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On Kato's local e-isomorphism conjecture
for rank-one lwasawa modules

Otmar Venjakob

This paper contains a complete proof of Fukaya and Kato’s e-isomorphism con-
jecture for invertible A-modules (the case of V = V(r), where Vj is unramified
of dimension 1). Our results rely heavily on Kato’s proof, in an unpublished
set of lecture notes, of (commutative) e-isomorphisms for one-dimensional rep-
resentations of Gq,, but apart from fixing some sign ambiguities in Kato’s
notes, we use the theory of (¢, I')-modules instead of syntomic cohomology.
Also, for the convenience of the reader we give a slight modification or rather
reformulation of it in the language of Fukuya and Kato and extend it to the
(slightly noncommutative) semiglobal setting. Finally we discuss some direct
applications concerning the Iwasawa theory of CM elliptic curves, in particular
the local Iwasawa Main Conjecture for CM elliptic curves E over the extension
of Q, which trivialises the p-power division points E(p) of E. In this sense the
paper is complimentary to our work with Bouganis (Asian J. Math. 14:3 (2010),
385-416) on noncommutative Main Conjectures for CM elliptic curves.

1. Introduction

The significance of local e-factors a la Deligne and Tate, or more generally that of
the (conjectural) e-isomorphism suggested in [Fukaya and Kato 2006, §3] is at least
twofold. First, they are important ingredients to obtain a precise functional equation
for L-functions or more generally for (conjectural) ¢-isomorphisms [loc. cit., §2]
of motives in the context of equivariant or noncommutative Tamagawa number
conjectures (see, e.g., Theorem 4.1). Secondly, they are essential in interpolation
formulae of (actual) p-adic L-functions and for the relation between ¢ -isomorphisms
and (conjectural, not necessarily commutative) p-adic L-functions as discussed in
[loc. cit., §4]. Of course the two occurrences are closely related; for a survey on
these ideas see also [Venjakob 2007].

Our motivation for writing this article stems from Theorem 8.4 of [Burns and
Venjakob 2011] (see Theorem 4.2), which describes under what conditions the

I acknowledge support by the ERC and DFG.
MSC2010: primary 11R23; secondary 11F80, 11R42, 11540, 11G07, 11G15.
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validity of a (noncommutative) Iwasawa Main Conjecture for a critical (ordinary
at p) motive M over some p-adic Lie extension F, of (2 implies parts of the
equivariant Tamagawa number conjecture (ETNC) by Burns and Flach for M
with respect to a finite Galois extension F C F, of Q. Due to the second above
mentioned meaning it requires among others the existence of an e-isomorphism

ep,Zp[G<F/fL?D)](TTF) 12,1601 = 42,[G ol (RT(Qp, —ﬁ—F))de[Gp/@](—ﬁ—F) (D

in the sense of [Fukaya and Kato 2006, Conjecture 3.4.3], where the Iwasawa module
T is related to the ordinary condition of M; e.g., for an (ordinary) elliptic curve E
it arises from the formal group part of the usual Tate module of E. Unfortunately,
very little is known about the existence of such e-isomorphisms in general. To the
knowledge of the author it is not even contained in the literature for T attached to
a C M-elliptic curve E and the trivialising extension Fo, := F(E(p)), where E(p)
denotes the group of p-power division points of E. In principle a rough sketch of a
proof is contained in [Kato 1993b], which unfortunately has never been published.
Moreover there were still some sign ambiguities which we fix in this paper; in
particular, it turns out that one has to take —¥ -1, that is, —1 times the classical
Coleman map (6), in the construction of the epsilon isomorphism (17).

Benois and Berger [2008] have proved the conjecture Crp(L/K, V) for arbitrary
crystalline representations V of G g, where K is an unramified extension of Q, and
L a finite subextension of Ko, = K ((p)) over K. Although they mention in their
introduction that “Les mémes arguments, avec un peu plus de calculs, permettent de
démontrer la conjecture Cgp(L/K, V) pour toute extension L/K contenue dans
@f‘nb . Cette petite généralisation est importante pour la version équivariante des
conjectures de Bloch et Kato”, they leave it as an “exercise” to the reader. In the
special case V = Q,(r), r € Z, Burns and Flach [2006] proved a local ETNC using
global ingredients in a semilocal setting, while in the above example we need it for
V =Q,(n)(r), where n denotes an unramified character. Also we would like to
stress that the existence of the e-isomorphisms a la Fukaya and Kato is a slightly
finer statement than the Crp(L/K, V)-conjecture or the result of Burns and Flach,
because the former one states that a certain family of certain precisely defined units
of integral group algebras of finite groups in a certain tower can be interpolated
by a unit in the corresponding Iwasawa algebra while in the latter ones “only” a
family of lattices is “interpolated” by one over the Iwasawa algebra.

The aim of this article, which also might hopefully serve as a survey into the
subject, is to provide detailed and complete arguments for the existence of the
€-isomorphism

ea(T(T)) : 13 — da(RT(Q),, T(T)) 3da (T(T))Z,
where A = A(G) is the Iwasawa algebra of G = G(K/Q),) for any (possibly
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infinite) unramified extension K of Q,, T = Z,(n)(r) and RI'(Q,, T(T)) denotes
the complex calculating local Galois cohomology of T(7'), the usual Iwasawa
theoretic deformation of T (see (28)). Furthermore, for an associative ring R with
one, dg denotes the determinant functor with 1z = dz(0) (see Appendix B) while
A is defined in (2). We are mainly interested in the case where G = Zf, x A for
a finite group A —such extensions arise for example by adjoining the p-power
division points of a CM elliptic curve to the base field as above. This corresponds
to a (generalised) conjecture C;w(Koo/Q)) (in the notation of Benois and Berger)
originally due to Perrin-Riou. It is the first example of an e-isomorphism associated
with a two-dimensional p-adic Lie group extension. Following Kato’s approach we
construct a universal e-isomorphism €, (T(Z,(1))), from which all the others arise
by suitable twists and descent. But while Kato constructs it first over cyclotomic
Z ,-extensions and then takes limits, here we construct it directly over (Zf, X A)-
extensions (and then take limits). To show that they satisfy the right interpolation
property with respect to Artin (Dirichlet) characters of G, we use the theory of
(¢, I')-modules and the explicit formulae in [Berger 2003], instead of the much
more involved syntomic cohomology and Kato’s reciprocity laws for formal groups.
In contrast to Kato’s unpublished preprint, in which he uses the language of étale
sheaves and cohomology, we prefer Galois cohomology as used also in [Fukaya and
Kato 2006]. In order to work out in detail Kato’s reduction argument [1993b] to
the case of trivial 7 we have to show a certain twist compatibility of Perrin-Riou’s
exponential map/Coleman map for T versus Z,(r) over a trivialising extension
K for n, see Lemma A.4. Going over to semilocal settings we obtain the first
e-isomorphism over a (slightly) noncommutative ring. In a forthcoming paper
[Loeffler et al. 2013], using the techniques of [Benois and Berger 2008] and [Loeffler
and Zerbes 2011], we are going to extend these results to the case of arbitrary
crystalline representations for the same tower of local fields as above. Of course it
would be most desirable to extend the existence of e-isomorphism also to nonabelian
local extensions, but this seems to require completely new ideas and to be out of
reach at present (see [Izychev 2012] for some examples). Some evidence in that
direction has been provided by Fukaya (unpublished).

Combined with Yasuda’s work [2009] concerning e-isomorphisms for [ # p, we
also obtain in principle a purely local proof of the Burns—Flach result for V =Q,(r).

2. Kato’s proof for one-dimensional representations

Let p be a prime and let K be any unramified (possibly infinite) Galois extension
of Q,. We set K,, := K (un) for 0 <n < 0o and

I'=G(Q)0o/Qp) X7
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Recall that the maximal unramified extension @’;’ and the maximal abelian extension

@“pb of @, are given as Q, (u(p”)) and Q, () = Q7 ((p)), where u(p) and w(ph)
denote the p-primary and prime-to-p part of u, the group of all roots of unity,
respectively. In particular, we have the canonical decomposition

G(@;b/@p) = G(@Zr/@p) X G(@p,oo/@p) = Z X Z;’

under which by definition 7, corresponds to (¢, 1) (and by abuse of notation also to
its image in G below), where ¢ := Frob,, denotes the arithmetic Frobenius x > x”.
We put

H:= Hg :=G(K/Q,) =($)
and

G =G(Kx/Qp,) =H xT.

Assume that G is a p-adic Lie group, that is, H is the product of a finite abelian
group of order prime to p with a (not necessarily strict) quotient of Z,,. By

A= A(G) :=2Z,[G]

we denote as usual the Iwasawa algebra of G. Also we write @ for the ring of
Witt vectors W(E) with its natural action by ¢ and we set

A= A&7, 7% =7W[G]. )
By
Tun := A%(D)

we denote the free A-module of rank one with the Galois action
Xun s Ga, > A, 0> [Ty, 01:=5""k(0),

where = : Gg, — G is the natural projection map and « : Gg, — Z, is the
p-cyclotomic character. Furthermore, we write

U(Koo) :=limy ; 07/ p'

for the A-module of local units, where L and i run through the finite subextensions
of K/Q) and the natural numbers, respectively, and the transition maps are
induced by the norm. Finally we fix once and for all a Z,-basis € = (¢,), of
Zp(1) =1lim,, pipn.

We set

Aa={xeA|(1Q)(x)=(@®1)-x} for ae A=K (A).
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Proposition 2.1. Fora =[T,,, t,,]_1 = 1, there is a canonical isomorphism

A {GK[[F]] if H is finite,
¢ limq, cxrckfinite, 7 Ox/[T1 if H is infinite,

as A-modules. All modules are free of rank one.

Proof. We first assume H = (t,) to be finite of order d and replace " by a finite
quotient without changlng the notatlon Then any element x € A = Z’”[F][H ] can
be uniquely written as Z -0 al r with a; € ZW[F] and ¢ acts coefﬁc1entw1se on
the latter elements. The calculatlon

d—1

1®¢)(x) - (1,® 1)x-Z¢(a,>r —Zal A

=0 =0

-1
= Z (¢(ai) —ai1)z,
i=0

with a_q := ay_1 shows that X belongs to A, if and only if ¢?(a;) = a; and
¢ '(ag) = a; for all i. As ZW p=l_ = Ok, the canonical map
Ay EOk[ Z a,t — ag,

is an isomorphism of A-modules, the inverse of which is
X > Z h@h! (x)
heH

and which is obviously functorial in I, whence the same result follows for the
original (infinite) I'.

Now, for a surjection 7 : H” — H' it is easy to check that the trace Trg»/k’ :
Ok» — Ok induces a commutative diagram

AL, —— O[]
ﬂl lTrK”/K’ (3)
Al, —=Og[TL

whence the first claim follows. From the normal basis theorem for finite fields we
obtain (noncanonical) isomorphisms

Ok =Zp[Hk],

which are compatible with trace and natural projection maps. Indeed, the sets
Sk ={a€0k |Z,|Hxla=0g}=Z,[Hg']* are compact, since 1+Jac(Z,[ Hg'])
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for the Jacobson radical Jac(Z,[Hk]) is open in Z,[ Hx/]*, and thus 1<i£1K/ Sk’ 18
nonempty. Hence the trace maps induce (noncanonical) isomorphisms

Lir_nK,@K/EZp[[H]] and l<ir_nK/@K/|[F]]’£Zp[[G]]. (]

We now review Coleman’s exact sequence [1979; 1983], which is one crucial
ingredient in the construction of the e-isomorphism.

Assume first that K /Q,, is finite. Then U(K) := l(iLn,u» @,X(”/pi with K, :=
K (e pn), and the sequence

0 —> Z,(1) ——> U(Koo) —2> 0k [T'] —=

Z,(1) 0 “
of A-modules is exact, where the maps are defined as follows:
o 1(€) =€.

e Col(u) := Col¢ (1) is defined by the rule

g
@ (&u

2(g) = (1 £) log(gu) = +log 5= = Col - (X +1)  (5)
p p )

in Og[[X], with g, := g, € Og[[X] the Coleman power series satisfying

g% " (e, — 1) = u, for all n. Here ¢ is acting coefficientwise on g, = g, (X),

while ¢ : Ox [ X]] = O [[X] is induced by X +— (X +1)” —1 and the action of

¢ on the coefficients. Furthermore, the O -linear action of Og [[T']] on Og [ X ]|

is induced by y - X = (1 4+ X)) —1.

o 7 is the composite of Ox [[I']] = Ok, y — k(y), followed by the trace Trk /o, :
Ok — Z, (and strictly speaking followed by Z, — Z,(1), ¢ > ce).

Using Proposition 2.1 and the isomorphism
A[-ﬂ—umfp]_l g—ﬂ—un XA A[‘n'un’.[p]—l, a— (1®€)®Cl,
we thus obtain an exact sequence of A-modules

Pk e
0—Z,(1) — U(Koo) —= Tun(Koo) ®n Apr,, 1,1 — Zp(1) — 0. (6)

un>Tp

In the end we actually shall need the analogous exact sequence

—FK, -
0—Z,(1) = U(Koo) ——= T (Koo) @4 Agy

uns

=2, —~0, (]

where we replace € by —e everywhere in the construction and where we multiply
(only) the middle map by —1. Note that the maps involving Z,(1) do not change
compared with (6).
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To deal with the case where K /Q),, is infinite, that is, p™ | [K : Q,], consider
finite intermediate extensions @, € L € L’ C K. We claim that the diagram

Ly
0—=Z,(1) —= U(Loo) — Tun(Lh) ®a Ay, 1,11 —= Zp(1) —= 0

NLéo/Loo:[L,:L].j Nl /oo \ PrL//L l ZL ®)
Fre
0 —= Zp(1) —= U(Loo) —= Tun(Loo) ®a Ay, -1 —= Zp(1) —= 0

commutes, where the norm maps Ny, 1., = Ny are induced by Ny, 1, for all n,
which on Z, (1) amounts to multiplication by [L’: L] while Ny;_,;r.. : U(L},) —
U(L ) is nothing else than the projection on the corresponding inverse (sub)system.
Recalling (3) this is equivalent to the commutativity of

, C01L11€
0 Z,(1) ULL) ——=0p[T] ——2Z,(1) —0
NL/OO/LOO:[L/:L]-L NL&)/LOOj TrL//Lj :L )
COlL&
0 Z,(1) UlLe) —= O[T ——Z,(1) —=0

where Try /7 : Op/[T']] — OL[[T'] is induced by the trace on the coefficients. While
the left and right square obviously commute, we sketch how to check this for the
middle one.

By the uniqueness of the Coleman power series we have

NL’/L (gu’) = gNL’/L(“,) for u/ c [U(L/oo),

where Ny : Op [ X1 — Or[[X] is defined by f(X) ]_[UeG(L//L) f2(X), where
o acts coefficientwise on f (see the proof of Lemma 2 in [Yager 1982] for a similar
argument). Next, one has

L(Np () =Trp1¥(g)
for g € Op/ [ X1, since Ny//z and ¢ commute. So far we have seen that
Trr L £(8u) = L8N, ) W)
which implies the claim
Trz /1 (Col(u)) = Col(gn,, , w))

using the defining equation (5) and the compatibility of Tr;/,; with the Mahler
transform MM : O [T']] = Ox [ X, A — X - (1 + X).
Taking inverse limits of (8) we obtain the exact sequence

£k.e
0 — U(Koo) —> Ty (Koo) @4 Agy et —= Z,(1) = 0. (10)

uns
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Similarly, starting with (7) we obtain the exact sequence

—Px e
0 — U(Koo) —% Ty (Koo) @4 Ay 1 —Z,(1) = 0. (11)

un ’fp]_

Galois cohomology. The complex RI'(Q,, T,,(K«)) of continuous cochains has
only nontrivial cohomology groups fori =1, 2:

H' (@, Tun(Koo)) = limg, e ek inite H (L. Zp(1)) = lim (L) (12)
by Kummer theory and
HA(@p, Tun(K)) = limg, e cktiniie H(L, Z,(D) =2, (13)

by local Tate duality; here the sign of the trace map tr : H>(Q p> Tun(Koo)) EZ) is
normalised according to [Kato 1993a, Chapter 11, §1.4] as follows: If 6 H'(Q N
2, canon

denotes the character Gq, 2~ 7 2 A, where w is the map which sends
Frob,, to 1 and the inertia subgroup to 0, then we have a commutative diagram

v
Q; z z,

sl ETtr (14)

H' (@, Z,(1)) ek H*(Q,, Z,(1)),

canon

where v denotes the normalised valuation map and § is the Kummer map. The first
isomorphism (12) induces

« a canonical exact sequence

0 = U(Kso) — H'(Qp, Tun(K o)) ——> Z,, — 0, (15)

if K/Q, is finite, v being induced from the valuation maps vz : L* — Z (the
sign before v will become evident by the descent calculation (54));

e an isomorphism
U(Koo) = H'(@p, Tun(Koo)), (16)
if p | [K:Q,].
Determinants. Now we assume that K /Q),, is infinite. Then
G=G xA,
where A is a finite abelian group of order d prime to p and G’ = Zi. Thus
AG) =Z,[AZ3]
is a product of regular, hence Cohen—-Macaulay, rings. Set

0:=2Zplpal.
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Then
AG) S AG) = [] Ac(Gey,

X EIH@ (A)

where e, denotes the idempotent corresponding to x, while Irr@ (A) denotes the set
of @ -rational characters of A. Since regular rings are normal (or by Wedderburn
theory) it follows that there is a product decomposition into local regular integral
domains
AG) =[] A0, (Gey.
x€lmg, (A)

where now Irrg, (A) denotes the set of Q,-rational characters and 0, is the ring of
integers of K, :=Endz,(a)(x)-

For the various rings R showing up like A (G) for different G, we fix compatible
determinant functors dg : DP(R) — Py from the category of perfect complexes of
R-modules (consisting of (bounded) complexes of finitely generated R-modules
quasi-isomorphic to strictly perfect complexes, that is, bounded complexes of
finitely generated projective R-modules) into the Picard category P with unit
object 1z = dz(0), see Appendix B) for the yoga of determinants used in this
article.

Lemma 2.2. For all r € Z there exists a canonical isomorphism
nz, ()

1, — da(Zy(r)).

Remark 2.3. The proof will show that the same result holds for G = Z’; XA k>2
and any A(G)-module M of Krull codimension at least 2.

Proof. Since
Ext) ),(Zp(r), A(G)) = Exty 1(Zy(r), A(G") =0

for i # k (=2) we see that the codimension of Z,(r) equals k +1—1 =k > 2.
Setting M = Z,(r) we first show that the class [M] in Go(A) = Ko(A) vanishes;
i.e., there exists an isomorphism cgp : 1 = d(M) by the definition of P in [Fukaya
and Kato 2006]. Since

Ko(A) =P Ko(Ae, (G) =P 7,
X X

where the last map is given by the rank, the claim follows because the e, M are
torsion Ag, (G')-modules. By the knowledge of the codimension we have M, =0
for all prime ideals p C A of height at most 1. In particular, we obtain canonical
isomorphisms

Cp . lAp = dAp (Mp)
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Since Mor(14,, da,(My)) is a (nonempty) K (Ap)-torsor, there exists for each p a
unique Ay € Ay = K (Ay) such that

cp = (colp * Ap,
where (c)p = Ap ®a co. Now let g = q, be a prime of height zero corresponding
to x € Irrg,(A). Then

€q = Nq®a, Cp
= Aq®np co-rp = (co)ghp

for all prime ideals p D q of height one, whence
Thus

Aq € ﬂ A} =g, (G)*
pOq,ht(p)=1

(Ag, (G') being regular, that is, mp:)q,ht(p):l Ap = Ag,(G)) and
cany 1= (co-Aq, )y : 1a = da(M)
is unique and independent of the choice of cy. Here we used the canonical decom-
position K1(A(G)) = EBX K1(Ag, (G)). O
Now we can finally define the e-isomorphism for the pair (A(G), T,,):
€A (—l]—un) = GA,E(—H—MH) : 1A - dA(RF(@p» —l]—un))dA (—l]—un ®A Arp)- (17)
Since A is regular we obtain, by property (B.h) in the Appendix,
dA(RT(Qp, Tun) ™ Z da(H (@, Tyn))dp (HA(@Q,, Tyn)) ™!

= dp(U(Koo))dp (Z)™!

= dp(Tun ®a Ar,)dA(Z, (1)) da(Z,) !

= dA (—l]—un QA A‘L’p);

here we have used (13) and (16) for the second isomorphism, regularity and the
sequence (11) with its map —%k .1 (sic!) for the third, and the identifications
canz (1 and cang, in the last step. This induces (17).

In the spirit of Fukaya and Kato, this can be reformulated in a way that also
covers noncommutative rings A later. For any a € K (1~\) define

Ki(A)g:={x € Ki(R) | 1 ®$).(x) =a - x},

which is nonempty by [Fukaya and Kato 2006, Proposition 3.4.5]. If A is the
Iwasawa algebra of an abelian p-adic Lie group, that is, K1(A) = A*, this implies
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in particular that A, N A* =K, (A)q # &, whence we obtain an isomorphism of
A-modules
Aa®AKEK, XY X-Y. (18)

Thus, one immediately sees that the map
[U(Koo) - Tun ®A Ar,, g —[run ®A K
extends to an exact sequence of A-modules

0 — U(Ko) @p A Tun @a A

7y (1) =0, (19)

which in fact is canonically isomorphic to the base change of (10) from A- to
A-modules. Therefore base changing (17) by A ® o — and using (18) (tensored
with T, (Ks)) we obtain

€r(Tun) =€y ((Tun) : 15 = daA(RT(Q, Tyn)) 5da (Tun) 3 (20)
which actually arises as base change from some
€01 1a = dA(RT(Qp, Tun(Koo))da (Tun(Koo))
plus a twisting by an element § € K| (N)z,» that is,
€x(Tun) € Mor(15, da (RT(Qp, Tun(Koo))da (Tun(Koo))) x X1 Ky (M),

Indeed, fixing an isomorphism v/ : A = A, (see Proposition 2.1) sending 1 to 6,
(18) implies that § € K;(A);, and the claim follows from the commutative diagram

g —[run®3_l ~
Tun A A Tun A A

J TUYI ®w71 \J

Tun ®a Ar], —— T, ®a A

(€, (Tyuy) equals & times the base change of € := (T, ® w_l) oep(Tyun)).

Twisting. We recall the following definition from [Fukaya and Kato 2006, §1.4]:

Definition 2.4. A ring R is of type 1 if there exists a two-sided ideal / of R such
that R /1" is finite of order a power of p for any n > 1 and such that R = l(iLnn R/I".

A ring R is of type 2 if it is the matrix algebra M, (L) of some finite extension L
over Q,,, for some n > 1.

By Lemma 1.4.4 in the same work, R is of type 1 if and only if the defining
condition above holds for the Jacobson ideal J = J(R). Such rings are always
semilocal and R/J is a finite product of matrix algebras over finite fields.
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Now let R be a commutative ring of type 1 and let T = T, be a free R-module
of rank one with Galois action given by

x =x1:Gq, = R*

which factors through G. By x71 we denote the induced ring homomorphism
A(G) — R. Furthermore let Y =Y, be the (R, A(G))-bimodule which is R as
R-module and where A(G) is acting via

Xy = %1 Xeye : A(G) — R

(from the right), where
Xeye - AMG) — Z, — R

is induced by the cyclotomic character and the unique ring homomorphism Z, — R.
Then the map

Y ®a) Tun ——=T, y®t+>y-xy(),

is an isomorphism of R-modules which is Galois equivariant, where the Galois
action on the tensor product is given by o (y ® 1) = y® o (¢) foro € Gq,.
Let R and R, be defined in the same way as for A. Then, using the isomorphisms

Y ®@a daA(RT(Qp, Tyy)) =dr(RT(Qp, Y @ Tun)) =dr(RT(Q,, T))
by [Fukaya and Kato 2006, 1.6.5] and
R PN Aa = RX((,Z)!

where x : A — R denotes a continuous ring homomorphism, we may define the
following e-isomorphisms:

Definition 2.5. In the above situation we set
GR(—”—) = GR,e(—l]—) =Y QA 6A,e(—l]—un) . 1R - dR(RF(@p, —l]—))dR(—l]—®R R)((rp))
and
e}?(T) = e}e,e(T) =Y ®x e;\,e(Tun) 1y = dr(RI(Q,, T) zdr(T) 3.

By definition we have an important twist invariance property: if R and R’ are
commutative rings of type 1 or 2 and Y’ is any (R’, R)-bimodule that is projective
as an R’-module and satisfies Y @ T = T/, we have

Y Qrer(T) =ep(T') and Y ®gep(T) = e (T). (21

Indeed, to this end the definition extends to all pairs (R, T), where R is a (not
necessarily commutative) ring of type 1 or 2 and T stands for a projective R-module
such that there exists a (R, A)-bimodule Y which is projective as R-module and
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such that T=Y ®4 Ty,. In this context we denote by [T, 0], 0 € Gg,, the element in
K1 (R) induced by the action of Gg, on T; note that this induces a homomorphism
[T, —1: G(@%) = Ki(R).

Example 2.6. Let y : G — Z; be a Grossencharacter of an imaginary quadratic
field F such that p is split in F' and assume that its restriction to Gf,, v a place
above p, factors through G. We write T, for the free rank-one A(G)-module with
Galois action given by o (1) = A ~'y(¢’). Then we also write €, (1) for €, (Ty).

The e-conjecture. We fix K /Q),, infinite and recall that G = G(K/Q)) as well
as A = A(G) and Ag = Ag(G) for 0 = O the ring of integers of some finite
extension L of Q,. If x : G — O} denotes any continuous character such that the
representation

VX = L(X)a

whose underlying vector space is just L and whose Gq,-action is given by ¥, is
de Rham, hence potentially semistable by [Serre 1968] (in this classical case) or by
[Berger 2002] (in general) then we have

L X0, 6(/@L (—l]—)() = Gi(vx)
by definition. The e-isomorphism conjecture (Conjecture 3.4.3 of [Fukaya and
Kato 2006]) states that
€L (V) =TL(Vy) - €L.c.ar(Vy) -0L(Vy), (22)
where, for any de Rham p-adic representation V of G, the notation used is as
follows:
(@) Tr(V) =[], T*() "7 with h(j) = dim; gr/ Dyr(V) and
: (===t for j <0,
rp={ 7 ’
IN@)) for j >0,
denotes the leading coefficient of the I"-function.

(b) The map
ear(V) i=€r car(V) : 15 — dj (V)dz (Dar(V)) ™",

with L := @ ®q, L, is defined in [Fukaya and Kato 2006, Proposition 3.3.5]. We
shall recall its definition after the proof of Lemma A.5.

(c) 0.(V) is defined as follows: Firstly, RT';(Q,, V) is defined as a certain sub-
complex of the local cohomology complex RI'(Q,, V), concentrated in degrees 0
and 1, whose image in the derived category is isomorphic to

- (1=¢p.1) 0
RFf (@p, V)= [Dcris(v) ———— Duis(V) @ DdR(V)/DdR(V)]- (23)
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Here ¢, denotes the usual Frobenius homomorphism and the induced map #(V) :=
Dyr(V)/DYp (V) — H}(@p, V) is the exponential map exp (V) of Bloch-Kato,
where we write H’} (Q,, V) for the cohomology of RI's(Q,, V). Now

0L (V) : 1, —> dL(RT(Qp, V) -dr(Dgr(V)) (24)
is by definition induced from n,(V) - (n,(V*(1))*) (see Remark B.1 for the nota-
tion) — with

np(V) 11 = dp(RTs (Qp, V)AL (2(V)) (25)

arising by trivialising Dcis(V') in (23) by the identity — followed by an isomorphism
induced by local Tate duality

RTy (@, V) = (RT(Q;, V¥(1))/RT; (@, VF(1)))*[-2] (26)

and using DY, (V) =t (V*(1))*.
More explicitly, 67 (V) is obtained from applying the determinant functor to the
following exact sequence:

V)
0 — H(@,, V) —= Deyis(V) — Deris(V) @ 1(V) —25 0o

exppx (V*(1))*
—_—

H'(Q,, V)
Deris(VF(1)* @t (V*(1))* — Deris(V*(1))* — H>(Q,, V) — 0,

which arises from joining the defining sequences of expgg (V) with the dual se-
quence for expgx (V*(1)) by local duality (26).

Remark 2.7. (a) The e-conjecture may analogously be formulated using €g(T)
instead of €% (T). In the following we will amply switch between the two versions.

(b) Since by definition of €g, (T, ) we have
L ®q, €5, (Ty) =L ®q, (Yy ®n €)(Tun)) = (L B0, Yy) ®n €5 (Tun),
proving (22) amounts to showing that
L@ en(Tun) =€L(Vy), (27)

where A acts on L via X_l)(cyc : A(G) — O C L. Once we have shown (27)
for all possible x as above, it follows immediately by twisting that for example
ea(Tk (T)) for T =Z,(n)(r) as below satisfies the descent property

Vo ®a ea(Tk (1) =e€L(V(p™))

with V(p*) :=V ®q, V,+ for all one-dimensional representations V), arising from
some continuous p : G — O and its contragredient representation V.
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Note that by [Serre 1968] any V, as above is of the form

W =L(np)(r)= Ltpn,rs

where r is some integer, n : G — O} is an unramified character and p : G —
G(K,,/Q, — @Z denotes an Artin character for some finite subextension K’
of K/Q, and with m = a(p) chosen minimal, that is, p®®) is the p-part of the
conductor of p.

In the following we fix n and r and we set T :=Z,(n)(r), V :=T ®z, Q) and

Tk, =Tk (T)=A"®z, T, (28)

the free A-module on which o € G, acts as o k" (o).
Now we are going to make the map (24) explicit. First we describe the local
cohomology groups:

L ifr=0and pn=1,
H@Q,, W) = 29
(@ W) {0 otherwise. 29)
By local Tate duality we have
L ifr=1and pn=1,
HX(@,, W) ZHO(Q,, W*()y*={ = "= S (30)
0 otherwise.

From the local Euler—Poincaré characteristic formula one immediately obtains

2 ifr=0o0r1land pn=

dim; H'(Q,, W) = dim; H'(Q,,, W*(l)):{ 1 (31)

1 otherwise.

Following the same reasoning used for Lemma 1.3.1 of [Benois and Nguyen
Quang Do 2002], one sees that

H}(@,. W) = (H'(Q,, W*(1))/H (@), W*(1)))"

H'(Q,, W) if r>2,0orr=1and pn # 1,
_im (U@p) ®z, @, > H'(Q,, @,(1))) ifr=1and pn=1,
- |H'F,, @) if r =0and pn =1,

0, r<-—1l,orr=0and pn # 1,

where the map in the second line is the Kummer map. Hence we call the cases
where r = 0 or 1 and pn = 1 exceptional and all the others generic.
For the tangent space we have by (61)
Dsjr(W)=L ifr>0,

W) = {0 ifr <0, (32)

. B 0 if r >0,
rw (1))_{DdR(W*(1)):L ifr=0, -
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and
0 if a(p) #0,

. (34)
Le,, , otherwise,

Dcris(W) = {

with Frobenius action given as ¢ (e, ) = p"pr](rp_l)epn,r.

The case r > 1. Inthiscase wehave ', (W)=T(r)"!= - _1 DI and HO(@p, wW)=0,
whence '

I =@ : Deris(W) — Deyis (W) (35)
and

exp(W) : Dgr(W) = H{(Q,, W) (36)

are bijections. Combined with the exact sequences

exp(W*(1))*
0—— H}»(@p, W*(1))* —————— Deris(W*(1))*

1—¢*

— Deis(W*(1))* —= H*(@,, W) —=0 (37)
and

0— H;(@p, W) ——H'(Q,, W) —~ H}(@p, W*(1))* — 0,

they induce the following isomorphism corresponding to 6 (W)~ !
dL(Dar(W)) = dL(RT(@p, W)™,
In the generic case this decomposes as

dz (exp(W)) : dr.(Dgr(W)) — d.(H'(Q,, W)) =d.(RT(Q,, W))™!

times

det(1—¢* | Deris(W*(1))*) .
det(1—¢ | D¢ris(W)) e~ 1a,

which equals

1 — r—1
p pn(r_pl) it a(p) =0,
L=p~pn(t,") (38)
1 otherwise.

det(l—d) | Dcris(W*(l))) —
det(1—¢ | Deris(W))

Now let r =1 and pn = 1, that is, we consider the exceptional case W = Q,(1).
As now det(1 — ¢ | Deis(W*(1))) = 0 and the two occurrences of Dis(W™*(1))* in
(37) are identified via the identity, the map 6 (W)~ ! is also induced by (35), (36)
together with the (second) exact sequence in the commutative diagram
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y — -i®Q,
0 z, ®Q, Q,®0Q, Q, 0
;ja ~|s ~|Tr 39)

0 —=H}(Q,, @,(1)) —=H'(Q,, Qp(1)) > H* (@), Q) (1)) —0

where the first two vertical maps é are induced by Kummer theory, v denotes the
normalised valuation map and the dotted arrow is defined by commutativity; that is,
0 (W)~ ! arises from

do, (Dar(@y (1) 2 dg, (H1(@,, ©,(1))) = da, (RT(@,, W)~ (40)
times
det(1 — ¢ | Deris (@, (1)) = (1 — p~1). (41)
Combining (39), (40) and (41) this can rephrased as follows:

Proposition 2.8. The map 6(Q, (1)) is just induced by the single exact sequence

(1—p~H~! €XPg), (1)

-®0,
0=1(Q,(1)=Q, H'(Q), Q,(1)) —= H*(Q,, Q,(1)) = 0.

Proof. Since t(Q,) = 0, it follows directly from its definition as a connecting
homomorphism that

expg, : Q) = Deris(@,) > H} (@), @,) SH' (@), Q) (42)

sends o € Q, to the character yx, : G@p — Qp, g = (g — Dc, where ¢ € @
satisfies (1 — ¢)c = «, that is, x4(¢) = —a. As noted in [Benois and Nguyen
Quang Do 2002, Lemma 1.3.1], we thus may identify H}(@p, Qp) = H! (Fp, Qp).
Identifying the copies of Deis(Q,) (in the dual of (37)) gives rise to a map

Iﬂi@p=HO(@p, @p)%H;(Qp’@p)’ ¢ Xa-

By local Tate duality

H'(Q,, @,(1)/H}(Q,, @,(1)) x H{(Q,, @,) — H*(@,, Q,(1)) =Q,

v v

H2(Q,, @,(1)) x H(Q,, Q,) — H*(Q,,Q,(1)) =Q,

we obtain for the dual map ¥ * using the normalisation (14)

(Y™ (3(p)) =@ (p)Ux1) = x1(¢) = —1.
The dotted arrow in (39) being ¥ *, this diagram commutes as claimed. (I

The case r < 0. This case is dual to the previous one, replacing W by W*(1).
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The descent. Let K be infinite. In order to describe the descent of £ -1 in (10)
we set

i'ﬂ' = $-ﬂ—’€_| =Y ®A ‘581(,6_1 (43)

if the projective left A’-module Y (with commuting right A-module structure)
satisfies ¥ @A Ty, =T as A’-modules. Since £ -1 is the crucial ingredient in the
definition of €/, (T), the following descent diagram will be important:

For fixed p as before we choose K’ C K and n > max{1, a(p)} such that p
factorises over G, := G(K,/Q)). Setting A" := Q,[G,] and V' := <I;D,,[Gn]LI ®
Q,(n)(r) we first note that

H' (Q,, V) ZH (K, Q,(n)(r))

by Shapiro’s lemma. Also, let Y’ be the (A’, A)-bimodule such that Y ®, T, = V.
We write e, := (1/#G,) > 2eG, X (g~ 1) g for the usual idempotent, which induces
a canonical decomposition A’ =[] L, into a product of finite extensions L, of Q,,.
In particular, for L = L, we have W = e, V' = L,(pn)(r).

Then, for r > 1 and with ['(V') := P 4« T ley V'), we have a commutative diagram

7$V/=7Y,®A§£K.€,1

Y’ ®A Hl (@p, —I]—un)

pr, L = l pr,
C(V)~'expys

H(K}, Qp(n)(r)) =<————— Dar(V") Vi@ (M)pyr o1y

-1
Tp

of A’-modules as will be explained in the Appendix, Proposition A.6.
Applying the exact functor V,» @ o — leads to the final commutative descent
diagram —at least for W # Q,, (1) —

" 1 —Iw=—V8a Ty "
Y"®@rH (@p, —l]—un) Y" Qn —l]—“” Qn A[Tun,tp_l]
prnl ;jprn (44)
det(1—¢| Deis (W* (1)) -1
F(W)fl exp W'GL‘E,dR(W)
HY(Q,, W) “Dar(W) - W& Ly 1,

where Y :=V,:Qr Y =V,«®, Y isa (L, A)-bimodule. For W =Q (1) the Euler
factor in the denominator and the map pr, become zero, so we shall instead apply
a direct descent calculation in Lemma 2.9 using semisimplicity and a Bockstein
homomorphism.

For the descent we need

« the long Tor-exact sequence by applying Y” ® A(g) — to the defining sequence
(10) for =Lk 13
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« the convergent cohomological spectral sequence
Ey) :=Tor®,(Y", H/(Q,, T,)) = H (@Q,, W), (45)
which is induced from the isomorphism
Y” ®IL RF(@pa —[I—un) = RF(@pa Y’ A —I]—un)v

proved in [Fukaya and Kato 2006] and using W = Y" ® T,,;

« and the fact that the determinant functor is compatible with both these ingredients
[Venjakob 2012].

For T=T(T):=A*®z, T =Y @ Tyn, we have

T ifi=0andr=0,n=1,
. H'(Q, T)#£0 ifi=1,
H (@, Ty |1 @ D0 (46)
T(-1 ifi=2andr=1,n=1,
0 otherwise.

Hence we obtain for r > 1 the following exact sequence of terms in lower degree:
0 = Tor® (Y, H'(Qp, Tu)) = HY(Q,, W) = Tors (Y", H*(Q,, Tyn))
- Y @rH' (Qp, Tun) = H(Q,, W) = Tor} (Y, H*(Q,, Tun)) =0, (47)
and we also obtain
Tord (Y, H'(@,, T,)) =0 and Y"®, H*(Q,, T,n) =HX(@Q,, W).

Since Y @} RI'(Qp, Tyn) = Ve @K (Y @4 RT(Q), Tun)) = V- Q% RT(Q), T,
the preceding sequence is canonically isomorphic to

0 — Tor{ (V,+, H'(@,, T)) — H°(@Q,,, W) — Tor5 (V,+, H(Q,, T))
— V@A H(Q,, T) = HY(Q,, W) — Tor{ (V,-, H*(Q,, T)) — 0, (48)
and we get
Tors (Vp, H(Q,, T)) =0 and V, @, H*(Q,, T) ZH*(Q,, W).
In the generic case the spectral sequence boils down to the isomorphism
Y ®@xH'(Qp, Tun) =H' (@), W). (49)

Considering the support of Z,(1), one easily sees that Torl-A(Y ", Z,(1)) =0 for
all i > 0. Hence the long exact Tor-sequence associated with (10) combined with
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(16) degenerates to
-
Y @y H'(Qp. Tun) —— W &L Ly, 1,1 (50)

while for alli > 0
Tor(Y", H*(Q,, Tyn)) = Tor* (Y",Z,) = 0. (51)

Thus the conjectured equation (22) holds by (44), (49), (50) and the definition
(17) with =%k 1.

For the exceptional case W = Z,(1) we set R = A(I"),, where p denotes the
augmentation ideal of A(I") and recall that R is a discrete valuation ring with
uniformising element 7 := 1 — )y, where yy is a fixed element in I" sent to 1 under

1
r—- Z; & P>
and residue field R/ = Q,. The commutative diagram of homomorphisms of
rings

A = A(G) A(D) R
ZP ZP @P

induces with Y” := R /7 the isomorphism
RT(Q,, Q,(1) =Y @5 RT(Q), Tun(Koo))
=Q, % (AM) R RT(Q,, Tun(Kso)))
=0, % ROrr) ®FRT(Qp, Tun(Qp.00))
= Q) @k RT(Qp, Tun(Qp.00))p- (52)
In particular, the descent calculation factorises over the cyclotomic level; that is,

eq/:pp (@p(l)) =R/m Qr fk(R QAT Tun (@p,oo))

is induced by G;e (R®Ar) Tun(Qp,o0)), which in turn is induced by the localisation
at p of the exact sequences (6) and (15) for K = Q,, which are respectively

—ELTun@p,00)p

[U(@p,oo)p = —”—un(@p,oo)p QR R['I]',m,rp]—1 (53)

(this arises as the long exact Tor-sequence from (10)) and

0— [U(Qp,oo)p - Hl(@p7 —l]—un(@p,oo))p = @p = Hz(@pv Tun (@p,oo))p — 0.
(54)
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This last sequence arises from an analogue of the spectral sequence (45) above —
which gives with % = G (K~ /Q), ) an exact sequence

0—H' (@pv Tun(Koo))se — Hl(@pv Tun (Qp,oo)) - H2(@p’ —H—un(Koo))% — 0,

and
HX(Q,, Tun(Koo))se = HA(Qp, Tun(Qp.00))

— combined with (13) and an identification of H2(Q P Tun(K)* =7 » With
HZ(QP, Tun(Koo))se = £, induced by the base change of cang,,. Indeed, it is easy
to check that the long exact #-homology (= Torf\ (A(I"), —)) sequence associated
with (10) recovers (6), in particular HI(QP, Tun(Ko))3e = U(Koo) g = U(Q),00)-
Moreover, the composite

B:H (Qp, Tun(Qp.00)) = HAQp, Tun(Koo))™ = HA(Q, T (Koo))3e
=H*(@Q,, Tun(Qp.0))

is via restriction and taking G (K gg /Q) 0)-invariants by construction induced by
the Bockstein homomorphism S associated to the exact triangle in the derived

category
RT(@p, Tun(Koo)) ——% RT(@p, Tun(Koo)) —— RT(Qp, Tun(KX)),

where ¥’ is the maximal pro-p quotient of ¥ and hg is the image of ¢. By
[Flach 2004, Lemma 5.9] (and the argument following directly afterwards using
the projection formula for the cup product) it follows that f is given by the cup
product 6 U —, where

6:Ga,, »H =2,

is the unique character such that kg is sent to 1 under the second isomorphism.
Using our above convention of the trace map (14) one finds according to [Kato
1993a, Chapter II, §1.4.2] that the above composite equals —9. Indeed

w(B8(p)) =@ US(p)) = —0(¢) = —0(ho) = —1.
Now consider the element
wi=(1—¢; )y €lim, (@ (up) ) ZH (Qp, Tun(Q@p,0))
and its image u, in Hl(@p, Tun(Koo))yp-

Lemma 2.9. Hl(@p,TTM(KOQ))p = Ruy is a free R-module of rank one and
LTn(@Qp o)y induces modulo 7w a canonical isomorphism

—%ap)

1(Q, (1) U(@p,00)p/7 —= Qp —= H'(Qp, Tun(Koo))p/7  (55)
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which sends (1 — p~V)e € Qpe =1(Q,(1)) to u, the image of uy (but which is of
course not induced by the map U(Q), ~)p — H! (Qp, Tyn(Koo))yp as the latter map
becomes trivial modulo m!).

Proof. The natural inclusion Hl(@p, Tun(Qp,00))p/m < Hl(@p, Q, (1)) maps u to
the image of p under ((D)If)A ®R0Q,= H! (Qp, @, (1)), the isomorphism of Kummer
theory, because p is the image of the elements 1 — ¢! under the norm maps. In
particular, u is nonzero. By (15) the element uro=! belongs to U(Q), ). In order to
calculate the image of the class u?~! of ugo_l modulo 7 under —££@p( 1) We note
that

1+ X)) —1
800 = gy _ () = =]

whence we obtain from setting X = 0 in —(5) (i.e., Equation (5) multiplied by —1)
that

= «(y0) mod (X),

—(1- p—l) =—(- p—l)log(;{(yo)) = —COl_e(uVO_l) 1

equals the image of un=1in Q) =R/m Ar1) Tun(Qp,00) ®a() A(F)mn,r,,]fl
under —SBQP(D. In particular, u?~! is a basis of U(Qp,00)p/m, which is mapped to
zero in H'(Q p> Tun(Qp.o0))p /7, whence the long exact Tor-sequence associated
with (54) induces the isomorphisms

HY(Q,, Tun(Qp.oo))p/T ——=Qp, it —1
(since v(p) =1) and

where the latter formula follows from the snake lemma. By the first isomorphism
and Nakayama’s lemma the first statement is proven and therefore

H'(Q), Tun(Qp.00))pl7] = U(Qp 00)p[] = 0.

The second claim follows now from the composition of these isomorphisms. [

Finally, the exact triangle in the derived category of R-modules
1=y
RT(@yp, Tun(@p,00))p —> RT (@, Tun (@p,00))y
— Zp ®%\(F) RF(@[)’ Tun (@poo))p -

combined with (52) induces the Bockstein map g = 6U sitting in the canonical
exact sequence (depending on yy)

0 —=H'(Q), Tun(Koo))p/m —= H'(Q,, @, (1)) L H*(Q,, @, (1)) — 0,

;L l; (56)

log,
@) ®0,

p
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where 6 denotes the composite Gq, ~ z, lﬁ Z, considered as an element of
H'(Q »» Zp) (see [Flach 2004, Lemma 5.7-9; Burns and Venjakob 2006, §3.1; Burns
and Flach 2006, §5.3] and, for the commutativity of the square, [Kato 1993a, Ch. II,
1.4.5]). The last zero on the upper line comes from H3 (Qp, Tyn(Koo))plm] = 0.
Combining with (55) it follows that Gb,, (Q, (1)) is induced from the exact sequence

(1—=p~H~lim(p) p=log,

0—1(Q,(1) =Q, ———=H'(Q,, Q,(1))

H*(@,, @, (1)) =0,

which does not coincide at all with the sequence of Proposition 2.8 (not even up to
sign). Nevertheless they induce the same map on determinants: both induce a map

do, H' (@), @,(1))) — do, H (@), Q,(1)) ®@dg, (t(Q,(1))
= d@p (@p) ® d@p (@p) (57)

sending (1 — p~H)Texp(1) A —im(p) = (1 — p~")~lim(p) Aexp(1) to 1 A 1. This
completes the proof in the exceptional case.

For r < 0 one has symmetric calculations — at least in the generic case — using
a descent diagram analogous to (44), except that the left map on the bottom is now
induced by the dual Bloch—Kato exponential map I'(V) exp”{,*(l) as indicated in
(67) (left to the reader). The exceptional case can be dealt with by using the duality
principle (generalised reciprocity law) as follows:

Let T be a free R-module of rank one with compatible Gg,-action as above.
Then

T* := Homg(T, R)

is a free R°-module of rank one — for the action & — h(—)r, r in the opposite
ring R° of R— with compatible Gg,-action given by h > ho o~ !. Recall that in
Iwasawa theory we have the canonical involution ¢ : A° — A, induced by g — g~ !,
which allows us to consider (left) A°-modules again as (left) A-modules; for
example, one has T*(T)' = T(T™*) as (A, Gg,)-modules, where M := A ®, r» M
denotes the A-module with underlying abelian group M, but on which g € G acts
as g~! for any A°-module M.

Given 6}307_6(7]—*(1)) we may apply the dualising functor —* (compare (B.j) in
Appendix B) to obtain an isomorphism

o, (TH(1)" : (dge(RT(Q,, T* (1)) )" (dro (T* (D) )" — 15,
while the local Tate-duality isomorphism [Fukaya and Kato 2006, §1.6.12]

Y (T) : RT'(Qp, T) = RHomg-(RT'(Q),, T*(1)), R°)[-2]
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induces an isomorphism

dr @Mz (e (RT(@,, T )*)
= dg(RHomg- (RT'(Q,, T*(1)), RO))g1 — dr(RT(Q,, )5, (58)

in the notation of Remark B.1. Consider the product

/ / * s BV =S ~ * *
€Re(l) - €po _(T7(1)" -dr(¥(T))g :dr(T(=1)zg =dr(T° (D)) g —> dr(TDg
and the isomorphism T(—1) —— T that sends r ® €®~! to 1.

Proposition 2.10 (duality). Let T be as above and such that T =Y ®, T,, for
some (R, A)-bimodule Y that is projective as R-module. Then

€Re(T) - €pe _(TH(1)" Gz = dp(T(-1) ——T);

Proof. The statement is stable under applying Y’ ® g — for some (R’, R)-bimodule
Y’, which is projective as an R’-module by the functoriality of local Tate duality and
the lemma below. This reduces the proof to the case (R, T) = (A, T(T)), where
T = Z,(r)(n) is generic. Since the morphisms between dg(T(—1))z and dg(T) 7
form a K (1~\)—t0rsor and the kernel

SKi(A) := ker(Kl(K) — ]_[ Kl(Zp)> =1
pelr G

is trivial (because G is abelian), it suffices to check the statement for all (L, V(p)),
which is nothing else than the content of [Fukaya and Kato 2006, Proposition 3.3.8].
Here Irr G denotes the set of @ ,-valued irreducible representations of G with finite
image. (]

Lemma 2.11. Let Y be a (R', R)-bimodule such that Y g T =T" as (R', Gg,)-
module and let Y* = Homp (Y, R') the induced (R'°, R°)-bimodule. Then there is
a natural equivalence of functors

Y ® g Homge(—, R°) = Hompg.(Y* ®g- —, R")
on P(R®), and a natural isomorphism Y* @g- T* = (T')* of (R”, Gq,)-modules.
Proof. This is easily checked using the adjointness of Hom and ®. (]

Proposition 2.12 (Change of €). Let ¢ € Z; and let o be the unique element of
the inertia subgroup of G(@?f’ /Qp) such that o.(€) = ce (in the Z,-module 7 ,(1),
whence written additively). Then

koM =T, 5 1ep (T).
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Proof. As in the proof of Proposition 2.10 this is easily reduced to the pairs
(L, V(p)), for which the statement follows from the functorial properties of ¢-
constants [Fukaya and Kato 2006, §3.2.2(2)]. O

Altogether we have proved this:

Theorem 2.13 (Kato, e-isomorphisms). Let T be such that T =Y Q@ T, as
(R, Gq,)-modules for some (R, A)-bimodule Y which is projective as R-module,
where A = A(G) with G = G(L/Q),) for any L C @‘;,”. Then a unique epsilon
isomorphism €5 (T) exists satisfying the twist invariance property (21), the descent
property (22), the “change of € ” relation (Proposition 2.12) and the duality relation
(Proposition 2.10). In particular €, (T) exists for all pairs (A, T) with T = A
one-dimensional (free) as a A-module.

Proof. For G a two-dimensional p-adic Lie group this has been shown explicitly
above. The general case follows by taking limits. O

We will indicate shortly how this result implies the validity of a local Main
Conjecture in this context. Here again we restrict to the universal case T,,, but we
point out that similar statements hold for general T as in the above theorem by the
twisting principle; in particular it applies to Tg for the local representation given
by a CM elliptic curve as in Example 3.1 below.

We place ourselves in the situation described at the bottom of page 2376; in
particular, G is a two-dimensional p-adic Lie group. Denote by

S:={k e A|A/ANis finitely generated over A(G(Koo/Qp 00))}

the canonical Ore set of A (see [Coates et al. 2005]) and by S the canonical Ore
set of A. Fix an element u of U(Ks) = Hl(@p, Tun(Koo)) such that the map
A —- HY(Q »» Tun(Ko)) taking 1 to u becomes an isomorphism after base change
to Kg (such “generators” exist according to (19) and Proposition 2.1). Then, with
L:=—-%k 1, the map

€x(Tun) 1 15 = da(RT(Qp, Tun))xda (Tun)x
induces a map
13 = da(H' (@), Tyn)/Aw) ' dA(H(@Qp, Tun))3da (Tun/L@))z (59
whose base change followed by the canonical trivialisations
1z, = da(H' @y, Tun)/Au)5 da (B (@), Tun))z;da (Tun/ AL @) 5
= dx (Z)HdR (T (1) — 15

(here all arguments on the right are S-torsion modules!) equals the identity in
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Aut(l;;g) = Kl(xg) by Lemma 2.2. Let €, be the element in K1(7\§) such that
Lw)=¢,' - (1®e¢).
Consider the connecting homomorphism 9 in the exact localisation sequence
K\(R) —= K (Ag) —2= Ko(S-tor) — 0,

where S-tor denotes the category of finitely generated A-modules which are S-
torsion. Then we obviously have

3(€u) = —[Tun/ALw)] = [H* (@, Ty)] = [H Q. Tyn)/Au]

in K O(E—tor). Moreover one can evaluate €,, at Artin characters p of G as in [Coates
et al. 2005] and derive an interpolation property for € (o) from Theorem 2.13 by the
techniques of [Fukaya and Kato 2006, Lemma 4.3.10]; this is carried out in [Schmitt
> 2013]. These two properties build the local Main Conjecture as suggested by
Fukaya and Kato in a much more general, not necessarily commutative setting.
Kato (unpublished) has shown that K§® AUK ) = 1~\§ does hold in vast generality
for p-adic Lie extensions.

3. The semilocal case

Let Foo/Q be a p-adic Lie extension with Galois group G and v be any place of
Fs above p such that G, = G(F,,/Q)) is the decomposition group at v. For any
free Z,-module T of finite rank with continuous Galois action by Gg we define
the free A(G)-module

T:=T(T)p, =AG)®z, T
with the usual diagonal Gg-action. Similarly, we define the free A(G,)-module
T = A G ®z, T

with the usual diagonal Gg,-action. Then we have the canonical isomorphism of
(A(G), G, )-bimodules

T = A(G) ®a(G,) T.
Thus we might define

ea)(Qp, T)
1= A(G) ®a(6,) €r6,)(T™) 1575 = da@ (RT(@p, 1) 176426 (D 155

Now let p : G — GL,(0r) be a continuous map and p,, its restriction to G,,
where L is a finite extension of (Q,. By abuse of notation we shall denote the
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induced ring homomorphisms A(G) — M, (0p) and A(G,) — M, (0) by the
same letters. Since we have a canonical isomorphism

L"®pac) T =L" ®p, (G, T

of (L, Gg,)-bimodules, we obtain

L" ®p,a6) €a)(Qp, T)

where V=T ®z, Q.

Example 3.1. Let E be a elliptic curve defined over Q with CM by the ring of
integers of an imaginary quadratic extension K C Fo, of (@ and let ¥ denote the
Grossencharacter associated to E. Then Tg = Indg Ty, which is isomorphic to
Ty @ Ty as representation of Gg. Here Ty, equals Z, on which Gg acts via v,
while ¢ is the conjugate of ¥ by complex multiplication ¢ € G(K /Q).

Assuming K, = Q, and setting T := T, T := T'¢ for T = T as well as
Ty = AG) ®z, Ty, Ty := A(G,)* ®z, Ty, we obtain

Te=Ty & Tye
as (A(G), Gg)-modules and hence
€r6)(Qp, TE) = er6)(Qp, Ty)ea)(Qp, Tye)
= A(G) ®a(Gy) (€46 (Qp, TG, (@p, TH)) .

If F is anumber field and F, a p-adic Lie extension of F again with Galois group
G, then, for a place p above p and a projective A(G)-module T with continuous
G F,-action, we define a corresponding €-isomorphism

[Fp:Qp]

e (Fp, T): IA(G) — daG)(RU(Fy, 1)) oz, da) (T )A(G)

to be induced from

€A6)(Qp, Z[Ga,] ®ziGx,1 T)
5 — dae (RT(@Qp, Z[Ga, 1 @716, 1) 575,486 (Z[Ga, 1 ®z165,1 T 575)-

Finally we put

EA(FRaQp, T)=¢€x (@p, @Z[GQP] ®z[Gr, ] T) = l_[éA(Fp, ),

plp plp

where p runs through the places of F' above p.
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4. Global functional equation

In this section we would like to explain the applications addressed in the introduction.
In the same setting as in Example 3.1 we assume that p is a prime of good ordinary
reduction for the CM elliptic curve E and we set Fp, = Q(E(p)), as well as
G = G(Fs/Q) and A := A(G). We write M = h'(E)(1) for the motive attached
to E and set €, 5 (M) = €A (Q), Tg). Using [Yasuda 2009] one obtains similarly
e-isomorphisms over (;, [ # p, which we call analogously €; 5 (M). Finally, one
can define €, 5 (M) also at the place at infinity; this is done in [Fukaya and Kato
2006, §3.5, Conjecture] and, with a slightly different normalisation, at the end of
[Venjakob 2007, §5]. We choose the latter normalisation. Let S be the finite set of
places of Q consisting of p, oo as well as the places of bad reduction of M.

Now, according to the conjectures of [Fukaya and Kato 2006] there exists a
{-isomorphism

EA(M) = (Tg) i 15 = dA(RT(U, Tg)) ™!

which is the global analogue of the e-isomorphism concerning special L-values
(at motivic points in the sense of [Flach 2009]) instead of €- and I'-factors; here
RI'.(U, Tg) denotes the perfect complex calculating étale cohomology with com-
pact support of T g with respect to U = Spec(Z)\ S. Good evidence for the existence
of A (M) is given in (loc. cit.) although Flach concentrates on the commutative case,
that is, he considers A (G (F/K)) instead of A(G); from this the noncommutative
version probably follows by similar techniques as in [Bouganis and Venjakob 2010],
but as a detailed discussion would lead us too far away from the topic of this article,
we just assume the existence here for simplicity. Then we obtain the following:

Theorem 4.1. There is the functional equation

ta(M) = CaM)) ™" - [ Tev.a(M).

vesS

This result is motivated by [Fukaya and Kato 2006, Conjecture 3.5.5]; for more
details see [Venjakob 2007, Theorem 5.11], and compare with [Burns and Flach
2001, §5]. Observe that we used the self-duality M = M*(1) of M here.

Finally we want to address the application towards the descent result with Burns
mentioned in the introduction. If w denotes the Neron differential of E, we obtain
the usual real and complex periods Q24 = fyia) by integrating along paths y* which
generate H,(E(C), Z)*. We set R = {g prime : [j(E)ly > 1}U{p} and let u, w be
the roots of the characteristic polynomial of the action of Frobenius on the Tate
module Tg of E, which is

l—a,T+pT*>=1—uT)1-wT), ueZy.
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Further let p'r(®) be the p-part of the conductor of an Artin representation p, while
P,(p, T) = det(1 — Frob;1T| Vpl" ) describes the Euler factor of p at p. We also
set d*(p) = dimg VpjE and denote by p* the contragredient representation of p.
By e, (p) we denote the local e-factor of p at p. In the notation of [Tate 1979]
this is e, (p, ¥ (—x), dx1), where ¥ is the additive character of @, defined by
x — exp(2mix) and dx; is the Haar measure that gives volume 1 to Z,. Moreover,
we write R (0*) and R, (p*) for the complex and p-adic regulators of E twisted by
o*. Finally, in order to express special values of complex L-functions in the p-adic
world, we fix embeddings of @ into C and C p» the completion of an algebraic
closure of Q.

In [Bouganis and Venjakob 2010, Theorem 2.14] we have shown that as a
consequence of the work of Rubin and Yager there exists £g € K1(Az,(G)s)
satisfying the interpolation property

LR(E,,O*,I) Pp(p?u_l) —
g = fp(p)
£(p) Ql gl ® ¢p(P) Pyt w )"

for all Artin representations p of G. Moreover the (slightly noncommutative)
Iwasawa Main Conjecture (see [Coates et al. 2005] or Conjecture 1.4 in [loc.
cit.]) is true provided that the 9y (G) conjecture (see [Coates et al. 2005] or
Conjecture 1.2 in [loc. cit.]) holds; for CM elliptic curves this conjecture is equivalent
to the vanishing of the cyclotomic p-invariant of E. In [Burns and Venjakob 2011,
Conjecture 7.4/9 and Proposition 7.8] a refined Main Conjecture was formulated
requiring the following p-adic BSD-type formula:

At each Artin representation p of G (with coefficients in L) the leading term
£%(p) of £ (as defined in [Burns and Venjakob 2006]) equals

~1
(_l)r(E)(p*) LTQ(EHO*)R[)(/O*) ¢ Pp(p,u )I/tifp(p),

) (60)
Qfﬁ(l))gﬁf(p)Roo(p*) P Pp(p*, wil)

where L% (E, p*) is the leading coefficient at s = 1 of the L-function Lg(E, p*, s)
obtained from the Hasse—Weil L-function of E twisted by p* by removing the
Euler factors at R. Here the number r (E)(p*) is defined in [Burns and Venjakob
2011, (51)] (with M = h'(E)(1)) and equals dimg, (e, (C, ®z E(K*"*)))) if the
Tate-Shafarevich group III(E/F<")) is finite.

We write X (E/Fy) for the Pontryagin dual of the (p-primary) Selmer group of
E over F.

Theorem 4.2. Let F be a number field contained in Fo, and assume that

(i) the My (G) conjecture holds,
(i) L satisfies the refined interpolation property (60), and
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(iii) X(E/Fy) is semisimple at all p in Irr Gr/g (in the sense of [Burns and
Venjakob 2006, Definition 3.11]).

The p-part of the equivariant Tamagawa number conjecture for (E, Z[G(F/Q)])
is true in this situation. If, moreover, the Tate—Shafarevich group II(E/F) of E
over F is finite, this implies the p-part of a Birch—Swinnerton-Dyer type formula
(see, for example, [Venjakob 2007, §3.1]).

For more details on the “p-part” of the ETNC and the proof of this result, which
uses the existence of (1) as shown in this paper, see [Burns and Venjakob 2011,
Theorem 8.4]. Note that due to our semisimplicity assumption combined with
Remark 7.6 and Proposition 7.8 of [loc. cit.], formula (60) coincides with that of
[loc. cit., Conjecture 7.4]. Also Assumption (W) of Theorem 8.4 is valid for weight
reasons. Finally we note that by [Burns and Venjakob 2006, Lemma 3.13, 6.7]
X (E/F) is semisimple at p if and only if the p-adic height pairing

hyp(Vp(E)® p*) : H(Q, V,(E)® p*) x H{(Q, V,(E) ® p) —> L

from [Nekovar 2006, §11] (see also [Schneider 1982] or [Perrin-Riou 1992]) is
nondegenerate, where V,(E) = Q, ® Tf is the usual p-adic representation attached
to E. As far as we are aware, the only theoretical evidence for nondegeneracy is a
result in [Bertrand 1982] that for an elliptic curve with complex multiplication, the
height of a point of infinite order is nonzero. Computationally, however, a lot of
work has been done recently by Stein and Wuthrich [Wuthrich 2004].

