
Algebra &
Number
Theory

msp

Volume 7

2013
No. 10

On the second Tate–Shafarevich group
of a 1-motive

Peter Jossen





msp
ALGEBRA AND NUMBER THEORY 7:10 (2013)

dx.doi.org/10.2140/ant.2013.7.2511

On the second Tate–Shafarevich group
of a 1-motive

Peter Jossen

We prove finiteness results for Tate–Shafarevich groups in degree 2 associated
with 1-motives. We give a number-theoretic interpretation of these groups, relate
them to Leopoldt’s conjecture, and present an example of a semiabelian vari-
ety with an infinite Tate–Shafarevich group in degree 2. We also establish an
arithmetic duality theorem for 1-motives over number fields, which complements
earlier results of Harari and Szamuely.
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Introduction and overview

Let k be a number field, and let X be a commutative group scheme over k. The Tate–
Shafarevich group Xi (k, X) of X is the subgroup of the étale cohomology group
H i (k, X) consisting of those elements that restrict to zero over each completion
of k. These groups are among the most fundamental invariants associated with
commutative group schemes over number fields, and their vanishing is by definition
the obstruction to various local-to-global principles.

If the group scheme X is given by a finitely generated discrete group with
continuous Galois action, or if X is a group of multiplicative type, then Xi (k, X) is
finite for all i [Milne 1986, Theorem I.4.20; Neukirch et al. 2000, Theorem 8.6.8]. It
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is widely conjectured that if A is an abelian variety over k, then the group X1(k, A)
is finite, and it is known that for i 6= 1 the group Xi (k, A) is trivial. This is a
nontrivial statement for i = 2; indeed, the proof of Corollary I.6.24 in [Milne 1986]
shows that the vanishing of X2(k, A) is essentially equivalent to the positive answer
to the congruence subgroup problem for the abelian variety dual to A, given by
Serre [1964; 1971].

An evident generalisation of these finiteness results would be to show that
Xi (k,G) is finite for semiabelian varieties G over k, i.e., when G is an extension
of an abelian variety A by a torus. A simple dévissage shows that X1(k,G) is
finite [Harari and Szamuely 2005, Lemma 4.11], provided X1(k, A) is finite. The
situation is more complicated for i = 2, and surprisingly, it turns out that the groups
X2(k,G) are not always finite.

Theorem 1. There exists a semiabelian variety G over Q such that the group
X2(Q,G) contains a subgroup isomorphic to Q/Z and in particular is infinite.

A 1-motive M over a number field k is a two-term complex of group schemes
M = [Y → G] over k placed in degrees −1 and 0, where Y is given by a finitely
generated free discrete group with continuous Galois action and where G is a
semiabelian variety. It was asked in [Harari and Szamuely 2005, Remark 4.13]
whether for all 1-motives M the group X2(k,M) is finite. By Theorem 1, we already
know that this is not always the case even for 1-motives of the form [0→ G] over
Q. Our second result shows that even for very simple 1-motives it might be difficult
to decide whether X2(k,M) is finite (assuming the conservation law of difficulty).

Theorem 2. If the group X2(k,M) is finite for all 1-motives of the form M =
[Zr
→ Gs

m] over k, then Leopoldt’s conjecture holds for k (and all prime numbers).

The converse to this statement is not true: there exist 1-motives of this particular
form over number fields for which Leopoldt’s conjecture is known to hold such that
X2(k,M) is infinite. Our third result provides conditions on a 1-motive that ensure
that X2(k,M) is finite. It is most conveniently expressed as a duality theorem.
Classical global arithmetic duality theorems are statements about the existence and
nondegeneracy of canonical pairings between certain Tate–Shafarevich groups. Let
X be a group of multiplicative type over k, and denote by X∨ its group of characters.
The Poitou–Tate duality theorem states that there is a natural, perfect pairing of
finite groups

Xi (k, X)×X3−i (k, X∨)→Q/Z

[Milne 1986, Theorem I.4.20; Neukirch et al. 2000, Theorem 8.6.8]. The analogue
of this duality theorem for abelian varieties is the Cassels–Tate duality theorem. It
states that for an abelian variety A over k with dual A∨, there is a canonical pairing

Xi (k, A)×X2−i (k, A∨)→Q/Z



On the second Tate–Shafarevich group of a 1-motive 2513

whose left and right kernels are the maximal divisible subgroups [Milne 1986,
Theorem I.6.26]. Conjecturally, it is a perfect pairing of finite groups.

The idea to unify and generalise these arithmetic duality theorems to duality
theorems for 1-motives appeared first in [Harari and Szamuely 2005]. Deligne
constructed for each 1-motive M a dual 1-motive M∨. Harari and Szamuely show
that for a 1-motive M over a number field k there is a canonical pairing

X1(k,M)×X1(k,M∨)→Q/Z

that is nondegenerate modulo divisible subgroups and generalises the Cassels–
Tate pairing. They also construct a pairing between a certain modification of
X0(k,M) and X2(k,M∨) and show that it is nondegenerate modulo divisible
subgroups. However, this modified X0(k,M) remains somehow uncontrollable,
and the resulting generalised pairing does not seem to be very useful (the statement
of [Harari and Szamuely 2005, Theorem 0.2] was rectified in [Harari and Szamuely
2009]).

Theorem 3. Let k be a number field, and let M = [u : Y→G] be a 1-motive over k
with dual M∨. There exists a natural pairing

X0(k,M)×X2(k,M∨)→Q/Z (∗)

generalising the Poitou–Tate pairing for finitely generated Galois modules and tori.
The group X0(k,M) is finite, and the pairing (∗) is nondegenerate on the left. If
the semiabelian variety G is an abelian variety or a torus, such that the Q-algebra
Endk(G)⊗Q is a product of division algebras, then the pairing (∗) is a perfect
pairing of finite groups.

It was already shown in [Harari and Szamuely 2005] that X0(k,M) is finite.
The finiteness results stated in the second part of the theorem are new and are also
the essential part of the theorem. Equivalently, the condition on G is that over an
algebraic closure of k either G is the multiplicative group or an abelian variety
isogenous to a product of pairwise nonisogenous simple abelian varieties. Our proof
uses techniques developed by Serre [1964; 1971] in his work on the congruence
subgroup problem for abelian varieties.

Overview. In Section 1, we rehearse 1-motives and `-adic realisations, which
will play a prominent role throughout this paper. In Section 2, we construct a
duality pairing that relates the `-adic realisation of a 1-motive with the second
Tate–Shafarevich group of its dual and obtain the pairing (∗) of Theorem 3. In
Section 3, we compute the cohomology of some `-adic Lie groups associated with
1-motives, and in Section 4, we use these computations to prove the finiteness
statements in Theorem 3. We conclude the proof of Theorem 3 in Section 5. In
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Sections 6 and 7, we prove Theorems 2 and 1, respectively. There remain several
open questions and unsolved problems, which I state in the last section.

1. About 1-motives and their realisations

In this section, we rehearse the relevant facts about classical 1-motives and their
realisations defined by Deligne [1974, §10].

1.1. Throughout this section, S is a noetherian regular scheme, FS stands for the
category of sheaves of commutative groups on the small fppf site over S and DFS

for the derived category of FS . We identify commutative group schemes over S
with objects of FS via the functor of points. In particular, we say that an fppf
sheaf on S is an abelian scheme, a torus, or a finite flat group scheme if it can be
represented by such. By a lattice over S, we mean an object of FS that is locally
isomorphic to a finitely generated free Z-module. Notice that if S is the spectrum of
a field, then Y may be regarded as a finitely generated group on which the absolute
Galois group acts continuously.

Definition 1.2. A 1-motive over S is a diagram

M =

[
Y

u ��
0 // T // G // A // 0

]

in the category FS , where Y is a lattice, T a torus, and A an abelian scheme. A
morphism of 1-motives is a morphism between diagrams. The complex associated
with M is the complex of fppf-sheaves [M] := [Y → G], placed in degrees −1
and 0. We denote by M1,S the category of 1-motives over S.

1.3. Observe that the sheaf G is representable. Indeed, we may look at it as a
T -torsor over A, and since T is affine, representability follows from [Milne 1980,
Theorem III.4.3a]. Later on, 1-motives will often be given by their associated
complexes and morphisms accordingly by commutative squares. This is also
customary in the literature and justified by the fact that there are no nonzero
morphisms from a torus to an abelian scheme.

1.4. We say that a sequence of morphisms of 1-motives 0→M1→M2→M3→ 0
is a short exact sequence if the induced sequences of lattices, tori, and abelian
schemes are exact in FS . Such a short exact sequence of 1-motives yields then an
exact triangle

[M1] → [M2] → [M3] → [M1][1]

in the derived category DFS . With a 1-motive M over S are naturally associated
several short exact sequences coming from the weight filtration on M . This is the
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natural three-term filtration given by Wi M = 0 if i ≤−3 and Wi M = M if i ≥ 0
and

W−2 M :=

[
0
��

0 // T T // 0 // 0

]
and W−1 M :=

[
0
��

0 // T // G // A // 0

]
.

Although 1-motives do not form an abelian category, the quotients M/Wi M make
sense in the obvious way.

Definition 1.5. Let M be a 1-motive over S, and let ` be a prime number that is
invertible on S. The `-adic Tate module and the `-divisible Barsotti–Tate group
associated with M are the smooth `-adic sheaf

T`(M) := lim i≥0 H 1([M]⊗L Z/`i Z)

and the smooth `-divisible group

B`(M) := colim i≥0 H 1([M]⊗L Z/`i Z),

both over S, where the derived tensor product is taken in the derived category DFS .

1.6. By construction, T`M only depends on the complex [M] = [Y u
→G] up to

quasi-isomorphism, and the assignment M 7→ T`M is functorial. Using the flat
resolution Z `i

→Z of Z/`i Z, we see that the object [M]⊗L Z/`i Z of DFS is given
by the bounded complex

· · · → 0→ Y
y 7→(`i y,u(y))
−−−−−−−→ Y ⊕G

(y,g) 7→u(y)−`i g
−−−−−−−−−→ G→ 0→ · · ·

supported in degrees 0, 1, and 2. For n 6= 1, we have H n([M]⊗LZ/`i Z)= 0 because
Y is torsion-free and G is divisible as a sheaf. Hence, the object [M] ⊗L Z/`i Z

of DFS is homologically concentrated in degree 1. Given a category C and a functor
F : DFS→ C, we write

F(T`M) := lim i≥0 F([M]⊗L Z/`i Z[−1]),

F(B`M) := colim i≥0 F([M]⊗L Z/`i Z[−1]),

and interpret these expressions as either limit systems in C or actual objects of C,
provided limits and colimits exist in C. This is only a notation, and we do not need
or claim that F commutes with limits or colimits.

