal over a standard graded
algebra is eventually a linear function in t . The leading term of this function has
been determined by Kodiyalam in his proof.

This result was first obtained for standard graded algebras over a field, and later
extended by Trung and Wang to standard graded algebras over a Noetherian ring.

We first provide here a very short proof of a refinement of this result.

Theorem 1.1. Let A be a positively graded Noetherian algebra, M 6= 0 be a finitely
generated graded A-module, I be a graded A-ideal, and set

d :=min{µ | there exists p, (I≤µ)I p M = I p+1 M}.

Then
lim

t→∞
(end(H i

A+(I
t M))+ i − td) ∈ Z∪ {−∞}

exists for any i , and is at least equal to the initial degree of M for some i.

MSC2000: primary 13D02; secondary 13A30, 13D45, 14A15.
Keywords: cohomology, stalks, Rees algebras, fibers of morphisms, powers of ideals,

Castelnuovo–Mumford regularity.
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2 Marc Chardin

The end of a graded module H is end(H) := sup{µ | Hµ 6= 0} if H 6= 0 and −∞
otherwise. Recall that for a graded A-module N , reg(N )=maxi {end(H i

A+(N ))+i}.
Very interesting examples showing hectic behavior of the value of

ai (t) := end(H i
A+(I

t))

as t varies were given in [Cutkosky 2000]. These examples point out that the
existence of the limit quoted above does not imply that all of the functions ai (t)
are eventually linear functions of t . It only implies that at least one of them is
eventually linear in t . For instance, in the examples given by Cutkosky, the limit in
the theorem is −∞ for all i 6= 0.

More recently, Eisenbud and Harris proved that in the case of a standard graded
algebra A over a field, for a graded ideal that is A+-primary and generated in a single
degree, the constant term in the linear function is the maximum of the regularity
of the fibers of the morphism defined by a set of minimal generators. In a recent
preprint, Huy Tài Hà [2011, 1.3] generalized this result by proving that if an ideal is
generated in a single degree d , a variant of the regularity (the a∗-invariant) satisfies
a∗(I t)= dt + a for t � 0, where a can be expressed in terms of the maximum of
the values of a∗ on the stalks of the projection π from the closure of the graph of
the map defined by the generators to its image. He conjectures that a similar result
holds for the regularity.

In Theorem 5.3 we prove this conjecture of Hà. More precisely, we show that
the limit in the theorem above is the maximum of the end degree of the i-th local
cohomology of the stalks of π , for ideals generated in a single degree. This holds
for graded ideals in a Noetherian positively graded algebra.

An interesting, and perhaps surprising, consequence of this result is the following
result on the limit of the regularity of saturation of powers, or equivalently of powers
of ideal sheaves, in a positively graded Noetherian algebra:

Corollary 1.2. Let I be a graded ideal generated in a single degree d. Then,

lim
t→∞

(reg((I t)sat)− dt)

exists and the following are equivalent:

(i) the limit is nonnegative,

(ii) the limit is not −∞,

(iii) the projection π from the closure of the graph of the function defined by minimal
generators of I to its image admits a fiber of positive dimension.

This can be applied to ideals generated in degree at most d , replacing I by I≥d .
It gives a simple geometric criterion for an ideal I generated in degree (at most)

d to satisfy reg((I t)sat)= dt + b for t � 0: This holds if and only if there exists a
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subvariety V of the closure of the graph that is contracted in its projection to the
closure of the image (that is, dim(π(V )) < dim V ). A very simple example is the
following. In a polynomial ring in n+ 1 variables, any graded ideal generated by
n forms of the same degree d satisfies reg((I t)sat)= dt + b for t � 0, with b ≥ 0.
The same result holds if a reduction of the ideal is generated by at most n elements
(in other words, if the analytic spread of I is at most n).

The result of Eisenbud and Harris is stated in terms of regularity of fibers. For
a finite morphism, there is no difference between the regularity of stalks and the
regularity of fibers. This follows from the following result that is likely part of
folklore, but that we didn’t find in several of the classical references in the field:

Lemma 1.3. Let (R,m, k) be a Noetherian local ring, S := R[X1, . . . , Xn] be a
polynomial ring over R with deg X i > 0 and M be a finitely generated graded
S-module. Set d := dim(M⊗R k). Then H i

S+(M) = 0 for i > d and the natural
graded map H d

S+(M)⊗R k→ H d
S+(M⊗R k) is an isomorphism.

For morphisms that are not finite or flat, the situation is more subtle — see
Proposition 6.3. We show that for families of projective schemes that are close to
being flat (if the Hilbert polynomial of any two fibers differ at most by a constant,
in the standard graded situation), the maximum of the regularities of stalks and the
maximum of the regularities of fibers agree. Also the maximum regularity of stalks
bounds above the one for fibers under a weaker hypothesis. Putting this together
provides a collection of results that covers the results obtained in [Eisenbud and
Harris 2010; Hà 2011]. See Theorem 6.11.

To simplify the statements, we introduce the notion of regularity over a scheme,
generalizing the usual notion of regularity with reference to a polynomial extension
of a ring. This is natural in our situation: The family of schemes given by the
closure of the graph over the parameter space given by the closure of the image of
our map, considered as a projective scheme, is a key ingredient of this study.

2. Notation and general setup

Let R be a commutative ring and S a polynomial ring over R in finitely many
variables.

If S is Z-graded, R ⊂ S0, and X1, . . . , Xn are the variables with positive degrees,
the Čech complex C•

(S+)(M) with

C0
(S+)(M)= M and Ci

(S+)(M)=
⊕

j1<···< ji

MX j1 ···X ji
for i > 0

is graded whenever M is a graded S-module.
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There is an isomorphism H i
(S+)(M)' H i (C•

(S+)(M)) for all i , which is graded if
M is. One then defines two invariants attached to such a graded S-module M :

ai (M) := sup{µ | H i
(S+)(M)µ 6= 0}

if H i
(S+)(M) 6= 0 and ai (M) := −∞ otherwise, and

b j (M) := sup{µ | TorS
j (M, S/(S+))µ 6= 0}

if TorS
j (M, S/(S+)) 6= 0 and b j (M) := −∞ otherwise. Notice that ai (M)=−∞

for i > n and b j (M)=−∞ for j > n. The Castelnuovo–Mumford regularity of a
graded S-module M is then defined as

reg(M) :=max
i
{ai (M)+ i} =max

j
{b j (M)− j}+ n− σ

where σ is the sum of the degrees of the variables with positive degrees. Other
options are possible, in particular when S is not standard graded (when σ 6= n).
Another related invariant is

a∗(M) :=max
i
{ai (M)} =max

j
{b j (M)}− σ.

The following classical result is usually stated for positive grading.

Theorem 2.1. Let S be a finitely generated Z-graded algebra over a Noetherian
ring R⊆ S0 and M be a finitely generated graded S-module. Assume S is generated
over R by elements of nonzero degree. Then, for any i ,

(i) ai (M) ∈ {−∞}∪Z,

(ii) the R-module H i
(S+)(M)µ is finitely generated for any µ ∈ Z.

Proof. S is an epimorphic image of a polynomial ring S′ over R by a graded
morphism. Considering M as an S′-module, one has H i

(S+)(M)' H i
(S′+)
(M) via the

natural induced map, so that we may replace S by S′ and assume that

S = R[Y1, . . . , Ym, X1, . . . , Xn]

with deg Yi ≤ −1 and deg X j ≥ 1 for all i and j . We recall that H i
(S+)(S) = 0 for

i < n and H n
(S+)(S)= (X1 · · · Xn)

−1 R[Y1, . . . , Ym, X−1
1 , . . . , X−1

n ], and notice that
H n
(S+)(S)µ is a finitely generated free R-module for any µ.
Let F• be a graded free S-resolution of M with Fi finitely generated. Both

spectral sequences associated to the double complex C•
(S+)F• degenerate at step 2

and provide graded isomorphisms

H i
(S+)(M)' Hn−i (H n

(S+)(F•)),
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which shows that H i
(S+)(M)µ is a subquotient of H n

(S+)(Fn−i )µ and hence a finitely
generated R-module that is zero in degrees greater than −n+ bn−i , where b j is the
highest degree of a basis element of F j over S. �

3. Regularity over a scheme

Local cohomology and the torsion functor commute with localization on the base R,
providing natural graded isomorphisms for a graded S-module M :

H i
(S⊗R Rp)+

(M ⊗R Rp)' H i
S+(M)⊗R Rp

and
TorS⊗R Rp

i (M ⊗R Rp, Rp)' TorS
i (M, R)⊗R Rp.

Hence ai (M)= supp∈Spec(R) ai (M⊗R Rp) and b j (M)= supp∈Spec(R) b j (M⊗R Rp).
It follows that the regularity is a local notion on R:

reg(M)= sup
p∈Spec(R)

reg(M ⊗R Rp).

These supremums are maximums whenever reg(M) < +∞, for instance if R is
Noetherian and M is finitely generated. The same holds for a∗(M).

In the following, this definition is extended in a natural way to the case where
the base is a scheme.

Definition 3.1. Let Y be a scheme, E be a locally free OY -module of finite rank,
and F be a graded sheaf of SymY (E)-modules. Then

ai (F) := sup
y∈Y

ai (F⊗OY OY,y) and reg(F) :=max
i
{ai (F)+ i}.

If E is free, SymY (E)= OY [X1, . . . , Xn], and the definition of regularity above
makes sense for nonstandard grading.

A closed subscheme Z of Proj(SymY (E)) corresponds to IZ , a unique graded
SymY (E)-ideal sheaf saturated with respect to SymY (E)+. We set

ai (Z) := sup
y∈Y

ai (OY,y[X0, . . . , Xn]/(IZ ⊗OY OY,y))

(notice that a0(Z)=−∞) and reg(Z) :=maxi {ai (Z)+ i}.

The following proposition is immediate from the definition and the corresponding
results over an affine scheme.

Proposition 3.2. Assume Y is Noetherian, E is a locally free coherent sheaf on Y
and F 6= 0 is a coherent graded sheaf of SymY (E)-modules. Then reg(F) ∈ Z. If
Z 6=∅ is a closed subscheme of Pn−1

Y , then reg(Z)≥ 0.
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4. First result on cohomology of powers

We now prove the first statement of our text on cohomology of powers of ideals. It
refines earlier results on the regularity of powers [Kodiyalam 2000; Cutkosky et al.
1999; Trung and Wang 2005]. The argument is based on Theorem 2.1 applied to a
Rees algebra and a lemma due to Kodiyalam.

Theorem 4.1. Let A be a positively graded Noetherian algebra, M 6= 0 be a finitely
generated graded A-module, I be a graded A-ideal, and set

d :=min{µ | there exists p, (I≤µ)I p M = I p+1 M}.

Then
lim

t→∞
(ai (I t M)+ i − td) ∈ Z∪ {−∞}

exists for any i , and is at least equal to indeg(M) for some i .

Proof. Set J := I≤d and write J = (g1, . . . , gs) with deg gi = d for 1≤ i ≤ m and
deg gi < d otherwise. Let

RJ :=
⊕
t≥0

J (d)t =
⊕
t≥0

J t(td) and RI :=
⊕
t≥0

I (d)t =
⊕
t≥0

I t(td),

and S0 := A0[T1, . . . , Tm], S := S0[Tm+1, . . . , Ts, X1, . . . , Xn], with deg(Ti ) :=

deg(gi )−d . Setting bideg(Ti ) := (deg(Ti ), 1) and bideg(X j ) := (deg(X j ), 0), one
has Jdeg(gi ) = (RJ )deg gi−d,1 and hence a bigraded onto map

S→RJ , Ti 7→ gi .

As MRI is finite over RJ according to the definition of d , the bigraded embedding
RJ →RI makes MRI a finitely generated bigraded S-module.

The equality of graded A-modules H i
(S+)(MRI )(∗,t)= H i

A+(MRI )(∗,t) shows that

H i
(S+)(MRI )(µ,t) = H i

A+((MRI )(∗,t))µ = H i
A+(M I t)µ+td .

By Theorem 2.1(i), ai (MRI ) <+∞ and the equalities above show

ai (M I t)≤ td + ai (MRI ),

and that equality holds for some t .
Furthermore, Theorem 2.1(ii) shows that Ki,µ := H i

(S+)(MRI )(µ,∗) is a finitely
generated graded S0-module (for the standard grading deg(Ti )= 1). It follows that
H i
(S+)(MRI )(µ,t) = 0 for t � 0 if and only if Ki,µ is annihilated by a power of

n := (T1, . . . , Tm). Hence

lim
t→+∞

(ai (M I t)− td)=−∞
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if Ki,µ is annihilated by a power of n for every µ≤ ai (MRI ), and otherwise

lim
t→+∞

(ai (M I t)− td)=max{µ | Ki,µ 6= H 0
n (Ki,µ)}.

As reg(M I t)≥ end(M I t/A+M I t), the last claim follows from the next lemma,
due to Kodiyalam. �

Lemma 4.2. With the hypotheses of Theorem 4.1,

end(M I t/A+M I t)≥ indeg(M)+ td for all t.

Proof. The proof goes along the same lines as in the proof of [Kodiyalam 2000,
Proposition 4]. The needed graded version of Nakayama’s lemma does apply. �

5. Cohomology of powers and cohomology of stalks

The following result is a more elaborated, and more technical, version of Theorem 4.1
that essentially follows from its proof. It implies a conjecture of Hà on the regularity
of powers of ideals, and refines the main result in [Hà 2011]. We will see later that,
combined with a result on the regularity of stalks and fibers of a morphism, it also
implies the result in [Eisenbud and Harris 2010].

Proposition 5.1. Let A be a positively graded Noetherian algebra, M be a finitely
generated graded A-module, I be a graded A-ideal and J ⊆ I be a graded ideal
such that J I p M = I p+1 M for some p.

Assume that the ideal J is generated by r forms f1, . . . , fr of respective degrees
d1= · · ·= dm > dm+1≥ · · ·≥ dr . Set d := d1, deg(Ti ) := deg( fi )−d , bideg(Ti ) :=

(deg(Ti ), 1) and bideg(a) := (deg(a), 0) for a ∈ A. Consider the natural bigraded
morphism of bigraded A0-algebras

S := A[T1, . . . , Tr ]
ψ
−→RI :=

⊕
t≥0

I (d)t =
⊕
t≥0

I t(dt),

sending Ti to fi , and the bigraded map of S-modules

M[T1, . . . , Tr ]
1M⊗Aψ
−−−−→ MRI :=

⊕
t≥0

M I t(dt).

Let B := A0[T1, . . . , Tm] and B ′ := B/ annB(ker(1M ⊗A ψ)).
Then,

lim
t→+∞

(ai (M I t)− td)= max
q∈Proj(B ′)

{ai (MRI ⊗B ′ B ′q)}.

Proof. First remark that in the proof of Theorem 4.1 we only need the equality
J I p M = I p+1 M for some p (as a consequence, for all p big enough). We have
shown there that

lim
t→+∞

(ai (M I t)− td)=−∞, (∗)
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if and only if the finitely generated B-module H i
(S+)(MRI )(µ,∗) is supported in

V (T1, . . . , Tm) for any µ. As local cohomology commutes with flat base change
and elements in B have degree 0,

H i
(S+)(MRI )(µ,∗)⊗B ′ B ′q = H i

(S+)(MRI ⊗B ′ B ′q)(µ,∗);

hence (∗) holds if and only if H i
(S+)(MRI ⊗B ′ B ′q) = 0 for any q ∈ Proj(B ′). On

the other hand, if this does not hold, there exists µ0 the maximum value such that
H i
(S+)(MRI )(µ0,∗) is not supported in V (T1, . . . , Tm), and choosing q ∈ Proj(B ′)∩

Supp(H i
(S+)(MRI )(µ0,∗)) shows that both members in the asserted equality are equal

to µ0. �

Remark 5.2. In the proposition above, as well as in other places in this text, we
localize at homogeneous primes q ∈ Proj(C) for some standard graded algebra C ,
in other words, at graded prime ideals that do not contain C+. We may as well
replace these localizations by the degree zero part of the localization at such a
prime ideal, usually denoted by C(q): The multiplication by an element ` ∈ C1 \ q

induces an isomorphism (Cq)µ ' (Cq)µ+1 for any µ. Hence, for any C-module M ,
M ⊗C Cq = 0 if and only if M ⊗C C(q) = 0.

In the equal degree case, the following corollary, which we state in a more
geometric fashion, implies the conjecture of Hà [2011].

Theorem 5.3. Let A := A0[x0, . . . , xn] be a positively graded Noetherian algebra
and I be a graded A-ideal generated by m+1 forms of degree d. Set Y :=Spec(A0)

and X := Proj(A/I )⊂ Proj(A)⊆ P̃n
Y . Let φ : P̃n

Y \ X→ Pm
Y be the corresponding

rational map, W be the closure of the image of φ, and

0 ⊂ P̃n
W ⊆ P̃n

Pm
Y
= P̃n

Y ×Y Pm
Y

be the closure of the graph of φ. Let π : 0→W be the projection induced by the
natural map P̃n

Pm
Y
→ Pm

Y . Then

lim
t→+∞

(ai (I t)− dt)= ai (0).

Proof. Choose J := I and M := A in Proposition 5.1. The equality

lim
t→+∞

(ai (I t)− dt)= ai (0)

directly follows from the conclusion of Proposition 5.1 according the definition of
ai (0) for 0 ⊂ P̃n

W given in Definition 3.1. �
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6. Cohomology of stalks and cohomology of fibers

We will now compare the cohomology of stalks and of fibers of a projective
morphism, in order to compare their Castelnuovo–Mumford regularities. It will
need results on the support of Tor modules. These are likely part of folklore.
However, we include a proof as we did not find a reference that properly fits our
exact need.

Lemma 6.1. Let R→ S be a homomorphism of Noetherian rings, M be a finitely
generated S-module and N be a finitely generated R-module.

Then the S-modules TorR
q (M, N ) are finitely generated over S and

(i) SuppS(TorR
q (M, N ))⊆ SuppS(M⊗R N ) for any q,

(ii) if further (R,m) is local, S = R[X1, . . . , Xn], with deg X i > 0 and M is a
graded S-module, then SuppS(TorR

q (M, R/m))⊆ SuppS(TorR
1 (M, R/m)) for

any q ≥ 1.

Proof. First the modules TorR
q (M, N ) are finitely generated over S by [Bourbaki

1980, X §6 N◦4 Corollaire]. Second,

SuppS(M⊗R N )= SuppS(M)∩ϕ
−1(SuppR(N )),

where ϕ : Spec(S)→ Spec(R) is the natural map induced by R→ S, by [Bourbaki
1985, II §4 N◦4, Propositions 18 and 19], since M⊗R N =M⊗S (N ⊗R S). For
P ∈ Spec(S), set p := ϕ(P). Then TorR

q (M, N )P = TorRp
q (MP, Np) vanishes if

either MP = 0 or Np = 0.
For (ii), we can reduce to the case of a local morphism by localizing S and M

at m+ S+. In this local situation, TorR
1 (M, R/m)= 0 if and only if M is A-flat by

[André 1974, Lemme 58], which proves our claim by localization at primes P such
that ϕ(P)=m. �

Let R be a commutative ring, N be a R-module, S := R[X1, . . . , Xn] be a
positively graded polynomial ring over R and M be a graded S-module. For a
S-module M, we will denote by cdS+(M) the cohomological dimension of M with
respect to S+, which is the maximal index i such that H i

S+(M) 6= 0 (and −∞ if all
these local cohomology groups are 0). The following lemma is a natural way for
comparing cohomology of stalks to cohomology of fibers.

Lemma 6.2. There are two converging spectral sequences of graded S-modules
with the same abutment H• and with respective second terms

′

2 E p
q = H p

S+(TorR
q (M, N ))⇒ H p−q and ′′

2 E p
q = TorR

q (H
p
S+(M), N )⇒ H p−q .
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Let d := max{i | H i
S+(M⊗R N ) 6= 0}. If R is Noetherian, N is finitely generated

over R and M is finitely generated over S, then

H d
S+(M⊗R N )' H d

S+(M)⊗R N

and TorR
q (H

i
S+(M), N )= H i

S+(TorR
q (M, N ))= 0 for any q if i > d.

Proof. Let F• be a free R-resolution of N . Consider the double complex

C•S+(M⊗R F•)= C•S+(M)⊗R F•,

totalizing to T • with T i
=

⊕
p−q=i C

p
S+(M)⊗R Fq . It gives rise to two spectral

sequences abutting to the homology H• of T •.
One has first terms C

p
S+(TorR

q (M, N )) and second terms H p
S+(TorR

q (M, N )).
The other spectral sequence has first terms H p

S+(M)⊗R Fq and second terms
TorR

q (H
p
S+(M), N ). It provides the quoted spectral sequences.

Recall that if P is a finitely presented S-module, one has cdS+(P
′) ≤ cdS+(P)

whenever Supp(P ′)⊆ Supp(P). This is proved in [Divaani-Aazar et al. 2002, 2.2]
under the assumption that S is Noetherian and P ′ is finitely generated, which is
enough for our purpose.

By Lemma 6.1(i), Supp(TorR
q (M, N ))⊆Supp(M⊗R N ) for any q , which implies

that H i
S+(TorR

q (M, N ))= 0 for any q if i > d. It follows that H d
= H d

S+(M⊗R N )
and H i

= 0 for i > d .
On the other hand, choose i maximal such that H i

S+(M) ⊗R N 6= 0. Then
TorR

q (H
p
S+(M), N )= 0 for any q if p > i , because H p

S+(M)µ is a finitely generated
R-module for every µ, and hence H i

= H i
S+(M)⊗R N 6= 0 and H j

= 0 for j > i .
The conclusion follows. �

The following statement extends a classical result on the cohomology of fibers
in a flat family; see for instance [Hartshorne 1977, III 9.3]. The hypothesis on the
cohomological dimension of Tor modules that appears in (ii) will be connected
to the variation of the Hilbert polynomial of fibers in the corresponding family of
sheaves in Lemma 6.6; it is a weakening of the flatness condition for this family.

Proposition 6.3. Let (R,m, k) be a Noetherian local ring, S := R[X1, . . . , Xn] be
a polynomial ring over R, with deg X i > 0 for all i , and M be a finitely generated
graded S-module. Set M :=M⊗R k and d := dim M. Then one has the following:

(i) The natural graded map H d
S+(M) ⊗R k → H d

S+(M) is an isomorphism and
d =max{i | H i

S+(M) 6= 0}. In particular,

ad(M)= ad(M) ∈ Z.

(ii) For any integers µ and `, if cdS+(TorR
1 (M, k))≤ `+ 1 then

{H i
S+(M)µ = 0 for all i ≥ `} implies {H i

S+(M)µ = 0 for all i ≥ `},
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and both conditions are equivalent if cdS+(TorR
1 (M, k)) ≤ `. In particular,

reg(M)≤ reg(M) if cdS+(TorR
1 (M, k))≤1 and equality holds if depthS+(M)>0.

Proof. We consider the two spectral sequences in Lemma 6.2,

′

2 E p
q = H p

S+(TorR
q (M, k))⇒ H p−q and ′′

2 E p
q = TorR

q (H
p
S+(M), k)⇒ H p−q .

Let B := k[X1, . . . , Xn]. The module TorR
q (M, k) is a R[X1, . . . , Xn]-module of

finite type, annihilated by m and annS(M). Hence M is a graded B-module of finite
type and TorR

q (M, k) is a graded (B/ annB(M))-module of finite type, for any q .
Notice that d=cdS+(M)=cdB+(M). It follows that ′2 E p

q =0 if p>d , and ′2 Ed
0 6=0.

By Lemma 6.2, ′′2 E p
q = 0 for all q if p > d, in particular H p

S+(M)µ ⊗R k = 0
for any µ if p > d. Hence H p

S+(M)µ = 0 for any µ if p > d. In other words,
H p

S+(M)= 0 for any p > d.
The same lemma shows that H d

S+(M)= H d
S+(M)⊗R k, and finishes the proof of (i).

For (ii), let µ be an integer. We prove the result by descending induction on `
from the case `= d , which we already proved.

Assume the results hold for `+ 1. Recall that, for any p, the maps

′

r d p−r
1−r :

′

r E p−r
1−r →

′

r E p
0 and ′′

r d p
0 :
′′

r E p
0 →

′′

r E p+1−r
−r

are the zero map for r ≥ 2 and r ≥ 1, respectively.
If H i

S+(M)µ= 0, for all i ≥ `, then ( ′′2 E p
q )µ= 0 for p≥ ` and all q . As ′′2 E p

q = 0
for q < 0, it follows that ( ′′2 E p

q )µ = 0 if p− q ≥ `.
If cdS+(TorR

1 (M, k))≤`+1 then ′2 E p
q =0 for p≥`+2 and q>0 by Lemma 6.1(ii),

in particular the map

( ′r d`0)µ : (
′

r E`0)µ→ ( ′r E`+r
r−1)µ

is the zero map for any r ≥ 2, and hence H `
S+(M)µ = (

′

2 E`0)µ = (
′
∞

E`0)µ = 0 as
claimed.

For the reverse implication, the hypothesis implies that ′2 E p
q = 0 if q ≥ 1 and

p ≥ `+ 1 by Lemma 6.1(ii). Hence ( ′2 E p
q )µ = 0 for p−q ≥ ` if H `

S+(M)µ = 0. By
induction hypothesis, H p

S+(M)µ⊗R k = 0 for p ≥ `+ 1. Hence

( ′2 E p
q )µ = TorR

q (H
p
S+(M)µ, k)= 0

for p ≥ `+ 1 and all q. It implies that H `
S+(M)µ⊗R k = ( ′′

∞
E`0)µ = 0, and proves

the claimed equivalence.
Finally, recall that H i

S+(M)= 0 for i < depthS+(M). �

Remark 6.4. Notice that reg(M)≤ reg(M) does not hold without the hypothesis
cdS+(TorR

1 (M, k)) ≤ 1. To see this, consider generic polynomials of some given
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degrees d1, . . . , dr :

Pi :=
∑
|α|=di

Ui,αXα
∈ k[Ui,α][X1, . . . , Xn],

with r ≤ n and a specialization map φ : k[Ui,α]→ k to the field k with kernel m. Set
R := k[Ui,α]m. As the Pi form a regular sequence in k[Ui,α][X1, . . . , Xn], they also
form one in S := R[X1, . . . , Xn] and show that M := S/(P1, . . . , Pr ) has regularity
d1+ · · ·+ dr − r . On the other hand, the regularity of

M = k[X1, . . . , Xn]/(φ(P1), . . . , φ(Pr )),

need not be bounded by d1+ · · ·+ dr − r .
For instance, with n = 4 and r = 3, take

φ(P1) := Xd−1
1 X2− Xd−1

3 X4, φ(P2) := Xd
2 and φ(P3) := Xd

4

(over any field). Then one has reg(M) = d2
− 2 for d ≥ 3 (see [Chardin 2007,

1.13.6]), which is bigger than reg(M)= 3d − 3, and cdS+(TorR
1 (M, k))= 2.

Remark 6.5. In the other direction, it may of course be that reg(M) > reg(M).
If for instance (R, π, k) is a DVR, one may take M := R[X ]/(πXd), so that
reg(M)= d − 1 and reg(M)= 0, with cdS+(TorR

1 (M, k))= 1.
More interesting is the example R :=Q[a, b], m := (a, b) and

M := SymR(m
3)= R[X1, . . . , X4]/(bX1− aX2, bX2− aX3, bX3− aX4).

Then for any morphism from R to a field k, reg(M⊗R k)= 0, while reg(M)= 1.
Similar examples arises from the symmetric algebra of other ideals that are not

generated by a proper sequence.

The characterization of flatness in terms of the constancy of the Hilbert polyno-
mial of fibers extends as follows.

Lemma 6.6. Let p be an integer. In the setting of Proposition 6.3, assume that R is
reduced and S is standard graded. Then the following are equivalent:

(i) dim(TorR
1 (M, k))≤ p.

(ii) The Hilbert polynomials of M⊗R k and M⊗R (Rp/pRp) differ at most by a
polynomial of degree < p, for any p ∈ Spec(R).

Proof. We induct on p. The result is standard when p = 0; see for instance
[Hartshorne 1977, III 9.9; Eisenbud 1995, Exercise 20.14].

Assume (i) and (ii) are equivalent for p−1≥ 0, for any Noetherian local reduced
ring, standard graded polynomial ring over it and graded module of finite type.

Set K := Rp/pRp, MK :=M⊗R K , B :=k[X1, . . . , Xn] and C :=K [X1, . . . , Xn].
Consider variables U1, . . . ,Un (of degree 0) and let ` :=U1 X1+ · · ·+Un Xn . By
the Dedekind–Mertens lemma,
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(a) ker(M[U ]
×`
−→M[U ](1))⊆ H 0

S+(M)[U ],

(b) ker(M[U ]
×`
−→ M[U ](1))⊆ H 0

B+(M)[U ],

(c) ker(MK [U ]
×`
−→ MK [U ](1))⊆ H 0

C+(MK )[U ], and

(d) ker(TorR
1 (M, k)[U ]

×`
−→ TorR

1 (M, k)[U ](1))⊆ H 0
B+(TorR

1 (M, k))[U ].

Let R′ := R(U ) be obtained from R[U ] by inverting all polynomials whose coeffi-
cient ideal is the unit ideal, and denote by N ′ the extension of scalars from R to R′

for the module N . Recall that R(U ) is local reduced with maximal ideal mR(U ),
residue field k ′ = k(U ) and that K ′ = K (U )— see for instance [Nagata 1962, page
17]. As the zero local cohomology modules above vanish in high degrees, (b)
and (c) show that M′/`M′ satisfies condition (ii) of the lemma for p− 1, R′ and
R′[X1, . . . , Xn]. Now (a) and (d) provide an exact sequence for µ� 0:

0−→TorR
1 (M

′, k ′)µ−1
×`
−→ TorR′

1 (M
′, k ′)µ−→TorR′

1 (M
′/`M′, k ′)µ−→0,

which shows in particular that

dim TorR′
1 (M

′/`M′, k ′)= dim TorR′
1 (M

′, k ′)− 1= dim TorR
1 (M, k)− 1,

if dim TorR
1 (M, k) is positive, and proves our claim by induction. �

Remark 6.7. If the grading is not standard, a quasipolynomial is attached to any
finitely generated graded module, and in Lemma 6.6 property (ii) should be replaced
by the following:

(ii) The difference between the quasipolynomials of M⊗R k and M⊗R (Rp/pRp)

is a quasipolynomial of degree < p for any p ∈ Spec(R).

The degree of a quasipolynomial is the highest degree of the polynomials that
define it. The proof of [Hartshorne 1977, III 9.9] extends to this case when p = 0,
and our proof extends after a slight modification: in the proof that (ii) implies (i),
one should take ` := U1 Xw/w1

1 + · · · +Un Xw/wn
n , where wi := deg(X i ) and w :=

lcm(w1, . . . , wn).

The local statement of Lemma 6.6 implies a global statement, by comparing
Hilbert functions at generic points of the components and at closed points. We state
it below in a ring theoretic form.

Proposition 6.8. Let p be an integer, R be a reduced commutative ring, S be a
Noetherian positively graded polynomial ring over R and M be a finitely generated
graded S-module. Then the following are equivalent:

(i) H i
S+(TorR

1 (M, R/m))= 0 for all i > p and m maximal in Spec(R).
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(ii) For any two ideals p⊂ q in Spec(R), the quasipolynomials of M⊗R R/p and
M⊗R R/q differ by a quasipolynomial of degree < p.

(iii) Over a connected component of Spec(R), the quasipolynomials of two fibers
differ by a quasipolynomial of degree < p.

In parallel to the definition of the regularity over a scheme, we define the fiber-
regularity freg as the maximum over the fibers of their regularity.

Definition 6.9. In the setting of Definition 3.1,

ãi (F) := sup
y∈Y

ai (F⊗OY k(y)), freg(F) :=max
i
{ãi (F)+ i},

and freg(Z) :=maxi≥1{ãi (SymY (E)/IZ )+ i}.

Notice that freg(F) is finite if Y is covered by finitely many affine charts and F

is coherent. This holds since the regularity of a graded module over a polynomial
ring over a field is bounded in terms of the number of generators and the degrees
of generators and relations; see for instance [Chardin et al. 2008, 3.5].

We now return to the problem of studying the ending degree of local cohomologies
of powers of a graded ideal I in a positively graded Noetherian algebra A.

From the comparison of cohomology of stalks and cohomology of fibers, we get
from Theorem 5.3 the following result. As in Theorem 5.3 we use geometric lan-
guage and do not introduce a graded module (or a sheaf) to make the exposition more
simple. In case a more general statement is needed, it can be easily derived by using
Proposition 5.1 in place of Theorem 5.3. The six statements are not independent,
but each of them answers a question that is quite natural to ask. Notice that (iv) is
essentially equivalent to one of the main results of Eisenbud and Harris [2010, 2.2].

Remark 6.10. It follows from Theorem 5.3 that the dimension of any fiber of the
projection π of the graph to its image (see Theorem 5.3 or below for the precise
definition of π) is bounded above by the cohomological dimension of A/I with
respect to A+.

Theorem 6.11. Let A := A0[x0, . . . , xn] be a positively graded Noetherian algebra
and I be a graded A-ideal generated by m+1 forms of degree d. Set Y :=Spec(A0)

and X := Proj(A/I )⊂ Proj(A)⊆ P̃n
Y . Let φ : P̃n

Y \ X→ Pm
Y be the corresponding

rational map, W be the closure of the image of φ, and

0 ⊂ P̃n
W ⊆ P̃n

Pm
Y
= P̃n

Y ×Y Pm
Y

be the closure of the graph of φ. Let π : 0→W be the projection induced by the
natural map P̃n

Pm
Y
→ Pm

Y . Then we have the following:

(i) limt→+∞(reg((I t)sat)− dt)=maxi≥2{ai (0)+ i}.
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(ii) If π admits a fiber Z ⊆ P̃n
SpecK of dimension i − 1, then

lim
t→∞

(ai (I t)+ i − td)≥ ai (Z)+ i = ãi (Z)+ i ≥ 0.

(iii) Let δ be the maximal dimension of a fiber of π . Then,

aδ+1(I t)− td = aδ+1(0)= ãδ+1(0) for all t � 0.

(iv) If π is finite, for instance if X =∅, then

reg(I t)= a1(I t)+ 1= freg(0)+ td for all t � 0

and limt→∞(ai (I t)− td)=−∞ for i 6= 1.

(v) If π has fibers of dimension at most one, for instance if the canonical map
X→ Y is finite, then

reg(I t)− td = reg(0)≥ freg(0) for all t � 0,

and limt→∞(ai (I t)− td)=−∞ for i ≥ 2.
If furthermore A is standard graded and reduced, π has fibers of dimension

one, all of same degree, then freg(0)= reg(0),

lim
t→∞

(a1(I t)− td)≥ ã1(0)

and equality holds if reg(I t)= a1(I t)+ 1 for t � 0.

(vi) If A is reduced and, for every connected component T of W , the Hilbert
quasipolynomials of fibers of π over any two points in Spec(T ) differ by a
periodic function, then

reg(I t)= freg(0)+ td for all µ� 0.

Proof. Part (i) is a direct corollary of Theorem 5.3. Statements (ii), (iii) and (iv)
follow from Theorem 5.3 and Proposition 6.3(i).

Statements (v) and (vi) follow from Theorem 5.3, Proposition 6.3(ii) — notice
that depthS+(RI )≥ 1 — and the equivalence of (i) and (iii) in Proposition 6.8 applied
on the affine charts covering π(0). �

Remark 6.12. Cutkosky, Ein and Lazarsfeld proved in [Cutkosky et al. 2001]
that the limit s(I ) := limt→∞ reg((I t)sat)/t exists and is equal to the inverse of a
Seshadri constant, when A0 is a field and A is standard graded.

Using the existence of c such that reg(M I t)≤ dt+c for all t when I is generated
in degree at most d and M is finitely generated, one can easily derive the existence
of this limit in our more general setting. Indeed, let

rp := reg((I p)sat) and dp :=min{µ | (I p)sat
= ((I p)sat

≤µ)
sat
}.
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One has dp+q ≤ dp + dq ; hence s := limp→∞(dp/p) exists. For any p there exists
cp such that

reg(((I p)sat
≤dp
)t I q)≤ tdp + cp for all t ≥ 1 and 0≤ q < p.

The inequalities dpt+q ≤ rpt+q ≤ tdp + cp show that limp→∞(rp/p)= s and that
dp ≥ ps for all p.

The same argument applies to any graded ideal J such that Proj(A/J )→ Y is
finite (that is, cdA+(A/J )≤ 1). Setting r J

p := reg(I p
:A J∞)≤ reg(I p) and defining

d J
p similarly to the above,

d J
p :=min{µ | ((I p

: J∞)≤µ) : J∞ = I p
: J∞},

the limits of r J
p /p and d J

p /p exist and are equal. For example, if X is a scheme
with isolated nonlocally complete intersection points, then limp→∞ reg(I (p)/p)
exists, where I (p) denotes the p-th symbolic power of I .

On the other hand, when A/J has cohomological dimension 2 it may be that
reg(I : J∞) > reg(I ) for J an embedded prime of I . This shows that the argument
above is not directly applicable for symbolic powers in general. It however implies
that s J

:= limp→∞(d J
p /p) exists for any J and is equal to limp→∞(ρ

J
p/p), where

ρ J
p :=min{reg(K ) | K ⊆ (I p

: J∞), K : J∞ = I p
: J∞}.

Remark 6.13. If I is generated in degree at most d, Theorem 6.11 implies that
s(I ) < d if and only if the morphism π corresponding to the ideal (Id) is finite.
More precisely, by Remark 6.12, π is finite if and only if Proj(A/I t) is defined by
equations of degree < dt for some t , and if not, reg((I t)sat)− td is a nonnegative
constant for t � 0.

This has been remarked in [Niu 2013], using the definition of s(I ) as (the inverse
of) a Seshadri constant.

Theorem 6.11 also has a consequence on the dimension of the fibers. Assume
for simplicity that A0 is a field. Set X := Proj(A/I ), with I generated in degree at
most d and let 0≤ i ≤ dim X .

Part (ii) in Theorem 6.11 then shows that the morphism π associated to (Id) has
no fiber of dimension greater than i if there exists p ≥ 1 and an ideal K , generated
in degree less than pd, such that Proj(A/I p) and Proj(A/K ) coincide locally at
each point x ∈ Pn of dimension at least i . Indeed if this happens, then

H j
A+(A/I ps)' H j

A+(A/K s) for all j > i, s ≥ 1,

and therefore there exists cp such that a j (I ps)≤ (pd−1)s+ cp for all s and j ≥ i ,
showing that limt→∞(a j (I t)− td)=−∞ for j ≥ i .
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Graphs of Hecke operators
Oliver Lorscheid

Let X be a curve over Fq with function field F . In this paper, we define a graph for
each Hecke operator with fixed ramification. A priori, these graphs can be seen as
a convenient language to organize formulas for the action of Hecke operators on
automorphic forms. However, they will prove to be a powerful tool for explicit
calculations and proofs of finite dimensionality results.

We develop a structure theory for certain graphs Gx of unramified Hecke
operators, which is of a similar vein to Serre’s theory of quotients of Bruhat–Tits
trees. To be precise, Gx is locally a quotient of a Bruhat–Tits tree and has finitely
many components. An interpretation of Gx in terms of rank 2 bundles on X and
methods from reduction theory show that Gx is the union of finitely many cusps,
which are infinite subgraphs of a simple nature, and a nucleus, which is a finite
subgraph that depends heavily on the arithmetic of F .

We describe how one recovers unramified automorphic forms as functions on
the graphs Gx . In the exemplary cases of the cuspidal and the toroidal condition,
we show how a linear condition on functions on Gx leads to a finite dimension-
ality result. In particular, we reobtain the finite-dimensionality of the space of
unramified cusp forms and the space of unramified toroidal automorphic forms.

In an appendix, we calculate a variety of examples of graphs over rational
function fields.
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Introduction

Hecke operators play a central role in the theory of automorphic forms, and for
classical modular forms, they are also computationally well understood. The theory
of arithmetic quotients of the Bruhat–Tits tree as studied in [Serre 2003] allowed
the study of Hecke operators over p-adic fields by geometric methods. In this paper,
we consider how to compute with Hecke operators for automorphic forms on PGL2

over a global function field. Our theory can be understood as a global counterpart
to Serre’s viewpoint over p-adic fields.

There are a few applications of Serre’s theory to automorphic forms over global
fields, which, however, mainly concentrate on rational function fields; see [Gekeler
1995; 1997; Gekeler and Nonnengardt 1995]. The key ingredient of this application
is the strong approximation property of SL2, as we will explain below. We begin
with reminding the reader of the definition of a Bruhat–Tits tree. Though this paper
is independent from Serre’s book [2003], we review some aspects of it since the
global theory (as developed in this paper) and the local approach (as in Serre’s
book) go hand in hand. In later parts of the paper, we make a few remarks pointing
out the connections with and the differences to Serre’s theory.

Let F be a global function field and x be a fixed place. We denote by Fx the
completion of F at x , by Ox its integers, by πx ∈ Ox a uniformizer and by qx the
cardinality of the residue field Ox/(πx)' Fqx . The Bruhat–Tits tree Tx of Fx is a
graph with vertex set PGL2(Fx)/PGL2(Ox). There is an edge between two cosets
[g] and [g′] if and only if [g′] contains g

(
1
πx

)
or g

(
πx b

1

)
for some b ∈ Fqx . Note

that this condition is symmetric in g and g′, so Tx is a geometric graph. In fact,
Tx is a (qx+1)-regular tree.

Every subgroup of PGL2(Fx) acts on Tx by multiplication from the left. We
shall be interested in the following case. Let Ox

F ⊂ F be the Dedekind ring of all
elements a ∈ F with ‖a‖y ≤ 1 for all places y 6= x . Put 0 = PGL2(O

x
F ). Serre

[2003] investigates the quotient graph 0 \Tx . It is the union of a finite connected
graph with a finite number of cusps. A cusp is an infinite graph of the form

and each cusp corresponds to an element of the class group of Ox
F .

An unramified automorphic form over Fx can be interpreted as a function f on
the vertices of 0 \Tx such that the space of functions generated by {T i

x ( f )}i≥0 is
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finite-dimensional, where the Hecke operator Tx is defined by the formula

Tx( f )([g])=
∑

edges e with origin [g]
and terminus [g′]

[Stab0([g]) : Stab0(e)] · f ([g′])

for each coset [g] ∈ PGL2(Fx)/PGL2(Ox).
The inclusion of PGL2(Fx) as x-component into PGL2(A) induces a map

0 \PGL2(Fx)/PGL2(Ox)→ PGL2(F) \PGL2(A)/PGL2(OA),

where OA is the maximal compact subring of the adeles A of F . In the case that F
is a rational function field (as in [Gekeler 1995; 1997; Gekeler and Nonnengardt
1995], or, more generally, a function field with odd class number, and x is a place
of odd degree, this map is a bijection as a consequence of the strong approximation
property of SL2 (more detail will be given in Section 3). The double coset space on
the right hand side is the domain of automorphic forms over F , and the bijection is
equivariant with respect to the Hecke operator Tx and its global equivalent 8x .

In this sense, it is possible to approximate automorphic forms in this case and
use the theory from Serre’s book. However, the method of approximation breaks
down if the function field has even class number or if the Hecke operator of interest
is attached to a place of even degree. For automorphic forms over any function
field (with possibly even class number) or for the investigation of Hecke operators
at any place of a given function field, respectively, a simultaneous description of all
Hecke operators, the method of strong approximation is thus insufficient, and we
see the need of a global analogue, which is the starting point of this paper.

The applications of this theory are primarily in explicit computations with auto-
morphic forms. For instance, Lorscheid [2012] uses graphs of Hecke operators to
calculate the dimensions of spaces of cusp forms and toroidal automorphic forms.
From a more conceptual viewpoint, it might be fruitful to explore the connections
between graphs of Hecke operators and Drinfeld modules; in particular, it might
contribute to the Langlands program since there is a generalization of graphs of
Hecke operator to all reductive groups via adelic Bruhat–Tits buildings, which we
forgo explaining here.

We give an overview of the content of this paper. In Section 1, we introduce
the graph of a Hecke operator as a graph with weighted edges that encodes the
action of a Hecke operator on automorphic forms. This definition applies to every
Hecke operator of PGL2(A) over a global field. We collect first properties of these
graphs and describe how the algebraic structure of the Hecke algebra is reflected in
dependencies between the graphs. In Section 2, we describe the graph Gx of the
unramified Hecke operators 8x (which correspond to the local Hecke operators Tx

as introduced above) in terms of coset representatives. In Section 3, we make the
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connection to Bruhat–Tits trees precise: Each component of Gx is a quotient of Tx

by a certain subgroup of PGL2(Fx), and the components of Gx are counted by the
2-torsion of the class group of Ox

F . In Section 4, we associate to each vertex of Gx a
coset in Cl F/2 Cl F where Cl F is the divisor class group of F . We describe how
these labels are distributed in Gx in dependence of x .

In Section 5, we give the vertices and edges of Gx a geometric meaning follow-
ing ideas connected to the geometric Langlands program. Namely, the vertices
correspond to the isomorphism classes of P1-bundles on the smooth projective
curve X with function field F , and the edges correspond to certain exact sequences
of sheaves on X . In Section 6, we distinguish three classes of rank 2 bundles:
those that decompose into a sum of two line bundles, those that are the trace of
a line bundle over the quadratic constant extension X ′ of X and those that are
geometrically indecomposable. This divides the vertices of Gx into three subclasses
PBundec

2 X , PBuntr
2 X and PBungi

2 X . The former two sets of vertices have a simple
description in terms of the divisor class groups of X and X ′.

In Section 7, we introduce the integer valued invariant δ on the set of vertices,
which is closely connected to reduction theory of rank 2 bundles. This helps us to
refine our view on the vertices: PBuntr

2 X and PBungi
2 X are contained in the finite

set of vertices v with δ(v) ≤ 2gX − 2, where gX is the genus of X . In Section 8,
we describe the edges between vertices: Gx decomposes into a finite graph, which
depends heavily on the arithmetic of F , and class-number-many cusps, which are
infinite weighted subgraphs of the form

1 1 11 qx qx qx

We conclude with a summary of results on Gx and illustrate them in Figure 8a.
In Section 9, we explain how abstract properties of unramified automorphic

forms — namely, the compact support of cusp forms and eigenvalue equations
for Eisenstein series — lead to an explicit description of them as functions on the
vertices of the graphs Gx . In Section 10, we show that the spaces of functions
on Vert Gx that satisfy the cuspidal or toroidal conditions, respectively, are finite
dimensional. In particular, these spaces of functions contain only automorphic
forms.

In the appendix, we will give a series of examples for a rational function field:
Gx for deg x ≤ 5, the graphs of 82

x and 83
x for deg x = 1 and the graphs of two

ramified Hecke operators. We give short explanations on how to calculate these
examples.
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1. Definitions

In this section, we set up our notation and introduce the notion of a graph of a
Hecke operator. We collect first properties of these graphs and describe how the
algebraic structure of the Hecke algebra is reflected in dependencies between the
graphs of different Hecke operators.

1.1. Let q be a prime power and F be the function field of a smooth projective
curve X over Fq . Let ‖X‖ be the set of closed points of X , which we identify with
the set of places of F . We denote by Fx the completion of F at x ∈ ‖X‖ and by
Ox the integers of Fx . We choose a uniformizer πx ∈ F for every place x . Let
κx = Ox/(πx) be the residue field. Let deg x be the degree of x and let qx = qdeg x

be the cardinality of κx . We denote by ‖ · ‖x the absolute value on Fx and F ,
respectively, such that ‖πx‖x = q−1

x .
Let A be the adèle ring of F and A× the idèle group. Put OA =

∏
Ox , where

the product is taken over all places x of F . The idèle norm is the quasicharacter
‖ · ‖ :A×→C× that sends an idèle (ax) ∈A× to the product

∏
‖ax‖x over all local

norms. By the product formula, this defines a quasicharacter on the idèle class
group A×/F×.

We think of Fx being embedded into the adèle ring A by sending an element
a of Fx to the adèle (ay) with ax = a and ay = 0 for y 6= x . It being not quite
compatible with this embedding, we think of the unit group F×x as a subgroup of
the idèle group A× by sending an element b of F×x to the idèle (by) with bx = b and
by = 1 for y 6= x . We will explain, in case of ambiguity, which of these embeddings
we use.

Let G = PGL2. Following the habit of literature about automorphic forms, we
will often write GA instead of G(A) for the group of adelic points and G F instead
of G(F) for the group of F-valued points, et cetera. Note that GA comes together
with an adelic topology that turns GA into a locally compact group. Let K = GOA

be the standard maximal compact open subgroup of GA. We fix the Haar measure
on GA for which vol K = 1.

The Hecke algebra H for GA is the complex vector space of all compactly
supported locally constant functions 8 : GA→ C together with the convolution
product

81 ∗82 : g 7→
∫

GA

81(gh−1)82(h) dh.

A Hecke operator8∈H acts on the space V=C0(G F \GA) of continuous functions
f : G F \GA→ C by the formula

8( f )(g)=
∫

GA

8(h) f (gh) dh.
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Let K ′ be a compact open subgroup of GA. Then we denote by HK ′ the subalgebra
of H that consists of all bi-K ′-invariant functions. The action above restricts to an
action of HK ′ on VK ′ , the space of right K ′-invariant functions.

Lemma 1.2. For every K ′ and every 8 ∈ HK ′ , there are h1, . . . , hr ∈ GA and
m1, . . . ,mr ∈ C for some integer r such that for all g ∈ GA and all f ∈ VK ′ ,

8( f )(g)=
r∑

i=1

mi · f (ghi ).

Proof. Since 8 is K ′-biinvariant and compactly supported, it is a finite linear
combination of characteristic functions on double cosets of the form K ′hK ′ with
h ∈ GA. So we may reduce the proof to the case 8 = charK ′hK ′ . Again, since
K ′hK ′ is compact, it equals the union of a finite number of pairwise distinct cosets
h1K ′, . . . , hr K ′, and thus, for arbitrary g ∈ GA,∫

GA

charK ′hK ′(h′) f (gh′) dh′ =
r∑

i=1

∫
GA

charhi K ′(h′) f (gh′) dh

=

r∑
i=1

vol(K ′) f (ghi ). �

We will write [g] ∈ G F \ GA/K ′ for the class that is represented by g ∈ GA.
Other cosets will also occur in this paper, but it will be clear from the context what
kind of class the square brackets relate to.

Proposition 1.3. For all 8 ∈HK ′ and [g] ∈ G F \GA/K ′, there is a unique set of
pairwise distinct classes [gi ] ∈ G F \GA/K ′ and numbers mi ∈ C×, for 1≤ i ≤ r ,
such that for all f ∈ VK ′ ,

8( f )(g)=
r∑

i=1

mi f (gi ).

Proof. Uniqueness is clear, and existence follows from Lemma 1.2 after we have
taken care of putting together values of f in same classes of G F \ GA/K ′ and
excluding the zero terms. �

Definition 1.4. With the notation of the preceding proposition we define

U8,K ′([g])= {([g], [gi ],mi )}i=1,...,r .

The classes [gi ] are called the 8-neighbors of [g] (relative to K ′), and the mi are
called their weights.

The graph G8,K ′ of 8 (relative to K ′) consists of vertices

Vert G8,K ′ = G F \GA/K ′
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and oriented weighted edges

Edge G8,K ′ =
⋃

v∈Vert G8,K ′

U8,K ′(v).

Remark 1.5. The usual notation for an edge in a graph with weighted edges consists
of pairs that code the origin and the terminus, and an additional function on the set
of edges that gives the weight. For our purposes, it is more convenient to replace
the set of edges by the graph of the weight function and to call the resulting triples
that consist of origin, terminus and the weight the edges of G8,K ′ .

1.6. We make the following drawing conventions to illustrate the graph of a Hecke
operator: vertices are represented by labeled dots, and an edge (v, v′,m) together
with its origin v and its terminus v′ is drawn as

v v′

m

If there is precisely one edge from v to v′ and precisely one from v′ to v, which we
call the inverse edge, we draw

v

m

v′
m′

in place of v′m′
m

v and v
m

in place of .v

m

There are various examples for rational function fields in the appendix, and in
[Lorscheid 2012], one finds graphs of Hecke operators for elliptic function fields.

1.7. We collect some properties that follow immediately from the definition of a
graph of a Hecke operator 8. For f ∈ VK ′ and [g] ∈ G F \GA/K ′, we have

8( f )(g)=
∑

([g],[g′],m′)
∈Edge G8,K ′

m′ f (g′).

Hence one can read off the action of a Hecke operator on f ∈ VK ′ from the
illustration of the graph

[g]

[gr]

[g1]

mr

m1

Since H =
⋃

HK ′ , with K ′ running over all compact opens in GA, the notion
of the graph of a Hecke operator applies to any 8 ∈H. The set of vertices of the
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graph of a Hecke operator 8 ∈HK ′ only depends on K ′, and only the edges depend
on the particular chosen 8. There is at most one edge for each pair of vertices
and each direction, and the weight of an edge is always nonzero. Each vertex is
connected with only finitely many other vertices.

The algebra structure of HK ′ has the following implications on the structure of
the set of edges (with the convention that the empty sum is defined as 0). For the
zero element 0 ∈HK ′ , the multiplicative unit 1 ∈HK ′ , and arbitrary 81,82 ∈HK ′

and r ∈ C×, we obtain

Edge G0,K ′ =∅,

Edge G1,K ′ = {(v, v, 1)}v∈Vert G1,K ′
,

Edge G81+82,K ′ =

{
(v, v′,m)

∣∣∣∣ m =
∑

(v,v′,m′)
∈Edge G81,K

′

m′+
∑

(v,v′,m′′)∈
Edge G82,K

′

m′′ 6= 0
}
,

Edge Gr81,K ′ =
{
(v, v′, rm)

∣∣ (v, v′,m) ∈ Edge G81,K ′
}
,

Edge G81∗82,K ′ =

{
(v, v′,m)

∣∣∣ m =
∑

(v,v′′,m′)∈Edge G81,K
′ ,

(v′′,v′,m′′)∈Edge G82,K
′

m′ ·m′′ 6= 0
}
.

If K ′′< K ′ and 8∈HK ′ , then also 8∈HK ′′ . This implies that we have a canonical
map P : G8,K ′′→ G8,K ′ , which is given by

Vert G8,K ′′ = G F \GA/K ′′
P
−→ G F \GA/K ′ = Vert G8,K ′,

Edge G8,K ′′
P
−→ Edge G8,K ′, (v, v′,m′) 7→ (P(v), P(v′),m′).

1.8. One can also collect the data of G8,K ′ in an infinite-dimensional matrix M8,K ′ ,
which we call the matrix associated with G8,K ′ , by putting (M8,K ′)v′,v = m if
(v, v′,m) ∈ Edge G8,K ′ , and (M8,K ′)v′,v = 0 otherwise. Thus each row and each
column has only finitely many nonvanishing entries.

The properties of the last paragraph imply the following:

M0,K ′ = 0, the zero matrix, M81+82,K ′ = M81,K ′ +M82,K ′,

M1,K ′ = 1, the identity matrix, Mr81,K ′ = r M81,K ′,

M81∗82,K ′ = M82,K ′M81,K ′ .

Let J(K ′)⊂HK ′ be the ideal of operators that act trivially on VK ′ . Then we may
regard HK ′/J(K ′) as a subalgebra of the algebra of C-linear maps⊕

G F\GA/K ′
C →

⊕
G F\GA/K ′

C.
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2. Unramified Hecke operators

From now on we will restrict ourselves to unramified Hecke operators, which
means elements in HK . In particular, we will investigate the graphs Gx of certain
generators 8x of HK in more detail.

2.1. Consider the uniformizers πx ∈ F as idèles via the embedding F×⊂ F×x ⊂A×

and define for every place x the unramified Hecke operator 8x as the characteristic
function of K

(
πx

1
)
K . It is well known that HK 'C[8x ]x∈‖X‖ as an algebra, which

means, in particular, that HK is commutative. By the relations from Section 1.7, it
is enough to know the graphs of generators to determine all graphs of unramified
Hecke operators. We use the shorthand notation Gx for the graph G8x ,K , and Ux(v)

for the 8x -neighbors U8x ,K (v) of v.
We introduce the lower x convention that says that a lower index x on an algebraic

group defined over the adèles of F will consist of only the component at x of the
adelic points, for example, Gx = G Fx . Analogously, we put Kx = GOx .

The upper x convention means that an upper index x on an algebraic group
defined over the adèles of F will consist of all components except for the one
at x . In particular, we first define Ax

=
∏
′

y 6=x Fy , the restricted product relative to
Ox
=
∏

y 6=x Oy over all places y that do not equal x . Another example is Gx
=GAx .

We put K x
= GOx .

2.2. We embed κx via κx ⊂ Fx ⊂ A; thus an element b ∈ κx will be considered as
the adèle whose component at x is b and whose other components are 0. Let P1 be
the projective line. Define, for w ∈ P1(κx),

ξw =

(
πx b

1

)
if w = [1 : b] and ξw =

(
1
πx

)
if w = [0 : 1].

It is well known (see [Gelbart 1975, Lemma 3.7]) that the domain of 8x can be
described as

K
(
πx

1

)
K =

⊔
w∈P1(κx )

ξwK .

Consequently the weights of edges in Gx are positive integers (recall that vol K = 1).
We shall also refer to the weights as the multiplicity of a 8x -neighbor. The above
implies the following.

Proposition 2.3. The 8x -neighbors of [g] are the classes [gξw] with ξw as in the
previous paragraph, and the multiplicity of an edge from [g] to [g′] equals the
number of w ∈ P1(κx) such that [gξw] = [g′]. The multiplicities of the edges
originating in [g] sum up to # P1(κx)= qx + 1.



28 Oliver Lorscheid

3. Connection with Bruhat–Tits trees

Fix a place x . In this section we construct maps from Bruhat–Tits trees to Gx . This
will enable us to determine the components of Gx .

Definition 3.1. The Bruhat–Tits tree Tx for Fx is the (unweighted) graph with
vertices Vert Tx = Gx/Kx and edges

Edge Tx = {([g], [g′]) | ∃w ∈ P1(κx), g ≡ g′ξw (mod Kx)}.

3.2. Consider Gx to be embedded in GA as the component at x . For each h ∈ GA,
we define a map 9x,h : Tx → Gx by

Vert Tx = Gx/Kx → G F \GA/K = Vert Gx , Edge Tx → Edge Gx ,

[g] 7→ [hg], ([g], [g′]) 7→ ([hg], [hg′],m),

with m being the number of vertices [g′′] that are adjacent to [g] in Tx such that
9x,h([g′′])=9x,h([g′]).

By Proposition 2.3 and the definition of a Bruhat–Tits tree, 9x,h is well-defined
and locally surjective, that is, it is locally surjective as a map between the associated
simplicial complexes of Tx and Gx with suppressed weights.

Since Bruhat–Tits trees are indeed trees [Serre 2003, II.1, Theorem 1], hence
in particular connected, the image of each 9x,h is precisely one component of Gx ,
that is, a subgraph that corresponds to a connected component of the associated
simplicial complex.

Every edge of the Bruhat–Tits tree has an inverse edge, which implies the
analogous statement for the graphs Gx . Namely, if (v, v′,m) ∈ Edge Gx , then there
is an m′ ∈ C× such that (v′, v,m′) ∈ Edge Gx .

Remark 3.3. This symmetry of edges is a property that is particular to unramified
Hecke operators for G = PGL2. In case of ramification, the symmetry is broken;
see Example A.7.

3.4. The algebraic group SL2 has the strong approximation property, that is, for
every place x , SL2 F is a dense subset of SL2 Ax with respect to the adelic topol-
ogy. See [Bourbaki 1965, §2, nombre 4; Kneser 1966; Moore 1968, Chapter IV,
Lemma 13.1; Margulis 1977; Prasad 1977] for the development of the strong
approximation results and their generalizations to all simple groups. See also
[Laumon 1997, Theorem E.2.1] for a proof. We explain what implication this has
on PGL2. More detail for the outline in this paragraph can be found in [van der Put
and Reversat 1997, (2.1.3)].

Let x be a place of degree d. In accordance to the upper x convention, let
Ox
=
∏

y 6=x Oy . As a consequence of the strong approximation property of SLn , the
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determinant map on GL2 induces a bijection on double cosets:

GL2(F) \GL2(A
x)/GL2(O

x)
det
−→ F× \ (Ax)×/(Ox)×.

The quotient group F× \ (Ax)×/(Ox)× is nothing else but the ideal class group
Cl Ox

F of the integers Ox
F = Ox

∩ F coprime to x . Let Cl F = F× \A×/O×A be the
divisor class group of F and Cl0 F = {[a] ∈ Cl F | deg a = 0} be the ideal class
group. Then we have bijections

GL2(F) \GL2(A
x)/GL2(O

x)' F× \ (Ax)×/(Ox)× ' Cl Ox
F ' Cl0 F ×Z/dZ.

Let S⊂GL2(A
x) be a set of representatives for GL2(F)\GL2(A

x)/GL2(O
x). Then

for every g = gx gx ∈ GL2(A) (with gx
∈ GL2(A

x) and gx ∈ GL2(Fx)), there are
s ∈ S, γ ∈ GL2(F) and k ∈ GL2(O

x) such that g = γ skg̃x , where γ sk equals g in
all components z 6= x and g̃x = γ

−1gx . The condition [det s] = [det gx
] as cosets

in F× \ (Ax)×/(Ox)× implies that s ∈ S is uniquely determined by gx . Let Z be
the center of GL2. Then

GL2(A)/GL2(OA)Zx = GL2(A
x)/GL2(O

x)×Gx/Kx

= GL2(A
x)/GL2(O

x)×Vert Tx .

Define 0s = GL2(F)∩ s GL2(O
x)s−1. Then we obtain the following; see [van der

Put and Reversat 1997, (2.1.3)].

Proposition 3.5. The decomposition g = γ skg̃x induces a bijective map

GL2(F) \GL2(A
x)/GL2(OA)Zx →

⊔
s∈S

0s \Vert Tx , [g] 7→ (s, [g̃x ]).

Its inverse is obtained by joining the components s ∈ GL2(A
x) and g̃x ∈ Gx .

Remark 3.6. On the right side of the bijection in Proposition 3.5, we have a finite
union of quotients of the form 0s \Vert Tx . If s is the identity element e, then
0 = 0e = GL2(O

x
F ) is an arithmetic group of the form considered in [Serre 2003,

II.2.3]. For general s, I am not aware of any results about 0s \Vert Tx .

3.7. So far, we have only divided out the action of the x-component Zx of the
center. We still have to consider the action of Z x . The image of Z x under the
determinant det : GL2(A

x)→ Cl Ox
F is 2 Cl Ox

F . Thus we obtain a bijection

Z x GL2(F) \GL2(A
x)/GL2(O

x)
det
−→ Cl Ox

F/2 Cl Ox
F .

The double quotient on the left side can be identified with G F \ Gx/K x . Let
J = {z ∈ Z x

| det z = 0 ∈ Cl Ox
F } be the kernel of the restriction det : Z x

→ Cl Ox
F

and define 0̃s=GL2(F)∩Js GL2(O
x)s−1. If we let S′⊂ S be a set of representatives
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for Cl Ox
F/2 Cl Ox

F (with respect to the determinant map), and h2 = #(Cl F)[2] the
cardinality of the 2-torsion, then we obtain:

Proposition 3.8. The decomposition g = γ skg̃x induces a bijective map

G F \GA/K →
⊔
s∈S′

0̃s \Vert Tx .

The inverse maps an element (s, [g̃x ]) to the class of the adelic matrix with compo-
nents s ∈ Gx and g̃x ∈ Gx . The number of components of Gx equals

#(Cl Ox
F/2 Cl Ox

F )= #(Cl O x
F )[2] =

{
h2 if deg x is odd,
2h2 if deg x is even.

Proof. Everything follows from Proposition 3.5 and Section 3.7 except for the two
equalities in the last line. The former equality follows from the general fact that
one has # ker f = #(G/ im f ) for a homomorphism f acting on a finite group G
(in our case f is the multiplication by 2). The latter equality follows immediately
from the observation Cl Ox

F ' Cl0 F ×Z/dZ, where d = deg x . �

4. A vertex labeling

In this section, we associate to each vertex of Gx an element of Cl F/2 Cl F and
determine how these labels are distributed over the components of Gx .

4.1. Let QA = 〈a2
| a ∈ A×〉 be the subgroup of squares. We look once more at the

determinant map

Vert Gx = G F \GA/K
det
−→ F× \A×/O×A QA ' Cl F/2 Cl F.

This map assigns to every vertex in Gx a label in Cl F/2 Cl F , which has 2h2

elements, where h2 = #(Cl F)[2], for the same reason as used in the proof of
Proposition 3.8.

Proposition 4.2. If the prime divisor x is a square in the divisor class group, then
all vertices in the same component of Gx have the same label, and there are 2h2

components, each of which has a different label. Otherwise, the vertices of each
component have one of two labels that differ by x in Cl F/2 Cl F , and two adjacent
vertices have different labels, so each connected component is bipartite.

Proof. First of all, observe that each label is realized, since if we represent a label
by some idèle a, then the vertex represented by

( a
1
)

has this label.
Let Qx = 〈b2

| b ∈ F×x 〉 and Cl Fx = F×x /O
×
x , a group isomorphic to Z. For the

Bruhat–Tits tree Tx , the determinant map

Vert Tx = Gx/Kx
det
−→ F×x /O

×

x Qx ' Cl Fx/2 Cl Fx ' Z/2Z
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defines a labeling of the vertices, and the two classes of F×x /O
×
x Qx are represented

by 1 and πx . Two adjacent vertices have the different labels since for g ∈ Gx and
ξw as in Definition 3.1, det(gξw)= πx det g represents a class different from det g
in Vert Tx .

Define for a∈A× a mapψx,a : F×x /O
×
x Qx → F×\A×/O×A QA byψx,a([b])=[ab],

where b is viewed as the idèle concentrated in x . For every h ∈ GA we obtain a
commutative diagram

Vert Tx

��

= Gx/Kx

det
��

9x,h // G F \GA/K

det
��

= Vert Gx

��
Cl Fx/2 Cl Fx ' F×x /O

×
x Qx

ψx,det h // F× \A×/O×A QA ' Cl F/2 Cl F.

This means that vertices with equal labels map to vertices with equal labels.
Each component of Gx lies in the image of a suitable 9x,h , and thus has at most

two labels. On the other hand, the two labels of Tx map to ψx,det h([1]) = [a]
and ψx,det h([πx ])= [aπx ], where a = det h. The divisor classes of [a] and [aπx ]

differ by the class of the prime divisor x , and are equal if and only if x is a square
in the divisor class group. If so, according to Proposition 3.8, there must be 2h2

components, so that the 2h2 labels are spread over all components. If x is not a
square, then by the local surjectivity of 9x,h on edges two adjacent vertices of Gx

also have different labels. �

5. Geometric interpretation of unramified Hecke operators

A fundamental observation in the geometric Langlands program (for PGL2, in
this case) is that the domain of automorphic forms (with a certain ramification
level) corresponds to the isomorphism classes of P1-bundles (with a corresponding
level structure). The action of Hecke operators can be given a geometric meaning,
which makes it possible to let algebraic geometry enter the field. We will use this
geometric view point for a closer examination of the graphs of unramified Hecke
operators. We begin with recalling the geometric interpretation of unramified Hecke
operators. For more reference, see [Gaitsgory 2003].

5.1. Let OX be the structure sheaf of the smooth projective curve X and η the
generic point. We can identify the stalks OX,x of the structure sheaf OX at closed
points x ∈ ‖X‖ and their embeddings into the generic stalk OX,η with

OX,x ' Ox ∩ F ↪→ F ' OX,η.