Appendix A: p-adic Hodge theory and (¢, I')-modules

As before in the local situation K denotes a (finite) unramified extension of Q. Let
n:Ga, - Z, (here Z; can also be replaced by 07, but for simplicity of notation
we won’t do that in this exposition) be an unramified character and let 7y be the
free Z ,-module with basis 7, o such that o € Gg , acts via ot,0 = n(o)t, 0. More
generally, for r € Z, we consider the Gg,-module

T :=Toy(r),

which is free as a Z,-module with basis #,, , :=1,0® €®", where € = (¢,), denotes
a fixed generator of Z,(1), that is, el =¢,_jforalln>1,ey=1and e # 1. Thus
we have o (1, ) =n(o)x"(o)ty,,, where k : Gg, — Z; denotes the p-cyclotomic
character. Setting V :=Q, ® T = Vy(r) we obtain for its de Rham filtration

Dyr(V)ZKe,, ifi<-r,

. (61)
0 otherwise,

Dyp(V) = {
where e, , :=at™" @1, , with aunique a =a, € Z;\’X, such that 7,(a) = n_l(rp)a,
see [Serre 1968, Theorem 1, p. I1I-31]. Here as usual ¢t = log[e] € Bgis € Bar
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denotes the p-adic period analogous to 27ri. Furthermore we have

Dgris(V) = Ken,r
with
—r —1
(p(en,r) =p r77 (fp)er],w
If n is trivial, we also write ¢, and e, for 1, , and e, ,, respectively.
Now consider the Ok -lattices

Mo :=Okeno = (7% @2, To)°* < Deris(Vo)
and
M=0"® 6®r)M0 = @Ken,r C Deris(V).

Using the variable X = [¢] — 1 we have t = log(1 + X) and on the rings

Ox X1 S B, ¢ =

{f(X) =3 aX* | ax € K, f(X) converges on {x € C, | |x|, < 1}}
k>0

we have the following operations: ¢ is induced by the usual action of ¢ on the
coefficients and by ¢(X) := (14 X)? — 1, while y € I" acts trivially on coefficients
and by y(X) = (14+X)<®) —1; letting Hx = G(K/Q),) act just on the coefficients
we obtain a A(G)-module structure on Og [X]. Moreover, ¢ has a left inverse
operator ¥ uniquely determined via ¢ o ¥ (f) = (1/p) Z{l’zl fed+Xx)—1).
The differential operator D := (1 4+ X) d/d X satisfies

Dof = peDf and Dyf =«k(y)yDf. (62)

It is well-known [Perrin-Riou 1994, Lemma 1.1.6] that D induces an isomorphism
of Ox [ X]Y=0. Furthermore, setting A; f 1= D! £(0) for f € Ok [XTY=°, we have
an exact sequence [loc. cit., §2.2.7, (2.1)]

—p — 1_(/’
0—1"® Dcris(v)(p_p - (B;_g,K Qk Dcris(v))vf_l -

(Bjig. )= ®k Deris(V) e (Ders(V) /(1= p'@))(r) —= 0, (63)

+

where ¢ (and i) acts diagonally on Brig’ K

the first tensor factor. We set

®k Deris(V), while D operates just on

Dy = Ok [X1V=" @0, M,
and denote by
D(T) = (A®z, T) ¥

the (¢, [')-module attached to 7', where the definition of the ring A together with
its - and I'-action can be found for example in [Berger 2003]. Here we only recall
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that AY = Og[[X] and Ag = (Ox [XTI[1/X])"P-24¢ is the p-adic completion of the
Laurent series ring.

Remark A.1. (i) Let n be nontrivial. From [Berger 2003, Theorem A.3] and its
proof one sees immediately that for the Wach module N (7j), which according
to Proposition A.1 of [loc. cit.] equals Og [ X] ®¢, Mo, the natural inclusion
N(Ty) — Ax ® AL N (Tp) induces an isomorphism

Ok X1 ®0, Mo)?=" —= N(To)¥=' — (Ax ®4: N(T)"~ = D(Tp)’=".

(ii) If n is trivial, one has similarly N(Z,) = A;g =0k [ X1 by the same Proposition
A.1, whence N(Z,(1)) = X_IA} Rt =X"10kIX]I®H by the usual twist
behaviour of Wach modules. We obtain

DEZ,(W)'='=N@Z,())V=" =X 'okIXT®H)"!
=Z,X"'®t1 @ Ox[XI®tn)’=",
but N(Zp)‘”:l Z D(Zp)‘/’:1 according to Proposition A.3 of [loc. cit.].

We define D(Zp(r))WZI = (0k[XI® tr)W=1 and D(T)w:1 = D(T)'p:1 for
nontrivial 7 and obtain a canonical isomorphism

Ok [X1 @0, M) =" = D(T)?=! (64)
induced by multiplication with ¢":
fX)e® (Oat_r X tn,r) = f(X)oa® Iyrs

where 0 € Ok and a is as before.
Setting Tg, = T (T) := A(G(Koo/@p))t ®z, T we recall that there is a
canonical isomorphism due to Fontaine

D(T)'='=H'Q,, Tk.), (65)

which for example is called {h}%v}n in [Berger 2003] and its inverse Log7. ;) in
[Cherbonnier and Colmez 1999, Remark II.1.4].

I am very grateful to Denis Benois for parts of the proof of the following
proposition, which has been stated in [Perrin-Riou 1994, Proposition 4.1.3] in a
slightly different form, but without proof.!

Proposition A.2. (i) There is a canonical exact sequence of Og-modules
—-r r A N
0 1@ MY~ (O [X] ®c, M)V~ Gy —> M/(1 = p'9)M —0,
where the map in the middle is induced by 1 — ¢ up to twisting (see the first diagram

TAs twisting with the cyclotomic character starting from Q, (1) only recovers the representations
V = Qp(r), the general case where V) is nontrivial is not covered in that reference.
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in the proof below).

(i1) Assume that n is nontrivial. Then, using the isomorphisms (64) and (65) we
obtain the following commutative diagram of A(G)-modules, in which the maps
C(Tk.,) (=MD" @t7")1 —¢)) and Lo(Tk,,) are defined by the property that the
rows become isomorphic to the exact sequence in (1):

6(Tkoo) Ay y

0 —— D(T)¥=' —— D(T)V=! By —= M/(1— p’' )M — 0
lz LOg’;m)L; Lz L:
Fo(Tkeo) Am,r
0~ H'Q,, Tk )iors = H' (Qp, Tx) —= Dy —> M /(1 — p" )M — 0.

(iii) The sequence (15) can be interpreted in terms of (¢, I')-modules by the commu-
tative diagram

8

0 ——— U(Ks) H (@, Tuw) = lim,, K —> 7, —0

;leogg_ Ej ‘

0 —— D@, (1))~ D(Z,(1)"=! Z, —0,

where § denotes the Kummer map and v is induced from the normalised valuation
map. Furthermore, we obtain again a commutative diagram of A(G)-modules, in
which the maps €(Tg_) (= (D™"®t7")(1 —¢)) and £o(Tk_ ) are defined by the
property that the rows become isomorphic to the exact sequence in (i):

~ ~ k(T Ap.r
0= DZ,y(r)*=" — D@, (r)"=" — @y 2 My~ pro)M — 0
T; ;{Dlogg_ H ;]
Lo(T Apr
00— Z,(r) — U(Koo)(r — 1) ) g, — 20 Z,(r) —0.

Hence, using the map M Qe; : O[] = Dy, A= A-(14+X)®ep, where
N denotes the Mahler (or p-adic Mellin) transform (see [Coates and Sujatha 2006,
Theorem 3.3.3]), the lower sequence can be canonically identified with Coleman’s
exact sequence (4): Lo(Tk, ) = (M e;) o Cole.

Proof. The exactness in (i) for M, can be checked as follows. Let f(X) ® e, o be
in 9Dy, Amg.0=0_that is, f(0)ey.0=(1—¢)b for some b € My. Hence

(f(X) = f(0) ®eno=Xg(X)Qey0
for some g € Og[[X] and

Fli=(1-9) '(Xg(X)®ey0) =Y _ ¢ (Xg(X) ®ey0) € Ok [XT® Mo

i>0
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is a well-defined element. Setting F := F'+b we have (1 —¢)F = f(X) ® e 0
as desired. Now exactness follows from (63). The general case follows from the
following commutative “twist diagram” of Og-modules:

. . A,
0= 1®@M?*="" = Ok [X] Qo M)V =" —= Dy — M/(1 = p" )M -0
1®(t'®e®’)j% 1®(t’®e®’)l% D't ®e® ") | = t’®e®_’\§

p=1 y=117% Bt 0 r
0=1®M;  — (Ox[X]®cxMp)"™" —= Dy, —= Mo/(1 - p )M, > 0.

Item (ii) is clear from the fact that D(T) = Ag -a ® t,,,, which can either be
calculated directly or deduced from the above remark. The statement about the
torsion (first vertical isomorphism) follows from [Colmez 2004, Theorem 5.3.15].

For (iii) first note that by [Cherbonnier and Colmez 1999, Proposition V.3.2(iii)]
we have a commutative diagram

U(Koo) s

DZ,(1))V=! === D(Z,)='(1)

*
x lLOg@p

H' (@, Tk, (Z,(1))),

where T maps u to (Dg,/g.) ® t; = Dlog g, ® t;. The statements concerning the
first diagram follow easily, see also [Colmez 2004, §7.2]. The second diagram
follows as above. By construction the composite

U(Kso) = DZ,(1)"=! — 9y
maps u = (uy,), to

(D7'(1 —¢)Dlogg,) @er = ((1 = p~'9) log gu) ® e
= —¢)(logg, ®e1)
=2(gu) ®el
=Col(u)-(1+X)®ey,
where & was defined in (5). This implies the last statement. O

Now let K be again a finite extension of degree dx over Q,. For a uniform
treatment we define
H'(Q,, Tx (1) ifn#1,

"‘1 Ly—
H (Qp, Tk (T)) = {{U(Koo)(r— 1 ifT =27,(r).

Now set
Hm :={F € B, x ®ox M | (1 =) f € Dy},
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Using [Berger 2003, Theorem II.11] and the commutativity of the diagram

I—¢ Apy.r=0
gbM

Hm

Dr®(tr®6®7r) lDr®(tr®€®r)

AM(),O:O

1—
(Ok[X 1 ®o, Mo)! = — D)1

we see that the map £o(Tk_ ) coincides with the “inverse” of Perrin-Riou’s [1999]
large exponential map

Qr, 9= = D)=l T (ZHYQ,, Tr)/TH6),

(which is (—=1)"~! times the one in [Perrin-Riou 1994]). This map sends f to
(D" ®t")F, where F € ¥, satisfies (1 —¢)F = f. Here “D" ® t"” denotes the
composite

D' ®(t" ®€®7r>

1 —r Qr
Iy 0L (O [X] @0, M)V =" —

Ok [X] @0, M)V="" = D(T)V=!

and corresponds to the operator V,_j o--- 0 Vy in [Berger 2003] for » > 1. In
particular, by Theorem II.10/13 of the same reference we obtain the following
descent diagram for r, n > 1, where the maps By, = E;,In are recalled in (71):

Lo(Tkoo (T))

HY(Q,, Tk (T)) Dy
pr, EM,n (66)
| (=) r=Dlexpg, v -
H (Kn» V) Kn = DdR,K,,(V)»

while for r <0

- Po(Tko (T
i'(Q,. Tk (T)) e ® g,

Pr, EM,n (67)

(=r)! exp’;{mv*(l)

HY(K,, V) K, = Dur.x, (V).

Remark A.3. In particular, for T = Z,(1) we have the following commutative
descent diagram for n > 1:
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L0(Tkoo (Zp(1)))

U(K o) Dy
p1, En
exp ~
@p ®Zp Un Kn = DdR,Kn(@p(l))a

H' (K, Qp(1))

where exp denotes the usual p-adic exponential (series), while &, maps the element
(1—p~lg)logg,) ®er tologg? (e, — 1) = log uy.

In order to arrive at a morphism
LTk (T) : H (@), Tioo (T) = T (T) A Arer -1

where [T, rp]_1 = rpn_l(rp), generalising Lk . in (6), we compose Lo(Tk_ (T))
with the following canonical isomorphisms:

— v ®
Dy = Ok [XTV=" @0 M <= Ok [T T @6, M ——> Ti, ®a Ay, (68)

where the left one, Wy, (A®m) = A - (1 4+ X) @ m, is induced by 9, while the right
one is given by

dKfl
O @t @1,,) =(1®1,,) ®< > ®n"’<rp>¢—"<xa)>
i=0

=(1®,,)® <Z Q¢ (A)a).

Similarly to the original Coleman map Col in (4), the homomorphisms €(Tx_ ),
$Lo(Tk, ) and £(Tk_ ) are norm compatible when enlarging K within @;’. Thus,
by taking inverse limits we may and do define them also for infinite unramified
extensions K of Q,. Then we have the following twist and descent properties:

Lemma A4. Let K’ C K be (possibly infinite) unramified extensions of Q, and Y
a (A(G(KL,/Qp)), A(G(Kuo/Qp))-module such that Y ®AG(Ks/Qp) Tkno(T) =
T (T') as A(G(K},/Qp))-modules with compatible Gaq,-action. Then

Y ®AG(Ko/Q,)) L0(Tk oo (T)) = Lo(Tk: (T'))
and

Y ®AG(Kn/@p) LTk (T)) = LTy (T')).
In particular, £(Tk; (T)) = L1, (1) in (43).
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Proof. The proof can be divided into a twist statement, where K’ = K and T’ =
T ®z, T", such that Gg, acts diagonally on the tensor product and 7" is a rank-
one Z ,-representation of G, and a descent statement. One first proves the twist
statement for 7"/ p", n fix, and all finite subextensions K’ of K, such that G(K /K")
acts trivially on T”/p". Afterwards one takes limits over K’ obtaining the twist
statement for 7"/ p™. Then, taking the projective limit with respect to n (see [Berger
2004] for the correct behaviour of (¢, I')-modules under such limits) one shows the
full twist statement (compare with the well-known twisting for HiIW)' The descent
statement then follows easily from the norm compatibility and the fact that the
twisted analogue of the exact sequence (10)

- L(Tky)
0 — A" Qp, Tioo (7)) —= Ti o (T) @4 Aprry oyt — T —=0

recovers (for finite extension K’ of Q) the exact sequence

L H(Tyr)
0 — 79K ~ HY(Q,, Tk, (T)) — T, (T) ®a Aprryrypt =T —0

by taking G (K /K')-coinvariants. We explain the unramified twist in more detail
(the cyclotomic twist being well known): Assume that n factorises over G(K/Q)),
that is, a = a, € O, and let N := Oge, € Dis(Q,(r)) be the lattice associated to

Q,(r). Then we have the following commutative diagram of A-modules:
Wy QT ON®T
(O IXTY="®0,N)®z, To —— (Ok[TI®N)®z, To —— A®4 ; T(Z,(r) @A,

al®a®lt a ' ®a®l lﬂ@f

Ok IXIY @0 M~ O [TIOM —— = T(T)@4 A

Tpn(Tp) =

where in the top line the A-action is induced by the diagonal G-action and via left
multiplication on A, respectively,

ON®THO.® (I ®) @) =1018048 ) 7,0¢ " ()
i

and f:= f®1 on A@ZLI‘,\’ is induced by f: A — A, g — n(g)~'g, while
V:iA®Ar T(Zy(r) = T(T), a®b®t)r>af(b)®t,.

Here A ®,, s — indicates that the tensor product is formed with respect to f. Also
we have the commutative diagram

C(Tkoo (Zp(r))) .
D(Z,(r )= @ Ty —=—""= (0x [ X]¥= @0, N) ®2z, To

| R

6(Tkoo (7)) _
D(T)?=! £ Ok [XTY=" @0, M.
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As on page 2386 we set A" = Q,[G,].
Lemma A.5. There are natural isomorphisms
) Zyn: K, @M =K, (at™" ®t.,) = Dar(V') of A'-modules;
(i) 1QZyn: Vi Qa K, @M=V ®p Dyr(V') = Dyr(W) of L-vector spaces.

Proof. The canonical isomorphism (which makes explicit the general formula
(IndZ(B® V)) = (B ®IndV))

Q,[Ga,] ®q,G,;1 (Bir ®a, @y()(1)) = Bir ®a, QplGal’ ®a, @, () (1),

which maps g ®a®bto ga @3~ ® gh with g € Gq, induces the isomorphism
(via the general isomorphism N = (IndgN)G, n— dec/H g®n)
_ Gyr ~
K, - (at™" Q1) = (Bar @ Qp(n)(r)) "% = Dar(V"),
which maps x -at™ ®1, , to
Z gxar™)®@g~! ® gty y = Z gar " ®g'® try- (69)
g€G, 8€Gy

Putting e,, , :==at™" ®1,, we similarly obtain the isomorphism in (ii) sending
) RxQ en,r to

> g@at @ p(@)l D try,
8€G,

where this element is regarded in B;g ®a, W =Bair ®a, L ®q, Q,(m)(r). Alter-
natively we can read it in (Bgg ®a, L)®; W as

#Gpat ™ e (X @ty . O

Any embedding o : L, — @p induces amap A, := Q) ®q, L, — @p taking
x ®yto xo(y); we still call this map o.
Consider the Weil group W(Q,/Q,), which fits into a short exact sequence

1 =1——W(@Q,/Q,) ——Z—0,

and let D be the linearised W(GTD,7 /Qp)-module associated to D s (W) = Apey - (p),
that is, g € W(Q,/Q)) acts as 2o U@ or explicitly via the character

xp(8) := p(g)n(r,)"® p&).

For an embedding o we write D, = @p ®4,.0 D = @pen,r(p"), where o acts
coefficientwise on p. If n > 0 is minimal with the property that G(@p / @’;’ (u(p™))
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acts trivially on D, then by properties (3) and (7) in [Fukaya and Kato 2006,
§3.2.2]% we obtain for the epsilon constant attached to D, (see loc. cit.)

e(Dy, —Y) =1
if n =0, while forn > 1

€(Dy, =) = e(DE(1), )"

-1
= ((p"n(fp)p’_l)” > 0%y -en)

yely
= ((p"n(x)p ™)'t ).

Here Iy, :=G(K,/K), ¥ : Q) — Q px corresponds to the compatible system (¢,),,
that is ¥ (1/p") = €,, and D} (1) denotes the linearised Kummer dual of Dy, that
is,

Xbs (1) (8) = p° ()" n(xy) V& p= =DV

while

(0%, &) = Z P’ (V)Y - € =#Fne£526n
yely

denotes the usual Gauss sum. Furthermore

eL(D, =) = (e(Ds, —¥)), €[ [ Q) = (@) ®a, L)* S (Bur ®a, L)

is the e-element as defined in [Fukaya and Kato 2006, §3.3.4]. We may assume
that L contains Q, (1 ); then €7 (D, —y) can be identified with

1® (pn(zp)p ™ H ™"t (p )"
Hence the comparison isomorphism renormalised by € (D, —/)
€L,—arW)" i W® Ly 1y = Dar(W) € Bar ®a, LOL W
is explicitly given as
x®l> e (D, —9) (=0 1®x = (=1) (pn(z,) p" )"t (p, €)'l @ x, (70)

2Apparently, the formula in §3.2.2 (7) of [Fukaya and Kato 2006] is not compatible with Deligne
as claimed: Deligne identifies W(@p /Qp) via class field theory with @ ; by sending the geometric
Frobenius automorphism to p, which induces, by a standard calculation applied to Definition (3.4.3.2)
for epsilon constants of quasicharacters of @; in [Deligne 1973] (see for example [Hida 1993, §8.5
between (4a) and (4b)]), the formula e(Vy, ¥) = x(tp) ™" Zael“n X(a)_laen, while in [Fukaya
and Kato 2006] the factor is just x (t)". Here yx : W(@p /Qp) — E* is a character which gives the
action on the E-vector space Vy .
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where €7 (D, —)~'(—t)"1 is considered as an element of Byg ®aq, L.
In order to deduce the descent diagram (44) from (66), for n > 1, we have to add
a commutative diagram of the form

Dp Tk, ®a A[Ir,rp]fl

EM.n l l Y®ar—

Ky ® M = Dy k,(@p (D (1) / Deris(@p 1D (1))#=" <— V' @pr (M) -1,

where
Evan()=Ey, ,(H=p " (@®@p)" (F)(e,—1)=p " (p®p)"(F)(0), (71)

with F € #y; suchthat (1 —p)F = f = f® ey, (recall that ¢ acts as ¢ ® ¢ here)
on %,,2=Y; and more generally we have, mod Ds(Q p(n)(r))‘/’=1 (recalling that
Deis(@,(7)(r))?=! = 0 in the generic case),

Ern(f)=p" (Z«pw)—k (f (& — D)+ (1 —¢®¢)‘1(f(0)))
k=1

=p™" <Z P F @~ D+ —p"n(rp>—1¢>—1f(0)> ®ey.r
k=1

(see [Benois and Berger 2008, Lemma 4.9], where f(0) is considered in Ds(V)

and hence the last summand above equals (1 — @) ! £(0) there by the ¢-linearity

0~f ¢). Here, for any H(X) = I:I(X) Re e B;{g’K ®g, M we consider H (e, — 1) =

H(ex —1)®e, k <n, as an element in K,y ®¢, M, on which ¢ ® ¢ acts naturally.
First we note that for n > 1 we have a commutative diagram

Doy O OkITT®M — Tk, @ Ao
Enn pr, ®idl lY@’A (72)
Ky ®0x M/ Deris(@p () (m)#=! <22 KT, 1@ M —= V' @ (A, g1y
where
Uy a(n ey )

= \Ijjew,n(ﬂ ® en,r)

n —k
=p" (Z & Vo) +-gop) (" ®e””))
k=1

= (Z P (eyked 0 4yl — p—’n(r,,)—lqs)—l(l“)) ®en,r (73)
k=1
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modulo Dis(Q), (n)(r))“’zl. Here ¢ acts coefficientwise on K[I",,] and 1# is the
same as the image of u under the augmentation map Ok [I"',] — Og.
Proposition A.6. (i) For n > max{l1, a(p)} and W # Q, (1), the following diagram
is commutative:

Vor ®a, 16, KITx]1® M

Vp* ®@p[Gn] Kn M Vﬂ* ®@p[Gn] 4 ®@p[Gn] A

Vj Dyr(V’
o @16 Dar(V') 1 et ear (W)
= Dar(W) <———— Dar(W) WL Ly .1y

!
V.71

where
idp,pw) ifa(p) #0,

Py = det(l —@ | Dcris(W*(l)))
det(l — @ | Dcris(W))

otherwise.

(ii) For W # Q (1) the diagram (44) commutes.

Proof. Let b denote a normal basis of Ok, thatis, Ox =7, [H]b with H = G(K/Q,),
which can be lifted from the residue field, K being unramified, and e := ¢, .. Then
1®b®e=1®eybQ@eis abasis of Vyr ®q,[6,] K[[»]® M as L-vector space
(in general p(g) does not lie in K, but using V,« ®q,(G,] K[T'x] = Vp ®L(G,]
L[G,]®q,6,1 KI[Tn] = Vpr ®LiG,) (L ®q, K[I',]) one can make sense of it). We
calculate (going clockwise in the above diagram)

1®®M,n(1 ®b®€)

dg—1
=leden)® Z f; ®¢~(b)a (S Vp ®@,[Gy] v’ ®Q,(G,] AEV”rgl])
i=0
dg—1
— 1 ® Y () PG BNa (S WL Ly, 1)
i=0
dk_] . .
=tonr® Y p(t) "7 (b)a
i=0

=tonr @ s(p,b)a,
with
dx—1

S(p.b)i= Y p(tp) 797 (b) = dejlb
i=0
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H

a Gauss-like sum, where e o = L_ > p(h)h. The image of this element under

(1) er—car(W) is H nen

(=1 er(D, =) (=) "5 (p, b)a @ty
=p"" " (e (T T(p, €m)s(p, D)at™" ®tyy, (74)

in Dgr(W), where we used (70) with m = a(p).

Now we determine the image of 1 ® b® e = 1 ® ¢,+b ® e anticlockwise. First
note that the idempotent e,+ decomposes as egil -e;i.

Hence, for n > a(p) > 1, where p“(p) denotes the conductor of p restricted to

I',,, we have
A1@¥y)(1R@bRe)=1®epVy ,(bRe)
= 1@ p" "n(1,)"¢ " (ehlb)eyt e @ e
=1Q® p"’_"n(tp)"p*(t;”)egbegi: ‘€, Qe
_ pnr—n n
=1® G, (om(t,)s(p, b)T(p, €1) ®e,

where we have used the explicit formula (73) and the following fact about Gauss
sums, valid for k < n (see for example [Burns and Flach 2006, Lemma 5.2]):

eb(en) ifalp) =k,
eg"(ek)z (l—p)_1 ifa(p)=0and k=1,
0 otherwise.

Now from the end of the proof of Lemma A.5 we see that X, , sends this element,
which already “lies in the right eigenspace” to

at™" p" " (pn) (1) T (0, €)5 (0, D) @ Loy,
=p" " (pn)(t))T(p, )5 (0, bat™" @ty r,

that is, to the same element as in (74), whence the result follows if a(p) # 0.
Now assume that a(p) =0, that is, p | [',,, the restriction to I',,, is trivial. Setting
n = 1 we then have

(1¥Vy 1N(1®bRe)
=1Q Wy 1(epb®e)
=18 (" n@pel 4 pT A= p )T ) b)) @ e
=1® (p" 'n@d~ elbyel e+ p 1 p pn(e) H b)) ®e

=18 (p" () =p) 47 A= p o)) H e
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1— r—1 , b
=1®< p pn(r_pl)> s(p, b) N
1—p~"on(t,"))dx(p—1)

which is sent under X | to

det(1—¢ | Deris(W*(1)))
det(1 —Q | D¢is(W))

)g(p, byat™" Qtyy.r,

while (74) becomes just
§(lov b)at_r ® Lon,r-

Upon replacing € by —e = e ~! (we have used both the additive and multiplicative
notation!) the second statement follows from (66), (72) and the diagram in part (i)
of the proposition, combined with the isomorphism (68) and Lemma A.4. U

Appendix B: Determinant functors

In this appendix we recall some details of the formalism of determinant functors
introduced in [Fukaya and Kato 2006] (see also [Venjakob 2007]).

We fix an associative unital noetherian ring R. We write B(R) for the category
of bounded complexes of (left) R-modules, C(R) for the category of bounded
complexes of finitely generated (left) R-modules, P (R) for the category of finitely
generated projective (left) R-modules and CP(R) for the category of bounded (coho-
mological) complexes of finitely generated projective (left) R-modules. By DP(R)
we denote the category of perfect complexes as a full triangulated subcategory of
the derived category D®(R) of B(R). We write (CP(R), quasi) for the subcate-
gory of quasi-isomorphisms of CP(R) and (DP(R), isom) for the subcategory of
isomorphisms of DP(R).

For each complex C = (C*, d?) and each integer r we define the r-fold shift
C|[r] of C by setting C[r]' = C'*" and dé[r] = (—1)"d:" for each integer i.

We first recall that there exists a Picard category €z and a determinant functor
dg : (CP(R), quasi) — %6 with the following properties (for objects C, C" and C”
of CP(R)):

(B.a) € has an associative and commutative product structure (M, N) — M - N
(which we often write more simply as M N) with canonical unit object 1z = dg(0).
If P is any object of P(R), then in € the object dg(P) has a canonical inverse
dg(P)" L. Every object of € is of the form dg(P) - dg(Q)~! for suitable objects
P and Q of P(R).

(B.b) All morphisms in € g are isomorphisms and elements of the form dz(P) and
d (Q) are isomorphic in € if and only if P and Q correspond to the same element
of the Grothendieck group Ko(R). There is a natural identification Autg,(1g) =
K (R) and if Morg, (M, N) is nonempty then it is a K (R)-torsor, where each
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element  of K|(R) = Autg, (1g) acts on ¢ € Morg, (M, N) to give
ap
OZ¢ZM:1R~M—>1R-N:N.

(B.c) dr preserves the product structure: specifically, for each P and Q in P(R)
one has dr(P & Q) =dg(P) -dr(Q).

(B.d) If C' — C — C” is a short exact sequence of complexes, there is a canonical
isomorphism dg(C) = dg(C")dg(C") in €g (which we usually take to be an
identification).

(B.e) If C is acyclic, the quasi-isomorphism 0 — C induces a canonical isomor-
phism 1z — dg(C).

(B.f) For any integer r one has dg(C[r]) = dg(C)D".

(B.g) The functor dy factorises over the image of CP(R) in DP(R) and extends
(uniquely up to unique isomorphisms) to (DP(R), isom). Moreover, if R is regular,
also property (B.d) extends to all distinguished triangles.

(B.h) For each C in D(R) we write H(C) for the complex which has H(C)' =
H'(C) in each degree i and in which all differentials are 0. If H(C) belongs to
DP(R) (in which case one says that C is cohomologically perfect), then C belongs
to DP(R) and there are canonical isomorphisms

dr(C) =drHO) =] | dr(H (C)V'.
ieZ

(For an explicit description of the first isomorphism see [Knudsen and Mumford

1976, §3] or [Breuning and Burns 2005, Remark 3.2].)

(B.i) If R’ is another (associative unital noetherian) ring and Y an (R’, R)-bimodule
that is both finitely generated and projective as an R’-module then the functor
Y ®g —: P(R) - P(R’) extends to a commutative diagram

(DP(R). isom) — %~ ¢,

Y®%—l lY@R—
d

(D?(R’), isom) Cr.

In particular, if R — R’ is a ring homomorphism and C is in DP(R) then we often
simply write dg(C)g’ in place of R’ Qg dg(C).

(B.j) Let R° be the opposite ring of R. The functor Homg(—, R) induces an
antiequivalence between € g and € g-, with quasi-inverse induced by Hompgo (—, R°);
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both functors will be denoted by —*. This extends to give a diagram

(DP(R), isom) ——X - ¢

RHomR(—,R)l L—*
dyo

(D?P(R°), isom) ———— = 6o

which commutes (up to unique isomorphism); similarly we have such a commutative
diagram for RHomg-(—, R°).

For the handling of the determinant functor the following considerations are
important in practice:

Remark B.1. (i) For objects A, B € € we often identify a morphism f: A — B
with the induced morphism

f'idAfl
_—

1p—=A- A1 B-A"L

Then for morphisms f: A — B and g: B — C in €, the composition go f: A — C
is identified with the product g- f : 1z > C-A ' of g: 1y — C - B~ ! and
f:1g = B-A~'. Also, by this identification a map f : A — A corresponds
uniquely to an element in K| (R) = Autg, (1z). Furthermore, foramap f: A — B
in €, we write f : B — A for its inverse with respect to composition, while
fl'=:idg-1 - f-id4-1 : A~' — B! forits inverse with respect to the multiplication
in €, thatis f- f~! =idj,. Obviously, for a map f : A — A both inverses f and
f ~1 coincide if all maps are considered as elements of K{(R) as above.

Convention B.2. If f : 1 — A is a morphism and B an object in €g, we write
« f: B — B- A for the morphism idp - f. In particular, any morphism f : B — A
can be written as « (idg-1- f) : B — A.

(i1) The determinant of the complex C = [Py i; P1] (in degrees 0 and 1) with
Py = Py = P is by definition dg(C) = 1p; it is defined even if ¢ is not an
isomorphism (in contrast to dz (¢)). But if ¢ happens to be an isomorphism, i.e., if
C is acyclic, then by (B.e) there is also a canonical map acyc: 1g — dg(C), which
is none other than

1d(¢)7l'idd(Pl)71 1
1g = dr(P)dr(P))” ——————=dg(Pp)dg(P1)~ = dr(C)

(and which depends on ¢, in contrast with the first identification). Hence, the
composite
acyc
1g — = dp(C) =15
corresponds to dg (@)~ € Ki(R) according to the first remark. In order to dis-
tinguish the above identifications between 1x and dg(C) we also say that C is
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trivialised by the identity when we refer to dg(C) = 1 (or its inverse with respect
to composition). For ¢ = idp both identifications obviously agree.

We end this section by considering the example where R = K is a field and V
a finite-dimensional vector space over K. Then, according to [Fukaya and Kato
2006, 1.2.4], dg (V) can be identified with the highest exterior product AV of V
and for an automorphism ¢ : V — V the determinant dg (¢) € K* = K;(K) can
be identified with the usual determinant detg (¢). In particular, we identify dx = K
with canonical basis 1. Then a map ¢ : 1x — 1k corresponds uniquely to the value
() e K*.

Remark B.3. Note that every finite Z,-module A possesses a free resolution C;
that is, dz, (A) = dz,(C yl = lzp. Then modulo Z; the composite

acyc

def
lg, —dz,(C)a, = lg,

corresponds to the cardinality |A|~! € Q.
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Polyhedral adjunction theory

Sandra Di Rocco, Christian Haase, Benjamin Nill and Andreas Paffenholz

In this paper we offer a combinatorial view on the adjunction theory of toric
varieties. Inspired by classical adjunction theory of polarized algebraic varieties
we explore two convex-geometric notions: the Q-codegree and the nef value of a
rational polytope P. We prove a structure theorem for lattice polytopes P with
large @-codegree. For this, we define the adjoint polytope P® as the set of those
points in P whose lattice distance to every facet of P is at least s. It follows
from our main result that if P*) is empty for some s < 2/(dim P + 2), then the
lattice polytope P has lattice width one. This has consequences in Ehrhart theory
and on polarized toric varieties with dual defect. Moreover, we illustrate how
classification results in adjunction theory can be translated into new classification
results for lattice polytopes.

Introduction

Let P C R" be a rational polytope of dimension n. Any such polytope P can be
described in a unique minimal way as

P={xeR": (g,x)=>2b;,i=1,...,m},

where the a; are primitive rows of an m x n integer matrix A and b € Q™.
For any s > 0 we define the adjoint polytope P®) as

P9 :={x e R": Ax > b+ s1},

where 1=(1,..., D".
We call the study of such polytopes P polyhedral adjunction theory.
Adjunction theory is an area of algebraic geometry which has played a fundamen-
tal role in the classification of projective algebraic varieties [Batyrev and Tschinkel
1998; Beltrametti and Di Termini 2003; Beltrametti et al. 1992; Beltrametti and
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Figure 1. Two examples of polyhedral adjunction. See page 2426
for discussion.

Sommese 1994; 1995; Fania and Sommese 1989; Fujita 1987; 1992; 1996; 1997,
Nakamura 1997; Sommese 1986]. The correspondence between polarized toric
varieties and lattice polytopes provides a natural ground for an adjunction theory of
lattice polytopes, as suggested in [Dickenstein et al. 2009].

The main purpose of this article is to convince the reader that polyhedral adjunc-
tion theory is an exciting area of research with many open questions connecting
toric geometry, polyhedral combinatorics and geometry of numbers.

By the toric dictionary between convex geometry of polytopes and geometry of
projective toric varieties, a lattice polytope P defines a toric variety X p polarized
by an ample line bundle L p. The pair (X p, Lp) is often referred to as a polarized
toric variety. Sometimes the pair (X, L) is replaced by the equivariant embedding
X < PV defined by a suitable multiple of the line bundle L. Adjunction theory
provides tools to characterize and classify the pairs (X, L) by looking at the behavior
of the adjoint systems |uKx + vL|, for integers u, v, where Kx is the canonical
divisor in X. We refer to Section 4 for details. If P is the polytope defined by
the line bundle L on X, then (vP)™ is the polytope defined by the line bundle
uKx +vL.

In adjunction theory the nef value t(L) and the unnormalized spectral value
w(L) (sometimes called the canonical threshold) measure the positivity of the
adjoint systems. In Section 4 an account of these notions is given. An “integral”
version of the unnormalized spectral value for lattice polytopes has been present in
the literature for quite some time (even though it was never defined this way) under
the name codegree, denoted by cd(P) —see Definition 1.7. This notion appeared
in connection with Ehrhart theory and was studied by Batyrev and Nill [2007].

A “rational” version, again for lattice polytopes, has recently been introduced in
[Dickenstein et al. 2009]. Let ¢ be the maximal rational number for which P(© is
nonempty. Its reciprocal u(P) := 1/c equals precisely the unnormalized spectral
value (L p). It is called the Q-codegree of P (Definition 1.5).

A long-standing conjecture in algebraic geometry states that general polarized
varieties should have unnormalized spectral values that are bounded above by
approximately half their dimension. In particular, as discussed more fully in
Remark 4.10, we have the following conjecture:
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Conjecture 1 [Beltrametti and Sommese 1994]. If an n-dimensional polarized
variety X is smooth, then (L) > (n + 1)/2 implies that X is a fibration.

Let us consider lattice polytopes again. A Cayley sum of # + 1 polytopes is a
polytope (denoted by Py * - - - * P;) built by assembling the polytopes P; along the
vertices of a f-dimensional simplex — see Definition 3.1. For t = 0, the condition
of being a Cayley sum is vacuous. So when we say that P has a Cayley structure
we mean a nontrivial one with ¢ > 0. For example, for t = 1, the condition is known
in the literature as P having lattice width one. From an (apparently) unrelated
perspective Batyrev and Nill conjectured that there is a function f(r) such that,
if cd(P) > f(n), the polytope has a nontrivial Cayley structure. This can be
sharpened:

Conjecture 2 [Dickenstein and Nill 2010]. If an n-dimensional lattice polytope P
satisfies cd(P) > (n+2)/2, then P decomposes as a Cayley sum of lattice polytopes
of dimension at most 2(n + 1 — cd(P)).

The polarized toric variety associated to a Cayley polytope is birationally fibered
in projective spaces, as explained on page 2441. It follows that Conjecture 2 could be
considered an “integral-toric” version of Conjecture 1 extended to singular varieties.
It also suggests that geometrically it would make sense to replace cd(P) by u(P)
and use the bound (n + 1)/2 from Conjecture 1. This leads to a reformulation (we
note that u(P) < cd(P)):

Conjecture 3. If an n-dimensional lattice polytope P satisfies u(P) > (n+1)/2,
then P decomposes as a Cayley sum of lattice polytopes of dimension at most
[2(n+1—p(P))].

The main result of this paper is Theorem 3.4. It implies a slightly weaker
version of Conjecture 3, with u(P) > (n+1)/2 replaced by u(P) > (n+2)/2—
see Corollary 3.7.

Despite much work both Conjectures 1 and 2 are still open in their original
generality. It is known that f(n) can be chosen quadratic in n [Haase et al. 2009] and
that Conjecture 2 is true for smooth polytopes [Dickenstein et al. 2009; Dickenstein
and Nill 2010]. The results in [Dickenstein et al. 2009; Dickenstein and Nill 2010]
also imply that for toric polarized manifolds Conjecture 1 holds for (L) > (n+2)/2.

Besides the underlying geometric intuition and motivation, polyhedral adjunction
theory and the results of this paper have connections with other areas.

Geometry of numbers. It follows from the definition of the Q-codegree that u(P) > 1
implies that P is lattice-free, that is, it has no interior lattice points. Lattice-free poly-
topes are of importance in geometry of numbers and integer linear optimization —
see [Averkov et al. 2011; Nill and Ziegler 2011] for recent results. Lattice-free
simplices turn up naturally in singularity theory [Morrison and Stevens 1984]. Most
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prominently, the famous flatness theorem states that n-dimensional lattice-free
convex bodies have bounded lattice width (we refer to [Barvinok 2002] for details).
Cayley polytopes provide the most special class of lattice-free polytopes: they
have lattice width one, that is, the vertices of the polytope lie on two parallel affine
hyperplanes that do not have any lattice points lying strictly between them. Our main
result, Theorem 3.4, shows that lattice polytopes with sufficiently large Q-codegree
have to be Cayley polytopes. This hints at a close and not yet completely understood
relation between the Q-codegree and the lattice width of a lattice polytope.

Let us remark that for n > 3 Corollary 3.7 only provides a sufficient criterion
for P to be a Cayley polytope. For instance, P = [0, 1]" has lattice width one,
but u(P) =2 < (n+2)/2. Still, for even n the choice of (n 4+ 2)/2 is tight. Let
P =2A,, where A, :=conv(0, ey, ..., e,) is the unimodular n-simplex. Here, P
does not have lattice width one, since every edge contains a lattice point in the
middle. On the other hand, we have u(P) = (n + 1)/2. Since for n even we have
cd(P) = (n+2)/2, this example also shows that the bound (n+2)/2 in Conjecture 2
is sharp.

Projective duality. There is evidence that the unnormalized spectral value is con-
nected to the behavior of the associated projective variety under projective duality.
An algebraic variety is said to be dual defective if its dual variety has codimension
strictly larger than 1. The study of dual defective projective varieties is a classical
area of algebraic geometry (starting from Bertini) and a growing subject in com-
binatorics and elimination theory, as it is related to discriminants [Gelfand et al.
1994]. It is known that nonsingular dual-defective polarized varieties necessarily
satisfy w > (n +2)/2 [Beltrametti et al. 1992]. On the other hand, in [Dickenstein
and Nill 2010; Di Rocco 2006] it was shown that a polarized nonsingular toric
variety corresponding to a lattice polytope P as above is dual defective if and only
if w > (n+2)/2. It was conjectured in [Dickenstein and Nill 2010] that also in
the singular toric case p > (n +2)/2 would imply (X p, L p) to be dual defective.
Theorem 3.4 gives significant evidence in favor of this conjecture, as it was shown
in [Curran and Cattani 2007; Esterov 2010] that the lattice points in such a dual
defective lattice polytope lie on two parallel hyperplanes. Moreover, using our main
result we verify a weaker version of this conjecture (Proposition 4.11).

Classification of polytopes and adjunction theory beyond Q-Gorenstein varieties.
We believe that polyhedral adjunction theory can help to develop useful intuition
for problems in (not necessarily toric) classical adjunction theory, when no algebro-
geometric tools or results exist so far. For instance, defining i makes sense in the
polyhedral setting even if the canonical divisor of the toric variety is not Q-Cartier.

How to read this paper. Sections 1-3, as well as the Appendix, are kept purely
combinatorial, no prior knowledge of algebraic or toric geometry is assumed. The
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algebro-geometrically inclined reader may jump directly to Section 4. We refer the
reader who is unfamiliar with polytopes to [Ziegler 1995].

In Section 1 we introduce the two main players: the @-codegree and the nef value
of a rational polytope. Section 2 proves useful results about how these invariants
behave under (natural) projections. These results should be viewed as a toolbox
for future applications. Section 3 contains the main theorem and its proof. The
algebro-geometric background and implications are explained in Section 4. In
the Appendix we include a combinatorial translation of some well-known algebro-
geometric classification results by Fujita which we think may be of interest to
combinatorialists.

1. The Q-codegree, the codegree, and the nef value

Throughout let P € R” be an n-dimensional rational polytope.

Preliminaries. Let us recall that P is a rational polytope if the vertices of P lie in
Q". Moreover, P is a lattice polytope if its vertices lie in Z"*. We consider lattice
polytopes up to lattice-preserving affine transformations. Let us denote by (-, - )
the pairing between Z" and its dual lattice (Z")*.

There exists a natural lattice distance function dp on R” such that for x € R”
the following holds: x € P (respectively, x € int(P)) if and only if dp(x) = 0
(respectively, dp(x) > 0).

Definition 1.1. Let P be given by the inequalities
(a;,-Y=b; fori=1,...,m, (%)

where b; € Q and the @; € (Z")* are primitive (i.e., they are not the multiple of
another lattice vector). We consider the a; as the rows of an m x n integer matrix A.
Further, we assume all inequalities to define facets F; of P. Then for x € R"” we
define the lattice distance from F; by

dr, (x) :=(ai, x) — b;
and the lattice distance with respect to d P by

dp(x) := ._rlnin dr, (x).

For s > 0 we define the adjoint polytope as
P9 :={x eR": dp(x) > s}.

Remark 1.2. We remark that it is important to assume that all F; are facets, as
the following two-dimensional example shows. Let a; := (—1, 1), ap := (1, 2),
a3 :=(0,—-1),a4:=(0,1). Weset by :=0, by :=0, b3 := —1, by := 0. This defines
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Figure 2. The skeleton of vertices of the adjoint polytopes.

the lattice triangle P :=conv((0, 0), (1, 1), (-2, 1)) having facets Fy, F;, F3, while
Fy:={x € P: (a4, x) =0} is just the vertex (0, 0). Then the point x := (—1/6, 1/4)
satisfies dp(x) = 1/3, however (a4, x) = 1/4. Note that a4 is a strict convex
combination of (0, 0), a; and a,. It can be shown that such a behavior cannot occur
for canonical rational polytopes in the sense of Definition 2.4 below.

Remark 1.3. As the parameter s varies, the vertices of the adjoint polytopes trace
out a skeleton of straight line segments (compare Figure 2 and Lemma 1.12). In
computational geometry there are similar constructions such as the medial axis and
the straight skeleton [Aichholzer et al. 1995; Eppstein and Erickson 1999], which
are of importance in many applications from geography to computer graphics. “Roof
constructions” such as M (P) in Proposition 1.14 are also intensively studied in this
context (compare Figure 4). The skeleton proposed here is different, since it uses a
distance function which is invariant under lattice-preserving affine transformations
and not defined in terms of Euclidean distance or angles.

Let us note some elementary properties of polyhedral adjunction:
Proposition 1.4. Lers > 0.
(1) Each facet of P is of the form
F® :={x e PY: dp(x) =s)
for some facet F of P.

(2) Assume P has dimension n, and let x € P®). Then dps(x) =dp(x) —s.
Moreover, if x € int(P®) and dp (x) = dr(x) for a facet F of P, then F® is
a facet of P, and dpe) (x) = dpe (x).

(3) Assume P has dimension n, and let r > 0. Then

(P = pl+n)

(4) Forr > 0 we have r(P®) = (r P)"®,

Proof. Property (1) follows directly from the definition. For (2), we first prove the
second statement. Let x € int(P®)), and let F be a facet of P with dp(x) = dFr(x).
If we set A := s/dp(x), we have Ax + (1 — A)F C F®: all elements y of the
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left-hand side satisfy dp(y) =s and dg (y) = s for facets G of P other than F. This
shows that F® is indeed (n — 1)-dimensional.
This also shows that

dp(x) =dr(x) =dpo(x)+s = dpe (x) +s.

On the other hand, pick a facet G of P such that G is a facet of P*) and that
dge (x) =dpw(x). Then dp(x) < dg(x) =dgew(x) +s =dps (x) + 5.
Finally, if x sits on the boundary of P®), then the desired equality reads 0 = 0.
Now (3) follows directly from (2), and (4) is immediate from the definition. [J

The Q-codegree. We now define the invariant we are most interested in. The
reciprocal is used to keep the notation consistent with already existing algebro-
geometric terminology.

Definition 1.5. We define the Q-codegree of P as
ju(P) = (supfs > 0: P £ &))",
and the core of P is core(P) := PU/#(P),

As the following proposition shows, the supremum is actually a maximum.
Moreover, since P is a rational polytope, ;1 (P) is a positive rational number.

Proposition 1.6. The following quantities coincide:

(1) wu(P),

@) (max{s > 0: PW £ &))",

(3) (supls > 0: dim(P®)=n})~",

(4) min{p/q > 0: p,q € Z~0, (pP) # &),

(5) inf{p/q > 0: p.q € Z~o, dim((pP)?) = n},

(6) min{p/q >0: p,q € Z~o, (pP) P NZ" # 2)}.
Moreover, core(P) is a rational polytope of dimension < n.

Proof. (1), (2), (4) and (6) coincide by Proposition 1.4(4). For the remaining
statements, note that for s > 0, the adjoint polytope P*) contains a full-dimensional
ball if and only if there exists some small & > 0 such that P+ £ &, O

The codegree. The (D-codegree is a rational variant of the codegree, which came
up in Ehrhart theory of lattice polytopes [Batyrev and Nill 2007]. However, the
definition also makes sense for rational polytopes.

Definition 1.7. Let P be a rational polytope. We define the codegree as
cd(P) :=minf{k € N> : int(kP)NZ" # &}.
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Lemma 1.8. Let [ be the common denominator of all right-hand sides b; given in
the inequality description of P as in (x) of Definition 1.1. Then

int(PyNnz" = (1P)VNnz".
In particular, u(P) <1 cd(P).

Proof. Let x eint(IP)NZ". Then Z > (a;, x) > Ib; e Zforalli =1, ..., m. Hence,
{(a;, x) > 1b; +1, as desired. The other inclusion is clear. The last statement follows
from Proposition 1.6(6). O

Note that for a lattice polytope P, we automatically have [ = 1, so
pn(P) <cd(P)<n+l,

where the last inequality is well-known (take the sum of n + 1 affinely independent
vertices of P).

The nef value. The third invariant we are going to define is a finite number only if
the polytope is not too singular. Let us make this precise.

Definition 1.9. A rational cone o C (R")* with primitive generators vy, ..., Uy
in (Z")* is Q-Gorenstein of index r, if there is a primitive point u, € Z" with
(vi,us) =ry, forall i.

The normal fan N'(P) of P is Q-Gorenstein of index r if the maximal cones are
Q-Gorenstein and r = lem(r, : o € N(P)).

Such a cone/fan is called Gorenstein if the index is 1. Moreover, we say that
P is smooth if for any maximal cone of N'(P) the primitive ray generators form a
lattice basis. Clearly, P smooth implies N'(P) Gorenstein.

In other words, N(P) is Q-Gorenstein if the primitive ray generators of any
maximal cone lie in an affine hyperplane and the index equals the least common
multiple of the lattice distance of these hyperplanes from the origin. For instance,
any simple polytope is Q@-Gorenstein because every cone in the normal fan is
simplicial.

Definition 1.10. The nef value of P is given as
T(P) := (sup{s > 0: N(PW) = N(P)})’1 € R U {oo}.

Note that in contrast to the definition of the Q-codegree, here the supremum is
never a maximum.

Definition 1.11. Assume N(P) is @-Gorenstein, and v is a vertex of P. Assume
that in the inequality description of P as in (x) of Definition 1.1, the vertex v satisfies
equality precisely for i € 1. That is, the normal cone of v is 0 = pos(a;: i € I). For
s > 0, define the point v(s) by v(s) = v+ (s/r,)us, where u, and r, are defined
in Definition 1.9. Note that {(a;, v(s)) =b; +s fori € I.
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—

Figure 3. PU/3 C P for a 3-dimensional lattice polytope P.

The following lemma collects various ways to compute the nef value t of a
polytope, if the normal fan is Q-Gorenstein.

Lemma 1.12. N'(P) is Q-Gorenstein if and only if T(P) < co. Assume this con-
dition holds. Then for s € [0, T(P)~'] we have P = conv(v(s): v vertex of P).
Consequently, the following quantities coincide:

() (P!,

(2) max{s € Q-¢: v(s) € P for all vertices v of P},

(3) min{s € Q-¢: v(s) = v'(s) for two different vertices v, v' of P},

(4) min{s € Q-¢: P is combinatorially different from P},

(5) max{s € Q-o: N(P) refines N(P©®)}.
Proof. The first assertion follows by Definition 1.11. Notice that N(P) = N'(P®)
if and only if v(s) # v'(s) for any two different vertices v, v’ of P. This implies
the assertions (1) <= (3) <= (4). Let now £ = max{s € Q-¢: v(s) € P¥}. As
remarked in Definition 1.11 it is 7(P)~! < &. On the other hand the existence
of an s € Q such that £ < s < t(P)~! would lead to a contradiction. In fact it
would imply that N(P) = N(P®)) and the existence of a vertex v € P for which
v(s) € PY. This proves (1) <= (2) <= (5). O

Figure 3 shows a three-dimensional lattice polytope P whose normal fan is not
Q-Gorenstein (t(P) = o0). Note that P has 5 vertices, while the adjoint polytope
P© (for 0 < ¢ < 1/ (P)) has 6 vertices.
By definition, we have u(P) < t(P). We also want to compare the codegree

and the nef value.

Proposition 1.13. Let P be a lattice polytope with Q-Gorenstein normal fan of
index r. If s > rt(P) is an integer, then (s P)" is a lattice polytope. In particular,

cd(P)—1<rt(P).
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Proof. By Lemma 1.12 every vertex of PU/*) is of the form v(%) = v + ;5u, for
some vertex v of P. Hence, every vertex of (s P)" is given as sv(?) =sv+ iug,
a lattice point. For the last statement it suffices to observe that (cd(P) — 1) P does
not have interior lattice points. ([

The “mountain” and (Q-normality. We now give a graphical description of the
nef value and the Q-codegree, one that provides an efficient way to compute these
invariants. Let the mountain M(P) C R"*! be defined as

M(P) ={(x,s): xe P, 0<s <dpx)}.

Proposition 1.14. Assume that P has an inequality description as in formula ()
of Definition 1.1. Then

M(P)={(x,s) e R (A| =1)(x, )T > b, s >0}.

Therefore, M(P) is a rational polytope with M(P) N R" x {sg} = P® x {s0}.
Moreover,

(D) w(P)~! =max(s: there is a vertex of M(P) with last coordinate s).
If N(P) is Q-Gorenstein, then
2) t(P)~! = min(s > 0: there is a vertex of M (P) with last coordinate s).

Proof. Set g := w(P) L. By Proposition 1.6(2), we have ¢ =max{s > 0: P® £ &),
By the definition of P®, this is the maximal positive s such that there is an x € P
which satisfies dr(x) > s for all facets F of P. This shows (1).

Let us prove (2). Suppose N(P) is Q@-Gorenstein, and abbreviate ¢ := 7(P)~ L.
For every vertex v of P and s > 0 define v(s) as in Definition 1.11. At every vertex
(v, 0) of the bottom facet P x {0} of M (P) there is a unique upwards edge towards
(v(s), s) for small s. By Lemma 1.12(3) there are two vertices v, v’ of P so that
v(t) = v/(¢). The corresponding point (v(t), t) = (V'(¢), 1) in M(P) is a vertex, as
it is incident to at least two edges. U

Let us consider the example given on the right-hand side of Figure 1, and take
a look at its mountain — see Figure 4. The height of the mountain equals the
reciprocal of the (2-codegree, while the height of the first nontrivial vertex is the
reciprocal of the nef value.

This motivates the following definition (see [Dickenstein et al. 2009]).

L2

Figure 4. The lattice distance mountain M (P).
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Figure 5. P® C P for a 3-dimensional lattice polytope P.

Definition 1.15. We say that P is Q-normal if u(P) = t(P).

To get the correct intuition for this notion, let us note that P is @-normal if and
only if all vertices of P survive under polyhedral adjunction (as long as the adjoint
polytope is full-dimensional). For n > 3 it is not enough that all facets of P survive,
as Figure 5 illustrates (where 7(P)"!' =2, u(P)~' =6 and core(P) is an interval).

2. Natural projections
Throughout let P C R” be an n-dimensional rational polytope.

The core and the natural projection. Recall that core(P) := P1/#(P) is a rational
polytope of dimension < n.

Definition 2.1. Let K (P) be the linear space parallel to aff(core(P)). We call
wp: R" — R"/K(P) the natural projection associated with P.

Lemma 2.2. Let x € relint(core(P)). Let us denote by Fy, ..., F; the facets of P
with dr,(x) = w(P)~'. Then their primitive inner normals ay, ..., a; positively
span the linear subspace K (P)™.

Moreover, if core(P) = {x}, then

{yeR":dp(y) 20 foralli=1,...,t}

is a rational polytope containing P.

Proof. We sets:=u(P)~'. Leti €{1,...,t}. Since df, (x) =s and x €relint(P®),
we have dr,(y) =s forall y € P®) . This shows C := pos(ay, ...,a;) < K(P)*t.
Assume that this inclusion were strict. Then there exists some v € R" such that
(v, C) = 0 and v does not vanish on the linear subspace K (P)t. In particular, for
any i € {l,...,t} one gets (v, a;) >0, s0dr (x +ev) > dr (x) =s forany ¢ > 0.
Moreover, if we choose & small enough, then dg (x + ev) ~ dg(x) > s for any other
facet G of P. Hence, x +cv € P). But this means v € K (P), and v must vanish
on K (P)*, a contradiction.

Finally, notice that if P®) = {x}, then ay, ..., a, positively span (R")*. In
particular, conv(ay, ..., a;) contains a small full-dimensional ball around the origin.
Dually, {y e R": (a;, ¥y) 2 b;, i =1, ...,t}is contained in a large ball. Hence, it

is a bounded rational polyhedron, thus a rational polytope. U
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)

Figure 6. The Q-codegree projection wp : P — Q.
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The Q-codegree under natural projections. We begin with a key observation.

Proposition 2.3. The image Q := mp(P) of the natural projection of P is a rational
polytope satisfying u(Q) = w(P). Moreover, if u(Q) = w(P), then core(Q) is the
point p(core(P)).

Proof. Lett,x, F;,a; as in Lemma 2.2 and s := u(P)~!. Q is a rational poly-
tope with respect to the lattice L := Z"/(K(P) N Z"). The dual lattice of L is

(Z"* N K (P)*. In particular, any a; for i € {1, ...,t} is still a primitive normal
vector of a facet of Q. In particular, Q) C 7p(P®) = {mp(x)}. Therefore,
n(Q)~ ! <s. O

The example in Figure 6 shows that this projection can be quite peculiar. The
dashed lines are the affine hulls along which we are projecting, while the fat line
segments are the cores of P and Q. On the left side we only drew the lattice points
on the bottom face for clarity. Here, wp projects onto the bottom face Q. If we
assume that the height i of P is large enough, then the adjoint polytope core(P) is
a line segment projecting onto the point x = (%, %, 0) marked on the bottom. Note
that this point doesn’t even lie in the line segment core(Q). Essentially, the reason
for this behavior is that the preimage of one of the two facets of Q defining the
affine hull of core(Q) is not a facet of P. Moreover, u(Q) =1 > % = u(P).

Projections of a-canonical polytopes.

Definition 2.4. Let o be a rational cone with primitive generators vy, .. ., v,. Then
the height function associated with o is the piecewise linear function

m m
ht, (x) ::max{Zki A =20fori=1,...,m, Z)Livizx}
i=1 i=1
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on o. For o > 0, we say that o is a-canonical if ht, (x) > « for every nonzero
x € 0 NZ". A 1-canonical cone is said to be canonical.
A rational polytope is («-)canonical if all cones of its normal fan are.

This is a generalization to the non-Q-Gorenstein case of canonical singularities
in algebraic geometry. Note that a Q-Gorenstein cone of index r is (1/r)-canonical.
In particular, rational polytopes with Gorenstein normal fan are canonical.

Lemma 2.5. Letw: P — Q be a polytope projection, and assume P is a-canonical.
Then adp(x) < do(m(x)) forall x € P.

Proof. Let (a,-) = b be a facet of Q realizing dp (7 (x)). That is, (a, w(x)) =
b 4+ dgo(m(x)). Then the integral linear functional 7 *a belongs to some cone
o € N(P) with primitive generators ay, ..., a,. Write 7*a = Y /., A;a; with
Ai =20fori=1,...,mand ) ;A = hty(n*a). Then b = ) /., A;b;, and
Y ity A = a. Thus

do((x))=(a,n(x)) —b=(7"a,x)—b
m m
=Z)\i(<ai’x>_bi)2Z)LidP(x)>OldP(x)- O
i=1 i=1
Corollary 2.6. Let m: P — Q be a polytope projection, and assume P is o-
canonical. Then w(P) = au(Q).
In particular, if P is canonical, then t(P) = n(Q).

This shows that for canonical polytopes the natural projection in Proposition 2.3
is (D-codegree preserving! In particular, the polytope O has the nice property that
core(Q) is a point.

Example 2.7. Unfortunately, it is in general not true that being «-canonical is
preserved under the natural projection, as can be seen from the following example.
Consider the polytope

14 0 0 —-14 —14
21
—21 21 21 =21 21 =21

8 0 -8
P = conv 7 10 1 7 21 7 7
-3 0 3

This is a three-dimensional lattice polytope. Its core has the vertices (0, 7, 7) and
(0,7, =17), so the natural projection 7 maps onto a two-dimensional lattice polytope
by projecting onto the first two coordinates. The projection is

1480 -8 0—14
n(P):conv[710 121 7]

All but one normal cone of P is canonical. The exception is the normal cone at the
origin. Its primitive rays are (—1, -5, —1), (1, =5, 1), (0, =3, —1) and (0, —3, 1).
The ray (0, —1, 0) is in the cone, and its height is % So P is %—canonical. The
normal cones of the natural projection Q are again canonical with one exception.



2430 Sandra Di Rocco, Christian Haase, Benjamin Nill and Andreas Paffenholz

The normal cone at the origin is generated by the rays (1, —8) and (—1, —8). It
contains the ray (0, —1), so Q is only é—canonical. The computations were done
with polymake [Joswig et al. 2009].

Q-normality under natural projections.

Proposition 2.8. Let P be Q-normal. Then its image Q under the natural projection
is Q-normal, its core is the point core(Q) = mp(core(P)), and u(Q) = u(P).
Moreover, if P is a-canonical, then Q is a-canonical.

Proof. If P is )-normal, then the normal fan of P refines the normal fan of
core(P) = PU/*P) In particular, the face K (P)* of N'(core(P)) is a union of
faces of N(P). Therefore, being «-canonical is preserved. On the other hand,
N(Q) =N(P)NK (P)* for any polytope projection P — Q. That means that every
facet F of Q lifts to a facet w5 F of P. Together with dp(p(x)) = dﬂ; r(x) (for
x € P) this implies Q) = 7 (P®) for any s > 0. This yields the statements. [

If a rational polytope is Q-normal and its core is a point, then the generators of
its normal fan form the vertex set of a lattice polytope. Such a fan corresponds to a
toric Fano variety; see, e.g., [Debarre 2003; Nill 2005].

3. Cayley decompositions

Throughout let P € R” be an n-dimensional lattice polytope.

Lattice width, Cayley polytopes and codegree. We recall that the lattice width of
a polytope P is defined as the minimum of max,cp(u, x) — min,cp(u, x) over all
nonzero integer linear forms u. We are interested in lattice polytopes of lattice
width one, which we also call (nontrivial) Cayley polytopes or Cayley polytopes of
length > 2.

Definition 3.1. Given lattice polytopes Py, ..., P, in R¥, the Cayley sum Pyx- - -x P,
is defined to be the convex hull of (Py x 0) U (P} x e))U---U (P, x ¢;) in R¥ x R
for the standard basis e, ..., e; of R.

We say that P C R" is a Cayley polytope of length t + 1 if there exists an affine
lattice basis of Z" = Z* x 7' identifying P with the Cayley sum P % - - - % P, for
some lattice polytopes Py, ..., P; in Rk,

This definition can be reformulated [Batyrev and Nill 2008, Proposition 2.3].

Lemma 3.2. Let 0 € R"*! be the cone spanned by P x 1. Then the following
Statements are equivalent:

(1) P isa Cayley polytope Py ---x P, of length t + 1.

(2) There is a lattice projection P onto a unimodular t-simplex.
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(3) There are nonzero xi, ..., x;41 €0’ N (Z"*YY* such that
Xp+ -t X1 = eny1-

Since the ¢-th multiple of a unimodular 7-simplex contains no interior lattice
points, we conclude from Lemma 3.2(2) that

cd(Py*---%P)>rt+1.

Conversely, Conjecture 2 states that having large codegree implies being a Cayley
polytope. To get the reader acquainted with Conjecture 2, we include a simple
observation.

Lemma 3.3. If cd(P) > [(n+ 1)/27, then through every vertex there is an edge
whose only lattice points are its two vertices.

