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Ekedahl–Oort strata of hyperelliptic curves
in characteristic 2
Arsen Elkin and Rachel Pries

Suppose X is a hyperelliptic curve of genus g defined over an algebraically
closed field k of characteristic p = 2. We prove that the de Rham cohomology
of X decomposes into pieces indexed by the branch points of the hyperelliptic
cover. This allows us to compute the isomorphism class of the 2-torsion group
scheme JX [2] of the Jacobian of X in terms of the Ekedahl–Oort type. The
interesting feature is that JX [2] depends only on some discrete invariants of X ,
namely, on the ramification invariants associated with the branch points. We give
a complete classification of the group schemes that occur as the 2-torsion group
schemes of Jacobians of hyperelliptic k-curves of arbitrary genus, showing that
only relatively few of the possible group schemes actually do occur.

1. Introduction

Suppose k is an algebraically closed field of characteristic p > 0. There are several
important stratifications of the moduli space Ag of principally polarized abelian
varieties of dimension g defined over k, including the Ekedahl–Oort stratification.
The Ekedahl–Oort type characterizes the p-torsion group scheme of the correspond-
ing abelian varieties and, in particular, determines invariants of the group scheme
such as the p-rank and a-number. It is defined by the interaction between the
Frobenius F and Verschiebung V operators on the p-torsion group scheme. Very
little is known about how the Ekedahl–Oort strata intersect the Torelli locus of
Jacobians of curves. In particular, one would like to know which group schemes
occur as the p-torsion JX [p] of the Jacobian JX of a curve X of genus g.

In this paper, we completely answer this question for hyperelliptic k-curves X of
arbitrary genus when k has characteristic p=2, a case that is amenable to calculation
because of the confluence of hyperelliptic and Artin–Schreier properties. We first
prove a decomposition result about the structure of H1

dR(X) as a module under the

Elkin is partially supported by the Marie Curie Incoming International Fellowship PIIF-GA-2009-
236606. Pries is partially supported by National Science Foundation grant DMS-11-01712.
MSC2010: primary 11G20; secondary 14K15, 14L15, 14H40, 14F40, 11G10.
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actions of F and V , where the pieces of the decomposition are indexed by the branch
points of the hyperelliptic cover. This is the only decomposition result about the
de Rham cohomology of Artin–Schreier curves that we know of, though the action
of V on H0(X, �1) and the action of F on H1(X,O) have been studied for Artin–
Schreier curves under less restrictive hypotheses [Madden 1978; Sullivan 1975].

The second result of this paper is a complete classification of the isomorphism
classes of group schemes that occur as the 2-torsion group scheme JX [2] for a
hyperelliptic k-curve X of arbitrary genus when char(k)= 2. The group schemes
that occur decompose into pieces indexed by the branch points of the hyperelliptic
cover, and we determine the Ekedahl–Oort types of these pieces. In particular, we
determine which a-numbers occur for the 2-torsion group schemes of hyperelliptic
k-curves of arbitrary genus when char(k)= 2. Before describing the result precisely,
we note that it shows that the group scheme JX [2] depends only on some discrete
invariants of X and not on the location of the branch points or the equation of the
hyperelliptic cover. This is in sharp contrast to the case of hyperelliptic curves in
odd characteristic p, where even the p-rank depends on the location of the branch
points [Yui 1978].

Notation 1.1. Suppose k is an algebraically closed field of characteristic p = 2.
Let X be a k-curve of genus g that is hyperelliptic, in other words, for which there
exists a degree two cover π : X → P1. Let B ⊂ P1(k) denote the set of branch
points of π , and let r := #B− 1. After a fractional linear transformation, one may
suppose that 0 ∈ B and∞ /∈ B.

For α ∈ B, the ramification invariant dα is the largest integer for which the
higher ramification group of π above α is nontrivial. By [Stichtenoth 2009, Propo-
sition III.7.8], dα is odd. Let cα := (dα − 1)/2, and let xα := (x −α)−1.

The cover π is given by an affine equation of the form y2
− y = f (x) for some

nonconstant rational function f (x) ∈ k(x). After a change of variables of the form
y 7→ y + ε, one may suppose the partial fraction decomposition of f (x) has the
form

f (x)=
∑
α∈B

fα(xα), (1-1)

where fα(x) ∈ xk[x2
] is a polynomial of degree dα containing no monomials of

even exponent. In particular, the divisor of poles of f (x) on P1 has the form

div∞( f (x))=
∑
α∈B

dαα.

By the Riemann–Hurwitz formula [Serre 1968, IV, Proposition 4], the genus g
of X satisfies

2g+ 2=
∑
α∈B

(dα + 1).
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Recall that the 2-rank of (the Jacobian of) the k-curve X is dimF2 Hom(µ2, JX [2]),
where µ2 is the kernel of Frobenius on Gm . By the Deuring–Shafarevich formula
[Subrao 1975, Theorem 4.2; Crew 1984, Corollary 1.8], the 2-rank of X is r . Note
that g= r+

∑
α∈B cα . The implication of these formulas is that, for a given genus g

(and 2-rank r ), there is an additional discrete invariant of the hyperelliptic k-curve X ,
namely, a partition of 2g+ 2 into r + 1 positive even integers dα+ 1. In Section 5a,
we show that the Ekedahl–Oort type of X depends only on this discrete invariant.

Theorem 1.2. Suppose X is a hyperelliptic curve defined over an algebraically
closed field k of characteristic 2 with affine equation y2

− y= f (x), branch locus B,
and polynomials fα for α ∈ B as described in Notation 1.1. For α ∈ B, consider the
Artin–Schreier k-curve Yα with affine equation y2

−y= fα(x). Let E be an ordinary
elliptic k-curve. As a module under the actions of Frobenius F and Verschiebung V ,
the de Rham cohomology of X decomposes as

H1
dR(X)∼= H1

dR(E)
#B−1
⊕

⊕
α∈B

H1
dR(Yα).

As an application of Theorem 1.2, we give a complete classification of the
Ekedahl–Oort types that occur for hyperelliptic k-curves. Recall that the 2-torsion
group scheme JX [2] of the Jacobian of a k-curve is a polarized BT1 group scheme
over k (short for polarized Barsotti–Tate truncated level-1 group scheme) and that
the isomorphism class of a BT1 group scheme determines and is determined by
its Ekedahl–Oort type; see Section 2 for more details. For p = 2 and a natural
number c, let Gc be the polarized BT1 group scheme of rank p2c with Ekedahl–Oort
type [0, 1, 1, 2, 2, . . . , bc/2c]. For example, G1 is the 2-torsion group scheme of a
supersingular elliptic k-curve. The group scheme G2 occurs as the 2-torsion of a
supersingular nonsuperspecial abelian surface over k. The group scheme Gc is not
necessarily indecomposable. More explanation about Gc is given in Sections 2c
and 5b.

Before stating the classification result, we note that it also includes a complete
description of which a-numbers occur for the Jacobians of hyperelliptic k-curves.
Recall that the a-number of X is defined as aX := dimk Hom(α2, JX [2]), where α2

is the kernel of Frobenius on Ga .

Theorem 1.3. Let X be a hyperelliptic k-curve with affine equation y2
− y = f (x)

defined over an algebraically closed field of characteristic 2 as described in
Notation 1.1. Then the 2-torsion group scheme of the Jacobian variety of X is

JX [2] ' (Z/2⊕µ2)
r
⊕

⊕
α∈B

Gcα ,

and the a-number of X is aX = (g+ 1− #{α ∈ B | dα ≡ 1 mod 4})/2.
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Theorem 1.3 is stated without proof in [van der Geer 1999, 3.2] for the special
case when f (x) ∈ k[x], that is, r = 0. There are two interesting things about
Theorem 1.3. First, it shows that the Ekedahl–Oort type of X : y2

− y = f (x)
depends only on the orders of the poles of f (x). This is in sharp contrast to the
case of hyperelliptic curves in odd characteristic p, where even the p-rank depends
on f (x) and the location of the branch points [Yui 1978]. Similarly, it differs from
the results of [Bouw 2001; Elkin 2011; Johnston 2007], all of which give bounds
for the p-rank and a-number of various kinds of curves that depend strongly on the
coefficients of their equations. Likewise, preliminary calculations indicate that it is
in contrast to the situation for Artin–Schreier curves in odd characteristic.

Secondly, Theorem 1.3 is interesting because it shows that most of the possibilities
for the 2-torsion group scheme of an abelian variety over k do not occur for
Jacobians of hyperelliptic k-curves when char(k) = 2. Specifically, there are 2g

possibilities for the 2-torsion group scheme of a g-dimensional abelian variety
over k. We determine a subset of these of cardinality equal to the number P(g+ 1)
of partitions of g+ 1 and prove that the group schemes in this subset are exactly
those that occur as the 2-torsion JX [2] for a hyperelliptic k-curve X of genus g.
Recall [Hardy and Ramanujan 1918] that P(g + 1) grows asymptotically like
eπ
√

2(g+1)/3/(4
√

3(g + 1)) as g goes to infinity. Also, Theorem 1.3 gives the
nontrivial bounds (g− r)/2≤ aX ≤ (g+ 1)/2 for the a-number.

An earlier nonexistence result of this type is due to Ekedahl [1987], who proved
that a curve X of genus g> p(p−1)/2 in characteristic p>0 cannot be superspecial
and thus aX < g. There are also other recent results about Newton polygons of
hyperelliptic (that is, Artin–Schreier) curves in characteristic 2, including several
nonexistence results [Blache 2012; Scholten and Zhu 2002]. In addition, there are
closed formulas for the number of hyperelliptic curves of genus 3 with given 2-rank
over each finite field of characteristic 2 [Nart and Sadornil 2004].

Here is an outline of this paper. Section 2 contains notation and background.
Results on H0(X, �1) and the a-number are in Section 3. Theorem 1.2 is with the
material on the de Rham cohomology in Section 4. Section 5 contains the results
about the Ekedahl–Oort type, including Theorem 1.3.

2. Background

In this paper, all objects are defined over an algebraically closed field k of charac-
teristic p > 0, and all curves are smooth, projective, and connected. This section
includes background on p-torsion group schemes, Ekedahl–Oort types, the de Rham
cohomology, and Frobenius and Verschiebung.

2a. The p-torsion group scheme. Suppose A is a principally polarized abelian
variety of dimension g defined over k. For example, A could be the Jacobian of a
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k-curve of genus g. Consider the multiplication-by-p morphism [p] : A→ A that is
a finite flat morphism of degree p2g. It factors as [p] = V ◦ F . Here F : A→ A(p)

is the relative Frobenius morphism coming from the p-power map on the structure
sheaf; it is purely inseparable of degree pg. Furthermore, V : A(p) → A is the
Verschiebung morphism.

The p-torsion group scheme of A, denoted A[p], is the kernel of [p]. It is a finite
commutative group scheme annihilated by p, again having morphisms F and V .
By [Oort 2001, 9.5], the p-torsion group scheme A[p] is a polarized BT1 group
scheme over k (short for polarized Barsotti–Tate truncated level-1 group scheme)
as defined in [Oort 2001, 2.1, 9.2]. The rank of A[p] is p2g.

We now give a brief summary of the classification [Oort 2001, Theorems 9.4
and 12.3] of polarized BT1 group schemes over k in terms of Dieudonné modules and
Ekedahl–Oort type; other useful references are [Kraft 1975] (without polarization)
and [Moonen 2001] (for p ≥ 3).

2b. The Dieudonné module and polarizations. It is useful to describe the group
scheme A[p] using (the modulo p reduction of) the covariant Dieudonné module
[Oort 2001, 15.3]. This is the dual of the contravariant theory found in [Demazure
1972]. In brief, consider the noncommutative ring E = k[F, V ] generated by
semilinear operators F and V with the relations FV = V F = 0 and Fλ = λp F
and λV = Vλp for all λ ∈ k. Let E(A, B) denote the left ideal EA + EB of E

generated by A and B. A deep result is that the Dieudonné functor D gives an
equivalence of categories between BT1 group schemes over k (with rank p2g) and
finite left E-modules (having dimension 2g as a k-vector space). We use the notation
D(G) to denote the Dieudonné module of G. For example, the Dieudonné module
of the p-torsion group scheme of an ordinary elliptic curve is D(Z/p ⊕ µp) '

E/E(F, 1− V )⊕ E/E(V, 1− F) [Goren 2002, Examples A.5.1 and A.5.3].
The polarization of A induces a symmetry on A[p] as defined in [Oort 2001, 5.1],

namely, an antisymmetric isomorphism from A[p] to the Cartier dual group scheme
A[p]dual of A[p]. Unfortunately, in characteristic 2, there may be antisymmetric
morphisms A[p] → A[p]dual that do not come from a polarization. Luckily, this
issue can be resolved by defining a polarization on A[p] in terms of a nondegenerate
alternating pairing on D(A[p]) [Oort 2001, 9.2, 9.5, 12.2].

2c. The Ekedahl–Oort type. As in [Oort 2001, Sections 5 and 9], the isomorphism
type of a BT1 group scheme G over k can be encapsulated into combinatorial data.
If G is symmetric with rank p2g, then there is a final filtration N1⊂ N2⊂ · · · ⊂ N2g

of G as a k-vector space that is stable under the action of V and F−1 such that
i = dim(Ni ) [Oort 2001, 5.4]. If w is a word in V and F−1, then wD(G) is an
object in the filtration; in particular, Ng = V D(G)= F−1(0).
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The Ekedahl–Oort type of G, also called the final type, is ν= [ν1, . . . , νg], where
νi = dim(V (Ni )). The Ekedahl–Oort type of G does not depend on the choice of a
final filtration. There is a restriction νi ≤ νi+1 ≤ νi + 1 on the final type. There are
2g Ekedahl–Oort types of length g since all sequences satisfying this restriction
occur. By [Oort 2001, 9.4, 12.3], there are bijections between (i) Ekedahl–Oort
types of length g, (ii) polarized BT1 group schemes over k of rank p2g, and (iii)
principal quasipolarized Dieudonné modules of dimension 2g over k.

2d. The p-rank and a-number. Two invariants of (the p-torsion of) an abelian
variety are the p-rank and a-number. The p-rank of A is r =dimFp Hom(µp, A[p]),
where µp is the kernel of Frobenius on Gm . Then pr is the cardinality of A[p](k).
The a-number of A is a=dimk Hom(αp, A[p]), where αp is the kernel of Frobenius
on Ga . It is well known that 0 ≤ f ≤ g and 1 ≤ a+ f ≤ g. The p-rank of A[p]
equals the dimension of V g D(G). The a-number of A[p] equals g−dim(V 2 D(G))
[Li and Oort 1998, 5.2.8]. The p-rank equals max{i | νi = i}, and the a-number
equals g− νg.

2e. The de Rham cohomology. Suppose X is a k-curve of genus g, and recall the
definition of the noncommutative ring E= k[F, V ] from Section 2b. By [Oda 1969,
Section 5], there is an isomorphism of E-modules between the Dieudonné module
of the p-torsion group scheme JX [p] and the de Rham cohomology group H1

dR(X).
In particular, ker(F)= H0(X, �1)= im(V ). Recall that dimk H1

dR(X)= 2g.
In [Oda 1969, Section 5], there is the following description of H1

dR(X). Let
U = {Ui } be a covering of X by affine open subvarieties, and let Ui j := Ui ∩U j

and Ui jk :=Ui ∩U j ∩Uk . For a sheaf F on X , let

C0(U,F) := {κ = (κi )i | κi ∈ 0(Ui ,F)},

C1(U,F) := {φ = (φi j )i< j | φi j ∈ 0(Ui j ,F)},

C2(U,F) := {ψ = (ψi jk)i< j<k | ψi jk ∈ 0(Ui jk,F)}.

For convenience, let φi i := 0 for any φ ∈C1(U,F). There are coboundary operators
δ :C0(U,F)→C1(U,F) defined by (δκ)i< j =κi−κ j and δ :C1(U,F)→C2(U,F)

by (δφ)i< j<k=φi j−φik+φ jk . All other maps are applied to Cm(U,F) elementwise,
for example, (Fφ)i := Fφi . As expected, δ2

= 0.
The de Rham cocycles are defined by

Z1
dR(U) := {(φ, ω) ∈ C1(U,O)×C0(U, �1) | δφ = 0, dφ = δω},

that is, φi j − φik + φ jk = 0 and dφi j = ωi − ω j for all indices i < j < k. The
de Rham coboundaries are defined by

B1
dR(U) := {(δκ, dκ) ∈ Z1

dR(U) | κ ∈ C0(U,O)}.
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Finally,

H1
dR(X)∼= H1

dR(U) := Z1
dR(U)/B

1
dR(U).

There is an injective homomorphism λ :H0(X, �1)→H1
dR(X) denoted informally

by ω 7→ (0, ω), where the second coordinate is defined by ωi = ω|Ui . This map
is well-defined since d(0) = ω|Ui − ω|U j = (δω)i< j . It is injective because if
(0, ω1) ≡ (0, ω2) mod B1

dR(U), then ω1 − ω2 = dκ , where κ ∈ C0(U,O) is such
that δκ = 0; thus, κ ∈H0(U,O)' k is a constant function on X , and so ω1−ω2= 0.

There is another homomorphism γ :H1
dR(X)→H1(X,O) sending the cohomology

class of (φ, ω) to the cohomology class of φ. The choice of cocycle (φ, ω) does not
matter since the coboundary conditions on H1

dR(X) and H1(X,O) are compatible.
The homomorphisms λ and γ fit into a short exact sequence

0→ H0(X, �1)
λ
−→ H1

dR(X)
γ
−→ H1(X,O)→ 0 (2-1)

of k-vector spaces. In Sections 4d and 4f, we construct a suitable section σ :
H1(X,O)→ H1

dR(X) of γ when X is a hyperelliptic k-curve with char(k)= 2.

2f. Frobenius and Verschiebung. The Cartier operator C on the sheaf �1 is de-
fined in [Cartier 1957]. Its three principal properties are that it annihilates exact dif-
ferentials, preserves logarithmic ones, and induces a p−1-linear map on H0(X, �1).
The Cartier operator can be computed as follows. Let x ∈ k(X) be an element that
forms a p-basis of k(X) over k(X)p, that is, an element such that every z ∈ k(X)
can be written as

z := z p
0 + z p

1 x + · · ·+ z p
p−1x p−1

for uniquely determined z0, . . . , z p−1 ∈ k(X). Then

C(z dx/x) := z0 dx/x .

The Frobenius operator F on the structure sheaf O of X induces a p-linear
map F on H1(X,O). By Serre duality, the k[F]-module H1(X,O) is dual to the
k[C]-module H0(X, �1).

The p-linear operator F and the p−1-linear operator V are defined on H1
dR(X)

as follows. Let V (ω) := C(ω) and F(ω) := 0 for ω ∈ H0(X, �1) and V ( f ) := 0
for f ∈ H1(X,O). Then

F( f, ω) :=(F( f ), F(ω))=( f p, 0) and V ( f, ω) :=(V ( f ), V (ω))=(0,C(ω)).

With E= k[F, V ] defined in Section 2c, the short exact sequence (2-1) is an exact
sequence of E-modules. However, the section σ of (2-1) constructed in Section 4d
is not a splitting of E-modules.
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3. Results about regular 1-forms and the a-number

We specialize to the case when the algebraically closed field k has characteristic
p = 2. Consider a hyperelliptic k-curve X with affine equation y2

− y = f (x)
as described in Section 1. For each branch point α ∈ B, recall the definitions
of the ramification invariant dα = 2cα + 1, the function xα = (x − α)−1, and
the polynomial fα(xα) appearing in the partial fraction decomposition of f (x).
Important facts mentioned in Section 1 are that the genus is determined from the
ramification invariants by the formula 2g+ 2=

∑
α∈B(dα + 1) and that the 2-rank

of JX equals r = #B− 1.
For α ∈ B, let Pα := π−1(α) ∈ X (k) be the ramification point above α, and

define the divisor D∞ := π−1(∞) on X . Recall that 0 ∈ B and ∞ /∈ B, and let
B∞ := B ∪ {∞} and B ′ := B−{0}.

3a. The space H0(X,�1). For an integer j and for α ∈ B, consider the 1-forms

ωα, j := x j−1
α dxα on X .

Note that ωα, j =−(x−α)− j−1 dx and if α∈ B ′, then ωα,0−ω0,0=−α dx/x(x−α).
For completeness, we prove the next lemma, a variation of a special case of

[Sullivan 1975, Lemma 1(c)].

Lemma 3.1. A basis for H0(X, �1) is given by the 1-forms ωα, j for α ∈ B and
1≤ j ≤ cα and ωα,0−ω0,0 for α ∈ B ′.

Proof. For α∈ B, we can calculate the following divisors on X : div(xα)=D∞−2Pα ,

div(dxα)= (dα − 3)Pα +
∑

β∈B−{α}

(dβ + 1)Pβ, (3-1)

div(ωα, j )= 2(cα − j)Pα + ( j − 1)D∞+
∑

β∈B−{α}

(dβ + 1)Pβ . (3-2)

Thus, ωα, j is regular for 1≤ j ≤ cα, and (ωα,0−ω0,0) is regular for α ∈ B ′ since

div(ωα,0−ω0,0)= 2cαPα + 2c0 P0+
∑

β∈B−{0,α}

(dβ + 1)Pβ .

This set of regular differentials of X is linearly independent because the correspond-
ing set of divisors is linearly independent over Z. It forms a basis since the set has
cardinality r +

∑
α∈B cα = g. �

Lemma 3.2. If α ∈ B, then

C(ωα, j )=

{
ωα, j/2 if j is even,
0 if j is odd.

In particular, C(ωα,0−ω0,0)= ωα,0−ω0,0 for all α ∈ B ′.
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Proof. Using the properties of the Cartier operator found in Section 2f, one computes
when j is even that

C(x j−1
α dxα)= x j/2

α C(dxα/xα)= x j/2−1
α dxα

and when j is odd that

C(x j−1
α dxα)= x ( j−1)/2

α C(dxα)= 0. �

Let W ′α,ss := 〈ωα,0−ω0,0〉 for α ∈ B ′, and let W ′α,nil := 〈ωα, j | 1 ≤ j ≤ cα〉 for
α ∈ B, where 〈 · 〉 denotes the k-span. These subspaces are invariant under the
Cartier operator by Lemma 3.2.

Lemma 3.3. The subspaces W ′α,ss and W ′α,nil of H0(X, �1) are stable under the
action of Verschiebung for each α ∈ B. There is an isomorphism of V -modules

H0(X, �1)'
⊕
α∈B ′

W ′α,ss⊕
⊕
α∈B

W ′α,nil.

Proof. This follows immediately from Lemmas 3.1 and 3.2. �

3b. Application: The a-number.

Proposition 3.4. Let X be a hyperelliptic k-curve with affine equation y2
−y= f (x)

as described in Notation 1.1. If div∞( f (x)) =
∑

α∈B dαα is the divisor of poles
of f (x) on P1, then the a-number of X is

aX =
g+ 1− #{α ∈ B | dα ≡ 1 mod 4}

2
.

Proof. The a-number of G= JX [2] is aX = g− dim(V 2 D(G)) [Li and Oort 1998,
5.2.8]. The action of V on V D(G) is the same as the action of the Cartier operator C

on H0(X, �1). So aX equals the dimension of the kernel of C on H0(X, �1). By
Lemma 3.2, the kernel of C on H0(X, �1) is spanned by ωα, j for α ∈ B and j odd
with 1≤ j ≤ cα = (dα − 1)/2. Thus, the contribution to the a-number from each
α∈ B is b(dα+1)/4c. In other words, if dα≡1 mod 4, the contribution is (dα−1)/4,
and if dα ≡ 3 mod 4, the contribution is (dα+1)/4. Since g+1=

∑
α∈B(dα+1)/2,

this yields
2aX = (g+ 1)− #{α ∈ B | dα ≡ 1 mod 4}. �

3c. Examples with large p-rank. Let A be a principally polarized abelian variety
over k with dimension g and p-rank r . If r = g, then A[p] ' (Z/p⊕µp)

g and the
a-number is a = 0. If r = g− 1, then A[p] ' (Z/p⊕µp)

g−1
⊕ E[p], where E is

a supersingular elliptic curve and the a-number is a = 1. So the first case where
A[p] and a are not determined by the p-rank is when r = g− 2.
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Example 3.5. Let g≥ 2. There are two possibilities for the p-torsion group scheme
of a principally polarized abelian variety over k with dimension g and p-rank g−2.
When p=2, both of these occur as the 2-torsion group scheme JX [2] of the Jacobian
of a hyperelliptic k-curve X of genus g.

Proof. If A is a principally polarized abelian variety over k with dimension g and
p-rank g − 2, then A[p] ' (µp ⊕ Z/p)g−2

⊕ G, where G is isomorphic to the
p-torsion group scheme of an abelian surface Z with p-rank 0. The abelian surface
can be superspecial or merely supersingular. In the superspecial case, G= (G1)

2,
where G1 denotes the p-torsion group scheme of a supersingular elliptic k-curve;
in the merely supersingular case, we denote the group scheme G2; see [Goren 2002,
Example A.3.15; Pries 2008, Example 2.3] for a complete description of G2.

To prove the second claim, consider the two possibilities for a partition of 2g+2
into r + 1 = g− 1 even integers: (A) {2, 2, . . . , 2, 4, 4} or (B) {2, 2, . . . , 2, 2, 6}.
In case (A), consider f (x) ∈ k(x) with g − 1 poles such that 0 and 1 are poles
of order 3 and the other poles are simple. In case (B), consider f (x) ∈ k(x) with
g− 1 poles such that 0 is a pole of order 5 and the other poles are simple. The
kernel of the Cartier operator on H0(X, �1) is spanned by dx/x2 and dx/(x − 1)2

in case (A) and by dx/x2 in case (B). Thus, the a-number equals 2 in case (A) and
equals 1 in case (B). In both cases, this completely determines the group scheme.
Namely, the group scheme JX [2] is isomorphic to (Z/2⊕µ2)

g−2
⊕ (G1)

2 in case
(A) and to (Z/2⊕µ2)

g−2
⊕G2 in case (B). �

For g ≥ 3 and r ≤ g− 3, the action of V on H0(X, �1) (and, in particular, the
value of the a-number) is not sufficient to determine the isomorphism class of the
group scheme JX [2]. To determine this group scheme, in the next section we study
the E-module structure of H1

dR(X).

4. Results on the de Rham cohomology

4a. An open covering. Let V ′ = P1
− B∞ and U ′ = π−1(V ′) = X − π−1(B∞).

For α ∈ B∞, let Vα = V ′ ∪ {α} and Uα := U ′ ∪ {π−1(α)}. Then the collection
U := {Uα | α ∈ B∞} is a cover of X by open affine subvarieties. By construction, if
α, β ∈ B∞ are distinct, then Vαβ := Vα ∩ Vβ = V ′ and Uαβ := Uα ∩Uβ = U ′. In
particular, the subvarieties Uαβ do not depend on the choice of α and β.

For a sheaf F, let Z1(U,F) and B1(U,F) denote the closed cocycles and
coboundaries of F with respect to U. Recall the definition of the noncommutative
ring E= k[F, V ] and the notation about H1

dR(X) from Section 2e. In this section,
we compute H1(X,O)'H1(U,O) and H1

dR(X)'H1
dR(U) with respect to the open

covering U of X .

4b. Defining components. Given a sheaf F and a cocycle φ ∈ Z1(U,F), consider
its components φα∞ ∈ 0(U ′,F) for α ∈ B. We call {φα∞ | α ∈ B} the set of
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defining components of φ. The reason is that the remaining components of φ are
determined by the coboundary condition φαβ =φα∞−φβ∞. A collection of sections
{φα∞ ∈ 0(U ′,F) | α ∈ B} determines a unique closed cocycle φ ∈ Z1(U,F). Thus,

Z1(U,F)∼=
⊕
α∈B

0(U ′,F). (4-1)

For β ∈ B, consider the natural k-linear map

ϕβ : 0(U ′,O)→ Z1(U,O)

whose defining components for α ∈ B are

(ϕβ(h))α∞ :=
{

h if α = β,
0 otherwise.

Also, consider the k-linear map ϕ∞ : 0(U ′,O)→ Z1(U,O) defined by

(ϕ∞(h))α∞ := −h for all α ∈ B.

Observe that if h ∈ 0(U ′,O), then∑
β∈B∞

ϕβ(h)= 0. (4-2)

For β ∈ B∞, consider the natural k-linear map

ψβ : 0(Uβ,O)→ C0(U,O)

given for α ∈ B∞ by

(ψβ(h))α :=
{

h if α = β,
0 otherwise.

(4-3)

It is straightforward to verify the next lemma.

Lemma 4.1. Suppose β ∈ B∞ and h ∈ 0(Uβ,O) (that is, h is regular at Pβ if
β 6= ∞ and h is regular at the two points in the support of D∞ if β =∞). Then
ϕβ(h|U ′)= δψβ(h) is a coboundary.

4c. The space H1(X,O). In this section, we find an F-module decomposition
of H1(X,O) ' H1(U,O). The results could be deduced from Section 3a using
the duality between H1(X,O) and H0(X, �1). Instead, we take a direct approach
because an explicit description of H1(X,O) is helpful for studying H1

dR(X) in
Section 4f.

Lemma 4.2. Write D∞ = P∞,1+ P∞,2. Then ordP∞,1(y) = 0 and ordP∞,2(y) = s
for some s ≥ 0 (possibly after reordering). For α ∈ B and j ∈ Z, the divisor of poles
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on X of the function yx− j
α = y(x −α) j satisfies

div∞(y(x −α) j )

=max(dα − 2 j, 0)Pα +max( j, 0)P∞,1+max( j − s, 0)P∞,2+
∑

β∈B−{α}

dβ Pβ .

Proof. Recall that div∞(y) =
∑

β∈B dβ Pβ . Note that ordP∞,i (y) ≥ 0 for i = 1, 2
since∞ 6∈ B. If ordP∞,2(y) > 0, that is, if y has a zero at P∞,2, then the value of y
is one at the Galois conjugate P∞,1 of P∞,2. Thus, y cannot have a zero at both
points in the support of D∞. The second claim follows from the additional fact that
div(x −α)= 2Pα − D∞ for α ∈ B. �

Lemma 4.2 implies that y(x −α) j
∈ 0(U ′,O) for all α ∈ B and j ∈ Z.

Lemma 4.3. With notation as above,

(i) Z1(U,O)= 〈ϕβ((x −α) j ), ϕβ(y(x −α) j ) | α, β ∈ B, j ∈ Z〉, and

(ii) if α ∈ B, then 〈ϕα(y(x−β) j ) | j ≥ 0〉 = 〈ϕα(y(x−α) j ) | j ≥ 0〉 as subspaces
of Z1(U,O) for each β ∈ B.

Proof. (i) This is immediate from Equation (4-1) because

Z1(U,O)=
⊕
β∈B

〈ϕβ(h) | h ∈ 0(U ′,O)〉.

(ii) Both are equal to the subspace {ϕα(yh(x)) | h(x) ∈ k[x]}. �

Lemma 4.4. Let α ∈ B ⊂ k and j ∈ Z. Then

(i) ϕβ((x −α) j ) ∈ B1(U,O) for all β ∈ B∞,

(ii) ϕα(y(x −α) j ) ∈ B1(U,O) if j > cα, and

(iii) ϕ∞(y(x −α) j ) ∈ B1(U,O) if j ≤ 0.

Proof. (i) Suppose that β ∈ B. If β 6= α or if j ≥ 0, then (x −α) j is regular at Pβ ,
and so ϕβ((x − α) j ) ∈ B1(U,O) by Lemma 4.1. For j ≥ 0, it follows from this
and Equation (4-2) that the cocycle ϕ∞((x − α) j ) = −

∑
β∈B ϕβ((x − α)

j ) is a
coboundary. If j < 0, then ϕ∞((x −α) j ) ∈ B1(U,O) by Lemma 4.1.

Finally, (x −α) j
∈ 0(Uγ,O) for all γ ∈ B∞−{α} if β = α 6= ∞ and j < 0. By

Equation (4-2),

ϕα((x −α) j )=−
∑

γ∈B∞−{α}

ϕγ((x −α) j )=−
∑

γ∈B∞−{α}

δψγ((x −α) j ), (4-4)

which is a coboundary.

(ii) If j > cα, then y(x −α) j
∈ 0(Uα,O) and ϕα(y(x −α) j )= δψα(y(x −α) j ).

(iii) If j ≤ 0, then y(x−α) j
∈0(U∞,O) and ϕ∞(y(x−α) j )= δψ∞(y(x−α) j ). �
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Consider the cocycles φα, j ∈ Z1(U,O) for α ∈ B and j ∈ Z defined by

φα, j := ϕα(y(x −α) j ).

Given φ ∈Z1(U,O), φ̃ denotes the cohomology class of φ in H1(U,O). For α ∈ B∞,
define the map

ϕ̃α : 0(U ′,O)→ H1(U,O), f 7→ ϕα( f ) mod B1(U,O).

We now study H1(U,O); the following lemma is a variant of a special case of
[Madden 1978, Lemma 6]:

Lemma 4.5. A basis for H1(U,O) is given by the cohomology classes φ̃α, j for
α ∈ B and 1≤ j ≤ cα and φ̃α,0 for α ∈ B ′.

Proof. The set of cohomology classes S={φ̃α, j |α ∈ B, 1≤ j ≤ cα}∪{φ̃α,0 |α ∈ B ′}
has cardinality r +

∑
α∈B cα = g. By Lemmas 4.3(i) and 4.4(i), it suffices to show

that ϕβ(y(x −α) j ) is in the span of S for α, β ∈ B and j ∈ Z. By Lemmas 4.3(ii)
and 4.4(ii), it suffices to show that the span of S contains φ̃0,0 and ϕ̃β(y(x −α)− j )

for α, β ∈ B and j > 0.
The cocycle ϕ∞(y) is a coboundary by Lemmas 4.1 and 4.2. Using this and

Equation (4-2), one computes in H1(U,O) that

φ̃0,0 = ϕ̃0(y)+ ϕ̃∞(y)=−
∑
β∈B ′

ϕ̃β(y)=−
∑
β∈B ′

φ̃β,0,

which is in the span of S.
Now consider ϕ̃β(y(x −α)− j ) for α, β ∈ B and j > 0. If 0= r := #B− 1, then

this cocycle is a coboundary by Equation (4-2) and Lemma 4.4(iii).
Let r > 0; first suppose that α 6= β. Consider the rational function h = (x−α)− j ,

which has no pole at β. Write h = T + E , where T is the degree-cβ Taylor
polynomial of h at β. Then ϕβ(yh)= ϕ(yT )+ ϕ(yE). Note that the function E
on P1 has a zero at β of order at least cβ + 1. Recall that ordPβ (x − β) = 2, and
observe that ordPβ (E)≥ 2(cβ+1)= dβ+1 on X . Since ordPβ (y)=−dβ , it follows
that yE ∈0(Uβ,O) and thus ϕβ(yE) ∈B1(U,O) by Lemma 4.1. The term ϕβ(yT )
is, by construction, a linear combination of ϕβ(y(x −β) j )= φβ, j for 0≤ j ≤ cβ .
Thus, ϕ̃β(yh) is in the span of S, which completes the case when α 6= β.

If α=β and j > 0, one can reduce to the previous case by adding the coboundary
ϕ∞(y(x −α)− j ) to ϕα(y(x −α)− j ) and using Equation (4-2) to see that

ϕ̃α(y(x −α)− j )=−
∑

γ∈B−{α}

ϕ̃γ(y(x −α)− j ). �

The next lemma is important for describing the F-module structure of H1(U,O).
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Lemma 4.6. If α ∈ B and j ≥ 0, then

F φ̃α, j =

{
φ̃α,2 j if 2 j ≤ cα,
0 otherwise.

Proof. Since (Fφα, j )βγ = (φα, j )
2
βγ , one computes that

(y(x −α) j )2 = (y+ f (x))(x −α)2 j

= y(x −α)2 j
+ f (x)(x −α)2 j .

The statement follows from the definition of φ̃α, j and Lemma 4.4(i). �

Now define

W ′′α,ss := 〈φ̃α,0〉 for α ∈ B ′ and

W ′′α,nil := 〈φ̃α, j | 1≤ j ≤ cα〉 for α ∈ B.

Lemma 4.7. The subspaces W ′′α,ss and W ′′α,nil of H1(U,O) are stable under the
action of Frobenius for each α ∈ B. There is an isomorphism of F-modules

H1(U,O)'
⊕
α∈B ′

W ′′α,ss⊕
⊕
α∈B

W ′′α,nil.

Proof. This follows immediately from Lemmas 4.5 and 4.6. �

4d. Auxiliary map. The next goal is to define a section σ :H1(X,O)→H1
dR(X). To

do this, the first step will be to define a homomorphism ρ : Z1(U,O)→ C0(U, �1)

by defining its components ρα : Z1(U,O) → 0(Uβ, �
1) for α, β ∈ B. Given

φ ∈ Z1(U,O) and α ∈ B, the idea is to separate dφ into two parts: The first part
will be regular at Pα and thus belong to 0(Uα, �

1), and the second part will be
regular away from Pα and hence belong to 0(Uβ, �

1) for every β 6= α.

Notation 4.8. Define the truncation operator 2≥i : k[x, x−1
] → k[x, x−1

] by

2≥i

(∑
j

a j x j
)
:=

∑
j≥i

a j x j .

Operators 2>i ,2≤i ,2<i : k[x, x−1
] → k[x, x−1

] can be defined analogously.
These operators can also be defined on k[xα, x−1

α ]. To clarify some ambiguity in
notation, if m(xα) ∈ k[xα, x−1

α ], then let 2≥i (m(xα)) denote 2≥i (m(x))|x=xα .

Recall that xα := (x −α)−1, and so φα, j = ϕα(yx− j
α ). Then

d(yx− j
α )=− j x− j−1

α y dxα + x− j
α dy. (4-5)
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Using partial fractions and the fact that dy =−d( f (x)), one sees that

dy =−
∑
β∈B

f ′β(xβ) dxβ . (4-6)

In light of these facts, consider the following definition:

Notation 4.9. For α ∈ B and j ≥ 0, define

Rα, j :=2≥0(x− j
α f ′α(xα)) dxα and Sα, j := d(yx− j

α )+ Rα, j .

Remark 4.10. Let aα,i ∈ k be the coefficients of the (odd-power) monomials of
the polynomials fα(xα) defined in the partial fraction decomposition (1-1):

fα(xα)=
cα∑

i=0

aα,i x2i+1
α .

Then
Rα, j =

∑
j/2≤i≤cα

aα,i x2i− j
α dxα =

∑
j/2≤i≤cα

aα,iωα,2i− j+1.

Lemma 4.11. Let α ∈ B and j ≥ 0.

(1) The differential form Rα, j is regular away from Pα, that is, Rα, j ∈ 0(Uβ, �
1)

for all β ∈ B∞−{α}

(2) The differential form Sα, j is regular at Pα for 0 ≤ j ≤ cα, that is, Sα, j ∈

0(Uα, �
1).

Proof. (1) This follows from Remark 4.10 and Equation (3-2).

(2) By Notations 4.8 and 4.9 and Equations (4-5) and (4-6), one sees that

Sα, j = d(yx− j
α )+2≥0(x− j

α f ′α(xα)) dxα (4-7)

=− j x− j−1
α y dxα −2<0(x− j

α f ′α(xα)) dxα −
∑

β∈B−{α}

x− j
α f ′β(xβ) dxβ . (4-8)

In the first part of Equation (4-8), note that the order of vanishing of x− j−1
α y dxα

at Pα is 2dα−1+2 j by Lemma 4.2 and Equation (3-1), so this term is regular at Pα .
In the second part of Equation (4-8), note that 2<0(x

− j
α f ′α(xα)) is contained

in x−1
α k[x−1

α ]. Thus, 2<0(x
− j
α f ′α(xα)) has a zero of order at least 2 at Pα. As

seen in the proof of Lemma 3.1, dxα has a zero of order dα − 3 at Pα. Thus,
2<0(x

− j
α f ′α(xα)) dxα is regular at Pα.

The last part of Equation (4-8) is regular at Pα since x−1
α and f ′β(xβ) dxβ are

regular at Pα. �

4e. Definition of ρ. We define a k-linear morphism

ρ : Z1(U,O)→ C0(U, �1).
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4e.1. Definition of ρ on B1(U,O). If φ ∈ B1(U,O), then for some κ ∈ C0(U,O),
φ = δκ . Define

ρ(φ) := dκ

with differentiation performed component-wise. This map is well-defined since if
κ is regular at P ∈ X (k), then so is dκ . Moreover, if κ ′ is another element such
that φ = δκ ′, then δ(κ − κ ′)= 0, and therefore, κ − κ ′ ∈ H0(U,O) is constant and
annihilated by d . Let ρβ(φ) denote (ρ(φ))β .

It follows from the definition that C(ρ(B1(U,O)))= 0 since the Cartier operator
annihilates all exact differential forms. Explicitly, the map ρ is computed as follows:

Lemma 4.12. (i) If α ∈ B∞ and h ∈ 0(Uα,O), then ρϕα(h|U ′)= dψα(h).

(ii) If α ∈ B and j ≤ 0, then

ρϕα((x −α) j )=−
∑

γ∈B∞−{α}

dψγ((x −α) j ).

Proof. (i) This is immediate from the definition of the map ρ and Lemma 4.1.

(ii) This follows from part (i), Equation (4-4), and the definition of ρ. �

Example 4.13. We find the value of ρ on the 1-coboundary ϕα( f (x)x− j
α ) if α ∈ B

and j ≥ 0. Let

rα, j :=2>0(x− j
α fα(xα)) and sα, j :=2≤0(x− j

α fα(xα))+
∑
β 6=α

x− j
α fβ(xβ).

Then

f (x)x− j
α = rα, j + sα, j ,

and rα, j has a pole at Pα but is regular everywhere else while sα, j is regular at Pα , so

ϕα( f (x)x− j
α )= δψα(sα, j )−

∑
β∈B∞−{α}

δψβ(rα, j ).

Therefore, for β 6= α, by Lemma 4.12, ρβϕα( f (x)x− j
α ) = −d(rα, j ). Since

fα(xα) ∈ xαk[x2
α], this simplifies to

ρβϕα( f (x)x− j
α )=

{
−Rα, j if j is even,
0 if j is odd.

(4-9)

Similarly,

ραϕα( f (x)x− j
α )=

{
−Sα, j if j is even,
d( f (x)x− j

α ) if j is odd.
(4-10)
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4e.2. Definition of ρβ on Z1(U,O). By Lemma 4.5, Z1(U,O) is generated by
B1(U,O) and φα, j for α ∈ B and 0≤ j ≤ cα. For α, β ∈ B, define

ρβ(φα, j ) :=

{
Rα, j if β 6= α,
Sα, j if β = α,

and extend ρβ to Z1(U,O) linearly. For all β ∈ B−{α}, note that

ρα(φα, j )= d(yx− j
α )+ ρβ(φα, j ).

Lemma 4.14. There is a well-defined map ρ : Z1(U,O)→ C0(U, �1) given by

ρ :=
⊕
β∈B∞

ρβ .

Proof. By Section 4e.1 and Lemma 4.11, ρβ(Z1(U,O))⊂0(Uβ, �
1) if β ∈ B∞. �

Here is an example of a computation of the map ρ.

Lemma 4.15. Let α ∈ B and j ≥ 0. For each β ∈ B, in 0(Uβ, �
1),

ρβϕα(y2x−2 j
α )=

{
0 if 0≤ 2 j ≤ cα,
−Rα,2 j if 2 j > cα.

In particular, ρϕα(y2x−2 j
α ) lies in the subspace W ′α,nil of H0(U, �1).

Proof. We have y2x−2 j
α = yx−2 j

α + f (x)x−2 j
α , and therefore

ϕα(y2x−2 j
α )= φα,2 j +ϕα( f (x)x−2 j

α ).

Suppose 0≤ 2 j ≤ cα . If β 6= α, then ρβ(φα,2 j )= Rα,2 j =−ρβ(ϕα( f (x)x−2 j
α ))

by Equation (4-9). By Equation (4-10), ρα(φα,2 j )= Sα,2 j =−ρα(ϕα( f (x)x−2 j
α )).

Thus, ρ(φα,2 j )+ ρ(ϕα( f (x)x−2 j
α ))= 0.

Now, suppose that 2 j > cα . Then yx−2 j
α is regular at Pα , and therefore, φα,2 j is

a coboundary with ρ(φα,2 j )= dϕα(yx2 j
α ). Therefore, for β 6= α,

ρβ(φα,2 j )+ ρβ(ϕα( f (x)x−2 j
α ))=−Rα,2 j ,

and

ρα(φα,2 j )+ ρα(ϕα( f (x)x−2 j
α ))= d(yx−2 j

α )+ d( f (x)x−2 j
α )− Rα,2 j =−Rα,2 j .

By Remark 4.10, Rα,2 j ∈ 〈ωα,2i−2 j+1 | j ≤ i ≤ cα〉. If 2 j > cα and j ≤ i ≤ cα,
then 1 ≤ 2i − 2 j + 1 ≤ cα, and so Rα,2 j ∈ W ′α,nil. Finally, since ρβϕα(y2x−2 j

α )

is independent of the choice of β ∈ B∞, we have ρϕα(y2x−2 j
α ) lies in the kernel

H0(U, �1) of the coboundary map δ : C0(U, �1)→ C1(U, �1). �

Lemma 4.16. (i) If φ ∈ Z1(U,O), then δρ(φ)= dφ.

(ii) In particular, C(ρα(φ))= C(ρβ(φ)) for all α, β ∈ B∞.



524 Arsen Elkin and Rachel Pries

(iii) For all α ∈ B and β ∈ B∞, we have C(ρβ(φα, j ))= C(Rα, j ).

Proof. (i) The definition of ρβ implies that ρα(φ)−ρβ(φ)=d(φ)αβ for all α, β ∈ B∞.

(ii) This follows from part (i) since the Cartier operator annihilates exact differential
forms.

(iii) This follows from part (ii) and the definition of ρβ . �

Remark 4.17. With aα,i defined as in Remark 4.10, one can explicitly compute

C(Rα, j )=

{∑cα
i=( j+1)/2

√
aα,iωα,i−( j−1)/2 if j is odd,

0 if j is even.

In particular, C(Rα, j ) ∈W ′α,nil.

4f. The E-module structure of the de Rham cohomology. Consider the exact se-
quence of E-modules

0→ H0(X, �1)
λ
−→ H1

dR(X)
γ
−→ H1(X,O)→ 0,

where E= k[F, V ] is the noncommutative ring defined in Section 2a. Consider the
k-linear function

σ : H1(X,O)→ H1
dR(X)

defined by σ(φ)= (φ, ρ(φ)) for φ ∈ Z1(U,O).

Lemma 4.18. The function σ is a section of γ : H1
dR(X)→ H1(X,O).

Proof. The function σ is well-defined because σ(B1(U,O)) ⊂ B1
dR(U) by the

definition of ρβ on B1(U,O). It is clearly a section of γ. �

Note that σ is not a splitting of E-modules.
For α ∈ B, let λα, j := λ(ωα, j ) and σα, j := σ(φ̃α, j ).

Proposition 4.19. For 0≤ j ≤ cα, the action of F and V on H1
dR(X) is given by

(i) Fλα, j = 0,

(ii) Vλα, j =

{
λα, j/2 if j is even,
0 if j is odd,

(iii) Fσα, j =

{
σα,2 j if j ≤ cα/2,
λ(Rα,2 j ) if j > cα/2,

(iv) Vσα, j =

{
λ(C(Rα, j )) if j is odd,
0 if j is even.

Proof. (i) This follows from Section 2f.

(ii) This follows from Lemma 3.2 after applying λ.
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(iii) In Z1
dR(U),

F(σα, j )= (Fφα, j , 0)

=
(
ϕα(y2x−2 j

α ), ρϕα(y2x−2 j
α )

)
− (0, ρϕα(y2x−2 j

α ))

= σϕα(y2x−2 j
α )− (0, ρϕα(y2x−2 j

α )).

Since y2x−2 j
α = yx−2 j

α + f (x)x−2 j
α , linearity of σ and ϕα yields that

σϕα(y2x−2 j
α )= σϕα(yx−2 j

α )+ σϕα( f (x)x−2 j
α ).

The term σϕα( f (x)x−2 j
α ) is a coboundary by Lemma 4.4(i), and σϕα(yx−2 j

α )

equals σα,2 j if 0≤ 2 j ≤ cα and is a coboundary if 2 j > cα by Lemma 4.4(ii). By
Lemma 4.15,

(0, ρϕα(y2x−2 j
α ))=

{
0 if 0≤ 2 j ≤ cα,
−λ(Rα,2 j ) if 2 j > cα.

(iv) Since V (φ, ρ(φ))= (0,C(ρ(φ))), the result follows by Lemma 4.16(iii). �

Consider the subspaces of H1
dR(X) given by

Wα,ss := 〈λα,0− λ0,0, σα,0〉,

Wα,nil := 〈λα, j , σα, j | 1≤ j ≤ cα〉.

Theorem 4.20. The subspaces Wα,ss and Wα,nil of H1
dR(X) are stable under the

action of Frobenius and Verschiebung for each α ∈ B. There is an isomorphism of
E-modules

H1
dR(X)=

⊕
α∈B ′

Wα,ss⊕
⊕
α∈B

Wα,nil.

Proof. The stability is immediate by Proposition 4.19, Remark 4.10, and Lemma 4.15.
The decomposition follows from Lemmas 4.18, 3.3, and 4.7. �

Theorem 1.2 is immediate from Theorem 4.20.

5. Results on the Ekedahl–Oort type

For a natural number c, let Gc be the unique symmetric BT1 group scheme of
rank p2c with Ekedahl–Oort type [0, 1, 1, 2, 2, . . . , bc/2c]. In other words, this
means that there is a final filtration N1 ⊂ N2 ⊂ · · · ⊂ N2c of D(Gc) as a k-vector
space, which is stable under the action of V and F−1 and with i = dim(Ni ), such
that dim(V (Ni )) = bi/2c. In Section 5a, we prove that group schemes of the
form Gc appear in the decomposition of JX [2] when X is a hyperelliptic k-curve.
In Section 5b, we describe the Dieudonné module of Gc for arbitrary c and give
examples.
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5a. The final filtration for hyperelliptic curves in characteristic 2. Suppose X
is a hyperelliptic k-curve with affine equation y2

− y = f (x) as described in
Notation 1.1. For α ∈ B, recall that cα = (dα − 1)/2, where dα is the ramification
invariant of X above α. Recall the subspaces Wα,nil of H1

dR(X) from Section 4f.
Define subspaces Nα,i of Wα,nil for 0≤ i ≤ 2cα as follows: Nα,0 := {0} and

Nα,i :=
{
〈λα, j | 1≤ j ≤ i〉 if 1≤ i ≤ cα,
Nα,cα ⊕〈σα, j | 1≤ j ≤ i〉 if cα + 1≤ i ≤ 2cα.

Proposition 5.1. The filtration Nα,0⊂ Nα,1⊂ Nα,2⊂· · ·⊂ Nα,2cα is a final filtration
of Wα,nil for each α ∈ B. Furthermore, V (Nα,i )= Nα,bi/2c.

Proof. Let 0≤ i≤2cα . Then dim(Nα,i )= i . By Proposition 4.19, V (Nα,i )=Nα,bi/2c,
and F−1(Nα,i )= Nα,cα+di/2e. Thus, the filtration Nα,0⊂ Nα,1⊂ Nα,2⊂ · · ·⊂ Nα,2cα
is stable under the action of V and F−1. �

Theorem 5.2. Let k be an algebraically closed field of characteristic p = 2. Let
X be a hyperelliptic k-curve with affine equation y2

− y = f (x) as described in
Notation 1.1. Then the 2-torsion group scheme of X decomposes as

JX [2] ' (Z/2⊕µ2)
r
⊕

⊕
α∈B

Gcα ,

and the a-number of X is

aX = (g+ 1− #{α ∈ B | dα ≡ 1 mod 4})/2.

Proof. By [Oda 1969, Section 5], there is an isomorphism of E-modules between
the Dieudonné module D(JX [2]) and the de Rham cohomology H1

dR(X). By
Theorem 4.20, there is an isomorphism of E-modules

H1
dR(X)=

⊕
α∈B ′

Wα,ss⊕
⊕
α∈B

Wα,nil.

If α∈ B ′, then Wα,ss is isomorphic to E/E(F, 1−V )⊕E/E(V, 1−F)'D(Z/2⊕µ2).
Finally, Proposition 5.1 shows Wα,nil ' D(Gcα ), which completes the proof of the
statement about JX [2]. The statement about aX can be found in Proposition 3.4. �

As a corollary, we highlight the special case when r = 0 (for example, when
f (x) ∈ k[x]). Corollary 5.3 is stated without proof in [van der Geer 1999, 3.2].

Corollary 5.3. Let k be an algebraically closed field of characteristic p = 2.
Suppose X is a hyperelliptic k-curve of genus g and p-rank r =0. Then the Ekedahl–
Oort type of JX [2] is [0, 1, 1, 2, 2, . . . , bg/2c], and the a-number aX = b(g+1)/2c.

Proof. This is a special case of Theorem 5.2 where #B = 1. �
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The next immediate corollary of Theorem 5.2 is included to emphasize that
Theorem 5.2 gives a complete classification of the 2-torsion group schemes that
occur as JX [2] when X is a hyperelliptic k-curve.

Corollary 5.4. Let k be an algebraically closed field of characteristic p= 2. Let G
be a polarized BT1 group scheme over k of rank p2g. Let 0≤ r ≤ g. Then G' JX [2]
for some hyperelliptic k-curve X of genus g and p-rank r if and only if there exist
nonnegative integers c1, . . . , cr+1 such that

∑r+1
i=1 ci = g− r and such that

G ' (Z/2⊕µ2)
r
⊕

⊕
α∈B

Gcα .

Remark 5.5. For fixed g, the number of isomorphism classes of polarized BT1

group schemes of rank p2g that occur as JX [2] for some hyperelliptic k-curve X
of genus g equals the number of partitions of g + 1. To see this, note that the
isomorphism class of JX [2] is determined by the multiset {d1, . . . , dr+1}, where
di = 2ci + 1 and

∑r+1
i=1 (di + 1)= 2g+ 2. So the number of isomorphism classes

equals the number of partitions of 2g+ 2 into positive even integers.

Remark 5.6. The examples in Section 5b show that the factors Gc appearing
in the decomposition of JX [2] in Theorem 5.2 may not be indecomposable as
polarized BT1 group schemes.

5b. Description of a particular Ekedahl–Oort type. Recall that Gc is the unique
polarized BT1 group scheme over k of rank p2c that has Ekedahl–Oort type
[0, 1, 1, 2, 2, . . . , bc/2c]. Recall that E = k[F, V ] is the noncommutative ring
defined in Section 2b. In this section, we describe the Dieudonné module D(Gc). We
start with some examples to motivate the notation. These show that Gc is sometimes
indecomposable and sometimes decomposes into polarized BT1 group schemes of
smaller rank. The first four examples were found using preexisting tables.

Example 5.7. (i) For c = 1, the Ekedahl–Oort type is [0]. This Ekedahl–Oort type
occurs for the p-torsion group scheme of a supersingular elliptic curve. See [Goren
2002, Example A.3.14; Pries 2008, Example 2.3] for a description of G1. It has
Dieudonné module E/E(F + V ).

(ii) For c=2, the Ekedahl–Oort type is [0, 1]. This Ekedahl–Oort type occurs for the
p-torsion group scheme of a supersingular abelian surface that is not superspecial.
See [Goren 2002, Example A.3.15; Pries 2008, Example 2.3] for a description
of G2. It has Dieudonné module E/E(F2

+ V 2).

(iii) For c = 3, the Ekedahl–Oort type is [0, 1, 1]. This Ekedahl–Oort type occurs
for an abelian threefold with p-rank 0 and a-number 2 whose p-torsion is indecom-
posable as a polarized BT1 group scheme. By [Pries 2008, Lemma 3.4], G3 has
Dieudonné module E/E(F2

+ V )⊕ E/E(V 2
+ F).



528 Arsen Elkin and Rachel Pries

(iv) For c= 4, the Ekedahl–Oort type is [0, 1, 1, 2]. This Ekedahl–Oort type occurs
for an abelian fourfold with p-rank 0 and a-number 2 whose p-torsion decomposes
as a direct sum of polarized BT1 group schemes of rank p2 and p6. By [Pries 2008,
Table 4.4], G4 has Dieudonné module E/E(F + V )⊕ E/E(F3

+ V 3).

We now provide an algorithm to determine the Dieudonné module D(Gc) for all
positive integers c ∈ N following the method of [Oort 2001, Section 9.1].

Proposition 5.8. The Dieudonné module D(Gc) is the E-module generated as a
k-vector space by {X1, . . . , Xc, Y1, . . . , Yc} with the actions of F and V given by

(i) F(Y j )= 0,

(ii) V (Y j )=

{
Y2 j if j ≤ c/2,
0 if j > c/2,

(iii) F(X i )=

{
X j/2 if j is even,
Yc−( j−1)/2 if j is odd,

(iv) V (X j )=

{
0 if j ≤ (c− 1)/2,
−Y2c−2 j+1 if j > (c− 1)/2.

Proof. By definition of Gc, there is a final filtration N1 ⊂ N2 ⊂ · · · ⊂ N2c of D(Gc)

as a k-vector space, which is stable under the action of V and F−1 and with
i = dim(Ni ), such that νi := dim(V (Ni )) = bi/2c. This implies that νi = νi−1 if
and only if i is odd. In the notation of [Oort 2001, Section 9.1], this yields mi = 2i
and ni = 2g− 2i + 1 for 1≤ i ≤ g; also, let

Zi :=

{
X i/2 if i is even,
Yc−(i−1)/2 if i is odd.

By [Oort 2001, Section 9.1], for 1≤ i ≤ g, the action of F is given by F(Yi )= 0 and
F(X i )= Zi and the action of V by V (Zi )= 0 and V (Z2g−i+1)= (−1)i−1Yi . �

More notation is needed to give an explicit description of D(Gc).

Notation 5.9. Let c ∈N be fixed. Let I := { j ∈N | d(c+ 1)/2e ≤ j ≤ c}, which is
a set of cardinality b(c+1)/2c. For j ∈ I , let `( j) be the odd part of j , and let e( j)
be the nonnegative integer such that j = 2e( j)`( j). Let s( j) := c− (`( j)− 1)/2.
One can check that {s( j) | j ∈ I } = I . Also, let m( j) := 2c− 2 j + 1, and let ε( j)
be the nonnegative integer such that t ( j) := 2ε( j)m( j) ∈ I . One can check that
{t ( j) | j ∈ I }= I . Thus, there is a unique bijection ι : I→ I such that t (ι( j))= s( j)
for each j ∈ I .

Proposition 5.10. Recall Notation 5.9. For c ∈ N, the set {X j | j ∈ I } generates
the Dieudonné module D(Gc) as an E-module subject to the relations, for j ∈ I ,
Fe( j)+1(X j )+ V ε(ι( j))+1(X ι( j)) = 0. Also, {X j | j ∈ I } is a basis for the quotient
of D(Gc) by the left ideal D(Gc)(F, V ).
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Proof. Proposition 5.8 implies that Fe( j)(X j )= X`( j) and F(X`( j))= Ys( j). Also,
V (X j ) = −Ym( j), and so V ε( j)+1(X j ) = −Yt ( j). This yields the stated relations.
To complete the first claim, it suffices to show that the span of {X j | j ∈ I }
under the action of F and V contains the k-module generators of D(Cc) listed
in Proposition 5.8. This follows from the observations that X i = F(X2i ) if
1≤ i ≤ bc/2c, that Yi = V (Yi/2) if i is even, and that Yi = V (−Xc−(i−1)/2) if i is
odd. By [Li and Oort 1998, 5.2.8], the dimension of D(Gc) modulo D(Gc)(F, V )
equals the a-number. Since a = |I | by Corollary 5.3, it follows that the set |I | of
generators of D(Gc) is linearly independent modulo D(Gc)(F, V ). �

Here are some more examples. The columns of the table below list the value of c,
the generators of D(Gc) as an E-module (X i1 − X i2 denotes {X i | i1 ≤ i ≤ i2}), and
the relations among these generators. The last column is the number of summands
of D(Gc) in its decomposition as an E-module (as opposed to as a polarized
E-module). The table can be verified in two ways: first, by checking it with
Proposition 5.10 and second, by computing the action of F and V on a k-basis
for D(Gc), using this to construct a final filtration of D(Gc) stable under V and F−1,
and then checking that it matches the Ekedahl–Oort type of Gc. In Example 5.11,
we illustrate the second method.

c generators relations # summands

5 X3− X5 F X3+ V 3 X5, F3 X4+ V X3, F X5+ V X4 1
6 X4− X6 F3 X4+ V 2 X5, F X5+ V 3 X6, F2 X6+ V X4 1
7 X4− X7 F3 X4+ V X4, F X5+ V X5,

F2 X6+ V 2 X6, F X7+ V 3 X7 4
8 X5− X8 F X5+ V 2 X7, F2 X6+ V X5,

F X7+ V X6, F4 X8+ V 4 X8 2
9 X5− X9 F X5+ V X6, F2 X6+ V 4 X9, F X7+ V 2 X8,

F4 X8+ V X5, F X9+ V X7 1
10 X6− X10 F2 X6+ V X6, F X7+ V X7, F4 X8+ V 2 X8,

F X9+ V 2 X9, F2 X10+ V 4 X10 5

Example 5.11. For c = 7, the group scheme G7 that has Ekedahl–Oort type
[0, 1, 1, 2, 2, 3, 3] is isomorphic to a direct sum of polarized BT1 group schemes
of ranks p2, p4, and p8 and has Dieudonné module

M := E/E(F + V )⊕ E/E(F2
+ V 2)⊕ E/E(V + F3)⊕ E/E(F3

+ V ).