We identify vector bundles on X with the corresponding locally free sheaf
[Hartshorne 1977, Exercise II.5.18]. We denote by Bunn X the set of isomorphism
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classes of rank n bundles over X and by Pic X the Picard group. For L1,L2 ∈Pic X ,
we use the shorthand notation L1L2 for L1⊗L2. The group Pic X acts on Bunn X
by tensor products. Let PBunn X be the orbit set Bunn X/Pic X , which is nothing
but the set of isomorphism classes of Pn−1-bundles over X [ibid., Ex. II.7.10].

We will call the elements of PBun2 X projective line bundles. If we regard
the total space of a projective line bundle as a scheme, then we obtain a ruled
surface; see [ibid., Proposition V.2.2]. Thus PBun2 X may also be seen as the set
of isomorphism classes of ruled surfaces over X .

If two vector bundles M1 and M2 are in the same orbit of the action of Pic X , we
write M1 ∼M2 and say that M1 and M2 are projectively equivalent. When we say
[M] ∈ PBun2 X , we mean the class that is represented by the rank 2 bundle M.

Let Cl X = Cl F be the divisor group of X . Every divisor D ∈ Cl X defines
the associated line bundle LD, which defines an isomorphism Cl X → Pic X of
groups [ibid., Proposition II.6.15]. The degree deg M of a vector bundle M with
det M' LD is defined as deg D; see [ibid., Ex. II.6.12]. For a torsion sheaf F, the
degree is defined by deg F=

∑
x∈‖X‖ dimFq (Fx). The degree is additive in short

exact sequences.

Remark 5.2. Note that if D = x is a prime divisor, the notation for the associated
line bundle Lx coincides with the notation for the stalk of L at x . In order to avoid
confusion, we will reserve the notation Lx strictly for the associated line bundle. In
case we have to consider the stalk of a line bundle, we will use a symbol different
from L for the line bundle.

5.3. The correspondence between Cl X = F× \A×/O×A and Pic X extends to higher
rank. For more details on the following outline; see [Frenkel 2004, Lemma 3.1;
Gaitsgory 2003, 2.1]. Let M be a rank 2 bundle. Then we can choose for every
x ∈ ‖X‖ a trivialization ϕx of Mx in a formal neighborhood of x , and a trivialization
ϕη of the generic stalk Mη. We define the matrix gx as the base change matrix
corresponding to

O2
X,x

ϕx
−→Mx ↪→Mη

ϕ−1
η

−−→ F2

with respect to the standard bases of O2
X,x and F2. This yields an element g= (gx) of

GL2(A). A coordinate change of the stalks Mx corresponds to a matrix in GL2(OA)

and a coordinate change of Mη corresponds to a matrix in GL2(F). Indeed, every
double coset in GL2(F) \GL2(A)/GL2(OA) is obtained from a vector bundle in
the described way, which yields a bijection

GL2(F) \GL2(A)/GL2(OA)
1:1
←→ Bun2 X,

[g] 7−→Mg
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Furthermore, we have Mg ⊗ La = Mag for a ∈ A×, and deg Mg = deg(det g).
Consequently, there is a bijection

G F \GA/K
1:1
←→ PBun2 X,

which allows us to identify the vertex set Vert Gx = G F \GA/K with PBun2 X .

5.4. The next task is to describe edges of Gx in geometric terms. We say that two
exact sequences

0→ F1→ F→ F′1→ 0 and 0→ F2→ F→ F′2→ 0

of sheaves are isomorphic with fixed F if there are isomorphisms F1→ F2 and
F′1→ F′2 such that

0 // F1 //

'

��

F // F′1
//

'

��

0

0 // F2 // F // F′2
// 0

commutes.
Let Kx be the torsion sheaf that is supported at x and has stalk κx at x , where κx

is the residue field at x . Fix a representative M of [M] ∈ PBun2 X . Then we define
mx([M], [M

′
]) as the number of isomorphism classes of exact sequences

0→M′′→M→ Kx → 0,

with fixed M and with M′′ ∼M′. This number is independent of the choice of the
representative M because for another choice, which would be a vector bundle of
the form M⊗L for some L ∈ Pic X , we have the bijection

isomorphism classes
0→M′′→M→ Kx → 0

with fixed M

 →


isomorphism classes

0→M′′′→M⊗L→ Kx → 0
with fixed M⊗L

 ,
(0→M′′→M→ Kx → 0) 7→ (0→M′′⊗L→M⊗L→ Kx → 0).

Definition 5.5. Let x be a place. For a projective line bundle [M] ∈ PBun2 X we
define

Ux([M])= {([M], [M
′
],m) | m = mx([M], [M

′
]) 6= 0},

and call the occurring [M′] the 8x -neighbors of [M], and mx([M], [M
′
]) their

multiplicity.
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5.6. We shall show that this concept of neighbors is the same as the one defined
for classes in G F \ GA/K (Definition 1.4). Recall that in Proposition 2.3, we
determined the 8x -neighbors of a class [g] ∈ G F \GA/K to be of the form [gξw]
for a w ∈ P1(κx). The elements ξw define exact sequences

0→
∏

y∈‖X‖

O2
X,y

ξw
−→

∏
y∈‖X‖

O2
X,y→ κx → 0

of Fq-modules and consequently an exact sequence 0→Mgξw →Mg→ Kx → 0
of sheaves, where Mgξw and Mg are the rank 2 bundles associated with gξw and
g, respectively. This maps w ∈ P1(κx) to the isomorphism class of (0→Mgξw →

Mg→Kx→ 0) with fixed Mg. On the other hand, as we have chosen a basis for the
stalk at x , each isomorphism class of sequences (0→M′→M→ Kx → 0) with
fixed M defines an element in P(O2

X,x/(πx OX,x)
2)= P1(κx), which gives back w.

Thus for every x ∈ ‖X‖, the map

Ux([g])→Ux([Mg]), ([g], [g′],m) 7→ ([Mg], [Mg′],m)

is a well-defined bijection. We finally obtain the geometric description of the graph
Gx of 8x .

Proposition 5.7. Let x ∈ ‖X‖. The graph Gx of8x is described in geometric terms
as

Vert Gx = PBun2 X and Edge Gx =
⊔

[M]∈PBun2 X

Ux([M]).

Remark 5.8. This interpretation shows that the graphs that we consider are a global
version of the graphs of Serre [2003, Chapter II.2]. We are looking at all rank 2
bundles on X modulo the action of the Picard group of X while Serre considers rank
2 bundles that trivialize outside a given place x modulo line bundles that trivialize
outside x . As already explained in Remark 3.6, we obtain a projection of the graph
of Serre to the component of the trivial class c0.

Serre describes his graphs as quotients of Bruhat–Tits trees by the action of the
group 0 = GOx

F
on both vertices and edges. This leads in general to multiple edges

between vertices in the quotient graph; see for example [Serre 2003, 2.4.2c]. This
does not happen with graphs of Hecke operators: There is at most one edge with
given origin and terminus.

Relative to the action of 0 on Serre’s graphs, one can define the weight of an edge
as the order of the stabilizer of its origin in the stabilizer of the edge. The projection
from Serre’s graphs to graphs of Hecke operators identifies all the different edges
between two vertices, adding up their weights to obtain the weight of the image
edge.
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6. Description of vertices

The aim of this section is to show that the set of isomorphism classes of projective
line bundles over X can be separated into subspaces corresponding to certain
quotients of the divisor class group of F , the divisor class group of Fq2 F and
geometrically indecomposable projective line bundles. We recall a series of facts
about vector bundles.

6.1. A vector bundle M is indecomposable if for every decomposition M=M1⊕M2

into two subbundles M1 and M2, one factor is trivial and the other is isomorphic to
M. The Krull–Schmidt theorem holds for the category of vector bundles over X ,
that is, every vector bundle M on X defined over Fq has, up to permutation of
factors, a unique decomposition into a direct sum of indecomposable subbundles;
see [Atiyah 1956, Theorem 2].

The map p : X ′ = X ⊗ Fq i → X defines the inverse image or the constant
extension of vector bundles

p∗ : Bunn X→ Bunn X ′, M 7→ p∗M.

The isomorphism classes of rank n bundles that after extension of constants to
Fq i become isomorphic to p∗M are classified by H 1(Gal(Fq i /Fq),Aut(M⊗ Fq i ));
see [Arason et al. 1992, Section 1]. The algebraic group Aut(M⊗ Fq i ) is an open
subvariety of the connected algebraic group End(M⊗ Fq i ), and thus it is itself a
connected algebraic group. As a consequence of Lang’s theorem [1956, Corollary
to Theorem 1], we have H 1(Gal(Fq i /Fq),Aut(M⊗ Fq i ))= 1.

Thus p∗ is injective. In particular, one can consider the constant extension to the
geometric curve X = X ⊗ Fq over an algebraic closure Fq of Fq . Then two vector
bundles are isomorphic if and only if they are geometrically isomorphic, that is, if
their constant extensions to X are isomorphic. We can therefore think of Bunn X
as a subset of Bunn X ′ and Bunn X .

On the other hand, p : X ′→ X defines the direct image or the trace of vector
bundles

p∗ : Bunn X ′→ Bunni X, M 7→ p∗M.

We have p∗ p∗M ' Mi for M ∈ Bunn X and p∗ p∗M '
⊕

Mτ for M ∈ Bunn X ′,
where τ ranges over Gal(Fq i /Fq) and Mτ is defined by the stalks Mτ

x =Mτ−1(x).
We call a vector bundle geometrically indecomposable if its extension to X

is indecomposable. In [Arason et al. 1992, Theorem 1.8], it is shown that every
indecomposable vector bundle over X is the trace of a geometrically indecomposable
bundle over some constant extension X ′ of X .

There are certain compatibilities of the constant extension and the trace with
tensor products. Namely, for a vector bundle M and a line bundle L over X , we
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have p∗(M⊗L)' p∗M⊗ p∗L and for a vector bundle M′ over X ′,

p∗M′⊗L' p∗(M′⊗ p∗L).

Thus p∗ induces a map, denoted by the same symbol,

p∗ : PBunn X→ PBunn X ′, [M] 7→ [p∗M],

and p∗ induces

p∗ : Bunn X ′/p∗ Pic X→ PBunni X, [M] 7→ [p∗M].

6.2. We look at the situation for rank 2 bundles. Let σ be the nontrivial auto-
morphism of Fq2/Fq . The set PBun2 X is the disjoint union of the set of classes
of decomposable rank 2 bundles, that is, rank 2 bundles that are isomorphic to
the direct sum of two line bundles, and the set of classes of indecomposable
bundles. We denote these sets by PBundec

2 X and PBunindec
2 X , respectively. Let

PBungi
2 X ⊂ PBunindec

2 X be the subset of classes of geometrically indecomposable
bundles. Since the rank is 2, the complement PBuntr

2 X = PBunindec
2 X −PBungi

2 X
consists of classes of traces p∗L of certain line bundles L ∈ Pic X ′ that are defined
over the quadratic extension X ′ = X ⊗ Fq2 . More precisely, p∗L decomposes if
and only if L ∈ p∗ Pic X , and then p∗L∼ OX ⊕OX . Thus, we have a disjoint union

PBun2 X = PBundec
2 X tPBuntr

2 X tPBungi
2 X.

For [D] ∈ Cl X , define

cD = [LD ⊕OX ] ∈ PBundec
2 X ,

and for a [D] ∈ Cl X ′, define

tD = [p∗LD] ∈ PBuntr
2 X ∪ {c0}.

Note that σ acts on Cl X ′ in a way compatible with the identification Cl X ′' Pic X ′.
Since p∗ p∗(L) ' L⊕Lσ

' p∗ p∗(Lσ ) for L ∈ Pic X ′, and isomorphism classes
of vector bundles are stable under constant extensions, we have tD = tσD .

We derive the following characterizations of PBundec
2 X and PBuntr

2 X :

Proposition 6.3. The map Cl X→ PBundec
2 X , [D] 7→ cD is surjective with fibers

of the form {[D], [−D]}.

Proof. Let M decompose into L1⊕L2. Then

M' L1⊕L2 ∼ (L1⊕L2)⊗L−1
2 ' L1L−1

2 ⊕OX ,

thus surjectivity follows. Let LD′⊕OX represent the same projective line bundle as
LD ⊕OX . Then, there is a line bundle L0 such that LD ⊕OX ' (LD′ ⊕OX )⊗L0,
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and thus either L0 ' OX and LD ' LD′ or L0 ' LD and LD′ ⊗LD ' OX . Hence
[D′] equals either [D] or [−D]. �

Proposition 6.4. The map Cl X ′/Cl X→ PBuntr
2 X ∪ {c0}, [D] 7→ tD is surjective

with fibers of the form {[D], [−D]}.

Proof. From the previous considerations it is clear that this map is well-defined
and surjective. Assume that [D1], [D2] ∈ Cl X ′ have the same image. Then there is
an L0 ∈ Pic X such that p∗L1 ' p∗L2⊗L0, where we briefly wrote Li for LDi .
Then in PBun2 X ′, we see that

L1⊕Lσ
1 ' p∗ p∗L1 ' p∗ p∗L2⊗ p∗L0 ' (L2⊗ p∗L0)⊕ (L

σ
2 ⊗ p∗L0),

thus either L1 ' L2 ⊗ p∗L0, which implies that D1 and D2 represent the same
class in Cl X ′ / Cl X , or L1 ' Lσ

2 ⊗ p∗L0, which means that D1 represents the
same class as σD2. But in Cl X ′ / Cl X ,

[σD2] = [σD2+ D2︸ ︷︷ ︸
∈Cl X

−D2] = [−D2]. �

Lemma 6.5. The constant extension restricts to an injective map

p∗ : PBundec
2 X tPBuntr

2 X ↪→ PBundec
2 X ′.

Proof. Since p∗ p∗(L) ' L⊕Lσ for a line bundle L over X ′, it is clear that the
image is contained in PBundec

2 X ′. The images of PBundec
2 X and PBuntr

2 X are
disjoint since elements of the image of the latter set decompose into line bundles
over X ′ that are not defined over X . If we denote taking the inverse elements
by inv, then by Proposition 6.3, p∗ is injective restricted to PBundec

2 X because
(Cl X/ inv)→ (Cl X ′/ inv) is. Regarding PBuntr

2 X , observe that

p∗(tD)= p∗ p∗(LD)' LD ⊕LσD ∼ LD−σD ⊕OX ′ = cD−σD,

where by Proposition 6.4, D represents an element in
(
Cl X ′/Cl X

)
/ inv, and by

Proposition 6.3, D − σD represents an element in Cl X ′/ inv. If there are [D1],
[D2] ∈Cl X ′ such that (D1−σD1)=±(D2−σD2), then D1∓D2 = σ(D1∓D2),
and consequently [D1∓ D2] ∈ Cl X . �

Remark 6.6. The constant extension also restricts to a map

p∗ : PBungi
2 X→ PBungi

2 X ′.

But this restriction is in general not injective in contrast to the previous result. For
a counterexample to injectivity, see [Lorscheid 2012, Remark 2.7].
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7. Reduction theory for rank 2 bundles

In this section, we introduce reduction theory for rank 2 bundles, that is, an invariant
δ closely related to the slope of a vector bundle and reduction theory. Namely, a
rank 2 bundle M is (semi)stable if and only if δ(M) is negative (nonpositive). For
the definition of the slope of a vector bundle and (semi)stable vector bundles, see
[Harder and Narasimhan 1974/75]. The invariant δ is also defined for projective
line bundles and will be help to determine the structure of the graphs Gx .

7.1. In general, the cokernel of a sheaf morphism between two vector bundles
might have nontrivial torsion. A subbundle of a vector bundle M is an injective
morphism M′→M of vector bundles such that the cokernel is again a vector bundle.
By a line subbundle L→ M of a vector bundle M, we mean a subbundle of M

where L is a line bundle.
Every locally free subsheaf L→M of rank 1 extends to a uniquely determined

line subbundle L→M, since L is determined by the constraint L⊂L [Serre 2003,
p. 100]. On the other hand, every rank 2 bundle has a line subbundle [Hartshorne
1977, Corollary V.2.7].

Two line subbundles L→M and L′→M are said to be the same if their images
coincide, or, in other words, if there is an isomorphism L'L′ that commutes with
the inclusions into M.

For a line subbundle L→M of a rank 2 bundle M, we define

δ(L,M) := deg L− deg(M/L)= 2 deg L− deg M,

δ(M) := sup
L→M

line subbundle

δ(L,M).

If δ(M)= δ(L,M), then we call L a line subbundle of maximal degree, or briefly, a
maximal subbundle. Since δ(L⊗L′,M⊗L′)= δ(L,M) for a line bundle L′, the
invariant δ is well-defined on PBun2 X , and we put δ([M])= δ(M).

Let gX be the genus of X . Then the Riemann–Roch theorem and Serre duality
imply:

Proposition 7.2 [Serre 2003, II.2.2, Propositions 6 and 7]. Every rank 2 bundle M

satisfies−2gX ≤ δ(M) <∞. If L→M is a line subbundle with δ(L,M) > 2gX−2,
then M' L⊕M/L.

7.3. Every extension of a line bundle L′ by a line bundle L, that is, every exact
sequence of the form 0→L→M→L′→0, determines a rank 2 bundle M∈Bun2 X .
This defines for all L,L′ ∈ Pic X a map Ext1(L′,L)→ Bun2 X , which maps the
zero element to L⊕L′. Since decomposable bundles may have line subbundles that
differ from its given two factors, nontrivial elements can give rise to decomposable
bundles.
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Proposition 7.4. The map⊔
−2gX≤deg L
≤2gX−2

Ext1(OX ,L)→ PBun2 X

meets every element of PBunindec
2 X , and the fiber of any [M] ∈ PBun2 X is of the

form
{0→ L→M→ OX → 0 | δ(L,M)≥−2gX }.

Proof. We know that every [M] ∈PBun2 X has a reduction 0→L→M→L′→ 0
with δ(L,M)≥−2gX , where we may assume that L′ = OX by replacing M with
M⊗ (L′)−1; hence δ(L,M) = deg L. If deg L > 2gX − 2, then M decomposes,
that is, Ext1(OX ,L) is trivial (which is already clear from the proof [Serre 2003,
II.2.2, Proposition 7]). This explains the form of the fibers and that PBunindec

2 X is
contained in the image. �

Corollary 7.5. There are only finitely many isomorphism classes of indecomposable
projective line bundles.

Proof. This is clear since
⊔
−2gX≤deg L≤2gX−2 Ext1(OX ,L) is a finite union of finite

sets. �

Lemma 7.6. If L→ M is a maximal subbundle, then δ(L′,M) ≤ − δ(L,M) for
every line subbundle L′→M that is different from L→M. Equality holds if and
only if M' L⊕L′, that is, M decomposes and L′ is a complement of L in M.

Proof. Compare with [Schleich 1974, Lemma 3.1.1.]. Since L′→M is different
from L→ M, there is no inclusion L′ → L that commutes with the inclusions
into M. Hence the composed morphism L′→M→M/L must be injective, and
deg L′ ≤ deg M/L= deg M− deg L. This implies that

δ(L′,M)= 2 deg L′− deg M≤ deg M− 2 deg L=−δ(L,M).

Equality holds if and only if L′→M/L is an isomorphism, and in this case, its
inverse defines a section M/L' L′→M. �

Proposition 7.7.

(i) A rank 2 bundle M has at most one line subbundle L→M such that δ(L,M)≥1.

(ii) If L→M is a line subbundle with δ(L,M)≥ 0, then δ(M)= δ(L,M).

(iii) If δ(M)= 0, we distinguish three cases.

(1) M has only one maximal line bundle; this happens if and only if M is
indecomposable.

(2) M has exactly two maximal subbundles L1 → M and L2 → M; this
happens if and only if M' L1⊕L2 and deg L1 = deg L2, but L1 6' L2.
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(3) M has exactly q + 1 maximal subbundles; this happens if and only if all
maximal subbundles are of the same isomorphism type L and M'L⊕L.

(iv) δ(cD)= ‖deg D‖.

(v) δ(M) is invariant under extension of constants for [M] ∈ PBundec
2 X.

Proof. Everything follows from the preceding lemmas, except for the fact that L⊕L

has precisely q + 1 maximal subbundles in part (3), which needs some explanation.
If M= L⊕L and L′ is a third maximal subbundle of M, then M' L′⊕L by

Lemma 7.6, and thus there is an automorphism M ' L′⊕L→ L⊕L =M that
restricts to an isomorphism between L′ and L by the Krull–Schmidt theorem; see
[Atiyah 1956]. Thus the automorphism group Aut(M) of M acts transitively on the
set of maximal line bundles of M. Since Aut(M)'GL2(Fq), the orbit of a maximal
subbundle under Aut(M) is of cardinality q + 1. �

Proposition 7.8. Let p : X ′ = X ⊗ Fq2 → X and L ∈ Pic X ′, then δ(p∗L) is an
even nonpositive integer. It equals 0 if and only if L ∈ p∗ Pic X.

Proof. Over X ′, we have p∗ p∗L ' L⊕Lσ and deg L = deg Lσ . If L′ is a line
subbundle of p∗L, then p∗L′ is a subbundle of L⊕Lσ . By the previous proposition,
the degree of p∗L′ (which is the same as the degree of L′) equals the degree of L

if and only if p∗L′ is isomorphic to L or Lσ , and it is smaller otherwise. In the
former case, L is already defined over X ; thus p∗L' L′⊕L′ and δ(p∗L)= 0 if
L' p∗L′. In the latter case, that is, if L is not of the form p∗L′ for a line bundle
L′ over X , we have δ(L′, p∗L) < 0 for every maximal subbundle L′ of p∗L. This
shows that δ(p∗L) is nonpositive, and that it is 0 if and only if L ∈ p∗ Pic X .

Finally note that by the very definition of δ(M) for rank 2 bundles M, it follows
that δ(M)≡ deg M (mod 2), and deg(p∗L)= 2 deg L is even. �

Remark 7.9. We see that for [M] ∈ PBuntr
2 X , the invariant δ(M) must get larger

if we extend constants to Fq2 , because p∗(M) decomposes over X ′. This stays in
contrast to the result for classes in PBundec

2 X (Proposition 7.7 (v)).

8. Nucleus and cusps

In this section, we will define certain subgraphs of Gx for a place x , namely, the
cusp of a divisor class modulo x , which is an infinite subgraph of a simple nature,
and the nucleus, which is a finite subgraph that depends heavily on the arithmetic
of F . Finally, Gx can be described as the union of the nucleus with a finite number
of cusps.

8.1. We use reduction theory to investigate sequences of the form

0→M′→M→ Kx → 0,
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which occur in the definition of Ux([M]). By additivity of the degree map (see
Section 5.1), deg M′ = deg M− dx where dx is the degree of x .

Given an arbitrary inclusion M′→ M of rank 2 bundles and a line subbundle
L→M, then we say that L lifts to M′ if there exists a morphism L→M′ such that
the diagram

L

~~ ��
M′ // M

commutes. In this case, L→M′ is indeed a subbundle since otherwise it would
extend nontrivially to a subbundle L→M′⊂M and would contradict the hypothesis
that L is a subbundle of M. In the case that M′→M is part of an exact sequence

0→M′→M→ Kx → 0,

a line subbundle L→M lifts to M′ if and only if the image of L in Kx is 0.
Let Ix ⊂ OX be the kernel of OX →Kx . This is also a line bundle, since Kx is a

torsion sheaf. For every line bundle L, we may think of LIx as a subsheaf of L.
In Pic X , the line bundle Ix represents the inverse of Lx , the line bundle associated
with the divisor x . In particular, deg Ix = deg L−1

x =−dx .
If L→M does not lift to a subbundle of M′, we have that LIx ⊂ L→M lifts

to a subbundle of M′:

Ix L

��

⊂ L

��
M′ // M.

Note that every subbundle L→ M′ is a locally free subsheaf L→ M, which
extends to a subbundle L→M. If thus L→M is a maximal subbundle that lifts to
a subbundle L→M′, then L→M′ is a maximal subbundle. If, however, L→M

is a maximal subbundle that does not lift to a subbundle L→M′, then LIx →M′

is a subbundle, which is not necessarily maximal. These considerations imply that

δ(M′)≤ 2 deg L− deg M′ = 2 deg L− (deg M− dx)= δ(M)+ dx ,

δ(M′)≥ 2 deg Ix L− deg M′ = 2 deg L− 2dx − (deg M− dx)= δ(M)− dx .

Since δ(M′)≡ deg M′ = deg M− dx (mod 2), we derive the following:

Lemma 8.2. If 0→M′→M→ Kx → 0 is exact, then

δ(M′) ∈ {δ(M)− dx , δ(M)− dx + 2, . . . , δ(M)+ dx}.
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8.3. Every line subbundle L→M defines a line L/LIx in P
(
M/(M⊗Ix)

)
. By

the bijection
isomorphism classes of exact

0→M′→M→ Kx → 0
with fixed M

 1:1
−→ P(M/(M⊗Ix)),

(0→M′→M→ Kx → 0) 7→M′/(M⊗Ix)

(see Section 5.6), there is a unique 0→M′→M→Kx→ 0 up to isomorphism with
fixed M, such that M′/(M⊗Ix)=L/LIx in P(M/(M⊗Ix)). This means that L is
contained in the image of M′→M and that L→M lifts to a line subbundle L→M′.
We call 0→M′→M→ Kx → 0 the sequence associated with L→M relative to
8x , or for short the associated sequence, and [M′] the associated 8x -neighbor. It
follows that δ(M′)≥ δ(L,M)+ dx .

We summarize this.

Lemma 8.4. If L→M is a maximal subbundle, then the associated 8x -neighbor
[M′] has δ(M′)= δ(M)+ dx . Therefore,∑
([M],[M′],m)∈Ux ([M])

δ(M′)=δ(M)+dx

m=#
{

L∈P(M/(M⊗Ix))

∣∣∣∣ there is a maximal submodule
L→M with L≡ L (mod M⊗Ix)

}
.

Theorem 8.5. Let x be a place and [D] ∈ Cl X be a divisor of nonnegative degree.
The 8x -neighbors v of cD with δ(v)= deg D+ dx are given by the following list:

(c0, cx , q + 1) ∈Ux(c0),

(cD, cD+x , 2) ∈Ux(cD) if [D] ∈ (Cl0 X)[2] − {0},

(cD, cD+x , 1), (cD, c−D+x , 1) ∈Ux(cD) if [D] ∈ Cl0 X − (Cl0 X)[2],

(cD, cD+x , 1) ∈Ux(cD) if deg D is positive.

For all 8x -neighbors v of cD not occurring in this list, δ(v) < δ(cD) + dx . If
furthermore deg D > dx , then δ(v)= deg D− dx , and if deg D > m X + dx where
m X =max{2gX − 2, 0}, then

Ux(cD)= {(cD, cD−x , qx), (cD, cD+x , 1)}.

Proof. By Lemma 8.4, the 8x -neighbors v of cD with δ(v)= δ(cD)+ dx counted
with multiplicity correspond to the maximal subbundles of a rank 2 bundle M that
represents cD . Since δ(M)= δ(cD)≥ 0, the list of all 8x -neighbors v of cD with
δ(v)= deg D+dx = δ(cD)+dx follows from the different cases in Proposition 7.7
(i) and (iii). Be aware that cD = c−D by Proposition 6.3; hence it makes a difference
whether or not D is 2-torsion.
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For the latter statements, write M=LD⊕OX and let M′ be a subsheaf of M with
cokernel Kx such that δ(M′) < δ(M)+ dx . Then LD→M does not lift to M′, but
LDIx →M′ is a line subbundle and

M′/LDIx ' (det M′)(LDIx)
∨
' (det M)Ix(LDIx)

∨
' LDIx(LDIx)

∨
' OX .

If deg D > dx , then

δ(LDIx ,M′)= deg LDIx − deg OX = deg D− dx > 0.

Proposition 7.7(i) implies that LD→M is the unique maximal subbundle of M′

and thus δ(M′)= δ(M)− dx .
If δ(M) > m X + dx , then δ(M′) > m X ≥ 2gX − 2; hence M′ decomposes and

represents cD−x . Since the multiplicities of all 8x -neighbors of a vertex sum up to
qx + 1, this proves the last part of our assertions. �

Definition 8.6. Let x be a place. Let the divisor D represent a class

[D] ∈ Cl Ox
X = Cl X/〈x〉.

We define the cusp Cx(D) (of D in Gx ) as the full subgraph of Gx with vertices

Vert Cx(D)= {cD′ | [D′] ≡ [D] (mod 〈x〉), and deg D′ > m X },

and the nucleus Nx (of Gx ) as the full subgraph of Gx with vertices

Vert Nx = {[M] ∈ PBun2 X | δ(M)≤ m X + dx}.

8.7. Theorem 8.5 determines all edges of a cusp Cx(D). If m X < deg D≤m X+dx ,
the cusp can be illustrated as below. Note that a cusp is an infinite graph. It has
a regular pattern that repeats periodically. In diagrams we draw the pattern and
indicate its periodic continuation with dots.

1 1 11

cD+x cD+2x cD+3xcD

qx qx qx

We summarize the theory so far in the following theorem that describes the
general structure of Gx .

Theorem 8.8. Let x be a place of degree dx and h X = # Cl0 X be the class number.

(i) Gx has h X dx cusps and

Gx = Nx ∪
⊔

[D]∈Cl Ox
F

Cx(D),

where Vert Nx ∩Vert Cx(D)= {cD} if m X < deg D ≤ m X + dx . The union of
the edges is disjoint. Different cusps are disjoint subgraphs.
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(ii) Nx is finite and has #(Cl Ox
F / 2 Cl Ox

F ) components. Each vertex of Nx is at
distance≤ (2gX+m X+dx)/dx from some cusp. The associated CW-complexes
of Nx and Gx are homotopy equivalent.

(iii) If [D] ∈ Cl Ox
F , then Vert Cx(D)⊂ PBundec

2 X. Furthermore,

PBundec
2 X ⊂ {v ∈ Vert Gx | δ(v)≥ 0},

PBungi
2 X ⊂ {v ∈ Vert Gx | δ(v)≤ 2gX − 2},

PBuntr
2 X ⊂ {v ∈ Vert Gx | δ(v) < 0 and even}.

8.9. Remark on Figure 8a. Define h = h X , m = m X , d = dx and qx = qdeg x .
Further let D1, . . . , Dhd be representatives for Cl Ox

F with m < deg Di ≤m+ d for
i = 1, . . . , hd. The cusps Cx(Di ) for i = 1, . . . , hd can be seen in Figure 8a as
the subgraphs in the dashed regions that are open to the right. The nucleus Nx is
contained in the dashed rectangle to the left. Since we have no further information
about the nucleus, we leave the area in the rectangle open.

The δ-line on the bottom of the picture indicates the value δ(v) for the vertices
v in the graph that lie vertically above δ(v).

The dotted regions refer to the sort of vertices, which are elements of either
PBungi

2 X , PBuntr
2 X , or PBundec

2 X . All lines are drawn with reference to the δ-line
to reflect part (iii) of the theorem.

11 qx1

cD1+x

δm m+ d−2g

cD1+2x

11 qx1

cDhd+2xcDhd+x

1 1qxqx 1

cD2 cD2+x

−2−4 0

cusps

Cx(D1)

Cx(D2)cD2+2x

Cx(Dhd)

cD1

cDhd

qx

qx

PBungi
2 X

PBundec
2 X

PBuntr
2 X

Nx

Figure 8a. General structure of Gx .
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Proof. The number of cusps is # Cl Ox
X = #(Cl X/〈x〉)= # Cl0 X ·#(Z/dx Z)= h X dx .

That the vertices of cusps are disjoint and only intersect in the given point with the
nucleus is clear by definition. Regarding the edges, recall from Section 3.2 that if
there is an edge from v to w in Gx , then there is also an edge from w to v. But
Theorem 8.5 implies that each vertex of a cusp that does not lie in the nucleus only
connects to a vertex of the same cusp; hence every edge of Gx either lies in a cusp
or in the nucleus. Different cusps are disjoint by definition. This shows (i).

The nucleus is finite since PBunindec
2 X is finite by Corollary 7.5 and since the

intersection PBundec
2 X ∩ Vert Nx is finite by the definition of the nucleus and

Proposition 6.3. Since the cusps are contractible as CW-complexes, Nx and Gx

have the same homotopy type. Therefore Nx has #(Cl Ox
F / 2Ox

F ) components
by Proposition 3.8. By Lemma 8.4, every vertex v has a 8x -neighbor w with
δ(w) = δ(v)+ dx , which is the upper bound for the distance of vertices in the
nucleus to one of the cusps. This proves (ii).

The four statements of (iii) follow from the definition of a cusp, Propositions
7.7(iv), 7.2 and 7.8, respectively. �

Example 8.10 (the projective line). Let X be the projective line over Fq . Then
gX = 0, h X = 1 and X has a closed point x of degree 1. This means that

PBundec
2 X = {cnx}n≥0.

Since an indecomposable bundle M must satisfy both δ(M) ≥ 0 and δ(M) ≤ −2,
which is impossible, all projective line bundles decompose. Theorem 8.5 together
with the fact that the weights around each vertex sum to q + 1 in the graph of 8x

determines Gx completely, as illustrated here:

q + 1 1 1 1

c0

q q q

c3xc2xcx

9. Application to automorphic forms

In this section, we explain how to recover automorphic forms as functions on the
graph and indicate how unramified automorphic forms can be explicitly calculated
as functions on the graph by solving a finite system of linear equations. We begin
by recalling the definition of an automorphic form.

9.1. A function f ∈ C0(GA) is called an automorphic form (for PGL2 over F) if
there is a compact open subgroup K ′ of GA such that f is left G F -invariant and right
K ′-invariant and if it generates a finite-dimensional HK ′-subrepresentation HK ′( f )
of C0(GA). We denote the space of automorphic forms by A and note that the
action of H on C0(GA) restricts to A. We denote the subspace of right K ′-invariant
automorphic forms by AK ′ , a space on which HK ′ acts. We can reinterpret the
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elements in AK ′ as functions on G F \GA/K ′, which is the vertex set of the graph
G8,K ′ of a Hecke operator 8 ∈HK ′ .

We shall investigate the space AK of unramified automorphic forms in more
detail. We write f (v) or f (M) for the value f (g) if v = [g] is the class of g in
G F \GA/K and M=Mg is the rank 2 bundle that corresponds to g. In particular,
we can see f also as a function on PBun2 X .

The space of automorphic forms decomposes into a cuspidal part A0, a part
E that is generated by Eisenstein series and their derivatives and a part R that
is generated by residues of Eisenstein series and their derivatives (for complete
definitions, see [Lorscheid 2010, Section 9.1]). The decomposition descends to
unramified automorphic forms: AK

=AK
0 ⊕EK

⊕RK . We describe functions in
these parts separately.

9.2. We start with some considerations for 8x -eigenfunctions as functions on a
cusp Cx(D) where D is a divisor with m X < deg D ≤ m X + dx :

1 1 11

cD+x cD+2x cD+3xcD

qx qx qx

Let f ∈AK satisfy the eigenvalue equation 8x f = λ f , then we obtain for every
i ≥ 1,

f (cD+(i+1)x)= λ f (cD+i x)− qx f (cD+(i−1)x). (9-1)

Thus the restriction of f to Vert Cx(D) is determined by the eigenvalue λ once its
values at cD and cD+x are given. The eigenvalue equation evaluated at cD shows
further that f (cD+x) is a linear combination of values of f in vertices of the nucleus.
This consideration justifies that we only have to evaluate the eigenvalue equation at
vertices of the nucleus to determine the eigenfunctions of 8x .

9.3. The space AK
0 has a basis of HK -eigenfunctions and every unramified cusp

form has a compact, that is, finite, support in G F \GA/K . By the eigenvalue (9-1)
it follows that a Hecke eigenfunction f ∈AK

0 must vanish on all vertices of a cusp
in order to have compact support. Thus the support of a cusp form is contained
in the finite set V of vertices v with δ(v) ≤ m X , and AK

0 can be determined by
considering a finite number of eigenvalue equations for 8x .

These eigenvalue equations can be described in terms of the matrix Mx associated
with 8x ; see Section 1.8. Namely, AK

0 is generated by the eigenfunctions of Mx

whose support is contained in V . This problem can be rephrased into a question on
the finite submatrix M ′x = (av,w)v∈V,w∈Vert Nx of Mx = (av,w)v,w∈Vert Gx , which we
forgo spelling out.

In [Moreno 1985] one finds a finite set S of places such that an HK -eigenfunction
f ∈AK

0 is already characterized (up to multiple) by its 8x -eigenvalues for x ∈ S.
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This means that one finds the cuspidal HK -eigenfunctions by considering the
eigenvalue equations for the finitely many vertices v ∈ V and the finitely many
Hecke operators 8x for x ∈ S.

9.4. We proceed with EK
⊕ RK . This space decomposes into a direct sum of

generalized (infinite-dimensional) Hecke eigenspaces E(χ), where χ runs through
all unramified Hecke characters, that is, continuous group homomorphisms

χ : F× \A×/O×A → C×,

modulo inversion; in particular, E(χ)= E(χ−1). The generalized eigenspace E(χ)

is characterized by its unique Hecke eigenfunction Ẽ( · , χ) (up to scalar multiple),
which in turn is determined by its 8x -eigenvalues λx(χ)= q1/2

x (χ(πx)+χ
−1(πx))

for x ∈ ‖X‖. We have E(χ)⊂ E if and only if χ2
6= ‖ · ‖

±1, in which case Ẽ( · , χ)
is an Eisenstein series. For χ2

=‖·‖
±1, Ẽ( · , χ) is a residue of an Eisenstein series.

For details, see [Lorscheid 2010], in particular, Theorem 11.10.
We say that a subset S ⊂ ‖X‖ generates Cl X if the classes of the prime divisors

corresponding to the places in S generate Cl X . Let S be a set of places that
generates Cl X and satisfies that for every decomposition S = S+ ∪ S− either
2 Cl X = 2〈S+〉 or 2 Cl X = 2〈S−〉. This set can be chosen to be finite. Then the
Hecke eigenfunction Ẽ( · , χ) is uniquely determined (up to scalar multiples) by
the 8x -eigenvalues λx(χ). For details, see [Lorscheid 2008, Theorem 3.7.6 and
Section 3.7.10].

In order to describe an Eisenstein series or a residue of an Eisenstein series, one
only needs to consider the finitely many eigenvalue equations for the vertices in
the nuclei Nx of the finitely many Hecke operators 8x with x ∈ S. Derivatives of
Eisenstein series or residues are similarly determined by generalized eigenvalue
equations; see [Lorscheid 2010, Lemmas 11.2 and 11.7] for the explicit formulas.

In the case of a residue, that is, χ2
= ‖ · ‖

±1, the function f = Ẽ( · , χ) has a
particular simple form. Namely, χ is of the form ω‖ · ‖±1/2 where ω2

= 1 and
Ẽ(g, χ)= ω ◦ det(g). This means that f (gξw)= ω(πx det g)= ω(πx) f (g). Thus,
as a function on Vert G, f satisfies f (v)= ω(πx) f (w) for all adjacent vertices v
and w.

Remark 9.5. The methods of this paragraph will be applied in [Lorscheid 2012]
to determine the space of unramified cusp forms for an elliptic function field and to
show that there are no unramified toroidal cusp forms in this case.

10. Finite-dimensionality results

In this section, we will show how the theory of the last sections can be used to show
finite-dimensionality of subspaces of C0(GA)

K whose elements f are defined by a
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condition of the form
n∑

i=1

mi8( f )(gi )= 0

for all 8 ∈HK (with mi ∈ C and gi ∈ GA being fixed). We will explain a general
technique and apply it to show that the spaces of functions in C0(GA)

K satisfying
the cuspidal condition or the toroidal condition, respectively, are finite-dimensional.
In particular, this implies that all functions satisfying one of these conditions are
automorphic forms.

10.1. Write Clpr X for the set of divisor classes that are represented by prime
divisors and Cleff X for the semigroup they generate, that is, for all classes that are
represented by effective divisors. In particular, Cleff X contains 0, the class of the
zero divisor, and for all other [D] ∈ Cleff X , we have deg D > 0. Denote by Cld X
the set of divisor classes of degree d and by Cl≥d X the set of divisor classes of
degree at least d . Let gX be the genus of X .

Lemma 10.2. Cl≥gX X ⊂ Cleff X. .

Proof. Let C be a canonical divisor on X , which is of degree 2gX − 2. For a
divisor D, define l(D)= dimFq H 0(X,LD). We have [D] ∈ Cleff X if and only if
l(D) > 0; see [Hartshorne 1977, Section IV.1]. The Riemann–Roch theorem is

l(D)− l(D−C)= deg D+ 1− gX ;

see [Hartshorne 1977, Theorem IV.1.3].
If now [D] ∈Cl≥gX X , then deg D≥ gX and the Riemann–Roch theorem implies

that l(D)≥ deg D+ 1− gX > 0. �

10.3. Let D be an effective divisor. Then it can be written in a unique way up to
permutation of terms as a sum of prime divisors D = x1 + · · · + xn . We define
80 as the identity operator and set 8D =8x1 · · ·8xn . Since HK is commutative,
8D is well-defined. Further we briefly write GD for the graph G8D,K of 8D , and
UD(v) for U8D,K (v).

Let [D] ∈ Cl X . Recall from Section 5.1 that LD denotes the associated line
bundle and from Section 6.2 that cD denotes the vertex that is represented by
LD ⊕OX . Recall from Proposition 7.7(iv) that δ(cD)=‖deg D‖, where δ is defined
as in Section 7.1.

Lemma 10.4. Let D be an effective divisor.

(i) Let v, v′ ∈ Vert GD . If v′ is a 8D-neighbor of v, then ‖δ(v′)− δ(v)‖ ≤ deg D.

(ii) Let [M] ∈ Vert GD. Every maximal subbundle L → M lifts to a maximal
subbundle L → M′ of a uniquely determined rank 2 bundle M′ such that
[M′] is a 8D-neighbor of [M] with δ(M′)= δ(M)+ deg D. Conversely, every
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maximal subbundle L→M′ extends to a maximal subbundle L→M if [M′]
is a 8D-neighbor of [M] with δ(M′)= δ(M)+ deg D.

Proof. We do induction on the number of factors in 8D = 8x1 · · ·8xn with
x1, . . . , xn being prime divisors. The lemma is trivial for the identity operator 80.

If n ≥ 1, write x = xn and 8D =8D′8x for the effective divisor

D′ = x1+ · · ·+ xn−1,

which is of degree deg D′= deg D−deg x . Assume that (i) and (ii) hold for D′. Let
v′ be a 8D-neighbor of v. Let m be the weight of the edge (v, v′,m). As explained
in Section 1.7, we have ∑

(v,v′′,m′)∈Edge GD′
(v′′,v′,m′′)∈Edge Gx

m′ ·m′′ = m 6= 0,

which means that there is a v′′ that is a 8D′-neighbor of v and a 8x -neighbor of v′.
Thus the inductive hypothesis and Lemma 8.2 imply

‖δ(v′)− δ(v)‖ ≤ ‖δ(v′)− δ(v′′)‖+‖δ(v′′)− δ(v)‖ ≤ deg D′+ deg x = deg D.

This proves (i).
We proceed with (ii). Let L→M be a maximal subbundle. By the inductive

hypothesis, there is a 8D′-neighbor M′′ of M such that L→M lifts to a maximal
subbundle of M′′ and such that δ(M′′)= δ(M)+ deg D′. Let

0→M′→M′′→ Kx → 0

be the sequence associated with L → M′′. This means that L lifts to a sub-
bundle of M′. As explained in Section 8.3, δ(L,M′) = δ(L,M′′)+ deg x , where
δ(L,M′′) = δ(M′′) by the maximality of L. By part (i) of the lemma, we have
δ(M′)≤ δ(M′′)+deg x= δ(L,M′), which must be an equality in this case. Therefore
L→M′ is maximal and

δ(M′)= δ(M′′)+ deg x = δ(M)+ deg D′+ deg x = δ(M)+ deg D,

as desired.
Assume conversely that M′ is a 8D-neighbor of M′ with δ(M′)= δ(M)+ deg D

and let L → M′ be a maximal subbundle. As already explained in the proof
of (i), there is an M′′, which is a 8D′-neighbor of M′ and a 8x -neighbor of M.
By (i), the difference of δ(M) and δ(M′) is maximal; therefore it must hold that
δ(M′)= δ(M′′)+ deg D′ and δ(M′′)= δ(M)+ deg x . By the inductive hypothesis,
L→M′′ is a maximal subbundle, that is, δ(M′′)= δ(L,M′′). We derive

δ(M′′)= δ(M)+ deg x ≥ 2 deg L− deg M+ deg x = 2 deg L− deg M′′ = δ(M′′).
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Consequently, all inequalities are equalities and L→M is a maximal subbundle,
what was to be shown. �

10.5. We demonstrate how to use the lemma to show that the space V0 of all
unramified functions on G F \ GA that satisfy the cuspidal condition is finite-
dimensional. Namely, let N ⊂ G be a unipotent subgroup. Then the cuspidal
condition for f ∈ C0(G F \GA)

K is that∫
NF\NA

8( f )(n) dn = 0 for all 8 ∈H.

If f is an automorphic form, then this condition defines a cusp form. A posteriori
it will be clear that V0 contains only automorphic forms and thus equals the space
AK

0 of unramified cusp forms.

Theorem 10.6. The dimension of V0 is finite and bounded by

dim V0 ≤ #{[M] ∈ PBun2 X | δ(M)≤ m X }.

Proof. Note that there are only finitely many projective line bundles [M] with
δ(M)≤m X since PBunindec

2 X is finite and PBundec
2 X has only finitely many classes

[M] with δ(M) ≤ m X . So the finite-dimensionality of V0 will follow from the
inequality.

We proceed with the proof of the inequality. The geometric equivalent of the
cuspidal condition is that∑

M∈Ext1(OX ,OX )

8( f )(M)= 0 for all 8 ∈H;

see [Gaitsgory 2003].
Since δ(OX ,M)= 0 for M ∈ Ext1(OX ,OX ), we have that OX →M is a maximal

subbundle by Proposition 7.7(ii), and only in the case of the trivial extension
M ' OX ⊕ OX are there other maximal subbundles, namely, there exist (q + 1)
different subbundles of the form OX →M. Note that in any case, δ(M)= 0.

Let D be a nontrivial effective divisor. In case M is the trivial extension OX⊕OX ,
the vertex c0= [M] has the unique8D-neighbor v′= cD with δ(v′)= deg D, which
is of multiplicity q + 1, as follows from an easy induction using Theorem 8.5 and
Lemma 10.4. In case M is a nontrivial extension of OX by itself, the vertex v = [M]
has a unique 8D-neighbor v′= [M′] with δ(v′)−δ(v)= deg D, which has a unique
maximal subbundle, namely, OX →M′.

Thus for every M ∈ Ext1(OX ,OX ) and every 8D-neighbor [M′] of [M] with
δ(M′)= deg D, the maximal subbundles of M′ are of the form OX →M′. Thus if
deg D > m X , then M′ ' OX ⊕ (M

′/OX ) by Proposition 7.2. Since the determinant
is multiplicative and det Kx ' Lx (see [Hartshorne 1977, Ex. 6.11]), a short exact
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sequence 0 → M1 → M2 → Kx → 0 yields det M2 ' Lx ⊗ det M1. An easy
induction over the length of the prime decomposition D = x1 + · · · + xn shows
that det M ' LD ⊗ det M′. Therefore we have M′/OX ' L−D, which shows that
[M′] = cD .

We finish the proof of the theorem by showing that every f ∈ V0 is determined
by its values in the vertices v with δ(v)≤m X . We make an induction on d = δ(cD),
where cD varies through all vertices v with δ(v) > m X .

Let d > m X . Assume that the values of f in all vertices v with δ(v) < d are
given (which is the case when d = m X + 1; thus the initial step). Let v be a
vertex with δ(v) = d. Then v = cD for an effective divisor D by Lemma 10.2
since m X =max{0, 2gX − 2} ≥ gX − 1. For the Hecke operator 8D , the cuspidal
condition reads by the previous argumentation and Lemma 10.4 as

(q + qe1) · f (cD)+
∑

δ(v′)<d

av′ f (v′)= 0

for certain av′ and e1 = dim Ext1(OX ,OX ). Thus f (v) is determined by the values
f (v′) in vertices v′ with δ(v′) < d , which proves the theorem. �

10.7. While the finite-dimensionality of V0 can also be established without the
techniques of this paper, we do not know any other method to prove the correspond-
ing fact for toroidal functions. For more details on the following definitions, see
[Lorscheid 2010].

Choose a basis of Fq2 over Fq . This defines an embedding of E = Fq2 F into
the algebra of 2× 2-matrices with entries in F . The image of E× is contained in
GL2(F) and defines a nonsplit torus T ′ of GL2. The image of T ′ in G = GL2 /Z
defines a nonsplit torus T of G.

A function f ∈ C0(G F \GA)
K is E-toroidal if for all 8 ∈HK ,∫

TF\TA

8( f )(t) dt = 0.

We denote the space of all E-toroidal functions f ∈C0(G F\GA)
K by Vtor. Note that

in [Lorscheid 2010] one finds a toroidal condition that is stronger than E-toroidality.
Namely, f has to be E ′-toroidal for all separable quadratic algebra extensions E ′ of
F . We forgo recalling complete definitions, but remark that the finite-dimensionality
of the space of all toroidal f ∈C0(G F \GA)

K follows since it is a subspace of Vtor.
Let p : X ′→ X be the map of curves that corresponds to the field extension

E/F .

Theorem 10.8. Let cT = vol(TF \ TA)/#
(
Pic X ′/p∗(Pic X)

)
. Then,∫

TF\TA

f (t) dt = cT ·
∑

[L]∈Pic X ′/p∗(Pic X)

f ([p∗L]) for all f ∈ C0(G F \GA)
K .
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Proof. Let AE be the adèles of E . To avoid confusion, we write AF for A. We
introduce the following notation. For an x ∈ ‖X‖ that is inert in E/F , we define
OE,x := OE,y , where y is the unique place that lies over x . For an x ∈ ‖X‖ that
is split in E/F , we define OE,x := OE,y1 ⊕ OE,y2 , where y1 and y2 are the two
places that lie over x . Note that there is no place that ramifies. Let OEx denote the
completion of OE,x . Then OEx is a free module of rank 2 over OFx = Ox for every
x ∈ ‖X‖.

Let2E :A
×

E→GL2(AF ) be the base extension of the embedding E×→GL2(F)
that defines T ′, which corresponds to the chosen basis of E over F that is contained
in Fq2 . This basis is also a basis of OEx over OFx for every x ∈ ‖X‖. This shows
that 2−1

E (GL2(OAF ))= O×AE
and that the diagram

E× \A×E /O
×

AE

1:1 //

2E

��

Pic X ′

p∗
��

GL2(F) \GL2(AF )/GL2(OAF )
1:1 // Bun2 X

commutes, where the horizontal arrows are the bijections defined in Section 5.3.
The action of AF on E× \A×E /O

×

AE
and GL2(F)\GL2(AF )/GL2(OAF ) by scalar

multiplication is compatible with the action of Pic X on Pic X ′ and Bun2 X by
tensoring in the sense that all maps in the diagram above are equivariant if we
identify Pic X with F× \A×F /O

×

AF
. Taking orbits under these compatible actions

yields the commutative diagram

E×A×F \A×E /O
×

AE

1:1 //

2E

��

Pic X ′/p∗ Pic X

p∗
��

G F \GAF /K 1:1 // PBun2 X.

Since f is right K -invariant, we may take the quotient of the domain of integration
by TAF∩K from the right, which is the image of O×AE

in GAF . We obtain the assertion
of the theorem for some still undetermined value of c. The value of c is computed
by plugging in a constant function for f . �

Theorem 10.9. The space of unramified toroidal functions has finite dimension,
bounded by

dim Vtor ≤ #(PBun2 X −{cD}[D]∈Cleff X ).

Proof. Given the inequality in the theorem, finite-dimensionality follows since the
right-hand set is finite. Indeed, by Lemma 10.2,

PBun2 X −{cD}[D]∈Cleff X ⊂ {v ∈ PBun2 X | δ(v)≤ m X }
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since m X ≥ gX − 1, and the latter set is finite.
We now proceed with the proof of the inequality. Let f ∈ Vtor. We will show

by induction on d = deg D that the value of f at a vertex cD with [D] ∈ Cleff X is
uniquely determined by the values of f at the elements of PBun2 X−{cD}[D]∈Cleff X .
This will prove the theorem.

By Theorem 10.8, the condition for f to lie in Vtor reads∑
[L]∈(Pic X ′/p∗ Pic X)

8( f )([p∗L])= 0 for all 8 ∈H.

If d = 0, take 8 as the identity element in HK . We know from Proposition 6.4
that p∗(Pic X ′/p∗ Pic X)=PBuntr

2 X∪{c0}, so f (c0) equals a linear combination of
values of f at vertices v in PBuntr

2 X , which all satisfy δ(v) < 0 by Proposition 7.8.
Since the zero divisor class is the only class in Cleff X of degree 0, we have proven
the case d = 0.

Next, let D be an effective divisor of degree d > 0 and put 8 = 8D. If v is a
8D-neighbor of w, then δ(v) and δ(w) can differ at most by d (Lemma 10.4(i)).
Therefore all 8D-neighbors v of vertices in PBuntr

2 X have δ(v) < d. The vertex
cD is the only 8D-neighbor v of c0 with δ(v)= d (as already seen in the proof of
Theorem 10.6). Thus

0=
∑

L∈(Pic X ′/p∗ Pic X)

8D( f )([p∗L])= (q + 1) f (cD)+
∑

L∈(Pic X ′/p∗ Pic X),
([p∗L],v,λ)∈UD([p∗L]),

δ(v)<d

λ f (v)

determines f (cD) as the linear combination of values of f at vertices v satisfying
δ(v) < d . By the inductive hypothesis, f (cD) is already determined by the values
of f at vertices that are not contained in {cD}[D]∈Cleff X . �

Example 10.10. If X is the projective line over Fq , then all vertices v are of the
form cD for some effective divisor D (see Example 8.10). Thus Vtor is trivial.
Since only v = c0 satisfies δ(v)≤ m X , all values of f ∈ V0 are multiples of f (c0).
However, Ext1(OX ,OX ) is trivial, thus the cuspidal condition (applied to the trivial
Hecke operator) is f (c0)= 0. Thus also V0 is trivial. See [Lorscheid 2012] for the
corresponding spaces in the case of an elliptic curve.

Appendix: Examples for rational function fields

We give examples of graphs of Hecke operators for a rational function field, which
can be calculated by elementary matrix manipulations. We do not show all cal-
culations, but hint on how to do them. The reader will find examples for elliptic
function fields that are determined by geometric methods in [Lorscheid 2012].
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Let F be Fq(T ), the function field of the projective line over Fq , which has q+1
Fq -rational points and trivial class group. Fix a place x of degree 1.

A.1. Using strong approximation for SL2 (see Proposition 3.8, where J is trivial
in this case), we get a bijection by adding the identity matrix e at all places y 6= x :

0 \Gx/Kx → G F \GA/K , [gx ] 7→ [(gx , e)].

We introduce some notation. Elements of Ox
F = Ox

∩ F can be written in the
form

∑0
i=m biπ

i
x with bi ∈ Fq for i = m, . . . , 0 for some integer m ≤ 0. Let

K̃x = GL2(Ox), where we view Ox as the collection of all power series
∑

i≥0 biπ
i
x

with bi ∈ Fq for i ≥ 0. Let 0 = GL2(O
x
F ) and let Z be the center of GL2.

A.2. For better readability, we write π for the uniformizer πx at x and g for a matrix
in Gx . We say g ∼ g′ if they represent the same class [g] = [g′] in 0 \ Gx/Kx ,
and indicate by subscripts to “∼” how to alter one representative to another. The
following changes of the representative g of a class [g] ∈ 0 \Gx/Kx provide an
algorithm to determine a standard representative for the class of any matrix g ∈ Gx :

(i) By the Iwasawa decomposition, every class in 0 \Gx/Kx is represented by an
upper triangular matrix, and(

a b
d

)
∼
/Zx

(
a b

d

)(
d−1

d−1

)
=

(
a/d b/d

1

)
.

(ii) Write a/d = rπn for some integer n and r ∈ O×x , then with b′ = b/d , we have(
rπn b′

1

)
∼
/K̃x

(
rπn b′

1

)(
r−1

1

)
=

(
πn b′

1

)
.

(iii) If b′ =
∑

i≥m biπ
i for some integer m and coefficients bi ∈ Fq for i ≥m, then(

πn ∑
i≥m biπ

i

1

)
∼
/K̃x

(
πn ∑

i≥m biπ
i

1

)(
1 −π−n(

∑
i≥n biπ

i )

1

)
=

(
πn bmπ + · · ·+ bn−1π

n−1

1

)
.

(iv) One can further perform the following step:(
πn bmπ

m
+ · · ·+ bn−1π

n−1

1

)
∼
0\

(
1 −(bmπ

m
+ · · ·+ b0π

0)

1

)(
πn bmπ

m
+ · · ·+ bn−1π

n−1

1

)
=

(
πn b1π + · · ·+ bn−1π

n−1

1

)
.
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(v) If b = b1π + · · ·+ bn−1π
n−1
6= 0, then b = sπ k with 1≤ k ≤ n− 1, s ∈ O×x

and(
πn sπ k

1

)
∼

0\ /Zx K̃x

(
1

1

)(
πn sπ k

1

)(
s−1π−k

s−1π−k

)(
−s2

sπn−k 1

)
=

(
πn−2k s−1π−k

1

)
.

(vi) The last trick is(
πn

1

)
∼

0\ /Zx K̃x

(
1

1

)(
πn

1

)(
π−n

π−n

)(
1

1

)
=

(
π−n

1

)
.

Executing these steps (possibly (iii)–(v) several times) will finally lead to a
matrix of the form pn = diag(π−n, 1) for some n ≥ 0. The matrix pn represents
the vertex cnx in Vert G8,K = {cnx}n≥0 where 8 is any unramified Hecke operator
(see Example 8.10). Thus we found a way to determine the vertex cnx represented
by an arbitrary matrix g ∈ Gx ⊂ GA.

Example A.3 (graph of 0 and 1). According to Section 1.7, the graph for the zero
element 0 in HK is

c0 c3xc2xcx

and the graph for the identity 1 in HK is

1 1 1 1

c0 c3xc2xcx .

Example A.4 (graph of 8x ). By Proposition 2.3, the 8x -neighbors of pi are of the
form piξw. With help of the reduction steps (i)–(vi) in A.2 one can determine easily
the standard representative p j of piξw. We reobtain the graph of 8x as illustrated
below (compare with Example 8.10).

q + 1 1 1 1

c0

q q q

c3xc2xcx

Example A.5 (graph of 8y for y 6= x). If we want to determine the edges of Gy for
a place y of degree d that differs from x , we have to find the standard representative
p j for each of the elements piξw where w ∈ P1(κy), that is, ξw is an element of
the form (

πy b
1

)
with b ∈ κy, or

(
1
πy

)
.
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c4xc2x

c3x c5x

c0

cx

q + 1

1

q2 1

q2 1

q2 1

q2 1

q2 − q

q2

Figure A1. The graph of 8y for a place y of degree 2.

c5x

1

c4x

1

c3x

1

c2x

1 q3

q31q3 − q2

q3

q3 − q

c0 cxq + 1

q2

q3

Figure A2. The graph of 8y for a place y of degree 3.

Since the class number of F is 1, the strong approximation property yields G F K x
=

Gx
A (see Proposition 3.8). This means that we find elements γ ∈ G F and k ∈ K

such that for all z 6= x , the adelic matrices ξw and γ k have equal z-components
(ξw)z = (γ k)z . Therefore, the only nontrivial component of the adelic matrix

θw = γ
−1ξwk−1

is its x-component. By an appropriate choice of kx , we can normalize the x-com-
ponent of θw to be equal to one of the matrices(
πd

x b0+ · · ·+ bd−1π
d−1
x

1

)
with bi ∈κx for i =0, . . . , d−1, and

(
1
πd

x

)
,

and for the different choices of w ∈ P1(κy), each of these matrices occurs as the
x-component of a (unique) θw. The reduction steps (i)–(vi) of A.2 tell us which
classes p j are represented by the matrices θw pi = γ

−1 piξwk−1, and we are able
to determine the edges similarly to the previous example. Thus we obtain that Gy

only depends on the degree of y. Note that if y is of degree 1, then Gy equals Gx .
Figures A1, A2, A5, and A6 show the graphs for degrees 2, 3, 4 and 5, respectively.

Example A.6 (the graph of powers of 8x ). It is interesting to compare the graph of
8y with deg y= d to the graph of8d

x . The latter graph is easily deduced from Gx by
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2q 2q

2q 2q

c4xc2x

c3x c5x

c0

cx

q + 1

1

q2 1 q2 1

q2 1 q2 1
q2 + 2q

q2 + q

Figure A3. The graph of 82
x .

1

cxc0 q + 1

1

c3x

1q3 1q3

c6x

1 q3 1
q3

1q3 1q3

3q2
3q2

3q

3q23q

3q

3q2
3q2

3q

3q23q

3q

3q
q3 + 3q2

q3 + 3q2 + 2q
q2 + 3q

q3 + 2q2

c2x c5x c8x

c4x c7x

Figure A4. The graph of 83
x .

means of Section 1.7. Namely, a vertex v′ is a 8d
x -neighbor of a vertex v in G8d

x ,K
if there is a path of length d from v to v′ in Gx , that is, a sequence (v0, v1, . . . , vd)

of vertices in Gx with v0 = v and vd = v
′ such that for all i = 1, . . . , d , there is an

edge (vi−1, vi ,mi ) in Gx . The weight of an edge from v to v′ in the graph of Gd
x

is obtained by taking the sum of the products m1 · · ·md over all paths of length d
from v to v′ in Gx .

Figures A3 and A4 show the graphs of 82
x and 83

x , respectively, and we see that
for deg y = 2, we have 82

x ≡8y + 2q · 1 (modJ(K )) and for deg y = 3, we have
83

x ≡8y+3q ·8x (modJ(K )), where J(K ) is the ideal of HK of Hecke operators
that operate trivially on C0(G F \GA).

Example A.7 (the graphs of two ramified Hecke operators). It is also possible to
determine examples for Hecke operators in HK ′ by elementary matrix manipulations,
when K ′ < K is a subgroup of finite index. We will show two examples, which are
illustrated in Figures A7 and A8. We omit the calculation, but only point out why
the crucial differences between the two graphs occur.

For K ′ =
{
k ∈ K

∣∣ kx ≡
(

1
1

)
(mod πx)

}
, the fibers of the projection

P : G F \GA/K ′→ G F \GA/K
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c0

1

c4x

1

c5x

1

c3x

1

c2x

cx

c6xq + 1

1
q2

q4 − q3

q3 − q

1 q4

q4

q4

q4

q4 − q2

q3

q4 − q3

Figure A5. The graph of 8y for a place y of degree 4.

c4x

1

c5x

1

1q5

1q5

c3x

1q5

c6x

c7x

c8x

c0 cx

1
q2

c2x
1

q4 − q2

q3

q + 1

q4 − q2

q5 − q4 + q2 − q

q5 − q4

q5 − q3

q4
1

q5

q5
q5 − q4

Figure A6. The graph of 8y for a place y of degree 5.

are given by P−1(c0)= {[p0]} and for positive n, by P−1(cnx)= {[pnxϑw]}w∈P1(κx )

with ϑ[1:c] =
(

1 c
1

)
and ϑ[0:1] =

(
1

1

)
. The union of these fibers equals the set of

vertices of a Hecke operator in HK ′ . We shall denote the vertices by c′0 = [p0] and
c′nx,w = [pnxϑw] for n ≥ 1 and w ∈ P1(κx). Note that GFq = Gκx acts on P1(κx)

from the right, so if γ ∈ GFq , then w 7→ wγ permutes the elements of P1(κx).
The first Hecke operator 8′y,γ ∈HK ′ that we consider is (vol K/ vol K ′) times

the characteristic function of K ′
( πy

1

)
γ K ′, where y is a degree one place different

from x and γ ∈ GA is a matrix whose only nontrivial component is γx ∈ GFq . (The
factor (vol K/ vol K ′) is included to obtain integer weights.) Since K ′

( πy
1

)
γ K ′ is
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c′0

1

1

1

q

q

q 1

1

1q

q

q

1

1

1

c′x,[1:0]

c′x,[1:q−1]

c′x,[0:1] c′2x,[0:1]

c′2x,[1:q−1]

c′2x,[1:0]

Figure A7. Graph of 8′y,e as defined in Example A.7.

c′x,[1:0]

c′x,[0:1] c′2x,[0:1]

c′0

1

q

q

c′2x,[1:0]

q

c′x,[1:q−1]

1

q

c′2x,[1:q−1]
1 1

11

Figure A8. Graph of 8′x as defined in Example A.7.

contained in K
( πy

1

)
γ K , the graph of 8′y,γ relative to K ′ can have an edge from

v to w only if Gy has an edge from P(v) to P(w). Because K ′y = K y , we argue
as for K that K ′

( πy
1

)
γ K ′ =

⊔
w∈P1(κy)

ξwγ K ′. Applying the same methods as in
Example A.5, one obtains that

U8′y,γ ,K ′(c
′

0) = {(c
′

0, c′x,w, 1)}w∈P1(κx )

and for every n ≥ 1 and w ∈ P1(κx) that

U8′y,γ ,K ′(c
′

nx,w) = {(c
′

nx,w, c′(n+1)x,wγ , 1), (c′nx,w, c′(n−1)x,wγ , q)}.

For the case that γ is equal to the identity matrix e, the graph is illustrated in
Figure A7. Note that for general γ , an edge does not necessarily have an inverse
edge since wγ 2 does not have to equal w.
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The second Hecke operator 8′x ∈HK ′ is (vol K/ vol K ′) times the characteristic
function of K ′

(
πx

1
)
K ′. This case behaves differently, since K ′x and Kx are not

equal; in particular, we have K ′
(
πx

1
)
K ′ =

⊔
b∈κx

(
πx bπx

1

)
K ′. This allows us to

compute the edges as illustrated in Figure A8. Note that for n ≥ 1, the vertices of
the form c′nx,[1:0] and c′nx,[0:1] behave particularly.
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Group actions of prime order
on local normal rings

Franz Kiràly and Werner Lütkebohmert

Let B be a Noetherian normal local ring and G ⊂ Aut(B) be a cyclic group of
local automorphisms of prime order. Let A be the subring of G-invariants of B
and assume that A is Noetherian. We prove that B is a monogenous A-algebra if
and only if the augmentation ideal of B is principal. If in particular B is regular,
we prove that A is regular if the augmentation ideal of B is principal.

An important class of singularities is built by the famous Hirzebruch–Jung
singularities. They arise by dividing out a finite cyclic group action on a smooth
surface. Their resolution is well understood and has nice arithmetic properties
related to continued fractions; see [Hirzebruch 1953; Jung 1908].

One can also look at such group actions from a purely algebraic point of view. So
let B be a regular local ring and G a finite cyclic group of order n acting faithfully
on B by local automorphisms. In the tame case, that is, the order of G is prime to
the characteristic of the residue field k of B, there is a central result of J. P. Serre
[1968] saying that the action is given by multiplying a suitable system of parameters
(y1, . . . , yd) by roots of unity yi 7→ ζ ni · yi for i = 1, . . . , d , where ζ is a primitive
n-th root of unity. Moreover, the ring of invariants A := BG is regular if and only
if ni ≡ 0 mod n for d − 1 of the parameters. The latter is equivalent to the fact that
rk((σ − id)|T )≤ 1 for the action of σ ∈ G on the tangent space T :=mB/m

2
B . For

more details see [Bourbaki 1981, Chapter 5, ex. 7].
Only very little is known in the case of a wild group action, that is, when

gcd(n, char k) > 1. In this paper we will restrict ourselves to the case of p-cyclic
group actions, that is, where n = p is a prime number. We will present a sufficient
condition for the ring of invariants A to be regular. Our result is also valid in the
tame case, that is, where n is a prime different from char k. As the method of Serre
depends on an intrinsic formula for writing down the action explicitly, we provide
also an explicit formula for presenting B as a free A-module if our condition is
fulfilled.
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Keywords: algebraic geometry, commutative algebra, group actions.
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The interest in our problem arises from investigating the relationship between
the regular and the stable R-model of a smooth projective curve X K over the field
of fractions K of a discrete valuation ring R. In general, the curve X K admits a
stable model X ′ over a finite Galois extension R ↪→ R′. Then the Galois group
G =G(R′/R) acts on X ′. Our result provides a means to construct a regular model
over R by starting from the stable model X ′. As a special case, we discuss in
Section 4 the situation where X K has good reduction after a Galois p-extension
R ↪→ R′. In this case there is a criterion for when the quotient of the smooth model
is regular. We intend to work out more general situations in a further article.