Proof. Assume otherwise. Then there exists an injective lattice homomorphism f
mapping 2A, — P. Therefore, Stanley’s monotonicity theorem [Stanley 1993;
Batyrev and Nill 2007] yields n + 1 — cd(f(2A,)) < n + 1 — cd(P), hence
cd(P) < cd(f(2A,)) < cd(2A,) = [(n+1)/2]. This yields a contradiction to
our assumption. O

The decomposition theorem. Let P, P’ be n-dimensional lattice polytopes. We
will say that P and P’ are unimodularly equivalent (P = P’) if there exists an affine
lattice automorphism of Z" mapping the vertices of P onto the vertices of P’. It
is a well-known result (see, for example, [Batyrev and Nill 2007]) that P = A, if
and only if cd(P) =n+ 1. Since u(P) <cd(P)<n+1and u(A,) =n+1, we
deduce that P = A,, if and only if u(P) =n—+1.

We next prove a general structure result on lattice polytopes of high @-codegree.
We set
20— [u(P)])  ifpu(P) €N,
2n—pu(P))+1 if u(P)eN.

If we exclude the special situation P = A,,, we have 1 <d(P) <2(n+1— u(P)).

d(P) := {

Theorem 3.4. Let P be an n-dimensional lattice polytope with P 2 A,,. Ifn > d(P),
then P is a Cayley sum of lattice polytopes in R" with m < d(P).

For the proof we recall the following folklore result.
Lemma 3.5. Let P C R" be an n-dimensional lattice polytope. Let
zepos(P x {1})nz".

Then there exist (not necessarily different) vertices vy, ..., v, of P and a lattice
point p € (jP)NZ" with

2=, D44+ e, D+ (p, ))
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(P, J)

Figure 7. Decomposing z in the proof of Lemma 3.5.

such that (p, j) = (0,0 or1 < j<n+1—cd(P).

Proof. There exists an m-dimensional simplex S in P with vertices v1, ..., Vy+1
in the vertex set of P such that z € pos((vl, D, ..., Wnt, 1)). We can write
m+1 m+1

z:Zki(vi,l) + Zki(vi, 1) fork; € Nand 2; €0, 1).

i=1 i=1

See also Figure 7. The lattice point Zl'.":ll Xi(v;, 1) is an element of the fundamental
parallelepiped of the simplex S. By [Beck and Robins 2007, Corollary 3.11], its
height j equals at most the degree of the so-called Ehrhart 4*-polynomial. Ehrhart—
Macdonald reciprocity implies that this degree is given by m + 1 — cd(S). We
refer to [Batyrev and Nill 2007] for more details. Now, the result follows from
j<m+1—-cd(S) <n+1—cd(P) by Stanley’s monotonicity theorem [1993]. [J

Proof of Theorem 3.4. By successive application of Proposition 2.3, we can find
a lattice projection P — Q with dim(Q) = n’ < n such that u(P) < w(Q) and
0® = {x} for s := u(Q)~'. By observing that d(Q) + (n —n’) < d(P), we see that
d(P) < n implies d(Q) < n’ and, moreover, if the desired statement holds for Q,
then it also holds for P. Hence, we may assume that s = u#(P)~! and P = {x}.

By Lemma 2.2, P is contained in a rational polytope P with s = (P)~! and
PO = {x} so that all facets of P have distance s from x. Let 0 € & € R"*! be the
(full-dimensional, pointed) cones over P x {1} C P x {1}, and let u € (R"T1)* be
the last coordinate functional. As u evaluates positively on all vertices of P x {1},
we have u € int6¥ Cinto". Let us define the lattice polytope

R .= conv({O} U {n: n primitive facet normal of 5}) C (R,

In order to invoke Lemma 3.2(3), we will show that R has high codegree so that u
can be decomposed into a sum of many lattice points in 6 C ¢ by Lemma 3.5.
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To this end, observe that (n, (x, 1)) = s for every primitive facet normal 5 of &,
so that R is an (n + 1)-dimensional pyramid with apex 0:

R=5&"N{ye ®TH*: (y, (x, 1)) <s).

/7
’
/

Ae)
/
/
ol

u
ol

HNI /// <-,(X,1)>=S}

Let us bound the height of an interior lattice point of 6. Assume there is
some y € intg¥ N (Z"+1)* such that (y, (x, 1)) < 1. Because x € P is a convex
combination of vertices there is some vertex w € P x {1} such that (y, w) < 1.
However, y €int6" Cinto " implies 0 < (y, w). This contradicts (y, w) € Z. Now,
(-, (x, 1)) <sis avalid inequality for R, and by the above, int(kR) N (Z"+1)* =0
for k <s~!''= u(P).

On the other hand, u is a lattice point in int6 " with (u, (x, 1)) = 1. So u is in
int(kR) N (Z"t1)* for k > w(P). Hence, r :=cd(R) = [u(P)| + 1.

From Lemma 3.5 applied to R and (u, r) € pos(R x {1}) N (Z"+%)* we conclude
that

(u’r):k(ov 1)+(’71,1)++(7]ga1)+(P,J)

for a natural number k, for (not necessarily different) nonzero vertices 1y, ..., ng
of R and for a lattice point p € (jR)N (Z"*+1y* with the property that (p, j) = (0, 0)
or1<j<n+2—r.

Fromu ¢ (r—2)R and (u, r =2) = (k—=2)(0, )+ (1, D+ -+ (g, D+(p, j),
we conclude that k — 2 < O, that is, k € {0, 1}. Further, if k = 1, then u is in
(r —1)R\ int((r — 1)R) so that 1 = (u, (x, 1)) = (r — 1)s, that is, u(P) € Z.

Let us first consider the case k = 0. Since u € int(r R), we observe that

(I/l, r) ¢POS((771» 1)7 ceey (77g» 1))a

thus (p, j) # (0,0). Therefore, r = g + j, and u splits into a sum of at least
g+1>2r+1—(m+2—r)=2|u(P)| —n+1 nonzero lattice vectors in 5. Hence,
Lemma 3.2(3) yields that P is a Cayley polytope of lattice polytopes in R with
m<n+1—(g+1) <2m— u(P)]).

It remains to deal with the case k = 1. Here, we have already observed that
w(P)eZ. If (p, j) = (0, 0), then u splits into a sum of at least g + 1 = r nonzero
lattice points in 6, so Lemma 3.2(3) yields that P is the Cayley polytope of lattice
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polytopes in R” withm <n+1—(g+1) <n+1—w(P). Finally, if (p, j) # (0, 0),
then r = g+ 1+ j, so we again deduce from Lemma 3.2(3) that P is the Cayley
polytopeof g+1=r—j>r—(n+2—r)="2r —n—2 lattice polytopes in an
ambient space of dimensionn+1— 2r —n—2) =2(n — u(P))+1. O
Remark 3.6. Statement and proof of Theorem 3.4 generalize Theorem 3.1 in
[Haase et al. 2009], which proves Conjecture 2 in the case of Gorenstein polytopes.
A Gorenstein polytope P with codegree ¢ can be characterized by the property that
P is a @-normal lattice polytope with (cP)(" being a lattice point.

Corollary 3.7. Let P be an n-dimensional lattice polytope. If n is odd and i (P) >
(n+1)/2,0rifniseven and u(P) = (n+2)/2, then P is a Cayley polytope.

There is no obvious analogue for rational polytopes. For instance, for ¢ > 0, the
Q-codegree of (1+¢)A,, equals (n+1)/(14¢), so it gets arbitrarily close ton + 1,
however its lattice width is always strictly larger than one.

Theorem 3.4 proves Conjecture 2 if [ (P)] = cd(P). Therefore, we get the
following new result using Proposition 1.13.

Corollary 3.8. Conjecture 2 holds if N(P) is Gorenstein and P is Q-normal.

If P is smooth with cd(P) > (n +2)/2, then it was shown in [Dickenstein et al.
2009; Dickenstein and Nill 2010] that P = Py - -x P;, where t+1 =cd(P) = u(P),
and Py, ..., P, have the same normal fan. The proof relies on algebraic geometry;
no purely combinatorial proof is known.

A sharper conjecture. We conjecture that in Corollary 3.7 the condition pu(P) >
(n+1)/2 should also be sufficient in even dimension. This is motivated by an open
question in algebraic geometry — see Remark 4.10. We can prove this conjecture
in the case of lattice simplices.

Proposition 3.9. Let P C R" be an n-dimensional rational simplex. Let a; be the
lattice distance of the i-th vertex of P from the facet of P not containing the vertex.
Then

n
1
TPy =p(P)=) -
i=0
Proof. Let x be the unique point that has the same lattice distance s from each facet.

Then t(P)~' = w(P)~' = s. Fix a basis {e, . .., e,} for R"*! and consider the
affine isomorphism

n
P — conv(agpey, . .., ane,) = {y € [RR’;(SI : Z Z_j = 1} c R+
i=0

given by y — (dFO(y), ey an(y)). The point x is mapped to ¢ := (s, ..., s), SO
I/SZZ?ZO 1/a;. O
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Corollary 3.10. Let P C R" be an n-dimensional lattice simplex.
M If u(P)>m+1)/2 (or u(P)=m+1)/2 and a; # 2 for some i), then P is a
lattice pyramid.
Q) If u(P) = (n+1)/2and P Z2A,, then P has lattice width one.

Proof. Assume that P is not a lattice pyramid. Then a; > 2 foralli =0, ..., n.
Hence,
n
1 n+1
= — K .
WP =2 <=
i=0
This proves (1). For (2), let us assume that @; =2 for alli =0, ..., n. We consider

the injective affine map
RH%RH, V= (dFl(y),...,an(y)).

Note that the image of P is 2A,, = conv(0, 2e1, ..., 2e,). Let us denote the image
of 7" by A. It satisfies 27" € A C 7". If A = 7", then P = 2A,. Hence,
our assumption yields that the reduction modulo 2 is a proper linear subspace
A/27" C (Z/2Z)". Therefore, it must satisfy an equation ) ,_; x; =0 mod 2 for
some subset & # I C {1,...,n}. The linear functional %(Zie, x,-) defines an
element A € A* such that A(2¢;) =1 if i € I and O otherwise. Hence, P has lattice
width one in the direction of the pullback of A. (Il

Example 3.11. It is tempting to guess that u(P) = (n+1)/2 and a; =2 for all i
implies that P = 2A,,. However, here is another example:

0011
conv|[0101],
0110

A corresponding result for the codegree was proven in [Nill 2008] where it is
shown that a lattice n-simplex is a lattice pyramid if cd(P) > %(n +1). Let us stress
that Conjecture 2 is still open for lattice simplices.

4. Adjunction theory of toric varieties

In this section, we explain the connection between the previous combinatorial
results and the adjunction theory of toric varieties.

General notation and definitions. Let X be a normal projective algebraic variety
of dimension n with canonical class Ky defined over the complex numbers. We
assume throughout that X is Q-Gorenstein of index r, that is, r is the minimal
r € N5 ¢ such that r Kx is a Cartier divisor. X is called Gorenstein if r = 1.

Let L be an ample line bundle (we will often use the same symbol for the
associated Weil divisor) on X. We use the additive notation to denote the tensor
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operation in the Picard group Pic(X). When we consider (associated) (QD-divisors,
the same additive notation will be used for the operation in the group Div(X) ® Q.

Recall that L is nef (respectively, ample) if it has nonnegative (respectively,
positive) intersection with all irreducible curves in X. Moreover, L is said to be
big if the global sections of some multiple define a birational map to a projective
space. If a line bundle is nef, then being big is equivalent to having positive degree.
It follows that every ample line bundle is nef and big. The pair (X, L), where L is
an ample line bundle on X, is often called a polarized algebraic variety. The linear
systems | K x +sL| are called adjoint linear systems. These systems define classical
invariants which have been essential tools in the existent classification of projective
varieties. In what follows we summarize what is essential to understand the results
in this paper. More details can be found in [Beltrametti and Sommese 1995, 1.5.4
and 7.1.1].

Definition 4.1. Let (X, L) be a polarized variety.

(1) The unnormalized spectral value of L is defined as

(L) = sup{s e Q: hO(N(Kx —I—sL)) = 0 for all positive integers
such that N(Kx + sL) is an integral Cartier divisor}.

Note that (L) < oo follows from L being big.
(2) The nef value of L is defined as

(L) ;= min{s € R: Kx + sL is nef}.

It was proven by Kawamata that (L) € Q. Moreover if ¥t = u/v, where u and
v are coprime, then the linear system |m(vr Kx + ulL)| is globally generated for a
big enough integer m. The corresponding morphism

f:X—>P"=P(H (m(rKx +ul)))

has a Remmert—Stein factorization as f = p o ¢, where ¢, : X — Y is a morphism
with connected fibers onto a normal variety Y, called the nef value morphism. The
rationality of w(L) was only shown very recently [Birkar et al. 2010, Corollary 1.1.7]
as a consequence of the existence of the minimal model program.

Observe that the invariants above can be visualized as follows — see Figure 8.
Traveling from L in the direction of the vector Kx in the Neron—Severi space
NS(X) ® R of divisors, L 4+ (1/u(L))Kx is the meeting point with the cone of
effective divisors Eff(X) and L + (1/t(L))Kx is the meeting point with the cone
of nef-divisors Nef(X). We now summarize some well-known results which will
be used in this section.

Proposition 4.2. (1) t(L) is the largest s € Q such that Kx + sL is nef but not
ample.



Polyhedral adjunction theory 2437

Ample

Eff

Figure 8. Illustrating «(L) and t(L).

(2) (L) < (L), with equality if and only if ¢, is not birational.

(3) Let rt(L) = u/v with coprime positive integers u, v. Then
u<rin+1),

in particular, t(L) <r(n+1).
4) (L) <n+1.

Proof. Statement (1) is proven in [Beltrametti and Sommese 1995, 1.5.5]. For (2)
observe that the interior of the closure of the effective cone is the big cone,

Eff(X )lnt = Big(X). Recall that if a divisor is not big, then the map associated to the
global sections has a lower-dimensional image. It follows that the map is birational
only when t and v do not coincide. A proof can be also found in [Beltrametti and
Sommese 1995, 7.1.6]. Statement (3) is part of Kawamata’s rationality theorem
and (4) is proven in [Beltrametti and Sommese 1995, 7.1.3]. [l

Remark 4.3. There are at least three other notions which are related to the unnor-
malized spectral value. The (nonnegative) spectral value o (L) :=n+ 1 — u(L)
was defined by Sommese [1986] (compare this notion with the degree of lattice
polytopes [Batyrev and Nill 2007]). Fujita [1992] defined the (nonpositive) Kodaira
energy ke(L) as —u(L) —see also [Batyrev and Tschinkel 1998]. Furthermore,
the reciprocal w(L)™! is called the effective threshold— see, for example, [Birkar
et al. 2010].

There are several classifications of polarized varieties with large nef value. For
example:

Theorem 4.4 [Fujita 1987]. Let (X, L) be a polarized normal Gorenstein variety
with dim(X) = n. Then:
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(1) (L) < nunless (X, L) = (P", Op (1)).
(2) T(L) < n unless we are in one of the following cases:
(@) (X, L) = (", Opn(1)).
(b) X is a quadric hypersurface and L = Ox (1).
© (X, L) = (P, 0p:(2)).
@ (X,L) = ([P’(E), @(1)), where E is a vector bundle of rank n over a
nonsingular curve.

In the same paper Fujita also classifies the cases t(L) >n—2and 7(L) > n —3.
We will discuss this classification in the toric setting and the induced classification
of lattice polytopes with no interior lattice points in the Appendix.

Toric geometry. We refer the reader who is unfamiliar with toric geometry to
[Fulton 1993]. In what follows we will assume that X is a Q-Gorenstein toric
variety of Gorenstein index r and dimension . Let L be an (equivariant) line bundle
on X. Let N =7", ¥ C N ® R be the defining fan and denote by X (i) the set of
cones of X of dimension i. For t € X (i), V() will denote the associated invariant
subvariety codimension i.

Recall that L is nef (resp., ample) if and only if L -V (p;) = 0 (resp., > 0) for
all p; € ¥(n —1); see [Mustatd 2002, Theorem 3.1], for example.

There is a one-to-one correspondence between n-dimensional toric varieties
polarized by an ample line bundle L and n-dimensional convex lattice polytopes
Pix.1y C M @R (up to translations by a lattice vector), where M is the lattice dual
to N. Under this correspondence k-dimensional invariant subvarieties of X are
associated with k-dimensional faces of Px ;). More precisely, if

P={xeR"': Ax > b}

for an m x n integer matrix A with primitive rows and b = (b, ..., b,) € 7",
then L =) (—b;)D;, where D; = V(B;), for B; € X (1), are the invariant divisors,
generating the Picard group.

More generally, a nef line bundle & on a toric variety X’ defines a polytope
Py C R", not necessarily of maximal dimension, whose integer points correspond to
characters on the torus and form a basis of H%(X’, £). The edges of the polytope Py
correspond to the invariant curves whose intersection with & is positive. In particular,
the normal fan of Py does not necessarily coincide with the fan of X’. It is the fan
of a toric variety X obtained by possibly contracting invariant curves on X'. The
contracted curves correspond to the invariant curves having zero intersection with .
Let v : X" — X be the contraction morphism. There is an ample line bundle L on X
such that 7*(L) = . Because the dimension of the polytope equals the dimension
of the image of the map defined by the global sections one sees immediately that
P¢ has maximal dimension if and only if & is big.
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Adjoint bundles. (Compare with Section 1.) Let (X, L) be the polarized variety
defined by the polytope P = {x € R": Ax > b}. Observe that for any s € (¢ the
polytope P®) :={x e R": Ax > b+s1}, with1=(1,...,1)T, corresponds to the
Q-line bundle s Ky + L. With this interpretation it is clear that

u(P)=p(L) and t(P)=r1(L)

Remark 4.5. Proposition 1.14 gives us a geometric interpretation of these invariants.
Let k € Z such that kM (P) is a lattice polytope and let Y be the associated toric
variety. The polytope P is a facet of M (P) and thus the variety X is an invariant
divisor of Y. Moreover, the projection M (P) — P induces a rational surjective map
Y — P! whose generic fiber (in fact all fibers but the one at co) are isomorphic
to X.

Remark 4.6. From an inductive viewpoint, it would be desirable to know how “bad”
the singularities of P(!) can get if we start out with a “nice” polytope P. However,
this seems to be very hard. Traditionally, there is another way, the “onion skinning”
of a polytope (see [Haase and Schicho 2009; Ogata 2007]) via the interior polytope
P .= conv(int(P) N Z"). Recall that the lattice points of pM correspond to the
global sections of Ky 4+ Lp. If the line bundle Kx + Lp is globally generated
(equivalently nef) then PV) = PU!1_ but in general they might be different. Obviously,
PM c P with equality if and only if PV is a lattice polytope. Ogata [2007]
examined the case of smooth polytopes of dimension at most three with interior
lattice points. He proves the following:

- In dimension two, PV equals P!, and it is even a smooth polytope [Ogata
2007, Lemma 5].

- In dimension three [Ogata 2007, Proposition 3], it is claimed that by succes-
sively forgetting facet inequalities (corresponding to blow-downs) it is possible
to obtain a smooth polytope P’ D P with P’V = p = plll and 7(P") < 1.
Moreover, while P!l may not be smooth anymore, Proposition 4 of [Ogata
2007] says that singular points of cones over (P2, 0(2)) and (P' xP', O(1, 1))
are the only possible singularities, occurring at the toric fixpoints of X pu.

It would be desirable to understand what happens in higher dimensions; for
instance, we expect the answer to the following question to be negative:

Let P be a smooth four-dimensional polytope with interior lattice points. Is P("
still a lattice polytope?

Admissible polarized toric varieties (compare with Section 2). In the language
above, Proposition 2.3 states that if (X, L) is a polarized Q-Gorenstein toric variety
then there is a finite sequence of maps of toric varieties

Xk—>Xk,1—>~-—>X2—>X1—>X0:X
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polarized by ample line bundles L;. In fact, by considering the polytope P = Px 1),
Proposition 2.3 gives a projection P — Q from the linear space Aff(P(1/#(L)),
The projection defines a map of fans ¥y — Xp, and in turn a map of toric
varieties X; — X. Notice that dim(X;) = dim(X) — dim(P/#()). Let L, be
the polarization defined by Q on X;. Starting again with (X, L;) we look at
the corresponding projection Q — Q1 and so on. Notice that the sequence will
stop when p(Xx—1) = u(Xy) and core(Qy) is a single (rational) point. We remark
that the Q-codegree has been defined for any polytope while the spectral value is
defined only for @-Gorenstein varieties. In more generality the singularities are
quite subtle and it is not at all clear how to proceed within algebraic geometry. For
this purpose we will call a polarized Q-Gorenstein toric variety admissible if in
the sequence above X; is Q-Gorenstein for every 0 < i < k. Recall that the lattice
points of N core(Qy) correspond to the global sections H O(N (Kx, +u(Lg)L K)),
for an integer N such that N(Kx, + w(Lx)Lk) is an integral line bundle. Then
Proposition 2.3 reads as follows:

Proposition 4.7. Let (X, L) be an admissible polarized Q-Gorenstein toric variety.
There is a finite sequence of maps of toric varieties

Xk > X1 —> > X0 > X1 > Xo=X

polarized by ample line bundles L; such that (L;) > u(L;—1) for 1 <i <k and
HO (N(KXk + M(Lk)LK)) consists of a single section for an integer N such that
N(Kx, + n(Ly)Lg) is an integral line bundle.

Example 4.8. The polytope in Figure 6 defines an admissible polarized Q-Go-
renstein toric variety. Let (X, L) be the associated polarized toric variety. The
(unnormalized) spectral value satisfies w(L) = u(P) = %. The polytope has the
following description:

x =0
X y =20
P = y z20 if h odd,
2 x+y < 4
hx +2z < 2h
x>0
X y =20
P= y 220 if h = 2k for some integer k.
Z x+y < 4
kx+z < 2k

For simplicity let us assume that % is odd. From the polytope one sees that Pic(X)
is generated by Dy, ..., Ds with the linear relations
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Dy ~hDs+ Dy, Dy~ Dy, D3~2Ds

Moreover, L =4D4+2hDs and Kx = —3D4 — (h 4+ 3) D5, giving 4Ky + 3L =
(2h —12) Ds, which is effective for & > 6. The first projection onto Q defines in this
case an invariant subvariety X; which is isomorphic to P> blown up at one point.
Moreover L = L|x, =4/ —2E, where [ is the pull back of the hyperplane line bundle
on P? and E is the exceptional divisor. The variety X; is smooth and therefore
Q-Gorenstein of index 1. Starting again with (X, L) we have v(L;) = 1 and
X, = P! with Ly = Op:1(2), which give (L) =1 and H*(Kx, + Ly) = H(Oy,).

It would be desirable to have criteria for a toric polarized Q-Gorenstein variety
to be admissible.

The main result. (Compare with Section 3.) As explained in [Haase et al. 2009;
Dickenstein et al. 2009] the toric variety X, defined by a Cayley polytope

P:PO*"'*P[,
has a prescribed birational morphism to the toric projectivized bundle
X=PH®H &---®H)

over a toric variety Y. The variety Y is defined by a common refinement of the
inner normal fans of the polytopes P;. Moreover, the polytopes P; are associated
to the nef line bundles H; over Y. As a consequence of Theorem 3.4 we get the
following result.

Proposition 4.9. Let (X, L) be a polarized Q-Gorenstein toric variety. Suppose
q € Q¢ such that 2q < n and no multiple of Kx + (n + 1 — q) L which is Cartier
has nonzero global sections. Then there is a proper birational toric morphism
7 : X' — X, where X' is the projectivization of a sum of line bundles on a toric
variety of dimension at most |2q | and w* L is isomorphic to O(1).

Proof. The assumption 2qg < n implies that (L) > (n +2)/2. Theorem 3.4 gives
the conclusion. [l

Remark 4.10. It is conjectured on page 2434 that (L) > (n+ 1)/2 should suffice
in Corollary 3.7. One algebro-geometric statement which hints at this possibility is a
conjecture by Beltrametti and Sommese [1995, 7.1.8] stating that w(L) > (n+1)/2
should imply (L) = (L) when the variety is nonsingular. Moreover, it was also
conjectured in [Fania and Sommese 1989] that if u(L) > 1, then u(L) = p/q for
integers 0 < ¢ < p < n+ 1. In particular, u(L) > (n 4+ 1)/2 would again imply
u(l) e”Z.

Let A be the set of lattice points of a lattice polytope P, and let X 4 be the (not
necessarily normal) toric variety embedded in P!4I=!. Then there is an irreducible
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polynomial, called the A-discriminant, which is of degree zero if and only if the
dual variety X7 is not a hypersurface (that is, X 4 has dual defect) — see [Gelfand
et al. 1994].

Proposition 4.11. Let P be a lattice polytope with u(P) = B3n+4)/4 if w(P) ¢ N,
or w(P) = @Bn+3)/4if u(P) e N. Then X 4 has dual defect.

Proof. By Theorem 3.4, P is a Cayley polytope of at least n+ 1 —d lattice polytopes
in RY, where the assumptions yield that n+1—d > d +2. Then Proposition 6.1 and
Lemma 6.3 in [Dickenstein et al. 2007] imply the desired result. Note that in the
notation of [Dickenstein et al. 2007l m =n+1—d,r=d,andc=m —r > 2. U

For smooth polarized toric varieties it was verified that the assumption p(L) >
(n+2)/2 is equivalent to the variety having dual defect [Dickenstein and Nill 2010].
Moreover, smooth dual-defective varieties are necessarily @-normal (u(L) = t(L))
by [Beltrametti et al. 1992]. By the results of [Di Rocco 2006; Dickenstein et al.
2009] this implies that the associated lattice polytope is a smooth Cayley polytope
with (L) = cd(P) factors which all share the same normal fan. On the other
hand, it has recently been shown [Curran and Cattani 2007; Esterov 2010] that all
lattice points in a (possibly singular) dual-defective polytope have to lie on two
parallel hyperplanes. However, it is not true that all Cayley polytopes, or polytopes
of lattice width 1, are dual defective, even in the nonsingular case. Therefore, the
main question is whether the following strengthening of Proposition 4.11 may be
true — see [Dickenstein and Nill 2010]:

Question 4.12. Is (X, L) dual defective if w(L) > (n+2)/2?

Appendix: Fujita’s classification results

In this section we provide a translation of the results in [Fujita 1987, Theorem 2
and 3']. A straightforward corollary gives the classification of smooth polytopes of
dimension three with no interior lattice points. One could derive a more extensive
classification from the theorems just cited and from later work such as [Beltrametti
and Di Termini 2003; Nakamura 1997]. This would require a more elaborate
explanation, which goes beyond the scope of this paper.

Theorem A.1 [Fujita 1987]. Let P be an n-dimensional lattice polytope such that
its normal fan is Gorenstein.

(1) If t(P) > n, then P = A,,.

2) Ifn—1<7t(P)<n,then P=2A, 0r P= Pyx Py x---% P,_1, where the P;
are parallel intervals.

) If P is smoothandn —2 < t(P) < n—1, then P is one of these polytopes:
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(a) There is a smooth n-dimensional polytope P’ and a unimodular simplex
S & P such that
P'=PUS

and P N S is a common facet of P and S.

(b) PV 0=D) s g point.

(C) P= 2A3, 3A3, 2A4.

(d) There is a projection : P — A} X Ay

(e) There is a projection w : P — 2A, and the polytopes = (m;) have the
same normal fan, where m; are the vertices of 2.

(f) P = Py Py x---x P,_p, where the P; are smooth polygons with the same
normal fan.

Note that in (3)(a) P is given by a vertex truncation of P’ (compare with Figure 2),
corresponding to a blow-up at a smooth point. The following result is a simple
corollary of the previous classification. It was also obtained in a slightly weaker
form by Ogata [2007, Proposition 1], using combinatorial methods.

Corollary 4.2. Let P be a smooth 3-dimensional polytope with no interior lattice
points. Then P is of one of the following types.

(1) P = As3,2A3,3As.

(2) There is a projection P — A,, where any preimage of each vertex is an interval.
Equivalently, there are a, b, ¢ € Z such that

b c
00].
01

(3) There is a projection P — 2A,, where any preimage of each vertex is an

000
P=conv|010
001

[eRENY

interval. Equivalently, there are a, b, c € Z such that

]

(4) There is a projection P — A1 x Ay. Equivalently, there are a, b, c € Z such
that

[=3 SRS

b
0
0

DO

000
P=conv|/020
002

0011011 0
P=conv/|0101110 0 .
0000ab catb—c
(5) P = Py* Py, where Py and Py are smooth polygons with the same normal fan.

(6) There is a smooth 3-dimensional polytope P’ with no interior lattice points
and a unimodular simplex S € P such that

PP=PUS

and P N S is a common facet of P and S.



2444 Sandra Di Rocco, Christian Haase, Benjamin Nill and Andreas Paffenholz

Acknowledgements

This work was carried out when several of the authors met at FU Berlin, KTH
Stockholm and the Institut Mittag-Leffler. The authors would like to thank these
institutions and the Goran Gustafsson foundation for hospitality and financial
support.

We thank Sam Payne for pointing out the reference [Fujita 1987], Michael Burr
for exhibiting the relation to the straight skeleton and Alicia Dickenstein for the
proof of Proposition 4.11. Finally, we would like to thank the anonymous referees
for several suggestions that led to improvements and clarifications.

References

[Aichholzer et al. 1995] O. Aichholzer, F. Aurenhammer, D. Alberts, and B. Girtner, “A novel type
of skeleton for polygons”, J. UCS 1:12 (1995), 752-761. MR 97¢:52028 Zbl 0943.68171

[Averkov et al. 2011] G. Averkov, C. Wagner, and R. Weismantel, “Maximal lattice-free polyhedra:
finiteness and an explicit description in dimension three”, Math. Oper. Res. 36:4 (2011), 721-742.
MR 2012j:90103 Zbl 1246.90107

[Barvinok 2002] A. Barvinok, A course in convexity, Graduate Studies in Mathematics 54, Amer.
Math. Soc., Providence, RI, 2002. MR 2003j:52001 Zbl 1014.52001

[Batyrev and Nill 2007] V. V. Batyrev and B. Nill, “Multiples of lattice polytopes without interior
lattice points”, Mosc. Math. J. 7:2 (2007), 195-207. MR 2008g:52018 Zbl 1134.52020

[Batyrev and Nill 2008] V. V. Batyrev and B. Nill, “Combinatorial aspects of mirror symmetry”,
pp. 35-66 in Integer points in polyhedra: geometry, number theory, representation theory, algebra,
optimization, statistics (Snowbird, UT, 2006), edited by M. Beck et al., Contemp. Math. 452, Amer.
Math. Soc., Providence, RI, 2008. MR 2009m:14059 Zbl 1161.14037

[Batyrev and Tschinkel 1998] V. V. Batyrev and Y. Tschinkel, “Tamagawa numbers of polarized
algebraic varieties”, pp. 299-340 in Nombre et répartition de points de hauteur bornée (Paris, 1996),
edited by E. Peyre, Astérisque 251, Société Mathématique de France, Paris, 1998. MR 2000d:11090
Zb1 0926.11045

[Beck and Robins 2007] M. Beck and S. Robins, Computing the continuous discretely: integer-point
enumeration in polyhedra, Springer, New York, 2007. MR 2007h:11119 Zbl 1114.52013

[Beltrametti and Di Termini 2003] M. C. Beltrametti and S. Di Termini, “Higher dimensional
polarized varieties with non-integral nef value”, Adv. Geom. 3:3 (2003), 287-299. MR 2004j:14006
Zbl 1053.14061

[Beltrametti and Sommese 1994] M. C. Beltrametti and A. J. Sommese, “Some effects of the spectral
values on reductions”, pp. 31-48 in Classification of algebraic varieties (L’ Aquila, 1992), edited by
C. Ciliberto et al., Contemp. Math. 162, Amer. Math. Soc., Providence, RI, 1994. MR 95d:14006
Zbl 0829.14003

[Beltrametti and Sommese 1995] M. C. Beltrametti and A. J. Sommese, The adjunction theory of
complex projective varieties, de Gruyter Expositions in Mathematics 16, de Gruyter, Berlin, 1995.
MR 96f£:14004 Zbl 0845.14003

[Beltrametti et al. 1992] M. C. Beltrametti, M. L. Fania, and A. J. Sommese, “On the discriminant
variety of a projective manifold”, Forum Math. 4:6 (1992), 529-547. MR 93k:14049 Zb10780.14023


http://www.jucs.org/jucs_1_12/a_novel_type_of
http://www.jucs.org/jucs_1_12/a_novel_type_of
http://msp.org/idx/mr/97c:52028
http://msp.org/idx/zbl/0943.68171
http://dx.doi.org/10.1287/moor.1110.0510
http://dx.doi.org/10.1287/moor.1110.0510
http://msp.org/idx/mr/2012j:90103
http://msp.org/idx/zbl/1246.90107
http://msp.org/idx/mr/2003j:52001
http://msp.org/idx/zbl/1014.52001
http://www.ams.org/distribution/mmj/vol7-2-2007/abst7-2-2007.html#batyrev-nill
http://www.ams.org/distribution/mmj/vol7-2-2007/abst7-2-2007.html#batyrev-nill
http://msp.org/idx/mr/2008g:52018
http://msp.org/idx/zbl/1134.52020
http://dx.doi.org/10.1090/conm/452/08770
http://msp.org/idx/mr/2009m:14059
http://msp.org/idx/zbl/1161.14037
http://msp.org/idx/mr/2000d:11090
http://msp.org/idx/zbl/0926.11045
http://dx.doi.org/10.1007/978-0-387-46112-0
http://dx.doi.org/10.1007/978-0-387-46112-0
http://msp.org/idx/mr/2007h:11119
http://msp.org/idx/zbl/1114.52013
http://dx.doi.org/10.1515/advg.2003.017
http://dx.doi.org/10.1515/advg.2003.017
http://msp.org/idx/mr/2004j:14006
http://msp.org/idx/zbl/1053.14061
http://dx.doi.org/10.1090/conm/162/01526
http://dx.doi.org/10.1090/conm/162/01526
http://msp.org/idx/mr/95d:14006
http://msp.org/idx/zbl/0829.14003
http://dx.doi.org/10.1515/9783110871746
http://dx.doi.org/10.1515/9783110871746
http://msp.org/idx/mr/96f:14004
http://msp.org/idx/zbl/0845.14003
http://dx.doi.org/10.1515/form.1992.4.529
http://dx.doi.org/10.1515/form.1992.4.529
http://msp.org/idx/mr/93k:14049
http://msp.org/idx/zbl/0780.14023

Polyhedral adjunction theory 2445

[Birkar et al. 2010] C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, “Existence of minimal
models for varieties of log general type”, J. Amer. Math. Soc. 23:2 (2010), 405-468. MR 2011f:14023
7Zbl 1210.14019

[Curran and Cattani 2007] R. Curran and E. Cattani, “Restriction of A-discriminants and dual defect
toric varieties”, J. Symbolic Comput. 42:1-2 (2007), 115-135. MR 2007j:14076 Zbl 1167.14326

[Debarre 2003] O. Debarre, “Fano varieties”, pp. 93—132 in Higher dimensional varieties and rational
points (Budapest, 2001), edited by K. J. Boroczky et al., Bolyai Soc. Math. Stud. 12, Springer, Berlin,
2003. MR 2004g:14045 Zbl 0939.14022

[Di Rocco 2006] S. Di Rocco, “Projective duality of toric manifolds and defect polytopes”, Proc.
London Math. Soc. (3) 93:1 (2006), 85-104. MR 2007d:14093 Zbl 1098.14039

[Dickenstein and Nill 2010] A. Dickenstein and B. Nill, “A simple combinatorial criterion for
projective toric manifolds with dual defect”, Math. Res. Lett. 17:3 (2010), 435-448. MR 2011£:52019
Zbl 1243.52010

[Dickenstein et al. 2007] A. Dickenstein, E. M. Feichtner, and B. Sturmfels, “Tropical discriminants”,
J. Amer. Math. Soc. 20:4 (2007), 1111-1133. MR 2008j:14095 Zbl 1166.14033

[Dickenstein et al. 2009] A. Dickenstein, S. Di Rocco, and R. Piene, “Classifying smooth lattice
polytopes via toric fibrations”, Adv. Math. 222:1 (2009), 240-254. MR 2010d:52027 Zbl 1193.14065

[Eppstein and Erickson 1999] D. Eppstein and J. Erickson, “Raising roofs, crashing cycles, and
playing pool: applications of a data structure for finding pairwise interactions”, Discrete Comput.
Geom. 22:4 (1999), 569-592. MR 2000i:68185 Zbl 0946.68147

[Esterov 2010] A. Esterov, “Newton polyhedra of discriminants of projections”, Discrete Comput.
Geom. 44:1 (2010), 96-148. MR 2011j:52029 Zbl 05723617

[Fania and Sommese 1989] M. L. Fania and A. J. Sommese, “On the projective classification of
smooth n-folds with n even”, Ark. Mat. 27:2 (1989), 245-256. MR 90j:14051 Zbl 0703.14005

[Fujita 1987] T. Fujita, “On polarized manifolds whose adjoint bundles are not semipositive”, pp.
167-178 in Algebraic geometry (Sendai, 1985), edited by T. Oda, Adv. Stud. Pure Math. 10,
Kinokuniya/North-Holland, Tokyo/Amsterdam, 1987. MR 89d:14006 Zbl 0659.14002

[Fujita 1992] T. Fujita, “On Kodaira energy and adjoint reduction of polarized manifolds”, Manu-
scripta Math. 76:1 (1992), 59-84. MR 93i:14032 Zbl 0766.14027

[Fujita 1996] T. Fujita, “On Kodaira energy of polarized log varieties”, J. Math. Soc. Japan 48:1
(1996), 1-12. MR 97b:14018 Zbl 0914.14001

[Fujita 1997] T. Fujita, “On Kodaira energy and adjoint reduction of polarized threefolds”, Manu-
scripta Math. 94:2 (1997), 211-229. MR 992a:14007 Zbl 0969.14001

[Fulton 1993] W. Fulton, Introduction to toric varieties: the William H. Roever lectures in geometry,
Annals of Mathematics Studies 131, Princeton University Press, Princeton, NJ, 1993. MR 94g:14028
Zbl 0813.14039

[Gelfand et al. 1994] 1. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants,
and multidimensional determinants, Birkhduser, Boston, 1994. MR 95¢:14045 Zbl 0827.14036

[Haase and Schicho 2009] C. Haase and J. Schicho, “Lattice polygons and the number 2i + 77, Amer:
Math. Monthly 116:2 (2009), 151-165. MR 2010b:52017 Zbl 1193.14066

[Haase et al. 2009] C. Haase, B. Nill, and S. Payne, “Cayley decompositions of lattice polytopes and
upper bounds for 2*-polynomials”, J. Reine Angew. Math. 637 (2009), 207-216. MR 2011d:52022
Zbl 1185.52012

[Joswig et al. 2009] M. Joswig, B. Miiller, and A. Paffenholz, “polymake and lattice polytopes”, pp.
491-502 in 21st International Conference on Formal Power Series and Algebraic Combinatorics


http://dx.doi.org/10.1090/S0894-0347-09-00649-3
http://dx.doi.org/10.1090/S0894-0347-09-00649-3
http://msp.org/idx/mr/2011f:14023
http://msp.org/idx/zbl/1210.14019
http://dx.doi.org/10.1016/j.jsc.2006.02.006
http://dx.doi.org/10.1016/j.jsc.2006.02.006
http://msp.org/idx/mr/2007j:14076
http://msp.org/idx/zbl/1167.14326
http://msp.org/idx/mr/2004g:14045
http://msp.org/idx/zbl/0939.14022
http://dx.doi.org/10.1017/S0024611505015686
http://msp.org/idx/mr/2007d:14093
http://msp.org/idx/zbl/1098.14039
http://intlpress.com/site/pub/pages/journals/items/mrl/content/vols/0017/0003/00020492
http://intlpress.com/site/pub/pages/journals/items/mrl/content/vols/0017/0003/00020492
http://msp.org/idx/mr/2011f:52019
http://msp.org/idx/zbl/1243.52010
http://dx.doi.org/10.1090/S0894-0347-07-00562-0
http://msp.org/idx/mr/2008j:14095
http://msp.org/idx/zbl/1166.14033
http://dx.doi.org/10.1016/j.aim.2009.04.002
http://dx.doi.org/10.1016/j.aim.2009.04.002
http://msp.org/idx/mr/2010d:52027
http://msp.org/idx/zbl/1193.14065
http://dx.doi.org/10.1007/PL00009479
http://dx.doi.org/10.1007/PL00009479
http://msp.org/idx/mr/2000i:68185
http://msp.org/idx/zbl/0946.68147
http://dx.doi.org/10.1007/s00454-010-9242-7
http://msp.org/idx/mr/2011j:52029
http://msp.org/idx/zbl/05723617
http://dx.doi.org/10.1007/BF02386374
http://dx.doi.org/10.1007/BF02386374
http://msp.org/idx/mr/90j:14051
http://msp.org/idx/zbl/0703.14005
http://msp.org/idx/mr/89d:14006
http://msp.org/idx/zbl/0659.14002
http://dx.doi.org/10.1007/BF02567747
http://msp.org/idx/mr/93i:14032
http://msp.org/idx/zbl/0766.14027
http://dx.doi.org/10.2969/jmsj/04810001
http://msp.org/idx/mr/97b:14018
http://msp.org/idx/zbl/0914.14001
http://dx.doi.org/10.1007/BF02677848
http://msp.org/idx/mr/99a:14007
http://msp.org/idx/zbl/0969.14001
http://msp.org/idx/mr/94g:14028
http://msp.org/idx/zbl/0813.14039
http://dx.doi.org/10.1007/978-0-8176-4771-1
http://dx.doi.org/10.1007/978-0-8176-4771-1
http://msp.org/idx/mr/95e:14045
http://msp.org/idx/zbl/0827.14036
http://dx.doi.org/10.4169/193009709X469913
http://msp.org/idx/mr/2010b:52017
http://msp.org/idx/zbl/1193.14066
http://dx.doi.org/10.1515/CRELLE.2009.096
http://dx.doi.org/10.1515/CRELLE.2009.096
http://msp.org/idx/mr/2011d:52022
http://msp.org/idx/zbl/1185.52012
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/view/dmAK0141

2446 Sandra Di Rocco, Christian Haase, Benjamin Nill and Andreas Paffenholz

(FPSAC 2009) (Hagenberg, 2009), edited by C. Krattenthaler et al., Assoc. Discrete Math. Theor.
Comput. Sci., Nancy, 2009. MR 2011g:52028 arXiv 0902.2919

[Morrison and Stevens 1984] D. R. Morrison and G. Stevens, “Terminal quotient singularities
in dimensions three and four”, Proc. Amer. Math. Soc. 90:1 (1984), 15-20. MR 85a:14004
Zbl 0536.14003

[Mustatd 2002] M. Mustatd, “Vanishing theorems on toric varieties”, Tohoku Math. J. (2) 54:3 (2002),
451-470. MR 2003e:14013 Zbl 1092.14064

[Nakamura 1997] S. Nakamura, “On the classification of the third reduction with a spectral value
condition”, J. Math. Soc. Japan 49:4 (1997), 633-646. MR 98g:14016 Zbl 0932.14023

[Nill 2005] B. Nill, “Gorenstein toric Fano varieties”, Manuscripta Math. 116:2 (2005), 183-210.
MR 2005k:14110 Zbl 1067.14052

[Nill 2008] B. Nill, “Lattice polytopes having h*-polynomials with given degree and linear coeffi-
cient”, European J. Combin. 29:7 (2008), 1596-1602. MR 2009{:52029 Zbl 1149.52013

[Nill and Ziegler 2011] B. Nill and G. M. Ziegler, “Projecting lattice polytopes without interior lattice
points”, Math. Oper. Res. 36:3 (2011), 462-467. MR 2012k:52034 Zbl 1243.52012

[Ogata 2007] S. Ogata, “Projective normality of nonsingular toric varieties of dimension three”,
preprint, 2007. arXiv 0712.0444

[Sommese 1986] A. J. Sommese, “On the adjunction theoretic structure of projective varieties”,
pp. 175-213 in Complex analysis and algebraic geometry (Gottingen, 1985), edited by H. Grauert,
Lecture Notes in Math. 1194, Springer, Berlin, 1986. MR 87m:14049 Zbl 0601.14029

[Stanley 1993] R. P. Stanley, “A monotonicity property of h-vectors and h*-vectors”, European J.
Combin. 14:3 (1993), 251-258. MR 94£:52016 Zbl 0799.52008

[Ziegler 1995] G. M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics 152, Springer,
New York, 1995. MR 96a:52011 Zbl 0823.52002

Communicated by Bernd Sturmfels
Received 2012-06-27 Revised 2012-11-02 Accepted 2013-03-16

dirocco@math.kth.se Department of Mathematics, KTH, SE-10044 Stockholm,
Sweden

haase@math.uni-frankfurt.de Institut fiir Mathematik, Goethe-Universitit Frankfurt,
Robert-Mayer-Str. 10, D-60325 Frankfurt, Germany

nill@math.su.se Department of Mathematics, Stockholm University,
SE 106 91 Stockholm, Sweden

paffenholz@mathematik.tu-darmstadt.de
Fachbereich Mathematik, Technische Universitat Darmstadt,
Dolivostr. 15, D-64293 Darmstadt, Germany

mathematical sciences publishers :'msp


http://msp.org/idx/mr/2011g:52028
http://msp.org/idx/arx/0902.2919
http://dx.doi.org/10.2307/2044659
http://dx.doi.org/10.2307/2044659
http://msp.org/idx/mr/85a:14004
http://msp.org/idx/zbl/0536.14003
http://dx.doi.org/10.2748/tmj/1113247605
http://msp.org/idx/mr/2003e:14013
http://msp.org/idx/zbl/1092.14064
http://dx.doi.org/10.2969/jmsj/04940633
http://dx.doi.org/10.2969/jmsj/04940633
http://msp.org/idx/mr/98g:14016
http://msp.org/idx/zbl/0932.14023
http://dx.doi.org/10.1007/s00229-004-0532-3
http://msp.org/idx/mr/2005k:14110
http://msp.org/idx/zbl/1067.14052
http://dx.doi.org/10.1016/j.ejc.2007.11.002
http://dx.doi.org/10.1016/j.ejc.2007.11.002
http://msp.org/idx/mr/2009f:52029
http://msp.org/idx/zbl/1149.52013
http://dx.doi.org/10.1287/moor.1110.0503
http://dx.doi.org/10.1287/moor.1110.0503
http://msp.org/idx/mr/2012k:52034
http://msp.org/idx/zbl/1243.52012
http://msp.org/idx/arx/0712.0444
http://dx.doi.org/10.1007/BFb0077004
http://msp.org/idx/mr/87m:14049
http://msp.org/idx/zbl/0601.14029
http://dx.doi.org/10.1006/eujc.1993.1028
http://msp.org/idx/mr/94f:52016
http://msp.org/idx/zbl/0799.52008
http://dx.doi.org/10.1007/978-1-4613-8431-1
http://msp.org/idx/mr/96a:52011
http://msp.org/idx/zbl/0823.52002
mailto:dirocco@math.kth.se
mailto:haase@math.uni-frankfurt.de
mailto:nill@math.su.se
mailto:paffenholz@mathematik.tu-darmstadt.de
http://msp.org

ALGEBRA AND NUMBER THEORY 7:10 (2013)
dx.doi.org/10.2140/ant.2013.7.2447

Genericity and contragredience in the
local Langlands correspondence

Tasho Kaletha

Adams, Vogan, and D. Prasad have given conjectural formulas for the behavior
of the local Langlands correspondence with respect to taking the contragredient
of a representation. We prove these conjectures for tempered representations
of quasisplit real K-groups and quasisplit p-adic classical groups (in the sense
of Arthur). We also prove a formula for the behavior of the local Langlands
correspondence for these groups with respect to changes of the Whittaker data.

1. Introduction

The local Langlands correspondence is a conjectural relationship between certain
representations of the Weil or Weil-Deligne group of a local field F and finite sets,
or packets, of representations of a locally compact group arising as the F-points of
a connected reductive algebraic group defined over F. In characteristic zero, this
correspondence is known for F = R and F = C by the work of Langlands [1989]
and was later generalized and reinterpreted geometrically by Adams, Barbasch, and
Vogan [Adams et al. 1992]. Furthermore, many cases are known when F is a finite
extension of the field @, of p-adic numbers. Most notably, the correspondence over
p-adic fields is known when the reductive group is GL,, by work of Harris and Taylor
[2001] and Henniart [2000], and has very recently been obtained for quasisplit
symplectic and orthogonal groups by Arthur [2013]. Other cases include the group
Us by work of Rogawski, Sp, and GSp, by work of Gan-Takeda. For general con-
nected reductive groups, there are constructions of the correspondence for specific
classes of parameters, including the classical case of unramified representations,
the case of representations with Iwahori-fixed vector by work of Kazhdan-Lusztig,
unipotent representations by work of Lusztig, and more recently regular depth-
zero supercuspidal representations by [DeBacker and Reeder 2009], very cuspidal
representations [Reeder 2008], and epipelagic representations [Kaletha 2012].

MSC2010: primary 11S37; secondary 22E50.
Keywords: local Langlands correspondence, contragredient, generic, Whittaker data, L-packet,
classical group.
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The purpose of this paper is to explore how the tempered local Langlands
correspondence behaves with respects to two basic operations on the group. The
first operation is that of taking the contragredient of a representation. In a recent
paper, Adams and Vogan [2012] studied this question for the general (not just
tempered) local Langlands correspondence for real groups. They provide a con-
jecture on the level of L-packets for any connected reductive group over a local
field F and prove this conjecture when F is the field of real numbers. One of
our main results is the fact that this conjecture holds for the tempered L-packets
of symplectic and special orthogonal p-adic groups constructed by Arthur. In
fact, inspired by the work of Adams and Vogan, we provide a refinement of their
conjecture to the level of representations, rather than packets, for the tempered
local Langlands correspondence. We prove this refinement when G is either a
quasisplit connected real reductive group (more generally, quasisplit real K -group),
a quasisplit symplectic or special orthogonal p-adic group, and in the context of
the constructions of [DeBacker and Reeder 2009] and [Kaletha 2012]. In the real
case, the results of Adams and Vogan are a central ingredient in our argument. To
obtain our results, we exploit the internal structure of real L-packets using recent
results of Shelstad [2008]. In the case of quasisplit p-adic symplectic and special
orthogonal groups, we prove a result similar to that of Adams and Vogan using
Arthur’s characterization of the stable characters of L-packets on quasisplit p-adic
classical groups as twisted transfers of characters of GL,,. After that, the argument
is the same as for the real case. The constructions of [DeBacker and Reeder 2009]
and [Kaletha 2012] are inspected directly.

The second basic operation that we explore is that of changing the Whittaker
datum. To explain it, we need some notation. Let F be a local field and G a
connected reductive group defined over F. Let W’ be the Weil group of F if
F = R or the Weil-Deligne group of F if F is an extension of Q,. Then, if G
is quasisplit, it is expected that there is a bijective correspondence (¢, p) > 7.
The target of this correspondence is the set of equivalence classes of irreducible
admissible tempered representations. The source of this correspondence is the set
of pairs (¢, p) where ¢ : W — LG is a tempered Langlands parameter, and p is an
irreducible representation of the finite group mo(Cent(gp, f}) /Z (f})r). Here G is
the complex (connected) Langlands dual group of G, and G is the L-group of G.
However, it is known that such a correspondence can in general not be unique. In
order to hope for a unique correspondence, following Shahidi [1990, Section 9]
one must choose a Whittaker datum for G, which is a G (F)-conjugacy class of
pairs (B, ¥) where B is a Borel subgroup of G defined over F and ' is a generic
character of the F-points of the unipotent radical of B. Then it is expected that
there exists a bijection (¢, p) — 7 as above which has the property that 7 has a
(B, ¥)-Whittaker functional precisely when p = 1. Let us denote this conjectural
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correspondence by tp . We are interested in how it varies when one varies the
Whittaker datum (B, vr). We remark that there is a further normalization of ¢p y
that must be chosen. As described in [Kottwitz and Shelstad 2012, Section 4], it is
expected that there will be two normalizations of the local Langlands correspondence
for reductive groups, reflecting the two possible normalizations of the local Artin
reciprocity map. Related to these normalizations are the different normalizations
of the transfer factors A, A’, Ap and A, for ordinary and twisted endoscopy
described in [Kottwitz and Shelstad 2012, Section 5].

The reason we study these two questions together is that they appear to be related.
Indeed, when one studies how the pair (¢, p) corresponding to a representation 7
changes when one takes the contragredient of 7, one is led to consider tp y for
different Whittaker data.

We will now go into more detail and describe our expectation for the behavior
of the local Langlands correspondence with respect to taking contragredient and
changing the Whittaker datum. We emphasize that we claim no originality for
these conjectures. Our formula in the description of the contragredient borrows
greatly from the paper of Adams and Vogan, as well as from a conversation with
Robert Kottwitz, who suggested taking the contragredient of p. After the paper
was written, we were informed by Dipendra Prasad that an equation closely related
to (1) is stated as a conjecture in [Gan, Gross, and Prasad 2012, Section 9], and that
moreover (2) is part of a more general framework of conjectures currently being
developed by him under the name “relative local Langlands correspondence”. We
refer the reader to the draft [Prasad 2012].

We continue to assume that F is either real or p-adic, and G is a quasisplit
connected reductive group defined over F. Fix a Whittaker datum (B, ). For
any Langlands parameter ¢ : W' — LG, let S, = Cent(gp, G). The basic form of
the expected tempered local Langlands correspondence is a bijection (g y from
the set of pairs (¢, p), where ¢ is a tempered Langlands parameter and p is an
irreducible representation of 7o (S,/Z (G)r) to the set of equivalence classes of irre-
ducible admissible tempered representations. A refinement of this correspondence
is obtained when one allows p to be an irreducible representation of 7((S,) rather
than its quotient 7o(S,/Z (é)r). The right-hand side is then the set of equivalence
classes of tuples (G, &, u, ), where £ : G — G’ is an inner twist, u € Z'(F, G)
is an element with the property £ “'o (£) = Int(u(c)) for all o € T, and 7 is an
irreducible admissible tempered representation of G'(F). The triples (G’, &, u)
are called pure inner twists of G, and the purpose of this refined version of the
correspondence is to include connected reductive groups which are not quasisplit.
The idea of using pure inner forms is due to Vogan, and one can find a formulation
of this refinement of the correspondence in [Vogan 1993] or [DeBacker and Reeder
2009, Section 3]. A further refinement is obtained by allowing p to be an irreducible



2450 Tasho Kaletha

algebraic representation of the complex algebraic group §(p =S8,/[S,N Ggerl°. The
right-hand side then is the set of equivalence classes of tuples (G’, &, b, 7), where
£:G — G’ is an inner twist and b is a basic element of Z' (W, G(L)), where L is
the completion of the maximal unramified extension of F, and where b gives rise
to & as in [Kottwitz 1997]. This further refinement was introduced by Kottwitz in
an attempt to include all connected reductive groups into the correspondence (it is
known that not every connected reductive group is a pure inner form of a quasisplit
group). Indeed, when the center of G is connected, all inner forms of G come from
basic elements of Z' (W, G(L)). Moreover, one can reduce the general case to that
of connected center. An exposition of this formulation of the correspondence can
be found in [Kaletha 2011].

We now let ¢  denote any version of the above conjectural correspondence,
normalized so that ¢ y (¢, p) 18 (B, ¥)-generic precisely when p = 1. The set of
Whittaker data for G is a torsor for the abelian group G,q(F)/G(F). Dualizing
Langlands’ construction of a character on G (F') for each element of H w, z (G)),
one obtains from each element of G,q(F) / G (F) a character on the finite abelian
group ker(H (W, Z(Gbc)) — HY(W, Z(G))) This groups accepts a map from
m0(Sp/Z (G)T) for every Langlands parameter ¢. In this way, given a pair of
Whittaker data to and w’, the element of G,q(F)/G(F) which conjugates to to v’
provides a character on (S, / Z(G)F), hence also on my(S,) and _S_’(p. We denote
this character by (tv, tv’). Then we expect that

lm’(‘ﬂv p):l'm(va®(mv m/)€)7 (1)
where € = 1 if ¢, and 1y are compatible with endoscopic transfer via the transfer
factors A’ or A’y, and € = —1 if 1, and ¢, are compatible endoscopic transfer via

the transfer factors A or Ap.

To describe how we expect ¢ y to behave with respect to taking contragredients,
we follow [Adams and Vogan 2012] and consider the Chevalley involution on G: As
is shown in [Adams and Vogan 2012], there exists a canonical element of Out(é)
which contains all automorphisms of G that act as inversion on some maximal torus.
This canonical element provides a canonical G- conjugacy class of L- automorphlsms

of LG as follows. Fix a I'-invariant sphttlng of G and let C € Aut(G) be the unlque
lift of the canonical element of Out(G) which sends the fixed splitting of G to
its opposite. Then C commutes with the action of T, and we put £C to be the
automorphism of GxW given by C xid. If we change the splitting of G, there
exists [Kottwitz 1984, Corollary 1.7] an element g € G" which conjugates it to
the old splitting. This element also conjugates the two versions of C, and hence
also the two versions of “C. We conclude that é—conjugaoy class of £C is indeed
canonical. Thus, for any Langlands parameter ¢ : W’ — LG, we have a well-defined
(up to equivalence) Langlands parameter “C o ¢. The automorphism C restricts to
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an isomorphism S, — Si¢,, and for each representation p of §¢ we can consider
the representation p o Clof § Lcop- When ¢ is tempered, we expect

15y (@, p) =1py-1("Cogp, p 0 C7). )

For this formula it is not important whether ¢  is normalized with respect to the
classical or Deligne’s normalization of the local Artin map, as long as tp -1 is
normalized in the same way.

We will now briefly describe the contents of this paper. In Section 3, we recall
the fundamental results of Arthur and Shelstad on the endoscopic classification of
tempered representations of real and classical p-adic groups. In Section 4 we will
describe more precisely the construction of the character (v, tv’) alluded to in this
introduction, and will then prove (1). Section 5 is devoted to the proof of (2) for
tempered representations of quasisplit real K-groups and quasisplit symplectic and
special orthogonal p-adic groups. Finally, in Section 6 we consider depth-zero and
epipelagic L-packets on general p-adic groups and prove (2) for those cases as well.

The arguments in Sections 4 and 5 are quite general and we expect them to
provide a proof of (1) and (2) for other p-adic groups besides symplectic and
orthogonal, as soon as Arthur’s work has been extended to them. For example, we
expect that the case of unitary groups will follow directly from our arguments.

2. Notation

Throughout this paper, F will denote either the field R or a finite extension of the
field Q,. We write W for the absolute Weil group of F, and I" for the absolute
Galois group. We let W’ stand for the Weil group of F' when F = R and for the
Weil-Deligne group of F' if F' is an extension of Q.

Given a connected reductive group G defined over F, we will write G for the
complex connected Langlands dual group of G, and G for the L-group. Given a
maximal torus § C G, we write R(S, G) for the set of roots of S in G, N(S, G)
for the normalizer of S in G, and (S, G) for the Weyl group N (S, G)/S. We will
write Z(G) for the center of G, and G and G,q for the simply connected cover
and the adjoint quotient of the derived subgroup Gger of G.

Given a finite group ¥, we will write Irr(&) for the set of isomorphism classes
of irreducible representations of . The subset consisting of the one-dimensional
representations will be called 9. Given a complex algebraic group &, we will write
Irr (&) for the set of isomorphism classes of irreducible algebraic representations
of &.

We will use freely the language and basic constructions in the theory of endoscopy.
We refer the reader to [Langlands and Shelstad 1987] and [Kottwitz and Shelstad
1999] for the foundations of the theory.
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3. Results of Arthur and Shelstad

In this section we will recall the results of Arthur and Shelstad on endoscopic
transfer and its inversion, which will be an essential ingredient in our proofs.
The formulation in the real case is slightly more complicated due to the fact that
semisimple simply connected real groups can have nontrivial Galois cohomology,
so we will describe the p-adic case first.

Let F be a p-adic field. Arthur’s results apply to groups G which are either the
symplectic group, or the split special odd orthogonal group, or the split or quasisplit
special even orthogonal groups, as well as to products of such groups with copies
of GL,,. If G is such a group, Arthur fixes a maximal compact subgroup K of G(F)
and denotes by #(G) the Hecke algebra of smooth, compactly supported, right and
left K -finite functions on G (F'). To describe the results of his that we’ll need, let us
first assume that G has no even orthogonal factors, as the case of even orthogonal
groups is slightly more subtle. Fix a Whittaker datum (B, ). Let ¢ : W' — LG be
a tempered Langlands parameter and put &, = mo(Cent(gp, f}) / Z(G)F). Arthur’s
recent results [2013, Section 2] imply that there exists an L-packet I1, of represen-
tations of G (F) and a canonical bijection

g,y Irr($Fy) — Iy,  pr>m,,

which sends the trivial representation to a (B, i)-generic representation. This
bijection can also be written as a pairing (-, -) : ¥, x I1, — C, and this is the
language adopted by Arthur. A semisimple element s € Cent(¢p, G) gives rise to
an endoscopic datum ¢ = (H, %, s, &) for G. We briefly recall the construction,
following [Kottwitz and Shelstad 1999, Section 2]: H= G?, 9% =H - @(W), and &
is the inclusion map % — £G. The group % can be shown to be a split extension of
W by H, and hence provides a homomorphism I' — Out(I:I ). The group H is the
unique quasisplit group with complex dual H for which the homomorphism I' —
Out(H) given by the rational structure coincides under the canonical isomorphism
Out(H) = Out(ﬁ ) with the homomorphism I' — Out(ﬁ ) given by #. In addition
to the datum (H, #, s, £), Arthur chooses [2013, Section 1.2] an L-isomorphism
€y, 1 ¥ — LH. By construction, ¢ factors through & and we obtain ¢; = &y, 0 ¢
which is a Langlands parameter for H. The group H is again of the same type as
G —a product of symplectic, orthogonal, and general linear groups (it can also
have even orthogonal factors, which we will discuss momentarily). Associated
to the Langlands parameter ¢; is an L-packet on H, whose stable character we
denote by S®,, (this is the stable form (2.2.2) in [Arthur 2013]). Let 3. denote
the pair (H, £g,). This is strictly speaking not a z-pair in the sense of [Kottwitz
and Shelstad 1999, Section 2.2], because H will in general not have a simply
connected derived group, but this will not cause any trouble. Let A[v, ¢, 3.] denote
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the Whittaker normalization of the Langlands—Shelstad transfer factor. Arthur
shows that if f € #(G) and f* € #(H) have A[y, ¢, 3.]-matching orbital integrals,
then

SO (f) =D (s, 0)On, (/).

pelr(¥,)

The group ¥, is finite and abelian, and Irr(¥,,) is the set of characters of ¥, which
is also a finite abelian group. Performing Fourier-inversion on these finite abelian
groups one obtains

Or, () =%yl D {5, 0)SOps (f*).

sedy

This formula is the inversion of endoscopic transfer in the p-adic case.