Proof. Let {1A, VA} be the basis of the submodule A = E/E(F + V ) of M,
{1B, VB, V 2

B, F2
B} the basis of the submodule B = E/E(F2

+V 2), {1C , VC , V 2
C , V 3

C}

the basis of the submodule C = E/E(F + V 3), and {1C ′, FC ′, F2
C ′, F3

C ′} the basis of
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the submodule C ′ = E/E(F3
+ V ). The action of Frobenius and Verschiebung on

the elements of these bases is

x 1A VA 1B VB V 2
B FB 1C VC V 2

C V 3
C 1C ′ FC ′ F2

C ′ F3
C ′

V x VA 0 VB V 2
B 0 0 VC V 2

C V 3
C 0 F3

C ′ 0 0 0
Fx VA 0 FB 0 0 V 2

B V 3
C 0 0 0 FC ′ F2

C ′ F3
C ′ 0

To verify the proposition, one can repeatedly apply V and F−1 to construct a
filtration N1 ⊂ N2 ⊂ · · · ⊂ N14 of M as a k-vector space that is stable under the
action of V and F−1 such that i = dim(Ni ). To save space, we summarize the
calculation by listing a generator ti for Ni/Ni−1:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ti V 3
C V 2

C V 2
B VC VA F3

C ′ VB 1C F2
C ′ 1A FB FC ′ 1C ′ 1B

Then one can check that V (Ni )= Nbi/2c and F−1(Ni )= N7+di/2e, which verifies
that the Ekedahl–Oort type of M is [0, 1, 1, 2, 2, 3, 3]. �

Remark 5.12. One could ask when D(Gc) decomposes as much as numerically
possible, in other words, when the a-number equals the number of summands
of D(Gc) in its decomposition as an E-module. For example, D(Gc) has this
property when c ∈ {1, 2, 3, 4, 7, 10} but not when c ∈ {5, 6, 8, 9}. This phenomenon
occurs if and only if the bijection ι from Notation 5.9 is the identity.

Remark 5.13. The group scheme G8 decomposes as the direct sum of two indecom-
posable polarized BT1 group schemes, one whose Ekedahl–Oort type is [0, 0, 1, 1]
and the other whose covariant Dieudonné module is E/E(F4

+ V 4). We take this
opportunity to note that there is a mistake in [Pries 2008, Example in Section 3.3].
The covariant Dieudonné module of I4,3 = [0, 0, 1, 1] is stated incorrectly. To fix
it, consider the method of [Oort 2001, Section 9.1]. Consider the k-vector space of
dimension 8 generated by X1, . . . , X4 and Y1, . . . , Y4. Consider the operation F
defined by F(Yi )= 0 for 1≤ i ≤ 4,

F(X1)= Y4, F(X2)= Y3, F(X3)= X1, F(X4)= Y2.

Consider the operation V defined by

V (X1)= 0, V (X2)=−Y4, V (X3)=−Y2, V (X4)=−Y1,

V (Y1)= Y3, V (Y2)= 0, V (Y3)= 0, V (Y4)= 0.

Thus, D(I4,3) is generated by X2, X3, and X4 modulo the three relations

F X2+ V 2 X4, F2 X3+ V X2, V X3+ F X4.
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5c. Newton polygons. There are several results in characteristic 2 about the Newton
polygons of hyperelliptic (for example, Artin–Schreier) curves X of genus g and 2-
rank 0. For example, [Blache 2012, Remark 3.6] states that if 2n−1

−1≤ g≤ 2n
−2,

then the generic first slope of the Newton polygon of an Artin–Schreier curve of
genus g and 2-rank 0 is 1/n. This statement is generalized to odd primes p in
[Blache 2012, Proposition 3.5]. See also earlier work in [Scholten and Zhu 2002,
Theorem 1.1(III)].

The Ekedahl–Oort type of JX [2] gives information about the Newton polygon
of X but does not determine it completely. Using Corollary 5.3 and [Harashita
2007, Section 3.1 and Theorem 4.1], one can show that the first slope of the Newton
polygon of X is at least 1/n. Since this is weaker than [Blache 2012, Theorem 4.3],
we do not include the details.

More generally, one could consider the case that X is a hyperelliptic k-curve of
genus g and arbitrary p-rank. One could use Theorem 5.2 to give partial information
(namely, a lower bound) for the Newton polygon of X .
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Cycle classes and the syntomic regulator
Bruno Chiarellotto, Alice Ciccioni and Nicola Mazzari

Let V = Spec(R) and R be a complete discrete valuation ring of mixed char-
acteristic (0, p). For any flat R-scheme X, we prove the compatibility of the
de Rham fundamental class of the generic fiber and the rigid fundamental class
of the special fiber. We use this result to construct a syntomic regulator map
regsyn : CHi (X/V, 2i −n)→ H n

syn(X, i) when X is smooth over R with values in
the syntomic cohomology defined by A. Besser. Motivated by the previous result,
we also prove some of the Bloch–Ogus axioms for the syntomic cohomology
theory but viewed as an absolute cohomology theory.

Introduction

Let V= Spec(R) with R a complete discrete valuation ring of mixed characteristic
and perfect residue field. Given X, an algebraic V-scheme, one can consider the
de Rham cohomology of its generic fiber XK and the rigid cohomology of its special
fiber Xk . These two cohomology groups are related by a canonical cospecialization
map cosp : H n

rig,c(Xk)→ H n
dR,c(XK ) (in general not an isomorphism) [Baldassarri

et al. 2004, Section 6]. There is also the notion of rigid and de Rham cycle class.
The starting result of this paper is the compatibility of these cycle classes with
respect to the cospecialization map (see Theorem 1.4.1 for the precise statement).

In the case X is smooth (possibly nonproper) over V, we get the following
corollary (see Corollary 1.5.1). Let spCH : CH∗(XK )⊗Q→ CH∗(Xk)⊗Q be the
specialization of Chow rings constructed by Grothendieck in [Berthelot et al. 1971,
Appendix]. Then the diagram

CHq(XK /K )⊗Q

spCH

��

ηdR
// H 2q

dR(XK )

sp
��

CHq(Xk/k)⊗Q
ηrig

// H 2q
rig (Xk/K )
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metic, Geometry and Algebra”.
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is commutative, where ηdR and ηrig are the de Rham and cycle class maps, respec-
tively, and sp is the Poincaré dual of cosp. In the proof, we use the main results of
[Baldassarri et al. 2004; Bosch et al. 1995; Petrequin 2003].

This result can be viewed as a generalization of a theorem of Messing [1987,
Theorem B3.1], in which he further assumes X to be proper (not only smooth)
over V. In that case, rigid and crystalline coincide, and the map sp is an isomorphism
[Berthelot 1997b].

This compatibility result is the motivation for an alternative construction of the
regulator map (see Proposition 1.6.6)

regsyn : CHi (X/V, 2i − n)→ H n
syn(X, i)

with values in the syntomic cohomology group defined by Besser [2000] (for X

smooth over V). For this proof, we use an argument of Bloch [1986] and the
existence of a syntomic cycle class (see Proposition 1.6.2).

The aforementioned results motivated us to investigate further the properties of
syntomic cohomology. We are not able to formulate even the basic Bloch–Ogus
axioms using Besser’s framework. Thus, we have followed the interpretation of
syntomic cohomology of Bannai [2002] as an absolute one. To this end, we define a
triangulated category of p-adic Hodge complexes, pHD (see Definition 2.0.11). An
object M of pHD can be represented by a diagram of the form Mrig→ MK ← MdR,
where M? is a complex of K -vector spaces endowed with a Frobenius automorphism
when ?= rig and with a filtration when ?= dR. In pHD, there is a naturally defined
tensor product, and K denotes the unit object of pHD. The main difference with
respect to [Bannai 2002] is that the maps in the diagram are not necessarily quasi-
isomorphisms.

From [Besser 2000], we get (in Proposition 5.3.1) that there are functorial p-adic
Hodge complexes R0(X) satisfying

R0rig(X)→ R0K (X)← R0dR(X)

and inducing the specialization map in cohomology (that is, taking the cohomology
of each element of the diagram). Meanwhile, we show how the constructions made
by Besser may be obtained using the theory of generalized Godement resolution
(also called the bar resolution). In particular, we use the results of [van der Put and
Schneider 1995] in order to have enough points for rigid analytic spaces. Further,
we consider the twisted version R0(X)(i), which is given by the same complexes
but with the Frobenius (respectively the filtration) twisted by i (see Remark 2.2.1).

We then prove (see Proposition 5.3.4) that the syntomic cohomology groups
H n

syn(X, i) of [Besser 2000] are isomorphic to the (absolute cohomology) groups
H n

abs(X, i) := HompHD(K, R0(X)(i)[n]). This result generalizes that of [Bannai
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2002] (which was given only for V-schemes with good compactification) to any
smooth algebraic V-scheme.

For this absolute cohomology, we can prove some of the Bloch–Ogus ax-
ioms. In fact, we construct a p-adic Hodge complex R0c(X)(i) related to rigid
and de Rham cohomology with compact support. Therefore, we can define an
absolute cohomology with compact support functorial with respect to proper
maps H n

abs,c(X, i) :=HompHD(K, R0c(X)(i)[n]) and an absolute homology theory
H abs

n (X, i) := HompHD(R0c(X)(i)[n],K).
We wish to point out that the constructions above are essentially consequences

of the work done by Besser and Bannai, but it seems hard to prove the following
results without the formalism of Godement resolutions that we develop in Section 3.
Let X be a smooth scheme over V. Then

(i) there is a cup product pairing

H n
abs(X, i)⊗ H m

abs,c(X, j)→ H n+m
abs,c (X, i + j)

induced by the natural pairings defined on the cohomology of the generic and
the special fiber (see Corollary 5.4.4),

(ii) there is a Poincaré duality isomorphism (see Proposition 5.4.5) and

(iii) there is a Gysin map; that is, given a proper morphism f : X→ Y of smooth
algebraic V-schemes of relative dimension d and e, respectively, then there is
a canonical map

f∗ : H n
abs(X, i)→ H n+2c

abs (Y, i + c),

where c = e− d (see Corollary 5.4.7).

Notation. In this paper, R is a complete discrete valuation ring with fraction field K
and residue field k with k perfect. We assume char(K )= 0 and char(k)= p > 0.

The ring of Witt vectors of k is denoted by R0, and K0 is its field of fractions.
The Frobenius of K0 is denoted by σ . The category of bounded complexes of
K -vector spaces is denoted by Cb(K ).

If V is a K -vector space, then V∨ is the dual vector space.
We use X, Y, . . . for schemes over k or K ; X,Y, . . . for K -analytic spaces;

P,Q for formal K -schemes; PK ,QK for the associated Raynaud fibers and X,Y

for (algebraic) V-schemes, where V = Spec(R). Finally, X̂ denotes the p-adic
completion of a V-scheme X.

1. Cycle classes

1.1. Higher Chow groups. Following Bloch [1986], we recall the definition of
the higher Chow groups CH∗(X/K , ∗) of a K -scheme X . For any n ≥ 0, let
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1n
:= Spec(Z[t0, . . . , tn]/(

∑
i ti − 1)) with face maps ∂i (n) :1n

→1n+1, which
in coordinates are given by ∂i (n)(t0, . . . , tn) := (t0, . . . , ti−1, 0, ti+1, . . . , tn). Let
X be a smooth K -scheme of relative dimension d (this hypothesis is not necessary,
but we deal only with smooth schemes). Let zq(X/K , 0) be the free abelian group
generated by the irreducible and closed subschemes of X of codimension q. Let
zq(X/K , n) denote the free abelian group generated by the closed subschemes
W ⊂1n

X := X ×1n such that W ∈ zq(1n
X/K , 0) and meets all faces properly; that

is, if F ⊂1n
X is a face of codimension c, then the codimension of each irreducible

component of the intersection F ∩W is greater than or equal to c+ q on 1n
X .

Using the differential
∑

i (−1)i∂∗i (n) : zq(X/K , n + 1) → zq(X/K , n), one
obtains a complex of abelian groups zq(X/K , ∗). We set 0i

X (q) := zq(X/K , 2q−i)
and

CHq(X/K , 2q − i) := H i (0X (q)).

These groups are in fact isomorphic to the Voevodsky–Suslin motivic cohomology
H i

mot(X/K , q) of the generic fiber X [Mazza et al. 2006, Theorem 19.1].

1.2. Relative cycles. Let X be an algebraic and flat V-scheme. By the theory of
relative cycles [Suslin and Voevodsky 2000], one can define the group zq(X/V, 0)
to be the free abelian group generated by universally integral relative cycles of
codimension q (we can use the codimension because X is assumed to be equi-
dimensional over V). By [Ivorra 2005, Part I, Lemma 1.2.6], zq(X/V, 0) is the
free abelian group generated by the closed subschemes W ⊂ X that are integral,
of codimension q and flat over V. Then we can define the group zq(X/V, n) as
the free abelian group generated by the integral and flat V-schemes W ∈ zq(1n

X, 0)
meeting all faces properly and such that ∂i (n− 1)∗W is flat over V for all i . Thus,
we can form a complex zq(X/V, ∗) with the same boundary maps as zq(X/K , ∗).

Definition 1.2.1. With the notation above, we define the higher Chow groups of X

over V to be
CHq(X/V, 2q − i) := H i (0X (q)),

where 0i
X/V(q) := zq(X/V, 2q − i).

Remark 1.2.2. (i) Recall that by Lemma 5.1.1, any closed and flat subscheme
of X is completely determined by its generic fiber. Then zq(X/V, ∗) is a
subcomplex of zq(XK /K , ∗) inducing a canonical map in (co)homology

γ : CHq(X/V, 2q − i) := H i (0X/V(q))→ CHq(XK /K , 2q − i).

(ii) It follows easily that, for i = 2q , the map γ :CHq(X/V, 0)→CHq(XK /K , 0)
is surjective by the snake lemma. In the general case, we don’t know whether
or not this map is injective or surjective.
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1.3. De Rham and rigid fundamental/cycle classes. In the following, we refer to
[Hartshorne 1975; Baldassarri et al. 2004; Petrequin 2003] for the definitions and
the properties of the (algebraic) de Rham and the rigid cohomology theory. Let W
be an integral scheme of dimension r over K (resp. over k). Then we can associate
to W its de Rham (resp. rigid) fundamental class, which is an element of the dual
of the top de Rham (resp. rigid) cohomology with compact support

[W ]dR = trdR ∈ H 2r
dR,c(W )∨ (resp. [W ]rig = trrig ∈ H 2r

rig,c(W )∨).

For the de Rham case, this class is first defined in [Hartshorne 1975, Section 7]
as an element of the de Rham homology; by Poincaré duality [Baldassarri et al.
2004, Theorem 3.4], it corresponds to the trace map. The rigid case is treated in
[Petrequin 2003, Section 2.1, Section 6].

Now let X be a K -scheme (resp. k-scheme) of dimension d and w=
∑

i ni Wi ∈

zq(X/K , 0) (resp. ∈ zq(X/k, 0)) be a dimension-r cycle on X . The cohomology
with compact support is functorial with respect to proper maps; hence, there is a
canonical map

f :
⊕

i

H 2r
?,c(Wi )

∨
→ H 2r

?,c(|w|)
∨,

where |w| =
⋃

i Wi is the support of w and ? is dR or rig according to the choice of
the base field. With the notation above, we define the de Rham (resp. rigid) cycle
class of w as

[w]? := f
(∑

i

[Wi ]?

)
∈ H 2r

?,c(|w|)
∨, where ?= dR, rig .

Again by functoriality, this defines an element of H 2r
?,c(X)

∨.

1.4. Compatibility. Let X be a flat V-scheme, and let w ∈ zq(X/V, 0) be a relative
cycle. We can write w =

∑
i ni Wi , where Wi is an integral flat V-scheme closed

in X and of codimension q. Then w defines a cycle wK ∈ zq(XK /K , 0) (resp.
wk ∈ zq(Xk/k, 0)); on the generic fiber, we get simplywK =

∑
i ni (Wi )K . However,

on the special fiber, we must write the irreducible decomposition of each (Wi )
red
k ,

say Wi,1 ∪ · · · ∪Wi,ri , and then consider the multiplicities, that is,

wk =
∑

i

(
ni

∑
j

mi, j Wi, j

)
,

where mi, j := length(OWk ,Wi, j ).
We can consider the de Rham and the rigid cycle classes of w, that is,

[wK ]dR ∈ H 2r
dR,c(|wK |)

∨ and [wk]rig ∈ H 2r
rig,c(|wk |)

∨.
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The rigid homology groups H rig
2r (|wk |) are defined as the dual of H 2r

rig,c(|wk |); see
[Petrequin 2003, Section 2]. We will prove that these cycle classes are compatible
under (co)specialization and induce a well-defined syntomic cohomology class.

Theorem 1.4.1. Let X be a flat V-scheme of relative dimension d, and let w ∈
zq(X/V, 0) be a relative cycle of codimension q (and relative dimension r := d−q).
Then cosp([wk]rig)= [wK ]dR.

Proof. First of all, consider the basic case: w =W is an integral closed subscheme
of X smooth over V. By [Baldassarri et al. 2004, proof of Theorem 6.9], we have a
commutative diagram

H 2r
rig,c(Wk/K )

cosp
//

[wk ]rig
%%

H 2r
dR,c(WK )

[wK ]dR
zz

K

where the rigid (resp. de Rham) trace map [wk]rig (resp. [wK ]dR) is an isomorphism
of K -vector spaces.

Given a general relative cycle w, we can reduce to the basic case by arguing
as follows. First by linearity and the functoriality of the specialization map, we
can restrict to the case w = W with W integral. Then the generic fiber WK is
integral, and by [Grothendieck 1967, Proposition 17.15.12], there exists a closed K -
subscheme T such that WK \ T is smooth over K . Let T be the flat extension of T
(see Lemma 5.1.1); then T is of codimension at least 1 in W, and the complement
W\T is a flat V-scheme of relative dimension r . Consider the long exact sequence

· · · H 2r−1
dR,c (T )→ H 2r

dR,c(WK \TK )→ H 2r
dR,c(WK )→ H 2r

dR,c(T ) · · · .

Note that here the first and last terms vanish for dimensional reasons. The same
happens (mutatis mutandis) for the rigid cohomology of the special fiber.

Hence, from now on, we can assume that W is integral and that its generic
fiber WK is smooth. In this setting, we apply the reduced fiber theorem for schemes
[Bosch et al. 1995, Theorem 2.1]; that is, there exist a finite field extension K ′/K
and a finite morphism f : Y→W×V V′ of V′-schemes such that

(i) fK ′ : YK ′→WK ′ is an isomorphism and

(ii) Y/V′ is flat and has reduced geometric fibers.

Recall that the cospecialization map commutes with finite field extension, and
the same holds for both the rigid and de Rham trace maps. By [Petrequin 2003,
proof of Proposition 6.4], the rigid fundamental/cycle class is preserved by finite
morphisms, that is,

[Yk′]rig ◦ f ∗k′ = [Wk′]rig where f ∗k′ : H
2r
rig,c(Wk′)→ H 2r

rig,c(Yk′).
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From the discussion above, there is no loss of generality in assuming that W has
reduced geometric fibers and smooth generic fiber WK . Now let S be the singular lo-
cus of the special fiber Wk . Again by [Grothendieck 1967, Proposition 17.15.12], the
complement Wk \ S is an open and dense subscheme of Wk , and it is smooth over k.
The scheme S has codimension at least 1 in Wk ; hence, H 2r

rig,c(Wk\S)→ H 2r
rig,c(Wk)

is an isomorphism. From this, it follows that we can assume W to be smooth over V,
where we know that the claim is true. �

1.5. The smooth case. From now on, assume X to be smooth over V. By the
compatibility of (co)specialization with Poincaré duality [Baldassarri et al. 2004,
Theorem 6.9], the (de Rham or rigid) cycle class map defines an element ηrig(wk) ∈

H 2q
rig,|wk |

(Xk/K ) (resp. ηdR(wK ) ∈ H 2q
dR,|wK |

(XK )) compatible with respect to the
specialization morphism

sp(ηdR(wK ))= ηrig(wk). (1)

Before stating the next corollary, we need to introduce some further notation.
Let X be a smooth scheme over K (resp. over k); then the de Rham (resp. rigid)
cycle class map factors through the Chow groups, inducing a map

ηdR : CHq(X/K )→ H 2q
dR(X) (resp. ηrig : CHq(X/k)→ H 2q

rig (X/K )),

where, by abuse of notation, ηdR(W ) (resp. ηrig(W )) is viewed as an element of
H 2q

dR(X) (resp. H 2q
rig (X/K )) via the canonical map H 2q

dR,W (X)→ H 2q
dR(X) (resp.

H 2q
rig,W (X/K ) → H 2q

rig (X/K )) for any W integral subscheme of codimension q
[Hartshorne 1975, Proposition 7.8.1, page 60; Petrequin 2003, Corollary 7.6].

Also, we recall that in [Berthelot et al. 1971, Exp. X, Appendix], a specialization
map for the classical Chow ring is constructed:

spCH : CH∗(XK /K )⊗Q→ CH∗(Xk/k)⊗Q.

Explicitly, the map is given as follows. Let W ⊂ XK be an integral scheme of
codimension q, and let W denote its Zariski closure in X. Then the specialization
of spCH[W ] is the class representing the subscheme Wk .

Corollary 1.5.1. With the notation above, the diagram

CHq(XK /K )⊗Q

spCH

��

ηdR
// H 2q

dR(XK )

sp
��

CHq(Xk/k)⊗Q
ηrig

// H 2q
rig (Xk/K )

commutes (we tensored each term by Q to guarantee the existence of spCH).
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1.6. Syntomic cohomology. For any smooth V-scheme X, Besser [2000, Defini-
tion 6.1] defined the (rigid) syntomic cohomology groups H n

syn(X, i). We will be
rather sketchy on the definitions because we will give another construction later.
For such a cohomology, there is a long exact sequence

// H n
syn(X, i) // H n

rig(Xk/K0)⊕ F i H n
dR(XK )

h
// H n

rig(Xk/K0)⊕ H n
rig(Xk/K )

+
// (2)

where h(x0, xdR)= (φ(xσ0 )− pi x0, x0⊗ 1K − sp(xdR)).
Roughly, these groups are defined as H n

syn(X, i) := H n(R0Bes(X, i)), where

R0Bes(X, i)

:= Cone
(
R0rig(X/K0)⊕Fili R0dR(X)→ R0rig(X/K0)⊕R0rig(X/K )

)
[−1]

is a complex of abelian groups functorial in X and such that

H n(R0rig(X/K0))= H n
rig(Xk/K0) and H n(Fili R0dR(X))= F i H n

dR(XK ).

The functoriality of R0Bes( · , i) allows us to give the following definition:

Definition 1.6.1. Let X be a smooth V-scheme. Let Z⊂ X be a closed subscheme
of X. We define the syntomic complex with support in Z using the complexes
defined by Besser as

R0Bes,Z(X, i) := Cone
(
R0Bes(X, i)→ R0Bes(X \Z, i)

)
[−1].

This is a complex of abelian groups functorial with respect to cartesian squares.
This fact will be used in the proof of Proposition 1.6.6. The cohomology of this
complex is the syntomic cohomology with support in Z denoted by

H n
syn,Z(X, i) := H n(R0Bes,Z(X, i))

so that we get a long exact sequence

· · · H n
syn,Z(X, i)→ H n

syn(X, i)→ H n
syn(X \Z, i)→ · · · .

Proposition 1.6.2 (syntomic cycle class). Let X be a smooth V-scheme, and let
w ∈ zq(X/V, 0) be a relative cycle of codimension q. Then the canonical mapping

ψ : H 2q
syn,|w|(X, q)→ H 2q

rig,|wk |
(Xk/K0)⊕ Fq H 2q

dR,|wK |
(XK )

is injective, and there exists a unique element ηsyn(w) ∈ H 2q
syn,|w|(X, q) such that

ψ(ηsyn(w))= (ηrig(wk), ηdR(wK )).
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Proof. By the definition of syntomic cohomology with support, there is a long exact
sequence similar to (2):

// H 2q−1
rig,|wk |

(Xk/K0)⊕H 2q−1
rig,|wk |

(Xk/K ) // H 2q
syn,|w|(X, q) //

H 2q
rig,|wk |

(Xk/K0)⊕Fq H 2q
dR,|wK |

(XK ) // H 2q
rig,|wk |

(Xk/K0)⊕H 2q
rig,|wk |

(Xk/K ) // .

The last term on the left vanishes because of weak purity in rigid cohomology
[Berthelot 1997b, Corollary 5.7]. It follows that H 2q

syn,|w|(X, q) consists of the
pairs (x, y) ∈ H 2q

rig,|wk |
(Xk/K0) ⊕ Fq H 2q

dR,|wK |
(XK ) such that φ(xσ ) = pq x and

sp(y) = x ⊗ 1K . By Hodge theory, we have Fq H 2q
dR,|wK |

(XK )= H 2q
dR,|wK |

(XK ).
Moreover, the Frobenius acts on [wk]rig as multiplication by pq [Petrequin 2003,
Proposition 7.13]. Hence, in view of (1), we can easily conclude the proof. �

Lemma 1.6.3 (functoriality). Let f : X′ → X be a closed immersion of smooth
V-schemes, and let w ∈ zq(X/V, 0) be a relative cycle of codimension q. Assume
that the preimage f −1w lies in zq(X′/V, 0); then f ∗ηsyn(w)= ηsyn( f −1w).

Proof. It is not restrictive to assume that w =W is an integral subscheme of X flat
over V.

We first show that it is sufficient to prove that f ∗ηdR(wK ) = ηdR( f −1wK ). In
fact, the syntomic cycle class can be viewed as an element (ηrig(wk), ηdR(wK )) in
the direct sum of rigid and de Rham cohomology. Then note that sp(ηdR(wK ))=

ηrig(wk)⊗ 1K and that the specialization map is functorial.
To prove that f ∗ηdR(WK )=ηdR( f −1WK ), we first reduce by excision to the case

where WK is smooth over K (just remove from WK , XK and X′K the singular points
of WK ). In the same way, we can further assume f −1WK to be smooth over K .
Now we can use the same proof as [Petrequin 2003, Proposition 7.1] to conclude. �

Lemma 1.6.4 (homotopy). The (rigid) syntomic cohomology is homotopy invariant:

H n
syn(X×A1

V, q)∼= H n
syn(X, q).

Proof. Just consider the long exact sequences of syntomic cohomology, and note
that the de Rham cohomology (of smooth schemes) is homotopy invariant by
[Hartshorne 1975, Proposition 7.9.1]. The same holds for rigid cohomology, for
instance, using the Künneth formula [Berthelot 1997a]. �

Lemma 1.6.5 (weak purity). Let X be a smooth V-scheme. Let Z⊂ X be a closed
subscheme of X of codimension q. Then

H n
syn,Z(X, i)= 0 for all n < 2q.
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Proof. This follows directly from the long exact sequence of syntomic cohomology
and the weak purity in de Rham and rigid cohomology [Hartshorne 1975, Section 7.2;
Petrequin 2003, Section 1]. �

Proposition 1.6.6. Let X be a smooth V-scheme. The syntomic cycle class map
induces a group homomorphism regsyn : CHi (X/V, 2i − n)→ H n

syn(X, i).

Proof. The construction is analogous to that provided in [Bloch 1986]. Consider the
cohomological double complex R0Bes(1

−n
X , q)m nonzero for m ≥ 0 and n ≤ 0; the

differential in n is induced by ∂(−n)
i in the usual way. Similarly define the double

complex

R0Bes,supp(1
−n
X , q)m := colim

w∈zq (X,−n)
R0Bes,|w|(1

−n
X , q)m .

For technical reasons, we truncate these complexes (nontrivially):

An,m
? = τn≥−N R0Bes,?(1

−n
X , q)m, where ?=∅, supp,

for N even and N � 0.
Consider the spectral sequence

En,m
1 := H m(A•,n)⇒ H n+m(s A•,∗),

where s denotes the associated simple complex of a double complex. By homotopy
invariance (Lemma 1.6.4), En,m

1 := H m
syn(1

−n
X , q) is isomorphic to H m

syn(X, q) for
−N ≤ n ≤ 0 and m ≥ 0; otherwise, it is 0. Moreover, dn,m

1 = 0 except for n even,
−N ≤ n < 0 and m ≥ 0, in which case dn,m

1 = id. This gives an isomorphism
H i (s An,m)∼= H i

syn(X, q).
In the spectral sequence

En,m
1,supp := H m(A•,nsupp)⇒ H n+m(s A•,∗supp),

we have

En,m
1,supp = colim

w∈zq (X,−n)
H m

syn,|w|(1
−n
X , q) for −N ≤ n ≤ 0 and m ≥ 0

and En,m
1,supp = 0 otherwise. Applying Lemma 1.6.3 to the face morphisms, it is

easy to prove that the syntomic cycle class induces a natural map of complexes
0•X/V(q)→ E•−2q,2q

1,supp , and hence, for all i , a map CHq(X/V, 2q − i)→ E i−2q,2q
2,supp .

The groups En,m
r,supp are zero for m < 2q and r ≥ 1 due to weak purity. Hence, there

are natural maps E i−2q,2q
2,supp → E i−2q,2q

∞,supp → H i (s A•,∗supp). By construction, there is a
map H i (s A•,∗supp)→ H i (s A•,∗). Composing all these maps, we obtain the expected
map CHq(X, 2q − i)→ H i

syn(X, q). �
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Corollary 1.6.7. With the notation above, there is a commutative diagram

CHq(X/V)⊗Q

regsyn
��

γ⊗1Q
// CHq(XK /K )⊗Q

ηdR
��

spCH
// CHq(Xk/k)⊗Q

ηrig
��

H 2q
syn(X, q)

π
// Fq H 2q

dR(XK ) sp
// H 2q

rig (Xk/K ),

where π is the composition

H n
syn(X, i) // H n

rig(Xk/K0)⊕ F i H n
dR(XK )

pr2
// F i H n

dR(XK )

and γ is the map described in Remark 1.2.2.

Proof. Just note that in this case, regsyn is the map induced by the syntomic cycle
class in the usual way. �

Remark 1.6.8. Via Chern classes, Besser [2000, Theorem 7.5] obtained a regulator
c2i−n

i : K2i−n(X)→ H n
syn(X, i). At present, we cannot compare it with the regulator

of Proposition 1.6.6. This is because we don’t know how to relate K -theory with
the higher Chow groups we have defined. Nevertheless, we expect that there exists
a map CHi (X/V, 2i − n)Q→ K2i−n(X)Q. This issue will be treated in a future
work.

2. p-adic Hodge complexes

Having defined a regulator map with values in the syntomic cohomology, it is
tempting to check (some of) the Bloch–Ogus axioms for this theory. We address this
problem by viewing the syntomic cohomology as an absolute cohomology theory.

Thus, in this section, we define a triangulated category of p-adic Hodge com-
plexes similar to that of [Bannai 2002]. See also [Beı̆linson 1986; Huber 1995;
Levine 1998, Chapter V, Section 2.3].

The syntomic cohomology will be computed by Hom groups in this category.

Definition 2.0.9 (see [Bannai 2002, Section 2]). Let Cb
rig(K ) be the category of

pairs (M•, φ), where

(i) M• = M•0 ⊗K0 K and M•0 is a complex in Cb(K0);

(ii) (Frobenius structure) if (M•0 )
σ
:= M•0 ⊗σ K0, then φ : (M•0 )

σ
→ M•0 is a

K0-linear morphism.

The morphisms in this category are morphisms in Cb(K0) compatible with
respect to the Frobenius structure. In this way, we get an abelian category.

Let FiltK be the category of K -vector spaces with a descending, exhaustive and
separated filtration. We write Cb

dR(K )=Cb(FiltK ), and we write the objects of this
category as pairs (M•, F), where
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(i) M• is a complex in Cb(K ) and

(ii) (Hodge filtration) F is a (separated and exhaustive) filtration on M•.

Remark 2.0.10 (strictness). We review some technical facts about filtered cate-
gories. For a full discussion, see [Huber 1995, Sections 2 and 3].

The category FiltK (and also Cb
dR(K )) is additive but not abelian. It is an

exact category when one takes for short exact sequences those that are exact as
sequences of K -vector spaces and are such that the morphisms are strict with
respect to the filtrations; recall that a morphism f : (M, F)→ (N , F) is strict if
f (F i M)= F i N ∩ Im( f ).

An object (M•, F) ∈ Cb
dR(K ) is a strict complex if its differentials are strict as

morphism of filtered vector spaces. Strict complexes can be characterized also by
the fact that the canonical spectral sequence Hq(F p)⇒ H p+q(M•) degenerates
at E1.

One can define canonical truncation functors on Cb
dR(K ): For M• ∈ Cb

dR(K ), let

τ≤n(M•, F)i :=


M i if i < n,
Ker(dn) if i = n,
0 if i > n,

τ≥n(M•, F)i :=


0 if i < n−1,
Coim(dn) if i = n−1,
M i if i ≥ n.

It is important to note that the naive cohomology object τ≤nτ≥n(M•, F) of a strict
complex (M•, F) agrees with the cohomology H n(M•) of the complex of K -vector
spaces underlying (M•, F) [Huber 1995, Proposition 2.1.3 and Section 3].

Definition 2.0.11 (see [Bannai 2002, Definition 2.2]). From the discussion above,
there is an exact functor 8rig : Cb

rig(K )→ Cb(K ) (resp. 8dR : Cb
dR(K )→ Cb(K ))

induced by (M•, φ) 7→ M• (resp. (M•, F) 7→ M•). We define the category pHC
of p-adic Hodge complexes whose objects are systems M = (M•rig,M•dR,M•K , c, s),
where

(i) (M•rig, φ) is an object of Cb
rig(K ) and H∗(M•rig) is finitely generated over K ,

(ii) (M•dR, F) is an object of Cb
dR(K ) and H∗(M•dR) is finitely generated over K and

(iii) M•K is an object of Cb(K ) and c : M•rig → M•K (resp. s : M•dR → M•K ) is a
morphism in Cb(K ). Hence, c and s give a diagram in Cb

K

M•rig
c
−→ M•K

s
←− M•dR.

A morphism in pHC is given by a system f := ( frig, fdR, fK ), where f? : M•? →
N •? is a morphism in Cb

rig(K ), Cb
dR(K ) or Cb(K ) for ?= rig, dR or K , respectively,

and such that they are compatible with respect to the diagram in (iii) above.
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2.1. Derived version. A homotopy in pHC is a system of homotopies hi com-
patible with the comparison maps c and s. We define the category pHK to be
the category pHC modulo morphisms homotopic to 0. We say that a morphism
f = ( frig, fdR, fK ) in pHC (or pHK) is a quasi-isomorphism if f? is a quasi-
isomorphism for ? = rig (or K ) and fdR is a filtered quasi-isomorphism, that is,
grF ( fdR) is a quasi-isomorphism. Finally, we say that M ∈ pHC (or pHK) is acyclic
if M? = 0 is acyclic for any ?= rig, dR, K .

Lemma 2.1.1. (i) The category pHK is a triangulated category.

(ii) The localization of pHK with respect to the class of quasi-isomorphisms exists.
This category, denoted pHD, is a triangulated category.

(iii) On the category pHD, it is possible to define a nondegenerate t-structure (resp.
truncation functors) compatible with the standard t-structure (resp. truncation
functors) defined on Cb(K ), Cb

rig(K ) and Cb
dR(K ).

Proof. The proof is the same as [Bannai 2002, Proposition 2.6]. See also [Huber
1995, Section 2] for a survey on how to derive exact categories. �

Remark 2.1.2. In the terminology of Huber [1995, Section 4], the category pHC is
the glued exact category of Cb

rig and Cb
dR via Cb

K . The foregoing definition is inspired
by Bannai [2002], who constructs a rigid glued exact category Cb

M F , that is, the
comparison maps are all quasi-isomorphisms. For our purposes, we cannot impose
this strong assumption. This is motivated by the fact that the (co)specialization is
not an isomorphism for a general smooth V-scheme.

2.2. Derived Hom. Let M• and M ′• be two objects of pHC. Consider the diagram
H(M•,M ′•) (of complexes of abelian groups)

Hom•K0
((M•0 )

σ ,M ′0
•
) Hom•K (M

•

rig,M ′K
•
) Hom•K (M

•

dR,M ′K
•
)

Hom•K0
(M•0 ,M ′0

•
)

h0

OO
h1

55

Hom•K (M
•

K ,M ′K
•
)

h2

OO
h3

55

Hom•,FK (M•dR,M ′dR
•
)

h4

OO

where h0(x0) = x0 ◦ φ − φ
′
◦ xσ0 ; h1(x0) = c′ ◦ (x0 ⊗ idK ); h2(xK ) = xK ◦ c;

h3(xK ) = xK ◦ s and h4(xdR) = s ′ ◦ xdR; Hom•,FK (M•dR,M ′dR
•
) is the complex

of morphisms compatible with respect to the filtrations. Then define the two
complexes of abelian groups 00(M•,M ′•) := (direct sum of the bottom row) and
01(M•,M ′•) := (direct sum of the top row). Finally, consider the cone

0(M•,M ′•) := Cone
(
ψM•,M ′• : 00(M•,M ′•)→ 01(M•,M ′•)

)
[−1],

where

ψM•,M ′• : (x0, xK , xdR) 7→ (−h0(x0), h1(x0)− h2(xK ), h3(xK )− h4(xdR)).



546 Bruno Chiarellotto, Alice Ciccioni and Nicola Mazzari

Remark 2.2.1. (i) Let K(−n) be the Tate twisted p-adic Hodge complex: i.e.,
K(−n)rig (resp. K(−n)dR,K(−n)) is equal to K concentrated in degree 0; the
Frobenius is φ(λ) := pnσ(λ); the filtration is F i

= K for i ≤ n and 0 otherwise.

(ii) Given two p-adic Hodge complexes M• and M ′•, we define their tensor product
M•⊗M ′• component-wise, that is, (M•rig⊗M ′rig

•
,M•dR⊗M ′dR

•
,M•K ⊗M ′K

•
,

c⊗ c′, s⊗ s ′). The complex M•⊗K(n) is denoted by M•(n).

(iii) The complex 0(K,M•(n)) is quasi-isomorphic to

Cone(M•0 ⊕ Fn M•dR
η
−→ M•0 ⊕M•K )[−1],

η(x0, xdR)= (p−nφ(xσ0 )− x0, c(x0⊗ idK )− s(xdR)),

where x0 ∈ M•0 and xdR ∈ Fn M•dR.
If c is a quasi-isomorphism, letting sp denote the composition of

Hq(Fn M•dR)
s∗
−→ Hq(M•K )

c∗
←−
∼=

Hq(M•rig),

we obtain a long exact sequence

→ Hq(0(K,M•(n)))→ Hq(M•0 )⊕ Hq(Fn M•dR)
η′

−→ Hq(M•0 )⊕ Hq(M•rig)→,

where η′(x0, xdR)= (p−nφ(xσ0 )− x0, x0⊗ 1K − sp(xdR)).
If s is a quasi-isomorphism, letting cosp denote the composition of

Hq(M•rig)
c∗
−→ Hq(M•K )

s∗
←−
∼=

Hq(M•dR),

we obtain a long exact sequence

→ Hq(0(K,M•(n)))→ Hq(M•0 )⊕ Hq(Fn M•dR)
η′′

−→ Hq(M•0 )⊕ Hq(M•dR)→,

where η′′(x0, xdR)= (p−nφ(xσ0 )− x0, cosp(x0⊗ 1K )− xdR).

Proposition 2.2.2 (extension formula). With the notation above, there is a canonical
morphism of abelian groups

HompHD(M•,M ′•[n])∼= H n(0(M•,M ′•)).

In particular, if M• = M and M ′• = M ′ are concentrated in degree 0, then
H n(0(M,M ′))= 0 for n ≥ 2 and n < 0.

Proof. By the octahedron axiom, we have the following triangle in Db(Ab):

KerψM•,M ′•→ 0(M•,M ′•)→ CokerψM•,M ′•[−1]
+
−→ .

Its cohomological long exact sequence is

∂
−→ H n(KerψM•,M ′)→ H n(0(M,M ′•))→ H n(CokerψM•,M ′•[−1])

∂
−→ .
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Note that by construction, H n(KerψM•,M ′•) = HompHK(M•,M ′•[n]). Also, we
have

HompHD(M•,M ′•[n])= colim
I

HompHK(M•,M ′′•[n]), I ={quis g :M ′•→M ′′•}.

Thus, the result is proved if we show that

(i) H n(0(M•,M ′•))∼= H n(0(M•,M ′′•)) holds given any g : M ′•→ M ′′• quasi-
isomorphism and

(ii) colimI H n(CokerψM•,M ′′•[−1])= 0.

The first claim follows from the exactness of 0(M•, · ), and the second is proved in
[Beı̆linson 1986, 1.7, 1.8] (and with more details in [Huber 1995, Lemma 4.2.8;
Bannai 2002, Lemma 2.15]) with the assumption that all the gluing maps are quasi-
isomorphisms, but this hypothesis is not necessary. �

Lemma 2.2.3 (tensor product). Let M•, M ′• and I • be p-adic Hodge complexes.
For any α ∈ K , there is a morphism of complexes

∪α : 0(I •,M•)⊗0(I •,M ′•)→ 0(I •,M•⊗M ′•).

All such ∪α are equivalent up to homotopy.

Proof. See [Beı̆linson 1986, 1.11]. �

Remark 2.2.4 (enlarging the diagram). We recall some results from [Levine 1998,
Chapter V, 2.3.3]. Let M•1

f
→ M•2

g
← M•3 (resp. M•1

f
← M•2

g
→ M•3 ) be a diagram

of complexes in Cb(K ). Let P• = Cone( f − g : M•1 ⊕ M•3 → M•2 )[−1] be the
quasipullback complex (resp. Q• = Cone(( f,−g) : M•2 → M•1 ⊕ M•3 ) be the
quasipushout). Assume that f is a quasi-isomorphism. Then the diagrams

P•

��

h
// M•3

g
��

M•1 f
// M•2

and

M•2
g
��

f
// M•1

��

M•3 k
// P•

are commutative up to homotopy and are such that h and k are quasi-isomorphisms.
Now let pHC′ be a category of systems (M•rig,M•dR,M•1 ,M•2 ,M•3 , c, s, f, g)

similar to Definition 2.0.11 and such that there is a diagram

M•rig
c
−→ M•1

f
←− M•2

g
−→ M•3

s
←− M•dR.

Then the quasipushout induces a functor from the category pHC′ to the category
pHC. This functor is compatible with tensor product after passing to the categories
pHK′ and pHK.
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3. Godement resolution

Here we recall some facts about the generalized Godement resolution, also called
the bar-resolution. We refer to [Ivorra 2005]; see also [Weibel 1994, Section 8.6].

3.1. General construction. Let u : P→ X be a morphism of Grothendieck topolo-
gies so that P∼ (resp. X∼) is the category of abelian sheaves on P (resp. X ). Then
we have a pair of adjoint functors (u∗, u∗), where u∗ : X∼→ P∼ and u∗ : P∼→ X∼.
For any object F of X∼, we can define a cosimplicial object B∗(F) :1→ X∼ in
the following way. First let η : idX∼ → u∗u∗ and ε : u∗u∗→ idP∼ be the natural
transformations induced by adjunction.

Endow Bn(F) := (u∗u∗)n+1(F) with codegeneracy maps

σ n
i := (u∗u

∗)i u∗εu∗(u∗u∗)n−1−i
: Bn(F)→ Bn−1(F) for i = 0, . . . , n− 1

and cofaces

δn−1
i := (u∗u∗)iη(u∗u∗)n−i

: Bn−1(F)→ Bn(F) for i = 0, . . . , n.

Lemma 3.1.1. With the notation above, let s B∗(F) be the associated complex of
objects of X∼. Then there is a canonical map bF :F→ s B∗(F) such that u∗(bF)

is a quasi-isomorphism. Moreover, if u∗ is exact and conservative, then bF is a
quasi-isomorphism.

Proof. See [Ivorra 2005, Chapter III, Lemma 3.4.1]. �

Thus, for any sheaf F ∈ X∼ (or complex of sheaves), we can define a functorial
map bF : F→ s B∗(F) with s Bn(F) := (u∗u∗)n+1F. We will denote this complex
of sheaves GdP(F). In the case u∗ is exact and conservative, GdP(F) is a canonical
resolution of F. If F• is a complex of sheaves on X , GdP(F

•) denotes the simple
complex s(GdP(F

i ) j ). Often, we will need to iterate this process, and we will
write Gd2

P(F) := GdP(GdP(F)).
Now suppose there is a commutative diagram of sites

P

u
��

g
// Q

v

��

X
f
// Y

and a morphism of sheaves a :G→ f∗F, where F (resp. G) is a sheaf on X (resp. Y ).

Lemma 3.1.2. There is a canonical map GdQ(G)→ f∗GdP(F) compatible with bF

and bG.

Proof. We need only show that there is a canonical map v∗v∗G → f∗u∗u∗F
lifting a. First consider the composition G→ f∗F→ f∗u∗u∗F. Then we get a
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map G→ v∗g∗u∗F because v∗g∗ = f∗u∗. By adjunction, this gives v∗G→ g∗u∗F.
Then we apply v∗ and use v∗g∗ = f∗u∗ to obtain the desired map. �

Remark 3.1.3 (tensor product). The Godement resolution is compatible with tensor
products; that is, for any pair of sheaves F and G on X , there is a canonical quasi-
isomorphism GdP(F)⊗GdP(G)→ GdP(F⊗G). The same holds for complexes
that are bounded below [Friedlander and Suslin 2002, Appendix A].

3.2. Points of sites/topoi.

Definition 3.2.1 (see [Artin et al. 1972a, Example IV, Section 6]). Let X be a site
and Sh(X) be the associated topos of sheaves of sets. A point of X is a morphism
of topoi π : Set → Sh(X), that is, a pair of adjoint functors (π∗, π∗) such that
π∗ is left exact.

Example 3.2.2. Let X be a scheme. Then any point x of the topological space
underlying X gives a point πx of the Zariski site of X . We call them Zariski points.

Now let x be a geometric point of X ; then it induces a point πx for the étale site
of X . We call them étale points of X .

Let F be a Zariski (resp. étale) sheaf X and P be the set of Zariski (resp. étale)
points of X . Then the functor F 7→

⊔
π∈P Fπ := π

∗F is exact and conservative.
In other words, the Zariski (resp. étale) site of X has enough points.

Example 3.2.3 (points on rigid analytic spaces [van der Put and Schneider 1995]).
Let X be a rigid analytic space over K . We recall that a filter f on X is a collection
(Uα)α of admissible open subsets of X satisfying

(i) X ∈ f and ∅ /∈ f ,

(ii) if Uα,Uβ ∈ f , then Uα ∩Uβ ∈ f and

(iii) if Uα ∈ f and the admissible open V contains Uα, then V ∈ f .

A prime filter on X is a filter p satisfying moreover

(iv) if U ∈ p and U=
⋃

i∈I U′i is an admissible covering of U, then U′i0
∈ p for

some i0 ∈ I .

Let P(X) be the set of all prime filters of X. The filters on X are ordered with
respect to inclusion. We can give to P(X) a topology and define a morphism of
sites σ : P(X)→ X. Also, we let Pt(X) denote the set of prime filters with the
discrete topology. Let i : Pt(X)→ P(X) be the canonical inclusion and ξ = σ ◦ i .

Remark 3.2.4. Let p= (Uα)α be a prime filter on X as above. Then p is a point of
the site X (see Definition 3.2.1). Using the construction of the continuous map σ of
[van der Put and Schneider 1995], we get that the morphism of topoi π :Set→Sh(X),
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associated to p, is defined in the following way. For any sheaf (of sets) F on X, let
π∗(F)= colimα F(Uα); for any set S and V admissible open in X, let

π∗S(V)=

{
S if V=Uα for some α,
0 otherwise,

where 0 denotes the final object in the category Set. In fact, with the notation above,
we easily get the adjunction

HomSet(π
∗(F),S)= lim

α
HomSet(F(Uα),S)= HomSh(X)(F, π∗S).

Lemma 3.2.5. With the notation above, the functor ξ−1
: Sh(X)→ Sh(Pt (X)) is

exact and conservative. In other words, for any p ∈ Pt(X), F= 0 if all Fp = 0 and
the functors Sh(X) 3 F 7→ Fp are exact.

Proof. See [van der Put and Schneider 1995, Section 4] after the proof of Theorem 1.
�

4. Rigid and de Rham complexes

We begin this section by recalling the construction of the rigid complexes of [Besser
2000, Section 4]. Instead of the techniques of [Artin et al. 1972b, Exposé V.bis], we
use the machinery of generalized Godement resolution as developed in Section 3.
This alternative approach was also mentioned by Besser in the introduction of his
paper. We then recall the construction of the de Rham complexes.

4.1. Rigid complexes. We define a rigid triple to be a system (X, X ,P), where X
is an algebraic k-scheme, j : X→ X is an open embedding into a proper k-scheme
and X→ P is a closed embedding into a p-adic formal V-scheme P that is smooth
in a neighborhood of X .

Definition 4.1.1 [Besser 2000, 4.2, 4.4]. Let (X, X ,P) and (Y, Y ,Q) be two rigid
triples, and let f : X→ Y be a morphism of k-schemes. Let U⊂ ]X [P be a strict
neighborhood of ]X [P and F :U→ QK be a morphism of K -rigid spaces. We say
that F is compatible with f if it induces the following commutative diagram:

]X [P

sp
��

F
// ]Y [Q

sp
��

X
f

// Y

We write Hom f (U,QK ) for the collection of morphisms compatible with f .

The collection of rigid triples forms a category RT with the set of pairs ( f, F)
written as Hom((X, X ,P), (Y, Y ,Q)), where f : X → Y is a k-morphism and
F ∈ colimU Hom f (U,Q).
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Proposition 4.1.2. (i) There is a functor

(Sch/k)◦→ C(K0), X 7→ R0rig(X/K0)

from the category of algebraic k-schemes with proper morphisms Sch/k, such
that H i (R0rig(X/K0))∼= H i

rig(X/K0). Moreover, a canonical σ -linear endo-
morphism of R0rig(X/K0) exists inducing the Frobenius on cohomology.

(ii) There are two functors RT→ C(K )

R̃0rig(X)X ,P and R0rig(X/K )X ,P

and functorial quasi-isomorphisms with respect to maps of rigid triples

R0rig(X/K )← R̃0rig(X)X ,P→ R0rig(X)X ,P.

Proof. See [Besser 2000, 4.9, 4.21, 4.22]. �

Remark 4.1.3. The building block of the construction is the functor R0rig(X/K )X ,P.
That complex is constructed with a system of compatible resolution of the over-
convergent de Rham complexes j†

X�
•

U, where U runs over all strict neighborhoods
of the tube of X . Using Godement resolution, we can explicitly define

R0rig(X/K )X ,P := colim
U

0(U,Gdan j†
X Gdan�

•

U),

where Gdan = GdPt (U). This will be an essential ingredient for achieving the main
results of the paper.

All the proofs of [Besser 2000, Section 4] work using this Godement complex.
We recall that

R0rig(X/K ) := colim
A∈SET0

X

R0rig(X/K )X A,PA
,

R̃0rig(X/K ) := colim
A∈SET0

(X,X ,P)

R0rig(X/K )X A,PA
,

where SET0
X and SET0

(X,X ,P)
are filtered categories of indexes.

With some modifications, we can provide a compact support version of the
functors above. We just need to be careful in the choice of morphisms of rigid
triples.

Definition 4.1.4. Let (X, X ,P) and (Y, Y ,Q) be two rigid triples, and let f : X→Y
be a morphism of k-schemes. Let F : U → QK be compatible with f (as in
Definition 4.1.1). We say that F is strict if there is a commutative diagram

]X [P

F
��

// U

F
��

U \ ]X [Poo

F
��

]Y [Q // V V \ ]Y [Q,oo
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where V is a strict neighborhood of ]Y [Q in ]Y [Q.

It is easy to show that strict morphisms are composable. We let RTc denote the
category of rigid triples with proper morphisms, which is the (not full) subcategory
of RT with the same objects and morphisms pairs ( f, F), where f is proper and F
is a germ of a strict compatible morphism.

Lemma 4.1.5. (i) Let (X, X ,P) be a rigid triple, and let U be a strict neighbor-
hood of ]X [P. Then

H i (0(U,Gdan 0]X [P Gdan�
•

U))= H i
rig,c(X).

(ii) Let (Y, Y ,Q) be another rigid triple, f : X→ Y be a proper k-morphism and
F :U→ QK be a morphism of K -analytic space compatible with f and strict.
Then there is a canonical map

F∗ : Gdan 0]Y [Q Gdan�
•

QK
→ F∗Gdan 0]X [P Gdan�

•

U.

Proof. (i) It is sufficient to note that Gdan(�
•

U) is a complex of flasque sheaves
and that a flasque sheaf is acyclic for 0

]X [P . Let F be a flasque sheaf on the rigid
analytic space U. By definition, 0

]X [P =Ker(a : F→ i∗i∗F). It is easy to check that
Rq i∗i∗F = 0 for q ≥ 1. Hence, R0

]X [P F ∼= Cone(a : F→ i∗i∗F)[−1]. But by hy-
pothesis, the map a is surjective, so Cone(a : F→ i∗i∗F)[−1] ∼=Ker(a)=R00

]X [P .

(ii) First consider the canonical pullback of differential forms F∗ :�QK → F∗�U.
Then by Lemma 3.1.2, we get a map GdPt (QK )�

•

QK
→ F∗GdPt (U)�U. Applying

the functor 0
]X [P to the adjoint map, we get

0
]X [PF

−1 GdPt (QK )�QK→ 0
]X [P GdPt (U)�U.

But the strictness of F implies that there is a canonical map F−10
]Y [Q→ 0

]X [P F−1

[Le Stum 2007, proof of Proposition 5.2.17]. Hence, we have a map

F−10
]Y [Q GdPt (QK )�QK → 0

]X [P GdPt (U)�U.

We can conclude the proof by taking the adjoint of this map and again applying
Lemma 3.1.2. �

Proposition 4.1.6. (i) There is a functor

(Schc/k)◦→ C(K0), X 7→ R0rig,c(X/K0)

from the category of algebraic k-schemes with proper morphisms Schc/k, such
that H i (R0rig,c(X/K0))∼= H i

rig,c(X/K0). Moreover, there exists a canonical
σ -linear endomorphism of R0rig,c(X/K0) inducing the Frobenius on cohomol-
ogy.
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(ii) There are two functors RTc→ C(K )

R̃0rig,c(X)X ,P and R0rig,c(X/K )X ,P

and functorial quasi-isomorphisms with respect to maps of rigid triples

R0rig,c(X/K )← R̃0rig,c(X)X ,P→ R0rig,c(X)X ,P.

Proof. In view of Lemma 4.1.5, it suffices to mimic the construction given in
[Besser 2000, 4.9, 4.21, 4.22] but using only proper morphisms of k-schemes and
strict compatible maps. In this case, the functors used in the construction are

R0rig,c(X/K )X ,P := colim
U

0(U,Gdan 0]X [P Gdan�
•

U),

R0rig,c(X/K ) := colim
A∈SET0

X

R0rig,c(X/K )X A,PA
,

R̃0rig,c(X/K ) := colim
A∈SET0

(X,X ,P)

R0rig,c(X/K )X A,PA
. �

4.2. de Rham complexes. Now we focus on de Rham complexes, and we deal
with smooth K -algebraic schemes. Let X be a smooth algebraic K -scheme. The
(algebraic) de Rham cohomology of X is the hypercohomology of its complex of
Kähler differentials H i

dR(X/K ) := H i (X, �•X/K ) [Grothendieck 1966b]. We can
also define the de Rham cohomology with compact support [Baldassarri et al. 2004,
Section 1] as the hypercohomology groups H i

d R,c(X/K ) := H i (X , limn J n�•
X/K

),
where X→ X is a smooth compactification and J is the sheaf of ideals associated
to the complement X \ X (this definition does not depend on the choice of X
[Baldassarri et al. 2004, Theorem 1.8]). In order to consider the Hodge filtration
on the de Rham cohomology groups, we fix a normal crossings compactification
g : X→ Y and let D := Y \ X be the complement divisor (this is possible by the
Nagata compactification theorem and the Hironaka resolution theorem [Deligne
1971, Section 3.2.1]). We let �•Y 〈D〉 denote the de Rham complex of Y with
logarithmic poles along D (in the Zariski topology) [Jannsen 1990, 3.3]. Let I ⊂OY

be the defining sheaf of ideals of D.

Proposition 4.2.1. With the notation above,

(i) there is a canonical isomorphism

H i
dR(X)∼= H i (Y, �•Y 〈D〉) (resp. H i

dR,c(X)∼= H i (Y, I�•Y 〈D〉)),

(ii) the spectral sequence

E p,q
1 = Hq(Y, �p)⇒ H p+q(Y, �•)

degenerates at 1 for �• =�•Y 〈D〉 and I�•Y 〈D〉 and
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(iii) the filtration induced by this spectral sequence on H i
dR(X) (resp. H i

dR,c(X)) is
independent of the choice of Y . Namely,

F j H i
dR(X) := H i (Y, σ≥ j�•Y 〈D〉) (resp. H i

dR,c(X) := H i (Y, σ≥ j I�•Y 〈D〉)),

where σ≥ j is the stupid filtration.

Proof. Using the argument of [Deligne 1971, 3.2.11], we get the independence of
the choice of Y . The same holds for H i

dR,c(X).
Since our base field K is of characteristic 0, we can find an embedding τ : K→C.

Then by [GAGA 1955–1956], we get these isomorphisms of filtered vector spaces:

H i (Y, �•Y 〈D〉)⊗K C∼= H i (Yh, �
•

Yh
〈Dh〉)

(resp. H i (Y, I�•Y 〈D〉)⊗K C∼= H i (Yh, Ih�
•

Yh
〈Dh〉)),

where ( · )h is the complex analytification functor and Ih is the defining sheaf of Dh .
Thus, we conclude by [Deligne 1971, Section 3] (resp. [Peters and Steenbrink 2008,
Part II, Example 7.25] for the compact support case). �

Remark 4.2.2. The degeneracy of the spectral sequence in (ii) of the proposition
above can be proved algebraically [Deligne and Illusie 1987]. We don’t know an
algebraic proof of the isomorphism in (i).

In the sequel, a morphism of pairs (X, Y ) as above is a commutative square

X

u
��

g
// Y

v
��

X ′
g′
// Y ′.

We say that the morphism is strict if the square is cartesian.
The complex �•Y 〈D〉 (resp. I�•Y 〈D〉) is a complex of Zariski sheaves over Y

functorial with respect to the pair (X, Y ) (resp. strict morphisms of pairs). We can
construct two different (generalized) Godement resolutions (see Section 3): one
using Zariski points and the other via the K -analytic space associated to Y .

We will write Pt(Y )= Pt(Yzar) for the set of Zariski points of Y with the discrete
topology and Pt (Yan) for the discrete site of rigid points (Example 3.2.3) of Yan;
Pt(Yan)tPt(Y ) is the direct sum in the category of sites.

Proposition 4.2.3. With the notation of Proposition 4.2.1, let w : Yan→ Yzar be the
canonical map from the rigid analytic site to the Zariski site of Y . Then for any
Zariski sheaf � on Y , there is a diagram

GdPt(Y )(�)← GdPt(Yan)tPt(Y )(�)→ w∗GdPt(Yan)(w
∗�).
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If we further consider � = �•Y 〈D〉 (resp. � = I�•Y 〈D〉), then the diagram is
functorial with respect to the pair (X, Y ) (resp. (X, Y ) and strict morphisms). The
same holds true with Gd2

? instead of Gd?.

Proof. The first claim follows from Lemma 3.1.2 applied to the commutative
diagram of sites

Pt(Yan)

��

// Pt(Yan)tPt(Y )

��

Pt(Y )oo

��

Yan w
// Yzar Yzarid

oo

with respect to the canonical map �→ w∗w
∗�. The second claim follows from

the functoriality of the complex �•Y 〈D〉 (resp. I�•Y 〈D〉). �

Proposition 4.2.4. (i) Let g : X→ Y be a normal crossings compactification as
in Section 4.2. Then there is a quasi-isomorphism of complexes of sheaves

�•Y 〈D〉 → Gd2
Pt (Y )(�

•

Y 〈D〉) (resp. I�•Y 〈D〉 → Gd2
Pt (Y ) I�•Y 〈D〉),

and the stupid filtration on �•Y 〈D〉 (resp. I�•Y 〈D〉) induces a filtration on the
right term of the morphism.

(ii) Let Sm /K (resp. Smc /K ) be the category of algebraic and smooth K -schemes
(resp. with proper morphisms). Let Db

dR(K ) be the derived category of the
exact category of filtered vector spaces. Then there exist two functors

R0dR( · ) : (Sm /K )◦→ Db
dR(K ) and R0dR,c( · ) : (Smc /K )◦→ Db

dR(K )

such that with the same notation as (i), R0dR(X) = 0(Y,Gd2
Pt (Y )(�

•

Y 〈D〉))
and R0dR,c(X)= 0(Y,Gd2

Pt (Y ) I�
•

Y 〈D〉).

(iii) The filtered complexes R0dR(X) and R0dR,c(X) are strict (see Remark 2.0.10).

Proof. (i) This follows directly from the definition of Godement resolution.

(ii) This follows from the functoriality of the Godement resolution with respect to
morphism of pairs and [Deligne 1971, 3.2.11] or [Huber 1995, Lemma 15.2.3] for
the compact support case.