1. The main result

In this paper we will study only local actions of a cyclic group G of prime order p
on a normal local ring B. We fix a generator σ of G and obtain the augmentation
map

I := Iσ := σ − id : B→ B, b 7→ σ(b)− b.

We introduce the B-ideal

IG := (I (b); b ∈ B)⊂ B

which is generated by the image I (B). This ideal is called augmentation ideal. If
this ideal is generated by an element I (y), we call y an augmentation generator.
Note that this ideal does not depend on the chosen generator σ of G. Moreover, if
y is an augmentation generator with respect to a generator σ of G, then y is also
an augmentation generator for any other generator of G. Since B is local, the ideal
IG is generated by an augmentation generator if IG is principal. Namely, IG/mB IG

is a vector space over the residue field kB = B/mB of B of dimension 1. So it is
generated by the residue class of I (y) for some y ∈ B, and hence, by Nakayama’s
lemma, IG is generated by I (y).

Definition 1. An action of a group G on a regular local ring B by local automor-
phisms is called a pseudoreflection if there exists a system of parameters (y1, . . . , yd)

of B such that y2, . . . , yd are invariant under G.

Theorem 2. Let B be a normal local ring with residue field kB := B/mB . Let p be
a prime number and G a p-cyclic group of local automorphisms of B. Let IG be the
augmentation ideal. Let A be the ring of G-invariants of B. Consider the following
conditions:

(a) IG := B · I (B) is principal.

(b) B is a monogenous A-algebra.

(c) B is a free A-module.
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Then the following implications are true:

(a)⇐⇒ (b)H⇒ (c).

Assume, in addition, that B is regular. Consider the following conditions:

(d) A is regular.

(e) G acts as a pseudoreflection.

Then the condition (c) is equivalent to (d). Moreover if , in addition, the canonical
map kA −→

∼ kB is an isomorphism, then condition (a) is equivalent to condition (e).

We start the proof of the theorem with several preparations.

Remark 3. For b1, b2, b ∈ B, the following relations are true:

(i) I (b1 · b2)= I (b1) · σ(b2)+ b1 · I (b2).

(ii) I (bn)=

( n∑
i=1

σ(b)i−1bn−i
)
· I (b).

(iii) I
(b1

b2

)
=

I (b1)b2− b1 I (b2)

b2σ(b2)
if b2 6= 0.

Proof. (i) follows by a direct calculation and (ii) by induction from (i).
As for (iii), the formula (i) holds for elements in the field of fractions as well.

Therefore,

I (b1)= I
(b1

b2
b2

)
= I

(b1

b2

)
σ(b2)+

b1

b2
I (b2),

and the formula follows. �

To prove that (a) implies (b) we need a technical lemma.

Lemma 4. Let y ∈ B be an augmentation generator. Then set, inductively,

y(0)i := yi for i = 0, . . . , p− 1,

y(1)i := I (y(0)i )/I (y(0)1 ) for i = 1, . . . , p− 1,

y(n+1)
i := I (y(n)i )/I (y(n)n+1) for i = n+ 1, . . . , p− 1.

Then

y(n)i =
∑

0≤k1≤···≤ki−n≤n

i−n∏
j=1

σ k j (y) for i = n, . . . , p− 1,

and in particular,

y(n)n = 1, y(n)n+1 =

n+1∑
j=1

σ j−1(y), I (y(n)n+1)= σ
n+1(y)− y.

Furthermore, y(n)n+1 is again an augmentation generator for n = 0, . . . , p− 2.
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Proof. We proceed by induction on n. For n = 0 the formulas are obviously correct.
For the convenience of the reader we also display the formulas for n = 1. Due to
Remark 3 one has

y(1)i =
I (y(0)i )

I (y(0)1 )
=

I (yi )

I (y)
=

i∑
j=1

σ(y) j−1 yi− j
=

∑
0≤k1≤···≤ki−1≤1

i−1∏
ν=1

σ kν (y),

since the last sum can be viewed as a sum over an index j where i− j is the number
of kν equal to 0. In particular, the formulas are correct for y(1)1 and y(1)2 . Moreover

I (y(1)2 )= I (σ (y)+ y)= σ 2(y)− y.

Since σ 2 is generator of G for 2< p, the element y(1)2 is an augmentation generator
as well.

Now assume that the formulas are correct for n. Since y(n)n+1 is an augmentation
generator, I (y(n)n+1) divides I (y(n)i ) for i = n + 1, . . . , p − 1. Then it remains to
show, upon substituting the expressions from the lemma for y(n)i and y(n+1)

i , that

I (y(n)i )= (σ n+1(y)− y) · y(n+1)
i for i = n+ 1, . . . , p− 1.

For the left hand side one computes

LHS= I
( ∑

0≤k1≤···≤ki−n≤n

i−n∏
j=1

σ k j (y)
)
=

∑
0≤k1≤···≤ki−n≤n

I
( i−n∏

j=1

σ k j (y)
)

=

∑
0≤k1≤···≤ki−n≤n

( i−n∏
j=1

σ k j+1(y)−
i−n∏
j=1

σ k j (y)
)

=

∑
1≤k1≤···≤ki−n≤n+1

i−n∏
j=1

σ k j (y)−
∑

0≤k1≤···≤ki−n≤n

i−n∏
j=1

σ k j (y).

Now all terms occurring in both sums cancel. These are the terms with ki−n ≤ n in
the first sum and 1≤ k1 in the second sum.
For the right hand side one computes

RHS= (σ n+1(y)− y) ·
∑

0≤k1≤···≤ki−n−1≤n+1

i−n−1∏
j=1

σ k j (y)

=

∑
0≤k1≤···≤ki−n=n+1

i−n∏
j=1

σ k j (y)−
∑

0=k1≤···≤ki−n≤n+1

i−n∏
j=1

σ k j (y).
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Both sides are seen to be equal. In particular we have

y(n+1)
n+1 = 1,

y(n+1)
n+2 =

∑
0≤k1≤n+1

1∏
j=1

σ k1(y)=
n+2∑
j=1

σ j−1(y),

I (y(n+1)
n+2 )= σ

n+2(y)− y.

So y(n+1)
n+2 is an augmentation generator for n+ 2< p, since σ n+2 generates G.

This concludes the technical part. �

Proposition 5. Assume that the augmentation ideal IG is principal and let y ∈ B
be an augmentation generator. Then B decomposes into the direct sum

B = A · y0
⊕ A · y1

⊕ · · ·⊕ A · y p−1.

Proof. Since I (y) 6= 0, the element y generates the field of fractions Q(B) over
Q(A). Therefore

Q(B)= Q(A) · y0
⊕ Q(A) · y1

⊕ · · ·⊕ Q(A) · y p−1.

Then it suffices to show the following claim:
Let a, a0, . . . , ap−1 ∈ A. Assume that a divides

b = a0 · y0
+ a1 · y1

+ · · ·+ ap−1 · y p−1.

Then a divides a0, a1, . . . , ap−1.
If b= a ·β, then I (b)= a · I (β). Since I (β)=β1 · I (y), we get I (b)= aβ1 · I (y).

So we see that a divides I (b)/I (y) ∈ B. Using the notation of Lemma 4, set

b(0) := b = a0 · y0
+ a1 · y1

+ · · ·+ ap−1 · y p−1

b(1) := I (b(0))
I (y)

= a1+ a2
I (y2)

I (y)
+ · · ·+ ap−1

I (y p−1)

I (y)

= a1 · y
(1)
1 + a2 · y

(1)
2 + · · ·+ ap−1 · y

(1)
p−1

b(n) := I (b(n−1))

I (y(n−1)
n )

= an · y
(n)
n + an+1 · y

(n)
n+1+ · · ·+ ap−1 · y

(n)
p−1.

Due to the observation above, by induction a divides b(0), b(1), . . . , b(p−1), since
y(n)n+1 is an augmentation generator for n = 1, . . . , p− 2. So we obtain

a
∣∣ b(p−1)

= ap−1 · y
(p−1)
p−1 = ap−1.
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Now proceeding downwards, one obtains

a
∣∣ b(p−2)

= ap−2+ ap−1 · y
(p−2)
p−1 , hence a

∣∣ ap−2,

a
∣∣ b(n) = an + an+1 · y

(n)
n+1+ · · ·+ ap−1 · y

(n)
p−1, hence a

∣∣ an

for n = p− 1, p− 2, . . . , 0. �

Proof of the first part of Theorem 2. (a)=⇒ (b): This follows from Proposition 5.
(b)=⇒ (a): If B = A[y] is monogenous, then IG = B · I (y) is principal.
(b)=⇒ (c) is clear. Namely, if B = A[y], the minimal polynomial of y over the

field of fraction is of degree p and the coefficients of this polynomial belong to A.
Then B has y0, y1, . . . , y p−1 as an A-basis. �

Next we do some preparations for proving the second part of the theorem where
B is assumed to be regular.

Proposition 6. Keep the assumption of the second part of Theorem 2, namely that
B is regular and that the canonical morphism kA −→

∼ kB is an isomorphism. Let
(y1, . . . , yd) be a generating system of the maximal ideal mB . Then the following
assertions are true:

(i) IG = B · I (y1)+ · · ·+ B · I (yd).

(ii) If the ideal IG = B · I (B) is principal, then there exists an index i ∈ {1, . . . , d}
with IG = B · I (yi ).

Proof. (i) Recall that A= BG denotes the ring of invariants. Due to the assumption,
we have B = A+mB , and hence, I (B)= I (mB). Furthermore, we have

mB =m2
B +

d∑
i=1

A · yi .

Since I is A-linear, we get

I (mB)= I (m2
B)+

d∑
i=1

A · I (yi ).

Due to Remark 3, one knows I (m2
B)⊂mB · I (mB). So, one obtains

I (mB)⊂mB · I (mB)+

d∑
i=1

B · I (yi ).

Since B is local, Nakayama’s lemma yields

IG = B · I (B)= B · I (mB)=

d∑
i=1

B · I (yi ).
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(ii) Since IG is principal, IG/mB IG is generated by one of the I (yi ), and hence,
again by Nakayama’s lemma, IG = B · I (yi ) for a suitable i ∈ {1, . . . , d}. �

Proof of the second part of Theorem 2. (c)=⇒ (d) follows from [Matsumura 1980,
Theorem 51]. Namely, B is noetherian due to the definition of a regular ring. Since
A→ B is faithfully flat, A is noetherian. Then one can apply [loc. cit.].

(d)=⇒ (c) follows from [Serre 1965, IV, Prop. 22].
(a) =⇒ (e): We assume that the canonical map kA → kB of the residue fields

is an isomorphism. If IG is principal, one can choose an augmentation generator
y ∈mB that is part of a system of parameters (y, y2, . . . , yd) due to Proposition 6.
Due to Proposition 5, we know that B decomposes into the direct sum

B = A · y0
⊕ A · y1

⊕ · · ·⊕ A · y p−1.

Now we can represent

y j =

p−1∑
i=0

ai, j · yi for j = 2, . . . , d.

Then, set

ỹ j := y j −

p−1∑
i=1

ai, j yi
= a0, j ∈ A∩mB =mA for j = 2, . . . , d.

So (y, ỹ2, . . . , ỹd) is a system of parameters of B as well. Thus G acts by a
pseudoreflection.

(e)=⇒ (a): If G is a pseudoreflection, IG is generated by I (y) due to Proposition 6,
where y, x2, . . . , x p is a system of parameters with xi ∈ mA for i = 2, . . . , p if
kA = kB . �

2. An example

If kA→ kB is not an isomorphism, the implication (e)=⇒ (a) is false:

Example 7. Let k be a field of positive characteristic p and look at the polynomial
ring R := k[Z , Y, X1, X2] over k. We define a p-cyclic action of G = 〈σ 〉 on R by

σ |k := idk, σ (Z)= Z + X1, σ (Y )= Y + X2, σ (X i )= X i for i = 1, 2.

This is a well-defined action of order p, since p · X i = 0 for i = 1, 2, and it leaves
the ideal I := (Y, X1, X2) invariant. Furthermore, for any g ∈ k[Z ]−{0} the image
is given by σ(g)= g+ I (g) with I (g) ∈ X1 · k[Z , X1].

Then consider the polynomial ring S :=k(Z)[Y, X1, X2] over the field of fractions
k(Z) of the polynomial ring k[Z ]. Then S has the maximal ideal m= (Y, X1, X2).
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Then set B := Sm = k(Z)[Y, X1, X2](Y,X1,X2). We can regard all these rings as
subrings of the field of fractions of R:

R ⊂ S ⊂ B ⊂ k(Z , Y, X1, X2).

Clearly, σ acts on R, and hence it induces an action on its field of fractions; denote
this action by σ as well. Then we claim that the restriction of σ to B induces
an action on B by local automorphisms. For this, it suffices to show that for
any g ∈ R − I the image σ(g) does not belong to I. The latter is true, since
σ(g) = g+ I (g) with I (g) ∈ I. The augmentation ideal IG = B · X1+ B · X2 is
not principal although G acts through a pseudoreflection.

3. A conjecture

Remark 8. In the tame case p 6= char(kB), the converse (d)=⇒ (a) is also true due
to the theorem of Serre, as explained in the introduction.

In the case of a wild group action, that is, p = char(kB), it is not known whether
the converse is true, but we conjecture it.

Conjecture 9. Let B be a regular local ring and let G be a p-cyclic group acting
on B by local automorphisms. Then the following conditions are conjectured to be
equivalent:

(1) IG is principal.

(2) A := BG is regular.

The implication (1)=⇒ (2) was shown in Theorem 2. Of course the converse is
true if dim A ≤ 1. In higher dimension, the converse (2)=⇒ (1) is uncertain, but it
holds for small primes p ≤ 3 as we explain now. Since A is regular, the ring B is a
free A-module of rank p; see [Serre 1965, IV, Proposition 22]. So,

B/Bmn
A is a free A/mn

A-module of rank p for any n ∈ N. (∗)

In the case p = 2, the rank of mB/BmA is 0 or 1. In the first case, kB is an
extension of degree [kB : kA] = 2 over kA and mB = BmA. So there exists an
element β ∈ B such that B/BmA is generated by the residue classes of 1 and β.
Due to Nakayama’s lemma, B = A[β] is monogenous, and hence, IG is principal.
In the second case, where kA → kB is an isomorphism, there exists an element
β ∈mB such that mB = Bβ + BmA. Then G acts as a pseudoreflection, and hence,
IG is principal.

In the case p = 3 we claim that BmA 6⊂m2
B .

If we assume the contrary BmA ⊂m2
B , then these ideals coincide; BmA =m2

B .
Namely, the rank of B/BmA as A/mA-module is 3 and the rank of B/m2

B is at least
3 due to d := dim B ≥ 2, so BmA =m2

B . Therefore the length of B/Bm2
A = B/m4

B
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is 3 times the length of A/m2
A, which is 3 · (dim A+1). On the other hand the rank

of B/m4
B is equal to

(1+ dimmB/m
2
B)+ dimm2

B/m
3
B + dimm3

B/m
4
B =

3∑
n=0

(d+n−1
d−1

)
,

which is larger than (1+ dimmA/m
2
A)+ (1+ dimmA/m

2
A)+ (1+ dimmA/m

2
A),

since for d ≥ 2 both(d+1
d−1

)
=
(d + 1)d

2
≥ 1+ d = 1+ dimmA/m

2
A

and (d+3−1
d−1

)
=
(d + 2)(d + 1)d

2 · 3
> 1+ d

hold. Here we used the formula for the number λn,d of monomials T m1
1 · · · T

md
d in

d variables of degree n = m1+ · · ·+md :

λn,d =

(d+n−1
d−1

)
.

So, using only the condition (∗) and proceeding by induction on dim(A), we see that
there exists a system of parameters α1, . . . , αd of A such that α2, . . . , αd is part of
a system of parameters of B. In the case where kA→ kB is an isomorphism, G acts
as a pseudoreflection, and hence IG is principal. If kA→ kB is not an isomorphism,
then we must have mB = BmA; otherwise the rank of B/mB is at least 4. Since
[kB : kA] ≤ 3, the field extension kA→ kB is monogenous, and hence A→ B is
monogenous due to the lemma of Nakayama.

4. Relationship between the regular and the stable model
of a smooth curve

As explained in the introduction, our incentive to study the invariant rings under a
p-cyclic group action stems from the study of the relationship between the regular
and the stable model of a smooth projective curve over the field of fractions K
of a discrete valuation ring R. So let R ↪→ R′ be a Galois extension of discrete
valuation rings of prime order p and let π and π ′ be uniformizers of R and of R′,
respectively. Denote by K ′ the field of fractions of R′ and let k and k ′ be the residue
fields of R and R′, respectively. Assume that k = k ′ is algebraically closed and that
char(k)= p. Let G be the Galois group of R′ over R.

In the tame case, the action can always be diagonalized and the invariant rings
have the well-known Hirzebruch–Jung singularities. The tame case of higher
dimension is also settled in [Edixhoven 1992, Proposition 3.5]. If the action of G
is wild, this is in general not the case and the situation becomes quite capricious.
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For example, consider an elliptic curve E over K having good reduction over K ′,
and let X ′ be the corresponding proper smooth R′-model of E⊗K K ′. Then G acts
naturally on X ′, and hence one can consider the quotient Y = X ′/G, which is a
normal proper flat R-model of E . Assume that E has reduction of Kodaira type
I ∗0 over K ; see [Silverman 1986, Theorem 15.2]. Curves of this type exist, since
elliptic curves with Kodaira type I ∗0 have integer j-invariant and thus potentially
good reduction. Moreover, that a wild extension might be needed can be checked
via Tate’s algorithm [1975]. Let X be the minimal regular R-model of E . Then X
happens to be a minimal blowing-up of Y and, in general, Y has singularities that
are not of Hirzebruch–Jung type, since the special fiber of X contains components
having three neighbors.

Our result now provides a tool to study the correspondence between X and the
singularities of Y by looking at the group action G on X ′ and on R′-models Z ′,
which are obtained by blowing-up G-invariant centers of X ′. On these models,
one can study the augmentation ideal and thereby obtain statements about which
components have to occur in a desingularization of Y and in the regular model X ,
respectively. Since this analysis is beyond the scope of this article, we intend to
explain this in greater detail in a further paper.

In the following we will look at Conjecture 9 in the case of relative curves.

Proposition 10. Keep the situation of above. Let Y be an affine smooth relative
curve over R′ such that its closed fiber Y ⊗R′ k ′ is irreducible. Assume that G acts
on Y → Spec(R′) equivariantly. Let B := OY (Y ) be the coordinate ring of Y . Then
the following assertions are equivalent:

(1) The augmentation ideal IG is locally principal.

(2) The ring A := BG of invariants is regular and A/p is regular where p= A∩Bπ ′.

Proof. (1) =⇒ (2). It follows from Theorem 2 that A is regular. It remains to
show that the special fiber is regular. For showing this, it is enough to prove it
after the π-adic completion, since the group action extends to the completion,
taking invariants commutes with completion, and regularity of A/p can be checked
after π-adic completion. So we may assume that B is the coordinate ring of the
associated formal completion of Y with respect to its special fiber. So set

P := Bπ ′ and p := A∩P.

Then we obtain a finite extension of discrete valuation rings Ap ↪→ BP. Namely,
the localization with respect to A− p yields a finite flat extension Ap ↪→ Bp. Since
P is the unique prime ideal of B lying above p, so Bp is a local Dedekind ring, and
hence we get Bp = BP. Since A is regular, and hence locally factorial, the ideal
p is locally principal. The extended ideal Bp is locally principal and a power of
P and, hence, globally a power of P, that is, Pe

= Bp. The degree of the residue
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extension is denoted by f := [Q(B/P) : Q(A/p)]. Moreover we have p = e · f .
In the case f = p and e = 1 we have P= Bp. Since A ↪→ B is faithfully flat, so
A/p→ B/P is faithfully flat as well. Then, due to [Matsumura 1980, Theorem
51], the ring A/p is regular.

In the case f = 1, e = p, the ideal p contains the uniformizer π of R. Since
pB =Pp due to e= p and P= Bπ ′ as Y is smooth over S, we obtain by faithfully
flat descent p= Aπ . Therefore A⊗R k is reduced and hence geometrically reduced.
Then A is the set of all G-invariant functions f on Y that are bounded by 1 and
also B consists of all functions on Y that are bounded by 1; see [Bosch et al. 1984,
6.4.3/4]. Moreover, it follows from [loc. cit.] that A⊗R R′ coincides with B. Thus
we see that A⊗R k = A⊗R R′⊗R′ k ′ = B⊗R′ k ′ is regular.
(2) =⇒ (1). For the converse implication, A is regular. Since B is regular as

well, the extension A→ B is faithfully flat; see [Serre 1965, IV, Proposition 22].
As above, we have the finite extension of discrete valuation rings Ap ↪→ BP and its
associated numbers e and f . In the case, f = 1 and e = p the finite ring extension
A/p→ B/P is birational, and hence an isomorphism as A/p is regular. So any local
parameter of A/p gives rise to a local parameter of B/P. Therefore, any maximal
ideal of B is generated by a G-invariant element and π ′. Therefore, IG = B · I (π ′)
is principal.

Now consider the case f = p and e= 1. Since A is regular, the ideal p is locally
principal. So we may assume that p = Aα is principal. Due to e = 1, we obtain
P = Bα. Since B/P is regular, any maximal ideal of B is generated by α and
a lifting of a local parameter of B/P. Therefore, IG is locally principal as it is
generated by the I (β), where β is a lifting of the local parameter β of B/P. �

Conjecture 11. In the case of an affine arithmetic surface, that is, Y is regular
with irreducible special fiber, one conjectures that the following conditions are
equivalent, where P ⊂ B is the prime ideal whose locus is the special fiber and
p := A∩P:

(1) IG is locally principal and B/P is regular.

(2) A is regular and A/p is regular.

The proof of the last proposition tells us that the implication (1)=⇒ (2) is true
in the case f = p and e= 1. In the case f = 1 and e= p, we used the fact that the
formation of the ring of 1-bounded functions is compatible with base change; this
is true when the multiplicity is 1. But it is not clear if one only knows that both
models A and B have the same multiplicity in the special fiber over their base rings.

The implication (2)=⇒ (1) is true in the case f = 1 and e = p, as seen by the
same arguments as given in Proposition 10. But the case f = p and e = 1, is
uncertain, although in this case the multiplicity behaves well.
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On the arithmetic and geometry of
binary Hamiltonian forms

Jouni Parkkonen and Frédéric Paulin
Appendix by Vincent Emery

Given an indefinite binary quaternionic Hermitian form f with coefficients in
a maximal order of a definite quaternion algebra over Q, we give a precise
asymptotic equivalent to the number of nonequivalent representations, satisfying
some congruence properties, of the rational integers with absolute value at most
s by f , as s tends to +∞. We compute the volumes of hyperbolic 5-manifolds
constructed by quaternions using Eisenstein series. In the appendix, V. Emery
computes these volumes using Prasad’s general formula. We use hyperbolic
geometry in dimension 5 to describe the reduction theory of both definite and
indefinite binary quaternionic Hermitian forms.

1. Introduction

Following [Weyl 1940; 1942], we will call a Hermitian form over Hamilton’s real
quaternion algebra with anti-involution the conjugation a Hamiltonian form.

Since Gauss, the reduction theory of the integral binary quadratic forms and the
problem of representation of integers by them is quite completely understood. For
binary Hermitian forms, these subjects have been well studied, starting with Hermite,
Bianchi and especially Humbert, and much developed by Elstrodt, Grunewald and
Mennicke; see for instance [Elstrodt et al. 1998]. In the recent paper [Parkkonen and
Paulin 2011], we gave a precise asymptotic on the number of nonequivalent proper
representations of rational integers with absolute value at most s by a given integral
indefinite Hermitian form. Besides the general results on quadratic forms (see
for instance [Weyl 1940; Cassels 1978]) and some special work (see for instance
[Pronin 1967; Hashimoto and Ibukiyama 1980]), not much seemed to be precisely
known on these questions for binary Hamiltonian forms.

The work in the appendix is supported by the Swiss National Science Foundation, project number
PP00P2-128309/1.
MSC2010: primary 11E39, 11R52, 20G20; secondary 11N45, 15A21, 53A35, 11F06, 20H10.
Keywords: binary Hamiltonian form, representation of integers, group of automorphs,
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In this paper, we use hyperbolic geometry in dimension 5 to study the asymptotic
of the counting of representations of rational integers by integral binary Hamiltonian
forms and to give a geometric description of the reduction theory of such forms.
General formulas are known (by Siegel’s mass formula; see for instance [Eskin et al.
1991]), but it does not seem to be easy (or even doable) to deduce our asymptotic
formulas from them. There are numerous results on the counting of integer points
with bounded norm on quadrics (or homogeneous varieties); see for instance the
work of Duke, Eskin, McMullen, Oh, Rudnick, Sarnak and others. In this paper,
we count appropriate orbits of integer points on which a fixed integral binary
Hamiltonian form is constant, analogously to [Parkkonen and Paulin 2011].

Let H be Hamilton’s quaternion algebra over R, with x 7→ x its conjugation,
n : x 7→ xx its reduced norm and tr : x 7→ x + x its reduced trace. Let A be a
quaternion algebra over Q that is definite (A⊗Q R=H), with reduced discriminant
DA and class number h A. Let O be a maximal order in A, and let m be a (nonzero)
left fractional ideal of O, with reduced norm n(m); see Section 2 for definitions.

Let f : H×H→ R be a binary Hamiltonian form, with

f (u, v)= a n(u)+ tr(u b v)+ c n(v), (1)

that is integral over O (its coefficients satisfy a, c ∈ Z and b ∈ O) and indefinite (its
discriminant 1( f )= n(b)− ac is positive); see Section 4. We denote by SL2(O)

the group of invertible 2× 2 matrices with coefficients in O; see Section 3. The
group SU f (O) of automorphs of f consists of those elements g ∈ SL2(O) for which
f ◦g= f . Given an arithmetic group 0, such as SL2(O) or SU f (O), we will denote
by Covol(0) the volume of the quotient by 0 of its associated symmetric space
(assumed to be of noncompact type and normalized to have −1 as the maximum of
its sectional curvature).

For every s > 0, we consider the integer

ψ f,m(s)= Card SU f (O)\ {(u, v) ∈m×m : n(m)−1
| f (u, v)| ≤ s,Ou+Ov =m},

which is the number of nonequivalent m-primitive representations by f of rational
integers with absolute value at most s. The finiteness of ψ f,m(s) follows from
general results on orbits of algebraic groups defined over number fields [Borel and
Harish-Chandra 1962, Lemma 5.3].

Theorem 1. As s tends to +∞, we have the equivalence, with p ranging over
positive rational primes,

ψ f,m(s)∼
45 DA Covol(SU f (O))

2π2ζ(3)1( f )2
∏

p|DA
(p3− 1)

s4
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This result follows from the more general Theorem 13, which allows us in
particular to count representations satisfying given congruence properties (see the
end of Section 6).

Here is an example of our applications, concerning the asymptotic of the very
useful real scalar product (u, v) 7→ tr(u v) on H. See Section 6 for the proof and
for further applications. Let

Sp1(O)=

{
g ∈ SL2(O) :

tg
(

0 1
1 0

)
g =

(
0 1
1 0

)}
.

Corollary 2. As s tends to +∞, we have the equivalence

Card Sp1(O)\{(u, v)∈O×O : |tr(uv)|≤ s,Ou+Ov=O}∼
DA

48ζ(3)

∏
p|DA

p2
+ 1

p2+ p+ 1
s4.

To prove Theorem 1, applying a counting result of [Parkkonen and Paulin
2012] following from dynamical properties of the geodesic flow of real hyperbolic
manifolds, we first prove that

ψ f,m(s)∼
DA

∏
p|DA

(p− 1)Covol(SU f (O))

512π21( f )2 Covol(SL2(O))
s4.

The covolumes of the arithmetic groups SL2(O) and SU f (O) may be computed
using the very general formula of [Prasad 1989]; see [Emery 2009] for an excellent
exposition. Following the approach of [Rankin 1939a; 1939b; Selberg 1940], see
also [Langlands 1966; Sarnak 1983] and others, we compute Covol(SL2(O)) in the
main body of this paper (see Section 5) using Eisenstein series, whose analytic
properties in the quaternion setting have been studied in [Krafft and Osenberg 1990].
We initially proved the case h A = 1 of the following result, V. Emery proved the
general case using Prasad’s formula (see the appendix), and we afterwards managed
to push the Eisenstein series approach to get the general result. The two proofs are
completely different.

Theorem 3 (Emery; see the appendix). We have

Covol(SL2(O))=
ζ(3)

∏
p|DA

(p3
− 1)(p− 1)

11520
.

In the final section, we give a geometric reduction theory of binary Hamiltonian
forms using real hyperbolic geometry. The case of binary quadratic forms is well
known, from either the arithmetic, geometric or algorithmic viewpoint; see for
instance [Cassels 1978; Zagier 1981; Buchmann and Vollmer 2007]. We refer
for instance to [Elstrodt et al. 1998] for the reduction theory of binary Hermitian
forms. The case of binary Hamiltonian forms has been developed less; see for
instance [Pronin 1967; Hashimoto and Ibukiyama 1980; 1981; 1983] for results
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in the positive definite case. We construct a natural map 4 from the set Q(O,1)

of binary Hamiltonian forms that are integral over O and have a fixed discriminant
1∈Z−{0} to the set of points or totally geodesic hyperplanes of the 5-dimensional
real hyperbolic space H5

R. For FO a Ford fundamental domain for the action of
SL2(O) on H5

R, we say that f ∈Q(O,1) is reduced if4( f )meets FO. The finiteness
of the number of orbits of SL2(O) on Q(O,1), which can be deduced from general
results of Borel and Harish-Chandra, then follows in an explicit way from the
equivariance property of 4 and the following result proved in Section 7.

Theorem 4. There are only finitely many reduced integral binary Hamiltonian
forms with a fixed nonzero discriminant.

Answering the remark on page 257 of [Cassels 1978] that explicit sets of inequal-
ities implying the reduction property were essentially only known for quadratic
forms in dimension n ≤ 7, we give an explicit such set in dimension 8 at the end
of Section 7.

The knowledgeable reader may skip the background Sections 2 (except the new
Lemma 6), 3 and 4 on respectively definite quaternion algebras over Q, quaternionic
homographies and real hyperbolic geometry in dimension 5, and binary Hamiltonian
forms, though many references are made to them in the subsequent sections.

2. Background on definite quaternion algebras over Q

A quaternion algebra over a field F is a four-dimensional central simple algebra
over F . We refer for instance to [Vignéras 1980] for generalities on quaternion
algebras.

A real quaternion algebra is isomorphic either to M2(R) or to Hamilton’s quater-
nion algebra H over R, with basis elements 1, i, j, k as a R-vector space, with unit
element 1, satisfying i2

= j2
=−1 and i j=− j i= k. We define the conjugate of x=

x0+x1i+x2 j+x3k in H by x= x0−x1i−x2 j−x3k, its reduced trace by tr(x)= x+x ,
and its reduced norm by n(x)= xx = xx . Note that n(xy)= n(x) n(y), and n(x)≥ 0
with equality if and only if x = 0; hence H is a division algebra. Furthermore,
tr(x)= tr(x) and tr(xy)= tr(yx). For every matrix X=(xi, j )1≤i≤p,1≤ j≤q ∈Mp,q(H),
we denote by X∗ = (x j,i )1≤i≤q,1≤ j≤p ∈Mq,p(H) its adjoint matrix, which satisfies
(XY )∗ = Y ∗X∗. The matrix X is Hermitian if X = X∗.

Let A be a quaternion algebra over Q. We say that A is definite (or ramified
over R) if the real quaternion algebra A⊗Q R is isomorphic to H. In this paper,
whenever we consider a definite quaternion algebra A over Q, we will fix an
identification between A⊗Q R and H, so that A is a Q-subalgebra of H.

The reduced discriminant DA of A is the product of the primes p∈N such that the
quaternion algebra A⊗Q Qp over Qp is a division algebra, with [H×,H×]= n−1(1).
Two definite quaternion algebras over Q are isomorphic if and only if they have the
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same reduced discriminant, which can be any product of an odd number of primes;
see [Vignéras 1980, page 74].

A Z-lattice I in A is a finitely generated Z-module generating A as a Q-vector
space. The intersection of finitely many Z-lattices of A is again a Z-lattice. An order
in a quaternion algebra A over Q is a unitary subring O of A which is a Z-lattice.
In particular, A =QO. Each order of A is contained in a maximal order. The type
number tA ≥ 1 of A is the number of conjugacy (or equivalently isomorphism)
classes of maximal orders in A (see for instance [Vignéras 1980, page 152] for a
formula). For instance, tA = 1 if DA = 2, 3, 5, 7, 13 and tA = 2 if DA = 11, 17. If O

is a maximal order in A, then the ring O has 2, 4 or 6 invertible elements except that
|O×| = 24 when DA = 2, and |O×| = 12 when DA = 3. When DA = 2, 3, 5, 7, 13,
then (see [Eichler 1938, page 103])

|O×| =
24

DA−1
. (2)

Example 5 (See [Vignéras 1980, page 98]).

(1) The Q-vector space A = Q+Qi +Q j +Qk generated by 1, i, j, k in H is
Hamilton’s quaternion algebra over Q. It is the unique definite quaternion
algebra over Q (up to isomorphism) with discriminant DA = 2. The Hurwitz
order O= Z+Zi +Z j +Z(1+ i + j + k)/2 is maximal, and it is unique up
to conjugacy.

(2) Similarly, A =Q+Qi +Q
√

p j +Q
√

p k is the unique (up to isomorphism)
definite quaternion algebra over Q with discriminant DA = p for p= 3, 7, and
O= Z+Zi +Z(i +

√
p j)/2+Z(1+

√
p k)/2 is its unique (up to conjugacy)

maximal order.

(3) Similarly, A=Q+Q
√

2i+Q
√

p j+Q
√

2pk is the unique (up to isomorphism)
definite quaternion algebra over Q with discriminant DA = p for p = 5, 13,
and

O= Z+Z
1+
√

2i+
√

p j
2

+Z

√
p j
2
+Z

2+
√

2i+
√

2pk
2

is its unique (up to conjugacy) maximal order.

Let O be an order in A. The reduced norm n and the reduced trace tr take integral
values on O. The invertible elements of O are its elements of reduced norm 1. Since
x = tr(x)− x , any order is invariant under conjugation.

The left order O`(I ) of a Z-lattice I is {x ∈ A : x I ⊂ I }; its right order Or (I ) is
{x ∈ A : I x ⊂ I }. A left fractional ideal of O is a Z-lattice of A whose left order
is O. A left ideal of O is a left fractional ideal of O contained in O. Right (fractional)
ideals are defined analogously. The inverse of a right fractional ideal m of O is
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m−1
={x ∈ A :mxm⊂m}. It is easy to check that for every u, v ∈O, if uv 6= 0, then

(uO+ vO)−1
= Ou−1

∩Ov−1. (3)

If O is maximal, then m−1 is a left fractional ideal of O and

Or (m
−1)= O`(m). (4)

This formula follows from [Vignéras 1980, Lemma 4.3(3), page 21], which says
that Or (m

−1) contains O`(m), since the maximality of O implies the maximality of
O`(m), by [ibid., Exercice 4.1, page 28].

Two left fractional ideals m and m′ of O are isomorphic as left O-modules if and
only if m′ =mc for some c ∈ A×. A (left) ideal class of O is an equivalence class
of left fractional ideals of O for this equivalence relation. We will denote by OI the
set of ideal classes of O, and by [m] the ideal class of a left fractional ideal m of
O. The class number h A of A is the number of ideal classes of a maximal order O

of A. It is finite and independent of the maximal order O; see for instance [ibid.,
pages 87–88]. See for instance [ibid., pages 152–155] for a formula for h A, and for
the fact that h A = 1 if and only if DA = 2, 3, 5, 7, 13. In particular DA is prime if
h A = 1.

The norm n(m) of a left (or right) ideal m of O is the greatest common divisor
of the norms of the nonzero elements of m. In particular, n(O)= 1. The norm of a
left (or right) fractional ideal m of O is n(cm)/n(c) for any c ∈ N−{0} such that
cm⊂ O.

Note that a Z-lattice 3 in A is a Z-lattice in the Euclidean vector space H (with
orthonormal basis (1, i, j, k)), and the volume Vol(3\H) is finite. If O is maximal,
we have (see for instance [Krafft and Osenberg 1990, Lemma 5.5])

Vol(O\H)=
DA

4
. (5)

The classical zeta function of A is

ζA(s)=
∑
a

1
n(a)2s ,

where the sum is over all left ideals a in a maximal order O of A. It is independent
of the choice of O, it is holomorphic on {s ∈ C : Re s > 1} and it satisfies by a
theorem of Hey, with ζ the usual Riemann zeta function,

ζA(s)= ζ(2s)ζ(2s− 1)
∏

p | DA

(1− p1−2s), (6)
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where as usual the index p is prime; see [Schoeneberg 1939, page 88; Vignéras
1980, page 64]. Let m be a left fractional ideal of a maximal order O in A. Define

ζ(m, s)= n(m)2s
∑

x∈m−{0}

1
n(x)2s ,

which is also holomorphic on Re s > 1 (and depends only on the ideal class of m),
and

ζ[m](s)=
∑ 1

n(a)2s

where the sum is over all left ideals a in O whose ideal class is [m]. The relations
we will use in Section 5 between these zeta functions are the following ones, where
Re s > 1. The first one is obvious; see for instance respectively [Deuring 1968,
page 134] and [Krafft and Osenberg 1990, page 436] for the other two:

ζA(s)=
∑
[a]∈OI

ζ[a](s) , (7)

∑
[a]∈OI

1
|Or (a)×|

=
1
24

∏
p|DA

(p− 1), (8)

ζ(m, s)= |Or (m)
×
| ζ[m](s). (9)

Note that when the class number h A of A is 1, the formula (9) becomes

ζ(O, s)= |O×| ζA(s). (10)

We end this section with the following lemma, which will be used in the proof
of Theorem 13.

Lemma 6. Let O be a maximal order in a definite quaternion algebra A over Q, let
z ∈ A−{0} and let 3= O∩ zO∩Oz ∩ zOz. Then 3 is a Z-sublattice of O such that

[O :3] n(Oz−1
+O)4 = 1.

Proof. This is a “prime by prime” type of proof, suggested by G. Chenevier.
As an intersection of four Z-lattices, 3 is a Z-lattice, contained in O. For every
(positive rational) prime p, let νp be the p-adic valuation on Qp; let us consider
the quaternion algebra Ap = A⊗Q Qp over Qp, whose reduced norm is denoted
by np : Ap→Qp; and for every Z-lattice L of A, let L p = L ⊗Z Zp. We embed
A in Ap as usual by x 7→ x ⊗ 1. We then have the following properties (see for
instance [Vignéras 1980, page 83-84]): L p is a Zp-lattice of Ap; the map L 7→ L p

commutes with the inclusion, the sum and the intersection; if L and L ′ are Z-lattices
with L ⊂ L ′, then

[L ′ : L] =
∏

p

[L ′p : L p] ;
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if L is a left fractional ideal of O, then L p is a left fractional ideal of Op, and

n(L)=
∏

p

pνp(np(L p)).

Hence in order to prove Lemma 6, we only have to prove that for every prime p, if
z ∈ A×p and 3p = Op ∩ zOp ∩Op z ∩ zOp z, we have

[Op :3p] = p−4νp(np(Opz−1
+Op)). (11)

We distinguish two cases.
First assume that p does not divide DA. Then we may assume that Ap=M2(Qp)

and Op = M2(Zp) (by the uniqueness up to conjugacy of maximal orders). By
Cartan’s decomposition of GL2(Qp) (see for instance [Bruhat and Tits 1972], or
consider the action of GL2(Qp) on its Bruhat–Tits tree as in [Serre 1977]), the
element z ∈ GL2(Qp) may be written

z = P
(

pa 0
0 pb

)
Q

with P, Q in the (good) maximal compact subgroup GL2(Zp) and a, b in Z. Since
GL2(Zp) preserves Op = M2(Zp) by left and right multiplication, preserves the
indices of Z-lattices, and contains only elements of reduced norm (that is, of
determinant) having valuation 0, we may assume that P = Q = id. We hence have,
by an easy matrix computation,

3p =

(
Zp ∩ pa Zp ∩ p2a Zp Zp ∩ pa Zp ∩ pb Zp ∩ pa+b Zp

Zp ∩ pa Zp ∩ pb Zp ∩ pa+b Zp Zp ∩ pb Zp ∩ p2b Zp

)
=

(
p2 max{a,0} Zp pmax{a,0}+max{b,0} Zp

pmax{a,0}+max{b,0} Zp p2 max{b,0} Zp

)
.

Similarly, we have

Op z−1
+Op =

(
p−a Zp +Zp p−b Zp +Zp

p−a Zp +Zp p−b Zp +Zp

)
=M2(Zp)

(
pmin{−a,0} 0

0 pmin{−b,0}

)
.

Therefore, since np(M2(Zp))= 1 and np = det on Ap =M2(Qp),

[Op :3p]

=
∣∣Zp/(p2 max{a,0} Zp)

∣∣ ∣∣Zp/(pmax{a,0}+max{b,0} Zp)
∣∣2 ∣∣Zp/(p2 max{b,0} Zp)

∣∣
= p4(max{a,0}+max{b,0})

= p−4(min{−a,0}+min{−b,0})
= p−4 νp(np(Opz−1

+Op)),

as wanted.
Now assume that p divides DA, so that Ap is a division algebra. Let ν = νp ◦np,

which, by for instance [Vignéras 1980, page 34], is a discrete valuation on Ap,



On the arithmetic and geometry of binary Hamiltonian forms 83

whose valuation ring is Op. The left ideals of Op are two-sided ideals. Let π be
a uniformizer of Op. Note that the residual field Op/πOp has order p2, and that
np(Op)= 1 and np(π)= p. We have

3p = Opπ
2 max{ν(z), 0} and Opz−1

+Op = Opπ
min{ν(z−1),0}.

Hence [Op :3p] = p4 max{ν(z), 0} and νp(np(Op z−1
+Op))=−max{ν(z), 0}, which

is also as wanted. �

3. Background on Hamilton–Bianchi groups

The Dieudonné determinant (see [Dieudonné 1943; Aslaksen 1996]) Det is the group
morphism from the group GL2(H) of invertible 2× 2 matrices with coefficients in
H to R∗

+
, defined by(

Det
(

a b
c d

))2

= n(a d)+ n(b c)− tr(a c d b)

=


n(ad − aca−1b) if a 6= 0,
n(cb− cac−1d) if c 6= 0,
n(cb− db−1ab) if b 6= 0.

(12)

It is invariant under the adjoint map g 7→ g∗, by the properties of n and tr. We
will denote by SL2(H) the group of 2× 2 matrices with coefficients in H with
Dieudonné determinant 1, which equals the group of elements of (reduced) norm
1 in the central simple algebra M2(H) over R; see [Reiner 1975, Section 9a]. See
[Kellerhals 2003] for more information on SL2(H).

The group SL2(H) acts linearly on the left on the right H-module H×H. Let
P1

r (H)= (H×H−{0})/H× be the right projective line of H, identified as usual with
the Alexandrov compactification H∪ {∞} where [1 : 0] =∞ and [x : y] = xy−1 if
y 6= 0. The projective action of SL2(H) on P1

r (H), induced by its linear action on
H×H, is then the action by homographies on H∪ {∞} defined by

(
a b
c d

)
· z =


(az+ b)(cz+ d)−1 if z 6= ∞,−c−1d,
ac−1 if z =∞, c 6= 0,
∞ otherwise.

This action induces a faithful left action of PSL2(H)= SL2(H)/{± id} on H∪{∞}.
The group PSL2(H) is very useful for studying 5-dimensional real hyperbolic

geometry for the following reason. Let us endow H with its usual Euclidean
metric ds2

H (invariant under translations, with (1, i, j, k) orthonormal). We will
denote by x = (z, r) a generic point in H× ]0,+∞[, and by r : x 7→ r(x) the
second projection in this product. For the real hyperbolic space H5

R of dimension 5,
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we will use the upper halfspace model H × ]0,+∞[ with Riemannian metric
ds2(x)= (ds2

H(z)+ dr2)/r2 at the point x = (z, r), whose volume form is

d volH5
R
(x)=

d volH(z) dr
r5 . (13)

The space at infinity ∂∞H5
R is hence H∪ {∞}.

By the Poincaré extension procedure (see for instance [Parkkonen and Paulin
2010, Lemma 6.6]), the action of SL2(H) by homographies on ∂∞H5

R extends to a
left action on H5

R by(
a b
c d

)
· (z, r)=

(
(az+ b)(cz+ d)+ acr2

n(cz+ d)+ r2 n(c)
,

r
n(cz+ d)+ r2 n(c)

)
. (14)

In this way, the group PSL2(H) is identified with the group of orientation preserving
isometries of H5

R. Note that the isomorphism PSL2(H)' SO0(1, 5) is one of the
isomorphisms between connected simple real Lie groups of small dimensions in
E. Cartan’s classification.

Given an order O in a definite quaternion algebra A over Q, define the Hamilton–
Bianchi group as 0O= SL2(O)= SL2(H)∩M2(O). Note that since the norm n takes
integral values on O, and since the Dieudonné determinant is a group morphism, we
have GL2(O)= SL2(O). The Hamilton–Bianchi group 0O is a (nonuniform) arith-
metic lattice in the connected real Lie group SL2(H) (see for instance [Parkkonen
and Paulin 2010, page 1104] for details). In particular, the quotient real hyperbolic
orbifold 0O\H

5
R has finite volume. The action by homographies of 0O preserves

the right projective space P1
r (O)= A∪ {∞}, which is the set of fixed points of the

parabolic elements of 0O acting on H5
R ∪ ∂∞H5

R.

Remark 7. For every (u, v) in O×O−{(0, 0)}, consider the two left ideals of O

Iu,v = Ou+Ov and Ku,v =

{
Ou ∩Ov if uv 6= 0,
O otherwise.

The map 0O\P
1
r (O)→ (OI× OI) that associates to the orbit of [u : v] in P1

r (O)

under 0O the couple of ideal classes ([Iu,v], [Ku,v]) is a bijection. To see this,
let `u,v : O× O→ O be the morphism of left O-modules defined by (o1, o2) 7→

o1u+ o2v. The map w 7→ (wu−1,−wv−1) is an isomorphism of left O-modules
from Ou ∩Ov to the kernel of `u,v if uv 6= 0. The result then follows for instance
from [Krafft and Osenberg 1990, Satz 2.1, 2.2], which says that the map [u : v] 7→
([im `u,v], [ker `u,v]) induces a bijection from 0O\P

1
r (O) into OI× OI.

In particular, the number of cusps of 0O (or the number of ends of 0O\H
5
R) is

the square of the class number h A of A.
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4. Background on binary Hamiltonian forms

With V the right H-module H×H, a binary Hamiltonian form f : V → R is a
map X 7→ φ(X, X) where φ : V × V → H is a Hermitian form on V with the
conjugation as the anti-involution of the ring H. That is, φ(Xλ, Y ) = λφ(X, Y ),
φ(X + X ′, Y ) = φ(X, Y )+ φ(X ′, Y ), φ(Y, X) = φ(X, Y ) for X, X ′, Y ∈ V and
λ ∈ H. Our convention of sesquilinearity on the left is the opposite of Bourbaki’s
unfortunate one in [Bourbaki 1959]. Equivalently, a binary Hamiltonian form f is
a map H×H→ R with

f (u, v)= a n(u)+ tr(ubv)+ c n(v),

whose coefficients a = a( f ) and c = c( f ) are real, and b = b( f ) lies in H. Note
that f ((u, v)λ)= n(λ) f (u, v). The matrix M( f ) of f is the Hermitian matrix(

a b
b c

)
,

so that

f (u, v)=
(

u
v

)∗ (
a b
b c

)(
u
v

)
.

The discriminant of f is

1=1( f )= n(b)− ac.

Note that the sign convention of the discriminant varies in the references. An easy
computation shows that the Dieudonné determinant of M( f ) is equal to |1|. If
a 6= 0, then

f (u, v)= a
(

n
(

u+ bv
a

)
−
1

a2 n(v)
)
. (15)

Hence the form f is indefinite (that is, f takes both positive and negative values)
if and only if 1 is positive, and 1 is then equal to the Dieudonné determinant of
M( f ). By (15), the form f is positive definite (that is, f (x) ≥ 0 with equality if
and only if x = 0) if and only if a > 0 and 1< 0.

The linear action on the left on H×H of the group SL2(H) induces an action
on the right on the set of binary Hermitian forms f by precomposition, that is, by
f 7→ f ◦ g for every g ∈ SL2(H). The matrix of f ◦ g is M( f ◦ g) = g∗M( f )g.
Since the Dieudonné determinant is a group morphism, invariant under the adjoint
map (and since f ◦g is indefinite if and only if f is), we have, for every g ∈SL2(H),

1( f ◦ g)=1( f ). (16)

Given an order O in a definite quaternion algebra over Q, a binary Hamiltonian
form f is integral over O if its coefficients belong to O. Note that such a form f
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takes integral values on O× O. The lattice 0O = SL2(O) of SL2(H) preserves the
set of indefinite binary Hamiltonian forms f that are integral over O. The stabilizer
in 0O of such a form f is its group of automorphs

SU f (O)= {g ∈ 0O : f ◦ g = f }.

For every indefinite binary Hamiltonian form f , with a = a( f ), b = b( f ) and
1=1( f ), let

C∞( f )= {[u : v] ∈ P1
r (H) : f (u, v)= 0},

C( f )= {(z, r) ∈ H×]0,+∞[ : f (z, 1)+ a r2
= 0}.

In P1
r (H) = H ∪ {∞}, the set C∞( f ) is the 3-sphere of center −b/a and radius

√
1/|a| if a 6= 0, and it is the union of {∞} with the real hyperplane

{z ∈ H : tr(zb)+ c = 0}

of H otherwise. The map f 7→ C∞( f ) induces a bijection between the set of
indefinite binary Hamiltonian forms up to multiplication by a nonzero real factor
and the set of 3-spheres and real hyperplanes in H∪ {∞}. The action of SL2(H)

by homographies on H∪ {∞} preserves this set of 3-spheres and real hyperplanes,
and the map f 7→ C∞( f ) is (anti)equivariant for the two actions of SL2(H), in the
sense that, for every g ∈ SL2(H),

C∞( f ◦ g)= g−1 C∞( f ). (17)

Given a finite index subgroup G of SL2(O), an integral binary Hamiltonian form
f is called G-reciprocal if there exists an element g in G such that f ◦g=− f . We
define RG( f )= 2 if f is G-reciprocal, and RG( f )= 1 otherwise. The values of f
are positive on one of the two components of P1

r (H)−C∞( f ) and negative on the
other. As the signs are switched by precomposition by an element g as above, the
G-reciprocity of the form f is equivalent to saying that there exists an element of G
preserving C∞( f ) and exchanging the two complementary components of C∞( f ).

5. Using Eisenstein series to compute hyperbolic volumes

Let O be a maximal order in a definite quaternion algebra A over Q.
In this section, we compute Vol(PSL2(O)\H

5
R) using a method which goes back,

in dimension 2, to Rankin and Selberg’s method [Rankin 1939b; Selberg 1940] of
integrating Eisenstein series on fundamental domains and “unfolding”, generalized
by [Langlands 1966] to the lattice of Z-points of any connected split semisimple
algebraic group over Q. We follow the approach of [Sarnak 1983, pages 261–262]
in dimension 3. See the appendix for a completely different proof of the same result
by V. Emery.
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Theorem 8. Let O be a maximal order in a definite quaternion algebra A over Q

with discriminant DA. Then

Vol(PSL2(O)\H
5
R)=

ζ(3)
∏

p|DA
(p3
− 1)(p− 1)

11520
.

Proof. It is well known (see for instance [Parkkonen and Paulin 2010, Section 6.3,
Example (3)]) that there exists G, a connected semisimple linear algebraic group
over Q, such that G(R) = SL2(H), G(Q) = SL2(A) and G(Z) = SL2(O). Let
P be the parabolic subgroup of G, defined over Q, such that P(R) is the upper
triangular subgroup of SL2(H). By Borel’s finiteness theorem [Borel 1966], the set
SL2(O)\SL2(A)/P(Q) is finite, and we will fix a subset R in SL2(A) which is a
system of representatives of this set of double cosets.

Let 0 = SL2(O). For every α ∈R, let 0α = P(R)∩ (α−10α) and let 0′α be its
subgroup of unipotent elements. The group α0αα−1 is the stabilizer of the parabolic
fixed point α∞ in 0. The action of 0α on H∪ {∞} by homographies preserves∞
and is cocompact on H. If

α−1
=

(
a b
c d

)
and α =

(
ã b̃
c̃ d̃

)
,

let uα = cO+dO, which is a right fractional ideal of O, and vα = Oã+Oc̃, which is
a left fractional ideal of O.

For every α ∈R, the Eisenstein series of the arithmetic group 0 for the cusp at
infinity α∞ is the map Eα : H5

R×]4,+∞[→ R defined by

Eα(x, s)=
∑

γ∈(α0αα−1)\0

r(α−1γ x)s .

The summation does not depend on the choice of representatives of the left cosets
in (α0αα−1)\0 since 0α preserves∞ and the Euclidean height r . The Eisenstein
series of O is (for x = (z, r) ∈ H5

R and s ∈ C with Re s > 4)

Ê(x, s)=
∑

(c, d)∈O×O−{0}

( r
n(cz+ d)+ r2 n(c)

)s
.

The next result concatenates results proven in [Krafft and Osenberg 1990].

Theorem 9 (Krafft and Osenberg). (i) The Eisenstein series Eα(x, s) for α ∈R

and Ê(x, s) converge absolutely and uniformly on compact subsets of {s ∈ C :

Res > 4}, uniformly on compact subsets of x ∈ H5
R. They are invariant by the

action of 0 on the first variable.
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(ii) The map s 7→ Ê(x, s) admits a meromorphic extension to C, having only one
pole, which is at s = 4 and is simple with residue

Ress=4 Ê(x, s)= 8π4

3 DA
2 . (18)

Furthermore, if c(α, s)= n(uα)sζ(u−1
α , s/2) for every α ∈R, then

Ê(x, s)=
∑
α∈R

c(α, s)Eα(x, s). (19)

(iii) For every α, β ∈R, there exists a map s 7→ϕα,β(s) with (s−4)ϕα,β(s) bounded
for s > 4 near s = 4, and a measurable map (x, s) 7→ 8α,β(x, s) such that
(s−4)8α,β(x, s) is bounded by an integrable (for the hyperbolic volume) map,
independent on s > 4 near s = 4, on x ∈ K ×[ε,+∞[ where K is a compact
subset of H and ε > 0, such that

Eα(βx, s)= δα,β r s
+ϕα,β(s)r4−s

+8α,β(x, s),

with δα,β = 1 if α = β and δα,β = 0 otherwise.

Proof. We are using Langlands’ convention for the Eisenstein series; hence with
0′α the subgroup of unipotent elements of 0α , our Eisenstein series Eα is obtained
from the one used in [Krafft and Osenberg 1990] by replacing α by α−1 and by
multiplying by 1/[0α : 0′α].

The part of claim (i) concerning the series Eα(x, s) for α ∈ R is [Krafft and
Osenberg 1990, Satz 3.2]. The rest follows from [ibid., Satz 4.2] with M = O.
The claim (ii) follows from [ibid., Korollar 5.6(a)] with M = O, recalling that the
reduced discriminant of any maximal order of A is equal to the reduced discriminant
of A. The formula (19) follows from [ibid., Satz 4.3], recalling the above changes
between our Eα and the one in [ibid.]. The claim (iii) follows from [ibid., Satz 3.3],
again replacing β by β−1, and using the second equation in [Magnus et al. 1966,
page 85] to control the modified Bessel function. �

By a fundamental domain for a smooth action of a countable group G on a
smooth manifold N , we mean a subset F of N such that F has negligible boundary,
the interiors of the subsets gF for g ∈ G are pairwise disjoint, and

N =
⋃
g∈G

gF.

Here is a construction of a fundamental domain F for 0 acting on H5
R that will

be useful in this section (and is valid for any discrete subgroup of isometries of
Hn

R with finite covolume which is not cocompact). Let P be the set of parabolic
fixed points of 0. By the structure of the cusp neighborhoods, there exists a family
(Hp)p∈P of pairwise disjoint closed horoballs in H5

R, equivariant under 0 (that is,
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γHp =Hγ p for every γ ∈ 0), with Hp centered at p. The cut locus of the cusps
6 is the piecewise hyperbolic polyhedral complex in H5

R consisting of the set of
points outside the union of these horoballs that are equidistant to at least two of
these horoballs (it is independent of the choice of this family when there is only one
orbit of parabolic fixed points). Each connected component of the complement of
6 contains one and only one of these horoballs, is at bounded Hausdorff distance
of it, is invariant under the stabilizer in 0 of its point at infinity, and is precisely
invariant under the action of 0. Recall that a subset A of a set endowed with an
action of a group G is said to be precisely invariant under this group if for every
g ∈ G, if g A∩ A is nonempty, then g A = A.

For every β ∈ R, let Dβ be a compact fundamental domain for the action
of 0β on H, let F̃β be the closure of the component of the complement of 6
containing Hβ∞, and define Fβ = F̃β ∩ β(Dβ × ]0,+∞[). Then Fβ is a closed
fundamental domain for the action of β0ββ−1 on F̃β , and there exists a continuous
map σ ′β : Dβ→ ]0,+∞[, which hence has a positive lower bound, such that

β−1Fβ = {(z, r) ∈ H5
R : z ∈ Dβ, r ≥ σ ′β(z)}. (20)

Now define
F=

⋃
β∈R

Fβ . (21)

Since R is a system of representatives of the cusps, F is a fundamental domain of
0 acting on H5

R.
Note that, for every α ∈R, there exists a continuous map σα : Dα→ [0,+∞[

(hence with a finite upper bound), with only finitely many zeros, such that, since
α−1F is a fundamental domain for the action of α−10α on H5

R,⋃
γ∈(α−10α−0α)

γα−1F= 0α{(z, r) ∈ H5
R : z ∈ Dα, r < σα(z)}. (22)

For every α ∈R, let

bα(s)=
∫

F

(
Eα(x, s)− r(α−1x)s

)
d volH5

R
(x).

When s > 4, we have

bα(s)

=

∫
F

( ∑
γ∈(α0αα−1)\0

r(α−1γ x)s − r(α−1x)s
)

d volH5
R
(x)

=

∫
F

∑
γ∈

0α\(α
−10α−0α)

r(γ α−1x)s d volH5
R
(x)=

∑
γ∈

0α\(α
−10α−0α)

∫
F

r(γ α−1x)s d volH5
R
(x)
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=

∑
γ∈

0α\(α
−10α−0α)

∫
γα−1F

r(x)s d volH5
R
(x)=

∫
⋃
γ∈0α\(α−10α−0α)

γα−1F
r(x)s d volH5

R
(x)

=

∫
z∈Dα

∫ σα(z)

0
r s−5 dr dz =

∫
z∈Dα

σα(z)s−4

s− 4
dz,

using for the succession of equations, respectively, the definition of Eα , the change
of variables α−1γα→ γ , Fubini’s theorem for positive functions, the invariance of
the volume under the isometric change of variables γα−1x→ x , the σ -additivity
property, and the equations (22) and (13) and the invariance of the Euclidean height
function r under 0α.

For any α ∈R, the map σαs−4 converges pointwise, as s→ 4+, to the map on
Dα with value 0 at the finitely many points where σα vanishes, and with value
1 otherwise. Since Dα is compact and σαs−4 is uniformly bounded from above,
Lebesgue’s dominated convergence theorem gives

lim
s→4+

(s− 4)bα(s)= Vol(Dα)= Vol(0α\H).

Therefore by using (19), the map

s 7→ b(s)=
∫

F

(
Ê(x, s)−

∑
α∈R

c(α, s)r(α−1x)s
)

d volH5
R
(x)=

∑
α∈R

c(α, s)bα(s)

satisfies
lim

s→4+
(s− 4)b(s)=

∑
α∈R

c(α, 4)Vol(0α\H), (23)

since s 7→ c(α, s) is holomorphic for Re s > 2.
On the other hand, let us prove that we may permute the limit as s→ 4+ and the

integral defining (s− 4)b(s). Using the equations (19) and (21), and an isometric,
hence volume-preserving, change of variable, we have

b(s)=
∑
α,β∈R

c(α, s)
∫

Fβ

(
Eα(x, s)− r(α−1x)s

)
d volH5

R
(x)

=

∑
α,β∈R

c(α, s)
∫
β−1Fβ

(
Eα(βx, s)− r(α−1βx)s

)
d volH5

R
(x).

If x ∈ β−1Fβ , then r(x) is bounded from below by a positive constant by the
construction of Fβ ; hence r(x)4−s is bounded from above for every s ≥ 4. If
α 6= β and x ∈ β−1Fβ , then r(α−1βx)s is bounded from above for every s ≥ 0,
since α−1Fβ is bounded in H×R by construction. Hence since β−1Fβ has finite
hyperbolic volume, by Theorem 9(iii) separating the case α = β and the case
α 6= β, by Lebesgue’s dominated convergence theorem, we may permute the
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limit as s→ 4+ and the integral on β−1Fβ for the hyperbolic volume applied to
(s− 4)

(
Eα(βx, s)− r(α−1βx)s

)
. By a finite summation, we may indeed permute

the limit as s→ 4+ and the integral defining (s− 4)b(s).
Therefore, by (18),

lim
s→4+

(s− 4)b(s)= 8π4

3DA
2 Vol(PSL2(O)\H

5
R). (24)

Finally, since for every ρ ∈ A−{0} the element

γρ =

(
ρ −1
1 0

)
of SL2(A) maps∞ to ρ, the element α ∈ R may be chosen to be either id or γρ
for some ρ ∈ A. In the first case, uα = O and 0′α acts on H as the Z-lattice O, so
that, by (5), since the subgroup {± id} of 0α is the kernel of its action on H,

n(uα)4 Vol(0α\H)=
2 Vol(O\H)
[0α : 0′α]

=
DA

2[0α : 0′α]
.

In the second case,

α−1
=

(
0 1
−1 ρ

)
,

so that uα=Oρ+O and 0′α acts on H as the Z-lattice3=O∩ρ−1O∩Oρ−1
∩ρ−1Oρ−1

as we shall see in Lemma 15. By Lemma 6 applied with z = ρ−1 and by (5), we
hence have

n(uα)4 Vol(0α\H)= n(uα)4[O :3]
2 Vol(O\H)
[0α : 0′α]

=
DA

2[0α : 0′α]
.

Therefore, by the definition of c(α, s),∑
α∈R

c(α, 4)Vol(0α\H)=
DA

2

∑
α∈R

ζ(u−1
α , 2)

[0α : 0′α]
. (25)

Combining the equations (23), (24) and (25), we have

Vol(PSL2(O)\H
5
R)=

3DA
3

16π4

∑
α∈R

ζ(u−1
α , 2)

[0α : 0′α]
. (26)

Lemma 10. (1) For every α ∈R, we have [0α : 0′α] = |Or (u
−1
α )
×
||Or (vα)

×
|.

(2) The map from R to OI× OI defined by α 7→ ([vα], [u
−1
α ]) is a bijection.

Proof. (1) Let

0+α =
{
γ ∈ 0α : (0 1)γ = (0 1)

}
and 0−α =

{
γ ∈ 0α : γ

( 1
0

)
=
( 1

0

)}
,
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which are normal subgroups of 0α , whose union generates 0α . By the top of page
434 in [Krafft and Osenberg 1990] (keeping in mind that our α is the inverse of the
α in [ibid.]), we have [0+α :0

′
α]= |Or (vα)

×
|. Similarly, [0−α :0

′
α]= |O`(uα)

×
|. Note

that 0′α is a normal subgroup of 0−α , 0
+
α and 0α, such that 0−α ∩0

+
α = 0

′
α. Hence

the product map from 0−α ×0
+
α to 0′α induces a bijection from (0−α /0

′
α)×(0

′
α\0

+
α )

to 0α/0′α, since 0α/0′α is abelian. In particular, [0α : 0′α] = |O`(uα)
×
||Or (vα)

×
|.

Using (4), the result follows.
(2) Since these matrices act transitively on A by homographies, we may assume

that every α ∈R either is the identity element id, or has the form(
ρα −1
1 0

)
for some ρα ∈ A×. Then α−1 is either id or(

0 1
−1 ρα

)
.

Hence, uα = O+ραO and vα = Oρα+O, unless α = id, in which case uα = vα = O.
Since SL2(A) acts (on the left) transitively by homographies on P1

r (O)with stabilizer
of [1 : 0] equal to P(Q), the map from R to 0O\P

1
r (O) defined by α 7→0Oα[1 : 0] is

a bijection. Note that α[1 : 0] = [ρα : 1] if α 6= id. Using the notation of Remark 7,
if α 6= id, we have vα = Iρα,1 and

[Kρα,1] = [Oρα ∩O] = [O∩Oρ−1
α ] = [u

−1
α ]

by (3). The second assertion of this lemma then follows from Remark 7. �

Now, using respectively (9), Lemma 10(1), Lemma 10(2), the separation of
variables and (7), (8), and (6) since ζ(4)= π4/90, we have

∑
α∈R

ζ(u−1
α , 2)

[0α : 0′α]
=

∑
α∈R

|Or (u
−1
α )
×
|ζ
[u−1
α ]
(2)

[0α : 0′α]
=

∑
α∈R

ζ
[u−1
α ]
(2)

|Or (vα)×|

=

∑
([I ],[J ])∈OI×OI

ζ[J ](2)
|Or (I )×|

= ζA(2)
∑
[I ] ∈ OI

1
|Or (I )×|

=
ζA(2)

24

∏
p|DA

(p− 1)=
ζ(3)π4∏

p|DA
(1− p−3)(p− 1)

2160
. (27)

Theorem 8 follows from the equations (26) and (27). �

Corollary 11. Let A be a definite quaternion algebra over Q with reduced dis-
criminant DA and class number 1, and let O be a maximal order in A. Then the
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hyperbolic volume of PSL2(O)\H
5
R is equal to

Vol(PSL2(O)\H
5
R)=

(D3
A− 1)(DA− 1)ζ(3)

11520
.

This is an immediate consequence of Theorem 8. But here is a proof directly from
(26) that avoids using the technical Lemma 10 and the technical computation (27).

Proof. Since the number of cusps of SL2(O) is the square of the class number h A of
A (see Remark 7), the set R has only one element, and we may choose R= {id}.

By definition of the Dieudonné determinant and since every element of O× has
norm 1, the stabilizer 0∞ of∞ in SL2(O) is

0∞ =

{(
a b
0 d

)
: a, d ∈ O×, b ∈ O

}
.

The index in 0∞ of its unipotent subgroup is hence |O×|2. By the equations (10)
and (6), Corollary 11 follows from (26), ζ(4)= π4/90, |O×| = 24/(DA− 1) as
seen in (2), and since DA is prime when h A = 1. �

Example 12. Let A be Hamilton’s quaternion algebra over Q, which satisfies
DA= 2 and h A= 1. Let O be Hurwitz’s maximal order in A. Applying Corollary 11,
we get

Vol(PSL2(O)\H
5
R)=

7ζ(3)
11520

,

exactly four times the minimal volume of a cusped hyperbolic 5-orbifold, as we
should because the Hurwitz modular group PSL2(O) is a subgroup of index 4 in
the group of the minimal volume cusped hyperbolic orbifold of dimension 5; see
[Hild 2007, page 209; Johnson and Weiss 1999, page 186].