If G is an even orthogonal group, the following subtle complication occurs: the
group Z/27Z acts on both G and G by outer automorphisms, and Theorem 8.4.1
of [Arthur 2013] associates to a given tempered Langlands parameter ¢ not one,
but two L-packets I, 1 and IT, ». Each of them comes with a canonical bijection
Lg,y,i - Ir($y) — I, ;, and for each p € Irr(¥,) the two representations ¢ . 1(0)
and ¢ y 2(p) are an orbit under the action of Z/2Z. For each ¢, there is a dichotomy:
either Iy, | =TIy >, and Z/27 acts trivially on this L-packet; or I, N 11y, > = &,
and the action of 1 € Z/27 interchanges I, | and I1, ». In this situation, we will
take ¢p y (p) to mean the pair of representations {tp y.1(0), t5,y,2(p)}. Following
Arthur, we will use the notation %(G) to denote the subalgebra of Z/27Z-fixed
functions in #(G) if G is a p-adic even orthogonal group. For all other simple
groups G, we set H(G) equal to #(G). If G is a product of simple factors G;,
then §€(G) is determined by §€(G,-). All constructions, as well as the two character
identities displayed above, continue to hold, but only for functions f € 9(G). Notice
thaton f € §€(G), the characters of the two representations ¢t . 1(0) and tg y 2(p)
evaluate equally, and moreover f* € #(H), so the above character relations do
indeed make sense.

We will now describe the analogous formulas in the real case, which are results
of Shelstad [2008]. Let G be a quasisplit connected reductive group defined over
F =R and fix a Whittaker datum (B, ). Let ¢ : W — LG be a tempered Langlands
parameter, and &, as above. One complicating factor in the real case is that, while
there is a canonical map

[Ty, — Irr(%y),

it is not bijective, but only injective. It was observed by Adams, Barbasch, and
Vogan that, in order to obtain a bijective map, one must replace I1, by the disjoint
union of multiple L-packets. All these L-packets correspond to ¢, but belong to
different inner forms of G. The correct inner forms to take are the ones parametrized
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by H'(F, G.). The disjoint union of these inner forms is sometimes called the
K -group associated to G, and denoted XG. For an exposition on K-groups we refer
the reader to [Arthur 1999, Section 2] and [Shelstad 2008]. Writing II,, for the
disjoint union of L-packets over all inner forms in the K -group, one now has again
a bijection

I, — Irr(¥,)

(see [Shelstad 2008, Section 11]) whose inverse we will denote by ¢ y, and we
denote by (-, -) again the pairing between ¥, and II, given by this bijection.
Note that Shelstad uses a variant of ¥, involving the simply connected cover of G.
Since we are only considering quasisplit K -groups (that is, those which contain a
quasisplit form), this variant will not be necessary and the group ¥, will be enough.

From a semisimple element s € Cent(gp, é) we obtain an endoscopic datum e
by the same procedure as in the p-adic case just described. A second complicat-
ing factor is that, contrary to p-adic case discussed above, there will in general
be no L-isomorphism # — LH. Instead, one chooses a z-extension H; of H.
Then there exists an L-embedding &y, : % — LH,. We let 3¢ denote the datum
(H1,&n,). Then ¢; =&p, o is a tempered Langlands parameter for H; and Shelstad
[2008, Section 11] shows that for any two functions f € #(XG) and f* € %(H;)
whose orbital integrals are A[, ¢, 3.]-matching, one has

SO (f)= Y (5.0)0x,(f)

p€elrr($y)
and

Or, () =1%o D {5, 0)SO (f*).

sedy

In the following sections, we will not use the notation XG for a K -group and the
boldface symbols for objects associated with it. Rather, we will treat it like a regular
group and denote it by G, in order to simplify the statements of the results. We also
note that the finite abelian groups &, occurring here are in fact 2-groups, so we
may remove the complex conjugation from (s, p) in the inversion formulas.

4. Change of Whittaker data

Let G be a quasisplit connected reductive group defined over a real or p-adic field F.
Given a finite abelian group A, we will write AP for its group of characters. To
save notation, we will write Z for the center of G, and Z. for the center of G..

Lemma 4.1. There exists a canonical injection (bijection, if F is p-adic)

Gai(F)/G(F) — ker(H' (W, Z) - H' (W, 2))".
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Proof. We will write G(F)P? for the set of continuous characters on G(F) which
are trivial on the image of G (F'). Recall that Langlands [1989] has constructed
surjective homomorphisms H' (W, Z) — G(F)? and H'(W, Zs.) — Gau(F)P
(see [Borel 1979, Section 10] for an exposition of the construction). If F is p-adic,
they are also bijective and the statement follows right away, because the finite
abelian group G,q(F)/G(F) is Pontryagin dual to

ker(Ga(F)P — G(F)P). 3)

If F is real, the kf:rnel of HY(W, ZC) — Gad(F)D maps onto the kernel of
H'(W, 2) — G(F)P (this is obvious from the reinterpretation of these homo-

morphisms given in [Kaletha 2012, Section 3.5]). This implies that the kernel
of

H'(W, Ze) > H'(W, )
surjects onto (3). O

Let 1o, 1’ be two Whittaker data for G. We denote by (tv, to’) the unique element
of G,q(F)/G(F) which conjugates to to ro’. We view this element as a character
on the finite abelian group

ker(H'(W, Zy) — H'(W, 2)) )

via Lemma 4.1. Given a Langlands parameter ¢ : W — LG, we consider the
composition

H'W,9,G)— H' (W, ¢, Gag) > H\(W, Z.),

where HO(W, ¢, —) denotes the set of invariants of W with respect to the action
given by ¢. This map is continuous, hence it kills the connected component of the
algebraic group H°(W, ¢, G). Furthermore, it kills H°(W, Z). Thus we obtain
a map

7o(Cent(p(W), G)/Z(G)T) — ker(H' (W, Zy) — H'(W, 2)).
Composing this map with the map
70(Sy/ Z(G)") — 7o(Cent(p(W), G)/Z(G)T)

induced by the inclusion S, — Cent(¢(W), é), we see that (to, ') gives rise to a
character on nO(S(p/Z(G)F), which we again denote by (tv, 1v’).

Now let s € S,. Consider the endoscopic datum ¢ = (H, ¥, s, &) determined
by s, as described in Section 3. Let 3, be any z-pair for e. We denote by A[tw, ¢, 3.]
the Langlands—Shelstad transfer factor [Langlands and Shelstad 1987], normalized
with respect to tv (whose definition we will briefly recall in the following proof).
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Lemma 4.2.
A, e, 3] =((tv, w'), s)- A, e, 3]

Proof. Write to = (B, ). Let spl = (T, B, {X,}) be a splitting of G containing the
Borel subgroup B given by tv and v : FF — C* be a character with the property
that spl and i give rise to v as in [Kottwitz and Shelstad 1999, Section 5.3]. Then
Altv, ¢, 3.] is defined as the product

6(‘/G,I‘Iv 1//F) : A[Splv e’ 52]7

where A[spl, ¢, 3.] is the normalization of the transfer factor relative to the splitting
spl as constructed in [Langlands and Shelstad 1987, Section 3.7] (where it is denoted
by Ap), and € (Vg u, ¥F) is the epsilon factor (with Langlands’ normalization; see
for example [Tate 1979, (3.6)]) of the degree-zero virtual I" representation

Vo.n =X*(T)®C—-X*(T")®C,

where T# is any maximally split maximal torus of H.
Let g € G,q(F) be an element with Ad(g)to = ’. Put spl’ = Ad(g)spl. Then
spl’ and 5 give rise to the Whittaker datum tv’, and consequently we have

Alw', e, 31 =€(Vo,u, ¥r) - Alspl', ¢, 3cl.

letz=g""0(g) € H'(F, Z(G)). Choose any maximal torus S of G coming
from H (that is, S is the image of an admissible embedding into G of a maximal
torus of H). According to [Langlands and Shelstad 1987, Section 2.3], we have

1

Alspl, e, 3¢] = (z, s)Alspl, e, 3¢l

where z is mapped under HY(F,Z(Gs)) — H'(F, Si) and s is mapped under
Z(H)' — ST — [S,4]", and the pairing uses Tate—Nakayama duality. The number
(z, s) can also be obtained by mapping s under

HO(W, Z(H)) = H' (W, ¢, G) > H'(W, ¢, Gag) = H'(W, Z(G.))

and pamng it with z, usmg the duahty between H'! (F,Z(Gg)) = H! (F, Ssc = Sad)
and H'(W, Z(GSC)) =H\(W, SSC — Sad) Using [Kaletha 2012, Section 3.5], one
sees that this is the same as the number {(tv, 10'), s). O

Theorem 4.3. Let G be a quasisplit real K -group, or a quasisplit symplectic or spe-
cial orthogonal p-adic group. For any tempered Langlands parameter ¢ : W' — LG
and every p € Irr($,), we have

o (9, ) =t (@, p ® (10, 0) 1),

provided that vy, and 1y are normalized to satisfy the endoscopic character identities
with respect to the transfer factors Alvw, —, —] and A[w’, —, —].
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Proof. Fix a semisimple s € S,. As described in Section 3, the pair (¢, s5) gives
rise to an endoscopic datum ¢, and after a choice of a z-pair 3, = (Hj, &p,) for e, it
further gives rise to a Langlands parameter ¢, for H;. If the functions f € §€(G)
and f° e J(H;) have Afw, e, 3c]-matching orbital integrals, then by Lemma 4.2
the functions f and ((w, '), s) - f* have A[w’, ¢, 3.]-matching orbital integrals.
Thus

2208, 0)Ou, 0.0 () = ((10, 10), 5) SO (f*)

P
= <(ma m/)’ S) Z(S’ p>®tm(§0,p)(f)
P

=5, p® (10, 10')) Oy (o, ) (f)
P

=2 (8, P)O, (0. p@ (0,101 ()
o

where the sums run over p € Irr(¥,,). Since this is true for all s, Fourier inversion
gives the result. U

5. Tempered representations and their contragredient

In this section, we will prove formula (2) for quasisplit real K -groups and quasisplit
p-adic symplectic and special orthogonal groups. The bulk of the work lies in an
analysis of some properties of transfer factors. We refer the reader to [Langlands
and Shelstad 1987, Sections 2-3] and [Kottwitz and Shelstad 1999, Sections 3—4]
for the construction of transfer factors and the associated cohomological data.

Let F be R or a finite extension of Q,, and G a quasisplit connected reductive
group over F. We fix an F-splitting spl = (T B, {X4}) of G. We write G for the
complex dual of G and fix a splitting spl =(T, B, {X4}). We assume that the action
of Ton G preserves spl and that there is an isomorphism X, (T) X *(T) which
identifies the B-positive cone with the B- -positive cone. Let C be the Chevalley
involution on G which sends S’\pl to the opposite splitting [Adams and Vogan
2012, Section 2]. The automorphism C commutes with the action of I' and thus
Lc = C x idy is an L-automorphism of *G.

Consider a function ¢ : R(T, G) — F* which is invariant under the action
of Q(T,G) x {£1} on R(T, G) and equivariant under the action of I". Then
(T, B, {cy X,}) is another F-splitting of G, which we will denote by c - spl. Given
any maximal torus S C G and any Borel subgroup By containing S and defined over
F, the admissible isomorphism 7 — S which sends B to By transports c to a function
c: R(S, G) = F* which is again (Q(S, G) x {#1})-invariant and I'-equivariant.
Moreover, the latter function is independent of the choice of Bs (and also of B).
If A = (au)acr(s,c) is a set of a-data for R(S, G), then ¢ - A = (coGy)acRr(S.G) 1S
also a set of a-data.
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Let A denote the splitting invariant constructed in [Langlands and Shelstad 1987,
Section 2.3].

Lemma 5.1. A(S, A, c-spl) = A(S,c- A, spl).

Proof. We begin by recalling the construction of the splitting invariant. For a simple
root ¢ € R(T, G), let n(sxp I, SL; — G be the homomorphism determined by the

splitting spl. We put
01
Npl (So) = n(slpl (—1 0) '

For any w € Q(T', G) choose a reduced expression w = g, - - - S, and set

nspl(w) = nspl(sal) T nspl(sa,,)-

By [Springer 1981, Section 11.2.9], this product is independent of the choice of
reduced expression.

We choose a Borel subgroup Bs C G defined over F and containing S, and an
element 4 € G(F) such that Ad(h)(T, B) = (S, Bs). Then, foroc €' and s € S,
we have

Ad(h")[%s] = ¥s@7 Ad(h ") [s]

for some wg(o) € (T, G). Then A(S, A, spl) € H'(F, S) is the element whose
image under Ad(h~") is represented by the cocycle

o~ [ o @adme) nspiws)) -0k, (5)

a>0
(ws(o)o) ta<0

where o > 0 means that @ € R(T, G) is B-positive.
We now examine the relationship between ng, and n..sp. Recall the standard
triple (E, H, F) in Lie(SL,), where

01 1 0 00
E=loo] #=[ V] wma =[]0

The differential dnlsxpl sends (E, H, F) to (Xy, Hy, X_,), where H, =da" (1) and
X_o € g—q 1s determined by [ Xy, X_] = H,. On the other hand, the differential
dn™ sends (E, H, F) 10 (Cy - Xy Ho. ¢ X_g). Thus

né;'Sp‘=an10Ad[ oca Jol]
Cy

for an arbitrary choice of a square root of ¢,. It follows that

Nespl(Sa) = a’(cq) - Nspl (Sa)-
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Using induction and [Bourbaki 2002, Chapter VI, Section 1.6, Corollary 2], we
conclude that for any w € Q (7, G), we have

nespw) =[] @"(ca) npi(w).

a>0
wla<0

From this equation and the fact that any o € I" preserves the sets of B-positive and
B-negative roots, we see that

nesiws@) =[] @"(ca) npiws(e)).

a>0
(ws(0)o) la<0

The statement follows by comparing (5) for A(S, A, c¢-spl) and A(S, c- A, spl). U

Given a torus S defined over F, we will denote by —1 the homomorphism § — S
which sends s € S to s~!. It is of course defined over F. Its dual ©S — LS is given
by (s, w) — (s~!, w) and will also be denoted by —1. Given a maximal torus
S C G and a set of y-data X ={x, | @ € R(S, G)} for R(S, G), we denote by —
the set {x, "'l @ € R(S, G)}. This is also a set of y-data. It is shown in [Langlands
and Shelstad 1987, Section 2.6] that X provides a canonical é—conjugacy class of
L-embeddings “&y : LS — LG.

Lemma 5.2. Let S C G be a maximal torus defined over F, and let X be y-data for
R(S, G). Let L£x : 1S — LG be the canonical G-conjugacy class of embeddings
associated to X. Then the é-conjugacy classes of maps “&x o (—1) and “C o LE_x
are equal.

Remark. Intuitively, we can express the statement of Lemma 5.2 by the following
diagram, whose commutativity is to be understood up to G-conjugacy:

LG €, 1g

L%XT TLEX

g~ Lg

Proof. We choose a representative “£y within its é-conjugacy class by following
the constructions in [Langlands and Shelstad 1987, Section 2.6]. For this, we choose
a Borel subgroup defined over F and containing S. This provides an admissible
1s0m0rphlsm§ S—T.Forwe W, let og(w) € Q(T G) be defined by

E(Us) = g (y).

Then a representative of L&y is given by

Fex (s, w) = [E(9) ry y (w) ng (05 (w)), w],
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where r 3 B.x denotes the cochain r,, constructed in [Langlands and Shelstad 1987,
Section 2. 6] from the x-data X and the gauge p determined by B, and ng is the
section Q(T G) — N (T G) determined by the sphttmg spl as described in the
proof of the previous lemma. Using the fact that C acts by inversion on T and
[Adams and Vogan 2012, Lemma 5.8], we see that

FColex(s,w) =[E@) " ry yw) ™ ngilosw)™H ™, w].

One sees that r]_;;’X(w)_1 = rE’_X(w). Moreover, by [Adams and Vogan 2012,
Lemma 5.4] we have

nspi(os(w)™H™ = [t o)t ngi(os(w)),

wheret € T is any liftof p¥(—1) € Toa, p" being half the sum of the positive coroots.
We can choose t € T' by choosing arooti of —1 and puttingr = [ aV(i).
Then we see that aeR(T,B)

Leolex(s, w)=Ad(t) o Le_x o (—1)(s, w). O

Let 0 be an automorphism which preserves spl, and leta € H' (W, Z (G)). The
class a corresponds to a character w : G(F) — C*. Let 6 be the automorphism
dual to 6, which preserves s/\pl Note that § commutes with the action of I'. We will
write L0 for 0 x idy.

Let us recall some basic facts from [Kottwitz andAShelstad 1999, Section 1].
Let G! be the connected component of the group GY let T' =T NG, and let
B'=BNG!". Then G! is a reductive group and (T', B') is a Borel pair for it. The
set A(T', B') of B'-simple roots for 7" is the set of restrictions to 7! of the set
A(T, l§) of é-simple roots for 7. Moreover, the fibers of the restriction map

res: A(T, B) — A(T', BY)

are precisely the (9)-orbits in A(T, B). We denote the i 1mage of o under res by ores.
We can extend the pair (Tl, B! ) to a ["-splitting spl = (Tl, Bl, {Xq,.}) of G!
by setting for each o5 € A(fl, él)

Xoey = Z Xp-

BeA(T,B)

res=Clres
Since 6 commutes with T, the group G! and the splitting just constructed is
preserved by I'. Thus, G! x W is the L- ~group of a connected reductive group G!.
Moreover, since 6 also commutes with C, the automorphlsm C preserves the group
G and acts by inversion on its maximal torus T!'. Thus, Cisa Chevalley involution

for G'.
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Although it will not concern us, we want to remark that it is 1n general not true
that C sends the splitting spl to its 0pp0s1te Rather, it sends spl to the splitting of
G! constructed from the opposite of spl by the same procedure as above. That this
splitting differs from the opposite of spl1 is due to the fact that for ayes € R(T, G1),
the coroot H,, is not always the sum of Hg for all 8 in the I'-orbit corresponding

Ores

to ayes. In fact, we have

H,,. = Cq,, - Z Hp,

BeA(T,B)
Bres=0lres
where ¢, = 1 if a5 is of type Ry and ¢, = 2 if aeg 1S Of type Ry.

Lete=(H, s, ¥, &) be an endoscopic datum for (G, 6, a). Let (TH BH {XH})
be a I'-fixed splitting of H, and denote by CH the corresponding Chevalley involu-
tion of H and by LCH the corresponding L-automorphism of “H. Let 3, = (H|, £g,)
be a z-pair for e. The splitting of H provides a unique one for H, and the involutions
CHt and LCH restricted to H and “H equal C¥# and LCH.

We write “C (¢) for the quadruple (H,s', %', &'), where s’ = C(s™Y), % is
the same group as # but with the embedding H—> % composed with CH, and
g'=LC ol ok. We write LCH (3,) for the pair (H;, LCH o &p,).

Fact 5.3. The quadruple “C (¢) is an endoscopic datum for (G, 6~! a),and LCH (3¢)
is a z-pair for it. If ¢’ is an endoscopic datum for (G, 6, a) equivalent to ¢, then
Lc(¢') is equivalent to “C (¢). An isomorphism S — Sy from a maximal torus of
H to a maximal torus of G! is e-admissible if and only if it is “C (¢)-admissible.

Proof. The proof is straightforward, but we include it for the convenience of
the reader. We need to check [Kottwitz and Shelstad 1999, (2.1.1-2.1.4b)]. It is
clear that ¥’ remains a split extension of H by W. To check that s’ is 6 ~I_quasi-
semisimple, one observes that the automorphism Int(C(s~"))0H 1 is conjugate to
(Int(s)é?A)_1 by Co Int(s~!). The fact that & is an isomorphism onto its image is
inherited from &, and the image is

C@Eu)) =C(@

—¢(0
= Cen

Cent(Int(s) 0 8, G)°))
Cent(6~" o Int(s™"), G)°))
t(Int(s") 007", G)°.
Finally, we have

Int(s)o L0 o0&’ =LColnt(s ") 0 &
="Co((@)™"-"008)
=a -£.
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This shows that “C(e) is indeed an endoscopic datum for (G, 6~ a). A direct
computation shows that if g € G is an isomorphism ¢ — ¢/, then é‘é(g) is an
isomorphism “C (¢) — C (¢'). To check that “CH (3.) is a z-pair for “C (¢), we only
need to observe that, since the restriction of CH1 to H equals CH, the composition
of LcHi o Ep, 1 ¥ — LH, with the inclusion H — #; 1s indeed the natural
inclusion H — 1:11 — LH. To compare the notions of admissible isomorphisms,
replace ¢ by an equivalent datum so that s € T and £(TH) C T. Then & restricts to
an isomorphism 7# — T'!. Recalling the definitions of ¢ and &’, we see that &’
restricts to the same isomorphism. Thus the notion of admissibility of isomorphisms
of tori remains unchanged when we pass from ¢ to LC(e). O

Assume now that spl is 6-stable and augment B to a 6-stable Whittaker datum
(B, ¥). Then, associated to (G, 6, a), (B, V), ¢, and 3., we have the Whittaker
normalization of the transfer factor for G and H;. In fact, as explained in [Kottwitz
and Shelstad 2012], there are two different such normalizations — one adapted to the
classical local Langlands correspondence for tori [ibid., (5.5.2)], and one adapted to
the renormalized correspondence [ibid., (5.5.1)]. To be consistent with their notation,
we will call these transfer factors A'[v, ¢, 3.] (for the classical local Langlands
correspondence), and Ap[, e, 3.] (for the renormalized correspondence). On the
other hand, associated to (G, 0!, a), (B, ¥~ 1), “C(e), and LC¥ (3.), we also have
the Whittaker normalization of the transfer factor, again in the two versions. We
will call these A'[y !, LC(e), “CH (30)1and Ap[yr—!, LC(¢), ECH (3.)]. In the case
6 =1 and a = 1 (that is, ordinary endoscopy), one also has the normalizations A
and A/D [Section 5.1]. The normalization A is the one compatible with [Langlands
and Shelstad 1987].

Proposition 5.4. Let y| € H\(F) be a strongly G-regular semisimple element, and
let § € G(F) be a strongly 0-regular 6-semisimple element. We have

ATy, e, 3, 8) = Ay~ ECe), “CP Go (v, 671 67 h).

The same equality holds with A p in place of A’. Moreover, in the setting of ordinary
endoscopy, the equality also holds for A and A',.

Proof. Let us first discuss the different versions of the transfer factor. In ordinary
endoscopy, one obtains A from A’ by replacing s with s~!. Thus it is clear that the
above equality will hold for the one if and only if it holds for the other. The same
is true for Ap and A’,. Returning to twisted endoscopy, the difference between
A’ and Ap is more subtle, and the statement for the one does not formally follow
from the statement for the other. However, the proof for both cases is the same, and
we will give it for the case of Ap.

One sees easily that y is a §-norm of § precisely when y ! is a 6~!-norm of
6~1(8~1). We assume that this is the case. Let S n, C Hj be the centralizer of

1
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v1, let Sy C H be the image of Sg,. The torus Sy is the centralizer of the image
y € H(F) of y;. We choose a 8-admissible maximal torus S C G, an admissible
isomorphism ¢ : Sy — Sy, an element §* € S(F) whose image in Sy equals ¢ (),
and an element g € G (F) with §* = g86(g~"). The objects ¢, g and §* will enter
into the construction of the transfer factor Ap[, ¢, 3.]1(y1, §).

As already remarked, y ! is a ~'-norm for 6~'(§=!). By Fact 5.3, ¢ is an
LC (¢)-admissible isomorphism of tori, and it is clear that e(y™hH equals the image
of 67171 in Sy. Moreover 67 1(8* 1) = g- 07161 -0~ (g~!). Thus we
may use the objects ¢, g and 6~!(8*~!) when constructing the transfer factor
Aply =1 EC (), FCH Gol(y 1. 071 (67 1)).

We will also need #-invariant a-data A for R(S, G) and x-data X for Re(S, G).
Moreover, we fix an additive character ¢y : F — C* and assume that the splitting
spl = (T, B, X,) and the character {r give rise to the fixed Whittaker datum
(B, ¥). Up to equivalence of endoscopic data we may assume s € T. This implies
c (s_l) =s. Then, by [Kottwitz and Shelstad 2012, Equation 5.5.1], we have

Aply, e, 3] =€(Vo.u, ¥r) - AF™VIspl, Al- Ay '[A, X1- Amle, 3¢, X1+ Ary. (6)

The factor (Vg u, ¥r) is the epsilon factor (with Langlands’ normalization; see
for example [Tate 1979, (3.6)]) for the virtual I"-representation

Vo.n =X (T @C—-x*(T"®cC,

where T# is any maximally split maximal torus of H. It does not depend on any
further data and is thus the same for both sides of the equality we are proving. One
also sees immediately from the definition that

A (y; ' 0716 h) = Avin, 8). )

We now examine the factors Ay, Ay and Ay, the latter requiring the bulk of
the work. These factors depend on most of the objects chosen so far. We have
indicated in brackets the more important objects on which they depend, as it will be
necessary to keep track of them. These are not all the dependencies. For example,
all factors A; depend on the datum e, but except for Ay, this dependence is only
through the datum s, which we have arranged to be equal for ¢ and “C(¢), and so
we have not included ¢ in the notation for these factors.

The factor A7®"[e, spl, A] does not depend directly on y; and 8, but rather only
on the choices of S and ¢. As we have remarked in the preceding paragraphs, these
choices also serve yl_l and 6~ 1(8~1), and we see that

AP [spl, Al(y; 1, 0716 h) = APV [spl, Al(n1, 8). (8)

We turn to Apr[A, X]. Let — A denote the a-data obtained from A by replacing each
ay by —ay. Let —X denote the y-data obtained from X by replacing each x, by
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Xe ! Then one checks that
AnlA, X](Vfl, 9—1(3—1)) = An[—A, —X1(»1, §). )

Before we can examine Apyle, 3., X], we need to recall its construction, following
[Kottwitz and Shelstad 1999, Section 4.4 and Section 5.3]. We define an F'-torus
S as the fiber product

S S

_

SH1 SH S@.

The element §7 = (y1, %) belongs to S;. The automorphism id x6 of Sg, x §
induces an automorphism 6#; of S;. This automorphism restricts trivially to the
kernel of S; — S, and hence 1 — 6; induces a homomorphism S — S, which we
can compose with S;c — S to obtain a homomorphism Ssc — S7, which we still
denote by 1 — 6.

The element (o (g)g_1 87) belongs to H'(F, S —> S1) and is called inv(yy, §).
Kottwitz and Shelstad [1999, A.3] construct a pairing ( -, - )ks between the abelian
groups N
H'(F,Se =2 §)) and H'(W, §; =5 $,9).

Using this pairing, they define
Armle, e, X1(y1, 8) = {inv(y1, 8) Aole, 3o, Xlgs;

where Agle, 3¢, X] is an element of H'(F, S1 —> Sad) constructed as follows:

The x-data X provides an H- -conjugacy class of embeddings /Sy — “H and a
G!- conjugacy class of embeddlngs Lsy — LG!, where G! is the connected stabilizer
of 6. Conjugatmg within H and G' we arrange that these embeddings map Sy
to 77 and Sy to 7. Composing with the canonical embeddings “H — H{ and
LG! - LG, we obtain embeddings &[X] : LSy — LG and Es,[X]: LSy — LH,.
There is a unique embedding 51 [X]:LS - LG extending &,[X], and there is a
unique embedding g;H [X]: LSy, — LH extending &g, [X].

Letting x denote the image of x € 9 under the projection # — W, define

U= {x €% | AdE ()31 = AdE X x )4 }-

Then AU is an extension of W by TH. One can show that ) c Sl [X1(LS)
and &g, (W) C £l Sy [X1(LS H,)- Then we can define, for any w € W, an element
as[Xl(w) € Sl, by choosing a lift u(w) € U and letting ag[X](w) = (t ,1) €
S H X S-S 1, where 1| € S g oand t € S are the unique elements satisfying

ENX]( x w) =&@(w)) and &, [X](h X w) = &x, (u(w)). (10)
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We can further define sg = [Sll]_l(s) € § and also view it as an element of S'ad.
Then

Aole, 3¢, X1 = (as[X17", 55) € H' (W, Si— gad)~
We are now ready to examine Apyle, 3., X]. We have

inv(y; 1,07 ) = (o(e)g7 ", 0, 67 h). (11)

1-67!
This is an element of H'(F, S¢ —> ;). We have

Am["C(e), "CH (e, X] (v, 0716 7h)
=(inv(y ", 67 67), Ag[*C(@), FCP ey), X])KS.

A 1-671 o
Here Ao[“C(e), LCH (¢5), X] is the element of H! (W, S| —> Saa), constructed as
above, but with respect to the endoscopic datum “C (¢) and the z-pair “C (3.), rather
than ¢ and j.. Thus Ag[“C(e), “CH (¢;), X] = (@s[X17", s5), with ag[X](w) =
(ffl, f), and
£/ X1 x w) =0 0 C o E(u(w)),
£4 [X1( x w) ="C" o &y, (u(w)).
Using (10) we see that
ENXIE x w) =0 0 FC o ] [X](t x w),
&5, [X1(0 x w) ="C™ o &g, [X](01 x w).

According to Lemma 5.2 this is equivalent to

ENXIExw) ="00&/[-X]1(™" x w),
£, (X1 x w) = &5, [- X107 x w).
We conclude that
asIX1(w) = 6 (as[-X1(w)™"). (12)
The isomorphism of complexes

id
Sse — Ssc

1—9,—‘L Ll—el
S 010()7!

11— 91
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1-67! _
induces an isomorphism HY(F, S -5 S1) — H'(F, S¢ 1—6>1 S1) which, by (11),
sends inV(yl_l, 6=~ 1H) to inv(yy, 8). The dual isomorphism of complexes

3 Go()™" 4

1 <— 91

1—é;'j ll—é]

~ id A
Sad =—— Sad

~ 1= A ~ 1-671 4
induces an isomorphism H' (W, §; =4 Saa) = H' (W, S| —> S,q) which, by (12),
sends Ag[e, 3¢, —X] to Ag[*C(e), LCH (3.), X]. We conclude that
Am[*C@), "C G, X](y ' 0716 7Y) = Amle, 3e. — X1, 8. (13)
Combining (6), (7), (8), (9), and (13), we obtain

Ap[y, "C (@), " o)) (v 1 07 (67h)
=e(Vo.u. ¥r) - A™Ispl, Al(y . 07167 h) - A A X1(y ' 07 (67h)
SAm[FC ), FCH G, X (v L 0T ETh) - Ay o7 )
=e(Ve.i. ¥r) - A Ispl, Al(y1,8) - A [—A, =X1(y1, 6)
“Amle, 3o, —X1(y1, ) - Arv(v1, 9).
Since —X and —A are valid choices of x-data and a-data, according to (6) the
second product is almost equal to Ay [V, ¢, 3.1(y1, §). The only difference is that
the a-data occurring in Ay is A, while the one occurring in Ay is —A. Let —spl be

the splitting (7', B, {—X4}); then —spl and the character w;l give rise to the fixed
Whittaker datum (B, ), just like the splitting spl and the character 1 did. Thus

e(Ve., Ur) - Ailspl, Al = e (Vg W7 ') - Arl—spl, A]
=e(Vo.u, V") - Arlspl, —Al,

with the first equality following from the argument of [Kottwitz and Shelstad 1999,
Section 5.3], and the second from Lemma 5.1. Noting that spl and 1//;1 give rise to
the Whittaker datum (B, w_l), we obtain

Ap[y, LC©), *CP Gl (y ' 07 (6™H) = Aply ", &, 31 (11, ). O

Corollary 5.5. Let f € #(G) and ' € #(H,) be functions such that the (0", w)-
twisted orbital integrals of f match the stable orbital integrals of ™' with respect
to A[lﬁ_l, Lc(e), LCH (z,)]. Then the (0, w)-twisted orbital integrals of f 00~ ' oi
match the stable orbital integrals of f™ oi with respect to A[Y, e, z,]. Here A
stands for any of the two (respectively, four) Whittaker normalizations of the transfer
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factor for twisted (respectively, standard ) endoscopy, and i is the map on G (F) or
H\(F) sending every element to its inverse.

Proof. SO(yy, fM oi)

=S0(y; ', f™)

= > Aylic@. tct )]t 8 076, f)
8eG(F)/0—1-~

= Y Ay, FCH )] ) 07 (067, fob7 o)
8eG(F)/0~1-~

= > AlY.e.z](n.8) 0% foo7 o).

8'e€G(F)/0-~

The last line follows from Proposition 5.4, with the substitution ' =6 (5~!). O

Fact 5.6. Assume that 6 has finite order. Let m be an irreducible admissible
tempered (B, ¥)-generic 6-stable representation of G(F), andlet A: 7 — w06
be the unique isomorphism which preserves a (B, 1r)-Whittaker functional. Then
the dual map A : (w 06)Y — 7" preserves a (B, ¥ ~')-Whittaker functional.

Proof. Let V be the vector space on which 7 acts. Since 7 is tempered, it is unitary.
Let (-, -) be a w-invariant nondegenerate Hermitian form on V. Then

VoV, we (-, w)

is a w—m V-equivariant isomorphism, and it identifies AY with the (-, - )-adjoint
of A, which we will call A*. We claim that A* = A~!. Indeed, (v, w) — (Av, Aw)
is another m-invariant scalar product, hence there exists a scalar ¢ € C* with
(Av, Aw) = c{v, w). On the one hand, since both sides are Hermitian, this scalar
must belong to R.g. On the other hand, since 6 has finite order, so does A, and
thus ¢ must be a root of unity. This shows that ¢ = 1, hence A* = A~!. Let
o denote complex conjugation. If A : V — C is a (B, ¥)-Whittaker functional
preserved by A, then 0 oA : V — C is a (B, ¥~ !)-Whittaker functional preserved
by AV =A*=A"1 O

Corollary 5.7. If 7w is the unique extension of 7w to a representation of G(F) x (0)
so that 7t (0) is the isomorphism w — 1w 00 which fixes a (B, r)-Whittaker functional,
then " is the unique extension of " to a representation of G(F) x (6) so that
7Y (0) is the isomorphism ¥ — 7V 00 which fixes a (B, v~ Y-Whittaker functional.

Let us recall Theorem 7.1(a) of [Adams and Vogan 2012]. For any Langlands
parameter ¢ : W — LG for a real connected reductive group G with corresponding
L-packet I, the theorem shows that the set {r" | = € I1,} is also an L-packet,
and its parameter is “C o ¢. Assume that ¢ is tempered, and denote by $O,
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the stable character of the L-packet IT,. Then an immediate corollary is that
§Oy 01 = 8O1¢,,. We will now prove this equality for quasisplit symplectic and
special orthogonal p-adic groups. After that, we will use it to derive formula (2).
With this formula at hand, we will derive the precise p-adic analog of Adams and
Vogan’s Theorem 7.1(a) as a corollary.

Theorem 5.8. Let H be a quasisplit symplectic or special orthogonal group and
¢ : W — LH a tempered Langlands parameter. Write S Oy, for the stable character
of the L-packet attached to ¢. Then we have an equality of linear forms on H(H):

SOy 0l =S8OLc gy

Proof. We recall very briefly the characterizing property of S©,, following
Arthur [2013, Section 1 and Section 2]. Let G = GL,,/F and let spl = (T, B, {X4})
be the standard splitting consisting of the subgroup T of diagonal matrices, the
subgroup B of upper triangular matrices, and the set {X,} of elementary matrices
whose entries are zero except for one entry in the first superdiagonal, which is equal
to 1. Let 0 be the outer automorphism of G preserving spl. Equip G =GL,(C)
with its standard splitting (T, é, {)A(a}) and let § be the outer automorphism of G
preserving that splitting. The standard representation H — G can be extended to
an L-embedding & : “H — G and augmented by an element s € T to provide
an endoscopic datum ¢ = (H, “H, s, £) for the triple (G,6,1). Then £ o ¢ is a
Langlands parameter for G invariant under 6. Let 7 be the representation of G (F)
assigned to £ o ¢ by the local Langlands correspondence [Harris and Taylor 2001;
Henniart 2000]. We have w = 7 0 8. Choosing an additive character ¢ : F — C*
we obtain from the standard splitting of G a 6-stable Whittaker datum (B, ).
There is a unique isomorphism A : w — 7 o # which preserves one (hence all)
(B, ¥r)-Whittaker functionals. Then we have the distribution

fr 1ol (n=ulve | f@r@4vdg).

G(F)
By construction, SO, is the unique stable distribution on J(H) with the property
that

SO, (") =TOL,(f)

for all f € %(G) and f# € J¢(H) such that the (6, 1)-twisted orbital integrals of f
match the stable orbital integrals of £ with respect to A’[v/, ¢, 3.]. Here 3. stands
for the tautological pair (H, id).

Now consider the transfer factor A’[v !, £C(e), “C* (3.)]. We have chosen both
C and CH to preserve the standard tori in G and H and act as inversion on those.
Moreover the endoscopic element s belongs to T. Using the datum ~C (¢) and the
pair “C* (3,) has the same effect as using the datum (H, %, s, “Co*6 o0& o LCH_I)
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and the pair 3.. We have 26 o £ = Int(s~!)&, so replacing 6 o & by & changes the
above datum to an equivalent one. An easy computation shows furthermore that
LcotolcH o Int(z) o & for a suitable t € 7. All in all, up to equivalence, we
see that replacing ¢ and 3, by “C (¢) and C* (3,) has no effect, and this implies that

ATy~ EC@. " C Gl = ATy e 3]

Let us abbreviate this factor to A'[y 1.

We have S@LcHo(p(fH) = T®:§/IoLcHow(f)' As we just argued, £ o LcH is G-
conjugate to “Co£. Thus, the Galois representation £ o “C¥ o ¢ is the contragredient
to the Galois representation £ o ¢. As the local Langlands correspondence for GL,,
respects the operation of taking the contragredient, Corollary 5.7 implies that

7Y (F)=TOY (fob'oi)
%‘OLCHO(p - so(p .

By construction of S®g,,, we have
-1
TOL, (fobd ™ 0i) =8O, ( f™)

whenever’ £ is an element of §€(H ) whose stable orbital integrals match the (6, 1)-

orbital integrals of f 08~ oi with respect to A’[y~!]. By Corollary 5.5, f¥ oi is
such a function, and we see that the distribution f > S®¢o, (f oi) satisfies the
property that characterizes S®:¢, ., hence must be equal to the latter. (I

Theorem 5.9. Let G be a quasisplit real K -group or a quasisplit symplectic or
special orthogonal p-adic group, and let (B, V) be a Whittaker datum. Let ¢ :
W' — LG be a tempered Langlands parameter, and p € Ire (). Then

oy (@, p)Y =tpy-1(FCop,[po CT'TY).

Proof. Put m =1 y (¢, p). For each semisimple s € Sy, let eg = (H, ¥, 5, §) be the
corresponding endoscopic datum (see Section 3), and choose a z-pair 3, = (H1, &n,).
We have the Whittaker normalization A[, ¢, 35] of the transfer factor compatible
with [Langlands and Shelstad 1987] (see the discussion before Proposition 5.4).

By construction, ¢ factors through &. Put ¢ = ¢ o &g,. For any function
f e H(G) let oV e J(H,) be such that f and f*¥ have A[y, ¢, 3,]-matching
orbital integrals. Then the distribution

[ 80, (f)

is independent of the choices of f*¥ and 3,. As discussed in Section 3, we have
the inversion of endoscopic transfer

Ox(f) =117 D {5, p)SOL ().

sedy
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Thus, we need to show that

Orv (f) = Frcapl ™ D (C71S), 0Y)SOpicog, (£ ).

S/E‘(:PLCW
Reindexing the sum using s’ = C(s™"), we can write the right-hand side as

™ D" (5, £)SOpcag, (£7).

s€Fy

The theorem will be proved once we show

SO, (Lf 0il"") = SO1copy, (£ ).

The endoscopic datum corresponding to “C o ¢ and s’ is precisely “C(e,) (in the
sense that 1 € GL,, (C) is an isomorphism between the two). We are free to choose any
z-pair for it, and we choose “C¥ (3,). Then [FC o @]y = “CH1 0 ¢, and Theorem 5.8
in the p-adic case and [Adams and Vogan 2012, Theorem 7.1(a)] in the real case
imply

$Ocupt, (177 ) = 504, (17 01).

The functions £ and ¥~ have A[y !, LC(e,), LCH (3,)]-matching orbital inte-
grals. By Corollary 5.5, the functions foi and f s'" ¥ 5 have A, e, 3.]-matching
orbital integrals. It follows that the functions [f 0 i]*¥ and f "9~ 5 have the
same stable orbital integrals, and the theorem follows. ([

We alert the reader that, as was explained in Section 3, the symbol ¢z y (¢, p)
refers to an individual representation of G(F') in all cases of Theorem 5.9, except
possibly when G is an even orthogonal p-adic group, in which case Arthur’s
classification may assign to the pair (¢, p) a pair of representations, rather than
an individual representation. In that case, the theorem asserts that if {my, 7>} is
the pair of representations associated with (¢, p), then {m)’, 7,'} is the pair of
representations associated with tp -1 (!Cog,[po é‘l]v).

The following is the p-adic analog of [Adams and Vogan 2012, Theorem 7.1(a)].

Corollary 5.10. Let G be a quasisplit symplectic or special orthogonal p-adic
group, and let ¢ : W' — LG be a tempered Langlands parameter. If Tl is an
L-packet assigned to ¢, then

n'={x"|renj}
is an L-packet assigned to *C o ¢.

Proof. When G is either a symplectic or an odd orthogonal group, the statement
follows immediately from Theorem 5.9. However, if G is an even orthogonal group,
[T is one of two L-packets I1;, I1, assigned to ¢, and a priori we only know that
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the set ITV belongs to the union of the two L-packets I}, T1} assigned to C o ¢.
We claim that in fact it equals one of these two L-packets. Indeed, let S® be the
stable character of I1. This is now a stable linear form on #(G), not just on §€(G).
The linear form SO o1 is still stable. If S®) and S®) are the stable characters of
IT| and IT) respectively, then the restrictions of S®} and S®) to H(G) are equal,
and moreover according to Theorem 5.8 these restrictions are equal to the restriction
of S®oi to §€(G). From [Arthur 2013, Corollary 8.4.5] we conclude that

SOoi =ASO]| + usO),

for some A, u € C with A + u = 1. However, each of the three distributions
S®oi, S @’1, S ®/2 is itself a sum of characters of tempered representations. Since
IT| and IT) are disjoint, the linear independence of these characters then forces one
of the numbers X, u to be equal to 1, and the other to 0. (I

6. Depth-zero and epipelagic L-packets of p-adic groups

In this section, we are going to examine two constructions of L-packets on general
reductive p-adic groups and show that (2) is satisfied by these L-packets.

The first construction is that of [DeBacker and Reeder 2009], in which L-packets
consisting of depth-zero supercuspidal representations are constructed for each pure
inner form of an unramified p-adic group. This construction was then extended
to inner forms of p-adic groups arising from isocrystals with additional structure
[Kaletha 2011]. The second construction is that of [Kaletha 2012], in which L-
packets consisting of epipelagic representations are constructed for each tamely
ramified p-adic group. The notion of epipelagic representation was introduced and
studied by Reeder and Yu in [2012].

Fix a Langlands parameter ¢ : W — LG of the type considered in [DeBacker
and Reeder 2009] or [Kaletha 2012]. Fix a I'-invariant splitting (f" é {Xz}) of
G and arrange that T is the unique torus normalized by ¢. Choose a Chevalley
involution C which sends the fixed splitting to its opposite. Then C commutes with
all automorphisms preserving the fixed splitting, in particular with the action of I
on f}, and hence £C = C x idw is an L-automorphism. Moreover, the action of C on
N(f, é) preserves 7 and thus induces an action on (f, é). Since é(X&) =X_4,
this action fixes each simple reflection and is therefore trivial.

In both constructions of L-packets the first step is to form the I'-module S
with underlying abelian group T and I-action given by the composition I' —
Q(T, G)xT of ¢ and the natural projection N(T,G)— QT, G). By the argument
of the preceding paragraph, the I"-module S for LC o @ is the same as the one for ¢.

The next step is to obtain from ¢ a character y : S(F) — C*. This is done
by factoring ¢ =~ jx o @g, where © jx : 'S — LG is an L-embedding constructed
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from ¢, and g5 : W — LS is a Langlands parameter for S, and then letting x be the
character corresponding to ¢g. For the depth-zero case, this is the reinterpretation
given in [Kaletha 2011], and the L-embedding ©S — ~G is obtained by choosing
arbitrary unramified y-data X for R(S, G). Applying Lemma 5.2 to the equation
¢ =" jx ops we see that

“Cop="j_xo(=1)ogs.

Since —X is another set of unramified y-data, and it is shown in [Kaletha 2011,
Section 3.4] that ¢y is independent of the choice of X, we see that [LCo 0ls =
(—1) o @s. In other words, the character of S(F) constructed from “C o ¢ is x S L

We claim that the same is true in the epipelagic case. That case is a bit more
subtle because * jx depends on ¢ more strongly — the x-data X is chosen based
on the restriction of ¢ to wild inertia. What we need to show is that if X is chosen
for ¢, then the choice for “C o ¢ is —X. This however follows right away from the
fact that the restriction of “C o ¢ to wild inertia equals the composition of (—1)
with the restriction of ¢ to wild inertia.

The third step in the construction of both kinds of L-packets relies on a procedure
(different in the two cases) which associates to an admissible embedding j of S
into an inner form G’ of G a representation 7 (s, j) of G'(F). We won’t recall
this procedure — for our current purposes it will be enough to treat it as a black box.
The only feature of this black box that is essential for us is that the contragredient of
w(xs, j) is given by 71()(5_1, j). Now let (B, ¥) be a Whittaker datum for G. It is
shown in both cases that there exists an admissible embedding jy : S — G, unique up
to G (F)-conjugacy, so that the representation 7 (xs, jo) of G(F) is (B, ¥)-generic.
Moreover, one has S, = [S‘]F, so that Irr(S,) = X*(S‘F) = X.(S)r = B(S), where
B(S) is the set of isomorphism classes of isocrystals with S-structure [Kottwitz
1997]. Using jo one obtains a map Irr(S,) = B(S) — B(G)pas. Each p € Irr(Sy)
provides in this way an extended pure inner twist (G’7, b,, &p). The composition
Jo =&, o jo is an admissible embedding § — G"» defined over F and provides by
the black box construction alluded to above a representation 7 (xs, j,) of Gbr (F).
The construction of L-packets and their internal parametrization is then realized by

gy Irr(Sy) = My, p > (X8, Jp)-

The contragredient of 7 (xs, jo) is given by 7 (x ¢ ! Jjo), and the latter representation
is (B, ¥ ~!)-generic. Hence, the version of jj associated to “C o¢ and the Whittaker
datum (B, ¥ ') is equal to jy. Using Sicop = [ST]and o oC = p, and reviewing
the procedure above, we see that

L A— — . .
tgy-1((Cop, p ol ) =m(xs" jp) =7 (xs. jo)¥ =gy (0. p)".
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Homogeneous projective bundles
over abelian varieties

Michel Brion

We consider projective bundles (or Brauer—Severi varieties) over an abelian
variety which are homogeneous, that is, invariant under translation. We de-
scribe the structure of these bundles in terms of projective representations of
commutative group schemes; the irreducible bundles correspond to Heisenberg
groups and their standard representations. Our results extend those of Mukai
on semihomogeneous vector bundles, and yield a geometric view of the Brauer
group of abelian varieties.

1. Introduction

The main objects of this article are projective bundles (or Brauer—Severi varieties)
over an abelian variety X which are homogeneous, that is, isomorphic to their
pull-backs under all translations. Among these bundles, projectivizations of vector
bundles are well understood thanks to [Mukai 1978]. Indeed, vector bundles with
homogeneous projectivization are exactly the semihomogeneous vector bundles of
Mukai. Those that are simple (that is, their global endomorphisms are just scalars)
admit several remarkable characterizations; for example, they are all obtained as
direct images of line bundles under isogenies. Moreover, every indecomposable
semihomogeneous vector bundle is the tensor product of a unipotent bundle and a
simple semihomogeneous bundle.

In this article, we obtain somewhat similar statements for the structure of ho-
mogeneous projective bundles. We build on the results of [Brion 2012a] about
homogeneous principal bundles under an arbitrary algebraic group; here we consider
of course the projective linear group PGL,,. In loose terms, the approach of our
earlier paper reduces the classification of homogeneous bundles to that of commuta-
tive subgroup schemes of PGL,,. The latter, carried out in Section 2, is based on the
classical construction of Heisenberg groups and their irreducible representations.

In Section 3, we introduce a notion of irreducibility for homogeneous projective
bundles, which is equivalent to the group scheme of bundle automorphisms being
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finite. (The projectivization of a semihomogeneous vector bundle E is irreducible
if and only if E is simple.) We characterize those projective bundles that are
homogeneous and irreducible by the vanishing of all the cohomology groups of
their adjoint vector bundle (Proposition 3.7). Also, we show that the homogeneous
irreducible bundles are classified by the pairs (H, e), where H is a finite subgroup
of the dual abelian variety, and ¢ : H x H — G, a nondegenerate alternating
bilinear pairing (Proposition 3.1). Finally, we obtain a characterization of those
homogeneous projective bundles that are projectivizations of vector bundles, first
in the irreducible case (Proposition 3.10; it states in loose terms that the pairing e
originates from a line bundle on X)) and then in the general case (Theorem 3.11).

Irreducible homogeneous projective bundles over an elliptic curve are exactly the
projectivizations of indecomposable vector bundles with coprime rank and degree,
as follows from the classic work of Atiyah [1957]. But any abelian variety X of
dimension at least two admits many homogeneous projective bundles that are not
projectivizations of vector bundles. In fact, any class in the Brauer group Br X is
represented by a homogeneous bundle (as shown by [Elencwajg and Narasimhan
1983, Theorem 1] in the setting of complex tori). Also, our approach yields a
geometric view of a description of Br X due to Berkovich [1972]; this is developed
in Remark 3.13.

Spaces of algebraically equivalent effective divisors on an arbitrary projective
variety afford geometric examples of projective bundles. These spaces are investi-
gated in Section 4 for abelian varieties and curves of genus g > 2; they turn out to
be homogeneous in the former case, but not in the latter.

Finally, in Section 5 we investigate those homogeneous projective bundles that
are self-dual, that is, equipped with an isomorphism to their dual bundle; these
correspond to principal bundles under the projective orthogonal or symplectic groups.
Here the main ingredients are the Heisenberg groups associated to symplectic
vector spaces over a field with two elements. Also, we introduce a geometric
notion of indecomposability (which differs from the group-theoretic notion of
L-indecomposability defined in [Balaji et al. 2005]), and obtain a structure result
for indecomposable homogeneous self-dual bundles (Proposition 5.9).

Throughout this article, the base field k is algebraically closed, of arbitrary
characteristic p > 0. Most of our results on P"~!-bundles hold under the assumption
that  is not a multiple of p; indeed, the structure of commutative subgroup schemes
of PGL,, is much more complicated when p divides n (see [Levy et al. 2009]). For
the same reason, we only consider self-dual projective bundles in characteristic
other than 2. It would be interesting to extend our results to “bad” characteristics.

Notation and conventions. We use the book [Demazure and Gabriel 1970] as a
general reference for group schemes. Our reference for abelian varieties is [Mumford
1970]; we generally follow its notation. In particular, the group law of an abelian
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variety X is denoted additively and multiplication by an integer n is denoted by
ny, with kernel X,,. For any point x € X, we denote by 7, : X — X the translation
y > x 4+ y. The dual abelian variety is denoted by X.

2. Structure of homogeneous projective bundles

Generalities on projective bundles. Recall that a projective bundle over a variety
X is a variety P equipped with a proper flat morphism

fiP—X (1)

with fibers at all closed points isomorphic to projective space P"~! for some integer
n>1. Then f is a P"~!-bundle for the étale topology (see [Grothendieck 1968a,
§8D.

Also, recall from [loc. cit.] that the P*~!-bundles are in a one-to-one correspon-
dence with the torsors (or principal bundles)

7:Y—> X (2)

under the projective linear group, PGL, = Aut(P"~!). Specifically, P is the associ-
ated bundle ¥ xPGL» P71 and Y is the bundle of isomorphisms X x P*~! — P
over X. Thus, any representation p : PGL,, — GL(V) defines the associated vector
bundle ¥ xP6L» v over X. The representation of PGL,, in the space M,, of n x n
matrices by conjugation yields a matrix bundle on X; its sheaf of local sections is
an Azumaya algebra of rank n? over X,

o = (1, (Oy) @ M,,)PC,

viewed as a sheaf of noncommutative Ox-algebras over m, (0y)POln = 0x. In
particular, ¢ defines a central simple algebra of degree n over the function field
k(X). By [Grothendieck 1968a, corollaire 5.11], the assignment P +— o yields a
one-to-one correspondence between P"~!-bundles and Azumaya algebras of rank
n®. The quotient of s by Oy is the sheaf of local sections of the adjoint bundle
ad P, the vector bundle associated with the adjoint representation of PGL,, in its
Lie algebra pgl,, (the quotient of the Lie algebra M,, by the scalar matrices). The
correspondences between P"~!-bundles, PGL,,-torsors, and Azumaya algebras of
rank n? preserve morphisms. As a consequence, every morphism of P~ !-bundles
is an isomorphism.

There is a natural operation of product on projective bundles: to any P"~!-bundles
fi t P, = X (i =1, 2) with associated PGL,,,-bundles 7; : ¥; — X, one associates
the P"1"2~!_bundle

flP]Pz-)X
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that corresponds to the PGL,,,,-torsor obtained from the PGL,,, x PGL,,-torsor
T Xm Y1 xxY,—> X
by the extension of structure groups
PGL,, x PGL,, = PGL(k"") x PGL(k"?) A PGL(™ @ k™) = PGL,,,,.

where p stems from the natural representation GL (k") x GL(k"?) — GL(k™ ® k"2).
So P; P, contains the fibered product P; X x P»; it may be viewed as a global analogue
of the Segre product of projective spaces. The corresponding operation on Azumaya
algebras is the tensor product (see [Grothendieck 1968a, §8]).

Likewise, any projective bundle f : P — X has a dual bundle

. P*— X,

where P* is the same variety as P, but the action of PGL, is twisted by the
automorphism arising from the inverse transpose; then P* =Y xPGl» (P"=1)* where
(P"=1)* denotes the dual projective space. The Azumaya algebra associated with
P* is the opposite algebra s4°P. The assignment P — P* is of course contravariant,
and the bidual P** comes with a canonical isomorphism of bundles P => P**.

Given a positive integer n1<n, a P"'~-subbundle f|: Pi— X of the P"~!-bundle
(1) corresponds to a reduction of structure group of the associated PGL,-torsor
(2) to a PGL,, ;,,-torsor 7y : Y1 — X, where PGL,, ,, C PGL, denotes the maximal
parabolic subgroup that stabilizes a linear subspace P"1~! of P"~!. Equivalently,
the subbundle P; corresponds to a PGL,-equivariant morphism

y Y — PGL, / PGL,_,, = Gr,,,

(the Grassmannian parametrizing these subspaces). We have P = Y, x PGk pr-1
and P =Y, xPOLwny pri=1 a5 bundles over X, where PGL, ,, acts on P1—1 via
its quotient PGL,,, .

Given two positive integers n and n, such that n; +n, = n, a decomposition of
type (11, np) of the P*~!-bundle (1) consists of two P ~1_subbundles fi:Ph—> X
(i =1, 2) which are disjoint (as subvarieties of P). This corresponds to a reduction
of structure group of the PGL,-torsor (2) to a torsor mi; : Y12 — X under the
maximal Levi subgroup

P(GL,, x GL,,) = PGL, ,, N"PGL, ,, C PGL,

that stabilizes two disjoint linear subspaces P~ of P"~! (; =1, 2). Then

P = Yy xPOln xGLay) pri—1
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fori =1, 2, where P(GL,, x GL,,) acts on each P~ via its quotient PGL,,,. The
decompositions of type (ny, ny) correspond to the PGL,,-equivariant morphisms

§:Y — PGL, /P(GL,, x GL,,) 3)

to the variety of decompositions.

If the bundle (1) admits no decomposition, then we say, of course, that it is
indecomposable. Equivalently, the associated torsor (2) admits no reduction of
structure group to a proper Levi subgroup.

When P is the projectivization P(E) of a vector bundle E over X, the subbundles
of P correspond bijectively to those of E, and the decompositions of P to the
splittings E = E| @ E, of vector bundles. Also, note that P(E)P(F)=P(EQ F)
and P(E)* = P(E™), with obvious notation.

Homogeneous projective bundles. From now on, X denotes a fixed abelian variety,
f:P— X aP" '-bundle, and 7 : ¥ — X the corresponding PGL,,-torsor. Then
P is a nonsingular projective variety and f is its Albanese morphism. In particular,
f is uniquely determined by the variety P.

Since P is complete, its automorphism functor is represented by a group scheme
Aut P, locally of finite type. Moreover, we have a homomorphism of group schemes

fx s Aut(P) — Aut(X)

with kernel the subgroup scheme Auty (P) = Aut};(GL” (Y) of bundle automorphisms.

Also, Auty (P) is affine of finite type, and its Lie algebra is H 0(X, ad(P)) (see, for
example, [Brion 2011, §4] for these results).

We say that a P"~!-bundle (1) is homogeneous if the image of f, contains the
subgroup X C Aut(X) of translations; equivalently, the bundle P is isomorphic to
its pull-backs under all translations. This amounts to the vector bundle ad P being
homogeneous (see [Brion 2012a, Corollary 2.15]; if P is the projectivization of a
vector bundle, this follows alternatively from [Mukai 1978, Theorem 5.8]).

The structure of homogeneous projective bundles is described by the following:

Theorem 2.1. (i) A P"'-bundle f : P — X is homogeneous if and only if there
exist an exact sequence of group schemes

1 H G 5 x 1 4)

where G is antiaffine (i.e., 0(G) = k), and a faithful homomorphism p : H — PGL,,
such that P is the associated bundle G x" P"~! — G/H = X, where H acts on
P! vig p.

Then the exact sequence (4) is unique; the group scheme G is smooth, con-

nected, and commutative (in particular, H is commutative), and the projective
representation p is unique up to conjugacy in PGL,,. Moreover, the corresponding
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PGL,-torsor is the associated bundle G x PGL, — X, and the corresponding
Azumaya algebra satisfies

A= (7. (Oc) @M, 5)

as a sheaf of algebras over y,(0g)" = Oy.

(1) For P as in (i), we have an isomorphism
Autx (P) = PGLY, (6)
the right-hand side being the centralizer of H in PGL,,. As a consequence,

H(X, ad(P)) = pgl#. 7

(iii) The homogeneous projective subbundles of P are exactly the bundles G xS —
X, where S C P"~! is an H-stable linear subspace.

(iv) Any decomposition of P consists of homogeneous subbundles.

Proof. Part (i) follows readily from Theorem 3.1 of [Brion 2012a], and (ii) from
Proposition 3.6 of the same reference.

(iii) Let f; : Pi — X be a projective subbundle, and consider the corresponding
reduction of structure group of the PGL,,-torsor ¥ to a PGL,, ,,-torsor 7r; : Y1 — X.
If fi is homogeneous, then again by [Brion 2012a, Theorem 3.1], we have a
PGL,, ,,-equivariant isomorphism

Y] = Gy x™ PGL,,

for some exact sequence 0 - H; — G| — X — 0 with G antiaffine, and some
faithful homomorphism p; : Hy — PGL, ,,. Thus,

Y =y, xPOn PGL, = G x™ PGL,

equivariantly for the action of PGL,. By the uniqueness in (i), it follows that
G; =G and H; = H; hence P; = G xS for some H-stable linear subspace
Scprl

Conversely, any H-stable linear subspace obviously yields a homogeneous pro-
jective subbundle.

(iv) A decomposition of P of type (ny, ny) corresponds to a PGL,,-equivariant mor-
phism 6 : ¥ — PGL, /P(GL,, x GL,,). Since the variety PGL, /P(GL,, x GL,,)
is affine, the corresponding reduction of structure group my; : Yo — X is homoge-
neous by [loc. cit., Proposition 2.8]. Thus, the associated bundles P; and P, are
homogeneous as well. U
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Remark 2.2. Let P; (i =1, 2) be homogeneous bundles corresponding to extensions
1 - H; - G; - X — 1 and projective representations p; : H; — PGL,,. Then
the PGL,,,,,-torsor that corresponds to P P; is the associated bundle

(G1 xx Ga) x"*H2PGL,, ., —> (G| xx G2)/(H, x Hy) = X

where the homomorphism H; x H, — PGL,,,, is given by the tensor product
o1 ® pz. Thus, P; P, is the homogeneous bundle classified by the extension 1 —
H — G — X — 1, where G C G| xx G, denotes the largest antiaffine subgroup
and H = (H; x H,) NG, and by the projective representation (0 ® p2)|g.

As a consequence, the m-th power P™ corresponds to the same extension as P
and to the m-th tensor power of its projective representation. Likewise, the dual
of a homogeneous bundle is the homogeneous bundle associated with the same
extension and with the dual projective representation.

The antiaffine algebraic groups are classified in [Brion 2009] and independently
[Sancho de Salas and Sancho de Salas 2009], and the antiaffine extensions (4) in
[Brion 2012a, §3.3]. We now describe the other ingredients of Theorem 2.1, that
is, the commutative subgroup schemes H C PGL,, up to conjugacy. Every such
subgroup scheme has a unique decomposition

H = H, x H;,
where H, is unipotent and H; is diagonalizable. Thus, H; sits in an exact sequence
1—- H’—> Hy— F — 1,

where H? is a connected diagonalizable group scheme (the neutral component
of Hj), and the group of components F is finite, diagonalizable, and of order
prime to p (in particular, F is smooth); this exact sequence is unique and splits
noncanonically. In turn, H? is an extension of a finite diagonalizable group scheme
of order a power of p, by a torus (the reduced neutral component); this extension is
also unique and splits noncanonically.

Denote by H C GL, the preimage of H C PGL,,. This yields a central extension

1> G, — H—H—1, (8)

where the multlphca‘uve group G, is viewed as the group of invertible scalar
matrices. We say that H is the theta group of H, and define similarly H,, Hy, and
H; 70 (the latter is the neutral component of H 5)-

Given two S-valued points X and y of H, where S denotes an arbitrary scheme,
the commutator x5! is a S-valued point of G,, and depends only on the
images of X and y in H. This defines a morphism

e: Hx H— G, 9
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which is readily seen to be bilinear (that is, we have e(xy, z) = e(x, z)e(y, z) and
e(x, yz)=e(x, z)e(y, z) for all S-valued points x, y, z of H) and alternating (that is,
e(x, x) =1 for all x). We say that e is the commutator pairing of the extension (8).
Note that the dual bundle P* has pairing e~!; moreover, the power P, where
m 1is a positive integer, has pairing ™.
The center Z(ﬁ ) sits in an exact sequence of group schemes

1> G, — Z(H)— H —> 1, (10)

where the S-valued points of H are those points of H such that e(x, y) = 1 for all
§’-valued points y of H and all schemes S’ over S. In particular, H is commutative
ifand only ife = 1.