(iii) This follows by [Peters and Steenbrink 2008, Part II, Section 4.3, Section 7.3.1].
�

5. Syntomic cohomology

In this section, we construct the p-adic Hodge complexes needed to define the rigid
syntomic cohomology groups (also with compact support) for a smooth algebraic
V-scheme. The functoriality will be a direct consequence of the construction.
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5.1. Compactifications.
Lemma 5.1.1 [Grothendieck 1966a, 2.8.5]. Let f : X → V be a morphism of
schemes, and let Z ⊂ XK be a closed subscheme of the generic fiber of X. Then
there exists a unique closed subscheme Z ⊂ X that is flat over V and satisfies
ZK = Z. Thus, Z is the schematic closure of Z in X.

Proposition 5.1.2. Let X be a smooth scheme over V. Then there exists a generic
normal crossings compactification , that is, an open embedding g : X→Y such that

(i) Y is proper over V,

(ii) YK is smooth over K and

(iii) DK ⊂ YK is a normal crossings divisor, where D= Y \X.

Proof. First by Nagata [Conrad 2007], there exists an open embedding XK → Y ,
where Y is a proper K -scheme. By the Hironaka resolution theorem, we can assume
that Y is a smooth compactification of XK with complement a normal crossings
divisor. Now we can define Y′ to be the gluing of X and Y along the common open
subscheme XK . These schemes are all of finite type over V. It follows from the
construction that Y′ is a scheme, separated and of finite type over V, whose generic
fiber is Y .

The Nagata compactification theorem works also in a relative setting, namely
for a separated and finite type morphism; hence, we can find a V-scheme Y that
is a compactification of Y′ over V. Thus, we get an open and dense embedding
h : Y′K = Y → YK of proper K -schemes, so h is the identity, and the statement is
proven. �

Remark 5.1.3. We can also give another proof of the previous proposition assuming
an embedding in a smooth V-scheme. First by Nagata [Conrad 2007], there exists
an open embedding X→ X. Now assume that X is embeddable in a smooth V-
scheme W; then by [Włodarczyk 2005, Theorem 1.0.2], we can get a resolution of
the K -scheme XK by making a sequence of blowups with respect to a family of
closed subsets in good position with respect to the regular locus of XK , in particular
Zi ∩XK =∅. One can perform the same construction directly over V, replacing the
closed Zi ⊂WK with their Zariski closure Zi in W. By hypothesis, Zi ⊂WK \XK ;
hence, its closure Zi is contained in W \X, and (Zi )K = Zi by Lemma 5.1.1. The
construction doesn’t affect what happens on the generic fiber because the blowup
construction is local and behaves well with respect to open immersions [Hartshorne
1977, Chapter II, 7.15]. This will give Y as in the proposition.

5.2. Connecting maps. From now on, we keep the notation of Proposition 5.1.2
with g : X→ Y being fixed. To simplify the notation, X (resp. Y) denotes the rigid
analytic space associated to the generic fiber of X (resp. Y), usually denoted Xan

K .
Let w : Y→ (YK )zar be the canonical map of sites.
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Sometimes we will simply write Gdan = GdPt (U) if the rigid space U is clear
from the context. Similarly, we write Gdzar = GdPt (X) to denote the Godement
resolution with respect to Zariski points of a K -scheme X .

Lemma 5.2.1. With the notation above, we have the following morphisms of com-
plexes of K -vector spaces:

0(Y,Gdan j† Gdanw
∗�•YK

〈DK 〉)→0(X,Gdan j† Gdan�
•

X)→ R0rig(Xk/K )Yk ,Ŷ
,

0(Y,Gdan 0]Xk [Gdanw
∗ I�•YK

〈DK 〉)

→ 0(X,Gdan 0]Xk [Gdan�
•

X)→ R0rig,c(Xk/K )Yk ,Ŷ
.

All the maps are quasi-isomorphisms. We let a and b denote the composition of the
maps in the first and second diagrams, respectively.

Proof. By construction, R0rig(Xk/K )Yk ,Ŷ
(respectively R0rig,c(Xk/K )Yk ,Ŷ ) is a

direct limit of complexes indexed over the strict neighborhoods of ]Xk[Ŷ, and X is
one of them (see Remark 4.1.3 and Proposition 4.1.6). Hence, the map on the right
(of both diagrams) comes from the universal property of the direct limit.

For the map on the left, consider first the canonical inclusion of algebraic
differential forms with log poles into the analytic ones w∗�•YK

〈DK 〉 → gan
∗
�•X.

By Lemma 3.1.2, we get a map

GdPt (Y)w
∗�•YK

〈DK 〉 → gan
∗

GdPt (X)�
•

X.

Then applying the j† functor and noting that j†gan
∗
= gan
∗

j† [Le Stum 2007, 5.1.14],
one obtains a morphism j† GdPt (Y)w

∗�•YK
〈DK 〉 → gan

∗
j† GdPt (X)�

•

X. This is
what we need to apply Lemma 3.1.2 again and conclude the proof for the first
diagram.

For the second diagram, repeat the argument using [Le Stum 2007, 5.2.15]. �

Lemma 5.2.2. With the notation above, we have the following morphisms of com-
plexes of K -vector spaces, which we denote by a′ and b′, respectively:

0(Y,Gd2
anw

∗�•YK
〈DK 〉)→ 0(Y,Gdan j† Gdanw

∗�•YK
〈DK 〉),

0(Y,Gdan 0]Xk [Gdanw
∗ I�•YK

〈DK 〉)→ 0(Y,Gd2
anw

∗ I�•YK
〈DK 〉).

Proof. The maps a′ and b′ are induced by the canonical maps � → j†� and
0]Xk [�→�, respectively, where � is an abelian sheaf on Y. In particular, we con-
sider �= Gdanw

∗�•YK
〈DK 〉 (respectively �= Gdanw

∗ I�•YK
〈DK 〉). To conclude

the proof, apply the functor Gdan again and take global sections. �

5.3. Syntomic complexes. Now we put together all we have done, getting a dia-
gram, say R0′(X), of complexes of K -vector spaces:
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R0rig(X/K0)
α1

// R0rig(X/K )

R̃0rig(X/K )Yk ,Ŷ

α2
22

α3
// R0rig(X/K )Yk ,Ŷ

0(Y,Gd2
anw

∗�YK 〈DK 〉)

α4 22

α5
// 0(Y,Gd2

anw
∗�YK 〈DK 〉)

0(YK ,Gd2
an+ zar�YK 〈DK 〉)

α6 22

α7
// 0(YK ,Gd2

zar�YK 〈DK 〉)

0(YK ,Gd2
zar�YK 〈DK 〉)

α8 22

where α1, α5, α8 are the identity maps; α2 and α3 are the maps of Proposition 4.1.2;
α4 is the composition of a◦a′ (see Lemma 5.2.1 and Lemma 5.2.2) and α6 and α7 are
defined in Proposition 4.2.3. By repeatedly applying the quasipushout construction,
we obtain a diagram of the shape

R0rig(X/K0)→ R0K (X)← R0dR(X). (3)

It represents an object of pHC that we denote R0(X).
Similarly, we can construct a p-adic Hodge complex R0c(X) associated to the

diagram R0′c(X) defined as

R0rig,c(X/K0)
β1

// R0rig,c(X/K )

R̃0rig,c(X/K )Yk ,Ŷ

β2 11

β3
// R0rig,c(X/K )Yk ,Ŷ

0(Y,Gdan 0]X [Gdanw
∗ I�YK 〈D〉)

β4 22

β5
// 0(Y,Gd2

anw
∗ I�YK 〈DK 〉)

0(YK ,Gd2
an+ zar I�YK 〈DK 〉)

β6 11

β7
// 0(YK ,Gd2

zar I�YK 〈DK 〉)

0(YK ,Gd2
zar I�YK 〈DK 〉)

β8 11

where β1 and β8 are the identity maps; β2 and β3 are the maps of Proposition 4.1.2;
β4 is the map b of Lemma 5.2.1; β5 = b′ of Lemma 5.2.2 and β6 and β7 are defined
in Proposition 4.2.3. Note that β6 is a quasi-isomorphism by GAGA.

Proposition 5.3.1. Let Sm /R (resp. Smc /R) be the category of algebraic and
smooth R-schemes (resp. with proper morphisms). The previous construction
induces the functors

R0( · ) : (Sm /V)◦→ pHD and R0c( · ) : (Smc /V)
◦
→ pHD .

Proof. Let f :X→X′ be a morphism of smooth V-schemes. To get the functoriality,
we just have to show that can find two gncd compactifications g : X→ Y and
g′ : X′→Y′ and a map h :Y→Y′ extending f , that is, hg = g′ f . We argue as in
[Deligne 1971, Section 3.2.11]. Fix two gncd compactifications g′ : X′→ Y′ and
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l : X→ Z. Then consider the canonical map X→ Z×Y′ induced by l and g′ f .
Let X be the closure of X in Z×Y′ and use the same argument as in the proof of
Proposition 5.1.2 to get Y, which is generically a resolution of the singularities of X.
Then by Proposition 4.2.3 and Proposition 4.1.2, we get the functoriality of R0( · ).

If we further assume f to be proper, then we can apply the same argument in order
to get the commutative square hg= g′ f as above. Then by properness, this square is
also cartesian by [Huber 1995, Lemma 15.2.3]. From this fact and Propositions 4.1.6
and 4.2.3, we obtain the functoriality of R0c( · ) with respect to proper maps. �

Definition 5.3.2. Let X be a smooth algebraic scheme over V. For any integers n
and i , we define the absolute cohomology groups of X as

H n
abs(X, i) := HompHD(K, R0(X)(i)[n])= H n(0(K, R0(X)(i))) (4)

and the absolute cohomology with compact support groups of X as

H n
abs,c(X, i) := HompHD(K, R0c(X)(i)[n])= H n(0(K, R0c(X)(i))). (5)

A direct consequence of the definition is the existence of the following long exact
sequence, which should be considered to be a p-adic analog of the corresponding
sequence for Deligne–Beilinson cohomology [Beı̆linson 1985, Introduction].

Proposition 5.3.3. With the notation above, we have the long exact sequences

→ H n
abs(X, i)→ H n

rig(Xk/K0)⊕ F i H n
dR(XK )

h
−→ H n

rig(Xk/K0)⊕ H n
rig(Xk/K )

+
−→,

where h(x0, xdR) := (φ(xσ0 )− pi x0, x0⊗ 1K − sp(xdR)) and

→H n
abs,c(X, i)→H n

rig,c(Xk/K0)⊕F i H n
dR,c(XK )

hc
−→H n

rig,c(Xk/K0)⊕H n
dR,c(XK )

+
−→,

where hc(x0, xdR) := (φc(x0σ)− pi x0, cosp(x0⊗ 1K )− xdR).

Proof. By Proposition 2.2.2, the absolute cohomology is the cohomology of a map-
ping cone, namely 0(K, R0(X)) (or 0c(K, R0(X)) for the compact support case).
The long exact sequences above are easily induced from the distinguished triangle de-
fined by the term of the mapping cone (see Remark 2.2.1(iii)). Indeed, one need only
note that the map c : R0rig(X/K0)⊗K→ R0K (X) (resp. s : R0dR(X)→ R0K (X))
is a quasi-isomorphism. �

Proposition 5.3.4. With the notation above, there is a canonical isomorphism
between the absolute cohomology we have defined and the (rigid) syntomic coho-
mology of Besser:

H n
syn(X, i)∼= H n

abs(X, i).
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Proof. Besser defines a complex

R0Bes(X, i)

:= Cone
(
R0rig(X/K0)⊕Fili R0dR(X)→ R0rig(X/K0)⊕R0rig(X/K )

)
[−1]

and the syntomic cohomology groups (of degree n and twisted i) H n(R0Bes(X, i))
(see [Besser 2000, proof of Proposition 6.3]). Note that, modulo the choice of
the flasque resolution, R0rig(X/K0)= R0rig(X/K0) (the left-hand side is the nota-
tion used by Besser with the bold R); the complex Fili R0dR(X) is a direct limit
over all the normal crossing compactifications of XK of complexes of the form
0(Y,Gd2

Pt (Y ) σ
≥i�Y 〈D〉) so that our F i R0dR(X) is an element of this direct limit.

To conclude the proof, recall that by Remark 2.2.1(iii), we obtain

H n
abs(X, i)
∼= H n(Cone(R0rig(X/K0)⊕ F i R0dR(X)→ R0rig(X/K0)⊕ R0rig(X/K ))[−1]),

and it is easy to check that the maps in the two mapping cones are defined in the
same way. �

Remark 5.3.5. The isomorphism H n(R0syn(X, i)) ∼= HompHD(K, R0(X)(i)[n])
can be viewed as a generalization of the result of Bannai [2002], who considers
only smooth schemes X with a fixed compactification Y and such that Y \X= D

is a relative normal crossings divisor over V. Moreover, Bannai’s construction
is not functorial with respect to X; functoriality holds only with respect to a so-
called syntomic datum. We should point out that the category defined by Bannai is
endowed with a t-structure whose heart is the category M F f

K of (weakly) admissible
filtered Frobenius modules. In our case, we don’t have such a nice picture.

Remark 5.3.6. The category of p-adic Hodge complexes is not endowed with
internal Hom. This is due to the fact that the Frobenius is only a quasi-isomorphism;
hence, we cannot invert it. In particular, this happens for the complex R0c(X);
thus, we cannot define the dual R0c(X)

∨
:= RHom(R0c(X),K) and an absolute

homology theory as

H abs
n (X, i) := HompHD(K, R0c(X)

∨(−i)[−n]);

see [Huber 1995, Section 15.3]. Nevertheless, the usual adjunction between Hom
and ⊗ should give a natural isomorphism

HompHD(K, R0c(X)
∨)∼= HompHD(R0c(X),K),

and the right term does makes sense in our setting. This motivates the following
definition:
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Definition 5.3.7. With the notation of Definition 5.3.2, we define the absolute
homology groups of X as

H abs
n (X, i) := HompHD(R0c(X),K(−i)[−n])= H−n(0(R0c(X),K(−i))). (6)

5.4. Cup product and Gysin map. We are going to prove that there is a morphism

R0(X)⊗ R0c(X)→ R0c(X)

of p-adic Hodge complexes. This induces a pairing at the level of the complexes
computing absolute cohomology. The key point is the compatibility of the de Rham
and rigid pairings with respect to the specialization and cospecialization maps.

Let us start by fixing some notation. Let X be a smooth algebraic V-scheme,
g : X→ Y be a gncd compactification and D= Y \X be the complement; Y is the
rigid analytic space associated to the K -scheme YK ; as before, we letw :Y→YK ,zar

denote the canonical morphism of sites (see the notation after Proposition 5.1.2).
For any OYK -module F , w∗ denotes its pullback.

Remark 5.4.1.

(i) The wedge product of algebraic differentials induces the pairing

pdR :�YK 〈DK 〉⊗ I�YK 〈DK 〉 → I�YK 〈DK 〉.

(ii) The analytification of pdR gives a pairing

w∗�YK 〈DK 〉⊗w
∗ I�YK 〈DK 〉 → w∗ I�YK 〈DK 〉.

Hence, by [Berthelot 1997a, Lemma 2.1], we get the pairing

prig : j†w∗�YK 〈DK 〉⊗0]Xk [
w∗ I�YK 〈DK 〉 → 0

]Xk [
w∗ I�YK 〈DK 〉.

Lemma 5.4.2 (sheaves level). The diagram

Gdan
2(w∗�YK 〈DK 〉)

⊗Gd2
an(w

∗ I�YK 〈DK 〉)
// Gd2

an(w
∗ I�YK 〈DK 〉)

Gd2
an(w

∗�YK 〈DK 〉)

⊗Gdan 0]Xk [
Gdan(w

∗ I�YK 〈DK 〉)

OO

��

m
// Gdan 0]Xk [

Gdan(w
∗ I�YK 〈DK 〉)

OO

1

��Gdan j† Gdan(w
∗�YK 〈DK 〉)

⊗Gdan 0]Xk [
Gdan(w

∗ I�YK 〈DK 〉)
// Gdan 0]Xk [

Gdan(w
∗ I�YK 〈DK 〉)

commutes, where m := prig ◦ ( j†
⊗ 1) by definition.

Proof. The bottom square commutes by construction, and we get prig ◦ ( j†
⊗ 1)=

w∗ pdR restricted to w∗�YK 〈DK 〉⊗0]Xk [
w∗ I�YK 〈DK 〉. �
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Proposition 5.4.3. Let X be a smooth V-scheme. Then there exists a morphism

π : R0(X)⊗ R0c(X)→ R0c(X)

of p-adic Hodge complexes, which is functorial with respect to X (as a morphism in
pHD). Moreover, taking the cohomology of this map, we get the compatibility

H n
dR(XK )⊗ H m

dR,c(XK ) // H n+m
dR,c (XK )

H n
dR(XK )⊗ H m

rig,c(Xk)

sp⊗ id

��

id⊗ cosp

OO

// H n+m
rig,c (Xk)

id
��

cosp

OO

H n
rig(Xk)⊗ H m

rig,c(Xk) // H n+m
rig,c (Xk)

Proof. It is sufficient to provide a pairing of the enlarged diagrams (see Remark 2.2.4).
Thus, we have to define a morphism of diagrams π ′ : R0′(X)⊗ R0′c(X)→ R0′c(X)
(notation as in Section 5.3). It is easy to construct π ′ using the previous lemma and
the compatibility of the Godement resolution with the tensor product. �

Corollary 5.4.4. There is a functorial pairing (induced by π of Proposition 5.4.3)

H n
abs(X, i)⊗ H m

abs,c(X, j)→ H n+m
abs,c (X, i + j).

Proof. Consider the pairing of Proposition 5.4.3, which induces a morphism
R0(X)(i)⊗R0c(X)( j)→ R0c(X)(i+ j). We then get the corollary by Lemma 2.2.3
and Definition 5.3.2. �

Proposition 5.4.5 (Poincaré duality). Let X be a smooth and algebraic V-scheme
of dimension d. Then there is a canonical isomorphism

H n
abs(X, i)∼= H abs

2d−n(X, d − i).

Proof. By definition (Equations (4) and (6)), it is sufficient to prove that the complex
0(K, R0(X)) is quasi-isomorphic to the diagram 0(R0c(X),K[−2d](−d)).

First recall that 0(K, R0(X)) is defined as

Cone
(
R0rig(X/K0)⊕ R0K (X)⊕ F0 R0dR(X)

ψ
−→ R0rig(X/K0)⊕ R0K (X)⊕ R0K (X)

)
[−1],

where ψ(x0, xK , xdR) := (φ(x0)−x0, c(x0⊗idK )−xK , xK−s(xdR)). To define the
desired map, we need to modify this complex, replacing R0K (X) with R0dR(X) as

Cone
(
R0rig(X/K0)⊕ R0dR(X)⊕ F0 R0dR(X)

ψ ′

−→ R0rig(X/K0)⊕ R0K (X)⊕ R0dR(X)
)
[−1],
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where ψ ′(x0, x ′dR, xdR) := (φ(x0)− x0, c(x0⊗ idK )− s(x ′dR), x ′dR− xdR). It is easy
to see that this new complex, call it M•, is quasi-isomorphic to 0(K, R0(X)).

Because the filtered complex R0dR,c(X) is strict, the truncation τ≥2d R0dR,c(X)

is the usual truncation of complexes of K -vector spaces (see Lemma 2.1.1(iii)
and Remark 2.0.10). Then the cup product induces a morphism of complexes
M•→0(R0c(X), τ≥2d R0c(X)) that is a quasi-isomorphism by the Poincaré duality
theorems for rigid and de Rham cohomology [Berthelot 1997a; Huber 1995].
Explicitly, this map is induced by the commutative diagram

R0rig(X/K0)⊕ R0dR(X)

⊕ F0 R0dR(X)

ψ ′

��

α
//
Hom•K0

(N0, τ≥2d N0)⊕Hom•K (NK , τ≥2d NK )

⊕Hom•,FK (NdR, τ≥2d NdR)

ξ

��

R0rig(X/K0)⊕ R0rig(X/K )
⊕ R0dR(X) β

//
Hom•K0

(Nσ
0 , τ≥2d N0)⊕Hom•K (Nrig, τ≥2d NK )

⊕Hom•K (NdR, τ≥2d NK ),

where N := R0c(X),

ξ( f0, fK , dR) := (φc ◦ f σ0 − f0 ◦φc, c ◦ ( f0⊗ idK )− fK ◦ c, fK ◦ s− s ◦ xdR),

α(x0, x ′dR, xdR) : (y0, yK , ydR) 7→ (x0 ∪ y0, s(x ′dR)∪ yK , xdR ∪ ydR),

β(x0, xrig, xdR) : (y0, yrig, ydR) 7→ (x0 ∪φc(y0), xrig ∪ yrig, xdR ∪ ydR).

To conclude the proof, it is sufficient to apply the exact functor 0(R0c(X), · ) to
the quasi-isomorphisms

τ≥2d R0c(X)← H 2d(R0c(X))[−2d] → K(−d)[−2d]. �

Remark 5.4.6. We would like to point out some technical issues regarding Poincaré
duality in syntomic cohomology.

(i) If it were possible to define an internal Hom in the category pHC of p-adic
Hodge complexes (see Remark 5.3.6), then by Proposition 5.4.3, one would obtain
the natural isomorphism

R0(X)(d)[2d] ∼= R0c(X)
∨

in the triangulated category pHD, where R0c(X)
∨
:= RHompHC(R0c(X),K) is

the dual of R0c(X). Then one would get by adjunction the duality

HompHD(K, R0(X)(i)[n])∼= HompHD(K, R0c(X)∨(i − d)[n− 2d])
∼= HompHD(R0c(X)(d − i)[2d − n],K).

(ii) The Grothendieck–Leray spectral sequence for absolute homology is

E p,q
2 = HompHD(H−q(R0c(X)(i))[−p],K),
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and it degenerates to the short exact sequences

0→ HompHD(H n(R0c(X)(i)),K)→ H syn
n (X, i)

→ HompH D(H n+1(R0c(X)(i)),K[1])→ 0.

Directly by Proposition 2.2.2, the group HompHD(H n(R0c(X)(i)),K) is{
(x0, xdR) ∈ H n

rig,c(Xk/K0)
∨
⊕ (H n

dR,c(XK )/F i+1)∨

: (x0⊗ 1K )= xdR ◦ cosp, x0 ◦φc = pi xσ0
}
.

In cohomology, the Frobenius is an invertible; hence, the equation x0 ◦φc = pi xσ0
is equivalent to x0 = pi xσ0 φ

−1
c , where the latter is the formula for the Frobenius

of internal Hom(H n
rig,c(Xk), K (−i)) in the category of isocrystals (that is, mod-

ules with Frobenius). Hence, by Poincaré duality, we get φ((x∨0 )
σ )= pd−i x∨0 ;

x∨ ∈ H 2d−n
rig (Xk/K0) is the cohomology class corresponding to x0, where φ is the

Frobenius of H 2d−n
rig (Xk/K0).

(iii) The absolute homology is defined via the complex R0c(X), but it is not clear
how to relate it to the dual of the absolute cohomology with compact support.

Corollary 5.4.7 (Gysin map). Let f : X→ Y be a proper morphism of smooth
algebraic V-schemes of relative dimension d and e, respectively. Then there is a
canonical map

f∗ : H n
abs(X, i)→ H n+2c

abs (Y, i + c),

where c = e− d.

Proof. This is a direct consequence of the previous proposition and the functoriality
of R0c(X) with respect to proper morphisms. �

Remark 5.4.8. With the notation above, we get a morphism of spectral sequences

g : E p,q
2 (X) := HompHD(K, Hq(X)(i)[p])→ E p,q+2c

2 (Y)

:= HompHD(K, Hq+2c(Y)(i)[p])

compatible with f∗. The map g is induced by the Gysin morphism in de Rham and
rigid cohomology.

We conclude by saying that it is natural to expect that the Gysin map for syntomic
cohomology is compatible with the K -theory pushforward under the regulator
defined by Besser. We plan to address this open problem in a future work.
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Zeros of real irreducible characters
of finite groups

Selena Marinelli and Pham Huu Tiep

We prove that if all real-valued irreducible characters of a finite group G with
Frobenius–Schur indicator 1 are nonzero at all 2-elements of G, then G has a
normal Sylow 2-subgroup. This result generalizes the celebrated Ito–Michler
theorem (for the prime 2 and real, absolutely irreducible, representations), as well
as several recent results on nonvanishing elements of finite groups.

1. Introduction

Suppose that G is a finite group. Let Irr(G) be the set of the irreducible complex
characters of G, and let F be a subfield of C. Write IrrF(G) for the set of those
χ ∈ Irr(G) such that χ(g)∈ F for all g ∈G. Hence IrrR(G) is the set of real-valued
(or real) irreducible characters of G.

As shown in recent papers [Dolfi et al. 2008; Navarro et al. 2009; Navarro
and Tiep 2010], several fundamental results on characters of finite groups admit a
version in which Irr(G) is replaced by IrrF(G) for a suitable field F. For instance, S.
Dolfi, G. Navarro and P. H. Tiep proved in [Dolfi et al. 2008] that if all χ ∈ IrrR(G)
have odd degree, then a Sylow 2-subgroup of G is normal in G (therefore, providing
a strong version of the celebrated Ito–Michler theorem for the prime p = 2).

In this paper, we turn our attention to the nonvanishing elements of a finite
group G. These elements, introduced by M. Isaacs, G. Navarro and T. R. Wolf in
[Isaacs et al. 1999], are the x ∈ G such that χ(x) 6= 0 for all χ ∈ Irr(G). Since
their definition, there has been an increasing interest in the set of the nonvanishing
elements of finite groups. See for instance [Dolfi et al. 2009; Dolfi et al. 2010c;
Dolfi et al. 2010d; Dolfi et al. 2010a; Dolfi et al. 2010b]. One of most relevant
results in this area was obtained by S. Dolfi, E. Pacifici, L. Sanus and P. Spiga
in [Dolfi et al. 2009], where they proved that if all the p-elements of a finite group
G are nonvanishing, then G has a normal Sylow p-subgroup. Since characters
of degree not divisible by p cannot vanish on any p-element (by an elementary

Tiep is supported by NSF grants DMS-0901241 and DMS-1201374.
MSC2010: primary 20C15; secondary 20C33.
Keywords: real irreducible character, nonvanishing element, Frobenius–Schur indicator.
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argument involving roots of unity — see for instance Lemma 5.1), this result is
again an extension of the Ito–Michler theorem.

Recall that the Frobenius–Schur indicator of χ ∈ Irr(G) is 0 if χ is nonreal, ±1
if χ is real; moreover it is 1 precisely when χ is afforded by a real representation
of G.

Our main result in this paper is the following.

Theorem A. Let G be a finite group. If χ(x) 6= 0 for all real-valued irreducible
characters χ of G with Frobenius–Schur indicator 1 and all 2-elements x ∈ G, then
G has a normal Sylow 2-subgroup.

Since odd degree characters do not vanish on 2-elements, Theorem A above
provides at the same time a generalization of [Dolfi et al. 2008, Theorem A] and of
the p = 2 case of [Dolfi et al. 2009, Theorem A]. As an immediate consequence of
Theorem A, we obtain the following refinement of the Ito–Michler theorem for the
prime 2 and real, absolutely irreducible, representations:

Theorem B. Let G be a finite group. If χ(1) is odd for all real-valued irreducible
characters χ of G with Frobenius–Schur indicator 1, then G has a normal Sylow
2-subgroup.

A few remarks are in order here. First of all, the hypotheses of our Theorem A
here are strictly more general than those of [Dolfi et al. 2008, Theorem A]. In
Section 5 below, we will describe an interesting family of examples of groups
G, having real irreducible characters of even degree, such that all 2-elements of
G are nonvanishing. We also mention that in order to obtain the solvable part of
Theorem A, we will prove a result guaranteeing the existence of real 2-defect zero
characters, which might be of independent interest; see Theorem 2.4.

2. Regular orbits and characters of 2-defect zero

We will need the following result, showing that real characters are remarkably
well-behaved across odd sections. As usual, if N is a normal subgroup of a group
G and θ ∈ Irr(N ), we denote by IG(θ) the inertia subgroup of θ in G and by
Irr(G|θ) the set of the irreducible characters of G that lie over θ . For brevity, we
call χ ∈ Irr(G) strongly real if the Frobenius–Schur indicator of χ equals 1, and let
Irr+(G) denote the set of all strongly real irreducible characters of G. Certainly, if
H ≤ G and χ = λG

∈ Irr(G) for some λ ∈ Irr+(H), then χ ∈ Irr+(G).

Lemma 2.1. Let G be a finite group and let N G G with G/N of odd order.

(i) If θ ∈ IrrR(N ), then there exists a unique χ ∈ IrrR(G|θ).

(ii) If θ ∈ Irr+(N ), then there exists a unique χ ∈ Irr+(G|θ).
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Proof. Part (i) is [Navarro and Tiep 2008, Corollary 2.2].
For (ii), let T = IG(θ). Since |T/N | is odd, θ extends to a real character λ of

T by [Navarro and Tiep 2008, Lemma 2.1]. As λN = θ is strongly real, the same
holds for λ. Now χ = λG is irreducible and strongly real. The uniqueness of χ
follows from (i). �

Lemma 2.2. Let G = N 〈 j〉 be a split extension of a normal subgroup N by a
subgroup 〈 j〉 of order 2. Suppose that α ∈ Irr(N ) is of odd degree, and that
α j
= ᾱ 6= α. Then αG is irreducible and strongly real.

Proof. The irreducibility of αG is obvious. Let α be afforded by a represen-
tation 8 : N → GLn(C), so that n = α(1) is odd. Then the representations
8 j
: x 7→8( j x j−1) and 8∗ : x 7→ t8(x−1) afford the same character ᾱ, whence

8( j x j−1)= At8(x−1)A−1 for some A ∈ GLn(C). Conjugating by j once more,
we see that A · tA−1 commutes with8(x) for all x ∈ N . By Schur’s lemma, tA= κA
for some κ ∈ C. Transposing once more, we get κ2

= 1. But A ∈ GLn(C) and n is
odd, so κ = 1, that is, A = tA. Now we define 9 : G→ GL2n(C) by

9(x)=
(
8(x) 0

0 A t8(x−1)A−1

)
, 9(x j)=9(x) ·

(
0 In

In 0

)
for all x ∈ N ; in particular, 9(x j)=9( j)9( j x j−1). It is straightforward to check
that 9 is a group homomorphism, and that t9(g) · M9(g) = M for all g ∈ G
and with

M :=
(

0 A−1

tA−1 0

)
.

Thus the CG-module corresponding to 9 supports a G-invariant symmetric bilinear
form (with Gram matrix M) and affords the character αG , whence αG is strongly
real. �

Note that the examples with (G,N ,α(1))=(2S7,2A7,4) and with (G,N ,α(1))=
(Q8,C4, 1) show that one cannot remove any of the assumptions of Lemma 2.2.

A character χ ∈ Irr(G) is said to be of p-defect zero for a given prime p if p does
not divide |G|/χ(1). By a fundamental result of R. Brauer [Isaacs 1976, Theorem
8.17], if χ ∈ Irr(G) is a character of p-defect zero, then χ(g)= 0 for every element
g ∈ G such that p divides the order o(g) of g. Next we recall the following result
of G. R. Robinson:

Lemma 2.3 [Robinson 1989, Remark 2, p. 254]. Let G be a finite group and let
χ ∈ Irr(G) be a real character of 2-defect zero. Then χ is strongly real.

Let G be a finite group and let U be a faithful G-module. We recall that a
G-orbit {ug

| g ∈ G} of G on U is a regular orbit if its cardinality is equal to |G|
or, equivalently, if CG(u)= 1.
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Theorem 2.4. Let G be a finite group. Assume that O2(G)= 1 and that G has a
nilpotent normal 2-complement M. Let P be a Sylow 2-subgroup of G and assume
that whenever U is a faithful Fq [P]-module, P has a regular orbit on U , where
q is a prime dividing |M |. Then there exists a strongly real irreducible character
χ ∈ Irr+(G) of 2-defect zero.

If P is an abelian 2-group, then P has a regular orbit in every faithful action
on a module of coprime characteristic. In fact, this is an application of Brodkey’s
theorem [1963].

We observe, for completeness, that a 2-group P acting faithfully on a module
U of characteristic q 6= 2 has no regular orbit on U only if q is either a Mersenne
or Fermat prime, and P involves a section isomorphic to the dihedral group D8.
This follows from [Manz and Wolf 1993, Theorems 4.4 and 4.8], using Maschke’s
theorem and standard arguments for passing from irreducible to completely reducible
modules.

Theorem 2.4 will be derived from the following result, whose somewhat more
technical statement will be needed in the proof of Theorem A.

Theorem 2.5. Let G be a finite group with a nontrivial Sylow 2-subgroup P.
Assume that O2(G) = 1 and that G has a nilpotent normal 2-complement M.
Assume in addition that, whenever U is a faithful Fq [P]-module, P has a regular
orbit on U , where q is a prime dividing |M |. Then there exist a character θ ∈ Irr(M)
and an element z ∈ P , such that θG

∈ Irr(G) and θ z
= θ .

Proof. Let P ∈ Syl2(G). Since O2(G)= 1, P acts faithfully on M . By coprimal-
ity, P acts faithfully on M/8(M), as well. So, by factoring out 8(M), we can
assume that

M = L1× L2× · · ·× Lk,

where each L i is an irreducible Fqi [P]-module for some prime qi 6= 2. We define
Wi = CP(L i ) for any i = 1, . . . , k. Observe that Wi is a normal subgroup of P for
each i , and that

⋂k
i=1 Wi = 1, since P acts faithfully on M .

Now, let B be a subset of {W1, . . . ,Wk} minimal such that⋂
W∈B

W = 1.

We can assume that B= {W1, . . . ,Wn} for some n ≤ k. Thus P acts faithfully on
U = L1× · · ·× Ln .

By assumption, for all i ∈ {1, . . . , n}, there exists an element ui ∈ L i such that
CP(ui ) = Wi . So, if we set u = (u1, . . . , un) ∈ U , it follows that CP(u) = 1.
Now, we consider the dual group Û = Irr(U ). Since |U | is odd, by [Isaacs 1976,
Theorem 13.24], U and Û are isomorphic as P-modules. Hence there exists µ∈ Û



Zeros of real irreducible characters of finite groups 571

such that IP(µ) = 1, where IP(µ) is the inertia group of µ in P . Consider now,
for 1≤ j ≤ n, the subgroup

H j =
⋂

1≤t≤n
t 6= j

Wt .

Note that H j is a normal subgroup of P and that H j is not contained in W j , by the
minimality of B. Furthermore, H j ∩W j = 1 for each j . Now, let z j ∈ Z(P)∩ H j

be an involution; such an element certainly exists, as H j is a nontrivial normal
subgroup of P . So, CL j (z j ) is a P-submodule of L j and CL j (z j ) < L j as z j /∈W j .
As L j is irreducible, it follows that CL j (z j )= 1. Hence z j inverts every element
of L j ; see, for instance, [Huppert 1998, Theorem 16.9(e)]. Moreover, as z j ∈ H j ,
z j centralizes L i for every i 6= j , 1≤ i, j ≤ n.

Let z = z1 · · · zn , and observe that z inverts every element of U . By the isomor-
phism of P-modules U ∼= Û , then z inverts every irreducible character of U . In
particular, µz

=µ−1
=µ. Now, we can write M =U × N , where N is P-invariant.

Let θ = µ× 1N ∈ Irr(M). Then, we have θ z
= θ and IP(θ)= IP(µ)= 1. Thus, by

Clifford theory θG
∈ Irr(G) and the proof is complete. �

Proof of Theorem 2.4. Clearly, we may assume P 6= 1. So, by Theorem 2.5 there
exists a character θ ∈ Irr(M) such that χ = θG

∈ Irr(G) and an element z ∈ P such
that θ z

= θ . Hence,

χ = θG = θG
= (θ z)G = θG

= χ,

so χ ∈ IrrR(G). Next, since χ(1) = |G :M | θ(1) = |P| θ(1), χ is a character of
2-defect zero of G. Hence χ is strongly real by Lemma 2.3. �

3. Proof of Theorem A

We will need the following deep result concerning the existence of suitable strongly
real characters of almost simple groups. We state it here and prove it in Section 4.

Theorem 3.1. Let S be any finite nonabelian simple group. For any H with
S ≤ H ≤ Aut(S), there exist a character θ ∈ Irr(S) and a 2-element x ∈ S, such
that both the following conditions apply:

(i) θ(xσ )= 0 for all σ ∈ Aut(S).

(ii) There exists a subgroup J with IH (θ)≤ J ≤ H and a strongly real character
α ∈ Irr(J |θ).

We can now proceed to prove Theorem A, which we restate below.

Theorem 3.2. Let G be a finite group and P ∈ Syl2(G). Suppose that χ(x) 6= 0 for
all χ ∈ Irr+(G) and for all 2-elements x ∈ G. Then P G G.
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Proof. Let G be a minimal counterexample to the statement; in particular, P 6= 1.
Let M 6= 1 be a minimal normal subgroup of G.

1. Observe that Irr+(G/M)⊆ Irr+(G) and 2-elements of G/M lift to 2-elements
of G. Hence, PM G G by minimality of G. If M1 is another minimal normal
subgroup of G with M1 6= M , then G/M×G/M1 has a normal Sylow 2-subgroup,
as both G/M and G/M1 do. Since M ∩M1 = 1, G is isomorphic to a subgroup of
G/M ×G/M1 and hence G has a normal Sylow 2-subgroup, a contradiction. So,
M is the only minimal normal subgroup of G.

2. Suppose first that 2 divides |M |. If M is solvable, then M is a 2-group and so
P = PM G G, a contradiction. Hence M is not solvable. Thus M = S1× · · ·× St ,
where Si ∼= S, a nonabelian simple group. Write S := S1, H := NG(S) and
C :=CG(S). Thus, H/C is isomorphic to a subgroup H of Aut(S), with S ≤ H ≤
Aut(S). By Theorem 3.1, there exists a character θ ∈ Irr(S) and a 2-element x ∈ S
such that θ(xσ ) = 0 for all σ ∈ Aut(S). Moreover, there exists a subgroup J
with IH (θ) ≤ J ≤ H and a strongly real character α ∈ Irr(J |θ). By the Clifford
correspondence [Isaacs 1976, Theorem 6.11], α = λJ for a suitable character
λ∈ Irr(IH (θ)|θ). Therefore, β := λH is an irreducible character of H . Furthermore,
β is strongly real as β = (λJ )H

= αH , and β lies over θ .
Let now ψ := θ × 1S × · · · × 1S ∈ Irr(M). Note that C G IG(ψ) ≤ H and that

IG(ψ)/C is isomorphic to IH (θ). Hence, by lifting characters from the correspond-
ing factor groups modulo C , we can view λ ∈ Irr(IG(ψ)|ψ) and λH

= β ∈ Irr+(H).
Define χ = λG . By the Clifford correspondence, χ is an irreducible character

of G and, since χ = βG , we have χ ∈ Irr+(G). We will show that χ vanishes on the
2-element g = (x, x, . . . , x) ∈ M . In fact, χ lies over ψ and hence the restriction
χM is a sum of conjugates ψ y , with y ∈ G. Now, each conjugate ψ y is of the form

ψ y
= 1S × · · ·× 1S × θ

σ
× 1S × · · ·× 1S,

for a suitable σ ∈ Aut(S). Thus ψ y(g)= θ(xσ
−1
)= 0 for all y ∈ G. It follows that

χ(g)= 0, against our assumptions.

3. We have shown that M is an elementary abelian q-group for some prime q 6= 2.
Let Z :=�1(Z(P)) so that Z 6= 1. Since |M | is odd, Z M/M =�1(Z(PM/M))

and so Z M G G. Observe also that M is a normal nilpotent 2-complement of Z M
and that Z is a Sylow 2-subgroup of Z M . Moreover, O2(Z M)= 1, as O2(Z M) is
normal in G and M is the unique minimal normal subgroup of G. Finally, since Z
is abelian, Z has a regular orbit on every faithful Z -module of odd characteristic.
Thus, by Theorem 2.5 there exist θ ∈ Irr(M) and z ∈ Z , such that θ z

= θ and
θ Z M
∈ Irr(Z M). Since Z 6= 1 and q 6= 2, we must have that θ 6= θ and z 6= 1; in

fact z is an involution.
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Let T = IG(θ) ∩ PM = IPM(θ). Since q 6= 2, θ has a canonical extension
γ ∈ Irr(T ); see [Isaacs 1976, Corollary 8.16]. By uniqueness of the canonical
extension of θ , it follows that γz

= γ. Let δ = γPM. By Clifford theory δ is
irreducible. Since θ z

= θ 6= θ , we see that z /∈ T but z normalizes T . It follows that
K := T 〈 j〉 is a split extension of T by 〈 j〉. We have already shown that γz

= γ.
Also, γM = θ is nonreal. Hence γ is nonreal and has degree 1. Applying Lemma 2.2
to the character γ of T , we see that γK is strongly real. Consequently, δ = (γK )PM

is strongly real.
Recalling that PM is a normal subgroup of odd index in G, by Lemma 2.1(ii)

there exists a character χ ∈ Irr+(G) that lies over δ.
Now, we show that δ(g)= 0 for every g ∈ Z M r M . In fact, as θ Z M

∈ Irr(Z M),
by Clifford theory T ∩ Z M = IZ M(θ)= M . As both M and Z M are normal in G,
we get that for all x ∈ G, T x

∩ Z M = (T ∩ Z M)x = M x
= M . So,

Z M ∩
(⋃

x∈G

T x
)
= M.

As δ = γPM with γ ∈ Irr(T ), the formula of character induction yields that δ(g)= 0
for all g ∈ Z M r M .

Note now that, because Z M >M , there exists a 2-element g0 ∈ Z MrM . Finally,
observe that χPM is a sum of conjugates δy of δ in G and that δy(g0)= δ(g

y−1

0 )= 0,
since gy−1

0 ∈ Z M r M for all y ∈ G. Therefore, we conclude that χ(g0)= 0, with
χ ∈ Irr+(G) and g0 a 2-element of G, the final contradiction. �

4. Almost simple groups

This section is devoted to proving Theorem 3.1. First we handle some easy cases:

Lemma 4.1. Theorem 3.1 holds if S is an alternating group, a sporadic simple
group, or a simple group of Lie type in characteristic 2.

Proof. The cases of A5, A6, and all the sporadic groups can be verified directly using
[Conway et al. 1985]. Assume S = An with n ≥ 7; in particular Aut(S)∼= Sn . As
shown in [Dolfi et al. 2009, Proposition 2.4], one can find a character θ satisfying
the conditions described in Theorem 3.1, which extends to a strongly real character
α of Aut(S).

If S = 2F4(2)′, then we can choose J = H and θ ∈ Irr(H) of degree 2048 if
H = S and of degree 4096 if H = Aut(S) (and x 6= 1 any 2-element in S); see
[Conway et al. 1985]. The case Sp4(2)

′ ∼= A6 has been considered above. For all
other simple groups of Lie type in characteristic 2, we choose θ to be the Steinberg
character St and 1 6= x ∈ S to be any 2-element: it is well-known [Feit 1993] that
St vanishes at any 2-singular element and extends to the character of a rational
representation of H . �



574 Selena Marinelli and Pham Huu Tiep

Lemma 4.2. Let G be a finite group with a normal subgroup N , and χ ∈ Irr(G).
Then χN is irreducible (over N ) if and only if the characters χα, where α ∈
Irr(G/N ), are all irreducible and pairwise distinct. Moreover, in this case the
irreducible characters of G that lie above χN are precisely the characters χα,
where α ∈ Irr(G/N ).

Proof. The “only if” direction is Gallagher’s theorem [Isaacs 1976, Theorem 6.17].
For the “if” direction, observe that the hypothesis implies

(χN )
G
= χ · (1N )

G
=

∑
α∈Irr(G/N )

α(1)χα

contains χ with multiplicity 1, and so [χN , χN ]N = [χ, (χN )
G
]G = 1, as stated. �

In the rest of this section, let S be a simple group of Lie type in characteristic
p > 2. We can find a simple algebraic group G of adjoint type defined over a field
of characteristic p and a Frobenius morphism F : G→ G such that S = [G,G]
for G := GF . We refer to [Carter 1985; Digne and Michel 1991] for basic facts
on the Deligne–Lusztig theory of complex representations of finite groups of Lie
type. In particular, irreducible characters of G are partitioned into (rational) Lusztig
series that are labeled by conjugacy classes of semisimple elements s in the dual
group L , where the pair (L, F∗) is dual to (G, F) and L =LF∗ . Since L is simply
connected, CL(s) is connected for any semisimple element s ∈ L; see [Carter
1985, Theorem 3.5.6]. Hence the L-conjugacy class sL corresponds to a (unique)
irreducible (semisimple) character χs of G of degree [L : CL(s)]p′ ; see [Digne
and Michel 1991, §14]. Since χs belongs to the Lusztig series defined by sL , two
semisimple characters χs and χt are equal precisely when s and t are conjugate
in L .

The structure of Aut(S) is described in [Gorenstein et al. 1994, Theorem 2.5.12];
in particular, it is a split extension of G by an abelian group (of field and graph
automorphisms), which we denote by A(S).

Our arguments will rely on the following proposition, which is of independent
interest:

Proposition 4.3. In the notation above, assume that s ∈ L is a semisimple element
of order coprime to |Z(L)|. Then the following statements hold.

(i) If s is real in L then χs is strongly real.

(ii) Let σ be a bijective morphism of the algebraic group G commuting with F and
let σ ∗ be the corresponding morphism of L. Assume that χs is σ -invariant.
Then s and σ ∗(s) are L-conjugate. Moreover, if σ is a Frobenius morphism,
then s is L-conjugate to some element in Lσ ∗ ; in particular, |s| divides |Lσ ∗

|.

(iii) θ := (χs)S is irreducible (over S).
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(iv) Let σ be a bijective morphism of G commuting with F (and so fixing G and S).
Suppose that σ fixes θ . Then σ fixes χs .

Proof. Part (ii) and the statement about χs being real in (i) can be proved exactly in
the same way as [Dolfi et al. 2008, Lemma 2.5] using [Navarro et al. 2008, Corollary
2.5]. Assume now that s is real. Since G is of adjoint type, Z(G)= 1; in particular,
it is connected, and Z(G)= Z(G)F

= 1 by [Carter 1985, Proposition 3.6.8]. Hence,
by [Vinroot 2010, Theorem 4.2], the Frobenius–Schur indicator of χs is 1, as stated
in (i).

For (iii), by [Digne and Michel 1991, Proposition 13.30] and its proof, the
characters α ∈ Irr(G/S) are exactly the semisimple characters χz with z ∈ Z(L);
moreover, χsz = χsχz . Observe that sz and st are not L-conjugate if z, t ∈ Z(L)
are distinct. (Indeed, suppose g(sz)g−1

= st for some g ∈ L . Then since |s| is
coprime to |Z(L)|, we have

|s| = |gsg−1
| = |s · (t z−1)| = |s| · |t z−1

|,

and so z = t .) It follows that the characters χsz are all irreducible and pairwise
distinct. By Lemma 4.2, θ = (χs)S is irreducible, and Irr(G|θ)= {χsz | z ∈ Z(L)}.

Suppose now that σ fixes θ as in (iv). Since σ fixes G, it now fixes Irr(G|θ) and
so it sends χs to χsz for some z ∈Z(L). Let σ ∗ be the morphism of L corresponding
to σ . By [Navarro et al. 2008, Corollary 2.5], sz and σ ∗(s) are L-conjugate. In
particular, |s| = |σ ∗(s)| = |sz| = |s| · |z|, and so z = 1 as stated. �

Proposition 4.4. Theorem 3.1 holds if S is one of the following simple groups in
characteristic p > 2: G2(q), 2G2(q), 3D4(q), F4(q), or E8(q), where q = p f .

Proof. Notice that in each of these cases, Out(S)= A(S) is cyclic, of order 2 f if
S =G2(q) and p= 3, of order 3 f if S = 3D4(q), and of order f otherwise; see for
instance [Gorenstein et al. 1994, Theorem 2.5.12]. Furthermore, S = G ∼= L; see
[Carter 1985, p. 120]. Choose the integer m to be 6, 12, 12, or 30, if S = 2G2(q),
3D4(q), F4(q), or E8(q), respectively. If S = G2(q), we choose m = 3 if q = 3 f

with f odd, and m = 6 otherwise. By [Zsigmondy 1892], there exists a primitive
prime divisor (p.p.d.) r = r(p,m f ) of pm f

− 1, that is, a prime divisor of pm f
− 1

that does not divide
∏m f−1

i=1 (pi
− 1). According to [Moretó and Tiep 2008, Lemma

2.3], L contains a semisimple element s of order r for which CL(s) is a torus of
order dividing 8m(q) if 8m(t) is the m-th cyclotomic polynomial in t ; in particular,
s is regular. It is well-known [Tiep and Zalesski 2005, Proposition 3.1] that every
semisimple element s ∈ L is real. It then follows by Proposition 4.3(i) that θ := χs

is strongly real.
We claim that χs is not stable under any nontrivial outer automorphism σ of S.

Indeed, since Aut(S) is a split extension of S by the cyclic group Out(S) in the
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cases under consideration [Gorenstein et al. 1994, Theorem 2.5.12] we can choose
σ to be a power σ e

0 of some canonical outer automorphism σ0 of S.

(a) If S = 2G2(q), G2(q) (with p 6= 3), F4(q), or E8(q), then σ0 is induced by
the field automorphism x 7→ x p, and so we can choose e such that 1≤ e < f
and e | f . In this case, |Lσ ∗

| is equal to the order of |L|, but with q replaced
by pe, and hence is not divisible by r by the choice of r .

(b) Now suppose that S = G2(q) and p = 3. Then 1≤ e < 2 f , e | 2 f , and |Lσ ∗
|

equals |G2(pe/2)| if 2 | e and |2G2(pe)| if e is odd. In either case, r is coprime
to |Lσ ∗

| by the choice of r .

(c) Finally, consider the case S= 3D4(q). Then we can choose e so that 1≤ e<3 f
and e | 3 f . Now |Lσ ∗

| equals |D4(pe)| and so r is coprime to |Lσ ∗
| by the

choice of r .

We have shown that IAut(S)(χs) = S, whence IH (χs) = S. Since χs(1) =
[L : CL(s)]p′ and |CL(s)|, being a divisor of 8m(q), is odd, we see that χs has
2-defect zero and so χs vanishes at any 2-element 1 6= x ∈ S. Hence we are done
by taking J = S and α = χs . �

Proposition 4.5. Theorem 3.1 holds if S is any of the following simple groups of Lie
type in characteristic p > 2: PSL2(q) with q ≥ 5; PSp2n(q) with n ≥ 2; �2n+1(q)
with n ≥ 3; P� ε

2n(q) with 2 | n, n ≥ 6 for ε =+, and n ≥ 4 for ε =−; or E7(q).

Proof. 1. Recall that L = SL2(q), respectively Spin2n+1(q), Sp2n(q), Spin ε2n(q), or
E7(q)sc in the described cases; in particular, Z(L) is a 2-group. We write q = p f

as usual. By [Tiep and Zalesski 2005, Proposition 3.1], any semisimple element in
L is real. Now we choose a semisimple element s ∈ L of (odd) order r , where r is
selected as follows.

(i) If L = SL2(q), then r = (q + ε)/2 if ε =±1 is chosen so that q ≡ ε (mod 4).

(ii) Next, r = r(p, 2n f ) is a p.p.d. of p2n f
− 1 in the other classical cases, unless

L = Spin+2n(q).

(iii) In the case L = E7(q), r = r(p, 18 f ).

(iv) In the remaining case, L = Spin+2n(q) contains a central product

C = Spin−4 (q) ∗Spin−2n−4(q),

and we choose s = s1s2 ∈ C where s1 ∈ Spin−4 (q) ∼= SL2(q2) has order
(q2
+ 1)/2 and s2 ∈ Spin−2n−4(q) has order (qn−2

+ 1)/2. More precisely, if
β and γ denote some elements in F̄

×

q of orders (q2
+ 1)/2 and (qn−2

+ 1)/2,
respectively, then we can choose s to act on the natural L-module F̄

2n
q with

spectrum {β i , β−i
| i = 1, q} ∪ {γq j

, γ−q j
| 0≤ j ≤ n− 3}.
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In these cases, it is straightforward to check (see for instance [Moretó and Tiep 2008,
Lemmas 2.3 and 2.4]) that s is a regular semisimple element, and T ∗ := CL(s)
is a maximal torus of order q + ε, qn

+ 1, 82(q)818(q), or (q2
+ 1)(qn−2

+ 1),
respectively. Hence, χs is a strongly real irreducible character of G, and in fact
χs =±R G

T,ϑ is a Deligne–Lusztig character corresponding to some maximal torus
T of G in duality with T ∗; in particular, |T | = |T ∗|. (Indeed, since T∗ := CL(s)
is a torus, this is the unique torus containing s. Now if (T, ϑ) is in duality with
(T∗, s), then T = TF and χs =±R G

T,ϑ .) Now the character formula [Carter 1985,
Theorem 7.2.8] shows that χs(x) = 0 for any semisimple element x ∈ G with
|CG(x)| not divisible by |T |.

2. By Proposition 4.3(iii), θ := (χs)S is irreducible and strongly real. Furthermore,
when S=PSL2(q), we have θ(1)=q−ε and so θ has 2-defect 0, whence it vanishes
at any nontrivial 2-element x ∈ S. In the remaining cases, we will find an involution
x ∈ S such that |CG(x)| is not divisible by |T |. If S = PSp2n(q), choose x to be an
involution with centralizer of type Sp2(q)×Sp2n−2(q) (in Sp2n(q)). If S=�2n+1(q),
choose x to be an involution with centralizer of type GO+4 (q)×GO2n−3(q) (in
GO2n+1(q)). For S = P� ε

2n(q), choose x to be an involution with centralizer of
type GO+4 (q)×GO ε

2n−4(q) (in GO ε
2n(q)). Finally, for S of type E7(q), choose x

to be an involution with centralizer of type SL2(q) ∗ Spin16(q); see [Gorenstein
et al. 1994, Table 4.5.1]. It is straightforward to check that |CG(x)| is not divisible
by |T | for the chosen element x . Then for any σ ∈ Aut(S), |CG(xσ )| = |CG(x)|
(as GCAut(S)), whence θ(xσ )= 0.

3. Next we show that any automorphism σ ∈ Aut(S) that fixes θ must belong to
G. Since Aut(S) = G : A(S) and G fixes θ = (χs)S , we may assume σ ∈ A(S).
Recall that |A(S)| = 2 f if S = P� ε

2n(q) and |A(S)| = f otherwise. Let σ0 ∈ A(S)
denote the automorphism of S (and of G, G) induced by the field automorphism
y 7→ y p. If S=P� ε

2n(q), we denote by τ ∈ A(S) the nontrivial graph automorphism
commuting with F (otherwise set τ = 1S). Notice that G =GF with F = σ f

0 , unless
S = P�−2n(q) in which case F = τσ f

0 . Then A(S) is generated by σ0 and τ . It
follows that σ can be extended to a Frobenius morphism of G, which commutes
with F , unless σ = τ and S = P�+2n(q). Replacing σ by τσ f

0 in the latter case,
we again see that σ extends to a Frobenius morphism of G that commutes with F .
Since σ fixes θ , σ fixes χs by Proposition 4.3(iv), which in turn implies that |s|
divides |Lσ ∗

| by Proposition 4.3(ii).

3a. First consider the case σ = σ e
0 . Then |Lσ ∗

| equals the order of L but with
q replaced by pe; denote it by |L(pe)|. Suppose S = PSL2(q); in particular
A(S) = 〈σ0〉 ∼= C f and so we may choose e | f . If q ≡ 1 (mod 4), we get
|s| = (p f

+ 1)/2 divides p2e
− 1, which is possible only when e = f . If q ≡

−1 (mod 4), then f is odd; hence |s| = (p f
− 1)/2 can divide p2e

− 1 only when
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e = f . Next suppose S = PSp2n(q) or �2n+1(q). Then |s| = r(p, 2n f ) can divide
|L(pe)| only when f | e. If S is of type E7(q), then |s| = r(p, 18 f ) can divide
|L(pe)| only when f | e. In all these cases, A(S)= 〈σ0〉 ∼= C f , so we conclude that
σS = 1S . Consider the case S = P�−2n(q). Since |s| = r(p, 2n f ) divides |L(pe)|,
we get f | e. Recall that A(S)= 〈σ0〉 ∼= C2 f for S = P�−2n(q), so we may assume
e|(2 f ). Now if 2 f |e then σS=1S . On the other hand, if f = e, then |s|= r(p, 2n f )
does not divide |L(pe)|.

Assume now that S = P�+2n(q). Since the order of (σ0)S is f , we may assume
that 0≤ e ≤ f/2. Observe that |s| is divisible by some p.p.d. r1 = r(p, (2n− 4) f ).
Now since r1 divides |L(pe)|, we get (2n− 4) f | je for some j , 1 ≤ j ≤ 2n− 2.
But then je ≤ (n− 1) f < (2n− 4) f , so e = 0 and σS = 1S .

3b. It remains to consider the case σ is not contained in 〈σ0〉. This can happen
only when S = P�+2n(q). Since (σ0)

f acts trivially on S, we can write σ = τσ e
0

with 1≤ e ≤ f . Moreover, replacing σ by σ−1
= τσ

f−e
0 (while acting on S), we

may in fact assume that 1≤ e ≤ f/2 or e = f . Now r1 = r(p, (2n− 4) f ) divides
|s| and |s| divides |Lσ ∗

|, and so we get (2n− 4) f | 2 je for some j with 1≤ j ≤ n.
It follows that e ≥ (n− 2) f/n > f/2 as n ≥ 6. We have shown that e = f , and
so by Proposition 4.3(ii), s is L-conjugate to some element s ′ ∈ Lσ ∗

= Spin−2n(q).
Certainly, |s ′| = |s| is divisible by r1 = r(p, (2n−4) f ). Observe that the r1-part of
s ′ has centralizer of type GO+4 (q)×GO−2n−4(q) (in GO−2n(q)). Hence, the action of
s ′ on the natural L-module V = F̄

2n
q is induced by diag(A, B) with A ∈ GO+4 (q)

and B ∈ GO−2n−4(q). But in this case, the spectrum of s ′ and s on V cannot have
the shape indicated in (iv) above.

We have shown that IAut(S)(θ)= G; in particular, if S ≤ H ≤ Aut(S), we have
IH (θ)= G ∩ H . Choosing J = G ∩ H and α = (χs)J , we are done. �

Lemma 4.6. Let L be a simple simply connected algebraic group of type An with
n ≥ 2, Dn with n ≥ 3 odd, or E6, F : L→ L a Frobenius morphism, and let
L := LF . Let ϕ ∈ Aut(L) be a (nontrivial) graph automorphism of L (modulo
inner-diagonal automorphisms). Then ϕ(s) and s−1 are conjugate in L for any
semisimple element s ∈ L.

Proof. It is well-known [Steinberg 1968, §10] that such an automorphism ϕ lifts to
an automorphism ϕ = ψτ of L, where ψ is inner: ψ(x)= gxg−1 for some g ∈ L,
and τ acts as the inversion t 7→ t−1 on some maximal torus T of L. Since s is
semisimple, s = hth−1 for some t ∈ T and h ∈ L. Thus

ϕ(s)= ψτ(hth−1)= gτ(h)t−1τ(h)−1g−1
= zs−1z−1,

where z := gτ(h)h−1
∈L. Since s and ϕ(s) are F-stable, we see z−1 F(z) ∈CL(s).

But L is simply connected; hence CL(s) is connected and F-stable. Therefore,
by the Lang–Steinberg theorem, there is c ∈ CL(s) such that z−1 F(z)= c−1 F(c),
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that is, u := zc−1
∈ L . It follows that ϕ(s) = zs−1z−1

= us−1u−1 is L-conjugate
to s−1. �

Proposition 4.7. Theorem 3.1 holds if S is any of the following simple groups of
Lie type in characteristic p > 2: PSLn(q) with n ≥ 3, PSUn(q) with n ≥ 5 odd,
P� ε

2n(q) with n ≥ 5 odd, E6(q), or 2E6(q).

Proof. Recall that L = SLn(q), SUn(q), Spin ε2n(q), E6(q)sc, or 2E6(q)sc in the
described cases, respectively, and we write q = p f as usual. In all these cases, S, G,
and L have an outer automorphism that lifts to an involutive graph automorphism
τ of L mentioned in the proof of Lemma 4.6. In particular, τ(X) = tX−1 in the
SL and SU cases, and τ acts on S = P� ε

2n(q) as a conjugation by some element
X ∈GO ε

2n(q)rSO ε
2n(q). Also recall that GCAut(S) and τG generates a subgroup

of order 2 in Aut(S)/G ∼= A(S). Our proof will be divided in two cases according
to whether the subgroup G H of Aut(S) contains 〈G, τ 〉 or not. In the former case,
we will choose θ = χS with χ ∈ Irr(G) being nonreal and use τ to produce a real
character for some subgroup J > IH (θ). In the latter case, we choose θ = χS with
χ ∈ Irr(G) being real and with IH (θ)≤ G. In fact, we also consider PSUn(q) with
n ≥ 4 even in all parts of this proof, except in part 6 below. Moreover, even though
the case of PSUn(q) with n ≥ 5 odd is also handled in Proposition 4.8 (below)
using a different method, we also treat it here, since the character χ constructed
here in this case will be used in some of our other works.

Case I (G H does not contain 〈G, τ 〉). 1. We will construct χ ∈ Irr(G), θ = χS ,
and x ∈ S as follows.