6. Representing integers by binary Hamiltonian forms

Let A be a definite quaternion algebra over Q, and let O be a maximal order in A.
Let us introduce the general counting function we will study. For every indefinite

integral binary Hamiltonian form f over O, for every finite index subgroup G of
SL2(O), for every x, y in O not both zero, and for every s > 0, let

ψ f,G,x,y(s)= Card SU f (O)∩G\
{
(u, v) ∈ G(x, y) : n(Ox +Oy)−1

| f (u, v)| ≤ s
}
.

The counting function ψ f,G,x,y depends (besides on f,G) only on the G-orbit of
[x : y] in P1

r (O).
Here is the notation for the statement of our main result which follows. Given

(x, y) ∈ O× O, let 0O,x,y and Gx,y be the stabilizers of (x, y) for the left linear
actions of 0O=SL2(O) and G, respectively, and let uxy−1 be the right fractional ideal
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O if y = 0 and O+ xy−1O otherwise. Let ιG = 1 if − id ∈ G, and ιG = 2 otherwise.
Note that the image of SU f (O)∩G in PSL2(H) is again an arithmetic group.

Theorem 13. Let f be an integral indefinite binary Hamiltonian form of discrimi-
nant 1( f ) over a maximal order O of a definite quaternion algebra A over Q. Let
x and y be elements in O not both zero, and let G be a finite index subgroup of
0O = SL2(O). Then, as s tends to +∞, we have the equivalence

ψ f,G,x,y(s)∼
540 ιG[0O,x,y : Gx,y]Covol(SU f (O)∩G)

π2ζ(3)|O`(uxy−1)×|1( f )2[0O : G]
∏

p|DA
(p3− 1)(1− p−1)

s4.

Proof. Let us first recall a geometric result from [Parkkonen and Paulin 2012] that
will be used to prove this theorem.

Let n ≥ 2 and let Hn
R be the upper halfspace model of the real hyperbolic space

of dimension n, with (constant) sectional curvature −1. Let F be a finite covolume
discrete group of isometries of Hn

R. Let 1≤ k ≤ n−1 and let C be a real hyperbolic
subspace of dimension k of Hn

R, whose stabilizer FC in F has finite covolume. Let
H be a horoball in Hn

R, which is precisely invariant under F , with stabilizer FH.
For every α, β ∈ F , denote by δα,β the common perpendicular geodesic arc

between αC and the horosphere β∂H if it exists, and let `(δα,β) be its length,
counted positively if δα,β exits βH at its endpoint on β∂H, and negatively otherwise.
Also define the multiplicity of δα,β as m(α, β)= 1/Card(α FCα

−1
∩β FHβ

−1). Its
denominator is finite, if the boundary at infinity of αC does not contain the point at
infinity of βH, since then the subgroup α FCα

−1
∩β FHβ

−1 that preserves both βH

and αC consists of elliptic elements. By convention, `(δα,β)=−∞ and m(α, β)=0
if the boundary at infinity of αC contains the point at infinity of βH. In particular,
there are only finitely many elements [g] ∈ FC\F/FH such that m(g−1, id) is
different from 1, or equivalently such that g−1 FCg ∩ FH 6= {1}. For every t ≥ 0,
define N(t) = NF,C,H(t) as the number, counted with multiplicity, of the orbits
under F in the set of the common perpendicular arcs δα,β for α, β ∈ F with length
at most t :

N(t)= NF,C,H(t)=
∑

(α,β)∈F\((F/FC)×(F/FH))
`(δα,β )≤t

m(α, β).

For every m ∈ N, denoting by Sm the unit sphere of the Euclidean space Rm+1

endowed with its induced Riemannian metric, we have the following result:

Theorem 14 [Parkkonen and Paulin 2012, Corollary 4.9]. As t→+∞, we have

N(t)∼
Vol(Sn−k−1)Vol(FH\H)Vol(FC\C)

Vol(Sn−1)Vol(F\Hn
R)

e(n−1)t .
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Now, let A,O, f,G, x and y be as in the statement of Theorem 13. We write f
as in (1), and denote its discriminant by 1. In order to apply Theorem 14, we first
define the various objects n, k, F , H, and C that appear in its statement.

Let n = 5 and k = 4, so that Vol(Sn−1)= 8π2/3 and Vol(Sn−k−1)= 2. We use
the description of H5

R given in Section 3.
For any subgroup S of SL2(H), we denote by S its image in PSL2(H), except

that the image of SU f (O) is denoted by PSU f (O). We will apply Theorem 14 to
F = G.

Note that Vol(G \H5
R)= [0O : G]Vol(0O \H5

R) and [0O : G] = (1/ιG)[0O : G]
by the definition of ιG . Thus, using Theorem 8 (or Theorem A.1), we have

Vol(G\H5
R)=

1
ιG
[0O : G]Vol(0O \H5

R)=
1
ιG
[0O : G]Covol(0O)

=
ζ(3)[0O : G]

11520 ιG

∏
p|DA

(p3
− 1)(p− 1). (28)

The point ρ = xy−1
∈ A ∪ {∞} ⊂ ∂∞H5

R is a parabolic fixed point of 0O and
hence of G. Let τ ∈ ]0, 1] and H be the horoball in H5

R centered at ρ, with Euclidean
height τ if y 6= 0, and consisting of the points of Euclidean height at least 1/τ
otherwise. Assume that τ is small enough so that H is precisely invariant under 0O

and hence under G. Such a τ exists, as seen in the construction of the fundamental
domain in Section 5. The stabilizer 0O,ρ in 0O of the point at infinity ρ is equal to
the stabilizer (0O)H of the horoball H.

Remark. If ρ =∞ and G = 0O, we may take τ = 1 by [Kellerhals 2003, Propo-
sition 5]. Then by an easy hyperbolic geometry computation, since the index in
(0O )H of the subgroup of translations by elements of O is |O

×
|
2

2 , and by using (5),
we have

Vol((0O)H\H)=
1
4 Vol((0O)H\∂H)=

1
2|O×|2

Vol(O\H)=
DA

8|O×|2
.

The following lemma will allow us to generalize this formula.

Lemma 15. Let 3′O,ρ= O ∩ ρ−1O ∩ Oρ−1
∩ ρ−1Oρ−1 if x, y 6= 0, and 3′O,ρ= O

otherwise. Then 3′O,ρ is a Z-lattice in H and we have

Vol(GH\H)=
τ 4
[(0O)H : GH]

4|O`(uρ)×| [(0O )H : 0O,x,y]
Vol(3′O,ρ\H). (29)

Proof. If y = 0, let γρ = id; otherwise let

γρ =

(
ρ −1
1 0

)
∈ SL2(H).
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Note that γ−1
ρ maps ρ to∞ and H to the horoball H∞ consisting of the points in

H5
R with Euclidean height at least 1/τ .
Let

γ =

(
a b
c d

)
and γ ′ =

(
1 b′

0 1

)
be in SL2(H). If y = 0, we have γ−1

ρ γ γρ = γ
′ if and only if a = 1, b = b′, c = 0,

d= 1. If y 6= 0, by an easy computation, we have γ−1
ρ γ γρ = γ

′ (that is, γ γρ = γργ ′)
if and only if

c =−b′, a = 1− ρb′, d = 1+ b′ρ, b = ρb′ρ. (30)

In particular, if x, y 6= 0, if γ ∈ SL2(O) and γ ′ = γ−1
ρ γ γρ ∈ SL2(A) is unipotent

upper triangular, then these equations imply respectively that b′ belongs to O,
ρ−1O, Oρ−1 and ρ−1Oρ−1; therefore b′ ∈ 3′O,ρ . If x = 0 or y = 0, we also have
b′ ∈ O=3′O,ρ

Conversely, if b′ ∈ 3′O,ρ , then define a, b, c, d by the equations (30) if y 6= 0,
and by a = 1, b = b′, c = 0, d = 1 otherwise, so that a, b, c, d ∈ O. Let

γ =

(
a b
c d

)
.

If y 6= 0, note that if c = 0, then γ = id and otherwise cb− cac−1d =−1, so that
γ ∈ SL2(O) by (12). If y 6= 0, the equations (30) imply that γ−1

ρ γ γρ is a unipotent
upper triangular element of SL2(O), and this is also the case if y = 0.

The abelian group 3′O,ρ is a Z-lattice in H, as an intersection of at most four
Z-lattices in A. Since an isometry preserves the volume for the first equality, by
an easy hyperbolic volume computation for the second one, and by the previous
computation of the unipotent upper triangular subgroup 0′γρ of γ−1

ρ 0O,x,yγρ for the
last one, we have

Vol(0O,x,y\H)= Vol((γ−1
ρ 0O,x,yγρ)\H∞)=

1
4 Vol((γ−1

ρ 0O,x,yγρ)\∂H∞)

=
τ 4

4
Vol
(
(γ−1
ρ 0O,x,yγρ)\H

)
=

τ 4

4[γ−1
ρ 0O,x,yγρ : 0′γρ ]

Vol(3′O,ρ\H).

With the notation of the proof of Lemma 10(1), we have [γ−1
ρ 0O,x,yγρ : 0

′
γρ
] =

|O`(uρ)
×
|. Since covering arguments yield

Vol(GH\H)= [(0O)H : GH]Vol
(
(0O)H\H

)
=
[(0O)H : GH]

[(0O)H : 0O,x,y]
Vol(0O,x,y\H),

the result follows. �
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Let us resume the proof of Theorem 13. Let C= C( f ), which is indeed a real
hyperbolic hyperplane in H5

R, whose set of points at infinity is C∞( f ) (hence∞ is
a point at infinity of C( f ) if and only if the first coefficient a = a( f ) of f is 0).
Note that C is invariant under the group SU f (O) by (17) (this equation implies that
C( f ◦g)= g−1C( f ) for every g ∈ SL2(O)). The arithmetic group SU f (O) acts with
finite covolume on C( f ), its finite subgroup {± id} acting trivially. By definition,

Covol(SU f (O)∩G)= Vol
(

PSU f (O)∩G\C( f )
)
.

Note that Covol(SU f (O)∩G) depends only on the G-orbit of f , by (17) and since
SU f ◦g(O) = g−1 SU f (O)g for every g ∈ SL2(O). By its definition, RG( f ) is the
index of the subgroup PSU f (O)∩G in GC; hence

Vol(GC\C)=
1

RG( f )
Covol(SU f (O)∩G). (31)

The last step of the proof of Theorem 13 consists in relating the two counting
functions ψ f,G,x,y and NG,C,H, in order to apply Theorem 14.

For every g ∈ SL2(H), let us compute the hyperbolic length of the common
perpendicular geodesic arc δg−1,id between the real hyperbolic hyperplane g−1C

and the horoball H, assuming that they do not meet. We use the notation γρ,H∞
introduced in the proof of Lemma 15. Since γ−1

ρ sends the horoball H to the
horoball H∞, it sends the common perpendicular geodesic arc between g−1C and
H to the (vertical) common perpendicular geodesic arc between γ−1

ρ g−1C and H∞.
Let r be the Euclidean radius of the 3-sphere C∞( f ◦ g ◦ γρ), which is the image
by γ−1

ρ of the boundary at infinity of g−1C by (17). Denoting by a( f ◦ g ◦ γρ) the
coefficient of n(u) in f ◦ g ◦ γρ(u, v), we have, by (16),

r =

√
1( f ◦ g ◦ γρ)
|a( f ◦ g ◦ γρ)|

=

√
1

| f ◦ g ◦ γρ(1, 0)|

=

√
1

| f ◦ g(ρ, 1)|
=

n(y)
√
1

| f ◦ g(x, y)|
,

if y 6= 0 and r = (n(x)
√
1)/| f ◦ g(x, y)| otherwise. An immediate computation

gives

`(δg−1,id)= `(γ
−1
ρ δg−1,id)= ln 1

τ
− ln r = ln

| f ◦ g(x, y)|

τ n(y)
√
1
, (32)

if y 6= 0 and

`(δg−1,id)= ln
| f ◦ g(x, y)|

τ n(x)
√
1

otherwise. With the conventions that we have taken, these formulas are also valid
if g−1C and H meet.
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Recall that there are only finitely many elements [g] ∈ GC\G/GH such that
g−1GC g ∩ GH is different from {1} or such that the multiplicity m(g−1, id) is
different from 1. If y 6= 0, using (32) for the third line below, [Parkkonen and Paulin
2011, Lemma 7] for the fourth one, and Theorem 14 applied to F = G for the sixth
one, we hence have, as s tends to +∞,

ψ f,G,x,y(s)

= Card
{
[g] ∈ (SU f (O)∩G)\G/Gx,y : n(Ox +Oy)−1

| f ◦ g(x, y)| ≤ s
}

= Card
{
[g] ∈ (PSU f (O)∩G)\G/Gx,y : `(δg−1,id)≤ ln

s n(Ox +Oy)

τ n(y)
√
1

}
∼ RG( f )[GH : Gx,y]Card

{
[g] ∈ GC\G/GH : `(δg−1,id)≤ ln

s n(Oρ+O)

τ
√
1

}
∼ RG( f )[GH : Gx,y]NG,C,H

(
ln

s n(Oρ+O)

τ
√
1

)
∼ RG( f )[GH : Gx,y]

6 Vol(GH\H)Vol(GC\C)

8π2 Vol(G\Hn
R)

(s n(Oρ+O)

τ
√
1

)4
.

We replace the three volumes in the computation above by their expressions given
in the equations (28), (29) and (31). We simplify the obtained expression using the
following two remarks. Firstly,

[GH : Gx,y]
[(0O)H : GH]

[(0O)H : 0O,x,y]
=
[(0O)H : Gx,y]

[(0O)H : 0O,x,y]
= [0O,x,y : Gx,y] = [0O,x,y : Gx,y].

Secondly, we claim that

Vol(3′O,ρ\H) n(Oρ+O)4 =
DA

4
. (33)

If x = 0, then 3′O,ρ = O; hence this claim is true, by (5) and since n(O) = 1.
Otherwise, claim (33) follows from Lemma 6 with z = ρ−1, since, by the definition
of 3′O,ρ ,

Vol(3′O,ρ\H) n(Oρ+O)4=Vol(3\H) n(Oz−1
+O)4=Vol(O\H)[O :3] n(Oz−1

+O)4,

and by (5).
This concludes the proof of Theorem 13 if y 6= 0. The case y = 0 is similar to

the case x = 0. �

Let us give a few corollaries of Theorem 13. The first one below follows by
taking G = SL2(O) in Theorem 13.

Corollary 16. Let f be an integral indefinite binary Hamiltonian form of discrim-
inant 1( f ) over a maximal order O of a definite quaternion algebra A over Q.
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Let x and y be elements in O not both zero. Then, as s tends to +∞, we have the
equivalence

ψ f,SL2(O),x,y(s)∼
540 Covol(SU f (O))

π2ζ(3)|O`(uxy−1)×|1( f )2
∏

p|DA
(p3− 1)(1− p−1)

s4.

Remark 17. Recall that by Remark 7, the map from SL2(O)\P
1
r (O) to OI×OI that

associates, to the orbit of [u : v] in P1
r (O) under SL2(O), the couple of ideal classes

([Iu,v], [Ku,v]) is a bijection. The counting function ψ f,SL2(O),x,y hence depends
only on ([Ix,y], [Kx,y]).

Given two left fractional ideals m and m′ of O, let ψ f,m,m′(s) be the cardinality
of the set

SU f (O)
∖ {
(u, v) ∈m×m :

| f (u, v)|
n(m)

≤ s, Iu,v =m, [Ku,v] = [m
′
]

}
.

Note that this counting function depends only on the ideal classes of m and m′.

Corollary 18. Let f be an integral indefinite binary Hamiltonian form of discrimi-
nant 1( f ) over a maximal order O of a definite quaternion algebra A over Q. Let
m and m′ be two left fractional ideals in O. Then as s tends to +∞, we have the
equivalence

ψ f,m,m′(s)∼
540 Covol(SU f (O))

π2ζ(3)|Or (m′)×|1( f )2
∏

p|DA
(p3− 1)(1− p−1)

s4.

Proof. By Remark 17, we have

ψ f,m,m′ = ψ f,SL2(O),x,y,

where (x, y) is any nonzero element of O×O such that [Ix,y]=[m] and [Kx,y]=[m
′
].

By the equations (4) and (3), if xy 6= 0, we have

|O`(uxy−1)×| = |Or (uxy−1
−1)×| = |Or (O∩Oyx−1)×| = |Or (Kx,y)

×
|.

The first and last terms are also equal if xy = 0. Hence the result follows from
Corollary 16. �

Remark 19. With ψ f,m the counting function defined in the introduction, we have

ψ f,m =
∑
[m′]∈OI

ψ f,m,m′ . (34)

Therefore, since ∑
[m′]∈OI

1
|Or (m′)×|

=
1

24

∏
p|DA

(p− 1)

by (8), Theorem 1 in the introduction follows from Corollary 18.
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We say u, v ∈ O×O are relatively prime if one of the following equivalent (by
Remark 17) conditions is satisfied:

(i) There exists g ∈ SL2(O) such that g(1, 0)= (u, v).

(ii) There exists u′, v′ ∈ O such that n(uv′)+ n(u′v)− tr(uvv′u′)= 1.

(iii) The O-modules Iu,v and Ku,v are isomorphic (as O-modules) to O.

We denote by PO the set of couples of relatively prime elements of O.

Corollary 20. Let f be an integral indefinite binary Hamiltonian form over a
maximal order O in a definite quaternion algebra A over Q, and let G be a finite
index subgroup of 0O = SL2(O). Then, as s tends to +∞, we have the equivalence

Card SU f (O)∩G\
{
(u, v) ∈ PO : | f (u, v)| ≤ s

}
∼

540 ιG[0O,1,0 : G1,0] Covol(SU f (O)∩G)
π2ζ(3)|O×|1( f )2[0O : G]

∏
d|DA

(p3− 1)(1− p−1)
s4.

Proof. This follows from Theorem 13 by taking x = 1 and y = 0. �

Proof of Corollary 2 from the introduction. Consider the integral indefinite binary
Hamiltonian form f over O defined by f (u, v)= tr(u v), with matrix

M( f )=
(

0 1
1 0

)
and discriminant 1( f )= 1. Its group of automorphs is

Sp1(O)=

{
g ∈ SL2(O) : g∗

(
0 1
1 0

)
g =

(
0 1
1 0

)}
,

which is an arithmetic lattice in the symplectic group over the quaternions Sp1(H).
We have

C( f )= {(z, r) ∈ H×]0,+∞[ : tr(z)= 0}.

The hyperbolic volume of the quotient of {(z, r) ∈ H×]0,+∞[ : tr(z)= 0} by
Sp1(O) has been computed as the main result of [Breulmann and Helmke 1996],
yielding

Covol(Sp1(O))=
π2

1080

∏
p|DA

(p2
+ 1)(p− 1),

where p ranges over the primes dividing DA.
Corollary 2 in the introduction then follows from Theorem 1 with m= O. �

Remark 21. Theorem 13 and its Corollary 20 allow the asymptotic study of the
counting of representations satisfying congruence properties. For instance, let I

be a (nonzero) two-sided ideal in an order O in a definite quaternion algebra A
over Q. Let 0I be the kernel of the map SL2(O)→GL2(O/I) of reduction modulo
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I of the coefficients, and 0I,0 the preimage of the upper triangular subgroup by
this map. Then applying Corollary 20 with G = 0I and G = 0I,0 respectively,
we get an asymptotic equivalence as s→+∞ of the number of relatively prime
representations (u, v) of integers with absolute value at most s by a given integral
binary Hamiltonian form, satisfying the additional congruence properties

{u ≡ 1 mod I, v ≡ 0 mod I} or {v ≡ 0 mod I}.

To give an even more precise result, the computation of the indices of 0I and 0I,0

in SL2(O) would be needed.

7. Geometric reduction theory of binary Hamiltonian forms

Let O be a (not necessarily maximal) order in a definite quaternion algebra A over Q.
Let Q be the 6-dimensional real vector space of binary Hamiltonian forms, Q+

the open cone of positive definite ones, Q± the open cone of indefinite ones, Q(O)

the discrete subset of the ones that are integral over O, and

Q+(O)= Q+ ∩Q(O), Q±(O)= Q± ∩Q(O).

For every 1 ∈ Z−{0}, let Q(1)= { f ∈ Q :1( f )=1}, Q(O,1)= Q(1)∩Q(O)

and
Q+(O,1)= Q(1)∩Q+(O), Q±(O,1)= Q(1)∩Q±(O).

The group R∗
+

acts on Q+ by multiplication; we will denote by [ f ] the orbit of
f and by Q+ the quotient space Q+/R∗

+
. Similarly, the group R∗ acts on Q± by

multiplication; we will denote by [ f ] the orbit of f and by Q± the quotient space
Q±/R∗. The right action of SL2(H) on Q preserves Q(1), Q+ and Q±, commuting
with the actions of R∗

+
and R∗ on these last two spaces. The subgroup SL2(O)

preserves Q(O), Q+(O), Q±(O), Q+(O,1), Q±(O,1).
Let C(H5

R) be the space of totally geodesic hyperplanes of H5
R, with the Hausdorff

distance on compact subsets.

Proposition 22. (1) The map 8 : Q+→ H5
R defined by

[ f ] 7→
(
−

b( f )
a( f )

,

√
−1( f )
a( f )

)
is a homeomorphism, which is (anti)equivariant for the actions of SL2(H): For
every g ∈ SL2(H), we have 8([ f ◦ g])= g−18([ f ]).

(2) The map9 :Q±→C(H5
R) defined by [ f ] 7→C( f ) is a homeomorphism, which

is (anti)equivariant for the actions of SL2(H): For every g ∈ SL2(H), we have
9([ f ◦ g])= g−19([ f ]).
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Note that 8([ f ]) may be geometrically understood as the pair of the center and
the imaginary radius of the imaginary sphere with equation f (z, 1)= 0, that is,

n
(

z+
b( f )
a( f )

)
=−

(√
−1( f )
a( f )

)2
.

Proof. (1) Since a = a( f ) > 0 and 1 = 1( f ) < 0 when f is a positive definite
binary Hamiltonian form, the map 8 is well-defined and continuous. Since the
orbit by R∗

+
of a positive definite binary Hamiltonian form has a unique element f

such that a( f )= 1, and since c( f ) then is equal to n(b( f ))−1, the map 8 is a
bijection with continuous inverse (z, r) 7→ [ fz,r ] where

fz,r : (u, v) 7→ n(u)− tr(uzv)+ (n(z)+ r2) n(v).

To prove the equivariance property of 8, we could use (14) and the formula for
the inverse of an element of SL2(O) given for instance in [Kellerhals 2003], but the
computations are quite technical and even longer than below. Hence we prefer to
use the following lemma to decompose the computations.

Lemma 23. The group (even the monoid) SL2(H) is generated by the elements(
0 −1
1 0

)
and

(
1 β

0 1

)
with β ∈ H.

This is a consequence of a general fact about connected semisimple real Lie
groups and their root groups, but the proof is short (and is one way to prove that
the Dieudonné determinant of (

α β

γ δ

)
is n(γβ − γαγ−1δ) if γ 6= 0).

Proof. This follows from the following facts, where α, β, γ, δ ∈ H. If α 6= 0, then(
α β

0 δ

)
=

(
α 0
0 δ

)(
1 α−1β

0 1

)
, and(

α 0
0 α−1

)
=

(
1 −α
0 1

)(
0 −1
1 0

)(
1 −α−1

0 1

)(
0 −1
1 0

)(
1 −α
0 1

)(
0 −1
1 0

)
.

If n(αδ)= 1, there exist u, v ∈ H× such that αδ = uvu−1v−1, and(
α 0
0 δ

)
=

(
u 0
0 u−1

)(
v 0
0 v−1

)(
(vu)−1 0

0 vu

)(
δ−1 0
0 δ

)
.

If γ 6= 0, then(
α β

γ δ

)
=

(
1 αγ−1

0 1

)(
0 −1
1 0

)(
γ 0
0 −β +αγ−1δ

)(
1 γ−1δ

0 1

)
. �
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Now, to prove the equivariance property, one only has to prove it for the elements
of the generating set of SL2(H) given in the above lemma. Given f ∈ Q+, let

M =
(

a b
b c

)
be the matrix of f and 1=1( f ). Note that the matrix of f ◦ g is g∗Mg.

If

g =
(

1 β

0 1

)
,

we have a( f ◦ g)= a and b( f ◦ g)= aβ + b. Since

g−1
·

(
−

b
a
,

√
−1

a

)
=

(
−

b
a
−β,

√
−1

a

)
=

(
−

b( f ◦g)
a( f ◦g)

,

√
−1( f ◦g)
a( f ◦g)

)
by (16), the result follows in this case.

If

g =
(

0 −1
1 0

)
,

then a( f ◦ g)= c and b( f ◦ g)=−b. By (14), for every (z, h) ∈ H5
R, we have

g−1
· (z, r)=

(
−z

n(z)+r2 ,
r

n(z)+r2

)
.

Therefore, since 1= n(b)− ac,

g−1
·

(
−

b
a
,

√
−1

a

)
=

(
−(− b

a )
n(b)
a2 +

−1
a2

,

√
−1
a
c
a

)
=

(
−

b( f ◦ g)
a( f ◦ g)

,

√
−1( f ◦ g)
a( f ◦ g)

)
.

The equivariance property of 8 follows.
(2) We have already seen that 9 is a bijection. Its equivariance property follows

from (17). Let a = a( f ), b = b( f ), c = c( f ) and 1=1( f ). Since

C( f )=
{
{(z, r) ∈ H5

R : n(az+ b)+ a2r2
=1} if a 6= 0,

{(z, r) ∈ H5
R : tr(zb)+ c = 0} otherwise,

the map 9 is clearly a homeomorphism. �

In order to define a geometric notion of reduced binary Hamiltonian form, much
less is needed than an actual fundamental domain for the group SL2(O) acting
on H5

R. Though it might increase the number of reduced elements, this will make
the verification that a given binary form is reduced much easier (see the end of this
section). Indeed, due to the higher dimension, the number of inequalities is much
larger than the one for SL2(Z) or for SL2(OK ), where OK is the ring of integers of
an imaginary quadratic number field K ; see for instance [Zagier 1981; Buchmann
and Vollmer 2007; Elstrodt et al. 1998].
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For n ≥ 2, let us denote by ‖z‖ the usual Euclidean norm on Rn−1. Consider
the upper halfspace model of the real hyperbolic n-space Hn

R, whose underlying
manifold is Rn−1

×]0,+∞[, so that ∂∞Hn
R = Rn−1

∪ {∞}. A weak fundamental
domain for the action of a finite covolume discrete subgroup 0 of isometries of Hn

R

is a subset F of Hn
R such that

(i)
⋃

g∈0 gF= Hn
R,

(ii) there exists a compact subset K in Rn−1 such that F is contained in K×]0,+∞[,

(iii) there exist κ, ε > 0 and a finite set Z of parabolic fixed points of 0 such that
F= {(z, r) ∈F : r ≥ ε}∪ (

⋃
s∈Z Es), where Es ⊂ {(z, r) ∈F : ‖z− s‖ ≤ κr2

}.

Note that a weak fundamental domain for a finite index subgroup of 0 is a weak
fundamental domain for 0.

When ∞ is a parabolic fixed point of 0, an example of a weak fundamental
domain is any Ford fundamental domain of 0, whose definition we now recall.

Given any isometry g of Hn
R such that g∞ 6=∞, the isometric sphere of g is the

(n−2)-sphere Sg of Rn−1 that consists of the points at which the tangent map of
g is a Euclidean isometry. We then define S+g as the set of points in Hn

R that are
in the closure of the unbounded component of the complement of the hyperbolic
hyperplane whose boundary is Sg. For instance, if

g =
(
α β

γ δ

)
∈ SL2(H),

then g∞ 6=∞ if and only if γ 6= 0 and its isometric sphere is then

Sg = {z ∈H : n(γ z+ δ)= 1}, so that S+g = {(z, r) ∈H5
R : n(γ z+ δ)+r2

≥ 1}.

Recall that since 0 has finite covolume, every parabolic fixed point ξ of 0 is
bounded, that is, the quotient of ∂∞Hn

R−{ξ} by the stabilizer of ξ in 0 is compact.
Let D∞ be a compact fundamental domain for the action of the stabilizer of∞ in
0 on Rn−1. Then the Ford fundamental domain F0 of 0 associated to D∞ is

F0 =

( ⋂
g∈0

g∞6=∞

S+g
)
∩
(
D∞×]0,+∞[

)
.

It is well known (see for instance [Beardon 1983, page 239]) that F0 is a fundamental
domain for 0 acting on Hn

R (in particular, F0 satisfies condition (i) of a weak
fundamental domain) and that the set of points at infinity of

⋂
g∈0,g∞6=∞ S+g is a

locally finite set of parabolic fixed points in ∂∞Hn
R. Furthermore, since parabolic

fixed points are bounded and have a precisely invariant horoball centered at them,
and since the tangency of a circle and its tangent is quadratic, the condition (iii)
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is satisfied for every ε small enough, and κ large enough. Note that F0 satisfies
condition (ii) with K = D∞.

Let us fix a weak fundamental domain F for the action of SL2(O) on H5
R. A

positive definite form f ∈ Q+(O) is reduced if 8([ f ]) ∈ F and an indefinite form
f ∈ Q±(O) is reduced if 9([ f ]) ∩F 6= 0. We say that a negative definite form
f ∈ −Q+(O) is reduced if − f is reduced. The notion of being reduced does
depend on the choice of a weak fundamental domain, which allows us to choose it
appropriately when computing examples. Recall that Q(1) is equal to Q±(1) if
1> 0 and to Q+(1)∪−Q+(1) if 1< 0.

Theorem 24. For every 1 ∈ Z−{0}, the number of reduced elements of Q(O,1)

is finite.

This is a restatement of Theorem 4 in the introduction.

Proof. Note that the Euclidean norm on H is ‖z‖ = n(z)1/2.
Let us first prove that the number of reduced elements of Q+(O,1) is finite.
For every f ∈ Q+(O,1), let a = a( f ) > 0, b = b( f ) and c = c( f ). We have

n(b)− ac =1 < 0; hence c is determined by a and b. The form f is reduced if
and only if

8([ f ])=
(
−

b
a
,

√
−1

a

)
∈ F.

By the condition (ii) and since K is compact, ‖b/a‖ is bounded. Hence, if we have
an upper bound on a, by the discreteness of O, the elements a and b may take only
finitely many values, and so does c, therefore the result follows.

Let κ, ε, Z be as in the condition (iii). If
√
−1/a ≥ ε, then a is bounded from

above, and we are done. Otherwise, by condition (iii), there exists s in the finite set
Z such that 8([ f ]) ∈ Es . In particular,∥∥∥−b

a
− s

∥∥∥≤ κ(√−1
a

)2
.

Since the set of parabolic elements of SL2(O) is A∪ {∞}, we may write s = u/v
with u ∈ O and v ∈ N−{0}. The inequality above becomes

a‖bv+ au‖ ≤ κ|1|v.

The element bv+au ∈ O either is equal to 0 or has reduced norm, hence Euclidean
norm, at least 1. In the second case, we have an upper bound on a, as wanted. In
the first case, we have b/a =−u/v, that is b =−au/v. Hence

1v2
= (n(b)− ac)v2

= a(a n(u)− cv2).

Since a n(u)− cv2
∈ Z, the integer a divides the nonzero integer 1v2; hence a is

bounded, as wanted.
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Let us now prove that the number of reduced elements of Q±(O,1) is finite,
which concludes the proof of Theorem 24.

We have 1 > 0. With K a compact subset as in the condition (ii), let δ =
supx∈K ‖x‖. Let f ∈Q±(O,1) be reduced, and fix (z, r)∈C( f )∩F. Let a= a( f ),
b = b( f ) and c = c( f ).

Assume first that a = 0. Then n(b)=1; hence b takes only finitely many values,
by the discreteness of O. Recalling that C( f )= {(z, r) ∈ H5

R : tr(zb)+ c = 0}, we
have by the Cauchy–Schwarz inequality

|c| = |tr(zb)| ≤ 2‖z‖‖b‖ ≤ 2δ
√
1.

Again by discreteness, c takes only finitely many values, and the result follows.
Assume that a 6= 0, and up to replacing f by − f (which is reduced if f is), that

a > 0. We have n(b)− ac =1, hence c is determined by a and b. Recalling that
C( f )= {(z, r) ∈H5

R : n(az+ b)+ a2r2
=1}, we have by the triangular inequality∥∥∥b

a

∥∥∥≤ ∥∥∥z+ b
a

∥∥∥+‖z‖ ≤ √1+ δ.
Hence as in the positive definite case, if we have an upper bound on a, the result
follows.

Let κ, ε, Z be as in the condition (iii). Note that r ≤
√
1/a. Hence if r ≥ ε, then

we have an upper bound a ≤
√
1/ε, as wanted. Therefore, we may assume that

(z, r) belongs to C( f )∩Es for some s ∈ Z . In particular,∥∥∥z+ b
a

∥∥∥=√1
a2 − r2 and ‖z− s‖ ≤ κr2.

First assume that ‖(b/a)+s‖≥
√
1/a. Then by the inverse triangular inequality

κr2
≥ ‖s− z‖ ≥

∥∥∥b
a
+ s

∥∥∥− ∥∥∥z+ b
a

∥∥∥≥ √1
a
−

√
1

a2 − r2 ≥
r2

2
√
1/a

.

Therefore, we have an upper bound a ≤ 2 κ
√
1, as wanted.

Now assume that ‖(b/a)+s‖<
√
1/a. Write s=u/v with u ∈O and v ∈N−{0}.

We have n(au+ bv) < 1v2. The element w = au+ bv, belonging to O and having
reduced norm at most 1v2, can take only finitely many values. The positive integer
v21− n(w) is equal to

v2(n(b)− ac)− n(au+ bv)=− tr(aubv)− n(au)− v2ac

=−a(tr(ubv)+ a n(u)+ v2c).

Since tr(u b v)+a n(u)+v2c∈Z by the properties of the reduced norm, the reduced
trace and the conjugate of elements of O, this implies that the integer a divides the
nonzero integer v21− n(w); hence a is bounded, as wanted.
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This concludes the proof of Theorem 24. �

Corollary 25. For every 1 ∈ Z−{0}, the number of orbits of SL2(O) in Q(O,1),
hence in Q+(O,1) and in Q±(O,1), is finite.

Proof. This immediately follows from Theorem 24, by the equivariance properties
in Proposition 22 and the assumption (i) on a weak fundamental domain (that was
not used in the proof of Theorem 24). �

Example 26. Let A be Hamilton’s quaternion algebra over Q. Let O be Hurwitz’s
maximal order in A, and let O′=Z+Zi+Z j+Zk be the order of Lipschitz integral
quaternions.

We identify H and R4 by the R-linear map sending (1, i, j, k) to the canonical
basis of R4. Let V ⊂ O′ denote the set of vertices of the 4-dimensional unit cube
[0, 1]4. We claim that the set

F= {(z, r) ∈ H5
R : z ∈ [0, 1]4, n(z− s)+ r2

≥ 1 for all s ∈ V }

is a weak fundamental domain for SL2(O
′), and hence for SL2(O). For every s ∈ V ,

the 3-sphere in H with equation n(z− s)= 1 is the isometric sphere of(
0 −1
1 s

)
∈ SL2(O

′).

Since the diameter of the cube [0, 1]4 is 2, the closed balls bounded by these spheres
cover [0, 1]4. This unit cube is a fundamental polytope of the subgroup of unipotent
elements of SL2(O

′) fixing∞. Thus, F contains a Ford fundamental domain of
SL2(O

′), which implies property (i) of a weak fundamental domain. Property (ii)
(with K the unit cube) is valid by the definition of F. Property (iii) follows from the
fact that the only point at infinity of F besides∞ is the center point (1+i+ j+k)/2
of the unit cube, which is the only point of this cube which does not belong to one
of the open balls whose boundary is one of the isometric spheres used to define F.
Note that (1+ i + j + k)/2 ∈ A is a parabolic fixed point of SL2(O

′).
Recall that a positive definite Hamiltonian form f ∈ Q+(O,1) with coefficients

a = a( f ), b = b( f ) = b1 + b2i + b3 j + b4k and c = c( f ) is reduced (for this
choice of weak fundamental domain) if (−b/a,

√
−1/a) ∈F. A straightforward

manipulation of the defining inequalities of F shows that f ∈ Q+(O,1) is reduced
if and only if its coefficients satisfy the following set of 25 inequalities

a > 0, 0≤−b` ≤ a, a
(

a− c− 2
∑
m∈P

bm

)
≤ Card(P) (35)

for all ` ∈ {1, 2, 3, 4} and for all subsets P ⊂ {1, 2, 3, 4}. Theorem 24 implies that
there are only a finite number of forms in Q+(O,1) whose coefficients satisfy the
inequalities (35).
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Similarly, an indefinite Hamiltonian form f ∈ Q±(O,1) with a( f ) = a > 0,
b( f )= b1+b2i+b3 j+b4k and c( f )= c is reduced, that is, C( f ) meets F, if and
only if the following system of 16 linear inequalities and one quadratic inequality
in four real variables X1, X2, X3, X4 has a solution in the unit cube [0, 1]4:

4∑
`=1

2X`
b`
a
+ X`2

≤−
c
a
,

4∑
`=1

2X`
b`
a
+

∑
m∈P

2Xm ≤−1− c
a
+Card(P),

for all subsets P ⊂ {1, 2, 3, 4}.

Appendix: The hyperbolic covolume of SL2(O), by Vincent Emery

Let A be a definite quaternion algebra over Q, with reduced discriminant DA, and
let O be a maximal order in A; see for instance [Vignéras 1980] and Section 2
for definitions and properties. Given a quaternion algebra A′ over a field k, let
SL2(A′) = SL1(M2(A′)) be the group of elements of the central simple 2 × 2
matrix algebra M2(A′) having reduced norm 1. For any subring O′ of A′, let
SL2(O

′)= SL2(A′)∩M2(O
′) and PSL2(O

′)= SL2(O
′)/{± id}. Fixing an identifica-

tion between A⊗Q R and Hamilton’s real quaternion algebra H turns SL2(O) into an
arithmetic lattice in SL2(H). Hence SL2(O) acts by isometries with finite covolume
on the real hyperbolic space H5

R; see for instance Section 3 for generalities.
In this appendix, the following result is proved using Prasad’s volume formula in

[Prasad 1989]. See the main body of this paper for a proof using Eisenstein series.

Theorem A.1. The hyperbolic covolume of SL2(O) is

Covol(SL2(O))=
ζ(3)

11520

∏
p|DA

(p3
− 1)(p− 1),

where p ranges over the prime integers.

Proof. Let P be the set of positive primes in Z. For every p ∈P, let Op = O⊗Z Zp,
which is a maximal order in the quaternion algebra Ap = A⊗Q Qp over Qp; see
for instance [Vignéras 1980, page 84].

We refer for instance to [Tits 1966] for the classification of the semisimple
connected algebraic groups over Q. Let G be the (affine) algebraic group over Q,
having as its group of K -points, for each characteristic zero field K , the group

G(K )= SL2(A⊗Q K )= SL1(M2(A⊗Q K )).

The group G is absolutely (quasi)simple and simply connected. Indeed, the C-
algebra A⊗Q C is isomorphic to M2(C) and thus the complex Lie group G(C) is
isomorphic to SL1(M4(C)) = SL4(C) (note that we are using the reduced norm



On the arithmetic and geometry of binary Hamiltonian forms 109

and not the norm). Furthermore, G is an inner form of the split algebraic group
G= SL4 over Q. The (absolute) rank of G and the exponents of G are given by

r = 3 and m1 = 1, m2 = 2, m3 = 3; (A1)

see for instance [Prasad 1989, page 96]. We consider the Z-form of G such that
G(Z)= SL2(O) and G(Zp)= SL2(Op) for every p ∈P; see for instance [Parkkonen
and Paulin 2010, page 382] for details.

Let IG,Qp be the Bruhat–Tits building of G over Qp; see for instance [Tits 1979]
for the necessary background on Bruhat–Tits theory. Recall that a subgroup of
G(Qp) is parahoric if it is the stabilizer of a simplex of IG,Qp ; a coherent family of
parahoric subgroups of G is a family (Yp)p∈P, where Yp is a parahoric subgroup
of G(Qp) and Yp =G(Zp) for p big enough. The principal lattice associated with
this family is the subgroup G(Q)∩

∏
pYp of G(Q) (diagonally contained in the

group G(A f )=
∏
′

p G(Qp) of finite adèles of G, where as usual
∏
′ indicates the

restricted product).
For every p ∈P, recall that by the definition of the discriminant DA of A, if p

does not divide DA, then the algebra Ap is isomorphic to M2(Qp), and otherwise Ap

is a d2-dimensional central division algebra with center Qp with d=2. Furthermore,
for the discrete valuation ν = νp ◦n, where νp is the discrete valuation of Qp and n
the reduced norm on Ap, the maximal order Op is equal to the valuation ring of ν;
see for instance [Vignéras 1980, page 34].

First assume that p does not divide DA. Then G is isomorphic to G = SL4

over Qp. The vertices of the building IG,Qp are the homothety classes of Zp-lattices
in Qp

4. In particular SL2(Op)=SL4(Zp) is the stabilizer of the class of the standard
Zp-lattice Zp

4 and hence is parahoric.
Now assume that p divides DA. Then G(Qp) = SLm(Ap) with m = 2 and

G(Qp) has local type dAmd−1 =
2A3 in Tits’ classification [1979, Section 4.4]. The

corresponding local index is shown below:

s

2 2

s

Local index of type 2A3.

The building IG,Qp is a tree (see for instance [Serre 1977] for the construction
of the Bruhat–Tits tree of SL2(K ) even when K is a noncommutative division
algebra endowed with a discrete valuation). Its vertices are the homothety classes of
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Op-lattices in the right Ap-vector space Ap
2. In particular SL2(Op) is the stabilizer

of the class of the standard Op-lattice Op
2, hence is parahoric.

Therefore, by definition, the family (SL2(Op))p∈P is a coherent family of (maxi-
mal) parahoric subgroups of G, and SL2(O)=G(Z)=G(Q)∩

∏
p∈P G(Zp) is its

associated principal lattice.
For every p ∈P, let M p (respectively Mp) be the maximal reductive quotient,

defined over the residual field Fp = Zp/pZp, of the identity component of the
reduction modulo p of the smooth affine group scheme over Zp associated with
the vertex of IG,Qp (respectively IG,Qp ) stabilized by the parahoric subgroup
SL2(Op) (respectively SL4(Zp)); see for instance [Tits 1979, Section 3.5]. Note
that M p = Mp if p does not divide DA, and that for every p ∈ P the algebraic
group Mp is isomorphic to SL4 over Fp. In particular Mp(Fp)= SL4(Fp) and thus,
for every p ∈ P, the orders of finite groups of Lie type being listed for example in
[Ono 1966, Table 1], we have

dim Mp = 15 and |Mp(Fp)| = p6(p2
− 1)(p3

− 1)(p4
− 1). (A2)

If p divides DA, by applying the theory in [Tits 1979, §3.5.2] on the local index
2A3, we see that the semisimple part M ss

p of M p (given as the commutator algebraic
group [M p,M p]) is of type 2(A1× A1) and the radical R(M p) of M p must be a
one-dimensional nonsplit torus over Fp. In particular |R(M p)(Fp)| = p+ 1 and
M ss

p (Fp) has the same order as SL2(Fp2), that is, p2(p4
− 1). Since the radical

R(M p) is central in M p and the intersection R(M p)∩M ss
p is finite (see [Springer

1998, Proposition 7.3.1]), the product map

M ss
p × R(M p)→ M p, (x, y) 7→ xy

is an isogeny (defined over Fp) and using Lang’s isogeny theorem (see for example
[Platonov and Rapinchuk 1994, Proposition 6.3, page 290]), we obtain the order of
M p(Fp) as the product |M ss

p (Fp)| · |R(M p)(Fp)|.
Alternatively, the order of M p(Fp) can be deduced from the concrete structure

of M p given in [Bruhat and Tits 1984]. Namely, it follows from [ibid., Proposition
3.11 and Section 5.5] that M p(Fp) corresponds to the group of elements of reduced
norm 1 in the Fp-algebra M2(Fp2) (where Fp2 appears as the residue field of the
division algebra Ap; see [Vignéras 1980, page 35]). The reduced norm (over Fp)
of an element g ∈ M2(Fp2) is NF2

p|Fp(det(g)), where NFp2 |Fp is the norm of the
extension Fp2 |Fp. Thus M p(Fp) is the kernel of the surjective homomorphism
GL2(Fp2)→ F×p defined by g 7→ det(g)p+1.

Therefore, from any of the two arguments above, we obtain that for every p ∈P

dividing DA,

dim M p = 7 and |M p(Fp)| = p2(p4
− 1)(p+ 1). (A3)
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Let µ be the Haar measure on G(R)= SL2(H) normalized as in [Prasad 1989].
That is, if w is the top degree exterior form on the real Lie algebra of G(R) whose
associated invariant differential form on G(R) defines the measure µ and if Gu(R)

is a compact real form of G(C), then the complexification wC of w on the complex
Lie algebra of G(C)=Gu(C) defines a top degree exterior form wu on the real Lie
algebra of Gu(R), whose associated invariant differential form on Gu(R) defines a
measure µu , and we require that µu(Gu(R))= 1.

Let µ′ be the Haar measure on PSL2(H) = SO0(1, 5) that disintegrates by the
fibration SO0(1, 5) → SO0(1, 5)/SO(5) = H5

R with measures on the fibers of
total mass one 1 and measure on the base the Riemannian measure d volH5

R
of the

Riemannian metric of constant sectional curvature −1. Let µ̃′ be the Haar measure
on SL2(H) such that the tangent map at the identity of the double cover of real Lie
groups SL2(H)→ PSL2(R) preserves the top degree exterior forms defining the
Haar measures. In particular, since − id belongs to SL2(O),

Covol(SL2(O))= Vol(PSL2(O)\H
5
R)

= µ′(PSL2(O)\PSL2(H))= µ̃
′(SL2(O)\SL2(H)). (A4)

Similarly, with S5 the 5-sphere endowed with its standard Riemannian metric
of constant sectional curvature +1, let µ′u be the Haar measure on SO(6) that
disintegrates by the fibration SO(6)→ SO(6)/SO(5)= S5 with measures on the
fibers of total mass one 1 and measure on the base the Riemannian measure. In
particular, µ′u(SO(6))= Vol(S5). Recall that

Vol(Sn)=
2πm

(m−1)!
if n = 2m− 1≥ 3.

It is well known (see for instance [Helgason 1978]) that the duality G/K 7→ Gu/K
between irreducible symmetric spaces of noncompact type endowed with a left
invariant Riemannian metric and the ones of compact type, where Gu is a compact
form of the complexification of G, sends H5

R to S5, and hence µ′ to µ′u .
The maximal compact subgroup SU(4) of SL4(C) is a covering of degree 2 of

SO(6), which is the compact real form corresponding to SO0(1, 5). Hence we have
(as first proved in [Emery 2009, Section 13.3])

µ̃′ = 2 Vol(S5)µ= 2π3µ. (A5)

By Prasad’s volume formula [Prasad 1989, Theorem 3.7] (where with the notation
of this theorem, `= k=Q (hence Dk = D`= 1), S= V∞={∞} and the Tamagawa
number τQ(G) is 1), we have, since Mp = M p if p does not divide DA and by (A1)
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for the second equality,

µ(SL2(O)\SL2(H))=

r∏
i=1

(mi )!

(2π)mi+1

∏
p∈P

p(dim M p+dim Mp)/2

|M p(Fp)|

=
12
(2π)9

∏
p∈P

pdim Mp

|Mp(Fp)|

∏
p|DA

|Mp(Fp)|

|M p(Fp)|
p(dim M p−dim Mp)/2. (A6)

Using Euler’s product formula ζ(s)=
∏

p∈P 1/(1− p−s) for Riemann’s zeta func-
tion, we have by (A2), since ζ(2)= π2/6 and ζ(4)= π4/90,

∏
p∈P

pdim Mp

|Mp(Fp)|
= ζ(2)ζ(3)ζ(4)=

π6ζ(3)
540

. (A7)

Using the equations (A4), (A5), (A6), (A7), (A2) and (A3), the result follows. �
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L-functions and periods of
adjoint motives

Michael Harris

The article studies the compatibility of the refined Gross–Prasad (or Ichino–
Ikeda) conjecture for unitary groups, due to Neal Harris, with Deligne’s con-
jecture on critical values of L-functions. When the automorphic representations
are of motivic type, it is shown that the L-values that arise in the formula are
critical in Deligne’s sense, and their Deligne periods can be written explicitly as
products of Petersson norms of arithmetically normalized coherent cohomology
classes. In some cases this can be used to verify Deligne’s conjecture for critical
values of adjoint type (Asai) L-functions.

Introduction

The refined Gross–Prasad conjecture, or Ichino–Ikeda conjecture, is an explicit and
exact expression for certain products of special values of automorphic L-functions
in terms of automorphic periods. In the situation of the present article, π and π ′

are automorphic representations of unitary groups U(W ) and U(W ′), respectively,
where W is a hermitian space of dimension n over a CM field K and W ′ ⊂ W
is a nondegenerate hermitian subspace of codimension 1. We assume π and π ′

admit base change to automorphic representations BC(π) and BC(π ′) of GL(n,K)

and GL(n− 1,K), respectively. The original Ichino–Ikeda conjecture is stated for
inclusions of special orthogonal groups; the version for unitary groups, due to Neal
Harris [N. Harris 2011], gives a formula for the quotient

L
( 1

2 ,BC(π)×BC(π ′)
)

L(1, π,Ad)L(1, π ′,Ad)
(0.1)

in terms of global periods, local integrals, and some elementary terms (for de-
tails, see Section 2.1). Here the numerator is a Rankin–Selberg tensor product
L-function for GL(n) × GL(n−1), and the L-functions attached to the adjoint

Institut des Mathématiques de Jussieu, U.M.R. 7586 du CNRS. Membre, Institut Universitaire de
France. This work was partially supported by the Association of Members of the Institute for Ad-
vanced Study.
MSC2010: primary 11F67; secondary 11F70, 14G35, 11G09.
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representations of the L-groups of unitary groups can be identified with the Asai
L-functions L(s,BC(π),As±), L(1,BC(π ′),As∓) of the conjugate self-dual rep-
resentations BC(π), BC(π ′) as follows (see [N. Harris 2011, Remark 1.4; Gan
et al. 2012a, Proposition 7.4]):

L(s, π,Ad)= L(s,BC(π),As(−1)n ),

L(s, π ′,Ad)= L(s,BC(π),As(−1)n−1
).

(0.2)

In its formulation for special orthogonal groups, the Ichino–Ikeda conjecture is
inspired by formulas for the central values of L-functions of GL(2), due to Wald-
spurger [1985] and others, and represents the culmination of several decades of
work in connection with the Birch–Swinnerton-Dyer conjecture, including various
attempts to generalize the Gross–Zagier formula. It is natural to focus on the central
value in the numerator in the Ichino–Ikeda conjecture, and to view the L-values in
the denominator as error terms. The present paper is instead primarily concerned
with the denominator.

In what follows, when π is attached to a motive M of rank n over a number field,
the value L(1, π,Ad)= L(s,BC(π),As(−1)n ) is critical in Deligne’s sense [1979a],
and is expected to be closely connected to the classification of p-adic deformations
of the mod p Galois representations attached to M . For n= 2 this principle is well
understood and there are very precise results due to Hida [1981], Diamond–Flach–
Guo [2004], and Dimitrov [2009]. This is the first of a series of papers whose goal
is to indicate a way to prove similar results for n> 2. The approach suggested here
is heuristic and speculative, inasmuch as the Ichino–Ikeda conjecture has only been
proved in special cases,1 and a number of the steps rely on nonvanishing results
for special values of L-functions, and ergodicity results for automorphic periods,
that have yet to be studied seriously. Nevertheless, the Ichino–Ikeda conjecture, in
conjunction with Deligne’s conjecture on critical values of L-functions, indicates
the existence of structural links between congruences among automorphic forms
and the divisibility of the value L(1, π,Ad), and these links seem worth exploring.

The function L(s, π,Ad) is interpreted as the L-function of the Asai motive
As(−1)n(M) attached to M . The present paper introduces the family of cohomo-
logical realizations that should be attached to the conjectural object As(−1)n(M)
and explains how to relate them to automorphic forms. The main results interpret
the Deligne period of As(−1)n(M) in terms of coherent cohomological automorphic
forms, and show how the Ichino–Ikeda conjecture can be used to prove a version
of Deligne’s conjecture for the critical value L(1, π,Ad) = L(1,As(−1)n(M)),

1 Added in proof: Since this paragraph was written, Wei Zhang has made remarkable progress on
the conjecture, especially on the case considered in the final section of this paper. I will be returning
to this question in forthcoming work with Harald Grobner.
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assuming certain nonvanishing conjectures for twists of standard L-functions of
unitary groups by finite order characters. Heuristic evidence for the nonvanishing
conjectures is provided by the existence of p-adic L-functions: when π varies in a
Hida family of ordinary automorphic representations with global root number +1,
the p-adic L-function of the family is generically nonzero at the central critical
point. Although the foundations are largely available for general CM fields, the
main applications of the present article are limited to the case where K is a qua-
dratic imaginary field and n is even; this provides for some simplification of the
main formulas, while presenting the general picture. The author and L. Guerberoff
hope to treat the general case in a subsequent article. Applications to congruence
modules, in Hida’s sense, will be treated in forthcoming joint work with C. Skinner.

The present paper can also be read as a confirmation of the compatibility be-
tween the Ichino–Ikeda conjecture and Deligne’s conjecture for pairs of automor-
phic motives satisfying the inequalities (2.3.4), which correspond to period inte-
grals on totally definite hermitian spaces W and W ′. It appears that compatibility
in general cannot be established by purely automorphic methods.

Notation and conventions

Throughout the article, we let K be a CM quadratic extension of a totally real field
F , with c ∈ Gal(K/F) complex conjugation. Let 6F denote the set of real places
of F , and let 6 denote a CM type of K, a set of extensions of 6F to K, so that
6
∐

c ·6 is the set of archimedean embeddings of K. If σ ∈6F , we let σK denote
its extension in 6. We let ηK/F : Gal(F̄/F)→ {±1} denote the Galois character
attached to the quadratic extension K/F .

Unless otherwise indicated, a discrete series representation of an algebraic group
G over R will always be assumed to be algebraic, in the sense that its infinitesimal
character is the same as that of a finite-dimensional representation. This is of course
a condition on the central character.

Let E be a number field, and let α, β ∈ E ⊗Q C. Following Deligne, we write
α ∼E β if either β /∈ (E ⊗Q C)× or β−1α ∈ E = E ⊗Q Q. In the situations that
arise, if β /∈ (E ⊗Q C)× then we will assume β = 0.

Suppose K is a number field with a given embedding in C. Then we write
α ∼E,K β if either β /∈ (E ⊗Q C)× or β−1α ∈ E ⊗Q K⊂ E ⊗Q C.

1. Deligne periods of polarized regular motives

1.1. Polarized regular motives over CM fields. Let 5 be a cuspidal cohomologi-
cal automorphic representation5 of GL(n,K) satisfying the polarization condition

5∨ −→∼ 5c. (1.1.1)
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Let E = E(5) denote a field of definition of 5 f .2 This is a CM field [Blasius
et al. 1994] and in what follows we will consider c-linear automorphisms of E-
vector spaces. By the results of a number of people, collected in [Chenevier
and Harris 2013], 5 gives rise to a compatible system of λ-adic representations
ρ5,λ : Gal(Q/K)→ GL(n, Eλ), where λ runs over places of E , with a nondegen-
erate pairing

ρ5,λ⊗ ρ
c
5,λ→ Eλ(1− n). (1.1.2)

To keep these Galois representations company, we postulate the existence of a
pure motive M=M5 over K of rank n and weightw=n−1, with coefficients in E ,
whose λ-adic realization is ρ5,λ and whose other realizations can be constructed
using automorphic forms. For the present purposes, all we know of M is its family
of realizations, together with compatibility isomorphisms. The relation between
M and 5 is encapsulated in the formula

L(s,M)= L(s+ 1
2(1− n),5)= L(s,5⊗ (| · | ◦ det)(1−n)/2) (1.1.3)

Consider the motives RM = RK/F M and RM = RK/Q M over F and Q, respec-
tively. The base change RMK of RM breaks up as M⊕Mc, where the distinction
between M and Mc depends on the choice of CM type 6. Indeed, for each real
embedding σ of F we can consider RMB,σ , which can be interpreted as the topo-
logical cohomology H∗(RM ×σ,C (C), E); then

RMK,B,σ = H∗(RM ×σK,C (C), E)⊕ H∗(RM ×cσK,C (C), E).

The polarization is a nondegenerate pairing

〈 · , · 〉B : M ⊗Mc
→ E(1− n) (1.1.4)

whereas F∞ is just an isomorphism of Betti realizations that is linear with respect
to the E-module structure:

F∞ : MB −→
∼ Mc

B . (1.1.5)

We choose an E-basis (e1, . . . , en) of MB and let ec
i = F∞(ei ) for i = 1, . . . , n. I

refer to my paper [Harris 1997] for generalities about Deligne’s conjectures [1979a]
on special values of L-functions, as specialized to polarized regular motives. In
that paper it is assumed M −→∼ Mc, or equivalently that 5 is a base change from
F to K, so that the superscripts c can be removed in (1.1.1) and (1.1.2). The

2To be completely accurate, although it is known that5 f has a model over its field of rationality,
it is not known that the motive we construct below has coefficients in the same field; for example,
it has not been checked that the associated Galois representations can be realized over the λ-adic
completions of E(5), because of the possibility of a nontrivial Brauer obstruction. So we will
take E(5) to be a finite extension of the field of rationality of 5 f over which all the subsequent
constructions are valid.
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arguments in general are simple modifications of this self-dual case; however, there
are roughly twice as many invariants in the general case. I follow [Harris et al.
2011], where these invariants are discussed in connection with automorphic forms
on unitary groups.

The restriction of scalars RK/Q M5 is naturally a motive of rank n over Q

with coefficients in E(5) ⊗ K. The de Rham realization of RK/Q M5, denoted
MK/Q,DR(5), is a free rank n module over E(5)⊗K. The Hodge decomposition

MK/Q,DR(5)⊗C−→∼
⊕

p+q=n−1

M p,q
K/Q(5) (1.1.6)

and the natural decomposition of E(5)⊗K⊗C-modules

MK/Q,DR(5)⊗C−→∼
⊕

σ :E(5)⊗K→C

MK/Q,σ (5) (1.1.7)

are compatible with the E(5)⊗K-action in the sense that complex conjugation c
defines antilinear isomorphisms

c : M p,q
K/Q,σ (5)−

∼→Mq,p
K/Q,cσ (5) (1.1.8)

such that

c(am)= c(a)c(m) for a ∈ E(5)⊗K, m ∈ M p,q
K/Q,σ (5). (1.1.9)

Here
M p,q

K/Q,σ (5)= M p,q
K/Q(5)∩MK/Q,σ (5).

1.1.10 Formal properties of polarized regular motives. One expects the following
properties to hold:

(a) For all p, q, σ , dim M p,q
K/Q,σ (5)≤ 1.

(b) For all p, q , dim M p,q
K/Q,σ (5) is independent of the restriction of σ to E(5)⊗1.

(c) Let σ be as above and denote by w ∈6K its restriction to 1⊗K, and w+ ∈6F

its restriction to F . Let µ(w) be the infinitesimal character of the finite-
dimensional representation Ww defined in [Harris et al. 2011, Section 2.3]
and let

p(w)= µ(w)+ n−1
2 (1, 1, . . . , 1) := (p1(w), p2(w), . . . , pn(w))

so that for all i , [Harris et al. 2011, (2.3.2)] implies that

pi (w)+ pn+1−i (cw)= n− 1.

Then dim M p,q
K/Q,σ (5) = 1 if and only if (p, q) = (pi (w), pn+1−i (cw)) for

some i ∈ n := {1, . . . , n}.
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(d) The motive RK/Q M5 has a nondegenerate polarization

〈 · , · 〉 : RK/Q M5⊗ RK/Q M5→Q(1− n)

that is alternating if n is even and symmetric if n is odd. The involution † on
the coefficients E(5)⊗K induced by this polarization,

〈ax, y〉 = 〈x, a† y〉 for a ∈ E(5)⊗K and x, y ∈ RK/Q M5,

coincides with complex conjugation. In particular, the polarization induces a
nondegenerate hermitian pairing

〈 · , · 〉i,w : M
pi (w),pn+1−i (cw)
K/Q,σ (5)⊗M pi (cw),n−1−pi (w)

K/Q,σ (5)→ C

for each pair (i, w).

Let qi (w) = n − 1− pi (w) = pn+1−i (cw). For each pair (i, w) ∈ n×6K, we
let ωi,w(5) ∈ M pi (w),qi (w)

K/Q,τ (5) be the nonzero image of some F-rational class in
the appropriate stage of the Hodge filtration on MK/F,DR(5); see [Harris 1997,
Section 1.4]. Via the comparison isomorphism

RMB ⊗C−∼→ RMDR⊗C

there is an action of F∞ on RMDR, linear with respect to the coefficients E , that
exchanges MDR with Mc

DR. Define the de Rham polarization 〈 · , · 〉DR by analogy
with (1.1.4). It restricts to perfect pairings

M pi (w), n−1−pi (w)⊗M pn+1−i (cw), n−1−pn+1−i (cw)→ E(1− n).

Let
Qi,w(5)= 〈ωi,w(5), F∞(ωi,w(5))〉DR ∈ R×. (1.1.11)

Here F∞ is complex conjugation on the Betti realization of MK/Q,DR(5); see [Har-
ris 1997, (1.0.4)]. Then we may assume

F∞(ωi,w(5))= Qi,w(5) ·ωn+1−i,cw(5). (P)

For the rest of Section 1 we will assume F = Q, since the main applications
will be in this setting. We can thus choose an embedding w :K ↪→C once and for
all and drop the subscripts w in what follows, writing for example ωi for ωi,w.

1.2. The determinant motive. The determinant det(M) is a rank one motive over
K of weight nw = n(n− 1) with coefficients in E . Since its λ-adic realization is
the Galois character ξ5,λ = det ρ5,λ we can write det(M)= M(ξ5) where

ξ5 = χ5 · ‖ · ‖
−n(n−1)/2 (1.2.1)

is the indicated shift of the central character χ5 of 5, calculated using (1.1.3).
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The polarization of M defines a polarization

M(ξ5)⊗M(ξ c
5)→ E(n(1− n)), (1.2.2)

which is obviously consistent with (1.2.1). Taking �M =
∧n

i=1 ωi as an E-rational
basis of det(M)DR, and defining �c

M analogously, relation (P) yields

F∞(�M)= Qdet(M)�
c
M , Qdet(M) =

n∏
i=1

Qi . (1.2.3)

On the other hand, letting eM and ec
M denote E-rational bases of det(M)B and

det(Mc)B respectively, we can write

eM = δ(M)�M , (1.2.4)

where following Deligne we let δ(M) denote the determinant of the comparison
isomorphism I∞ : MB ⊗ C−∼→ MDR ⊗ C calculated in E-rational bases; δ(M) is
well-defined as an element of (E ⊗ C)×/E×; see [Harris 1997, (1.2.2)].3 The
determinant of the dual map (I∨

∞
)−1
: M∨B ⊗C−∼→M∨DR⊗C equals δ(M)−1, up to

a multiple in E×, but by the polarization we find that this is the determinant of

I c(1− n)∞ : Mc(n− 1)B ⊗C−∼→Mc(n− 1)DR⊗C.

This in turn is (2π i)n(n−1) times the determinant of I c
∞
: Mc

B ⊗C−∼→Mc
DR⊗C; in

other words,
δ(M)−1

= (2π i)n(n−1)δ(Mc). (1.2.5)

Or, with respect to the comparison isomorphism,

ec
M = (2π i)n(1−n)δ(M)−1�c

M . (1.2.6)

Now by (1.2.3) and (1.2.4) we have

�c
M = Q−1

det(M)F∞(�M)= Q−1
det(M)δ(M)

−1ec
M ,

which combined with (1.2.6) yields the following:

Lemma 1.2.7. Under the hypotheses of Section 1.1, we have the relation
n∏

i=1

Qi = Qdet(M) = (2π i)n(1−n)δ(M)−2

as elements of (E ⊗ C)×/E×. In other words, there is an element d(M) ∈ E×

such that
δ(M)−1

= d(M)1/2 · (2π i)n(n−1)/2
· Q1/2

det(M),

3Deligne’s δ is the determinant of the period matrix of a motive over Q; here the motive is over K.
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where the choice of square root d(M)1/2 depends on the choice of square root of
Qdet(M) in (E ⊗C)×/E×.

This is to be compared to [Harris 1997, Lemma 1.4.12]. There the indepen-
dent definition of δ(M) determines a square root of d(M) = [dDR(M)/dB(M)].
Presumably d(M) is again a ratio of discriminants of forms attached to the polar-
ization, and its square root can therefore be given an independent definition in an
appropriate quadratic extension of E .

1.3. Asai motives. We postulate that the adjoint motive Ad(M) = M ⊗ M∨ de-
scends to a motive over F , denoted As(M) (for Asai). This is true for the `-adic
realizations, as explained in [Gan et al. 2012a], and we introduce the correspond-
ing ad hoc descents of the de Rham and Betti realizations in order to define the
Deligne periods.

More precisely, in the article [Gan et al. 2012a] of Gan, Gross and Prasad, there
are two descents, denoted As(M)+ and As(M)−, that differ from one another by
twist by the quadratic character ηK/F , and are distinguished by the signature of
F∞, which is n(n ± 1)/2 on As(M)±. Ours is the one denoted As(M)(−1)n , as
one sees by the definition of the F∞ action below. Because the signs interfere
with the notation for Deligne’s periods, we write As(M) instead of As(M)(−1)n

and (As(M)B)
± with parentheses to designate the ±1-eigenspaces of F∞.

We denote by Q(ηK/F ) the Artin motive of rank 1 over F attached to the charac-
ter ηK/F . Let eη denote a basis vector for Q(ηK/F )B . The archimedean Frobenius
F∞ acts as −1 on Q(ηK/F )B . Let t be a rational basis of Q(1)DR =Q (see [Harris
1997, 1.1]), tB = 2π i t a rational basis of Q(1)B = (2π i)Q; then F∞(tB)=−tB .

We identify Ad(M)c−∼→Ad(M) by composing

Ad(M)c = Mc
⊗M∨,c−∼→M∨(1− n)⊗ (Mc(n− 1))c

= M∨⊗M −∼→M ⊗M∨ = Ad(M),

where the last isomorphism is just exchanging the factors and the first is defined
by the polarization. As a model for As(M)B over F we take

As(M)B = MB ⊗Mc
B(1− n)⊗Q(ηK/F )

⊗n

with the action

F∞(ei ⊗ ec
j ⊗ t1−n

B ⊗ e⊗n
η )= e j ⊗ ec

i ⊗ (−1)1−nt1−n
B ⊗ (−1)ne⊗n

η

=−e j ⊗ ec
i ⊗⊗t1−n

B e⊗n
η .