We now show that the obstruction for being the projectivization of a homoge-
neous vector bundle is just the commutator pairing. The obstruction for being the
projectivization of an arbitrary vector bundle will be determined in Theorem 3.11.

Proposition 2.3. With the above notation, the following conditions are equivalent:

(1) P is the projectivization of a homogeneous vector bundle.

(i1) The extension (8) splits.

(i) e=1.

Proof. (i) = (ii) By [Brion 2012a, Theorem 3.1], any homogeneous vector bundle
E of rank n over X is of the form G x¥ k* — G/H = X for some antiaffine
extension 1 - H — G — X — 1 and some faithful representation o : H — GL,,.
Since H is commutative, k" contains eigenvectors of H; thus, twisting o by a
character of H (which does not change the projectivization P(E)), we may assume
that k" contains nonzero fixed points of H. Then o defines a faithful projective

representation p : H — PGL,,. Hence G and p are the data associated with the
homogeneous projective bundle P(E) — X, and o splits the extension (8).

(ii) = (i) Any splitting of that extension yields a homomorphism o : H — GL,
that lifts p. Then the associated bundle G x* k" — X is a homogeneous vector
bundle with projectivization P.

(11) <= (iii) The forward 1mphcat10n is obvious. Conversely, if ¢ = 1, then
H is commutative. It follows that H = U x H,, where the unipotent part U is
isomorphic to H, via the homomorphism H— H,and Hs sits in an exact sequence
of diagonalizable group schemes 1 — G,, — I-NIS — H; — 1. But every such
sequence splits, since so does the dual exact sequence of character groups. (]

Next, we obtain a very useful structure result for H under the assumption that n
is not divisible by the characteristic:

Proposition 2.4. Keep the above notation, and assume that (n, p) = 1.
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(1) The extension 1 — G, — Hu — H, — 1 has a unique splitting, and the
corresponding lift of H, (that we still denote by H,) is central in H. Also, the
extension 1 — G, — H® — H° — 1 splits noncanonically and H? is central
in H.

(ii) We have canonical decompositions of group schemes

H=H,xH, Z(H)=H,xZH,).
Moreover, Z (Hs) is diagonalizable and sits in an exact sequence

1—>HSO—>Z(HS)—>FL—>1

which splits noncanonically.

(iii)) The commutator pairing e factors through a bilinear alternating morphism
er: Fx F— G,,,. (11D

Proof. Since any commutator has determinant 1, we see that e takes values in the
subgroup scheme u, = G, NSL, of n-th roots of unity. In other terms, e factors
through the pairing

se: Hx H— u,
defined by the central extension
1—>M,,—>SH—>H—>1,

where SH := H NSL,. Note that Wy s smooth by our assumption on n. Moreover,
se restricts trivially to n H x H, where n H denotes the image of the multiplication
by n in the commutative group scheme H.

We claim that H, C nH. This is clear if p =0, since H, is then isomorphic
to the additive group of a vector space. If p > 1, then the commutative unipotent
group scheme H,, is killed by some power of p. Using again the assumption that
(n, p) =1, it follows that H, =nH,, C nH.

By that claim, se restricts tr1v1ally to H, x H, and hence H cZ (H ); in particular,
H is commutative. Thus, H = H, x G,,; this proves the assertion about H,,.

We already saw that the extension 1 — G,, — H? — H® — 1 splits. Also,
HS0 =T x E, where T is a torus (the reduced neutral component), and E is a finite
group scheme killed by some power of p. As above, it follows that H? C nH, and
that H 0 js central in H. This completes the proof of (i).

The decompositions in (ii) are direct consequences of (i). The assertion on Z (H )
follows from the exact sequence 1 — H; 7o H — F — 1, since Hj HO c 7 (H ).
Finally, (iii) also follows readily from (i). [l
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Remark 2.5. With the notation and assumptions of Proposition 2.4, the group
scheme Auty (P) is smooth, as follows from the isomorphism (6) together with
[Herpel 2013, Theorem 1.1]. Moreover, Aut P is smooth as well: indeed, we have
an exact sequence of group schemes

| — Auty(P) —> Aut(P) —X> Autp(X) — 1,

where Autp(X) is a subgroup scheme of Aut X containing the group X of transla-
tions. Since Aut(X) = X X Autg,(X), where the group scheme of automorphisms
of algebraic groups Autg,(X) is étale (possibly infinite), it follows that Autp (X) is
smooth, and hence so is Aut X.

Nondegenerate theta groups. As in the above subsection, we consider a commu-
tative subgroup scheme H C PGL,, and the associated theta group H C GL,; we
assume that (n, p) = 1.

We say that H is nondegenerate if Z(ﬁ) = G,,. By Proposition 2.4, this is
equivalent to the assertions that H is a finite commutative group of order prime to
p, and the homomorphism

€. H—>%XH), x+— (yrelx,y) (12)

is faithful, where ¥ (H) := Homg,(H, G,,) denotes the character group of H. It
follows that € is an isomorphism.

We now recall from [Mumford 1966, §1] the structure of nondegenerate theta
groups. Choose a subgroup K C H that is totally isotropic for the commutator
pairing e, and maximal with this property. Then

H=G, x K x %(K),
where the group law on the right-hand side is given by
(t’ X, X) : (t/7 xl’ X/> = (tt/X/(x)v X +x/7 X + X/)v (13)

the group laws on K and ¥ (K ) being denoted additively. Such a group is called the
Heisenberg group associated with the finite group K; we denote it by #(K) and
identify the group K (resp. Z(K)) with its lift {1} x K x {0} (resp. {1} x {0} x X(K))
in #(K).

Also, recall that #¢(K) has a unique irreducible representation on which G,, acts
via t +— t id: the standard representation (also called the Schrodinger representation)
in the space O(K) of functions on K with values in k, on which H acts via

((t,x, ) - HY) i=txy) fx+y).

The corresponding commutator pairing e is given by

e((x, ), &, X)) = x ) x(xH~"
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In particular, the standard representation W (K') contains a unique line of K-fixed
points and has dimension n = #(K); moreover, the group H is killed by n and has
order n2. Any finite-dimensional representation V of %¢(K) on which G,, acts by
scalar multiplication is a direct sum of m copies of W (K), where m := dim(VX).
Such a representation is called of weight 1.

For later use, we record the following result, which is well-known in the set-
ting of theta structures on ample line bundles over complex abelian varieties (see
[Birkenhake and Lange 2004, Lemma 6.6.6 and Exercise 6.10.14]):

Lemma 2.6. Assume that (n, p) = 1 and let HCGL, bea nondegenerate theta
group.

(1) The algebra My, has a basis (up)necy such that every uy, is an eigenvector of H
(acting by conjugation) with weight € (h), and

’
Ux xUx' xy = X (x)”x+x’,x+x/

forallh = (x, x) and k' = (x’, x') in H = K x ¥(K). In particular, the represen-
tation of H in M,, by conjugation is isomorphic to the regular representation.

(i) The centralizers of H in GL,, and of H in PGL,, satisfy
GLA =G,, PGLY = H.
Moreover, the normalizers sit in exact sequences
1 = Gy — Nav, (H) > Near, (H) = 1,
1— H — NpgL,(H) — Aut(H,e) — 1.
Also, we have an isomorphism
Aut® (H) = NpgL, (H). (14)

Proof. (1) We may view H as a subset of M,, via (x, x) = uy , :=(1,x, x) € H
C GL,,. Then the assertions follow readily from (13) for the group law of H.

(i1) By Schur’s lemma, we have GLf = G,,; this yields the first exact sequence.

In view of (i), the fixed points of H acting on [P(M,) by conjugation are exactly
the points of H C PGL,; thus, PGL = H. To obtain the second exact sequence,
it suffices to show that the image in Aut H of NpgL, (H) equals Aut(H, ¢). But
if g € PGL,, normalizes H, then one readily checks that the conjugation Int(g)|y
preserves the pairing e. Conversely, let g € Aut(H, e); then composing the inclusion
p : H — PGL, with g, we obtain a projective representation p, with the same
commutator pairing. Thus, p, lifts to a representation p, : H — GL, which
is isomorphic to the standard representation. It follows that g extends to the
conjugation by some g € GL,, that normalizes H.
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The isomorphism (14) follows similarly from the fact that the standard represen-
tation is the unique irreducible representation of weight 1. U

Returning to an arbitrary theta group H C GL,,, we now describe the representa-
tion of H in k" =: V. Consider the decomposition

\% :@V}‘ (15)
A

into weight spaces of the diagonalizable group Z (Hy), where A runs over the
characters of weight 1 of that group (those that restrict to the identity character of
Gm). By Proposition 2.4, each Vj is stable under H.

Proposition 2.7. With the above notation, each quotient H, / ker()\) is isomorphic
to the Heisenberg group (K | F+), where K denotes a maximal totally isotropic
subgroup scheme of F relative to ef.

Moreover, we have an isomorphism of representations of H=H, xH,:

Vi ZU, @ W(K/F),
where U, is a representation of H, and W (K / F1) is the standard representation
of Hy/ ker(A).

Proof. Note that A yields a splitting of (10), and an isomorphism Z (H,) /ker(A) =
Gy,. Also, Hy/Z(H) = H/Z(H) = F/F* by Proposition 2.4. Thus, the exact
sequence

1 — Z(H,)/ker(x) — H,/ker(\) - H,/Z(H,) — 1
may be identified with the central extension
11— G, —> ﬁs/ker(k) — F/Ft > 1,

and the corresponding commutator pairing is induced by er. This shows that
H / ker(X) is a nondegenerate theta group. Now the first assertion follows from the
structure of these groups.

Also, V, is a representation of ﬁs / ker()) on which the center G,, acts with
weight 1, and hence a direct sum of copies of the standard representation. This
implies the second assertion in view of Proposition 2.4 again. (]

Corollary 2.8. With the above notation, the representation of H in 'V is an iterated
extension of irreducible representations of the same dimension,

d:=[K:F'1=V[F:FL1=[H: H.. (16)

In particular, n is a multiple of d, with equality if and only lfﬁ is a Heisenberg
group acting via its standard representation.
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We say that d is the homogeneous index of the bundle (1); this is the minimal
rank of a homogeneous subbundle of P in view of Theorem 2.1. (One can show
that the homogeneous index of P is a multiple of the index of the associated central
simple algebra over k(X).) Note that F/F+ is killed by d, and hence e‘fp =1.1In
view of Proposition 2.3, it follows that the d-th power P? is the projectivization of
a homogeneous vector bundle.

Proposition 2.9. With the notation and assumptions of Proposition 2.4, the follow-
ing assertions are equivalent for a homogeneous P"~'-bundle f : P — X:

(1) P is indecomposable.
(ii) The associated representation p : H— GL,, is indecomposable.

(iii) ﬁs is a Heisenberg group and V =U ® W as representations of H = H,, X ﬁs,
where U is an indecomposable representation of H,, and W is the standard
representation of H.

(iv) The neutral component Aut())((P) is unipotent.

Proof. (i) <= (ii) The forward implication is obvious, and the converse follows
from Theorem 2.1(iv).

(i) <= (iii) This is a direct consequence of Proposition 2.7.
(iii) = (iv) Since (n, p) =1, we have M,, = k id ®pgl, as representations of PGL,
acting by conjugation. In view of (7), this yields
Lie Auty (P) =M /kid = End” (U ® W)/kid.
Moreover, End” (U @ W) = End”«(U) by Schur’s lemma, and hence
Lie Auty (P) = End"*(U) /k id.
This isomorphism of Lie algebras arises from the natural homomorphism
GL(U)" /G, id — Autx(P).

Since Auty (P) is smooth (Remark 2.5), we see that its neutral component is a
quotient of GL(U )" /G,, id. But the latter group is unipotent, since U is indecom-
posable.

(iv) = (iii) Observe that the weight space decomposition (15) is trivial: otherwise,
Auty (P) contains a copy of (g, that fixes some weight space pointwise and acts
by scalar multiplication on all the other weight spaces. Thus, V = U ® W, where
W is irreducible. Moreover, U is indecomposable; otherwise, Auty (P) contains a
copy of G, by the above argument. U

Remarks 2.10. (1) The results of this subsection do not extend readily to the case
where p divides n: for instance, there exists a nondegenerate theta group H C GL,
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with H unipotent and local. Consider indeed the group scheme «/, (the kernel of
the p-th power map of G, ) and the duality pairing
p—1 o
u:o, xo, —> Gy, (x,y)|—>zﬁ.
i=0

This yields a bilinear alternating pairing e on H := o, X ), via

e((x,y), (', ¥)) = u(x, y)ux', y)~'.

Then we may take for H the associated Heisenberg group scheme (with K =, x {0}
and X(K) = {0} x ), equipped with its standard representation in O(a,) = k?.
Note that the above group scheme H is contained in an abelian surface, the
product of two supersingular elliptic curves. More generally, any finite commutative
group scheme is contained in some abelian variety (see [Oort 1966, §15.4]).

(2) For an arbitrary homogeneous projective bundle P, each representation U,
(with the notation of Proposition 2.7) is a direct sum of indecomposable repre-
sentations with multiplicities; moreover, these indecomposable summands and
their multiplicities are uniquely determined up to reordering, in view of the Krull-
Schmidt theorem. Thus, the representation of HinV decomposes into a direct
sum (with multiplicities) of tensor products U @ W, where U is an indecomposable
representation of H, and W is an irreducible representation of H;.

Let L C PGL, denote the stabilizer of such a decomposition. Then L is a
Levi subgroup, uniquely determined up to conjugation; moreover, the PGL,,-torsor
m : Y — X admits a reduction of structure group to an L-torsor wry : ¥r — X.
Arguing as in the proof that (iii) implies (iv) above, one may check that the natural
homomorphism Z(L) — Aut)L((Y 1) (where Z(L) denotes the center of L, and
Aut)L((YL) the group of bundle automorphisms of Y7 ) yields an isomorphism of
the reduced neutral component Z (L)?ecl to a maximal torus of Autﬁ(YL). Thus,
the torsor my : Y; — X is L-indecomposable in the sense of Definition 2.1 of
[Balaji et al. 2005]. Moreover, this torsor is the unique reduction of 7 : P — X
to an L-indecomposable torsor for a Levi subgroup, by Theorem 3.4 of the same
reference (the latter result is obtained there in characteristic zero, and generalized
to arbitrary characteristics in [Balaji et al. 2006b]; see also [Balaji et al. 2006a]).

Conversely, the equivalence of statements (i) and (iv) above follows from the
results of [Balaji et al. 2005; 2006b] in view of the smoothness of Auty (P).

3. Irreducible bundles

Throughout this section, we consider P"—!_pundles f: P — X, and call them
bundles for simplicity; we still assume that (n, p) = 1.
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Structure and characterizations. We say that a homogeneous bundle P is irre-
ducible if so is the projective representation p : H — PGL,, associated with P via
Theorem 2.1. By Proposition 2.7, this means that the theta group Hisa Heisenberg
group acting on k" via its standard representation.

We now parametrize the irreducible homogeneous bundles, and describe the
corresponding Azumaya algebras as well as the adjoint bundles and automorphism
groups:

Proposition 3.1. (i) The irreducible homogeneous P"~'-bundles are classified by
the pairs (H, e), where H C X, is a subgroup of order n> and e : H x H — G, is
a nondegenerate alternating pairing. In particular, such bundles exist for any given
n, and they form only finitely many isomorphism classes.

(i1) For the bundle P corresponding to (H, e), the associated Azumaya algebra s
admits a grading by the group H, namely,

wz@sz,

$eH

where each element of H C X is viewed as an invertible sheaf on X. In particular,
we have a decomposition

ad(P) = @ .

PeH,$£0

(iii) For P as in (ii), we have Autx (P) = H. Moreover, the neutral component
Aut’(P) is the extension of X by H, dual to the inclusion X(H) = H C 5(\, and
Aut(P)/AutO(P) is isomorphic to the subgroup of Autyy(X) = Autgp(?) that
preserves H and e.

Proof. (i) By the results of Section 2, the irreducible homogeneous bundles are
classified by the pairs consisting of an isogeny 1 - H - G — X — 1 and a
nondegenerate alternating pairing e on H; then e provides an isomorphism of H
with its character group. The assertion now follows from duality of isogenies.

(i1) This follows from the isomorphism of Ox-algebras (5) together with the iso-
morphism of Ox-H-algebras y,(0g) = EBSBG%( ) £ and with the decomposition
M, = P,y kuy obtained in Lemma 2.6(i).

(iii) Combining the isomorphism (6) and Lemma 2.6(ii), we see that the natural
map H — Autyx (P) is an isomorphism. In view of the commutative diagram with
exact rows

] — H — G — X — 1

L

1 — Auty(P) — Aut(P) —— Aut(X)
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and of the isomorphism Aut(X) = X x Autg,(X), where Autg,(X) is étale, it follows
that the natural map G — Aut’(P) is an isomorphism as well. The structure of
Aut(P)/ Aut’(P) follows from Theorem 2.1 together with Lemma 2.6(i1). O

Remark 3.2. Recall from [Mumford 1966, §1] that every finite commutative group
H of order prime to p, equipped with a nondegenerate alternating pairing e, admits
a decomposition

H:Han“-XHnr, e:(edlv"'aedr)v
such that
H, =Z/nZ x X(Z/n,7) = (Z/ni2)*, eq((x, %), ', x) = x' )% x ()™,

where the n; and d; are integers satisfying n;1|n;, 0 <d; <n;, and (d;, n;) =1 for
all i. Moreover, ny, ..., n, are uniquely determined by H. Since H is a subgroup
of X 2 = (Z/nZ)%¢, where g :=dim(X), we see that r < g; conversely, any product
of r cyclic groups of order prime to p can be embedded into X, provided that r < g.

It follows that every homogeneous irreducible bundle admits a decomposition
into a product

P=P P,

where each P; corresponds to (H,,, eq;). Moreover, the P; are exactly the irreducible
homogeneous bundles associated with a product of two copies of a cyclic group;
we may call these bundles cyclic.

Equivalently, the associated Azumaya algebra satisfies

A= ®- - Qd,,

where o; corresponds to (Hy,, eg,). Moreover, the Ox-algebra s{; is generated by
two invertible sheaves & and Jl (associated with the natural generators of (Z/ n;7)%),
with relations x™ = &, y" =, and xy = ¢% yx for any local generators x € £ and
y € J, where & (resp. n) denotes a local trivialization of £®" (resp. M®"), and ¢ is
a fixed primitive d;-th root of unity (this follows by combining the isomorphism of
algebras (5) with the description of the H,, -algebra M,,, obtained in Lemma 2.6(3)).
In particular, &{; yields a cyclic division algebra over k(X).

Example 3.3. Let X be an elliptic curve. Then X is canonically isomorphic to
X and the finite subgroups of X admitting a nondegenerate alternating pairing
are exactly the n-torsion subgroups X,. In view of the above remark, it follows
that the irreducible homogeneous bundles over X are exactly the cyclic bundles.
By Theorem 10 of [Atiyah 1957], they are exactly the projectivizations of the
indecomposable vector bundles of coprime rank and degree, that is, of the simple
vector bundles.
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Example 3.4. Returning to an arbitrary abelian variety X, we recall from [Mumford
1966, §1] a geometric construction of Heisenberg groups. Let L be a line bundle
on X, and K (L) the kernel of the polarization homomorphism

or:X—>X, x—>T L)L (17)

Denoting by 9(L) the group scheme of automorphisms of the variety L which
commute with the action of (3, by multiplication on fibers, we have a central
extension

1> G, > %L)— K(L)—1.

The associated commutator pairing on K (L) is denoted by e”.

Also, recall that an effective line bundle L is ample if and only if ¢ is an
isogeny; equivalently, K (L) is finite. Then the theta group (L) is nondegenerate,
and acts on the space of global sections H(X, L) via its standard representation.
Thus, K (L) acts on the associated projective space

LI :=P(H(X, L))
and the natural map
FiXx X0\ > x/K(L)y=X

is an irreducible homogeneous bundle.

As will be shown in detail in Section 4, this bundle is the projectivization of a
natural vector bundle E over X. Moreover, if X is an elliptic curve (so that X = X )
and L has degree n, then E has rank n and degree —1.

We now obtain several criteria for a homogeneous projective bundle to be irre-
ducible:

Proposition 3.5. The following conditions are equivalent for a homogeneous bun-
dle P:

(1) P is irreducible.

(i1) P admits no proper homogeneous subbundle.
(iii) ad P splits into a direct sum of nonzero algebraically trivial line bundles.
(iv) H%(X,ad(P)) =0.

(v) Auty(P) is finite.

If P is the projectivization of a (semihomogeneous) vector bundle E, then P is
irreducible if and only if E is simple.



2492 Michel Brion

Proof. (i) = (ii) follows from Theorem 2.1(iii).

(i) = (ii) follows from Proposition 3.1(ii).

(iii) => (iv) holds since H°(X, L) = 0 for any nonzero L € X.

(iv) = (v) follows from the fact that Lie Auty (P) = H(X, ad(P)).

(v)=>(i) By Proposition 2.9, P is indecomposable and the quotient GL(U)"/G,, id
is finite, where U is the indecomposable representation of H,, given by that propo-
sition. But GL(U)«/G,, id has positive dimension for any unipotent subgroup
scheme H,, C GL(U), unless dim(U) = 1; in the latter case, P is clearly irreducible.

The final assertion follows from the equivalence of (i) and (iv) in view of the
isomorphism
H°(X, ad(P(E))) = H°(X, End(E))/kid . O

Remark 3.6. The indecomposable homogeneous bundles are exactly the products
P(U)I, where U is an indecomposable unipotent vector bundle, and [ an irreducible
homogeneous bundle (as follows from Proposition 2.9).

In particular, the indecomposable homogeneous bundles over an elliptic curve X
are exactly the projectivizations P(U ® E), where U is as above, and E is a simple
vector bundle (as in Example 3.3).

By a result of [Atiyah 1957], any indecomposable vector bundle over X is
isomorphic to U @ E ® L for U and E as above and L a line bundle. Also, U
is uniquely determined by its rank; moreover, E is uniquely determined by its
(coprime) rank and degree, up to tensoring with a line bundle of degree 0.

Next, we obtain a cohomological criterion for a bundle to be homogeneous and
irreducible, thereby extending a result of Mukai [1978, Theorem 5.8] about simple
semihomogeneous vector bundles:

Proposition 3.7. A bundle P is homogeneous and irreducible if and only if we have
H(X,ad(P)) = H' (X, ad(P)) = 0; then H' (X, ad(P)) =0 for all i > 0.

Proof. Recall that H (X, L) = 0 for all i > 0 and all nonzero L € X. By
Proposition 3.1(ii), the same holds with L replaced with ad P, if P is homogeneous
and irreducible.

For the converse, observe that ad(P) = m,(Ty, x)POLn where 7 : Y — X denotes
the PGL,-torsor associated to P, and Ty, x the relative tangent bundle. Thus, ad P
sits in an exact sequence

0— ad(P) — rr*(Ty)PGL" —Tx —0

obtained from the standard exact sequence 0 — Ty,;x — Ty — w*(Tx) — 0 by
taking the invariant direct image under . If H (X, ad(P)) = 0, then the natural
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map
HO(Y, Ty)PY = HO(X, 7, (Ty)PM) — HO(X, Ty)

is surjective. But HO(Y, Ty)PO = Lie(Aut’®M(Y)) and H(X, Tx) =Lie(Aut(X));
moreover, Aut”®l (Y) = Aut(P) is smooth by Remark 2.5, and Aut(X) is smooth
as well. Hence the homomorphism Aut?Ol (V) - Aut(X) is surjective on neutral
components, that is, ¥ is homogeneous. Thus, P is homogeneous, too. If in addition
HY(X,ad(P)) =0, then P is irreducible by Proposition 3.5. [l

Remark 3.8. The above argument shows that a bundle P is homogeneous if it
satisfies H'(X, ad(P)) =0. This may also be seen as follows: observe that ad(P) =
f«(Tp,x) (as follows, for example, by considering an étale trivialization of P).
Moreover, Rif*(Tp/X) =0foralli > 1, since H (P"!, Tpn-1) = 0 for all such i.
As a consequence, H' (P, Tp /x) =0. Then f is rigid as a morphism with target X
in view of [Sernesi 2006, Corollary 3.4.9]. It follows readily that P is homogeneous.

The converse statement does not hold, for example, when X is an elliptic curve
in characteristic zero, U, is the indecomposable unipotent vector bundle of rank
n>2,and P =P(U,). Then

ad(P) = (U, @ U)/kid = Uny_ 1 @ Uny_3® - - - @ Us,

and hence H°(X, ad(P)) has dimension n — 1. By the Riemann—Roch theorem, the
same holds for H' (X, ad(P)).

Projectivizations of vector bundles. In this subsection, we characterize those ho-
mogeneous projective bundles that are projectivizations of (not necessarily homo-
geneous) vector bundles. We first consider a special class of bundles, defined as
follows.
Given a positive integer m, not divisible by p, we say that a bundle P is trivialized
by my, (the multiplication by m in X) if the pull-back bundle my (P) — X is trivial.
In fact, every such bundle is homogeneous, as a consequence of the following:

Proposition 3.9. (i) A bundle P is trivialized by my, if and only if P =X X X =1
as bundles over X = X/ X, for some action of X,, on P"~1,

(ii) Any irreducible homogeneous P"~'-bundle is trivialized by nx.

Proof. (i) If P is trivialized by my, then we have a cartesian square

X xpr-1 o

r I x
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where p; denotes the first projection. Thus, the action of X, by translations on X
lifts to an action on X x P"~! such that g is invariant. This action is of the form

x-(y,0)=+y, 0x,y)2)

for some morphism ¢ : X,, x X — Aut(P"~') =PGL,,. But every morphism from the
abelian variety X to the affine variety PGL,, is constant. Thus, ¢ is independent of
y, that is, ¢ yields an action of X,, on P"~!. Moreover, the X,,-invariant morphism
g factors through a morphism of P"~!-bundles X x*» P*~! — P which is the
desired isomorphism.

The converse implication is obvious.

(ii) Write P = G x" P*~! as in Theorem 2.1; then H is killed by n in view of
the structure of nondegenerate theta groups. In other words, the homomorphism
y : G — X is an isogeny with kernel killed by n. Thus, there exists a unique isogeny
7:X — G such that yt = nx. Then X, = t~'(H) and hence X = X x*X» P"~1,
where X, acts on P"~! via the surjective homomorphism 7|y, : X, — H. U

By the above proposition, a bundle P trivialized by m, defines an alternating
bilinear map
epm Xm X Xm = -

Moreover, the irreducible homogeneous bundles are classified by those maps such

that [ X, : X,ﬁ] = m? (as follows from Proposition 3.5). Also, one easily checks

that the assignment P — ep ,, is multiplicative, that is, ep, p, » = €p, . mep,.m and

eps = e;’lm.
We may now obtain the desired characterization:

Proposition 3.10. Let P be a bundle trivialized by my,. Then P is the projectiviza-

tion of a vector bundle if and only if there exists a line bundle L on X such that

® . .
epm=el" |x,, (this makes sense as K (L®™) contains Xy,).

Proof. Assume that P = [P(E) for some vector bundle E of rank n on X. Since the
projective bundle my (P(E)) is trivial, we have

my(E) = M®"

for some line bundle M on X. Replacing E with E ® N, where N is a symmetric
line bundle on X, leaves P(E) unchanged and replaces my (E) with my (E) ® N®’”2,
and hence M with M ® N®™", Taking for N a large power of an ample symmetric
line bundle, we may assume that M is very ample.

The pull-back my (E) is equipped with an X,,-linearization. Equivalently, the
action of X, by translations on X lifts to an action on M®" which is linear on
fibers. In particular, 7;"(M®") = M®" for any x € X,,. This isomorphism is given
by an n x n matrix of maps 7, M — M; thus, HO(X, Tx*(M_l) ® M) #0. Since
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TX(M HeoMe X , it follows that this line bundle is trivial. In other words, X,, C
K (M); this is equivalent to the existence of a line bundle L in X such that M = L®".
Moreover, we have a representation of X, in H%(X, M®") = HO(X, M) ® k" that
lifts the homomorphism

¢ X,, — PGL(H’(X, M)) x PGL, (18)

given by the X,,-action on P(HY(X, M))asa subgroup of K (M), and the X,,,-action
on P"~! that defines P. It follows that e ep.mn =1 on X,,; equivalently, ep ,, is
=n L®(—m) L®m(m—l) . L®n12

=e =e (since e =1).

To show the converse, we reduce by inverting the above arguments to the case
that eMep’m =1 on X,, for some line bundle M on X such that X,, C K(M); we
may also assume that M is very ample. Then X,, acts on H°(X, M®") by lifting
the homomorphism (18). Moreover, the evaluation morphism

the restriction to X,, of e ®

Ox QHY(X, M®") =0y @ H' (X, M) @ k" > M Qk" = M®"

is surjective and its kernel is stable under the induced action of X,, (since the
analogous morphism Oy ® H 09X, M) > M is equivariant with respect to the
theta group of X,, C K(M)). Thus, X,, acts on M®" by lifting its action on
X via translation. Now M®" descends to a vector bundle on X/X,, = X with
projectivization P. ]

Next, we extend the statement of Proposition 3.10 to all homogeneous bundles
P. We use the notation of Section 2; in particular, the associated pairing eg
introduced in Proposition 2.4. Then ep factors through a nondegenerate pairing
on F/F+ = H/H" and this group is killed by the homogeneous index d = d(H)
defined by (16). Thus, the isogeny G/H' — G/H = X has its kernel killed by d; as
in the proof of Proposition 3.9(ii), this yields a canonical surjective homomorphism
X4 — H/H* and, in turn, a bilinear alternating pairing ep on X,.

Theorem 3.11. With the above notation, P is the projectivization of a vector bundle
ifand only ifep = el |x, for some line bundle L on X.

Proof. Choose a linear subspace S C P"~! which is H-stable, and minimal for
this property. Then S yields a homogeneous irreducible [P?~!-subbundle of P and
the associated pairing on X is just ep. Now the statement is a consequence of
Proposition 3.10 together with the following observation.

Lemma 3.12. Let f : P — Z be a projective bundle over a nonsingular variety,
and f| : P — Z a projective subbundle. Then P is the projectivization of a vector
bundle if and only if so is P).

Proof. Clearly, if P = P(E) for some vector bundle E over Z, then P, = P(E})
for some subbundle E; C E. To show the converse, consider the PGL,-torsor
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Y — Z associated with P; recall that the subbundle P; yields a reduction of
structure group to a PGL,, ,,-torsor &y : Y1 — Z, where PGL, ,, C PGL,, denotes
the stabilizer of P"'~! ¢ P"~!. We have an exact sequence of algebraic groups

1 — G, ., —> PGL,,, LN PGL,, — 1,

where r denotes the restriction to P"'~! and Gnny = My, n—n, X GL,—,,, the
semidirect product being defined by the natural action of GL,_,, on the space of
matrices My, ,—n,. Also, my factors as

Vi 2 Y1/Gup —Ls Z,

where ¢ is a G, ,,-torsor and ¥ is the PGL,,,-torsor associated with P;. By as-
sumption, P; = P(E) for some vector bundle E; this is equivalent to i being
locally trivial in view of Proposition 18 of [Serre 2001]. But ¢ is locally trivial
as well, since the algebraic group G, ,, is special by Sections 4.3 and 4.4 of that
same reference. Thus, 7 is locally trivial, and hence so is w. We conclude that
P = P(E) for some vector bundle E.

Alternatively, one may use the fact that P is the projectivization of a vector
bundle if and only if f has a rational section [loc. cit.], and conclude by applying
[Gille and Szamuely 2006, Proposition 5.3.1]. 0 O

Remark 3.13. We now relate Proposition 3.10 to a description of the Brauer group
Br X, due to Berkovich. Recall from [Grothendieck 1968a, §8.4] that Br X may be
viewed as the set of equivalence classes of projective bundles over X, where two
such bundles Py and P, are equivalent if there exist vector bundles E; and E; such
that P(E ) P; = [P(E,) P»; the group structure stems from the operations of product
and duality. By [Berkovich 1972, §3], we have an exact sequence for any positive
integer n:

0 — Pic(X)/nPic(X) —> Hom(A2X,, ;) —— Br(X), —> 0,

where Hom(A2X,,, it,) consists of the bilinear alternating pairings X, x X, — itn
and Br(X), C Br(X) denotes the n-torsion subgroup; the map ¢ sends the class
of L € Pic(X) to the pairing ¢2®"|x, and the map ¥ sends e to the class of the

Azumaya algebra
A= @ Fues,

aeX,,ceX,

where ¥, denotes the invertible sheaf associated with « and the multiplication is
defined by

f(xea : fﬂer = én(,B’ U)aa,ffotfﬁea+r-

Here f, (resp. fg) is a local section of &, (resp. £g); e, is the canonical pairing be-
tween X, and X, and {a, .} € Z%(X,, G,)isa 2-cocycle such that e(o, T) =ama;1

o



Homogeneous projective bundles over abelian varieties 2497

(The class of & in the Brauer group does not depend on the choice of the represen-
tative {a, .} of e viewed as an element of H 2(X,, G,,).) Thus,

F = @ Faeo

aeX,

is a maximal étale subalgebra of & in the sense of [Grothendieck 1968a, définition
5.6]; note that ¥ = (nx).Ox as Ox-algebras. Moreover, the left £-module o is free
with basis (a5 )sex,. By [loc. cit., corollaire 5.5], it follows that n% () = M,,(0x),
where m := #(X,,) = n*4. In other words, the projective bundle associated with
oA is trivialized by ny. In view of Proposition 3.9, it follows that the associated
projective bundle is homogeneous.

In fact, any class in Br(X),, is represented by an irreducible homogeneous bundle.
Indeed, given any homogeneous bundle P, we may choose an irreducible subbundle
Py; then the product Py P/ is a subbundle of P P}" and is the projectivization of a
vector bundle. By Lemma 3.12, it follows that the class of PPl* in Br X is trivial;
equivalently, P and P; have the same class there.

Recall that the natural map Br(X) — Br(k(X)) is injective (see [Grothendieck
1968b, §1]). Also, as a very special case of a theorem of Merkurjev and Suslin
(see [Gille and Szamuely 2006, Theorem 2.5.7]), each class in Br(k(X)), can be
represented by a tensor product of cyclic algebras. So the decomposition of classes
in Br(X), obtained in Remark 3.2 may be viewed as a global analogue of that result
for abelian varieties.

Finally, note that Proposition 3.10 is equivalent to the assertion that the image of
@ consists of those pairings associated with projectivizations of semihomogeneous
vector bundles. In loose terms, the Brauer group is generated by homogeneous
bundles and the relations arise from semihomogeneous vector bundles.

4. Examples

Let X be an abelian variety, and A an effective class in the Néron—Severi group
N S(X) viewed as the group of divisors on X modulo algebraic equivalence. The
effective divisors on X with class A are parametrized by a projective scheme
Div*(X). Indeed, the Hilbert polynomial of any such divisor D, relative to a fixed
ample line bundle on X, depends only on A; thus, Div*(X) is a union of connected
components of the Hilbert scheme Hilb(X).

Also, recall that the line bundles on X with class A are parametrized by the Picard
variety Pic*(X). Choosing L in that variety, we have

Pic*(X) = L ® Pic®(X) = L ® X.



2498 Michel Brion

On X x Pic*(X) we have a universal bundle: the Poincaré bundle %, uniquely
determined up to the pull-back of a line bundle under the second projection

7 : X x Pic*(X) — Pic*(X).
The universal family on Div*(X) yields a morphism
f :Div*(X) — Pic*(X), D+ Ox(D). (19)

Note that X acts on Div*(X) and on Pic*(X) via its action on itself by translations;
moreover, f is equivariant. Also, the isotropy subgroup scheme in X of any point
of Pic*(X) is the group scheme K (L) that occurred in Example 3.4.

If A is ample, then Pic*(X) is the X-orbit X - L = X/K(L). Thus, f is a
homogeneous fiber bundle over X /K (L); the latter abelian variety is isomorphic to
X via the polarization homomorphism (17).

Proposition 4.1. Let A € NS(X) be an ample class, and L € Pic*(X).

(i) We have an isomorphism
Div*(X) = X xK@ |
of homogeneous bundles over X /K (L). In particular, Div*(X) is a homoge-
neous projective bundle over X.
(1) The sheaf € := m.(P) is locally free, and the morphism (19) is the projec-
tivization of the corresponding vector bundle.

(iii) The group scheme Aut(Div* (X)) is the semidirect product of X (acting by
translations) with the subgroup of Auty,(X) that preserves K (L) and el.
Proof. (1) Clearly, the set-theoretic fiber of f at L is the projective space |L|, and its
dimension h°(L) — 1 = x (L) — 1 is independent of L € Pic*(X). As a consequence,

the scheme Div*(X) is irreducible of dimension dim(X) + h°(L) — 1.
To complete the proof, it suffices to show that the differential of f atany D € |L|

is surjective with kernel of dimension A%(L) — 1. Identifying Div*(X) with a union
of components of Hilb(X), and Pic*(X) with X, the differential

Tp f : Tp Div*(X) — T Pic*(X)

is identified with the boundary map 0 : HO(D, Lip)— H'(X, Oy) of the long exact
sequence of cohomology associated with the short exact sequence

0—-0x—L—Lp—0

(see [Sernesi 2006, Proposition 3.3.6]). Since HY(X,L) = 0, this long exact
sequence begins with

0 —> k —> HYX,L) —> H(D,Lpp) ——> H'(X,0x) —> 0
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which yields the desired assertion.

(ii) The vanishing of H'(X, L) also implies that € is locally free and satisfies
€(L) = HO(X, L). Thus, it suffices to check that the associated projective bundle
P(€) is homogeneous. But for any x € X, there exists an invertible sheaf L, on
Pic*(X) such that

(T, T (P) =P @7 Ly

in view of the universal property of the Poincaré bundle %. Since 7, (T, Ty)* (%) =
T} (P)) =T[(€), this yields an isomorphism

TH ) Z€QL,.

In other words, € is semihomogeneous.
(ii1) This is checked by arguing as in the proof of Proposition 3.1(iii). ]

The case of an arbitrary effective class A reduces to the ample case in view of
the following:

Proposition 4.2. Let A € NS(X) be an effective class, L € Pic*(X),and g : X — X
the quotient map by the reduced neutral component K (L)?ed C K(L). Then ) =
q*()_u) for a unique ample class X € NS(X), and f: Div*(X) — Pic*(X) may be
identified with f : Div*(X) — Pic*(X).

Proof. We claim that any D e Div*(X) equals ¢*(D) for some ample effective
divisor D on X.
To see this, recall that n D is base-point-free for any n > 2; this yields morphisms

Yu: X > PHX, L®Y) (n>2),

which are equivariant for the action of K(L). The abelian variety K (L)?ed acts
trivially on each projective space P(H 0(X, L®")*); thus, each ¥, 1s invariant under
K (L)?ed. In the Stein factorization of y,, as

X 25y, s PHOX, LE)),

where (¢,).(0x) = Oy, and v, is finite, the morphism ¢, is the natural map
o0
¢ : X — Proj @ HO(X, L®™) =Y.
m=0

In particular, ¢, is independent of n and invariant under K (L)?ed. Moreover,
since nD is the pull-back of a hyperplane under y, for any n > 2, we see that
D =3D — 2D = ¢*(E) for some Cartier divisor £ on Y. Then E is effective
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and HO(X, L®") = HO(Y, M®") for all n, where M := Oy (E); it follows that E is
ample. Consider the factorization

¢:X:=X/KL)y—7Y,

the effective divisor D := ¢*(E), and the associated invertible sheaf L = ¢*(M).
Then L = q*(i). Thus, the group scheme K(L) = K(L)/K(L)?ed is finite and L
has nonzero global sections; hence L is ample. Thus, ¢ is finite. But ¢.(03) = Oy;
it follows that ¢ is an isomorphism, and this identifies ¢ with ¢g. This proves the
claim.

As a consequence, A = ¢* (%) for a unique ample class A. We now show that the
morphism

g* : Div*(X) — Div*(X)

is an isomorphism. By the first step, ¢* is bijective. In view of Proposition 4.1, it

follows that the scheme Div* (X) is irreducible of dimension dim(X)+h°(X, L)—1.
On the other hand, the Zariski tangent space of Div*(X) at D equals

HY(D, Lip) = H(D, L) = T5 Div-(X).
Thus, g* is étale and hence is an isomorphism. U

In the above construction, one may replace the abelian variety X with any smooth
projective variety; for example, a curve C. Then an effective class in NS(C) = Z is
just a nonnegative integer d. Moreover, Div¢ (C) is the symmetric product C9, a
smooth projective variety of dimension d equipped with a morphism

f = fa:C9 = Pic?(C). (20)

Choosing a point of C, we may identify Pic? (C) with the Jacobian variety J = J(C).

If d > 2g—2, where g denotes of course the genus of C, then f is the projectiviza-
tion of a vector bundle E = E,; on Pic? (C), the direct image of the Poincaré bundle
on C x Pic?(C) under the second projection. Moreover, E has rank n :=d — g + 1.

Proposition 4.3. With the above notation, the projective bundle (20) is homoge-
neous if and only if g < 1.

Proof. Assume that (20) is homogeneous. Then E is semihomogeneous; in view of
[Mukai 1978, Lemma 6.11], we then have an isomorphism of vector bundles on J,

n(E) = det(E)®*" ®F,

for some homogeneous vector bundle . Moreover, the Chern classes of F are
algebraically trivial by [Mukai 1978, Theorem 4.17]. Thus, the total Chern class of
E satisfies

ny(c(E)) = (1+nci(E))"
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in the cycle ring of J modulo algebraic equivalence. Since n%(ci(E)) = nci(E)

in that ring, this yields
E n
¢(E) = (1+ alt )) . 1)
n

We now recall a formula for ¢(E) due to [Mattuck 1961, Theorem 3]. Denoting
by W; the image of p; for 0 <i < g, we have

8
c(E) =) (='W, ],
=0

where W denotes the image of W; under the involution (—1); and the equality
holds again modulo algebraic equivalence. In particular,

c1(E) = —[W,_1=—0,
where 6 denotes the Chern class of the theta divisor, and
cg(E) = (=1)%e,

where e denotes the class of a point. In view of (21), this yields

n\ 08
e = —.
g/ né

Since 68 = gle, we obtain n® =n(n—1)---(n —g+1) and hence g < 1.
Conversely, if g = 0 then C® = P? and there is nothing to prove; if g = 1 then
the assertion follows from Proposition 4.1. (I

Remark 4.4. By [Ein and Lazarsfeld 1992], the vector bundle E is stable with
respect to the principal polarization of J. In particular, E is simple, that is, Aut; (P)
is finite. This yields examples of simple vector bundles on abelian varieties which
are not semihomogeneous (see [Oda 1971] for the first construction of bundles
satisfying these properties).

5. Homogeneous self-dual projective bundles

Generalities on self-dual bundles. Throughout this subsection, we assume that
p # 2; we consider projective bundles over a fixed variety X. Let f: P — X
be a P""!-bundle, and f* : P* — X the dual bundle. By contravariance, any
isomorphism of bundles

¢:P— P* (22)

defines a dual isomorphism ¢* : P = P** — P*. We say that (22) is self-dual if
¢*=9.
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For later use, we now present some general results on self-dual bundles; we omit
their (easy) proofs, which can be found in the arXiv version of this article [Brion
2012b].

Proposition 5.1. Given a P"~'-bundle P, there is a bijective correspondence be-
tween the self-dual morphisms (22) and the reductions of structure group of the
associated PGL,-torsor w : Y — X to a PO, ¢-torsor  : Z — X, where ¢ = £1
and PO,, . C PGL,, denotes the projective orthogonal (resp. symplectic) group if
e=+1 (resp. —1).

We say that the self-dual morphism (22) is symmetric (resp. alternating) if ¢ = 1
(resp. = —1). Denote by GO,, . the preimage of PO,, . in GL,,. Then GO, ; is the
stabilizer of a unique line in the space of bilinear forms on k". Moreover, any such
semiinvariant form B is nondegenerate, and it is symmetric (resp. alternating) if ¢
has the same property.

The group GO, . is connected and reductive for any n; hence so is PO, ;. If n is
odd, then we must have ¢ =+1, and PO,, , =SO,,; if n is even, then PO, | =PSO,
and PO,, _; =PSp,. As a consequence, PO, . is semisimple of adjoint type unless
n =2 and ¢ = 1; then POy 1| = G,,.

Together with the results of Grothendieck recalled on pages 2477-2478 and
24962497, Proposition 5.1 yields one-to-one correspondences between self-dual
P"~!-bundles (that is, bundles equipped with a self-dual morphism), PO, .-torsors,
and Azumaya algebras s of rank n* equipped with an involution (as in [Parimala
and Srinivas 1992]); these correspondences preserve morphisms. The PO, .-torsor
Z — X corresponds to the associated bundle P = Z x PO P"~1 — X equipped with
the isomorphism to P* arising from the PO, ,-equivariant isomorphism P"~! =
(P"=1)* given by B. The associated Azumaya algebra is the sheaf of local sections
of the matrix bundle Z xPOr¢ M,, equipped with the involution arising from the
isomorphism M,, — (M,,)°P defined by the adjoint with respect to the pairing B.

Like for P"~!-bundles, we may define the product of the self-dual bundles
(P;, ¢i) (i =1, 2) in terms of the associated PO, ,-torsors Z; — X. Specifically,
the product (P; P2, ¢1¢2) corresponds to the PO, ,, ¢,¢,-torsor obtained from the
POy, ¢, X POy, ¢,-torsor Z; xx Z; — X by the extension of structure groups

PO, ¢, X POy, ., = PO, (k"") x PO, (k"?) 4 POg e, (k"' @ k") = POy, 1y 6,695

where p stems from the natural map GOg, (k") x GOg, (k""?) = GOy 4, (K" @ k™).
This product also corresponds to the tensor product of algebras with involutions, as
considered in [Parimala and Srinivas 1992].

Next, we introduce a notion of decomposition of self-dual bundles; for this,
we need some observations on duality for subbundles. Any P"!~!-subbundle P,
of a bundle P defines a P"~"'~!_subbundle of P*, as follows: P; corresponds
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to a PGL,,-equivariant morphism y from Y to the Grassmannian PGL, / PGL, ,,
and hence to an equivariant morphism y* from Y* to the dual Grassmannian,
PGL, /PGL, ,—,. The latter morphism yields the desired subbundle PIL. One
checks that PlLL = P; under the identification of P with P**. Moreover, every
decomposition (P;, P;) of P yields a decomposition (Ps-, PIJ-) of P*, of the same
type. We may now define a decomposition of a self-dual bundle (P, ¢) as a decom-
position (P;, P») of the bundle P, such that ¢(P}) = PZL; then also ¢(P;) = PlL
by self-duality.

Proposition 5.2. Under the correspondence of Proposition 5.1, the decompositions
of type (n1, ny) of (P, @) correspond bijectively to the reductions of structure group
of the PO, -torsor Z to a P(Oy, ¢ X O, ¢)-torsor.

Moreover, each subbundle P; in a decomposition of (P, ¢) uniquely determines
the other one and comes with a self-dual isomorphism ¢; : P; — P of the same
sign as .

The subbundles P; occurring in a decomposition of (P, ¢) are characterized by
the property that ¢ (P;) and Pl.L are disjoint; we then say that P; is nondegenerate. A
self-dual bundle will be called indecomposable if it admits no proper decomposition;
equivalently, any proper subbundle is degenerate.

Remarks 5.3. (1) We also have the notion of L-indecomposability from [Balaji
et al. 2005], namely, a self-dual bundle is L-indecomposable if the associated
PO, .-torsor admits no reduction of structure group to a proper Levi subgroup. The
maximal Levi subgroups of PO, , are exactly the subgroups P(O,, . x GL,,), where
ny >0,n2 > 1, ny+2ny =n, and GL,, C Oy, ¢ is the subgroup that stabilizes
a decomposition k¥ =V, @ V, with V| and V, totally isotropic subspaces of
dimension n,. Thus, a self-dual bundle is L-indecomposable if and only if it admits
no proper hyperbolic nondegenerate subbundle, where (P, ¢) is called hyperbolic
if the bundle P has a decomposition (P;, P>) such that p(P;) = Pl.L fori =1,2.
(2) If P = P(E) for some vector bundle £ over X, then the symmetric (resp.
antisymmetric) morphisms ¢ : P — P* correspond bijectively to the symmetric
(resp. antisymmetric) nondegenerate bilinear forms B : E x E — L, where L is a
line bundle and B is viewed up to multiplication by a regular invertible function
on X.
Also, note that P(FE) is hyperbolic if and only if E admits a splitting

EZVe(V'RL)

for some vector bundle V and some line bundle L; then the bilinear form B on E
takes values in L and is given by

bv®(ERs),wd (1)) = (v, n)t+e(w,E&)s,
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where (—, —) denotes the canonical pairing on V x V*,

Structure of homogeneous self-dual bundles. In this subsection, we still assume
that p # 2; we denote by X a fixed abelian variety and by f : P — X a P"~!-bundle.
We say that a self-dual bundle (P, ¢) is homogeneous if the corresponding PO,, .-
torsor Z of Proposition 5.1 is homogeneous. Then the bundle P is easily seen to
be homogeneous.

In view of [Brion 2012a, Theorem 3.1], the structure of homogeneous self-dual
bundles is described by a completely analogous statement to Theorem 2.1, where
PGL, is replaced with PO,, .. This reduces the classification of these bundles to that
of the commutative subgroup schemes of PO,, . up to conjugacy. Let H be such a
subgroup scheme, H its preimage in GO, and e : H x H — G,, the associated
commutator pairing. Choose a nondegenerate bilinear form B on k" =: V which is
an eigenvector of GO, ,; such a form is unique up to scalar. We say that the pair
(ﬁ , B) is a self-dual theta group, and (V, B) a self-dual representation. Note that
H is equipped with a character

B:H— G, (23)

such that
(- B)(v1, v2) = BE vy, 7o) = BF)B(v1, v2),

for all ¥ € H and v1, vp € V. In particular, B(¢) = t~2forall 7 € G,,; we say that g8
has G,,-weight —2. The existence of such a character imposes a strong restriction
on the quotient H/H~+ = F/F+ (where F denotes the group of components of H
and the orthogonals are relative to the pairing e):

Lemma 5.4. With the above notation, H/H*" is a 2-elementary finite group; in
particular, the homogeneous index of P is a power of 2. Moreover, e factors
through a nondegenerate alternating morphism

se: H/HY x H/HY — . (24)

Proof. Since B(e(x, y)) = x (35~ '571) =1for all x, y € H with lifts ¥, § € H,
we see that e(2x, y) = e(x, y)?> = 1. Thus, H' contains 2H (the image of the
multiplication by 2 in the commutative group scheme H), that is, F' is killed by
2. Since p # 2, this implies the first assertion. For the second, note that e factors
through a morphism H x H — (i, and hence through a bilinear alternating morphism
(24), which must be nondegenerate by the definition of H+. ([

In view of this result, Proposition 2.4, Lemma 2.6, and Proposition 2.7 also hold
in this setting (without the assumption that (n, p) = 1), by the same arguments.

We now assume that e is nondegenerate; equivalently, H is trivial. Then we may
view H as a finite-dimensional vector space over the field [, with two elements, and
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se as a symplectic form (with values in [,), by identifying [, to u; via x — (—1)*.
We denote by Sp(H) = Aut(H, se) the corresponding symplectic group.

Choose a maximal totally isotropic subspace K C H. Then H = K @ K* and
this identifies se with the standard symplectic form w defined by

o((x, &), (x",§)) = (x, &) + (x', &),

where (—, —) : K x K* — [, denotes the canonical pairing. In particular, #(H) =
#(K)? = 2%, where r := dimg, (K), and Sp(H) = Sp,, (F2); we say that r is the
rank of (H, e¢). Moreover, the dual K* is identified to the character group of K,
via the map & — (x > (—1)¥*%)). Recall that His isomorphic to the Heisenberg
group #(K), and has a unique irreducible representation of weight 1: the standard
representation in O(K'), of dimension 2".

We now analyze the representation of H in the space of bilinear forms on W.
Since p #2, we have a decomposition of representations W*@ W* = S?W*® A>W*
into the symmetric and the alternating components. For any x € K, denote by
€, € W* the evaluation at x, that is, €,(f) = f(x) for any f € W. Then the ¢,
(x € K) form a basis of W* and satisfy

(1, x,8) ey =t (=) ey
Define bilinear forms on W by

B, = Z(—1)<y’§>ey Qe€rty (xeK,E€K™).
yek

Lemma 5.5. With the above notation, each By , is an eigenvector of H with weight

Xog (6, y,n) —> 7 H(= DM TE),

Also, By ¢ is symmetric (resp. alternating) if and only if (x,&) =0 (resp. = 1).
Moreover, the By ¢ form a basis of W* @ W*.

Proof The first assertion is easily checked. It implies the second assertion, since the
B, , have pairwise distinct weights and their number is #(K 2 =dim(W*@W*). O

The normalizer Ngr(w) (H ) acts on W*® W*; it stabilizes S2W* and A2W*, and
permutes the eigenspaces of H. Thus, NGL(W)(H ) acts on the set of their weights,

X:={xelxeK, K"}

Note that & is exactly the set of characters of H with G, -weight —2. This is an
affine space with underlying vector space the character group of H, that we identify
with H via the pairing se. Also, NgLw) (ﬁ ) acts on & by affine automorphisms, and
the subgroup H of NGL(W)(ﬁ ) acts trivially, since H acts on itself by conjugation.
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In view of Lemma 2.6, it follows that Ngr(w) (ﬁ ) acts on & via its quotient Sp(H);
the linear part of this affine action is the standard action of Sp(H) on H.

Proposition 5.6. The above action of Sp(H) on & has two orbits: the symmetric
characters x g, where (x,&) = 0, and the alternating characters. In particular,
S2W* and A>W* are irreducible representations of NgLw) (H).

Proof. Consider the general linear group GL(K) = GL,([F;) acting naturally on
O(K) = W. Then one readily checks that this action is faithful and normalizes
H ; also, the resulting homomorphism GL(K) — NGL(W)(ﬁ ) lifts the (injective)
homomorphism GL(K) — Sp(H) associated with the natural representation of
GL(K) in K & K*. Moreover, the induced action of GL(K) on ¥ is given by
Y - Xxe = Xy),y(&)- Since the pairs (x, &) such that (x, &) = 1 form a unique orbit
of GL(K), we see that Sp(H) acts transitively on the alternating characters.

On the other hand, the pairs (x, £) such that (x, &) = 0 decompose into orbits
of GL(K) according to the (non)vanishing of x and &; this yields four orbits if
m > 2, and three orbits if m = 1 (then the orbit with x %= 0 # £ is missing).
Note that the unique GL(K)-fixed point o, (a symmetric weight) is not fixed by
Sp(H): otherwise, the latter group would act on ¥ via its representation on H, and
hence would act transitively on & \ {x0.0} = H \ {0}. But this is impossible, since
Sp(H) preserves the symmetric weights. Also, note that GL(K) has index 2 in its
normalizer Nsp)(GL(K)); moreover, any element of Ngp)(GL(K)) \ GL(K)
fixes xo,0 and exchanges the GL(K)-orbits {x, 0 |x € K, x #0} and {xo ¢ | § € K*,
x # 0}.

As a consequence, Sp(H) acts transitively on the symmetric characters if m = 1.
We now show that this property also holds when m > 2. In view of Lemma 2.6, it
suffices to construct automorphisms u, v € AutG""(ﬁ ) such that u(xy,0) = xxe¢ =
v(x0,¢) for some nonzero x € K and § € K*. For this, let g : K — [, be a
quadratic form, and ¢ : K — K™ the associated alternating map, defined by
(px),y) =qx+y) +q(x) +q(y). Letu = uy : H — H be the map such
that u(r, x, &) = (1(—1)?™, x, £ + ¢(x)). Then one may check that u € Aut®» (I-NI)
and u(xx,0) = Xx,p(x).- Since we may choose g so that ¢(x) # 0, this yields the
desired automorphism « (and v by symmetry). O

By Lemma 5.5 and Proposition 5.6, there are exactly two isomorphism classes of
self-dual nondegenerate theta groups of a prescribed rank, the isomorphism type
being just the “sign”. We now construct representatives of each class; we first
consider the case of rank 1. Then H = [F% = (Z/2Z)? has a faithful homomorphism
to PGL;, unique up to conjugation. Thus, H lifts to two natural subgroups of GL;:
the dihedral group D C O,, and the quaternionic group Q C Sp, = SL,. Both
groups are finite of order eight; moreover, ﬁl := G,y D (resp. ﬁo =G,0)is a
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nondegenerate theta group of rank 1 equipped with a symmetric (resp. alternating)
semiinvariant bilinear form.

For an arbitrary rank r, the central product ﬁl ---ﬁl of r copies of ﬁl (the
quotient of the product ﬁl x-x H 1 by the subtorus {(¢;, ..., %) |t ---t, =1})is
a self-dual nondegenerate theta group of rank r and sign +1. Slmllarly, the central
product of Ho with r — 1 copies of H, is a self-dual nondegenerate theta group of
rank r and sign —1.

Remark 5.7. The above description of the self-dual nondegenerate theta groups
may also be deduced from the structure of extraspecial 2-groups, that is, of those
finite groups G such that the center Z has order two, and G/Z is 2-elementary
(see [Huppert 1967, Kapitel 111, Satz 13.8] or [Gorenstein 1980, Chapter 5, Theo-
rem 5.2]). Namely, by Lemma 5.4, every self-dual nondegenerate theta group yields
an extension 1 - uy - G — H — 1, where G is extraspecial. Yet the approach
followed here is more self-contained.

Returning to an arbitrary self-dual theta group (H C GL(V) B), we now in-
vestigate the decomposition of V into eigenspaces V; of Z (H,). Recall from
Proposition 2.7 that V; = U, ® W, as a representation of H= H, x Hs, where W,
is the standard representation of the Heisenberg group H, / ker()). Also, since B
has weight B, we have B(V;, V,,) = {0} unless A + u = —f. This readily implies
the following observations:

Lemma 5.8. (i) As a self-dual representation, V is the direct sum of the pairwise
orthogonal subspaces V,, where 2). = —B, and V) ® V_,_g, where 2\ # —p.

(i) If 2A = —B, then U, (resp. W,) is a self-dual representation of H, (resp.
H;/ker(L)). Moreover, the restriction of B to V) is the tensor product of the
corresponding bilinear forms on U, resp. W,.

(iii) If 21 # —B, then V_,_g = V;*(—PB) as representations of H. Moreover, the
restriction of B to V, @ V_,_p is given by the symmetrization or alternation of
the canonical pairing V, ® V¥ (=p) — k(—p).

As a direct consequence, we obtain the following analogue of the structure of
indecomposable homogeneous bundles (Proposition 2.9):

Proposition 5.9. The following assertions are equivalent for a homogeneous self-
dual bundle (P, ¢):

(1) (P, @) is indecomposable.
(i1) V is indecomposable as a self-dual representation.

(iii) ﬁs is a Heisenberg group and one of the following cases occurs:
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D V=UQ®W, where U is an indecomposable self-dual representation of
H, and W is the standard irreducible representation of I:Ii Moreover, H;
is 2-elementary.

) vEZUeW)e (U*® W*)(—8), where U is an indecomposable repre-
sentation of H,,, W is the standard irreducible representation of ﬁs, and B
is a character of ﬁs of weight —2.

Remarks 5.10. (1) In contrast to Proposition 2.9, there exist indecomposable self-
dual bundles (P, ¢) such that Aut())((P, @) is not unipotent. Specifically, if (P, ¢) is
hyperbolic (type (II) above), then the action of G, on V with weight spaces U @ W
of weight 1, and (U* ® W*)(—p) of weight —1, yields a one-parameter subgroup
of bundle automorphisms of (P, ¢).

In fact, the condition that Autg)((P, @) is unipotent characterizes L-indecomposable
self-dual bundles. Also, one easily shows that the homogeneous self-dual bundle
(P, ¢) is L-indecomposable if and only if the self-dual representation V contains
no nontrivial direct summand of type (II).

(2) If (P, ¢) is irreducible in the sense that it arises from a nondegenerate theta
group, then Auty (P) is finite by Proposition 3.5; as a consequence, Auty (P, ¢) is
finite. But the converse does not hold in general, for example, for homogeneous self-
dual P?-bundles associated with the subgroup H of PO; generated by the images
of the diagonal matrices with coefficients £1 (then H = (Z/ 27)? and e = 0). Thus,
the criteria for irreducibility in Propositions 3.5 and 3.7 do not extend to self-dual
bundles. In [Brion et al. 2012, §7.3], an alternative, group-theoretical notion of
irreducibility is introduced for homogeneous principal bundles under a semisimple
group in characteristic zero, and Propositions 3.5 and 3.7 are generalized to that
setting.
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On the second Tate—Shafarevich group
of a 1-motive

Peter Jossen

We prove finiteness results for Tate—Shafarevich groups in degree 2 associated
with 1-motives. We give a number-theoretic interpretation of these groups, relate
them to Leopoldt’s conjecture, and present an example of a semiabelian vari-
ety with an infinite Tate—Shafarevich group in degree 2. We also establish an
arithmetic duality theorem for 1-motives over number fields, which complements
earlier results of Harari and Szamuely.
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Introduction and overview

Let k be a number field, and let X be a commutative group scheme over k. The Tate—
Shafarevich group IIT’ (k, X) of X is the subgroup of the étale cohomology group
H'(k, X) consisting of those elements that restrict to zero over each completion
of k. These groups are among the most fundamental invariants associated with
commutative group schemes over number fields, and their vanishing is by definition
the obstruction to various local-to-global principles.

If the group scheme X is given by a finitely generated discrete group with
continuous Galois action, or if X is a group of multiplicative type, then IIT’ (k, X) is
finite for all i [Milne 1986, Theorem 1.4.20; Neukirch et al. 2000, Theorem 8.6.8]. It
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is widely conjectured that if A is an abelian variety over k, then the group III! (k, A)
is finite, and it is known that for i % 1 the group III’ (k, A) is trivial. This is a
nontrivial statement for i = 2; indeed, the proof of Corollary 1.6.24 in [Milne 1986]
shows that the vanishing of ITI%(k, A) is essentially equivalent to the positive answer
to the congruence subgroup problem for the abelian variety dual to A, given by
Serre [1964; 1971].

An evident generalisation of these finiteness results would be to show that
I (k, G) is finite for semiabelian varieties G over k, i.e., when G is an extension
of an abelian variety A by a torus. A simple dévissage shows that III! (k, G) is
finite [Harari and Szamuely 2005, Lemma 4.11], provided ' (k, A) is finite. The
situation is more complicated for i = 2, and surprisingly, it turns out that the groups
I11%(k, G) are not always finite.

Theorem 1. There exists a semiabelian variety G over Q such that the group
II12(Q, G) contains a subgroup isomorphic to Q/Z and in particular is infinite.

A 1-motive M over a number field k is a two-term complex of group schemes
M =[Y — G] over k placed in degrees —1 and 0, where Y is given by a finitely
generated free discrete group with continuous Galois action and where G is a
semiabelian variety. It was asked in [Harari and Szamuely 2005, Remark 4.13]
whether for all 1-motives M the group I11%(k, M) is finite. By Theorem 1, we already
know that this is not always the case even for 1-motives of the form [0 — G] over
Q. Our second result shows that even for very simple 1-motives it might be difficult
to decide whether II1%(k, M) is finite (assuming the conservation law of difficulty).