Case Ia. Suppose S = PSL3(q) and f is odd. Then A(S)∼= C2 f contains a unique
involution τ and |H/(H ∩G)|, |(H ∩G)/S| are odd. In this case, we choose χ
to be the unipotent (Weil) character of G of degree q(q + 1) and x ∈ S to be any
element of order (q2

− 1)2. Note that χ + 1G is just the permutation character of
G acting on the 1-spaces of the natural GL3(q)-module F3

q . It follows that χ is
strongly real, θ = χS is irreducible, and χ(x)= 0. By Lemma 2.1(ii), θ extends to
a strongly real character of J := IH (θ).

Now we may assume that we are not in the case (Ia), and choose a semisimple
element s ∈ L of order r as follows.

Case Ib. Suppose that S=PSL ε
n (q), where either n≥ 4, or (n, ε)= (3,+) and 2| f .

Choose m ∈ {n, n− 1} to be even and r = r(p,m f ) a p.p.d. of pm f
− 1. Note that

our hypothesis on n and f guarantees that r exists, and furthermore, r is coprime
to |Z(L)| = gcd( n, q− ε). Embed Spm(q) in L = SL ε

n (q) and choose s ∈ Spm(q)
of order r . One can check that |CL(s)| = (qm/2

+ 1)2(q − ε)n−m−1 if ε = − and
m ≡ 2 (mod 4), and |CL(s)| = (qm

− 1)(q − ε)n−m−1 otherwise.
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Case Ic. Next suppose that S = P� ε
2n(q). Then choose r = r(p, (2n−2) f ) > 2, a

p.p.d. of p(2n−2) f
− 1, and s ∈ Spin−2n−2(q) < L of order r . By [Moretó and Tiep

2008, Lemma 2.4], |CL(s)| = (qn−1
+ 1)(q + ε).

Case Id. In the case L = E ε
6 (q)sc (where ε =+ for E6 and ε =− for 2E6(q)), we

choose s ∈ F4(q) < L of order r = r(p, 12 f ) ≥ 13. By [Moretó and Tiep 2008,
Lemma 2.3], |CL(s)| =812(q) · (q2

+ qε+ 1).

In Cases Ib–Id, it is straightforward to check that s is a regular semisimple
element; furthermore, s is real by [Tiep and Zalesski 2005, Proposition 3.1]. Hence,
χ = χs is a strongly real irreducible character of G, and, arguing as in part (1) of
the proof of Proposition 4.5, we see that χs(xσ )= 0 for all σ ∈ Aut(S), whenever
x ∈G is any semisimple element with |CG(x)| not divisible by |T | = |CL(s)|. Also,
by Proposition 4.3(iii), θ := (χs)S is irreducible.

2. Observe that, when L = E ε
6 (q), χ and θ have 2-defect 0, whence they vanish at

any 2-element 1 6= x ∈ S. In the remaining cases, we now find a 2-element x ∈ S
such that |CG(x)| is not divisible by |T |. If L = SL ε

n (q), we choose x represented
by diag(x1, In−2) ∈ SL2(q)× SL ε

n−2(q) with |x1| = 4. One can then check that
|CG(x)| = |GL ε

n−2(q)| · (q−α) with α =±1 chosen such that 4 | (q−α), whence
|CG(x)| is not divisible by |T |. Finally, if L = Spin ε2n(q), then we choose x to be
an involution with centralizer of type GO+4 (q)×GO ε

2n−4(q) (in GO ε
2n(q)). It is

easy to see that |CG(x)| is not divisible by r for the chosen element x . Thus for all
σ ∈ Aut(S), θ(xσ )= 0, as required in Theorem 3.1(i).

3. It remains to show that IH (θ)≤G and so θ extends to the strongly real character
α = χJ of J = IH (θ) = G ∩ H . Since G fixes θ = χS and G H does not contain
〈G, τ 〉, it suffices to show that IAut(S)(θ) = 〈G, τ 〉. Consider any automorphism
σ ∈ Aut(S) that fixes θ . Since Aut(S)= G : A(S), we may assume σ ∈ A(S), and
so in the notation of the proof of Proposition 4.5, we may write σ = τ i (σ0)

e with
i, e ≥ 0. Since σ fixes θ , σ fixes χs by Proposition 4.3(iv), which in turn implies
that s and σ ∗(s) are L-conjugate by Proposition 4.3(ii). But s is real, and τ(s) is
L-conjugate to s−1 by Lemma 4.6. Hence, replacing σ by σ−1 if necessary, we
may assume that σ = (σ0)

e, where 0 ≤ e ≤ f/2 in the (untwisted) cases of SL,
Spin+, and E6. In the (twisted) cases of SU, Spin−, and 2E6, since τ acts on S
as σ f

0 , replacing σ by σ−1 we may assume that σ = (σ0)
e with 0≤ e≤ 2 f/3. Also,

r = |s| divides |Lσ ∗
| by Proposition 4.3(ii). In either case, we can now check that

this can happen only when e = 0, that is, σ ∈ 〈G, τ 〉.

Case II (G H contains 〈G, τ 〉). 4. In this case, we will choose a semisimple element
s ∈ L of order r as follows.

Case IIa. Suppose that S = PSLn(q). Choose m ∈ {n, n− 1} to be odd (so m ≥ 3)
and r1 = r(p,m f ) a p.p.d. of pm f

− 1. Furthermore, choose r2 = 1 if f is odd,
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and r2 = r(p,m f/2) a p.p.d. of pm f/2
− 1 if 2 | f . Then r = r1r2 is coprime to

|Z(L)| = gcd( n, q − 1). Since L ≥ SLm(q) contains a cyclic subgroup of order
(qm
− 1)/(q − 1), we can find a semisimple element s ∈ L of order r . One can

check that |CL(s)| = (qm
− 1)(q − 1)n−m−1.

Case IIb. Suppose that S = PSUn(q) with n ≥ 3. Choose m ∈ {n, n−1} to be odd
(so m ≥ 3) and r = r(p, 2m f ) a p.p.d. of p2m f

− 1; in particular, r is coprime to
|Z(L)| = gcd( n, q + 1). Now we can find a semisimple element s ∈ L of order r ,
with |CL(s)| = (qm

+ 1)(q + 1)n−m−1.

Case IIc. Suppose that S = P�+2n(q). Choose r1 = r(p, n f ) to be a p.p.d. of
pn f
− 1. Furthermore, choose r2 = 1 if f is odd, and r2 = r(p, n f/2) a p.p.d. of

pn f/2
− 1 if 2 | f , and set r = r1r2. Since SO+2n(q) > GLn(q) contains a cyclic

subgroup of order qn
− 1, we can find a semisimple element s ∈ L of (odd) order r .

One can check that |CL(s)| = qn
− 1.

Case IId. Assume now that S = P�−2n(q). Then choose r = r(p, 2n f ) to be a
p.p.d. of p2n f

− 1. Since n is odd, GO−2n(q) > GUn(q) contains a cyclic subgroup
of order qn

+ 1, and so we can find a semisimple element s ∈ L of order r , with
|CL(s)| = qn

+ 1.

Case IIe. Next suppose that L = E6(q)sc. Then choose r1 = r(p, 9 f ), a p.p.d. of
p9 f
− 1, and choose r2 = 1 if f is odd, and r2 = r(p, 9 f/2), a p.p.d. of p9 f/2

− 1
if 2 | f . Then r = r1r2 is coprime to |Z(L)| = (3, q − 1). We claim that there is
a regular semisimple element s ∈ L with T ∗ = CL(s) of order 89(q). Indeed, by
[Moretó and Tiep 2008, Lemma 2.3], there is a regular semisimple element s1 ∈ L
of order r1 with T ∗ :=CL(s1) of order 89(q). If f is odd, set s = s1. Assume 2 | f .
Then 89(q)= (q9

− 1)/81(q)83(q) is divisible by r2, so T ∗ contains an element
s2 of order r2. Now set s = s1s2.

Case IIf. In the case L = 2E6(q)sc, we choose s ∈ L of order r = r(p, 18 f )≥ 19.
By [Moretó and Tiep 2008, Lemma 2.3], we have |CL(s)| =818(q).

In all these cases, it is straightforward to check that s is a regular semisimple
element. Hence, as above, χ =χs ∈ Irr(G), and χs(xσ )=0 for all σ ∈Aut(S), when-
ever x ∈ G is any semisimple element with |CG(x)| not divisible by |T | = |CL(s)|.
Also, by Proposition 4.3(iii), θ := (χs)S is irreducible.

5. Observe that, when L = E ε
6 (q), both χ and θ have 2-defect 0, whence they

vanish at any 2-element 1 6= x ∈ S. In the remaining cases, one easily checks
that the 2-element x ∈ S constructed in part 2 of this proof has the property that
|CG(x)| is not divisible by |T ∗|. Thus θ(xσ )= 0 for all σ ∈ Aut(S), as required in
Theorem 3.1(i).

Next we claim that s is not real in L . Assume the contrary: gsg−1
= s−1 for

some g ∈ L . Then g normalizes T ∗ = CL(s) and g2
∈ T ∗. But (using for instance
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[Fleischmann et al. 1998, §5 and Theorem 5.7]) one can see that NL(T ∗)/T ∗ has
odd order (indeed it is Cm in IIa and IIb, Cn in IIc and IId, and C9 in IIe and IIf). It
follows that g ∈ T ∗ and so s2

= 1, a contradiction.
Now we show that IAut(S)(χ)= G. Consider any automorphism σ ∈Aut(S) that

fixes χ . As in 3), we may write σ = τ i (σ0)
e with e ≥ 0 and i = 0, 1. Moreover,

σ /∈Gτ (otherwise χσ = (χs)
τ
=χs−1 6=χ as s is not real), so e> 0 if i = 1. Hence,

r = |s| must divide |Lσ ∗
| by Proposition 4.3(ii).

First we consider the twisted cases: L = SUn(q), Spin−2n(q), or 2E6(q)sc. Then
A(S)= 〈σ0〉 ∼= C2 f and (σ0)

f
= τ on S. Replacing σ by σ−1 if necessary, we may

assume that 0≤ e < f and i = 0. The condition r = |s| divides |Lσ ∗
| now implies

that e = 0.
Finally we consider the untwisted cases: L = SLn(q), Spin+2n(q), or E6(q)sc.

Then A(S) = 〈σ0〉 × 〈τ 〉 ∼= C f ×C2. Replacing σ by σ−1 if necessary, we may
assume that 0 ≤ e ≤ f/2. If i = 0, then the condition r = |s| divides |Lσ ∗

| now
implies that e= 0, that is, σ ∈G. Next assume that i = 1 (and so 0< e≤ f/2), and
L = SLn(q) for instance. Then r divides |Lσ ∗

| = |SUn(pe)|, and so r1 = r(p,m f )
divides p je

− (−1) j for some j , 1≤ j ≤ n. If j is even, then

(n− 1) f ≤ m f | je ≤ n f/2,

a contradiction as n ≥ 3. Hence j is odd. Recall that m ∈ {n, n− 1} is chosen to
be odd and 1 ≤ j ≤ n, so j ≤ m. Now m f | 2 je ≤ m f implies that e = f/2. In
this case we have that r2 = r(p,m f/2) divides pke

− (−1)k for some k, 1≤ k ≤ n.
In particular, me | 2ke and so m | 2k, which implies m | k because m is odd. Since
1 ≤ k ≤ n and m ≥ n− 1, we obtain that k = m and so k is odd. But in this case
r2 = r(p, ke) cannot divide pke

+ 1, a contradiction. The same argument shows
that r = |s| cannot divide |Lσ ∗

| if i = 1 and L = Spin+2n(q) or E6(q)sc.

6. We have shown that IAut(S)(χ) = G. Hence, IH (θ) = H ∩ G by Proposition
4.3(iv). Since

H/(G ∩ H)∼= G H/G ≥ 〈G, τ 〉/G ∼= C2

by the main hypothesis in Case II, we can find ϕ ∈ H rG such that ϕ induces τ
modulo G and ϕ2

∈ G ∩ H . Now set J = 〈G ∩ H, ϕ〉 and α = (χG∩H )
J . Then by

Lemma 4.6 and [Navarro et al. 2008, Corollary 2.5] we have

χϕ = χ τ = (χs)
τ
= χτ(s) = χs−1 = χ̄ ,

in particular, θϕ = θ̄ , but θϕ 6= θ as ϕ /∈ G ∩ H = IH (θ). Since SC J , this implies
that α ∈ Irr(J |θ). Also, α equals χ + χ̄ on G ∩ H and 0 on J r (G ∩ H), whence
it is real.

Under the extra assumption that S 6∼= PSUn(q) with n ≥ 4 even, we now show
that α is strongly real. Indeed, setting K := 〈G, ϕ〉 = 〈G, τ 〉 and ϑ := χK (as
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K ∩ H = J ), we see that ϑJ = α, so ϑ ∈ Irr(K ). Also, ϑ equals χ + χ̄ on G and 0
on K rG, so ϑ is real.

• Now, if S= PSLn(q), then K is a quotient of 〈GLn(q), τ 〉, and so ϑ is strongly
real by [Gow 1983, Theorem 2].

• Suppose S = P�ε2n(q). Then 〈S, τ 〉 ≤ R := PGOε
2n(q) < K . Since θ τ = θϕ =

θ̄ 6= θ and ϑS = θ + θ̄ , we see that ϑR is irreducible. By the main result of
[Gow 1985], ϑR , as an irreducible character of GOε

2n(q), is strongly real. In
turn, this implies that ϑ is strongly real.

• Suppose that S = PSUn(q) with n ≥ 3 odd or S = Eε6(q). Then |CL(s)| =
(qn
+1)/(q+1), 89(q) or818(q), respectively, and is odd; hence χ and ϑ are

of 2-defect zero. Since ϑ is real of 2-defect 0, it is strongly real by Lemma 2.3.

Thus in all cases ϑ is strongly real, and so is α = ϑJ , as claimed. �

Proposition 4.8. Theorem 3.1 holds if S = PSUn(q) where n ≥ 3 and q is odd.

Proof. Keep all the notation of the proof of Proposition 4.7.

1. First we consider the case S = PSU3(q). When q = 3, one can check using
[Conway et al. 1985] that Irr(S) contains a character θ of degree 14, which extends
to a strongly real character of Aut(S) and vanishes at all elements of order 8 in S.
Furthermore, the case where G H contains 〈G, τ 〉 has already been considered in
Case II of the proof of Proposition 4.7. So we may assume that q ≥ 5 and that G H
does not contain 〈G, τ 〉.

In the notation of [Geck 1990, Table 3.1], consider the irreducible character
θ = χ

(u)
q3+1 of degree q3

+ 1 of L = SU3(q), with u := q + 1. Since θ is trivial
at Z(L), we will view it as an irreducible character θ of S = L/Z(L). Using the
character values listed in [Geck 1990, Table 3.1], one checks that θ is real and
τ -invariant (indeed,

χ
(u)
q3+1 = χ

(−u)
q3+1 = χ

(uq)
q3+1

by our choice of u). Next, the largest degree of irreducible characters of G =
PGU3(q) is (q + 1)(q2

− 1), which is less than 3θ(1). Since G/S has order 1 or 3,
it follows that θ is G-invariant. Hence, by [Navarro and Tiep 2008, Lemma 2.1],
θ extends to a unique χ ∈ IrrR(G). Viewing χ as a real irreducible character of
GU3(q), we conclude by [Ohmori 1981, Theorem 7(ii)] that χ is strongly real.

Next we show that IAut(S)(θ)= 〈G, τ 〉. Since θ is invariant under G and τ and
Aut(G)=G : A(S), it suffices to show that the only nontrivial element σ = (σ0)

e
∈

A(S) that fixes θ is τ = (σ0)
f . So assume that 1 ≤ e ≤ f for such a σ . Consider

an element y belonging to the conjugacy class C (1)
7 in [Geck 1990, Table 1.1], so

that yσ belongs to the class C (pe)

7 . Then the condition θ(y)= θ(yσ ) implies that

δ+ δ−1
= δ pe

+ δ−pe
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for a fixed (q−1)-st primitive root δ of unity in C. Since 1≤ e ≤ f and q ≥ 5, it
follows that e = f , as claimed.

We have shown that θ extends to the strongly real character α = χJ of J =
H ∩ G = IH (θ). It remains to find an element x satisfying the condition (i) of
Theorem 3.1. Suppose first that q ≡ 3 (mod 4). Then we choose x ∈ S to be
any element of order 4 that affords eigenvalue 1 on the natural module F3

q2 for L .
Observe that xAut(S) is just the conjugacy class C (0,(q+1)/4,3(q+1)/4)

6 in [Geck 1990,
Table 1.1], and so θ(x)= 0; cf. [ibid., Table 3.1].

Assume now that q ≡ 1 (mod 4). Then we choose x ∈ S to be any element of
order 8. Any Aut(S)-conjugate xσ of such an x belongs to the conjugacy class
Ck(q2

−1)/8
7 in [ibid., Table 1.1] for some odd integer k. Hence

θ(xσ )= δk(q2
−1)/8
+ δ−k(q2

−1)/8
= 0

since k is odd and |δ| = q − 1.

2. From now on we may assume that S = PSUn(q) with n ≥ 4. Then it was shown
in parts 2. and 5. of the proof of [Dolfi et al. 2008, Theorem 2.1] that there is a
permutation character ρ of Aut(S) such that ρS = 1S +ϕ+ψ is the sum of three
irreducible (unipotent) characters of S, all of distinct degrees, and with exactly one,
call it θ , of even degree. In fact, ρS is just the permutation character of the action
of S on the singular 1-spaces of the natural L-module V = Fn

q2 , and

ϕ(1)= (q
n
−(−1)n)(qn−1

+(−1)nq2)

(q+1)(q2−1)
, ψ(1)= (q

n
+(−1)nq)(qn

−(−1)nq2)

(q+1)(q2−1)
.

Since SG Aut(S), it follows that the same is true for ρ, and so θ extends to a strongly
real character of even degree of Aut(S). Note that θ = ϕ if n ≡ 0, 3 (mod 4) and
θ = ψ if n ≡ 1, 2 (mod 4).

3. It remains to find a 2-element h ∈ S such that θ(hσ )= 0 for all σ ∈ Aut(S). It
suffices to show that θ(h) = 0 since θ is Aut(S)-invariant. To this end, we will
use the technique of dual pairs; see for instance [Liebeck et al. 2010; Tiep 2010].
We consider the dual pair X ∗ Y inside 0 := GU2n(q), where X = GU2(q) and
Y = GUn(q). More precisely, we view X as GU(U ), where U = F2

q2 is endowed
with a nondegenerate Hermitian form ( · , · )U , and Y is meant to be GU(V ), where
V = Fn

q2 is endowed with a nondegenerate Hermitian form ( · , · )V . Now we
consider W =U⊗Fq2V with the Hermitian form ( · , · ) defined via (u⊗v, u′⊗v′)=
(u, u′)U · (v, v′)V for u ∈ U and v ∈ V . The action of X × Y on V induces a
homomorphism X ×Y → 0 :=GU(W ). Recall (see [Tiep and Zalesskii 1997, §4])
that for any m ≥ 1, the class function

ζm,q(g)= (−1)m(−q)
dim

F
q2

Ker(g−1)
(4-1)
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is a (reducible) Weil character of GUm(q) of degree qm , where Ker(g− 1) is the
fixed point subspace of g ∈ GUm(q) on the natural module (Fq2)m for GUm(q).
By [Liebeck et al. 2010, Proposition 6.3], the restriction of ζ := ζ2n,q to X × Y
decomposes as

ζX×Y =
∑

α∈ Irr(X)

α⊗Dα, (4-2)

where the Y -characters D◦α := Dα− kα · 1Y are all irreducible and distinct, for some
kα ∈ {0, 1}. Furthermore, kα = 1 precisely when α = 1X or α is the Steinberg
character St of X . Also, Dα can be computed explicitly using the formula

Dα(g)=
1
|X |

∑
x∈X

α(x)ζ(xg). (4-3)

In particular, one can show (see [Liebeck et al. 2010, Table III]) that D◦1X
is the

only irreducible constituent of ζY of degree ϕ(1), and D◦St is the only irreducible
constituent of ζY of degree ψ(1). On the other hand, (4-1) and (4-2) imply that

ζY =
∑

α∈ Irr(X)

α(1) ·D◦α + (q + 1) · 1Y

is just the permutation character of Y on the points of the vector space V , whence
ζY contains ρY , the inflation of ρPGUn(q) to Y = GUn(q). It follows that

ϕ = (D◦1X
)S − 1S, ψ = (D

◦

St)S − 1S.

Together with (4-1) and (4-3), this will allow us to find the desired element h.

4. Among the irreducible characters of X = GU2(q), there are q + 1 distinct
characters ζ i

2 , where 0≤ i ≤ q, which are known as (irreducible) Weil characters
of X . They are computed explicitly in [Tiep and Zalesskii 1997, Lemma 4.1];
furthermore, ζ2,q =

∑q
i=0 ζ

i
2 and ζ 0

2 = St. In particular,

[ζ2,q , St]X = 1. (4-4)

Let µq+1 := {c ∈ Fq2 | cq+1
= 1}. Note that, for any c ∈ µq+1, x 7→ ζ2,q(cx) is a

class function on X . Moreover, using the well-known character table of X (see for
instance [Ennola 1963]), we can check that

1
|X |

∑
x∈X

ζ2,q(cx)ζ2,q(dx)St(x)= 1 (4-5)

for any c, d ∈ µq+1, and

1
|X |

∑
x∈X

ζ2,q(cx)2ζ2,q(dx)= 1 (4-6)

whenever c, d ∈ µq+1 and c 6= d .
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5. Now we are ready to find the desired element h. This will be done according
to n (mod 8). Let N = 2(q2

− 1)2 denote the 2-part (q4
− 1)2 of (q4

− 1), and
let γ be a fixed N -th primitive root of unity in Fq2 . Observe that GU4(q) has a
cyclic maximal torus T of order q4

− 1 that contains an element g4 conjugate to
diag(γ, γ−q , γq2

, γ−q3
) over Fq2 , and set

g8 := diag(g4, g−1
4 ) ∈ SU8(q).

Note that no eigenvalue of g4 and g8 belongs to Fq2 by the choice of γ. On the
other hand, any eigenvalue of any x ∈ X = GU2(q) belongs to F×q2 .

Let 8 | n, and choose h = diag(g8, . . . , g8) ∈ SUn(q). Then, for any x ∈ X , no
eigenvalue of xh can be equal to 1, whence ζ(xh) = 1 by (4-1). Hence, by (4-3)
we have

θ(h)= D◦1X
(h)= 1

|X |

∑
x∈X

ζ(xh)− 1= [1X , 1X ] − 1= 0.

Next, for n ≡ 1 (mod 8) we choose h = diag(g8, . . . , g8, 1) ∈ SUn(q). Then,
for any x ∈ X , no eigenvalue of xg8 can be equal to 1, whence ζ(xh)= ζ2,q(x) by
(4-1). It then follows by (4-3) and (4-4) that

θ(h)= D◦St(h)=
1
|X |

∑
x∈X

ζ2,q(x)St(x)− 1= [ζ2,q , St] − 1= 0.

For n ≡ 2 (mod 8) we choose h = diag(g8, . . . , g8, 1, 1) ∈ SUn(q). Then,
ζ(xh)= ζ2,q(x)2 for any x ∈ X by (4-1). By (4-3) and (4-5) applied to c = d = 1
we have

θ(h)= D◦St(h)=
1
|X |

∑
x∈X

ζ2,q(x)2St(x)− 1= 0.

For n≡ 3 (mod 8) we choose h= diag(g8, . . . , g8, 1,−1,−1)∈ SUn(q). Again,
ζ(xh) = ζ2,q(x)ζ2,q(−x)2 for all x ∈ X . By (4-3) and (4-6) applied to (c, d) =
(−1, 1) we have

θ(h)= D◦1X
(h)= 1

|X |

∑
x∈X

ζ2,q(−x)2ζ2,q(x)− 1= 0.

Assume that n≡ 5 (mod 8). Note that 1 6= c1 := det(g−1
4 )= γ(q

4
−1)/(q+1)

∈µq+1.
Let h = diag(g8, . . . , g8, g4, c1) ∈ SUn(q). Then, ζ(xh)= ζ2,q(c1x) for any x ∈ X
by (4-1), and St(c1x)= St(x) since St is trivial at Z(X). Hence, by (4-3) and (4-4)
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we have

D◦St(h)=
1
|X |

∑
x∈X

ζ2,q(c1x)St(x)− 1

=
1
|X |

∑
x∈X

ζ2,q(c1x)St(c1x)− 1= [ζ2,q , St]X − 1= 0.

For n ≡ 6 (mod 8) we choose h = diag(g8, . . . , g8, g4, 1, c1) ∈ SUn(q). Then,
ζ(xh) = ζ2,q(c1x)ζ2,q(x) for any x ∈ X by (4-1). By (4-3) and (4-5) applied to
(c, d)= (c1, 1) we have

θ(h)= D◦St(h)=
1
|X |

∑
x∈X

ζ2,q(c1x)ζ2,q(x)St(x)− 1= 0.

For n≡ 7 (mod 8) we choose h = diag(g8, . . . , g8, g4, 1, 1, c1)∈ SUn(q). Then,
ζ(xh) = ζ2,q(x)2ζ2,q(c1x) for any x ∈ X by (4-1). By (4-3) and (4-6) applied to
(c, d)= (1, c1) we have

θ(h)= D◦1X
(h)= 1

|X |

∑
x∈X

ζ2,q(x)2ζ2,q(c1x)− 1= 0.

Finally, assume that n≡ 4 (mod 8). Then we choose h4 ∈SU4(q) to be conjugate
to diag(γ2, γ−2q , 1, γ2q−2) over Fq2 , and set h = diag(g8, . . . , g8, h4) ∈ SUn(q).
Note that γ2, γ−2q

∈ F×q2 and 1 6= c2 := γ
2q−2
∈µq+1. Now, for any x ∈ X , we have

ζ(xh)= ζ2,q(x)ζ2,q(c2x)ζ2,q(γ
2x)ζ2,q(γ

−2q x)

by (4-1). Direct computation using the character table of GU2(q) shows that

θ(h)= D◦1X
(h)= 1

|X |

∑
x∈X

ζ2,q(x)ζ2,q(c2x)ζ2,q(γ
2x)ζ2,q(γ

−2q x)− 1= 0,

and so we are done. �

To complete the proof of Theorem 3.1, we handle the case S = P�+8 (q):

Proposition 4.9. Theorem 3.1 holds in the case S = P�+8 (q) with q odd.

Proof. 1. Suppose that q = 3. Then, according to [Conway et al. 1985], S
has a unique irreducible character θ of degree 300, which is strongly real, and a
unique conjugacy class (4E in the notation of [ibid.]) of elements x of order 4
with |CS(x)| = 1536 and θ(x) = 0. It follows that θ(xσ ) = 0 for all σ ∈ Aut(S).
Furthermore, one can show (directly, or using [GAP 2004]) that θ extends to a
rational character of Aut(S)= S ·S4. From now on we may assume that q = p f

≥ 5.
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2. Choose ε = ±1 such that q ≡ ε (mod 4). Also view S as L/Z(L), where
L = Spin+8 (q) and Z(L)∼= C2×C2. Fix an orthonormal basis (e1, . . . , e4) of R4

and realize the simple roots of the algebraic group L= Spin8(F̄q) as

α1 = e1− e2, α2 = e2− e3, α3 = e3− e4, α4 = e3+ e4

as usual. Then the four fundamental weights of L are given by

$1 = e1, $2 = e1+ e2, $3 =
e1+ e2+ e3− e4

2
, $4 =

e1+ e2+ e3+ e4

2
.

Let 0 ∼= S3 denote the subgroup of A(S) consisting of graph automorphisms. Then
0 permutes the 3 fundamental weights $1, $3, $4 transitively and faithfully, and
fixes $2. Consider the corresponding L-modules Vi = V ($i ) with highest weight
$i , i = 1, 3, 4. Then the set of weights of Vi is

{±e j | 1≤ j ≤ 4}, when i = 1,{ 1
2

∑4
j=1 a j e j

∣∣ a j =±1,
∏4

j=1 a j =−1
}
, when i = 3{

1
2

∑4
j=1 a j e j

∣∣ a j =±1,
∏4

j=1 a j = 1
}
, when i = 4.

We can think of V1 as the natural module for K :=�+8 (q).

3. We will use the description above to show that L contains a regular semisimple
element s of (odd) order N := (q3

+ ε)/2 if q ≥ 9 and N := (q2
+ 1)/2 if q = 5, 7

such that sσ is not L-conjugate to s for any nontrivial σ ∈ 0.
Indeed, assume that q ≥ 9. Then fix δ ∈ F̄

×

q of order (q3
+ε)/2 and choose s ∈ L

to be the unique inverse image of odd order of s̄ ∈ �−ε2 (q)×�−ε6 (q) < K with
spectrum Spec(s, V1)= {δ

j
| j ∈ J1}, where

J1 = {±1,±r,±r2,±2(r2
+ r + 1)}

and r := −εq. Thus we may assume that

e1(s)= δ, e2(s)= δr , e3(s)= δr2
, e4(s)= δ2(r2

+r+1).

Hence Spec(s, Vi )= {δ
(N+ j)/2

| j ∈ Ji } for i = 3, 4, where

J3 = {±(3r2
+ 3r + 1),±(3r2

+ r + 3),±(r2
+ 3r + 3),±(r2

+ r + 1)},

J4 = {±(3r2
+ r + 1),±(r2

+ 3r + 1),±(r2
+ r + 3),±3(r2

+ r + 1)}.

Recall that |δ| = N ≥ 5(r2
+ r + 1) and |r | ≥ 9 since q ≥ 9. Hence δ belongs to

Spec(s, V1) but neither to Spec(s, V3) nor Spec(s, V4), and similarly δ(N+r2
+r+3)/2

belongs to Spec(s, V4) but not to Spec(s, V3). Thus s has pairwise different spectra
on the three modules V1, V3 and V4 permuted faithfully by 0, whence s and sσ

cannot be L-conjugate for any 1 6= σ ∈ 0. Arguing as in the proof of [Moretó and
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Tiep 2008, Lemma 2.3], we can view s as an element of SO+8 (q) to calculate the
order of its centralizer and find that T ∗ =CL(s) is a torus of order (q+ ε)(q3

+ ε);
in particular, s is regular.

Suppose now that q = 5 or 7. Then fix δ ∈ F̄
×

q of order (q2
+ 1)/2 and choose

s ∈ L to be the unique inverse image of odd order of s̄ ∈ �−4 (q)×�
−

4 (q) < K
with spectrum Spec(s, V1)= {δ

j
| j ∈ J1}, where

J1 = {±1,±q,±2,±2q}.

Thus we may assume that

e1(s)= δ, e2(s)= δq , e3(s)= δ2, e4(s)= δ2q .

Hence Spec(s, Vi )= {δ
j/2
| j ∈ Ji } for i = 3, 4, where

J3 = {±(3q + 1),±(q + 3),±(3q − 1),±(q − 3)},

J4 = {±(q + 1),±(3q − 3),±(q − 1),±(3q + 3)}.

One can again check that s has pairwise different spectra on the three modules V1,
V3 and V4, and so s and sσ cannot be L-conjugate for any 1 6= σ ∈ 0. Furthermore,
s is regular and T ∗ = CL(s) is a torus of order (q2

+ 1)2.

4. By [Tiep and Zalesski 2005, Proposition 3.1], s is real. It now follows by
Proposition 4.3 that χs is a strongly real irreducible character of G, and θ := (χs)S

is irreducible. We claim that IH (θ) ≤ G. Once this is completed, we can take
J = G ∩ H and α = (χs)J as usual. As in the proof of Proposition 4.7, it suffices
to show that if σ ∈ A(S)∼= C f ×S3 fixes χs then σ is trivial. Write σ = τ(σ0)

e for
some τ ∈ 0 and 0≤ e < f (and σ0 is induced by the field automorphism y 7→ y p

as usual). By the results of 3) we may assume 0< e < f ; in particular, f ≥ 2 and
so q ≥ 9. By Proposition 4.3(ii), sL is σ ∗-stable and N = |s| divides |Lσ ∗

|.
First assume that |τ | = 3, that is, τ is a triality graph automorphism. Then

N = (q3
+ ε)/2 divides |Lσ ∗

| = |
3D4(pe)|. Using a suitable p.p.d. of N one can

now show that 3 f | 12e and so f | 4e. It follows that sL is stable under σ 4
= τ ,

contrary to the results of 3).
Now we may assume that |τ | = 1 or 2, and so N = (q3

+ ε)/2 divides |Lσ ∗
| =

|Spinα8 (p
e)| with α = + or −, respectively. Using a suitable p.p.d. of N we now

see that 3 f | 6e or 3 f | 8e. If f is odd, then we get that f | e, a contradiction as
0< e< f . Hence f is even, ε=+, and N = (q3

+1)/2 is divisible by r = r(p, 6 f ),
a p.p.d. of p6 f

− 1. Since r divides |Spinα8 (p
e)|, we must have 6 f | 6e or 6 f | 8e.

In the former case we again have f | e, a contradiction. So 6 f |8e, and e= 3 f/4 as
0< e < f . In this case, sL is stable under σ 2

= (σ0)
f/2. Repeating the argument

above, we see that r = r(p, 6 f ) divides |Spin+8 (p
f/2)|, which is impossible.
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5. We have shown that IH (θ) = G ∩ H and obviously θ extends to the strongly
real character (χs)G∩H . It remains to find a 2-element x ∈ S such that θ(xσ )= 0
for all σ ∈ Aut(S). Since s is regular, we have χs = ±R G

T,ϑ for some maximal
torus T of order |T | = |T ∗|. Recall that q ≡ ε (mod 4), hence we can choose x ∈ S
to be represented by diag(−I2, I6) ∈ �

ε
2 (q)×�

ε
6 (q) < �+8 (q) with centralizer

GO ε
2 (q)× GO ε

6 (q) (in GO+8 (q)). It is easy to see that |CG(x)| is not divisible
by |T |. Thus, θ(xσ )= 0 for any σ ∈ Aut(S). �

5. Final remarks

We start with a well-known lemma; see, for instance, [Bubboloni et al. 2009, Lemma
2.1]. We provide a proof for the sake of completeness.

Lemma 5.1. Let χ ∈ Irr(G) and let g be a p-element of the group G, p a prime. If
χ(g)= 0, then p divides χ(1).

Proof. Let ω be a primitive pa-th root of unity, where pa
= o(g), and write n=χ(1).

Then χ(g) =
∑n

i=1 ω
ki = 0 for suitable integers 0 ≤ ki ≤ pa , and ω is a root of

the polynomial q(x)=
∑n

i=1 xki . Hence, the pa-th cyclotomic polynomial 8(x)
divides q(x) (over Q, hence also over Z by Gauss’s lemma). In particular,8(1)= p
divides q(1)= χ(1), as required. �

Using Lemma 5.1, from Theorem A we immediately obtain Theorem B, which
in turn implies the following.

Corollary 5.2 [Dolfi et al. 2008, Theorem A]. Let G be a finite group. If every
χ ∈ IrrR(G) has odd degree, then G has a normal Sylow 2-subgroup.

However, the following class of examples shows that it is not possible to deduce
our Theorem A from [Dolfi et al. 2008, Theorem A] (even if we require χ(x) 6= 0
for all χ ∈ IrrR(G) and all 2-elements x ∈ G).

Example 5.3. For every Mersenne prime q>7 there exists a Frobenius {2, q}-group
G such that

(a) χ(g) 6= 0 for all χ ∈ IrrR(G) and every 2-element g ∈ G, and

(b) there exists a χ0 ∈ IrrR(G) with χ(1) even.

Let q = 2t
− 1 be a Mersenne prime, with t > 3 a prime. Write n = t − 1.

As shown in [Isaacs 1989, Section 4] and in [Riedl 1999], one can construct a
remarkable class of 2-groups (or, in general, p-groups for any prime p) Pn(2, t) as
subgroups of the group of units of suitable skew-polynomial rings. We recall that
the same class of groups has also been considered in [Hanaki and Okuyama 1997],
where they are given as matrix groups.

We mention (see [Riedl 1999]) that the group P = Pn(2, t) has order 2tn , that
the upper central series of P coincides with the lower central series of P and that
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all its factors are elementary abelian groups of order 2t . Moreover, P has a fixed
point free group of automorphisms Q of order q. Hence, the semidirect product
G = P Q is a Frobenius {2, q}-group.

As proved in [Bubboloni et al. 2009, Example 1] (see also [Isaacs et al. 1999,
Theorem 5.1]), χ(g) 6= 0 for every χ ∈ Irr(G) and for every element g ∈ G of
2-power order. So, in particular, (a) is satisfied.

To prove (b), we denote by ClR(P) the set of the P-conjugacy classes of real
elements of P . (Observe that they are precisely the classes where every irreducible
character of P assumes a real value). As an application of Brauer permutation
lemma [Isaacs 1976, (6.32)], we know that |IrrR(P)| = |ClR(P)|. Let W = Z2(P)
be the second term of the (upper) central series of G. By [Riedl 1999, part (i) of
Corollary 2.12 and Lemma 6.1], we see that |W | = 22t and that W is elementary
abelian, because t > 3. Since every involution is a real element of P , it follows
that |ClR(P)| > |Z(P)| = 2t . Therefore, as P has |P/P ′| = 2t linear characters,
we conclude that there exists a nonlinear ψ ∈ IrrR(P). So, χ = ψG

∈ IrrR(G) is a
real character of even degree of G.
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The biHecke monoid
of a finite Coxeter group and its

representations
Florent Hivert, Anne Schilling and Nicolas Thiéry

For any finite Coxeter group W , we introduce two new objects: its cutting poset
and its biHecke monoid. The cutting poset, constructed using a generalization
of the notion of blocks in permutation matrices, almost forms a lattice on W .
The construction of the biHecke monoid relies on the usual combinatorial model
for the 0-Hecke algebra H0(W ), that is, for the symmetric group, the algebra
(or monoid) generated by the elementary bubble sort operators. The authors
previously introduced the Hecke group algebra, constructed as the algebra gen-
erated simultaneously by the bubble sort and antisort operators, and described its
representation theory. In this paper, we consider instead the monoid generated
by these operators. We prove that it admits |W | simple and projective modules.
In order to construct the simple modules, we introduce for each w ∈ W a com-
binatorial module Tw whose support is the interval [1, w]R in right weak order.
This module yields an algebra, whose representation theory generalizes that of
the Hecke group algebra, with the combinatorics of descents replaced by that of
blocks and of the cutting poset.

1. Introduction

In this paper we introduce two novel objects for any finite Coxeter group W : its
cutting poset and its biHecke monoid. The cutting poset is constructed using a
generalization of blocks in permutation matrices to any Coxeter group and is almost
a lattice. The biHecke monoid is generated simultaneously by the sorting and
antisorting operators associated to the combinatorial model of the 0-Hecke algebra
H0(W ). It turns out that the representation theory of the biHecke monoid, and
in particular the construction of its simple modules, is closely tied to the cutting
poset.

Hivert was partly supported by ANR grant 06-BLAN-0380. Schilling was in part supported by NSF
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The study of these objects combines methods from and impacts several areas
of mathematics: Coxeter group theory, monoid theory, representation theory, com-
binatorics (posets, permutations, descent sets), as well as computer algebra. The
guiding principle is the use of representation theory, combined with computer ex-
ploration, to extract combinatorial structures from an algebra, and in particular a
monoid algebra, often in the form of posets or lattices. This includes the structures
associated to monoid theory (such as for example Green’s relations), but also goes
beyond. For example, we find connections between the classical orders of Coxeter
groups (left, right, and left-right weak order and Bruhat order) and Green’s relations
on our monoids (R, L, J, and H-order and ordered monoids), and these orders
play a crucial role in the combinatorics and representation theory of the biHecke
monoid.

The usual combinatorial model for the 0-Hecke algebra H0(Sn) of the symmet-
ric group is the algebra (or monoid) generated by the (anti) bubble sort operators
π1, . . . , πn−1, where πi acts on words of length n and sorts the letters in positions
i and i + 1 decreasingly. By symmetry, one can also construct the bubble sort
operators π1, . . . , πn−1, where π i acts by sorting increasingly, and this gives an
isomorphic construction H 0 of the 0-Hecke algebra. This construction generalizes
naturally to any finite Coxeter group W . Furthermore, when W is a Weyl group,
and hence can be affinized, there is an additional operator π0 projecting along the
highest root.

In [Hivert and Thiéry 2009] the first and last author constructed the Hecke group
algebra HW by gluing together the 0-Hecke algebra and the group algebra of W
along their right regular representation. Alternatively, HW can be constructed as
the biHecke algebra of W , by gluing together the two realizations H0(W ) and
H 0(W ) of the 0-Hecke algebra. HW admits a more conceptual description as the
algebra of all operators on KW preserving left antisymmetries; the representation
theory of HW follows, governed by the combinatorics of descents. In [Hivert et al.
2009], the authors further proved that, when W is a Weyl group, HW is a natural
quotient of the affine Hecke algebra.

In this paper, following a suggestion of Alain Lascoux, we study the biHecke
monoid M(W ), obtained by gluing together the two 0-Hecke monoids. This in-
volves the combinatorics of the usual poset structures on W (left, right, left-right,
Bruhat order), as well as the new cutting poset. Building upon the extensive
study of the representation theory of the 0-Hecke algebra [Norton 1979; Carter
1986; Denton 2010; 2011], we explore the representation theory of the biHecke
monoid. In the process, we prove that the biHecke monoid is aperiodic and its
Borel submonoid fixing the identity is J-trivial. This sparked our interest in the
representation theory of J-trivial and aperiodic monoids, and the general results
we found along the way are presented in [Denton et al. 2010/11].
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We further prove that the simple and projective modules of M are indexed by
the elements of W . In order to construct the simple modules, we introduce for
each w ∈ W a combinatorial module Tw whose support is the interval [1, w]R
in right weak order. This module yields an algebra, whose representation theory
generalizes that of the Hecke group algebra, with the combinatorics of descents
replaced by that of blocks and of the cutting poset.

Let us finish by giving some additional motivation for the study of the biHecke
monoid. In type A, the tower of algebras (KM(Sn))n∈N possesses long sought-
after properties. Indeed, it is well known that several combinatorial Hopf algebras
arise as Grothendieck rings of towers of algebras. The prototypical example is the
tower of algebras of the symmetric groups that gives rise to the Hopf algebra Sym
of symmetric functions, on the Schur basis [Macdonald 1995; Zelevinsky 1981].
Another example, due to Krob and Thibon [1997], is the tower of the 0-Hecke
algebras of the symmetric groups that gives rise to the Hopf algebra QSym of
quasisymmetric functions of [Gessel 1984], on the FI basis. The product rule on
the FI is naturally lifted through the descent map to a product on permutations,
leading to the Hopf algebra FQSym of free quasisymmetric functions [Duchamp
et al. 2002]. This calls for the existence of a tower of algebras (An)n∈N, such that
each An contains H0(Sn) and has its simple modules indexed by the elements
of Sn . The biHecke monoids M(Sn), and their Borel submonoids M1(Sn) and
Mw0(Sn), satisfy these properties, and are therefore expected to yield new repre-
sentation theoretical interpretations of the bases of FQSym.

In the remainder of this introduction, we briefly review Coxeter groups and
their 0-Hecke monoids, introduce the biHecke monoid, which is our main object
of study, and outline the rest of the paper.

1a. Coxeter groups. Let (W, S) be a Coxeter group, that is, a group W with a
presentation

W = 〈S | (ss ′)m(s,s
′) for all s, s ′ ∈ S〉, (1-1)

with m(s, s ′)∈{1, 2, . . . ,∞} and m(s, s)=1. The elements s ∈ S are called simple
reflections, and the relations can be rewritten as

s2 = 1 for all s ∈ S,

ss ′ss ′s · · ·︸ ︷︷ ︸
m(s,s′)

= s ′ss ′ss ′ · · ·︸ ︷︷ ︸
m(s,s′)

for all s, s ′ ∈ S, (1-2)

where 1 denotes the identity in W .
Most of the time, we just write W for (W, S). In general, we follow the notation

of [Björner and Brenti 2005], and we refer to this and to [Humphreys 1990] for
details on Coxeter groups and their Hecke algebras. Unless stated otherwise, we
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always assume that W is finite, and denote its generators by S = (si )i∈I , where
I = {1, 2, . . . , n} is the index set of W .

The prototypical example is the Coxeter group of type An−1 which is the n-th
symmetric group (W, S) := (Sn, {s1, . . . , sn−1}), where si denotes the elementary
transposition which exchanges i and i + 1. The relations are given by

s2
i = 1 for 1≤ i ≤ n− 1,

si s j = s j si for |i − j | ≥ 2,

si si+1si = si+1si si+1 for 1≤ i ≤ n− 2 ;
(1-3)

the last two relations are called the braid relations. When writing a permutation
µ∈Sn explicitly, we use one-line notation, that is the sequenceµ1µ2 . . . µn , where
µi := µ(i).

A reduced word i1 . . . ik for an element w ∈W corresponds to a decomposition
w= si1 · · · sik of w into a product of generators in S of minimal length k= `(w). A
(right) descent of w is an element i ∈ I such that `(wsi ) < `(w). If w is a permu-
tation, this translates into wi > wi+1. Left descents are defined analogously. The
sets of left and right descents of w are denoted by DL(w) and DR(w), respectively.

For J ⊆ I , we denote by WJ = 〈s j | j ∈ J 〉 the subgroup of W generated by s j

with j ∈ J . Furthermore, the longest element in WJ and W are denoted by sJ and
w0, respectively. Any finite Coxeter group W :=〈si | i ∈ I 〉 can be realized as a finite
reflection group; see for example [Humphreys 1990, Chapter 5.6] and [Björner and
Brenti 2005, Chapter 4]. The generators si of W can be interpreted as reflections
on hyperplanes in some |I |-dimensional vector space V . The simple roots αi for
i ∈ I form a basis for V ; the set of all roots is given by8 := {w(αi ) | i ∈ I, w ∈W }.
One can associate reflections sα to all roots α ∈ 8. If α, β ∈ 8 and w ∈ W , then
w(α)= β if and only if wsαw−1 = sβ ; see [Humphreys 1990, Chapter 5.7].

1b. The 0-Hecke monoid. The 0-Hecke monoid H0(W )=〈πi | i ∈ I 〉 of a Coxeter
group W is generated by the simple projections πi with relations

π2
i = πi for all i ∈ I ,

πiπ jπiπ j · · ·︸ ︷︷ ︸
m(si ,s j )

= π jπiπ jπi · · ·︸ ︷︷ ︸
m(si ,s j )

for all i, j ∈ I . (1-4)

Thanks to these relations, the elements of H0(W ) are canonically indexed by the
elements of W by setting πw := πi1 · · ·πik for any reduced word i1 . . . ik of w. We
further denote by πJ the longest element of the parabolic submonoid H0(WJ ) :=
〈πi | i ∈ J 〉.

As mentioned before, any finite Coxeter group W can be realized as a finite
reflection group, each generator si of W acting by reflection along an hyperplane.



The biHecke monoid of a finite Coxeter group 599

The corresponding generator πi of the 0-Hecke monoid acts as a folding, reflecting
away from the fundamental chamber on one side of the hyperplane and as the
identity on the other side. Both the action of W and of H0(W ) stabilize the set of
reflecting hyperplanes and therefore induce an action on chambers.

The right regular representation of H0(W ), or equivalently the action on cham-
bers, induce a concrete realization of H0(W ) as a monoid of operators acting on W ,
with generators π1, . . . , πn defined by

w.πi :=
{
w if i ∈ DR(w),
wsi otherwise.

(1-5)

In type A, πi sorts the letters at positions i and i + 1 decreasingly, and w.πw0 =
n · · · 21 for any permutation w. This justifies naming πi an elementary bubble
antisorting operator.

Another concrete realization of H0(W ) can be obtained by considering instead
the elementary bubble sorting operators π1, . . . , πn , whose action on W are de-
fined by

w.π i :=
{
wsi if i ∈ DR(w),
w otherwise.

(1-6)

In geometric terms, this is folding toward the fundamental chamber. In type A,
and for any permutation w, one has w.πw0 = 12 · · · n.

Remark 1.1. For a given w ∈ W , define v by wv = w0, where w0 is the longest
element of W . Then

i ∈ DR(w) ⇐⇒ i /∈ DL(v) ⇐⇒ i /∈ DR(v
−1)= DR(w0w).

Hence, the action of π i on W can be expressed from the action of πi on W usingw0:

w.π i = w0[(w0w).πi ].
1c. The biHecke monoid M(W). We now introduce our main object of study.

Definition 1.2. Let W be a finite Coxeter group. The biHecke monoid is the sub-
monoid of functions from W to W generated simultaneously by the elementary
bubble sorting and antisorting operators of (1-5) and (1-6):

M := M(W ) := 〈π1, π2, . . . , πn, π1, π2, . . . , πn〉.
As mentioned in [Hivert and Thiéry 2009; Hivert et al. 2009] this monoid admits

several natural variants, depending on the choice of the generators:

〈π1, π2, . . . , πn, s1, s2, . . . , sn〉,
〈π0, π1, π2, . . . , πn〉,
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where π0 is defined when W is a Weyl group and hence can be affinized. Unlike the
algebras they generate, which all coincide with the biHecke algebra (in particular
due to the linear relation 1+si =πi+π i which expresses how to recover a reflection
by gluing together the two corresponding foldings), these monoids are all distinct
as soon as W is large enough. Another close variant is the monoid of all strictly
order-preserving functions on the Boolean lattice [Gaucher 2010]. All of these
monoids, and their representation theory, remain to be studied.

1d. Outline. The remainder of this paper consists of two parts: We first introduce
and study the new cutting poset structure on finite Coxeter groups, and then proceed
to the biHecke monoid and its representation theory.

In Section 2, we recall some needed basic facts, definitions, and properties about
posets, Coxeter groups, monoids, and representation theory.

In Section 3, we generalize the notion of blocks of permutation matrices to any
Coxeter group, and use it to define a new poset structure on W , which we call
the cutting poset; we prove that it is (almost) a lattice, and derive that its Möbius
function is essentially that of the hypercube.

In Section 4, we study the combinatorial properties of M(W ). In particular, we
prove that it preserves left and Bruhat order, derive consequences on the fibers and
image sets of its elements, prove that it is aperiodic, and study Green’s relations
and idempotents.

In Section 5, our strategy is to consider a “Borel” triangular submonoid of M(W )

whose representation theory is simpler, but with the same number of simple mod-
ules, to later induce back information about the representation theory of M(W ).
Namely, we study the submonoid M1(W ) of the elements fixing 1 in M(W ). This
monoid not only preserves Bruhat order, but furthermore is regressive. It follows
that it is J-trivial (in fact B-trivial) which is the desired triangularity property. It is
for example easily derived that M1(W ) has |W | simple modules, all of dimension 1.
In fact most of our results about M1 generalize to any J-trivial monoid, which is
the topic of a separate paper on the representation theory of J-trivial monoids
[Denton et al. 2010/11]. We also provide properties of the Cartan matrix and a
combinatorial description of the quiver of M1.

In Section 6, we construct, for each w ∈ W , the translation module Tw by
induction of the corresponding simple KM1(W )-module. It is a quotient of the
indecomposable projective module Pw of KM(W ), and therefore admits the simple
module Sw of KM(W ) as top. It further admits a simple combinatorial model using
the right classes with the interval [1, w]R as support, and which passes down to Sw.
We derive a formula for the dimension of Sw, using an inclusion-exclusion on the
sizes of intervals in (W,≤R) along the cutting poset. On the way, we study the
algebra HW (w) induced by the action of M(W ) on Tw. It turns out to be a natural
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w-analogue of the Hecke group algebra, acting not anymore on the full Coxeter
group, but on the interval [1, w]R in right order. All the properties of the Hecke
group algebra pass through this generalization, with the combinatorics of descents
being replaced by that of blocks and of the cutting poset. In particular, HW (w) is
Morita equivalent to the incidence algebra of the sublattice induced by the cutting
poset on the interval [1, w]v.

In Section 7, we apply the findings of Sections 4, 5, and 6 to derive results on
the representation theory of M(W ). We conclude in Section 8 with discussions on
further research in progress.

There are two appendices. Appendix A summarizes some results on colored
graphs which are used in Section 4 to prove properties of the fibers and image sets
of elements in the biHecke monoid. Appendix B we present tables of q-Cartan
invariant and decomposition matrices for M(Sn) for n = 2, 3, 4.

2. Background

We review some basic facts about partial orders and finite posets in Section 2a,
finite lattices and Birkhoff’s theorem in Section 2b, order-preserving functions in
Section 2c, the usual partial orders on Coxeter groups (left and right weak order,
Bruhat order) in Section 2d, and the notion of J-order (and related orders) and
aperiodic monoids in Section 2e. We also prove a result in Proposition 2.4 about
the image sets of order-preserving and regressive idempotents on a poset that will
be used later in the study of idempotents of the biHecke monoid. Sections 2f and 2g
contain reviews of some representation theory of algebras and monoids that will
be relevant in our study of translation modules.

2a. Finite posets. For a general introduction to posets and lattices, we refer the
reader to for example [Pouzet 2013; Stanley 1997] or [Wikipedia 2010, Poset,
Lattice]. Throughout this paper, all posets are finite.

A partially ordered set (or poset for short) (P,�) is a set P with a binary relation
� such that for all x, y, z ∈ P:

(i) x � x (reflexivity);

(ii) if x � y and y � x , then x = y (antisymmetry);

(iii) if x � y and y � z, then x � z (transitivity).

When we exclude the possibility that x = y, we write x ≺ y.
If x � y in P , we define the interval

[x, y]P := {z ∈ P | x � z � y}.
A pair (x, y) such that x ≺ y and there is no z ∈ P such that x ≺ z ≺ y is called
a covering. We denote coverings by x → y. The Hasse diagram of (P,�) is the
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diagram where the vertices are the elements x ∈ P , and there is an upward-directed
edge between x and y if x→ y.

Definition 2.1. Let (P,�) be a poset and X ⊆ P .

(i) X is convex if for any x, y ∈ X with x � y we have [x, y] ⊆ X .

(ii) X is connected if for any x, y ∈ X with x ≺ y there is a path in the Hasse
diagram x = x0→ x1→ · · · → xk = y such that xi ∈ X for 0≤ i ≤ k.

The Möbius inversion formula [Stanley 1997, Proposition 3.7.1] generalizes the
inclusion-exclusion principle to any poset. Namely, there exists a unique func-
tion µ, called the Möbius function of P , which assigns an integer to each ordered
pair x � y and enjoys the following property: For any two functions f, g : P→ G
taking values in an additive group G,

g(x)=
∑

y�x

f (y) if and only if f (y)=
∑

x�y

µ(x, y) g(x). (2-1)

The Möbius function can be computed thanks to the following recursion:

µ(x, y)=
{

1 if x = y,
−∑x�z≺y µ(x, z) for x ≺ y.

2b. Finite lattices and Birkhoff’s theorem. Let (P,�) be a poset. The meet z =∧
A of a subset A⊆ P is an element such that, first, z� x for all x ∈ A and, second,

u � x for all x ∈ A implies that u � z. When the meet exists, it is unique and is
denoted by

∧
A. The meet of the empty set A = {} is the largest element of the

poset, if it exists. The meet of two elements x, y ∈ P is denoted by x ∧ y. A poset
(P,�) for which every pair of elements has a meet is called a meet-semilattice. In
that case, P endowed with the meet operation is a commutative J-trivial semigroup,
and in fact a monoid with unit the maximal element of P , if the latter exists.

Reversing all comparisons, one can similarly define the join
∨

A of a subset
A⊆ P or x∨ y of two elements x, y ∈ P , and join-semilattices. A lattice is a poset
for which both meets and joins exist for pair of elements. Recall that we only
consider finite posets, so we do not have to worry about the distinction between
lattices and complete lattices.

A lattice (L ,∨,∧) is distributive if the following additional identity holds for
all x, y, z ∈ L:

x ∧ (y ∨ z)= (x ∧ y)∨ (x ∧ z).

This condition is equivalent to its dual,

x ∨ (y ∧ z)= (x ∨ y)∧ (x ∨ z).

Birkhoff’s representation theorem (see [Wikipedia 2010, Birkhoff’s representa-
tion theorem], or [Stanley 1997, Theorem 3.4.1]) states that any finite distributive
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lattice can be represented as a sublattice of a Boolean lattice, that is, a collection
of sets stable under union and intersection. Furthermore, there is a canonical such
representation, which we construct now.

An element z in a lattice L is called join-irreducible if z is not the smallest
element in L and z = x ∨ y implies z = x or z = y for any x, y ∈ L (and similarly
for meet-irreducible). Equivalently, since L is finite, z is join-irreducible if and
only if it covers exactly one element in L . We denote by I (L) the poset of join-
irreducible elements of L , that is the restriction of L to its join-irreducible elements.
Note that this definition still makes sense for nonlattices. From a monoid point of
view, I (L) is the minimal generating set of L .

A lower set of a poset P is a subset Y of P such that, for any pair x ≤ y
of comparable elements of P , x is in Y whenever y is. Upper sets are defined
dually. The family of lower sets of P ordered by inclusion is a distributive lattice,
the lower sets lattice O(P). Birkhoff’s representation theorem [Birkhoff 1937]
states that any finite distributive lattice L is isomorphic to the lattice O(I (L)) of
lower sets of the poset I (L) of its join-irreducible elements, via the reciprocal
isomorphisms:

{
L → O(I (L)),
x 7→ {y ∈ I (L) | y ≤ x} and

∨
:
{

O(I (L)) → L ,
I 7→∨

I .

Following Edelman [1986], a meet-semilattice L is meet-distributive if for every
y ∈ L , if x ∈ L is the meet of elements covered by y then [x, y] is a Boolean
algebra. A stronger condition is that any interval of L is a distributive lattice. A
straightforward application of Birkhoff’s representation theorem yields that L is
then isomorphic to a lower set of O(I (L)).

2c. Order-preserving functions.

Definition 2.2. Let (P,�) be a poset and f : P→ P a function.

(i) f is called order-preserving if x � y implies f (x) � f (y). We also say f
preserves the order �.

(ii) f is called regressive if f (x)� x for all x ∈ P .

(iii) f is called extensive if x � f (x) for all x ∈ P .

Lemma 2.3. Let (P,�) be a poset and f : P → P an order-preserving map.
Then, the preimage f −1(C) of a convex subset C ⊆ P is convex. In particular, the
preimage of a point is convex.

Proof. Let x, y∈ f −1(C)with x� y. Since f is order-preserving, for any z∈[x, y],
we have f (x)� f (z)� f (y), and therefore f (z) ∈ C . �
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Proposition 2.4. Let (P,�) be a poset and f : P→ P be an order-preserving and
regressive idempotent. Then, f is determined by its image set. Namely, for u ∈ P
we have

f (u)= sup
�
(↓u ∩ im( f )),

the supremum being always well-defined. Here ↓u = {x ∈ P | x � u}.
An equivalent statement is that, for v ∈ im( f ),

f −1(v)= ↑v \
⋃

v′∈im( f )
v′�v

↑v′, where ↑v = {x ∈ P | x � v}.

Proof. We first prove that ↓u ∩ im( f ) = f (↓u). The inclusion ⊇ follows from
the fact that f is regressive: Taking v ∈ ↓u, we have f (v) � v � u and therefore
f (v) ∈ ↓u ∩ im( f ). The inclusion ⊆ follows from the assumption that f is an
idempotent: For v ∈ im( f ) with v � u, one has v = f (v), so v ∈ f (↓u).

Since f is order-preserving, f (↓u) has a unique maximal element, namely
f (u). The first statement of the proposition follows. The second statement is a
straightforward reformulation of the first one. �

An interior operator (sometimes also called a kernel operator) is a function
L→ L on a lattice L that is order-preserving, regressive and idempotent; see for
example [Wikipedia 2010, Moore Family]. A subset A⊆ L is a dual Moore family
if it contains the smallest element ⊥L of L and is stable under joins. The image
set of an interior operator is a dual Moore family. Reciprocally, any dual Moore
family A defines an interior operator by

L→ L , x 7→ red(x) :=
∨

a∈A,a�x

a, (2-2)

where
∨
{} =⊥L by convention.

A (dual) Moore family is itself a lattice with the order and join inherited from L .
The meet operation usually differs from that of L and is given by x ∧A y =
red(x ∧L y).

2d. Classical partial orders on Coxeter groups. A Coxeter group W = 〈si | i ∈ I 〉
comes endowed with several natural partial orders: left (weak) order, right (weak)
order, left-right (weak) order, and Bruhat order. All of these play an important role
for the representation theory of the biHecke monoid M(W ).

Fix u, w ∈W . Then, in right (weak) order,

u ≤R w if w = usi1 · · · sik for some i j ∈ I and `(w)= `(u)+ k.
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Similarly, in left (weak) order,

u ≤L w if w = si1 · · · sik u for some i j ∈ I and `(w)= `(u)+ k,

and in left-right (weak) order,

u≤L Rw if w = si1 · · · sik usi ′1 · · · si ′` for some i j , i ′j ∈ I and `(w)= `(u)+ k+ `.
Note that left-right order is the transitive closure of the union of left and right
order. Thanks to associativity, this is equivalent to the existence of a v ∈ W such
that u ≤L v and v ≤R w.

Let w = si1si2 · · · si` be a reduced expression for w. Then, in Bruhat order,

u ≤B w if there exists a reduced expression u = s j1 · · · s jk
where j1 . . . jk is a subword of i1 . . . i`.