1.7. Suppose S is connected, and let spec(k)= s→ S be a geometric point where
k is an algebraic closure of the residue field k at the scheme point underlying s. We
can describe the finite, locally constant group schemes H 1([M]⊗L Z/`i Z) in terms
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of finite π1 := π
ét
1 (S, s)-modules as follows. The underlying group is given by

{(y, P) ∈ Y (k)×G(k) | `i P = u(y)}

{(`i y, u(y)) | y ∈ Y (k)}
,

and the action of π1 is induced by the action of π1 on k. Taking the limit over i ≥ 0,
we find the description of the `-adic sheaf T`M as a π1-module. The short exact
sequence of 1-motives coming from the weight filtration

0→ [0→ G] → M→ [Y → 0] → 0

induces a sequence of `-adic sheaves and one of continuous π1-representations

0→ T`G→ T`M→ Y ⊗Z`→ 0,

which is exact because G(k) is an `-divisible group. Observe that, given y ∈ Y , a
preimage of y⊗ 1 in T`M is given by a sequence (y, Pi )i≥0 with P0 = u(y) and
`Pi = Pi−1 for i ≥ 1.

1.8. Let A be a commutative group. We consider the following four operations
on A relative to the prime `:

A ⊗̂Z` := lim i≥0 A/`i A, T`A := lim i≥0 A[`i
],

A[`∞] := colim i≥0 A[`i
], A⊗Q`/Z` := colim i≥0 A/`i A.

These are the `-adic completion, the `-adic Tate module, extraction of `-torsion,
and tensorisation with Q`/Z`. These four operations are related, as follows. Given
a short exact sequence of commutative groups 0→ A→ B→ C→ 0, there is a
long exact sequence of Z`-modules

0→ T`A→ T`B→ T`C→ A ⊗̂Z`→ B ⊗̂Z`→ C ⊗̂Z`→ 0

coming from the snake lemma, identifying−⊗̂Z` with the first right derived functor
of the Tate module functor T`(−) and vice versa. Similarly, there is a six-term
exact sequence of `-torsion groups

0→ A[`∞]→ B[`∞]→C[`∞]→ A⊗Q`/Z`→ B⊗Q`/Z`→C⊗Q`/Z`→ 0

identifying (−)[`∞] with the first left derived functor of −⊗Q`/Z` and vice versa.
Given a bilinear pairing of commutative groups A× B→Q/Z, these operations
induce pairings

A ⊗̂Z`× B[`∞] →Q/Z and T`A× (B⊗Q`/Z`)→Q/Z.

If the original pairing was nondegenerate, these are nondegenerate pairings as well.
Most of the time, we shall deal with commutative groups on which the multiplication-
by-` has finite kernel and cokernel. For such a group A, the Z`-modules A ⊗̂Z`
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and T`A are finitely generated, and the torsion groups A⊗Q`/Z` and A[`∞] are
of cofinite type (meaning that their Pontryagin duals are finitely generated as Z`-
modules), and there is an isomorphism of finite groups (A⊗̂Z`)[`

∞
] ∼= A[`∞]⊗̂Z`.

Nondegenerate pairings of such groups induce perfect pairings of topological groups.

Proposition 1.9. Let F : DFS→ D Ab be a triangulated functor, and let M be a
1-motive over S. There are canonical short exact sequences of Z`-modules

0→ H i−1 F(M) ⊗̂Z`→ H i F(T`M)→ T`H i F(M)→ 0

and short exact sequences of `-torsion groups

0→ H i−1 F(M)⊗Q`/Z`→ H i F(B`M)→ H i F(M)[`∞] → 0

both natural in M and F.

Proof. The short exact sequence of constant sheaves 0→ Z `i
→Z→ Z/`i Z→ 0

induces a long exact sequence of groups, from where we can cut out the short exact
sequences

0→ H i F(M)⊗Z/`i Z→ H i F(M ⊗L Z/`i Z)→ H i+1 F(M)[`i
] → 0.

The limit system of commutative groups (H i F(M)⊗Z/`i Z)∞i=0 has the Mittag–
Leffler property, and the short exact sequences in the proposition are then obtained
by taking limits or colimits, respectively, over i ≥ 0. �

Corollary 1.10. Let k be a number field, let ` be a prime number, and let M =
[u : Y → G] be a 1-motive over k. Set Z := H−1(M) = ker u. The morphism of
Z`-modules

H i (k, Z ⊗Z`)→ H i (k,T`M)

induced by the morphism of 1-motives [Z→ 0] → [Y → G] is an isomorphism for
i = 0 and injective for i = 1.

Proof. Proposition 1.9 applied to the functor R0(k,−) yields a short exact sequence
of Z`-modules

0→ H−1(k,M) ⊗̂Z`→ H 0(k,T`M)→ T`H 0(k,M)→ 0.

Since Z(k)= H−1(k,M) is a finitely generated group, we can identify Z(k) ⊗̂Z`

with Z(k)⊗Z Z`, so to get the statement for i = 0, it remains to show that the
last group in this sequence vanishes. Write Ok for the ring of integers of k, and
choose a sufficiently small open subscheme U ⊆ spec Ok such that M extends to a
1-motive over U and such that ` is invertible on U . We have then Z(U )= Z(k) and
H 0(U,T`M)= H 0(k,T`M), so we may as well show that T`H 0(U,M) vanishes.
Indeed, it follows by dévissage from the Mordell–Weil theorem, Dirichlet’s unit
theorem, and finiteness of H 1(U, Y ) that H 0(U,M) is a finitely generated group
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[Harari and Szamuely 2005, Lemma 3.2], so its Tate module is trivial. For the case
i = 1, we consider the triangle

[Z→ 0] → [Y → G] → [Y/Z→ G]

and observe that if we quotient both terms of the complex [Y/Z→ G] by the finite
torsion part of Y/Z , we get a quasi-isomorphic complex, which is the complex of
a 1-motive M ′ = [u′ : Y ′→ G ′] where now u′ is injective. By the first part, we
have H 0(k,T`M ′)= 0, and the statement can be read in the long exact cohomology
sequence associated with 0→ Z ⊗Z`→ T`M→ T`M ′→ 0. �

The statement of Corollary 1.10 remains true over any field k that is finitely
generated over its prime field and prime number ` different from the characteristic
of k. It is wrong in general for local fields.

We now come to the dual 1-motive: with each 1-motive M over a noetherian
regular scheme S is functorially associated a dual 1-motive M∨ over S so that
we get an involution of the category M1,S of 1-motives over S. The duals of tori,
lattices, and abelian schemes, if seen as 1-motives, are the usual duals, and the
duality functor is compatible with the weight filtration. This is the content of the
following theorem:

Theorem 1.11. There exists an antiequivalence of categories (−)∨ :M1,S→M1,S

such that for every 1-motive M over S the following hold:

(1) There are canonical and natural isomorphisms of 1-motives

(M/W−i (M))∨ ∼=Wi−3(M∨)

for each i .

(2) There is a natural isomorphism

[M∨] ∼= R Hom(M,Gm[1])≤0

in the derived category DFS , where (−)≤0 means truncation in degree 0.

(3) There is a natural isomorphism of 1-motives εM : M → M∨∨ such that the
induced morphism of complexes coincides with the canonical evaluation mor-
phism in the derived category of FS (explained below).

Properties (1), (2), and (3) characterise (−)∨ up to an isomorphism of functors.

For every object X of DFS , we have a natural morphism X→R Hom(R Hom(X,
Gm[1]),Gm[1]) (see [SGA 5, Exposé 1] after Proposition 1.6) as well as X→ X≤0.
Together, these yield the natural morphism

X≤0→ R Hom(R Hom(X,Gm[1])≤0,Gm[1])≤0,

which is the one we consider for X = X≤0 = [M] in part (3) of the theorem.
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1.12. The uniqueness of the functor (−)∨ can be shown by a simple dévissage
argument. Its existence is in essence the construction of the dual 1-motive of
[Deligne 1974, §10.2.11] combined with the following observations (1) and (2):

(1) If X is either a finite flat group scheme, a torus, or a lattice over S, then the sheaf
Hom(X,Gm) is represented by the Cartier dual of X , and Ext1(X,Gm)= 0.

(2) If A is an abelian scheme over S, the sheaves Hom(A,Gm) and Ext2(A,Gm)

are trivial, and Ext1(A,Gm) is represented by the dual abelian scheme A∨.

(3) For all i ≥ 2, the sheaves Exti (X,Gm) and Exti (A,Gm) are torsion. If ` is
invertible on S, these sheaves contain no `-torsion.

In the case X is a finite flat group scheme, the statements of (1) can be found
in [Oort 1966, Theorem III.16.1]. For locally constant group schemes and tori,
these follow from [SGA 3 II, Exposé XIII, Corollaire 1.4] and [SGA 7 I, Exposé
VIII, Proposition 3.3.1], respectively. In (2), we have Hom(A,Gm) = 0 because
A is proper and geometrically connected, and Gm is affine. The isomorphism
Ext1(A,Gm) ∼= A∨ is given by the classical Barsotti–Weil formula [Oort 1966,
Theorem III.18.1].1 It is shown in [Breen 1969a] that (over a noetherian regular
base scheme as we suppose S to be) the sheaves Exti (A,Gm) are torsion for all i >1.
Using the second statement of (1), we see that for n 6= 0 the multiplication-by-n map
on Ext2(A,Gm) is injective; hence, Ext2(A,Gm)= 0. Finally, the torsion sheaves
Exti (X,Gm) and Exti (A,Gm) contain no `-torsion because if F is a finite flat group
scheme over S annihilated by `, then Exti (F,Gm)= 0 for all i ≥ 1. Indeed, such a
group scheme is locally constant and locally presented as 0→ Zr

→ Zr
→ F→ 0,

and the functor Hom(Zr ,−) is exact.
The reason why we need the truncation operations in Theorem 1.11(1) is that in

general we do not know whether the sheaves Exti (F,Gm) vanish for i > 1 if F is a
finite flat group scheme over S that is not locally constant. This is presumably not
the case, as an explicit example of Breen [1969b] suggests (he works with sheaves
for the étale topology, but it seems that his example also works in the fppf setting).
Over a field of characteristic 0, or after inverting all residual characteristics of S,
the truncation is not needed.