Theorem 2. If the group 11%(k, M) is finite for all 1-motives of the form M =
[Z" — GJ,] over k, then Leopoldt’s conjecture holds for k (and all prime numbers).

The converse to this statement is not true: there exist 1-motives of this particular
form over number fields for which Leopoldt’s conjecture is known to hold such that
12 (k, M) is infinite. Our third result provides conditions on a 1-motive that ensure
that IIT%(k, M) is finite. It is most conveniently expressed as a duality theorem.
Classical global arithmetic duality theorems are statements about the existence and
nondegeneracy of canonical pairings between certain Tate—Shafarevich groups. Let
X be a group of multiplicative type over k, and denote by X its group of characters.
The Poitou—Tate duality theorem states that there is a natural, perfect pairing of
finite groups

T (k, X) x I~ (k, XV) - Q/Z

[Milne 1986, Theorem 1.4.20; Neukirch et al. 2000, Theorem 8.6.8]. The analogue
of this duality theorem for abelian varieties is the Cassels—Tate duality theorem. It
states that for an abelian variety A over k with dual A", there is a canonical pairing

I (k, A) x 1>~ (k, AY) — Q)7
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whose left and right kernels are the maximal divisible subgroups [Milne 1986,
Theorem 1.6.26]. Conjecturally, it is a perfect pairing of finite groups.

The idea to unify and generalise these arithmetic duality theorems to duality
theorems for 1-motives appeared first in [Harari and Szamuely 2005]. Deligne
constructed for each 1-motive M a dual 1-motive M. Harari and Szamuely show
that for a 1-motive M over a number field k there is a canonical pairing

' (k, M) x ' (k, M) - Q)7

that is nondegenerate modulo divisible subgroups and generalises the Cassels—
Tate pairing. They also construct a pairing between a certain modification of
1°(k, M) and II*(k, MV) and show that it is nondegenerate modulo divisible
subgroups. However, this modified LHO(k, M) remains somehow uncontrollable,
and the resulting generalised pairing does not seem to be very useful (the statement
of [Harari and Szamuely 2005, Theorem 0.2] was rectified in [Harari and Szamuely
2009]).

Theorem 3. Let k be a number field, and let M = [u : Y — G| be a 1-motive over k
with dual M. There exists a natural pairing

I (k, M) x II*(k, M) — Q/Z ()

generalising the Poitou—Tate pairing for finitely generated Galois modules and tori.
The group 1% (k, M) is finite, and the pairing (%) is nondegenerate on the left. If
the semiabelian variety G is an abelian variety or a torus, such that the Q-algebra
End;(G) ® Q is a product of division algebras, then the pairing (%) is a perfect
pairing of finite groups.

It was already shown in [Harari and Szamuely 2005] that I11°(k, M) is finite.
The finiteness results stated in the second part of the theorem are new and are also
the essential part of the theorem. Equivalently, the condition on G is that over an
algebraic closure of k either G is the multiplicative group or an abelian variety
isogenous to a product of pairwise nonisogenous simple abelian varieties. Our proof
uses techniques developed by Serre [1964; 1971] in his work on the congruence
subgroup problem for abelian varieties.

Overview. In Section 1, we rehearse 1-motives and £-adic realisations, which
will play a prominent role throughout this paper. In Section 2, we construct a
duality pairing that relates the ¢-adic realisation of a 1-motive with the second
Tate—Shafarevich group of its dual and obtain the pairing (x) of Theorem 3. In
Section 3, we compute the cohomology of some £-adic Lie groups associated with
I-motives, and in Section 4, we use these computations to prove the finiteness
statements in Theorem 3. We conclude the proof of Theorem 3 in Section 5. In
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Sections 6 and 7, we prove Theorems 2 and 1, respectively. There remain several
open questions and unsolved problems, which I state in the last section.

1. About 1-motives and their realisations

In this section, we rehearse the relevant facts about classical 1-motives and their
realisations defined by Deligne [1974, §10].

1.1. Throughout this section, S is a noetherian regular scheme, ¥g stands for the
category of sheaves of commutative groups on the small fppf site over S and DFg
for the derived category of &g. We identify commutative group schemes over S
with objects of &g via the functor of points. In particular, we say that an fppf
sheaf on § is an abelian scheme, a torus, or a finite flat group scheme if it can be
represented by such. By a lattice over S, we mean an object of &g that is locally
isomorphic to a finitely generated free Z-module. Notice that if S is the spectrum of
a field, then Y may be regarded as a finitely generated group on which the absolute
Galois group acts continuously.

Definition 1.2. A 1-motive over S is a diagram

Y
M= ul
0—-T—-G—A—0

in the category g, where Y is a lattice, T a torus, and A an abelian scheme. A
morphism of 1-motives is a morphism between diagrams. The complex associated
with M is the complex of fppf-sheaves [M] := [Y — G], placed in degrees —1
and 0. We denote by .l s the category of 1-motives over S.

1.3. Observe that the sheaf G is representable. Indeed, we may look at it as a
T-torsor over A, and since T is affine, representability follows from [Milne 1980,
Theorem III.4.3a]. Later on, 1-motives will often be given by their associated
complexes and morphisms accordingly by commutative squares. This is also
customary in the literature and justified by the fact that there are no nonzero
morphisms from a torus to an abelian scheme.

1.4. We say that a sequence of morphisms of 1-motives 0 -~ M; — M, — M3 — 0
is a short exact sequence if the induced sequences of lattices, tori, and abelian
schemes are exact in Fg. Such a short exact sequence of 1-motives yields then an
exact triangle

(Mi] — [M>] — [M3] — [Mi][1]

in the derived category 9%gs. With a 1-motive M over S are naturally associated
several short exact sequences coming from the weight filtration on M. This is the



On the second Tate—Shafarevich group of a 1-motive 2515

natural three-term filtration given by W;M =01ifi < -3 and WM =M if i >0
and

0 0
W_QM::[ 1 i| and W_1M2=|: 1 j|

0—-T=T-0-0 0-T—-G—-A-=0

Although 1-motives do not form an abelian category, the quotients M/ W; M make
sense in the obvious way.

Definition 1.5. Let M be a 1-motive over S, and let £ be a prime number that is
invertible on S. The £-adic Tate module and the ¢-divisible Barsotti—Tate group
associated with M are the smooth £-adic sheaf

To(M) :=lim;-o H' ((M]®" Z/t'Z)
and the smooth ¢-divisible group
B¢(M) := colim;=o H' (M1®"2/¢'7),
both over S, where the derived tensor product is taken in the derived category 9 %sg.

1.6. By construction, T;M only depends on the complex [M] = [Y 4 G] up to
quasi-isomorphism, and the assignment M + T, M is functorial. Using the flat
resolution Z & Z of Z/0'Z, we see that the object [M]®"Z/¢'Z of %Fy is given
by the bounded complex
> 0->Y Rinal Ry Y®G Lu e G—>0—---

supported in degrees 0, 1, and 2. For n # 1, we have H" ((M]1®"7/¢!Z) = 0 because
Y is torsion-free and G is divisible as a sheaf. Hence, the object [M] QL7 /Ei VA
of 9% is homologically concentrated in degree 1. Given a category ¢ and a functor
F :9%%¢ — €, we write

F(TeM) = lim;z F((M]®" Z/€'Z[-1)),
F(ByM) := colim;=o F((M]®" /¢ 7[—1]),
and interpret these expressions as either limit systems in ‘6 or actual objects of 6,

provided limits and colimits exist in 6. This is only a notation, and we do not need
or claim that F commutes with limits or colimits.

1.7. Suppose S is connected, and let spec(k) = § — S be a geometric point where
k is an algebraic closure of the residue field k at the scheme point underlying 5. We
can describe the finite, locally constant group schemes H'([M]®"Z/¢!Z) in terms
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of finite m; := Jrlé‘(S , §)-modules as follows. The underlying group is given by

{0, P)eY(k) x G(k) | £'P =u(y)}
{€y, u(y) | yeYk}
and the action of 7| is induced by the action of 7y on k. Taking the limit over i > 0,

we find the description of the £-adic sheaf T;M as a w;-module. The short exact
sequence of 1-motives coming from the weight filtration

0->0—>G]>M—->[Y—->0]—0
induces a sequence of ¢-adic sheaves and one of continuous 7| -representations
0—->T/,G—>TM—->YRZ, — 0,

which is exact because G (k) is an ¢-divisible group. Observe that, given y € ¥, a
preimage of y ® 1 in T, M is given by a sequence (y, P;);>o with Py = u(y) and
LP;, = P;_jfori>1.

1.8. Let A be a commutative group. We consider the following four operations
on A relative to the prime £:

ARZy :=lim;>g A/l A, TeA :=lim;> A[£'],

A[£%] :=colim;> A[£'],  A®Q/Z; :=colim;sq A/l A.
These are the £-adic completion, the £-adic Tate module, extraction of ¢-torsion,
and tensorisation with Q,/Z,. These four operations are related, as follows. Given

a short exact sequence of commutative groups 0 > A — B — C — 0, there is a
long exact sequence of Z,-modules

0>TA—>T/B—>T,C—>ARZ;—>BRZ,— CRZ; — 0

coming from the snake lemma, identifying —®Z, with the first right derived functor
of the Tate module functor T,(—) and vice versa. Similarly, there is a six-term
exact sequence of £-torsion groups

0— A[£®°] — B[®]— C[£>®°] > AQQy/Z; — BRQy/Zy — C®Qy/Zy — 0

identifying (—)[£°°] with the first left derived functor of — ® Q,/Z, and vice versa.
Given a bilinear pairing of commutative groups A x B — Q/Z, these operations
induce pairings

A®Z;x B[{®]— Q/Z and T,Ax (B®Qu/Z)) — Q/Z.

If the original pairing was nondegenerate, these are nondegenerate pairings as well.
Most of the time, we shall deal with commutative groups on which the multiplication-
by-¢ has finite kernel and cokernel. For such a group A, the Z;-modules A ® Z,
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and T¢A are finitely generated, and the torsion groups A ® Q;/Z, and A[£°°] are
of cofinite type (meaning that their Pontryagin duals are finitely generated as Z,-
modules), and there is an isomorphism of finite groups (A ® Z)[LC]= A[L%°] @Zg.
Nondegenerate pairings of such groups induce perfect pairings of topological groups.

Proposition 1.9. Let F : 9% s — D b be a triangulated functor, and let M be a
1-motive over S. There are canonical short exact sequences of Z-modules

0> HT'F(MYR®Z;, — H' F(TyM) - T,H' F(M) — 0
and short exact sequences of £-torsion groups
0> H'F(M)®Qy/Zy - H' FBM) — H F(M)[£{*] — 0
both natural in M and F.

Proof. The short exact sequence of constant sheaves 0 — Z L7572 /07 — 0
induces a long exact sequence of groups, from where we can cut out the short exact
sequences

0> HFM)QZ/W'Z - HFMQ"7/0'7) — HT' F(M)[¢'] - 0.

The limit system of commutative groups (H' F(M) ® Z /Z’Z)?io has the Mittag—
Leffler property, and the short exact sequences in the proposition are then obtained
by taking limits or colimits, respectively, over i > 0. O

Corollary 1.10. Let k be a number field, let £ be a prime number, and let M =
[u:Y — G] be a 1-motive over k. Set Z := H™' (M) = keru. The morphism of
Z¢-modules

H(k,Z®Z;) — H'(k, TyM)

induced by the morphism of 1-motives [Z — 0] — [Y — G] is an isomorphism for
i =0 and injective for i = 1.

Proof. Proposition 1.9 applied to the functor RI"(k, —) yields a short exact sequence
of Zy-modules

0—> H 'k, M\)®7Z, — H(k, T,M) — TyH(k, M) — 0.

Since Z(k) = H~'(k, M) is a finitely generated group, we can identify Z (k) ® Z,
with Z (k) ®z Zy, so to get the statement for i = 0, it remains to show that the
last group in this sequence vanishes. Write Oy for the ring of integers of k, and
choose a sufficiently small open subscheme U C spec Oy such that M extends to a
I-motive over U and such that £ is invertible on U. We have then Z(U) = Z (k) and
H(U, T ;M) = Hk, T, M), so we may as well show that T, H°(U, M) vanishes.
Indeed, it follows by dévissage from the Mordell-Weil theorem, Dirichlet’s unit
theorem, and finiteness of H' (U, Y) that H(U, M) is a finitely generated group
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[Harari and Szamuely 2005, Lemma 3.2], so its Tate module is trivial. For the case
i =1, we consider the triangle

[Z—>0]—[Y—>G]—=>[Y/Z— G]

and observe that if we quotient both terms of the complex [Y/Z — G] by the finite
torsion part of Y/Z, we get a quasi-isomorphic complex, which is the complex of
a 1-motive M’ = [u' : Y' — G’] where now u’ is injective. By the first part, we
have H(k, T,M') =0, and the statement can be read in the long exact cohomology
sequence associated with0 > Z® Z, — T¢eM — T¢M' — 0. U

The statement of Corollary 1.10 remains true over any field k that is finitely
generated over its prime field and prime number ¢ different from the characteristic
of k. It is wrong in general for local fields.

We now come to the dual 1-motive: with each 1-motive M over a noetherian
regular scheme S is functorially associated a dual 1-motive MY over S so that
we get an involution of the category Jl; s of 1-motives over S. The duals of tori,
lattices, and abelian schemes, if seen as 1-motives, are the usual duals, and the
duality functor is compatible with the weight filtration. This is the content of the
following theorem:

Theorem 1.11. There exists an antiequivalence of categories (—)" : My s — My s
such that for every 1-motive M over S the following hold:

(1) There are canonical and natural isomorphisms of 1-motives
(M/W_i;(M))” = W,;_3(M")
foreachi.
(2) There is a natural isomorphism
[MY] =R %om(M, G,,[1])<o

in the derived category 9F s, where (—) <o means truncation in degree 0.

(3) There is a natural isomorphism of 1-motives €y : M — M"Y such that the
induced morphism of complexes coincides with the canonical evaluation mor-
phism in the derived category of Fs (explained below).

Properties (1), (2), and (3) characterise (—)" up to an isomorphism of functors.

For every object X of 9%, we have a natural morphism X — R #om(R Hom(X,
Gml1]), Gu[1]) (see [SGAS, Exposé 1] after Proposition 1.6) as well as X — X <.
Together, these yield the natural morphism

X <0 = R¥HomR Hom(X, Gy [1]) <0, Gm[1]) <0,

which is the one we consider for X = X <o = [M] in part (3) of the theorem.
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1.12. The uniqueness of the functor (—)¥ can be shown by a simple dévissage
argument. Its existence is in essence the construction of the dual 1-motive of
[Deligne 1974, §10.2.11] combined with the following observations (1) and (2):

(1) If X is either a finite flat group scheme, a torus, or a lattice over S, then the sheaf
Jom(X, G,,) is represented by the Cartier dual of X, and €xt! (X, G,,) = 0.

(2) If A is an abelian scheme over S, the sheaves #om(A, G,,) and €xt*(A, G,,)
are trivial, and €xt! (A, G,,) is represented by the dual abelian scheme A".

(3) For all i > 2, the sheaves €xt' (X, G,,) and éxt' (A, G,,) are torsion. If £ is
invertible on S, these sheaves contain no £-torsion.

In the case X is a finite flat group scheme, the statements of (1) can be found
in [Oort 1966, Theorem II1.16.1]. For locally constant group schemes and tori,
these follow from [SGA 311, Exposé XIII, Corollaire 1.4] and [SGA 71, Exposé
VIII, Proposition 3.3.1], respectively. In (2), we have #om(A, G,,) = 0 because
A is proper and geometrically connected, and G,, is affine. The isomorphism
€xt'(A, G,,) = AV is given by the classical Barsotti—-Weil formula [Oort 1966,
Theorem II1.18.1].} It is shown in [Breen 1969a] that (over a noetherian regular
base scheme as we suppose S to be) the sheaves ¢éxt' (A, G,,) are torsion forall i > 1.
Using the second statement of (1), we see that for n 7 0 the multiplication-by-n map
on %xtz(A, G,,) is injective; hence, %xtz(A, G;») = 0. Finally, the torsion sheaves
€xt' (X, G,,) and éxt' (A, G,,) contain no £-torsion because if F is a finite flat group
scheme over S annihilated by £, then Céxt“(F , Gy) =0foralli > 1. Indeed, such a
group scheme is locally constant and locally presented as 0 - Z" — 7" — F — 0,
and the functor Hom(Z", —) is exact.

The reason why we need the truncation operations in Theorem 1.11(1) is that in
general we do not know whether the sheaves €xt' (F, G,,) vanish fori > 1 if Fisa
finite flat group scheme over S that is not locally constant. This is presumably not
the case, as an explicit example of Breen [1969b] suggests (he works with sheaves
for the étale topology, but it seems that his example also works in the fppf setting).
Over a field of characteristic 0, or after inverting all residual characteristics of S,
the truncation is not needed.

IThe additional hypothesis that either A is projective over S or that § is artinian is superfluous.
The trouble is caused only by Oort’s Proposition 1.5.3, where representability of the Picard functor
T +— Pic A/ T is known just in these cases. This problem has been overcome by M. Raynaud [Faltings
and Chai 1990, Theorem 1.9].

Oort proves that the Barsotti—-Weil formula over a general scheme holds if it holds over all of
its residue fields. He then says that the formula is known to hold over any field and quotes Serre’s
Groupes algébriques et corps de classes, VII.16, Théoréme 6. But Serre makes right at the beginning
of Chapter VII the hypothesis that the ground field is algebraically closed. Hence, as long as all
residue fields of S are perfect, Oort’s proof is fine. The general case follows by checking that Serre’s
arguments also work verbatim over separably closed fields.
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Proposition 1.13. Let M be a 1-motive over S with dual M, and let n > 1 be
an integer that is invertible on S. The Cartier dual of the finite flat group scheme
H' (M1 ®" Z/nZ) is naturally isomorphic to H' (IM¥]1 Q%7 /nZ). In particular,
there is a canonical, natural isomorphism Ty(M") = Hom(T,M, Z,(1)) of £-adic
sheaves on S for every prime number £ invertible on S.

Proof. This follows from Theorem 1.11 and the statement (3) of Section 1.12. [

2. The pairing between IT11°(k, M) and II1*(k, M")

We fix number field k with algebraic closure k and write €2 for the set of all places
of k. For v € 2, we denote by k, the completion of k at v. After recalling the
definition of Tate—Shafarevich groups, we use the Poitou—Tate duality theorem for
finite Galois modules to identify the ¢-torsion part of IIT?(k, M") with the dual of
11! (k, T, M) for any 1-motive M = [Y — G] over k. Then we show that the group
I11°(k, M) is finite and that its £-part canonically injects into ITI' (k, Ty M).

2.1. Let C be a bounded complex of continuous Gal(k | k)-modules. The Tate—
Shafarevich groups IIT’ (k, C) of C are defined by

I (k, C) := ker(H"(k, C) — ]_[ H(k,, C)),
veER

where H' is continuous cochain cohomology with the convention that for archi-
medean v the group H'(k,, C) = H'(Gal(C|k,), C) stands for Tate modified
cohomology [Neukirch et al. 2000, 1§2]. The Tate—Shafarevich groups IIT (k, M)
of a 1-motive M = [Y — G] over k are those of the complex of discrete Galois
modules Y (k) — G (k) placed in degrees —1 and 0.

Proposition 2.2. Let M be a 1-motive over k, and let £ be a prime number. There
is a canonical, perfect pairing of topological groups

II' (k, TeM) x T2 (k, MY)[£®] — Q)7

where 11! (k, T, M) is profinite and 111*(k, MV)[£>®°] is discrete. In particular,
1% (k, MY)[£>] is finite or zero if and only if 11! (k, T¢M) is so.

Proof. By Poitou-Tate duality for finite Galois modules [Neukirch et al. 2000,
Theorem 8.6.8], we have a natural, perfect duality between finite groups

'k, MR Z/¢'7) x I (k, MY @' 2/¢'7) — Q/Z,

noting Proposition 1.13. The functor II1?(k, —) commutes with arbitrary colimits,
and III! (k, —) commutes with limits of finite Galois modules by [Serre 1964,
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Proposition 7]. We obtain thus, without violating the notational conventions from
Section 1.6, a perfect pairing of topological groups

mr! (k, TyM) x %k, BeMY) — Q/Z,

and it remains to show that I11?(k, B;M") is canonically isomorphic to the £-part
of the torsion group I11*(k, M"). Indeed, from Proposition 1.9 we get the following
commutative diagram of torsion groups with exact rows:

0— H'(k,MV)® Q/Z¢ —— H?*(k, ByM") —— H?*(k, MV)[£*] — 0

J | l

0 [[H (ky, MV)@Qy/Z¢ - T] H*(ky, BeMY) = [ H?(ky, MY)[£*°] =5 0

veQR veQR veR

Because H'(k, MV) and H'(k,, M") are torsion, the first terms of both rows
are zero; hence, the canonical isomorphism 2 (k, ByMY) = 12 (k, MY)[£°],
as required. (I

2.3. Let M be a 1-motive over k, and let £ be a prime number. From Proposition 1.9,
we get a commutative diagram of Z,-modules with exact rows:

0—— H'k, M)®Z) ——— H"(k, ToM) ——— T¢H'(k, M) —— 0

g l |

0— [[H (ky, M)®Zy — [] H'(ky, TeM) — []TeH ' (ky, M) — 0
veR veR ve

The kernel of the rightmost vertical map is the Tate module of ITI' (k, M), which is
torsion free, and even trivial if IIT! (k, M) is finite (which conjecturally is always
the case; compare [Harari and Szamuely 2005, Corollary 4.9]). In any case, the
map ker oy — 1! (k, T, M) is an isomorphism on torsion elements. The kernel of
oy contains 1%k, M) ® Z, and hence an injection

%k, M) ® Zy — I (k, T, M). )

In [Harari and Szamuely 2005, Section 5], a profinite group 1% (k, M) was intro-
duced. Its pro-£ part is ker azp and hence equal to 1! (k, T, M) in the case III! (k, A)
is finite. This relates Proposition 5.1 of [loc. cit.] to our Proposition 2.2. There is
a canonical isomorphism 1k, M) ® Z, = 1°(k, M)[£°°] because I11°(k, M) is
finite as we shall see in Proposition 2.5. These observations yield the following
corollary to Proposition 2.2:
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Corollary 2.4. The pairing of Proposition 2.2 induces a pairing
Ik, M)[£] x I (k, M¥)[¢] — Q/Z,

which is nondegenerate on the left. Its right kernel is divisible if and only if the map
(1) induces an isomorphism MOk, M) ®7Zy — NI (k, Ty M)or, and this pairing is
a perfect pairing of finite groups if and only if the map () is an isomorphism.

We end the section with the following proposition, which explains the group
I1°(k, M) and shows that it is finite [Harari and Szamuely 2005, Lemma 4.11]:

Proposition 2.5. Let M = [u : Y — G] be a 1-motive over k, and set Z := Ker u.
The morphism of 1-motives [Z — 0] — [Y — G] induces an isomorphism of finite
groups

! (k, Z) = 1%k, M).

For any prime number £, there are canonical isomorphisms of finite groups
il (k, Z)[¢®] = Wk, 2) @7, = U ' (k, ZRZy) = I (k, Te[Z — 0]).

All these groups are annihilated by the order of any finite Galois extension k' | k
over which Z is constant.

Proof. By diagram chase, using one finite place v € 2, we see that the map
1k, M) — I (k, Y) is injective. It follows in particular that %k, M) is zero
if the Galois action on Y is trivial. In general, let X' | k be a finite Galois extension
such that Gal(k | k') acts trivially on Y, and let Q' be the set of places of k’. For
w € ' lying over v € Q, we write k|, for the completion of k" at w and k,, for
the completion of k at v. As a Galois module, Z := ker(«) can be interpreted as
Z = H~'(k', M). From the Hochschild—Serre spectral sequence, we get then a
commutative diagram with exact rows:

0 — HYGal(k' |k), Z) ——— H(k, M) —— HO(K', M)

| | |

0 —— [] H'(Gal(k), |ky), Z) — T[] H(ky, M) —— T[] H(K,,, M)

we’ we we’

Because Gal(k|k’) acts trivially on Y, we have III°(k’, M) = 0 by our previous
observation; hence,

1k, M) = ker(Hl(Gal(k/lk), 7Z) — ]‘[ H'(Gal(k), | k), Z)),

we

the product running over all w € ' or alternatively over all decomposition subgroups
of Gal(k'| k). The finiteness statement follows as H'(Gal(k’ |k), Z) is finite and



On the second Tate—Shafarevich group of a 1-motive 2523

annihilated by the order of Gal(k’'|k) [Weibel 1994, Theorem 6.5.8 and Corol-
lary 6.5.10]. Repeating the arguments for the 1-motive [Z — 0] yields the first
isomorphism of the proposition.

Now let £ be a prime number. The first isomorphism from the left exists for any
finite commutative group in place of III' (k, Z). For the next one, choose a finite
Galois extension &’ | k such that Z is constant over k’. We can proceed as before in
order to express III' (k, Z) and II' (k, Z ® Z;) in terms of cohomology groups of
the finite group Gal(k’ | k) and its subgroups. It remains to show that, given a finite
group I acting on Z, the canonical map H'(T", Z) ® Z; — H'(I', Z ® Z;) is an
isomorphism. This is indeed so for any flat Z-algebra in place of Z, by the universal
coefficient theorem. The last isomorphism holds because Z ® Z, =1im Z/¢' Z and
because limits are left exact and commute with continuous H'. (]

3. Lie algebra cohomology of the Tate module

We fix a number field k with algebraic closure k and a prime number £. With every
1-motive M over k is associated a continuous Q;-linear representation V,M =
T¢M ® Qq of Gal(k|k). The image of Gal(k|k) in GL(V,M) is an £-adic Lie
group LM, whose Lie algebra we denote by [M. An idea going back to Serre and
Tate, used by Serre [1964] to solve the congruence subgroup problem for abelian
varieties over number fields, is to consider the vector space H*1 (M |V, M) consisting
of those elements of H'(IM, V, M) that restrict to zero on each one-dimensional
subalgebra of Y. Our goal is to describe H! (™, V, M).

We will work only with 1-motives M = [Y — G] where G is either an abelian
variety or a torus rather than a general semiabelian variety. This brings consid-
erable simplifications in both statements and proofs. I will comment at the end
of Section 3.11 on this hypothesis and on the modifications that are necessary in
order to compute H,(IM, V,M) for general 1-motives. The following theorem is
the crucial ingredient for our finiteness results:

Theorem 3.1. Let M = [u :=Y — G] be a 1-motive over k where G is an abelian
variety or a torus. Set Ey :=End;(G) ® Q¢ and X, :=im(u) ® Q¢, denote by D,
the E-submodule of G (k) ® Q, generated by X, and define

)_(e = {x S Dg | f(x) [S f(Xg) fOI" all f € HOI’I’IEZ(D(, VgG)}
There is a canonical isomorphism of Qg-vector spaces X ¢/ Xy = H*1 (M Vv, M).

The proof of this theorem relies on a structure result for the Lie algebra [M,
which in turn relies on Faltings’s theorems on endomorphisms of abelian varieties
over number fields. Observe that the object X,/ X, can be calculated by means
of ordinary linear algebra. The statement of the theorem is wrong for general
semiabelian varieties G.
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3.2. We recall some definitions and results from [Serre 1964]. Let L be a profinite
group, and let T be a continuous L-module. We write H'(L, T) for the group of
continuous cocycles L — T modulo coboundaries and define

HNL,T):= ker(Hl(L, T)— 1_[ H'((x), T)),

xelL

where (x) denotes the closed subgroup of L generated by x. If N is a closed normal
subgroup of L acting trivially on 7', then the inflation map induces an isomorphism
H*1 (L/N,T)— HI(L, T) [loc. cit., Proposition 6]. If T is a profinite L-module,
say T = lim 7; where the T; are finite discrete L-modules, then the canonical map
H'(L,T)— lim H'(L, T;) is an isomorphism [loc. cit., Proposition 7]. Because
the limit functor is left exact, also the canonical map H*1 (L, T)— lim H*1 (L, Tp)
is an isomorphism in that case.

For a Lie algebra [ acting on a vector space V, we denote by H/ (I, V) the subspace
of HI(I, V) consisting of those elements that restrict to zero in H Y'((x), V) for
every one-dimensional subalgebra (x) of [.

Lemma 3.3. Let L be a compact £-adic Lie group with Lie algebra | acting on a
finite-dimensional Q-vector space V. For any open subgroup N of L, we have

H\(L,V) =ker(H1(L, V) —> ]—[ H'((x), V)).

xeN

If N is normal, there is a canonical isomorphism H*1 (L,V)= H*1 (N, V)E/N, If N
is sufficiently small, there is a canonical isomorphism H*l (N, V)= H*l ([, V).

Proof. Let N be an open subgroup of L, and let ¢ be an element of H'(L, V)
restricting to zero in H'((x), V) for each x € N. Fix an element x € L, and let us
show that ¢ restricts to zero in H'((x), V). Because (x) is compact, the quotient
(x)/(N N {x)) is finite. By a restriction-corestriction argument and using that V is
uniquely divisible, we see that the restriction map H L((x), V) > HY ((x)NN, V)
is injective, hence the first claim. Now suppose that N is open and normal.
Since L is compact, the quotient L/N is finite and we have H'(L/N,V) =0
for all i > 0, and the Hochschild—Serre spectral sequence yields an isomorphism
H'(L,V)= H"(N, V)L/N_ We must show that in the diagram

0—— H(L,V) ——— H'(L,V) —— [[H'((x), V)

> xeL
~
; ~
5> o J/
~

0—— HINN, V)IN —— HY(N, V)LV —— T H'((x), V)
xeN
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the leftmost vertical map is an isomorphism, i.e., that the kernel of the diagonal map
8 is exactly H} (L, V). But this is again the first statement of the lemma. Finally,
if N is sufficiently small, we have an isomorphism H!(N, V) = HYI, V) by a
well-known theorem of Lazard [1965, V.2.4.10], from which the last statement
follows. (Il

34. Let M =[u:Y — G] be a 1-motive over k where G is an abelian variety or a
torus. The Tate module Ty M of M is an extension of ¥ ®Z, by the Tate module T,G
of G as we have seen in Section 1.7, so we get an extension continuous of Galois
representations

0—-V,G—->VM-—->YRQ —0.

We denote by [M and [© the Lie algebras of the image of I" := Gal(k | k) in the groups
GL(V¢M) and GL(V,G), respectively. The Galois group I" acts continuously on
these Lie algebras by conjugation, and we have a canonical surjection [M — [,
Let n™ denote its kernel, so n” consists of those elements of [M that act trivially
on V;G. The Lie algebra nM is commutative, and we can identify it with a linear
subspace of Hom(Y ® Qy, V,G) via the map

oM Homg, (Y ® Qy, V,G)

given by 9 (x)(y) = x.v where v € V;M is any element mapping to y € ¥ ® (.
Routine checking shows that this map is well-defined, injective, and I"-equivariant.
We can describe the image of ¢ as follows. Look at u as being a k-rational point on
the abelian variety or torus #om(Y, G), and denote by B the connected component
of the smallest algebraic subgroup of Fom (Y, G) containing . Then B is also an
abelian variety or a torus, and we have an inclusion

VB C V, #om(Y, G) = Homg, (Y ® Qq, V,G).

The following theorem is a special case of [Jossen 2013b, Theorem 6.2]. In the
case G is an abelian variety, it goes back to a result of Ribet [1976] (see [Hindry
1988, Appendix 2]).

Theorem 3.5. The map ¥ induces an isomorphism of Galois representations
9 oM =5 V,B.
In particular, it follows that the dimension of n is independent of £. If G is an

abelian variety, it is still unknown whether the dimension of [ is independent of £.

Lemma 3.6. Let M = [u : Y — G] be a 1-motive over k where G is an abelian
variety or a torus. Denote by D the Endi(G) submodule of G (k) generated by
im(u), and define B C #om(Y, G) as in Section 3.4. The linear map

h:Homg(B,G)®Q — Gk)®@Q
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given by h(y ® 1) = Y (nu) @ n~", where n > 1 is any integer such that nu € B(k),
induces an isomorphism Homp (B, G) @ Q=D ® Q.

Proof. The homomorphism 4 is injective. Indeed, if ¢ : B— G is such that 2(yr) =0,
then ker  is a subgroup of B containing a nonzero multiple of u; hence, ker ¢ = B
by minimality of B. By Poincaré’s complete reducibility theorem [Mumford 1970,
IV.19, Theorem 1], the inclusion B € #om(Y, G) induces a surjection

Y ® Endi(G) = Homg (¥om(Y, G), G) —> Homg(B, G)
sending y ® ¢ to the unique homomorphism ¢ : B — G with ¥ (nu) = ne(u(y))
where n > 1 is sufficiently big that nu € B(k), so the remaining statements follow. [

Lemma 3.7. Let the 1-motive M = [Y — G, the subgroup D C G(IE), and the
algebraic subgroup B C G be as in Lemma 3.6. There is a commutative diagram

u®i 1
Yo — D@, — 1 Home (V, B, V;G)

|= e .

HOMM, Y ® Q) —~— H'(IM, V,G) —=— Hom (1", V,G)

with canonical isomorphisms where indicated.

Proof. We start with the left-hand square. The leftmost vertical isomorphism is
tautological because [M acts trivially on ¥ ® @,. The map 9 is the connecting
morphism in the long exact cohomology sequence coming from the weight filtration
of M. The vector spaces D ® Qp and H LM V,G) are naturally Ey-modules,
where E; := End;(G) ® Q¢ — the first one by definition and the second one via
the canonical action of E; on V,;G. The map (2) is then given by E,-linearity and
sending u(y) ® 1 to d(y® 1) for all y € Y. By definition of D, this indeed describes
a unique map such that the left-hand square commutes. We will see in a moment
that it is well-defined and an isomorphism.

We now come to the right-hand square, starting with the description of the
map (1). Every element of D ® Q; is a linear combination of elements of the
form v (1) ® 1 for some ¥ € Homg (B, G) by Lemma 3.6. The map (1) is given by
linearity and sends v (1) ® 1 to the [©-equivariant map Vy¥ : V; B — V,G. This map
is an isomorphism by Lemma 3.6 and by Faltings’s theorem on homomorphisms
of abelian varieties. The rightmost vertical map is given by precomposition with
the isomorphism ¢, hence an isomorphism. The lower horizontal map is given
by restriction of cocycles and an isomorphism because H(I°, V;G) vanishes for
i =1, 2[Serre 1971, Théoreme 2].

By definition of ¢, the big square commutes. Moreover, the isomorphisms (1)
and 9* and the inverse of res are all isomorphisms of E;-modules. Hence, so is their
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composition, which is then an isomorphism of E;-modules DQQ, - H (M, v,G),
which must coincide with (2). O

Proposition 3.8 [Jossen 2013a, Corollary 2.19]. The Lie algebra extension

0—-nM M5 (650

is split. There exist a Lie algebra section o : ¢ — M and a Qy-linear section

5:Y ®Q — VyM such that the action of M on V,M is given by

(f+o(@).(v+s(y)=gv+fy
forall fenM allgel® allve VA andy e Y ® Q.

Proof. This is essentially a consequence of Theorem 3.5, semisimplicity of V,G
as [°-module (by the assumption on G and [Faltings 1983]), and the vanishing of
H'(19,V,G) fori = 1,2 [Serre 1971, Théoreme 2]. O

Lemma3.9. Let M =[u :=Y — G] be a 1-motive over k where G is an abelian va-
riety or a torus. In order that an element h € H' (1M, V,G) belongs to H*1 (M, V, M),
it suffices that it maps to zero in H' (¢, Ve M) for each one-dimensional subalgebra ¢
of nM.

Proof. Represent h € H' (I, V,G) by a cocycle ¢ : IM — V,G € V, M, and choose
a linear section s : ¥ ® Q; — V,M and a Lie algebra section o : [¢ — [¥ as
in Proposition 3.8. Since H 1(1, V,G) vanishes [Serre 1971, Théoreme 2], the
cocycle c oo is a coboundary. Thus, changing ¢ by a coboundary, we may suppose
that c oo = 0. Let ¢ be a one-dimensional subalgebra of [M generated by an
element x € [M. We have to show that there exists an element v € V, M such that
c(x) = x.v. We can write x as x = f +o(g) for some f e nM and g € [°. By
hypothesis, there exists an element v € V, M with c¢(f) = f.v. We can write v as
v=1v"+s(y) for some v’ € V,G and y € Y ® Q,. We then have

cx)=c(f+o(@)=c(f)=fv=fs(y)=(0(g)+ f)s()=x.5(y),
and this proves the lemma. U

Lemma 3.10. Let M = [u : Y — G] be a 1-motive over k where G is an abelian
variety or a torus. Denote by D the E :=End;(G) submodule of G (k) generated by
X :=im(u). The isomorphism D @ Q; — H'(IM, V,G) from Lemma 3.7 induces
an isomorphism between the kernels of the maps

DRQ — [[VeG/h(X®Qy) and H'(M V,G)— [] H'(c. VM)

heH cCIM

where the leftmost product runs over all h € H := Homggqg, (D ® Q¢, V/G).
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Proof. Lemma 3.9 shows that if on the right side we let the product only run over
¢ € n¥ we still get the same kernel. For every ¢ = (x) € n™, we have

ViM VM
{xvlveV,M}  im®(x))’

H'(c, VM) =

where ¢ : n > Hom(Y ® Q, V;G) is as defined in Section 3.4. The map
H'(M,V,G) — Home (n™, V,G)

given by restriction of cocycles is an isomorphism; thus, we have to show that the
kernels of the maps

DRQ— [[ ViG/h(X®Q,) and Homg®m", V,G) — [ ] VeG/im(® (x))

heH xenM

correspond under the isomorphism D ®Q, = Hom;c (n", V;G) sending ¥ (1) ®1 to
Veyro®d forall y e Homg (B, G). Here, B C #om(Y, G) is defined as in Theorem 3.5.
The map on the right sends an [¢-module homomorphism ¢ : 1™ — V, G to the class
of c¢(x) in the factor corresponding to x. As for the map on the left, by Lemma 3.7,
we may as well take Homc (V; B, V;G) in place of D ® Q; as the domain. Then
we must show that the kernels of the maps

Homs (V¢ B, ViG) — [ [VeG/f (X ® Q)
h
and

Homg (n¥, V,G) — [ | VeG/im(? (x))

xenM

correspond to each other via composition with the isomorphism # : n¥ — V, B,
the first of these products now running over all £ ® (Qg-module morphisms 7 :
Homc(V¢B,V,G) — V,;G. The canonical map

V¢B = Homggg, Home (V, B, V,G), V,G), v [f = f(v)]

is an isomorphism by Schur’s lemma, so all these £ ® (0,-module homomorphisms %
are given by evaluation in an element v € Vy B. If & is the evaluation in v = ¥ (x)
for some x € n™, then 7(X ® Q) = im ¥ (x), hence the claim of the lemma. [

Proof of Theorem 3.1. We consider the following diagram, where the exact row is
induced by the weight filtration on the [Y-module V, M and where the column is
exact by definition:
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HI (M, VM)

= >

HO (M Yy @ Q) 2, H' (M V,G) —— H' (M, v,M) —— H' (M, Y @ Q)

oy

[T H'((x), VeM)

cCIM

The upper diagonal map is zero because [M acts trivially on ¥ ® Qy; hence,
H*1 (MY ® Q) is trivial. This shows that every element of H. ,: (M, V, M) comes
from an element in H'(I™, V,G), so we find an isomorphism

kerd/imd = H! (M, Vv, M)

induced by the inclusion V,G € V, M. Lemmas 3.7 and 3.10 respectively show that
the isomorphism D ® Q; — H'(I™ | V,G) induces isomorphisms X ® @y =im 9
and

X = {x e DR Q, } f(x) e fF(X®Q) forall f eHomE@)@[(D@@g,VgG)}

= kerd,
as needed. O

3.11. Throughout this section, we have always supposed that the semiabelian variety
G is either an abelian variety or a torus. Most statements and constructions, notably
Theorems 3.1 and 3.5, remain true if G is isogenous to a product of an abelian
variety and a torus, and the proofs require only small additional arguments, but the
statements are wrong for general semiabelian varieties. The main problem here is
that a general semiabelian variety G is not a semisimple object, so the analogue of
Poincaré’s complete reducibility theorem fails, and the Galois representation V,G
is not semisimple either.

In a general setting, the Lie algebra n™ should be replaced by the subalgebra
of [M consisting of those elements of which act trivially on V, A and V, T, where A
and T are respectively the abelian and torus parts of M. This is then in general not
a commutative but just a nilpotent Lie algebra. The generalisation of Theorem 3.5
is [Jossen 2013b, Theorem 6.2]. The subgroup D of G (k) has to be replaced by the
group of so-called deficient points [loc. cit., Definition 6.2], and the generalisation of
Lemma 3.6 is [loc. cit., Theorem 8.10]. Finally, E-linearity should be reformulated
in terms of derivations. With these settings, it should be possible to generalise
Theorem 3.1 to arbitrary 1-motives.
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4. Finiteness results

In this section, we prove the finiteness statements of Theorem 3 stated in the
introduction. We fix a number field k with algebraic closure k and a prime number ¢
and write I' := Gal(k | k) for the absolute Galois group of k and 2 for the set of
all places of k. For a 1-motive M over k, we write V,M := T, M ® (O, and denote
by LM the image of I' in GL(T;M) and by [M C End(V,;M) the Lie algebra of LY.

Theorem 4.1. Let M = [u : Y — G] be a 1-motive over k. The Z,-module
11! (k, T¢M) is finitely generated. If G is an abelian variety or a torus, such
that End;(G) ® Q is a product of division algebras, then ' (k, T M) is finite.

Observe that if G is an abelian variety, then Endz(G) ® Q is a product of division
algebras precisely if G is isogenous to a product of pairwise nonisogenous simple
abelian varieties over k. If G is a torus, then End;(G) ® Q is a product of division
algebras precisely if G is of dimension < 1.

The plan of this section is as follows. First we show that for every 1-motive
M over k there is a canonical injection of 1! (k, T, M) into H*1 (LM, T,M). We
continue with some elementary linear algebra and prove, using Theorem 3.1, that the
group H*1 (LM, T, M), and hence 111" (k, Ty M), is finite for all £ if M is a 1-motive
satisfying the condition in the theorem.

Proposition 4.2. Let M be a 1-motive over k. There is a canonical injective
Zy-linear map ' (k, TyM) — H) (LM, T¢M). The Z;-module H} (LM, Ty M) is
finitely generated, and its rank is bounded by the dimension of H} (1™, V,M).

Proof. For every finite Galois module F', the subgroup ! (k, F) of H'(k, F) =
H'(T", F) is contained in H*1 (I, F) by [Serre 1964, Proposition 8], which is essen-
tially a consequence of Chebotarev’s density theorem. Because H'!(k, —) commutes
with limits of finite Galois modules and by left exactness of the limit functor, we
can deduce that IT1!(k, T,M) is contained in H!(I", T;M), and H} (T, TyM) is
isomorphic to H*1 (LM, T,M) by [Serre 1964, Proposition 6], hence the canonical
injection. By [loc. cit., Proposition 9], the Z,-module H YLM T, M) is finitely
generated, and we have an isomorphism of finite-dimensional vector spaces

H'WM, T M)Q, = H' (LM, vV, M).

This identifies H*1 (LM, TyM) ® Q, with a subspace of H*1 (LM, V,M), which in
turn is a subspace of H)(I™, V,M) by Lemma 3.3. U

Lemma 4.3. Let K| K be an extension of fields (think of Q;|Q). Let Eq be a Ky-
algebra, let Do and Vi be Eog-modules, and let Xy be a Ky-linear subspace of Dy.
Denote by Ey, Dy, Vi, and X| the corresponding objects obtained by tensoring
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with K. Define

Xo:={x € Dy | f(x) € f(Xo) forall f € Homg,(Dy, Vo)},
Xi:={xeDy| f(x) € f(Xy) forall fcHomg, (D, V})}.

Then, the inclusion X1 C Xo ® K| holds. In particular, if the equality Xy = Xo
holds, then the equality X, = X holds as well.

Proof. Let x be an element of X C Dy, and let us show that x belongs to X 0®Kj.
Every Ep-linear map Dy — Vj gives rise by Ki-linear extension to an E-linear
map D; — Vi, so by definition of X, there exists in particular for every f €
Homg, (Do, V) an element x/ € X; such that f(x) = f(x/). Let (t;)ic; be a
K-basis of K7, so we can write x and x/ as sums

x=le~®t,- and xf=2xif®ti

iel iel
for unique elements x; € Dy and xif € X, almost all zero. We have to show that
the x; belong to X, foralli € I. The equality f(x) = f (x/) reads

Y fenen=Y faHen

iel iel

Linear independence of the #; over K implies that we have in fact f(x;) = f (xl.f ) for
all i. Hence, for every i € I and every f € Homg,(Dy, Vo), we have f(x;) € f(Xo),
that is, x; € X as we wanted to show. As for the additional statement, if we have
Xo = X, then the inclusions

X0®K1(¥X1§?_(1§)_(0®K1

must all be equalities. O

Lemma 4.4. Let K be a field of characteristic 0, let E be a finite product of
finite-dimensional division algebras over K, let D and V be finite-dimensional
E-modules, and suppose that V is faithful. Let X be a K -linear subspace of D. An
element v € D belongs to X if and only if f(v) belongs to f(X) for all E-linear
maps [ : D — V.

Proof. We only show the case where E is a division algebra over K; the proof of
the general case is similar. That V is faithful means then just that V is nonzero,
and without loss of generality, we may suppose that V is E, so we are considering
E-linear forms f : D — E. Let trgjx : E — K be a trace map, which for our
purpose can be just any K -linear map with the property that

trgig (yx) =0 foralye E = x=0.
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Such a trace map always exists (see, e.g., [Gille and Szamuely 2006, Section 2.6]).
Consider then the K-linear map

Homg(D, E) — Homg (D, K), f+>trggof.

We claim that this is an isomorphism of K -vector spaces. We only have to show
injectivity; surjectivity follows then by dimension-counting. To show injectivity,
we can suppose that D = E. The above map sends then an E-linear endomorphism
of E, which is just multiplication on the right by some x € E, to the K-linear map
y = tr(yx). If this map is zero, then x must be zero by the above property of the
trace, hence injectivity. The hypothesis on v implies that

treix f(v) € trgx f(X)

for all f € Homg(D, E); hence, f(v) € f(X) for all f € Homg (D, K); hence,
v € X by standard linear algebra. U

Proof of Theorem 4.1. By Proposition 4.2, it is enough to show that the vector space
H*1 (M, V, M) is trivial. Set E; := End;(G) ® Q¢ and X, := im(u) ® Q, denote
by D, the E,-submodule of G(k) ® Q generated by X, and define

X, = {xeDy| f(x) e f(Xy) forall f € Homg, (D¢, V,G)}.

By Theorem 3.1, we have to check that the equality X, = X, holds. Fix an
embedding of & into the field of complex numbers C. Set VoG := H;(G(C), Q) and
Ey :=End;(G) ® Q and X :=im(u) ® Q, and denote by D the Ey-submodule
of G(k)®Q generated by X(. Note that VG is a faithful Eg-module and that there
is a natural isomorphism V,G = VyG ® Q,. By Lemma 4.3, it is now enough to
check the equality Xo = X for

Xo:={xeDy| f(x) € f(Xo) forall f€Hompg,(Do, VoG)}.

By hypothesis, the Q-algebra Ej is a product of division algebras; hence, the
equality Xo = X indeed holds by Lemma 4.4. U

4.5. One can think of other linear algebra conditions on the objects E, D, V,
and X than those in Lemma 4.4 that ensure the equality X = X. For instance, the
conclusion of the lemma holds true for any finite-dimensional semisimple algebra E
over K and faithful V if X is of dimension < 1 or if X is an E-submodule or D.
One can conclude along the same lines that if M =[u : Y — G]is a 1-motive where
G is an abelian variety or a torus, such that the image of u generates an End; ®Q-
submodule of G (k) ® Q or such that u(Y) is of rank < 1, then III! (k, T, M) is
finite.
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4.6. Our strategy of proving finiteness of III' (k, T, M) consisted of showing that
the a priori larger group H! (LM, Ty M) is finite. This strategy does not succeed
always; indeed, there exist 1-motives M such that the group H!(L™,K T,M) is
infinite, yet ITI' (k, T, M) is finite. The point here is that H*1 (I, T¢M) only sees the
primes at which Ty M is unramified, whereas 1! (k, T, M) sees all primes.

5. The torsion of ITT' (k, T, M)

In this section, we complete the proof of Theorem 3 by examining the finite torsion
part of the group III' (k, T,M). The key ingredient for this is the following lemma:

Lemma 5.1. Let T be a finitely generated free Z,-module, and set V := T @ (.
Let D C L C GL(T) be Lie subgroups with Lie algebras 0 and |, respectively. If

(1) theset{mox | x €l, m € V*}is a linear subspace of V* and

(2) for all open subgroups H C L containing D the equality T" = T* holds,

then the map r - HY(L, T) — H})(D, T) given by restriction of cocycles is injective
on torsion elements.

This generalises Lemma 4.1 in [Jossen 2013a], which we get back by taking
for D the trivial group. In our application, 7" will be T, M for a 1-motive M, L will
be LM, i.e., the image of I' := Gal(k | k) in GL(T;M), and D will be the image
in GL(T;M) of a decomposition group D, C T.

Proof of Lemma 5.1. Let c : L — T be a cocycle representing an element of order £
in ker(r), and let us show that c is a coboundary. Because ¢ represents a torsion
element in H'(L, T), its image in H (L, V) is trivial. Thus, identifying 7" with a
subset of V, there exists v € V such that c(g) = gv — v for all g € L. The cocycle
c is a coboundary if v belongs to v € VX + T'. In fact, we will show that

ve (T+VPYN(T+Vh. (%)

Since the restriction of ¢ to D is a coboundary, there exists ¢+ € T such that
c(g) =gt —tforall g e D;hence,v—1t e VP andsov e T + VP as needed.
To say that the cohomology class of ¢ belongs to H} (L, T) is to say that for each
g € L there exists an element 7, € T such that c¢(g) = g, —t,. Let N be an open
normal subgroup of [ on which the exponential map exp : N — [ is defined so that
Vi) = ker(exp(g)) for all g € N. We then have

ve ﬂ(T +viehc ﬂ (T+V®)) = ﬂ(T +ker(x)).
geL geN xel

Because of the hypothesis (1), Lemma 4.4 of [Jossen 2013a] applies, which yields
veT+ () gker(x) =T+ V' and completes the proof of ().
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By modifying v by an element of 7', we may suppose without loss of generality
that v belongs to V? and in particular to V°. The finite group G := D/(N N D)
acts on V? as well as on V'. By Maschke’s theorem, there exists a @,-linear,
G-equivariant retraction map r : V° — V' of the inclusion V' — V?. Restricting r
to V' + (T NV?), we find a decomposition of G-modules

Vi@ nv®) =V'e (kerr N(T NVY)).

Writing v = vy +#; with vy € Viand t; ekerrNTNV? according to this decom-
position, we see that v; (and also #;) is fixed under G because v is so; hence, we
have

ve(VINWVHYY+T =W NNVP)+T=VNP 4 T.

The subgroup N D of L is open and contains D; hence, v € VX + T by hypothesis
(2). O

Lemma 5.2. Let M = [u : Y — G] be a 1-motive where G is an abelian variety
or a torus such that End;(G) ® Q is a product of division algebras. If the Galois
action on Y is trivial, then III' (k, T¢M) is trivial.

Proof. For every finite Galois extension k" | k, we have
HO®k,TeM) = HO(K, TeM) = H™ (M) © Z,

by Corollary 1.10. Hence, we have (T,M)L" = (T, M)Y for all open subgroups
U of LM Tt follows from [Jossen 2013a, Propositions 3.1 and 3.2], which use the
hypothesis on End; (G) ® Q that the image of the bilinear map

M x (ViM)* = (Vi M)*, (x,7T)—> Tox

is a linear subspace of (V,M)*. The hypotheses of Lemma 5.1 are thus satisfied,
and taking for D the trivial group, it shows that H!(LM, T,M) is torsion-free.
By Theorem 4.1, this group is also finite, hence trivial, and we conclude by
Proposition 4.2. (]

Proof of Theorem 3. Let M =[u : Y — G] be a 1-motive over k. We have constructed
the pairing of the theorem and shown in Corollary 2.4 that it is nondegenerate on
the left and in Proposition 2.5 that I11°(k, M) is finite. Suppose then that G is an
abelian variety or a torus such that End;(G) ® Q is a product of division algebras.
By Corollary 2.4, it remains to prove that the canonical map

%k, M)  Z, — 11 (k, T, M) (%)

constructed in Section 2.3 is an isomorphism. We define Z := H —1(M) =keru and
use Proposition 2.5 to identify III' (k, M) ® Z, with III' (k, Z ® Z;). Fix a finite
Galois extension k' | k over which Z is constant. For every place w of k, we write
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ky, for the completion of k at the restriction of w to k, and D,, := Gal(k), | k).
From the Hochschild—Serre spectral sequence, we get a commutative diagram with
exact rows

0 —— HYGal(k' |k), Z® 7)) — H'(k, T;M) —— HY(K', T¢M)

l | l

0— []H (G, H(k,, TeM)) — [ H' (ky, TeM) — [T H (K., TeM)
w w w

The rightmost vertical map is injective by Lemma 5.2; hence, every element
of II' (k, T,M) comes from a unique element of H Y(Gal(k' | k), Z @ Zy), hence
from H'(k, Z® Z,). It remains to show that this element is in III' (k, Z ® Z;). To
this end, we consider the diagram

0— > H'(k,Z®Z)) —— H'(k, T M)

| |
It

[1H *ky, Z®7y) —— [ H' (ky, TeM)

where the horizontal maps are induced by the morphism of 1-motives [Z — 0] —
[Y — G]. Injectivity of the top horizontal map follows from Corollary 1.10. We
have thus ker § = III' (k, T, M) and must show that every element of ker § maps
already to zero in H'(k,, Z ® Z,) for all v € Q; that is, ker § = III' (k, Z ® Z,).

Fix an element x of III' (k, T,M) and a place v, and let D, be a decomposition
group for v. We know that x comes via inflation from an element z of the finite
group H*1 (LM, TyM). Write D for the image of D, in GL(T;M). This D is a
Lie subgroup of LM, and by hypothesis, z restricts to zero in H'(D, T,M). By
Lemma 5.1 (using again [Jossen 2013a, Propositions 3.1 and 3.2]), we conclude
that there is an open subgroup U of L™ containing D such that z is already zero in
H'(U, T¢M). This shows as well that there is an open subgroup I'” of I' containing
D, such that x maps to zero in H Y(I'", T¢M). Consider then the diagram

0— > H'\I', Z®7;) —— H (', T,M)

J/ T~ leO
<

0— > H' (I, Z®7Z)) —— H' (I, T, M)

| |

H'(Dy, Z®Z¢) —— H'(Dy, T¢eM)

We know that the element x € III!(k, T, M) comes from an element of kerd’.
The middle row is exact by Corollary 1.10 and because I'" is the Galois group



2536 Peter Jossen

of a number field so that this element maps to zero in H'(I'’, Z ® Z,), hence in
HY(D,, Z®17Z,). O

6. Tate 1-motives and Leopoldt’s conjecture

In this section, we study the pairing of Theorem 3 in the case where M is a Tate
1-motive over k, that is, a 1-motive of the form M = [Z" — G, ]. I will show the
following sharper version of Theorem 2 stated in the introduction:

Theorem 6.1. Let k be a number field with ring of integers Oy, and let € be a prime
number. If for every 1-motive of the form M = [7" — G,%l] over spec(0y) the group
1% (k, MY)[£°] is trivial, then the statement of Leopoldt’s conjecture is true for k
and £.

6.2. We work with the following formulation of Leopoldt’s conjecture [Neukirch
et al. 2000, Theorem 10.3.6(iii)]. For a finite prime p of k, let Oy ,, denote the ring
of integers of the completion of k at p. There is a canonical map

i:0f @772 — ]‘[@;p 7y,
ple
which on each component iy, : 07 ® Zy — Oy ® Z, is obtained by applying — ® Z,
to the inclusion O} C O P Leopoldt’s conjecture asserts that the map i, is injective.
Note that i, is injective on torsion elements and injective if Oy is of rank < 1.

Proof of Theorem 6.1. We suppose Leopoldt’s conjecture is false for £ and ¢, so
there exists a nontorsion element z € ker(i¢) € O} ®z Z;, which we may write as

n
7= Zb‘i & A,
i=1

where n > 2 is the rank of O} and ¢y, ..., &, are Z-linearly independent elements of
Oy . By reordering the ¢; and replacing £; by 81_1 if necessary, we may as well assume
A1+Az #£0. We will now construct a 1-motive M of the form M = [u : 71 an]
over spec(0yr) such that the group 1" (k, Ty M) is infinite. The 1-motive dual to
M is then of the form MY = [Z?> — G2>'~!], and I11%(k, M) will be infinite by
Proposition 2.2. Let Y ~ Z*'~! be the group matrices

y= (yu Y12 Y13 - )’1n>
Y21 Y22 Y23 *cc Yo
with integer coefficient satisfying y;; + y»» = 0, and define the morphism u by

u(y) = ()’1181 +ye+yizezt+---+ y1n8n) c Grzn(Ok)’
Y2161+ ¥2282 + y23€3+ - - - + Yonép
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where we decided to write the group G, (0;) = O} additively. So if ¢ denotes the
column vector of the ¢;, we have just u(y) = ye. We will prove the following
lemma later:

Lemma 6.3. For each 1 <i < n, there exists y € Y such that (i’ ) = u(y) mod p
holds in Gi (kp), where kp = is the residue field at p.

Set U := spec(0x[£~']), and denote by ¢; and c, respectively, the images of
(;}) ® 1 and () under the composite map

G:(U)®7Zy — H'(U,M)®7Z, — H (U, T M)

where the first map is induced by the projection G2,(U) — G2,(U)/u(Y) = H(U,M)
and the second map is the injection defined in Proposition 1.9. The Z,-submodules
of G2 (0r) ®Z, generated by () and by u(Y) intersect trivially because A; + A2 # 0;
hence, c is of infinite order in H'(U, T, M) € H'(k, T,M). I claim that ¢ belongs
to 111! (k, T, M). Fix a place p of k of residual characteristic p, and let us show
that the restriction of ¢ to H' (ky, T¢M) is zero. In the case p = £, this is true by
construction, considering the commutative diagram

0} ®Z; —— H'(U, T¢M)

l |

(05 ,)° ®Zy —— H'(ky, TeM)

and that the image of ( ) is already zero in (O )2 ®Z,. Suppose now that p # £, so
T¢M is unramified at p. Because ¢ = Ajc; + - - - + Ay, it suffices to show that the
restriction of each ¢; to H' (kp, T¢M) is zero. In view of the commutative diagram

0;)?®2Z —— H' (U, T(M)

| |

u mod p ") 1
Y®Zg—)(l(p) ®7Z, — H (Kp,TEM)

this amounts to show that there exists y € Y such that ({) = u(y) mod p holds

in G,zn (kp), which is what we claimed in Lemma 6.3. Hence, ¢ belongs indeed to
1" (k, T, M) and is of infinite order, and thus, 111! (k, T, M) is infinite. O

Proof of Lemma 6.3. Fix 1 <i <n and a maximal ideal p of Oy with residue field «;.
We have to find a matrix y € Y such that ( ) is congruent to u(y) modulo p. For
i #1,2,such a y exists trivially. Let J; C Z be the ideal consisting of those m € Z
such that me; mod p is in the subgroup of «,,” generated by &5, and let a; > 1 be the
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positive generator of J;. Similarly, define J, and a;. There exist by, b, € Z such
that the linear dependence relations

ai&1+brep =1 and big1+arer =1

hold in the finite group &y, written additively. Note that b; is a multiple of ;. We
claim that the integers a; and a; are coprime. Indeed, suppose there exists a prime £
dividing a; and a so that we can write a; = £a; and b; = £b;. Let Z be the subgroup
of k; generated by & and ¢;. Since «,;[¢] is cyclic of order £, we may suppose that
/c;‘ [€]1N Z is contained in the subgroup of «; generated by, say, &>. Thus, the point

T :=aje1+byer ek, [€1NZ

can be written as T = ce;, and we get the relation agsl + (b’2 —c)e; = 1, which
contradicts the minimality of a;. Therefore, a; and a, are coprime as claimed, and
we can choose integers c¢; and ¢, such that a;cy 4+ azcy = 1. The matrices

_(l—ajcy —c1b 0 --- 0 and _(—aic; 1—=c1b 0 --- 0
M= N1 —eaby —ares 0 -+ 0 2=\ by 1=ares 0 -+ 0

belong to Y, and we have (? ) = u(y;) mod p as desired. O
Remark 6.4. If k is a number field whose group of global units O} has rank <1,
one can show that ITI! (k, T, M) = 0 holds for every Tate 1-motive M over k. On the
other hand, a construction analogous to the one used in the next section produces

Tate 1-motives over particular number fields k with infinite IIT' (k, T, M).

7. A semiabelian variety with infinite ITI>

In this section, we prove Theorem 1 by producing a semiabelian variety G over (
such that II1?(Q, G) contains @/Z as a subgroup and hence in particular is infinite.
The technique is similar to that in the previous paragraph, and here we exploit now
that for elliptic curves of sufficiently big rank the statement analogue to Leopoldt’s
conjecture trivially fails.

7.1. Let E be an elliptic curve over @Q of rank at least 3, and let Py, P», Pz € E(Q)
be Z-linearly independent rational points. Let us write A for the abelian threefold E>
over (2 and Y for the group of 3 x 3 matrices of trace 0 with integer coefficients.
Looking at ¥ ~ 78 as a Galois module with trivial Galois action, we consider the
I-motive

yuPi+ynPr+yizP;
M=[u:Y—Al, u()=yP=|ynPi+ynPr+ysP;|cE@Q)=AQ).
v31P1+y P+ y33P;
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The map u is injective, and I will use X as a shorthand for the group u(Y) C A(Q).
This 1-motive M is of special interest because it produces a counterexample to
the so-called problem of detecting linear dependence: although P ¢ X and even
nP ¢ X for all n # 0, there exists for every prime p where E has good reduction
an element x € X such that P is congruent to x modulo p. The verification of
this is similar to the proof of Lemma 6.3; see [Jossen and Perucca 2010]. Using
Theorem 3.1, one shows that Hl (™, V, M) is nontrivial — this is what makes the
counterexample work and also how it was found in the first place.