For any finite Coxeter group W , the posets (W,≤R) and (W,≤L) are graded
lattices [Björner and Brenti 2005, Section 3.2]. The following proposition states
that any interval is isomorphic to some interval starting at 1:

Proposition 2.5 [Björner and Brenti 2005, Proposition 3.1.6]. Let O ∈ {L , R} and
u ≤O w ∈W . Then [u, w]O ∼= [1, t]O where t = wu−1.

Definition 2.6. The type of an interval in left and right order are defined to be
type([u, w]L) := wu−1 and type([u, w]R) := u−1w, respectively.

It is easily shown that, if O is considered as a colored poset, then the converse
of Proposition 2.5 holds as well:

Remark 2.7. Fix a type t . Then, the collection of all intervals in left weak order of
type t is in bijection with [1, t−1w0]R , and the operators πi and π i act transitively
on the right on this collection. More precisely: πa induces an isomorphism from
[1, ba−1]L to [a, b]L , and πa−1 induces an isomorphism from [a, b]L to [1, ba−1]L .

Proof. Take u ∈ [a, b]L , and let si1 · · · sik be a reduced decomposition of a. Let
s j1 · · · s j` be a reduced decomposition of ua−1 = usik · · · si1 . Then

u = (s j1 · · · s j`)(si1 · · · sik )

is a reduced decomposition of u and u .πa−1 = s j1 · · · s j` = ua−1. Reciprocially,
applying πa to an element u ∈ [1, ba−1]L progressively builds up a reduced word
for a. The result follows. �

2e. Preorders on monoids. J. A. Green [1951] introduced several preorders on
monoids, which are essential for the study of their structures; see for example
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[Pin 2012, Chapter V]. Throughout this paper, we only consider finite monoids.
Define ≤R,≤L,≤J,≤H for x, y ∈ M as follows:

x ≤R y if and only if x = yu for some u ∈ M,

x ≤L y if and only if x = uy for some u ∈ M,

x ≤J y if and only if x = uyv for some u, v ∈ M,

x ≤H y if and only if x ≤R y and x ≤L y.

These preorders give rise to equivalence relations:

x R y if and only if x M = yM,

x L y if and only if Mx = My,

x J y if and only if Mx M = MyM,

x H y if and only if xRy and xLy.

Strict comparisons are defined by x <R y if x ≤R y but x /∈R(y), or equivalently
R(x)⊂R(y), and similarly for <L, <J, <H.

We further add the relation ≤B (and its associated equivalence relation B) de-
fined as the finest preorder such that x ≤B 1, and

x ≤B y implies that uxv ≤B uyv for all x, y, u, v ∈ M .

(One can view ≤B as the intersection of all preorders with the property above.
There exists at least one such preorder, namely x ≤ y for all x, y ∈ M). In the
semigroup community, this order is sometimes colloquially referred to as the mul-
tiplicative J-order.

Beware that 1 is the largest element of those (pre)-orders. This is the usual
convention in the semigroup community, but is the converse convention from the
closely related notions of left/right/left-right/Bruhat order in Coxeter groups as
introduced in Section 2d.

Example 2.8. For the 0-Hecke monoid of Section 1b, K-order for K∈{R,L,J,B}
corresponds to the reverse of right, left, left-right and Bruhat order of Section 2d.
More precisely for x, y∈H0(W ), x≤K y if and only if x≥K y for K∈{R,L,J,B}
and K ∈ {R, L , L R, B} the corresponding letter.

Definition 2.9. Elements of a monoid M in the same K-equivalence class are called
K-classes, where K ∈ {R,L,J,H,B}. The K-class of x ∈ M is denoted by K(x).

A monoid M is called K-trivial if all K-classes are of cardinality one.
An element x ∈ M is called regular if it is J-equivalent to an idempotent.



The biHecke monoid of a finite Coxeter group 607

An equivalent formulation of K-triviality is given in terms of ordered monoids.
A monoid M is called

right-ordered if xy ≤ x for all x, y ∈ M ,

left-ordered if xy ≤ y for all x, y ∈ M ,

left-right-ordered if xy ≤ x and xy ≤ y for all x, y ∈ M ,

two-sided-ordered if xy = yz ≤ y for all x, y, z ∈ M with xy = yz,

ordered with 1 on top if x ≤ 1, and x ≤ y implies uxv ≤ uyv
for all x, y, u, v ∈ M

for some partial order ≤ on M .

Proposition 2.10. M is right-ordered (respectively left-ordered, left-right-ordered,
two-sided-ordered, ordered with 1 on top) if and only if M is R-trivial (respectively
L-trivial, J-trivial, H-trivial, B-trivial).

When M is K-trivial for K ∈ {R,L,J,H,B}, the partial order ≤ is finer
than ≤K; that is, for any x, y ∈ M , x ≤K y implies x ≤ y.

Proof. We give the proof for right-order as the other cases can be proved in a
similar fashion.

Suppose M is right-ordered and that x, y ∈ M are in the same R-class. Then
x = ya and y = xb for some a, b ∈ M . This implies that x ≤ y and y ≤ x , so that
x = y. Conversely, suppose that all R-classes are singletons. Then x ≤R y and
y ≤R x imply that x = y, so that the R-preorder turns into a partial order. Hence
M is right-ordered using xy ≤R x . �

Definition 2.11. A monoid M is aperiodic if there is an integer N > 0 such that
x N = x N+1 for each x ∈ M .

Since we are only dealing with finite monoids, it is enough to find such an
N = Nx depending on the element x . Indeed, taking N :=max{Nx} gives a uniform
bound. From this definition it is clear that, for an aperiodic monoid M , the sequence
(xn)n∈N eventually stabilizes for every x ∈ M . We write xω for the stable element,
which is idempotent, and E(M) := {xω | x ∈ M} for the set of idempotents.

Equivalent characterizations of (finite) aperiodic monoids M are that they are
H-trivial, or that the sub-semigroup S of M (the identity of S is not necessarily the
one of M), which are also groups, are trivial; see for example [Pin 2012, VII, 4.2,
Aperiodic monoids]. In this sense, the notion of aperiodic monoids is orthogonal
to that of groups as they contain no group-like structure. By the same token, their
representation theory is orthogonal to that of groups.

As we will see in Section 4d, the biHecke monoid M(W ) of Definition 1.2 is
aperiodic. Its Borel submonoid M1(W ) of functions fixing the identity is J-trivial
(see Section 5).
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2f. Representation theory of algebras. We refer to [Curtis and Reiner 1962] for
an introduction to representation theory, and to [Benson 1991] for more advanced
notions such as Cartan matrices and quivers. Here we mostly review composition
series and characters.

Let A be a finite-dimensional algebra. Given an A-module X , any strictly in-
creasing sequence (X i )i≤k of submodules

{0} = X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xk = X

is called a filtration of X . A filtration (Y j )i≤` such that, for any i , Yi = X j for
some j is called a refinement of (X i )i≤k . A filtration (X i )i≤k without a nontrivial
refinement is called a composition series. For a composition series, each quotient
module X j/X j−1 is simple and is called a composition factor. The multiplicity
of a simple module S in the composition series is the number of indices j such
that X j/X j−1 is isomorphic to S. The Jordan–Hölder theorem states that this
multiplicity does not depend on the choice of the composition series. Hence, we
may define the generalized character (or character for short) of a module X as the
formal sum

[X ] :=
∑

i∈I

ci [Si ],

where I indexes the simple modules of A and ci is the multiplicity of the simple
module Si in any composition series for X .

The additive group of formal sums
∑

i∈I mi [Si ], with mi ∈ Z, is called the
Grothendieck group of the category of A-modules and is denoted by G0(A). By
definition, the character satisfies that, for any exact sequence

0→ X→ Y → Z→ 0,

the equality
[Y ] = [X ] + [Z ]

holds in the Grothendieck group. See [Serre 1977] for more information about
Grothendieck groups.

Suppose that B is a subalgebra of A. Any A-module X naturally inherits an
action from B. The constructed B-module thereby is called the restriction of X
to B and its B-character [X ]B depends only on its A-character [X ]A. Indeed, any
A-composition series can be refined to a B-composition series and the resulting
multiplicities depend only on those in the A-composition series and in the com-
position series of the simple modules of A restricted to B. This defines a Z-linear
map [X ]A 7→ [X ]B , called the decomposition map. Let (S A

i )i∈I and (SB
j ) j∈J be

complete families of simple module representatives for A and B, respectively. The
matrix of the decomposition map is called the decomposition matrix of A over B;
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its coefficient (i, j) is the multiplicity of SB
j as a composition factor of S A

i , viewed
as a B-module.

The adjoint construction of restriction is called induction: For any right B-
module X the space

X↑A
B := X ⊗B A

is naturally endowed with a right A-module structure by right multiplication by
elements of A, and is called the module induced by X from B to A.

The next subsection, and in particular the statement of Theorem 2.13, requires a
slightly more general setting, where the identity e of B does not coincide with that
of A. More precisely, let B be a subalgebra of eAe for some idempotent e of A.
Then, for any A-module Y , the restriction of Y to B is defined as Y e, whereas, for
any B-module X , the induction of X to A is defined as X↑A

B := X ⊗B eA.

2g. Representation theory of monoids. Although representation theory started at
the beginning of the 20th century with groups before being extended to more gen-
eral algebraic structures such as algebras, one has to wait until [Clifford 1942] for
the first results on the representation theory of semigroups and monoids. Renewed
interest in this subject was sparked more recently by the emergence of connec-
tions with probability theory and combinatorics; see for example [Brown 2000;
Saliola 2007]. Compared to groups, only a few general results are known, the
most important one being the construction of the simple modules. It is originally
due to Clifford, Munn, and Ponizovskiı̌, and we recall here the construction of
[Ganyushkin et al. 2009] (see also the historical references therein) from the regular
J-classes and corresponding right class modules.

In principle, one should be specific about the ground field K; in other words,
one should consider the representation theory of the monoid algebra KM of a
monoid M , and not of the monoid itself. However, the monoids under study in this
paper are aperiodic, and their representation theory only depends on the character-
istic. We focus on the case where K is of characteristic 0. Note that the general
statements mentioned in this section may further require K to be large enough (e.g.,
K = C) for nonaperiodic monoids.

Let M be a finite monoid. Fix a regular J-class J , that is, a J-class containing
an idempotent. Consider the sets

M≥J :=
⋃

K∈J(M), K≥J J

K and IJ := M −M≥J .

Then, IJ is an ideal of M , so that the vector space KM≥J can be endowed with
an algebra structure by identifying it with the quotient KM/KIJ . Note that any
KM≥J -module is then a KM-module.
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Definition 2.12. Let f ∈ M . Set KR<( f ) := K{b ∈ f M | b <R f }. The right
class module of f (also known as right Schützenberger representation) is the KM-
module

KR( f ) := K f M/KR<( f ).

KR( f ) is clearly a right module since KR<( f ) is a submodule of K f M . Also,
as suggested by the notation, R( f ) forms a basis of KR( f ). Moreover, for a fixed
J-class J and thanks to associativity and finiteness, the right class module KR( f )
does not depend on the choice of f ∈ J (up to isomorphism). Our main tool for
studying the representation theory of the biHecke monoid will be a combinatorial
model for its right class modules, which we will call translation modules (see
Section 6a).

We now choose a J-class J , fix an idempotent eJ in J , and set KRJ :=KR(eJ ).
Recall that

R(eJ )= eJ M ∩ J = eJ M≥J ∩ J.

Define similarly

G J := GeJ := eJ MeJ ∩ J = eJ M≥J eJ ∩ J.

Then, G J is a group that does not depend on the choice of eJ . More precisely, if
e and f are two idempotents in J , the ideals MeM and M f M are equal and the
groups Ge and G f are conjugate and isomorphic. Note that when working with
the quotient algebra KM≥J , the equations above simplify to

KRJ = eJ KM≥J and KG J = eJ KM≥J eJ .

With these notations, the simple KM-modules can be constructed as follows:

Theorem 2.13 (Clifford, Munn, and Ponizovskiı̌; see [Ganyushkin et al. 2009,
Theorem 7]). Let M be a monoid, and U(M) be the set of its regular J-classes.
For any J ∈ U(M), define the right class module KRJ and groups G J as above,
let S J

1 , . . . , S J
n J

be a complete family of simple KG J -modules, and set

X J
i := top(S J

i ↑KM≥J

KG J
)= top(S J

i ⊗KG J eJ KM≥J )= top(S J
i ⊗KG J KRJ ), (2-3)

where top(X) := X/ rad X is the semisimple quotient of the module X. Then,
(X J

i for J ∈U(M) and i=1, . . . , n J ) is a complete family of simple KM-modules.

In the present paper we only need the very particular case of aperiodic monoids.
The key point is that a monoid is aperiodic if and only if all the groups G J are
trivial [Pin 2012, Proposition 4.9]: G J = {eJ }. As a consequence, the only KG J -
module is the trivial one, 1, so that the previous construction boils down to the
following theorem:
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Theorem 2.14. Let M be an aperiodic monoid. Choose an idempotent transversal
E = {eJ | J ∈U(M)} of the regular J-classes. Further set

X J := top(1↑KM≥J
KeJ

)= top(eJ KM≥J )= top(KRJ ). (2-4)

Then, the family (X J )J∈U(M) is a complete family of representatives of simple KM-
modules. In particular, there are as many isomorphic types of simple modules as
regular J-classes.

Since the top of KRJ is simple, one obtains immediately the following corollary;
see [Curtis and Reiner 1962, Corollary 54.14].

Corollary 2.15. Each regular right class module KRJ is indecomposable and a
quotient of the projective module PJ corresponding to SJ .

For a nonaperiodic finite monoid, each right class module remains indecompos-
able even if its top is not necessarily simple; see [Zalcstein 1971, Corollary 1.10].

The top of a right class module KRJ is easy to compute; indeed, the radical of
this module is nothing but the annihilator of J acting on it. This in turn boils down
to the calculation of the kernel of a matrix as we see below.

Rees matrix monoids [Rees 1940] play an important role in the representation
theory of monoids, because any J-class J of any monoid M is, roughly speaking,
isomorphic to such a monoid. We give here the definition of aperiodic Rees matrix
monoids, which we use in a couple of examples (see Examples 7.8 and 7.9).

Definition 2.16 (aperiodic Rees matrix monoid). Let P = (pi j ) be an n × m
0-1-matrix. The aperiodic Rees matrix monoid M(P) is obtained by endowing
the disjoint union

{1} ∪ {1, . . . ,m}× {1, . . . , n} ∪ {0}
with the product

(i, j)(i ′, j ′) :=
{
(i, j ′) if p j i ′ = 1,
0 otherwise,

1 being neutral and 0 being the zero element.
Note that (i, j) is an idempotent if and only if p j,i = 1; hence M(P) can be

alternatively described by specifying which elements (i, j) are idempotent.

Without entering into the details, we note that the radical of the unique (up to
isomorphism) nontrivial right class modules of KM(P) is given by the kernel of
the matrix P , and thus the dimension of the nontrivial simple module of KM(P)
is given by the rank of P [Clifford and Preston 1961; Lallement and Petrich 1969;
Rhodes and Zalcstein 1991; Margolis and Steinberg 2011].
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3. Blocks of Coxeter group elements and the cutting poset

In this section, we develop the combinatorics underlying the representation theory
of the translation modules studied in Section 6. The key question is, Given w ∈W ,
for which subsets J ⊆ I does the canonical bijection between a Coxeter group W
and the Cartesian product WJ × JW of a parabolic subgroup WJ by its set of coset
representatives JW in W restrict properly to an interval [1, w]R in right order (see
Figure 1)? In type A, the answer is given by the so-called blocks in the permutation
matrix of w, and we generalize this notion to any Coxeter group.

We start with some results on parabolic subgroups and quotients in Section 3a,
which are used to define blocks and cutting points of Coxeter group elements in
Section 3b. Then, we illustrate the notion of blocks in type A in Section 3c, recover-
ing the usual blocks in permutation matrices. In Section 3d it is shown that (W,v)
with the cutting order v is a poset (see Theorem 3.19). In Section 3e we show
that blocks are closed under unions and intersections, and relate these to meets and
joins in left and right order, thereby endowing the set of cutting points of a Coxeter
group element with the structure of a distributive lattice (see Theorem 3.26). In
Section 3f, we discuss various indexing sets for cutting points, which leads to the
notion of w-analogues of descent sets in Section 3g. Properties of the cutting poset
are studied in Section 3h (see Theorem 3.41, which also recapitulates the previous
theorems).

Throughout this section W := 〈si | i ∈ I 〉 denotes a finite Coxeter group.

3a. Parabolic subgroups and cosets representatives. For a subset J ⊆ I , the par-
abolic subgroup WJ of W is the Coxeter subgroup of W generated by s j for j ∈ J .
A complete system of minimal length representatives of the right cosets WJw and
of the left cosets wWJ are given respectively by

JW := {x ∈W | DL(x)∩ J =∅},
W J := {x ∈W | DR(x)∩ J =∅}.

Everyw∈W has a unique decompositionw=wJ
Jw withwJ ∈WJ and Jw∈ JW .

Similarly, there is a unique decomposition w =wK
Kw with Kw ∈ K W =WK and

wK ∈W K .

Lemma 3.1. Take w ∈W .

(i) For J ⊆ I consider the unique decomposition w = uv, where u = wJ and
v = Jw. Then, the unique decomposition of wsk is wsk = (us j )v if vskv

−1 is
a simple reflection s j with j ∈ J and wsk = u(vsk) otherwise.

(ii) For K ⊆ I consider the unique decomposition w = vu, where u = Kw and
v =wK . Then, the unique decomposition of s jw is s jw = v(sku) if v−1s jv is
a simple reflection sk with k ∈ K and s jw = (s jv)u otherwise.
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Proof. This follows directly from [Björner and Brenti 2005, Lemma 2.4.3 and
Proposition 2.4.4]. �

Note in particular that, if we are in case (i) of Lemma 3.1, we have the following:

• If k is a right descent of w, then (wsk)J ∈ [1, wJ ]R and J(wsk) ∈ [1, Jwsk]R .

• If k is not a right descent of w, then either sk skew commutes with Jw (that
is, there exists an i such that si

Jw = Jwsk), or J(wsk) = Jwsk . In particular,
J(wsk)≤R

Jwsk .

Definition 3.2. A subset J ⊆ I is left reduced with respect to w if J ′ ⊂ J implies
Jw <L

J ′w (or equivalently, if for any j ∈ J , s j appears in some and hence all
reduced words for wJ ).

We say K ⊆ I is right reduced with respect to w if K ′⊂ K implies wK <R w
K ′ .

Lemma 3.3. Let w ∈W and J ⊆ I be left reduced with respect to w. Then

(i) v = Jw ≤R w if and only if there exists K ⊆ I and a bijection φR : J → K
such that s jv = vsφR( j) for all j ∈ J .

For K ⊆ I right reduced with respect to w, we have

(i) v =wK ≤L w if and only if there exists J ⊆ I and a bijection φL : K → J
such that vsk = sφL (k)v for all k ∈ K .

Proof. Assume first that the bijection φR exists, and write w = s j1 · · · s j`v, where
the product is reduced and ji ∈ J . Then,

w = s j1 · · · s j`v = s j1 · · · s j`−1vsφR( j`) = vsφR( j1) · · · sφR( j`),

where the last product is reduced. Therefore v ≤R w.
Assume conversely that v = Jw ≤R w, write the reduced expression w =

vsk1 · · · sk` ≥R v, and set K = {k1, . . . , k`}. By Lemma 3.1, the sequence

v = Jv, J(vsk1), . . . ,
J(vsk1 · · · sk`)= Jw = v

preserves right order, and therefore is constant. Hence, at each step i

J(vsk1 · · · ski )= J(J(vsk1 · · · ski−1)ski )= J(vski )= v.
Applying Lemma 3.1 again, it follows that there is a subset J ′ ⊆ J , and a bi-
jective map φR : J ′ → K such that s jv = vsφR( j) for all j ∈ J ′. Then, w =
sφ−1

R (k1)
· · · sφ−1

R (k`)v, and, since J is left reduced, J = J ′.
The second part is the symmetric statement. �

By Lemma 3.1, for any w ∈W and J ⊆ I we have [1, w]R ⊆ [1, wJ ]R[1, Jw]R
and similarly for any K ⊆ I we have [1, w]L ⊆ [1,wK ]L [1, Kw]L .
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Lemma 3.4. Take w ∈W , K ⊆ I , and assume that siw=wsk for i ∈ I and k ∈ K ,
where the products are reduced. Then, there exists k ′ ∈ K such that siw

K =wK sk′ ,
where the products are again reduced.

Proof. We have wK = (wsk)
K = (siw)

K = (siw
K )K . Hence, by Lemma 3.1(ii)

there exists k ′ ∈ K such that wK sk′ = siw
K , as desired. �

3b. Definition and characterizations of blocks and cutting points. We now come
to the definition of blocks of Coxeter group elements and associated cutting points.
They will lead to a new poset on the Coxeter group W , which we coin the cutting
poset in Section 3d.

Definition 3.5 (blocks and cutting points). Letw∈W . We call K ⊆ I a right block
(or J ⊆ I a left block) of w, if there exists J ⊆ I (respectively K ⊆ I ) such that

WJw = wWK .

In that case, v := wK is called a cutting point of w, which we denote by v v w.
Furthermore, K is proper if K 6= ∅ and K 6= I ; it is nontrivial ifwK 6= w (or
equivalently Kw 6= 1); analogous definitions are made for left blocks.

We denote by BR(w) the set of all right blocks for w, and by RBR(w) the set
of all (right) reduced (see Definition 3.2) right blocks for w. The sets BL(w) and
RBL(w) are similarly defined on the left.

Here is an equivalent characterization of blocks, which also shows that cutting
points can be equivalently defined using Jw instead of wK .

Proposition 3.6. Let w ∈W and J, K ⊆ I . Then, the following are equivalent:

(i) WJw = wWK .

(ii) There exists a bijection φ : K→ J such that wK sk = sφ(k)wK (or equivalently
wK (αk)= αφ(k)) for all k ∈ K .

Furthermore, when any, and therefore all, of the above hold then,

(iii) wK = Jw.

Proof. Suppose (i) holds. Then WJ
Jw = wK WK . Since Jw has no left descents

in J and wK has no right descents in K , we know that on both sides Jw and wK

are the shortest elements and hence have to be equal: Jw = wK ; this proves (iii).
Furthermore, every reduced expression wK sk with k ∈ K must correspond to some
reduced expression s j

Jw for some j ∈ J , and vice versa. Hence there exists a
bijection φ : K → J such that wK sk = sφ(k) Jw = sφ(k)wK . Therefore point (ii)
holds.

Suppose now that point (ii) holds. Then, for any expression sk1 · · · sk` ∈WK , we
have

wK sk1 · · · sk` = sφ(k1)w
K sk2 · · · sk` = · · · = sφ(k1) · · · sφ(k`)wK .
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It follows that
wK WK =WJw

K .

In particular w ∈WJw
K and therefore

WJw =WJw
K = wK WK = wWK . �

In general, condition (iii) of Proposition 3.6 is only a necessary, but not sufficient
condition for K to be a block. See Example 3.12.

Proposition 3.7. If K is a right block of w (or more generally if wK = wK ′ with
K ′ a right block), then the bijection

W K × K W →W, (v, u) 7→ vu

restricts to a bijection [1,wK ]L ×[1, Kw]L → [1, w]L .
Similarly, if J is a left block (or more generally if Jw= J ′w with J ′ a left block),

then the bijection
WJ × JW →W, (u, v) 7→ uv

restricts to a bijection [1, wJ ]R ×[1, Jw]R→ [1, w]R (see Figure 1).

Proof. By Proposition 3.6 we know that, if K is a right block, then there exists a
bijection φ : K→ J such that wK sk = sφ(k)wK . Hence the map y 7→wK y induces
a skew-isomorphism between [1, Kw]L and [wK , w]L , where an edge k is mapped
to edge φ(k). It follows in particular that uv ≤L w

K v ≤L w
K

Kw = w for any
u ∈ [1, wK ]L and v ∈ [1, Kw]L , as desired.

Assume now that K is not a block, but wK = wK ′ with K ′ a block. Then,
[1, wK ]L =[1, wK ′]L and [1, Kw]L =[1, K ′w]L and we are reduced to the previous
case.

The second statement can be proved in the same fashion. �

Due to Proposition 3.7, we also say that [1, v]R tiles [1, w]R if v= Jw for some
left block J (or equivalently v =wK for some right block K ).

Proposition 3.8. Let w ∈ W and K be right reduced with respect to w. Then, the
following are equivalent:

(i) K is a reduced right block of w.

(ii) wK ≤L w.

The analogous statement can be made for left blocks.

See also Proposition 6.7 for yet another equivalent condition of reduced blocks.

Proof of Proposition 3.8. If K is a right block, then by Proposition 3.6 we have
wK = Jw, where J is the associated left block. In particular,wK = Jw ≤L w.

The converse statement follows from Lemma 3.3 and Proposition 3.6. �
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Example 3.9. Forw=w0, any K ⊆ I is a reduced right block; of coursewK
0 ≤L w0

and Kw0 is the maximal element of the parabolic subgroup WK = K W . The cutting
pointwK vw is the maximal element of the right descent class for the complement
of K .

The associated left block is given by J = φ(K ), where φ is the automorphism
of the Dynkin diagram induced by conjugation by w0 on the simple reflections.
The tiling corresponds to the usual decomposition of W into right WK cosets, or
of W into left WJ cosets.

3c. Blocks of permutations. In this section we illustrate the notion of blocks and
cutting points introduced in the previous section for type A. We show that, for a
permutation w ∈Sn , the blocks of Definition 3.5 correspond to the usual notion of
blocks of the permutation matrix of w (or unions thereof), and the cutting points
wK for right blocks K correspond to putting the identity in those blocks.

A matrix-block of a permutationw is an interval [k ′, k ′+1, . . . , k] that is mapped
to another interval. Pictorially, this corresponds to a square submatrix of the ma-
trix of w that is again a permutation matrix (that of the associated permutation).
For example, the interval [2, 3, 4, 5] is mapped to the interval [4, 5, 6, 7] by the
permutation w = 36475812 ∈ S8, and is therefore a matrix-block of w with
associated permutation 3142. Similarly, [7, 8] is a matrix-block with associated
permutation 12:

•
•

•
•

•
•

•
•

For any permutation w, the singletons [i] and the full set [1, 2, . . . , n] are always
matrix-blocks; the other matrix-blocks of w are called proper. A permutation
with no proper matrix-block, such as 58317462, is called simple. See [Nozaki
et al. 1995; Albert et al. 2003; Albert and Atkinson 2005] for a review of simple
permutations. Simple permutations are also strongly related to dimension 2 posets.

A permutation w ∈ Sn is connected if it does not stabilize any subinterval
[1, . . . , k] with 1 ≤ k < n, that is, if w is not in any proper parabolic subgroup
Sk ×Sn−k . Pictorially, this means that there are no diagonal matrix-blocks. A
matrix-block is connected if the corresponding induced permutation is connected.
In the example above, the matrix-block [2, 3, 4] is connected, but the matrix-block
[7, 8] is not.

Proposition 3.10. Let w ∈Sn . The right blocks of w are in bijection with disjoint
unions of (nonsingleton) matrix-blocks for w; each matrix-block with column set
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[i, i+1, . . . , k] contributes {i, i+1, . . . , k−1} to the right block; each matrix-block
with row set [i, i + 1, . . . , k] contributes {i, i + 1, . . . , k− 1} to the left block.

In addition, trivial right blocks correspond to unions of identity matrix-blocks.
Also, reduced right blocks correspond to unions of connected matrix-blocks.

Proof. Suppose w ∈ Sn with a disjoint union of matrix-blocks with consecutive
column sets [i1, . . . , k1] up to [i`, . . . , k`]. Set K j = {i j , . . . , k j −1} for 1≤ j ≤ `
and K = K1 ∪ · · · ∪ K`. Define similarly J according to the rows of the blocks.

Then multiplyingw on the right by some element of WK permutes some columns
of w, while stabilizing each block. Therefore, the same transformation can be
achieved by some permutation of the rows stabilizing each block, that is, by mul-
tiplication of w on the left by some element of WJ . Hence, using symmetry,
WJw = wWK , that is, J and K are corresponding left and right blocks for w.

Conversely, if K is a right block of w, then wK maps each αk with k ∈ K to
another simple root by Proposition 3.6. But then, splitting K = K1∪ · · ·∪ K` into
consecutive subsets with K j = {i j , . . . , k j − 1}, the permutation wK must contain
the identity permutation in each matrix-block with column indices [i j , . . . , k j ].
This implies that w itself has matrix-blocks with column indices [i j , . . . , k j ] for
1≤ j ≤ `.

Note that, in the described correspondence, wK = w if and only if all matrix-
blocks contain the identity. This proves the statement about trivial right blocks.

A reduced right block K has the property that wK ′ 6= wK for every K ′ ⊂ K .
This implies that no matrix-block is in a proper parabolic subgroup, and hence they
are all connected. �

Example 3.11. As in Figure 1, consider the permutation 4312, whose permutation
matrix is

•
•
•
•

The reduced (right)-blocks are K = {}, {1}, {2, 3}, and {1, 2, 3}. The cutting points
are 4312, 3412, 4123, and 1234, respectively. The corresponding left blocks are
J ={}, {3}, {1, 2} and {1, 2, 3}, respectively. The nonreduced (right) blocks are {3}
and {1, 3}, as they are respectively equivalent to the blocks {} and {1}. The trivial
blocks are {} and {3}.
Example 3.12. In general, condition (iii) of Proposition 3.6 is only a necessary, but
not sufficient condition for K to be a block. For example, for w = 43125 (similar
to 4312 of Example 3.11, but embedded in S5), J ={3, 4}, and K ={1, 4}, one has
Jw=wK yet neither J nor K are blocks. On the other hand (iii) of Proposition 3.6
becomes both necessary and sufficient for reduced blocks.
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1234

1324

3124 1342

3142

3412

1243

1423

4123 1432

4132

4312

1234

1324 1243

3124 1342 1423

3142 1432 4123

3412 4132

4312

Figure 1. Two pictures of the interval [1234, 4312]R in right order
in S4 illustrating its proper tilings, for J := {3} and J := {1, 2},
respectively. The thick edges highlight the tiling. The circled
permutations are the cutting points, which are at the top of the
tiling intervals. Blue, red, green lines correspond to s1, s2, s3,
respectively. See Section 6d for the definition of the orientation of
the edges (this is G(4312)); edges with no arrow tips point in both
directions.

Remark 3.13. It is obvious that the union and intersection of overlapping (possibly
with a trivial overlap) matrix-blocks in Sn are again matrix-blocks; we will see in
Proposition 3.22 that this property generalizes to all types.

Problem 3.14. Fix J ⊆ {1, 2, . . . , n−1} and enumerate the permutations w ∈Sn

for which J is a left block.

3d. The cutting poset. In this section, we show that (W,v) indeed forms a poset.
We start by showing that for a fixed u ∈W , the set of elements w such that u vw
admits a simple description. Recall that for J ⊆ I , we denote by sJ the longest
element of WJ . Proposition 3.6 suggests the following definition.

Definition 3.15. Let u ∈ W . We call k ∈ I a short right nondescent (or j ∈ I a
short left nondescent) of u if there exists j ∈ I (respectively k ∈ I ) such that

s j u = usk,

where the product is reduced (that is, j and k are nondescents). An equivalent con-
dition is that u maps the simple root αk to a simple root (respectively the preimage
of α j is a simple root).

Set further

Uu := uWK = [u, usK ]R =WJ u = [u, sJ u]L ,
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where K := K (u) and J := J (u) are the sets of short right and left, respectively,
nondescents of u.

Pictorially, one takes left and right order on W and associates to each vertex u the
translate Uu above u of the parabolic subgroup generated by the short nondescents
of u, which correspond to the simultaneous covers of u in both left and right order.

Example 3.16. In type A, i is short for u ∈ Sn if u(i + 1) = u(i)+ 1, that is,
there is a 2×2 identity block in columns (i, i +1) of the permutation matrix of u.
Furthermore Uu is obtained by looking at all identity blocks in u and replacing
each by any permutation matrix.

The permutation 4312 of Example 3.11 has a single nondescent 3 that is short,
and U4312 = {4312, 4321}.
Proposition 3.17. Uu is the set of all w such that u v w.

In particular, it follows that

• if u ≤R v ≤R w and u v w, then u v v; and

• if u v w and u v w′, then u v w∨R w
′.

Proof. Note that w is in Uu if and only if there exists K such that K ⊆ K (u) and
wK = u. By Proposition 3.6, this is equivalent to the existence of a block K such
that wK = u, that is, u v w. �

The following related lemma is used to prove that (W,v) is a poset.

Lemma 3.18. If u v w, then the set of short nondescents of w is a subset of the
short nondescents of u, namely K (w)⊆ K (u).

Proof. Let k ∈ K (w), so that wsk = s jw for some j ∈ I and both sides are reduced.
It follows from Lemma 3.4 that there exists k ′ ∈ K (w) such that s j u = usk′ and
both sides are reduced. Hence k ′ ∈ K (u). Since the map k 7→ k ′ is injective it
follows that K (w)⊆ K (u). �

Theorem 3.19. (W,v) is a subposet of both left and right order.

Proof. The relation v is reflexive since v is a cutting point of v with right block ∅;
hence vv v. Applying Proposition 3.6, it is a subrelation of left and right order: If
vvw then v=wK ≤R w for some K and v= Jw≤L w for some J . Antisymmetry
follows from the antisymmetry of left (or right) order.

For transitivity, let v vw and w v z. Then v =wK and w = zK ′ for some right
block K of w and K ′ of z. We claim that v = zK∪K ′ with K ∪ K ′ a right block
of z. Certainly k 6∈DR(v) for k ∈ K since v =wK . Since w= zK ′ with K ′ a block
of z, all k ′ ∈ K ′ are short nondescents of w and hence by Lemma 3.18 also short
nondescents of v. This proves the claim. Therefore v v z. �
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Example 3.20. The cutting poset for S3 and S4 is given in Figure 2. As we can
see on those figures, the cutting poset is not the intersection of the right and left
order since w0 is maximal for left and right order but not for cutting poset.

3e. Lattice properties of intervals. In this section we show that the set of blocks
and the set of cutting points {u | u v w} of a fixed w ∈ W are endowed with the
structure of distributive lattices (see Theorem 3.26).

We begin with a lemma that gives some properties of blocks that are contained
in each other.

Lemma 3.21. Fix w ∈W . Let K ⊆ K ′ be two right blocks of w and J ⊆ J ′ be the
corresponding left blocks, so that

WJw = wWK , WJ ′w = wWK ′,
Jw = wK v w, and J ′w = wK ′ v w.

Then,

(i) wK ′ ≤R w
K and wK ′ ≤L w

K ,

(ii) K ′ is a right block of wK and wK ′ v wK ,

(iii) K is a right block of K ′w and K ′w
K v K ′w.

Furthermore K is reduced for K ′w if and only if it is reduced for w.

The same statements hold for left blocks.

Proof. Part (i) holds becausewK ′ = (wK )K ′ ≤R w
K ≤R w, and similarly on the left.

Part (ii) is a trivial consequence of (i) and Proposition 3.17.
For (iii), first note that (K ′w)

K = K ′(w
K ), so that the notation K ′w

K is unam-
biguous. Consider the bijection φ from K ′ to J ′ of Proposition 3.6, and note that
WJw

K ′ = wK ′Wφ−1(J ). Therefore,

wK ′
K ′wWK = wWK =WJ w =WJ w

K ′
K ′w = wK ′Wφ−1(J ) K ′w.

Simplifying by wK ′ on the left, one obtains that

K ′w WK =Wφ−1(J ) K ′w,

proving that K is also a block of K ′w. The reduction statement is trivial. �

We saw in Remark 3.13 that the set of blocks is closed under unions and inter-
sections in type A. This holds for general type.

Proposition 3.22. The set BR(w) (or BL(w)) of right (respectively left) blocks is
stable under union and intersection. Hence, it forms a distributive sublattice of the
Boolean lattice P(I ).
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Proof. Let K and K ′ be right blocks for w ∈W , and J and J ′ be the corresponding
left blocks, so that

wWK =WJw and wWK ′ =WJ ′w.

Take u∈WK∩K ′=WK∩WK ′ . Then,wuw−1 is both in WJ and WJ ′ and therefore
in WJ ∩ WJ ′ = WJ∩J ′ . This implies wWK∩K ′w

−1 ⊆ WJ∩J ′ . By symmetry, the
inclusion w−1WJ∩J ′w⊆WK∩K ′ holds as well, and therefore WJ∩J ′w=wWK∩K ′ .
In conclusion, K ∩ K ′ is a right block, with J ∩ J ′ as corresponding left block.

Now take u ∈WK∪K ′ =〈WK ,WK ′〉, and write u as a product u1u′1u2u′2 · · · u`u′`,
where ui ∈WK and u′i ∈WK ′ for all 1≤ i ≤ `. Then, for each i , wuiw

−1 ∈WJ and
wu′iw

−1 ∈ WJ ′ . By composition, wuw−1 ∈ WJ WJ ′WJ WJ ′ · · ·WJ WJ ′ ⊆ WJ∪J ′ .
Using symmetry as above, we conclude that wWK∪K ′ = WJ∪J ′w. In summary,
K ∪ K ′ is a right block, with J ∪ J ′ as corresponding left block.

Finally, since blocks are stable under union and intersection, they form a sublat-
tice of the Boolean lattice. Any sublattice of a distributive lattice is distributive. �

Next we relate the union and intersection operation on blocks with the meet and
join operations in right and left order. We start with the following general statement
which must be classical, though we have not found it in the literature.

Lemma 3.23. Take w ∈W and J, J ′, K , K ′ ⊆ I . Then

wK∩K ′ = wK ∨R w
K ′ and J∩J ′w = Jw∨L

J ′w.

Proof. We include a proof for the sake of completeness. By Lemma 3.21(i),
wK , wK ′ ≤R w

K∩K ′ , and therefore v ≤R w
K∩K ′ , where v =wK ∨R w

K ′ . Suppose
that v has a right descent k ∈ K ∩ K ′. Then vsk is still bigger than wK and wK ′ in
right order, a contradiction to the definition of v. Hence wK∩K ′ = wK ∨R w

K ′ , as
desired. The statement on the left follows by symmetry. �

Corollary 3.24. Takew∈W . Let K , K ′⊆ I be two right blocks ofw and J, J ′⊆ I
the corresponding left blocks. Then, for the right block K∩K ′ and left block J∩ J ′,

wK∩K ′ = J∩J ′w = wK ∨R w
K ′ = Jw∨L

J ′w.

The analogous statement of Lemma 3.23 for unions fails in general: Take for
examplew=4231 and K ={3} and K ′={1, 2}, so thatwK =4213 andwK ′=2341;
then wK∪K ′ = 1234, but wK ∧R w

K ′ = 2134. However, it holds for blocks:

Lemma 3.25. Take w ∈W . Let K , K ′ ⊆ I be two right blocks of w and J, J ′ ⊆ I
the corresponding left blocks. Then, for the right block K∪K ′ and left block J∪ J ′,

wK∪K ′ = J∪J ′w = wK ∧R w
K ′ = Jw∧L

J ′w.

Furthermore, K ∪ K ′ is reduced whenever K and K ′ are reduced, and similarly
for the left blocks.
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Proof. By symmetry, it is enough to prove the statements for right blocks.
By Lemma 3.21(i), wK∪K ′ ≤R w

K , wK ′ , and therefore wK∪K ′ ≤R w
K ∧R w

K ′ .
Note that the interval [wK∪K ′, w]R contains all the relevant points: wK , wK ′ ,

and wK ∧Rw
K ′ . Consider the translate of this interval obtained by dividing on the

left by wK∪K ′ , or equivalently by using the map u 7→ K∪K ′u. By Lemma 3.21(iii),
K and K ′ are still blocks of K∪K ′w. From now on, we may therefore assume
without loss of generality that wK∪K ′ = 1. It follows at once that [1, w]R lies in
the parabolic subgroup WK∪K ′ and that J ∪ J ′ = K ∪ K ′.

IfwK∧Rw
K ′ =1=wK∪K ′ , then we are done. Otherwise, let i ∈ K∪K ′= J∪ J ′

be the first letter of some reduced word for wK ∧R w
K ′ . Since wK ∧R w

K ′ is in
the interval [1, wK ]R , i cannot be in J ; by symmetry i cannot be in J ′ either, a
contradiction.

Assume further that K and K ′ are reduced. Then, any k ∈ K appears in any
reduced word for Kw, and therefore in any reduced word for K∪K ′w since Kw ≤L

K∪K ′w. By symmetry, the same holds for k ′ ∈ K ′. Hence K ∪ K ′ is reduced. �

Theorem 3.26. The map K 7→ wK (or J 7→ Jw) defines a lattice antimorphism
from the lattice BR(w) (respectively BL(w)) of right (respectively left) blocks of
w to both right and left order on W .

The set of cutting points for w, which is the image set

{wK | K ∈BR(w)} = {Jw | J ∈BL(w)}
of the previous map, is a distributive sublattice of right (respectively left) order.

Proof. The first statement is the combination of Lemmas 3.23 and 3.25. The
second statement follows from Proposition 3.22, since the quotient of a distributive
sublattice by a lattice morphism is a distributive lattice. �

Corollary 3.27. Every interval of (W,v) is a distributive sublattice and an in-
duced subposet of both left and right order.

Proof. Take an interval in (W,v); without loss of generality, we may assume that
it is of the form [1, w]v= {wK | K ∈RBR(w)}. The interval [1, w]v is not only a
subposet of left (respectively right) order, but actually the induced subposet; indeed
for K and K ′ right reduced blocks, and J and J ′ the corresponding left blocks,

wK ≤L w
K ′ ⇐⇒ wK ≤R w

K ′ ⇐⇒ J ′ ⊆ J ⇐⇒ K ′ ⊆ K ⇐⇒ wK ≤v wK ′ .

Therefore, using Theorem 3.26, it is a distributive sublattice of left (respectively
right) order. �

Let us now consider the lower covers in the cutting poset for a fixedw∈W . They
correspond to nontrivial blocks J that are minimal for inclusion, and in particular
reduced.
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Lemma 3.28. Each minimal nontrivial (left) block J for w ∈ W contains at least
one element which is in no other minimal nontrivial block for w.

Proof. Assume otherwise. Then, J is the union of its intersections with the other
nontrivial blocks. Each such intersection is necessarily a trivial block, and a union
of trivial blocks is a trivial block. Therefore, J is a trivial block, a contradiction. �

Corollary 3.29. The semilattice of unions of minimal nontrivial blocks for a fixed
w ∈W is free.

Proof. This is a straightforward consequence of Lemma 3.28. Alternatively, this
property is also a direct consequence of Corollary 3.27, since it holds in general
for any distributive lattice. �

3f. Index sets for cutting points. Recall that by Theorem 3.26 the cutting points
of w form a distributive lattice. Hence, by Birkhoff’s representation theorem, they
can be indexed by some collection of subsets closed under unions and intersections.
We therefore now aim at finding a suitable choice of indexing scheme for the cutting
points of w. More precisely, for each w, we are looking for a pair (K(w), φ(w)),
where K(w) is a subset of some Boolean lattice (typically P(I )) such that K(w)

ordered by inclusion is a lattice, and

φ(w) : K(w)→ [1, w]v
is an isomorphism (or antimorphism) of lattices.

Here are some of the desirable properties of this indexing:

(1) The indexing gives a Birkhoff representation of the lattice of cutting points of
w. Namely, K(w) is a sublattice of the chosen Boolean lattice, and unions and
intersections of indices correspond to joins and meets of cutting points.

(2) The isomorphism φ(w) is given by the map J 7→ Jw. In that case the choice
amounts to defining a section of those maps.

(3) The indexing generalizes the usual combinatorics of descents.

(4) The indices are blocks: K(w) ⊆BL(w).

(5) We may actually want to have two indexing sets K(w) and K(w), one on the
left and one on the right, with a natural isomorphism between them.

(6) The index of u in K(w) does not depend on w (as long as u is a cutting point
of w). One may further ask for this index to not depend on W , so that the
indexing does not change through embedding of parabolic subgroups.

Unfortunately, there does not seem to be an ideal choice satisfying all of these
properties at once, and we therefore propose several imperfect alternatives.
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3f1. Indexing by reduced blocks. The first natural choice is to take reduced blocks
as indices; then, K(w)=RBR(w) (and similarly J(w)=RBL(w) on the left). This
indexing scheme satisfies most of the desired properties, except that it does not
provide a Birkhoff representation, and depends on w.

Remark 3.30. By Lemma 3.25, if K , K ′ ⊆ I are reduced right blocks for w, then
K ∪ K ′ is also reduced. However, this is not necessarily the case for K ∩ K ′:
consider for example the permutation w = 4231, K = {1, 2} and K ′ = {2, 3}; then
K ∩ K ′ = {2} is a block which is equivalent to the reduced block {}: 4231{2} =
4231= 4231{}.

The union K ∪ K ′ of two blocks may be reduced even when the blocks are not
both reduced. Consider for example the permutation w = 4312 as in Figure 1.
Then K = {1, 3} and K ′ = {2, 3} are blocks and their union K ∪ K ′ = {1, 2, 3} is
reduced, yet K is not reduced.

Proposition 3.31. The poset (RBR(w),⊆) of reduced right blocks is a distributive
lattice, with the meet and join operation given respectively by

K ∨ K ′ = K ∪ K ′ and K ∧ K ′ = red(K ∩ K ′) ,

where, for a block K , red(K ) is the unique largest reduced block contained in K .
The map φ(w) : K 7→ wK restricts to a lattice antiisomorphism from the lattice

BR(w) of reduced right blocks of w to [1, w]v.
The same statements hold on the left.

Proof. By Proposition 3.22 and Lemma 3.25, RBR(w) is a dual Moore family of
the Boolean lattice of I , or even of BR(w). Therefore, using Section 2a, it is a
lattice, with the given join and meet operations.

The lattice antiisomorphism of property follows from Lemma 3.25 and the co-
incidence of right order and v on [1, w]v (Theorem 3.26). �

3f2. Indexing by largest blocks. The indexing by reduced blocks corresponds to
the section of the lattice morphism K 7→ wK by choosing the smallest block K
in the fiber of a cutting point u. Instead, one could choose the largest block in
the fiber of u, which is given by the set of short nondescents of u. This indexing
scheme is independent of w. Also, by the same reasoning as above, the indexing
sets J(w) come endowed with a natural lattice structure. However, it does not give
a Birkhoff representation: The meet is given by intersection, but the join is not
given by union (take w= 2143; its cutting points are 1234, 1243, 2134, and 2143,
indexed respectively by {1, 2, 3}, {1}, {3}, and {}).
3f3. Birkhoff’s representation using nonblocks. We now relax the condition for
the indices to be blocks. That is, we consider K 7→ wK as a function from the
full Boolean lattice P(I ) to the minimal coset representatives of w. Beware that
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this map is no longer a lattice antimorphism; yet, the fiber of any u still admits a
largest set K =DR(u)⊆ I , which is the complement of the right descent set of u.
One can define a similar indexing on the left by J = DL(u). These indexings are
independent of w and provide a Birkhoff representation for the lattice of cutting
points (see Proposition 3.34). Define

DBL(w)= {DL(u) | u v w} and DBR(w)= {DR(u) | u v w} . (3-1)

Remark 3.32. Since DL(u) and DR(u) are not necessarily blocks anymore, the
bijection between DL(u) and DR(u) is no longer induced by a bijection at the level
of descents: For example, for u = 3142, one has DL(u)= {1, 3} and DR(u)= {2}.
Remark 3.33. Using DR(u) instead of DR(u) would give an isomorphism instead
of an antiisomorphism, and make the indexing further independent of W , at the
price of slightly cluttering the notation wK for cutting points.

Proposition 3.34 (Birkhoff representation for the lattice of cutting points). The
set DBR(w) of Equation (3-1) is a sublattice of the Boolean lattice, and the maps
K 7→ wK and u 7→ DR(u) form a pair of reciprocal lattice antiisomorphisms with
the lattice of cutting points of w. The same statement holds on the left.

The proof of this proposition uses the following property of left and right order
(recall that [1, w]v is a sublattice thereof).

Lemma 3.35 [Le Conte de Poly-Barbut 1994, Lemme 5]. The maps

(W,≤L)→ P(I ), w 7→ DR(w), and (W,≤R)→ P(I ), w 7→ DL(w)

are surjective lattice morphisms.

Proof of Proposition 3.34. By construction, DL is a section of K 7→wK , and these
maps form a pair of reciprocal bijections between DBL(w) and the cutting points
of w. Using Lemma 3.35, the map DL is a lattice antimorphism. Therefore its
image set DBR(w) is a sublattice of the Boolean lattice. The argument on the left
is the same. �

3g. A w-analogue of descent sets. For each w ∈W , we now provide a definition
of aw-analogue on the interval [1, w]R of the usual combinatorics of (non)descents
on W . From now on, we assume that we have chosen an indexation scheme so that
the cutting points of w are given by (wK )K∈K(w) or equivalently by (Jw)J∈J(w) .

Lemma 3.36. Take a cutting point of w, and write it as wK = Jw for some
J, K ⊆ I , which are not necessarily blocks. Then

(i) for u ∈ [1, w]R , u ∈ [1, Jw]R if and only if DL(u)∩ J =∅;

(ii) for u ∈ [1, w]L , u ∈ [1, wK ]L if and only if DR(u)∩ K =∅.
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Proof. This is a straightforward corollary of Proposition 3.7: Any element u of
[1, w]R can be written uniquely as a product u′v with u′ ∈ WJ and v ∈ [1, Jw]R .
So u is in [1, Jw]R if and only if u′ = 1, which in turn is equivalent to v having no
descents in J . This proves (i). The argument for (ii) is analogous. �

Example 3.37. For w = w0, Jw is the maximal element of a left descent class,
and [1, Jw]R gives all elements of W whose left descent set is a subset of the left
descent set of w.

Definition 3.38 (w-nondescent sets). For u ∈ [1, w]R , define J (w)(u) to be the in-
dex J ∈J(w) of the lowest cutting point Jw such that u ∈ [1, Jw]R (or the equivalent
condition of Lemma 3.36). Define similarly K (w)(u) as the index in K(w) of this
cutting point.

Example 3.39. When w = w0, J (w0)(u) and K (w0)(u) are respectively the sets
DL(u) and DR(u) of left and right nondescents of u.

Problem 3.40. Given J , describe all the elements w ∈ W such that J is a left
block. This essentially only depends on Jw.

3h. Properties of the cutting poset. In this section we study the properties of the
cutting poset (W,v) of Theorem 3.19 for the cutting relation v introduced in
Definition 3.5 (see also Figure 2). The following theorem summarizes the results.

Theorem 3.41. (W,v) is a meet-distributive meet-semilattice with 1 as minimal
element, and a subposet of both left and right order.

Every interval of (W,v) is a distributive sublattice and a sublattice of both left
and right order.

Let w ∈ W and denote by Pred(w) the set of its v-lower covers. Thanks to
meet-distributivity, the meet-semilattice Lw generated by Pred(w) using ∧v (or
equivalently ∧L , ∧R if viewed as a sublattice of left or right order) is free, that is,
isomorphic to a Boolean lattice.

In particular, the Möbius function of (W,v) is given by µ(u, w) = (−1)r(u,w)

if u ∈ Lw and 0 otherwise, where r(u, w) := |{v ∈ Pred(w) | u v v}|.
This Möbius function is used in Section 6d to compute the size of the simple

modules of KM .
Since (W,v) is almost a distributive lattice, Birkhoff’s representation theorem

suggests that we embed it in the distributive lattice O(I ((W,v))) of the lower sets
of its join-irreducible elements (note that a block is join-irreducible if there is only
one minimal nontrivial block below it).

Problem 3.42. Describe the set I (W,v) of join-irreducible elements of (W,v).
Problem 3.43. Determine the distributive lattice associated with the cutting poset
from the join-irreducibles, via Birkhoff’s theory.
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The join-irreducible elements of (Sn,v), for n small, are counted by the se-
quence 0, 1, 4, 16, 78, 462, 3224. Figure 2 seems to suggest that they form a tree,
but this already fails for n = 5. We now briefly comment on the simplest join-
irreducible elements, namely the immediate successors w of 1 in the cutting poset.
Equivalent statements are that w admits exactly two reduced blocks {} and B,
possibly with B = I , or that the simple module Sw is of dimension |[1, w]R| − 1.
For a Coxeter group W , we denote by S(W ) the set of elements w 6= 1 having no
proper reduced blocks, and T (W ) those having exactly two reduced blocks. Note
that T (W ) is the disjoint union of the S(WJ ) for J ⊆ I .

Example 3.44. In type A, a permutationw∈ S(Sn) is uniquely obtained by taking
a simple permutation, and inflating each 1 of its permutation matrix by an identity
matrix. An element of T (Sn) has a block diagonal matrix with one block in S(Sm)

for m≤n, and n−m 1×1 blocks. This gives an easy way to construct the generating
series for S(Sn)n∈N and for T (Sn)n∈N from that of the simple permutations given
in [Albert and Atkinson 2005].

We now turn to the proof of Theorem 3.41.

Lemma 3.45. (W,v) is a partial join-semilattice. That is, when the join exists, it
is unique and given by the join in left and in right order:

v∨v v′ = v∨L v
′ = v∨R v

′.

Proof. Take v and v′ with at least one common successor. Applying Corollary 3.27
to the interval [1, w]v for any such common successor w, one obtains v, v′ v
v ∨R v

′ = v ∨L v
′ v w. Therefore, v ∨R v

′ = v ∨L v
′ is the join of v and v′ in the

cutting order. �

Lemma 3.46. (W,v) is a meet-semilattice. That is, for v, v′ ∈W

v∧v v′ =
∨

uvv,v′
u,

where
∨

is the join for the cutting order (or equivalently for left or right order). If
further v and v′ have a common successor, then

v∧v v′ = v∧R v
′ = v∧L v

′.

Proof. The first part follows from a general result. Namely, for any poset, the fol-
lowing statements are equivalent (see for example [Pouzet 2013, Proposition 7.3]):

(i) Any bounded nonempty part has an upper bound.

(ii) Any bounded nonempty part has a lower bound.
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Here we prove again this fact for the sake of self-containment. Take u and u′ two
common cutting points for v and v′. Then, using Lemma 3.45, their join exists and
u∨v u′ = u∨R u′ = u∨L u′ is also a cutting point for v and v′. The first statement
follows by repeated iteration over all common cutting points.

Now assume that v and v′ have a common successor w. Then by applying
Corollary 3.27 to the interval [1, w]v, we find that v∧R v

′ = v∧L v
′ is the meet of

v and v′ in the cutting order. �

Proof of Theorem 3.41. (W,v) is a meet-semilattice by Lemma 3.46. Meet-
distributivity follows from Corollary 3.29. The argument is in fact general: Any
poset with a minimal element 1 such that all intervals [1, x] are distributive lattices
and such that any two elements admit either a join or no common successor is
a meet-distributive meet-semilattice (see [Edelman 1986] for literature on such).
The end of the first statement is Theorem 3.19.

The statement about intervals is Corollary 3.27.
The v-lower covers of an element w correspond to the nontrivial blocks of w

that are minimal for inclusion. The top part Lw of an interval [1, w]v is further
described in Corollary 3.29, through the bijection φ(w) between blocks of w and
the interval [1, w]v of Proposition 3.31. The value of µ(u, w) depends only on this
interval. The remaining statements follow using Rota’s crosscut theorem [1964] on
Möbius functions for lattices; see also [Blass and Sagan 1997, Theorem 1.3]. �

4. Combinatorics of M(W)

In this section we study the combinatorics of the biHecke monoid M(W ) of a finite
Coxeter group W . In particular, we prove in Sections 4a and 4b that its elements
preserve left order and Bruhat order, and derive in Section 4c properties of their
image sets and fibers. In Sections 4d and 4e, we prove the key combinatorial
ingredients for the enumeration of the simple modules of KM(W ) in Section 7:
M(W ) is aperiodic and its J-classes of idempotents are indexed by W . Finally, in
Section 4f we study Green’s relations as introduced in Section 2e and involutions
on M(W ) in Section 4g.

4a. Preservation of left order. Recall that M(W ) is defined by its right action on
elements in W by (1-5) and (1-6). The following key proposition, illustrated in
Figure 3, states that it therefore preserves properties on the left.

Proposition 4.1. Take f ∈ M(W ), w ∈ W , and j ∈ I . Then, (s jw). f is either
w. f or s j (w. f ).

The proof of Proposition 4.1 is a consequence of the associativity of the 0-
Hecke monoid and relies on the following lemma, which is a nice algebraic (partial)
formulation of the exchange property [Björner and Brenti 2005, Section 1.5].
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Figure 3. A partial picture of the graph of the element f :=
π1π3π2 of the monoid M(S4). On both sides, the underlying
poset is left order of S4 (with 1 at the bottom, and the same color
code as in Figure 1); on the right, the bold dots depict the image
set of f . The arrows from the left to the right describe the image
of each point along some chain from 1 to w0.

Lemma 4.2. Let w ∈W and i, j ∈ I such that j 6∈ DL(w). Then

(s jw).πi =
{
w.πi if j ∈ DL(w.πi ),
s j (w.πi ) otherwise.

The same result holds with πi replaced by π i .

Proof. Recall that w.πv = 1 .(πwπv) for any w, v ∈W . Set w′ = w.πi . Then

(s jw).πi = 1.(πs jwπi )= 1.((π jπw)πi )= 1 .(π j (πwπi ))= 1 .(π jπw′)

=
{

1 .πw′ = w′ if j ∈ DL(w
′),

1 .πs jw′ = s jw
′ otherwise.

The result for π i follows from Remark 1.1 and the fact that w0s j = s j ′w0 for some
j ′ ∈ I by Example 3.9 and Lemma 3.3 with w = w0 and K = { j}. �

Proof of Proposition 4.1. Any element f ∈ M(W ) can be written as a product of
πi and π i . Lemma 4.2 describes the action of πi and π i on the Hasse diagram of
left order. By induction, each πi and π i in the expansion of f satisfies all desired
properties, and hence so does f (the statement holds trivially for the identity). �

Proposition 4.3. For f ∈ M(W ), the following holds.

(i) f preserves left order:

w ≤L w
′ implies w. f ≤L w

′ . f for w,w′ ∈W .

(ii) Take w ≤L w
′ in W , and consider a maximal chain

w. f = v1
i1−→ v2

i2−→ · · · ik−1−−→ vk = w′ . f.
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Then, there is a maximal chain

w = u1,1→ · · · → u1,`1

i1−→ u2,1→ · · · → u2,`2

i2−→ · · ·
· · · ik−1−−→ uk,1→ · · · → uk,`k = w′, (4-1)

such that u j,l . f = v j for all 1≤ j ≤ k and 1≤ l ≤ ` j .

(iii) f is length contracting; that is, for w ≤L w
′

`(w′ . f )− `(w. f )≤ `(w′)− `(w).
Furthermore, when equality holds, (w′ . f )(w. f )−1 = w′w−1.

(iv) Let J = [a, b]L be an interval in left order. Then the image of J under f
denoted by J . f has a . f and b . f as minimal and maximal element, respec-
tively. Furthermore, J . f is connected. If `(b . f )− `(a . f ) = `(b)− `(a),
then J . f is isomorphic to J , that is, x . f = (xa−1)(a . f ) for x ∈ J .

Proof. Parts (i) and (ii) are direct consequences of Proposition 4.1, using induction.
Part (iii) follows from (ii).
Part (iv) follows from (i), (ii), and (iii) applied to a ≤L x for all x ∈ [a, b]L . �

4b. Preservation of Bruhat order. Recall the following well-known property of
Bruhat order of Coxeter groups.

Proposition 4.4 (lifting property [Björner and Brenti 2005, p. 35]). Suppose u <B

v and i ∈ DR(v) but i 6∈ DR(u). Then, u ≤B vsi and usi ≤B v.

The next proposition is a consequence of the lifting property.

Proposition 4.5. The elements f of M(W ) preserve Bruhat order. That is, for
u, v ∈W

u ≤B v implies u . f ≤B v . f.

Proof. It suffices to show the property for πi and π i since they generate M(W ).
For these, the claim of the proposition is trivial if i is a right descent of u, or i is
not a right descent of v. Otherwise, we can apply the lifting property:

u .πi = usi ≤B v = v .πi ,

u .π i = u ≤B vsi = v .π i . �

Remark 4.6. By Lemma 2.3, the preimage of a point is a convex set, but need
not be an interval. For example, the preimage of s1s3 ∈ S4 (or 2143 in one-line
notation) of f = π1π2π1π3π2π3π1π2 is

{2413, 2341, 4213, 3412, 3241, 2431, 4312, 4231, 3421, 4321},
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which in Bruhat order has two maximal elements 2413 and 2341 and hence is not
an interval.

Corollary 4.7 (of Proposition 4.3). Let f ∈ M(W ).

(i) If 1 . f = 1, then f is regressive for Bruhat order: w. f ≤B w for all w ∈W .

(ii) If w0 . f =w0, then f is extensive for Bruhat order: w. f ≥B w for all w ∈W .

Proof. First suppose that 1 . f =1. Letw. f = sik · · · si1 be a reduced decomposition
of w. f . This defines a maximal chain

1 . f = 1= v0
i1−→ · · · ik−2−−→ vk−2

ik−1−−→ vk−1
ik−→ vk = w. f

in left order. By Proposition 4.3(ii) there is a larger chain from 1 to w so that
there is a reduced word for w which contains sik · · · si1 as a subword. Hence by the
subword property of Bruhat order w. f ≤B w. This proves (i).