Here we have exchanged the first two factors after applying complex conjugation.
Thus the vectors

{e+i j = [ei ⊗ ec
j − e j ⊗ ec

i ]⊗ t1−n
B ⊗ e⊗n

η , i < j}
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and
{e−i j = [ei ⊗ ec

j + e j ⊗ ec
i ]⊗ t1−n

B ⊗ e⊗n
η , i ≤ j}

form bases for (As(M)B)
+ and (As(M)B)

−, respectively, in Deligne’s notation
(where we have added parentheses as explained above). In particular,

dim(As(M)B)
+
=

1
2 n(n− 1) and dim(As(M)B)

−
=

1
2 n(n+ 1). (1.3.1)

But, in the applications we will be interested in the special value L(1,As(M))=
L(0,As(M)(1)). The action of F∞ on the Tate twist

As(M)(1)B = MB ⊗Mc
B(2− n)⊗Q(ηK/F )

⊗n

is as above, with (1− n) replaced by n. The motive As(M)(1) is pure of weight
−2, and the dimension calculation shows that F∞ acts as the scalar +1 on the
space of (−1,−1) classes; thus As(M)(1) is critical in Deligne’s sense.4 This
implies in particular that the Hodge filtration of As(M)(1)DR has two distinguished
steps F±As(M)(1)DR (see [Harris 1997, Section 1.2]) uniquely determined by the
equalities

dim F±As(M)(1)DR = dim(As(M)(1)B)
±
=

1
2 n(n± 1),

where the dimension calculation follows from (1.3.1), bearing in mind that F∞
acts as −1 on Q(1)B . We can similarly define steps in the filtration of As(M)DR:

n± := dim F±As(M)DR = dim(As(M)B)
±
=

1
2 n(n∓ 1). (1.3.2)

Thus,

F+As(M)DR ( F−As(M)DR and F−As(M)(1)DR ( F+As(M)(1)DR.

With respect to the isomorphism M∨−∼→Mc(n−1), we can take the differentials
ωc

j (n−1)=ωc
j⊗t⊗n−1 as a basis of M∨DR. It follows from the dimension calculation

above that the relevant step F+As(M)DR in the Hodge filtration is spanned by the
classes ωi j = ωi ⊗ω

c
j (n− 1), of Hodge type

Hi j (As(M)) := (pi + pc
j + 1− n, n− 1− pi − pc

j )

satisfying the condition
pi + pc

j > n− 1. (C(+))

This is equivalent to pi − pn+1− j > 0, and since the pi are strictly decreasing,
(C(+)) is true if and only if i + j ≤ n+ 1. Similarly F−As(M)DR is spanned by

4Dick Gross has pointed out that this can be seen purely in terms of representation theory. The
local L-factor at infinity L∞(s,As(M)) has no pole at s = 1 because discrete series parameters are
generic, and no pole at s = 0 because the corresponding representations are in the discrete series.
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ωi j satisfying
pi + pc

j ≥ n− 1 (n even), (C(−))

which holds if and only if i + j ≤ n+ 1.
We define the motives

∧2 M and Sym2 M over K in the obvious way. Because
we will need a uniform notation we write S+(M)= Sym2 M and S−(M)=

∧2 M .
Write

ω j =
∑

ai j ei and ωc
j =

∑
ac

i j e
c
i .

Then we have the relation ac
i,n+1− j = Q−1

j ai j . Now let {e±,∗ik } denote the dual basis
to the basis {e±ik} of (As(M)B)

± introduced above. It follows from the identity (P)
that we have

e±,∗ik (ω j,n+1−`)∼ [ai j ac
k,n+1−`± ak j ac

i,n+1−`](2π i)1−n

∼ (2π i)1−n Q−1
` (ai j ak,`± ak j ai,`)

∼ (2π i)1−n Q−1
` e±,∗ik (ω j ⊗ω`),

where ∼ means that the calculations are up to factors in the coefficient field. Now
if H j,n+1−`(As(M)) satisfies (C(+)), then j < `. The arguments of [Harris 1997,
Section 1.5] allow us to calculate the matrix for the Deligne period c+(As(M)∨) of
the dual of As(M). However, the self-duality of Ad(M) easily implies that As(M)
is self-dual, so the calculation that follows gives an expression for c+(As(M)). The
entries in the matrix are given by e+,∗ik (ω j`) as (i, k) varies over pairs with i ≤ k
and j ≤ ` if n is odd, with strict inequalities if n is even.

Keep n± as in (1.3.2). Then the determinant of the period matrix calculating
c±(As(M)) is equal to a certain product Q±(As(M)) of factors of the form Q−1

` ,
to be determined below, multiplied by the determinant 1 of the matrix

(ei ⊗ ek − ek ⊗ ei )
∗(ω j ⊗ω`)

as (i, k) ranges over pairs with i ≤ k and ( j, `) ranges over pairs with j < `, the
whole multiplied by (2π i)(1−n)n± . The determinant 1 is precisely the inverse of
the determinant of the full period matrix of the motive S∓(M) in the implicit bases,
which Deligne denotes δ(S∓(M)).

The factor Q±(As(M)) is determined as follows. For 1 ≤ ` ≤ n, let m+(`)
and m−(`) denote the number of j such that j ≤ ` and j < `, respectively. Then
m+(`)= ` and m−(`)= `− 1. Let

Q+(M)=
∏
`

Q−m+(`)
` =

∏
`

Q−`` and Q−(M)=
∏
`

Q−m−(`)
` =

∏
`

Q1−`
` .

It follows that:

Formula 1.3.3. Q±(As(M))= Q∓(M).
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This proves the first statement of the following proposition; the second statement
is proved analogously.

Proposition 1.3.4. Let M be a polarized motive satisfying the conditions of 1.1.10,
and with the property that Ad(M) descends to F =Q. Then

c+(As(M))= (2π i)(1−n)n+Q−(M)δ(S−(M))−1,

c−(As(M))= (2π i)(1−n)n−Q+(M)δ(S+(M))−1.

Applying [Deligne 1979a, formula (5.1.8)], with n− as in (1.3.2), we have

c+(As(M)(1))= c−(As(M))(2π i)n
−

.

One calculates easily that δ(S±(M)) = δ(det(M)n±1) = δ(M)n±1, where the last
equality follows from the considerations of Section 1.2.

Combining the formulas of this section with Lemma 1.2.7, we can therefore
write the Deligne period for the motive of interest explicitly in terms of the Q j

and δ.

Corollary 1.3.5. Under the above hypotheses, we have the following expression
for c+(As(M)(1)):

c+(As(M)(1))= (2π i)n
−

(2π i)(1−n)n−Q+(M)δ(S+(M))−1

= d(M)1/2(2π i)n(n+1)/2
[Qdet(M)]

(n−1)/2
·
∏
` Q1−`

`

= d(M)1/2(2π i)n(n+1)/2∏
` Q(n+1)/2−`

`

We see that δ(S−(M))−1 is an odd power of δ(M)−1; therefore we need to
include the factor d(M)1/2 introduced in Lemma 1.2.7 along with the half-integral
power of Qdet(M). The half-integral powers of the Q` that occur in the expression
for even n are not meaningful individually, and have only been included for their
suggestive similarity with the standard expression for the half-sum of positive roots.

Remark 1.3.6. If one defines Qc
` by analogy with the definition of Q` above, one

sees easily that Qc
` = Q−1

n+1−`. It is obvious that the expression in Corollary 1.3.5
is invariant when M and Mc are exchanged, as it should be.

1.4. Tensor products. In subsequent sections we will explore the relations be-
tween the calculations of the previous section and the Ichino–Ikeda conjecture.
Here we briefly explain how a similar calculation determines the Deligne period
of the tensor product of two motives of the type considered in Section 1.

Suppose M and M ′ are two motives of dimension n and n′, respectively, both
of the type considered above. We let ωa , ωc

t , ei , ec
i , where 1 ≤ a, t, i ≤ n, be the

basis vectors defined for M above. For M ′ we use the notation ηb, ηc
u , f j , f c

j , with
1≤ b, u, j ≤ n′. The Hodge types for M are (pi , n−1− pi ) and (pc

i , n−1− pc
i )
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as before; for M ′ we write (r j , n′−1−r j ) and (r c
j , n′−1−r c

j ). The tensor product
motive we consider is not RM ⊗ RM ′ but rather R(M ⊗ M ′) = RK/F (M ⊗ M ′),
whose Betti realization is MB⊗M ′B⊕Mc

B⊗(M
′)cB , and whose de Rham realization

breaks up analogously. In particular, the differentials ωa ⊗ ηb and ωc
t ⊗ η

c
u form a

basis for R(M ⊗M ′)DR.
The motive R(M ⊗ M ′) is of dimension 2nn′ over its coefficient field and of

weight w = n + n′ − 2. We will only need to consider the case when n and n′

are of opposite parity; for example, when n′ = n − 1, as in the original Gross–
Prasad conjecture. Then w is odd and R(M⊗M ′) has no (0, 0) classes; it follows
that the value (w + 1)/2 = (n + n′ − 1)/2 is a critical value of the L-function
L(s, R(M ⊗M ′)).

The basis for R(M ⊗ M ′)±B is then ei ⊗ f j ± ec
i ⊗ f c

j for 1 ≤ i ≤ n and i ≤
j ≤ n′. To determine the basis for F+R(M ⊗ M ′)DR = F−R(M ⊗ M ′)DR we
need to determine the sets A(M,M ′) and T (M,M ′) of pairs a, b and t, u such
that pa + rb ≥ (w+ 1)/2 and pc

t + r c
u ≥ (w+ 1)/2, respectively. Bearing in mind

Hodge duality, the cardinality

|A(M,M ′)| + |T (M,M ′)| = nn′ = dim F+R(M ⊗M ′)DR.

The set {ωa ⊗ ηb | (a, b) ∈ A(M,M ′)} ∪ {ωc
t ⊗ η

c
u | (t, u) ∈ T (M,M ′)} forms a

basis for F+R(M⊗M ′)DR. A calculation using the relation (P), as in Section 1.3,
shows that:

Lemma 1.4.1.

c+(R(M ⊗M ′)∨)=±c−(R(M ⊗M ′)∨)

=

∏
(t,u)∈T (M,M ′)

Qn+1−t(M)−1 Qn′+1−u(M ′)−1
· δ(M ⊗M ′)−1,

where δ is the determinant of the full period matrix for M⊗M ′, viewed as a motive
over K.

More precisely, letting (i, j) run over pairs of integers with 1 ≤ i ≤ n and
i ≤ j ≤ n′, the Deligne period c+(R(M ⊗ M ′)) is the determinant of the matrix
whose first |A(M,M ′)| columns, indexed by pairs (a, b) ∈ A(M,M ′), are the
vectors (aiab jb), and whose last |T (M,M ′)| columns, indexed by pairs (t, u) ∈
T (M,M ′), are the vectors (ac

i t b
c
ju). Here as above, we have written

ωa =
∑

aiaei , ηb =
∑

b jb f j , ωc
t =

∑
ac

i t e
c
i , ηc

u =
∑

bc
ju f c

j .

By identity (P) we have

ωc
t = Qn+1−t(M)−1

∑
ai t ec

i and ηc
u = Qn′+1−u(M ′)−1

∑
b ju f c

j .

The formula for c+(R(M ⊗M ′)∨) then follows as in Section 1.3.
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Because the Hodge types satisfy pc
t > pc

t+1 and r c
u > r c

u+1, we have this:

Lemma 1.4.2. The set T (M,M ′) is a tableau: if (t, u) ∈ T (M,M ′), then for any
t ′ < t and u′ < u, the pairs (t ′, u) and (t, u′) are also in T (M,M ′).

We can represent T (M,M ′) geometrically as a tableau in the rectangular grid
of height n and width n′, whose boxes are indexed by pairs with 1 ≤ t ≤ n and
1 ≤ u ≤ n′. The box at position (t, u) is filled in if (t, u) ∈ T (M,M ′). Then the
lemma asserts that if a given box (t, u) is filled in, all boxes above it or to the left
of it are also filled in.

In the notation of the introduction, the set T (M,M ′) determines the pair of
hermitian spaces W ′⊂W whose automorphic periods are expressed by the Ichino–
Ikeda conjecture as the quotient of the central critical value of L(s, R(M⊗M ′)) by
a product of critical values at s = 1 of Asai L-functions. The automorphic periods
can be normalized as in [Harris 2012], where they are called Gross–Prasad periods.
The relation between Gross–Prasad periods and motivic periods is in general not
transparent, and it is therefore not clear how to establish compatibility between the
Ichino–Ikeda and Deligne conjectures in general. We will return to this topic in a
subsequent article. The remainder of the present article is devoted to studying a
special case where compatibility of the two conjectures can be studied.

2. The Ichino–Ikeda conjecture for unitary groups

In the present section, W denotes an n-dimensional hermitian space over K, relative
to conjugation over F ; until the end of Section 2.4, we allow F to be an arbitrary
totally real field. If W1 and W2 are two such spaces, then for almost all finite primes
v of F we have

U (W1⊗ Fv)−∼→U (W2⊗ Fv) (2.0.1)

This allows us to consider automorphic representations of all unitary groups U(W )

simultaneously, and to organize them into near equivalence classes: the automor-
phic representations π1 of U(W1) and π2 of U(W2) are nearly equivalent if, for all
but finitely many v for which (2.0.1) holds, the local components π1,v and π2,v are
equivalent.

The Gross–Prasad and Ichino–Ikeda conjectures concern special values of L-
functions and local ε-factors for near equivalence classes of local and automorphic
representations respectively. A given near equivalence class gives rise to a family of
motives (or at least realizations) in the cohomology of the corresponding Shimura
varieties; the details are recalled in Section 2.4.

All the automorphic representations in a near equivalence class are supposed
to have a common base change, say 5, an automorphic representation of GL(n)K
that satisfies the polarization condition (1.1.1). This has been proved in a great
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many cases (see [Labesse 2011; White 2010], for example) and will be taken as
an axiom in what follows. The near equivalence class will sometimes be denoted
8(5)— convention actually dictates it should be5(8), or even5(8(5)), where
8 is supposed to suggest the Langlands parameter of 5, but since the letter 5 is
otherwise engaged this looks problematic.

2.1. Statement of the conjecture. Let W ′ ⊂ W a codimension one subspace on
which the restriction of the hermitian form is nondegenerate, so that W =W ′⊕W0

with W0 = W⊥. The unitary groups of W , W ′ and W0 are reductive algebraic
groups over F ; we write G ′ =U (W ′), G0 =U (W0) and G =U (W ).

Let π , π ′ and π0 be tempered cuspidal automorphic representations of G, G ′

and G0, respectively. Let

χπ : ZG(A)/ZG(F)→ C× and χ ′π : ZG ′(A)/ZG ′(F)→ C×

denote their central characters —π0 is itself a character — and assume that

χπ ·χ
′

π ⊗π0
∣∣

ZG(A)
= 1. (2.1.1)

Fix factorizations

π −∼→⊗′vπv, π ′−∼→⊗′vπ
′

v, π∨−∼→⊗′vπ
∨

v , π ′,∨−∼→⊗′vπ
′,∨
v (2.1.2)

and likewise for the contragredients π∨ and π ′,∨. We assume the factorizations
(2.1.2) are compatible with factorizations of pairings

〈 · , · 〉π =
∏
v

〈 · , · 〉πv and 〈 · , · 〉π ′ =
∏
v

〈 · , · 〉π ′v ,

where in each case the left hand side is the L2 pairing on cusp forms and the right
hand side is the product of canonical pairings between a representation and its
contragredient. We define

P( f, f ′)=
∫

G ′(F)\G ′(A)
f (g′) f ′(g′) dg′,

P( f ∨, f ′,∨)=
∫

G ′(F)\G ′(A)
f ∨(g′) f ′,∨(g′) dg′,

(2.1.3)

Q( f, f ∨)=
∫

G(F)\G(A)
f (g) f ∨(g) dg,

Q( f ′, f ′,∨)=
∫

G ′(F)\G ′(A)
f ′(g′) f ′,∨(g′) dg′.

(2.1.4)

For any place v of F , write Gv=G(Fv) and G ′v=G ′(Fv). Let dg and dg′ denote
Tamagawa measures on G(A) and G ′(A), respectively. We choose factorizations
dg =

∏
v dgv, dg′ =

∏
v dg′v over the places of v with these properties:
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• For every finite v, the measures dgv and dg′v take rational values on open
subsets of Gv and G ′v, respectively.

• For all v outside a finite set S, including all archimedean places and all places
at which either π or π ′ is ramified,∫

Kv

dgv =
∫

K ′v

dg′v = 1,

where Kv and K ′v are hyperspecial maximal compact subgroups of Gv and
G ′v respectively.

Assume f ∈ π , f ′ ∈ π ′, f ∨ ∈ π∨, f ′,∨ ∈ π ′,∨ are factorizable vectors, that is,

f =
⊗
v

fv, where fv ∈ πv, f ′ =
⊗
v

f ′v, etc.

with respect to the isomorphisms (2.1.2). In what follows, we have:

(a) |S(π, π ′)| is an integer measuring the size of the global L-packets of π and π ′.

(b) 1G is the value at s = 0 of the L-function of the Gross motive of the group
G; explicitly,

1G =

n∏
i=1

L(i, ηi
K/F ).

(c) For each finite v,

Zv = Zv( fv, f ∨v , f ′v, f ′,∨v )

=

∫
G ′v

c fv, f ∨v (g
′

v)c f ′v, f ′,∨v (g
′

v) dg′v ·
L(1, πv,Ad)L(1, π ′v,Ad)

L( 1
2 ,BC(πv)×BC(π ′v))

.

(d) For each archimedean v,

Zv = Zv( fv, f ∨v , f ′v, f ′,∨v )=

∫
G ′v

c fv, f ∨v (g
′

v)c f ′v, f ′,∨v (g
′

v) dg′v.

(e) In (c) and (d), the notation c fv, f ∨v (g
′
v) designates the local matrix coefficient

c fv, f ∨v (gv)= (π(gv) fv, f ∨v ) with respect to the canonical local pairing of rep-
resentations (likewise for c f ′v, f ′,∨v ).

The Ichino–Ikeda conjecture is the assertion that

P( f, f ′)P( f ∨, f ′,∨)
Q( f, f ∨)Q( f ′, f ′,∨)

= 2−|S(π,π
′)|1G

∏
v

Zv ·
L( 1

2 ,BC(π)×BC(π ′))
L(1, π,Ad)L(1, π ′,Ad)

(2.1.5)

Here the L-functions are defined in [N. Harris 2011] by Euler products over finite
primes only. One of the main results of [Ichino and Ikeda 2010; N. Harris 2011]
is that Zv = 1 for all v outside a finite set S, including all archimedean places;
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thus convergence of the product
∏
v Zv is not an issue. We can rewrite the right

hand side

2|S(π,π
′)|1G Z loc ·

L(1
2 ,BC(π)×BC(π ′))

L(1, π,Ad)L(1, π ′,Ad)

with Z loc =
∏
v∈S Zv.

2.2. Local vanishing and the Gross–Prasad conjecture. The map P :π⊗π ′→C

of (2.1.3) is invariant under G ′(A). Its nontriviality therefore implies that, for
every v, there is a bilinear map

Pv : πv ⊗π ′v→ C, (2.2.1)

invariant under the diagonal action of G ′v. (The integral Zv defines a multilinear
form on (πv ⊗π ′v)⊗ (π

∨
v ⊗π

′,∨
v ).)

The existence of G ′v-invariant maps like (2.2.1) is the subject of the Gross–
Prasad conjecture [Gan et al. 2012a]. For the purposes of the present exposition,
it will suffice to assume πv ⊗ π ′v to be tempered. Assume that L-packets can be
attached consistently to tempered Langlands parameters for the group Gv × G ′v
and all its inner twists; see [Mœglin 2007]. Let L(πv, π ′v) denote the space of
G ′v-invariant maps (2.2.1).

Conjecture 2.2.2 (local Gross–Prasad conjecture). Let WDFv denote the Weil–
Deligne group of Fv, and let

8v ×8
′

v :WDFv →
L(Gv ×G ′v)

denote a tempered Langlands parameter for the group Gv × G ′v and all its inner
twists. Then ∑

Wv=W ′v⊕W0,v

∑
πv⊗π

′
v∈

5(8v×8
′
v;U (Wv)×U (W ′v))

dim L(πv, π ′v)= 1.

Here the outer sum runs over isometry classes of pairs of hermitian spaces over Fv,
as in Section 2.1, and the inner sum runs over the L-packet of the given inner form
of Gv ×G ′v attached to 8v ×8′v.

The full Gross–Prasad conjecture treats more general inclusions of groups and
gives a formula in terms of the Langlands parameter determining the unique pair
πv ⊗ π

′
v in the L-packet for which L(πv, π ′v) 6= 0. This has been proved for spe-

cial orthogonal groups by Waldspurger in the tempered case and by Moeglin and
Waldspurger in general; see [Moeglin and Waldspurger 2012]. Conjecture 2.2.2
for unitary groups is the subject of work in progress by R. Beuzart-Plessis.5

5 Assuming standard conjectures on L-packets of unitary groups, Beuzart-Plessis has now proved
Conjecture 2.2.2 together with its refinement.
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Now let (π, π ′) be a pair of tempered cuspidal automorphic representations of G
and G ′, as in Section 2.1. For each place v, Conjecture 2.2.2 asserts the existence of
unique (strong) inner forms G1,v and G ′1,v of Gv and G ′v, respectively, and unique
representations π1,v and π ′1,v of G1,v and G ′1,v in the L-packets given by the local
Langlands parameters of πv and π ′v, such that L(π1,v, π

′

1,v) 6= 0. The following is
a restatement of [Gan et al. 2012a, Conjecture 26.1] in the present situation.

Conjecture 2.2.3 (global Gross–Prasad conjecture). With π and π ′ as above, the
following are equivalent:

(1) There are unitary groups G1 ⊃ G ′1 over F with local forms the given G1,v

and G ′1,v, automorphic representations π1 and π ′1 with the given local compo-
nents, and forms f1 ∈ π1 and f ′1 ∈ π

′

1, such that the period integral P( f1, f ′1)
is not zero.

(2) The central value L( 1
2 ,BC(π1)⊗BC(π ′1))= L(1

2 ,BC(π)⊗BC(π ′)) 6= 0.

The Ichino–Ikeda conjecture (2.1.5) is a refinement of Conjecture 2.2.3.6 As a
part of their refinement of the global Gross–Prasad conjecture for special orthog-
onal groups, Ichino and Ikeda have proposed a refinement of the local conjecture
as well. I state it here in the unitary case. (It seems not to have been stated in [N.
Harris 2011], though it is certainly compatible with the global conjecture stated
there.)

Conjecture 2.2.4 (of Ichino–Ikeda [2010, Conjecture 1.3]). Under the hypotheses
of Conjecture 2.2.2 — in particular, assuming πv and π ′v belong to tempered L-
packets — we have L(πv, π ′v) 6= 0 if and only if the local integral Zv defines a
nonzero multilinear form on (πv⊗π ′v)⊗(π

∨
v ⊗π

′,∨
v ). In other words, the local zeta

integral defines a basis vector in the one-dimensional vector space L(πv, π ′v)⊗
L(π∨v , π

′,∨
v ).

If one admits these conjectures, the nonvanishing of the numerator of the quo-
tient of L-functions on the right hand side of (2.1.5), together with the local non-
vanishing Conjecture 2.2.3, picks out a unique global pair of hermitian spaces
W ⊃ W ′ and a unique pair of automorphic representations π, π ′ of the chosen
inner forms U(W ) and U(W ′), for which the left hand side and the product Zv do
not vanish. The arithmetic meaning of the local conditions at finite primes is not
yet understood, but the local conditions at archimedean primes can be translated
into simple conditions on the relative positions of the Hodge structures attached
to the motives M(π) and M(π ′). The next two sections explain these conditions
when W and W ′ are totally definite, and interprets the expressions on the left hand
side of (2.1.5).

6 Added in proof: Wei Zhang has now proved this under some local restrictions.
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2.3. Hodge structures in the definite case. When v is a real place of F and πv and
π ′v are discrete series representations of Gv and G ′v, the dimension of L(πv, π ′v)
is determined in [Gan et al. 2012b, Section 2] in terms of the local Langlands
parameters. The relation with Hodge types is reduced there to a calculation of
signs, which in general is rather elaborate.

The definite case is simpler. Let H denote the compact Lie group U(n), the
symmetry group of the hermitian form

∑n
i=1 zi z̄i . Let H ′ = U (n − 1) × U (1),

diagonally embedded in H , and fix an irreducible representation τ of H , with
highest weight a1 ≥ a2 ≥ · · · ≥ an , where ai ∈ Z, in the standard normalization.
The classic branching formula [Fulton and Harris 1991] determines the highest
weights of the representations τ ′ that occur in the restriction of τ to H ′.

Formula 2.3.1 (branching formula). Let τ ′ be the irreducible representation of H ′

with highest weight (b1, . . . , bn−1; bn) ∈ Zn , where b1 ≥ · · · ≥ bn−1 is a highest
weight for U(n−1) and bn is the weight of a character of U(1). Then L(τ, τ ′) 6= 0
if and only if

•
∑n

i=1 ai =−
∑n

i=1 bi ,

• a1 ≥−bn−1 ≥ a2 ≥−bn−2 ≥ · · · ≥ an−1 ≥−b1 ≥ an .

Assume W is a totally definite hermitian space over K, and let π and π ′ be
automorphic representations of G and G ′, whose base changes to GL(n,K) and
GL(n−1,K) are denoted 5 and 5′. Choose a pair (w, cw) of conjugate complex
embeddings of K over the real embedding w+ of F , with w ∈6, and extend w to a
map σ : E(5)⊗K→C as in Section 1.1. Suppose πw+ = τ , π ′

w+
= τ ′, with param-

eters as in Formula 2.3.1. The condition 1.1.10(c) determines the Hodge numbers
of RK/Q M5. Bearing in mind that5 is an automorphic representation whose local
component 5w has cohomology with coefficients in the dual representation τ∨ of
GL(n,C), we have

dim M p,q
K/Q,σ (5)= 1 if and only if, for some i ,

(p, q)= (pi (w), qi (w))= (n− i − an+1−i , i − 1+ an+1−i ).
(2.3.2)

Similarly,

dim M p,q
K/Q,σ (5

′)= 1 if and only if, for some i ,

(p, q)= (p′i (w), q ′i (w))= (n− 1− i − bn−i , i − 1+ bn−i ).
(2.3.3)

Comparing this to Formula 2.3.1(2), we find that

p1(w) > p′1(cw)≥ p2(w) > p′2(cw)≥ · · ·

> pn−1(w) > p′n−1(cw)≥ pn(w) (2.3.4)
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2.4. Realizations of motives in unitary group Shimura varieties. The hermitian
spaces W and W ′ are assumed definite at infinity, as in the previous section. Let
5 be a cuspidal cohomological automorphic representation of GL(n)K satisfying
(1.1.1). We consider the near equivalence class 8(5) of automorphic representa-
tions of varying U(W ). The hermitian pairing 〈 · , · 〉W on W defines an involution c̃
on the algebra EndF (W ) via 〈a(v), v′〉W = 〈v, ac̃(v′)〉W . For each such W , there is
a Shimura variety Sh(W ) attached to the rational similitude group GU(W ), defined
as the functor on the category of Q-algebras R by

GU(W )(R)= {g ∈ GL(V ⊗Q R) | g · c̃(g)= ν(g) for some ν(g) ∈ R×}.

For each automorphic representation π ∈8(5) of U(W ), we choose an extension
π+ to an automorphic representation of GU(W ); we can arrange that the central
character χπ+ of π+ is independent of π ∈8(5). We summarize the discussions
in [Harris 1997, Section 2] (for F =Q) and [Harris et al. 2011, §3.2], and provide
a few additional details.

For each W , we fix an irreducible admissible representation π f = π f,W of
U(W )(A f ) such that π∞ ⊗ π f ∈ 8(5) for some discrete series representation
π∞ of U(WR) := U (W ⊗Q R). For each place w of K, let (rw, sw) denote the
signature of the hermitian space Ww, and let dW =

∑
v:F↪→R rw · sw, where w is

one of the two extensions of v to K and rw · sw does not depend on the choice.
Define the Shimura variety Sh(W ) and the local system W̃+(5) over Sh(W ) as in
[Harris et al. 2011, Section 3.2]; here W̃+(5) is attached to a finite-dimensional
algebraic representation W+(5) of GU(W ). Then the motivic realization of 5 on
Sh(W ) is the motive

M(π+f )= HomGU(A f )(π
+

f , H dW (Sh(W ), W̃+(5)))

= HomGU(A f )(π
+

f , H dW (Sh(W )∗, j!∗W̃+(5))), (2.4.1)

where j : Sh(W ) ↪→ Sh(W )∗ is the embedding of Sh(W ) in its Baily–Borel com-
pactification.

Let M5 be the rank n motive over K introduced in Section 1.1 and MK/Q(5)

for its restriction of scalars to Q. As in [Harris et al. 2011, (3.2.4)], we have

M(π+f )−
∼→

⊗
w∈6

∧sw(St)MF/Q(5)⊗ (M(χπ+,W )(tW )), (2.4.2)

where tW =
1
2

∑
w∈6 sw(sw − 1).

All the motives M(π+f ) are assumed to have coefficients in a common field
E(π f ). Let E(W ) be the reflex field of Sh(W ); it is contained in the Galois
closure of K over Q, and of course it depends on the signatures of W at places
of 6. The de Rham realization MK/Q,DR(π

+

f ) is free over E(W )⊗ E(π+f ) of rank∏
w

( n
sw

)
; the lowest nontrivial stage of its Hodge filtration Fmax

K/Q,DR(π
+

f ) is a free
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rank one E(W )⊗E(π+f )-submodule. Let �W (5) be any E(W )⊗E(π+f )-basis of
Fmax

K/Q,DR(π
+

f ). By analogy with (1.1.11), we define

QW (5)= 〈ωW (5), F∞(ωW (5))〉DR ∈ (E(W )⊗ E(π+f )⊗R)×. (2.4.3)

We now simplify formulas by assuming F = Q. The index W is in fact super-
fluous in the character χπ+,W , given the presence of the twist tW , but we will leave
it in place. In [Harris 1997] there is a parameter denoted c in the highest weight of
the representation W+(5), corresponding to the restriction of the central character
to the diagonal subgroup Gm,Q⊂GU(W ). Dually, the central character χπ+ of π+

has the property that

χπ+(t)= t−c for t ∈ R× ⊂ ZGU(W )(R). (2.4.4)

Let W (5) denote the restriction of W+(5) to U(W ), and identify W (5) with the
representation τ∨ of Section 2.3, with parameters as in 2.3.1. Then c ≡

∑
i ai

(mod 2). To simplify the formulas, we assume
∑

i ai to be even and take c = 0.
Then M(χπ+,W ) is a motive of weight 0.

2.5. Automorphic forms on definite unitary groups. Let G=U(W ), G ′=U(W ′),
as in Section 2.1, and assume W and W ′ are totally definite. We can define Shimura
data (G, x)⊃ (G ′, x ′), where x = x ′ is the point consisting of the trivial homomor-
phism from RC/RGm,C to the group G ′. This satisfies all the axioms of [Deligne
1979b, (2.1.1)] with the exception of (2.1.1.3), which is in fact unnecessary except
for considerations having to do with strong approximation. All points of the corre-
sponding Shimura varieties are defined over (the reflex field) Q, but automorphic
forms are rational over the fields of definition of their coefficients.

We can determine these fields of definition easily. Let (ρ, V ) be an irreducible
algebraic representation of G. An automorphic form on G of type ρ is a function
f : G(F)\G(A)→ V (C), locally constant with respect to G(A f ), and satisfying

f (gg∞)= ρ−1(g∞) f (g), for g ∈ G(A), g∞ ∈ G∞ = G(F ⊗Q R). (2.5.1)

Let A(G, ρ) denote the space of automorphic forms of type ρ. It follows from
(2.5.1) that the restriction map

R f :A(G, ρ)→ C∞(G(F)\G(A f ), V (C))

is an isomorphism. If V is realized over the number field EV , then

MDR(S(G, x), V ) := C∞(G(F)\G(A f ), V (EV ))

is an EV -rational model for A(G, ρ), and for any σ ∈Gal(Q/Q), there is a canon-
ical isomorphism

σ(MDR(G, V ))−∼→MDR(G, σ (V )). (2.5.2)
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The same naturally holds for G ′.
Let Vtriv denote the trivial one-dimensional representation of G.

Lemma 2.5.3. There is a perfect pairing

MDR(S(G, x), V )⊗MDR(S(G, x), V∨)→ MDR(S(G, x), Vtriv)(EV )→ EV ,

where the first map is defined by the natural pairing on coefficients and the second
map is integration with respect to Tamagawa measure. The pairings transform
under Gal(Q/Q) by the action (2.5.2) on the coefficients V .

Proof. The first map is obviously rational over EV , and the second map is rational
because the Tamagawa measure of G(F)\G(A) is a rational number. The pairing
is perfect because it is essentially given by the L2-pairing on automorphic forms;
see [Harris 1997, Proposition 2.6.12]. �

Now suppose V→V ′ is a projection to an irreducible G ′-invariant quotient, and
let (V ′)∨→ V∨ denote the dual inclusion map. The following lemma is proved in
the same way as Lemma 2.5.3.

Lemma 2.5.4. Under these hypotheses, there is a natural EV,V ′ = EV · EV ′-
rational pairing

MDR(S(G, x), V )⊗MDR(S(G ′, x ′), (V ′)∨)

→ MDR(S(G ′, x ′), Vtriv)(EV,V ′)→ EV,V ′,

where the first map is defined by the natural pairing on coefficients and the second
map is integration with respect to Tamagawa measure. The pairings transform
under Gal(Q/Q) by the action (2.5.2) on the coefficients V, V ′.

Corollary 2.5.5. Let E be a number field containing EV,V ′ , and suppose

f ∈ MDR(S(G, x), V )(E), f ∨ ∈ MDR(S(G, x), V∨)(E),

f ′ ∈ MDR(S(G ′, x ′), (V ′)∨)(E), f ′,∨ ∈ MDR(S(G ′, x ′), V ′)(E).

Define P( f, f ′), Q( f, f ∨), P( f ∨, f ′,∨) and Q( f ′, f ′,∨) as in Section 2.1. Then
the left hand side of (2.1.5),

P( f, f ′)P( f ∨, f ′,∨)
Q( f, f ∨)Q( f ′, f ′,∨)

,

belongs to E and for any σ ∈ Gal(Q/Q),

σ

(
P( f, f ′)P( f ∨, f ′,∨)
Q( f, f ∨)Q( f ′, f ′,∨)

)
=

P(σ ( f ), σ ( f ′))P(σ ( f ∨), σ ( f ′,∨))
Q(σ ( f ), σ ( f ∨))Q(σ ( f ′), σ ( f ′,∨))

,

where σ( f ) ∈ MDR(S(G, x), σ(V ))(σ (E)), etc.



138 Michael Harris

In [Harris 1997, (2.6.11)] it is explained how to use the highest weight 3
of V , relative to a fixed maximal torus H , to identify A(G, ρ), and therefore
MDR(S(G, x), V ), with a subspace of the space A(G) of C-valued automorphic
forms on G(F)\G(A):

MDR(S(G, x), V )−∼→HomH (C−3,A(G)V∨), (2.5.6)

where C−3 is the 3−1-eigenspace for H in V∨ and A(G)V∨ is the V∨-isotypic
subspace for the action of G∞ by right translation. The image under this identifi-
cation naturally has a rational structure over the extension E(V,3) ⊃ E(V ) over
which the 3-eigenspace in V is rational, and as V and H vary the maps (2.5.6)
are rational over E(V,3) and transform naturally under the action of Gal(Q/Q).

Lemma 2.5.7. The map (2.5.6) takes the pairing of Lemma 2.5.3 to a rational
multiple of the L2-pairing on A(G).

Proof. This is [Harris 1997, Proposition 2.6.12]. �

2.6. Fields of rationality of automorphic representations of unitary groups. In
this section, F is a general totally real field. Let 5 be a cohomological cuspidal
automorphic representation of GL(n,K), and let E(5) be the field fixed by the
subgroup of Aut(C) consisting of σ such that5σ

f −
∼→5 f . It is known [Clozel 1990]

that E(5) is a number field and that5 f has a rational model over E(5). Moreover,
for any σ in Gal(Q/Q) there is a (unique) cuspidal cohomological representation
σ(5)with σ(5) f −

∼→σ(5 f )— one obtains σ(5)∞ from5∞ by letting σ permute
the archimedean places of K.

Suppose 5 satisfies the polarization condition (1.1.1) and G is quasisplit at all
finite places of v. Then 5 descends to an L-packet {πα, α ∈ A} of G [Labesse
2011, Theorem 5.4]. We mean this in the following sense: let w be a finite place
of K at which K/F and 5 are unramified, and let v denote the restriction of w to
F . If v splits in K, we write5v =5w⊗5cw; if v is inert, then5v =5w. Then for
all α, πα,v is spherical and the Satake parameters of 5v are obtained from those of
πα,v by the stable base change map [Mínguez 2011, Theorem 4.1]. It then follows
that π∞ is the unique irreducible representation of the (compact) group G∞ with
the same infinitesimal character as 5∞ [Labesse 2011, Theorem 5.5].

Proposition 2.6.1. If 5 is a cohomological cuspidal polarized representation of
GL(n) that descends to an L-packet {πα} of G, then the collection {πα, f } is rational
over E(5). Moreover, for any σ in Gal(Q/Q), the conjugate σ(5) descends
to {σ(π)}.

Proof. Let S be the set of finite primes v at which K/F and 5 are unramified. We
first note that for all v /∈ S, the spherical representation πα,v is defined over the
field of definition of 5v. Indeed, this is clear from the relation [Mínguez 2011,
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Theorem 4.1] of Satake parameters. Now let σ ∈Gal(Q/Q). If σ fixes E(5), then
σ(πα,v)−

∼→πα,v for all v /∈ S. Thus by definition, the stable base change of σ(π f )

is 5, so σ(πα) is a πα′ . The same argument implies the last assertion. �

3. Abelian representations of U(m)

3.1. Existence of abelian representations. In this section, the Weil group of a
local or global field L is denoted WL .

Let W ′ be an m-dimensional hermitian space over K, and U(W ′) be the unitary
group. Let µ be a Hecke character of K extending ηK/F , that is, µ|A×F = ηK/F .
Let H =U (1)m and let ξµ : LH → LU (W ′) be the L-homomorphism (in the Weil
group form over F) considered by White [2010, Section 3]. On the dual group
Ĥ = GL(1,C)m , ξµ is just the diagonal embedding

(g1, . . . , gm) 7→ diag(g1, . . . , gm) ∈ Û (W ′)= GL(m,C).

The Hecke character µ defines a character WK → W ab
K −
∼→ A×K/K

×
µ
−→ C, also

denoted µ. Set µm = µ if m is even, µm = 1 (the trivial character) if m is odd.
If w ∈WK, we have

ξµ(1, 1, . . . , 1)×w = µm(w) · Im ×w ∈ GL(n,C)×WK

⊂ GL(m,C)n WF =
LU (W ′). (3.1.1)

The map ξµ is characterized by these formulas and by its value on a single element
of (1×WF ) \ (1×WK), as in [White 2010]; we omit the formula.

Let χ= (χ1, . . . , χm) be an m-tuple of Hecke characters of U(1)(AF )/U (1)(F);
χ is an automorphic representation of H , and we can consider its functorial trans-
fer to U(W ′) via the L-homomorphism ξµ. Concretely, an automorphic repre-
sentation π(χ) of U(W ′) is a functorial transfer of χ if its formal base change
5(χ)=BC(π(χ)) to GL(m)K is a (noncuspidal) automorphic representation with
the property

L(s,5(χ))=
m∏

i=1

L
(
s+ 1

2(m− 1),BC(χi ) ·µm
)
. (3.1.2)

Here,
BC(χ)(z)= χ(z/c(z)), z ∈ A×K, (3.1.3)

where c denotes Galois conjugation; this was denoted χ̃ in [Harris 1997]. By
definition, the functorial transfers of χ to U(W ′) form a single L-packet π(χ)
such that, for each place v of F , πv is a local functorial transfer of χv for any
π ∈ π(χ).

An L-packet of the form π(χ) will be called an abelian L-packet of U(W ′),
and a member of π(χ) that occurs with nonzero multiplicity in the automorphic
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spectrum of U(W ′) is called an abelian representation. The existence of abelian
representations in this sense is considered in [White 2010], along with other cases
of endoscopic transfer. More precisely, one can say that the local functorial trans-
fers are the L-packets defined by Moeglin [2007] — we denote them π(χv)— and
that if we choose one πv ∈π(χv) for each v, then we can ask for the multiplicity of⊗
′

v πv in the automorphic spectrum of U(W ′). These multiplicities are predicted
by Arthur’s conjectures. We return to this point in Section 4.3.

Let v be a real prime of F and suppose χ j,v(eiθ ) = eik j θ , with k j ∈ Z. We
say that k j is the weight of χ j at v (or of χ j,v). The Langlands parameter of χ j,v

is given by the homomorphism φ(χ j,v) : WR →
LU (1) = GL(1,C)o Gal(C/R)

whose restriction to C× =WC is

WC 3 z 7→ (z/z̄)k j .

Then BCC/R(5(χv)) is the representation of GL(n,C) with Langlands param-
eter

φ(χv) :WC 3 z 7→ diag((z/z̄)k1 ·µm(z), . . . , (z/z̄)km ·µm(z))∈GL(m,C). (3.1.4)

This descends to a discrete series L-packet of U(W ′)v, for any W ′, if and only if
the k j are all distinct [White 2010, Definition 5.3]; then the infinitesimal character
of the discrete series L-packet coincides with the Langlands parameter, and we say
χv is regular.

On U(1)⊂C× we write µm(eiθ )= ei tmθ for some tm ∈Z. We order the ki so that

ki > ki+1 (3.1.5)

with ki defined by

(z/z̄)ki ·µm(z)= (z/z̄)ki+tm/2, ki +
1
2 tm ∈ Z+ 1

2(m− 1).

The half-integrality of ki +
1
2 tm follows from the parity of µm and is as it should

be; see [Clozel 1990, Section 3.5].
We can immediately prove the following:

Lemma 3.1.6. Suppose χv is regular for all real primes v. Then the local Lang-
lands parameter φ(χv) is relevant for all U(W ′)v and for any W ′ the L-packet
π(χ) of U(W ′) is of discrete series type at all real places.

The definite case. Suppose now U(W ′v) is the compact form of U(m). Then the
L-packet π(χ) is a singleton τ ′ with highest weight (b1 ≥ b2 ≥ · · · ≥ bm), in the
notation of Section 2.3. The relation between bi and ki is given by

bi = ki −
1
2(−tm +m+ 1− 2i) (3.1.7)

so that bi ≥ bi+1, as required.
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In what follows, we assume we are given a nontrivial abelian L-packet π(χ)
and apply it in the Ichino–Ikeda conjecture. Henceforward we specialize to the
case F = Q, m = n− 1, with n even, so µm = 1 and ki = bi +

1
2 n− i . This will

suffice to illustrate the general principles guiding this work. We hope to treat the
general case in a subsequent paper.

3.2. Review of CM periods. We review the properties of the CM period invariants,
as discussed in [Harris 1997, (1.10) and (3.6)]. Since the final results will only
be stated when F = Q, we only consider the CM periods attached to imaginary
quadratic fields. Details of the more general CM periods have only been written up
in the present language up to algebraic factors; most of the results of the present
paper can be extended to general CM fields without going beyond the available
literature, provided one is will to settle for rationality up to Q×.

Thus, K is an imaginary quadratic field, with chosen embedding K→ C, de-
noted 1. Let η : A×K/K

×
→ C× be a Hecke character whose archimedean part

is algebraic: η∞(z) = z−a1 · (cz)−ac for z ∈ C×, with the exponents in Z. Let
E(η) ⊃ K be the field generated by η|A f,×

K
, and let cη = η ◦ c. There are then two

period invariants

p(η,1), p(η, c)= p(cη,1) ∈ (E(η)⊗C)×/E(η)×.

These invariants satisfy the multiplicative relations

p(η1, · )p(η2, · )∼Ẽ(η1,η2)
p(η1η2, · ), where · = 1, c, (3.2.1)

and the normalization conditions (here ‖ · ‖ is the norm)

p(‖ · ‖a,1)= p(‖ · ‖a, c)= (2π i)−a. (3.2.2)

If η is the Hecke character attached to a Dirichlet character of conductor N (with
archimedean component a power of the sign character) and ψ : Z/NZ→C× is an
additive character, then

p(η,1)= g(η, ψ)−1, (3.2.3)

where g(η, ψ) =
∑

b∈(Z/NZ)× η(b)ψ(b) is the standard Gauss sum. If (a1, ac) =

(k, 0), with k > 0, then for all critical values m of the Hecke L-function L(s, η),
we have

L(m, η)= L(0, η · ‖ · ‖−m)∼E(η),K (2π i)m p(η̌,1) (3.2.4)

where η̌(z)= η−1(cz). In particular, if χ is a character of the group U(1) as above,
then BC(χ)= BC(χ)̌, so for critical values

L(m,BC(χ))∼E(χ),K (2π i)m p(BC(χ),1)

∼E(χ),K (2π i)m p(χ+,1)p(cχ+,1)−1
(3.2.5)
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for any extension χ+ of χ to an algebraic Hecke character of K.

3.3. Asai L-functions of abelian representations. Fix χ as in the previous sec-
tion, and let 5 = 5(χ). The formula (3.1.2) gives an explicit expression for the
motive M5(χ) over K:

M5(χ) =

n−1⊕
i=1

MBC(χi )

(2−n
2

)
. (3.3.1)

It then follows from the definitions that L(s,As(M5(χ))), which is an L-function
over F (=Q), decomposes as

L(s,As(M5(χ)))=
∏

1≤i< j≤n−1

L(s, AIK/F BC(χ j ·χ
−1
i ))L(s, ηK/F )

n−1

=

∏
1≤i< j≤n−1

L(s, AIK/F BC(χi j ))L(s, ηK/F )
n−1, (3.3.2)

where χi j = χ j/χi . Indeed,

L(s,Ad(M5(χ)))=
∏

1≤i 6= j≤n−1

L(s,BC(χ j ·χ
−1
i ))ζK(s)n−1,

where ζK is the Dedekind zeta function. The two descents As± are distinguished
by their L-functions over F ; in addition to the one indicated in (3.3.2), there is the
one obtained by twisting by ηK/F , namely∏

1≤i< j≤n−1

L(s, AIK/F BC(χ j ·χ
−1
i ))ζF (s)n−1.

The condition on the signature of F∞ guarantees that (3.3.2) is the right choice
for As(M5(χ)).

We evaluate the values at s = 1 of the factors of (3.3.2) using Blasius’ result
on special values of Hecke L-series (Damarell’s formula in this case). As in
Section 3.1, we assume χi is of weight ki at the archimedean prime, so that χi j is
of weight −ki j , with ki j = ki − k j . We assume the χi are ordered so that ki j > 0
for i < j , as in Formula 2.3.1. This is the normalization used in [Harris 1997]. As
in [ibid., Section 2.9], we define

χ
(2)
i j = χ

2
i j · (χi j,0 ◦ NK/Q)

−1, where χi j,0 = χi j |A×
Q
· ‖ · ‖

−ki j
A . (3.3.3)

Then (see [Harris 1997, (3.6.1), (3.6.3)]),

L(1,BC(χi j ))= L(1+ ki − k j , χ
(2)
i j )∼ (2π i)1+ki−k j p((χ (2)i j )

∨, 1).



L-functions and periods of adjoint motives 143

By using the formula χ (2)i j = χ
(2)
j /χ

(2)
i and the relations in Section 3.2, we find

that the value at 1 of (3.3.2) is

[(2π i)g(ηK/F )]
n−1
·

∏
i< j

(2π i)1+ki−k j p((χ (2)i j )
∨, 1)

∼ [(2π i)g(ηK/F )]
n−1
·(2π i)(n−2)(n−1)/2

·

n−1∏
i=1

[(2π i)ki p((χ (2)i )∨, 1)]2i−n

∼ g(ηK/F )
n−1
·(2π i)n(n−1)/2

·

n−1∏
i=1

[(2π i)ki p((χ (2)i )∨, 1)]2i−n (3.3.4)

Comparing this formula with Corollary 1.3.5(i), it is reasonable to suppose that

Q` = [(2π i)k` p((χ (2)` )∨, 1)]−2 for `= 1, . . . , n− 1, (3.3.5)

so that [(2π i)k` p((χ (2)` )∨, 1)]2`−n
= Q((n−1)+1)/2−`

` , as predicted. However, it will
not be necessary to verify this formula, since the same expression reappears in the
numerator of the Ichino–Ikeda formula in the applications.

4. The critical value of the Asai L-function

We continue to assume F =Q and n is even. Henceforward the groups G and G ′

are assumed to be definite. We let f, f ∨, f ′, f ′,∨ be automorphic forms as in the
statement of the Ichino–Ikeda conjecture, and we assume they are all E-rational,
as in the statement of Corollary 2.5.5.

We begin by studying the L-functions that occur on the right hand side of the
Ichino–Ikeda conjecture for the pair π and π ′. Starting in Section 4.2, we will
assume π ′ ∈ π(χ) for an appropriate (n−1)-tuple χ of Hecke characters. The
weights of χ will be chosen so that the unitary groups that occur on the left hand
side of (2.1.5), and in the zeta integrals on the right hand side, are necessarily
definite, as in Section 2.3. The left hand side is then an algebraic number, as
we have seen in Corollary 2.5.5. We conclude with an expression for the value
L(1, π,Ad), which we compare to the conjectured expression from Section 1.3.

4.1. Elementary and local terms in the Ichino–Ikeda formula for definite groups.
The left hand side of the Ichino–Ikeda conjecture (2.1.5) was studied in Section 2.5.
Corollary 2.5.5 demonstrates that it is an algebraic number that transforms as ex-
pected under Galois conjugation. Thus the Ichino–Ikeda conjecture implies that
the right hand side is also algebraic, and determines how it transforms under Ga-
lois conjugation. In this section we study the algebraicity of the elementary and
local terms.

4.1.1. The power of 2 that appears as the first term is, of course, rational.
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4.1.2 The normalizing factor. The abelian normalizing factor 1G is a product of n
abelian L-functions of Q — either ζ(s) or L(s, ηK/Q) depending on the parity —
evaluated at integer points. Each of the integer points is well known to be critical,
and the formulas for the special values can be written as follows:

1G ∼K

n∏
i=1

g(ηi
K/Q) · (2π i)i = (2π i)n(n+1)/2g(ηK/Q)

n/2.

Here ∼K means that the left hand side is a K×-multiple of the right hand side.
By the Iwasawa main conjecture, the integral properties of 1G/(2π i)n(n+1)/2 are
closely related to orders of class groups of cyclotomic fields.

4.1.3 Factorization. For the next section, we need to write f, f ∨, f ′, f ′,∨ as tensor
products of vectors f =

⊗
v fv, fv ∈ πv, and so on. Let E(π) ⊃ E(V ) and

E(π ′)⊃ E(V ′) denote fields of definition of π and π ′, respectively. In particular,
each factor πv is defined over E(π), and we can assume that the isomorphisms
π−∼→

⊗
v πv and π ′−∼→

⊗
v π
′
v (and the corresponding dual maps) are defined over

E(π) and E(π ′), respectively. Our hypothesis is that the test vectors on the left
hand side of (2.1.5) are all E-rational; thus fv, f ′v, f ∨v , f ′,∨v are also E-rational for
all v.

Moreover, the canonical local pairings 〈 · , · 〉πv and 〈 · , · 〉π ′v are tautologically
E(π)- and E(π ′)-rational, respectively. It follows that the matrix coefficients
c fv, f ∨v (gv) and c f ′v, f ′,∨v (g

′
v) are E-rational. For finite v, this means that they are

functions that take values in the indicated number fields. For v=∞, an E-rational
matrix coefficient of the algebraic representation π∞ is an element of the affine
algebra E(G) of the algebraic group G; likewise for π ′

∞
.

4.1.4 Measures and archimedean local terms. We want to prove that the product
Z loc of local terms on the right hand side of (2.1.5) is an algebraic number that
transforms appropriately under Galois conjugation. We begin by reconsidering
the factorization dg′ =

∏
v dg′v of Tamagawa measure. For the moment F is an

arbitrary totally real field, and G∞ =
∏
v|∞ Gv is the product of definite unitary

groups. For v /∈ S, let K ′v ⊂ G ′v be a hyperspecial maximal compact subgroup; we
recall from Section 2.1 that

∫
K ′v

dg′v = 1 for v /∈ S.

Lemma 4.1.5. For any sufficiently small open subgroup
∏
v∈S K ′v ⊂

∏
v∈S G ′v, the

open subgroup G ′
∞
×
∏
v-∞ K ′v ⊂ G(A) acts freely (on the right) on G ′(F)\G ′(A)

with finitely many orbits. In particular,
∫

G ′∞×
∏
v-∞ K ′v

dg is a rational number.

Proof. Let U = G ′
∞
×
∏
v K ′v, and let g ∈ G(A) be a fixed point of some u ∈ U .

Thus gu = γ g for some γ ∈ G ′(F), or gug−1
∈ gUg−1

∩G ′(F). It’s well known
that this intersection is trivial if U is sufficiently small; see the proof of [Clozel
et al. 2008, Lemma 3.3.1]. Finiteness of the number of orbits is clear because U is
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open in G ′(A) and G ′(F)\G ′(A) is compact. The final assertion follows from the
first because the Tamagawa number of G ′ is rational (in fact it equals 2). �

Corollary 4.1.6. The volume of G ′
∞

with respect to dg∞ =
∏
v|∞ dgv is rational.

Proof. Indeed, ∫
G ′∞

dg∞ =

∫
G ′∞×

∏
v K ′v

dg∫ ∏
v-∞ K ′v

.

The numerator is rational by the lemma, and the denominator is rational by condi-
tions (1) and (2) of Section 2.1. �

Now for simplicity we assume F = Q, so that there is only one archimedean
prime.

Corollary 4.1.7. The archimedean local factor Z∞ of Z loc is an algebraic number.

Proof. It follows from Lemma 2.5.7 that Z∞ is a rational multiple of the integral
of a product of E-rational matrix coefficients of two algebraic representations of
G ′v with respect to the measure of total volume 1. By the orthogonality relations,
this is an element of E . �

4.1.8 Nonarchimedean local factors. Let p ∈ S be a finite prime and let E be a
number field over which both πp and π ′p are defined. Then it makes sense to speak
of E-rational matrix coefficients c f p, f ∨p and c f ′p, f ′,∨p

of πp and π ′p, respectively.
Recall that in Section 2.1 we have assumed that local measures at finite primes
take rational values on compact open subsets.

Lemma 4.1.9. Suppose πp and π ′p are tempered. For any E-rational matrix coef-
ficients c f p, f ∨p and c f ′p, f ′,∨p

as above, the local zeta integral has the property that

Z p( f p, f ∨p , f ′p, f ′,∨p ) ∈ E .

In [Ichino and Ikeda 2010; N. Harris 2011] it is proved that the integral defining
Z p( f p, f ∨p , f ′p, f ′,∨p ) converges absolutely when the two representations are tem-
pered, but no information is given about the rationality of the integral. Using Cas-
selman’s results on asymptotics of matrix coefficients, Moeglin and Waldspurger
[2012, Lemma 1.7] decompose the analogous integral for pairs of special orthogo-
nal groups (even in the nontempered case) into a finite sum of terms that can easily
be seen to be rational over E .

More precisely, we write G and G ′ for the local groups at p. Assume π and
π ′ are constituents of representations induced from supercuspidal representations
of the Levi components M and M ′ of parabolic subgroups P ⊂ G and P ′ ⊂ G ′,
respectively, with M and M ′ respectively of (split) rank t and t ′. Thus π and π ′

belong to complex families (components of the respective Bernstein centers) C(π)
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and C(π ′) of dimension t and t ′, parametrized by characters X (M) of M and M ′,
modulo the actions of the normalizers WM = NG(M)/M and WM ′ = NG ′(M ′)/M ′:

C(π)= Spec(C[X (M)]WM ), C(π ′)= Spec(C[X (M ′)]WM ′ ). (4.1.10)

These complex families have rational structures over Q whose E-rational points
are the E-rational orbits of WM and WM ′ on the character groups. The functions
f p, f ∨p and f ′p, f ′,∨p can be extended to E-rational algebraic functions on C(π)
and C(π ′). The lemma proved by Moeglin and Waldspurger (in the orthogonal
case, but the argument works as well for unitary groups) is then:

Lemma 4.1.11 (Moeglin, Waldspurger). There are polynomials

D, L ∈ C[X (M), X (M ′)],

depending on f p, f ∨p , f ′p, f ′,∨p , such that D · Z p( f p, f ∨p , f ′p, f ′,∨p )= L.

For the proof of the lemma, it is not assumed that π and π ′ are tempered. In the
tempered case, the convergence proved in [Ichino and Ikeda 2010; N. Harris 2011]
implies that D has no pole at the point corresponding to π, π ′ ∈ C(π)×C(π ′).

For our purposes, the important point is that every step in the proof in [Moeglin
and Waldspurger 2012] is rational over E . The main reduction step is the expres-
sion of the integral as a finite sum of terms indexed by rational parabolic subgroups
of G or G ′, in which the matrix coefficients are replaced by corresponding ex-
pressions involving the nonnormalized Jacquet modules. Since the nonnormalized
Jacquet functor preserves rationality over Q, the proof of Lemma 4.1.11 actually
yields Lemma 4.1.9.

4.1.12 Conclusion. Combining the results obtained above with Corollary 2.5.5, we
find that

(2π i)n(n+1)/2L( 1
2 ,BC(π)×BC(π ′))

L(1, π,Ad)L(1, π ′,Ad)
∈Q. (4.1.13)

For all σ ∈ Gal(Q/K),

σ

[
(2π i)n(n+1)/2L( 1

2 ,BC(π)×BC(π ′))
L(1, π,Ad)L(1, π ′,Ad)

]
=
(2π i)n(n+1)/2L( 1

2 ,BC(σ (π))×BC(σ (π ′)))
L(1, σ (π),Ad)L(1, σ (π ′),Ad)

. (4.1.14)

Including the Gauss sums that appear in 4.1.2 in the expression (4.1.13) would
allow us to assert the modified version of (4.1.14) for all σ ∈Gal(Q/Q). However,
the subsequent calculations are taken from [Harris 1997] and have are only been
proved for conjugation by Gal(Q/K).
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4.2. Tensor products involving abelian representations. Let π and π ′ be auto-
morphic representations of the definite unitary groups G and G ′, as in Section 2.3,
with base changes 5 and 5′ to GL(n)K and GL(n − 1)K, respectively, and with
central characters χπ and χπ ′ . We assume L(τ, τ ′) 6= 0, with τ =π∞ and τ ′=π ′

∞
;

thus the highest weights of τ and τ ′ satisfy the branching law 2.3.1. Our goal is
to understand the special value L(1, π,Ad). This is unchanged when π is twisted
by a Hecke character, so we lose no generality if we assume the highest weight of
τ = π∞, with parameters as in Section 2.3, has the form a1 ≥ a2 ≥ · · · ≥ an ≥ 0.
It then follows from 2.3.1 that the k j are all negative.

We assume π ′ ∈5(χ). Then (since µn−1 = 1)

L(s,5×5′)=
n−1∏
i=1

L(s,5⊗BC(χ j ))=

n−1∏
i=1

L(s, π ⊗χi ◦ det, St). (4.2.1)

Here St is the standard L-function of the L-group of G in the unitary normalization,
as in [Harris 1997]. In the motivic normalization (see [Harris 1997]), we then have

L(s,5×5′)=
n−1∏
i=1

Lmot(s+ 1
2(n− 1), π ⊗χi ◦ det, St

)
. (4.2.2)

Lemma 4.2.3. The value s0 = n/2 is critical in Deligne’s sense for each of the
factors Lmot(s, π ⊗χi ◦ det, St).

(If n were odd, there would be a shift of 1
2 to compensate the character µ.)

Proof. The line Re(s) = s0 is the axis of symmetry for the functional equa-
tion, and the integral point on the axis of symmetry of the L-function of a mo-
tive is critical whenever the motive is of odd weight. The motive in question is
M(5)⊗M(BC(χi )). Since M(5) is of weight n−1 and M(BC(χ)) is of weight
0 for any algebraic Hecke character χ , the lemma follows. �

Thus L(s0,5×5
′) can be expressed in terms of automorphic periods using the

formulas in [Harris 1997; Harris 2008].

Lemma 4.2.4. In the terminology of [Harris 1997, Section 1.7], the character
BC(χi ) belongs to the i-th critical interval for M(5), where i = 1, . . . , n− 1.

Proof. Recall from [Harris 1997] that the i-th critical interval is the interval

[n− 2pi , n− 2pi+1− 2] = [n− 2(n− i − an+1−i ), n− 2(n− i − an−i )]

= [2an+1−i − n+ 2i, 2an−i − n+ 2i],

where the first equality is (2.3.2). On the other hand, up to a twist by a power of the
norm character zz̄, BC(χi )∞ is of weight −2ki =−2bi − n+ 2i (according to the
conventions of [Harris 1997, p. 92]), so the lemma follows from the inequalities
Formula 2.3.1(2). �
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Now suppose the following hypothesis is satisfied:

Hypothesis NE. For every inner form J of G∞, there exists an inner form G J of
G with G J,∞ = J and a holomorphic automorphic representation πJ of G J that
is nearly equivalent to π ; in other words, such that πJ,v −

∼→ πv for all but finitely
many places v.

Then we can apply [Harris 2008, Theorem 4.3] and find that

Lmot(1
2 n, π ⊗χi , St)

∼E(π,χi ),K (2π i)n/2+ki (2i−n)g(ηK/F )
n/2 P (n−i)(5)p((χ (2)i )∨, 1)2i−n

∼E(π,χi ),K (2π i)n/2G(i,χ)P (n−i)(5),

where we have introduced the abbreviation

G(i,χ)=
[
(2π i)ki · p((χ (2)i )∨, 1)

]2i−n
,

and we have chosen to ignore powers of g(ηK/F ).
The periods P (s)(5) were defined in [Harris 1997, (2.8.2)], where they were de-

noted P (s)(π, V ;β). Roughly speaking, P (s)(π, V ;β) is the normalized Petersson
square norm of a holomorphic automorphic form β on the Shimura variety attached
to a unitary group GU(V ) of a hermitian space V of signature (r, s); we assume
β is rational over an appropriate coefficient field, and the period P (s)(π, V ;β) is
well-defined up to multiplication by a scalar in this coefficient field. In [Harris
1997, Corollary 3.5.12], it is proved under somewhat restrictive hypotheses that
P (s)(π, V ;β) depends only on the near equivalence class of π (and on the signature
(r, s)), and therefore only on 5. The argument used to prove that corollary can be
applied to the result of [Harris 2008, Theorem 4.3] to obtain the same statement
under a much weaker hypothesis, namely when the L-functions Lmot(s, π⊗χi , St)
have nonvanishing critical values for some χi in the corresponding critical interval
for5. Since this is a consequence of hypothesis (3) of Theorem 4.2.6, we will just
assume this to be the case; thus it is legitimate to write P (s)(5) as a function of
the near-equivalence class.7

The statement of [Harris 2008, Theorem 4.3] is conditional on the possibility
of representing the special value in question as an integral of a holomorphic auto-
morphic form — hence the need for Hypothesis NE — against an Eisenstein series
realized by means of the Siegel–Weil formula. That this is possible for the central
value is proved in [Harris et al. 2011, Section 4.2].

7Under Hypotheses 4.1.4, 4.1.10, and 4.1.14 of [Harris 2007], Theorem 4.2.1 therein implies
immediately that P(s)(π, V ;β) depends only on the near equivalence class of π . The most important
of these hypotheses is 4.1.10: 5 is cohomological with nontrivial cohomology with coefficients in a
representation of GL(n) of regular highest weight.
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In other words,

Lmot( 1
2 n, π ⊗π ′

)
=

n−1∏
i=1

Lmot( 1
2 n, π ⊗χi , St

)
∼E(π,{χi }),K (2π i)n(n−1)/2

n−1∏
i=1

G(i,χ) · P (n−i)(5).

Combining this with (3.3.4), and bearing in mind L(s,As(π ′))= L(s,As(M5(χ )),
we find

Lmot( 1
2 n, π⊗π ′)

L(1,As(π ′))
∼E(π,{χi }),K (2π i)n(n−1)/2

∏n−1
i=1 G(i,χ)·P (n−i)(5)

(2π i)n(n−1)/2·
∏n−1

i=1 G(i,χ)

∼E(π,{χi }),K

n−1∏
i=1

P (n−i)(5)

(4.2.5)

The next theorem then follows immediately from (4.2.5) and 4.1.12.

Theorem 4.2.6. We admit the Ichino–Ikeda conjecture (2.1.5). Fix a representa-
tion τ of G∞, and an automorphic representation π of G of infinity type τ . Suppose
π satisfies Hypothesis NE, and suppose there exists an (n−1)-tuple χ satisfying
the following:

(1) The L-packet 5(χ) on G ′ is nontrivial.

(2) Let τ ′ denote the common archimedean component of all elements of 5(χ).
Then τ ′ satisfies the inequalities of Formula 2.3.1(2) relative to τ , that is,
L(τ, τ ′) 6= 0.

(3) For each χi , the central value Lmot(1
2 n, π ⊗χi , St)= L( 1

2 , π ⊗χi , St) 6= 0.

Then

L(1, π,Ad)∼E(π),K (2π i)n(n+1)/2
n−1∏
i=1

P (n−i)(5).

Remark 4.2.7. (a) It is legitimate to replace E(π, {χi }) by E(π) because we can
let the χi vary over their Galois conjugates; only π remains on the two sides.

(b) Hypotheses (1) and (3) imply that the central value L( 1
2 ,5 × BC(5(χ))),

which is another expression for the numerator of the left-hand side of (4.2.5), does
not vanish. The Ichino–Ikeda conjecture, together with the Gross–Prasad conjec-
ture, then picks out a pair (G1,G ′1) of inner forms of G and G ′, respectively, and
automorphic representations π1 and π ′1 on G1 and G ′1, with BC(π1)=5, BC(π ′1)=
BC(5(χ)), such that the left hand side of the identity (2.1.5) does not vanish for
some choice of data f, f ′, f ∨, f ′,∨. In particular, L(π1,v, π

′

1,v)⊗L(π∨1,v, π
′,∨
1,v ) 6=0

for all places v. Moreover, the quadruple (G1,G ′1, π1, π
′

1) is unique. It follows
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from hypothesis (2) that G1,∞ = G∞ and G ′1,∞ = G ′
∞

are compact. Since n− 1
is odd, this implies that G ′1 and G ′ are isomorphic. On the other hand, G1 may
well be different from G at finite places, but since L(1, π1,Ad)= L(1, π,Ad), we
need not refer to π1 in the statement of Theorem 4.2.6.

4.3. Verification of the hypotheses of Theorem 4.2.6.

4.3.1. The existence of L-packets 5(χ) satisfying hypotheses (1) and (2) is pre-
dicted in most cases by the Langlands functoriality conjectures. Proofs of endo-
scopic functoriality in related situations are based on the stable Arthur-Selberg trace
formula. In the situation at hand, where G ′ is definite at archimedean places, White
has some results to this effect in his thesis [2010, Theorems 5.12 and Theorem
5.15]. Complete results for endoscopic transfer can be found in recent papers of C.
P. Mok when the target group G ′ is quasisplit. There may be obstructions at finite
places at which G ′ is not quasi-split; this should be settled by additional work on
the stable trace formula.

4.3.2 The nonvanishing hypothesis (3) of Theorem 4.2.6. This hypothesis is not
accessible at present. One can conjecture that it is always true, given the freedom
one has in choosing χ in the proof of 4.3.1. For each i one needs to find χi of the
appropriate weight such that L(1

2 , π⊗χi , St) 6= 0; equivalently, with χi fixed, one
needs to find χ ′i of finite order, with trivial restriction to the idèles of Q, such that
L( 1

2 , π ⊗χi ·χ
′

i , St) 6= 0.