7.2. I claim that the Tate—Shafarevich group in degree 2 of the semiabelian variety
dual to the 1-motive M constructed in the previous paragraph contains a subgroup
isomorphic to Q/Z. By Proposition 2.2, this amounts to say that for each prime
number ¢ the Tate—Shafarevich group

! (Q, T, M)

is of rank > 1 as a Zy-module. Fix a prime ¢, and let us denote by [cp] the
cohomology class of P ® 1 via the injection H*(Q, M)® Z, — H'(Q, T, M) from
Proposition 1.9. A cocycle cp representing [cp] is explicitly given by

cp(o) = (o P — Py,

where (P;)72,, are elements of A(GZD) such that Py = P and ¢P; = P,_;. Upto a
coboundary, cp does not depend on the choice of the division points P;. As the
class [P] of P in H(Q, M) = A(Q)/X is of infinite order, the element [cp] €
H'(Q, T¢M) is of infinite order too. We claim that n[cp] belongs to '@, T, M)
for some integer n > 1 (depending on ¢). To check this, we must show that for
every finite place p of Q the restriction of ncp to a decomposition group D), is
a coboundary. In the case where £ = 2 and p = oo, we should also demand that
the restriction of n[cp] to H'(Gal(C|R), T, M) is zero, but we can ignore this by
choosing 7 to be even. So from now on, we will stick to finite primes p only.

Lemma 7.3. Let p be a prime, and let D), C Gal(Q| Q) be a decomposition group
at p. The restriction of cp to D, is a coboundary if and only if the class of P in
A@p)/X = H(Q,, M) is t-divisible.

Proof. Choose an algebraic closure Q p of @, and an embedding of Q into @ p
in such a way that the given decomposition group D), equals Gal(@l(@ NQ,)).
Consider the commutative diagram with exact rows

0—— HQ M7, —— HY(Q, T, M)

l l

0—— HQ,, M)®Z, — H'(Q,, T M)
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The restriction of cp to D, is a coboundary if and only if [P]®1 € HQ, M)®Z,
maps to zero in H(Q,, M)®Z,, that is, if and only if the class of P in H*(Q,,, M)
is ¢-divisible. U
Lemma 7.4. For every prime p, the closure of X in A(Q),) for the p-adic topology
is an open subgroup of A(Q,) of finite index.

Proof. Because E(Q,) has the structure of a compact p-adic Lie group of dimension
1, there exists an open subgroup of E(Q,) isomorphic to Z,, and because E(Q,)
is compact, any such subgroup has finite index [Silverman 1986, Proposition 6.3].
We find thus a short exact sequence of profinite groups

027, — A@Q,) > F -0

for some finite group F. Let m > 1 be an integer annihilating F so that mX is
contained in Z;. The elements

0 0 m P3
mPy |, 0 , and 0
0 mPs 0

of mX C ij C A(Q)) are linearly independent over Z,, because each mP; € Z),
is nonzero. The closure of mX in Zf, contains the Z,-submodule generated by
these three points, hence is of finite index in Zi. We conclude that the closure of X
in A(Q) has finite index. Every closed subgroup of finite index is also open. [J

7.5. We now come to the proof of the claims made in Section 7.2. First of all, let
us choose an integer n > 1 such that the following conditions are met:

(0) If £ =2, then n is even.

(1) For every prime p # ¢ where E has bad reduction, the point n P is £-divisible
in A(Q)).

(2) For p = ¢, the point n P belongs to the closure of X in A(Q),) for the p-adic
topology.

Such an integer n exists. Indeed, start with, say, n = 2, so condition (0) is satisfied.
We have already observed that A(Q,) is an extension of a finite discrete group F
by Z3, so by replacing n by some sufficiently high multiple of n, we can assure that
n P belongs to the subgroup Zf, of A(Q,), which is £-divisible. We do this for all
the finitely many primes of bad reduction, so condition (1) is met. As for the last
condition, we know that the closure of X in A(Q,) has finite index by Lemma 7.4,
so we again replace n by some sufficiently high multiple if necessary. In order to
show that n[cp] belongs to 1" (Q, T, M), it remains to show by Lemma 7.3 that
for each prime p the class of nP in H%(Q, M) = A(Q,)/X is £-divisible. In other
words, we must show:
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Claim. For every i > 0, there exist elements Q; € A(Q)) and x; € X such that
Qi +xi=nP.

We have already ruled out the case p = oo, and for finite p, we will distinguish
three cases: first, the case where p is a place of good reduction for E and p # ¢,
second, the case where p is a place of bad reduction and p # ¢, and finally, the
case p = £. All but finitely many primes p fall in the first case. For the finitely
many primes that remain, the claim will hold by our particular choice of .

Case 1 (good reduction at p and p # £). In this case, we can consider the surjective
reduction map red, : E(Q,) — E(F,). Its kernel is isomorphic to Z,, so we get a
short exact sequence

red
0— Z;, — A@@Q,) —> A(F,) —> 0.

By [Jossen and Perucca 2010], there exists an element x € X such that red,(P) =
red p(x) in A(F)). B(_acause Z, is uniquely {-divisible, we can define Q; :=
£7'n(P—x)and get £'Q; + nx =nP.

Case 2 (bad reduction at p and p # £). Condition (1) in Section 7.5 ensures that n P
is £-divisible in A(Q),) for bad p # ¢, so the class of P in A(Q,)/X is £-divisible
as well.

Case 3 (p = ¢). For all i > 0, the subgroup p' A(Q),) is open in A(Q)); hence, by
condition (2) in Section 7.5, the intersection X N (nP + p' A(Q »)) is nonempty.
But that means that there exists an element Q; € A(Q,) and an element x; € X
such that p'Q; +x; =nP, just as needed.

8. Open questions and problems

I present three open arithmetic questions and an elementary problem in linear
algebra, which so far have defied all attempts of being solved. The first question is
about how far finitely generated subgroups of a Mordell-Weil group are detectable
by reduction maps. It is a sharpened version of the problem that in the literature is
named the problem of detecting linear dependence.

Question 8.1. Let G be a semiabelian variety defined over a number field k, and let
X be a finitely generated subgroup of G (k). Denote by X C G (k) the subgroup of
those points P such that for almost all finite primes p of k the reduction P mod p
belongs to X mod p in G(kp). Let M = [u : Y — G] be a 1-motive where Y is
constant and X = u(Y). Is it true that the map

X/XQ®Zy— H}(k, TeM)

induced by the injection H Ok, M\)®Z; — H'(k, T,M) is an isomorphism?
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A positive answer to this question was given in [Jossen 2013a] in the case where
G is a geometrically simple abelian variety. In this case, we know that H.! (k, T, M)
is trivial and get a nice local-global principle for subgroups of Mordell-Weil groups.
Apart from a few other isolated examples, the question remains open, even in the
cases where G is an abelian variety or a torus. The second question is similar in
nature, but we impose a stronger local condition.

Question 8.2. Let G be a semiabelian variety defined over a number field &, let
X be a finitely generated subgroup of G(k), and let P € G (k) be a rational point.
Suppose that for all finite primes p of k the point P belongs to the closure of X in
G (ky) for the p-adic topology on G (kp). Does then P belong to X?

We know the answer to be positive if G is a simple abelian variety and in
some other scattered examples. If we could choose the integer n in Section 7.5
independently of £, the answer to the question would be negative. Thirdly, I would
like to ask for a converse to Theorem 6.1.

Question 8.3. Let £ be a number field for which the statement of Leopoldt’s
conjecture holds. For which 1-motives M =[Y — G], where G is a torus, is the
pairing

1l (k, M) x I*(k, MYy — Q/Z

of Theorem 3 a perfect pairing of finite groups? In general, can we compute the
dimension of I1I' (k, V,M)? How does this dimension vary with £?

The second part of this question can as well be formulated for general mixed
Artin—Tate motives. At last, motivated by the proof of Theorem 4.1, let me state a
problem in linear algebra that any first-year student can understand.

Problem. Let K be a field, and write E for the K-algebra of n x n matrices with
coefficients in K. Denote by V and Vj the E-modules of n x m and n x mg matrices,
respectively. Finally, let W be a K -linear subspace of V, and define

W:={veV]|fQ) e f(W)forall feHomg(V, Vy)},

so W is a linear subspace of V containing W. Observe that elements of Hompg (V, Vp)
are just m x mo matrices by Schur’s lemma. The problem is to compute W. This
means find an algorithm that takes as an input a K-basis of W (this will be some
finitely many n x m matrices) and provides a basis of W or equivalently provides
some finitely many fi, ..., fr € Homg(V, V) such that

W={veV|fiv)e i(W)fori=1,2,...,r}.

Changing scalars from K to a bigger field may result in a smaller dimensional W
(i.e., the inclusion of Lemma 4.3 may be strict). Yet, I don’t know of a solution to
the problem even in the case where K is algebraically closed.
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Triangulable Of-analytic
(¢q.)-modules of rank 2

Lionel Fourquaux and Bingyong Xie

The theory of (¢, I')-modules is a generalization of Fontaine’s theory of (¢, I')-
modules, which classifies Gg-representations on Op-modules and F-vector
spaces for any finite extension F of Q,. In this paper following Colmez’s
method we classify triangulable O g-analytic (¢4, I')-modules of rank 2. In the
process we establish two kinds of cohomology theories for Og-analytic (¢,, I')-
modules. Using them, we show that if D is an étale Op-analytic (¢,, I')-module
such that D%=1-T=! = 0 (i.e., VOF = 0, where V is the Galois representation
attached to D), then any overconvergent extension of the trivial representation of
Gr by V is Op-analytic. In particular, contrary to the case of F = Q,,, there are
representations of G that are not overconvergent.

Introduction

This paper depends heavily on the theory of (¢, I')-modules for Lubin-Tate exten-
sions, a generalization of Fontaine’s theory of (¢, I')-modules. The existence of this
generalization was more or less implicit in [Fontaine 1990; Colmez 2002]. See also
[Fourquaux 2005; Scholl 2006, Remark 2.3.1]. Kisin and Ren [2009] provided de-
tails, where (¢, I')-modules for Lubin—Tate extensions are called (¢,, I')-modules.

To recall this theory, let F be a finite extension of Q,,, OF the ring of integers in
F, and 7 a uniformizer of OF. Fix an algebraic closure of F denoted by F, and put
Gr = Gal(F/F). Let k¢ be the residue field of F and set ¢ =#kp. Let W =W (kp)
be the ring of Witt vectors over kr. Then Fy := W[1/p] is the maximal absolutely
unramified subfield of F. Let F be a Lubin-Tate group over F corresponding to
the uniformizer 7. Then F is a formal Op-module. Let X be a local coordinate
on F. Then the formal Hopf algebra O may be identified with Or[[X]). For any
a € Op, let lalr € OFr[[X] be the power series giving the endomorphism a of F.
If n > 1, let F, C F be the subfield generated by the 7"-torsion points of F. Write
Fyo = Un F,, I = Gal(Fy/F) and Gf_ = Gal(F/Foo). For any integer n > 0,
let ', C I' be the subgroup Gal(F/Fy,). Let TF be the Tate module of F. It
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is a free Op-module of rank 1. The action of Gg on T F factors through I and
induces an isomorphism xr : I' — Oj. For any a € O} we write o, := x5 ' (a).
Using the periods of T F, one can construct a ring Oy with actions of ¢, = Q'8
and I". We will recall the construction in Section 1. Kisin and Ren [2009] defined
étale (¢,, I')-modules over O¢ and classified Gr-representations on Or-modules
in terms of these modules.

Here we are interested in triangulable O p-analytic (¢4, I')-modules over a Robba
ring R, where L is a finite extension of F. A triangulable (¢,, I')-module over Ry
means a (¢g4, I')-module D that has a filtration consisting of (¢4, I')-submodules
0=DyC D, C---C Dg= D suchthat D;/D;_ is free of rank 1 over R .

In the spirit of [Colmez 2008] on the classification of triangulable (¢, I")-modules
of rank 2, in the present paper we will classify triangulable Op-analytic (¢,, I')-
modules over R of rank 2. One motivation for doing this is our belief that under
the hypothetical p-adic local Langlands correspondence these (¢4, I')-modules
should correspond to certain unitary principal series of GL,(F). Colmez [2010a]
and Liu, Xie, and Zhang [Liu et al. 2012] determined the spaces of locally analytic
vectors of the unitary principal series of GL,(Q,) based on this kind of (¢, I')-
module. Our computations of dimensions of Ext! match those of [Kohlhaase
2011] on extensions of locally analytic representations. Nakamura [2009] gave a
generalization of Colmez’s work in another direction. But we think that Nakamura’s
point of view is probably not the best one for applications to the p-adic local
Langlands correspondence.

For our purpose we consider two kinds of cohomology theories for O g-analytic
(¢q, I')-modules.

For a (¢,, I')-module D over R, we define H*(D) by the cohomology of the
semigroup (p;\J x I as in [Colmez 2010a]. Then the first cohomology group H' (D)
is isomorphic to Ext(R, D), the L-vector space of extensions of R by D in the
category of (¢4, I')-modules.

If D is Op-analytic, we consider the complex

. fi f2
C%,V(D): O—D>D&D-=>D—0,
where f|: D — D @ D is the map defined as m — ((¢; — 1)m, Vm), and f :
D®D — Dis (m,n)— Vm— (¢, —1)n. The operator V is defined in Section 1C.
Put H;q’V(D) = H"'(C(;q,V(D)‘), fori =0, 1, 2. Each of these modules admits a
I-action. We set H! (D) = H;q’V(D)F.

Theorem 0.1. Let D be an Og-analytic (¢4, I')-module over Ry. Then there is a
natural isomorphism Exty, (R, D) — Ha]n(D), where Ext,, (R, D) is the L-vector

space that consists of extensions of Ry, by D in the category of O-analytic (¢4, I')-
modules.
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The proof of Theorem 0.1 is given in Section 4; it is due to the referee, and is
much simpler than that in our original version.

Theorem 0.2. Let D be an Op-analytic (¢4, I')-module over Ry . The codimension
of Extan(R 1., D) in Ext(Ry, D) is ([F : Q,] — 1) dimy, D¥='T=1 In particular, if
D¥=1T=1 = 0, then Extyn(R 1, D) = Ext(Ry, D).

To prove this, we will construct a (noncanonical) projection from Ext(®R ., D)
onto Extyn (%, D) whose kernel is of dimension ([F : @,] — 1) dim;, D¥«=!1T=1,

If V is an overconvergent L-representation of G (in the sense of Definition 1.4),
Ajis the (¢4, I')-module over %IL attachedto V,and D =R Q.+ A, then Ext(R, D)
measures the set of extensions of the trivial representatioany V that are over-
convergent (see Proposition 1.5 and Proposition 1.6). Theorem 0.2 tells us that if
VOr = p¥=1.I'=1 =, then any such extension is O r-analytic.

Let $(L) (resp. $an (L)) be the set of continuous (resp. locally F-analytic) charac-
ters § : '’ — L*. Let 8y, denote the character of F* such that §y,,(;7) = q_1 and
8um|0; = 1. Then Jyy, is a locally F-analytic character. If § € $(L), let R (8) be
the (¢4, I')-module over R of rank 1 that has a basis es such that ¢, (e5) = §()es
and o, (es) = 8(a)es. If § € $an(L), then Ry (§) is Op-analytic.

For locally F-analytic characters we have the following:

Theorem 0.3. For any § € $.n,(L), we have
2 if8=x*",ieN0rx"8unr,i€Z+,
1 otherwise,
[F:Qp]+1 iféd=x"ieN,
dim; H'(%Rp(8)) = {2 if 8 =x"8un,i € Z,

1 otherwise.

dim; H),(01,(8)) = {

For the proof of Theorem 0.3 we follow Colmez’s method. Colmez [2008] used
the theory of p-adic Fourier transform for Z,. For our case we use the p-adic Fourier
transform for O developed by Schneider and Teitelbaum [2001] instead. But this
transform can not be applied to our situation directly because, except for the case
of F'=Q),,, it is defined over C, and can not be defined over any finite extension L
of F. We overcome this difficulty by applying it to %¢, and then descending
certain results to R;. As a result, we obtain that if §; and 8, are in $,,(L), then
R (8)Y=" and R (8,)V=0 are isomorphic to each other as L[I']-modules. This
is exactly what we need. In fact, we will show that S5 := (Rpe;s /Qtzea)'/’zo’rzl is
1-dimensional over L for any é € $,,(L), and that Haln (R (8)) is isomorphic to Ss
when v, (8()) < 1 —v,(g) and § is not of the form x'.

For characters that are not locally F-analytic we have the following:

Theorem 0.4. For any 8 € $(L)\Fan(I) we have H (R (8)) = 0. Consequently,
every extension of Ry by Ry (8) splits.
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To state our result on the classification, we need some parameter spaces. These
parameter spaces are analogues of Colmez’s parameter spaces [Colmez 2008]. Let ¥
be the analytic variety over $,,(L) X $,,(L) whose fiber over (81, 6») is isomorphic
to Proj(H ' (8, 8y 1)), S an the analytic variety over $,,(L) X $,n(L) Whose fiber over
(81, &2) is isomorphic to Proj(Haln(Slsz_l)). There is a natural inclusion &, — .
Let &, 99, e Ef?fs, g, S’Sfd and Ef‘jfl be the subsets of ¥ defined in Section 6.
We can assign to any s € & (resp. s € $p) a triangulable (resp. triangulable and
Op-analytic) (¢,, I')-module D(s).

Theorem 0.5. (a) Fors € &, D(s) is of slope zero if and only if s isin ¥, — Efﬂ‘fl;
D(s) is of slope zero and the Galois representation attached to D(s) is ir-
reducible if and only if s is in & — ($4 U H)‘;Cl); D(s) is of slope zero and
Op-analytic if and only if s is in S — Efrfl.

(b) Let s = (81,82, L) and s’ = (8}, 85, L) be in . — S If 8, = &}, then
D(s) = D(s") ifand only if s = s'. If 8; # &/, then D(s) = D(s’) if and only if
s, s € S’Srris U gpgrrd’ with 8] = X, 8= xX"WEs,

In the case when F = Q,, this becomes Colmez’s result [Colmez 2008]. The
proof of Theorem 0.5 will be given at the end of Section 6.

We give another application of Theorem 0.3. In the case of F = Q, —the
cyclotomic extension case — Cherbonnier and Colmez [1998] showed that all
representations of G, are overconvergent. But our following result shows that this
is not the case when [F : Q,] > 2.

Theorem 0.6. Suppose that [F : Qp,] > 2. Then there exist 2-dimensional L-
representations of Gr that are not overconvergent (in the sense of Definition 1.4).

By Kedlaya’s theorem [2004], any (¢,, I')-module of slope zero D(s) in Theorem
0.5(a) comes from a 2-dimensional L-representation of G that is overconvergent.

We outline the structure of this paper. We recall Fontaine’s rings, the theory of
(¢4, I')-modules and the relation between (¢, I')-modules and Galois representa-
tions in Section 1A and Section 1B, and then define Or-analytic (¢,, I')-modules
over the Robba ring ®; in Section 1C. We define ¢ in Section 2A, and study
the properties of 9 and Res in Section 2B. In Section 3A we extend y to %R, in
Section 3B we define operators m, on QJ{CF, and then in Section 3C we study the
[-action on Ry (8)¥=0 for all § € $n(L). The cohomology theories for O g-analytic
(¢4, I')-modules are given in Section 4. In Section 5 we compute Haln (R (8)) and
HY (R (8)) for all § € $4n(L). After providing preliminary lemmas in Section 5A,
we compute H°(8) for all § € $(L) in Section 5B and H_. (8) for all § € $,,(L)
satisfying v;(6(w)) < 1 — vz (g) in Section 5C. For the purpose of computing
Haln (8) for all § € $,,(L), we construct a transition map 9 : Haln(x_l(S) — Haln((S),
which is done in Section 5D. The computation of Haln (8) is given in Section SE.
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In Section 5F we define two maps ¢, and ¢, an. Applying results in Section 5, we
classify triangulable Op-analytic (¢,, I')-modules in Section 6.

1. (@4, I')-modules and O g-analytic (¢,, I')-modules

In this section we recall the theory of (¢,, I')-modules built in [Colmez 2002;
Fourquaux 2005; Kisin and Ren 2009]. We keep using notation from the introduc-
tion.

1A. The rings of formal sei‘ies. Put Et = l(iLnO 7/D yith the transition maps
given by Frobenius, and let E be the fractional field of E*. We may also identify
E* with 1<£n Oy /m with the transition maps given by the q-Frobenil}f Qg = Qo8
Evaluation of X at 7 *-torsion points induces a map ¢ : TF — ET. Precisely,
if v = (vy)u>0 € TF, with v, € F[n"](OF), and 7 - v,41 = vy, then we have
L(v) = (Vi (X) + 7 OF)n>o0.

Let { - } be the unique lifting map E* — W(E")z := W(E™) ®0;, OF such that
@gix} = [m]-({x}) (see [Colmez 2002, Lemma 9.3]). When F is the cyclotomic
Lubin-Tate group Gy,, we have {x} = [1+ x] — 1, where [1 4 x] is the Teichmiiller
lifting of 1 4 x. This map respects the action of Gr. If v € T F is an Op-generator,
there is an embedding Of[ur] — W(E+) F sending uz to {¢(v)} which identifies
OFr[luz]l with a Gp-stable and ¢,-stable subring of W(E*) r. The Gg-action on
OF [u£] factors through I'. By [Colmez 2002, Lemma 9.3] we have

g(ur) =[mlr(ur), oqa(ur)=Ilalr(ur).

In the case of F = G, ur is denoted by T in [Colmez 2008]. Here T is used to
denote the Tate module of a Lubin—Tate group.

Let Og be the m-adic completion of Of[[u]l[1/uz]. Then Og is a complete
discrete valuation ring with uniformizer 7 and residue field k¢ ((ux)). The topology
induced by this valuation is called the strong topology. Usually we consider the
weak topology on Og, i.e., the topology with {7'Og + urOFfllurl : i, j € N}, as
a fundamental system of open neighborhoods of 0. Let € be the field of fractions
of Og. Let €™ be the subring F ®¢, Or[[uz] of €.

For any r € Ry U {+o0}, let €!%"1 be the ring of Laurent series f =), ; a;ju'-
with coefficients in F that are convergent on the annulus 0 < v, (#) < r. For any
0 < s < r we define the valuation v} on €1*"1 by

() = inf(v, (a;) +is5) € RU {£00}.
le
We equip ¢1%! with the Fréchet topology defined by the family of valuations
(v} :0 <5 <r}. Then€!%1 is complete. We equip the Robba ring % := U, -0 ¢lor]

with the inductive limit topology. The subring of %R consisting of Laurent series of
the form )" a;u’- is denoted by R .

i>0



2550 Lionel Fourquaux and Bingyong Xie

Puté’:= { > aiu}EQR | a; i1s bounded as i — —I—oo}. This is a field contained in €
and in R. €/

Put €071 = ¢ N gl0r1 Let vI%1 be the valuation defined by vI%1(f) =
ming<s<, vk f). Let Ogon be the ring of integers in €01 for the valuation
(%71 We equip Ogon[1/ ur] with the topology induced by the valuation v} and
then equip

g0l = LEJN 7O uy
with the inductive limit topology. The resulting topology on ¢! is called the
weak topology [Colmez 2010b]. Note that the restriction of the weak topology to
the subset
[fup =3 asee®:a=0if i = 0]
ieZ

coincides with the topology defined by the valuation v}, and its restriction to ¢+
coincides with the weak topology on ¢*. Then we equip ¢" = | €*"1 with the
inductive limit topology. r=0

We extend the actions of ¢, and I" on Of[[lu,] to ¢, O, €, ¢" and R continu-
ously.

Put 7 = logr(uz), where logr is the logarithmic of F. Then 7, is in % but not
in€¢". When F = G, 17 coincides with the usual 7 in [Colmez 2008]. Note that
@q(tr) = ity and o,(tz) = aty for any a € O;. Put O = Q(uz) =[] (uz)/ur.

We have the following analogue of [Berger 2004, Lemma 1.3.2].

Lemma 1.1. If I is a ['-stable principal ideal of R, then I is generated by an
element of the form
. 400 .
uy ' (¢ (Quzr)/QO0)) """ (1-1)
ne
Furthermore, if R - ¢,(I) C I, then the sequence { j,}n>0 is decreasing, and if
R -9, (I) D 1, then the sequence {j,}n>0 is increasing.

Proof. The argument is similar to the proof of [Berger 2004, Lemma 1.3.2]. Let
S (uz) be a generator of I. Put V,(I) ={z€C,: f(z) =0,0 < |z| < p} for any
p € (0, 1). If I is stable by T, then V,(I) is stable by [a]; for any a € (’);5. As
V,(I) is finite, for any z € V,,(I) there must be some element a € Oy, a # 1 such
that [a]~(z) = z. Note that [7]-(z) satisfies [a]-([7]-(2)) = [7]-(2) if [a]z(2) =z.
But the cardinal number of the set {z € C), : [a]-(z) = z, |z| < p} is finite. Thus
for any z € Vj(p) there exists a positive integer m = m(p) such that [7"]-(z) = 0.
Therefore I is generated by an element of the form (1-1).

The last assertion is easy to prove. U

Corollary 1.2. We have (1) = (uf [Tl () /Q(O))) in the ring R+,

n>0
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Proof. Because the ideal (75) is I'-invariant and R - @, (1) = (1), by Lemma 1.1

there exists j € N such that (tz) = (uf- [T ¢/ (Q(uz)/Q(0))). Since (tr/uz) = 1
mod uzR" we obtain j = 1. nz0 O

If 7' is another Lubin—Tate group over F corresponding to 7, by the theory
of Lubin—Tate groups there exists a unique continuous ring isomorphism nr 7 :
O — OF  with

F F

nr,F (ur) = ur + higher degree terms in Op[[ux ]|

such that nr 7 olaly = [a]F onF 7 for all a € Or. We extend nr, 7 to isomor-
phisms

Ogr > O, €E5¢€L, €r>€p, €ro€h, Rr—Rre.

By abuse of notation these isomorphisms are again denoted by nr 7.
Let ¢, = logu, be a variable over R[1/7-]. We extend the ¢,, '-actions to

R[1/tr, €] by

00 (€)= qlu+1og TEUE) 5 1) g, 1 10g WIEWE),
ur Ur

1B. Galois representations and (¢ , I')-modules. Let L be a finite extension of
F. Let Rep; Gr be the category of finite-dimensional L-vector spaces V equipped
with a linear action of Gf.

If A is any of €%, €, €', %, we put A, = A ®p L. Then we extend the ¢,,
["-actions on A to Ay by L-linearity. Let R denote any of €, %IL and Ry. For a
(¢4, I')-module over R, we mean a free R-module D of finite rank together with
continuous semilinear actions of ¢, and I' commuting with each other such that ¢,
sends a basis of D to a basis of D. When R =€, we say that D is étale if D has
a gg-stable Og, -lattice M such that the linear map ¢; M — M is an isomorphism.
When R = %T we say that D is érale if %L®%+ D is étale. When R = R, we
say that D is etale or of slope 0 if there ex1sts an étale (¢4, I')-module A over %T
such that D =R, ®y; A Let Mod(fjle " be the category of étale (pg, I')- modules
over R.

Put B = W(E)#[1/7]. Let B be the completion of the maximal unramified
extension of € in B for the 7-adic topology. Both B and B admit actions of ®q
and Gr. We have B~ = €.

For any V € Rep; Gr, put Dg(V) = (B®rF V)Cr . For any D € Mod% T et, put
V(D) = (B®¢ D)%=".

Theorem 1.3 [Kisin and Ren 2009, Theorem 1.6]. The rfunctors V and Dg¢ are
@q,1,et
quasi-inverse equivalences of categories between Mod 1, and Rep; Gr.
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As usual, let BT be the subring of B consisting of overconvergent elements, and
put Bl =BNBT. Then (BN~ =€,

Definition 1.4. If V is an L-representation of G, we say that V is overconvergent
if D+ (V) := (BT ® V)% contains a basis of Dg (V).

When F = Q,, according to the Cherbonnier—Colmez theorem [1998], all L-
representations are overconvergent. But in general this is not true. For details, see
Remark 5.21.

Proposition 1.5. (a) If A is an étale (¢4, I')-module over gl , then
V(€L ®y A) = (BT @q: A)#=L

(b) The functor A €L ®¢ Adsa fully faithful functor from the category
Mod? /%T " 10 the category Mod(;%

(c) The functor Dyt is an equivalence of categorles between the category of
ét
overconvergent L-representations of Gr and Mod?” /%T he .

Proof. Without loss of generality we may assume that L = F'. Put B@ =W(E)[1 /p]

and BT B@ NB. The technique of almost étale descent as in [Berger and
Colmez 2008] allows us to show that the functor A +— B@ ®BT A from the category
of étale (¢, Gr)-modules over B to the category of étale ((p, GF) modules over
B@ isan equ1valence For any (goq, GF) module D over B (resp B) we can attach
a ((p, Gr)-module D over B (resp B@ ) to D by letting D = @ 0 w‘*(D) with

the map
f-1

¢*(D) = @¢’*<D> — @™ (D)=D

i=1 i=0

that sends ¢'*(D) identically to ¢'*(D) fori =1, ..., f — 1 and sends ¢/*(D) =
@, , (D) to D using ¢,. Here f =log, q. Thus the functor a:A—>B Qg+ A from
the category of étale (¢,, Gr)-modules over B to the category of étale (¢4, Gr)-
modules over B is an equlvalence Now let A be an étale (¢4, I')-module over ¢,
andput V =V(€®R¢: A). Asa(BT®r V) =B®r V =By A =a(Bf @ A), we
have Bf @ V =B ®¢+ A. Thus V is contained in Bf Qg ANB®ygt A =BT @q1 A,
and V = (B" ®¢+ A)#=!. This proves (a).

Next we prove (b). Let A and A, be two objects in Mod
to show is that the natural map

@g.Tét

e What we have

Hom Mod??: ra(Aq, Ay) — Hom ra (€ Qgr Ar, € Qg A2)

¥q
et Modyg

is an isomorphism. For this we reduce the problem to showing that

(Al ®<£+ Az)(pq:],r=l N (% ®%T (A] ®<g{' Az))(quI,FZI
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is an isomorphism. Here A\ is the ¢'-module of ¢*-linear maps from A; to €7,
which is equipped with a natural €tale (¢4, I')-module structure. We have

(€ @1 (A1 @y Az))%:]’r 1 = (B®g¢i (A1 ®¢r A))"™ 1.Gr=1

= V(% R (A] @g: Az))
= (B" ®¢+ (A @y Az))(pq:l’GF:1
= (A Qg Ap)Pa=lT=1 (1-2)

Gr=1

Finally, (c) follows from (a), (b) and Theorem 1.3. O

Proposition 1.6. The functor A — R ®%+ A is an equivalence of categories

between Mod(p" fit and Mo d%r et
L

Proof. Let D be an étale (¢4, I')-module over ;. By Kedlaya’s slope filtration
theorem [2004], there exists a unique ¢, -stable %2—submodule A of D that is étale
as a ¢,-module such that D = R ®%2 A. For any y € I', y(A) also has this
property. Thus, by uniqueness of A, we have y(A) = A. This means that A is
["-invariant. O

1C. Op-analytic (¢4, I')-modules. For any r > s > 0, let vI57] be the valuation
defined by v'*"1(f) = inf,cfs., v (f). Note that

() = nf v, (f(2)-

P
S=<V)p (2)=r

Lemma 1.7. For any r > s > 0, there exists a sufficiently large integer n = n(s, r)
such that, if y € 'y, then we have v[”]((l — )/)Z) > vl (z) + 1 forall z € %f’r].

Proof. Tt suffices to consider z = uJ],%, keZ. If k>0, then

y (ul) —u}:u}(y(”f) - 1)(” Dyt 1)
M]_— u]__

k-1
v W) — ur _uk<”—f—1)(”—+ +1)
T T vy y ()
As v (yz) > vl (y) 4 vl57)(2), the lemma follows from the fact that y (uz) /u
approaches 1 as y — 1. ([l

and

Let D be an object in Modw" LF * 'We choose a basis {ei,...,eq} of D and
write D% = @l | %]O 1. Our definition of D!*! depends on the choice of
{e1, ..., eq}; however, 1f {el, ..., €} is another basis, then

d d
@%]LOJ] -ep = @C(’g]l?’r] : e;
i=1 i=1



2554 Lionel Fourquaux and Bingyong Xie

for sufficiently small » > 0. When r > 0 is sufficiently small, D'®"1 is stable under I.
By Lemma 1.7 and the continuity of the I'-action on D171, the series

logy =) (y = D' (=1)""/i

i=1
converges on D% when y — 1. It follows that the map

dI': Liel’ — End; D'*"!, B+ log(exp B)

is well defined for sufficiently small 8, and we extend it to all of Liel" by Z,,-
linearity. As a result, we obtain a Z,-linear map dI'p : LieI"' — End; D. For any
B eLiel', dI'y, (B) is a derivation of R, and dI'p () is a differential operator over
dI'g, (B), which means that for any a € R, m € D and B € Liel" we have

dl'p(B)(am) = dTg, (B)(a)m +a - dT p(B)(m). (1-3)

The isomorphism x : I' = OF induces an Of-linear isomorphism LieI' — OF.
We will identify LieI" with OF via this isomorphism.

We say that D is Op-analytic if the map dI'p is not only Z ,-linear, but also
Op-linear. If D is Op-analytic, the operator dI"p(8)/8, B € OF, B # 0, does not
depend on the choice of 8. The resulting operator is denoted by Vp or just V if
there is no confusion. Note that the I"-action on R is Op-analytic and by [Kisin
and Ren 2009, Lemma 2.1.4]

_,

oY
where Fr(X, Y) is the formal group law of F. Put 9 = (0 Fz/0Y)(ur, 0) - d/duy.
From the relation oy (1) = at; we obtain Vi =1, and 31 = 1. When F =Gy, V
and 9 are already defined in [Berger 2002]. In this case F(X,Y) =X +Y + XY
and s0 0 = (1 +uy) d/du,.

We end this section by classification of (¢,, I')-modules over %, of rank 1.

Let $(L) be the set of continuous characters § : F* — L* and $,,(L) the subset
of locally F-analytic characters. If § is in $,4,(L), the quotient log §(a)/loga, for
a € Oy (which makes sense when loga # 0) does not depend on a. This number,
denoted by wy, is called the weight of 6. Clearly ws = 0 if and only if § is locally
constant; ws is in Z if and only if § is locally algebraic.

If 6 € $(L), let R () be the (¢4, I')-module over R; (of rank 1) that has a
basis es such that ¢, (es) = §()es and o, (es) = §(a)es. It is easy to check that, if
8 € $an(L), then Ry () is Op-analytic and Vs = Vg, (5) = 19 +ws (more precisely
Vs(zes) = (1r0z +wsz)es). If Ry (8) is €tale, that is, v, (8(7)) = 0, we will use
L($) to denote the Galois representation attached to Ry ().

v (ur, 0) - d/dug, (1-4)
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Remark 1.8. All 1-dimensional L-representations of G are overconvergent. In fact,
such a representation comes from a character of F* and thus is of the form L(3).

Proposition 1.9. Let D be a (¢4, I')-module over Ry, of rank 1. Then there exists
a character § € $(L) such that D is isomorphic to Ry (8). Furthermore, D is
OFf-analytic if and only if § € $,,(L).

Proof. The argument is similar to the proof of [Colmez 2008, Proposition 3.1].
We first reduce to the case that D is étale. Then by Proposition 1.6 there exists an
étale (¢4, I')-module A over % such that D =R, ®%r A. Now the first assertion
follows from Proposition 1.5 and Remark 1.8. The second assertion is obvious. [J

2. The operators ¥ and 9

2A. The operator ¥. We define an operator ¥ and study its properties.
Note that {u}}osifq_l is a basis of €, over ¢, (€,). So €, is a field extension
of ¢, (€L) of degree g. Put tr = trg, /¢ (¢,)-

Lemma 2.1. (a) There is a unique operator { : € — €, such that g 0 = g ltr.
(b) Forany a, b € €1 we have ¥ (¢,(a)b) = ayy(b). In particular, o ¢, = id.
(¢) ¥ commutes with T'.

Proof. Assertion (a) follows from the fact that ¢, is injective. Assertion (b) follows
from the relation

04 (¥ (9g(@)b)) = tr(pg(0)b) /q = ¢4 (@)tr(h) /g = @q(@)pg (¥ (b)) = pq(aty (b))

and the injectivity of ¢,. As ¢, commutes with I', ¢, (€) is stable under I'. Thus
yotroy ! =trfor all y € I'. This ensures that 1 commutes with I". Assertion (c)
follows. (Il

We first compute ¥ in the case of the special Lubin—Tate group.
Proposition 2.2. Suppose that F is the special Lubin—Tate group.
(@) If € > 0, then ¥ (u%) = Y178 ag jule with vz (aei) = [€/q]+1 =i — v (q).
(b) If £ < 0, then w(uﬁ) = Zl[i/g] bg,,-u} with vy (be ;) > [€/q]+1—i —vz(q).

Proof. First we prove (a) by induction on £. As the minimal polynomial of u, is
XI4mX — (u]qE + 7uy), by Newton’s formula we have

) = 0 ifl<i<qg-2,
(1—q)r ifi=q—1.

It follows that

. 0 ifl<i<gqg-2,
W (k) = L
1—qg)m/q ifi=qg—1.
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Thus the assertion holds when 0 < £ < g — 1. Now we assume that £ = j > ¢ and
the assertion holds when 0 < ¢ < j — 1. We have

Y (up) =9 (k4 mupug 1) =y Gruy ) = upy ur D =y
[€/q1 . [(t+1)/q]-1 '
= Z Ap_g i—1UF — Z Tag—gy1,ilUF.
i=1 i=0
Thus ag; =ap_gi—1 —mwae—g41,;- By the inductive assumption we have
Ur(ae—q.i-1) 2 [ —q)/q]l+1—(G —1) —v(q) =[€/q] +1—i—vz(q)
and
Ur(ag—g+1.0) = [E—q+ 1) /ql+1—i—vz(q) = [¢/q] —i — v (q).
It follows that vy (as ;) > [£/q]+1—i — vy (q).

Next we prove (b). We have
— A
o(E[ )

q—1 - — j
w(u;_):w<(uf —HT)g ): j=0 _
@q(ur)~ Uur
[—Lg—1)/q] —¢ ¢ ' _
= > Z[ j]n%fjaj(q—l),i'”?l
i=0  j=0
[e/q] —¢
. —07_ o i
= ZZ j T Ajg-1).i—t UF.
i=t j=0
) (—0)! S ,
Here,[ .]:,—_.Thusb,-: [ ] “iaig_1yi_e. Since
1= e s ba= 2| e

vr (0 ajg-1i-0) = = j+(Ljg = D/ql+ 1~ =) —vz(q))
=[—j/ql+1—i—v:(q)
> [€/q]l+1—i—vz(q),
we obtain vy (be;) > [£/q]+1—i — v (q). O
Let €, be the subset of € consisting of elements of the form Zisfl a; u}_-.
Corollary 2.3. Suppose that F is the special Lubin-Tate group. Then (€, ) C €, .
Proof. This follows directly from Proposition 2.2. ([
Proposition 2.4. (a) ¥ (€)) =], Y (Ogr) C Z0g+ and Y(Og,) C £ O%,.
(b) ¥ is continuous for the weak topology on €p.

(©) %TL is stable under v, and the restriction of ¥ on %2 is continuous for the weak
topology of %2
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@ If f e %(O ] , then the sequence ( Iﬁ) (f),n eN, is bounded in %(O r]for the
weak topology

Proof. Let F be the special Lubin-Tate group over F corresponding to 7. Observe

that Y r = n}; FYFNF,F- Since nx, F(ur,) equals uy times a unit in O [u,],
we have

nz. 7 (Opn 1/uz)) = Oy [1/uz] forany r>0,

(0 r] 0, ]

and nx,, F respects the Valuatlon pl0-r] Thus nry.F:€x | — €5 is atopological
isomorphism. It follows that € Fol € 7o and its 1nverse are contmuous for the
weak topology. Similarly nr, r : €5, — €r,. and its inverse are continuous
for the weak topology. Hence we only need to consider the case of the special
Lubin—-Tate group. Assertions (a) and (b) follow from Proposition 2.2. For (c) we
only need to show that, for any r > 0, we have ¥ (€ ©. ”) C %(0 "1 and the restriction
(/8 %(0 NN %(0 15 continuous. By (b) the restriction of i to % is continuous. By
Proposition 2.2(b) and Corollary 2.3, if f isin €, ﬂ%(o ] then v( f ) isin €, and
v () =0 (f) +v,p(/q). Thus ¥ : €, ﬁ%(o " — ¢ ﬂ%(o is contlnuous
which proves (). As (q/m)¥(Oqg) C o%+ and v r}((q/n)w( f)) > v} (f) for

any f €€ N€EY", (d) follows. O
Next we extend ¥ to Ry.

Proposition 2.5. We can extend tr continuously to Ry. The resulting operator tr
satisfies tr|y, @) = q - id and tr(Rr) = @q (Rp).

Proof. Let %z>_°° denote the subset of €y consisting of f € €, of the form
oo @nt= If f € €77, then
Zn>> o0 F L

w(f)= > fluz+zn.

neker[w ]

If n is in ker[r ], then v,(n) > m, where e = [F : Fy]. Thus, if r and
s € Ry satisfy 1/((g — 1)er) > r > s, the morphisms ur — ur+,n (n € ker[m])
keep the annulus {z € C, : p™" < |z| < p™°} stable. So for any f € %z>_°°
we have v[”](f(uf +rn) = vIS71(£) and v N (tr(f)) > 971 ). Hence there
exists a unique continuous operator Tr : Ry, — R such that Tr(f) = tr(f) for
any f € %f_oo. (For any f € R, choosing a positive real number r such that
fe %]L(),r]’ we can find a sequence { f;};> in %f_oo such that f; — £ in €1%"; then
{tr(fi)}i>1 is a Cauchy sequence in %[L”] for any s satisfying 0 < s <r, and we let
Tr(f) be their limit in €% it is easy to show that Tr( f) does not depend on any
choice.) From the continuity of Tr we obtain that Trl%z = tr and Trfy, @,) = g - 1d.
By Lemma 2.6 below, ¢, : QRL — QRL is strict and thus has a closed image. Since
%z is dense in %R, and Tr(% ) =¢q (%2 ) C@g(Rr), we have Tr(Ry) C ¢y (Rr). U
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Lemma26. If — 1  ~r>5>0and f %]O’r], then we have
Fa=ner 777 Jetn
o 0y (f) =V87(f) forall y € T
o V@, () =019 ifr < 1/((q — Dep).

Proof. Since [xz(¥)]r(ur) € urOFf[lurll, we have v, ([x£(¥)]1£(2)) = v,(2) for all
z€C, such that v, (z) > 0. By the same reason we have vp([xf(y_l)]f(z)) > v,(2)

and thus v, ([x7(¥)]£(2)) < v,(2). So v ([xr (V)£ (2)) = vp(2).
If z € C, satisfies

1
p (g—Der < p_r < |Z| < p_s <1,

then v, ([7]z(z)) = quvp(z). Thus, the image by z — [7]-(z) of the annulus
{zeCp:p™" <zl < p°} is inside the annulus {z € C,, : p79" < |z] < p™ ¥}
Conversely, if w € C,, is such that p™9" < |w| < p™%°, then v, (w) < ¢/((g — Der).
The Newton polygon of the polynomial —w + [7]-(ur) shows that this polynomial

has ¢ roots of valuation %vp(w). If z € C, is such a root, we have p™" < [z| < p™*.
Thus, the image of the annulus p™" < |z| < p~* isthe annulus p~9" L |z| < p~ . U

We define ¢ : Ry — Ry by Y = % <pq_1 oftr.
Lemma 2.7. Ifg/((q — )er) > r > s> 0and f €€V, then
o () 2 o) — vy ().
Proof. By Lemma 2.6 it suffices to show that
o0 (g (pr () = 01T (G () = o) — v, ().
But this follows from Proposition 2.5 and its proof. (]

As a consequence, ¥ : Ry — Ry is continuous.

Corollary 2.8. (a) {M}}ogsq—l is a basis of %IL over ¢ (%;), and

Ul = e gy e}
(b) {ul}o<i<q—1 is a basis of Ry, over g (RL).
Proof. Let {b;}o<i<q—1 be the dual basis of {u}}osigq—l relative to trg, /4, (¢,). Let
B be the inverse of the matrix (tr(ul;l))i, j- Then B € GL, (%2) and
(bo. br. ... b)) = B(Loug, ... .ul").

S0 by, b1, ..., by are in €. Then f = Y"0"  uls(b; f) for any f €€, €]
or Rp. (For the former two cases, this follows from the definition of {b;}o<j<4—1;
for the last case, we apply the continuity of iv.) Thus {u}}ofisq_ | generate %z
(resp. R ) over g, (%D (resp. ¢4 (R1)). In either case, to prove the independence of
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{u}}ofiiq_l, we only need to use the fact W(biu}) =4 (i,je{0,1,...,q9—1}),
where §;; is the Kronecker sign. Finally we note that the second assertion of (a)
follows from the first one. O

We apply the above to (¢4, I')-modules.
Proposition 2.9. If D is a (¢4, I')-module over R where R =€, %2 or Ry, then
there is a unique operator v : D — D such that
V(apy(x)) =y (a)x and Y (pq(a)x) =ay(x) (2-1
forany a € R and x € D. Moreover v commutes with T".

Proof. Let {e1, e, ..., e4}) be a basis of D over R. By the definition of (¢4, I')-
modules, {¢,(e1), p4(e2), ..., ps(eq)} is also a basis of D. For any m € D, writing
m = aypq(e1) +arxpqg(e2) + - +aqpy(eq), we put

Y(m) =vy(a))er +y¥(ax)er+-- -+ V¥(aq)eq.

Then  satisfies (2-1). It is easy to prove the uniqueness of . Observe that for any
y €T, yyy~! also satisfies (2-1). Thus yy~! = by uniqueness of . This
means that ¢ commutes with I". ([l

2B. The operator d and the map Res. Recall that d = (0F-/3Y)(uz, 0) - d/du.
So diy = (9F5/0Y)(uz, 0) duy and (diy/duz) = ((dFy/3Y ) (uz, 0)) .

Lemma 2.10. [fr > s > 0and f € R, then v57(@f) = vl 1(f) — .

Proof. Observe that vp((aF]_-/aY)(z, O)) = 0 for all z in the disk |z| < 1. Thus
v r@f) = v i(d f/duy). Write f =3, ., anu’t. Then we have

v[svr] (ﬂ) = lnf vp(nanznil)
dur r2v,(2)>2s
neZ

WV

inf  (vp(an) +nvp(2) — vp(2))

r2v,(z)2s
nez

> inf v,(a,)+nv,(2))—r > pls7] —r
> o (uplan) +nup@) = r > v
nez

as desired. O

Lemma 2.11. We have
doo,=a0,00, do@,=mp,00, doy =m 'Yod.

Proof. From the definition of V we see that V =79 commutes with I", ¢, and .
Hence the lemma follows from the equalities

oulty) =aty, @, (tp) =ntp, Yp) =Y @@ o) =n""tz. O
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Let res : ®,duyr — L be the residue map res(}_; . aju’-duz) = a_;, and let
Res: R — L be the map defined by Res(f) = res(f dzz).

Proposition 2.12. We have the exact sequence

O%L%%L—)%LIESLQO

where L — R is the inclusion map.

Proof. The kernel of 9 is just the kernel of d/duy and thus is L. For any a € L
we have Res((a Juzr) - (dt]_-/duf)_l) = a, which implies that Res is surjective. If
S =dg, then fdir =dg and so Res(f) =res(dg) = 0. It follows that Reso d = 0.
Conversely, if f € R satisfies Res(f) =0, then f can be written as

de
F
(du}-) Z a,u]_-
i#—1

Put g = Z i’lu}_fq Then f = dg. O
—1l

Proposition 2.13. (a) Resoo, = a~'Res.
(b) Resog, = (q/m)Res and Res o Yy = (7/q)Res.
Proof. First we prove (a). Let g be in Ry and put f =dg. By Lemma 2.11 we have
0a(f) =0400(8) =a'3(0a(g)). Y (f)=vo0d(g)=md( ().

Thus by Proposition 2.12 we have Resoo, =a~'Res =0 and Reso {y = %Res =0
on R ;. From

00(1/%?):[ ] L _ 1 mod R},

F(up)  aup

we see that Reso o, (1/urz) = a*IRes(l/uf). Assertion (a) follows.

To prove Res o v = (;r/g)Res, without loss of generality we suppose that
F is the special Lubin-Tate group. In this case ¥ (1/uz) = 7 /(quz), and so
Res(¥ (1/uz)) = (w/q)Res(1/uy). It follows that Reso ¢ = (7t /g)Res. Finally we
have Res(g,(z)) = (q/n)Res(w((pq (z))) = (q/m)Res(z) for any z € Ry. In other
words, Res o ¢, = (q/m)Res. U

Using Res we can define a pairing {-, -} : R xRy — L by {f, g} =Res(fg).

Proposition 2.14. The pairing { -, -} is perfect and induces a continuous isomor-
phism from Ry to its dual. Moreover we have

{ou(f) 0u@)=a""{f. 8}, {9,(). ()= %{f,g}, {(fv(e)= g{wq(f),g}-

Proof. The first assertion follows from [Colmez 2010d, Remark I1.1.5]; the formulas
from Proposition 2.13. 0
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3. Operators on %¢,

3A. The operator y on Rc,. First we define Rc,. For any r > 0, let

e =¢"grC,
be the topological tensor product, i.e., the Hausdorff completion of the projective
tensor product ¢l @p C, (see [Schneider 2002]). Then %] is the ring of
Laurent series f = ) ;. a;uy with coefficients in C, that are convergent on the
annulus 0 < v, (uz) < r. We also write 97t+ for %]O Tl Then we define Re, to
be the inductive limit lim,_, %]0 rl "

We recall how the p-adic Fourler theory of [Schneider and Teitelbaum 2001]
shows that %gﬁ is isomorphic to the ring 2(Op, C,) of C,-valued locally F-analytic
distributions on OF. From that reference we know that there exists a rigid analytic
group variety X such that X(L), for any extension L C C, of F, is the set of
L-valued locally F-analytic characters. For A € @(Op, L), put Fy(x) = A(x),
x € X(L). Then Fj is in O(X/L), and the map DU (Op, L) - O(X/L), A — Fy,
is an isomorphism of L-Fréchet algebras.

Let F’ be the p-divisible group dual to F and T F' the Tate module of F'. Then
TF' is a free Op-module of rank 1; the Galois action on T F" is given by the
continuous character 7 := xcye - X7 1, where xcyc is the cyclotomic character. By
Cartier duality, we obtain a Galois equivariant pairing ( , ) : 7(C)) o, TF —
B1(C,), where B{(C,) is the multiplicative group {z € C, : |z — 1| < 1}. Fixing a
generator ¢’ of T F', we obtain a map F(C,) — B{(C,). As a formal series, this
morphism can be written as B-(X) := exp(2logz(X)) for some 2 € C,, and it
lies in 1 + XO¢ » [XT1. Moreover, we have

1 1
p—1 (g—Der

(see the appendix of [Schneider and Teitelbaum 2001] or [Colmez 1993]) and
0(2) = t(0)2 for all 0 € Gr. Using (-, -) we obtain an isomorphism of rigid
analytic group varieties

v, (Q) =

Kk F(Cp) > R(Cp), 2> k(i) = (1, [i1r(2) = Br([ilF(2)).
Passing to global sections, we obtain the desired isomorphism
DO, Cp) ZOX/Cp) ZRE .

We extend ¢;, ¥ and the I'-action C-linearly and continuously to Rc,. By
continuity we have ¥ (¢,(f)g) = f¥(g) for any f, g € Rc,. All these actions
keep QREP invariant.



2562 Lionel Fourquaux and Bingyong Xie

Lemma 3.1. We have

00 (B(li15)) = Br(laily).
Pq (,3]:([1]]:)) = ,Bf([ﬂi]]:),

R [0 ifi ¢n0p,
v Pril) = {ﬂf([i/n]f) ifi e 7O,
8(Br([ilp) = i ([ilp).

Proof. The formulae for o, and ¢, are obvious. The formula for d follows from
0 exp(ilogr(ur)) =exp(ilogr(ur)) - 0(iQx) =iQ2exp(i2logr(ur)).

If i € 7O, then Y (B-([i]x) = ¥ 0 9, (B(li/7 ) = B (i /n]z). For any
i ¢ tOF, we have

ww;([i];)):qlw;l( 3 ﬁ;([i];(uf+fn>))

neker[n']]_-

= 1<pql<ﬁf<[i]f> > ﬁf<[i]f<n>>)=o

q neker[w]

(3-1)

because {B-([1]-(n)) : n € ker[w ]} = {Br(n) : n € ker[w ]} take values in the set
of p-th roots of unity and each of these p-th roots of unity appears ¢g/p times. [

The isomorphism %En = %(Or, C)) transfers the actions of ¢,, ¥ and I" to
D(OF, Cp).

Lemma 3.2. For any i € 9(OF, C,), we have

oa(W)(f)=p(f(@-)), @u)(f)=n(f@-)).

Proof. Note that the action of ¢, and I" on QREP comes, by passing to global sections,
from the (¢4, I')-action on F(C,) with ¢, =[] and 0, = [a]-. The isomorphism
k transfers the action to X(C,): ¢, (x)(x) = x (wx) and o, (x ) (x) = x (ax). Passing
to global sections yields what we want. (]

Lemma 3.3. The family (,3}-([1']]_-));60”” is a basis of R, over p,(Rc,). More-
over, if

f= Brlilpe,(f),

lTEOF/T[

then the terms of the sum do not depend on the choice of the liftings i, and

Jfi=vBr(=ilp) ).
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Proof. What we need to show is that
f=Y Brilp) 940 ¥ (Br(—ilp) f) (3-2)
lTEOF/H

for all f € Rc,. Indeed, (3-2) implies that {B-([i]1x)};co, /x generate Rc, over
®q(Rc,). On the other hand, if

£=>" Belilp)eg(f).

lTEOF/ﬂ
using (3-1) we obtain f; = ¥ (B-([—ilz) f), which implies the linear independence
of {ﬁf([i]f)};eop/ﬂ over @, (®Rc,). As the map

f D Belile) @ 0 ¥ (Be(l—ilp) )
ITEOF/JT

is ¢4 (%c,)-linear and continuous, we only need to prove (3-2) for a subset that
topologically generates Rc, over ¢, (R¢,). For example, {u'r}o<i<4—1 is such a
subset. So it is sufficient to prove (3-2) for f € QREP. For any i € Op, let §; be the
Dirac distribution such that 8; (f) = f(i). Then «*(8;) = Br([i]r). Indeed, we have

K*(8i)(z) = 8i(2) = k(i) = Br([i]x(2))-
It is easy to see that (6)icop /= is a basis of 2(OF, C,,) over ¢, (9(OF, Cp)). Thus
every f € 97)1;5” can be written uniquely in the form f = Z;EQF . Br[ilr)eq (fi)
with f; € %gﬂ. As observed above, from (3-1) we deduce that f; =¥ (B-([—i]z) f).
O

Next we define operators Resy, analogous to the operators defined in [Colmez
2010d].
For any f € R¢,, i € OF and integer m > 0, put

Resiprmop (f) = Brlilp) @y o v™)(Br([—=ilp) f)-

Lemma 3.3 says that

f= ) Resiz0.(f).

lTEOF/ﬂ

This implies that the operators Res; o, are well defined (i.e., independent of the
choice of i in the ball i + 7" OpF). Applying Lemma 3.3 recursively we get

f= Y Resizmo.(f)
ITEOF/T[’"

Finally, if U is a compact open subset of Op, it is a finite disjoint union of balls
ir + 1" OF. Define Resy = ), Res;, 1z 0,. The map Resy : QRCP — QRCF does
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not depend on the choice of these balls, and we have Resp, =1, Resy = 0 and
Resyuyr + Resynyr = Resy + Resyr.

3B. The operator my. Let o : Op — C, be a locally (F-)analytic function. In
this subsection, we define an operator m,, : %Cp — @i@p similar to the one defined
in [Colmez 2010c, V.2].

Since « is a locally analytic function on OF, there is an integer m > 0 such that

+00
a(x) =Y ain(x—i)" forallx €i+n"OF,
n=0

with a; , = (1/n!)(d"/dx"™")oe(x)|x=;. Let £ > m be an integer. Define
+00
ma(f) =Y Br(lilp) (wﬁ o (Zai,nn@"sz—"a") ow)(ﬁ;([_i]f) ).
ITGOF/T[[' n=0

(Formally, this definition can be seen as saying that m, = a(Q27'9)). According to
Lemmas 2.6, 2.7 and 2.10, if » < 1/(¢*~'(qg — 1)er) then we have

(@l o Q7" 0 ) (9)) = —ngtr —nv, () + v (g) — v, (q),
(7% V(g q P 8 p(gq
and thus Z:ﬁg an,inen ((pg 0 Q79" o %) (g) converges when £ and r satisfy

L] 1

+ >
er p—1 (g—Der ™~ er

If we choose £ > m +ep/(p —1) —1/(qg — 1) and r close enough to 0, then
this condition is satisfied. Hence, we have indeed defined a continuous operator
My :%@p — %@p.

Now, let us prove that m, (f) neither depend on the choice of ¢, nor on that
of the liftings i for i € O /m’. By linearity and continuity, we may assume that
f=ligznop(x — i)¥. Note that we have

k _ _
Qi ygmyn = |:n ﬂ(k n)mvk n

It suffices to show that

k
> Brrvlp) (wﬁ ° (Z ai+nmu,nnﬁ"sz"a”) o w‘f) (Be([—7"v]z) - f)
n=0

5601:/71[_’"

= (¢ o (" Q7 0" oy™) £,

and for this it is sufficient to prove that
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k
Y Blvlp) («)2"" o (Z i yrmy 7 " Q" a") 0 W-M) (Br(=v1p) - f)

veOp/at-m n=0

= "k QoK.

As
k

k
k _ _ _
Zai+nmu,n7t€”Q_" " = Z |:”i| g k—mmyk=n__gltng—ngn
n=0 n=0

=x" (" + v)k :

it suffices to prove that

QFoff= > Bl (e o (T a+ v) o ) (Br(—v1R) f).

veQpmt—m
Since (Q7 M+ ) oyt =t 0 (271 9 + v)X and

Q713+ v)(Be(—v]p) f) = Br([—v]) Q' of

(which follows from Lemma 3.1), the problem reduces to proving
f= Y Bl " oy M (Br(—vlp) f).
TEOR [mt—m
But this can be deduced from Lemma 3.1 and Lemma 3.3.
Lemma 3.4. Ifa, B: O — C,, are locally analytic functions, then my omg = mqg.

Proof. We can choose £ sufficiently large, so that the same value can be used to
define mq (f) and mg(f). Since ¥ o ¢} = 1, the equality in the lemma reduces to
the expression of the product of two power series. (I

Lemma 3.5.
e mp =1d.
 If U is a compact open subset of O, then Resy = my,,.
o If A€ Cp, thenm) o = Amy.
® Pg oMy =Myi51, 0, (Da(r'x) © Pq-
s Yomy=mMysaixx) 0 Y.
e Forany a € Of, we have 6, 0 My = My, 4(4-1x) © Ou-
. QREP is stable under my,.

Proof. These are easy consequences of the definition of m,,. U
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Remark 3.6. The notation m, stands for “multiply by o”: for any € @(OF, C))
we have my«*(F,) = k*(Fy,), where oy is the distribution such that (aeu)(f) =
w(eef) for all locally F-analytic function f.

The operator m, has been defined over %¢,, using a period Q2 € C, that is
transcendental over F'. However, in some cases, it is possible to construct related
operators over R, for L smaller than C,. This is done using the following lemma.

Lemma 3.7. Let o be in G . Consider the action of o over Rc, given by

foup) =Y oy if fur) =Y auf € Re,.

nez nez
Xz (o) ))
Then m " =mg(f°) for B(x) =0 |a| £E x]).
()7 =mg(f7) for B(x) ( (Xﬁm(a)
Proof. This can be deduced easily from the definition of m, and the action of o
on €. ([

3C. The L[T]-module 5 (§)?=°. Lets: F* — L* be a locally F-analytic char-
acter. Then the map x +— 1(9; (x)8(x) is locally analytic on OF. Thus, we have an
operator mi .5 on %gp.

F

Lemma 3.8. Let f be in Ry. lfmloxg(f) =) ez @y € Re,, the coefficients
ay are all on the same line of the L-véctor space C,. Moreover, this line does not
depend on f.

Proof. Let o be in G;. From Lemma 3.7 and Lemma 3.5 we see that

XF(0)
XGn(0)

mloﬁé(f)g =5< )mlo;s(f),

Xf(a)

X6y (0)
The Ax—Sen-Tate theorem (see [Ax 1970] or [Le Borgne 2010], for example)

says that CgL = L. Hence,

and thus o (a,) = 8( )an for all n.

{z €Cp:0(2) =8(Xf—(a)>z forall o € GL}
XGy (0)

is an L-vector subspace of C,, with dimension 0 or 1, which proves the lemma. []
Since

mlo;5 om10;5—1 = ReSO; =1- @q © df

is not null, there is a unique L-line in C, (which depends only on §) in which all
the coefficients of the series mi s(f), for f € R, lie. Choose some nonzero as
on this line. g
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. S . o=0
Since ¢, Owomloxg =M1, 508 = 0 and ¢, is injective, mloxg(f) isin 9]{@) .
F F F r

Lemma 3.9. Define
M :%fzo — %ZZO, fe ag_lmlo;zs(f)-
(These maps are defined up to homothety, with ratio in L, because of the choice of
constants asg).
o M is a homothety (with ratio in L™) of%%zo.
o Ms, o Ms, = Ms,s,, up to homothety.
e M5 is a bijection, and its inverse is Mg—1 up to homothety.
o Forally €', we have §(y)y o Ms = Msoy.
. (%JL’)WZO is stable under M.
Proof. This follows from Lemma 3.5 and the equalities
=0
ImResyx = KerRes; 0, = QR& . 0
If §isin 40 (L), we put R, (8) =Ry (8)/97)12L (8). Since %JLF (8) is @4, ¥, I'-stable,
Ry (8) also has ¢, ¥, I'-actions.
Lemma 3.10. We have an exact sequence
0— R (" = ROV - R, (6)V" — 0,
Proof. This follows from the snake lemma and the surjectivity of the map
Vi RE(S) = R (). O
Observe that R, (8)V=" = RV~ ¢; and R (5)V=0 = R])V=" - ¢s5. As ¢
commutes with T', R, (8)¥=0, &} (8)V=C and % (8)¥ =" are all I'-invariant.

Proposition 3.11. Let 8| and 8§ be two locally F-analytic characters F>* — L*.
Then as L[T']-modules, Ry (8)V=° is isomorphic to Ry (82)¥=0, 9]%{(81)1/':0 is
isomorphic to Q{Z (82)V=Y, and Ry S)V=Y is isomorphic to Ry (82)V=0.

Proof. All of the isomorphisms in question are induced by M 515y O
Proposition 3.12. The map 0 induces I"-equivariant isomorphisms

RGN — R (x8)V,

@R7 @)™ — @y (x8)

(R @)= — @Ry (x8) .