Now letw0 . f =w0. By arguments similar to the above, constructing a maximal
chain from w. f to w0 . f in left order, one finds that w0(w. f )−1 ≤B w0w

−1.
By [Björner and Brenti 2005, Proposition 2.3.4], the map v 7→ w0v is a Bruhat
antiautomorphism and by the subword property v 7→v−1 is a Bruhat automorphism.
This implies w ≤B w. f as desired for (ii). �

4c. Fibers and image sets. Viewing elements of the biHecke monoid M(W ) as
functions on W , we now study properties of their fibers and image sets.

Proposition 4.8. (i) The image set im( f ) for any f ∈ M(W ) is connected (see
Definition 2.1) with a unique minimal and maximal element in left order.

(ii) The image set of an idempotent in M(W ) is an interval in left order.

Proof. Part (i) follows immediately from Proposition 4.3(iv) with J = [1, w0]L .
For part (ii), we let e ∈ M(W ) be an idempotent with image set im(e). By

Proposition 4.3(iv) with J = [1, w0]L , we have that 1 .e and w0 .e are the minimal
and maximal, respectively, elements of im(e). Then by Proposition 4.3(ii), for
every maximal chain in left order between 1 .e and w0 .e, there is a maximal chain
in left order of preimage points. Since e is an idempotent, there must be such a
chain that contains the original chain. Hence all chains in left order between 1 .e
and w0 .e are in im(e), proving that im(e) is an interval. �

Note that the proof above, in particular Proposition 4.3(ii), heavily uses the fact
that the edges in left order are colored.

Definition 4.9. For any f ∈ M(W ), we call the set of fibers of f , denoted by
fibers( f ), the (unordered) set-partition of W associated by the equivalence relation
w ≡ w′ if w. f = w′ . f .
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Proposition 4.10. Take f ∈ M(W ), and consider the Hasse diagram of left order
contracted with respect to the fibers of f . Then, this graph is isomorphic to left
order restricted on the image set.

Proof. See Appendix A on colored graphs. �

Proposition 4.11. Any f ∈ M(W ) is characterized by its set of fibers and 1 . f .

Proof. Fix a choice of fibers. Contract the left order with respect to the fibers. By
Proposition 4.10 this graph has to be isomorphic to the left order on the image set.

Once the lowest element in the image set 1 . f is fixed, this isomorphism is
forced, since by Proposition 4.8(i) the graphs are (weakly) connected, have a
unique minimal element, and there is at most one arrow of a given color leaving
each node. �

Proposition 4.11 makes it possible to visualize nontrivial elements of the monoid
(see Figure 4).
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Figure 4. The elements f = π1, π2, π1π3π2 and π2π1π2π3 of
M(S4). As in Figure 3, the underlying poset on both sides is
left order on S4, and the bold dots on the right sides depict the
image set of f . On the left side, an edge between two elements
of W is thick if they are not in the same fiber. This information
completely describes f ; indeed u = 1 on the left is mapped to the
lowest element of the image set on the right; each time one moves
u up along a thick edge on the left, its image u . f is moved up
along the edge of the same color on the right.
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Recall that a set-partition 3 = {3i } is said to be finer than the set-partition
3′ = {3′i } if for all i there exists a j such that 3i ⊆ 3′j . This is denoted by
3�3′. The refinement relation is a partial order.

For f ∈ M(W ), define the type of f by

type( f ) := type([1 . f, w0 . f ]L)= (w0 . f )(1 . f )−1. (4-2)

The rank of f ∈ M(W ) is the cardinality of the image set im( f ).

Lemma 4.12. Fix f ∈ M(W ). For h = f g ∈ f M(W ),

(1) fibers( f )� fibers(h),

(2) type(h)≤B type( f ),

(3) rank(h)≤ rank( f ).

Furthermore, the following are equivalent:

(i) fibers(h)= fibers( f ),

(ii) rank(h)= rank( f ),

(iii) type(h)= type( f ),

(iv) `(w0 .h)− `(1 .h)= `(w0 . f )− `(1 . f ).

If any, and therefore all, of the above hold, then h is completely determined (within
f M(W )) by 1 .h.

Proof. For f, g ∈ M(W ), the statement fibers( f )� fibers( f g) is obvious.
By Proposition 4.3(iii) and (iv), we know for f, g∈M(W ) that either type( f g)=

type( f ) or `(w0.( f g)) − `(1 .( f g)) < `(w0 . f ) − `(1 . f ). In the latter case by
Proposition 4.5, type( f g) <B type( f ). The second case occurs precisely when
fibers( f ) is strictly finer than fibers( f g), or equivalently rank( f g) < rank( f ).

The last statement, that if fibers(h) = fibers( f ) then h is determined by 1 .h,
follows from Proposition 4.11. �

4d. Aperiodicity. Recall from Section 2e that a monoid M is called aperiodic if
for any f ∈ M , there exists k > 0 such that f k+1 = f k . Note that, in this case,
f ω := f k = f k+1 = · · · is an idempotent.

Proposition 4.13. The biHecke monoid M(W ) is aperiodic.

Proof. From Proposition 4.3(iv), we know that im( f k) has a minimal element ak =
1 . f k and a maximal element bk =w0 . f k in left order. Since im( f k+1)⊆ im( f k),
we have ak+1 ≥L ak and bk+1 ≤L bk . Therefore, both sequences ak and bk must
ultimately be constant.

This implies that, for N big enough, aN and bN are fixed points. Applying
Proposition 4.3(iii) yields that all elements in [aN , bN ]L are fixed points under f .
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It follows successively that im( f N )= [aN , bN ]L , f N = f N+1= · · · , and fix( f )=
[aN , bN ]L . �

Corollary 4.14. The set of fixed points of an element f ∈ M(W ) is an interval in
left order.

Proof. The set of fixed point of f is the image set of f ω, which is an interval in
left order by Proposition 4.8(ii). �

4e. Idempotents. We now study the properties of idempotents in M(W ).

Proposition 4.15. (i) For w ∈W

ew := πw−1w0πw0w

is the unique idempotent such that 1 .ew = 1 and w0 .ew = w. Its image set is
[1, w]L , and it satisfies

u.ew =max≤B

([1, u]B ∩ [1, w]L
)
.

(ii) Similarly, for w ∈W ,
ẽw := πw−1πw

is the unique idempotent with image set [w,w0]L , and it satisfies a dual for-
mula.

(iii) Furthermore,
ea,b := πa−1eba−1πa

is an idempotent with image set [a, b]L .

Proof. (i) Clearly, the image of ew is a subset of [1, w]L . Applying Remark 2.7
shows that [1, w]L is successively mapped bijectively to [w−1w0, w0]L and back to
[1, w]L . So ew is an idempotent with image set [1, w]L . Reciprocally, let f be an
idempotent such that 1 . f =1 andw0 . f =w. Then, by Proposition 4.5, f preserves
Bruhat order and by Corollary 4.7(i), u . f ≤B u for all u ∈ W . Furthermore, by
Proposition 4.8, the image set of f is the interval [1, w]L . Using Proposition 2.4,
uniqueness and the given formula follow.

Statement (ii) is dual to (i) and is proved similarly.
(iii) The image set of eba−1 is [1, ba−1]L ; hence the image set of ea,b is a subset

of [a, b]L . We conclude by checking that [a, b]L is mapped bijectively at each step
πa−1 , eba−1 and πa (see also Remark 2.7), and therefore consists of fixed points. �

Remark 4.16. For f ∈ M(W ), f ev = f eu.ev , where u = w0 . f .

Proof. Use the formula of Proposition 4.15(i). �
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Corollary 4.17. For u, w ∈ W , the intersection [1, u]B ∩ [1, w]L is a ≤L -lower
set with a unique maximal element v in Bruhat order. The maximum is given by
v = u .ew.

4f. Green’s relations. We have now gathered enough information about the com-
binatorics of M(W ) to give a partial description of its Green’s relations, which will
be used in the study of the representation theory of M(W ).

As an example, Figure 5 completely describes Green’s relations L, R, and J for
M(S3). The vertices are the 23 elements of M(S3), each drawn as in Figure 4.
The edges give both the left and right Cayley graph of M(S3); for example, there
are arrows

f
×π1−−→ g if g = f π1 and f

π1×π1−−−→ g if g = f π1 = π1 f.

The picture also highlights the J-classes of M(S3), and the corresponding eggbox
pictures (that is, the decomposition of the J-classes into L and R-classes); namely,
from top to bottom, there is one J-class of size 1 = 1× 1, two J-classes of size
2= 1×2, two J-classes of size 6= 2×3, and one J-class of size 6= 1×6, where
n×m gives the dimension of the eggbox picture. In other words the J-class splits
into n R-classes of size m and also into m L-classes of size n. This example is
specific in that all J-classes are regular.

In the sequel, we describe R-classes for general elements, as well as J-order
on regular elements. In particular, we obtain that the J-classes of idempotents
are indexed by the elements of W , and that J-order on regular classes is given
by left-right order <L R on W . Note that the latter is not a lattice, unlike for the
variety DA (which consists of all aperiodic monoids all of whose simple modules
are dimension 1; see for example [Ganyushkin et al. 2009]).

Proposition 4.18. Two elements f, g ∈ M(W ) are in the same R-class if and only
if they have the same fibers. In particular, the R-class of f is given by

R( f )={h ∈ f M(W ) | rank(h)= rank( f )}= { fu | u ∈ [1, type( f )−1w0]R}, (4-3)

where fu is the unique element of M(W ) such that fibers( fu) = fibers( f ) and
1 . fu = u.

Proof. It is a general easy fact about monoids of functions that elements in the same
R-class have the same fibers (see also Lemma 4.12). Reciprocally, if g has the same
fibers as f , then one can use Remark 2.7 to define g′ = gπ (1 .g)−1π1 . f such that
fibers(g′)=fibers( f ) and 1 .g′= 1 . f . Also by Proposition 4.11, f = g′ ∈ gM(W ),
and similarly, g ∈ f M(W ).

Equation (4-3) follows using Lemma 4.12 and Remark 2.7. �
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Figure 5. The graph of J-order for M(S3), as described on page 636.

Lemma 4.19. Let e and f be idempotents of M(W ) with respective image sets
[a, b]L and [c, d]L . Then, f ≤J e if and only if dc−1 ≤L R ba−1.

In particular, two idempotents e and f are J-equivalent if and only if the inter-
vals [a, b]L and [c, d]L are of the same type: dc−1 = ba−1.
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The properties above extend to any two regular elements (elements whose J-
class contains an idempotent).

Proof. First note that an interval [c, d]L is isomorphic to a subinterval of [a, b]L
if and only dc−1 ≤L R ba−1. This follows from Proposition 2.5 and the fact that
[c, d]L is a subinterval of [a, b]L if and only if [ca−1, da−1]L is a subinterval of
[1, ba−1]L . But then dc−1 is a subfactor of ba−1.

Assume first that dc−1 ≤L R ba−1, and let [c′, d ′]L be a subinterval of [a, b]L
isomorphic to [c, d]L . Using Proposition 2.5, take u, v ∈ M(W ) that induce re-
ciprocal bijections between [c, d]L and [c′, d ′]L . Then, f = f uev, so that f is
J-equivalent to e.

Reciprocally, assume that f =uev with u, v∈M(W ). Without loss of generality,
we may assume that u = ue so that im(u) ⊆ [a, b]L . Set c′ = c .u and d ′ = d .u.
Since f = f f = f uv, and using Proposition 4.3, the functions u and v must
induce reciprocal isomorphisms between [c, d]L and [c′, d ′]L , the latter being a
subinterval of [a, b]L . Therefore, dc−1 ≤L R ba−1.

To conclude, note that a regular element has the same type as any idempotent
in its J-class. �

Corollary 4.20. The idempotents (ew)w∈W form a complete set of representatives
of regular J-classes in M(W ).

Example 4.21. Forw∈W , the idempotents ew and ẽw−1w0 are in the same J-class.
This follows immediately from Lemma 4.19, or by direct computation using the
explicit expressions for ew and ẽw−1w0 in Proposition 4.15:

ew = e2
w = πw−1w0πw0wπw−1w0πw0w = πw−1w0 ẽw−1w0πw0w,

ẽw−1w0 = ẽ2
w−1w0

= πw0wπw−1w0πw0wπw−1w0 = πw0wewπw−1w0 .

Corollary 4.22. The image of a regular element is an interval in left order.

Proof. A regular element has the same type, and same size of image set as any
idempotent in its J-class. �

Remark 4.23. The reciprocal is false: In type B3, the element π1π3π2π1π3π2π1

has the interval [1, s2s3s2]L as image set, but it is not regular. The same holds in
type A4 with the element π2π1π4π3π2π1π3π4π2π3π4.

Problem 4.24. Describe L-classes in general, and L-order, R-order, as well as
J-order on nonregular elements.

4g. Involutions and consequences. Define an involution ∗ on W by

w 7→ w∗ := w0w,
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where w0 is the maximal element of W . Moreover, define the bar map M(W )→
M(W ) as the conjugacy by ∗: For a given f ∈ M(W )

w. f̄ := (w∗ . f )∗ for all w ∈W .

Proposition 4.25. The bar involution is a monoid endomorphism of M(W ) that
exchanges πi and π i .

Proof. This is a consequence of the general fact that for any permutation φ of W ,
conjugation by φ is an automorphism of the monoid of maps from W to itself.
Moreover, it is easy to see that bar exchanges πi and π i , so that it fixes M(W ). �

The previous proposition has some interesting consequences when applied to
idempotents: For any w ∈ W , the bar involution is a bijection from ewM(W ) to
ewM(W ). But ew fixes w0 and sends 1 = w∗0 to w∗, so that ew = ew∗,w0 = ẽw0w.
The latter is in turn J-equivalent to ew0w−1w0 by Example 4.21. This implies the
following result.

Corollary 4.26. The ideals ewM(W ) and ew0w−1w0 M(W ) are in bijection.

5. The Borel submonoid M1(W) and its representation theory

In the previous section, we outlined the importance of the idempotents (ew)w∈W .
A crucial feature is that they live in a “Borel” submonoid M1(W ) ⊆ M(W ) of
elements of the biHecke monoid M(W ) that fix the identity:

M1(W ) := { f ∈ M(W ) | 1 . f = 1}.
In this section we study this monoid and its representation theory, as an inter-

mediate step toward the representation theory of M(W ) (see Section 6). For the
representation theory of M(W ), it is actually more convenient to work with the
submonoid fixing w0 instead of 1:

Mw0(W ) := { f ∈ M(W ) | w0 . f = w0}.
However, since both monoids M1(W ) and Mw0(W ) are isomorphic under the in-
volution of Section 4g and since the interaction of M1(W ) with Bruhat order is
notationally simpler, we focus on M1(W ) in this section.

Note. In the remainder of this paper, unless explicitly stated, we fix a Coxeter
group W and use the shorthand notation M := M(W ), M1 := M1(W ) and Mw0 :=
Mw0(W ).

From the definition it is clear that M1 is indeed a submonoid that contains the
idempotents (ew)w∈W . Furthermore, by Proposition 4.5 and Corollary 4.7 its ele-
ments are both order-preserving and regressive for Bruhat order. In fact, a bit more
can be said.
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Remark 5.1. For w ∈W , w.M1 is the interval [1, w]B in Bruhat order.

Proof. By Corollary 4.7, for f ∈ M1, we have w. f ≤B w. Take reciprocally
v ∈ [1, w]B . Then, using Proposition 4.15, w.ev = v. �

As a consequence of the preservation and regressiveness on Bruhat order, M1

is an ordered monoid with 1 on top. Namely, for f, g ∈ M1, define the relation
f ≤ g if w. f ≤B w.g for all w ∈W . Then, ≤ defines a partial order on M1 such
that f ≤ 1, f g ≤ f and f g ≤ g for all f, g ∈ M1. In other words, M1 is B-trivial
(see [Denton et al. 2010/11, Proposition 2.2], as well as Section 2.5 there) and in
particular J-trivial.

In the next two subsections, we study the combinatorics of M1 and then apply
the general results on the representation theory of J-trivial monoids of [Denton
et al. 2010/11] to M1.

5a. J-order on idempotents and minimal generating set. Recall from Section 2e
that J-order is the partial order ≤J defined by f ≤J g if there exists x, y ∈ M1

such that f = xgy. The restriction of J-order to idempotents has a very simple
description:

Proposition 5.2. For u, v ∈W , the following are equivalent:

euev = eu, u ≤L v,

eveu = eu, eu ≤J ev.

Moreover, (euev)ω = eu∧Lv, where u ∧L v is the meet (or greatest lower bound) of
u and v in left order.

Proof. This follows from [Denton et al. 2010/11, Theorem 3.4, Lemma 3.6] and
Proposition 4.15. �

As a consequence the following definition, which plays a central role in the
representation theory of J-trivial monoids [Denton et al. 2010/11], makes sense.

Definition 5.3. For any element x ∈ M1, define

lfix(x) :=min≤L
{u ∈W | eu x = x} and rfix(x) :=min≤L

{u ∈W | xeu = x} =w0 .x,

the min being taken for the left order.

Interestingly, M1 can be defined as the submonoid of M generated by the idem-
potents (ew)w∈W , and in fact the subset of these idempotents indexed by Grassman-
nian elements (an element w ∈W is Grassmannian if it has at most one descent).

Theorem 5.4. M1 has a unique minimal generating set that consists of the idem-
potents ew where w−1w0 is right Grassmannian.



The biHecke monoid of a finite Coxeter group 641

In type An−1 this minimal generating set is of size 2n−n (which is the number of
Grassmannian elements in this case [Manivel 2001]).

Proof. Define the length `( f ) of an element f ∈ M as the length of a minimal ex-
pression of f as a product of the generators πi and π i . We now prove by induction
on the length that M1 is generated by {ew | w ∈W }.

Take an element f ∈ M1 of length l. If l = 0 we are done. Otherwise, since
1 . f = 1, an expression of f as a product of the πi and π i contains at least one π i .
Write f =gh where g=πwπ i for somew∈W and h∈M so that `(w)+1+`(h)= l.

Claim. f = ew0(wsi )−1πwh and πwh ∈ M1.

It follows from the claim that `(πwh) < l, and hence since πwh ∈ M1 we can
apply induction to conclude that M1 is generated by {ew | w ∈W }.

Let us prove the claim. By minimality of l, i is not a descent of w (otherwise,
we would obtain a shorter expression for f : f = πwπ i h = πw′πiπ i h = πw′π i h,
where `(w′) < `(w)). Therefore, 1 .g = 1 .(πwπ i ) = w. Since f ∈ M1 it follows
that w.h = 1 and therefore πwh ∈ M1. It further follows that πw−1πw acts trivially
on the image set [w,w0]L of g, and therefore f = gπw−1πwh. Note that gπw−1 =
πwπ iπw−1 = πwπiπ iπw−1 = ew0(wsi )−1 .

By Proposition 5.2, the idempotents of M1 are generated by the meet-irreducible
idempotents ew in J order. Here x is meet-irreducible if and only if x = a or x = b
whenever x = a ∧ b for some a, b ∈ M1. These meet-irreducible elements are
indexed by the elements w of W that are meet-irreducible in left order (or equiva-
lently that have at most one left nondescent, that is, w0w

−1 is right Grassmannian).
The uniqueness of the minimal generating set holds for any J-trivial monoid

with a minimal generating set [Doyen 1984, Theorem 2; Doyen 1991, Theorem 1].
�

Actually one can be much more precise:

Proposition 5.5. Any element f ∈ M1 can be written as a product ew1 · · · ewk ,
where

• w1 >B · · · >B wk is a chain in Bruhat order such that any two consecutive
terms wi and wi+1 are incomparable in left order;

• wi = rfix(ew1 · · · ewi )= lfix(ewi · · · ewk ).

Proof. Start from any expression ew1 · · · ewk for f . We show that if any of the
conditions of the proposition is not satisfied, the expression can be reduced to a
strictly smaller (in length, or in Bruhat, term by term) expression, so that induction
can be applied.

• If u 6>B v, then by Remark 4.16 euev = eueu.ev with u .ev <B v.

• If u <L v, then euev = eu , and similarly on the right.
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• If the left symbol eu for ewi · · · ewk is not ewi , then u <L wi and

ewi · · · ewk = euewi · · · ewk = euewi+1 · · · ewk .

Similarly on the right. �

Corollary 5.6. For f ∈ M1, lfix( f ) ≥B rfix( f ), with equality if and only if f is
an idempotent.

Lemma 5.7. If v ≤B u in Bruhat order and u′ = lfix(euev), then

v ≤B u′ and u′ ≤L u.

Proof. By Definition 5.3, u′ ≤L u since eu(euev)= euev and for M1 the minimum
is measured in left order. Also by Proposition 4.15

v = w0 .euev = w0 .eu′euev ≤B u′ . �

Lemma 5.8. If u covers v in Bruhat order and u′ = lfix(euev), then either u′ = u,
or u′ = v and euev = eveu .

Proof. By Lemma 5.7, we have that either u′ = u or u′ = v, since u covers v in
Bruhat order. When u′ = v, we have again by Lemma 5.7 that v ≤L u. Hence
euev = ev = eveu . �

5b. Representation theory. In this subsection, we specialize general results about
the representation theory of finite J-trivial monoids to describe some of the repre-
sentation theory of the Borel submonoid M1, such as its simple modules, radical,
Cartan invariant matrix and quiver. The description also applies to Mw0 , mutatis
mutandis. We follow the presentation of [Denton et al. 2010/11] (also see this paper
for the proofs), though many of the general results have been previously known; see
for example [Almeida et al. 2009; Clifford and Preston 1961; Ganyushkin et al.
2009; Lallement and Petrich 1969; Rhodes and Zalcstein 1991] and references
therein.

5b1. Simple modules and radical. For each w ∈ W define S1
w (written Sw0

w for
Mw0) to be the one-dimensional vector space with basis {εw} together with the
right operation of any f ∈ M1 given by

εw . f :=
{
εw if w. f = w,
0 otherwise.

The basic features of the representation theory of M1 can be stated as follows:

Theorem 5.9. The radical of KM1 is the ideal with basis f ω − f for f ∈ M1

nonidempotent. The quotient of KM1 by its radical is commutative. Therefore, all
simple KM1-modules are one-dimensional. In fact, the family {S1

w}w∈W forms a
complete system of representatives of the simple KM1-modules.
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5b2. Cartan matrix and projective modules. The projective modules and Cartan
invariants can be described as follows:

Theorem 5.10. There exists an explicit basis (bx)x∈M1 of KM1 such that, for all
w ∈W ,

• the family {bx | x ∈ M1 with lfix(x)= w} is a basis for the right indecompos-
able projective module P1

w associated to S1
w;

• the family {bx | rfix(x) = w}x∈M1 is a basis for the left indecomposable pro-
jective module associated to S1

w.

Moreover, the Cartan invariant of KM1 defined by cu,v := dim(euKM1ev) for
u, v ∈W is given by cu,v = |Cu,v|, where

Cu,v := { f ∈ M1 | lfix( f )= u and rfix( f )= v}.
In particular, the Cartan matrix of KM1 is upper-unitriangular with respect to

Bruhat order.

Proof. Apply [Denton et al. 2010/11, Section 3.4] and conclude with Corollary 5.6.
�

Remark 5.11. In terms of characters, the previous theorem can be restated as

[P1
u ] =

∑

f ∈M1,lfix( f )=u

[S1
w0 . f ], (5-1)

which gives the following character for the right regular representation:

[KM1] =
∑

f ∈M1

[S1
w0 . f ]. (5-2)

Problem 5.12. Describe the Cartan matrix and projective modules of KM1 more
explicitly, if at all possible in terms of the combinatorics of the Coxeter group W .

5b3. Quiver. We now turn to a description of the quiver of KM1 in terms of the
combinatorics of left and Bruhat order. Recall that M1 is a submonoid of the
monoid of regressive and order preserving functions. As such, it is not only J-
trivial but also ordered with 1 on top, that is B-trivial; see [Denton et al. 2010/11,
Section 2.5 and Proposition 2.2]. By [Denton et al. 2010/11, Theorem 3.35 and
Corollary 3.44] we know that the vertices of the quiver of a J-trivial monoid gen-
erated by idempotents are labeled by its idempotents (ex)x and there is an edge
from vertex ex to vertex ez , if q := ex ez is not idempotent, has lfix(q) = x and
rfix(q)= z, and does not admit any factorization q = uv that is nontrivial: eu 6= e
and v f 6= f . By [Denton et al. 2010/11, Proposition 3.31] the condition that q has a
nontrivial factorization is equivalent to q having a compatible factorization q= uv,
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meaning that u, v are nonidempotents and lfix(q) = lfix(u), rfix(u) = lfix(v) and
rfix(v)= rfix(q).

Let ex , ey, ez ∈ M1 be idempotents. Call ey an intermediate factor for q := ex ez

if ex eyez = ex ez . Call further ey a nontrivial intermediate factor if ex ey 6= ex , and
eyez 6= ez .

Lemma 5.13. The quiver of KM1 is the graph with W as vertex set and edges
(x, z) for all x 6= z such that q := ex ez satisfies lfix(q) = x and rfix(q) = z and
admits no nontrivial intermediate factor ey with y ∈W .

Proof. Take q := ex ez admitting a nontrivial intermediate factor ey . Then q admits
a nontrivial factorization q = (ex ey)(eyez) in the sense of [Denton et al. 2010/11,
Definition 3.25], and is therefore not in the quiver.

Reciprocally, assume that q admits a compatible factorization, that is q = uv
with lfix(u) = x , rfix(u) = lfix(v) and rfix(v) = z. By [Denton et al. 2010/11,
Lemma 3.29], this factorization is nontrivial: ex u 6= ex and vez 6= ez . Using
Proposition 5.5, write u and v as u = ex ey1 · · · eyk and v = eyk · · · ey`ez , with
x >B y1 >B · · · >B y` >B z. Then, ex eyi ez = ex ez for any i ; indeed, since M1 is
B-trivial,

ex ez = ex ey1 · · · ey`ez ≤B ex eyi ez ≤B ex ez.

If any eyi is a nontrivial intermediate factor for q , we are done by setting y = yi .
Otherwise, eyi ez = ez for any i (ex eyi = ex is impossible since x >B yi ). But then,
v = eyk · · · ey`ez = ez , a contradiction. �

Problem 5.14. Can Lemma 5.13 be generalized to any B-trivial monoid? Its state-
ment has been tested successfully on the 0-Hecke monoid in type A1−A6, B3−B4,
D4− D5, H3− H4, G2, I135, F4.

Lemma 5.13 admits a combinatorial reformulation in terms of the combinatorics
of W . For x, y, z ∈W such that x >B z, call y ∈W an intermediate factor for x, z
if [1, y]L intersects all intervals [c, a]B with a ∈ [1, x]L and c∈ [1, z]L nontrivially.
Call further y a nontrivial intermediate factor if x >B y >B z and y 6>L z.

Theorem 5.15. The quiver of KM1 is the graph with W as vertex set, and edges
(x, z) for all x >B z and x 6>L z admitting no nontrivial intermediate factor y.
Each such edge can be associated with the element q := ex ez of the monoid.

In particular, the quiver of KM1 is acyclic and every cover x �B z in Bruhat
order that is not a cover in left order contributes one edge to the quiver.

Proof. Consider a nonidempotent product ex ez . Using Proposition 5.5, we may
assume without loss of generality that x >B z and x 6>L z, and furthermore that
lfix(ex ez)= x and rfix(ex ez)= z.
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We now show that the combinatorial definition of intermediate factor on an
element of y ∈ W is a reformulation of the monoidal one on the idempotent ey

of M1.
Assume that ey is an intermediate factor for ex ez , that is, ex eyez = ex ez . Take

a ∈ [1, x]L and c ∈ [1, z]L with a ≥B c, and write b = a.ey ∈ [1, y]L . Using
Proposition 4.15, a ≥B b and a .ez ≥B c. Furthermore, since a is in the image set
of ex , one has b .ez = a .ey .ez = a .ez ≥B c. Therefore, [1, y]L intersects [c, a]B at
least in b. Hence, y is an intermediate factor for x, z.

For the reciprocal, take any a ∈ [1, x]L . Since M1 preserves Bruhat order and is
regressive, a .ey .ez ≤B a .ez . Set c = a .ez , and take b in [c, a]B ∩ [1, y]L . Using
Proposition 4.15,

a .ey .ez ≥B b .ez ≥B c = a .ez,

and equality holds. Hence, ey is an intermediate factor for ex , ey : ex eyez = ex ez .
The combinatorial reformulation of nontriviality for intermediate factors is then

straightforward using Proposition 5.5. �

Problem 5.16. Exploit the interrelations between left order and Bruhat order to
find a more satisfactory combinatorial description of the quiver of KM1.

5b4. Connection with the representation theory of the 0-Hecke monoid. Recall
that the 0-Hecke monoid H0(W ) is a submonoid of Mw0(W ). As a consequence any
KMw0(W )-module is a H0(W )-module and one can consider the decomposition
map G0(Mw0(W ))→ G0(H0(W )). It is given by the following formula:

Proposition 5.17. For w ∈W , let Sw0
w be the simple KMw0(W )-module defined by

εw . f :=
{
εw if w. f = w,
0 otherwise.

Furthermore, for J ⊆ I , let SH0
J be the simple H0(W )-module defined by

µJ .πi :=
{
µI if i ∈ J ,
0 otherwise.

Then, the restriction of Sw0
w to H0(W ) is isomorphic to SH0

DR(w)
. The decomposition

map is therefore given by

G0(Mw0(W ))→ G0(H0(W )), [Sw0
w ] 7→ [SH0

DR(w)
].

Proof. By definition of the action, w.πi = w if and only if i ∈ DR(W ). �

5b5. The tower of M1(Sn) monoids (type A).

Problem 5.18. The monoids M1(Sn), for n ∈ N, form a tower of monoids with
the natural embeddings M1(Sn)×M1(Sm) ↪→ M1(Sm+n). Due to the involution
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of Section 4g, one has also embeddings Mw0(Sn)× Mw0(Sm) ↪→ Mw0(Sm+n).
As outlined in the introduction, it would hence be interesting to understand the
induction and restriction functors in this setting, and in particular to describe the
bialgebra obtained from the associated Grothendieck groups. This would give a
representation theoretic interpretation of some bases of FQSym.

In this context, Proposition 5.17 provides an interpretation of the surjective
coalgebra morphism FQSym�QSym, through the restriction along the following
commutative diagram of monoid inclusions (see [Duchamp et al. 2002] for more
details):

H0(Sn)× H0(Sm) Mw0(Sn)×Mw0(Sm)

H0(Sn+m) Mw0(Sn+m).

6. Translation modules and w-biHecke algebras

The main purpose of this section is to pave the ground for the construction of the
simple modules Sw of the biHecke monoid M := M(W ) in Section 7a.

As for any aperiodic monoid, each such simple module is associated with some
regular J-class D of the monoid, and can be constructed as a quotient of the span
KR( f ) of the R-class of any idempotent f in D, endowed with its natural right
KM-module structure (see Section 2g).

In Section 6a, we endow the interval [1, w]R with a natural structure of a combi-
natorial KM-module Tw, called translation module, and show that, for any f ∈M ,
regular or not, the right KM-module KR( f ) is always isomorphic to some Tw.

The translation modules will play an ubiquitous role for the representation the-
ory of KM in Section 7: indeed Tw can be obtained by induction from the simple
modules Sw of KM , and the right regular representation of KM admits a filtration
in terms of the Tw that mimics the composition series of the right regular represen-
tation of KMw0 in terms of its simple modules Sw. Reciprocally Tw, and therefore
the right regular representation of KM , restricts naturally to Mw0 . Finally, Tw is
closely related to the projective module Pw of KM (Corollary 7.4).

By taking the quotient of KM through its representation on Tw, we obtain a
w-analogue HW (w) of the biHecke algebra HW . This algebra turns out to be
interesting in its own right, and we proceed by generalizing most of the results of
[Hivert and Thiéry 2009] on the representation theory of HW .

As a first step, we introduce in Section 6b a collection of submodules P (w)J of
Tw, which are analogues of the projective modules of HW . Unlike for HW , not
any subset J of I yields such a submodule, and this is where the combinatorics
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of the blocks of w as introduced in Section 3 enters the game. In a second step,
we derive in Section 6c a lower bound on the dimension of HW (w); this requires
a (fairly involved) combinatorial construction of a family of functions on [1, w]R
that is triangular with respect to Bruhat order. In Section 6d we combine these
results to derive the dimension and representation theory of HW (w): projective
and simple modules, Cartan matrix, quiver, etc. (see Theorem 6.17).

6a. Translation modules and w-biHecke algebras. In this section we study the
combinatorics of the right class modules for the biHecke monoid, in particular a
combinatorial model for them. Indeed, we show that the right class modules corre-
spond to uniform translations of image sets, hence the name “translation modules”.

Fix f ∈ M . Recall from Definition 2.12 that the right class module associated
to f is defined as the quotient

KR( f ) := K f M/KR<( f ).

The basis of KR( f ) is the right class R( f ) described in Proposition 4.18. Recall
from there that fu denote the unique element of M(W ) such that fibers( fu) =
fibers( f ) and 1 . fu = u.

Proposition 6.1. Setw= type( f )−1w0. Then ( fu)u∈[1,w]R forms a basis of KR( f )
such that

fu .πi =




fu if i ∈ DR(u),
fusi if i 6∈ DR(u) and usi ∈ [1, w]R,
0 otherwise;

fu .π i =




fusi if i ∈ DR(u),
fu if i 6∈ DR(u) and usi ∈ [1, w]R,
0 otherwise.

(6-1)

In particular, the action of any g ∈ M on a basis element fu of the right class
module either annihilates fu or agrees with the usual action on W : fu .g = fu .g.

Proof. By Definition 2.12 and Proposition 4.18, ( fu)u∈[1,w]R forms a basis of
KR( f ).

The action of πi agrees with right multiplication, except when the index v of the
new fv is no longer in [1, w]R , in which case the element is annihilated. The action
of π i also agrees with right multiplication. However, due to the relations πiπ i =π i

and π iπi = πi , we need that π i annihilates fu if i 6∈ DR(u) and usi 6∈ [1, w]R .
The last statement follows by induction writing f ∈M in terms of the generators

πi and π i and using (6-1). �

Proposition 6.1 gives a combinatorial model for right class modules. It is clear
that two functions with the same type yield isomorphic right class modules. The
converse also holds:
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Proposition 6.2. For any f, f ′ ∈ M , the right class modules KR( f ) and KR( f ′)
are isomorphic if and only if type( f )= type( f ′).

Proof. By Proposition 6.1, it is clear that if type( f ) = type( f ′), then KR( f ) ∼=
KR( f ′).

Conversely, suppose type( f ) 6= type( f ′). Then we also have w 6= w′, where
w = type( f )−1w0 and w′ = type( f ′)−1w0. Without loss of generality, we may
assume that `(w) ≥ `(w′). Using the combinatorial model of Proposition 6.1, we
then have

f1 .πw = fw 6= 0 and f ′1 .πw = 0 ,

so that KR( f ) 6∼= KR( f ′). �

It is not obvious from the combinatorial action of πi and π i of Proposition 6.1
that the result indeed gives a module. However, since it agrees with the right action
on the quotient space as in Definition 2.12, this is true. By Proposition 6.2, we may
choose a canonical representative for right class modules.

Definition 6.3. The module Tw :=KR(ew,w0) for allw∈W is called the translation
module associated to w. We identify its basis with [1, w]R via u 7→ fu , where
f = ew,w0 .

For the remainder of this section for f ∈ M and u ∈ [1, w]R , unless otherwise
specified, u . f means the action of f on u in the translation module Tw.

Definition 6.4. The w-biHecke algebra HW (w) is the natural quotient of KM
through its representation on Tw. In other words, it is the subalgebra of End(Tw)
generated by the operators πi and π i of Proposition 6.1.

6b. Left antisymmetric submodules. By analogy with the simple reflections in the
Hecke group algebra, we define for each i ∈ I the operator si := πi +π i − 1. For
u ∈ [1, w]R , the action on the translation module Tw is given by

u.si =
{

usi if usi ∈ [1, w]R ,
−u otherwise.

(6-2)

These operators are still involutions, but do not always satisfy the braid relations.

Example 6.5. Take W of type A2 and w= s1. The translation module Tw has two
basis elements B = (1, s1) and the matrices for s1 and s2 on this basis are given by

s1 =
(

0 1
1 0

)
and s2 =

(−1 0
0 −1

)
.

It is not hard to check that then s1s2s1 6= s2s1s2.
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Similarly, one can define operators←−si acting on the left on the translation mod-
ule Tw:

←−si .u =
{

si u if si u ∈ [1, w]R ,
−u otherwise.

(6-3)

Definition 6.6. For J ⊆ I , set P (w)J := {v ∈ Tw | ←−si .v =−v for all i ∈ J }.
For w=w0, these are the projective modules PJ of the biHecke algebra [Hivert

and Thiéry 2009].

Proposition 6.7. Take w ∈W and J ⊆ I . Then, the following are equivalent:

(i) Jw is a cutting point of w;

(ii) P (w)J is an KM-submodule of Tw.

Furthermore, when any, and therefore all, of the above hold, P (w)J is isomorphic
to TJw, and its basis is indexed by [1, Jw]R , that is, assuming J ∈ J(w), we have
{v ∈ [1, w]R, J ⊂ J (w)(v)}.
Proof. (ii)⇒ (i): Set

vwJ :=
∑

u∈[1,wJ ]R
(−1)`(u)−`(wJ )u.

Up to a scalar factor, this is the unique vector in P (w)J with support contained in
[1, wJ ]R . Then,

vwJ .πJw =
∑

u∈[1,wJ ]R
s.t. u Jw∈[1,w]R

(−1)`(uv)−`(wJ v)u Jw,

vwJ .πvπv−1 =
∑

u∈[1,wJ ]R
s.t. u Jw∈[1,w]R

(−1)`(u)−`(wJ )u.

Therefore, if Jw 6≤R w, then vwJ .πJwπ Jw−1 is a nonzero vector with support strictly
included in [1, wJ ]R and therefore not in P (w)J . By Proposition 3.8 this proves that
(ii) implies (i).

(i)⇒ (ii): If (i) holds, then the action of πi (resp. π i ) on vwJ .πv either leaves
it unmodified, kills it (if vsi = s jv for some j) or maps it to vwJ .πvsi . The vectors
(vwJ .πv)v∈[1,Jw]R form a basis of P (w)J that is stable by M .

The last statement follows straightforwardly. �

It is clear from the definition that P (w)J1∪J2
= P (w)J1

∩ P (w)J2
for J1, J2 ⊆ I . Since

the set RBL(w) of left blocks of w is stable under union, the set of KM-modules
(P (w)J )J∈RBL(w) is stable under intersection. On the other hand, unless J1 and J2

are comparable, P (w)J1∪J2
is a strict subspace of P (w)J1

+ P (w)J2
. This motivates the

following definition.
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Definition 6.8. For J ∈ J(w), we define the module

S(w)J := P (w)J

/ ∑

J ′)J,J ′∈RBL(w)

P (w)J ′ . (6-4)

Remark 6.9. By the last statement of Proposition 6.7, and the triangularity of the
natural basis of the modules P (w)J ′ , the basis of S(w)J is given by

[1, Jw]R
∖ ⋃

v@Jw

[1, v]R = {v ∈ [1, w]R, J ⊂ J (w)(v)}. (6-5)

6c. A (maximal) Bruhat-triangular family of the w-biHecke algebra. Consider
the submonoid F in HW (w) generated by the operators πi , π i , and si , for i ∈ I .
For f ∈ F and u ∈ [1, w]R , we have u . f = ±v for some v ∈ [1, w]R . For our
purposes, the signs can be ignored and f be considered as a function from [1, w]R
to [1, w]R .

Definition 6.10. For u, v ∈ [1, w]R , a function f ∈ F is called (u, v)-triangular
(for Bruhat order) if v is the unique minimal element of im( f ) and u is the unique
maximal element of f −1(v) (all minimal and maximal elements in this context are
with respect to Bruhat order).

Recall the notion of maximal reduced right block K (w)(u) of Definition 3.38.

Proposition 6.11. Take u, v ∈ [1, w]R such K (w)(u)⊆ K (w)(v). Then, there exists
a (u, v)-triangular function fu,v in F.

For example, for w = 4312 in S4, the condition on u and v is equivalent to the
existence of a path from u to v in the digraph G(4312) (see Figure 1 and Section 6d).

The proof of Proposition 6.11 relies on several remarks and lemmas that are
given in the sequel of this section. The construction of fu,v is explicit, and the
triangularity derives from fu,v being either in M , or close enough to be bounded
below by an element of M . It follows from the upcoming Theorem 6.17 that the
condition on u and v is not only sufficient but also necessary.

Remark 6.12. If f is (u, v)-triangular and g is (v, v′)-triangular, then f g is (u, v′)-
triangular.

Remark 6.13. Take x ∈ [1, w]R and let i ∈ I . Then, x .π i ≤R x .si .
By repeated application, for S ⊆ I , and i1, . . . , ik ∈ S, x .π S ≤R x .si1 · · · sik ,

where recall that π S is the longest element in the generators {π j | j ∈ S}.
Lemma 6.14. Take u ∈ [1, w]R , and define fu,u := eu,w0 = πu−1πu . Then

(i) fu,u is (u, u)-triangular;

(ii) for v ∈ [1, w]R , either v . fu,u = 0 or v . fu,u ≥B v;

(iii) im( fu,u)= [u, w0]L ∩ [1, w]R .
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Proof. First consider the case w=w0. Then, (ii) and (iii) hold by Proposition 4.15.
Now take any w ∈W . By Proposition 6.1 the action of f ∈M on the translation

module Tw either agrees with the action on W or yields 0. Hence in particular
Proposition 4.5 still applies, which yields (ii). This also implies the inclusion
im( fu,u) \ {0} ⊂ [u, w0]L ∩ [1, w]R . The reverse inclusion is straightforward: If
u′= xu, then u′ . fu,u = xu .πu−1πu = xπu = xu= u′. Therefore (iii) holds as well.

Finally, (iii) implies that u is the unique minimal element of im( fu,u), and (ii)
implies that u is the unique maximal element in f −1

u,u (u); therefore (i) holds. �

Lemma 6.15. If u >R v, then fu,v := fu,uπu−1v is (u, v)-triangular.

Proof. By Lemma 6.14(iii), the image set of fu,u is a subset of [u, w0]L . Therefore,
by Remark 2.7, πu−1v translates it isomorphically to the interval [v,w0u−1v]L . In
particular, the fibers are preserved: f −1

u,v (v)= f −1
u,u (u), and the triangularity of fu,v

follows. �

Lemma 6.16. Take u ∈ [1, w]R . Then, either u is a cutting point of w, or there
exists a (u, v)-triangular function fu,v in F with u <R v ≤R w.

Proof. Let J be the set of short nondescents i of u, and set V := Uu ∩ [1, w]R
(recall from Definition 3.15 that Uu := uWJ ). By Proposition 3.17, V is the set of
w′ ∈ [1, w]R such that u v w′. Furthermore, V is a lattice (it is the intersection
of the two lattices (uWJ , <R) and [1, w]R) with u as unique minimal element; in
particular, V ⊂ [u, w]R .

If w ∈ V (which includes the case u = w and J = {}), then u is a cutting point
for w and we are done.

Otherwise, consider a shortest sequence i1, . . . , ik such that {i1, . . . , ik} does not
intersect DR(u), and v′= usi1 · · · sik 6∈ V . Such a sequence must exist since w 6∈ V .
Set S := {i1, . . . , ik}. Note that i1, . . . , ik−1 are in J but ik is not. Furthermore,
u 6v v′ while u = v′S because v′ ∈ uWS and S ∩DR(u)=∅.

Case 1: v′ ∈ im( fu,u). Then, u <L v
′. Combining this with u = v′S yields that

u v v′, a contradiction.
Case 2: v′ 6∈ im( fu,u). Set v := usi1 , and define fu,v := fu,uσπi1 , where

σ := si2 · · · sik−1sik sik−1 · · · si2 . (6-6)

Note that for k = 1, we have σ = 1. We now prove that fu,v is (u, v)-triangular.
First, we consider the fiber f −1

u,v (v). By minimality of k, and up to sign, sik

fixes all the elements of V at distance at most k − 2 of u. Hence, σ−1(u) = u.
Simultaneously,

v .σ−1 = v .si2 · · · sik−1sik sik−1 · · · si2 = v′ .sik−1 · · · si2 ∈ v′WJ . (6-7)
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Hence, v .σ−1 6∈ im( fu,u) because v′ 6∈ im( fu,u) and im( fu,u) is stable under right
multiplication by s j for j ∈ J . Putting everything together, we have

f −1
u,v (v)= f −1

u,u (σ
−1(π−1

i1
(v)))= f −1

u,u (σ
−1({u, v}))= f −1

u,u ({u})=[1, u]B∩[1, w]R.
Therefore, u is the unique length maximal element of f −1

u,v (v), as desired.
We take now x ∈ im( fu,u), and apply Proposition 4.5 repeatedly. To start with,

u = 1 . fu,u ≤B x . fu,u . (6-8)

Using Remark 6.13, we have

u = u .π S ≤B (x . fu,u).π S ≤B (x . fu,u).σ = x . fu,u .σ. (6-9)

It follows that
v = u .πi1 ≤B (x . fu,u .σ ).πi1 = x . fu,v. (6-10)

In particular, v is the unique Bruhat minimal element of im( fu,v), as desired. �

Proof of Proposition 6.11. Since W is finite, repeated application of Lemma 6.16
yields a finite sequence of triangular functions

fu,u1, . . . , fuk−1,uk , where u <R u1 <R · · ·<R uk

and uk is a cutting pointw J ofw. Since u<R w
J , one has J ⊂ K (w)(u)⊂ K (w)(v),

and therefore uk = w J >R v. Then, applying Lemma 6.15 one can construct a
(uk, v)-triangular function fuk ,v. Finally, by Remark 6.12, composing all these
triangular functions gives a (u, v)-triangular function fu,u1 · · · fuk−1,uk fuk ,v. �

6d. Representation theory of the w-biHecke algebra. Consider the digraph G(w)

on [1, w]R with an edge u 7→ v if u = vsi for some i and J (w)(u) ⊆ J (w)(v). Up
to orientation, this is the Hasse diagram of right order (see for example Figure 1).
The following theorem is a generalization of [Hivert and Thiéry 2009, Section 3.3].

Theorem 6.17. HW (w) is the maximal algebra stabilizing all modules P(w)J for
J ∈RBL(w)

HW (w) = { f ∈ End(Tw) | f (P (w)J )⊆ P (w)J }
The elements fu,v of Proposition 6.11 form a basis HW (w); in particular,

dim HW (w) = ∣∣{(u, v) | J (w)(u)⊆ J (w)(v)}∣∣. (6-11)

HW (w) is the digraph algebra of the graph G(w).
The family (P (w)J )J∈RBL(w) forms a complete system of representatives of the

indecomposable projective modules of HW (w).
The family (S(w)J )J∈RBL(w) forms a complete system of representatives of the

simple modules of HW (w). The dimension of S(w)J is the size of the corresponding
w-nondescent class.
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HW (w) is Morita equivalent to the poset algebra of the lattice [1, w]v. In par-
ticular, its Cartan matrix is the incidence matrix and its quiver the Hasse diagram
of this lattice.

Proof. From Proposition 6.11, one derives by triangularity that dim HW (w) ≥
|{(u, v) | K (w)(u)⊆ K (w)(v)}|. The stability of all the subspaces P (w)J imposes the
converse equality. Hence, HW (w) is exactly the subalgebra of End(Tw) stabilizing
each P (w)J . The remaining statements follow straightforwardly, as in [Hivert and
Thiéry 2009, Section 3.3]. See also for example [Denton et al. 2010/11, Section
3.7.4] for the Cartan matrix and quiver of a poset algebra. �

7. Representation theory of M(W)

In this section, we gather all results of the preceding sections in order to describe the
representation theory of M :=M(W ). The main result is Theorem 7.1, which gives
the simple modules of KM . We further relate the representation theory of KM to
the representation theory of KMw0 . In particular, we prove that the translation
modules are exactly the modules induced by the simple modules of KMw0 . We
then conclude by computing some characters and the decomposition map from
KM to KMw0 .

7a. Simple modules. We now study the simple modules of the biHecke monoid
KM and also show that the translation modules are indecomposable.

Theorem 7.1. (i) The biHecke monoid M admits |W | nonisomorphic simple
modules (Sw)w∈W (resp. projective indecomposable modules (Pw)w∈W ).

(ii) The simple module Sw is isomorphic to the top simple module

S(w){} = Tw
/∑

v@w

Tv

of the translation module Tw. Its dimension is given by

dim Sw =
∣∣∣[1, w]R

∖ ⋃

v@w

[1, v]R
∣∣∣.

In general, the simple quotient module S(w)J of Tw is isomorphic to SJw of M.

Proof. Since M is aperiodic (Proposition 4.13), we may apply the special form
of Clifford, Munn, and Ponizovskiı̌’s construction of the simple modules (see
Theorem 2.14). Namely, the simple modules are indexed by the regular J- classes
of M ; by Corollary 4.20, there are |W | of them. This yields (i), since for any finite-
dimensional algebra, the simple and indecomposable projective modules share the
same indexing set (see [Curtis and Reiner 1962, Corollary 54.14]).
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Clifford, Munn, and Ponizovskiı̌ further construct Sw as the top of the right
class modules, that is, in our case, of the translation module Tw. Our explicit
description of the radical of Tw as

∑
v@w Tv in (ii) is a straightforward application

of Theorem 6.17. The dimension formula follows using Remark 6.9. �

For a direct proof that rad Tw = ∑v@w Tv, without using Theorem 6.17, one
would want to show that

∑
v@w Tv is exactly the annihilator of J(ew,w0). One

inclusion is easy, thanks to the following remark.

Remark 7.2. The submodule Tv is annihilated by J(ew,w0)= J(πw).

Proof. Fix w and take v such that v @ w. Then πw annihilates Tv ⊂ Tw. Indeed,
combining πw(w) = 1 with Propositions 6.1 and 4.5, one obtains that πw either
annihilates fu or maps it to f1. Take now x ∈ Tv, and write x .πw = λ f1. Since
Tv is a submodule, λ f1 lies in Tv; however the basis elements of Tv have disjoint
support and since v@w none of them are collinear to f1. Therefore x .πw = 0. �

Type |W | |Mw0 | |M | (dim Sw)w
∑

dim Sw

A0 1 1 1 1 1
A1 2 2 3 12 2
A2 = I2(3) 6 8 23 1422 8
A3 24 71 477 1824344652 62
A4 120 1646 31103 1162103841651666 · · · 206 770
A5 720 118929 7505009 132224320442538640

· · · 1202 13080
B2 = I2(4) 8 14 49 142232 14
B3 48 498 5455 182434465764748491

·102112122 246
B4 384 149622 6664553 116210310414517616 · · · 802 6984
G2 = I2(6) 12 32 153 1422324252 32
H3 120 87 1039 182434485667 · · · 362 1404
A1×A1 4 4 9 1212 4
I2(p) 2p p2−p+2 2

3 p3+ 4
3 p+1 1422 · · · (p−1)2 p2−p+2

Table 1. Statistics on the biHecke monoids M := M(W ) for the
small Coxeter groups. In column four, 1824 · · · 52 means that there
are 8 simple modules of dimension 1, 4 of dimension 2, and so on.
The sum in the last column is over w. The sequence p2−p+2 is
#A014206 in [OEIS Foundation 2012].
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Example 7.3. The simple module S4312 is of dimension 3, with basis indexed by
{4312, 4132, 1432} (see Figure 1). The other simple modules S3412, S4123, and
S1234 are of dimension 5, 3, and 1, respectively. See also Table 1.

In general, the two extreme cases are, on the one hand, when w is the maximal
element of a parabolic subgroup, in which case the simple module is of dimension 1
and, on the other hand, when w is an immediate successor of 1 in the cutting poset
(see Example 3.44), in which case the simple module is of dimension |Tw| − 1.
In the other cases, one can use Theorem 3.41 to calculate the dimension of Sw by
inclusion-exclusion from the sizes of the intervals [1, Jw]R , where Jw runs through
the free sublattice at the top of the interval [1, w]v of the cutting poset. Note that the
sizes of the intervals in W can also be computed by a similar inclusion-exclusion
(the Möbius function for right order is given by µ(u, w) = (−1)k if the interval
[u, w]R is isomorphic to some WJ with |J | = k, and 0 otherwise). This may open
the door for some generating series manipulations to derive statistics like the sum
of the dimension of the simple modules.

Corollary 7.4. The translation module Tw is an indecomposable KM-module,
quotient of the projective module Pw of KM.

Proof. Direct application of Corollary 2.15 �

7b. From Mw0(W) to M(W). In this section, we use our knowledge of Mw0 to
learn more about M .

Proposition 7.5. The translation module Tw is isomorphic to the induction to KM
of the simple module Sw0

w of KMw0 .

The proof of this proposition follows from the upcoming lemmas giving some
simple conditions on a general inclusion of monoids B ⊆ A under which the (reg-
ular) right class modules of K A are induced from those of KB.

Lemma 7.6. Let B ⊆ A be two finite monoids and f ∈ B. If

KRA
<( f )= KRB

<( f )A,

then the right class module KRA( f ) is isomorphic to the induction from KB to
K A of the right class module KRB( f ):

KRA( f )∼= KRB( f )↑K A
KB .

Proof. Recall that for a KB-module Y , the module Y↑K A
KB induced by Y from KB

to K A is given by Y↑K A
KB := Y ⊗KB K A.
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By construction of the right class modules (see Definition 2.12), we have the
following exact sequences:

0→ KRB
<( f )→ K f B→ KRB( f )→ 0, (7-1)

0→ KRA
<( f )→ K f A→ KRA( f )→ 0. (7-2)

Consider now the sequence obtained by tensoring (7-1) by K A:

0→ KRB
<( f )⊗KB K A→ K f B⊗KB K A→ KRB( f )⊗KB K A→ 0 . (7-3)

We want to prove that it is exact and isomorphic to (7-2).
First note that, since KB is a subalgebra of K A, we have b⊗ a = 1⊗ ba for

b ∈ B and a ∈ A. Therefore the product map

µ : K f B⊗KB K A→ K f A, f b⊗ a→ f ba

is an isomorphism of K A-modules.
Consider the restriction of µ to KRB

<( f )⊗KB K A. Its image set is KRB
<( f )A,

which is equal to KRA
<( f ) by hypothesis. Therefore, µ restricts to an A-module

isomorphism from KRB
<( f )⊗KB K A to KRA

<( f ). As a consequence, the following
diagram is commutative, all vertical arrows being isomorphisms (for short we write
here ⊗ for ⊗KB):

0 // KRB
<( f )⊗K A //

µ

��

K f B⊗K A //

µ

��

KRB( f )⊗K A //

id
��

0

0 // KRA
<( f ) // K f A // KRB( f )⊗K A // 0

It is a well-known fact that the functor ·⊗KB K A is right exact, so that the middle
and right part of the top sequence is exact. The left part of the bottom sequence is
clearly exact. Therefore they are both exact sequences.

Comparing with (7-2), we obtain that

KRA( f )∼= KRB( f )⊗KB K A,

where the latter is isomorphic to KRB( f )↑K A
KB by definition. �

In the next lemma we denote by <RA the strict right preorder on a monoid A;
that is, x <RA y if x ≤RA y but x /∈RA(y).

Lemma 7.7. Let B ⊆ A be two finite monoids and assume that:

(i) R-order on B is induced by R-order on A; that is, for all x, y ∈ B,

x <RA y ⇐⇒ x <RB y.

(ii) Any R-class of A intersects B.
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Then, for any f ∈ B, the equality KRB
<( f )A = KRA

<( f ) holds. In particular,

KRA( f )∼= KRB( f )↑K A
KB .

Moreover, condition (i) may be replaced by the stronger condition

(i′) x ≤RA y ⇐⇒ x ≤RB y.

Proof. Inclusion ⊆: Take b ∈ B with b<RB f and a ∈ A. Then, using (i), we have
ba ∈ KRA

<( f ), since
ba ≤RA b <RA f.

Inclusion ⊇: Take a ∈ A with a <RA f . Using (ii) choose an element b ∈ B
such that b RA a. Then b ≤RA a <RA f and therefore, by (i), b ∈ KRB

<( f ). It
follows that a ∈ KRB

<( f )A.
The statement KRA( f )∼= KRB( f )↑K A

KB follows from Lemma 7.6. �

Here is an example of what can go wrong when Condition (i) fails.

Example 7.8. Let A be the (multiplicative) submonoid of M2(Z) with elements
given by the matrices

1 := ( 1 0
0 1

)
, b11 :=

(
1 0
0 0

)
, b12 :=

(
0 1
0 0

)
, a21 :=

(
0 0
1 0

)
, b22 :=

(
0 0
0 1

)
, 0 := ( 0 0

0 0

)
.

Alternatively, A is the aperiodic Rees matrix monoids (see Definition 2.16) whose
nontrivial J-class is described by

(
b∗11 b12

a21 b∗22

)
,

where the ∗ marks the elements that are idempotent. In other words, A = M(P),
where P := ( 1 0

0 1

)
, and for convenience the matrix above specifies names for the

elements of the nontrivial J-class. Recall that the nontrivial left and right classes
of A are given respectively by the columns and rows of this matrix.

Let B be the submonoid {1, b11, b12, b22, 0}. Then B satisfies condition (ii) but
not condition (i): indeed b11 RA b12 whereas b11 <RB b12. Then, taking f = b11,
one obtains RB

<(b11)= {0, b12} so that RB
<(b11)A = {0, b11, b12}, and therefore

K{0} = KRA
<(b11)⊂ KRB

<(b11)A = K{0, b11, b12}.
Now KRB(b11)=K{0, b11, b12}/K{0, b12}, so that KRB(b11) is one-dimensional,
spanned by x := b11 mod (K{0, b12}). The action of B is given by x .1= x .b11= x
and x .m = 0 for any m ∈ B \ {1, b11}.

We claim that

KRB(b11)↑K A
KB = KRB(b11)⊗KB K A = 0.
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Indeed, x ⊗ 1= x .b11⊗ 1= x ⊗ b11 = x ⊗ b12a21 = x .b12⊗ a21 = 0. Thus

KRA(b11) 6∼= KRB(b11)↑K A
KB .

As shown in the following example, Condition (i′) may be strictly stronger than
Condition (i) because <R is only a preorder.

Example 7.9. Let A be the aperiodic Rees matrix monoid with nontrivial J-class
given by 


a∗11 b12 b13

a∗21 b∗22 a23

a∗31 a32 b∗33


 ,

Let B be the submonoid {1, b12, b13, b22, b33, 0}. Then B satisfies conditions (i)
and (ii), but not condition (i′): b12 and b13 are incomparable for ≤RB whereas they
are in the same right class for A.

We now turn to the proof of Proposition 7.5 by showing that Mw0(W )⊆ M(W )

satisfy the conditions of Lemma 7.7. We use the stronger condition (i′).

Lemma 7.10. The biHecke monoid and its Borel submonoid Mw0(W ) ⊆ M(W )

satisfy conditions (i′) and (ii) of Lemma 7.7.

Proof. By Proposition 4.18, for any f ∈ M there exists a unique f1 ∈ R( f ) ∩
M1. Using the bar involution of Section 4g, one finds similarly a unique f̄1 ∈
R( f )∩Mw0 . This proves condition (ii).

We now prove the nontrivial implication in condition (i′). Take f, g ∈ Mw0 with
f ≤RM g. Then, f = gx for some x ∈ M . Note that w0 . f = w0 .g = w0, which
implies that w0 .x = w0 as well. Hence x is in fact in Mw0 and f ≤RMw0 g. �

Proof of Proposition 7.5. Let gw := ew,w0 . By definition, the translation module
is the quotient Tw = KgwM/KR<(gw), whereas Sw0

w = KgwMw0/KRw0
< (gw). By

Lemma 7.10, Mw0 ⊆ M satisfy the two conditions of Lemma 7.7; Proposition 7.5
follows. �

Theorem 7.11. The right regular representation of KM admits a filtration with
factors all isomorphic to translation modules, and its character is given by

[KM] =
∑

f ∈Mw0

[T1 . f ]. (7-4)

Proof. As any monoid algebra, KM admits a filtration where each composition
factor is given by (the linear span of) an R-class of M . By Proposition 6.2, each
such composition factor is isomorphic to the translation module T1 . f , where f is
the unique element of the R-class that lies in Mw0 . The character formula follows.
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Alternatively, it can be obtained using Proposition 7.5 and the character formula
for the right regular representation of Mw0 (see Remark 5.11):

[KMw0]Mw0
=

∑

f ∈Mw0

[Sw0
1 . f ]Mw0

, (7-5)

which completes the proof. �

Proposition 7.12. For any w ∈ W , the translation module Tw is multiplicity-free
as an KMw0-module and its character is given by

[Tw]Mw0
=

∑

u∈[1,w]R
[Sw0

u ]Mw0
. (7-6)

Proof. Let f be an element in M that yields the translation module Tw, and define
fu as in Proposition 4.18.

Take some sequence u1, . . . , um (for m = |[1, w]R|) of the elements of [1, w]R
that is length increasing, and define the corresponding sequence of subspaces by
X i := K{u1, . . . , ui }. Using Lemma 6.14, each such subspace is stable by Mw0 ,
and X0 ⊂ · · · ⊂ Xm forms an Mw0-composition series of Tw since X i/X i−1 is of
dimension 1.