The first condition is to find χ ′i such that the sign of the functional equation
of L( 1

2 , π ⊗ χi · χ
′

i , St) is +1. This is a local problem and can always be solved.
As explained in [Harris et al. 2011], the local signs ε(1/2, πv ⊗ χi,v · ·χ

′

i ) ∈ {±1}
determine a certain Siegel–Weil Eisenstein series on a quasisplit unitary group
U(n, n), and the vanishing of the central value L(1

2 , π⊗χi ·χ
′

i , St) corresponds to
the triviality of the pairing of this Eisenstein series with vectors in

(π ⊗χi ·χ
′

i )⊗ (π ⊗χi ·χ
′

i )
∨

in the doubling method. However, the Eisenstein series itself is nontrivial, so there
are certainly representations π for which L( 1

2 , π ⊗χi ·χ
′

i , St) 6= 0!
One would like to say that the L-function does not vanish for most π in a fam-

ily of representations. For the families typically considered by analytic number
theorists this also seems to be an inaccessible problem. On the other hand, one
can prove such a generic nonvanishing result for p-adic families of automorphic
representations, provided one has well-behaved p-adic L-functions for these fam-
ilies. This will be explained in more detail in forthcoming work of the author with
Eischen, Li, and Skinner.
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4.4. Comparison of Theorem 4.2.6 with Deligne’s conjecture. It remains to com-
pare the expression

(2π i)n(n+1)/2
n−1∏
i=1

P (n−i)(5)

of Theorem 4.2.6 with the expression

d(M)1/2(2π i)n(n+1)/2
[Qdet(M)]

(n−1)/2
·

∏
`

Q1−`
`

predicted by Deligne’s conjecture as expressed in Corollary 1.3.5; in other words,
we wish to justify a comparison

n−1∏
i=1

P (n−i)(5)∼K d(M)1/2[Qdet(M)]
(n−1)/2

·

∏
`

Q1−`
` . (4.4.1)

The comparison can only be heuristic, because the invariants Q` are defined in
terms of a hypothetical polarized regular motive, whereas the P (n−i)(5) are nor-
malized Petersson square norms of arithmetic holomorphic automorphic forms on
Shimura varieties. We reason as in [Harris 1997, Section 3.7], deriving a version
of (4.4.1) from the Tate conjecture. Briefly, we stipulate that the Q` are defined for
a motive M(5) with λ-adic realizations ρ5,λ, as in Section 1.1, while the P (s)(5)
are periods of a motive, say M (s)(5), whose λ-adic realization is isomorphic to
an explicit abelian twist of

∧n−s M(5)∨; see [Harris 1997, 2.7.6.1, 2.7.7, 3.7.9]
and the subsequent discussion. More precisely, in view of the Tate conjecture, the
relation of L-functions asserted as [ibid., Conjecture 2.7.7] motivates the following
version of [ibid., Hypothesis 3.7.9]:8

M (s)(5)−∼→

r∧
M(5)∨⊗M(χπ+)( 1

2r(r − 1)),

−∼→

( s∧
M(5)

)
⊗M(χπ+)−1(1

2r(r − 1)),

(4.4.2)

where r = n− s and χπ+ is the central character of any of the representations π+

of one of the groups GU(W ) ⊃ U (W ) = G, the base change of whose restriction
to G is 5. With χ5 as in Section 1.2, we thus have

χ5 = χπ+/χ
c
π+ . (4.4.3)

8Thanks to progress on the stable trace formula, especially the proof of the Fundamental Lemma,
Langlands’ Conjecture 2.7.7 on the cohomology of Shimura varieties attached to unitary groups is
much closer to being established now than when [Harris 1997] was published. The conjecture has
been proved in a number of cases, under simplifying hypotheses, the corresponding relations of
automorphic representations are the subject of [Clozel et al. 2011].
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To be completely accurate, the restriction of π+ to G may have several irreducible
components π , but they all have the same base change to GL(n). Note that the
relation (4.4.3) is insensitive to the choice of extension of the central character of
one such π to the center of GU(W ), which is isomorphic to GL(1)K. We have
made the simplifying hypothesis that the parameter c of (2.4.4) equals 0, so we
may assume the restriction of χπ+ to the idèles of Q is a Hecke character of finite
order, in other words a Dirichlet character χ0.

As in [Harris 1997], (4.4.2) motivates the following relations:

P (n−i)(5)∼K

n−i∏
`=1

Q` · Q(χπ+)−1.

Here Q(χπ+) is defined by analogy with Qdet M .
The Tate twist is invisible at this stage because the periods P (s) and Q` are

defined with respect to the de Rham pairing, and Q(1)DR =Q. Then the left hand
side of (4.4.1) is

∼K

[ n−1∏
i=1

n−i∏
`=1

Q`

]
· Q(χπ+)1−n

∼K

[ n−1∏
`=1

Qn−`
`

]
· Q(χπ+)1−n.

Thus the relation (4.4.1) follows from

Q(χπ+)∼K d(M)1/2 Q1/2
det M(5) ∼K d(M)1/2 Q(ξ5)1/2

= d(M)1/2 Q(χ5)1/2, (4.4.4)

where the last relation is (1.2.1), bearing in mind that the Tate twist does not con-
tribute to this calculation, so that Q(ξ5)= Q(χ5). By (4.4.3), the relation (4.4.4)
is equivalent to

Q(χπ+)∼K d(M)1/2 Q(χπ+/χ c
π+)

1/2. (4.4.5)

But χ c
π = χ

−1
π (since it is a character of U(1)), so χπ+ · χ c

π+
factors through the

norm from K to Q.
We hope to provide a hypothetical interpretation of d(M) in a subsequent paper

with Guerberoff. In the meantime, we may as well square the two sides of (4.4.5),
which reduces the question to

Q(χπ+ ·χ c
π+)∼K Q(χ0 ◦ NK/Q)∼K 1, (4.4.6)

with χ0 as above. Finally, if we are willing to accept the analogue of the relation
(3.3.5) (with k` = 0), namely,

Q(χ0 ◦ NK/Q)= p(([χ0 ◦ NK/Q]
(2))∨, 1)−2,

then we are done, because the definition implies that χ (2) is trivial for any Dirichlet
character χ composed with the norm.
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Galois module structure of
local unit groups

Romyar Sharifi

We study the groups Ui in the unit filtration of a finite abelian extension K of
Qp for an odd prime p. We determine explicit generators of the Ui as modules
over the Zp-group ring of Gal(K/Qp). We work in eigenspaces for powers of
the Teichmüller character, first at the level of the field of norms for the extension
of K by p-power roots of unity and then at the level of K .

1. Introduction

Fix an odd prime p and a finite unramified extension E of Qp. We use Fn to denote
the field obtained from E by adjoining to E the pnth roots of unity in an algebraic
closure of Qp. The i th unit group in the unit filtration of Fn will be denoted by Un,i .
The object of this paper is to describe generators of the groups Un,i as modules
over the Zp-group ring of Gn =Gal(Fn/Qp). We express these generators in terms
of generators of the pro-p completion Dn of F×n as a Galois module. In fact, one
consequence of our work is a rather elementary proof of an explicit presentation of
Dn as such a module, as was proven by Greither [1996] using Coleman theory.

Instead of working with all of Dn at once, we find it easier to work with certain
eigenspaces of it. For this and several other purposes, it will be useful to think of
the Galois group Gn as a direct product of cyclic subgroups

Gn =1×0n ×8,

where1×0n =Gal(Fn/E) with |1| = p−1 and |0n| = pn−1, and8 is isomorphic
to Gal(E/Qp). We then decompose Dn into a direct sum of p − 1 eigenspaces
for powers of the Teichmüller character ω : 1 → Z×p . For any integer r , the
ωr -eigenspace D(r)

n of Dn is the subgroup of elements upon which σ ∈1 acts by
left multiplication by ω(σ)r . This definition depends only on r modulo p−1, so we
fix r with 2≤r ≤ p. Note that D(r)

n is a module over the group ring An=Zp[0n×8].
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In fact, as we shall see in Section 3.1, the An-module D(r)
n has a generating set with

just one element if r ≤ p−2, three elements if r = p−1, and two elements if r = p.
We will be interested in the An-module structure of the groups V (r)

n,i = D(r)
n ∩Un,i .

It turns out that

V (r)
n,i ) V (r)

n,i+1 = V (r)
n,i+2 = · · · = V (r)

n,i+p−1

for all i ≡ r mod p − 1 (see Lemma 2.1), so we will consider only such i and
set Vn,i = V (r)

n,i .
Our main results, Theorems 4.3.1 and 4.3.3, provide a small set of at most n+ 1

generators of Vn,i as an An-module and state that any proper generating subset of it
has cocardinality 1. The elements of this set are written down explicitly as An-linear
combinations of elements of the generators of D(r)

n . In Section 4.2, elements of a
special form are constructed so as to lie as deep in the unit filtration as possible.
In Section 4.3, these are refined to elements of the same form that instead lie just
deep enough to be in Vn,i , which are in turn the generators that we use.

It is convenient to work first in the field of norms F of Fontaine–Wintenberger for
the tower of extensions Fn of E . This is a field of characteristic p, the multiplicative
group of which is the inverse limit of the F×n . We prove analogues of all of the above-
mentioned results first at this infinite level, prior to applying them in descending
to the level of Fn . The fact that the pth power map is an automorphism of F×

simplifies some of the computations. Moreover, the structure of the eigenspaces of
the pro-p completion of F×, which we study in Section 3.1, is somewhat simpler
than that of the D(r)

n . We construct special elements in the eigenspaces of the groups
in the unit filtration in Section 3.2, refine them in Section 3.3, and prove generation
and a minimality result in Section 3.4.

We see a number of interesting potential applications for the results of this paper.
To mention just one, it appears to make possible the computation of the conductors
of all degree pn Kummer extensions of Fn in terms of the Kummer generator of
the extension. The problem of making this computation, which was approached by
the author in three much earlier papers, has until now seemed beyond close reach
in this sort of generality.

2. Preliminaries

We maintain the notation of the introduction and introduce some more. Recall from
[Wintenberger 1983] that the field of norms F for the extension F∞ =

⋃
n Fn of E

is a local field of characteristic p with multiplicative group

F× = lim
←−

F×n ,

the inverse limit being taken with respect to norm maps.
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Let ζ = (ζpn )n be a norm compatible sequence of p-power roots of unity, with
ζpn a primitive pnth root of unity in Fn . Then λ = 1− ζ = (1− ζpn )n is a prime
element of F .

For m ≥ n, let Nm,n : Fm→ Fn be the norm map. Recall that the addition on F
is given by

(α+β)n = lim
m→∞

Nm,n(αm +βm)

for α = (αn)n and β = (βn)n in F . We fix an isomorphism of the residue field
of E (and thereby each Fn) with Fq , with q the order of the residue field. Using
this, the field Fq is identified with a subfield of F via the map that takes ξ ∈ F×q to
(ξ̃ p−n

)n ∈ F×, where ξ̃ is the (q−1)st root of unity in E lifting ξ . The field F may
then be identified with the field of Laurent series Fq((λ)).

If F∞ is the union of the Fn , then G = Gal(F∞/Qp) acts as automorphisms
on the field F . As with Gn , we may decompose G = Gal(F∞/Qp) into a direct
product of procyclic subgroups

G =1×0×8,

where Gal(F∞/E)=1×0, the group1 has order p−1, the group 0 is isomorphic
to Zp, and 8 is isomorphic to Gal(E/Qp). Let γ denote the topological generator
of 0 such that γ (ζpn )= ζ

1+p
pn for all n.

The pro-p completion D of F× decomposes into a direct sum of eigenspaces for
the powers of the Teichmüller character ω on1. For an integer r , we let D(r)

= Dεr ,
where εr is the idempotent

εr =
1

p−1

∑
δ∈1

ω(δ)−rδ ∈ Zp[1].

For i ≥ 1, let Ui denote the i th group in the unit filtration of F . We then set

V (r)
i =Ui ∩ D(r) and (V (r)

i )′ = V (r)
i − V (r)

i+1.

The following is [Sharifi 2002, Lemma 2.3] (with Fn replaced by F).

Lemma 2.1. We have V (r)
i /V (r)

i+p−1
∼= Fq for every i ≥ 1, and (V (r)

i )′ 6= ∅ if and
only if i ≡ r mod p− 1.

From now on, we set Vi = V (r)
i and V ′i = (V

(r)
i )′ if i ≡ r mod p − 1. As a

consequence of Lemma 2.1, an element z ∈ Vi is determined modulo λi+p−1 by its
expansion

z ≡ 1+ ξλi mod λi+1 (2.1)

with ξ ∈ Fq .
The following is [Sharifi 2002, Lemma 2.4] (with Fn replaced by F).

Lemma 2.2. Let z ∈ V ′i . If p - i , then zγ−1
∈ V ′i+p−1. Otherwise, zγ−1

∈ Vi+2(p−1).
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We identify 3= Zp[[0]] with the power series ring Zp[[T ]] via the continuous,
Zp-linear isomorphism that takes γ − 1 to T , and we use additive notation to
describe the action of Zp[[T ]] on D. Ramification theory would already have told
us that T · Vi ⊆ Vi+p−1 for all i . On the other hand, explicit calculation will yield
the following two lemmas and proposition, which provide more precise information
on how powers of T move elements of Vi .

For ξ ∈ F×q , we let Vi (ξ) denote the set of z ∈ Vi for which z has an expansion of
the form in (2.1). We use [k] to denote the smallest nonnegative integer congruent
to k ∈ Z modulo p.

Lemma 2.3. Let z ∈ Vi (ξ) for some i . Then, for 0≤ j ≤ [i], we have

T j z ∈ Vi+ j (p−1)

(
[i]!

([i]− j)!
· ξ
)
.

Proof. Note that

λγ = 1− ζ 1+p
= 1− (1− λ)(1− λp)= λ+ λp

− λp+1. (2.2)

Using this, we see, for any i ≥ 1, that

(1+ ξλi )γ−1
≡ 1+ iξλi+p−1 1− λ

1+ ξλi mod λi+2p−2. (2.3)

Hence,
(1+ ξλi )γ−1

≡ 1+ iξλi+p−1 mod λi+p. (2.4)

Applying (2.4) recursively, we obtain the result. �

Lemma 2.4. Let z ∈ Vpi−p+1(ξ) for some i ≥ 2. If j is a nonnegative multiple of
p− 1, then T j+1z ∈ Vp(i+ j)(ξ).

Proof. Let us begin by proving slightly finer versions of (2.3) in two congruence
classes of exponents modulo p. For any t ≥ 1, we have

(1+ ξλpt)γ−1
=

1+ ξλpt(1+ λp(p−1)
− λp2

)t

1+ ξλpt ≡ 1 mod λp(t+p−1),

(1+ ξλpt+1)γ−1
= 1+ ξλpt+1

∑pt+1
m=1

(pt+1
m

)
(λp−1

− λp)m

1+ ξλpt+1

≡ 1+ ξ(λp(t+1)
− λp(t+1)+1) mod (λp(t+p−1)+1, λp(2t+1)+1),

the latter congruence following from the fact that p |
(pt+1

m

)
for 2 ≤ m < p. Via

some obvious inequalities, we conclude that

(1+ ξλpt)γ−1
≡ 1 mod λp(t+2), (2.5)

(1+ ξλpt+1)γ−1
≡ (1+ ξλp(t+1))(1− ξλp(t+1)+1) mod λp(t+2). (2.6)
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Let x = 1+ ξλpi−p+1. Recursively applying (2.5) and (2.6), we see that

x (γ−1)k+1
≡ (1+ (−1)kξλp(i+k))(1+ (−1)k+1ξλp(i+k)+1) mod λp(i+k+1),

for any positive integer k, as (2.4) implies that U γ−1
p(i+k) ⊆Up(i+k+1). The result now

follows by application of εi , since

z−1xεi ∈ Vpi , T j+1xεi ∈ Vp(i+ j)(ξ), and T j+1Vpi ⊂ Vp(i+ j+1)−1,

the latter by Lemma 2.2. �

Let us use {k} to denote the smallest nonnegative integer congruent to k ∈ Z

modulo p− 1. For i ≥ 1 with p - i , we define a monotonically increasing function
φ(i) : Z≥0→ Z by φ(i)(0)= i and

φ(i)(a)= pa+ (i − [i])+{[i] − a} for a ≥ 1. (2.7)

Proposition 2.5. Let z ∈ Vi (ξ) for some i ≥ 2 with p - i . Then, for j ≥ 1, we have

T j z ∈ Vφ(i)( j)

(
[i]!
{[i]− j}!

ξ
)
.

Proof. Lemma 2.3 implies that

T [i]−1z ∈ Vφ(i)([i]−1)([i]! · ξ),

and note that φ(i)([i]−1)≡ 1 mod p. Set k={[i]− j}. Since j+k−[i] is divisible
by p− 1, Lemma 2.4 then implies that

T j+kz ∈ Vφ(i)( j+k)([i]! · ξ). (2.8)

It follows from (2.7) that

φ(i)( j + k)− i = p( j + k− [i])+ (p− 1)[i],

and so, given (2.8), Lemma 2.2 forces T l z ∈ V ′
φ(i)(l) for all l ≤ j + k. In particular,

applying Lemma 2.3 with j replaced by k and z replaced by T j z, we see that for
(2.8) to hold, T j z must have the stated form. �

Remark 2.6. The obvious analogues of the results of this section all hold at the
level of Fn for n ≥ 2, with λ replaced by λn = 1− ζpn . In fact, Lemmas 2.1 and 2.2
were originally proven in that setting in [Sharifi 2002]. That the other results hold
breaks down to the fact that p is a unit times λpn−1(p−1)

n in Fn , which in particular
tells us that (2.2) can be replaced by λγn ≡ λn + λ

p
n − λ

p+1
n mod λp(p−1)+1

n .
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3. The infinite level

3.1. Structure of the eigenspaces. In this subsection, we fix choices of certain
elements that will be used throughout the paper. From now on, we let ξ denote
an element of Fq with Tr8 ξ = 1, the conjugates of which form a normal basis of
Fq over Fp. Let ϕ ∈8 denote the Frobenius element. Let N8 ∈ Zp[8] denote the
norm element. Let ζ = (ζpn )n be a norm-compatible system of primitive pnth roots
of unity as before.

Let r be an integer satisfying 2 ≤ r ≤ p. If 2 ≤ r ≤ p− 2, we simply fix an
element ur ∈ Vr (ξ). In the case that r = p− 1, generation of D(p−1) requires one
additional element π ∈ D(p−1), a non-unit, chosen along with u p−1 ∈ Vp−1(ξ) in
the lemma which follows. The case of r = p shall require more work, but we will
fix elements w ∈ V1(−ξ) and u p ∈ Vp(ξ) as in Proposition 3.1.3 below.

Lemma 3.1.1. There exist elements π ∈ D(p−1) and u p−1 ∈ Vp−1(ξ) such that
πϕ = π and πγ−1

= uN8
p−1.

Proof. Set π = λεp−1 , which satisfies πϕ = π and πγ−1
∈ Vp−1(1). Since every

unit is a norm in an unramified extension, there exists u′p−1 ∈ D(p−1) such that
(u′p−1)

N8 = πγ−1, and such an element must lie in Vp−1(ξ
′) for some ξ ′ ∈ Fq with

Tr8 ξ ′ = 1. Hilbert’s Theorem 90 tells us that ξ ′ = ξ + (ϕ− 1)η for some η ∈ Fq .
Let z ∈ Vp−1(η), and set u p−1 = u′p−1z1−ϕ . �

In fact, one could have chosen u p−1 ∈ Vp(ξ) arbitrarily and then taken π to
satisfy the relations, as can be seen using the results of the following section.

Lemma 3.1.2. There exist elements w ∈ V1(−ξ) and u p ∈ Vp(ξ) with wN8 = ζ

and uϕ−1
p = wγ−1−p.

Proof. First, local class field theory yields the existence of an element w′ ∈ D(p)

with (w′)N8 = ζ . Since ζ ∈ V1(−1), we must have w′ ∈ V1(−ξ
′) for some ξ ′ ∈ Fq

with Tr8 ξ ′= 1. Since ξ ′= ξ+(ϕ−1)η for some η ∈ Fq , we choose any y ∈ V1(η),
and then w = w′y1−ϕ

∈ V1(−ξ) satisfies wN8 = ζ as well.
Next, note that (wγ−1−p)N8=1, and so Hilbert’s Theorem 90 allows us to choose

an element u′p ∈ D(p) with (u′p)
ϕ−1
= wγ−1−p. A simple computation using (2.4)

tells us that wγ−1−p
∈ Vp(ξ

p
− ξ), and therefore u′p ∈ Vp(ξ + a) for some a ∈ Fp.

We may then choose z ∈ Vp(a) with zϕ = z and take u p = u′pz−1
∈ Vp(ξ). �

We need slightly finer information on the relationship between w and u p inside
the unit filtration, as found in the following proposition.

Proposition 3.1.3. There exist elements w ∈ V1(−ξ) and u p ∈ Vp(ξ) with wN8 = ζ

and uϕ−1
p = wγ−1−p such that the element y = u pw

pϕ−1
lies in V2p−1(−ξ).
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Proof. For now, fix any choices of u p and w as in Lemma 3.1.2. We must have
u p = (1+ ξλp)ε1α with α ∈ V2p−1 and w = (1− ξλ)ε1β with β ∈ Vp. Note that

(1+ ξλp)ϕ−1
≡ 1+ (ξ p

− ξ)λp mod λ2p,

(1− ξλ)γ−1−p
=

1− ξ(λ+ ζλp)

(1− ξλ)(1− ξ pλp)
≡ 1+

(
ξ p
− ξ

1−λ
1−ξλ

)
λp mod λ2p.

We then have

(1− ξλ)γ−1−p

(1+ ξλp)ϕ−1 ≡ 1+
ξ(1− ξ)
1− ξλ

λp+1 mod λ2p. (3.1.1)

We denote the quantity on the right side of (3.1.1) by θ . By Lemma 2.2, we have
βγ−1−p

∈ V3p−2, from which it follows that αϕ−1θ−ε1 ∈ V3p−2. On the other hand,
by Lemma 2.1, we have

yα−1
= (1+ ξλp)ε1(1− ξλp)ε1β pϕ−1

∈ V3p−2,

so in fact we have yϕ−1θ−ε1 ∈ V3p−2. If we can show that θ ε1 ∈ V2p−1(ξ − ξ
p), we

will then have y ∈ V2p−1(−ξ+a) for some a ∈ Fp. As in the proof of Lemma 3.1.2,
we can then choose an element z ∈ V2p−1(a) with zϕ = z and replace u p by u pz−1

to obtain the result.
By Proposition 2.5, we see that to show that θ ε1 ∈ V2p−1(ξ − ξ

p), it suffices to
show that θ ε1(γ−1)p−1

∈ Vp2(ξ p
− ξ). Since p2

≡ 1 mod p− 1, for this, it suffices
to show that

θ (γ−1)p−1
≡ 1+ (ξ p

− ξ)λp2
mod λp2

+1.

This is a simple consequence of Lemma 3.1.4, which follows. That is, in the
notation of said lemma, Fermat’s little theorem and the binomial theorem tell us
that dp−1,k =−1 for all positive integers k ≤ p− 1. �

Lemma 3.1.4. For each positive integer j ≤ p− 1, one has(
1+

ξ(1− ξ)
1− ξλ

λp+1
)(γ−1) j

≡ 1+
( j∑

k=1

d j,kξ
k(1− ξ)

)
λ( j+1)p mod λ( j+1)p+1,

where

d j,k =

k∑
h=1

(−1) j+h
( k

h

)
h j
∈ Fp

for positive integers k ≤ j .

Proof. We make the expansion

θ = 1+
ξ(1− ξ)
1− ξλ

λp+1
≡

p−1∏
k=1

(1+ ξ k(1− ξ)λp+k) mod λ2p.
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Since U γ−1
s ⊆Us+p−1 for all s, as follows from (2.4), to compute θ (γ−1) j

modulo
λ( j+1)p+1, it suffices to compute (1+ ξ k(1− ξ)λp+k)(γ−1) j

modulo λ( j+1)p+1.
Fix a positive integer k ≤ p− 1. We claim that the coefficient of λ( j+1)p in the

expansion of (1+ ξ k(1− ξ)λp+k)(γ−1) j
as a power series in Fq [[λ]] is 0 if j < k

and ξ k(1− ξ)d j,k if j ≥ k. As a consequence of (2.3), one sees that

(1+ ξλt)γ−1
≡ (1+ tξλt+p−1)(1− tξλt+p) mod λt+2p−2 for any t ≥ p− 1.

Using this and the finer congruence (2.6) when possible, an induction yields that
the expansion in question is determined by

min( j,k)∏
m=0

∏
(ai )∈Pj,k,m

(
1+ξ k(1−ξ) k!

(k−m)!

j−m∏
i=1

ai ·λ
( j+1)p+k−m

)(−1) j−m

mod λ( j+1)p+k+1,

where

Pj,k,m = {(a1, a2, . . . , a j−m) ∈ Z j−m
| k−m ≤ a1 ≤ a2 ≤ · · · ≤ a j−m ≤ k}

if j >m and Pj,k, j = {0}, and we consider the empty product to be 1. In particular,
the coefficient in question is indeed 0 for j < k and is ξ k(1−ξ)c j,k for j ≥ k, where

c j,k = (−1) j−kk!
∑

(ai )∈Pj,k,k

j−k∏
i=1

ai .

It remains to verify that c j,k = d j,k for j ≥ k.
Let D denote the differential operator x d

dx on Fp[x]. By the binomial theorem,
we have

D j ((1− x)k)|x=1 =

k∑
h=1

(−1)h
( k

h

)
h j xh

∣∣∣
x=1
= (−1) j d j,k .

On the other hand, repeated application of the product formula for the derivative
yields

D j ((1− x)k)|x=1 = (−1)k
min( j,k)∑

h=1

k!
(k−h)!

∑
(ai )∈Pj,h,h

j−h∏
i=1

ai · (x − 1)k−h xh
∣∣∣
x=1

= (−1) j c j,k

for all j ≥ k and hence the result. �

In the next section, we will obtain the following very slight refinement of what
is essentially a result of [Greither 1996, Sections 2 and 3]; see also [Sharifi 2002,
Corollary 2.2].
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Theorem 3.1.5. For r ≤ p − 2, the A-module D(r) is freely generated by any
ur ∈ Vr (ξ). The A-module D(p−1) has a presentation

D(p−1)
= 〈π, u p−1 | π

ϕ
= π, uN8

p−1 = π
γ−1
〉,

for some u p−1 ∈ Vp−1(ξ) and π ∈ D(p−1). The A-module D(p) has a presentation

D(p)
= 〈u p, w | w

γ−1−p
= uϕ−1

p 〉,

for some u p ∈ Vp(ξ) and w ∈ V1(−ξ) such that wN8 = ζ .

3.2. Special elements. Fix r such that 2 ≤ r ≤ p, and define φ : Z≥0 → Z by
φ(a)= φ(r)(a) for a ≥ 1. Set

δ =

{
0 if 2≤ r ≤ p− 1,
1 if r = p.

For all a ≥ 1, we have φ(a)= p(a+δ)+{r−δ−a}, so φ(a) is the smallest integer
that is at least p(a+ δ) and congruent to r modulo p− 1.

From now on, i will be used solely to denote a positive integer congruent to r
modulo p− 1. We will write α ∼ β to denote that both α and β lie in Vi (ξ) for
some i and ξ ∈ F×q . We use additive notation for the action of A = Zp[8][[T ]] on
D(r). We begin with the following useful lemma.

Lemma 3.2.1. Let j be a positive integer.

a. We have
T j ur ∈ Vφ( j)

(
[r ]!

{r−δ− j}!
ξ
)
.

b. If j ≡ r − δ mod (p− 1) so that T j ur ∼ pz for some z ∈ D(r), then

T j ur − pz ∈ Vφ( j)+p−1 (−[r ]! ξ) .

Proof. For r < p, part a is a direct consequence of Proposition 2.5 and the fact that
ur ∈ Vr (ξ). For r = p, Proposition 2.5 and the fact that φ = φ(2p−1) on positive
integers would tell us more directly that T j y ∈ Vφ( j)(

1
{− j}! ξ) for j ≥ 1 and y

as in Proposition 3.1.3. Note, however, that T u p = T y − pϕ−1Tw ∼ T y, since
pTw ∈ Vp2 . This is also the key point of part b. That is, we have

T (T j ur − pz)∼ T j+1ur

as pT z ∈ Vpφ( j) and

φ( j + 1)≤ φ( j)+ 2(p− 1) < pφ( j).

Since T j+1ur ∈ Vφ( j)+2(p−1)([r ]! ξ), a final application of Proposition 2.5 tells us
that T j ur − pz had to be in the stated group. �
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For a nonnegative integer m, let us define φm : Z≥0→Z≥0 by φm= pm(φ+1)−1.
We remark that

pφm = φ ◦ (φm − δ). (3.2.1)

From now on, we set ρ = pϕ−1 for brevity of notation. We define special
elements in the unit filtration of D(r).

Theorem 3.2.2. Let m and j be nonnegative integers. Define

αm, j =
1
[r ]!

(
{r − δ− j}!ρm T j

−

m∑
k=1

ρm−k T φk−1( j)−δ
)

ur ,

unless j = 0 and r = p− 1, in which case we replace {r − δ− j}! with −1 in the
formula. Then αm, j ∈ Vφm( j)(ξ). Furthermore, (pmbT j

+ c)ur /∈ Vφm( j)+p−1 for all
b ∈ Zp[8] with b 6≡ 0 mod p and c ∈ T j+1 A.

Proof. We work by induction, the case of m= 0 being Lemma 3.2.1a, aside from the
case j = 0, in which case it is simply the definition of ur . Assume we have proven
the first statement for m. Then pαm, j ∈ Vpφm( j)(ξ

p) and, using Lemma 3.2.1a and
(3.2.1), we have

T φm( j)−δur ∈ Vpφm( j)
(
[r ]! ξ

)
.

Lemma 3.2.1b then tells us that

αm+1, j = ραm, j −
1
[r ]!

T φm( j)−δur ∈ Vpφm( j)+p−1(ξ).

Now assume the second statement is true for m. (For m= 0, this is a consequence
of the fact that the conjugates of ξ are Fp-linearly independent.) Suppose that

α = (pm+1bT j
+ c)ur ∈ V ′i

with i ≥φm+1( j), b∈Zp[8]−pZp[8] and c∈T j+1 A. We write c= (pc′+T hν)ur

for some c′, ν ∈ A with ν 6≡ 0 mod (p, T ) and h ≥ j + 1. By induction, we have

(pmbT j
+ c′)ur /∈ Vφm( j)+p−1.

Since φm+1( j)= pφm( j)+ p− 1 and α ∈ Vφm+1( j) by assumption, this forces

p(pmbT j
+ c′)ur ∼−T hνur ,

which tells us by Lemma 3.2.1a that φ(h)≤ pφm( j). On the other hand, it follows
from Lemma 3.2.1b that α ∈ V ′φ(h)+p−1, which forces i = φm+1( j). �

The second statement of Theorem 3.2.2 insures, in particular, that aur 6= 0 for
all nonzero a ∈ A. We therefore have the following corollary.

Corollary 3.2.3. The A-submodule of D(r) generated by ur is free.
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In the exceptional case that r = p, we require additional elements. First, we
modify the function φm for this r . For nonnegative integers m and j , we set
φ′m( j)= φm( j) unless r = p and j = pl

− 1 for some l ≥ 0, in which case we set

φ′m(p
l
− 1)= pm+l+1

+ pm+1
− 1= φm(pl

− 1)+ pm(p− 1).

Theorem 3.2.4. Let l and m be nonnegative integers. Define

βm,l =

(
ρm T pl

−1
+

m∑
k=1

ρm−k T φ′k−1(p
l
−1)−1

)
u p + ρ

m+l+1w.

Then βm,l ∈ Vφ′m(pl−1)(−ξ). Moreover, for any j ≥ 0, we have

(pmbT j
+ c)u p + dw /∈ Vφ′m( j)+p−1

for all b ∈ Zp[8] − pZp[8], c ∈ T j+1 A and d ∈ Zp[8].

Proof. The proof is similar to that of Theorem 3.2.2. Since Lemma 3.2.1a and the
definition of w tell us that

T pl
−1u p ∈ Vpl+1(ξ) and ρl+1w ∈ Vpl+1(−ξ),

Lemma 3.2.1b yields β0,l = ρ
l+1w+ T pl

−1u p ∈ Vpl+1+p−1(−ξ). For any m ≥ 0,
we have

βm+1,l = ρβm,l + T φ′m(p
l
−1)−1u p.

By induction and Lemma 3.2.1a, we have

ρβm,l ∈ Vpφ′m(pl−1)(−ξ) and T φ′m(p
l
−1)−1u p ∈ Vpφ′m(pl−1)(ξ).

Since φ′m+1(p
l
− 1)= pφ′m(p

l
− 1)+ p− 1, that βm+1,l ∈ Vφ′m+1(p

l−1)(−ξ) is just
another application of Lemma 3.2.1b.

Let j ≥ 0, b ∈ Zp[8] − pZp[8], c ∈ T j+1 A, and d ∈ Zp[8]. First, suppose
that α= (bT j

+c)u p+dw ∈ V ′i for some i ≥ φ′0( j). Note that (bT j
+c)u p ∈ V ′φ( j)

by Lemma 3.2.1a, while dw ∈ V ′pl for some l ≥ 0. Since α ∈ Vφ′0( j), we must have
pl
≥ φ( j). We then have α ∈ V ′φ( j) unless φ( j) = pl . This occurs if and only if

l ≥ 1 and j = pl−1
− 1, in which case φ′0( j) = pl

+ p− 1. For this to hold, we
must have (bT j

+ c)u p ∼−dw. Lemma 3.2.1b then implies that α ∈ V ′pl
+p−1, so

i = φ′0( j) in all cases.
Suppose now that α = (pm+1bT j

+ c)u p + dw ∈ V ′i for some i ≥ φ′m+1( j).
Rewrite c as pc′+ T hν for some h ≥ j + 1 and c′, ν ∈ A with ν 6≡ 0 mod (p, T ).
If we are to have α ∈ Vp, we may also write d = pd ′ for some d ′ ∈ Zp[8]. By
induction, we have

(pmbT j
+ c′)u p + d ′w /∈ Vφ′m( j)+p−1,
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and so in order that α ∈ Vφ′m+1( j), we must have

(pm+1bT j
+ pc′)u p + dw ∼−T hνu p,

which tells us using Lemma 3.2.1a that φ(h) ≤ pφ′m( j). On the other hand,
Lemma 3.2.1b tells us that α ∈ V ′φ(h)+p−1, so we must have i = φ′m+1( j). �

Theorem 3.1.5 may now be proven as a consequence of the description of the
elements above and their place in the unit filtration.

Proof of Theorem 3.1.5. For r ≤ p − 1, the union of the disjoint images of the
functions φm is exactly the set of positive integers congruent to r modulo p− 1.
Therefore, Theorem 3.2.2 implies that there exists an element of the A-module
generated by ur in Vi (ξ) for each i ≡ r mod p−1. In particular, ur therefore clearly
generates Vr as an A-module, which equals D(r) for r ≤ p− 2, and it is free by
Corollary 3.2.3. Every element of D(p−1) may then be written in the form πmua

p−1
with m ∈ Zp and a ∈ A, and such an element can clearly only be trivial if m is, and
therefore a is as well. Noting that our choices of π and u p−1 as in Lemma 3.1.1
satisfy the desired relations, the presentation for r = p− 1 is as stated.

For r = p, the union of {1} and the images of the functions φm and φ′m is the
set of positive integers that are congruent to 1 modulo p− 1. Theorem 3.2.2 and
Theorem 3.2.4 imply that there exists an element of the A-module generated by
u p and w in Vi (ξ) for each i ≡ 1 mod p− 1. Thus, this A-module is D(p). Our
choices of u p and w satisfy the relations of Lemma 3.1.2, and it follows from the
second statement of Theorem 3.2.4 that if either c ∈ A or d ∈ Zp[8] is nonzero,
then so is cu p + dw. �

3.3. Refined elements. In this section, we provide refinements of the elements
constructed in Theorem 3.2.2 and Theorem 3.2.4. We maintain the notation of
Section 3.2. We begin by constructing certain one-sided inverses to the monotoni-
cally increasing functions φ and φm .

For any nonnegative integer a and positive integer t , let us set

〈a〉t =max(a+{t − a}, t).

Therefore, 〈a〉t is the smallest integer greater than or equal to t and a and congruent
to t modulo p− 1. Define ψ : Z≥0→ Z≥0 by

ψ(a)=
⌊
〈a〉r+1

p

⌋
− δ

except for r = p− 1 and a ≤ p− 1, in which case we set ψ(a) = 0. For m ≥ 0,
define ψm : Z≥0→ Z≥0 by

ψm(a)= ψ
(⌈a+1

pm

⌉
− 1

)
.
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Note that ψ0 = ψ .

Lemma 3.3.1. We have ψm(φm( j))= j for all nonnegative integers j . Moreover,
for all such j and positive integers a, we have φm( j)≥ a if and only if j ≥ ψm(a).

Proof. First, note that φ( j) is congruent to r modulo p− 1, so we have

ψ(φ( j))=
⌊
φ( j)+1

p

⌋
− δ =

⌊ p( j+δ)+{r−δ− j}+1
p

⌋
− δ = j,

unless r ≥ p− 1 and j = 0, but one checks immediately that ψ(φ(0))= ψ(r)= 0
if r ≥ p− 1 as well. It follows that we have

ψm(φm( j))= ψ
(⌈ pm(φ( j)+1)

pm

⌉
− 1

)
= ψ(φ( j))= j.

Therefore, if φm( j)≥ a, then j =ψm(φm( j))≥ψm(a), since ψm is nondecreasing.
To finish the proof, we need only show that φm(ψm(a))≥ a, since φm is nonde-

creasing (in fact, strictly increasing). First, note that the definition of ψ is such that
ψ(a)= ψ(〈a〉r ). For i ≡ r mod p− 1 with i 6= 1, p− 1, the value φ(ψ(i)) is the
unique integer between pb(i + 1)/pc and pb(i + 1)/pc+ p− 2 that is congruent
to r mod p− 1. This implies that

φ(ψ(a))=
{
〈a〉r if 〈a〉r 6≡ −1 mod p, or a ≤ r = p− 1,
〈a〉r + p− 1 otherwise,

(3.3.1)

which is, in particular, at least a. By definition of φm and ψm , we then have

φm(ψm(a))= pm(φ(ψm(a))+ 1)− 1≥ pm
⌈a+1

pm

⌉
− 1≥ a. �

We actually need a version of Lemma 3.3.1 with φm replaced by φ′m and ψm

replaced by an appropriate function ψ ′m : Z≥0→ Z≥0, which we now define. Set
ψ ′m = ψm if r ≤ p− 1 and, if r = p, let

ψ ′m(a)=
{
ψm(a)− 1 if pm+l+1

+ pm
≤ a ≤ pm+l+1

+ pm+1
− 1 for some l ≥ 0,

ψm(a) otherwise.

Note that ψ ′m(a)=ψm(a)−1 for r = p if and only if φm(pl
−1) < a ≤ φ′m(p

l
−1)

for some l ≥ 0, in which case ψ ′m(a)= pl
−1. One then easily checks the following:

Corollary 3.3.2. We have ψ ′m(φ
′
m( j))= j for all nonnegative integers j . Moreover,

for all such j and positive integers a, we have φ′m( j)≥ a if and only if j ≥ ψ ′m(a).

For the rest of this section, we fix a positive integer i with i ≡ r mod p− 1.

Remark 3.3.3. Lemma 3.3.1 and Theorem 3.2.2 tell us that each αm,ψm(i) lies in Vi .
Corollary 3.3.2 and Theorem 3.2.4 tell us that each βm,l with ψ ′m(i)= pl

− 1 lies
in Vi . These elements have the form (pmbT j

+ c)ur + dw for j = ψ ′m(i), where
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b ∈ Zp[8] − pZp[8], c ∈ T j+1 A, and d ∈ Z[8], with d = 0 if r 6= p. The same
results also show that no such element with j <ψ ′m(i) can lie in Vi .

For any m ≥ 0, define θm : Z≥1→ Z≥0 by

θm(a)= ψ
(⌈
〈a〉r
pm

⌉)
.

By Lemma 3.2.1a and Lemma 3.3.1, the value θm(i) for i ≡ r mod p− 1 is the
minimal integer j such that pm T j ur ∈ Vi . In particular, θm(i)≥ ψm(i) for all i .

Lemma 3.3.4. For all positive integers m and k with k ≤ m, we have

φ′k−1(ψ
′

m(i))− δ ≥ θm−k(i)− 1,

with equality if and only if

pm−k+1φ′k−1(ψ
′

m(i)) < i. (3.3.2)

Moreover, we have ψ ′m(i) ≥ θm(i)− 1, with equality if and only if the equivalent
conditions above hold for k = 1.

Proof. Let us check the case that r = p and ψ ′m(i) = pl
− 1 for some l ≥ 0

separately. First, suppose that pm+l+1 < i < pm+l+1
+ pm+1. In this case, we have

ψ ′m(i)= θm(i)− 1. We also have

φ′k−1(ψ
′

m(i))= φ
′

k−1(p
l
− 1)= pk+l

+ pk
− 1= ψ(pk+l+1

+ pk+1)≥ θm−k(i),

with equality if and only if

pm−k+1φ′k−1(ψ
′

m(i))= pm+l+1
+ pm+1

− pm−k+1 < i. (3.3.3)

Moreover, in the case that pm+l+1
− pm+1

+ 2pm < i ≤ pm+l+1, the values
φ′k−1(ψ

′
m(i)) and pm−k+1φ′k−1(ψ

′
m(i)) are the same as in the previous case, while

θm−k(i)− 1 and i are smaller. So, we may assume from this point forward that r
and i are such that ψ ′m(i)= ψm(i) and φ′k−1(ψ

′
m(i))= φk−1(ψm(i)) for all k.

We claim that ρm−k T φk−1(ψm(i))+1−δur lies in Vi+p−1 for all positive k ≤ m and
that ρm−k Tαk,ψm(i) lies in Vi+p−1 for all nonnegative k≤m. Note that Tαm,ψm(i) lies
in Vi+p−1 as a consequence of Theorem 3.2.2. Suppose that ρm−k Tαk,ψm(i)∈Vi+p−1

for some positive k ≤ m. We then have

ρm−k T φk−1(ψm(i))+1−δur ∼−[r ]!ρm−k Tαk,ψm(i) ∈ Vi+p−1,

which also forces ρm−k+1Tαk−1,ψm(i) ∈ Vi+p−1, since

ρm−k+1Tαk−1,ψm(i) = ρ
m−k Tαk,ψm(i)+

1
[r ]!

ρm−k T φk−1(ψm(i))+1−δur ,
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proving the claim. In particular, since ρm Tα0,ψm(i) ∈ Vi+p−1, we have

ρm Tψm(i)+1ur ∈ Vi+p−1

as well. The definition of θm−k(i) now yields the desired inequalities.
Now (3.3.2) holds for a given k if and only if ρm−k+1αk−1,ψm(i) /∈ Vi . Since

[r ]! ραk−1,ψm(i) ∼ T φk−1(ψm(i))−δur ,

this occurs if and only if ρm−k T φk−1(ψm(i))−δur /∈ Vi and, therefore, if and only if

φk−1(ψm(i))− δ ≤ θm−k(i)− 1,

which must then be an equality. Also, ψm(i) < θm(i) if and only if ρmα0,ψm(i) /∈ Vi ,
which holds by Lemma 3.2.1a if and only if pmφ(ψm(i)) < i , the same condition
as (3.3.2) for k = 1. �

From now on, we set im = d
i

pm e for all m ≥ 0.

Lemma 3.3.5. For any pair of positive integers m and k with k ≤ m, we have
φ′k−1(ψ

′
m(i))− δ ≥ θm−k(i)− 1, with equality if and only if

(1) im+ε 6≡ 0 mod p, or r = p− 1 and im = p,

(2) im+ε ≡ r + 1 mod p− 1, but not r = p− 1 and im = 1, and

(3) i ≡− j mod pm+ε for some 0< j < pm+1−k ,

where ε = 0 unless r = p and im+1 = pl
+ 1 for some l ≥ 0, in which case we set

ε = 1. Moreover, we have ψ ′m(i)≥ θm(i)− 1, with equality if and only if the above
conditions hold with k = 1.

Proof. The case that r = p and ψ ′m(i)= pl
−1 for some l ≥ 0 follows from the proof

of Lemma 3.3.4, noting that if im+1 = pl
+1, then it is both nonzero modulo p and

congruent to p+1 modulo p−1, and the third condition of the lemma holds exactly
when (3.3.3) does. On the other hand, for the remaining i with ψ ′m(i)= pl

− 1, we
have im+1 = pl , and the fact that the inequality is strict was shown in the proof of
Lemma 3.3.4. So, we again assume that r 6= p or i is such that ψ ′m(i) 6= pl

− 1 for
all l ≥ 0.

By Lemma 3.3.4, it suffices to determine the precise conditions under which
(3.3.2) holds. Let us set a = (i + 1)m . It follows from (3.3.1) that we have

pm−k+1φk−1(ψm(i))=
{

pm
〈a〉r+1− pm−k+1 if p - 〈a〉r+1,

pm
〈a〉r+1+ pm(p− 1)− pm−k+1 otherwise,

(3.3.4)

unless r = p− 1 and 〈a〉r+1 = p, in which case

pm−k+1φk−1(ψm(i))= pm+1
− pm−k+1.
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Aside from this exceptional case, (3.3.4) implies that p cannot divide 〈a〉r+1 if
(3.3.2) is to hold. Moreover, if 〈a〉r+1 > a, then again (3.3.2) cannot hold, so for it
to hold, we must have a ≡ r+1 mod p−1, but not r = p−1 and a = 1. Assuming
that these necessary conditions hold, the condition that

pm−k+1φk−1(ψm(i))= pma− pm−k+1 < i

is exactly that i ≡− j mod pm with 0< j < pm−k+1. �

For m ≥ 0, we will define new elements κm,i of Vi that involve fewer terms
and easier-to-compute exponents of powers of T than the expressions for αm,ψm(i)

and βm,l . In preparation, set σ(m, i)= blogp(p
mim − i)c for any m ≥ 0 such that

pm - i . Note that 0≤ σ(m, i)≤m−1 when it is defined and σ(m+1, i) is defined
and greater than or equal to σ(m, i) whenever σ(m, i) is defined.

First, supposing either that r ≤ p− 1 or that r = p and im+1− 1 is not a power
of p, we set

κm,i = ρ
m T θm(i)ur (3.3.5)

if im 6≡ r+1 mod p−1, p | im , i < pm , or pm
| i , unless r = p−1 and im = p, and

κm,i =

(
ρm T θm(i)−1

− am,i

m−1∑
k=σ(m,i)

ρk T θk(i)−1
)

ur (3.3.6)

otherwise, where am,i denotes the least positive residue of ({r + 1− δ− θm(i)}!)−1

modulo p unless r = p−1 and θm(i)= 1, in which case we take am,i =−1. In the
remaining case that r = p and im+1− 1 is a power of p, we set

κm,i =

(
ρm T θm(i)−1

+

m−1∑
k=σ(m+1,i)

ρk T θk(i)−1
)

ur + ρ
m+logp(im+1−1)+1w. (3.3.7)

For consistency, we let am,i = −1 for such m. Note that Lemma 3.3.5 tells us
that each κm,i has the form (ρm Tψ ′m(i)+ c)ur + dw for some c ∈ Tψ ′m(i)+1 A and
d ∈ Zp[8], with d taken to be zero if r ≤ p− 1.

We give two examples for p = 5 and particular values of i .

Example 3.3.6. Suppose that p = 5, r = 3, and i = 11899. Then we have

κ0,i = T 2380u3, κ1,i = ρT 476u3,

κ2,i = (ρ
2T 95
− ρT 475

− T 2379)u3, κ3,i = (ρ
3T 19
− ρ2T 95)u3,

κ4,i = ρ
4T 4u3, κ5,i = (ρ

5
− ρ4T 3

− ρ3T 19)u3.
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Example 3.3.7. Suppose that p = 5, r = 5, and i = 92729. Then we have

κ0,i = T 18545u5, κ1,i = (ρT 3708
− T 18544)u5,

κ2,i = ρ
2T 741u5, κ3,i = (ρ

3T 147
− ρ2T 740

− ρT 3708)u5,

κ4,i = ρ
4T 29u5, κ5,i = (ρ

5T 4
+ ρ4T 28)u5+ ρ

7w,

κ6,i = ρ
6u5+ ρ

7w.

Remark 3.3.8. It is not hard to see from the definition of σ(m, i) that σ(m, i)≥ k
for k <m if and only if pm−k - ik . Moreover, if for a given k there exists m > k such
that σ(m, i) is less than k or not defined, then p | ik so κk,i = ρ

k T θk(i)ur unless
r = p and ik+1−1 is a power of p or r = p−1 and ik = p. The previous examples
illustrate some of this.

Let us show that the κm,i are actually elements of Vi . In the process, we see how
they compare to the elements αm,ψm(i) and βm,l previously defined.

Proposition 3.3.9. The elements κm,i lie in Vi for all nonnegative integers m.

Proof. Suppose first that r 6= p or i does not satisfy im = pl
+ 1 for any l ≥ 0 (and

omitting the case r = p− 1 and ψm(i)= 0, for which one should take the fractions
in the following two equations to be 1). If ψm(i)= θm(i), then we have

κm,i =
[r ]!

{r−δ−ψm(i)}!
ρmα0,ψm(i),

and this lies in Vi by the definition of θm(i). If ψm(i)= θm(i)− 1, we claim that

κm,i ∼
[r ]!

{r−δ−ψm(i)}!
ρσ(m,i)αm−σ(m,i),ψm(i). (3.3.8)

To see this, note that

κm,i = ρ
σ(m,i)

(
ρm−σ(m,i)Tψm(i)− am,i

m−σ(m,i)∑
k=1

ρm−σ(m,i)−k T θm−k(i)−1
)

ur .

It follows from Lemma 3.3.5 that θm−k(i)− 1 = φk−1(ψm(i))− δ if and only if
pm−k+1 > pmim − i , and therefore if k ≤ m − σ(m, i), proving the claim. (Note
that we the reason we do not have actual equality in (3.3.8) is simply that we took
am,i to be an inverse to {r − δ − ψm(i)}! modulo p, not in Z×p .) Moreover, we
have by Theorem 3.2.2 that κm,i ∈ Vt with t = pσ(m,i)φm−σ(m,i)(ψm(i)). Since
pσ(m,i) ≤ pmim − i , Lemma 3.3.5 implies that

φm−σ(m,i)(ψm(i))− δ ≥ θσ(m,i)−1(i),

and Lemma 3.3.4 then states that t ≥ i .
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Finally, if r = p and im+1 = pl
+ 1 for some l ≥ 0, then Lemma 3.3.5 similarly

implies that κm,i = ρ
σ(m+1,i)βm−σ(m+1,i),l . By Theorem 3.2.4, we have in this case

that κm,i ∈ Vt with

t = pσ(m+1,i)φ′m−σ(m+1,i)(p
l
− 1)≥ i,

the inequality again following from Lemmas 3.3.4 and 3.3.5. �

3.4. Generating sets. In this subsection, we give explicit minimal generating sets
of all of the A-modules Vi in terms of the elements κm,i of the previous section.
We begin with generation. Recall that δ ∈ {0, 1} is 1 if and only if r = p.

Theorem 3.4.1. We let Si = {κm,i | 0≤ m ≤ s} for

s =
⌈

logp

( i+1
r+1+δ(p−1)

)⌉
.

If 2 ≤ r ≤ p − 1, then Si generates Vi as an A-module, while if r = p, then
Si ∪ {pdlogp(i)ew} generates Vi as an A-module.

Proof. Let t = (i + 1)m − 1. In the case that 2≤ r ≤ p− 1, we have ψm(i)= ψ(t)
and ψ(t) > 0 if and only if i+1

pm > r + 1, or m < logp(
i+1
r+1). The smallest m such

that ψm(i)= 0 is therefore s. If r = p, then ψ ′m(i)=ψ(t)− εt , where εt ∈ {0, 1} is
1 if and only if pl+1

+ 1≤ t ≤ pl+1
+ p− 1 for some l ≥ 0. In particular, we have

ψ(t) > εt if and only if t ≥ 2p, so the smallest m such that ψ ′m(i)= 0 is again s.
It suffices to show that the images of our elements generate Vi/Vi+p−1. Suppose

that α= (ρkbT j
+c)ur+dw ∈ Vi for some nonnegative integers j, k, b ∈Zp[8]−

pZp[8], c ∈ T j+1 A, and d ∈ Zp[8] (with d = 0 if r 6= p). Let m = min(k, s).
Then j ≥ ψ ′m(i) by Theorems 3.2.2 and 3.2.4 and Corollary 3.3.2 (and the fact that
ψ ′s(i)= 0), and we set

α′ = α− ρk−mbT j−ψ ′m(i)κm,i ∈ Vi ∩ (A(T j+1ur , w)).

If r ≤ p− 1, we may repeat this process recursively until we obtain an element of
Vi+p−1. If r = p, either κm,i ∈ Au p or κm,i ∈ ρ

m+l+1w+ Au p for some l ≥ 0 with
i < pm+l+1

+ pm+1. Since (T, p)pm+l+1w ⊆ Vpm+l+2 , there exists an element

α′′ ∈ Vi ∩ (T j+1 Aur +Zp[8]w)

with α′′ − α′ ∈ Vi+p−1, and again we may repeat the process until we obtain an
element of Vi+p−1 plus an element of Vi ∩Zp[8]w = Zp[8]pdlogp(i)ew. �

Lemma 3.4.2. If m ≥ 1 is such that θm(i)≥ 1, then θm−1(i)≥ θm(i)+ 2.

Proof. First, suppose that θm(i)≥ 1, and note that im−1 ≥ p(im−1)+1. Therefore,

θm−1(i)≥ ψ(p(im − 1)+ 1)= im − 1+
⌊2+{r−im}

p

⌋
− δ. (3.4.1)
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On the other hand,
θm(i)=

⌊ im+1+{r−im}

p

⌋
− δ. (3.4.2)

In particular, θm(i)= 1 exactly when r + 1≤ im ≤ r + (δ+ 1)(p− 1). In this case,

θm−1(i)≥ r + 1− δ ≥ 3= θm(i)+ 2.

In general, (3.4.1) and (3.4.2) tell us that

θm−1(i)≥ im − 1− δ and
im

p
+ 1− δ ≥ θm(i),

and we have
im − 1− δ ≥

im

p
+ 3− δ

if and only if im ≥
4p

p−1 , which holds for im ≥ r + p unless im = 5, r = 2, and
p = 3, in which case θm−1(i)≥ 5 and θm(i)= 2. �

For each m ≥ 0, let us set εm(i) = θm(i) − ψ ′m(i), which lies in {0, 1} by
Lemma 3.3.4 and the remark before it. The following corollary is useful in under-
standing the form of our special elements.

Corollary 3.4.3. For every m ≥ 0, we have ψ ′m(i)≥ ψ
′

m+1(i), with equality if and
only if ψ ′m(i)= 0.

Proof. If θm+1(i)≥1, Lemma 3.4.2 and the fact that εk(i)∈{0, 1} for all k imply that
ψ ′m(i) > ψ

′

m+1(i). Otherwise, ψ ′m+1(i)= 0, and the inequality holds automatically,
with equality exactly if ψ ′m(i)= 0. �

We next show that the sets given in Theorem 3.4.1 are minimal unless r = p. It
is in the proof of this result that the refined elements κm,i first hold an advantage of
ease of use over the elements of Section 3.2.

Theorem 3.4.4. For r ≤ p−1, no proper subset of Si generates Vi as an A-module.
For r = p, every proper subset of Si∪{pdlogp(i)ew} that generates Vi as an A-module
must contain Si .

Proof. Assume first that 2≤ r ≤ p− 1. Suppose that
s∑

m=0

cmκm,i = 0, (3.4.3)

where cm ∈ A for m≤ s. We must show that no cm is a unit. We prove the somewhat
stronger claim that cm ∈ (p, T εm(i)+1) for each m.

Fix a nonnegative integer m ≤ s. If εm(i)= 0, then κm,i = ρ
m T θm(i)ur by (3.3.5).

If εm(i)= 1, then (3.3.6) tells us that

κm,i ≡ ρ
m T θm(i)−1ur mod AT θm(i)+1ur ,



176 Romyar Sharifi

noting Lemma 3.4.2. Set

Xm = {k ∈ Z | m < k ≤ s, εk(i)= 1, σ (k, i)≤ m}, (3.4.4)

which is actually a set of cardinality at most one, though we do not need this fact.
Let k ≤ s. If k ∈ Xm , then (3.3.6) and Lemma 3.4.2 together imply that

κk,i ≡−ak,iρ
m T θm(i)−1ur mod (pm+1, T θm(i)+1)ur ,

and if k /∈ Xm , they and (3.3.5) similarly imply that κk,i ∈ (pm+1, T θm(i)+1)ur . Thus,
(3.4.3) yields the congruence

cmρ
m Tψm(i) ≡

∑
k∈Xm

ckak,iρ
m T θm(i)−1 mod (pm+1, T θm(i)+1). (3.4.5)

If the claim holds for all k > m, then we have ck ∈ (p, T 2) for each k ∈ Xm , so
cm ∈ (p, T εm(i)+1), as desired.

If r = p, a completely analogous argument shows that at most pdlogp(i)ew is
unnecessary for generation, if one works modulo Aw = Zp[8]w+ A(ϕ − 1)u p

throughout. Here, one should replace Xm by

X ′m = {k ∈ Z | m < k ≤ s, εk(i)= 1, σ ′(k, i)≤ m}, (3.4.6)

where we set σ ′(k, i)= σ(k, i) unless ik+1 = pl
+ 1 for some l ≥ 0, in which case

we set σ ′(k, i)= σ(k+ 1, i). �

For the purpose of completeness, we also give the precise condition on i under
which no proper subset of Si ∪ {pdlogp(i)ew} generates Vi in the case that r = p.

Proposition 3.4.5. For r = p, the set Si generates Vi if and only if is = p+ 1.

Proof. To determine whether pdlogp(i)ew is or is not necessary, we work in distinct
ranges of i separately. Note that the definition of s forces 2ps < i < 2ps+1.

Case 1: 2ps < i ≤ ps+1. In this case, all of the elements κm,i lie in Au p, and
therefore ps+1w is necessary.

Case 2: ps+1 < i ≤ ps+1
+ ps
− ps−1. In this range, we have

κs,i = ρ
su p + ρ

s+1w and κs−1,i = ρ
s−1T p−1u p + ρ

s+1w.

Note that (T − p)κs,i = ρ
s(T − p)u p + ρ

s+1(ϕ− 1)u p = ρ
s(T − ρ)u p, so

ρs T u p ≡ ρ
s+1u p mod Aκs,i and ρsu p ≡−ρ

s+1w mod Aκs,i . (3.4.7)

Applying these to ρκs−1,i , we obtain

ρκs−1,i ≡ ρ
s+p−1u p + ρ

s+2w ≡ (−ρs+p
+ ρs+2)w mod Aκs,i ,

which in particular tells us that ps+2w ∈ A(κs−1,i , κs,i ).
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Case 3. ps+1
+ ps
− ps−1 < i ≤ ps+1

+ ps . In this range, we have

κs,i =ρ
su p+ρ

s+1w and κs−1,i =

(
ρs−1T p−1

+

s−2∑
k=σ(s,i)

ρk T θk(i)−1
)

u p+ρ
s+1w

with σ(s, i)≤ s− 2. Moreover, κm,i ∈ Aur for m ≤ s− 2.
Set νk,i = ρ

k T θk(i)ur for all nonnegative k. We note that νm,i ∈ A(κ0,i , . . . , κm,i )

for m ≤ s− 2: If κm,i 6= νm,i , which is to say εm(i)= 1, then

νm,i = T κm,i + am,i

m−1∑
k=σ(m,i)

νk,i .

Let j = θs−2(i)− p, and note that j ≥ p2
− 1≥ 2. Since

T jκs−1,i ≡ ρ
s−1T θs−2(i)−1u p + ρ

s+1T jw mod A(νσ(s,i),i , . . . , νs−2,i )

and ρk+1T θk(i)−1u p ∈ Aνk+1,i for all k with σ(s, i)≤ k ≤ s−3, we therefore have

(ρ−T j )κs−1,i≡ρ
s T p−1u p+ρ

s+1(ρ−T j )w mod A(νσ(s,i),i , . . . , νs−2,i ). (3.4.8)

Using (3.4.7) to reduce (3.4.8), we see that

(ρ− T j )κs−1,i ≡ ρ
s+2(1− ρ p−2

− ρ j−1)w mod A(νσ(s,i),i , . . . , νs−2,i , κs,i ),

which implies that ps+2w ∈ A(κ0,i , . . . , κs,i ).

Case 4: ps+1
+ ps < i < 2ps+1. In this case, all of the κm,i with m ≤ s− 1 lie in

AT pu p, and so for ps+2w to be unnecessary, there would have to exist c ∈ A such
that

cκs,i ≡ ps+2w mod AT 2u p. (3.4.9)

Note that cκs,i ≡ c(ρsu p+ρ
s+1w) mod AT 2u p, which forces c≡T 2c′ mod (ϕ−1)

for some c′ ∈ A. This means that

cκs,i ≡ c′ ps+3w mod A(u p, (ϕ− 1)w),

but ps+2w /∈ A(ps+3w, (ϕ− 1)w, u p), so (3.4.9) cannot hold. �

4. The finite level

4.1. Norms and eigenspace structure. In this section, we explore the consequences
of the results of Section 3 for unit groups of actual abelian local fields of character-
istic 0. Fix a positive integer n. Recall from the introduction that Fn is the field
obtained from E by adjoining the pnth roots of unity and that Un,t denotes the t th
unit group of Fn for t ≥ 1. As before, we set 0n = Gal(Fn/F1).



178 Romyar Sharifi

For positive integers m≥ n, let Nm,n and Trm,n denote, respectively, the norm and
trace from Fm to Fn . We also let Nn denote the restriction map Nn : F×→ F×n on
norm compatible sequences. Recall that λn = Nn(λ)= 1− ζpn , where ζpn = Nn(ζ )

is a primitive pnth root of unity. We require a few preliminary lemmas.

Lemma 4.1.1. One has

Trn+1,n(λ
pk−ε
n+1 )≡ pλk−ε

n mod p3

for all k ≥ 1 and ε ∈ {0, 1}.

Proof. An easy calculation shows that

Trn+1,n(λ
t
n+1)= p

b
t
p c∑

j=0

( t
pj

)
(−ζpn ) j

for every t ≥ 0. The result follows since( pk−ε
pj

)
=

(k−ε
j

) p(k− j)∏
s=1
p-s

(
1+ pj

s

)
≡

(k−ε
j

)
mod p2 for any j ≥ 0. �

Let en = pn−1(p− 1) denote the ramification index of E . In applying Lemma
4.1.1, it is useful to make note of the fact that

p ≡−λen
n mod λpn

n . (4.1.1)

Lemma 4.1.2. For t ≥ 1 and any unit η in E , one has

Nn+1,n(1+ ηλt
n+1)

≡


1+ ηpλt

n mod λt+1
n if t < pn

− 1,
1+ (ηp

− η)λ
pn
−ε

n mod λpn
+1−ε

n if t = pn
− ε, ε ∈ {0, 1},

1− ηλen+k−ε
n mod λen+k+1−ε

n if t = pk− ε > pn, ε ∈ {0, 1}.

Moreover, we have

Nn+1,n(1+ ηλt
n+1)≡ 1 mod λen+bt/pc

n

for all t > pn .

Proof. The jump in the ramification filtration of Gal(Fn+1/Fn) occurs at pn
− 1.

By [Serre 1979, Lemmas V.4 and V.5], we have

Nn+1,n(1+ ηλt
n+1)≡ 1+ η Trn+1,n(λ

t
n+1)+ η

pλt
n mod λen+b2t/pc

n ,

Trn+1,n(λ
t
n+1)≡ 0 mod λen+bt/pc

n .

The result is then a corollary of Lemma 4.1.1, upon applying (4.1.1). �
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Let Dn be the pro-p completion of F×n , and let D(r)
n = Dεr

n for any r ∈ Z. As
before, we fix r with 2 ≤ r ≤ p, and i will always denote a positive integer with
i ≡ r mod p− 1. Let Vn,i = U εr

n,i = Un,i ∩ D(r)
n for any such i . These Vn,i are all

modules over An = Zp[0n ×8]. As in Lemma 2.1, we have isomorphisms

Vn,i/Vn,i+p−1 −→
∼ Fq

that send 1+ xλi
n for some x in the valuation ring of Fn to the element x̄ of Fq that

is identified with the image of x in the residue field of Fn under the isomorphism
fixed in Section 2. We may then set V ′n,i = Vn,i − Vn,i+p−1 and define Vn,i (η) for
η ∈ F×q as the set of elements 1+ xλi

n with x̄ = η.
We have the following consequence of Lemma 4.1.2.

Lemma 4.1.3. For any t≥−1, we have Nn+1,n(Vn+1,pn+t)⊆Vn,pn+t−(p−1)b(t+1)/pc,
with equality for t ≥ 0.

Proof. Note that Lemma 4.1.2 yields Nn+1,n(Un+1,pn+pk−ε) = Un,pn+k−ε for all
k ≥ 0 and ε ∈ {0, 1} with k ≥ ε, since every element in Un,pn+k−ε can be written as
a product of elements of the form 1+ηtλ

pn
+t

n with t ≥ k−ε and ηt ∈ Fq . (For k = 0
and ε =−1, it tells us just that any element of Un+1,pn−1 has a norm in Un,pn−1.)

Note that

U εr
n,pn+k−ε = Vn,pn+k−ε+{r−k+ε−1} and U εr

n+1,pn+pk−ε = Vn,pn+pk−ε+{r−k+ε−1}.

For any t ≥ 0, we may write t = pk− ε+{r − k+ ε− 1} for some k, ε, and r , and
we have

t − (p− 1)
⌊ t+1

p

⌋
= k− ε+{r − k+ ε− 1} �.

The next corollary is almost immediate from Lemmas 4.1.2 and 4.1.3, so we
leave it to the reader.

Corollary 4.1.4. For any unit η in E , one has

Nn+1,n(Vn+1,i (η))⊆


Vn,i (η

p) if i < pn
− 1,

Vn,i (η
p
− η) if i = pn

− 1,
Vn,pn+k−1(−η) if i = pn

+ pk− 1 for some k > 0,

with equality if r 6= p− 1 or i > pn .

As for the p-power map, we have a well-known and easy-to-prove fact:

Lemma 4.1.5. Suppose that i > pn−1. Then the pth power map induces an isomor-
phism Vn,i −→

∼ Vn,i+en , and we have Vn,i (η)
p
= Vn,i+en (−η) for all η ∈ F×q .

Next, we discuss the restriction map from the field of norms to the finite level.
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Proposition 4.1.6. The map Nn induces maps Nn : D(r)
→ D(r)

n that are surjections
for r 6= p−1 and which have procyclic cokernel for r = p−1. For η ∈ F×q , we have

Nn(Vi (η))⊆


Vn,i (η

p−n
) if i ≤ pn

− 2,
Vn,pn−1(η

p−n
− ηp−n−1

) if i = pn
− 1,

Vn,pn+k−1(−η
p−n−1

) if i = pn
+ pk− 1 for some 0< k < en.

Moreover, we have induced maps Vi/Vi+1→ Vn,i/Vn,i+1 for all i < pn , and these
are isomorphisms for i 6= pn

− 1. For i ≤ pn , we have Vn,i = NnVi if r 6= p− 1,
and Vn,i/NnVi is procyclic if r = p− 1.

Proof. That the cokernel of Nn is trivial if r 6= p−1 and procyclic if r = p−1 follows
easily from local class field theory, but it is also a consequence of the argument that
follows. The first jump in the ramification filtration of Gal(F∞/Fn+1) is at pn+1

−1.
In particular, for t less than this value, repeated application of Lemma 4.1.2 tells us

Nn+1(1+ ηλt)= lim
m→∞

Nm,n+1(1+ ηp−m
λt

m)≡ 1+ ηp−n−1
λt

n+1 mod λt+1
n+1.

Moreover, repeated application of Corollary 4.1.4 followed by two applications
of Lemma 4.1.3 tells us that Nn(Vpn+1−1+{r})⊆ Vn,pn+en−1+{r}. An application of
Corollary 4.1.4 then yields the stated containments.