1The additional hypothesis that either A is projective over S or that S is artinian is superfluous.
The trouble is caused only by Oort’s Proposition I.5.3, where representability of the Picard functor
T 7→ Pic A/T is known just in these cases. This problem has been overcome by M. Raynaud [Faltings
and Chai 1990, Theorem 1.9].

Oort proves that the Barsotti–Weil formula over a general scheme holds if it holds over all of
its residue fields. He then says that the formula is known to hold over any field and quotes Serre’s
Groupes algébriques et corps de classes, VII.16, Théorème 6. But Serre makes right at the beginning
of Chapter VII the hypothesis that the ground field is algebraically closed. Hence, as long as all
residue fields of S are perfect, Oort’s proof is fine. The general case follows by checking that Serre’s
arguments also work verbatim over separably closed fields.
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Proposition 1.13. Let M be a 1-motive over S with dual M∨, and let n ≥ 1 be
an integer that is invertible on S. The Cartier dual of the finite flat group scheme
H 1([M] ⊗L Z/nZ) is naturally isomorphic to H 1([M∨] ⊗L Z/nZ). In particular,
there is a canonical, natural isomorphism T`(M∨)∼=Hom(T`M,Z`(1)) of `-adic
sheaves on S for every prime number ` invertible on S.

Proof. This follows from Theorem 1.11 and the statement (3) of Section 1.12. �

2. The pairing between X0(k, M) and X2(k, M∨)

We fix number field k with algebraic closure k and write � for the set of all places
of k. For v ∈ �, we denote by kv the completion of k at v. After recalling the
definition of Tate–Shafarevich groups, we use the Poitou–Tate duality theorem for
finite Galois modules to identify the `-torsion part of X2(k,M∨) with the dual of
X1(k,T`M) for any 1-motive M = [Y → G] over k. Then we show that the group
X0(k,M) is finite and that its `-part canonically injects into X1(k,T`M).

2.1. Let C be a bounded complex of continuous Gal(k |k)-modules. The Tate–
Shafarevich groups Xi (k,C) of C are defined by

Xi (k,C) := ker
(

H i (k,C)→
∏
v∈�

H i (kv,C)
)
,

where H i is continuous cochain cohomology with the convention that for archi-
medean v the group H i (kv,C) = H i (Gal(C |kv),C) stands for Tate modified
cohomology [Neukirch et al. 2000, I§2]. The Tate–Shafarevich groups Xi (k,M)
of a 1-motive M = [Y → G] over k are those of the complex of discrete Galois
modules Y (k)→ G(k) placed in degrees −1 and 0.

Proposition 2.2. Let M be a 1-motive over k, and let ` be a prime number. There
is a canonical, perfect pairing of topological groups

X1(k,T`M)×X2(k,M∨)[`∞] →Q/Z

where X1(k,T`M) is profinite and X2(k,M∨)[`∞] is discrete. In particular,
X2(k,M∨)[`∞] is finite or zero if and only if X1(k,T`M) is so.

Proof. By Poitou–Tate duality for finite Galois modules [Neukirch et al. 2000,
Theorem 8.6.8], we have a natural, perfect duality between finite groups

X1(k,M ⊗L Z/`i Z)×X2(k,M∨⊗L Z/`i Z)→Q/Z,

noting Proposition 1.13. The functor X2(k,−) commutes with arbitrary colimits,
and X1(k,−) commutes with limits of finite Galois modules by [Serre 1964,
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Proposition 7]. We obtain thus, without violating the notational conventions from
Section 1.6, a perfect pairing of topological groups

X1(k,T`M)×X2(k,B`M∨)→Q/Z,

and it remains to show that X2(k,B`M∨) is canonically isomorphic to the `-part
of the torsion group X2(k,M∨). Indeed, from Proposition 1.9 we get the following
commutative diagram of torsion groups with exact rows:

0 // H 1(k,M∨)⊗Q`/Z`

��

// H 2(k,B`M∨)

��

// H 2(k,M∨)[`∞]

��

// 0

0 //
∏
v∈�

H 1(kv,M∨)⊗Q`/Z` //
∏
v∈�

H 2(kv,B`M∨) //
∏
v∈�

H 2(kv,M∨)[`∞] // 0

Because H 1(k,M∨) and H 1(kv,M∨) are torsion, the first terms of both rows
are zero; hence, the canonical isomorphism X2(k,B`M∨) ∼= X2(k,M∨)[`∞],
as required. �

2.3. Let M be a 1-motive over k, and let ` be a prime number. From Proposition 1.9,
we get a commutative diagram of Z`-modules with exact rows:

0 // H 0(k,M) ⊗̂Z` //

α`

��

H 1(k,T`M) //

��

T`H 1(k,M) //

��

0

0 //
∏
v∈�

H 0(kv,M) ⊗̂Z` //
∏
v∈�

H 1(kv,T`M) //
∏
v∈�

T`H 1(kv,M) // 0

The kernel of the rightmost vertical map is the Tate module of X1(k,M), which is
torsion free, and even trivial if X1(k,M) is finite (which conjecturally is always
the case; compare [Harari and Szamuely 2005, Corollary 4.9]). In any case, the
map kerα`→X1(k,T`M) is an isomorphism on torsion elements. The kernel of
α` contains X0(k,M)⊗Z` and hence an injection

X0(k,M)⊗Z`→X1(k,T`M). (†)

In [Harari and Szamuely 2005, Section 5], a profinite group X0
∧
(k,M) was intro-

duced. Its pro-` part is kerα` and hence equal to X1(k,T`M) in the case X1(k, A)
is finite. This relates Proposition 5.1 of [loc. cit.] to our Proposition 2.2. There is
a canonical isomorphism X0(k,M)⊗Z` ∼=X0(k,M)[`∞] because X0(k,M) is
finite as we shall see in Proposition 2.5. These observations yield the following
corollary to Proposition 2.2:
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Corollary 2.4. The pairing of Proposition 2.2 induces a pairing

X0(k,M)[`∞]×X2(k,M∨)[`∞] →Q/Z,

which is nondegenerate on the left. Its right kernel is divisible if and only if the map
(†) induces an isomorphism X0(k,M)⊗Z`→X1(k,T`M)tor, and this pairing is
a perfect pairing of finite groups if and only if the map (†) is an isomorphism.

We end the section with the following proposition, which explains the group
X0(k,M) and shows that it is finite [Harari and Szamuely 2005, Lemma 4.11]:

Proposition 2.5. Let M = [u : Y → G] be a 1-motive over k, and set Z := ker u.
The morphism of 1-motives [Z→ 0] → [Y → G] induces an isomorphism of finite
groups

X1(k, Z)
∼=
−→X0(k,M).

For any prime number `, there are canonical isomorphisms of finite groups

X1(k, Z)[`∞] ∼= X1(k, Z)⊗Z` ∼= X1(k, Z ⊗Z`) ∼= X1(k,T`[Z → 0]).

All these groups are annihilated by the order of any finite Galois extension k ′ |k
over which Z is constant.

Proof. By diagram chase, using one finite place v ∈ �, we see that the map
X0(k,M)→X1(k, Y ) is injective. It follows in particular that X0(k,M) is zero
if the Galois action on Y is trivial. In general, let k ′ |k be a finite Galois extension
such that Gal(k |k ′) acts trivially on Y , and let �′ be the set of places of k ′. For
w ∈ �′ lying over v ∈ �, we write k ′w for the completion of k ′ at w and kw for
the completion of k at v. As a Galois module, Z := ker(u) can be interpreted as
Z = H−1(k ′,M). From the Hochschild–Serre spectral sequence, we get then a
commutative diagram with exact rows:

0 // H 1(Gal(k ′ |k), Z)

��

// H 0(k,M)

��

// H 0(k ′,M)

��

0 //
∏
w∈�′

H 1(Gal(k ′w |kw), Z) //
∏
w∈�′

H 0(kw,M) //
∏
w∈�′

H 0(k ′w,M)

Because Gal(k |k ′) acts trivially on Y , we have X0(k ′,M) = 0 by our previous
observation; hence,

X0(k,M)∼= ker
(

H 1(Gal(k ′ |k), Z)→
∏
w∈�′

H 1(Gal(k ′w |kw), Z)
)
,

the product running over allw∈�′ or alternatively over all decomposition subgroups
of Gal(k ′ |k). The finiteness statement follows as H 1(Gal(k ′ |k), Z) is finite and
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annihilated by the order of Gal(k ′ |k) [Weibel 1994, Theorem 6.5.8 and Corol-
lary 6.5.10]. Repeating the arguments for the 1-motive [Z → 0] yields the first
isomorphism of the proposition.

Now let ` be a prime number. The first isomorphism from the left exists for any
finite commutative group in place of X1(k, Z). For the next one, choose a finite
Galois extension k ′ |k such that Z is constant over k ′. We can proceed as before in
order to express X1(k, Z) and X1(k, Z ⊗Z`) in terms of cohomology groups of
the finite group Gal(k ′ |k) and its subgroups. It remains to show that, given a finite
group 0 acting on Z , the canonical map H 1(0, Z)⊗Z`→ H 1(0, Z ⊗Z`) is an
isomorphism. This is indeed so for any flat Z-algebra in place of Z` by the universal
coefficient theorem. The last isomorphism holds because Z ⊗Z` ∼= lim Z/`i Z and
because limits are left exact and commute with continuous H 1. �

3. Lie algebra cohomology of the Tate module

We fix a number field k with algebraic closure k and a prime number `. With every
1-motive M over k is associated a continuous Q`-linear representation V`M =
T`M ⊗ Q` of Gal(k |k). The image of Gal(k |k) in GL(V̀ M) is an `-adic Lie
group L M , whose Lie algebra we denote by lM . An idea going back to Serre and
Tate, used by Serre [1964] to solve the congruence subgroup problem for abelian
varieties over number fields, is to consider the vector space H 1

∗
(lM , V̀ M) consisting

of those elements of H 1(lM , V̀ M) that restrict to zero on each one-dimensional
subalgebra of lM . Our goal is to describe H 1

∗
(lM , V̀ M).