Proof. We first show that the maps in question are bijective. For this we only need
to consider the case of § = 1. Since Kerd = L, 9 is injective on QRf=O. For any
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zZ € QR%:O, Res(z) = (g/m)Res(¥(z)) = 0. Thus by Proposition 2.12 there exists
7 € R such that 97" = z. As (Y (Z)) = #l/f(az/) = 0, we have ¥ (z) = ¢ for
some c € L. Thenz —c € %zzo and 9(z’ — ¢) = z. This shows that the map
%f:o — 97{1[:0 is bijective. It is clear that, for any z € %f:o’ dz € R} if and only
if z € %ZF Thus the restriction 9 : (QRJLF)'/’:O — (97%2“)'/’:0 and the induced map
d: (%Z)V’:O — (QJ{Z)“'ZO are also bijective.
That these isomorphisms are ["'-equivariant follows from Lemma 2.11. U
Put
S5 := Ry (§)'=1V=0 (3-3)

As before, let V; be the operator on R or R, such that (Vsa)es = V(aes), i.e.,
Vs = 170 + ws. The set 97%2“(8) / V(SQRJLF (6) also admits actions of I', ¢, and . Put
Ty := (R (0)/Vshp () =V

Both S5 and T are L-vector spaces and only depend on §{¢x.

Lemma 3.13. S; = R, (8)V=0V=0-I=l: that is, S5 coincides with the set of

[-invariant solutions of Vsz =0in R, (8)V=0.

Proof. In fact, if z € R ()" =", then V;z = 0. O

Corollary 3.14. dim; Ss = dim; S| and dimy Ts = dimy, Ty for all § € $4,(L).

Proof. This follows directly from Proposition 3.11. (]

Corollary 3.15. The map z +— 0"z induces isomorphisms Ss — Sxng and Ts — Tyns.

Proof. This follows directly from Proposition 3.12. O
We determine dim;, S5 and dim;, Ts below.

Lemma 3.16. The map Vs induces an injection Vs:Ss— Ts.

Proof. By Proposition 3.11 we only need to consider the case of § = 1.

Let z be an element of S;. Let Z € )~ be a lifting of z. By Lemma 3.13, V7 is
in QRJLF We show that the image of VZ in QRJLF / V@RJ[ belongs to 7;. Since ¥ (z) =0,
Y (VZ) =V (¥ (2)) =0. For any y €T there exists a, € QRZF such that yz =z +a,.
Thus y(VZ) = VZ+ Va,. Hence the image of 7 in %Z/V%“{(S) is fixed by I.
Furthermore, the image only depends on z: if 7' € Q{ZZO is another lifting of z, then
V(' —7)isin VQRZF. Therefore we obtain amap V : §; — Tj.

We prove that V is injective. Suppose that z € S; satisfies Vz =0. Let 7 € %fzo
be a lifting of z. Since VzZ is in VQRZF, there exists y € gtz such that Vy = Vz.
Thus V(Z — y) =0. Then Z — y is in L, which implies that 7 € &7, or equivalently
z=0. O

Lemma 3.17. dim;, 71 = 1.
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Proof. Note that Ty = (R} /R 1) ="V=0_ As RT is a FréchetStein algebra, from
the decomposition of the ideal (z-) given by Corollary 1.2 we obtain an isomorphism

1R /R S RE /(L) x [[ 95 /(0. (3-4)

n>1

The operator ¥ induces maps
Yo: 2] /(7w lrup) — RE/Rfup and v 1 RE/(@HQ)) — R /(@1 (Q)).

for n > 1. Thus ((QR“LL /%Zt]_-)rzl"/’zo) is exactly the subset of the codomain of
(3-4) consisting of (y,),>0 such that yg € (%Z/([n]}-(u}-)))r, Yo(yo) =0, and

Yn € RE/ (@D, Yu(yn) =0, foralln>1.

If n > 1, then 97{;; /¥y (Q) is a finite extension of F and the action of I" factors
through the whole Galois group of this extension. Thus (QR / (go"(Q)))F F and
(R /(@p (@' =L. Since ¥, (a) =a foranya € L, (Ry/ (¢} (Q)))Fﬂker(llfn) =
for any n > 1. Similarly (R} /([7]-(up))" = R} /(up)" x RE/(O)H" has
dimension 2 over L. As ¥o(1) =1 and the image QRJLF /%zu}- of ¢ has dimension 1
over L, the kernel of Vol /(U] (up))T is of dimension 1. It follows that 77 =

(R} /RF 1t)"=1V=0 is of dimension 1. O
Corollary 3.18. dim; §; = 1.
Proof. The map V injects S; into 77 with image of dimension 1. (I

Remark 3.19. If z € T} is nonzero, then any lifting Z € Qﬁ of z is not in u]_-QRZ,
or equivalently z|,.—o # 0. We only need to verify this for the special Lubin—Tate
group. In this case, 97{+/([71 Ir(uzr)) = @q ! Luf We have

(%z/([ﬂ]}‘(lx{}-))) =L® Lu‘;l__—

Indeed, an element of QRJLF /([]z(uzr)) is fixed by I' if and only if it is fixed by the

operators z —> 0 (z) with & € f14_1; but o3 (uz) = & f(uf)_suf, $0 0¢ () =& u'-
for any i € N. Then (R /([ ]z (up)) ="V=0= L. L' — (1 - g)n/q).

Proposition 3.20. For any 8 € $,,(L), dim; S5 = dim; Ts = 1 and the map Vs is
an isomorphism.

Proof. Use Corollary 3.14, Lemma 3.16, Lemma 3.17 and Corollary 3.18. |

4. Cohomology theories for (¢,, I')-modules

For a (¢,, I')-module D over R, the (¢,, I')-module structure induces an action of
the semigroup G := <,0(’>J x I" on D. Following [Colmez 2010a] we define H*(D)
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as the cohomology of the semigroup G*. Let C*(G™, D) be the complex
0— %Gt DyL clGr.D)S ...,

where C°(G*, D) = D, C"(G™, D) for n > 1 is the set of continuous functions
from (GT)" to D, and d,,, is the differential

dpi10(80s -5 8n) =

g0-c(gr, -, )+ Y (=D e, . gigint - @)+ (=D e(go, - gn)
i=1

Then H (D) = H'(C*(G™, D)).

If Dy and D, are (¢4, I')-modules over R, we use Ext(Dj, D;) to denote
the set, in fact an L-vector space, of extensions of D| by D, in the category of
(¢4, I')-modules over Ry .

We construct a natural map ©P : Ext(®, D) — HY(D) for any (¢g4, I')-module
D. Let D be an extension of % by D. Lete € Dbea lifting of 1 € ®;. Then
g+ g(e)—e, g € GT,is a 1-cocycle, and induces an element of H'! (D) independent
of the choice of e. Thus we obtain the desired map

O Ext(®., D) — H'(D).
Proposition 4.1. For any (¢4, I')-module D over R, OP is an isomorphism.

Proof. Let D be an extension of R, by D in the category of (¢,, I')-modules
whose image under ®P is zero. Let e € Dbea lifting of 1 € ? . As the image
of g g(e) —e, g € G, in H'(D) is zero, there exists some d € D such that
(g—De=(g—1)dforall g e G". Then g(e —d) =e —d for all g € G*. Thus
D=D®R;(e—d)asa (¢4, I')-module. This proves the injectivity of OP. Next
we prove the surjectivity of ®@”. Given a 1-cocycle g — c(g) € D, correspondingly
we can extend the (¢,, I')-module structure on D to the R -module D=D® Rre
such that ¢, (e) = e +c(¢,) and y(e) =e+c(y) fory €I O

If Dy and D; are Op-analytic (¢,,I")-modules over R, we use Exty, (D1, D3) to
denote the L-vector space of extensions of D by D, in the category of O p-analytic
(¢4, I')-modules over ;. We will introduce another cohomology theory H; (—),
wherein for any O p-analytic (¢4, I')-module D the first cohomology group HL (D)
coincides with Ext,, (R, D).

If D is Op-analytic, we consider the complex

c;od: 0-DApepi Do,
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where fi: D — D@ D is the map m +— ((¢; —1)m, Vm) and fo,: D& D — D is
(m,n)— Vm (pg—Dn. As fi and f; are I'-equivariant, I" acts on the cohomology
groups Hy, (D) :=H'(C; (D)), i=0,1,2. Put Hy,(D) := Hy 5(D)".

By a s1mple calculation we obtain

H(D) = Hy (D) = D%=""=1,

Note that D= is finite-dimensional over L, and so is H%(D). If D is étale and if
V is the L-linear Galois representation of G attached to D, then

H(D) = H%(D) = H*(Gp, V) = VO,

We introduce some convenient notation. Put Zl V(D) = ker(f,) and BY(D):=
im( f1). For any (m, n1) and (m,, np) in Z(p V(D) we write (m1,ny) ~ (my, ny)
if (m1 —m», ny —n») € BY(D). Put

ZY (D) :={(m,n) € Z;)q’v(D) : (m,n) ~y(m,n) for any y € T'}.

Then H. (D) = Z'(D)/BY (D).

Let D be an Op-analytic extension of R, by D. Lete € D be a lifting of
1 € Rp. Then ((p;, — 1)e,Vpe) belongs to Z'(D) and induces an element of
H_! (D) independent of the choice of e. In this way we obtain a map

OP : Exty(Rr, D) — H) (D).

Theorem 4.2 (= Theorem 0.1). For any Op-analytic (¢4, I')-module D over Ry,
®D is an isomorphism.

The proof below is due to the referee and is much simpler than that in our original
version.

Proof. First we show that ®F is injective. Let D be an Op- -analytic extension of
%R by D whose image under @ - is zero. Let e € D be a lifting of 1 € R . As the
image of ((¢, — 1)e, Vpe) in H 1 v(D) is zero, there exists some d € D such that

(9 —1e=(p; —1)d and Ve =Vpd. Then e —d is in D%=1Y=0_ The I'-action
on D*"q—1 V=0 is locally constant and thus is semisimple. So 1 € %, has a lifting
¢’ € D?='V=0 fixed by I". This proves the injectivity of ®P,

Next we prove the surjectivity of O

Let z be in H1 (D) and let (x, y) represent z, so that Vx = (¢, — 1)y. The
invariance of z by I' ensures the existence of y, € D for each ¢ € I" such that
(0 —=1D(x,y)=gs —1)ys,Vys). As ys is unique up to an element of D¥%a=1V=0
the 2-cocycle yq,;: = yor —0yr — Y5 takes values in D%=1V=0_1f 7 = 0, then there
exists a € D such that x = (¢, — 1)a and y = Va. We have V(y, — (0 — 1)a) =0.
In other words, we can write y, = (¢ — 1)a + a, with a, € D%='"V=0_ Then
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Yo.r =0dgr —0a; —d, and thus y, , is a coboundary. So we obtain a map Haln(D) —
HZ(F, Dgaq:l,V:O).

We will show that the image of z by this map is zero. Fix a basis {ey, ..., eg} of
D over . Let r > 0 be sufficiently small such that the matrices of ¢, and o € I"
relative to {¢;}_, are all in GLy(€)""). Put D1 = @, € le;; if 5 € (0, r]
put D1 =@ €"le; Then D11 and D51 are stable by I'. As the matrix of
@, 1s invertible in My (%’)f’r]), {94 (e,‘)}fl:1 is also a basis of D101, Shrinking r if
necessary we may assume that ¢, maps D"1 to DI$/4-7/41; we may also suppose
that x and y are in D11, and that - € %]L(),r]‘ By the relation V = #9 on %[L”],
Lemma 2.10 and the fact that V is a differential operator, that is, satisfies a relation
similar to (1-3), we can show that the action of I" induces a bounded infinitesimal
action V on the Banach space D'*"]. We leave this to the reader. Let us denote
£(0) =log(xx(0)). For o close enough to 1 (depending on D and s, r) the series
of operators

2 3
E(a):ﬁ(a)+£((2’) V+’3(;) V...

converges on D1 and also on D!$/4"/41_ Note that for o close enough to 1 we
have o = exp(£(c)V) on DI$/4-7/41 Let T” be an open subgroup of I' such that for
o € I'" the above two facts hold. Then for o € I'" we have

(g —D(E(0)y) = E(0)(9g—1)y=E(0)Vx=VE(o)x =(0c — Dx. (4-1)
Note that ¢, (E(0)y) is in DI$/4:7/41, So by (4-1) we have
E(o)y € pls/arial A plsr1 — pls/a.r]

if s is chosen such that s < r/g. Doing this repeatedly we will obtain E (¢o')y € D1%"1,
Taking y, = E(0)y for 0 € I'" we will have y, ; =0 for o, t € I'". In other words,
the restriction to I'” of the image of z in H*(T", D%='V=0) is 0. Since I'/ I"’ is finite
and D¥='V=0is a Q-vector space, the image of z is itself 0. So we can modify
Yo by an element of D%=1V=0 ¢¢ that Yo.r 18 identically 0. But this means that
(0 =1y = (t — 1)ys, so the 1-cocycle ¢, — x, 0 > y, defines an element of
H'(D), hence also an extension of R, by D.

We will show that the resulting extension in fact belongs to Extz}m Rr, D). AsTis
locally constant on D%="V=0_shrinking I'’ if necessary we may assume that I'"” acts
trivially on D¥='V=0 Then o +> y, — E(c)y is a continuous homomorphism from
I'" to D%=1V=0_ Note that any continuous homomorphism from I’ to D%«=1V=0
can be extended to I'. Thus y, — E(0)y = A(o) for some A € Hom(T", D¥a=1.V=0)
and all o € I'". If S is a set of representatives of '/ I'" in I, the map

1
T¢ =
S |F:F/|ZG

oes
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is the identity on H) (D) and a projection from D%=1V=0 to H%(D); moreover it
commutes with ¢,, V and I'. This means that we can apply Ts to (x, y) and y,;
then we have y, — E(0)y = A(o) for some A € Hom(T, HO(D)) and all o € .
As o0 — E(o0)y is analytic, the extension in question is O p-analytic. (]

As above, let Hom(I', H°(D)) be the set of continuous homomorphisms of
groups from I" to H%(D). An element i : I' — HY(D) of this set is said to be
locally analytic it h(exp(aB)) = ah(exp 8) for all @ € Of and B € Liel". Let
Hom,, (I, H°(D)) be the subset of Hom(I", H%(D)) consisting of locally analytic
homomorphisms. We have natural injections

Hom,, (T, H%(D)) — Ext! (®,, D) and Hom(T, H’(D)) — Ext'(®, D).

Theorem 4.3. Assume that D is an Op-analytic (¢4, I')-module over R . Then we
have an exact sequence

0 — Hom,, (I, H%(D)) — Hom(I', H(D)) ®Ext), (R, D) — Ext' (R, D) — 0.

For the proof we introduce an auxiliary cohomology theory. Let y be an element
of I' of infinite order, i.e., log(xz(y)) # 0. We consider the complex

C; ,(D): 0->DSDODS D0,

where g1 : D — D® D is the map m — ((¢, — Dm, (y —1)m) and g, : D& D — D
is (m,n) = (y — Dm — (g, — Dn. As gi and g; are I'-equivariant, I" acts on

' e i - i e i r :
Hé)q’y(D) = H’(C%’V(D)), i=0,1,2. Put H,, (D) := Hé]q’y(D) . A simple
calculation shows that H° (D) = H&(D).

an,y

For any y € I" we use (y) to denote the closed subgroup of I" topologically
generated by y. If y is of infinite order and if D is an %Rj-module together

with a semilinear (y)-action, let V,, be the operator on D that can be written as

lim— (log(y")/ log(x(y"))) formally, where y’ runs through all elements of (y)
with log X]_-(y’ ) # 0. (For a precise definition we only need to imitate the definition
of V.)

Let D be an Op-analytic extension of R, by D. Let e € D be a lifting of
1 € Ry. Then ((¢, — De, (y — D)e) induces an element of Haln’y(D) independent
D, tExtn(®Re, D) — Hj, (D). Given

an,y

an element of Haln’y(D), we can attach to it an extension D of R by D in the

category of free %2 -modules of finite rank together with semilinear actions of ¢,
and m Let e € D be alifting of 1 € ;. Then (((pq — l)e,Vye) belongs to ZY(D)

and induces an element of Haln(D) independent of the choice of e. This gives a map

YD :Hy (D) — Hy (D). Observe that Y2 0©F = @©L. By an argument

an,y an,y

similar to the proof of the injectivity of ®2, we can show that both ®2  and

of the choice of e. This yields a map ®
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Y., are injective. Hence it follows from Theorem 4.2 that ©J)  and Y}  are
isomorphisms.

If ¢ is a 1-cocycle representing an element z of H'(D), then (c(@q), c(¥))
induces an element in Haln’y(D) which only depends on z. This yields a map

T)? :HY (D) — Haln’y(D). Hence, @31’}, :Exty (R, D) — Ha]n,y(D) extends to a

map Ext(®., D) — H,, (D), which will also be denoted by ®F . We have the
following commutative diagram:

@D
Ext(®,, D) — H'(D)

Gﬁ,y
\ lﬂ” (4-2)

Extan (R, D) @;_> Haln,y(D)

an,y

The composition (@51 y,l)_1 o 'Y‘)? o ©P is a projection from Ext(®;, D) to
Extan (R, D), which depends on y.

Proof of Theorem 4.3. We only need to prove the surjectivity of
Hom(T', H°(D)) @ Ext! (R, D) — Ext' (%, D).

Let D be in Ext! (%, D). Without loss of generality we may assume that the
image of D by the projection (®£W,l)*1 o YP o ®P is zero. Lete € D be
a lifting of 1 € R,. Then let ¢ be the 1-cocycle defined by ¢, — (¢, — De,
o+ (o6 —1)e for o €T, so that ¢, the class of ¢ in H' (D), corresponds to D. So
the image of ¢ by the map T}? is zero. This means that there exists d € D such that
(g —Dd =c(py) and (y —1)d = c(y). Replacing e by e —d, we may assume that
¢(¢q) =c(y) =0. Then for any o € I', we have (¢, — )c(0) = (0 — Dc(py) =0
and (y — 1)c(o) = (6 — 1)e(y) = 0. This means that c(c) € D¥=1:¥=!_Note that
M := D¥%=17r=1 ig of finite rank over L. We write M = H°(D) ® @j M; as a
I'-module, where each M; is an irreducible I'-module. Write ¢ =¢'+ ) j¢jby
this decomposition. Observe that ¢’ and c; are all 1-cocycles. As M is irreducible
and the I"-action on M is nontrivial, there exists some y; € I" such that y; — 1 is
invertible on M ;. Then there exists m; € M; such that c;(y;) = (y; — Dmj. A
simple calculation shows that ¢;(0) = (o — 1)m; for all o € I". Replacing e by
e— Zj m j, we may assume that ¢ =¢’. Then c¢(¢,) =0 and c|r is a homomorphism
from I" to HO(D). O

Corollary 4.4 (= Theorem 0.2). Ext,, (R, D) is of codimension
([F:Q,]—1)dim; H%(D)

in Ext(Rr, D). In particular, ifHO(D) =0, then Exty, (R, D) = Ext(R, D); in
other words, all extensions of Ry by D are O g-analytic.
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Proof. This follows from Theorem 4.3 and the equalities dim; Hom(I", H o(D)) =
[F :Q,]1dim; H°(D) and dim; Hom,,(I", H°(D)) = dim; H°(D). O

5. Computation of Haln(S) and H1(5)

In the case of F'=Q,, Colmez [2008] computed H ! for not necessarily étale (¢, I')-
modules of rank 1 over the Robba ring. In this case, Liu [2008] computed H 2 for
this kind of (¢, [')-modules, and used it and Colmez’s result to build analogues, for
not necessarily étale (¢, I')-modules over the Robba ring, of the Euler—Poincaré
characteristic formula and Tate local duality. Later, Chenevier [2013] obtained the
Euler—Poincaré characteristic formula for families of triangulable (¢, I')-modules
and some related results.

In this section we compute H. (8) = H} (R1(8)) (for § € $,,(L)) and H'(8) =
H' (R1(8)) (for § € $(L)) following Colmez’s approach. In Sections 5B and 5E
we assume that § is in $(L); in Sections 5C, 5D and 5F we assume that § is in
Fan(L).

5A. Preliminary lemmas.

Lemma 5.1. (a) Ifa € L is not of the formw ", i € N, then apy—1: 9]{‘[ — QRJLF
is an isomorphism.

®) Ifa= 77 with i € N, then the kernel of apy —1: kar — kar is L - t} and

ae %i is in the image of o, — 1 ifa:@d only l'jfaia|ufzo =0. Further, agp, —1
is bijective on the subset {a € QRZF : 8’a|ur=0 = 0}.

Proof. The argument is similar to the proof of [Colmez 2008, Lemma A.1]. If

k > —v;(a), then — :ig(agoq)” is the continuous inverse of a¢, — 1 on uj‘r@tz

The assertions follow from the fact that R} = G}f:& L. t} &) uﬁ%i and the formula

®q (t]i:) = nit}. We just need to remark that 8ia|uF:0 = 0 if and only if a is in

P Lt @ u 'R} 0

Lemma 5.2. If o € L satisfies v; (o) < 1 —v;(q), then for any b € %2 there exists

ce %z such that b’ =b — (ap, — 1)c is in (%Z)WZO.

Proof. By Proposition 2.4(d), ¢ = lezocf a~*yk(b) is convergent in %z It is easy

to check that ac — ¥ (c¢) = ¥ (b), which proves the lemma. O

Corollary 5.3. If o € L satisfies v; () < 1 —v,(q), then for any b € Ry there

exists ¢ € Ry, such that b’ =b — (g, — 1)c is in (%2)1/’20.

Proof. Let k be an integer > —v, (o). By Lemma 5.1, there exists c¢; € Ry such

that b — (¢, — 1)cy is of the form ), _, aiu]‘} and thus is in %2 Then we apply

Lemma 5.2. U

Lemma 5.4. Ifo € L satisfies v; (@) < 1—v,(q), and if 7 € R satisfies Y (z) —az €

QRz', then 7 € QRZ



2576 Lionel Fourquaux and Bingyong Xie

Proof. Write z in the form ), _, axu’ and put y = D k<1 akuj,é € %2 If y #0,
multiplying z by a scalar in L we may suppose that infy<_; v, (ax) =0. Then

y—a 'Y = ez =Y @) + Y ale Y ) — uf)
k>0

belongs to (’)%TL NR} = Orlluz]. But this is a contradiction since y —a ™'y (y) =
y mod 7r. Hence y = 0. O

Corollary 5.5. If a € L satisfies v;(a) < 1 —v;(q) and if z € Ry, is such that
(apy — Dz € %fzo, then z is in R .

Proof. We have ¥ (z) —az = ¥ (z — ag,(z)) = 0. Then we apply Lemma 5.4. [

5B. Computation of H®(§). Recall that if § € $,,(L), then HO,(8) = H(8).
Proposition 5.6. Let § be in $(L).
() If§ is not of the form x " with i € N, then H°(8) = 0.
(b) Ifi €N, then H'(x™") = Ltk
Proof. Observe that
RL (&)= = @)= e5 =0,

where R (8) = R (8)/R} (8). Thus Ry (8)%=1T=l = RF(§)#=1T=1 If §(rr) is
not of the form 7 ~#, with i e N, by Lemma 5.1(a) we have %2(8)%:1 =0 and so

RE(S)#=1T=L = 0. If §(r) = 7, then
—1 = : _ Lil-es ifs=x"
%-i- 8 (pq—l,r—l — Ltl .e =1 — F ’
() (Lt -e5) 0 otherwise,

as desired. O

Corollary 5.7. If 5| and &, are two different characters in $(L), then R (81) is not
isomorphic to Ry (53).

Proof. We only need to show that %R/ (816, 1 is not isomorphic to R;. By
Proposition 5.6, R (816, 1Y is not generated by H 0(813; 1), but R is generated by
HO(1). Thus QRL(SI(SZ_]) is not isomorphic to Ry . U

5C. Computation of Haln (8) for & € $an (L) with v;(8(r)) <1—v,(q). Until the
end of Section 5 we will write R (8) as R, with the twisted (¢,, I')-action given
by

(pq;S(x) :8(77)(pq(x)’ 0q;8(x) = 8(a)oy(x).

Recall that Vs = 1,0 + ws. Write §(0,) = é(a).
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Lemma 5.8. Suppose that § € $,,(L) satzsﬁes v (6(m)) < 1 — vy (q). For any
(a,b) € Z1 v(5) there exists (m,n) € Z V(8) withm € (€} )‘/’ =0 and n € 97{+
such that (a b) ~ (m, n).

Proof. As v;(8(r)) <1 —v;(q), by Corollary 5.3 there exists ¢ € R, such that
m=a— (§(m)p, —1)c

is in (%1 YW=0, Put n =b— Vsc. Then (m, n) is 1n Z1 V(8) and (m, n) ~ (a, b). As
(8(m)py —1)n = Vsm = t0m + wsm is in 9{'/' by Corollary 5.5, n is in QR+
Lemma 5.9. Suppose that v, (8()) < 1 —v;(q) and § is not of the form x7t Let
(m,n) be in Zéq’v(é) withm € (€,)V=" and n € R}. Then (m,n) is in B'(8) if
and only if

eme (Cc‘é'{)‘/’zo when 8 (1) is not of the formt =", i € N;

em € (%Z)V’:O and 8im|,,f:0 = 0 when 8§() = 7" and ws # —i for some

ieN;

e me (€)=0and 3'm|, —o = 0'n|y,—0 = 0 when 8(n) =" and ws = —i

for some i € N.
Proof. We only prove the assertion for the case that §(7) = 7~ and ws # —i for
some i € N. The arguments for the other two cases are similar.

If (m, n) is in B'(8), then there exists z € R, such that (6(7)¢, — 1)z =m and
Vsz = n. Since m is in 9R by Corollary 5.5 we have z € %Jr It follows that m
is in QR+ ﬂ‘éz = %Jr By Lemma 5.1(b), we have 8’m|uf_0 = O

Now we assume that m is in %zr and 8im|uF:0 = 0. By Lemma 5.1(b), there
exists z € %z with aiz|uf=0 = 0 such that (§()@,; — 1)z =m. Then

@(m)pg — D (Vsz —n) = Vs(8(m)pg — Dz — (8(m)py — Dn
=Vsm — (§(m)p, — )n =0.
Again by Lemma 5.1(b), we have Vsz —n = ¢ t]’} for some ¢ € L. Put 7/ =

z— ct]i:/(wg +i). Then (8(mw)p, — 1)z’ = m and Vsz’ = n. Hence (m, n) is in
B'(5). O

Recall that S5 = R (§)7="V=0,
Proposition 5.10. Suppose that v, (8(7)) < 1 —v;(q).

(@) If § is not of the form x ™", then Haln (8) is isomorphic to the L-vector space Ss
and is 1-dimensional.

(b) If§ =x"", then Haln (8) is 2-dimensional over L and is generated by the images
of (t}-, 0) and (0, t1).
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Proof. For (a) we only consider the case that §(7) = 7~ and ws = —i for some
i € N. The arguments for the other cases are similar. As § # x~/, there exists an
element y; € T of infinite order such that §(y;) # xz(y1) ™"

We give two useful facts: for any z € R}, aizlufzo =0 if and only if

3"y — Dzlu=0 = 0;

if 8iz|MF:0 =0, then 3/ (8(y)y — l)zlufzo =0 for any y € I'. Both of these two
facts follow from Lemma 5.1(b). We will use them freely below.

Let (m, n) be in Z'(8) with m € (%2)‘”20 and n € 9{{ For any y € I, since
y(m,n) — (m,n) € B'(8), by Lemma 5.9, (8(y)y — l)m is in R; i.e., the image
of m in R (§) belongs to Ss.

We will show that, for any m € S;, there exists a lifting m € (%Dxpzo of m such
that 3'(8(y)y — Dm|y—o =0 forall y e T. Let m’ € (€1)¥=0 be an arbitrary
lifting of m. Assume that d*(6(y1)y1 — l)m’lufzo =c. Put

;1 cty
oy xz(y)' —1

Then 9' (8 (y1)y1 —1)m|u,.—o =0 and thus 8’ Vsm|,.—o = 0. Hence, by Lemma 5.1(b)
there exists n € %Z with d'n|, =0 = 0 such that (8()¢,; — 1)n = Vsm. This means
that (m, n) € Z;Q’V(S). For any y €T, since

' B(yvi — DOy — Dmly—o = 0" )y — D)y — Dmly,— =0,

we have 3'(§(y)y — l)mlufzo =0. In aword, forany y € I', (6(y)y — )m is
in gtz and 3'(8(y)y — l)mluf=0 =3 (8(y)y — 1)n|uf=0 = 0. This means that
y(m,n) — (m, n) is in B'(8) for any y € I'. In other words, (m, n) is in Z1(5).

Now let (m1, n1) and (m2, ns) be two elements of Z'(8) with my, m, € (%2)‘/’:0
and ny, np € QRJLF By Lemma 5.9,

' G(y)v1 — Dmilu—0 = 9" G(v)y1 — Dmalu,—o = 0" (yD)y1 — Dnilu,—o
= 9"y — Dnalu,—0 =0.
Suppose that the image of m; in S5 coincides with that of m,, which implies that
m;—my € %z From

' S(yy1 — D(my —mo)lu,—o0 = 9" (1)y1 — D1 — n2)lu,—0 =0

we obtain 8’ (m| —m2)|u,=o = ' (n1 — n2)|u—o = 0. Thus (my, ny) ~ (my, ny).

Combining all of the above discussions, we obtain an isomorphism Ss > Haln ).
Then by Proposition 3.20, dim;, H) (8) = dim; S5 = 1.
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Next we prove (b). Again let (m, n) be in Z'(8) with m e (%2)‘/:0 andn € R} .
Then the image of m in R, (8), denoted by m, is in Ss. We show that m in
fact belongs to (%Z)‘”:O, ie., m = 0. By Corollary 3.15, 9" : Sy — S is an
isomorphism. So we only need to prove that the image of d'm in S; is zero. By
Remark 3.19, it suffices to show that vaimh,f:o =0. But V3‘m = 8' Vsm. Since
Vsm = (§(w)p, — 1)n, by Lemma 5.1(b) we have B’nglufzo =0.

Write m = at- +m’ with a € L and m' € R satisfying 8im’|uf:o = 0.
By Lemma 5.1(b) there exists z € 97%‘[ such that (8(w)@, — 1)z = m’. Then
(m,n) ~ (at]"r, n — Vsz). Thus we may suppose that m = at}. Then

((m)pg — n = Vs(atz) =

So, by Lemma 5.1(b), we have n = btj{ for some b € L. Suppose that (at}, bt}) is in
B'(8). Then there exists z € R such that (M), — Dz = at} and Vsz = btj’;. So
Y (2)—8(m)z=v((1-8(1)¢y)z) =¥ (—atr) €R}. By Lemma 5.4 we get z € R} .
By Lemma 5.1(b) again we have @ =0 and z € Lt%. Then bt = Vsz =0. O

5D. §: H, o(x7'6) — H, (8) and 3 : H},(x™'8) — H,,(8). Observe that,
if (m, n) 1s “n z1 v ) (resp B (x_18)) then (dm, an) is in z v(8) (resp.
B'(8)). Thus we have amap d : H1 v(16_18) — H1 v(8) Further the map is
['-equivariant and thus induces a map 8 (x ) —> (8)

Put
Z4, () :={m,n) € Z, 3(8) :Res(m) = Res(n) = 0},

B'(8) :={(m, n) € B'(8) : Res(m) = Res(n) = 0).
Then ﬁ;w ) = Z;w ) /E;,q v(8) is a subspace of H(;q’v ).
Lemma 5.11. If§(w) # 7 /q or ws # 1, then for any (m, n) € Z;}qu(S), there exists
(my,n1) € Zy, (8) such that (m, n) ~ (my, ), and so H, (&) = H, (8).

Proof. Let (m, n) be in Zéq’v((S). Then Vsm = (8(w)p, — Dn. If §(r) # /q, by
Proposition 2.13 and the definition of Res we have

Res(m —(8(m)ey — 1)<Res(m)(8(?;f)/%d—u_fi)_b;>) =0.
Replacing (m, n) by
<m —(8(m)pg—1) <Res(m) ((S(?ytrf)/%d—bifi)p;) ,n—Vs (Res(m) m—iﬂ);r)) ,
we may assume that Res(m) = 0. Then
(£8(r) — 1)Res(n) = Res((8(m)py — 1)n) = Res(Vsm)
= Res(d(tzm) + (ws — )m) = (ws — DRes(m) =0,
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and so Res(n) = 0.
The argument for the case of ws # 1 is similar. U
The map 0 : H;q,v (x~18)— H;q’v(é) factors through 9 : Héq’v(x_lé) — H;‘,,v(‘s)’
since Reso d = 0.
Lemma 5.12. (a) If8() # m or ws # 1, then 9 : H(;q,v(x_l(S) — H(‘pq,v(a) is
surjective.

d) If 6(w) =m and ws = 1, then we have an exact sequence of I'-modules
pTeanr) S A 98 > L7180,

Proof. Let (m, n) be in Z 71 V(6) Then there exist m’ and n’ such that 9m’ = m
and dn’ = n. Then V, 15mq — (T~ lé(n)(pq —Dn'=cisin L. If 6(7T) #% m, we
replace n’ by n +c/(71_18(7r) —1). If ws # 1, we replace m’ by m" — ¢/(ws — 1).
Then (m’,n’) is in Zéq’v(x_l(S). This proves (a). When 8(71) = and ws = 1,
Vm — (¢4 — )n’ does not depend on the choice of m’ and n’. This induces a map

v (8) — L whose kernel is exactly aH ! v(x 15). We show that H v(@) — L
is sur]ectlve Put m’ = = log(p, (ur) /uf) A 31mple calculation shows that

() i )
vim _( [ ] (uy) quf> dur = (1 —q) mod uzR; .

Thus by Lemma 5.1(b) there exists n’ € uf@{+ such that (g, —1)n’ =Vm' — (1 —gq).
Put m = dm’ and n = dn’. Then (m, n) is in Z1 v(5) whose image in L is nonzero.
The I'-action on H H! V(8) induces an action on L. From

(8(a)o,(m), 8(a)aa(n)) = (3(a~"8(a)ou(m)), (a8 (a)aa(n)))

and
V(a™'8(a)au(m") = (pg — D(a™'8(@)oq(n) = a™'8(@)ou (V' — (¢, — D)n')
=a"'8(a)(1 — q) mod urR;,
we see that the induced action comes from the character x 5. (]

Sublemma 5.13. Leta,b bein L. If (a, b) is in Z;q’v (x~18) but not in B (x~18),
then §(m) =m and ws = 1.

a-18(m) —1

(x~'8() — 1)(b— La) (80t — 1)(19— Lg)
a-18(r) -1 q T-18(m) — 1

V._
Proof. Tf 8(1t) # 7, then (a, b) ~ (0, b— x—”a). So

=0.
Vx*‘é

AsS(n);ﬁn,wehaveb—m

a = 0. Similarly, if ws # 1, then (a, b) is
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in Z, (x~'8) if and only if (a, b) ~ (0, 0). O
Recall that §,,, is the character of F* such that &y, () = q‘l and 8um|0; =1.
Sublemma 5.14. The pair

1 t-0
(m,n) := (— log Yoy (ZF), L uf)
q Ur Ur

induces a nonzero element of Haln (8unr)-

Proof. Note that m = (8unr(77)@y — 1) loguz and n = Vlogu,. Thus (m, n) is in
Z;?q,V(Sunf)‘ For any y € I' we have y (m, n) ~ (m, n). Indeed,

y(m, I’l) — (m, }’l) = <(8unr(n)§0q _ 1)10g J/(u}—) ,Vlog )/(M]_—))
l/l]_— u]__

So (m, n) is in Z'(8ynr). We show that (m, n) is not in B!(8yy). Otherwise there
exists z € Ry such that m = (Synr ()¢, — 1)z and n = Vz. This implies that
V(loguz —z) =0, or equivalently logu, — z is in L, a contradiction. O
Corollary 5.15. If §(w) = n/q and ws = 1, then (é log(p, (u}-)/u}’_-), t];au]_-/u}-)
isin Z;q’v(x*IS) but not in B'(x~18).

Lemma 5.16. (a) If () #m, w/q orif ws # 1, then 9 :H;q’v(x_lé) — H;,q,v(a)

is injective.
() If §(r) =7 and ws = 1, then we have an exact sequence of T"-modules
_ _ _ 3 =
0> Lx ") dL(x'8) — H(;q’v(x I8 > H;q,v((S).
(c) If () =m/q and ws = 1, then we have an exact sequence of I'-modules

0— L(x'8) > HL o(x™'9) A H. ().

Proof. Let (m, n) be in Z(})q,v(x_IS), and suppose that (dm, dn) € B'(8). Let z be
an element of R such that (§()@, — 1)z = 0m and Vsz = dn. If Res(z) =0, then
there exists z’ € R, such that 37’ =z. Thenm — (8()7 !¢, — 1)z’ and n — V157’
arein {(a,b) :a,b e L}, ie., (m,n)isin B'(x~'8) ® L(0, 1) ® L(1, 0).
If either 6 () # % or ws # 1, we always have Res(z) = 0. Indeed, this follows
from
(8(7‘[)% — 1DRes(z) = Res(((S(n’)(pq — l)z) =Res(dm) =0

and
(ws — DRes(z) = Res(d(1rz) + (ws — 1)z) = Res(Vsz) = Res(dn) = 0.

In the case of §(7r) = % and ws = 1, if z € L(duxr/uz), then (m, n) is in
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LO,H®LA,0)& L(l log MZ]—‘)’ tfauf)
q Ur ur

Now our lemma follows from Sublemma 5.13 and Corollary 5.15. (]
Proposition 5.17. (a) If §(w) #m, w/q or if ws % 1, then
3:Hy g(x7'8) = H, 3(8)

is an isomorphism of I'-modules.

(d) If 6(w) =m and ws = 1, then we have an exact sequence of I'-modules
_ _ _ 9 _
0> Lx ") dL(x'8) — H;q’v(x 15 S H(;qgv(é) — L(x~'8) - 0.
(c) If () =m/q and ws = 1, then we have an exact sequence of I'-modules
_ _ 3 _ _
0— L(x~'8) - H, y(x~'8) > H, g(8) > Lx~'8) @ L(x~'8) - 0.

Proof. Assertions (a) and (b) follow from Lemmas 5.11, 5.12 and 5.16. Based on
these lemmas, for (c) we only need to show that we have an exact sequence of
I"'-modules

0— H! o) — H) ¢(6) B La)eLxs) = 0,
where Res is induced by (m, n) — (Res(m), Res(n)), which is I'-equivariant by
Proposition 2.13. Here we prove this under the assumption that g is not a power
of m. We will see in Section 5F that it also holds without this assumption. Put
my = 1/uy. Then Vsmy =t 3(1/uz) + 1/uy = 9(tx/uz) is in 9{ . As g is not
a power of m, the map goq —1: 97{+ — 97{‘[ is an isomorphism. Let np be the
unique solution of (Zgoq Dny = tz0my +my in 97{+ Then ¢y = (my, ny) is in
Zl v(5) and Res(m,n;) = (1,0) # 0. For any £ € N we choose a root &, of
Qg 1(Q) For any f(ur) € RT, the value of f at & is an element f(£,) in
L®Fp Fg. By (3-4) there exists an element z € %ZF whose value at & is 1 ® log&,.
Put m, = t]_fl (q_lgoq — 1)(logur — z) and ny = d(logur — z). Then (m2, nz) is in
Ziw (8) and Res(ny) = 1. O

Proposition 5.18. (a) If § # x, x8unr, then 0 : Haln(x_I(S) — Haln(8) is an isomor-
phism.
(b) If 8 =x, then d : H} (x718) — H (8) is zero, and dim;, H} (§) = 1.
() If 8 = X8uny, then 3 : HY (x718) — H] (8) is zero, and dimy H] (8) =2
Proof. We apply Proposition 5.17. There is nothing to prove for the case that

8(m)#m, w/q or ws # 1. Combining the assertions in this case and Proposition 5.10
we obtain that dim;, H - (8unr) = 1. This fact is useful below.
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Next we consider the case of §(7) = w/q and ws = 1. The argument for the
case of 6(;r) =7 and wg = 1 is similar.

Let M be the image of 0 : Hq%q,v x~18) — Héq,v (x). Then we have two short
exact sequences of ['-modules

0— L&x™18) > H) o(x18) M0
and
0—M— Hy g8 — Lix ') @L(x"8) — 0.

We will show that taking I'-invariants yields two exact sequences

0— L8 - HL(x'6) > M" >0
and
0—-M" - HL®) - LT @Lx"18) — 0.

If the I"-actions on H éq v (x~18) and H;q v (8) are semisimple, then there is nothing
to prove. However we will avoid this by an alternative argument. It suffices to prove
the surjectivity of H(;q’v(x_IS)F — M" and H(;qu(S)F — L' L1,
The latter follows from the proof of Proposition 5.17. In fact, if § = x8ynr, then
(my,n1) and (m, ny) constructed there are in Z'(8). Now let ¢ be any element
of M". Then the preimage 8~ (Lc) is two-dimensional over L and I'-invariant.
From the definition of H;q o We obtain that the induced V-action on d~!(Lc¢) is
zero and thus 3~!(Lc) is a semisimple I'-module, as wanted.

If § = x8ynr, then dimz L(x~'8)" = dim; H! (x~18) = 1, and so M" = 0.
Thus 8 : HL (x718) — H] (8) is zero and dim; H] (§) = 2. If § # x8un,, then
3 : HY (x7'8) — H] () is an isomorphism since both H) (x~!8) — MT and

M — H] (8) are isomorphisms. O

5E. Dimension of H'(8) for § € $(L).
Theorem 5.19. (= Theorem 0.3) Let § be in $,,(L).

(@) If 8 is not of the form x=' with i € N, or the form x'8,,; with i € Z., then
Haln((S) and H'(8) are 1-dimensional over L.

(b) If 8§ = x'8un withi € Z, then Haln(8) and H'(8) are 2-dimensional over L.

() If § = x~" withi € N, then Haln(é) is 2-dimensional over L and H'(8) is
(d + 1)-dimensional over L, where d = [F : Q,].

Proof. The assertions for H,) (8) follow from Propositions 5.10 and 5.18. By

Proposition 5.6 we have
dimy %, (8)r=1T=1 = J1 0= x7" withi e N,
0 otherwise.

So the assertions for H'(8) come from those for Haln (8) and Corollary 4.4. [l
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When § = x % withi € N, Haln(é) is generated by the classes of (tJ"T, 0) and
0,1z). Let p; (i =1,...,d) be a basis of Hom(I", Lt;-). Then the class of the
1-cocycle cp with co(¢,) =tz and ¢o|I" = 0, and the classes of 1-cocycles ¢; with
ci(pg) =0and ¢;|I' =p; (i =1,...,d), form a basis of H'(5).

Theorem 5.20. (= Theorem 0.4) If 6 € $(L) is not locally F-analytic, then
H'(8)=0.

Proof. Asthemapsy—1, y €', are null on H I (8), by the definition of H I so are the
maps dlg, 5)(B), B € LieT and the differences B~ 'dTq, (5)(B) — B/~ 'dTa, (5)(B).
Note that 8~1dTg, 5)(B) — B/ ~'dT', (5)(B’) are Rp-linear on R (§). So

B AT, 5)(B) — B AT, 5 (B')

are multiplications by scalars in L, since 8~'dlg, 5)(B)es — B~ 1dTq, 5)(B)es
is in Les. If the intersection of their kernels is null, then the cohomology H 1(8)
vanishes. Thus, either the intersection of their kernels is 0 and so the cohomology
vanishes, or they are all null and § is of the form x — x" for x close to 1 with

= 101%)2(5) for B close to 1 (i.e., § is locally F-analytic). O

Remark 5.21. Suppose that [F : Q,] > 2. Let § # 1 be a character of F* with
3(m) € OF, and let L(8) be the L-representation of Gr induced by §. Suppose that
8 # x28uny When [F : Q p] = 2. Combining Theorem 5.19 and the Euler—Poincaré
characteristic formula [Tate 1963] we obtain that there exist Galois representations
in Ext(L, L(5)) that are not overconvergent. Theorem 5.20 tells us that if further &
is not locally analytic, then there is no nontrivial overconvergent extension of L
by L(9).

SF. The maps 1, : H'(8) —» H'(x7%8) and v an : HL (8) —» HL (x7%5). Letk
be a positive integer.
Proposition 5.22. Let 6 be in $,,(L).

@ Ifws ¢ {1 —k, ..., 0} then HS (R (8)/ 5% (8)) = 0.

®) Ifws e{l —k,...,0}, then Haon(%L (8)/5’?97& (8)) is a 1-dimensional L-vector

space.

Proof. We have R} /tyh] = R /(uk) x [T72, R /(927" (Q))*. As I'-modules,
RY/Wk) = @2y Ltk and R} /(92(Q)* = By (L ®F Fu)tr. Thus as a T-
module, R} /LR is isomorphic to @ ) (R} /R tr) @1 Lti-. Note that the
natural map QRZL /@t{t} — R /QRLt]’é is surjective. Furthermore, two sequences
(Vn)n=0 and (z,)y>0 in 9]{2“/97{214} X ]_[f;o:] %i/((pZ*I(Q))" have the same image
in %L/%Lt}‘-, if and only if there exists N > O such that y, =z, whenn > N.

Since the action of I" on (QRJLr / t]:@izr)t]i: twisted by the character x ~ is smooth,
(a) follows.
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For (b) we only need to consider the case of ws = 0 and &k = 1. The opera-
tor ¢, induces injections R / (02 (Q)) — R/ (¢2*1(Q)) denoted by @, ,. The
action of ¢, on Ry /Ryt is given by @4 (Vu)n = (94,1 (Yn))n+1. For any n > 0,
the I"-action on L ®f F), factors through I'/ I",,, and the resulting I/ I",,-module
L ®F F, is isomorphic to the regular one. Thus for any discrete character é of I,
dim; (L ®F Fn)F:‘Y1 = 1 when 7 is sufficiently large. Then from the fact that the
@q.n (n > 1) are injective, we obtain dimy, (?]?,L/IIQRL)E‘VI""qz‘s(”rl =1. O

Corollary 5.23. Let § be in $4,(L).
(@) Ifws & {1, ...k}, then HO(tz*Rp(8) /R (8)) = 0.

) If ws € {1, ..., k}, then Hz?n(t;k%L(S)/%L(S)) is a 1-dimensional L-vector
space.

Note that R (x *8) is canonically isomorphic to 7 k?RL (8). When k > 1, the
inclusion Ry (§) — t;k%L(é) induces maps (g an : Haln(S) — Haln(x*ké) and  :
H'(8) > H'(x7%8). If y € T is of infinite order, then we have this commutative
diagram:

H'(5) — 2 H'(x7*6)

LTfn,yoTS jrxk%ﬁ;ks (5-1)

an,y

Lk,an

H! (8) —= HL (x7%5).

Lemma 5.24. We have the exact sequence
0 0., —k 0,.—k 1 bean yrl o —k
0— Hyy(8) = Hyy(x758) — Hy (t" RL(8)/RL(S)) = Hyy(8) — Hyy(x779).

Proof. From the short exact sequence

0— RL(S) = RL(x758) — R (x7*8)/RL(8) — 0, (5-2)
we deduce an exact sequence
0— HY ¢(8) = HY (x™%8) = HY o (t7*Rp.(6)/R1.(5))

— H, (&) — Hy g(x7*8). (5-3)

Being finite-dimensional, ng,v (8) and ng,v (x*8) are semisimple I'-modules;

since 17 R (8)/R 1 () is a semisimple ['-module, so is HY y (=5 RL(8)/RL(5)).
Hence, taking I'-invariants of each term in (5-3), we obtain the desired exact
sequence. [l

Proposition 5.25. Let § be in $an (L), k € Z4. If ws ¢ {1, ..., k}, then 1y an and i
are isomorphisms.
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Proof. We only prove the assertion for ¢ an. The proof of the assertion for ¢ is
similar. By Theorem 5.19, dim;, H\ (8) = dim; H} (x7*8) when ws ¢ {1, ..., k}.
Combining Lemma 5.24 with the fact that Hz?n(tf_ kg (8) /R (8)) = 0 and that
dim; H} (8) = dim; H) (x7%8), we obtain the assertion. O

We assign to any nonzero ¢ € Haln(cS) an $-invariant in P'(L) = L U {oo}. In
the case of § = x ¥ with k € N, put EB((at;, bt})) =a/b. If § = xdy, then any
¢ € H} (8) can be written as

c=t7'((g" gy — DG, 1) + pllogur — 2)), trd(AG(1, 1) + pn(log ur — 2)))

with A, u € L. Here G(1,1) is an element of ®%; which induces a basis of
(QRL/QRLII)F and whose value at §, is 1 ® 1 € L ® ¢ F,, when n is large enough;
z is an element of R whose value at &, is 1 ® log(&€,) € L ®f F,, for any n. We
put £(c) = —(er(g — 1)/q) - (*/p). In the case of § = x*8une With k > 2, for any
ce Haln (% Sunr), put £(c) = £(44—1(c)). In the case that § is not of the form xk
with k € N or the form x*8,,, with k € 7, we put £(c) = oo.

Proposition 5.26. Let 6 be in $n(L), k € 7.

@ If ws e{l,... . k}and if § #x"°, x"*8ynr, then i an and 1 are zero.

(b) If § =x"8ynr with 1 < ws < k, then  an and v are surjective, and the kernel
Of tk.an is the 1-dimensional subspace {c € Haln(é) :c=0o0r¥(c) = 00}

(c) If § =x"s with 1 < ws <k, then i an and v are injective, and the image of
tean Bs {c € HL (x7%8) 1 ¢ = 0 or £(c) = o0}

Proof. We will use Lemma 5.24 frequently without mentioning it.

First we prove (a). From dimj Hzﬁl(tfk%L(cS)/%L (8)) = dimg, Haln(é) =1 and
an (x~*8) =0 we obtain the assertion for tk,an- The assertion for ¢ follows from this
and the commutative diagram (5-1), where the two vertical maps are isomorphisms.

Next we prove (b). From HO(x7%8) = 0, dimg HO(t7*R1(8)/R1(8)) = 1,
dimy, Haln () =2, and dim;, Halrl (x7%8) = 1, we obtain the surjectivity of (4 an. The
surjectivity of ¢; follows from this and the commutative diagram (5-1), where the
two vertical maps are isomorphisms. We show that if ¢ € Haln (8) satisfies £(c) = o0,
then (g an(c) = 0. As L(ty;—1.an(c)) = 00 and (g an = Lk+1—w;s,anlws—1,an, WE reduce
to the case of 8 = x8uy. In this case, ¢ = 17 'A((g " '¢, — DG(1, 1),VG(1, 1))
with A € L. Thus t;an(c) = A((g"'¢g — DG(1, 1), VG(1, 1)) ~ (0,0). Hence
tk.an(c) = 0 for any integer k > 1.

Finally we prove (c). From the equalities Ha?n((S) = 0 and dimg, Ha?n(x_ké) =
dimy, an(t; k?RL (8)/R1(8)) =1, we obtain the injectivity of ¢ 4. The injectivity
of ¢ follows from this and the commutative diagram (5-1), where the vertical map

T;fnyy o T)‘f is an isomorphism. For the second assertion, let (m, n) be in Z'(x"s).
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Then

ws—1

tws—1(m, n) = (62° " 'm, 2" 'n) € Z' (x).

In other words, 8 (t2°m) = V, (t° ' m) = (m@, — 1) (1"~ 'n). Thus Res(t2*~'n) =0
and there exists z € R, such that 9z = t;‘s_ln or equivalently Vz = t]l_-”‘s n. It follows
that V u; (z}‘“’ﬁz) = (V+ (ws — k))(tjlﬁ_wsz) = t]’;—“’wz = tin. Thus

tan(m, ) = (thm, thn) ~ (thm — (" F o, — D (F " 2), 0).

So we have t_an(m, n) = (m;—wa’ 0). If ty an(m, n) # 0, or equivalently a # 0, then
g(Lk,an(m, n)) = Q. O

6. Triangulable (¢4, I')-modules of rank 2

Colmez [2008] classified 2-dimensional trianguline representations of the Galois
group Gg,. Generalizing his work, Nakamura [2009] classified 2-dimensional
trianguline representations of the Galois group of a p-adic local field that is finite
over Q.

In this section we classify triangulable O r-analytic (¢,, I')-modules of rank 2
following Colmez’s method. First we recall the definition.

Definition 6.1. A (¢,, I')-module over R is called triangulable if there exists a
filtration of D consisting of (¢,, I')-submodules 0 = Dy C Dy C--- C Dy =D
such that D;/D;_; is free of rank 1 over R .

Note that if D is Op-analytic, then so is D;/D;_; for any i.

If 61,80 € $an (L), then Ext(R  (62),R 1 (61)) is isomorphic to Ext(Ry , Ry (818;1))
or H'(8 18, 1. The isomorphism only depends on the choices of es, , es, and e, 5
Thus it is unique up to a nonzero multiple and induces an isomorphism from
Proj (Ext(®..(82), ®1.(81))) to Proj(H'(8185 ")) independent of the choices of es,,
es, and e, 5 Similarly, there is a natural isomorphism from

Proj (Extan (RL(8), R (51)))

to Proj(Haln(Slég 1)). Hence the set of triangulable (resp. triangulable and Op-
analytic) (¢4, I')-modules D of rank 2 satisfying the following two conditions is
classified by Proj(H (816, ")) (resp. Proj(HL (8185 ))):

e R (81) is a saturated (¢, I')-submodule of D and % (8) is the quotient
module.

e D is not isomorphic to Ry (81) B R (52).
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Let $2" = (L) be the analytic variety obtained by blowing up (81, 82) €
Fan(L) X Fan(L) along the subvarieties 8,6, —_—— Sunr for i € Z4 and the sub-
varieties 8182_1 = x~! for i € N. The fiber over the point (81, 6) is isomor-
phic to Proj(Haln(Slég 1)). Similarly, let ¥ = $(L) be the analytic variety over
Fan(L) x $an(L) whose fiber over (81, §,) is isomorphic to Proj(H1 (8182_1)). The
inclusions Exty, (R (61), R (62)) — Ext(Rr(81), R (87)) for 1, 82 € $an(L) in-
duce a natural injective map $*" < &. We write points of ¥ (resp. ") in the form
(81, 82, ¢) with ¢ € Proj(H ' (8185 ")) (resp. ¢ € Proj(H} (8185 1))). If (81,82, ¢) €S
is in the image of ¥,,, for our convenience we use c,, to denote the element in
Proj(Haln(8182_ 1)) corresponding to c. For (381, 87, ¢) € ¥*", since the $-invariant
induces an inclusion Proj(HJ (818, ")) < P'(L), we also use (81, 82, £(c)) to
denote (81, 62, ¢).

If s € ¥, we assign to s the invariant w(s) € L by w(s) = ws, — ws,. Let ¥ be
the subset of & consisting of elements s € ¥ with

U (81(7)) + v (82()) =0,  vr (81 (7)) = 0.
If s € ¥, we assign to s the invariant u(s) € Q4 by
u(s) = vz (81 (1)) = —v7 (82(7)).

PutFyg={seF;u(s)=0}and ¥, ={s € ¥+ | u(s) > 0}. Then ¥ is the disjoint
union of ¥ and ¥,. For ? € {+, 0, ¥} we put 5" = F*" N Fy. We decompose the
set F3" as F4" = fff_,lg I fy”c?ris o5 SJ’E_,’rd I H’I?‘Cl, where

Sff]lg = {s € ¥9 | w(s) is not an integer > 1},

5"9_,ris ={s € ¥ | w(s) is an integer > 1, u(s) < w(s), £ = oo},

Py ={s € P2 | w(s) is an integer > 1, u(s) < w(s), £ # oo}

Efg’rd ={s € ¥ | w(s) is an integer > 1, u(s) = w(s)},

9’5;01 ={s € ¥ | w(s) is an integer > 1, u(s) > w(s)}.
Note that 9’8“1 and S’gd are empty.

Let D be an extension of Ry (5) by R (61). For any k € N, the preimage of
tJIEQRL (62) is a (¢4, I')-submodule of D, which is denoted by D’. Then D’ is an
extension of Ry (x¥8,) by R, (81). If D is Op-analytic, then so is D’.

Lemma 6.2. (a) The class of D' in H! (8132_1x_k) coincides with 1, (c) up to a
nonzero multiple, where c is the class of D in H'(8 165 h.
(b) If D is Op-analytic, the class of D' in Haln(818271x*k) coincides with iy an(c)

up to a nonzero multiple, where c is the class of D in Haln (8152_1).

Proof. We only prove (b). The proof of (a) is similar. Let e be a basis of R (§2)
such that ¢, (e) = é>()e and o,e = 82(a)e. Let € be a lifting of e in D. The class
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of D, or the same, c, coincides with the class of ((8,() ¢, — 1)é, (V —ws,)é) up
to a nonzero multiple. Similarly, up to a nonzero multiple, the class of D’ coincides
with the class of

((x % 82(m) oy — D(tFE), (V — ws, — k) (15¢))
= (82 (1) g — e, 15 (V — ws,)e),
which is exactly t an(c). O

Proposition 6.3. Put D = D(s) with s = (61, 62, ¢) € ¥. The following two condi-
tions are equivalent:

(@) D(s) has a (¢q, I')-submodule M of rank 1 such that M N R (81) = 0.
(b) s is in ™" and satisfies w(s) € Z, 5182_] #x") and L(ca) = 0.

Among all such M there exists a unique one, Mgy, that is saturated; Mgy is isomor-
phic to Ry (x*$8,). For any M that satisfies condition (a), there exists some i € N
such that M = t;- Mgy

Proof. Assume that D(s) satisfies (a). Since the intersection of M and R (61) is
zero, the image of M in R (8,) is a nonzero (¢, I')-submodule of R (5>), and
so must be of the form I}QR 1(62) with k € N. Since D(s) does not split, we have
k > 1. The preimage of t]’f-%L(Sz) in D is exactly M @ R (6). Since M & R (51)
splits, by Lemma 6.2 we have t;(c) = 0. By Proposition 5.26 this happens only
if w(s) € {1,...,k} and 8, " # x"©. Note that, when w(s) € {1,...,k} and
818, Uo£ x®® | D(s) is automatically Opg-analytic. Again by Proposition 5.26 we
obtain £(c,,) = 0o. This proves (a)<(b).

If (a) holds, then the preimage of t}f (‘Y)QRL (82) splits as Ry (61) & My, where
My is isomorphic to Ry, (x®)8,). We show that M, is saturated. Note that M
is not included in #-D(s). Otherwise, the preimage of 7, ©=1gn, (8,) will split,
which contradicts Proposition 5.26. Let e; (resp. e, e) be a basis of Ry (§;1) (resp.
R (82), Mp) such that Ley (resp. Le;, Le) is stable under ¢, and I'. Let &, be a
lifting of e;. Write e =ae; +bé,. Thena ¢ 1Ry and b € I}U(S)QRL. Observe that
the ideal I generated by a and t]'é)(s) satisfies ¢, (/) =1 and y(I) = [ forall y €T.
Thus by Lemma 1.1, I = Ry. It follows that My is saturated. If M is another
(¢4, I')-submodule of D(s) such that M N R, (§1) = 0, then the image of M in
R (5y) 1s I}%L(Sz) for some integer k > w(s). Then M C Ry (6;) & My. Since
81 # 8x%®), Ry (81) has no nonzero (¢,, I')-submodule isomorphic to Ry (x¥85).

It follows that M C M, and thus M = t;_w(s)Mo. O

Corollary 6.4. Let s = (81,82, ¢) bein &F. If s is in ™ and satisfies w(s) € Z,
8182_1 £ x") and $(can) = 00, then D(s) has exactly two saturated (pg4, I)-
submodules of D(s) of rank 1, one being Ry (81) and the other isomorphic to



2590 Lionel Fourquaux and Bingyong Xie

Rp (x*$)8,y). Otherwise, D(s) has exactly one saturated (¢q, I')-submodule of
rank 1, which is Ry (81).

Corollary 6.5. Let s = (81, 82, ¢) and s' = (81, 8}, ¢’) be in F(L).
(@) If 8y =4, then D(s) = D(s") ifand only if s = 5.

(b) If 81 # &, then D(s) = D(s") if and only if s and s’ are in ¥* and satisfy
w(s) € Z, 8) = x¥98,, 8 =x7¥§) and L(can) = L(cl,) = 0.

Proof. Assertion (a) is clear. We prove (b). Since D(s) = D(s’), there exists
a (¢q4, I')-submodule M of D(s) such that M = R (8]) and D(s)/M = R (85).
Since both %, (81) and M are saturated (¢, I')-submodules of D, R (6;) "M =0.
By Proposition 6.3 we have w(s) € Z, 8182_1 # x| P(can) = 00 and 8 =x")§,.
Similarly, 8; = x*¢)8}. As 88, = 8,8}, we have w(s) = w(s"). O

Proposition 6.6. Let s = (81, 62, ¢) be in F. Then D(s) is of slope zero if and only
ifsedy — Ef‘}fl; D(s) is of slope zero and the Galois representation attached to
D(s) is irreducible if and only if s is in F, — (F9U F2); D(s) is of slope zero
and Op-analytic if and only if s € ¥ — Sf’ﬂ‘fl.

Proof. By Kedlaya’s slope filtration theorem, D(s) is of slope zero if and only
if v;(81()d2(;r)) = 0 and D(s) has no (¢,, I')-submodule of rank 1 that is of
slope < 0. In particular, if D(s) is of slope zero, then v, (§;(;r)) > 0 and thus
s € ¥4. Hence we only need to consider the case of s € ¥,. Assume that
D(s) has a (¢4, I')-submodule of rank 1, say M, that is of slope < 0. Then
the intersection of M and %R (8;) is zero. By Proposition 6.3, we may suppose that
M is saturated. By Corollary 6.4, this happens if and only if s is in $*" and satisfies
w(s) € Zy, 818, # x%®), P(can) = 00 and w(s) < u(s). Note that §;8; " # x*)
and £(c,un) = oo automatically hold when 0 < w(s) < u(s). The first assertion
follows. Similarly, D(s) has a saturated (¢4, I')-submodule of rank 1 that is of slope
zero if and only if u(s) = 0 or u(s) = w(s). By Proposition 1.5(c) and Remark 1.8,
we know that the Galois representation attached to an étale (¢,, I')-module D over
Ry, of rank 2 is irreducible if and only if D has no étale (¢,, I')-submodule of
rank 1. This shows the second assertion. The third assertion follows from the first
one. ([

Proof of Theorem 0.5. Assertion (a) follows from Proposition 6.6, and (b) follows
from Corollary 6.5. (]

Remark 6.7. Let s # s” be as in Theorem 0.5(b). Then s € ¥ if and only if
s’ € S s € 99 if and only if s € SF.
Remark 6.8. By an argument similar to that in [Colmez 2008] one can show that

if s is in H’Srris (resp. Sf‘jfd, %), then D(s) comes from a crystalline (resp. ordinary,
semistable but noncrystalline) L-representation twisted by a character.
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