Since ηp−n
and −ηp−n−1

run through all elements of Fq as η ∈ Fq varies, we
obtain Vn,i = NnVi +Vn,i+p−1 for all i ≤ pn but pn

− 1. Noting Lemma 4.1.5, this
implies

Vn,i+ken = NnVpk i + Vn,i+ken+p−1

for pn−1 < i ≤ pn with i 6= pn
− 1 and k ≥ 0. Note that every element of every

Vn,i may be written as an infinite product over j ≥ 0 of one element from each
of a fixed set of representatives of the Vn,i+ j (p−1)/Vn,i+( j+1)(p−1). Thus, we have
NnVi = Vn,i so long as r 6= p− 1.

If r = p− 1, we can choose an element zn of Vn,pn−1(ξ) that is not a norm. By
the formula proven above for Nn(1+ ηλpn

−1) modulo λpn

n , we have

Vn,pn+ken−1 = NnVpk(pn−1)+ Vn,pn+ken+p−2+〈z pk

n 〉

for k= 0, and then for all k≥ 0 by taking powers. Therefore, Vn,i/NnVi is generated
by zn for all i < pn with i ≡ 0 mod p− 1. �

The following structural result is again essentially found in [Greither 1996],
without the stated congruences. Here, we derive it from more basic principles.

Theorem 4.1.7. For r ≤ p − 2, the An-module D(r)
n is freely generated as an

An-module by an element un,r ∈ Vn,r (ξ). The An-module D(p−1)
n has a presentation

D(p−1)
n = 〈πn, un,p−1, vn | π

ϕ
n = πn, π

γ−1
n = uN8

n,p−1, v
γ
n = vn, uN0n

n,p−1 = v
1−ϕ
n 〉,
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where v = vϕ
2−n

n ≡ 1+ pξ mod p2 is independent of n and un,p−1 ∈ Vn,p−1(ξ) for
n ≥ 2, while u1,p−1 ∈ Vn,p−1(ξ − ξ

p−1
). The An-module D(p)

n has a presentation

D(p)
n = 〈un,p, wn | w

γ−1−p
n = uϕ−1

n,p 〉

with un,p ∈ Vn,p(ξ) and wn ∈ Vn,1(−ξ) such that wN8
n = ζpn .

Proof. We set un,r = (Nnur )
ϕn

, πn = Nnπ , and wn = (Nnw)
ϕn

with ur , π , and
w as in Theorem 3.1.5. It follows from the surjectivity of Nn for r 6= p − 1 in
Proposition 4.1.6 that the element un,r generates D(r)

n for r ≤ p − 2, while the
elements wn and un,r generate D(p)

n . By Hilbert’s Theorem 90, the kernel of Nn

consists exactly of elements of the form αγ
pn−1
−1 with α ∈ D, and therefore it

follows that D(r)
n is free of rank 1 on un,r over An for r ≤ p − 2 and that D(p)

n

has the stated presentation. (That u1,p ∈ V1,p(ξ) requires a simple check using
Propositions 3.1.3 and 4.1.6.)

The elements πn and un,p−1 automatically satisfy the first two relations in the
desired presentation of D(p−1)

n . In particular,

uN0n×8
n,p−1 = π

(γ−1)N0n
n = 1,

so Hilbert’s Theorem 90 tells us that uN0n
n,p−1 = v

1−ϕ
n for some vn in the pro-p

completion of E×. By Proposition 4.1.6, we have

uN0n
n,p−1 ≡ 1+ (ξ pn−1

− ξ pn−2
)λ

p−1
1 mod λp

1 .

Noting (4.1.1), we may in fact choose vn ≡ 1+ pϕn−2(ξ) mod p2 with v = vϕ
2−n

n

independent of n.
Hilbert’s Theorem 90 and Theorem 3.1.5 tell us that the An-module generated by

un,p−1 is isomorphic to An/(N0n×8). By Proposition 4.1.6, the cokernel of Nn on
D(p−1) is isomorphic to Zp. We claim that the image of v topologically generates
this cokernel. If this is the case, then clearly D(p−1)

n is generated by πn , un,p−1,
and v, and any solution with b, d ∈ Zp and c ∈ An to πb

n uc
n,p−1v

d
= 1 must satisfy

b = d = 0 and c ∈ Zp N0n×8.
It remains only to demonstrate the claim. Suppose by way of contradiction

that there exists a ∈ An such that x = vua
n,p−1 is a pth power in D(p−1)

n . This
implies that xγ−1

= ua(γ−1)
n,p−1 is a pth power in the An-module generated by un,p−1.

It follows that a(γ − 1) ∈ An(p, N0n×8), which forces a(γ − 1) ≡ 0 mod p, so
a ∈ An(p, N0n ). It then suffices to show that

vubN0n
n,p−1 = v

1+bϕn−2(1−ϕ)

is not a pth power in Fn for any b ∈ Zp[8]. If it were for some b, then vN8 and
hence 1+ p would be a pth power in Fn as well, but this is clearly not the case. �
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4.2. Special elements. We assume for the rest of the paper that n ≥ 2, the case
that n = 1 being slightly exceptional but also completely straightforward. In this
subsection, we construct special elements in the groups in the unit filtration of F×n .
Aside from the case that r = p − 1, these arise as restrictions of the elements
introduced in Section 3.2.

Note that Zp[0n] ∼= Zp[T ]/( fn), where fn = (T + 1)pn−1
− 1. Of course, we

can then speak of the action of T on an element of D(r)
n . Once again reverting to

additive notation, the following is now an immediate corollary of Theorem 3.2.2
and Proposition 4.1.6.

Proposition 4.2.1. Let m and j be nonnegative integers with φm( j)< pn
−1. Define

αn,m, j =
1
[r ]!

(
{r − δ− j}! ρm T j

−

m∑
k=1

ρm−k T φk−1( j)−δ
)

un,r ,

unless j = 0 and r = p− 1, in which case we replace {r − δ− j}! with −1 in the
formula. Then αn,m, j ∈ Vn,φm( j)(ξ). Furthermore, (pmbT j

+ c)un,r /∈ Vn,φm( j)+p−1

for all b ∈ Zp[8] − pZp[8] and c ∈ T j+1 An .

For nonnegative m ≤ n−2, define φ′n,m : Z≥0→Z≥0 by φ′n,m( j)= φ′m( j) unless
r = p− 1 and j = en−m−1, in which case we set

φ′n,m(en−m−1)= en + pm+1
− 1= φm(en−m−1)+ pm(p− 1).

For nonnegative k, define ϑ2,k = 1+ϕ−1
+· · ·+ϕ−k and ϑ j,k = 1 for j > 2. Note

that ϑ2,k ∈ pZp[8] if and only if k ≡−1 mod p|8|.
By Theorem 4.1.7, every element of Vn,p−1 may be written as cun,p−1+dv with

c ∈ An and d ∈ Zp, and this representation is unique up to the choice of c modulo
N0n×8. For a, b∈ D(r)

n , we again write a∼ b if a, b∈Vn,i (η) for some i and η∈F×q .

Theorem 4.2.2. Let m ≤ n− 2 be a nonnegative integer, and define

ωn,m =

m∑
k=0

ρm−k ϑn−m,k T pn−m+k−2(p−1)+pk
−1 un,p−1− v.

Then we have ωn,m ∈ Vn,en+pm+1−1(ξ). Furthermore, if j ≥ 0 with φm( j) < pn , then

(pm T j b+ c)un,p−1+ dv /∈ Vφ′n,m( j)+p−1

for all b ∈ Zp[8] − pZp[8], c ∈ T j+1 An , and d ∈ Zp.

Proof. Let l be a nonnegative integer with l ≤ m. We define

ωn,m,l =

l∑
k=0

ρm−kϑn−m,k T pn−m+k−2(p−1)+pk
−1un,p−1− v. (4.2.1)
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We claim not only that ωn,m = ωn,m,m ∈ Vn,en+pm+1−1(ξ), but that, for l < m,

ωn,m,l ∈

{
Vn,en+pm+1−pm−l (ϑn−m,l+1ξ) if p - ϑn−m,l+1,

Vn,en+pm+1−pm−l−1(ξ) if p |ϑn−m,l+1.

We note, to begin with, that ωn,m,l ∈ Vn,en+p−1, since Lemma 3.2.1a implies

ωn,m,l + v ∼ ρ
m T en−m−1un,p−1 ∈ Vn,en (−ξ).

For a given i , we take Vn,i (0) to mean Vn,i+p−1 in what follows.
If p - ϑn−m,l , then Lemmas 3.2.1a and 4.1.5 imply that

Tωn,m,l ∼ ρ
m−lϑn−m,l T pn−m+l−2(p−1)+pl

un,p−1

if l < m, m = 0, or m < n− 2, and we have

Tωn,m,l ∈

{
Vn,en+pm+1+pm−l (p−2)(−ξ) if m < n− 2 or m = 0,
Vn,pn+pm−l−1(p−2)(ϑ2,lϕ

−1ξ) if l < m = n− 2.
(4.2.2)

On the other hand, if p |ϑn−m,l , then we have Tωn,m,l ∼ Tωn,m,l−1, so we can still
apply (4.2.2). Moreover, since ϑ2,n−3ϕ

−1
−ϑ2,n−2 =−1 for n ≥ 3, we have

Tωn,n−2 ∼ ρϑ2,n−3T pn−3
un,p−1+ϑ2,n−2T pn−2

un,p−1 ∈ Vn,pn+p−2(−ξ).

We prove our claim by induction on m. In the case that m = 0, we have that
Tωn,0 ∈ Vn,en+2p−2(−ξ) by (4.2.2), and we have seen that ωn,0 ∈ Vn,en+p−1, so
Proposition 2.5 forces ωn,0 ∈ Vn,en+p−1(ξ). For m ≥ 1, that ωn,m ∈ Vn,en+pm+1−1
follows from the claim for l = m− 1 and the fact that

ωn,m −ωn,m,m−1 = ϑn−m,m T en−1+pm
−1un,p−1

is an element of Vn,en+pm+1−p(−ϑn−m,mξ). Since Tωn,m ∈ Vn,en+pm+1+p−2(−ξ),
an application of Proposition 2.5 would then yield that ωn,m ∈ Vn,en+pm+1−1(ξ).
So, to perform the inductive step for l < m, we assume that either p - ϑn−m,l+1 or
l = m− 1, since otherwise ωn,m,l ∼ ωn,m,l+1 and l + 1< m.

By Lemma 4.1.5 and induction, we have
Nn,n−1(ωn,m,l)

= pωn−1,m−1,l ∈

{
Vn−1,2en−1+pm−pm−l−1(−ϑn−m,l+1ξ) if l < m− 1,
Vn−1,2en−1+pm−pm−l−1(−ξ) if l = m− 1.

(4.2.3)

Let i be such that ωn,m,l ∈ V ′n,i , and set t = en+ pm+1
− pm−l . By Lemma 4.1.3, we

have both that i≤ t+p−1 and that there exists x ∈V ′n,t with Nn,n−1(x)= pωn−1,m−1,l .
Hilbert’s Theorem 90 implies that x −ωn,m,l ∈ An fn−1un,p−1. Note that

p fn−1un,p−1 ∼ pT pn−2
un,p−1 ∈ Vn,pn+p−2,

while ωn,m,l /∈ Vn,pn+p−2. It follows that

x ∼ ωn,m,l + bT gun,p−1, (4.2.4)
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for some b ∈ An with b /∈ (p, T ) and g ≥ pn−2. Since bT g+1un,p−1 ∈ V ′n,φ(g+1) by
Lemma 3.2.1a and both T x and Tωn,m,l lie in Vn,t+p−1, the latter by (4.2.2), we
have φ(g+ 1) > t and hence φ(g)≥ t . Therefore, we have bT gun,p−1 ∈ Vn,t , and
(4.2.4) now forces i ≥ t , which means that i ∈ {t, t + p− 1}.

If l < n − 3, then Lemma 2.2 forces i = t in order for (4.2.2) to hold. If
l = n− 3 and i = t + p− 1, then Proposition 2.5 and (4.2.2) force ωn,n−2,n−3 to be
in Vn,pn−1(−ϑ2,n−3ϕ

−1ξ). By Corollary 4.1.4, this implies that

Nn,n−1(ωn,n−2,n−3) ∈ Vn−1,2en−1+pn−2−1(ϑ2,n−3ϕ
−1ξ),

and then (4.2.3) tells us that p | ϑ2,n−2 and ωn,n−2,n−3 ∈ Vn,pn−1(ξ).
If i = t , then Lemma 3.2.1a implies that

ωn,m,l ∼−dT en−1+pm
−pm−l−1

un,p−1 (4.2.5)

for some d ∈ Zp[8] − pZp[8]. Set

z = ωn,m,l + dT en−1+pm
−pm−l−1

un,p−1 ∈ Vn,t+p−1.

By (4.2.2) and Lemma 3.2.1a, we have T z ∈ Vn,t+2(p−1)(−d ′ξ), where d ′ = d if
l < n−3 and d ′= d−ϑ2,n−3ϕ

−1 if l = n−3. We therefore have z ∈ Vn,t+p−1(d ′ξ),
and then

Nn,n−1(z) ∈ Vn−1,2en−1+pm−pm−l−1(−d ′ξ)

by Corollary 4.1.4. On the other hand, we have

Nn,n−1(T en−1+pm
−pm−l−1

un,p−1)= ϕT en−1+pm
−pm−l−1

un−1,p−1 ∈ Vn−1,t ,

so we have Nn,n−1(z) ∼ Nn,n−1(ωn,m,l). By (4.2.3), we then have d = ϑn−m,l+1.
If p |ϑn−m,l+1, then l = n− 3 by assumption, and this contradicts our assumption
on i and implies the claim for ωn,n−2,n−3. Otherwise, we have already shown that
i = t , and (4.2.5) and Lemma 3.2.1a yield the claim.

Suppose now that j ≥ 0, b ∈Zp[8]− pZp[8], c ∈ T j+1 An , and d ∈Zp are such
that φm( j) < pn and

ω = (pmbT j
+ c)un,p−1+ dv ∈ V ′n,i

for some i ≥ φ′n,m( j). We suppose that φm( j)≥ en , as the result otherwise reduces
to Proposition 4.2.1. For m = 0, if (bT j

+ c)un,p−1 6∼ −dv, then i = en or
i=φ( j)≤φ′n,0( j). Otherwise, we must have j=en−1, and since Tω∼bT j+1un,p−1,
the argument of Lemma 3.2.1b tells us that i = en + p− 1.

For m ≥ 1, we rewrite c as pc′+ T hν for some h ≥ j + 1 and c′, ν ∈ An with
ν /∈ (p, T ). Note that φ′n,m( j)= pφ′n−1,m−1( j)+ p− 1. By induction, we have

(pm−1bT j
+ c′)ϕun−1,p−1+ dv /∈ Vn−1,φ′n−1,m−1( j)+p−1.
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The pth power of this element is the norm from Fn of

ω′ = ω− T hνun,p−1 = (pmbT j
+ pc′)un,p−1+ dv,

and ω′ /∈ Vn,φ′n,m( j)+p−1 by Lemma 4.1.3. If ω′ ∈ Vn,φ′n,m( j), then the fact that φ′n,m( j)
is −1 modulo p and therefore not a value of φ implies that ω′ 6∼ −T hνun,p−1, so
we have i = φ′n,m( j).

So, assume that ω′ /∈ Vn,φ′n,m( j). Then ω′∼−T hνun,p−1, and Lemma 3.2.1a im-
plies that φ(h) < φ′n,m( j)≤ i . If ω /∈ Vn,φ(h+1), then we must have

i = φ(h)+ p− 1= φ′n,m( j).

So, we assume moreover that ω ∈ Vn,φ(h+1), in which case Tω′ ∼−T h+1νun,p−1.
Since Tω′ is a power of p, either φ(h + 1) is divisible by p and less than pn ,
or φ(h + 1) > pn . In the former case, unless φ(h + 2) > pn , we would have
T 2ω′ ∈ Vn,φ(h+1)+p(p−1) and then T 2ω∈ V ′n,φ(h+2), contradicting ω∈ Vn,φ(h+1). We
therefore have φ(h+2) > pn in both cases, so Tω′ ∈ Vn,pn−p. By Proposition 4.2.1
and the fact that φm(pn−m−1) > pn , this forces j = pn−m−1

−1. If m < n−2, then

pn
− p ≤ φ(h)+ p− 1≤ φ′n,m( j)= φm( j)= pn

− pm+1
+ pm

− 1,

which is a contradiction. We therefore have m = n− 2 and j = p− 1, so

pn
− 1= φ′n,n−2(p− 1) > φn−2(p− 1),

which, noting Proposition 4.2.1, implies that p - d and then, noting Theorem 4.1.7,
that ω /∈ pD(p−1)

n . In particular, ω /∈ Vn,pn+p−2, so i = pn
− 1. �

Remark 4.2.3. Note that φn−1(0) = pn
− 1 < pn as well, but in this case, the

element uN0n×8
n,p−1 = 1 has the form (pn−1b+ c)un,p−1 with b ∈ Zp[8] − pZp[8]

and c ∈ T A.

For r = p, the following is a consequence of Theorem 3.2.4 and Proposition 4.1.6.

Proposition 4.2.4. Let m and l be nonnegative integers with φm(pl
− 1)≤ pn . Let

βn,m,l =

(
ρm T pl

−1
+

m∑
k=1

ρm−k T φ′k−1(p
l
−1)−1

)
un,p + ρ

m+l+1wn.

Then βn,m,l ∈ Vn,φ′m(pl−1)(−ξ) unless l = n−1 and m = 0, in which case βn,0,n−1 ∈

Vn,pn (ξ p−1
). Furthermore, for any j ≥ 0 with φm( j)≤ pn , we have

(pmbT j
+ c)un,p + dwn /∈ Vn,min(φ′m( j)+p−1,pn+p−1)

for all b ∈ Zp[8] − pZp[8], c ∈ T j+1 An and d ∈ Zp[8].
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4.3. Generating sets. In this final subsection, we turn to the task of finding small
generating sets for the groups Vn,i as An-modules. First, we define the refined
elements that will be used in forming these sets.

Suppose that i ≤ pn and

0≤ m ≤
⌈

logp

( i+1
r+1+δ(p−1)

)⌉
.

Aside from the case that r = p−1 and pm < i−en< pm+1, we set κn,m,i =ϕ
n Nnκm,i ,

which can be written down explicitly as in the formulas (3.3.5), (3.3.6), and (3.3.7),
but now with ur replaced by un,r and w replaced by wn . By Propositions 3.3.9,
4.1.6 and 4.2.4, we have κn,m,i ∈ Vn,i .

If r = p−1 and pm < i− en < pm+1, then we set κn,m,i = ωn,m,m−σ(m+1,i) with
ωn,m,l for l ≥ 0 defined as in (4.2.1). Then κn,m,i ∈ Vi by the claim in the proof of
Theorem 4.2.2. Moreover, we have

κn,m,i =

m∑
k=σ(m+1,i)

ρkϑn−m,m−k T θk(i)−1un,p−1− v, (4.3.1)

since θk(i)= pn−k−2(p− 1)+ pm−k if k ≥ σ(m+ 1, i).
Our next result is the analogue of Theorem 3.4.1 at the finite level.

Theorem 4.3.1. Let µ be the smallest nonnegative integer for which i ≤ µen + pn .
Let

Sn,i = {pµκn,m,i−µen | 0≤ m ≤ s}, where s =
⌈

logp

( i−µen+1
r+1+δ(p−1)

)⌉
.

If 2 ≤ r ≤ p− 2, then the An-module Vn,i is generated by Sn,i . If r = p− 1, it is
generated by Sn,i ∪ {pµv} if i ≤ (µ+ 1)en and Sn,i otherwise, and if r = p, it is
generated by Sn,i ∪ {pµ+dlogp(i−µen)ewn}.

Proof. Suppose first that i ≤ pn . If r 6= p−1, then Vn,i = NnVi by Proposition 4.1.6.
For such i , the generation then follows immediately from Theorem 3.4.1.

Similarly, if r = p−1, then v ∈ Vn,en (−ξ) generates the cokernel of Nn . If i ≤ en ,
then Sn,i ∪ {v} generates Vn,i by a similar argument to that given in Theorem 3.4.1
(or by Proposition 4.1.6 and Theorem 3.4.1 itself). If en < i < pn , then similarly
Sn,i ∪ {pv} generates Vn,i , but we now claim that pv is in the An-submodule
generated by Sn,i . To see this, suppose that m≤n−2 is such that pm< i−en< pm+1.
Note that An Sn,i contains νn,k,i = ρ

k T θk(i)un,p−1 for each 0≤ k ≤ n− 1. (If κn,k,i

is not this element, one can multiply it by T and subtract off multiples of the νn,h,i

for h < k to reduce it to this form.) Noting (4.3.1), we have

ρv =−ρκn,m,i +

m∑
k=σ(m+1,i)

ϑn−m,m−k T θk(i)−θk+1(i)−1νn,k+1,i ∈ An Sn,i .
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In the case of arbitrary r and i , Lemma 4.1.5 tells us that Vn,i = pµVn,i−µen , and
we again have the desired generation. �

Remark 4.3.2. For i≤ pn , the integer s in Theorem 4.3.1 is unique such that i lies in
the half-open interval [(r+1)ps−1, (r+1)ps) if r ≤ p−1 and [2ps, 2ps+1) if r = p.
Since Sn,i has s + 1 elements, the generating set S′n,i provided in Theorem 4.3.1
has at most n+ 1 elements. Since S′n,i = pµS′n,i−µen

, the latter statement holds for
all i . In fact, for i > pn−1, the set S′n,i has either n or n+ 1 elements, depending
for each r on which of two ranges i lies in modulo en .

Finally, we prove a slightly weaker minimality statement than Theorem 3.4.4,
since in the finite case there are many values of i for which the analogous statement
to Theorem 3.4.4 is simply not true, so long as r ≤ p− 1.

Theorem 4.3.3. Every generating subset of the generating set for Vn,i of Theorem
4.3.1 is of cocardinality at most one.

Proof. We maintain the notation of Theorem 4.3.1. By Lemma 4.1.5, the pµth
power map defines an isomorphism Vi−µen −→

∼ Vi , and Sn,i = pµSn,i−µen . We
therefore assume that i ≤ pn for the rest of the proof. Note that we have

θk(i)≤ pn−k−1 (4.3.2)

for all 0≤ k ≤ n− 1, and we have θn(i)= 0.

Case r ≤ p−2. In this case, Nn induces an isomorphism D(r)/ fn D(r)
−→∼ D(r)

n , so
Proposition 4.1.6 tells us that Vn,i ∼= Vi/(Vi ∩ fn D(r)). In other words, a subset Yn

of Sn,i will generate Vn,i if and only if the subset Y of Si lifting it has the property
that Y ∪ { fnur } generates Vi + fn D(r).

Recall that

fn ≡

n−1∑
k=0

pk T pn−k−1
mod (pn−1T 2, pn−2T 2p, . . . , T 2pn−1

).

Noting (4.3.2), we have

fn ≡ pm T pn−m−1
mod (pm+1, T θm(i)+1) (4.3.3)

for each 0≤ m ≤ s. Let us set I = (p, T, ϕ− 1) and Im = (p, T 1+εm(i), ϕ− 1) for
the remainder of the proof.

The analogue of (3.4.3) in our current setting is

s∑
m=0

cmκm,i = b fnur (4.3.4)
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for some cm ∈ A and b ∈ A. Given a solution to (4.3.4), we claim that there exist
qk ∈ Zp for k ≤ s, independent of the solution, such that

ck ≡ qkbT εk(i) mod Ik . (4.3.5)

Of course, only those κn,k,i for k such that p - qk and εk(i) = 0 can possibly be
An-linear combinations of the others. If k is such a value and we suppose that
ck = 0, then these congruences force b ∈ I and therefore cm ∈ I for every other
m ≤ s, proving the result.

We turn to the proof of the claim. In our current setting, (3.4.5) becomes

cnρ
n
≡ 0 mod (pn+1, T )

for m = n (if s = n, since θn(i)= 0) and

cmρ
m Tψm(i)≡

∑
k∈Xm

ckak,iρ
m T θm(i)−1

+bpm T pn−m−1
mod (pm+1, T θm(i)+1) (4.3.6)

for m≤n−1, with Xm as in (3.4.4). In the case that s=n, the claim for k=n is then
immediate. Moreover, supposing that we know the claim for k with m+ 1≤ k ≤ s,
the congruence (4.3.6) implies that

cm ≡
∑

k∈Xm

qkak,i bT εm(i)+ bT pn−m−1
−ψm(i) mod Im

upon application of (4.3.5) for k ∈ Xm . As εm(i)≤ pn−m−1
−ψm(i) by (4.3.2), we

have the claim for k = m as well.
We remark that if θm(i)< pn−m−1 for all m≤n−1, which is to say that i ≤ pn−1r ,

then we obtain recursively that p | qm for all m ≤ s. In other words, Sn,i has no
proper generating subset for such i . This is useful in the following case.

Case r = p. In the case r = p, we have θm(i) < pn−m−1 for all m ≤ n− 1 and all
i ≤ pn (since δ = 1), and the analogous argument working modulo Aw and using
the set X ′m of (3.4.6) shows that any subset of Sn,i ∪ {pdlogp(i)ewn} that generates
Vn,i must contain Sn,i .

Case r = p− 1. Finally, we consider the more subtle case that r = p− 1. In this
case, s ≤ n− 1. Recall from Theorem 4.1.7 that

Vp−1/ fnVp−1 ∼= Anun,p−1 ∼= An/(N0n×8)

and Anv = Zpv + Zp[8]N0n un,p−1. Note that N0n lifts to T−1 fn in A. As in
(4.3.3), we have

T−1 fn ≡ pm T pn−m−1
−1 mod (pm+1, T θm(i)+1)
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for 0≤ m ≤ n− 2 and

T−1 fn ≡ pn−1(1− 1
2 T ) mod (pn, T 2). (4.3.7)

Range i ≤ en: In this range, every κn,m,i lies in Anur , so v is in particular necessary
to generate Vn,i . We also have θn−1(i)= 0 and θm(i)≤ en−m−1 for all m ≤ n− 2.
Consider the following analogue of (3.4.3):

s∑
m=0

cmκm,i = bT−1 fnu p−1. (4.3.8)

As before, we claim that there exist qk ∈ Zp for k ≤ s, independent of the solution
to (4.3.8), such that (4.3.5) holds, from which the result follows in this range.

The analogue of (3.4.5) for m ≤ s in the current setting is

cmρ
m Tψm(i)

≡

∑
k∈Xm

ckak,iρ
m T θm(i)−1

+ bpm T pn−m−1
−1 mod (pm+1, T θm(i)+1). (4.3.9)

If s = n− 1, we then obtain cn−1 ≡ b mod I . If s ≥ n− 2, we have

cn−2 ≡ bT p−1−θn−2(i)+εn−2(i) mod In−2,

and hence the claim for k = n− 2. For m ≤ n− 3, we have θm(i) ≤ pn−m−1
− 2,

and assuming the claim for m+ 1≤ k ≤ s, we see recursively using (4.3.9) that

cm ≡
∑

k∈Xm

qkak,i bT εm(i) mod Im .

Range en < i < pn . In this range, s = n− 1, θn−1(i) = 1, and θn−2(i) = p. Let
l ≤ n− 2 be such that pl < i − en < pl+1, so κn,l,i is the lone element of Sn,i that
does not lie in Anun,p−1. Thus, if we were to have

n−1∑
m=0

dmκn,m,i = 0 (4.3.10)

for some dm ∈ An , then we would have to have dl ∈ An(T, ϕ − 1) in order that
dlκn,l,i ∈ Anun,p−1. Let

κ ′l,i =

l∑
j=σ(l+1,i)

ρ jϑn−l,l− j T θ j (i)u p−1

so that T κn,l,i = ϕ
n Nnκ

′

l,i . Let κ ′m,i = κm,i for m ≤ n− 1 with m 6= l.
Now (4.3.10) implies that

n−1∑
m=0

cmκ
′

m,i ≡ bT−1 fnu p−1 mod A(ϕ− 1)u p−1 (4.3.11)
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for some b ∈ A and where cm ∈ A reduces to dm for m 6= l and cl ∈ A is such that
T cl reduces to dl modulo An(ϕ− 1). Similarly to before, we claim that there exist
qm ∈ Zp for m ≤ n− 2, independent of the solution to (4.3.11), such that (4.3.5)
holds, and that b ∈ I if and only if cn−1 ∈ I . From this, it follows that a solution to
(4.3.11) with ck = 0 for some k has cm ∈ I for every other m ≤ n− 1.

Note that εl(i)= 0, and let τm be ϑn−l,l−m if σ(l+1, i)≤m < l and 0 otherwise.
Equations (4.3.7) and (4.3.11) yield

cn−1 ≡ b(1− 1
2 T ) mod (p, T 2, ϕ− 1), (4.3.12)

and, for arbitrary m ≤ n− 2, we have

cm Tψm(i)

≡

∑
k∈Xm

ckak,i T θm(i)−1
−τmcl T θm(i)+bT pn−m−1

−1 mod (p, T θm(i)+1, ϕ−1). (4.3.13)

For m = n− 2, note that (4.3.12), (4.3.13), and an−1,i =−1 imply that

cn−2T 1−εn−2(i) ≡ b− cn−1 ≡
1
2 bT mod (p, T 2, ϕ− 1), (4.3.14)

so (4.3.5) holds with qn−2 =
1
2 . For m with σ(n− 1, i)≤ m ≤ n− 3 (which exists

only if l = n−2), we have Xm = {n−1} and θm(i)= pn−m−1, and we obtain from
(4.3.13) and (4.3.14) that

cm T 1−εm(i) ≡−cn−1− cn−2τm T + b

≡
1
2(1−ϑ2,n−m−2)bT mod (p, T 2, ϕ− 1), (4.3.15)

so (4.3.5) holds with qm = −
1
2(n − m − 2). For m < σ(n − 1, i), we have

θm(i) < pn−m−1, and (4.3.13) and (4.3.14) yield recursively that

cm ≡
∑

k∈Xm

qkak,i bT εm(i)− qlτmbT εm(i)+ bT pn−m−1
−1−ψm(i) mod Im,

verifying (4.3.5) for k = m. �

Acknowledgments

The idea for this paper originated with my 1999 PhD thesis, and initial computations
were performed on an evening in June 2001 during a visit to the University of
Nottingham. I thank Ivan Fesenko for his hospitality. I wrote a short draft of the
paper in 2002 and made additions to it in August 2006. The paper tripled in size
as I brought it to near final form in the summer of 2011. I also thank Richard
Gottesman for his interest in this work, which inspired me to finish the paper.



Galois module structure of local unit groups 191

References

[Greither 1996] C. Greither, “On Chinburg’s second conjecture for abelian fields”, J. Reine Angew.
Math. 479 (1996), 1–37. MR 97e:11139 Zbl 0856.11051

[Serre 1979] J.-P. Serre, Local fields, Graduate Texts in Mathematics 67, Springer, New York, 1979.
MR 82e:12016 Zbl 0423.12016

[Sharifi 2002] R. T. Sharifi, “Determination of conductors from Galois module structure”, Math. Z.
241:2 (2002), 227–245. MR 2003h:11147 Zbl 1017.11058

[Wintenberger 1983] J.-P. Wintenberger, “Le corps des normes de certaines extensions infinies de
corps locaux; applications”, Ann. Sci. École Norm. Sup. (4) 16:1 (1983), 59–89. MR 85e:11098
Zbl 0516.12015

Communicated by John H. Coates
Received 2011-08-20 Revised 2011-11-29 Accepted 2012-02-20

sharifi@math.arizona.edu Department of Mathematics, University of Arizona,
617 N. Santa Rita Ave, PO Box 210089,
Tucson AZ 85721-0089, United States
http://math.arizona.edu/~sharifi

mathematical sciences publishers msp

http://dx.doi.org/10.1515/crll.1996.479.1
http://msp.org/idx/mr/97e:11139
http://msp.org/idx/zbl/0856.11051
http://msp.org/idx/mr/82e:12016
http://msp.org/idx/zbl/0423.12016
http://dx.doi.org/10.1007/s002090100410
http://msp.org/idx/mr/2003h:11147
http://msp.org/idx/zbl/1017.11058
http://www.numdam.org/item?id=ASENS_1983_4_16_1_59_0
http://www.numdam.org/item?id=ASENS_1983_4_16_1_59_0
http://msp.org/idx/mr/85e:11098
http://msp.org/idx/zbl/0516.12015
mailto:sharifi@math.arizona.edu
http://math.arizona.edu/~sharifi
http://msp.org




msp
ALGEBRA AND NUMBER THEORY 7:1 (2013)

dx.doi.org/10.2140/ant.2013.7.193

On the invariant theory
for tame tilted algebras

Calin Chindris

We show that a tilted algebra A is tame if and only if for each generic root d
of A and each indecomposable irreducible component C of mod(A, d), the field
of rational invariants k(C)GL(d) is isomorphic to k or k(x). Next, we show that
the tame tilted algebras are precisely those tilted algebras A with the property
that for each generic root d of A and each indecomposable irreducible com-
ponent C ⊆ mod(A, d), the moduli space M(C)ss

θ is either a point or just P1

whenever θ is an integral weight for which C s
θ 6= ∅. We furthermore show

that the tameness of a tilted algebra is equivalent to the moduli space M(C)ss
θ

being smooth for each generic root d of A, each indecomposable irreducible
component C ⊆ mod(A, d), and each integral weight θ for which C s

θ 6= ∅. As
a consequence of this latter description, we show that the smoothness of the
various moduli spaces of modules for a strongly simply connected algebra A
implies the tameness of A.

Along the way, we explain how moduli spaces of modules for finite-dimen-
sional algebras behave with respect to tilting functors, and to theta-stable de-
compositions.

1. Introduction

Throughout this paper, we work over an algebraically closed field k of character-
istic zero. All algebras (associative and with identity) are assumed to be finite-
dimensional over k, and all modules are assumed to be finite-dimensional left
modules.

One of the fundamental problems in the representation theory of algebras is that
of classifying the indecomposable modules. Based on the complexity of the inde-
composable modules, one distinguishes the class of tame algebras and that of wild
algebras. According to the remarkable Tame-Wild Dichotomy Theorem of Drozd
[1979], these two classes of algebras are disjoint and they cover the whole class of

The author was partially supported by NSF grant DMS-1101383.
MSC2010: primary 16G10; secondary 16R30, 16G60, 16G20.
Keywords: exceptional sequences, moduli spaces, rational invariants, tame and wild algebras,

tilting.
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algebras. Since the representation theory of a wild algebra is at least as complicated
as that of a free algebra in two variables, and since the latter theory is known to be
undecidable, one can hope to meaningfully classify the indecomposable modules
only for tame algebras. For more precise definitions, see [Simson and Skowroński
2007, Chapter XIX] and the reference therein.

An interesting task in the representation theory of algebras is to study the ge-
ometry of affine varieties of modules of fixed dimension vectors and the actions
of the corresponding products of general linear groups associated to a given finite-
dimensional algebra A over k. In particular, it would be interesting to find char-
acterizations of prominent classes of tame algebras via geometric properties of
their module varieties. This research direction has attracted much attention during
the last two decades; see for example [Bobiński 2008; Bobiński and Skowroński
1999a; 1999b; 2002; Geiss and Schröer 2003; Riedtmann 2004; Riedtmann and
Zwara 2004; 2008; Skowroński and Weyman 2000].

In this paper, we seek for characterizations of tame algebras in terms of invariant
theory. A first result in this direction was obtained by Skowroński and Weyman
[2000, Theorem 1], who showed that a finite-dimensional algebra of global dimen-
sion one is tame if and only if all of its algebras of semiinvariants are complete
intersections. Unfortunately, this result does not extend to algebras of higher global
dimension (not even of global dimension two), as shown by Kraśkiewicz [2001].
As was suggested by Weyman, in order to characterize the tameness of an algebra
via invariant theory, one should impose geometric conditions on the various moduli
spaces of semistable modules rather than on the entire algebras of semiinvariants.

In [Chindris 2011], the author has found a description of the tameness of path
algebras and of canonical algebras in terms of the invariant theory of the algebras
in question; see also [Domokos 2011]. In this paper, we continue this line of
inquiry for the class of tilted algebras. Recall that a tilted algebra is an algebra of
the form EndH (T ), where H is a connected finite-dimensional hereditary algebra
and T is a multiplicity-free tilting H -module, that is, Ext1H (T, T ) = 0 and T is
the direct sum of n pairwise nonisomorphic indecomposable modules with n the
rank of the Grothendieck group K0(H) of H . It has been proved by Kerner [1989,
Theorem 6.2] that a tilted algebra A is tame if and only if its Tits quadratic form
qA is weakly nonnegative (takes nonnegative values on nonnegative vectors).

Theorem 1.1. Let A be a tilted algebra. Then the following conditions are equiv-
alent:

(1) A is tame;

(2) for each generic root d of A and each indecomposable irreducible component
C of mod(A, d), we have k(C)GL(d)

' k or k(x);
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(3) for each generic root d of A and each indecomposable irreducible component
C ⊆mod(A, d), the moduli space M(C)ss

θ is either a point or P1 whenever θ
is an integral weight of A for which C s

θ 6=∅;

(4) for each generic root d of A and each indecomposable irreducible component
C ⊆mod(A, d), the moduli space M(C)ss

θ is smooth whenever θ is an integral
weight of A for which C s

θ 6=∅.

Following [Skowroński 1993], a triangular algebra A is called strongly simply
connected if the first Hochschild cohomology space HH1(C) of any convex sub-
category C of A vanishes. It has been recently proved by Brüstle, de la Peña, and
Skowroński [Brüstle et al. 2011, Main Theorem] that a strongly simply connected
algebra A is tame if and only if its Tits form qA is weakly nonnegative. As a con-
sequence of Theorem 1.1 and another tameness criterion from [ibid., Corollary 1],
we derive the following sufficient geometric criterion for the tameness of a strongly
simply connected algebra:

Proposition 1.2. Let A be a strongly simply connected algebra. Assume for each
generic root d of A, each indecomposable irreducible component C ⊆mod(A, d),
and each integral weight θ for which C s

θ 6= ∅, that M(C)ss
θ is a smooth variety.

Then, A is a tame algebra.

We would like to point out that the equivalence of (1) and (3) in Theorem 1.1
settles in the affirmative a conjecture of Weyman for the class of tilted algebras,
while Proposition 1.2 proves one implication of Weyman’s conjecture for the class
of strongly simply connected algebras (for more details, see Remark 4).

Our next theorem, which is key in proving Theorem 1.1 and Proposition 1.2,
identifies integral weights of an algebra for which the corresponding moduli spaces
of semistable modules are preserved under titling. Our next theorem generalizes
[Domokos and Lenzing 2000, Theorem 6.3 ] to arbitrary bound quiver algebras.
(The details of our notation can be found in Section 3B.)

Theorem 1.3. Let A = k Q/I be a bound quiver algebra, T a basic tilting A-
module, and θ an integral weight of A that is well positioned with respect to T . Let
F be either the functor HomA(T, ), in case there are nonzero θ -semistable tor-
sion A-modules, or the functor Ext1A(T, ), in case there are nonzero θ -semistable
torsion-free A-modules. Denote the algebra EndA(T )op by B and let u : K0(A)→
K0(B) be the isometry induced by the tilting module T . Then,

(a) the functor F defines an equivalence of categories between mod(A)ss
θ and

mod(B)ss
θ ′ , where θ ′ = |θ ◦ u−1

|; and

(b) the bijective map f :M(A, d)ss
θ →M(B, d ′)ss

θ ′ induced by F is an isomorphism
of algebraic varieties, where d is a θ -semistable dimension vector of A and
d ′ = u(d).
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In particular, this theorem allows us to transfer much of the geometry of A over
to that of B; see for example Proposition 4.1.

It is natural to ask if the description of the fields of rational invariants and of
the moduli spaces in Theorem 1.1 can be extended to irreducible components that
are not necessarily indecomposable. To answer this question, we rely on two gen-
eral reduction results. The first such result has been recently proved in [Chindris
2011, Proposition 4.7] and allows one to compute fields of rational invariants on
irreducible components by reducing the considerations to the case where the irre-
ducible components involved are indecomposable. For the second general reduc-
tion result, the starting point is Derksen and Weyman’s notion [2011] of θ -stable
decomposition of representation spaces for quivers without oriented cycles. Here,
we first extend their notion to irreducible components of module varieties, and then
explain how to extend [Derksen and Weyman 2011, Theorem 3.20] to arbitrary
bound quiver algebras:

Theorem 1.4. Let A = k Q/I be a bound quiver algebra and let C ⊆ mod(A, d)
be a θ -well-behaved irreducible component, where θ is an integral weight of A.
Let

C = m1 ·C1u · · ·umn ·Cn

be the θ -stable decomposition of C , where Ci ⊆ mod(A, di ) with 1 ≤ i ≤ n are
θ -stable irreducible components, and di 6= d j for all 1≤ i 6= j ≤ n. Assume that

(1) C contains the image of X :=Cm1
1 ×· · ·×Cmn

n through the natural (diagonal)
embedding V :=mod(Q, d1)

m1 × · · ·×mod(Q, dn)
mn ↪→mod(Q, d); and

(2) C is a normal variety.

Then M(C)ss
θ
∼= Sm1(M(C1)

ss
θ )× · · ·× Smn (M(Cn)

ss
θ ).

Note that this reduction result allows us to “break” a moduli space of modules
into smaller ones that are typically easier to handle; see Section 3C.

Recall that a quasitilted algebra is a basic and connected finite-dimensional al-
gebra of the form EndH(T )op, where H is a hereditary category and T ∈ H is a
tilting object. In [Happel et al. 1996, Theorem 2.3], Happel, Reiten, and Smalø
proved that an algebra A is quasitilted if and only if A is of global dimension at
most two and every indecomposable finite-dimensional A-module X has projective
dimension or injective dimension at most one. It was shown by Skowroński [1998,
Theorem A] that a quasitilted algebra A is tame if and only if its Tits form qA is
weakly nonnegative.

Using our results described above, we can prove this:

Proposition 1.5. Let A = k Q/I be a tame quasitilted algebra, d a dimension
vector of A, and C an irreducible component of mod(A, d).
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(1) The field of rational invariants satisfies k(C)GL(d)
' k(x1, . . . , xN ), where N

is the sum of the multiplicities of the isotropic imaginary roots that occur in
the generic decomposition of d in C.

(2) If d is an isotropic root of A, then the moduli spaces M(C)ss
θ for θ ∈ ZQ0 are

products of projective spaces.

Our proof of Proposition 1.5(1) provides another approach to proving [Domokos
and Lenzing 2002, Corollary 7.4].

The layout of this paper is as follows. In Section 2, we recall some background
material on irreducible components of module varieties and their rational invari-
ants. In Section 3, we first review King’s construction of moduli spaces of modules
for algebras, and then prove Theorem 1.3 in Section 3B. In Section 3C, we first
explain how to extend Derksen and Weyman’s notion [2011] of θ -stable decompo-
sition to quivers with relations, and then prove Theorem 1.4. We prove Theorem 1.1
and Proposition 1.5 in Section 4.

2. Background on module varieties

Let Q= (Q0, Q1, t, h) be a finite quiver with vertex set Q0 and arrow set Q1. The
two functions t, h : Q1→ Q0 assign to each arrow a ∈ Q1 its tail ta and head ha,
respectively.

A representation V of Q over k is a collection (V (i), V (a))i∈Q0,a∈Q1 of finite-
dimensional k-vector spaces V (i), i ∈ Q0, and k-linear maps

V (a) ∈ Homk(V (ta), V (ha)) for a ∈ Q1.

The dimension vector of a representation V of Q is the function dim V : Q0→ Z

defined by (dim V )(i) = dimk V (i) for i ∈ Q0. Let Si be the one-dimensional
representation of Q at vertex i ∈ Q0, and let us denote by ei its dimension vector.
By a dimension vector of Q, we simply mean a function d ∈ Z

Q0
≥0.

Given two representations V and W of Q, we define a morphism ϕ : V → W
to be a collection (ϕ(i))i∈Q0 of k-linear maps with ϕ(i) ∈ Homk(V (i),W (i)) for
each i ∈ Q0, and such that ϕ(ha)V (a)= W (a)ϕ(ta) for each a ∈ Q1. We denote
by HomQ(V,W ) the k-vector space of all morphisms from V to W . Let V and
W be two representations of Q. We say that V is a subrepresentation of W if
V (i) is a subspace of W (i) for each i ∈ Q0 and V (a) is the restriction of W (a) to
V (ta) for each a ∈ Q1. In this way, we obtain the abelian category rep(Q) of all
representations of Q.

Given a quiver Q, its path algebra k Q has a k-basis consisting of all paths
(including the trivial ones), and the multiplication in k Q is given by concatenation
of paths. It is easy to see that any k Q-module defines a representation of Q, and
vice-versa. Furthermore, the category mod(k Q) of k Q-modules is equivalent to
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the category rep(Q). In what follows, we identify mod(k Q) and rep(Q), and use
the same notation for a module and the corresponding representation.

A two-sided ideal I of k Q is said to be admissible if there exists an integer L≥2
such that RL

Q ⊆ I ⊆ R2
Q . Here, RQ denotes the two-sided ideal of k Q generated

by all arrows of Q.
If I is an admissible ideal of K Q, the pair (Q, I ) is called a bound quiver

and the quotient algebra k Q/I is called the bound quiver algebra of (Q, I ). Any
admissible ideal is generated by finitely many admissible relations, and any bound
quiver algebra is finite-dimensional and basic. Moreover, a bound quiver algebra
k Q/I is connected if and only if (the underlying graph of) Q is connected; see for
example [Assem et al. 2006].

It is well known that any basic algebra A is isomorphic to the bound quiver
algebra of a bound quiver (Q A, I ), where Q A is the Gabriel quiver of A; see
[Assem et al. 2006]. (Note that the ideal of relations I is not uniquely determined
by A.) We say that A is a triangular algebra if its Gabriel quiver has no oriented
cycles.

Fix a bound quiver (Q, I ) and let A = k Q/I be its bound quiver algebra. We
denote by ei the primitive idempotent corresponding to the vertex i ∈ Q0. A repre-
sentation M of a A (or (Q, I )) is just a representation M of Q such that M(r)= 0
for all r ∈ I . The category mod(A) of finite-dimensional left A-modules is equiva-
lent to the category rep(A) of representations of A. As before, we identify mod(A)
and rep(A), and make no distinction between A-modules and representations of A.

Assume from now on that A has finite global dimension; this happens, for ex-
ample, when Q has no oriented cycles. The Ringel form of A is the bilinear form
〈 · , · 〉A : Z

Q0 ×ZQ0 → Z defined by

〈d, e〉A =
∑
l≥0

(−1)l
∑

i, j∈Q0

dimk ExtlA(Si , S j )d(i)e( j).

Note that if M is a d-dimensional A-module and N is an e-dimensional A-module,
then

〈d, e〉A =
∑
l≥0

(−1)l dimk ExtlA(M, N ).

The quadratic form induced by 〈 · , · 〉A is denoted by χA.
The Tits form of A is the integral quadratic form qA : Z

Q0 → Z defined by

qA(d) :=
∑
i∈Q0

d2(i)−
∑

i, j∈Q0

dimk Ext1A(Si , S j )d(i)d( j)

+

∑
i, j∈Q0

dimk Ext2A(Si , S j )d(i)d( j).
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If A is triangular, then r(i, j) := |R ∩ e j 〈R〉ei | is precisely dimk Ext2A(Si , S j ),
for all i, j ∈ Q0, as shown by Bongartz [1983]. So, in the triangular case, we can
write

qA(d)=
∑
i∈Q0

d2(i)−
∑

a∈Q1

d(ta)d(ha)+
∑

i, j∈Q0

r(i, j)d(i)d( j).

2A. The generic decomposition for irreducible components. Let d be a dimen-
sion vector of A (or equivalently, of Q). The variety of d-dimensional A-modules
is the affine variety

mod(A, d)=
{

M ∈
∏

a∈Q1

Matd(ha)×d(ta)(k)
∣∣ M(r)= 0 for all r ∈ I

}
.

It is clear that mod(A, d) is a GL(d)-invariant closed subset of the affine space
mod(Q, d) :=

∏
a∈Q1

Matd(ha)×d(ta)(k). Note that mod(A, d) does not have to be
irreducible. We call mod(A, d) the module variety of d-dimensional A-modules.
We also denote by ind(A, d) the (possibly empty) constructible subset of all inde-
composable modules in mod(A, d).

Let C be an irreducible component of mod(A, d). We say that C is indecom-
posable if C has a nonempty open subset of indecomposable modules. We call
C a Schur irreducible component if C contains a Schur A-module. (Recall that
a Schur A-module is just an A-module M such that EndA(M) ' k.) Note that a
Schur irreducible component is always indecomposable. The converse is always
true for path algebras of quivers without oriented cycles. Finally, we say that d is
a generic root of A if mod(A, d) has an indecomposable irreducible component.

Let us consider a decomposition d= d1+· · ·+d t , where di ∈Z
Q0
≥0 for 1≤ i ≤ t .

If Ci is a GL(di )-invariant subset of mod(A, di ) for 1 ≤ i ≤ t , we denote by
C1 ⊕ · · · ⊕ Ct the constructible subset of mod(A, d) consisting of all modules
isomorphic to direct sums of the form

⊕t
i=1 X i with X i ∈ Ci for all 1≤ i ≤ t .

As shown by de la Peña [1991, Section 1.3] and Crawley-Boevey and Schröer
[2002, Theorem 1.1], if C is an irreducible component of mod(A, d), then there
are unique generic roots d1, . . . , d t of A such that d = d1+ · · ·+ d t and

C = C1⊕ · · ·⊕Ct

for some indecomposable irreducible components Ci of mod(A, di ) for 1≤ i ≤ t .
Also, the indecomposable irreducible components Ci for 1 ≤ i ≤ t are uniquely
determined by this property. We call d = d1⊕· · ·⊕ d t the generic decomposition
of d in C , and C = C1⊕ · · ·⊕Ct the generic decomposition of C .

Recall that for an irreducible component C ⊆ mod(A, d), the field of rational
GL(d)-invariants on C is

k(C)GL(d)
= {φ ∈ k(C) | g ·φ = φ for all g ∈ GL(d)}.
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In what follows, if R is an integral domain, we denote its field of fractions
by Quot(R). Moreover, if K/k is a field extension and m is a positive integer,
we define Sm(K/k) to be the field (Quot(K⊗m))Sm , which is in fact the same as
Quot((K⊗m)Sm ), since Sm is a finite group.

Proposition 2.1 [Chindris 2011, Proposition 4.7]. Assume that the generic decom-
position of C is of the form

C = C⊕m1
1 ⊕ · · ·⊕C⊕mn

n ,

where Ci ⊆mod(A, di ) for 1≤ i ≤ n are indecomposable irreducible components,
m1, . . . ,mn are positive integers, and di 6= d j for all 1≤ i 6= j ≤ n. Then

k(C)GL(d)
' Quot

( n⊗
i=1

Smi (k(Ci )
GL(di )/k)

)
.

In the next section, we present a homological method for studying fields of
rational invariants on indecomposable irreducible components in module varieties.

2B. Exceptional sequences and rational invariants. Recall that a sequence E =

(E1, . . . , Et) of A-modules is called an orthogonal exceptional sequence if the
following conditions are satisfied:

(1) Ei is an exceptional A-module, that is, EndA(Ei ) = k and ExtlA(Ei , Ei ) = 0
for all l ≥ 1 and 1≤ i ≤ t .

(2) ExtlA(Ei , E j )= 0 for all l ≥ 0 and 1≤ i < j ≤ t .

(3) HomA(E j , Ei )= 0 for all 1≤ i < j ≤ t .

Given an orthogonal exceptional sequence E, consider the full subcategory filtE
of mod(A)whose objects M have a finite filtration 0=M0⊆M1⊆· · ·⊆Ms=M of
submodules such that each factor M j/M j−1 is isomorphic to one of the E1, . . . , Et .
For a dimension vector d of A, we define

filtE(d)= {M ∈mod(A, d) | M is isomorphic to a module in filtE}.

We will be especially interested in short orthogonal exceptional sequences. As
a first step in proving the rationality of fields of rational invariants for A, we will
use the following direct consequence of the reduction theorem [Chindris 2011,
Theorem 1.2]:

Proposition 2.2. Let d be a generic root of A and let C ⊆ mod(A, d) be an
indecomposable irreducible component. Assume that there exists an orthogonal
exceptional sequence E= (E1, E2) of A-modules such that d = dim E1+dim E2,
filtE(d)∩C 6= ∅, and dim Ext2A(E2, E1) = 0. Then k(C)GL(d)

' k(x1, . . . , xn−1)

where n = dimk Ext1A(E2, E1).
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Proof. The triangular algebra AE that arises from the (minimal) A∞-algebra struc-
ture of the Yoneda algebra Ext•A(E1⊕E2, E1⊕E2) is precisely the path algebra of
the generalized Kronecker quiver, Kn , with two vertices and n arrows, all pointing
in the same direction. It now follows from [Chindris 2011, Theorem 1.2] that
k(C)GL(d)

' k(mod(Kn, (1, 1)))GL((1,1))
' k(x1, x2, . . . xn−1). �

3. Moduli spaces of modules

Let A=k Q/I be a bound quiver algebra and let d∈Z
Q0
≥0 be a dimension vector of A.

We denote GL(d)/T1 by PGL(d), where T1 = {(λ Idd(i))i∈Q0 | λ ∈ k∗} ≤ GL(d).
Note that there is a well-defined action of PGL(d) on mod(A, d) since T1 acts
trivially on mod(A, d).

We always identify K0(A) with the lattice ZQ0 , which, in turn, we identify with
HomZ(K0(A),Z) via θ(d) =

∑
i∈Q0

θ(i)d(i) for all θ ∈ ZQ0 and d ∈ ZQ0 . Note
that when A is triangular, any integral weight θ ∈ ZQ0 can be written as 〈d, · 〉A for
a unique vector d ∈ ZQ0 . Similarly, θ can be written as 〈 · , e〉A for a unique vector
e ∈ ZQ0 .

Note that any θ ∈ ZQ0 defines a rational character χθ : GL(d)→ k∗ by

χθ
(
(g(i))i∈Q0

)
=

∏
i∈Q0

(det g(i))θ(i).

In this way, we can identify ZQ0 with the group X?(GL(d)) of rational characters
of GL(d), assuming that d is a sincere dimension vector. In general, we have only
the natural epimorphism ZQ0 → X∗(GL(d)).

Now, let θ ∈ ZQ0 be an integral weight of A. Following King [1994], an
A-module M is said to be θ -semistable if θ(dim M)= 0 and θ(dim M ′)≤ 0 for all
submodules M ′ ≤ M . We say that M is θ -stable if M is nonzero, θ(dim M) = 0,
and θ(dim M ′)< 0 for all submodules {0} 6=M ′<M . Now, consider the (possibly
empty) open subsets

mod(A, d)ss
θ = {M ∈mod(A, d) | M is θ -semistable}

and
mod(A, d)sθ = {M ∈mod(A, d) | M is θ -stable}

of d-dimensional θ (-semi)-stable A-modules.
The weight space of semiinvariants on mod(A, d) of weight nθ ∈ ZQ0 , where

n ∈ Z≥0, is

SI(A, d)nθ := { f ∈ k[mod(A, d)] | g · f = (nθ)(g) f for all g ∈ GL(d)}.
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Using methods from GIT, King [1994] showed that the projective variety

M(A, d)ss
θ := Proj

(⊕
n≥0

SI(A, d)nθ
)

is a GIT-quotient of mod(A, d)ss
θ by the action of PGL(d). We say that d is a

θ -semistable dimension vector if mod(A, d)ss
θ 6=∅.

For an irreducible component C ⊆ mod(A, d), we similarly define C ss
θ ,C s

θ ,
SI(C)nθ , and M(C)ss

θ .

3A. Families of A-modules. Let us denote by mod(A)ss
θ the full subcategory of

mod(A) consisting of the θ -semistable modules. It is easy to see that mod(A)ss
θ

is a full exact abelian subcategory of mod(A) that is closed under extensions and
whose simple objects are precisely the θ -stable modules. Moreover, mod(A)ss

θ is
Artinian and Noetherian, and hence every θ -semistable A-module has a Jordan–
Hölder filtration in mod(A)ss

θ .
Two θ -semistable A-modules are said to be S-equivalent if they have the same

composition factors in mod(A)ss
θ . It was proved in [King 1994, Proposition 4.2]

that the points of M(A, d)ss
θ are in one-to-one correspondence with the S-equi-

valence classes of d-dimensional θ -semistable A-modules.
We now recall the definition of a family of A-modules over a variety that was

introduced in this context by King [1994]. Let Z be a (reduced) variety and let
(Vz)z∈Z be a collection of A-modules parametrized by Z . Following the presen-
tation in [Domokos and Lenzing 2000, Section 6], we call (Vz)z∈Z a family of
A-modules if the following two conditions are satisfied:

(i) (Vz)z∈Z is an algebraic vector bundle over Z ; in particular, the vector spaces
Vz for z ∈ Z have the same dimension.

(ii) For each a ∈ A, the map z→ a ·IdVz (z ∈ Z) is a section of the endomorphism
bundle (Endk(Vz))z∈Z ; in other words, the A-module structure on Vz varies
algebraically with z ∈ Z .

King showed that M(A, d)ss
θ is a coarse moduli space for families of d-dimen-

sional θ -semistable A-modules; see [King 1994, Proposition 5.2]. This essentially
says that if (Vz)z∈Z is a family of d-dimensional θ -semistable A-modules and φ is
the (unique) set-theoretic map Z →M(A, d)ss

θ that sends each z ∈ Z to the point
representing the S-equivalence class of Vz , then φ is a morphism of varieties.

Lemma 3.1. Let A and B be two bound quiver algebras, T an A-B-bimodule, Z
a variety, and n a positive integer.

(1) Let (Vz)z∈Z be a family of A-modules parametrized by Z. Assume that for
each 0≤ l ≤ n, there exists an integer ml such that dimk ExtlA(T, Vz)=ml for
all z ∈ Z. Then (ExtnA(T, Vz))z∈Z is a family of B-modules.
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(2) Let (Wz)z∈Z be a family of B-modules parametrized by Z. Assume that for
each 0 ≤ l ≤ n, there exists an integer tl such that dimk Torl

B(T,Wz) = tl for
all z ∈ Z. Then (Torn

B(T,Wz))z∈Z is a family of A-modules.

Remark 1. For n = 1, this lemma was proved by Domokos and Lenzing [2000,
Lemma 6.3]. Here, we explain how to prove the general case by working with
Hochschild complexes.

Proof. In what follows, for a given integer l ≥ 0, we write Al and Bl for

A⊗k · · · ⊗k A︸ ︷︷ ︸
l

and B⊗k · · · ⊗k B︸ ︷︷ ︸
l

.

(1) For each z ∈ Z , we consider the Hochschild complex

K ∗z : 0→Homk(T, Vz)
d0

z
−→Homk(A⊗k T, Vz)

d1
z
−→Homk(A2

⊗k T, Vz)−→· · · ,

where

dl
z(φl)(a1⊗ · · ·⊗ al+1⊗ t)

= a1φl(a2⊗ · · ·⊗ al+1⊗ t)+
l∑

i=1

(−1)iφl
(
a1⊗ · · ·⊗ (ai ai+1)⊗ · · ·⊗ t

)
+ (−1)l+1φl

(
a1⊗ · · ·⊗ al ⊗ (al+1t)

)
.

As k is a commutative field, we know that H l(K ∗z ) ' ExtlA(T, Vz) for all l ≥ 0;
see, for example, [Weibel 1994, Theorem 8.7.10 and Lemma 9.1.9].

It is now easy to see that (dl
z)z∈Z is a morphism of vector bundles for each integer

l≥0. Also, for each 0≤ l≤n, the maps dl
z for z ∈ Z , have constant rank, and hence

the kernel and the image of (dl
z)z∈Z are subbundles of (Homk(Al

⊗k T, Vz))z∈Z and
(Homk(Al+1

⊗k T, Vz))z∈Z , respectively [Le Potier 1997, Proposition 1.7.2]. Since
these subbundles are clearly families of B-modules, (ExtnA(T, Vz))z∈Z is indeed a
family of B-modules.

(2) For this part, we work with the homology of the following complex (see for
example [Weibel 1994, Section 8.7.1]):

K ∗z : 0←− T ⊗k Wz
(d0)z
←− T ⊗k B⊗k Wz

(d1)z
←− T ⊗k B2

⊗k Wz←− · · · .

As before, the differentials of this complex give rise to morphisms of vector
bundles whose kernels and images are families of A-modules. From this, one
immediately derives the desired claim. �
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3B. Moduli spaces and tilting. We now explain how moduli spaces of semistable
A-modules behave under tilting. This was already discussed by Domokos and
Lenzing [2000] in the context of moduli spaces of modules over canonical algebras.

Let T be a basic tilting A-module and denote EndA(T )op by B. The torsion pairs
(T(T ),F(T )) in mod(A) induced by T and (X(T ),Y(T )) in mod(B) induced by
D(T ) := Homk(T, k) are

• T(AT )= {M ∈mod(A) | Ext1A(T,M)= 0};

• F(AT )= {M ∈mod(A) | HomA(T,M)= 0};

• X(TB)= {N ∈mod(B) | HomB(N , D(T ))= 0}

= {N ∈mod(B) | T ⊗B N = 0}; and

• Y(TB)= {N ∈mod(B) | Ext1B(N , D(T ))= 0}

= {N ∈mod(B) | Tor1
B(T, N )= 0}

.

The Brenner–Butler tilting theorem (see for example [Assem et al. 2006]) tells
us that the tilting functor HomA(T, ) :mod(A)→mod(B) induces an equivalence
of categories between T(T ) and Y(T ) with quasiinverse T ⊗B . Furthermore, the
functor Ext1A(T, ) : mod(B) → mod(A) induces an equivalence of categories
between F(T ) and X(T ) with quasiinverse T or B

1 (T, ).
We also have the isometry u : K0(A)→ K0(B) defined by

u(dim M)= dim HomA(T,M)−dim Ext1A(T,M)

for any A-module M .

Definition 3.2. We say an integral weight θ ∈HomZ(K0(A),Z) is well-positioned
with respect to T if either

(1) there are nonzero θ -semistable A-modules, mod(A)ss
θ ⊆ T(T ), and

θ(dim M) < 0

for all nonzero modules M in F(T ); or

(2) there are nonzero θ -semistable A-modules, mod(A)ss
θ ⊆ F(T ), and

θ(dim M) > 0

for all nonzero modules M in T(T ).

Let θ be an integral weight of A that is well positioned with respect to T . We
define |θ ◦ u−1

| to be θ ◦ u−1 if condition (1) above is satisfied; if condition (2) is
satisfied, |θ ◦ u−1

| is defined to be −θ ◦ u−1.
Now we are ready to prove Theorem 1.3:
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Proof of Theorem 1.3. (a) Case 1: mod(A)ss
θ ⊆ T(T ) and θ(dim M) < 0 for all

nonzero modules M in F(T ). In this case, θ ′ = θ ◦ u−1 and F = HomA(T, ).
Let M be a θ -semistable A-module. We show that N = F(M) is θ ′-semistable.

As M is a θ -semistable module lying in T(T ), we deduce that θ ′(dim N )=0. Now,
let N ′ be a submodule of N and let M ′ ∈T(T ) be such that F(M ′)' N ′. In partic-
ular, we get that θ ′(dim N ′)= θ ′(u(dim M ′)= θ(dim M ′). If φ ∈ HomA(M ′,M)
is the morphism corresponding to the inclusion N ′ ↪→ N , then ker(φ) ∈ F(T ) as
F is left exact. Using our assumption on θ , it is now clear that θ ′(dim N ′) ≤ 0.
This shows that N is θ ′-semistable.

Now, let Ñ be a θ ′-semistable B-module. First, we claim that Ñ ∈Y(T ). Indeed,
let us consider the canonical sequence of Ñ with respect to (X(T ),Y(T )):

0→ Ext1A(T,Tor1
B(T, Ñ ))−→ Ñ −→ HomA(T, T ⊗B Ñ )→ 0.

If Ñ ′ denotes the B-module Ext1A(T,Tor1
B(T, Ñ )), then

dim Ñ ′ =−u(dim Tor1
B(T, Ñ )),

and so θ ′(dim Ñ ′)=−θ(dim Tor1
B(T, Ñ )). Using again our assumption on θ , we

have that θ ′(dim Ñ ′) is strictly positive unless Tor1
B(T, Ñ ) = {0}. But since Ñ

is θ ′-semistable, we must have Tor1
B(T, Ñ ) = {0}, and hence Ñ ' F(M̃), where

M̃ := T ⊗B Ñ ∈ T(T ).
Next, we show that M̃ is θ -semistable. It is clear that θ(dim M̃) = 0. Now,

let M̃ ′ be a submodule of M̃ and note that coker F(π) ∈ X(T ), where π : M̃ →
M̃/M̃ ′ is the canonical projection. So, there exists an A-module M̃ ′′ in F(T )
such that dim coker(F(π)) = dim Ext1A(T, M̃ ′′) = −u(dim M̃ ′′). In particular,
we get that θ ′(dim coker F(π)) = −θ(dim M̃ ′′) ≥ 0, and from this we see that
θ ′(dim F(M̃/M̃ ′)) ≥ 0. But since θ ′(dim F(M̃/M̃ ′)) = θ(dim M̃/M̃ ′), we con-
clude that θ(dim M̃ ′)≤ 0. This proves part (a) in Case 1.

Case 2: mod(A)ss
θ ⊆F(T ) and θ(dim M)> 0 for all nonzero modules M in T(T ).

In this case, θ ′=−θ ◦u−1 and F =Ext1A(T, ). The proof in this case is essentially
dual to the one above; one simply uses the existence of long exact sequences in
(co)homology along with the fact that the projective dimension of T is at most one.

(b) For this part, we follow closely the arguments in [Domokos and Lenzing 2000,
Section 6]. First, let us consider the canonical family (VM)M∈mod(A,d)ss

θ
of d-

dimensional θ -semistable A-modules. By this we simply mean the trivial vector
bundle mod(A, d)ss

θ ×V , where V =
⊕

i∈Q0
kd(i) and, for each M ∈mod(A, d)ss

θ ,
V is equipped with the A-module structure corresponding to M . Now, it fol-
lows from part (a) that for each M ∈ mod(A, d)ss

θ , F(VM) is a d ′-dimensional
θ ′-semistable B-module. Consequently, we can apply Lemma 3.1 to conclude
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that (F(VM))M∈mod(A,d)ss
θ

is actually a family of d ′-dimensional θ ′-semistable B-
modules. Hence, we get the morphism of varieties φ :mod(A, d)ss

θ →M(B, d ′)ss
θ ′

that sends M ∈ mod(A, d)ss
θ to the point of M(B, d ′)ss

θ ′ corresponding to the S-
equivalence class of F(VM). It is clear that φ is a PGL(d)-invariant morphism.
From the universal property of the GIT-quotient M(A, d)ss

θ , we obtain the mor-
phism of algebraic varieties f : M(A, d)ss

θ → M(B, d ′)θ ′ for which f ◦ π = φ,
where π : mod(A, d)ss

θ → M(A, d)ss
θ is the quotient morphism. To construct the

inverse morphism of f , one follows the same arguments as above, with the functor
F replaced by its quasiinverse. �

3C. The theta-stable decomposition for irreducible components. Derksen and
Weyman [2011] introduced the notion of θ -stable decomposition for spaces of
representations of quivers without relations. In this section, we explain how to
extend [Derksen and Weyman 2011, Theorem 3.20] to quivers with relations.

Let A = k Q/I be a bound quiver algebra, d ∈ Z
Q0
≥0 a dimension vector of A,

C ⊆ mod(A, d) an irreducible component, and θ ∈ ZQ0 an integral weight of A.
We say that C is a θ (-semi)-stable irreducible component if C contains a θ (-semi)-
stable A-module. A θ -semistable irreducible component C ⊆ mod(A, d) is said
to be θ -well-behaved if mod(A, d ′) has a unique θ -stable irreducible component
whenever d ′ is the dimension vector of a factor of a Jordan–Hölder filtration in
mod(A)ss

θ of a generic A-module in C .