We will work only with 1-motives M = [Y → G] where G is either an abelian
variety or a torus rather than a general semiabelian variety. This brings consid-
erable simplifications in both statements and proofs. I will comment at the end
of Section 3.11 on this hypothesis and on the modifications that are necessary in
order to compute H 1

∗
(lM , V̀ M) for general 1-motives. The following theorem is

the crucial ingredient for our finiteness results:

Theorem 3.1. Let M = [u := Y → G] be a 1-motive over k where G is an abelian
variety or a torus. Set E` := Endk(G)⊗Q` and X` := im(u)⊗Q`, denote by D`

the E`-submodule of G(k)⊗Q` generated by X`, and define

X` := {x ∈ D` | f (x) ∈ f (X`) for all f ∈ HomE`(D`, V̀ G)}.

There is a canonical isomorphism of Q`-vector spaces X`/X` ∼= H 1
∗
(lM , V̀ M).

The proof of this theorem relies on a structure result for the Lie algebra lM ,
which in turn relies on Faltings’s theorems on endomorphisms of abelian varieties
over number fields. Observe that the object X`/X` can be calculated by means
of ordinary linear algebra. The statement of the theorem is wrong for general
semiabelian varieties G.
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3.2. We recall some definitions and results from [Serre 1964]. Let L be a profinite
group, and let T be a continuous L-module. We write H 1(L , T ) for the group of
continuous cocycles L→ T modulo coboundaries and define

H 1
∗
(L , T ) := ker

(
H 1(L , T )→

∏
x∈L

H 1(〈x〉, T )
)
,

where 〈x〉 denotes the closed subgroup of L generated by x . If N is a closed normal
subgroup of L acting trivially on T , then the inflation map induces an isomorphism
H 1
∗
(L/N , T )→ H 1

∗
(L , T ) [loc. cit., Proposition 6]. If T is a profinite L-module,

say T = lim Ti where the Ti are finite discrete L-modules, then the canonical map
H 1(L , T )→ lim H 1(L , Ti ) is an isomorphism [loc. cit., Proposition 7]. Because
the limit functor is left exact, also the canonical map H 1

∗
(L , T )→ lim H 1

∗
(L , Ti )

is an isomorphism in that case.
For a Lie algebra l acting on a vector space V , we denote by H 1

∗
(l, V ) the subspace

of H 1(l, V ) consisting of those elements that restrict to zero in H 1(〈x〉, V ) for
every one-dimensional subalgebra 〈x〉 of l.

Lemma 3.3. Let L be a compact `-adic Lie group with Lie algebra l acting on a
finite-dimensional Q`-vector space V . For any open subgroup N of L , we have

H 1
∗
(L , V )= ker

(
H 1(L , V )→

∏
x∈N

H 1(〈x〉, V )
)
.

If N is normal, there is a canonical isomorphism H 1
∗
(L , V )∼= H 1

∗
(N , V )L/N . If N

is sufficiently small, there is a canonical isomorphism H 1
∗
(N , V )∼= H 1

∗
(l, V ).

Proof. Let N be an open subgroup of L , and let c be an element of H 1(L , V )
restricting to zero in H 1(〈x〉, V ) for each x ∈ N . Fix an element x ∈ L , and let us
show that c restricts to zero in H 1(〈x〉, V ). Because 〈x〉 is compact, the quotient
〈x〉/(N ∩ 〈x〉) is finite. By a restriction-corestriction argument and using that V is
uniquely divisible, we see that the restriction map H 1(〈x〉, V )→ H 1(〈x〉 ∩ N , V )
is injective, hence the first claim. Now suppose that N is open and normal.
Since L is compact, the quotient L/N is finite and we have H i (L/N , V ) = 0
for all i > 0, and the Hochschild–Serre spectral sequence yields an isomorphism
H 1(L , V )∼= H 1(N , V )L/N . We must show that in the diagram

0 // H 1
∗
(L , V )

��

// H 1(L , V ) //

∼=

��
δ

&&

∏
x∈L

H 1(〈x〉, V )

��

0 // H 1
∗
(N , V )L/N // H 1(N , V )L/N //

∏
x∈N

H 1(〈x〉, V )
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the leftmost vertical map is an isomorphism, i.e., that the kernel of the diagonal map
δ is exactly H 1

∗
(L , V ). But this is again the first statement of the lemma. Finally,

if N is sufficiently small, we have an isomorphism H 1(N , V ) ∼= H 1(l, V ) by a
well-known theorem of Lazard [1965, V.2.4.10], from which the last statement
follows. �

3.4. Let M = [u : Y → G] be a 1-motive over k where G is an abelian variety or a
torus. The Tate module T`M of M is an extension of Y⊗Z` by the Tate module T`G
of G as we have seen in Section 1.7, so we get an extension continuous of Galois
representations

0→ V̀ G→ V̀ M→ Y ⊗Q`→ 0.

We denote by lM and lG the Lie algebras of the image of 0 :=Gal(k |k) in the groups
GL(V̀ M) and GL(V̀ G), respectively. The Galois group 0 acts continuously on
these Lie algebras by conjugation, and we have a canonical surjection lM → lG .
Let nM denote its kernel, so nM consists of those elements of lM that act trivially
on V̀ G. The Lie algebra nM is commutative, and we can identify it with a linear
subspace of Hom(Y ⊗Q`, V̀ G) via the map

ϑ : nM
→ HomQ`

(Y ⊗Q`, V̀ G)

given by ϑ(x)(y) = x .v where v ∈ V̀ M is any element mapping to y ∈ Y ⊗Q`.
Routine checking shows that this map is well-defined, injective, and 0-equivariant.
We can describe the image of ϑ as follows. Look at u as being a k-rational point on
the abelian variety or torus Hom(Y,G), and denote by B the connected component
of the smallest algebraic subgroup of Hom(Y,G) containing u. Then B is also an
abelian variety or a torus, and we have an inclusion

V̀ B ⊆ V̀ Hom(Y,G)∼= HomQ`
(Y ⊗Q`, V̀ G).

The following theorem is a special case of [Jossen 2013b, Theorem 6.2]. In the
case G is an abelian variety, it goes back to a result of Ribet [1976] (see [Hindry
1988, Appendix 2]).

Theorem 3.5. The map ϑ induces an isomorphism of Galois representations
ϑ : nM ∼=

−→ V̀ B.

In particular, it follows that the dimension of nM is independent of `. If G is an
abelian variety, it is still unknown whether the dimension of lG is independent of `.

Lemma 3.6. Let M = [u : Y → G] be a 1-motive over k where G is an abelian
variety or a torus. Denote by D the Endk(G) submodule of G(k) generated by
im(u), and define B ⊆Hom(Y,G) as in Section 3.4. The linear map

h : Homk(B,G)⊗Q→ G(k)⊗Q
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given by h(ψ ⊗ 1)= ψ(nu)⊗ n−1, where n ≥ 1 is any integer such that nu ∈ B(k),
induces an isomorphism Homk(B,G)⊗Q∼= D⊗Q.

Proof. The homomorphism h is injective. Indeed, ifψ : B→G is such that h(ψ)=0,
then kerψ is a subgroup of B containing a nonzero multiple of u; hence, kerψ = B
by minimality of B. By Poincaré’s complete reducibility theorem [Mumford 1970,
IV.19, Theorem 1], the inclusion B ⊆Hom(Y,G) induces a surjection

Y ⊗Endk(G)∼= Homk(Hom(Y,G),G)
res
−→ Homk(B,G)

sending y⊗ϕ to the unique homomorphism ψ : B→ G with ψ(nu)= nϕ(u(y))
where n≥1 is sufficiently big that nu ∈ B(k), so the remaining statements follow. �

Lemma 3.7. Let the 1-motive M = [Y → G], the subgroup D ⊆ G(k), and the
algebraic subgroup B ⊆ G be as in Lemma 3.6. There is a commutative diagram

Y ⊗Q`

∼=

��

u⊗id
// D⊗Q`

(2) ∼=
��

∼=

(1)
// HomlG (V̀ B, V̀ G)

∼= ϑ∗

��

H 0(lM , Y ⊗Q`)
∂
// H 1(lM , V̀ G)

∼=

res
// HomlG (n

M , V̀ G)

with canonical isomorphisms where indicated.

Proof. We start with the left-hand square. The leftmost vertical isomorphism is
tautological because lM acts trivially on Y ⊗Q`. The map ∂ is the connecting
morphism in the long exact cohomology sequence coming from the weight filtration
of M . The vector spaces D ⊗ Q` and H 1(lM , V̀ G) are naturally E`-modules,
where E` := Endk(G)⊗Q` — the first one by definition and the second one via
the canonical action of E` on V̀ G. The map (2) is then given by E`-linearity and
sending u(y)⊗1 to ∂(y⊗1) for all y ∈ Y . By definition of D, this indeed describes
a unique map such that the left-hand square commutes. We will see in a moment
that it is well-defined and an isomorphism.

We now come to the right-hand square, starting with the description of the
map (1). Every element of D ⊗Q` is a linear combination of elements of the
form ψ(u)⊗ 1 for some ψ ∈Homk(B,G) by Lemma 3.6. The map (1) is given by
linearity and sends ψ(u)⊗1 to the lG-equivariant map V̀ ψ : V̀ B→ V̀ G. This map
is an isomorphism by Lemma 3.6 and by Faltings’s theorem on homomorphisms
of abelian varieties. The rightmost vertical map is given by precomposition with
the isomorphism ϑ , hence an isomorphism. The lower horizontal map is given
by restriction of cocycles and an isomorphism because H i (lG, V̀ G) vanishes for
i = 1, 2 [Serre 1971, Théorème 2].

By definition of ϑ , the big square commutes. Moreover, the isomorphisms (1)
and ϑ∗ and the inverse of res are all isomorphisms of E`-modules. Hence, so is their
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composition, which is then an isomorphism of E`-modules D⊗Q`→H 1(lM , V̀ G),
which must coincide with (2). �

Proposition 3.8 [Jossen 2013a, Corollary 2.19]. The Lie algebra extension

0→ nM
→ lM → lG→ 0

is split. There exist a Lie algebra section σ : lG → lM and a Q`-linear section
s : Y ⊗Q→ V̀ M such that the action of lM on V̀ M is given by

( f + σ(g)).(v+ s(y))= g.v+ f.y

for all f ∈ nM , all g ∈ lG , all v ∈ V̀ A, and y ∈ Y ⊗Q`.