Consider now a composition factor X i/X i−1. Again, by Lemma 6.14, ev,w0

fixes ui if and only if v ≤L ui (that is, if the image set [ui , w
−1w0ui ]L of fui

is contained in the image set [v,w0]L of ev,w0), and kills it otherwise. Hence,
X i/X i−1 is isomorphic to Sw0

ui . �

Theorem 7.13. The decomposition map of KM over KMw0 is lower uni-triangular
for right order, with 0, 1 entries. More explicitly,

[Sw]Mw0
=

∑

u∈[1,w]R\⋃v@w[1,v]R
[Sw0

u ]Mw0
. (7-7)

Proof. Since Sw is a quotient of Tw, its composition factors form a subset of
the composition factors for Tw. Hence, using Proposition 7.12, the decomposition
matrix of M over Mw0 is lower triangular for right order, with 0, 1 entries. Further-
more, by construction (see Remark 6.9 and Theorem 7.1(ii)), Sw = Tw/

∑
v@w Tv;

using Proposition 7.12 the sum on the right hand side contains at least one com-
position factor isomorphic to Sw0

u for each u in [1, v]R with v @ w; therefore Sw
has no such composition factor. We conclude using the dimension formula of
Theorem 7.1(ii). �

Example 7.14. Following up on Example 7.3, the decomposition of the KM-
simple module S4312 over KMw0 is given by [S4312]Mw0

=[Sw0
4312]+[Sw0

4132]+[Sw0
1432].

See also Figure 1 and the decomposition matrices given in Appendix A.
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Figure 6. The left and right class modules indexed by w :=
s1s2s1s2 for the biHecke monoid M(Ip) with p ≥ 5. The left
picture also describes the left simple module Sw of M(Ip), and
the projective module Pw0

w of the Borel submonoid Mw0(Ip).

7c. Example: the rank 2 Coxeter groups. We now give a complete description
of the representation theory of the biHecke monoid for each rank 2 Coxeter group
Ip. The proofs are left as exercises for the reader.

Example 7.15. Let M be the biHecke monoid for the dihedral group W := Ip of
order 2p. Then, M is a regular monoid.

The right class module KRw := KR(ew,w0) is the translation module spanned
by [1, w]R . It is of dimension 2p for w = w0, and `(w) otherwise. The left class
modules KL1 and KLw0 are respectively the trivial module spanned by 1 and the
zero module spanned by w0. For w 6= 1, w0, the left class module KLw is of
dimension `(w)− 1, and its structure is as in Figure 6. In particular,

|M | = 2p+ 1+ 2
p−1∑

k=1

k(k+ 1)= 2
3 p3+ 4

3 p+ 1.

The simple right module Sw can be constructed from the cutting poset. Namely,
S1 is the trivial module spanned by 1, while Sw0 is the zero module spanned by w0

and, forw 6= 1, w0, Sw is the quotient of the right class module by the line spanned
by alternating sum of [1, w]R . The simple left module Sw is directly given by the
left class module Lw.

The quiver of M is given by the cutting poset (see Figure 7). The q-Cartan matrix
is given by the path algebra of this quiver; namely, there is an extra arrow from 1
to w0 with weight q2. In particular, it is upper unitriangular and of determinant 1.

Example 7.16. Let Mw0 be the Borel submonoid of the biHecke monoid for the
dihedral group W := Ip of order 2p.
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1

s1 s2s1s2 s2s1s1s2s1 s2s1s2w0s1 w0s2

w0

Figure 7. The Hasse diagram of the cutting poset for the dihedral
group W := I5. This is also the quiver of the biHecke monoid for
that group.

1

s1 s2

s1s2 s2s1

s1s2s1 s2s1s2

s1s2s1s2 s2s1s2s1

w0

Figure 8. The quiver of the Borel submonoid Mw0(I5) of the bi-
Hecke monoid for the dihedral group I5.

The projective module Pw of Mw0 is given by the left simple modules Sw, or
equivalently the left-class-module Lw of M . In particular,

|Mw0 | = 1+ 1+ 2
p−1∑

k=1

k = p2− p+ 2.

The quiver of Mw0 is given by the cover relations in Bruhat order (or equivalently
right order) that are not covers in left order (see Figure 8); this gives two chains of
length p− 1. The monoid algebra is isomorphic to the path algebra of this quiver,
which gives right away its radical filtration. Combinatorially speaking, every non-
idempotent element f of the monoid admits a unique minimal factorization eweu ,
with `(u) < `(w) and u 6≤L w; namely, u := f (1) and w is the smallest element
such that f (w)= 1.
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8. Research in progress

Our guiding problem is the search for a formula for the cardinality of the biHecke
monoid. Using a standard result of the representation theory of finite-dimensional
algebras together with the results of this paper, we can now write

|M(W )| =
∑

w∈W

dim Sw dim Pw,

where dim Sw is given by an inclusion-exclusion formula. It remains to determine
the dimensions of the projective modules Pw.

While studying the representation theory of the Borel submonoid M1 as an in-
termediate step, the authors realized that many of the combinatorial ingredients
that arose were well-known in the semigroup community (for example the Green’s
relations and related classes, automorphism groups, etc.), and hence the represen-
tation theory of M1 is naturally expressed in the context of J-trivial monoids; see
[Denton et al. 2010/11]. This sparked their interest in the representation theory of
more general classes of monoids, in particular aperiodic monoids.

At the current stage, it appears that the Cartan matrix of an aperiodic monoid
(and therefore the composition series of its projective modules, and by consequence
their dimensions) is completely determined by the knowledge of the composition
series for both left and right class modules. In other words, the study in this pa-
per of right class modules (that is, translation modules), whose original purpose
was to construct the simple modules using [Ganyushkin et al. 2009, Theorem 7],
turns out to complete half of this program. The remaining half, in progress, is the
decomposition of left class modules.

At the combinatorial level, this requires one to control L-order. Loosely speak-
ing, L-order is essentially given by left and right order in W ; however, within
L-classes the structure seems more elusive, in particular because fibers are more
difficult to describe than image sets. Another difficulty is that, unlike for R-class
modules, L-class modules are not all isomorphic to regular ones (that is, classes
containing idempotents).

Yet, the general theory gives that the decomposition matrix should be upper
triangular for left-right order for regular classes, and upper triangular for Bruhat
order for nonregular ones, with no left-right “arrow” for left-right order. Pushing
this further gives that the Cartan matrix has determinant 1.

We conclude by illustrating the above for W =S4 in Figure 9. The blue arrows
are the covering relations of the cutting poset, which encode the composition series
of the translation modules (that is, right class modules). Namely, the character of
Tw is given by the sum of qk[Su] for u below w in the cutting poset, with k the
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1234: 1 1 1

1423: 2 3 3 1342: 2 3 3 3412: 5 6 6 2341: 3 4 43124: 2 3 32314: 2 3 3 4123: 3 4 4 2413: 4 5 5 3142: 4 5 5

1432: 1 6 12 3214: 1 6 121243: 1 2 8 2431: 4 8 8 4312: 3 12 122134: 1 2 8 3241: 4 8 83421: 3 12 12 4231: 5 12 12 4132: 4 8 8 4213: 4 8 8

2143: 1 4 12 4321: 1 24 24 1324: 1 2 22

Figure 9. Graph encoding the characters of left and right class
modules, and therefore the Cartan invariant matrix for M(S4).
See the text for details.

distance from u to w in that poset. For example,

[T2143] = [S2143] + q[S1243] + q[S2134] + q2[S1234],
[T2341] = [S2341] + q[S1234],
[T4123] = [S4123] + q[S4123].

Similarly the black and red arrows encode the composition series of regular and,
respectively, nonregular left classes. In this simple example, the q-character of a
right projective module Pw is then given by

[Pw] = [Tw] +
∑

u

q[Tu],

where (u, w) is a black or red arrow in the graph. For example,

[P2143] = [T2143] + q[T2341] + q[T4123]
= [S2143] + q[S1243] + q[S2134] + q[S2341] + q[S4123] + 3q2[S1234].
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Appendix A. Monoid of edge surjective morphism of a colored graph

Let C be a set whose elements are called colors. We consider colored simple
digraphs without loops. More precisely, a C-colored graph is a triple G= (V, E, c),
where V is the set of vertices of G, E⊂V×V/{(x, x) | x ∈V } is the set of (oriented)
edges of G, and c : E→ C is the coloring map.

Definition A.1. Let G = (V, E, c) and G ′ = (V ′, E ′, c′) be two colored graphs.
An edge surjective morphism (or ES-morphism) from G to G ′ is a map f : V→ V ′
such that

• For any edge (a, b) ∈ E , either f (a) = f (b), or ( f (a), f (b)) ∈ E ′ and
c(a, b)= c′( f (a), f (b)).

• For any edge (a′, b′) ∈ E ′ with a′ and b′ in the image set of f there exists an
edge (a, b) ∈ E such that f (a)= a′ and f (b)= b′.

Note that by analogy to categories, instead of ES-morphism, we can speak about
full morphisms.

The following proposition shows that colored graphs together with edge surjec-
tive morphisms form a category.

Proposition A.2. For any colored graphs G,G1,G2,G3,

• the identity id : G→ G is an ES-morphism;

• for any ES-morphism f : G1→ G2 and g : G2→ G3 the composed function
g ◦ f : G1→ G3 is an ES-morphism.

Corollary A.3. For any colored graph G, the set of ES-morphisms from G to G is
a submonoid of the monoid of the functions from G to G.

Here are some general properties of ES-morphisms:

Proposition A.4. Let G1 and G2 be two colored graphs and f an ES-morphism
from G1 to G2. Then the image of any path in G1 is a path in G2.

In our particular case, we have some more properties:

(i) The graph is acyclic, with unique source and sink. In particular, it is (weakly)
connected.
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12 21 Proj.
12 1 . 1
21 . 1 1

Proj. 1 1

Table 2. q-Cartan invariant matrix of Mw0(S2) (type A1).

12
3

13
2

21
3

23
1

31
2

32
1

Proj.
123 1 . . . . . 1
132 . 1 . . q . 2
213 . . 1 q . . 2
231 . . . 1 . . 1
312 . . . . 1 . 1
321 . . . . . 1 1
Proj. 1 1 1 2 2 1

Table 3. q-Cartan invariant matrix of Mw0(S3) (type A2).

(ii) The graph is ranked by the integers, and edges occur only between two con-
secutive ranks.

(iii) The graph is C-regular, which means that for any vertex v

Remarks A.5. Proposition 4.1 gives that our monoid is a submonoid of the M(G)
monoid for left order.

Propositions 4.3 and 4.11 are generic, and would apply to any M(G). For the
latter, we just need that G is C-regular.

A natural source of colored graphs are crystal graphs. A question that arises is
what the G-monoid of a crystal looks like.

Appendix B. Tables

B1. q-Cartan invariant matrices. In Tables 2–7, we give the Cartan invariant ma-
trix for KMw0 and KM in types A1, A2 and A3. The q-parameter records the layer
in the radical filtration. The extra rows and columns entitled “Simp.” and “Proj.”
give the dimension of the simple and projective modules, on the right for right mod-
ules and below for left modules. When all simple modules are one-dimensional,
the column is omitted.

Using [Thiéry 2012], it is possible to go further, and compute for example the
Cartan invariant matrix for M in type A4 in about one hour (though at q = 1 only).
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12
34

12
43

13
24

13
42

14
23

14
32

21
34

21
43

23
14

23
41

24
13

24
31

31
24

31
42

32
14

32
41

34
12

34
21

41
23

41
32

42
13

42
31

43
12

43
21

Proj.
1234 1 . . . . . . . . . . . . . . . . . . . . . . . 1
1243 . 1 . . q . . . . . q q2 . . . . q . q2 . . . . . 6
1324 . . 1 q . . . . . q . . q q2 . q2 q3 . q q2 . q . . 10
1342 . . . 1 . . . . . . . . . q . . q2 . . q . . . . 4
1423 . . . . 1 . . . . . . . . . . . . . q . . . . . 2
1432 . . . . . 1 . . . . . . . . . . q . . q . . q2 . 4
2134 . . . . . . 1 . q q2 q . . . . . q . . . q2 . . . 6
2143 . . . . . . . 1 . q q q2 . . . . . . q . q2 q3 . . 7
2314 . . . . . . . . 1 q . . . . . . . . . . . . . . 2
2341 . . . . . . . . . 1 . . . . . . . . . . . . . . 1
2413 . . . . . . . . . . 1 q . . . . . . . . q q2 . . 4
2431 . . . . . . . . . . . 1 . . . . . . . . . q . . 2
3124 . . . . . . . . . . . . 1 q . q q2 . . . . . . . 4
3142 . . . . . . . . . . . . . 1 . . q . . . . . . . 2
3214 . . . . . . . . . . . . . . 1 q q q2 . . . . . . 4
3241 . . . . . . . . . . . . . . . 1 . q . . . . . . 2
3412 . . . . . . . . . . . . . . . . 1 . . . . . . . 1
3421 . . . . . . . . . . . . . . . . . 1 . . . . . . 1
4123 . . . . . . . . . . . . . . . . . . 1 . . . . . 1
4132 . . . . . . . . . . . . . . . . . . . 1 . . q . 2
4213 . . . . . . . . . . . . . . . . . . . . 1 q . . 2
4231 . . . . . . . . . . . . . . . . . . . . . 1 . . 1
4312 . . . . . . . . . . . . . . . . . . . . . . 1 . 1
4321 . . . . . . . . . . . . . . . . . . . . . . . 1 1
Proj. 1 1 1 2 2 1 1 1 2 5 4 4 2 4 1 4 9 3 5 4 4 6 3 1

Table 4. q-Cartan invariant matrix of Mw0(S4) (type A3).

12 21 Simp. Proj.
12 1 . 1 1
21 q 1 1 2

Simp. 1 1
Proj. 2 1

Table 5. q-Cartan invariant matrix of M(S2) (type A1).

B2. Decomposition matrices. Since Mw0 is a submonoid of M , any simple M-
module is also a simple Mw0-module. The matrices of Tables 8–10 give the (gen-
eralized) Mw0 character of the simple M-module. The table reads as follows: for
any two permutations σ, τ , the coefficient mσ,τ gives the Jordan–Hölder multiplic-
ity of the Mw0-module Sw0

τ in the M-module Sσ . In particular, since the simple
Mw0-modules are of dimension 1, summing each line one recovers the dimension
of the simple M-modules.
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12
3

13
2

21
3

23
1

31
2

32
1

Simp. Proj.
123 1 . . . . 1 1
132 q 1 . . . 1 2
213 q . 1 . . 1 2
231 q . . 1 . 2 3
312 q . . . 1 2 3
321 q2 . . q q 1 1 6

Simp. 1 1 1 2 2 1
Proj. 8 1 1 3 3 1

Table 6. q-Cartan invariant matrix of M(S3) (type A2).

12
34

12
43

13
24

13
42

14
23

14
32

21
34

21
43

23
14

23
41

24
13

24
31

31
24

31
42

32
14

32
41

34
12

34
21

41
23

41
32

42
13

42
31

43
12

43
21

Simp. Proj.
1234 1 . . . . . . . . . . . . . . . . . . . . . . . 1 1
1243 q2 + q 1 . . . . . . . . . . . . . . q . . . . . . . 1 8
1324 q3 + 2q2 + q . 1 . . . . . . q2 + q . . . . . . . . q2 + q . . q . . 1 22
1342 q . . 1 . . . . . . . . . . . . . . . . . . . . 2 3
1423 q . . . 1 . . . . . . . . . . . . . . . . . . . 2 3
1432 2q2 . . q q 1 . . . . . . . . . . q . . . . . . . 1 12
2134 q2 + q . . . . . 1 . . . . . . . . . q . . . . . . . 1 8
2143 3q2 q . . . . q 1 . q . . . . . . . . q . . . . . 1 12
2314 q . . . . . . . 1 . . . . . . . . . . . . . . . 2 3
2341 q . . . . . . . . 1 . . . . . . . . . . . . . . 3 4
2413 q . . . . . . . . . 1 . . . . . . . . . . . . . 4 5
2431 q2 . . . . . . . . q . 1 . . . . . . . . . . . . 4 8
3124 q . . . . . . . . . . . 1 . . . . . . . . . . . 2 3
3142 q . . . . . . . . . . . . 1 . . . . . . . . . . 4 5
3214 2q2 . . . . . . . q . . . q . 1 . q . . . . . . . 1 12
3241 q2 . . . . . . . . q . . . . . 1 . . . . . . . . 4 8
3412 q . . . . . . . . . . . . . . . 1 . . . . . . . 5 6
3421 q2 . . . . . . . . q . . . . . . q 1 . . . . . . 3 12
4123 q . . . . . . . . . . . . . . . . . 1 . . . . . 3 4
4132 q2 . . . . . . . . . . . . . . . . . q 1 . . . . 4 8
4213 q2 . . . . . . . . . . . . . . . . . q . 1 . . . 4 8
4231 q2 . . . . . . . . q . . . . . . . . q . . 1 . . 5 12
4312 q2 . . . . . . . . . . . . . . . q . q . . . 1 . 3 12
4321 q3 . . . . . . . . q2 . . . . . . q2 q q2 . . q q 1 1 24
Simp. 1 1 1 2 2 1 1 1 2 3 4 4 2 4 1 4 5 3 3 4 4 5 3 1
Proj. 71 2 1 3 3 1 2 1 3 23 4 4 3 4 1 4 16 4 23 4 4 7 4 1

Table 7. q-Cartan invariant matrix of M(S4) (type A3).
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12 21 Simp.
12 1 . 1
21 . 1 1

Table 8. Decomposition matrix of M(S2) on Mw0(S2) (type A1).

12
3

13
2

21
3

23
1

31
2

32
1

Simp.
123 1 . . . . . 1
132 . 1 . . . . 1
213 . . 1 . . . 1
231 . . 1 1 . . 2
312 . 1 . . 1 . 2
321 . . . . . 1 1

Table 9. Decomposition matrix of M(S3) on Mw0(S3) (type A2).

12
34

12
43

13
24

13
42

14
23

14
32

21
34

21
43

23
14

23
41

24
13

24
31

31
24

31
42

32
14

32
41

34
12

34
21

41
23

41
32

42
13

42
31

43
12

43
21

Simp.
1234 1 . . . . . . . . . . . . . . . . . . . . . . . 1
1243 . 1 . . . . . . . . . . . . . . . . . . . . . . 1
1324 . . 1 . . . . . . . . . . . . . . . . . . . . . 1
1342 . . 1 1 . . . . . . . . . . . . . . . . . . . . 2
1423 . 1 . . 1 . . . . . . . . . . . . . . . . . . . 2
1432 . . . . . 1 . . . . . . . . . . . . . . . . . . 1
2134 . . . . . . 1 . . . . . . . . . . . . . . . . . 1
2143 . . . . . . . 1 . . . . . . . . . . . . . . . . 1
2314 . . . . . . 1 . 1 . . . . . . . . . . . . . . . 2
2341 . . . . . . 1 . 1 1 . . . . . . . . . . . . . . 3
2413 . 1 . . . . 1 1 . . 1 . . . . . . . . . . . . . 4
2431 . 1 . . . . . 1 . . 1 1 . . . . . . . . . . . . 4
3124 . . 1 . . . . . . . . . 1 . . . . . . . . . . . 2
3142 . . 1 1 . . . . . . . . 1 1 . . . . . . . . . . 4
3214 . . . . . . . . . . . . . . 1 . . . . . . . . . 1
3241 . . 1 . . . . . . . . . 1 . 1 1 . . . . . . . . 4
3412 . . 1 1 . . . . . . . . 1 1 . . 1 . . . . . . . 5
3421 . . . . . . . . . . . . . . 1 1 . 1 . . . . . . 3
4123 . 1 . . 1 . . . . . . . . . . . . . 1 . . . . . 3
4132 . . 1 1 . 1 . . . . . . . . . . . . . 1 . . . . 4
4213 . . . . . . 1 1 . . 1 . . . . . . . . . 1 . . . 4
4231 . . . . . . . 1 . . 1 1 . . . . . . . . 1 1 . . 5
4312 . . . . . 1 . . . . . . . . . . . . . 1 . . 1 . 3
4321 . . . . . . . . . . . . . . . . . . . . . . . 1 1

Table 10. Decomposition matrix of M(S4) on Mw0(S4) (type A3).
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Shuffle algebras, homology,
and consecutive pattern avoidance

Vladimir Dotsenko and Anton Khoroshkin

Shuffle algebras are monoids for an unconventional monoidal category structure
on graded vector spaces. We present two homological results on shuffle algebras
with monomial relations, and use them to prove exact and asymptotic results on
consecutive pattern avoidance in permutations.

1. Introduction

The goal of this paper is twofold. First of all, it is intended to develop some
homological algebra tools for shuffle algebras defined by Maria Ronco [2011]
(called also permutads in a recent paper [Loday and Ronco 2011]). Namely, our
main result can be viewed as the computation of appropriate Tor groups for shuffle
algebras with monomial relations (the case of nonmonomial relations may be
handled in a usual way by Gröbner bases and homological perturbation [Dotsenko
and Khoroshkin 2010]). This generalizes for the case of shuffle algebras a celebrated
construction of Anick [1986].

On the other hand, our result has a transparent combinatorial meaning. Shuffle
algebras with monomial relations have bases that can be naturally described via
(generalized colored) permutations avoiding given consecutive patterns. A per-
mutation τ is said to occur in a permutation σ as a consecutive pattern if there
exists a subword of σ which is order-isomorphic to τ . Free resolutions that we
construct allow us to give combinatorial formulae for inverses of the corresponding
exponential generating functions. A simple example one can have in mind is
as follows. Permutations avoiding the consecutive pattern 12 are precisely the
decreasing permutations; there is exactly one such permutation of each length n.
“On the dual level”, the space of generators of the corresponding free resolution is
spanned by permutations where all the subwords of length two are order-isomorphic
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to 12, that is increasing permutations. There is also exactly one such permutation
of each length n. This leads to the inversion formula∑

n≥0

tn

n!
=

1
1−t+

∑
q≥2

(−1)q
q! tq

,

where one recognizes an elementary formula

exp(t)= 1
exp(−t)

.

One particular application of our approach for longer patterns is a proof of a
conjecture of Elizalde [2004] on patterns without self-overlaps. When we prepared
the first draft of this paper, we learned that this conjecture was independently
proved by Adrian Duane and Jeffrey Remmel [2011] based on methods developed
in [Mendes and Remmel 2006].

The example above, as well as many similar ones, fits into a very simple combi-
natorial proof using the inclusion-exclusion principle. The combinatorial formalism
for that is called the cluster method of Goulden and Jackson [1979]; see also
[Noonan and Zeilberger 1999]. However, the formulas provided in that way have
many terms canceling for somewhat trivial reasons. In contrast, our approach gives
formulas free from those trivial cancellations. Further progress in algorithmic and
computational approaches to consecutive pattern avoidance is presented in recent
preprints [Baxter et al. 2011; Nakamura 2011]. We also wish to mention a follow-up
[Khoroshkin and Shapiro 2011] to an earlier version of this paper showing the
relevance of homological methods for studying consecutive patterns.

The paper is organized as follows. In Section 2 we give the definition of a shuffle
algebra, and explain how shuffle algebras can be used to study consecutive pattern
avoidance. Then, before constructing our free resolutions in full detail, we begin
with exploring the low homological degrees in Section 3. It turns out that they can
be used to obtain various asymptotic results on consecutive pattern avoidance, in
the spirit of the approach of Golod and Shafarevich [1964]. We re-prove several
results in that direction previous obtained by Elizalde [2006], and derive various
new ones. Finally in Section 4, we construct a free resolution of the trivial module
over a shuffle algebra with monomial relations, and discuss applications of this
resolution. A reader primarily interested in applications to combinatorics should
refer to Sections 3.2 and 4.2; though these sections contain references to results
proved in more algebraic parts of the paper, they are close to being self-contained
in all other respects.

All vector spaces throughout this work are defined over an arbitrary field k of
zero characteristic. We adopt the usual notation [n] for the set {1, 2, . . . , n}. The
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group of permutations of a finite set I is denoted by Sym(I ). In case I = [n], we
use a more concise notation Sn for the permutation group.

2. Shuffle algebras

2.1. Nonsymmetric collections and shuffle products. In this section, we shall
recall the definition of a shuffle algebra, as defined by Ronco [2011]; see also
[Loday and Ronco 2011]. Our definitions and methods, though equivalent to the
original definition of Ronco (and the subsequent definition of Loday and Ronco),
are different, and rather follow the approach of [Dotsenko and Khoroshkin 2010].

We denote by Ord+ the category whose objects are finite ordered sets (with
order-preserving bijections as morphisms). Also, we denote by Vect the category
of vector spaces (with linear operators as morphisms).

Definition 1. (1) A (nonsymmetric) collection is a contravariant functor from the
category Ord+ to the category Vect.

(2) Let P and Q be two nonsymmetric collections. Define their shuffle tensor
product P�Q by the formula

(P�Q)(I ) :=
⊕

JtK=I

P(J )⊗Q(K ),

where the sum is taken over all partitions of I into two disjoint subsets J
and K .

Remark 2. (1) Nonsymmetric collections are in one-to-one correspondence with
(nonnegatively) graded vector spaces (for a functor F, the graded component
Fn of the corresponding graded vector space F is F([n])). However, the
functorial definition makes the monoidal structure much easier to handle, with
one exception: To define a nonsymmetric collection, it is sufficient to define
the spaces F([n]), with all other spaces defined automatically because of
functoriality. We shall use this observation many times throughout the paper.

(2) If we define the tensor product of two nonsymmetric collections by a similar-
looking formula

(P⊗Q)(I ) :=
⊕

J+K=I

P(J )⊗Q(K ),

where the sum is taken over all partitions of I into two consecutive inter-
vals J and K , this would indeed give the standard tensor product of graded
vector spaces.

The following proposition is straightforward; we omit the proof.
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Proposition 3. The shuffle tensor product endows the category of nonsymmetric
collections with a structure of a monoidal category. The unit object in each case
is the functor I that vanishes on all nonempty sets and is one-dimensional for the
empty set.

The following proposition shows that the shuffle tensor product provides a
“categorification” of the product of exponential generating functions in the same
way as the usual tensor product provides a categorification of the product of “normal”
generating functions.

Proposition 4. For a nonsymmetric collection P, let us define its exponential
generating series fP(t) as the power series∑

n≥0

dim P([n])
n!

tn.

Then we have
fP�Q(t)= fP(t) · fQ(t). (1)

Proof. Indeed, the number of ways to split [n] into a disjoint union [n] = J t K
with |J | = j and |K | = k is equal to(n

j

)
=

n!
j !(n− j)!

=
n!

j ! k!
,

so
dim((P�Q)([n]))=

∑
0≤ j≤n

n!
j ! k!

dim(P([ j])) dim(Q([k])),

and the result follows. �

2.2. Shuffle algebras.

Definition 5. A shuffle (associative) algebra is a monoid in the category of nonsym-
metric collections with the monoidal structure given by the shuffle tensor product.

In other words, to define a shuffle algebra structure on a nonsymmetric collec-
tion A, one has to define the structure maps

µJ,K : A(J )⊗A(K )→A(J t K )

satisfying the obvious associativity conditions.

Remark 6. Shuffle algebras are closely related to twisted associative algebras (see
for instance [Stover 1993]), namely, they are in the same relationship with them as
shuffle operads are with symmetric operads. Also, the category of shuffle algebras
admits an embedding into the category of shuffle operads, and this embedding is
behind some of the constructions of this paper. We shall not discuss these topics in
detail here.
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Example 7. Every graded associative algebra V gives rise to a shuffle algebra Ṽ
with Ṽ (I )=V|I |, where for every partition I = JtK the corresponding product map

µJ,K : Ṽ (J )⊗ Ṽ (K )= V|J |⊗ V|K |→ V|J |+|K | = Ṽ (I )

is given by the product in V .

Example 8. Consider the shuffle algebra AM R with AM R(I )= k Sym(I ), where
for every partition I = J t K the corresponding product map

µJ,K : AM R(J )⊗AM R(K )= k Sym(J )⊗ k Sym(K )→ k Sym(I )=AM R(I )

is somewhat tautological: The product of two permutations is the permutation of
I = J t K obtained from the respective permutations of J and K by concatenation.

As shown in [Ronco 2011], the algebra from the previous example is isomorphic
to the free shuffle algebra with one generator of degree 1. This shuffle algebra
gives a refinement of (the underlying graded algebra of) the Malvenuto–Reutenauer
Hopf algebra of permutations [Malvenuto and Reutenauer 1995]. Many other Hopf
algebras of combinatorial nature, for example, the Hopf algebra of quasisymmetric
functions, the Hopf algebra of parking functions, the Hopf algebra of set partitions,
etc. (for definitions, see [Loday and Ronco 2010] and references therein), are shuffle
algebras as well, with the associative product being the sum over all possible shuffle
products.

Let us give the combinatorial construction of a free algebra generated by a given
nonsymmetric collection. Let M be a nonsymmetric collection with M(∅)= {0},
and let B be a nonsymmetric collection of finite ordered sets (that is, a functor from
the category Ord+ to itself) such that for every ordered set I the set B(I ) is a basis
of M(I ). We shall describe a nonsymmetric collection of finite ordered sets that
will form a bases in components of the free shuffle algebra. By definition, elements
of B(I ) correspond to the following combinatorial data:

(1) an ordered partition of I into subsets, I =
⊔m

j=1 I j ,

(2) a “monomial” c1c2 · · · cm with c j ∈ B(I j ) for every j = 1, . . . ,m.

The shuffle product µJ,K concatenates both the ordered partitions and the monomi-
als.

Note that if we assume that M(I )= {0} for |I | 6= 1 and dim M(I )= 1 for |I | = 1,
we see that every subset I j has to consist of one element, and therefore any ordered
partition that contributes is just a permutation (and the monomials do not carry
additional information, capturing the lengths of the permutations). Therefore, we
recover the free algebra with one generator of degree 1 from Example 8 above.

The following proposition is straightforward.
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Proposition 9. The collection F〈M〉 with F〈M〉(I )= span B(I ) is (isomorphic to)
the free shuffle algebra generated by M.

2.2.1. Shuffle ideals and modules. Since shuffle algebras are monoids in a monoidal
category, the usual definitions of ideals, quotients, modules, etc. can be immediately
given in this context. To make the article self-contained, we present them here. All
shuffle algebras in this paper are assumed to be connected, that is having k as the
empty set component.

Definition 10. Let A be a shuffle algebra with the product µ : A�A→A.

• A right module over A is a nonsymmetric collection M together with a structure
map γ : M�A→M satisfying the associativity condition

γ(γ� idA)= γ(idM �µ).

• The trivial right module over A is the collection I that has k as the empty set
component and zero for all other components, where the only nonzero part of
the structure map is

I(∅)⊗A(∅)= k⊗ k' k= I(∅).

• The regular right module over A is the collection A itself, with the structure
map γ = µ.

• A right ideal of A is a subcollection of the regular right module that is closed
under the structure map.

• For a subcollection R of A, the right ideal (R) generated by R is the minimal
right ideal of A that contains R.

• The free right module over A generated by the nonsymmetric collection V

is the collection V � A with the structure map γ = idV �µ. A free module
is said to be finitely generated if all components V(I ) are finite-dimensional,
and moreover they vanish for |I | sufficiently large.

The respective definitions of left modules, left ideals, bimodules, and two-sided
ideals are completely analogous.

The following is an example of how graded associative algebras can be pre-
sented as shuffle algebras with generators and relations, that is, as quotients of free
shuffle algebras.

Example 11. Let us take the algebra AM R discussed in Example 8, and compute
its quotient modulo the two-sided ideal generated by the difference 12− 21 ∈ kS2.
This quotient is isomorphic to the algebra Ṽ from Example 7 with V = k[x].
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2.2.2. Consecutive patterns. In this section, we shall explain how our definitions
are related to the combinatorial concept of consecutive pattern avoidance.

Let us recall some definitions and notation. To every sequence s of length k
consisting of k distinct numbers, we assign a permutation st(s) of length k called
the standardization of s; it is uniquely determined by the condition that si < s j

if and only if st(s)i < st(s) j . For example, st(153) = 132. In other words, st(s)
is a permutation whose relative order of entries is the same as that of s. We say
that a permutation σ of length n avoids the given permutation τ of length j as a
consecutive pattern if for each j < n − i + 1 we have st(σiσi+1 · · · σi+ j−1) 6= τ ;
otherwise we say that σ contains τ as a consecutive pattern. Throughout this
paper, we only deal with consecutive patterns, so the word “consecutive” will be
omitted. For historical information on pattern avoidance in general and the state of
the art for consecutive patterns, we refer the reader to [Kitaev and Mansour 2003;
Steingrímsson 2010].

The central question arising in the theory of pattern avoidance is that of enumera-
tion of permutations of given length that avoid the given set of forbidden patterns P
or, more generally, contain exactly l occurrences of patterns from P . This question
naturally leads to the following equivalence relations. Two sets of patterns P and
P ′ are said to be Wilf equivalent (notation: P 'W P ′) if for every n, the number
of P-avoiding permutations of length n is equal to the number of P ′-avoiding
permutations of length n. This notion (in the case of one pattern) is due to Wilf
[2002]. More generally, P and P ′ are said to be equivalent (notation: P ' P ′)
if for every n and every k ≥ 0, the number of permutations of length n with k
occurrences of patterns from P is equal to the number of permutations of length n
with k occurrences of patterns from P ′.

While studying the equivalence classes of patterns, sometimes it is possible to
replace the set of forbidden patterns by a Wilf equivalent one with fewer patterns
in it. Namely, we have a partial ordering on the set of all permutations (of all
possible lengths): τ < σ if σ contains τ as a consecutive pattern. Given a set P of
“forbidden” patterns, to enumerate the permutations avoiding all patterns from P ,
we may assume that P is an antichain with respect to this partial ordering. Indeed,
ignoring all patterns from P that contain a smaller forbidden subpattern does not
change the set of P-avoiding permutations. Therefore, further on we shall assume
that forbidden patterns do indeed form an antichain.

2.2.3. Shuffle algebras and consecutive patterns. The following result, however
simple, provides a bridge between algebra and combinatorics, defining for each
forbidden set P of patterns a shuffle algebra whose exponential generating series
is precisely the exponential generating function for the numbers of permutations
avoiding P . Let us denote by a P

n the number of permutations of length n that avoid
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all patterns from P , and by gP(t) the corresponding exponential generating function,

gP(t) := 1+
∑
n≥1

a P
n

n!
tn.

Theorem 12. For every set P of forbidden patterns, let us define the shuffle algebra
AP

M R as the quotient of the algebra AM R modulo the two-sided ideal generated by
all patterns from P. Then the (classes of ) permutations avoiding all patterns from
P form a basis of the quotient. Consequently,

fAP
M R
(t)= gP(t).

Proof. Since the products in AM R are defined via concatenations, it is clear that
the ideal generated by P consists precisely of permutations containing patterns
from P . This means that we may identify classes in the quotient AM R/(P) with
permutations avoiding patterns from P . We shall use this identification throughout
the paper. �

A similar result for the free shuffle algebra with more than one generator provides
technical tools to deal with pattern avoidance in colored permutations [Mansour
2001/02], and more general consecutive pattern avoidance where, for instance, each
occurrence of a rise of length 2 may or may not be colored. We shall not discuss
the corresponding applications in this paper, but want to draw the reader’s attention
that all our methods generalize immediately to those settings.

2.2.4. Modules over the associative operad. This short section is intended for
readers whose intuition, as ours does, comes from operad theory. Essentially, it
retells the shuffle algebra approach in a slightly different way, explaining also the
place for classical pattern avoidance in the story (recall that classical patterns are
those occurring as subsequences rather than as factors in permutations).

Studying varieties of algebras, that is, algebras satisfying certain identities, goes
back to work of Specht [1950]. The notions of T -ideals and T -spaces formalize the
ways to derive identities from one another. One natural way to study identities is to
define an analogue of a Gröbner basis for an ideal of identities. This approach is
taken in works of Latyshev [2005; 2008], who suggested a combinatorial approach
to studying associative algebras with additional identities via standard bases of
the corresponding T -spaces. His approach can be described as follows. For each
“T -space” (in other words, right ideal in the associative operad), he defines a
version of a Gröbner basis; such a basis would allow to study arbitrary relations
via monomials avoiding certain patterns. Here, for once, by a pattern we mean
a classical pattern (its occurrence does not have to be as a consecutive subword,
but rather a subsequence). This approach has a slight disadvantage. Namely,
even though the actual Gröbner bases of relations are expected to be finite (at
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least, the famous result of Kemer [1988] states that in principle there exists a
finite set of generating identities), they are difficult to compute, as there is no
algorithm comparable to the one due to Buchberger in the associative algebra case
[Ufnarovskij 1995]. Remarkably, this trouble disappears if we study left ideals
in the associative operad. In terms of combinatorics, studying left ideals also has
a very clear meaning: The corresponding notion of divisibility corresponds to
consecutive pattern avoidance! For consecutive patterns, the intuition of [Dotsenko
and Khoroshkin 2010; 2012] for Gröbner bases and resolutions applies directly,
and it turns out to be possible to describe the relevant resolutions explicitly, in fact
the level of complexity here being closer to the case of associative algebras than to
the case of operads.

2.3. Shuffle homological algebra. One of the central concepts of homological
algebra is that of a derived functor. Computing derived functors relies on being able
to construct “nice” (free, projective, injective etc.) resolutions of objects to that we
want to apply our derived functors. The category of objects of primary interest to
us is the category of left modules over the given shuffle algebra A, and a typical
functor we want to derive is “shuffle torsion groups”, that is, the derived functor
of the shuffle tensor product over A with a given module, for instance with the
trivial right module. This paper is focused on combinatorial applications of shuffle
algebras, so in the view of Theorem 12 the shuffle algebras of main interest for us
are quotients of the algebra AM R modulo the ideal generated by several patterns. In
the following sections, we shall present two results of homological algebra for such
shuffle algebras, and derive from these results various statements on enumerative
combinatorics of consecutive patterns. One technical result that we shall be using
to translate between the two languages is the following standard statement on Euler
characteristics, applied to nonsymmetric collections.

Proposition 13. Let · · · → Cn → · · · → C2 → C1 → C0 be a chain complex
of nonsymmetric collections with homology groups H0,H1, . . . ,Hn, . . .. Then
we have

fC0(t)− fC1(t)+ · · ·+ (−1)n fCn (t)+ · · ·

= fH0(t)− fH1(t)+ · · ·+ (−1)n fHn (t)+ · · · ,

provided that the sums on the left and on the right make sense (for every integer l
only finitely many summands have nonzero coefficients of t l).

3. Golod–Shafarevich-type complex and its applications

3.1. Golod–Shafarevich-type inequality. In this section, we shall exhibit a very
simple application of homological algebra philosophy to combinatorics, mimicking
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the idea used by Golod and Shafarevich [1964] in their study of the class field tower,
which has been used a lot in algebra and combinatorics since then; see for instance
[Piotkovskii 1993] and the later papers [Bell and Small 2002; Bell and Goh 2007;
Etingof and Ginzburg 2007; Rampersad 2011]. Namely, we shall construct the
low homological degree part of the minimal resolution of the trivial right module
over the shuffle algebra AP

M R by free modules. More precisely, we shall prove the
following theorem.

Theorem 14. Let V be the one-dimensional space generating the free algebra AM R ,
and P be the subcollection of AM R spanned by forbidden patterns. There exists a
chain complex

P�AP
M R→ V�AP

M R→AP
M R→ I→ 0, (2)

which is exact everywhere except for the leftmost term.

Proof. The boundary maps are as follows:

(1) AP
M R→ I is the augmentation, mapping all permutations of positive length to

zero,

(2) V�AP
M R→AP

M R is the product in the algebra AP
M R (generated by V),

(3) P�AP
M R→ V�AP

M R is the composition of the inclusion

P�AP
M R→ V�AM R �AP

M R

(which exists because V generates the algebra AM R), the projection

V�AM R �AP
M R→ V�AP

M R �AP
M R,

and the product in the algebra AP
M R .

The exactness of this complex in the terms I and AP
M R is obvious. Let us show

the exactness in the term V � AP
M R . Since the relations of the algebra AP

M R are
monomial, the kernel of the boundary map is spanned by “monomials” j �ρ with j
being an element of degree 1 and ρ being a permutation avoiding patterns from P .
Such an element belongs to the kernel of the boundary map if jρ = 0; therefore,
jρ contains a pattern from P . Such a pattern has to be an initial segment of jρ,
otherwise ρ would contain a pattern from P itself. This instantly implies that our
element is in the image of the boundary map from P�AP

M R . �

Corollary 15. Let P =
⊔

n≥2 Pn be a collection of forbidden consecutive patterns
in permutations. Then the following coefficient-wise inequality holds(

1− t +
∑
k≥2

|Pk |

k!
tk
)

gP(t)≥ 1. (3)
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Proof. Let us denote by H3 the only nontrivial piece of homology of the chain
complex (2). Computing Euler characteristics according to Proposition 13, we
see that

fI(t)− fAP
M R
(t)+ fV(t) fAP

M R
(t)− fP(t) fAP

M R
(t)=− fH3(t),

or
1− gP(t)+ tgP(t)−

(∑
k≥2

|Pk |

k!
tk
)

gP(t)=− fH3(t),

which implies (
1− t +

∑
k≥2

|Pk |

k!
tk
)

gP(t)= 1+ fH3(t)≥ 1. �

3.2. Applications to consecutive pattern avoidance. The following contains on
key application of Corollary 15.

Corollary 16. Assume that the power series

f (t)= 1− t +
∑
k≥2

|Pk |

k!
tk

has a root α > 0. Then a P
n ≥ α

−nn! .

Proof. Let ∑
l≥0

bl t l
:=

1

1− t +
∑

k≥2
|Pk |
k! tk

,

so that b0 = 1 and

bn − bn−1+

n∑
k=2

|Pk |

k!
bn−k = 0.

Let us prove by induction that bn ≥ α
−1bn−1. Indeed, for n = 1 this statement is

obvious (α ≥ 1 because otherwise f (α) is evidently positive), and for n > 1 we
note that by the induction hypothesis bn−1 ≥ α

1−kbn−k , so

bn = bn−1−

n∑
k=2

|Pk |

k!
bn−k ≥ bn−1−

n∑
k=2

|Pk |

k!
αk−1bn−1

≥ bn−1−
∑
k≥2

|Pk |

k!
αk−1bn−1 = α

−1bn−1

(
α−

∑
k≥2

|Pk |

k!
αk
)
= α−1bn−1,

which proves the step of induction. Therefore bn ≥ α
−n , and the series

1

1− t +
∑

k≥2
|Pk |
k! tk
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has positive coefficients. Hence multiplying the inequality (3) by that series pre-
serves the inequality, and we obtain

gP(t)≥
1

1− t +
∑

k≥2
|Pk |
k! tk

, so
a P

n

n!
≥ α−n. �

Using the corollary above, one can obtain good asymptotic results on enumeration
of permutations avoiding the given set of consecutive patterns, thus rediscovering a
result of Elizalde [2006] in the case of one pattern, but also recovering some much
stronger results. Let use give several examples.

Corollary 17. The number of permutations of length n avoiding the given single
pattern τ of length k is at least α−n

k n! , where αk is the smallest positive root of the
equation

1− t + tk

k!
= 0.

(For example, α4 ≈ 1.050800769, α5 ≈ 1.008702295, α6 ≈ 1.001400601.)

Corollary 18. Let the set of forbidden patterns P contain one pattern of each
length l ≥ 4. Then the number of permutations of length n avoiding P is at least
α−nn! , where α ≈ 1.068290263 is the root of the equation

et
− 2t − 1

2 t2
−

1
6 t3
= 0.

In particular, there are infinitely many permutations avoiding P regardless of the
actual choice of patterns in P.

Proof. In this case, |Pn| = 1 for all n ≥ 4, so

1− t +
∑
k≥2

|Pk |

k!
tk
= 1− t + et

− 1− t − 1
2 t2
−

1
6 t3
= et
− 2t − 1

2 t2
−

1
6 t3. �

4. Anick-type resolution and its applications

4.1. Anick-type resolution. In this section, we shall explain how to extend the
complex we constructed above to a resolution of the trivial right module by free
AP

M R-modules. The generators of those modules are defined combinatorially. Once
the set P of forbidden patterns is fixed, we define, for each nonnegative integer q ,
the notion of a q-chain and the tail of a given q-chain associated to P inductively
as follows:

• The empty permutation is a 0-chain on the empty set; it coincides with its tail.

• The only permutation of a one-element set I is a 1-chain on I ; it also coincides
with its tail.
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• Each q-chain is a permutation σ represented as a concatenation σ ′τ , where τ
is the tail of σ , and σ ′ is a (q−1)-chain on its underlying set.

• If we denote by τ ′ the tail of σ ′ in the representation above, then τ ′τ contains
exactly one occurrence of a pattern from P , and this occurrence is a terminal
segment of τ ′τ .

The way we define the chains here is slightly different from the original approach
of Anick [1986]; the reader familiar with the excellent textbook of Ufnarovskii
[1995] will rather notice similarities with the approach to Anick resolution adopted
there.

Informally, a q-chain is a “minimal” way to form a permutation by linking
together (q − 1) prohibited patterns. The word “minimal” is justified by the
following:

Lemma 19. No proper beginning of a q-chain is a q-chain.

Proof. We shall prove this by induction on q, the basis of induction (q = 0, 1, 2)
being obvious.

Assume there is a q-chain σ = σ ′τ that has a proper beginning that is a q-chain
as well, so τ = µν, and σ ′µ is a q-chain. By the induction hypothesis, no proper
beginning of a (q−1)-chain is a (q−1)-chain, which implies that µ is the tail of
the q-chain σ ′µ. However, this immediately shows that (in the notation of the
definition of chains and tails above) τ ′τ contains at least two different occurrences
of patterns from P , which is a contradiction. �

One more fact about chains that makes the definition above more transparent is
that, even though we defined a chain as a permutation together with a factorization,
in fact the factorization carries no additional information:

Lemma 20. If σ is a q-chain, the way to link (q−1) patterns from P to one another
to form σ is unique.

Proof. Assume that there are two ways to link q patterns to form σ . Obviously,
for each m < q, the endpoints of the m-th (from left to right) patterns in these
two linkages should coincide, otherwise we shall find an m-chain whose proper
beginning is an m-chain as well, which is not the case by the previous lemma. Once
we know that the endpoints of the m-th patterns are the same, the beginnings have
to be the same because P is assumed to be an antichain (and so patterns from P
cannot be contained in one another). �

Let us give some examples clarifying the notion of a chain. For example, if
P = {12}, the only q-chain for each q is 12 · · · q , while if P = {123}, we can easily
see that 123 is the only 1-chain, and 1234 is the only 2-chain, but 12345 is not a
2-chain because it starts from a 2-chain 1234, and it is not a 3-chain because in the
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only way to cover this permutation by three copies of our pattern, the first and the
third occurrences overlap:

1 2 3︸ ︷︷ ︸︷ ︸︸ ︷
4 5 .

Theorem 21. Denote by Cq the subcollection of the free algebra AM R spanned by
all q-chains. There exists a chain complex

· · ·Cq �AP
M R→ Cq−1 �AP

M R→ · · · → C1 �AP
M R→AP

M R→ I→ 0, (4)

which is exact in every term.

This result is a direct generalization of the one in Theorem 14 since C2 =P and
C1 = V.

Proof. The boundary map Cq �AP
M R→ Cq−1 �AP

M R is defined as a composition
of the inclusion

Cq �AP
M R→ Cq−1 �AM R �AP

M R

(which exists because we can factorize a q-chain as a product of a (q−1)-chain
and a tail), the projection

Cq−1 �AM R �AP
M R→ Cq−1 �AP

M R �AP
M R,

and the product in the algebra AP
M R .

Let us prove the exactness of this complex in the term Cq � AP
M R . Since the

relations of the algebra AP
M R are monomial, the kernel of the boundary map is

spanned by “monomials” σ ⊗ ρ, where σ is a q-chain and ρ is a permutation
avoiding patterns from P . Such an element belongs to the kernel of the boundary
map if σ ′⊗ τρ = 0, where τ is the tail of σ and σ = σ ′τ . Therefore, τρ contains
a pattern from P . Since ρ avoids patterns from P , this means that there exists a
decomposition ρ = ρ ′ρ ′′ such that τρ ′ contains a pattern from P as its terminal
segment, and this is the only occurrence of a pattern from P in τρ ′ (take for ρ ′ the
smallest initial segment of ρ with this property). This immediately implies that σρ ′

is a (q+1)-chain with the tail ρ ′, so our element is the image under the boundary
map of the element σρ ′⊗ ρ ′′. �

Let us denote by cn,q the number of q-chains that are permutations of length n.

Corollary 22. We have

gP(t)=
1

1−t+
∑

q≥2,n≥1

(−1)q cn,q
n! tn

. (5)

Proof. Computing Euler characteristics according to Proposition 13, we see that

fI(t)− fAP
M R
(t)+ fC1(t) fAP

M R
(t)− fC2(t) fAP

M R
(t)+ fC3(t) fAP

M R
(t)− · · · = 0
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or

1− gP(t)+ tgP(t)−
(∑

k≥2

(−1)qcn,q

n!
tn
)

gP(t)= 0,

which implies

gP(t)=
1

1−t+
∑

q≥2,n≥1

(−1)q cn,q
n! tn

. �

Let us give a simple example in which both the left hand side and the right hand
side of the (5) can be easily computed (we already mentioned it in the introduction).
Let P consist of a single pattern 12. Then, for each q we have one q-chain 12 · · · q
of length q. Also, for every m the only permutation of length m avoiding 12 is
m(m− 1) · · · 21. Therefore, the inversion formula above becomes∑

n≥0

tn

n!
=

1
1−t+

∑
q≥2

(−1)q
q! tq

,

and we recognize the well-known formula exp(t) exp(−t)= 1.
Equation (5) bears a striking resemblance to a celebrated result of Goulden and

Jackson [1979] expressing the inverses of generating functions for consecutive
pattern avoidance in terms of clusters:

gP(t)=
1

1− t +
∑

q≥2,n≥1

(−1)q cln,q
n! tn

, (6)

where cln,q is the number of q-clusters of length n. A q-cluster is, roughly speaking,
an indecomposable covering of a permutation by patterns from the forbidden set P ,
but, unlike chains, without any minimality condition. As a consequence, the number
of chains is potentially much smaller than the number of clusters, and our result is
a strengthening of the result of Goulden and Jackson. A good way to think of it is
to say that many “obvious” cancellations happen in the cluster formula (6), and our
approach takes care of these ”obvious” cancellations.1 For example, we already
saw that for P = {123} the permutation 12345 is not a chain. However, it can be
covered by two copies of 123 as well as by three copies of 123, and these coverings
give it a structure of a 2-cluster and a 3-cluster respectively. The contributions of
these two clusters in (6) occur with opposite signs, and the total contribution of
this permutation is equal to zero, exactly as (5) suggests. Among the applications
below, for some of the examples it does not really matter if we are dealing with
chains or clusters, whereas for other ones chains give more compact formulas.

1We want to note, however, that our approach can be used to prove the cluster inversion formula
too, if one adapts the method of [Dotsenko and Khoroshkin 2012] for constructing free resolutions.
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4.2. Applications to consecutive pattern avoidance. Before moving on to partic-
ular results, let us state a general remark. Our results suggest that the class of
power series that contains all inverses of pattern avoidance enumerators is related
to some nice combinatorics. Results of Elizalde and Noy [2003] that we re-prove
below describe some of these series as solutions to particular differential equations.
Our formulas for other cases we considered can be rewritten as more complicated
functional equations. What can be said about other series of that sort? So far we
have not able to describe a reasonable class of series that cover all of these. A
wild guess is that all these series satisfy algebraic differential equations, that is, if
f (x) is such a series, then P(x, f (x), f ′(x), . . . , f (d)(x))= 0 for some nonzero
polynomial P(x, t0, t1, . . . , td).

4.2.1. Patterns without self-overlaps, linking schemes, and posets. In this section,
we shall enumerate chains in one particular case, namely, the case of an arbitrary
pattern without self-overlaps, which will allow us to prove a conjecture of Elizalde
[2004]. In fact, in this case chains coincide with clusters, so one could refer to
results of Goulden and Jackson instead of Theorem 21.

Definition 23. A pattern τ is said to have no self-overlaps if every permutation of
length at most 2m− 2 has at most one occurrence of τ . (Clearly, there always exist
permutations of length 2m− 1 with two occurrences of τ .)

For example, the pattern 132 is of that form: Clearly, we can only link it with
itself using the last entry. A more general example studied in [Elizalde and Noy
2003] is 12 · · · a τ (a+1) ∈6n , where a+1< n, and τ is an arbitrary permutation
of the numbers a+ 2, . . . , n.

For a pattern τ without self-overlaps, there exists a simple way to reformulate
the enumeration problem for chains in terms of total orderings on posets. The first
author used this method in [Dotsenko and Vejdemo Johansson 2012] in a similar
setting, dealing with tree monomials in the free shuffle operad. To a q-chain σ
obtained by linking q−1 copies of τ , let us assign a “linking scheme” of the shape
that we expect, replacing each entry in σ by the symbol • (a bullet), and marking
the segments of consecutive bullets that are “traces” of (occurrences of) τ . For
example, for the pattern 1243 and 4-chains we get

• • • •︸ ︷︷ ︸︷ ︸︸ ︷
• • • • • •︸ ︷︷ ︸ .

For such a linking scheme, let us define a partial ordering on bullets as follows: For
each j , we equip the j-th trace of τ with a total ordering identical to the ordering
of the corresponding entries of τ . Let us denote by 5q,τ the thus-defined poset.
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Example 24. Let us take the linking scheme above, and replace bullets by letters,
to make it easier to distinguish between different bullets:

a b c d︸ ︷︷ ︸︷ ︸︸ ︷e f g h i j︸ ︷︷ ︸ .
Then the orderings inherited from 1243 are a < b < d < c, d < e < g < f , and
g < h < i < j , so we obtain the poset 54,1243:

a

b

d

c e

g

f h

i

j

(the covering relation of the poset is, as usual, represented by edges; v is covered
by w if w is the top vertex of the corresponding edge).

The following proposition is obvious.

Proposition 25. The set of q-chains for P = {τ }, where τ has no self-overlaps, is
in one-to-one correspondence with the set of all total orderings on posets 5q,τ .

Now we shall see how this approach can be applied in some cases.

4.2.2. Case of the pattern 12 · · · a τ (a+ 1). Let a < m, and let 12 · · · a τ (a+ 1)
be a permutation of length m + 1 that starts with the increasing run 1, 2, . . . , a,
followed by some permutation τ of (a+ 2), . . . ,m + 1, followed by the number
(a+ 1). Clearly, this pattern has no self-overlaps, so to enumerate chains we may
count total orderings of posets. Note that every (q+1)-chain for q ≥ 0 is of length
q(m+ 1)− (q − 1)= qm+ 1.

Proposition 26. For P = {12 · · · a τ (a + 1)}, the number of (q+1)-chains is
equal to

q∏
j=1

( jm−a
m−a

)
.

Proof. This proof serves as a starting example of how to use posets to study chains.
The poset 5q,τ in this case looks like a tree of height m+ 1 with the only branch
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growing on the height a+1, this branch being of length m+1 and having a smaller
branch growing at the distance a + 1 from the starting point, etc. (An example
of such a poset for the case of the permutation 1243 with a = 2, m = 3 is given
above.) To extend such a partial ordering to a total ordering, we should make the
lowest a+ 1 elements for such a tree the smallest elements 1, 2, . . . , a+ 1 of the
resulting ordering. Then, there are

(qm−a
m−a

)
ways to choose (m+1)−(a+1)=m−a

remaining elements forming the stem of our tree, and we are left with the same
question for a smaller tree, where we may proceed by induction. �

Corollary 27 (see [Elizalde and Noy 2003; Kitaev 2005] for t = 0). For a < m,
the multiplicative inverse of the generating function gP(t) of permutations avoiding
12 · · · a τ (a+ 1) ∈ Sm+1 is given by the formula

1− t −
∑
q≥1

(−1)q+1tqm+1

(qm+ 1)!

q∏
j=1

( jm−a
m−a

)
. (7)

In particular, all these patterns, for different τ , are Wilf equivalent to each other.

Except for the case of the pattern 123'W 321, this covers all patterns of length 3,
because 132'W 312'W 231'W 213 (the equivalence provided by either reversing
the order of entries in the pattern from the left to the right, or reversing the relative
order of entries in the pattern). We shall deal with the pattern 123 and, more
generally, 12 · · · a, in further sections.

4.2.3. Case of one arbitrary pattern without self-overlaps. Generalizing the previ-
ous result, let us consider an arbitrary pattern τ of length m+1 without self-overlaps.
For such a pattern, every (q+1)-chain for q ≥ 0 is still of length qm + 1. The
following result was conjectured in [Elizalde 2004], where it was proved in some
particular cases. Another proof in the general case was, as we discovered after the
first version of this paper got in circulation, obtained by Adrian Duane and Jeffrey
Remmel [2011]; it is based on entirely different techniques developed in [Mendes
and Remmel 2006].

Theorem 28. For a pattern τ of length m+ 1 without self-overlaps, the number of
permutations of length n with k occurrences of τ depends only on n, k, m, τ(1), and
τ(m+ 1). In other words, two non-self-overlapping permutations of length m+ 1
are equivalent if their first and last entries are the same.

Proof. Since for patterns without self-overlaps clusters coincide with chains, and
cluster inversion can be used to count permutations with a given number of oc-
currences of forbidden patterns [Goulden and Jackson 1979], it is enough to show
that the number of (q+1)-chains depends only on the first and the last entry of τ .
This result is also very easy to derive using posets. To make formulas compact, let
us put a = τ(1)− 1 and b = τ(m+ 1)− 1. The poset 5q,τ whose total orderings
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enumerate q-chains is obtained from q totally ordered sets of cardinality m+ 1 as
follows: The element a+ 1 of the second set is identified with the element b+ 1 of
the first set, the element a+1 of the third set is identified with the element b+1 of
the second set, etc. Clearly, this poset depends only on m, a, and b.

The actual number of q-chains in this case can be computed as follows. Let us
denote by fk(p) the number of q-chains σ whose first element is p+ 1. Then it is
easy to see that the following recurrence relation holds (here we assume, without
the loss of generality, that a < b):

fk(p)=
∑

q

( p
a

)(km−q
m−b

)(q− p−1
b−a−1

)
fk−1(q − b). (8)

Writing q+1= σ(m+1), there are
(p

a

)
ways to choose elements less than p+1 in

the first pattern in the chain,
(km−q

m−b

)
ways to choose elements greater than σ(m+1)

there,
(q−p−1

b−a−1

)
to fill the space between these elements, and fk−1(q − b) ways to

choose the remaining (k−1)-chain. �

Example 29. Theorem 28 shows that the two patterns 23154 and 21534 are equiv-
alent to each other. Computing the first ten cluster numbers and inverting the
corresponding series, we get the first ten entries 1, 1, 2, 6, 24, 119, 708, 4914,
38976, 347776 of the sequence counting permutations that avoid either of them.

4.2.4. Case of one pattern of length 4. Let us now consider the case of a single
pattern of length 4. The equivalence classes of these are as follows [Elizalde 2004]:

I. 1234' 4321.

II. 2413' 3142.

III. 2143' 3412.

IV. 1324' 4231.

V. 1423' 3241' 4132' 2314.

VI. 1342' 2431' 4213' 3124' 1432' 2341' 4123' 3214.

VII. 1243' 3421' 4321' 2134.

The case I will be considered later. In each of the cases VI and VII, the pattern
has no self-overlaps, so Corollary 27 applies.

A very special feature of all patterns of length 4 (except for the case I) is that they
have self-overlaps of length at most 2, so however we try to link several patterns
together, it will be automatically true that only neighbors overlap. Moreover, even
if we are dealing with a pattern τ with self-overlaps, every labeling of a linking
scheme that is compatible with ordering of each of the patterns gives a genuine
chain. Assume that γ is a linking scheme for q copies of τ . By induction, we may
assume that the linking scheme provided by the first q − 1 traces of τ only gives
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chains, and we only need to check the chain condition for the terminal segment, for
which the statement follows from the fact that if two patterns of length 4 overlap by
a segment of length 1 or 2, then every pattern of length 4 overlapping with the both
of them overlaps with at least one of them by a segment of length 3. Guided by this
observation, we compute all the exponential generating functions of consecutive
pattern avoidance. Since in this case chains coincide with clusters, our results can be
easily adapted for enumeration of permutations with a given number of occurrences
of a given pattern.

Theorem 30. The numbers cn,l for the pattern 1324 satisfy the recurrence relations

cn,l =
∑

4≤2k+2≤n

1
k+1

(2k
k

)
cn−2k−1,l−k (9)

with initial conditions c1,l = δ0,l (the Kronecker delta symbol), c2,l = 0, c3,l = 0.
Consequently, the generating function for avoidance of 1324 is(

1− t −
∑

n≥2,l≥1

cn,l tn(−1)l

n!

)−1
.

Proof. As we discussed above, counting chains is reduced to counting total orderings
of the corresponding posets. Let us assume that the first k+ 1 patterns have two-
element overlaps, and the following overlap involves just one element. For a chain
σ = a1a2 · · · a2k+1a2k+2a2k+3 · · · , this means that

a1 < a3 < a2 < a4, a3 < a5 < a4 < a6, . . . , a2k−1 < a2k+1 < a2k < a2k+2, (10)

that {a1, . . . , a2k+2} = {1, . . . , 2k + 2}, and that st(a2k+2a2k+3 · · · ) is an (l − k)-
chain. To prove (9), we notice that the number of permutations a1a2 · · · a2k+2 of
{1, . . . , 2k+ 2} for which the conditions (10) are satisfied is given by the number
of standard Young tableaux of size 2× k: Clearly, a1 = 1, a2k+2 = 2k+ 2, and

a2, a3, a4, . . . , a2k+1 ←→
a3 a5 a7 · · · a2k+1

a2 a4 a6 · · · a2k

gives a bijection with standard Young tableaux. The number of such tableaux is
equal to the Catalan number 1

k+1

(2k
k

)
(see, for example [Stanley 1999]), and the

recurrence relation (9) follows. �

Example 31. Computing the first ten of those numbers and inverting the corre-
sponding series, we get the first ten entries 1, 1, 2, 6, 23, 110, 632, 4229, 32337,
278204 of the sequence, which is indeed counting permutations that avoid 1324
(A113228 in [Sloane 2010]).
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Theorem 32. The numbers cn,l for the pattern 1423 satisfy the recurrence relations

cn,l =
∑

4≤2k+2≤n

(n−k−2
k

)
cn−2k−1,l−k (11)

with initial conditions c1,l = δ0,l , c2,l = 0, c3,l = 0. Consequently, the generating
function for avoidance of 1423 is(

1− t −
∑

n≥2,l≥1

cn,l(−1)l

n!