Example 3.3. If A is a tame quasitilted algebra, then any θ -semistable irreducible
component is θ -well-behaved. This is because for any generic root d of A, as shown
by Bobiński and Skowroński [1999b], mod(A, d) has a unique indecomposable
irreducible component.

Let C be a θ -well-behaved irreducible component of mod(A, d). We say that

C = C1u · · ·uCl

is the θ -stable decomposition of C if

• the Ci ⊆mod(A, di ) for 1≤ i ≤ l are θ -stable irreducible components; and

• the generic A-module M in C has a finite filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆

Ml = M of submodules such that each factor M j/M j−1 for 1 ≤ j ≤ l is
isomorphic to a θ -stable module in one of the C1, . . . ,Cl , and the sequence
(dim M1/M0, . . . ,dim M/Ml−1) is the same as (d1, . . . , dl) up to permuta-
tion.

To prove the existence and uniqueness of the θ -stable decomposition of C ,
first note that the irreducible variety C ss

θ is a disjoint union of sets of the form
F(Ci )1≤i≤l , where each F(Ci )1≤i≤l consists of those modules M ∈ C that have a
finite filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆ Ml = M of submodules with each factor



On the invariant theory for tame tilted algebras 207

M j/M j−1 isomorphic to a θ -stable module in one of the Ci for 1 ≤ i ≤ l. (Note
that the θ -well-behavedness of C is used to ensure that the union above is indeed
disjoint.) Next, it is not difficult to show that each F(Ci )1≤i≤l is constructible; see
for example [Crawley-Boevey and Schröer 2002, Section 3]. Hence, there is a
unique (up to permutation) sequence (Ci )1≤i≤l of θ -stable irreducible components
for which F(Ci )1≤i≤l contains an open and dense subset of C ss

θ (or C).

Remark 2. Let us mention that the notion of θ -stable decomposition of a dimen-
sion vector in an irreducible component of a module variety was introduced in
[Chindris 2011, Section 6.2]. It serves as a useful tool for finding convenient
orthogonal exceptional sequences. But in order to understand how weight spaces
of semiinvariants behave with respect to such a decomposition, one also needs to
be able to keep track of the various θ -stable irreducible components that arise in
the decomposition in question. This issue is now addressed in the notion above of
θ -stable decomposition of a well-behaved irreducible component.

Next, we recall the following useful fact from invariant theory. Let G and G1

be linearly reductive groups with G1 ≤ G, let V be a finite-dimensional rational
representation of G, and let V1 be a vector subspace of V invariant under the action
of G1. The G1-equivariant inclusion τ : V1 ↪→ V descends to a morphism

ψ : V1//G1→ V//G

such that ψ ◦ π1 = π ◦ τ , where π : V � V//G and π1 : V1 � V1//G1 are the
categorical affine quotient morphisms. We denote the image of the zero vector of V
through the two quotient morphisms by the same symbol 0. Consider the Hilbert’s
nullcones NG(V ) := π−1(0) and NG1(V1) := π

−1
1 (0).

Lemma 3.4. Keep the same notation as above. If ψ−1(0)= {0}, then ψ is a finite
morphism.

Proof. Let I be the ideal of K [V ] generated by all homogeneous G-invariants of
positive degree. By choosing homogeneous invariants f1, . . . , fn ∈ K [V ]G such
that I = ( f1, . . . , fn), Hilbert proved that K [V ]G=K [ f1, . . . , fn]; see for example
[Derksen and Kemper 2002, Theorem 2.2.10].

Now, if m denotes the ideal of K [V ]G generated by f1, . . . fn , then the zero set
of m in V//G is precisely {0}. From this fact and the assumption thatψ−1(0)={0},
we immediately deduce that the zero set of ψ∗( f1), . . . , ψ

∗( fn) in V1 is precisely
the nullcone NG1(V1). Hence, K [V1]

G1 is a finite module over

K [ψ∗( f1), . . . , ψ
∗( fn)];

see for example [Derksen and Kemper 2002, Lemma 2.4.5]. The proof follows. �
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With the right definition of θ -stable decomposition, the proof of Theorem 1.4
is essentially the same as that of [Derksen and Weyman 2011, Theorem 3.20].
Nonetheless, we provide below a detailed proof for completeness. In what follows,
if C ′ is a θ -stable irreducible component that occurs in the θ -stable decomposition
of C with multiplicity m, we denote C ′uC ′u · · ·uC ′︸ ︷︷ ︸

m

by m ·C ′.

Proof of Theorem 1.4. Without loss of generality, we assume that θ is indivisible,
the induced character χθ ∈ X∗(GL(d)) is not trivial, and Q is connected.

We view V as a vector subspace of mod(Q, d) and denote by G the stabilizer
of V⊆mod(Q, d) in Gθ . It easy to see that G is isomorphic to the intersection of
Gθ with

(Sm1 nGL(d1)
m1)× · · ·× (Smn nGL(dn)

mn ).

(Here, Sm denotes the symmetric group on m elements.) Let

ψ : V//G→mod(Q, d)//Gθ

be the morphism induced by the G-equivariant inclusion τ : V ↪→ mod(Q, d).
Since X embeds G-equivariantly into C , ψ descends to a morphism

ψ̃ : X//G→ C//Gθ

such that ψ̃ ◦πX = πC ◦ τ |X , where πX : X→ X//G and πC :C→C//Gθ are the
categorical quotient morphisms. Note that

K [C//Gθ ] =

⊕
m≥0

SI(C)mθ , and K [X//G] =
⊕
m≥0

n⊗
i=1

Smi (SI(Ci )mθ ),

and moreover, the pullback map ψ̃∗ respects the gradings of the coordinate rings
above. In what follows we show that ψ̃∗ is an isomorphism.

Note that if M ∈V, then M is G-semistable, meaning that 0 ∈ G M if and only
if the direct summands of M are θ -semistable. This implies that ψ−1(0) = {0},
and so ψ is a finite morphism by Lemma 3.4. But since ψ̃ is the restriction of ψ
to X//G, we can immediately see that ψ̃ is a finite morphism too.

Next, let M ∈ C ss
θ be a module that has a filtration of the form

0= M0 ⊆ M1 ⊆ · · · ⊆ Ml = M,

where the factors Mi/Mi−1 for 1≤ i ≤ l are θ -stable and the sequence

(dim M1, . . . ,dim M/Ml−1)

is the same as (dm1
1 , . . . , dmn

n ) up to permutation. Here, l := m1+ · · ·+mn . Now,
let M̃ ∈ X be a module isomorphic to

⊕l
i=1 Mi/Mi−1. Then, we have

ψ̃(πX (M̃))= πC(M),
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and hence ψ̃ is dominant. Denote by X0 the nonempty open subset

(C s
1,θ )

m1 × · · ·× (C s
n,θ )

mn

of X , and note that any point of X0 has its Gθ -orbit closed in C . This implies that
πC is injective on X0, and so the morphism ψ̃ is injective on πX (X0); in particular,
ψ̃ is injective on an open and dense subset of X//G. It is now clear that ψ̃ has to
be a birational morphism.

Finally, we know from geometric invariant theory that the affine quotient variety
C//Gθ is normal, since C is assumed to be a normal variety. It now follows that
ψ̃ is an isomorphism, and this finishes the proof. �

Remark 3. Keep the same assumptions as in Theorem 1.4. If we further assume
that A is tame, then for each 1≤ i ≤ n, the moduli space M(Ci )

ss
θ is of dimension

dim Ci − dim GL(di )+ 1≤ 1. More precisely, M(Ci )
ss
θ is a curve if, for example,

qA(di )= 0; see [de la Peña 1991, Proposition 1.2].
Hence, the “building blocks” M(C1)

ss
θ , . . . ,M(Cn)

ss
θ that make up the moduli

space M(C)ss
θ are either points or projective curves in the tame case.

4. Tilted algebras

Recall that a quasitilted algebra is a basic and connected finite-dimensional algebra
of the form EndH(T )op, where H is a hereditary category and T ∈ H is a tilting
object.

4A. Singular moduli spaces of modules for wild tilted algebras. Let

B = EndA(T )op

be a wild tilted algebra, where A = k Q with Q a wild connected quiver and T is
a basic tilting A-module. Our goal here is to show that B has a singular moduli
space of modules. We achieve this by reducing the considerations to the case of
wild hereditary algebras via Theorem 1.3.

Proposition 4.1. If B is a wild tilted algebra, then there exist a generic root d
of B, an indecomposable irreducible component C of mod(B, d), and an integral
weight θ of B such that C s

θ 6=∅ and the moduli space M(C)ss
θ is singular.

Proof. First of all, we know from the main results in [Kerner 1989; 1997] and
[Strauss 1991] that any wild tilted algebra contains a convex subcategory that is
wild concealed (the titling module involved is either preprojective or preinjective).
Consequently, we can assume that B = EndA(T )op, where A = k Q with Q a con-
nected wild quiver and T is a basic preprojective tilting A-module. (The case when
T is preinjective is dual.) Then, we know that the indecomposable A-modules in



210 Calin Chindris

F(T ) are all preprojective and any regular or preinjective A-module belongs to
T(T ); see for example [Assem et al. 2006].

To construct a weight θ with the desired properties, we begin by choosing a
regular A-module X0 with the property that all τm

A X for m ≥ 0 are sincere regular
Schur A-modules and dim X0 is an imaginary, nonisotropic root of A; see [Kerner
1996, Proposition 10.2]. Denote the dimension vector of X0 by d0 and let θ0 be
the weight 〈d0, · 〉A − 〈 · , d0〉A. Then nd0 is θ0-stable for all integers n ∈ Z>0 by
[Schofield 1992, Theorem 6.1] and [Derksen and Weyman 2011, Proposition 3.16].

Next, we show that θ0 is well positioned with respect to T , which is equivalent to
showing that θ0(dim M) < 0 for every preprojective A-module M . Assume to the
contrary that there exists a preprojective A-module M such that 〈dim X,dim M〉≥
〈dim M,dim X〉. But this is equivalent to

− dimk Ext1A(X,M)≥ dimk HomA(M, X),

and so dimk Ext1A(X,M) = 0. Writing M = τ−m
A Pi for uniquely determined

m ∈ Z≥0 and i ∈ Q0, we get that τm+1
A X (i) = {0}, which contradicts that τm+1

A X
is sincere. So, we conclude that θ0 is well positioned with respect to T .

Let u : K0(A)→ K0(B) be the isometry induced by T and let θ = θ0 ◦ u−1.
We claim that C :=mod(B, d)ss

θ is an irreducible component of mod(B, d), where
d := u(nd0) and n ∈Z>0. Indeed, it follows from the proof of Theorem 1.3(a) that
the θ -semistable B-modules all lie in Y(T ), and hence their projective dimension is
at most one, as A is hereditary. Consequently, the subset modP(B, d) of mod(B, d)
consisting of all modules of projective dimension at most one is nonempty, and this
implies that modP(B, d) is an irreducible open subset of mod(B, d); see [Barot and
Schröer 2001, Proposition 3.1]. This immediately implies our claim. Furthermore,
as nd0 is θ0-stable, we deduce from the proof of Theorem 1.3(a) that d is θ -stable,
that is, C s

θ 6=∅.
Using Theorem 1.3(b) again, we get that M(C)ss

θ ' M(A, nd0)
ss
θ0

, which is
known to be singular for n = 3; see for example [Domokos 2011]. �

Proof of Proposition 1.2. Assuming to the contrary that A is wild, it follows from
[Brüstle et al. 2011, Corollary 1] that A contains a convex hypercritical algebra
B. Then Proposition 4.1 provides us with a singular moduli space of B-modules,
which contradicts our assumption on the moduli spaces of modules for A. �

Remark 4. In [Brüstle et al. 2011], Brüstle, de la Peña, and Skowroński proved
that for a tame strongly simply connected algebra A, the convex hull of any in-
decomposable A-module inside A is a tame tilted algebra, or a coil algebra, or a
D-algebra; see [Brüstle et al. 2011, Corollary 5]. Hence, to prove the analogue
of Theorem 1.1 for strongly simply connected algebras, which was conjectured
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to hold true by Weyman, it remains to study the geometry of modules over coil
algebras and D-algebras. We plan to address these issues in future work.

4B. Rational and GIT quotient varieties of modules for tame quasitilted alge-
bras. In what follows, we review some important facts about the geometry of
modules over quasitilted algebras, which are due to Bobiński and Skowroński.

By a root of a quasitilted algebra A, we simply mean the dimension vector of
an indecomposable A-module. We say that a root d of A is real if qA(d)= 1. We
call a root d of A isotropic if qA(d)= 0. If d is an isotropic generic root of A, we
call the indecomposable irreducible components of mod(A, d) isotropic, too.

Now, we can state the following important result; see [Bobiński and Skowroński
1999b, Corollaries 3 and 2.5 and Proposition 2.3].

Theorem 4.2. Let A be a tame quasitilted algebra and let d be a generic root of
A. Then d is a Schur root with qA(d) ∈ {0, 1}. More precisely:

(1) If qA(d) = 1, there exists a unique, up to isomorphism, d-dimensional inde-
composable A-module M that is, in fact, exceptional; if this is the case, then
GL(d)M is the unique indecomposable irreducible component of mod(A, d).

(2) If qA(d) = 0, the support of d is a tame concealed or a tubular convex sub-
category of A. Furthermore, mod(A, d) is a normal variety.

Proposition 4.3 [Chindris 2011]. Let A be a tame concealed or a tubular algebra,
and d an isotropic Schur root of A. Then there exists a short orthogonal exceptional
sequence E = (E1, E2) with dimk Ext1A(E2, E1) = 2 and Ext2A(E2, E1) = 0, and
such that the generic module M in mod(A, d) fits into a short exact sequence of
the form

0−→ E1 −→ M −→ E2 −→ 0.

Remark 5. This proposition has been proved for tame canonical algebras in [Chin-
dris 2011, Proposition 6.7], but the exact same arguments work for arbitrary tame
concealed algebras and for tubular algebras; see for example [Chindris 2012].

Proposition 4.4. Let A be a quasitilted algebra.

(1) The following conditions are equivalent:

(a) A is tame;
(b) for each generic root d of A and each indecomposable irreducible com-

ponent C of mod(A, d), either k(C)GL(d)
' k or k(x).

(2) Assume A is tame and let d be an isotropic root of A. Then M(mod(A, d))ss
θ

is a product of projective spaces for every integral weight θ of A.

Proof. (1) The implication (b) =⇒ (a) has been already proved in [Chindris 2011,
Proposition 4.6].
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Now, let us assume that A is tame and let d be a generic root of A. We know from
Theorem 4.2 that d is a Schur root and mod(A, d) has a unique indecomposable
irreducible component; call it C .

If qA(d)= 1, then k(C)GL(d)
' k since C is just the closure of the GL(d)-orbit

of the d-dimensional exceptional A-module.
It remains to look into the case when d is an isotropic Schur root of A. In

this case, we simply use Proposition 4.3 and Proposition 2.2 to conclude that
k(C)GL(d)

' k(x).

(2) We know that mod(A, d) is normal by Corollary 3 in [Bobiński and Skowroński
1999b]. Now, let θ be an integral weight for which M(A, d)ss

θ 6= ∅, and note that
mod(A, d) is θ -well-behaved by Theorem 4.2. Let C1, . . . ,Cn be the pairwise
distinct isotropic indecomposable irreducible components that occur in the θ -stable
decomposition of mod(A, d), and denote by m1, . . . ,mn their multiplicities. It now
follows from Theorem 1.4 that

M(A, d)ss
θ
∼=

n∏
i=1

Smi (M(Ci )
ss
θ ).

But, for each 1 ≤ i ≤ n, M(Ci )
ss
θ is a projective curve that is, first, normal, as

Ci is normal by Theorem 4.2(2) and, second, rational, as proved in part (1). So,
M(Ci )

ss
θ ' P1 for all 1≤ i ≤ n, and hence M(A, d)ss

θ
∼=
∏n

i=1 Pmi . �

Remark 6. Let A be a tame quasitilted algebra, d a root of A, C ⊆mod(A, d) an
irreducible component, and θ an integral weight of A such that C s

θ 6=∅. Then the
proposition above tells us that M(C)ss

θ is either a point or just P1.

Proof of Theorem 1.1. The implications (1) =⇒ (2) =⇒ (3) =⇒ (4) were proved in
Proposition 4.4. The implication (4) =⇒ (1) follows from Proposition 4.1. �

Proof of Proposition 1.5. We know from Theorem 1.1 that if C is an indecom-
posable irreducible component of mod(A, d), then Sm(k(C)GL(d)) is isomorphic
to either k, in case d is a real Schur root, or k(t1, . . . , tm), in case d is isotropic.
The proof now follows from Proposition 2.1 and Proposition 4.4. �

Remark 7. In view of [Happel 2001], to prove the implication (4) =⇒ (1) of
Theorem 1.1 for quasitilted algebras, one possible path is to prove first the analogue
of Theorem 1.3 for tilting complexes, and then that of Proposition 4.1 for wild
canonical algebras. We plan to explore this approach in a sequel to this work.
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Period functions and cotangent sums
Sandro Bettin and Brian Conrey

We investigate the period function of
∑
∞

n=1 σa(n) e(nz), showing it can be ana-
lytically continued to |arg z|<π and studying its Taylor series. We use these re-
sults to give a simple proof of the Voronoi formula and to prove an exact formula
for the second moments of the Riemann zeta function. Moreover, we introduce a
family of cotangent sums, functions defined over the rationals, that generalize the
Dedekind sum and share with it the property of satisfying a reciprocity formula.

1. Introduction

In the well-known theory of period polynomials one constructs a vector space of
polynomials associated with a vector space of modular forms. The Hecke opera-
tors act on each space and have the same eigenvalues. Thus, either vector space
produces the usual degree 2 L-series associated with holomorphic modular forms.
Lewis and Zagier [2001] extended this theory and defined spaces of period func-
tions associated to nonholomorphic modular forms, that is, to Maass forms and
real analytic Eisenstein series. Period functions are real analytic functions ψ(x)
that satisfy three-term relations

ψ(x)= ψ(x + 1)+ (x + 1)−2sψ
( x

1+x

)
, (1)

where s = 1/2+ i t . The period functions for Maass forms are characterized by (1)
together with the growth conditions ψ(x) = o(1/x) as x → 0+ and ψ(x) = o(1)
as x → ∞; for these, s = 1/2 + ir , where 1/4 + r2 is the eigenvalue of the
Laplacian associated with a Maass form. For Eisenstein series, the o’s in the growth
conditions above are replaced by O’s if t 6= 0 and by O(1/(x |log x |)) and O(log x)
if t = 0. They show that ψ , which is initially defined only in the upper half plane,
actually has an analytic continuation to all of C apart from the negative real axis.

To each period function is also associated a periodic and holomorphic function
f on the upper half plane,

f (z)= ψ(z)+ z−2sψ(−1/z).

MSC2010: primary 11M06; secondary 11M41, 11L99.
Keywords: period functions, moments, mean values, Riemann zeta function, Eisenstein series,

Voronoi formula, cotangent sums, Vasyunin sum, Dedekind sum.
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In this paper we focus on the case of real analytic Eisenstein series. For these,
the periodic function f turns out to be essentially

∞∑
n=1

σ2s−1(n)e(nz),

where, as usual, σa(n) :=
∑

d|nda indicates the sum of the a-th power of the divisors
of n and e(z) := e2π i z . We interpret Lewis and Zagier’s results directly in terms of
this function, obtaining a better understanding of the Taylor series of the associated
period function. It turns out that the case s= 1/2, that is, t = 0, is especially useful.
In this case the arithmetic part of the n-th Fourier coefficient is d(n), the number
of divisors of n.

There are several nice applications that are consequences of the analytic con-
tinuation of the associated period function, that is, they are consequences of the
surprising fact that the function

∞∑
n=1

d(n)e(nz)− 1
z

∞∑
n=1

d(n)e(−n/z),

which apparently only makes sense when the imaginary part of z is positive, ac-
tually has an analytic continuation to C′ the slit complex plane (the complex with
the negative real axis removed). First, we obtain a new formula for the weighted
mean square of the Riemann zeta function on the critical line:∫

∞

0
|ζ(1/2+ i t)|2e−δt dt.

Previously, the best formula for this quantity was a main term plus an asymptotic,
but not convergent, series of powers of δ, each term an order of magnitude better
than the previous as δ→ 0+. Our formula gives an asymptotic series that is also
convergent. The situation is somewhat analogous to the situation of the partition
function p(n). Hardy and Ramanujan found an asymptotic series for p(n) and
subsequently Rademacher gave a series that was both asymptotic and convergent.
In both the partition case and our case, the exact formula allows for the computation
of the sought quantity to any desired degree of precision, whereas an asymptotic
series has limits to its precision. Of course, an extra feature of p(n), which is not
present in our situation, is that since p(n) is an integer it is known exactly once it is
known to a precision of 0.5. However, our formula does have the extra surprising
feature that the time required to calculate our desired mean square is basically
independent of δ, apart from the intrinsic difficulty of the extra work required just
to write down a high precision number δ.

A second application proves a surprising reciprocity formula for the Vasyunin
sum, which is a cotangent sum that appears in the Nyman–Beurling criterion for the
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Riemann hypothesis. Specifically, the Vasyunin sum appears as part of the exact
formula for the twisted mean-square of the Riemann zeta function on the critical
line: ∫

∞

0
|ζ(1/2+ i t)|2(h/k)i t dt

1
4 + t2

.

The fact that there is a reciprocity formula for the Vasyunin sum is a nonobvious
symmetry relating this integral for h/k and the integral for h/k where hh ≡ 1
mod k. It is not apparent from this integral that there should be such a relationship;
our formula reveals a hidden structure.

The reciprocity formula is most simply stated in terms of the function

c0(h/k)=−
k−1∑
m=1

m
k

cot πmh
k
,

defined initially for nonzero rational numbers h/k where h and k are integers with
(h, k)=1 and k>0. The reciprocity formula can be simply stated as, “The function

c0

(h
k

)
+

k
h

c0

( k
h

)
−

1
πh

extends from its initial definition on rationals x = h/k to an (explicit) analytic
function on the complex plane with the negative real axis deleted.” This is nearly
an example of what Zagier calls a “quantum modular form” [Zagier 2010]. We
proved this reciprocity formula in [Bettin and Conrey 2011]; in this paper, we
generalize it to a family of “cotangent sums”, containing both c0 and the Dedekind
sum.

These (imperfect) quantum modular forms are analogous to the “quantum Maass
forms” studied by Bruggeman [2007], the former being associated to Eisenstein
series and the latter to Maass forms. The main difference between these two classes
of quantum forms comes from the fact that the L-functions associated to Maass
forms are entire, while for Eisenstein series the associated L-functions are not,
since they are products of two shifted Riemann zeta functions. This translates into
quantum Maass forms being quantum modular forms in the strict sense, whereas
the reciprocity formulas for the cotangent sums contain a nonsmooth correction
term.

As a third application, we give a generalization of the classical Voronoi sum-
mation formula, which is a formula for

∑
∞

n=1 d(n) f (n), where f (n) is a smooth
rapidly decaying function. The usual formula proceeds from

∞∑
n=1

d(n) f (n)= 1
2π i

∫
(2)
ζ(s)2 f̃ (s) ds, where f̃ (s)=

∫
∞

0
f (x)x−s dx .
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One obtains the formula by moving the path of integration to the left to Re s =−1,
say, and then using the functional equation

ζ(s)= χ(s)ζ(1− s)

of ζ(s). Here, as usual,

χ(s)= 2(2π)s−10(1− s).

In this way one obtains a leading term∫
∞

0
f (u)(log u+ 2γ ) du,

from the pole of ζ(s) at s = 1, plus another term

∞∑
n=1

d(n) f̂ (n),

where f̂ (u) is a kind of Fourier–Bessel transform of f ; specifically,

f̂ (u)= 1
2π i

∫
(−1)

χ(s)2us−1 f̃ (s) ds =
∫
∞

0
f (t)C(2π

√
tu) dt

with C(z)= 4K0(2z)− 2πY0(2z), where K and Y are the usual Bessel functions.
By contrast, the period relation implies, for example, that for 0 < δ < π and
z = 1− e−iδ,

∞∑
n=1

d(n)e(nz)=
1
4
+ 2

log(−2π i z)− γ
2π i z

+
1
z

∞∑
n=1

d(n)e(
−n
z
)+

∞∑
n=1

cne−inδ, (2)

where cn� e−2
√
πn . This is a useful formula that cannot be readily extracted from

the Voronoi formula. In fact, the Voronoi formula is actually an easy consequence
of the formula (2). In Section 4 we give some other applications of this extended
Voronoi formula.

The theory and applications described above are for the period function associ-
ated with the Eisenstein series with s = 1/2. In this paper we work in a slightly
more general setting with s = a, an arbitrary complex number. The circle of ideas
presented here have other applications and further generalizations, for example to
exact formulas for averages of Dirichlet L-functions, which will be explored in
future work.
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2. Statement of results

For a ∈ C and Im(z) > 0, consider

Sa(z) :=
∞∑

n=1

σa(n)e(nz).

For a = 2k + 1 with k ∈ Z≥1, the series Sa(z) is essentially the Eisenstein series
of weight 2k+ 2:

Ea+1(z)= 1+ 2
ζ(−a)

Sa(z),

for which the well-known modularity property

E2k(z)−
1

z2k E2k

(
−

1
z

)
= 0

holds when k ≥ 2. For other values of a this equality is no longer true, but the
period function

ψa(z) := Ea+1(z)−
1

za+1 Ea+1

(
−

1
z

)
(3)

still has some remarkable properties.

Theorem 1. Let Im(z) > 0 and a ∈C. Then ψa(z) satisfies the three-term relation

ψa(z)−ψa(z+ 1)= 1
(z+1)1+aψa

( z
z+1

)
(4)

and extends to an analytic function on C′ := C \R≤0 via the representation

ψa(z)=
i
π z
ζ(1− a)
ζ(−a)

− i
1

z1+a cot
πa
2
+ i

ga(z)
ζ(−a)

,

where

ga(z) := −2
∑

1≤n≤M

(−1)n
B2n

(2n)!
ζ(1− 2n− a)(2π z)2n−1

+
1
π i

∫
(− 1

2−2M)
ζ(s)ζ(s− a)0(s)

cosπa/2
sinπ(s− a)/2

(2π z)−s ds, (5)

and M is any integer greater or equal to − 1
2 min(0,Re(a)).

Here and throughout the paper equalities are to be interpreted as identities between
meromorphic functions in a. In particular, taking the limit a→ 0+, we have

ψ0(z)=−2
log 2π z− γ

π i z
− 2ig0(z),

g0(z)=
1
π i

∫
(− 1

2 )

ζ(s)2
0(s)

sin(πs/2)
(2π z)−s ds =

1
π i

∫
(− 1

2 )

ζ(s)ζ(1− s)
sinπs

z−s ds.
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Theorem 1 is essentially a reformulation of Lewis and Zagier’s results [2001]
for the noncuspidal case and can be seen as a starting point for their theory of
period functions.

For ease of reference, note that (3) can be rewritten in terms of Sa and ga as

Sa(z)−
1

za+1 Sa

(
−

1
z

)
= i

ζ(1− a)
2π z

−
ζ(−a)

2
+

eπ i(a+1)/2ζ(a+ 1)0(a+ 1)
(2π z)a+1 +

i
2

ga(z). (6)

Another important feature of the function ψa(z) comes from the properties of
its Taylor series. For example, in the case a = 0 one has

π i
2
(1+ z)ψ0(1+ z)=−1−

z
2
+

∞∑
m=2

am(−z)m,

with

am :=
1

n(n+ 1)
+ 2bn + 2

n−2∑
j=0

(n−1
j

)
b j+2 and bn :=

ζ(n)Bn

n

and where B2n denotes the 2n-th Bernoulli number. In particular, the values am

are rational polynomials in π2. The terms involved in the definition of am are
extremely large, since

b2n ∼
B2n

2n
∼ (−1)n+12

√
π

n

( n
πe

)2n

as n→∞, though there is a lot of cancellation; for example, for m = 20 one has

am =
1

420
+
π2

36
−

19π4

600
+

646π6

19845
−

323π8

1500
+

4199π10

343035

−
154226363π12

36569373750
+

1292π14

1403325
−

248571091π16

2170943775000

+
1924313689π18

288905366499750
−

30489001321π20

252669361772953125
= 0.0499998087 . . .

Notice how close this number is to 1
20 ; this observation can be made for all m and

in fact in [Bettin and Conrey 2011] we proved that

am −
1
m
= 25/4π3/4 e−2

√
πm

m3/4

(
sin(2
√
πm+ 3

8π)+ O
( 1
√

m

))
.
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In this paper we show that similar results hold for the Taylor series at any point
τ in the half plane Re(τ ) > 0 and for any a ∈ C. We give a proof in the following
theorem, using ga instead of ψa to simplify slightly the resulting formulas.

Theorem 2. Let Re(τ ) > 0 and for |z|< |τ |, let

ga(τ + z) :=
∞∑

m=0

g(m)a (τ )

m!
zm

be the Taylor series of ga(z) around τ . Then

g(m)a (1)
m!

=−

∑
2n−1+k=m,

n,k≥1

(−1)n+m B2nζ(1−2n−a)
0(2n+ a+ k)
0(2n+ a)k!(2n)!

2(2π)2n−1

+ (−1)m cot πa
2
ζ(−a)

0(1+ a+m)
0(1+ a)m!

+(−1)m
(0(1+ a+m)
0(a)(m+ 1)!

− 1
)ζ(1− a)

π
, (7)

and in particular if a ∈ Z≤0 and (a,m) 6= (0, 0), then πg(m)a (1) is a rational poly-
nomial in π2. Moreover,

g(m)a (τ )

m!
= cos

(
πa
2

) 27/4−a/2

π3/4+a/2

e−2
√
πτm

m1/4−a/2τm+3/4+a/2

×

(
cos
(
2
√
πτm− 1

8π(2a− 1)+ (τ +m)π
)
+ Oτ,a

( 1
√

m

))
, (8)

as m→∞.

Some of the ideas used in the proofs of Theorems 1 and 2 can be easily gener-
alized to a more general setting. For example, let F(s) be a meromorphic function
on 1− ω ≤ Re(s) ≤ ω for some 1 < ω < 2 with no poles on the boundary and
assume |F(σ + i t)| �σ e(π/2−η)|t | for some η > 0. Let

W+(z) :=
1

2π i

∫
(ω)

F(s)0(s)(−2π i z)−s ds,

W−(z) :=
1

2π i

∫
(ω)

F(1− s)0(s)(−2π i z)−s ds,
(9)

for π2 −η < arg z< π
2 +η. (Notice that these functions are essentially convolutions

of the exponential function and the Mellin transform of F(s).) Then we have

∞∑
n=1

d(n)W+(nz)− 1
z

∞∑
n=1

d(n)W−
(
−

n
z

)
= R(z)+ k(z), (10)



222 Sandro Bettin and Brian Conrey

where R(z) is the sum of the residues of F(s)0(s)ζ(s)2(−2π i z)−s between 1−ω
and ω, and

k(z) := 1
2π

∫
(1−ω)

F(s)
ζ(s)ζ(1− s)

sinπs
z−s ds

is holomorphic on |arg(z)|< π
2 +η. Moreover, if we assume that F(s) is holomor-

phic on Re(s) < 1−ω, then it follows that the Taylor series of k(z) converges very
fast, that is,

k(n)(τ )
n!
� n−B

|τ |−n

for any B > 0 and τ such that |arg τ | < η. Also, W−(z) decays faster than any
power of z at infinity and so the second sum in (10) is rapidly convergent and is
very small if we let z go to zero in |arg z|<η. In Section 4 we will give an explicit
example; a subsequent paper will elaborate on this.

The Voronoi summation formula is an important tool in analytic number theory;
in its simplest form, it states that, if f (u) is a smooth function of compact support,
then

∞∑
n=1

d(n) f (n)=
∞∑

n=1

d(n) f̂ (n)+
∫
∞

0
f (t)(log t + 2γ ) dt + 1

4 f (0), (11)

where

f̂ (x) := 4
∫
∞

0
f (t)(K0(4π

√
t x)− 1

2πY0(4π
√

t x)) dt.

This formula can be deduced from (10) (or also directly from (6)) as a very easy
corollary. Actually, Voronoi’s formula can be interpreted as a version of (6) con-
fined to the positive real axis. If we get rid of this limitation and we use directly
the period formula (6), we are able to obtain interesting results also for weight
functions of the shape f (u) = e−δu , for which the Voronoi summation formula
fails to give a useful formula. (Try it!) Thus, we have a generalization of Voronoi’s
formula.

The use of a weight function of the shape e−δu is fundamental to investigate the
smoothly weighted second moment of the Riemann zeta function,

L2k(δ) :=

∫
∞

0

∣∣ζ(1
2 + i t)

∣∣2k
e−δt dt,

in the case k = 1. These integrals play a major role in the theory of the Riemann
zeta function and getting good upper bounds on their growth as δ → 0+ would
imply the Lindelöf hypothesis. Unfortunately, the only two value of k for which
the asymptotics are known are k = 1 [Hardy and Littlewood 1916] and k = 2
[Ingham 1927]. For other values we have just conjectures; see [Conrey and Ghosh
1998; Conrey and Gonek 2001; Keating and Snaith 2000]. For k = 1, it is easy to
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see that the smooth moment is strictly related to the sum S0(−e−iδ) and, from this,
it is easy to deduce an asymptotic expansion for L2k(δ). This classical asymptotic
series is not convergent. Here we replace the series by two series, each of which
are absolutely convergent asymptotic series. (See also [Motohashi 1997].) The
following theorem provides a new exact formula for L1(δ), by applying Theorem 1
and 2 to S0(−e−iδ).

Theorem 3. For 0< Re(δ) < π , we have

L1(δ)=
γ − log 2πδ

2 sin δ/2
+

π i
sin δ/2

S0

(
−1

1− e−iδ

)
+ h(δ)+ k(δ),

where k(δ) is analytic in |Re(δ)|< π and h(δ) is C∞ in R and holomorphic in

C′′ := C \ {x + iy ∈ C | x ∈ 2πZ, y ≥ 0} .

Moreover, h(0)= 0 and, if Im(δ)≤ 0,

h(δ)= i
∑
n≥0

hne−i(n+1/2)δ,

with

hn = 27/4π1/4 e−2
√
πn

n1/4 sin(2
√
πn+ 5

8π)+ O
(e−2

√
πn

n3/4

)
,

as n→∞.

The most remarkable aspect of this theorem lies in the fact that the arithmetic
sum S0(−1/(1− e−iδ)) decays exponentially fast for δ→ 0+, while the Fourier
series h(δ) is very rapidly convergent. Moreover, Theorem 3 implies that L1(δ)

can be evaluated to any given precision in a time that is independent of δ.
For a rational number h/k, with (h, k)= 1 and k > 0, define

c0

(h
k

)
=−

k−1∑
m=1

m
k

cot
(πmh

k

)
.

The value of c0(h/k) is an algebraic number, that is, c :Q→Q, and, more precisely,
c`(h/k) is contained in the maximal real subfield of the cyclotomic field of k-th
roots of unity. Moreover, c0 is odd and is periodic of period 1. See Figure 1 and
Figure 2.

The cotangent sum c0(h/k) arises in analytic number theory in the value

D(0, h/k)=
1
4
+

i
2

c0

(h
k

)
(12)
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Figure 1. Graph of c0(h/k) for 1≤ h < k = 541.

Figure 2. Graph of c0(h/k) for 1≤ h ≤ k ≤ 100, with (h, k)= 1.

at s = 0 of the Estermann function, defined for Re(s) > 1 by

D(s, h/k) :=
∞∑

n=1

d(n)e(nh/k)
ns .

The Estermann function extends analytically to C \ {1} and satisfies a functional
equation; these properties are useful in studying the asymptotics of the mean square
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Figure 3. Graph of V (h/k) for 1≤ h, k ≤ 100 and (h, k)= 1.

of the Riemann zeta function multiplied by a Dirichlet polynomial (see [Balasub-
ramanian et al. 1985]), which are needed, for example, for theorems that give a
lower bound for the portion of zeros of ζ(s) on the critical line. See also [Conrey
1989; Iwaniec 1980]. The sum

V
(h

k

)
:=

k−1∑
m=1

{mh
k

}
cot
(
πm
k

)
=−c0(h/k),

known as the Vasyunin sum (see Figure 3), arises in the study of the Riemann zeta
function by virtue of the formula

ν(h/k) :=
1

2π
√

hk

∫
∞

−∞

∣∣ζ(1
2 + i t)

∣∣2 (h
k

)i t dt
1
4 + t2

=
log 2π − γ

2

(1
h
+

1
k

)
+

k−h
2hk

log h
k
−

π

2hk

(
V
(h

k

)
+ V

( k
h

))
;

(13)

see Figure 4.
This formula is relevant to the approach of Nyman, Beurling, Báez-Duarte and

Vasyunin to the Riemann hypothesis, which asserts that the Riemann hypothesis is
true if and only if limN→∞ dN = 0, where

d2
N = inf

AN

1
2π

∫
∞

−∞

∣∣1− ζ AN (
1
2 + i t)

∣∣2 dt
1
4 + t2

and the infimum is over all the Dirichlet polynomial AN (s)=
∑N

n=1 an/ns of length
N ; see [Bagchi 2006] for a nice account of the Nyman–Beurling approach to the
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Figure 4. Graph of
√

hk ν(h/k) for 1 ≤ h ≤ 5k, k = 307, and
(h, k)= 1.

Riemann hypothesis with Báez-Duarte’s significant contribution and see [Báez-
Duarte et al. 2005; Landreau and Richard 2002] for information about the Vasyunin
sums, as well as interesting numerical experiments about dN and the minimizing
polynomials AN . Thus d2

N is a quadratic expression in the unknown quantities am

in terms of the Vasyunin sums.
In [Bettin and Conrey 2011] we showed that c0(h/k) satisfies the reciprocity

formula
c0

(h
k

)
+

k
h

c0

( k
h

)
−

1
πh
=

i
2
ψ0

(h
k

)
(14)

(and in particular that c0(h/k) can be computed to within a prescribed accuracy in
a time that is polynomial in log k). See Figure 5.

This behavior is analogous to that of the Dedekind sum,

s
(h

k

)
=−

1
4k

k−1∑
m=1

cot
(πm

k

)
cot
(πmh

k

)
,

which satisfies the well-known reciprocity formula

s
(h

k

)
+ s

( k
h

)
−

1
12hk

=
1

12

(h
k
+

k
h
− 3

)
. (15)

In this paper we prove that these results can be generalized to the sums

ca

(h
k

)
:= ka

k−1∑
m=1

cot
(
πmh

k

)
ζ
(
−a, m

k

)
,

where ζ(s, x) is the Hurwitz zeta function (note that at a = −1 the poles of
ζ(−a,m/k) cancel).
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Figure 5. Graph of c0(h/k)+ (k/h)c0(k/h)− 1/πh for h ≤ 5k,
k ≤ 50 and (h, k)= 1.

Notice that, for all a, ca(h/k) is odd and periodic in x = h/k with period 1
and, for nonnegative integers a, it takes values in the maximal real subfield of the
cyclotomic field of k-th roots of unity.

At the nonnegative integers, a = n ≥ 0, these cotangent sums can be expressed
in terms of the Bernoulli polynomials:

cn

(h
k

)
=−kn

k−1∑
m=1

cot
(πmh

k

) Bn+1(m/k)
n+ 1

,

which is most interesting when n is even, since cn ≡ 0 for positive odd n.
If a =−n is a negative integer one can write ca as

c−n

(h
k

)
=

(−1)n

kn(n− 1)!

k−1∑
m=1

cot
(
πmh

k

)
9
(

n− 1, m
k

)
,

where

9(m, z) :=
dm+1

dzm+1 log0(z)

is the polygamma function.
By the reflection formula for the polygamma function,

9(m, 1− z)+ (−1)m+19(m, z)= (−1)mπ
dm

dzm cot(π z),
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for a positive odd integer n we can write c−n as

c−n

(h
k

)
=−

π

2kn(n− 1)!

k−1∑
m=1

cot
(
πmh

k

) dn−1

dzn−1 cot(π z)
∣∣∣
z=m/k

and, in particular,

c−1

(h
k

)
= 2πs

(h
k

)
.

Like the case a = 0, these cotangent sums appear in the value

D
(

0, a, h
k

)
=−

1
2
ζ(−a)+

i
2

ca

(h
k

)
, (16)

at s = 0 of the function D(s, a, h/k), defined for Re(s) > 1 by

D
(

s, a, h
k

)
:=

∞∑
n=1

σa(n)e(nh/k)
ns .

Moreover, the cotangent sums ca appear also in a shifted version of Vasyunin’s
formula (13) (see Theorem 5 at the end of the paper for a new analytic proof).

Theorem 4. Let h, k ≥ 1, with (h, k)= 1. Then

ca

(h
k

)
−

( k
h

)1+a
ca

(
−k
h

)
+ ka aζ(1− a)

πh
=−iζ(−a)ψa

(h
k

)
. (17)

(Note that, since g−1(z) is identically zero, for a =−1 the reciprocity formula re-
duces to (15).) In particular, ca(h/k) gives an example of an “imperfect” quantum
modular form of weight 1+ a.

New formulas can be obtained by differentiating (17); for example, if we write

c∗
−1

(h
k

)
:=

1
k

k−1∑
m=1

cot
(
πmh

k

)
γ1

(m
k

)
,

where γ1(x) is the first generalized Stieltjes constant defined by

ζ(s, x)=
1

s− 1
+

∞∑
n=0

(−1)n

n!
γn(x)(s− 1)n,

then, taking the derivative at −1 of (17) multiplied by k−a , we get the formula

c∗
−1

(h
k

)
− c∗
−1

(
−k
h

)
+
ζ ′(2)+π2/6

πkh
+π log k

(1
6

k
h
−

1
2

)
= q

(h
k

)
,

where
q(z) := −

1
π z
ζ ′(2)+

π

2
(log z+ γ )+ g′

−1(z)

is holomorphic in C′.
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3. The period function

In this section we give a proof of Theorems 1 and 2.

Proof of Theorem 1. Firstly, observe that the three-term relation (4) follows easily
from the periodicity in z of E(a, z).

Sa(z) can be written as

Sa(z)=
∞∑

n=1

σa(n)
1

2π i

∫
(2+max(0,Re(a)))

0(s)(−2π inz)−s ds

=
1

2π i

∫
(2+max(0,Re(a)))

ζ(s)ζ(s− a)0(s)eπ is/2(2π z)−s ds

=
1

2π i

∫
(− 1

2−2M)
ζ(s)ζ(s− a)0(s)eπ is/2(2π z)−s ds+ ra,M(z),

(18)

where M is any integer greater or equal to −1
2 min(0,Re(a)) and

ra,M(z) := − 1
2ζ(−a)+ i

ζ(1− a)
2π z

+ i
ζ(1+ a)0(1+ a)eπ ia/2

(2π z)1+a

−

∑
1≤n≤M

i(−1)n
B2n

(2n)!
ζ(1− 2n− a)(2π z)2n−1

is the sum of the residues encountered moving the integral (and has to be interpreted
in the limit sense if some of the terms have a pole). Now, consider

1
z1+a Sa

(
−

1
z

)
=

1
z1+a

1
2π i

∫
(2+max(0,Re(a)))

ζ(s)ζ(s−a)0(s)eπ is/2
(

2π
−1
z

)−s
ds

=
1

2π i

∫
(2+max(0,Re(a)))

ζ(s)ζ(s−a)0(s)e−π is/2(2π)−szs−1−a ds,

since in this context 0< arg z<π and 0< arg−1/z<π , so arg−1/z= π−arg z.
Applying the functional equation to both ζ(s) and ζ(s−a) we get, after the change
of variable s→ 1− s+ a,

1
z1+a Sa

(
−

1
z

)
=−

1
2π

∫
(−1+min(0,Re(a)))

ζ(s− a)ζ(s)0(s)
eπ i(s−a)/2 cos πs

2

sin π(s−a)
2

(2π z)−s ds

=−
1

2π

∫
(−1/2−M)

ζ(s− a)ζ(s)0(s)
eπ i(s−a)/2 cos πs

2

sin π(s−a)
2

(2π z)−s ds, (19)
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since the integrand doesn’t have any pole on the left of −1+min(0,Re(a)). The
theorem then follows summing (18) and (19) and using the identity

eπ is/2
+ i

eπ i(s−a)/2 cos πs
2

sin π(s−a)
2

= i
cos πa

2

sin π(s−a)
2

. �

We remark that for a = 2k+ 1, with k ≥ 1, Theorem 1 reduces to

E2k(z)−
1

z2k E2k

(
−

1
z

)
= 0,

while, for a = 1, the theorem reduces to the well-known identity

E2(z)−
1
z2 E2

(
−1
z

)
=−

12
2π i z

.

To prove Theorem 2 we need the following lemma.

Lemma 1. For fixed complex numbers A and α we have, as n→∞

Jn :=

∫
∞

0
un+αe−A

√
ue−u du

u

=
√

2πeA2/8e−A
√

ne−nnn+α−1/2
(

1− C
√

n
+ O

(1
n

))
,

where

C =
4α− 1

8
A+

A3

96
.

Proof. After the change of variable u = nx2, we have

Jn = 2nn+α
∫
∞

0
x2α−1e−A

√
nx−n(x2

−2 log x)dx

= 2nn+αe−A
√

n
∫
∞

−1
(x + 1)2α−1e−A

√
nx−n((x+1)2−2 log(x+1))dx

= 2nn+αe−A
√

ne−n(1+ O(e−nδ2/2))

×

∫ δ

−δ

(x + 1)2α−1e−A
√

nx−2nx2
(1+ 2

3 nx3
+ O(nx4))dx

for any small δ > 0. We can then approximate the binomial and extend the integral
to R at a negligible cost, getting

Jn = 2nn+αe−A
√

ne−n
∫
∞

−∞

(1+ (2α− 1)x + 2
3 nx3
+ O(x2

+ nx4))

× e−A
√

nx−2nx2
dx .

Evaluating the integrals, the lemma follows. �
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Proof of Theorem 2. The three-term relation (4) implies that

ga(z+ 1)= 1
(z+1)1+a cot

(
πa
2

)
ζ(−a)− 1

π z(z+1)a
ζ(1− a)

+
1

π z(z+1)
ζ(1− a)+ ga(z)−

1
(z+1)1+a ga

( z
z+1

)
.

Now, from the definition (5) of ga(z), it follows that

ga(z)= 2
∑

1≤n≤M

(−1)n
B2n

(2n)!
ζ(1− 2n− a)(2π z)2n−1

+ O(|z|2M+1/2)

for any M ≥ 1. Thus

ga(z)−
ga(z/(z+ 1))
(z+ 1)1+a

= 2
∑

1≤n≤M

(−1)n
B2n

(2n)!
ζ(1−2n−a)(2π z)2n−1

(
1− 1
(z+1)2n+a

)
+O(|z|2M+1/2)

=−2
2M∑

m=1

( ∑
2n−1+k=m,

n,k≥1

(−1)n+m B2nζ(1−2n−a)
0(2n+a+k)

0(2n+a)k!(2n)!
(2π)2n−1

)
zm

+O(|z|2M+ 1
2 ).

Therefore,

ga(z+ 1)=
2M∑

m=0

bmzm
+ O(|z|2M+1/2),

where

bm := −2
∑

2n−1+k=m,
n,k≥1

(−1)n+k B2nζ(1− 2n− a)
0(2n+ a+ k)
0(2n+ a)k!(2n)!

(2π)2n−1

+ (−1)m cot
(
πa
2

)
ζ(−a)

0(1+ a+m)
0(1+ a)m!

+ (−1)m
(0(1+ a+m)
0(a)(m+ 1)!

− 1
)ζ(1− a)

π
,

and, since ga(z) is holomorphic at 1, bm must coincide with the m-th coefficient
of the Taylor series of ga(z) at 1.

Now, let’s prove the asymptotic (8). Fix any M ≥−1
2 min(0,Re(a)) and assume

m ≥ 2M+1 and Re(τ ) > 0. By the functional equation for ζ and basic properties
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of 0(s), we have

(2π)aτm

cos πa
2

g(m)a (τ )

=
(−1)m

π i

∫
(− 1

2−2M)
0(s)

ζ(s)ζ(s− a)

sin π(s−a)
2

s(s+ 1) · · · (s+m− 1)(2π)−s+aτ−s ds

=
(−1)m

π i

∫
(− 1

2−2M)

ζ(s)ζ(s− a)

sin π(s−a)
2

0(s+m)(2π)−s+aτ−s ds

=
(−1)m

π3i

∫
(− 1

2−2M)
ζ(1− s)ζ(1− s+ a)

×0(1− s)0(1− s+ a)0(s+m)sin
(
πs
2

)(2π
τ

)s
ds.

We can see immediately that g(m)a (τ )�a m−B
|τ |−mm! for any fixed B > 0, just by

moving the path of integration to the line Re(s) = −B and using trivial estimates
for 0. To get a formula asymptotic as m→∞, we expand ζ(1− s)ζ(1− s + a)
into a Dirichlet series and integrate term-by-term; the main term arises from the
first term of the sum. We have

g(m)a (τ )= 2
(−τ)−m cos πa

2

π2(2π)a

∞∑
`=1

σ−a(`)

`
Im,a

(
`

τ

)
,

where

Im,a(x) :=
1

2π i

∫
(− 1

2−2M)
0(1− s)0(1− s+ a)0(s+m) sin

(πs
2

)
(2πx)s ds.

We reexpress this integral as a convolution integral. Recall that for |arg x |<π we
have

1
2π i

∫
( 3

2+2M)
0(s)0(s+ a)u−s ds = 2ua/2Ka(2

√
u),

where Ka denotes the K -Bessel function of order a. Also,

1
2π i

∫
(− 1

2−2M)
0(s+m)u−s ds = ume−u .

Thus,

Im,a(x)= I+m,a(x)+ I−m,a(x),

where

I±m,a(x)= (2πx)1+a/2e±π ia/4
∫
∞

0
um+a/2Ka(2e±π i/4

√
2πxu)e−u du.
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Now, for |arg z|< 3
2π

Ka(z)=
√
π

2z
e−z

(
1+

4a2
− 1

8z
+ Oa

( 1
|z|2

))
,

as z→∞, and

K−a(z)= Ka(z)∼
{

2a−10(a)z−a if Re(a)≥ 0, a 6= 0,
− log(x/2)− γ if a = 0,

as z→ 0. Therefore, by Lemma 1,

I±m,a(x)= (2πx)1+
a
2
π

1
4 e±π i(a− 1

2 )/4

2
5
4 x

1
4

∫
∞

0
um+ a

2−
1
4 e−u−2(1±i)

√
πxu

×

(
1+ 4a2

−1
2

9
2π

1
2 e±

π i
4
√

xu
+ Oa

(1
u

))
du

∼ 2
1
4+

a
2π

7
4+

a
2 e±π i(a− 1

2 )/4x
3
4+

a
2 e±iπx e−2(1±i)

√
πxne−mmm+ 1

4+
a
2

×

(
1+

ξ±
√

m
+ O

( 1
m

))
,

where

ξ± =−
(1± i)

√
πx(1+ a)
2

+
(1∓ i)(πx)

3
2

6
+
(4a2
− 1)(1∓ i)

32π
1
2
√

x
,

and (8) follows. �

4. An extension of Voronoi’s formula

Formula (10) can be proved with the same techniques used to prove Theorems 1
and 2. In this section we give an application of this formula and we discuss a
similar formula for convolutions of the exponential function. We conclude the
section showing how these results can be used to prove Voronoi’s formula.

Applying formula (10) to F(s)=0(s/2)/20(s) we get, for 1
4π < arg(z) < 3

4π ,

∞∑
n=1

d(n)e(2πnz)2
=

1
z

∞∑
n=1

d(n)T (4πnz)+ R(z)+ k(z), (20)

where, in the same range of arg(z),

T (z) :=
1
√
π i

∫
(2)

0(s)
0(1− s/2)

(−i z)−s ds =
∞∑

n=0

(i z)n

n!0(1+ n/2)



234 Sandro Bettin and Brian Conrey

and

R(z) :=
1
4
+

2 log(−4π i z)− 3γ
8
√
π i z

,

k(z) :=
1

4π2

∫
(− 1

2 )

0(s/2)0(1− s)ζ(s)ζ(1− s)z−s ds.

Notice that we have T (z)� |z|−B for all fixed B > 0; moreover, k(z) is holomor-
phic in |arg(z)|< 3

4π and, if |arg(τ )|< 1
4π ,

cτ (m) :=
k(m)(τ )

m!
� |τ |−mm−B

for all B > 0. In particular, if we set z = iδ with 0 < δ ≤ 1, taking the real part
of (20) we get

∞∑
n=1

d(n)e−(2πnδ)2
=

1
4
+
−2 log(4πδ)− 3γ

4
√
πδ

+Re
∞∑

m=0

cm

(√3
2
+i
(1

2
−δ
))m

(21)

with
cm := c(

√
3+i)/2(m)� m−B

for all B > 0.
We now state a similar formula for convolutions of the exponential function and

a function that is compactly supported on R>0.
Let g(x) be a compactly supported function on R>0 and let

W+(z) :=
∫
∞

0
f (1/x)e(zx) dx

x
and W−(z) :=

∫
∞

0
f (x)e(zx) dx .

If we denote the Mellin transform of f (x) with F(s), then it follows that F(s) is
entire and that W+(x) and W−(x) can be written as in (9). In particular, since

F(0)=
∫
∞

0
f (x) dx

x
, F(1)=

∫
∞

0
f (x) dx, F ′(1)=

∫
∞

0
f (x) log x dx,

formula (10) can be written as
∞∑

n=1

d(n)W+(nz)−
1
z

∞∑
n=1

d(n)W−(−n/z)

=

∫
∞

0
f (x)

( 1
4x
−

1
4z
−
γ − log(2π z/x)

2π i z

)
dx + k(z)

+

∫
∞

0
f (x)

∫
(− 1

2 )

ζ(s)ζ(1− s)
sinπs

( z
x

)−s
ds

dx
2πx

(22)

for Im(z) > 0.
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Proof of Voronoi’s formula. Let f : R≥0 → R be a smooth function that decays
faster than any power of x and let

f̃ (x) := 2
∫
∞

0
f (y) cos(2πxy) dy

be the cosine transform of f (x). Then, f̃ (x) is smooth and, by partial integration,
f̃ (m)(x)� 1/x2+m for all m ≥ 0. For 0 < Re(s) < 2, we can define the Mellin
transform of f̃ ,

F(s) :=
∫
∞

0
f̃ (x)x s−1 dx .

By partial integration we see that F(s) extends to a meromorphic function on
Re(s) < 2 with simple poles at most at the nonpositive integers. Also, F(s) decays
rapidly on vertical strips. Moreover, by Parseval’s formula, for 0 < Re(s) < 1 we
have

F(s)=
2
s

∫
∞

0
f (y)(2πy)−s0(s+ 1) cos

(
πs
2

)
dy

=
2
s

∫
∞

0
f (y) dy− 2

∫
∞

0
f (y)(log(2πy)+ γ ) dy+ O(|s|)

=
F−1

s
+ F0+ O(|s|),

say. For Im(z)≥ 0 we can define

W+(z) :=
1

2π i

∫
( 3

2 )

F(s)0(s)(−2π i z)−s ds =
∫
∞

0
f̃
(1

x

)
e(zx)

dx
x
,

W−(z) :=
1

2π i

∫
( 3

2 )

F(1− s)0(s)(−2π i z)−s ds

=

∫
∞

0
( f̃ (x)−Ress=0 F(s))e(zx) dx,

(23)

with the second representation of W−(z) defined only on Im(z) > 0. Since F(s)
is rapidly decaying at infinity, (10) holds for Im(z) ≥ 0 and so we can apply that
formula for z = 1 and take the real part. By the definition of f̃ , we have

Re(W+(n))= 2
∫
∞

0
f (y)

∫
∞

0
cos
(2πy

x

)
cos(nx)

dx
x

dy

=

∫
∞

0
f (y)(2K0(4π

√
ny)−πY0(4π

√
ny)) dy
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and

Re(W−(−n))= lim
z→1,

Im(z)>0

Re(W−(−nz))

= lim
z→1,

Im(z)>0

Re
∫
∞

0
f̃ (x)e(−nzx) dx − lim

z→1,
Im(z)>0

Re
Ress=0 F(s)
−2π inz

=
1
2 f (n),

since Ress=0 F(s) is real. Moreover, (2π)−1
∫
(−1/2) F(s) ζ(s)ζ(1−s)

sinπs z−s ds is purely
imaginary on the real line, so we just need to compute

Re
(
Ress=0,1 F(s)0(s)ζ(s)2(−2π i)−s)

= Re
(

F(1)(γ − log(−2π i))+ F ′(1)
−2π i

+
−F−1(log(−2π i)+ γ − 2 log 2π)+ F0

4

)
=−

f (0)
8
−

1
2

∫
∞

0
f (y)(log y+ 2γ ) dy,

since F(1)= f (0)/2 and F ′(1) is real. This completes the proof of the theorem. �

5. An exact formula for the second moment of ζ(s)

In this section we prove the exact formula for the second moment of the Riemann
zeta function.

Proof of Theorem 3. Firstly, observe that

L2(δ)=−ie−iδ/2
∫ 1

2+i∞

1
2

ζ(s)ζ(1− s)eiδs ds.

The functional equation for ζ(s),

ζ(1− s)= χ(1− s)ζ(s),

where

χ(1− s)= (2π)−s0(s)(eπ is/2
+ e−π is/2),

allows us to split L2(δ) as

L2(δ)=−ie−iδ/2
∫ 1

2+i∞

1
2

χ(1− s)ζ(s)2eiδs ds=−ie−iδ/2(L+(δ)+ L−(δ)),
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where

L±(δ)=
∫ 1

2+i∞

1
2

(2π)−s0(s)e±π is/2ζ(s)2eiδs ds.

By Stirling’s formula, L+(δ) is analytic for Re(δ) > −π . Moreover, by contour
integration,

L−(δ)=
∫
(2)
(2π)−s0(s)e−π is/2ζ(s)2eiδs ds−G(δ)= J (δ)−G(δ),

say, where

G(δ) :=
∫ 1

2

1
2−i∞

(2π)−s0(s)e−π is/2ζ(s)2eiδs ds

+ 2π i Ress=1
(
(2π)−s0(s)e−π is/2ζ(s)2eiδs)

is analytic for Re(δ) < π . Now, expanding ζ(s)2 into its Dirichlet series, for
Re(δ) > 0 we have

J (δ)=
∞∑

n=1

d(n)
∫ 2+i∞

2−i∞
0(s)(2π ine−iδ)−s ds

= 2π iS0(−e−iδ)= 2π iS0(1− e−iδ).

(24)

By Theorem 1, we can write this as

J (δ)=
log 2πδ− γ

1− e−iδ −πg0(1− e−iδ)+
2π i

1− e−iδS0

(
−1

1− e−iδ

)
+ ieiδω(δ),

where

ω(δ)=−
log((1− e−iδ)/δ)− 1

2π i
2 sin(δ/2)

is holomorphic in |Re(δ)|< π . Summing up, we have

L2(δ)=
γ − log 2πδ
2 sin(δ/2)

+
π i

sin(δ/2)
S0

(
−1

1− e−iδ

)
+ iπe−iδ/2g0(1− e−iδ)

+ω(δ)− ie−iδ/2(L+(δ)−G(δ)). (25)

The theorem then follows after writing

h(δ) := iπe−iδ/2g0(1− e−iδ)

and applying Theorems 1 and 2. �
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6. Cotangent sums

We start by recalling the basic properties of D(s, a, h/k).

Lemma 2. For (h,k)=1, k > 0 and a ∈ C,

D
(

s, a, h
k

)
− k1+a−2sζ(s− a)ζ(s)

is an entire function of s. Moreover, D(s, a, h/k) satisfies a functional equation,

D
(

s, a, h
k

)
=−

2
k

( k
2π

)2−2s+a
0(1− s+ a)0(1− s)

×

(
cos
(
π

2
(2s− a)

)
D
(

1− s,−a,−h
k

)
− cos πa

2
D(1− s,−a, h

k
)
)
, (26)

and
D
(

0, a, h
k

)
=

i
2

ca

(h
k

)
−

1
2
ζ(−a).

Proof. The analytic continuation and the functional equation for D(s, a, h/k) can
be proved easily using the analogous properties for the Hurwitz zeta function and
the observation that

D
(

s, a, h
k

)
=

1
k2s−a

k∑
m,n=1

e
(mnh

k

)
ζ
(

s− a, m
k

)
ζ
(

s, n
k

)
.

Moreover, applying this equality at 0, we see that

D
(

0, a, h
k

)
=−ka

k−1∑
m,n=1

e
(mnh

k

)
ζ
(
−a, m

k

)
B1

(n
k

)
−
ζ(−a)

2

=
i
2

ca

(h
k

)
−
ζ(−a)

2
,

where we used
k−1∑
n=1

B1

(n
k

)(
e
(mh

k

))n
=−

1
2

1+ e(mh
k )

1− e(mh
k )
=−

i
2

cot
(πmh

k

)
,

which can be easily obtained from the equality

B1(x)=
d
dt

( text

et − 1

)∣∣∣∣
t=0
. �

Proof of Theorem 4. First observe that we can assume 0 6= |a|< 1, since the result
extends to all a by analytic continuation. Now, taking z = h

k (1+ iδ), with δ > 0,
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we have

Sa(z)=
∑
n≥1

σa(n)e
(

n
h
k

)
e−2πn(h/k)δ

=
1

2π i

∫
(2)
0(s)D

(
s, a, h

k

)(
2π h

k
δ
)−s

ds.

Therefore, moving the integral to σ =− 1
2 ,

Sa(z)=
ka

2πhδ
ζ(1− a)+

1
(2πhδ)1+a ζ(1+ a)0(1+ a)+ D

(
0, a, h

k

)
+ O(δ1/2).

Similarly,

1
z1+a Sa

(
−1
z

)
=

1
z1+a

∑
n≥1

σa(n)e
(
−n k

h

)
e−2πn(k/h)δ/(1+iδ)

=
ka

2πδh
ζ(1− a)+

1
(2πδh)1+a ζ(1+ a)0(1+ a)

− ia ka

2πh
ζ(1− a)+

( k
h(1+iδ)

)1+a
D
(

0, a,− k
h

)
+ O(δ1/2).

In particular, as δ goes to 0, we have

Sa(z)−
1

z1+a Sa

(
−1
z

)
−→ D

(
0, a, h

k

)
−

( k
h

)1+a
D
(

0, a,−
k
h

)
+ia ka

2πh
ζ(1−a).

Applying Theorem 1, it follows that

D
(

0, a, h
k

)
−

( k
h

)1+a
D
(

0, a,− k
h

)
+ ia ka

2πh
ζ(1− a)

=
ζ(−a)

2

(( k
h

)1+a
− 1+ψa

(h
k

))
,

which is equivalent to (17). �

We conclude the paper by giving a new proof of Vasyunin’s formula (with a
shift).

Theorem 5. Let (h, k)= 1, with h, k ≥ 1. Let |Re(a)|< 1. Then

1+a
2π

∫
∞

−∞

ζ
(1

2
+

a
2
+ i t

)
ζ
(1

2
+

a
2
− i t

)(h
k

)−i t dt

( 1
2 +

a
2 + i t)(1

2 +
a
2 − i t)

= −
ζ(1+ a)

2

(( k
h

) 1
2+

a
2
+

(h
k

) 1
2+

a
2
)
−
ζ(a)

a

(( k
h

) 1
2−

a
2
+

(h
k

)
1
2−

a
2

)
−

( 1
hk

) 1
2+

a
2
(2π)a0(−a) sin πa

2

(
ca

(h
k

)
+ ca

( k
h

))
.
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Proof. We need to evaluate

1+ a

2π(hk)
1
2+

a
2

∫
∞

−∞

ζ
(1

2
+

a
2
+ i t

)
ζ
(1

2
+

a
2
− i t

)(h
k

)i t dt

(1
2 +

a
2 + i t)( 1

2 +
a
2 − i t)

=
1+ a
2π i

∫
( 1

2−
Re(a)

2 )

ζ(s+ a)ζ(1− s)
hs+ak1−s

ds
(s+ a)(1− s)

.

We rewrite this as

1+ a
2π i

∫
( 1

2−
Re(a)

2 )

ζ(s+ a)ζ(1− s)
hs+ak1−s

ds
(s+ a)(1− s)

=
1

2π i

∫
( 1

2−
Re(a)

2 )

ζ(s+ a)ζ(1− s)
hs+ak1−s

ds
1− s

+
1

2π i

∫
( 1

2−
Re(a)

2 )

ζ(s+ a)ζ(1− s)
hs+ak1−s

ds
s+ a

= Ia

(h
k

)
+ Ia

( k
h

)
,

where

Ia

(h
k

)
:=

1
2π i

∫
( 1

2−
Re(a)

2 )

ζ(s+ a)ζ(1− s)
hs+ak1−s

ds
1− s

.

The integral is not absolutely convergent, so some care is needed. One could
introduce a convergence factor eδs

2
and let δ → 0+ at the end of the argument,

or one could work with the understanding that the integrals are to be interpreted as
limT→∞

∫ c+iT
c−iT . We opt for the latter. Recall that ζ(s)= χ(s)ζ(1− s), where

χ(1− s)= ((−2π i)−s
+ (2π i)−s)0(s).

This leads to

1
2π i

∫
(2)

χ(1− s)
1− s

u−s ds =
−1
2π i

∫
(2)
((−2π i)−s

+ (2π i)−s)
0(s)
s− 1

u−s ds

=
−1

2π iu

∫
(1)
((−2π i)−s−1

+ (2π i)−s−1)0(s)u−s ds =
sin 2πu
πu

.

Using Cauchy’s theorem, the functional equation for ζ(s), and the Dirichlet series
for ζ(s+ a)ζ(s), we have

Ia

(h
k

)
=−Ress=1

χ(1− s)ζ(s+ a)ζ(s)
hs+ak1−s(1− s)

−Ress=1−a
χ(1− s)ζ(s+ a)ζ(s)

hs+ak1−s(1− s)

+
1

πh1+a

∞∑
n=1

σ−a(n) sin(2πn h
k )

n

=−
ζ(1+ a)

2h1+a −
ζ(a)
ahka +

1
πh1+a

∞∑
n=1

σ−a(n) sin(2πn h
k )

n
.
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By the functional equation for D we see that

D(s,−a, h
k )− D(s,−a,− h

k )

2i
=

2
k

( k
2π

)2−2s−a
0(1− s− a)0(1− s)

×

(
cos
(
π

2
(2s+ a)

)
+ cos πa

2

)(
D
(

1− s, a, h
k

)
− D

(
1− s, a,−h

k

))
,

so that, defining

S
(

s,−a, h
k

)
:=

∞∑
n=1

σ−a(n) sin(2πn h
k )

ns ,

we have

S
(

s,−a, h
k

)
=

2
k

( k
2π

)2−2s−a
0(1− s− a)0(1− s)

×

(
cos(π

2
(2s+ a))+ cos πa

2

)
S
(

1− s, a, h
k

)
. (27)

In particular, S(s,−a, h
k ) is regular at s = 1. Noting that

lim
s→1

0(1− s− a)0(1− s)
(

cos
(
π

2
(2s+ a)

)
+ cos πa

2

)
=−π0(−a) sin πa

2

and
S(0, a, h/k)= 1

2 ca(h/k),

we obtain, by letting s→ 1 in (27), the identity

S
(

1,−a, h
k

)
= 2a

(
π

k

)1+a
0(−a) sin πa

2
ca

(h
k

)
,

whence
∞∑

n=1

σ−a(n) sin(2πn h
k )

πnh1+a =−

( 1
hk

)1+a
(2π)a0(−a) sin πa

2
ca

(h
k

)
.

Thus,

Ia

(h
k

)
=−

ζ(1+ a)
2h1+a −

ζ(a)
ahka −

( 1
hk

)1+a
(2π)a0(−a) sin πa

2
ca

(h
k

)
and the theorem follows. �
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