Proof. This is essentially a consequence of Theorem 3.5, semisimplicity of V̀ G
as lG-module (by the assumption on G and [Faltings 1983]), and the vanishing of
H i (lG, V̀ G) for i = 1, 2 [Serre 1971, Théorème 2]. �

Lemma 3.9. Let M =[u :=Y→G] be a 1-motive over k where G is an abelian va-
riety or a torus. In order that an element h ∈ H 1(lM , V̀ G) belongs to H 1

∗
(lM , V̀ M),

it suffices that it maps to zero in H 1(c, V̀ M) for each one-dimensional subalgebra c

of nM .

Proof. Represent h ∈ H 1(lM , V̀ G) by a cocycle c : lM→ V̀ G ⊆ V̀ M , and choose
a linear section s : Y ⊗Q` → V̀ M and a Lie algebra section σ : lG → lM as
in Proposition 3.8. Since H 1(lG, V̀ G) vanishes [Serre 1971, Théorème 2], the
cocycle c ◦ σ is a coboundary. Thus, changing c by a coboundary, we may suppose
that c ◦ σ = 0. Let c be a one-dimensional subalgebra of lM generated by an
element x ∈ lM . We have to show that there exists an element v ∈ V̀ M such that
c(x) = x .v. We can write x as x = f + σ(g) for some f ∈ nM and g ∈ lG . By
hypothesis, there exists an element v ∈ V̀ M with c( f )= f.v. We can write v as
v = v′+ s(y) for some v′ ∈ V̀ G and y ∈ Y ⊗Q`. We then have

c(x)= c( f + σ(g))= c( f )= f.v = f.s(y)= (σ (g)+ f ).s(y)= x .s(y),

and this proves the lemma. �

Lemma 3.10. Let M = [u : Y → G] be a 1-motive over k where G is an abelian
variety or a torus. Denote by D the E := Endk(G) submodule of G(k) generated by
X := im(u). The isomorphism D⊗Q`→ H 1(lM , V̀ G) from Lemma 3.7 induces
an isomorphism between the kernels of the maps

D⊗Q`→

∏
h∈H

V̀ G/h(X ⊗Q`) and H 1(lM , V̀ G)→
∏
c⊆lM

H 1(c, V̀ M)

where the leftmost product runs over all h ∈ H := HomE⊗Q`
(D⊗Q`, V̀ G).
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Proof. Lemma 3.9 shows that if on the right side we let the product only run over
c ∈ nM we still get the same kernel. For every c= 〈x〉 ⊆ nM , we have

H 1(c, V̀ M)∼=
V̀ M

{x .v | v ∈ V̀ M}
=

V̀ M
im(ϑ(x))

,

where ϑ : n→ Hom(Y ⊗Q, V̀ G) is as defined in Section 3.4. The map

H 1(lM , V̀ G)→ HomlG (n
M , V̀ G)

given by restriction of cocycles is an isomorphism; thus, we have to show that the
kernels of the maps

D⊗Q`→

∏
h∈H

V̀ G/h(X⊗Q`) and HomlG (n
M , V̀ G)→

∏
x∈nM

V̀ G/ im(ϑ(x))

correspond under the isomorphism D⊗Q`
∼=HomlG (n

M , V̀ G) sending ψ(u)⊗1 to
V̀ ψ◦ϑ for allψ ∈Homk(B,G). Here, B⊆Hom(Y,G) is defined as in Theorem 3.5.
The map on the right sends an lG-module homomorphism c : nM

→ V̀ G to the class
of c(x) in the factor corresponding to x . As for the map on the left, by Lemma 3.7,
we may as well take HomlG (V̀ B, V̀ G) in place of D⊗Q` as the domain. Then
we must show that the kernels of the maps

HomlG (V̀ B, V̀ G)→
∏

h

V̀ G/ f (X ⊗Q`)

and

HomlG (n
M , V̀ G)→

∏
x∈nM

V̀ G/ im(ϑ(x))

correspond to each other via composition with the isomorphism ϑ : nM
→ V̀ B,

the first of these products now running over all E ⊗Q`-module morphisms h :
HomlG(V̀ B,V̀ G)→ V̀ G. The canonical map

V̀ B
∼=
−→ HomE⊗Q`

(HomlG (V̀ B, V̀ G), V̀ G), v 7→ [ f 7→ f (v)]

is an isomorphism by Schur’s lemma, so all these E⊗Q`-module homomorphisms h
are given by evaluation in an element v ∈ V̀ B. If h is the evaluation in v = ϑ(x)
for some x ∈ nM , then h(X ⊗Q`)= imϑ(x), hence the claim of the lemma. �

Proof of Theorem 3.1. We consider the following diagram, where the exact row is
induced by the weight filtration on the lM -module V̀ M and where the column is
exact by definition:
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H 1
∗
(lM , V̀ M)

⊆

��

0

((

H 0(lM , Y ⊗Q`)
∂
// H 1(lM , V̀ G)

δ
''

// H 1(lM , V̀ M)

��

// H 1(lM , Y ⊗Q`)

∏
c⊆lM

H 1(〈x〉, V̀ M)

The upper diagonal map is zero because lM acts trivially on Y ⊗ Q`; hence,
H 1
∗
(lM , Y ⊗Q`) is trivial. This shows that every element of H 1

∗
(lM , V̀ M) comes

from an element in H 1(lM , V̀ G), so we find an isomorphism

ker δ/ im ∂ ∼= H 1
∗
(lM , V̀ M)

induced by the inclusion V̀ G ⊆ V̀ M . Lemmas 3.7 and 3.10 respectively show that
the isomorphism D⊗Q`→ H 1(lM , V̀ G) induces isomorphisms X ⊗Q`

∼= im ∂

and

X` :=
{

x ∈ D⊗Q`

∣∣ f (x) ∈ f (X ⊗Q`) for all f ∈ HomE⊗Q`
(D⊗Q`, V̀ G)

}
∼= ker δ,

as needed. �

3.11. Throughout this section, we have always supposed that the semiabelian variety
G is either an abelian variety or a torus. Most statements and constructions, notably
Theorems 3.1 and 3.5, remain true if G is isogenous to a product of an abelian
variety and a torus, and the proofs require only small additional arguments, but the
statements are wrong for general semiabelian varieties. The main problem here is
that a general semiabelian variety G is not a semisimple object, so the analogue of
Poincaré’s complete reducibility theorem fails, and the Galois representation V̀ G
is not semisimple either.

In a general setting, the Lie algebra nM should be replaced by the subalgebra
of lM consisting of those elements of which act trivially on V̀ A and V̀ T , where A
and T are respectively the abelian and torus parts of M . This is then in general not
a commutative but just a nilpotent Lie algebra. The generalisation of Theorem 3.5
is [Jossen 2013b, Theorem 6.2]. The subgroup D of G(k) has to be replaced by the
group of so-called deficient points [loc. cit., Definition 6.2], and the generalisation of
Lemma 3.6 is [loc. cit., Theorem 8.10]. Finally, E-linearity should be reformulated
in terms of derivations. With these settings, it should be possible to generalise
Theorem 3.1 to arbitrary 1-motives.
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4. Finiteness results

In this section, we prove the finiteness statements of Theorem 3 stated in the
introduction. We fix a number field k with algebraic closure k and a prime number `
and write 0 := Gal(k |k) for the absolute Galois group of k and � for the set of
all places of k. For a 1-motive M over k, we write V̀ M := T`M ⊗Q` and denote
by L M the image of 0 in GL(T`M) and by lM ⊆ End(V̀ M) the Lie algebra of L M .

Theorem 4.1. Let M = [u : Y → G] be a 1-motive over k. The Z`-module
X1(k,T`M) is finitely generated. If G is an abelian variety or a torus, such
that Endk(G)⊗Q is a product of division algebras, then X1(k,T`M) is finite.

Observe that if G is an abelian variety, then Endk(G)⊗Q is a product of division
algebras precisely if Gk is isogenous to a product of pairwise nonisogenous simple
abelian varieties over k. If G is a torus, then Endk(G)⊗Q is a product of division
algebras precisely if G is of dimension ≤ 1.

The plan of this section is as follows. First we show that for every 1-motive
M over k there is a canonical injection of X1(k,T`M) into H 1

∗
(L M ,T`M). We

continue with some elementary linear algebra and prove, using Theorem 3.1, that the
group H 1

∗
(L M ,T`M), and hence X1(k,T`M), is finite for all ` if M is a 1-motive

satisfying the condition in the theorem.

Proposition 4.2. Let M be a 1-motive over k. There is a canonical injective
Z`-linear map X1(k,T`M)→ H 1

∗
(L M ,T`M). The Z`-module H 1

∗
(L M ,T`M) is

finitely generated, and its rank is bounded by the dimension of H 1
∗
(lM , V̀ M).

Proof. For every finite Galois module F , the subgroup X1(k, F) of H 1(k, F)=
H 1(0, F) is contained in H 1

∗
(0, F) by [Serre 1964, Proposition 8], which is essen-

tially a consequence of Chebotarev’s density theorem. Because H 1(k,−) commutes
with limits of finite Galois modules and by left exactness of the limit functor, we
can deduce that X1(k,T`M) is contained in H 1

∗
(0,T`M), and H 1

∗
(0,T`M) is

isomorphic to H 1
∗
(L M ,T`M) by [Serre 1964, Proposition 6], hence the canonical

injection. By [loc. cit., Proposition 9], the Z`-module H 1(L M ,T`M) is finitely
generated, and we have an isomorphism of finite-dimensional vector spaces

H 1(L M ,T`M)⊗Q`
∼= H 1(L M , V̀ M).

This identifies H 1
∗
(L M ,T`M)⊗Q` with a subspace of H 1

∗
(L M , V̀ M), which in

turn is a subspace of H 1
∗
(lM , V̀ M) by Lemma 3.3. �

Lemma 4.3. Let K1|K0 be an extension of fields (think of Q`|Q). Let E0 be a K0-
algebra, let D0 and V0 be E0-modules, and let X0 be a K0-linear subspace of D0.
Denote by E1, D1, V1, and X1 the corresponding objects obtained by tensoring
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with K1. Define

X0: = {x ∈ D0 | f (x) ∈ f (X0) for all f ∈ HomE0(D0, V0)},

X1: = {x ∈ D1 | f (x) ∈ f (X1) for all f ∈ HomE1(D1, V1)}.

Then, the inclusion X1 ⊆ X0 ⊗ K1 holds. In particular, if the equality X0 = X0

holds, then the equality X1 = X1 holds as well.

Proof. Let x be an element of X1 ⊆ D1, and let us show that x belongs to X0⊗ K1.
Every E0-linear map D0→ V0 gives rise by K1-linear extension to an E1-linear
map D1 → V1, so by definition of X1, there exists in particular for every f ∈
HomE0(D0, V0) an element x f

∈ X1 such that f (x) = f (x f ). Let (ti )i∈I be a
K0-basis of K1, so we can write x and x f as sums

x =
∑
i∈I

xi ⊗ ti and x f
=

∑
i∈I

x f
i ⊗ ti

for unique elements xi ∈ D0 and x f
i ∈ X0, almost all zero. We have to show that

the xi belong to X0 for all i ∈ I . The equality f (x)= f (x f ) reads∑
i∈I

f (xi )⊗ ti =
∑
i∈I

f (x f
i )⊗ ti .

Linear independence of the ti over K0 implies that we have in fact f (xi )= f (x f
i ) for

all i . Hence, for every i ∈ I and every f ∈HomE0(D0, V0), we have f (xi )∈ f (X0),
that is, xi ∈ X0 as we wanted to show. As for the additional statement, if we have
X0 = X0, then the inclusions

X0⊗ K1
def
= X1 ⊆ X1 ⊆ X0⊗ K1

must all be equalities. �

Lemma 4.4. Let K be a field of characteristic 0, let E be a finite product of
finite-dimensional division algebras over K , let D and V be finite-dimensional
E-modules, and suppose that V is faithful. Let X be a K -linear subspace of D. An
element v ∈ D belongs to X if and only if f (v) belongs to f (X) for all E-linear
maps f : D→ V .

Proof. We only show the case where E is a division algebra over K ; the proof of
the general case is similar. That V is faithful means then just that V is nonzero,
and without loss of generality, we may suppose that V is E , so we are considering
E-linear forms f : D → E . Let trE |K : E → K be a trace map, which for our
purpose can be just any K -linear map with the property that

trE |K (yx)= 0 for all y ∈ E =⇒ x = 0.
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Such a trace map always exists (see, e.g., [Gille and Szamuely 2006, Section 2.6]).
Consider then the K -linear map

HomE(D, E)→ HomK (D, K ), f 7→ trE |K ◦ f.

We claim that this is an isomorphism of K -vector spaces. We only have to show
injectivity; surjectivity follows then by dimension-counting. To show injectivity,
we can suppose that D = E . The above map sends then an E-linear endomorphism
of E , which is just multiplication on the right by some x ∈ E , to the K -linear map
y 7→ tr(yx). If this map is zero, then x must be zero by the above property of the
trace, hence injectivity. The hypothesis on v implies that

trE |K f (v) ∈ trE |K f (X)

for all f ∈ HomE(D, E); hence, f (v) ∈ f (X) for all f ∈ HomK (D, K ); hence,
v ∈ X by standard linear algebra. �

Proof of Theorem 4.1. By Proposition 4.2, it is enough to show that the vector space
H 1
∗
(lM , V̀ M) is trivial. Set E` := Endk(G)⊗Q` and X` := im(u)⊗Q`, denote

by D` the E`-submodule of G(k)⊗Q` generated by X`, and define

X` := {x ∈ D` | f (x) ∈ f (X`) for all f ∈ HomE`(D`, V̀ G)}.

By Theorem 3.1, we have to check that the equality X` = X` holds. Fix an
embedding of k into the field of complex numbers C. Set V0G := H1(G(C),Q) and
E0 := Endk(G)⊗Q and X0 := im(u)⊗Q, and denote by D0 the E0-submodule
of G(k)⊗Q generated by X0. Note that V0G is a faithful E0-module and that there
is a natural isomorphism V̀ G ∼= V0G ⊗Q`. By Lemma 4.3, it is now enough to
check the equality X0 = X0 for

X0 := {x ∈ D0 | f (x) ∈ f (X0) for all f ∈ HomE0(D0,V0G)}.

By hypothesis, the Q-algebra E0 is a product of division algebras; hence, the
equality X0 = X0 indeed holds by Lemma 4.4. �

4.5. One can think of other linear algebra conditions on the objects E , D, V ,
and X than those in Lemma 4.4 that ensure the equality X = X . For instance, the
conclusion of the lemma holds true for any finite-dimensional semisimple algebra E
over K and faithful V if X is of dimension ≤ 1 or if X is an E-submodule or D.
One can conclude along the same lines that if M = [u : Y→G] is a 1-motive where
G is an abelian variety or a torus, such that the image of u generates an Endk ⊗Q-
submodule of G(k)⊗Q or such that u(Y ) is of rank ≤ 1, then X1(k,T`M) is
finite.
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4.6. Our strategy of proving finiteness of X1(k,T`M) consisted of showing that
the a priori larger group H 1

∗
(L M ,T`M) is finite. This strategy does not succeed

always; indeed, there exist 1-motives M such that the group H 1
∗
(L M ,T`M) is

infinite, yet X1(k,T`M) is finite. The point here is that H 1
∗
(0,T`M) only sees the

primes at which T`M is unramified, whereas X1(k,T`M) sees all primes.

5. The torsion of X1(k, T`M)

In this section, we complete the proof of Theorem 3 by examining the finite torsion
part of the group X1(k,T`M). The key ingredient for this is the following lemma:

Lemma 5.1. Let T be a finitely generated free Z`-module, and set V := T ⊗Q`.
Let D ⊆ L ⊆ GL(T ) be Lie subgroups with Lie algebras d and l, respectively. If

(1) the set {π ◦ x | x ∈ l, π ∈ V ∗} is a linear subspace of V ∗ and

(2) for all open subgroups H ⊆ L containing D the equality T H
= T L holds,

then the map r : H 1
∗
(L , T )→ H 1

∗
(D, T ) given by restriction of cocycles is injective

on torsion elements.

This generalises Lemma 4.1 in [Jossen 2013a], which we get back by taking
for D the trivial group. In our application, T will be T`M for a 1-motive M , L will
be L M , i.e., the image of 0 := Gal(k |k) in GL(T`M), and D will be the image
in GL(T`M) of a decomposition group Dv ⊆ 0.

Proof of Lemma 5.1. Let c : L→ T be a cocycle representing an element of order `
in ker(r), and let us show that c is a coboundary. Because c represents a torsion
element in H 1(L , T ), its image in H 1(L , V ) is trivial. Thus, identifying T with a
subset of V , there exists v ∈ V such that c(g)= gv− v for all g ∈ L . The cocycle
c is a coboundary if v belongs to v ∈ V L

+ T . In fact, we will show that

v ∈ (T + V D)∩ (T + V l). (‡)

Since the restriction of c to D is a coboundary, there exists t ∈ T such that
c(g) = gt − t for all g ∈ D; hence, v − t ∈ V D, and so v ∈ T + V D as needed.
To say that the cohomology class of c belongs to H 1

∗
(L , T ) is to say that for each

g ∈ L there exists an element tg ∈ T such that c(g)= gtg − tg. Let N be an open
normal subgroup of l on which the exponential map exp : N → l is defined so that
V 〈g〉 = ker(exp(g)) for all g ∈ N . We then have

v ∈
⋂
g∈L

(T + V 〈g〉)⊆
⋂
g∈N

(T + V 〈g〉)=
⋂
x∈l

(T + ker(x)).

Because of the hypothesis (1), Lemma 4.4 of [Jossen 2013a] applies, which yields
v ∈ T +

⋂
x∈l ker(x)= T + V l and completes the proof of (‡).
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By modifying v by an element of T , we may suppose without loss of generality
that v belongs to V D and in particular to V d. The finite group G := D/(N ∩ D)
acts on V d as well as on V l. By Maschke’s theorem, there exists a Q`-linear,
G-equivariant retraction map r : V d

→ V l of the inclusion V l
→ V d. Restricting r

to V l
+ (T ∩ V d), we find a decomposition of G-modules

V l
+ (T ∩ V d)= V l

⊕ (ker r ∩ (T ∩ V d)).

Writing v = v1+ t1 with v1 ∈ V l and t1 ∈ ker r ∩ T ∩ V d according to this decom-
position, we see that v1 (and also t1) is fixed under G because v is so; hence, we
have

v ∈ (V l
∩ (V d)G)+ T = (V N

∩ V D)+ T = V N D
+ T .

The subgroup N D of L is open and contains D; hence, v ∈ V L
+ T by hypothesis

(2). �

Lemma 5.2. Let M = [u : Y → G] be a 1-motive where G is an abelian variety
or a torus such that Endk(G)⊗Q is a product of division algebras. If the Galois
action on Y is trivial, then X1(k,T`M) is trivial.

Proof. For every finite Galois extension k ′ |k, we have

H 0(k,T`M)= H 0(k ′,T`M)∼= H−1(M)⊗Z`

by Corollary 1.10. Hence, we have (T`M)L M
= (T`M)U for all open subgroups

U of L M . It follows from [Jossen 2013a, Propositions 3.1 and 3.2], which use the
hypothesis on Endk(G)⊗Q that the image of the bilinear map

lM × (V̀ M)∗→ (V̀ M)∗, (x, π) 7→ π ◦ x

is a linear subspace of (V̀ M)∗. The hypotheses of Lemma 5.1 are thus satisfied,
and taking for D the trivial group, it shows that H 1

∗
(L M ,T`M) is torsion-free.

By Theorem 4.1, this group is also finite, hence trivial, and we conclude by
Proposition 4.2. �

Proof of Theorem 3. Let M=[u :Y→G] be a 1-motive over k. We have constructed
the pairing of the theorem and shown in Corollary 2.4 that it is nondegenerate on
the left and in Proposition 2.5 that X0(k,M) is finite. Suppose then that G is an
abelian variety or a torus such that Endk(G)⊗Q is a product of division algebras.
By Corollary 2.4, it remains to prove that the canonical map

X0(k,M)⊗Z`→X1(k,T`M) (?)

constructed in Section 2.3 is an isomorphism. We define Z := H−1(M)= ker u and
use Proposition 2.5 to identify X1(k,M)⊗Z` with X1(k, Z ⊗Z`). Fix a finite
Galois extension k ′ |k over which Z is constant. For every place w of k ′, we write
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kw for the completion of k at the restriction of w to k, and Dw := Gal(k ′w |kw).
From the Hochschild–Serre spectral sequence, we get a commutative diagram with
exact rows

0 // H 1(Gal(k ′ |k), Z ⊗Z`)

��

// H 1(k,T`M)

��

// H 1(k ′,T`M)

��

0 //
∏
w

H 1(Gw, H 0(k ′w,T`M)) //
∏
w

H 1(kw,T`M) //
∏
w

H 1(k ′w,T`M)

The rightmost vertical map is injective by Lemma 5.2; hence, every element
of X1(k,T`M) comes from a unique element of H 1(Gal(k ′ |k), Z ⊗ Z`), hence
from H 1(k, Z ⊗Z`). It remains to show that this element is in X1(k, Z ⊗Z`). To
this end, we consider the diagram

0 // H 1(k, Z ⊗Z`)

��

δ

**

// H 1(k,T`M)

��∏
H 1(kv, Z ⊗Z`) //

∏
H 1(kv,T`M)

where the horizontal maps are induced by the morphism of 1-motives [Z→ 0] →
[Y → G]. Injectivity of the top horizontal map follows from Corollary 1.10. We
have thus ker δ ∼=X1(k,T`M) and must show that every element of ker δ maps
already to zero in H 1(kv, Z ⊗Z`) for all v ∈�; that is, ker δ =X1(k, Z ⊗Z`).

Fix an element x of X1(k,T`M) and a place v, and let Dv be a decomposition
group for v. We know that x comes via inflation from an element z of the finite
group H 1

∗
(L M ,T`M). Write D for the image of Dv in GL(T`M). This D is a

Lie subgroup of L M , and by hypothesis, z restricts to zero in H 1(D,T`M). By
Lemma 5.1 (using again [Jossen 2013a, Propositions 3.1 and 3.2]), we conclude
that there is an open subgroup U of L M containing D such that z is already zero in
H 1(U,T`M). This shows as well that there is an open subgroup 0′ of 0 containing
Dv such that x maps to zero in H 1(0′,T`M). Consider then the diagram

0 // H 1(0, Z ⊗Z`)

��

δ′

))

// H 1(0,T`M)

x 7→0
��

0 // H 1(0′, Z ⊗Z`)

��

// H 1(0′,T`M)

��

H 1(Dv, Z ⊗Z`) // H 1(Dv,T`M)

We know that the element x ∈ X1(k,T`M) comes from an element of ker δ′.
The middle row is exact by Corollary 1.10 and because 0′ is the Galois group
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of a number field so that this element maps to zero in H 1(0′, Z ⊗Z`), hence in
H 1(Dv, Z ⊗Z`). �

6. Tate 1-motives and Leopoldt’s conjecture

In this section, we study the pairing of Theorem 3 in the case where M is a Tate
1-motive over k, that is, a 1-motive of the form M = [Zr

→ Gs
m]. I will show the

following sharper version of Theorem 2 stated in the introduction:

Theorem 6.1. Let k be a number field with ring of integers Ok , and let ` be a prime
number. If for every 1-motive of the form M = [Zr

→ G2
m] over spec(Ok) the group

X2(k,M∨)[`∞] is trivial, then the statement of Leopoldt’s conjecture is true for k
and `.

6.2. We work with the following formulation of Leopoldt’s conjecture [Neukirch
et al. 2000, Theorem 10.3.6(iii)]. For a finite prime p of k, let Ok,p denote the ring
of integers of the completion of k at p. There is a canonical map

i` : O∗k ⊗Z Z`→
∏
p|`

O∗k,p ⊗̂Z`,

which on each component ip : O∗k ⊗Z`→ Ok,p ⊗̂Z` is obtained by applying −⊗̂Z`

to the inclusion O∗k ⊆ O∗k,p. Leopoldt’s conjecture asserts that the map i` is injective.
Note that i` is injective on torsion elements and injective if O∗k is of rank ≤ 1.

Proof of Theorem 6.1. We suppose Leopoldt’s conjecture is false for k and `, so
there exists a nontorsion element z ∈ ker(i`)⊆ O∗k ⊗Z Z`, which we may write as

z =
n∑

i=1

εi ⊗ λi ,

where n ≥ 2 is the rank of O∗k and ε1, . . . , εn are Z-linearly independent elements of
O∗k . By reordering the εi and replacing ε1 by ε−1

1 if necessary, we may as well assume
λ1+λ2 6=0. We will now construct a 1-motive M of the form M=[u :Z2n−1

→G2
m]

over spec(Ok) such that the group X1(k,T`M) is infinite. The 1-motive dual to
M is then of the form M∨ = [Z2

→ G2n−1
m ], and X2(k,M∨) will be infinite by

Proposition 2.2. Let Y ' Z2n−1 be the group matrices

y =
(

y11 y12 y13 · · · y1n

y21 y22 y23 · · · y2n

)
with integer coefficient satisfying y11+ y22 = 0, and define the morphism u by

u(y)=
(

y11ε1+ y12ε2+ y13ε3+ · · ·+ y1nεn

y21ε1+ y22ε2+ y23ε3+ · · ·+ y2nεn

)
∈ G2

m(Ok),
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where we decided to write the group Gm(Ok)= O∗k additively. So if ε denotes the
column vector of the εi , we have just u(y) = yε. We will prove the following
lemma later:

Lemma 6.3. For each 1 ≤ i ≤ n, there exists y ∈ Y such that
(
εi
εi

)
≡ u(y) mod p

holds in G2
m(κp), where κp = is the residue field at p.

Set U := spec(Ok[`
−1
]), and denote by ci and c, respectively, the images of(

εi
εi

)
⊗ 1 and

(z
z

)
under the composite map

G2
m(U )⊗Z`→ H 0(U,M)⊗Z`→ H 1(U,T`M)

where the first map is induced by the projection G2
m(U )→G2

m(U )/u(Y )∼=H 0(U,M)
and the second map is the injection defined in Proposition 1.9. The Z`-submodules
of G2

m(Ok)⊗Z` generated by
(z

z

)
and by u(Y ) intersect trivially because λ1+λ2 6= 0;

hence, c is of infinite order in H 1(U,T`M)⊆ H 1(k,T`M). I claim that c belongs
to X1(k,T`M). Fix a place p of k of residual characteristic p, and let us show
that the restriction of c to H 1(kp,T`M) is zero. In the case p = `, this is true by
construction, considering the commutative diagram

(O∗k)
2
⊗Z`

��

// H 1(U,T`M)

��

(O∗k,p)
2
⊗̂Z` // H 1(kp,T`M)

and that the image of
(z

z

)
is already zero in (O∗k,p)

2
⊗̂Z`. Suppose now that p 6= `, so

T`M is unramified at p. Because c = λ1c1+ · · ·+λncn , it suffices to show that the
restriction of each ci to H 1(κp,T`M) is zero. In view of the commutative diagram

(O∗k)
2
⊗Z`

��

// H 1(U,T`M)

��

Y ⊗Z`
u mod p

// (κ∗p )
2
⊗Z` // H 1(κp,T`M)

this amounts to show that there exists y ∈ Y such that
(
εi
εi

)
≡ u(y) mod p holds

in G2
m(κp), which is what we claimed in Lemma 6.3. Hence, c belongs indeed to

X1(k,T`M) and is of infinite order, and thus, X1(k,T`M) is infinite. �

Proof of Lemma 6.3. Fix 1≤ i ≤ n and a maximal ideal p of Ok with residue field κp.
We have to find a matrix y ∈ Y such that

(
εi
εi

)
is congruent to u(y) modulo p. For

i 6= 1, 2, such a y exists trivially. Let J1 ⊆ Z be the ideal consisting of those m ∈ Z

such that mε1 mod p is in the subgroup of κ∗p generated by ε2, and let a1 ≥ 1 be the
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positive generator of J1. Similarly, define J2 and a2. There exist b1, b2 ∈ Z such
that the linear dependence relations

a1ε1+ b2ε2 = 1 and b1ε1+ a2ε2 = 1

hold in the finite group κ∗p , written additively. Note that bi is a multiple of ai . We
claim that the integers a1 and a2 are coprime. Indeed, suppose there exists a prime `
dividing a1 and a2 so that we can write ai = `a′i and bi = `b′i . Let Z be the subgroup
of κ∗` generated by ε1 and ε2. Since κ∗p [`] is cyclic of order `, we may suppose that
κ∗p [`] ∩ Z is contained in the subgroup of κ∗` generated by, say, ε2. Thus, the point

T := a′1ε1+ b′2ε2 ∈ κ
∗

p [`] ∩ Z

can be written as T = cε2, and we get the relation a′1ε1+ (b′2− c)ε2 = 1, which
contradicts the minimality of a1. Therefore, a1 and a2 are coprime as claimed, and
we can choose integers c1 and c2 such that a1c1+ a2c2 = 1. The matrices

y1 =

(
1− a1c1 −c1b2 0 · · · 0
1− c2b1 −a2c2 0 · · · 0

)
and y2 =

(
−a1c1 1− c1b2 0 · · · 0
−c2b1 1− a2c2 0 · · · 0

)
belong to Y , and we have

(
εi
εi

)
≡ u(yi ) mod p as desired. �

Remark 6.4. If k is a number field whose group of global units O∗k has rank ≤ 1,
one can show that X1(k,T`M)= 0 holds for every Tate 1-motive M over k. On the
other hand, a construction analogous to the one used in the next section produces
Tate 1-motives over particular number fields k with infinite X1(k,T`M).

7. A semiabelian variety with infinite X2

In this section, we prove Theorem 1 by producing a semiabelian variety G over Q

such that X2(Q,G) contains Q/Z as a subgroup and hence in particular is infinite.
The technique is similar to that in the previous paragraph, and here we exploit now
that for elliptic curves of sufficiently big rank the statement analogue to Leopoldt’s
conjecture trivially fails.

7.1. Let E be an elliptic curve over Q of rank at least 3, and let P1, P2, P3 ∈ E(Q)
be Z-linearly independent rational points. Let us write A for the abelian threefold E3

over Q and Y for the group of 3× 3 matrices of trace 0 with integer coefficients.
Looking at Y ' Z8 as a Galois module with trivial Galois action, we consider the
1-motive

M = [u : Y→ A], u(y)= y P =

y11 P1+ y12 P2+ y13 P3

y21 P1+ y22 P2+ y23 P3

y31 P1+ y32 P2+ y33 P3

∈ E(Q)3= A(Q).
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The map u is injective, and I will use X as a shorthand for the group u(Y )⊆ A(Q).
This 1-motive M is of special interest because it produces a counterexample to
the so-called problem of detecting linear dependence: although P /∈ X and even
n P /∈ X for all n 6= 0, there exists for every prime p where E has good reduction
an element x ∈ X such that P is congruent to x modulo p. The verification of
this is similar to the proof of Lemma 6.3; see [Jossen and Perucca 2010]. Using
Theorem 3.1, one shows that H 1

∗
(lM , V̀ M) is nontrivial — this is what makes the

counterexample work and also how it was found in the first place.

7.2. I claim that the Tate–Shafarevich group in degree 2 of the semiabelian variety
dual to the 1-motive M constructed in the previous paragraph contains a subgroup
isomorphic to Q/Z. By Proposition 2.2, this amounts to say that for each prime
number ` the Tate–Shafarevich group

X1(Q,T`M)

is of rank ≥ 1 as a Z`-module. Fix a prime `, and let us denote by [cP ] the
cohomology class of P⊗1 via the injection H 0(Q,M)⊗Z`→ H 1(Q,T`M) from
Proposition 1.9. A cocycle cP representing [cP ] is explicitly given by

cP(σ )= (σ Pi − Pi )
∞

i=0,

where (Pi )
∞

i=0 are elements of A(Q) such that P0 = P and `Pi = Pi−1. Up to a
coboundary, cP does not depend on the choice of the division points Pi . As the
class [P] of P in H 0(Q,M) ∼= A(Q)/X is of infinite order, the element [cP ] ∈

H 1(Q,T`M) is of infinite order too. We claim that n[cP ] belongs to X1(Q,T`M)
for some integer n ≥ 1 (depending on `). To check this, we must show that for
every finite place p of Q the restriction of ncP to a decomposition group Dp is
a coboundary. In the case where ` = 2 and p =∞, we should also demand that
the restriction of n[cP ] to H 1(Gal(C|R),T`M) is zero, but we can ignore this by
choosing n to be even. So from now on, we will stick to finite primes p only.

Lemma 7.3. Let p be a prime, and let Dp ⊆ Gal(Q |Q) be a decomposition group
at p. The restriction of cP to Dp is a coboundary if and only if the class of P in
A(Qp)/X = H 0(Qp,M) is `-divisible.

Proof. Choose an algebraic closure Qp of Qp and an embedding of Q into Qp

in such a way that the given decomposition group Dp equals Gal(Q|(Q ∩Qp)).
Consider the commutative diagram with exact rows

0 // H 0(Q,M)⊗Z`

��

// H 1(Q,T`M)

��

0 // H 0(Qp,M) ⊗̂Z` // H 1(Qp,T`M)



2540 Peter Jossen

The restriction of cP to Dp is a coboundary if and only if [P]⊗1∈ H 0(Q,M)⊗Z`

maps to zero in H 0(Qp,M)⊗̂Z`, that is, if and only if the class of P in H 0(Qp,M)
is `-divisible. �

Lemma 7.4. For every prime p, the closure of X in A(Qp) for the p-adic topology
is an open subgroup of A(Qp) of finite index.

Proof. Because E(Qp) has the structure of a compact p-adic Lie group of dimension
1, there exists an open subgroup of E(Qp) isomorphic to Zp, and because E(Qp)

is compact, any such subgroup has finite index [Silverman 1986, Proposition 6.3].
We find thus a short exact sequence of profinite groups

0→ Z3
p→ A(Qp)→ F→ 0

for some finite group F . Let m ≥ 1 be an integer annihilating F so that m X is
contained in Z3

p. The elements 0
m P1

0

 ,
 0

0
m P2

 , and

m P3

0
0


of m X ⊆ Z3

p ⊆ A(Qp) are linearly independent over Zp because each m Pi ∈ Zp

is nonzero. The closure of m X in Z3
p contains the Zp-submodule generated by

these three points, hence is of finite index in Z3
p. We conclude that the closure of X

in A(Q) has finite index. Every closed subgroup of finite index is also open. �

7.5. We now come to the proof of the claims made in Section 7.2. First of all, let
us choose an integer n ≥ 1 such that the following conditions are met:

(0) If `= 2, then n is even.

(1) For every prime p 6= ` where E has bad reduction, the point n P is `-divisible
in A(Qp).

(2) For p = `, the point n P belongs to the closure of X in A(Qp) for the p-adic
topology.

Such an integer n exists. Indeed, start with, say, n = 2, so condition (0) is satisfied.
We have already observed that A(Qp) is an extension of a finite discrete group F
by Z3

p, so by replacing n by some sufficiently high multiple of n, we can assure that
n P belongs to the subgroup Z3

p of A(Qp), which is `-divisible. We do this for all
the finitely many primes of bad reduction, so condition (1) is met. As for the last
condition, we know that the closure of X in A(Qp) has finite index by Lemma 7.4,
so we again replace n by some sufficiently high multiple if necessary. In order to
show that n[cP ] belongs to X1(Q,T`M), it remains to show by Lemma 7.3 that
for each prime p the class of n P in H 0(Q,M)= A(Qp)/X is `-divisible. In other
words, we must show:
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Claim. For every i ≥ 0, there exist elements Qi ∈ A(Qp) and xi ∈ X such that
`i Qi + xi = n P.

We have already ruled out the case p =∞, and for finite p, we will distinguish
three cases: first, the case where p is a place of good reduction for E and p 6= `,
second, the case where p is a place of bad reduction and p 6= `, and finally, the
case p = `. All but finitely many primes p fall in the first case. For the finitely
many primes that remain, the claim will hold by our particular choice of n.

Case 1 (good reduction at p and p 6= `). In this case, we can consider the surjective
reduction map redp : E(Qp)→ E(Fp). Its kernel is isomorphic to Zp, so we get a
short exact sequence

0→ Z3
p→ A(Qp)

redp
−−→ A(Fp)→ 0.

By [Jossen and Perucca 2010], there exists an element x ∈ X such that redp(P)=
redp(x) in A(Fp). Because Zp is uniquely `-divisible, we can define Qi :=

`−i n(P − x) and get `i Qi + nx = n P .

Case 2 (bad reduction at p and p 6= `). Condition (1) in Section 7.5 ensures that n P
is `-divisible in A(Qp) for bad p 6= `, so the class of P in A(Qp)/X is `-divisible
as well.

Case 3 (p = `). For all i ≥ 0, the subgroup pi A(Qp) is open in A(Qp); hence, by
condition (2) in Section 7.5, the intersection X ∩ (n P + pi A(Qp)) is nonempty.
But that means that there exists an element Qi ∈ A(Qp) and an element xi ∈ X
such that pi Qi + xi = n P , just as needed.

8. Open questions and problems

I present three open arithmetic questions and an elementary problem in linear
algebra, which so far have defied all attempts of being solved. The first question is
about how far finitely generated subgroups of a Mordell–Weil group are detectable
by reduction maps. It is a sharpened version of the problem that in the literature is
named the problem of detecting linear dependence.

Question 8.1. Let G be a semiabelian variety defined over a number field k, and let
X be a finitely generated subgroup of G(k). Denote by X ⊆ G(k) the subgroup of
those points P such that for almost all finite primes p of k the reduction P mod p

belongs to X mod p in G(κp). Let M = [u : Y → G] be a 1-motive where Y is
constant and X = u(Y ). Is it true that the map

X/X ⊗Z`→ H 1
∗
(k,T`M)

induced by the injection H 0(k,M)⊗Z`→ H 1(k,T`M) is an isomorphism?
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A positive answer to this question was given in [Jossen 2013a] in the case where
G is a geometrically simple abelian variety. In this case, we know that H 1

∗
(k,T`M)

is trivial and get a nice local-global principle for subgroups of Mordell–Weil groups.
Apart from a few other isolated examples, the question remains open, even in the
cases where G is an abelian variety or a torus. The second question is similar in
nature, but we impose a stronger local condition.

Question 8.2. Let G be a semiabelian variety defined over a number field k, let
X be a finitely generated subgroup of G(k), and let P ∈ G(k) be a rational point.
Suppose that for all finite primes p of k the point P belongs to the closure of X in
G(kp) for the p-adic topology on G(kp). Does then P belong to X?

We know the answer to be positive if G is a simple abelian variety and in
some other scattered examples. If we could choose the integer n in Section 7.5
independently of `, the answer to the question would be negative. Thirdly, I would
like to ask for a converse to Theorem 6.1.

Question 8.3. Let k be a number field for which the statement of Leopoldt’s
conjecture holds. For which 1-motives M = [Y → G], where G is a torus, is the
pairing

X0(k,M)×X2(k,M∨)→Q/Z

of Theorem 3 a perfect pairing of finite groups? In general, can we compute the
dimension of X1(k, V̀ M)? How does this dimension vary with `?

The second part of this question can as well be formulated for general mixed
Artin–Tate motives. At last, motivated by the proof of Theorem 4.1, let me state a
problem in linear algebra that any first-year student can understand.

Problem. Let K be a field, and write E for the K -algebra of n× n matrices with
coefficients in K . Denote by V and V0 the E-modules of n×m and n×m0 matrices,
respectively. Finally, let W be a K -linear subspace of V , and define

W := {v ∈ V | f (v) ∈ f (W ) for all f ∈ HomE(V, V0)},

so W is a linear subspace of V containing W . Observe that elements of HomE(V,V0)

are just m×m0 matrices by Schur’s lemma. The problem is to compute W . This
means find an algorithm that takes as an input a K -basis of W (this will be some
finitely many n×m matrices) and provides a basis of W or equivalently provides
some finitely many f1, . . . , fr ∈ HomE(V, V0) such that

W = {v ∈ V | fi (v) ∈ fi (W ) for i = 1, 2, . . . , r}.

Changing scalars from K to a bigger field may result in a smaller dimensional W
(i.e., the inclusion of Lemma 4.3 may be strict). Yet, I don’t know of a solution to
the problem even in the case where K is algebraically closed.
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