)−1
.

Proof. Similarly to the proof of Theorem 30, counting chains is reduced to counting
total orderings of the corresponding posets. Let us assume that the first k+1 patterns
have two-element overlaps, and the following overlap involves just one element.
For a chain σ = a1a2 · · · a2k+1a2k+2a2k+3 · · · , this means that

a1 < a3 < a4 < a2, a3 < a5 < a6 < a4, . . . , a2k−1 < a2k+1 < a2k+2 < a2k, (12)

so
a1 < a3 < · · ·< a2k−1 < a2k+1 < a2k+2 < a2k < · · ·< a4 < a2, (13)

{a1, a3, . . . , a2k+1} = {1, 2, . . . , k+1}, a2k+2= k+2, and st(a2k+2a2k+3 · · · ) is an
(l−k)-chain. To prove (11), we notice that the number of ways to distribute numbers
between the increasing sequence (13) and the (l − k)-chain st(a2k+2a2k+3 · · · ) is
equal to the number of way to choose the k numbers a2k, . . . , a2. The latter is
clearly the binomial coefficient

(n−k−2
k

)
, and the recurrence relation (11) follows. �

Example 33. Computing the first ten of those numbers and inverting the corre-
sponding series, we get the first ten entries 1, 1, 2, 6, 23, 110, 631, 4218, 32221,
276896 of the sequence counting permutations that avoid 1423.

Theorem 34. The numbers cn,l for the pattern 2143 satisfy the recurrence relations

cn,l =
∑

2≤p<n−2

cn,l(p),

where the numbers cn,l(p) satisfy the recurrence relations

cn,l(p)=
∑

4≤2k+2≤q≤n

(q− p−1
2k−2

)
(p− 1)(n− q)cn−2k−1,l−k(q − 2k) (14)

with initial conditions c1,l(p)= δ0,lδ1,p, c2,l(p)= 0, c3,l(p)= 0. Consequently,
the generating function for avoidance of 2143 is(

1− t −
∑

n≥2,l≥1

cn,l tn(−1)l

n!

)−1
.
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Proof. Similarly to the proof of Theorem 30, counting chains is reduced to counting
total orderings of the corresponding posets. Let cn,l(p) be the number of l-chains
σ of length n with σ(1)= p. Let us assume that the first k+ 1 copies of 2143 in σ
have two-element overlaps, and the following overlap involves just one element.
For a chain σ = a1a2 · · · a2k+1a2k+2a2k+3 · · · , this means that

a2 < a1 < a4 < a3, a4 < a3 < a6 < a5, . . . , a2k < a2k−1 < a2k+2 < a2k+1, (15)

so
a2 < a1 < a4 < a3 < · · ·< a2k < a2k−1 < a2k+2 < a2k+1, (16)

and st(a2k+2a2k+3 · · · ) is an (l − k)-chain. Assume that a1 = p. To prove (14),
we notice that if a2k+2 = q, then there are

(q−p−1
2k−2

)
ways to pick the numbers

a3, . . . , a2k , p− 1 ways to pick a2, (n− q) ways to pick a2k+1, and cn−2k−1,l−k

ways to pick the remaining (l − k)-chain (where the entry q is the (q − 2k)-th
biggest). This completes the proof. �

Example 35. Computing the first ten of those numbers and inverting the corre-
sponding series, we get the first ten entries 1, 1, 2, 6, 23, 110, 631, 4223, 32301,
277962 of the sequence counting permutations that avoid 2143.

In the last remaining case 2413' 3142 (II in the list above), we have no trick
like above that would simplify the computations, so we shall use the most general
strategy for chain enumeration, which allows us to compute the chain numbers
rather fast (polynomially in n) for all sets of forbidden patterns. There is an obvious
similarity with the approach in [Kitaev and Mansour 2005].

Theorem 36. The numbers cn,l for the pattern 2413 are given by the formulas

cn,l =
∑

1<p<q−1<n

cn,l(p, q),

where the numbers cn,l(p, q) satisfy the recurrence relations

cn,l(p, q)=
∑

r<p<s<q

cn−2,l−1(r, s− 1)

+

∑
p<r<s<q

(p−1)cn−3,l−1(r−1, s−1)+
∑

p<r<q<s

(p−1)cn−3,l−1(r−1, s−2) (17)

with initial conditions c2,l(p, q) = 0, c3,l(p, q) = 0, c4,l(p, q) = δl,1δp,2δq,4.
Consequently, the generating function for avoidance of 2143 is(

1− t −
∑

n≥2,l≥1

cn,l tn(−1)l

n!

)−1

.
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Proof. This statement is straightforward. Let us consider an n-chain σ = a1a2a3 · · · .
The first pattern in that chain intersects with its neighbor by either two or one
elements. In the first case, we have a3 < a2 < a4 < a1, so if we fix a1 and a2 and
forget about them, we are left with an (n−1)-chain, and we should sum over all
choices of a3 and a4 for its first entries. If, on the contrary, the first overlap uses
just one element, then there are (a1− 1) choices for a3, and we should distinguish
between the cases a5 > a2 and a5 < a2: In the first case a5 is the (a5−1)-st biggest
in the remaining cluster, while in the second case it is the (a5− 2)-nd biggest. �

Example 37. Computing the first ten of those numbers and inverting the corre-
sponding series, we get the first ten entries 1, 1, 2, 6, 23, 110, 632, 4237, 32465,
279828 of the sequence counting permutations that avoid 2413.

4.2.5. Case of two patterns {132, 231}.

Theorem 38. The number cn,l for P = {132, 231} is not equal to zero only for
n = 2l + 1, and in this case is equal to E2l+1, the tangent number [Stanley 1999],
so the generating function for avoidance of {132, 231} is

(1− tanh t)−1. (18)

Proof. This pair of patterns has no self-overlaps at all (both for a pattern with
itself, and two patterns with each other), so every linking scheme clearly provides
only chains. Clearly, chains are nothing but “up-down” permutations, that is,
permutations a1a2 · · · a2la2l+1 for which

a1 < a2 > a3 < a4 > · · ·< a2l > a2l+1.

It is well known that the number of such permutations is equal to the tangent
number. �

4.2.6. Case of the pattern 12 · · · k. The case we consider in this section is the
case of the single pattern 12 · · · k, which marks increasing runs of length k in
permutations. The enumeration result in this case is well known, however, we want
to show that it can also be obtained as a direct application of our results.

Theorem 39 [Elizalde and Noy 2003; Goulden and Jackson 1983; Kitaev 2005].
The multiplicative inverse of the exponential generating function for patterns avoid-
ing 12 · · · k is given by the formula∑

q≥0

xkq

(kq)!
−

∑
q≥0

xkq+1

(kq+1)!
. (19)

Proof. Indeed, q-chains for q ≥ 2 are as follows:

• the only 2-chain is 12 · · · k,

• the only 3-chain is 12 · · · (k+ 1),
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• the only 4-chain is 12 · · · (2k),

• the only 5-chain is 12 · · · (2k+ 1),

• · · ·

• the only (2l)-chain is 12 · · · (kl),

• the only (2l+1)-chain is 12 · · · (kl + 1),

• · · · . �

4.2.7. Case of the pattern λ(λ+m) · · · (λ+ (k− 1)m). The result of this section
gives one way to somewhat generalize both Theorem 28 and Theorem 39. Let λ
be a pattern of length m without self-overlaps. Denote by λ+ j the permutation
of numbers { j + 1, . . . , j + m} obtained by adding j to each entry of λ. Let
τ = τk,λ = λ(λ+m+ 1) · · · (λ+ (k− 1)m) be the “ordered sum” of k copies of λ.

Theorem 40. The number of permutations of length n avoiding τ depends only on
n, m, τ(1), τ(m), and k. In other words, for two non-self-overlapping patterns of
length m the corresponding k-fold ordered sums are Wilf equivalent if their first and
last entries are the same.

Proof. For the k-fold ordered sum of a pattern without self-overlaps, it is very
easy to exhibit the linking schemes that actually give rise to chains. Such a linking
scheme is a genuine mixture of linking schemes for patterns without self-overlaps
and linking schemes for the pattern 12 · · · k. Namely, for each l ≥ 2 there is one
basic “building block”, a linking scheme modeled on the l-chains

• λ(λ+m) · · · (λ+ (k− 1)m) for l = 2,

• λ(λ+m) · · · (λ+ (k− 1)m)(λ+ km) for l = 3,

• λ(λ+m) · · · (λ+ (2k− 2)m)(λ+ (2k− 1)m) for l = 4,

• λ(λ+m) · · · (λ+ (2k− 1)m)(λ+ 2km) for l = 5,

• · · ·

• λ(λ+m) · · · (λ+ (pk− 2)m)(λ+ (pk− 1)m) for l = 2p,

• λ(λ+m) · · · (λ+ (pk− 1)m)(λ+ pkm) for l = 2p+ 1,

• · · · ,

and every linking scheme producing a chain is a linkage of several building blocks
like that overlapping only by one element. The poset defined by such a linking
scheme obviously depends only on the first and the last element of τ but not on the
relative order of other elements. The corresponding recurrence relations can easily
be derived from this description as well. �
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4.2.8. Case of the pattern 12 · · · k and a pattern without self-overlaps. This section
gives another way to somewhat generalize both Theorem 28 and Theorem 39. Let
λ be a pattern of length m without self-overlaps. We shall study the enumeration
problem for avoidance of Pλ,k = {λ, 12 · · · k}. Let us introduce several parameters
important for enumeration. Denote by lI (λ) the length of the maximal initial
segment of λ that is an increasing rise, and by lT (λ) the length of the maximal
terminal segment of λ that is an increasing rise. Since we always assume patterns
of P to not contain one another, and we assume λ to have no self-overlaps, we
conclude that lI (λ), lT (λ) < k, lI (λ)+ lT (λ) < m and min(lI (λ), lT (λ))= 1.

Theorem 41. The number of permutations of length n avoiding Pλ,k depends only
on m, λ(1), λ(m), lI (λ), lT (λ), and k. In particular, if we adjoin to two non-self-
overlapping patterns λ1 and λ2 of the same length m an increasing rise of length k,
the corresponding two-element sets are Wilf equivalent if the first and last entries,
and the lengths of the initial and terminal increasing rises of λ1 and λ2 are the same.

Proof. Both reversing the direction in which we read permutations (left-to-right
becomes right-to-left) and reversing the order of entries (increasing becomes de-
creasing) in all permutations considered preserve Wilf classes, and doing both these
changes keeps the permutation 12 · · · k intact, we may assume that lT (λ)= 1.

It is easy to exhibit the linking schemes that actually give rise to chains. Basically,
there are two basic types of “building blocks” for the linking schemes: A linking
scheme modeled on a single copy of λ and linking schemes modeled on chains
for a single pattern 12 · · · k, as in the proof of Theorem 39. There is no freedom
in linking copies of λ together: Since λ has no self-overlaps, two copies of λ may
only overlap by a single element. Since we assume that lT (λ) = 1, we conclude
that an occurrence of λ can only overlap with a building block coming from an
overlap of several rises by a single element as well. For an overlap of several rises
followed by an occurrence of λ the situation is different. Namely, if we are talking
about the scheme modeled on the (2l)-chain 12 · · · (kl), it should overlap with the
following copy of λ by the initial increasing rise of that copy, that is, by the first
lI (λ) elements (since no proper beginning of a q-chain may be a q-chain). However,
for the scheme modeled on the (2l+1)-chain 12 · · · (kl+ 1), it should overlap with
the following copy of λ by a single element (since only neighboring patterns in a
chain may overlap). Similarly to the proof of Theorem 28, the posets defined by
such linking schemes are completely determined by the first and the last entry of λ,
and the lengths of its initial and terminal increasing rises. �
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Preperiodic points for families of
polynomials

Dragos Ghioca, Liang-Chung Hsia and Thomas J. Tucker

Let a(λ), b(λ) ∈C[λ], and let fλ(x) ∈C[x] be a one-parameter family of polyno-
mials indexed by all λ ∈ C. We study whether there exist infinitely many λ ∈ C

such that both a(λ) and b(λ) are preperiodic for fλ.

1. Introduction

The classical Manin–Mumford conjecture for abelian varieties (now a theorem due
to Raynaud [1983a; 1983b]) predicts that the set of torsion points of an abelian
variety A defined over C is not Zariski dense in a subvariety V of A unless V is a
translate of an algebraic subgroup of A by a torsion point. Pink and others have
suggested extending the Manin–Mumford conjecture to a more general question
regarding unlikely intersections between a subvariety V of a semiabelian scheme A
and algebraic subgroups of the fibers of A having codimension greater than the
dimension of V [Bombieri et al. 1999; Habegger 2009; Masser and Zannier 2010;
Masser and Zannier 2012; Pink 2005]. Here we state a special case of the question
when V is a curve:

Question 1.1. Let S be a semiabelian scheme over a variety Y defined over C, and
let V ⊂ S be a curve that is not contained in any proper algebraic subgroup of S.
We define

S[2] :=
⋃
y∈Y

By,

where By is the union of all algebraic subgroups of the fiber Sy of codimension at
least equal to 2. Must the intersection of V with S[2] be finite?
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National Center of Theoretical Sciences of Taiwan and NSC grant 99-2115-M-008-007-MY3. Tucker
was partially supported by NSF grants 0801072 and 0854839.
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Keywords: preperiodic points, heights.
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Bertrand [2011] recently showed that the answer to Question 1.1 is sometimes
“no”. The question may, however, have a positive answer in many instances. For
example, Masser and Zannier [2010; 2012] study Question 1.1 when S is the square
of the Legendre family of elliptic curves Eλ (over the base A1

\ {0, 1}) given by the
equation y2

= x(x − 1)(x − λ). They show that for any two independent points P
and Q on the generic fiber, there are at most finitely many λ ∈ C such that the
specializations Pλ and Qλ are both torsion points for Eλ. Their work thus gives a
positive answer to Question 1.1 in this special case.

The result of Masser and Zannier has a distinct dynamical flavor. Indeed, one
may consider the following more general problem. Let {Xλ} be an algebraic family
of quasiprojective varieties defined over C, let8λ : Xλ→ Xλ be an algebraic family
of endomorphisms, and let Pλ ∈ Xλ and Qλ ∈ Xλ be two algebraic families of
points. Under what conditions do there exist infinitely many λ such that both Pλ
and Qλ are preperiodic for 8λ? Indeed, the problem from [Masser and Zannier
2010; 2012] fits into this general dynamical framework by letting Xλ = Eλ be the
Legendre family of elliptic curves and letting 8λ be the multiplication-by-2 map
on each elliptic curve in this family.

Baker and DeMarco [2011] study an interesting special case of the general
dynamical question above first suggested by Zannier at an American Institute
of Mathematics workshop in 2008. Given complex numbers a and b and an
integer d ≥ 2, when do there exist infinitely many λ ∈ C such that both a and
b are preperiodic for the action of fλ(x) := xd

+ λ on C? They show that
this happens if and only if ad

= bd . We prove this generalization of the main
result of [Baker and DeMarco 2011]:

Theorem 1.2. Let f ∈ C[x] be any polynomial of degree d ≥ 2, and let a, b ∈ C.
Then there exist infinitely many λ ∈ C such that both a and b are preperiodic for
f (x)+ λ if and only if f (a)= f (b).

We will derive Theorem 1.2 from a more technical result, Theorem 2.3, which
also treats the case of “nonconstant starting points” a and b, a topic that was raised
in [Baker and DeMarco 2011].

One might hope to formulate a general dynamical version of Question 1.1 for
polarizable endomorphisms of projective varieties more general than multiplication-
by-m maps on abelian varieties (an endomorphism 8 of a projective variety X is
polarizable if there exists d ≥ 2 and a line bundle L on X such that8∗(L) is linearly
equivalent to L⊗d in Pic(X)) by using the analogy between abelian subschemes and
preperiodic subvarieties. Because of the results of Baker and DeMarco, along with
the results of this paper, we believe it is reasonable to ask the following dynamical
analog of Question 1.1:
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Question 1.3. Let Y be any quasiprojective curve defined over C, and let F be
the function field of Y . Let a, b ∈ P1(F), and let V ⊂ X := P1

F ×F P1
F be the

C-curve (a, b). Let f : P1
→ P1 be a rational map of degree d ≥ 2 defined

over F . Then for all but finitely many λ ∈ Y , f induces a well-defined rational
map fλ : P1

→ P1 defined over C. If there exist infinitely many λ ∈ Y such that
both a(λ) and b(λ) are preperiodic points of P1(C) under the action of fλ, then
must V be contained in a proper preperiodic subvariety of X under the action of
8 := ( f , f )?

Theorem 1.2 is a special case of Question 1.3 for fλ(x)= f (x)+λ and constant
starting points a(λ)= a and b(λ)= b. Theorem 2.3 also allows us to prove some
other special cases of Question 1.3 such as the following:

Theorem 1.4. Let f ∈ C[x] be any polynomial of degree d ≥ 2, let g ∈ C[x] be
any nonconstant polynomial, and let c ∈ C∗. Then there exist at most finitely many
λ ∈ C such that either

(1) both g(λ) and g(λ+ c) are preperiodic for f (x)+ λ or

(2) both g(λ) and g(λ)+ c are preperiodic for f (x)+ λ.

The next result is for the case when the family of maps f is constant:

Theorem 1.5. Let f ∈C[x] be a polynomial of degree d ≥ 2, and let a, b∈C[λ] be
two polynomials of same degree and with the same leading coefficient. If there exist
infinitely many λ∈C such that both a(λ) and b(λ) are preperiodic for f , then a= b.

A special case of Theorem 1.5 is that for any fixed c ∈ C∗, there can be only
finitely many λ ∈ C such that both λ and λ+ c are preperiodic for f . In fact,
more generally it provides a positive answer to a special case of Zhang’s dynamical
Manin–Mumford conjecture, which states that for a polarizable endomorphism
8 : X→ X on a projective variety, the only subvarieties of X containing a dense set
of preperiodic points are those subvarieties that are themselves preperiodic under
f ; see [Zhang 1995, Conjecture 2.5; 2006, Conjecture 1.2.1, Conjecture 4.1.7] for
details. This conjecture turns out to be false in general [Ghioca et al. 2011], but it
may be true in many cases. For example, let X :=P1

×P1,8(x, y) := ( f (x), f (y))
for a polynomial f of degree d ≥ 2, and Y be the Zariski closure in X of the set
{ (a(z), b(z)) : z ∈ C }, where a, b ∈ C[x] are polynomials of same degree and with
the same leading coefficient; Theorem 1.5 implies that if Y contains infinitely many
points preperiodic under 8, then Y is the diagonal subvariety of X and thus is itself
preperiodic under 8. Theorem 1.5 also has consequences for a case of a revised
dynamical Manin–Mumford conjecture [Ghioca et al. 2011, Conjecture 1.4]; see
Section 11 for details.

The plan of our paper is as follows. In Section 2, we state our main result,
Theorem 2.3, and some of its consequences and then describe the method of
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our proof. In Section 3, we set up our notation while in Section 4 we give a
brief overview of Berkovich spaces. Then in Section 5, we introduce some basic
preliminaries regarding the iterates of a generic starting point c under a family
of maps f . Section 6 contains computations of the capacities of the generalized
v-adic Mandelbrot sets associated with a generic point c under the action of f . In
Section 7, we prove an explicit formula for the Green function for the generalized
v-adic Mandelbrot sets when v is an archimedean valuation. We proceed with our
proof of the direct implication in Theorem 2.3 in Section 8 (for the case fλ ∈Q[x]
and a, b∈Q[x]) and in Section 10 (for the general case). In Section 9, we prove the
converse implication from Theorem 2.3. Then in Section 11, we conclude our paper
by proving Corollary 2.7 and discussing the connections between our Question 1.3
and the dynamical Manin–Mumford conjecture formulated by Ghioca, Tucker, and
Zhang [2011].

2. Statement of the main results

A special case of Question 1.3 is when Y = A1, f ∈ R[x], where R = C[λ], and
a, b ∈ R. In Theorem 2.3, we provide a positive answer to Question 1.3 for any
family of polynomials of the form

fλ(x)= xd
+

d−2∑
i=0

ci (λ)x i , where ci (λ) ∈ C[λ] for i = 0, . . . , d − 2, (2.1)

together with some mild restriction on the polynomials a and b.
We say that a polynomial f (x) of degree d is in normal form if it is monic and

its coefficient of xd−1 equals 0. (Note that any polynomial of degree d > 1 can
be put in normal form after a change of coordinates.) As a matter of notation, we
rewrite (2.1) as

fλ(x)= P(x)+
r∑

i=1

Qi (x) · λmi (2.2)

for some polynomial P ∈ C[x] in normal form of degree d, some nonnegative
integer r , integers m0 := 0< m1 < · · ·< mr , and some polynomials Qi ∈ C[x] of
degrees 0≤ ei ≤ d−2. We do not exclude the case r = 0, in which case the sum in
the sigma notation is empty and { fλ}λ is a constant family of polynomials.

Let a(λ), b(λ) ∈ C[λ]. If a is preperiodic for f , that is, f k(a) = f `(a) for
some k 6= `, then for each b, one can show that there are infinitely many λ ∈ C

such that b(λ) (and thus also a(λ)) is preperiodic for fλ (see also Proposition 9.1).
Therefore, we may assume that a and b are not preperiodic for f . Assuming there
exist infinitely many λ ∈ C such that both a(λ) and b(λ) are preperiodic for fλ,
then Question 1.3 predicts that there exist ϕ1 and ϕ2 commuting with f such that
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ϕ1(a) = ϕ2(b). A natural possibility is for ϕ1 and ϕ2 to be iterates of f ; under a
mild condition on a and b, we prove that this is the only possibility.

Theorem 2.3. Let f := fλ be the family of one-parameter polynomials (indexed
by all λ ∈ C) given by

fλ(x) := xd
+

d−2∑
i=0

ci (λ)x i
= P(x)+

r∑
j=1

Q j (x) · λm j

as above (see (2.1) and (2.2)). Let a, b ∈ C[λ], and assume there exist nonnegative
integers k and ` such that the following conditions hold:

(i) f k
λ (a(λ)) and f `λ (b(λ)) have the same degree and the same leading coefficient

as polynomials in λ, and

(ii) if m = degλ( f k
λ (a(λ))) degλ( f `λ (b(λ))), then m ≥ mr .

Then there exist infinitely many λ ∈ C such that both a(λ) and b(λ) are preperiodic
points for fλ if and only if f k

λ (a(λ))= f `λ (b(λ)).

Remarks 2.4. (a) The one-dimensional C-scheme (a, b)⊂ X := P1
C(λ)×C(λ) P1

C(λ)

in Theorem 2.3 is contained in the two-dimensional C-subscheme Y of X given by
the equation

f k(x)= f `(y),

where (x, y) are the coordinates of X. Such a Y is fixed by the action of ( f , f )
on X as predicted by Question 1.3.

(b) It follows from the Lefschetz principle that the same statements in Theorem 2.3
hold if we replace C by any other algebraically closed complete valued field of
characteristic 0.

(c) We note that if c ∈ C[λ] has the property that there exists k ∈ N such that
degλ( f k

λ (c(λ)))=m has the property (ii) from Theorem 2.3, then c is not preperiodic
for f (see Lemma 5.2).

(d) If f is not a constant family, then it follows from Benedetto’s theorem [2005]
that c ∈ C[λ] is not preperiodic for f if and only if there exists k ∈ N such that
degλ( f k

λ (c(λ)))≥ mr . On the other hand, if f is a constant family of polynomials
defined over C, that is, r = 0 and m0 = 0 in Theorem 2.3, then implicitly m > 0.
(Otherwise the conclusion holds trivially.)

Theorem 2.3 generalizes known results regarding “unlikely intersections” in
the dynamical setting including the dynamical Manin–Mumford questions (see
Section 11). First, Theorem 2.3 generalizes the main result of [Baker and DeMarco
2011] in two ways. On one hand, in the case when a and b are both constant, we
can prove a generalization of the main result from [ibid.] as follows:
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Theorem 2.5. Let a, b ∈ C, let d ≥ 2, and let c0, . . . , cd−2 ∈ C[λ] such that
deg(c0) > deg(ci ) for each i = 1, . . . , d− 2. If there are infinitely many λ ∈ C such
that both a and b are preperiodic for

fλ(x) := xd
+

d−2∑
i=0

ci (λ)x i ,

then fλ(a)= fλ(b).

Proof. We apply Theorem 2.3 for a(λ) := fλ(a) and b(λ) := fλ(b). �

Consequently, Theorem 2.5 yields the proof of Theorem 1.2.

Proof of Theorem 1.2. Note that in this case, we may drop the hypothesis that f (x)
is in normal form since we may conjugate f (x) by some linear polynomial δ ∈C[x]
such that g := δ−1

◦ f ◦δ+δ−1(λ) is a family of polynomials in normal form. Then
apply Theorem 2.5 to the pair of points δ−1(a) and δ−1(b). �

On the other hand, using our Theorem 2.3 we are able to treat the case when
the pair of points a and b depend algebraically on the parameter. This answers a
question raised by Silverman mentioned in [Baker and DeMarco 2011, Section 1.1].
For instance, as an application of Theorem 2.3, by taking f = f (x)+ λ for any
nonconstant polynomial f (x) ∈ C[x] of degree at least 2, we have the following:

Corollary 2.6. Let f ∈C[x] be any polynomial of degree d ≥ 2, and let a, b∈C[λ]

be polynomials such that a and b have the same degree and the same leading
coefficient. Then there are infinitely many λ ∈ C such that both a(λ) and b(λ) are
preperiodic under the action of f (x)+ λ if and only if a(λ)= b(λ).
Proof. First, the theorem is vacuously true if a and b are constant polynomials since
then they are automatically equal because they have the same leading coefficient.
So we may assume that deg(a)= deg(b)≥ 1.

Second, we conjugate f (x) by some linear polynomial δ ∈ C[x] such that
g := δ−1

◦ f ◦ δ is a polynomial in normal form. Then we apply Theorem 2.3
to the family of polynomials g(x)+ δ−1(λ) and to the starting points δ−1(a(λ))
and δ−1(b(λ)). Since a and b are polynomials of the same positive degree and
same leading coefficient, it is immediate to check that conditions (i) and (ii) of
Theorem 2.3 hold for k = `= 0. Therefore, a(λ)= b(λ) as desired. �

An important special case of Corollary 2.6 is Theorem 1.4. Using Theorem 2.3
when f is a constant family of polynomials, we obtain a proof of Theorem 1.5.

Proof of Theorem 1.5. The result is an immediate consequence of Theorem 2.3
once we observe, as before, that we may replace f with a conjugate δ−1

◦ f ◦ δ of
itself that is a polynomial in normal form. (Note that in this case, we also replace a
and b by δ−1(a) and δ−1(b), respectively, which are also polynomials in λ of the
same degree and same leading coefficient.) �
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On the other hand, assuming each ci and also a and b have algebraic coefficients,
the exact same proof we have yields stronger statements of Theorems 2.3, 1.5, and
Corollary 2.6, allowing us to replace the hypothesis that there are infinitely many
λ∈Q such that both a(λ) and b(λ) are preperiodic for fλ with the weaker condition
that there exists an infinite sequence of λn ∈Q such that

lim
n→∞

ĥ fλn
(a(λn))+ ĥ fλn

(b(λn))= 0,

where for each λ ∈Q, ĥ fλ is the canonical height constructed with respect to the
polynomial fλ. (For the precise definition of the canonical height with respect to a
polynomial map, see Section 3.) Therefore, we can prove a special case of Zhang’s
dynamical Bogomolov conjecture [2006].

Corollary 2.7. Let Y ⊂ P1
×P1 be a curve that admits a parametrization given by

(a(z), b(z)) for z ∈ C, where a, b ∈Q[x] are polynomials of the same degree and
with the same leading coefficient. Let f ∈Q[x] be a polynomial of degree at least
equal to 2, and let8(x, y) := ( f (x), f (y)) be the diagonal action of f on P1

×P1.
If there exists an infinite sequence of points (xn, yn) ∈ Y (Q) such that

lim
n→∞

ĥ f (xn)+ ĥ f (yn)= 0,

then a = b. In particular, Y is the diagonal subvariety of P1
× P1 and thus is

preperiodic under the action of 8.

Remark 2.8. In fact, this result holds not only over Q but also over the algebraic
closure of any global function field L (whose subfield of constants is K ) as long as
f is not conjugate to a polynomial with coefficients in K .

Note that the second author, together with Baker, proved a similar result [Baker
and Hsia 2005, Theorem 8.10] in the case when Y is a line; that is, if a line in
P1
×P1 contains an infinite set of points of small canonical height with respect

to the coordinatewise action of the polynomial f on P1
×P1, then the line Y is

preperiodic under the action of ( f, f ) on P1
×P1.

Laura DeMarco communicated to us that our Theorem 2.3 yields the proof of
the first case of a conjecture she made as a dynamical analogue of the André–
Oort conjecture. Essentially, the dynamical André–Oort conjecture envisioned by
DeMarco aims to characterize subvarieties in the moduli space Md of complex
rational maps f : P1

→ P1 (of degree d > 1) that contain a Zariski dense subset of
postcritically finite rational maps. A rational map is postcritically finite (PCF) if all
of its critical points are preperiodic. The PCF rational maps play an important role
in complex dynamics; for example, the Lattès maps are PCF.
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Our Theorem 2.3 has the following consequence. Let f = fλ be a family of
polynomials in normal form of degree d with polynomial coefficients in λ. Further-
more, assume the critical points c1(λ), . . . , cd−1(λ) of fλ are also polynomials in λ.
Let I be the collection of indices i such that ci is not preperiodic for f . Suppose
for each i ∈ I , there exist iterates f mi

λ (ci (λ)) with the same degree and leading
coefficients in λ and that this degree is large enough (that is, satisfies the hypothesis
from Theorem 2.3). Then there are infinitely many PCF maps in this family if and
only if all f mi (ci ) (for i ∈ I ) are equal.

We prove Theorem 2.3 first for the case when both a and b and also each of the ci

have algebraic coefficients, and then we extend our proof to the general case. For
the extension to C, we use a result of Benedetto [2005] (see also Baker’s extension
[2009] to arbitrary rational maps), which states that for a polynomial f of degree
at least equal to 2 defined over a function field K of finite transcendence degree
over a subfield K0, if f is not isotrivial (that is, f is not conjugate to a polynomial
defined over K0), then each x ∈ K is preperiodic if and only if its canonical height
ĥ f (x) equals 0. Strictly speaking, Benedetto’s result is stated for function fields
of transcendence degree 1, but a simple inductive argument on the transcendence
degree yields the result for function fields of arbitrary finite transcendence degree.
(See also [Baker 2009, Corollary 1.8], where Baker extends Benedetto’s result to
rational maps defined over function fields of arbitrary finite transcendence degree.)

Our results and proofs are inspired by the results of [Baker and DeMarco 2011]
so that the strategy for the proof of Theorem 2.3 essentially follows their ideas.
However, there are significantly more technical difficulties in our proofs. The plan
of our proof is to use the v-adic generalized Mandelbrot sets introduced therein
for the family of polynomials fλ and then use the equidistribution result of Baker
and Rumely [2010]. A key ingredient is Proposition 6.8, which says that the
canonical local height of the point in question at the place v is a constant multiple
of the Green function associated with the v-adic generalized Mandelbrot set. Then
the condition that a(λ) and b(λ) are preperiodic is translated to the condition
that the heights hMa(λ) and hMb(λ), respectively, are zero for the corresponding
parameter λ. Therefore, the equidistribution result of Baker–Rumely can be applied
to conclude that the v-adic generalized Mandelbrot sets for a(λ) and b(λ) are the
same for each place v. Finally, we need to use an explicit formula for the Green
function associated with the v-adic generalized Mandelbrot set corresponding to
an archimedean valuation v to conclude that the desired equality of f k

λ (a(λ)) and
f `λ (b(λ)) holds. Extra work is needed for the explicit description of the Green
function for a v-adic generalized Mandelbrot set (when v is an archimedean place)
due to the fact that in our case, the polynomial fλ has arbitrary (finitely) many
critical points that vary with λ in contrast to the family of polynomials xd

+λ from
[Baker and DeMarco 2011], which has only one critical point for the entire family.



Preperiodic points for families of polynomials 709

3. Notation and preliminary

For any quasiprojective variety X endowed with an endomorphism 8, we call a
point x ∈ X preperiodic if there exist two distinct nonnegative integers m and n
such that 8m(x) = 8n(x), where by 8i we always denote the i-iterate of the
endomorphism 8. If n = 0, then, by convention, 80 is the identity map.

Let K be a field of characteristic 0 equipped with a set of inequivalent absolute
values (places) �K , normalized so that the product formula holds; more precisely,
for each v ∈�K there exists a positive integer Nv such that for all α ∈ K ∗ we have∏
v∈� |α|

Nv
v = 1, where for v ∈ �K , the corresponding absolute value is denoted

by | · |v. Let Cv be a fixed completion of the algebraic closure of a completion of
(K , | · |v). When v is an archimedean valuation, then Cv = C. We fix an extension
of | · |v to an absolute value of (Cv, | · |v). Examples of product formula fields (or
global fields) are number fields and function fields of projective varieties that are
regular in codimension 1 [Lang 1983, Section 2.3; Bombieri and Gubler 2006,
Section 1.4.6].

Let f ∈Cv[x] be any polynomial of degree d ≥ 2. Following Call and Silverman
[1993], for each x ∈ Cv, we define the local canonical height of x by

ĥ f,v(x) := lim
n→∞

log+ | f n(x)|v
dn ,

where log+ z always denotes log max{z, 1} (for any real number z).
It is immediate that ĥ f,v( f i (x))= d i ĥ f,v(x), and thus, ĥ f,v(x)= 0 whenever x

is a preperiodic point for f . If v is nonarchimedean and f (x) =
∑d

i=0ai x i , then
| f (x)|v = |ad xd

|v > |x |v when |x |v > rv, where

rv :=max
{
|ad |
−1/(d−1)
v , max

0≤i<d

{∣∣∣ ai

ad

∣∣∣1/(d−i)}}
. (3.1)

Moreover, if |x |v > rv, then ĥv(x) = log|x |v + log|ad |v/(d − 1) > 0. For more
details, see [Ghioca and Tucker 2008; Hsia 2008]. (Although these results are
for canonical heights associated with Drinfeld modules, all the proofs go through
for any local canonical height associated with any polynomial with respect to
any nonarchimedean place.)

Now, if v is archimedean, again it is easy to see that if |x |v is sufficiently large,
then | f (x)|v � |x |dv , and moreover, | f n(x)|v→∞ as n→∞.

We fix an algebraic closure K of K , and for each v ∈�K we fix an embedding
K ↪→ Cv. Assume f ∈ K [x]. Call and Silverman [1993] also defined the global
canonical height ĥ(x) for each x ∈ K as

ĥ f (x)= lim
n→∞

h( f n(x))
dn ,
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where h is the usual (logarithmic) Weil height on K . Call and Silverman show
that the global canonical height decomposes into a sum of the corresponding local
canonical heights.

For each σ ∈Gal(K/K ), we denote by ĥ f σ the global canonical height computed
with respect to f σ , which is the polynomial obtained by applying σ to each coeffi-
cient of f . Similarly, for each v ∈�K we denote by ĥ f σ ,v the corresponding local
canonical height constructed with respect to the polynomial f σ . For x ∈ K , we
have ĥ f (x)= 0 if and only if ĥ f σ (xσ )= 0 for all σ ∈ Gal(K/K ). More precisely,
for x ∈ K we have

ĥ f (x)= 0 ⇐⇒ ĥ f σ ,v(xσ )= 0 for all v ∈�K and all σ ∈ Gal(K/K ). (3.2)

Essentially, (3.2) says that ĥ f (x) = 0 if and only if the orbits of xσ under each
polynomial f σ (for σ ∈ Gal(K/K )) are bounded with respect to each absolute
value | · |v for v ∈�K .

Benedetto [2005] proved that if a polynomial f defined over a function field K
(endowed with a set �K of absolute values) is not isotrivial (that is, it cannot be
conjugated to a polynomial defined over the constant subfield of K ), then each point
c ∈ K is preperiodic for f if and only if its global canonical height (computed with
respect to f ) equals 0. In particular, if c ∈ K , then c is preperiodic if and only if

ĥ f σ ,v(cσ )= 0 for all σ ∈ Gal(K/K ) and for all places v ∈�K . (3.3)

Let

f = fλ := xd
+

d−2∑
i=0

ci (λ)x i ,

where ci (λ) ∈ C[λ] for i = 0, . . . , d− 2, and let c(λ) ∈ C[λ]. We let K be the field
extension of Q generated by all coefficients of each ci (λ) and of c(λ). Assume
K is a global field; that is, it has a set �K of inequivalent absolute values with
respect to which the nonzero elements of K satisfy a product formula. For each
place v ∈�K , we define the v-adic Mandelbrot set Mc,v for c with respect to the
family of polynomials f as the set of all λ ∈ Cv such that ĥ fλ,v(c(λ))= 0, that is,
the set of all λ ∈ Cv such that the iterates f n

λ (c(λ)) are bounded with respect to the
v-adic absolute value.

4. Berkovich spaces

We now introduce Berkovich spaces and state the equidistribution theorem of Baker
and Rumely [2010], which will be key for the proofs of Theorems 2.3 and 2.5.

Let K be a global field of characteristic 0, and let�K be the set of its inequivalent
absolute values. For each v ∈ �K , we let Cv be the completion of an algebraic
closure of the completion of K at v. Let A1

Berk,Cv denote the Berkovich affine
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line over Cv; see [Berkovich 1990; Baker and Rumely 2010, Section 2.1] for
details. Then A1

Berk,Cv is a locally compact, Hausdorff, path-connected space con-
taining Cv as a dense subspace (with the topology induced from the v-adic absolute
value). As a topological space, A1

Berk,Cv is the set consisting of all multiplicative
seminorms, denoted by [·]x , on Cv[T ] extending the absolute value | · |v on Cv

endowed with the weakest topology such that the map z 7→ [ f ]z is continuous for
all f ∈ Cv[T ]. It follows from the Gelfand–Mazur theorem that if Cv is the field
of complex numbers C, then A1

Berk,C is homeomorphic to C. In the following, we
will also use A1

Berk,Cv to denote the complex line C whenever Cv = C. If (Cv, | · |v)
is nonarchimedean, then the set of seminorms can be described as follows. If
{D(ai , ri )}i is any decreasing nested sequence of closed disks D(ci , ri ) centered
at points ci ∈ Cv of radius ri ≥ 0, then the map f 7→ limi→∞ [ f ]D(ci ,ri ) defines a
multiplicative seminorm on Cv[T ], where [ f ]D(ci ,ri ) is the sup norm of f over the
closed disk D(ai , ri ). Berkovich’s classification theorem says that there are exactly
four types of points: types I, II, III, and IV. The first three can be described in terms of
closed disks ζ := D(c, r)=

⋂
D(ci , ri ), where c∈Cv and r ≥0. The corresponding

multiplicative seminorm is just f 7→ [ f ]D(c,r) for f ∈ Cv[T ]. Then ζ is of type I,
II or III if and only if r = 0, r ∈ |C∗v|v or r 6∈ |C∗v|v, respectively. As for type IV
points, they correspond to sequences of decreasing nested disks D(ci , ri ) such that⋂

D(ci , ri ) = ∅ and the multiplicative seminorm is f 7→ limi→∞[ f ]D(ci ,ri ) as
described above. For details, see [Berkovich 1990; Baker and Rumely 2010]. For
ζ ∈ A1

Berk,Cv , we sometimes write |ζ |v instead of [T ]ζ .
In order to apply the main equidistribution result from [Baker and Rumely 2010,

Theorem 7.52], we recall the potential theory on the affine line over Cv. We will
focus on the case when Cv is a nonarchimedean field; the case Cv = C is classical.
(We refer the reader to [Ransford 1995].) The right setting for nonarchimedean
potential theory is the potential theory on A1

Berk,Cv developed in [Baker and Rumely
2010]. We quote part of a nice summary of the theory from [Baker and DeMarco
2011, Section 2.2 and Section 2.3] without going into details. We refer the reader to
[Baker and DeMarco 2011; Baker and Rumely 2010] for all the details and proofs.
Let E be a compact subset of A1

Berk,Cv . Then analogous to the complex case, the
Green function G E of E relative to∞ and the logarithmic capacity γ(E) := e−V (E)

can be defined, where V (E) is the infimum of the energy integral with respect to
all possible probability measures supported on E . More precisely,

V (E)= inf
µ

∫∫
E×E
− log δ(x, y) dµ(x) dµ(y),

where the infimum is computed with respect to all probability measures µ supported
on E while for x, y ∈ A1

Berk,Cv , the function δ(x, y) is the Hsia kernel [Baker and
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Rumely 2010, Proposition 4.1]:

δ(x, y) := lim sup
z,w∈Cv

z→x,w→y

|z−w|v.

The following are basic properties of the logarithmic capacity of E .

• If E1 and E2 are two compact subsets of A1
Berk,Cv such that E1 ⊂ E2, then

γ(E1)≤ γ(E2).

• If E = {ζ }, where ζ is a type II or III point corresponding to a closed
disk D(c, r), then γ(E) = r > 0 [Baker and Rumely 2010, Example 6.3].
(This can be viewed as an analogue of the fact that a closed disk D(c, r) of
positive radius r in Cv has logarithmic capacity γ(D(c, r))= r .)

If γ(E)> 0, then there exists a unique probability measure µE attaining the infimum
of the energy integral. Furthermore, the support of µE is contained in the boundary
of the unbounded component of A1

Berk,Cv \ E .
The Green function G E(z) of E relative to infinity is a well-defined nonnegative

real-valued subharmonic function on A1
Berk,Cv that is harmonic on A1

Berk,Cv \E (in the
sense of [Baker and Rumely 2010, Chapter 8] for the nonarchimedean setting; see
[Ransford 1995] for the archimedean case). If γ(E)= 0, then there exists no Green
function associated with the set E (see [Ransford 1995, Exercise 1, page 115]
in the case when | · |v is archimedean; a similar argument works when | · |v is
nonarchimedean). Indeed, as shown in [Baker and Rumely 2010, Proposition 7.17,
page 151], if γ(∂E) = 0, then there exists no nonconstant harmonic function on
A1

Berk,Cv \ E that is bounded below. (This is the strong maximum principle for
harmonic functions defined on Berkovich spaces). The following result is [Baker
and DeMarco 2011, Lemmas 2.2 and 2.5], and it gives a characterization of the
Green function of the set E :

Lemma 4.1. Let (Cv, |·|v) be either an archimedean or a nonarchimedean field. Let
E be a compact subset of A1

Berk,Cv and U the unbounded component of A1
Berk,Cv \ E.

(1) If γ(E) > 0 (that is, V (E) <∞), then G E(z)= V (E)+ log |z|v+o(1) for all
z ∈A1

Berk,Cv such that |z|v is sufficiently large. Furthermore, the o(1) term may
be omitted if v is nonarchimedean.

(2) If G E(z)=0 for all z∈ E , then G E is continuous on A1
Berk,Cv , Supp(µE)= ∂U ,

and G E(z) > 0 if and only if z ∈U.

(3) If G : A1
Berk,Cv → R is a continuous subharmonic function that is harmonic

on U , identically zero on E , and such that G(z)− log+ |z|v is bounded, then
G = G E . Furthermore, if G(z)= log |z|v + V + o(1) (as |z|v→∞) for some
V <∞, then V (E)= V , so γ(E)= e−V .
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To state the equidistribution result from [Baker and Rumely 2010], we consider
the compact Berkovich adelic sets, which are of the form

E :=
∏
v∈�

Ev,

where Ev is a nonempty compact subset of A1
Berk,Cv for each v ∈ � and where

Ev is the closed unit disk D(0, 1) in A1
Berk,Cv for all but finitely many v ∈�. The

logarithmic capacity γ(E) of E is defined by

γ(E) :=
∏
v∈�

γ(Ev)Nv ,

where the positive integers Nv are the ones associated with the product formula on
the global field K . Note that this is a finite product since γ(Ev)= γ(D(0, 1))= 1
for all but finitely many v ∈�. Let Gv = G Ev be the Green function of Ev relative
to∞ for each v ∈�. For every v ∈�, we fix an embedding K ↪→ Cv . Let S ⊂ K
be any finite subset that is invariant under the action of the Galois group Gal(K/K ).
We define the height hE(S) of S relative to E by

hE(S) :=
∑
v∈�

Nv
( 1
|S|

∑
z∈S

Gv(z)
)
. (4.2)

Note that this definition is independent of any particular embedding K ↪→ Cv that
we choose at v ∈�. The following is a special case of the equidistribution result
[Baker and Rumely 2010, Theorem 7.52].

Theorem 4.3. Let E=
∏
v∈� Ev be a compact Berkovich adelic set with γ(E)= 1.

Suppose that Sn is a sequence of Gal(K/K )-invariant finite subsets of K with
|Sn| →∞ and hE(Sn)→ 0 as n→∞. For each v ∈ � and for each n, let δn be
the discrete probability measure supported equally on the elements of Sn . Then the
sequence of measures {δn} converges weakly to µv , the equilibrium measure on Ev .

5. General results about the dynamics of polynomials fλ

In this section, we work with a family of polynomials fλ as given in Section 2, that
is,

fλ(x)= xd
+

d−2∑
i=0

ci (λ)x i

with ci (λ) ∈ C[λ] for i = 0, . . . , d − 2. As before, we may rewrite our family of
polynomials as

fλ(x)= P(x)+
r∑

j=1

Q j (x) · λm j ,
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where P(x) is a polynomial of degree d in normal form, each Qi has degree at
most equal to d− 2, r is a nonnegative integer, and m0 := 0<m1 < · · ·<mr . Let
c(λ) ∈ C[λ] be given, and let K be the field extension of Q generated by all the
coefficients of ci (λ) for i = 0, . . . , d − 2 and of c(λ).

We define gc,n(λ) := f n
λ (c(λ)) for each n ∈N. Assume m := deg(c) satisfies the

property (ii) from Theorem 2.3, that is,

m = deg(c)≥ mr . (5.1)

Furthermore, if r = 0, we assume m ≥ 1 (see also Remarks 2.4(c)). We let qm be
the leading coefficient of c(λ). In the next lemma, we compute the degrees of all
polynomials gc,n for all positive integers n.

Lemma 5.2. With the hypothesis above, the polynomial gc,n(λ) has degree m · dn

and leading coefficient qdn

m for each n ∈ N.

Proof. The assertion follows easily by induction on n using (5.1) since the term of
highest degree in λ from gc,n(λ) is c(λ)dn

. �

We immediately obtain as a corollary of Lemma 5.2 the fact that c is not prepe-
riodic for f . The set of all λ ∈ C such that c(λ) is preperiodic for fλ is denoted
by Prep(c). The following result is an immediate consequence of Lemma 5.2:

Corollary 5.3. Prep(c)⊂ K .

6. Capacities of generalized Mandelbrot sets

We continue with the notation from Sections 4 and 5. Let c := c(λ) ∈ C[λ] be
a nonconstant polynomial, and let K be a product formula field containing the
coefficients of each ci (λ) for i = 0, . . . , d − 2 and of c. We let �K be the set of
inequivalent absolute values of the global field K , and let v ∈ �K . Assume that
c(λ)= qmλ

m
+ (lower terms), where m = deg(c) satisfies the condition (5.1).

Our goal is to compute the logarithmic capacities of the v-adic generalized
Mandelbrot sets Mc,v defined in Section 3. Following [Baker and DeMarco 2011],
we extend the definition of our v-adic Mandelbrot set Mc,v to be a subset of the
affine Berkovich line A1

Berk,Cv as follows:

Mc,v := { λ ∈ A1
Berk,Cv : supn[gc,n(T )]λ <∞}.

Note that if Cv is a nonarchimedean field, then our present definition for Mc,v yields
more points than our definition from Section 3. Let λ ∈ Cv, and recall the local
canonical height ĥλ,v(x) of x ∈ Cv is given by the formula

ĥλ,v(x) := ĥ fλ,v(x)= lim
n→∞

log+ | f n
λ (x)|v

dn .
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Notice that ĥλ,v(x) is a continuous function of both λ and x (see [Branner and
Hubbard 1988, Proposition 1.2] for polynomials over complex numbers; the proof
for the nonarchimedean case is similar). As Cv is a dense subspace of A1

Berk,Cv ,
continuity in λ implies that the canonical local height function ĥλ,v(c(λ)) has a
natural extension on A1

Berk,Cv . (Since the topology on Cv is the restriction of the
weak topology on A1

Berk,Cv , any continuous function on Cv automatically has a
unique extension to A1

Berk,Cv .) We will view ĥλ,v(c(λ)) as a continuous function
on A1

Berk,Cv in the following. It follows from the definition of Mc,v that λ ∈ Mc,v if
and only if ĥλ,v(c(λ))= 0. Thus, Mc,v is a closed subset of A1

Berk,Cv . In fact, the
following is true:

Proposition 6.1. Mc,v is a compact subset of A1
Berk,Cv .

We already showed that Mc,v is a closed subset of the locally compact space
A1

Berk,Cv , and thus, in order to prove Proposition 6.1, we only need to show that
Mc,v is a bounded subset of A1

Berk,Cv . If f is a constant family of polynomials,
then Proposition 6.1 follows from our assumption that deg(c)≥ 1. Indeed, if |λ|v
is large, then |c(λ)|v is large, and thus, | f n(c(λ))|v →∞ as n →∞. Further-
more, for nonarchimedean place v, if |λ|v is sufficiently large, then (assuming v is
nonarchimedean)

| f n(c(λ))|v = |c(λ)|d
n

v = |qmλ
m
|
dn

v . (6.2)

So now we are left with the case that f is not a constant family, that is, r ≥ 1.

Lemma 6.3. Assume r ≥ 1, that is, f is not a constant family of polynomials. Then
Mc,v is a bounded subset of A1

Berk,Cv .

Proof. First we rewrite as before

fλ(x)= P(x)+
r∑

j=1

Q j (x) · λm j

with P(x) in normal form of degree d and each polynomial Q j of degree e j ≤ d−2;
also, 0< m1 < · · ·< mr . We know m = deg(c)≥ mr .

Since qmλ
m is the leading monomial in c, there exists a positive real number C1

depending only on v, coefficients of ci (λ) for i = 0, . . . , d − 2, and c such that if
|λ|v > C1, then |c(λ)|v > 1

2 |qm |v · |λ|
m
v .

Let α := maxr
i=1 mi/(d − ei ); then α ≤ mr/2 since ei ≤ d − 2 for all i . There

exist positive real numbers C2 and C3 (depending only on v and the coefficients
of ci (λ)) such that if |λ|v > C2 and |x |v > C3|λ|

α
v , then

| fλ(x)|v > 1
2 |x |

d
v > |x |v,

and thus, | f n
λ (x)|v→∞ as n→∞.
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However, since m≥mr ≥ 2α>α, we conclude that if |λ|v>(2C3/|qm |v)
1/(m−α),

then
1
2 |qm |v · |λ|

m
v > C3|λ|

α
v .

We let C4 :=max{C1,C2, (2C3/|qm |v)
1/(m−α), |qm |

−1/m
v }. So if |λ|v > C4, then

|c(λ)|v > 1
2 |qm |v · |λ|

m
v > C3|λ|

α
v ,

and thus, | f n
λ (c(λ))|v→∞ as n→∞. We conclude that if λ∈Mc,v , then |λ|v≤C4,

as desired. �

Remark 6.4. It is possible to make the constants in the proof above explicit. More-
over, for a nonarchimedean place v, the estimate of the absolute values can be
precise. For example, if v is nonarchimedean, we can ensure that if |λ|v > C4, then

| f n
λ (c(λ))|v = |qmλ

m
|
dn

v for all n ≥ 1. (6.5)

Theorem 6.6. The logarithmic capacity of Mc,v is γ(Mc,v)= |qm |
−1/m
v .

The strategy for the proof of Theorem 6.6 is to construct a continuous subhar-
monic function Gc,v : A

1
Berk,Cv → R satisfying Lemma 4.1(3). Analogously to the

family fλ(x)= xd
+ λ treated in [Baker and DeMarco 2011], we let

Gc,v(λ) := lim
n→∞

1
deg(gc,n)

log+[gc,n(T )]λ. (6.7)

Then by a similar reasoning as in the proof of [ibid., Proposition 3.7], it can be
shown that the limit exists for all λ∈A1

Berk,Cv . In fact, by the definition of canonical
local height, for λ ∈ Cv we have

Gc,v(λ)= lim
n→∞

1
mdn log+| f n

λ (c(λ))|v since deg(gc,n)= mdn by Lemma 5.2,

=
1
m
· ĥ fλ,v(c(λ)) by the definition of canonical local height.

As a consequence of the computation above, we have the following:

Proposition 6.8 [Silverman 1994a, Theorem II.0.1; Silverman 1994b, Theorem
III.0.1 and Corollary III.0.3]. We have ĥ fλ,v(c(λ))= deg(c)Gc,v(λ).

Remark 6.9. The formula above holds in the more general case of Question 1.3;
for example, one may work with a rational function c ∈ C(λ).

Note that Gc,v(λ)≥ 0 for all λ ∈A1
Berk,Cv . Moreover, we see easily that λ ∈ Mc,v

if and only if Gc,v(λ)= 0.

Lemma 6.10. The function Gc,v is the Green function for Mc,v relative to∞.

The proof is essentially the same as the proof of [Baker and DeMarco 2011,
Proposition 3.7]; we simply give a sketch of the idea.
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Proof of Lemma 6.10. We deal with the case that v is nonarchimedean. (The case
when v is archimedean follows similarly.) So using the same argument as in the proof
of [Branner and Hubbard 1988, Proposition 1.2], we observe that as a function of λ,

log+[gc,n(T )]λ
deg(gc,n)

converges uniformly on compact subsets of A1
Berk,Cv . So this function is continuous

and subharmonic on A1
Berk,Cv and converges to Gc,v uniformly; hence, it follows

from [Baker and Rumely 2010, Proposition 8.26(c)] that Gc,v is continuous and
subharmonic on A1

Berk,Cv . Furthermore, as remarked above, Gc,v is 0 on Mc,v.
Arguing as in the proof of Lemma 6.3 (see (6.2) and (6.5)), if |λ|v > C4, then

for n ≥ 1 we have

|gc,n(λ)|v = | f n
λ (c(λ))|v = |qmλ

m
|
dn

v .

Hence, for |λ|v > C4 we have

Gc,v(λ)= lim
n→∞

1
mdn log|gc,n(λ)|v= log |λ|v +

log |qm |v

m
.

It follows from Lemma 4.1(3) that Gc,v is indeed the Green function of Mc,v. �

Now we are ready to prove Theorem 6.6.

Proof of Theorem 6.6. As in the proof of Lemma 6.10, we have

Gc,v(λ)= log |λ|v +
log |qm |v

m
+ o(1)

for |λ|v sufficiently large. By Lemma 4.1(3), we find that V (Mc,v)= log |qm |v/m.
Hence, the logarithmic capacity of Mc,v is

γ(Mc,v)= e−V (Mc,v) = 1/|qm |
1/m
v . �

Let Mc =
∏
v∈� Mc,v be the generalized adelic Mandelbrot set associated with c.

As a corollary to Theorem 6.6, we see Mc satisfies the hypothesis of Theorem 4.3.

Corollary 6.11. For all but finitely many nonarchimedean places v, we have that
Mc,v is the closed unit disk D(0; 1) in Cv; furthermore, γ(Mc)= 1.

Proof. For each place v where all coefficients of ci (λ) for i=0, . . . , d−2 and of c(λ)
are v-adic integral and moreover |qm |v = 1, we have that Mc,v = D(0, 1). Indeed,
D(0, 1) ⊂ Mc,v since then f n

λ (c(λ)) is always a v-adic integer. For the converse
implication, we note that each coefficient of gc,n(λ) is a v-adic integer while the
leading coefficient is a v-adic unit for all n ≥ 1; thus, |gc,n(λ)|v = |λ|

mdn

v →∞

if |λ|v > 1. Note that qm 6= 0, so the second assertion in Corollary 6.11 follows
immediately by the product formula in K . �
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Using Proposition 6.8 and the decomposition of the global canonical height as a
sum of local canonical heights, we obtain the following result:

Corollary 6.12. Let λ ∈ K , let S be the set of Gal(K/K )-conjugates of λ, and let
hMc be defined as in (4.2). Then deg(c) · hMc(λ)= ĥ fλ(c(λ)).

Remark 6.13. Let h(λ) denote a Weil height function corresponding to the divisor
∞ of the parameter space that is the projective line in our case. Then it follows
from [Call and Silverman 1993, Theorem 4.1] that

lim
h(λ)→∞

ĥ fλ(c(λ))
h(λ)

= ĥ f (c),

where ĥ f (c) is the canonical height associated with the polynomial map f over
the function field C(λ). Corollary 6.12 gives a precise relationship between the
canonical height function on the special fiber, the height of the parameter λ, and
ĥ f (c), which is equal to deg(c) in this case.

7. Explicit formula for the Green function

In this section, we work under the assumption that | · |v = | · | is archimedean,
and Cv simply denotes C in this case. We show that in this setting we have an
alternative way of representing the Green function Gc :=Gc,v for the Mandelbrot set
Mc := Mc,v . We continue to work under the same hypothesis on c(λ); in particular,
we assume that (5.1) holds. Furthermore, if r = 0 (that is, f is a constant family of
polynomials), then m = deg(c)≥ 1.

Since the degree in x of fλ(x) is d, there exists a unique function φλ that is an
analytic homeomorphism on the set URλ for some Rλ ≥ 1 (where for any positive
real number R, UR denotes the open set { z ∈C : |z|> R }) satisfying the following
conditions:

(1) φλ has derivative equal to 1 at ∞, or more precisely, the analytic function
ψλ(z) := 1/φλ(1/z) has derivative equal to 1 at z = 0, and

(2) φλ( fλ(z))= (φλ(z))d for |z|> Rλ.

We can make (1) above more precise by giving the power series expansion

φλ(z)= z+
∞∑

n=1

Aλ,n
zn . (7.1)

From (7.1) we immediately conclude that |φλ(z)| = |z| + Oλ(1), and thus,

log |φλ(z)| = log |z| + Oλ(1) for |z| large enough. (7.2)
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So using that φλ( fλ(z))= φλ(z)d , we conclude that if |z|> Rλ, then

lim
n→∞

log+ | f n
λ (z)|

dn = lim
n→∞

log |φλ( f n
λ (z))|

dn = log |φλ(z)|. (7.3)

Hence, (7.3) yields that the Green function Gλ for the (filled Julia set of the)
polynomial fλ equals

Gλ(z) := lim
n→∞

log | f n
λ (z)|

dn = log |φλ(z)| if |z|> Rλ.

For details on the Green function associated with any polynomial, see [Carleson
and Gamelin 1993], where Chapter III.4 says that the function log |φλ(z)| can be
extended to a well-defined harmonic function on the entire basin of attraction Aλ

∞

of the point at∞ for the polynomial map fλ. The set Aλ
∞

is the complement of the
filled Julia set of fλ; more precisely, it is the set of all z ∈ C such that the orbit of z
under fλ is unbounded. Thus, on Aλ

∞
we have

Gλ(z) := log |φλ(z)| (7.4)

is the Green function for (the filled Julia set of) the polynomial fλ. Also by [ibid.,
Chapter III.4], we know that

Rλ := max
f ′λ(x)=0

eGλ(x)
≥ 1.

In Proposition 7.6, we will show that if |λ| is sufficiently large, then c(λ) is in
the domain of analyticity for φλ. In particular, using (7.2) this would yield

Gc(λ)= lim
n→∞

log+ | f n
λ (c(λ))|

mdn =
log |φλ(c(λ))|

m
=

Gλ(c(λ))
m

(7.5)

for |λ| sufficiently large.

Proposition 7.6. There exists a positive constant C0 such that if |λ|>C0, then c(λ)
belongs to the analyticity domain of φλ.

Proof. The proof is similar to that of [Baker and DeMarco 2011, Lemma 3.2]. If f
is a constant family of polynomials, then the conclusion is immediate since Rλ is
constant (independent of λ), and thus, for |λ| sufficiently large, clearly |c(λ)|> Rλ.
So from now on assume f is not a constant family of polynomials, which in
particular yields that r ≥ 1 and 0< m1 < · · ·< mr .

First we recall that

Rλ = eGλ(x0) := max
f ′λ(x)=0

eGλ(x).

Next we show that Rλ→∞ as |λ| →∞, which will be used later in our proof.

Lemma 7.7. As |λ| →∞, we have Rλ→∞.
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Proof. We recall that

fλ(x)= P(x)+
r∑

i=1

λmi · Qi (x),

where P(x) is a polynomial in normal form of degree d and 0 < m1 < · · · < mr

are positive integers while the Qi are nonzero polynomials of degrees ei ≤ d − 2.
We have two cases.

Case 1. Each Qi (x) is a constant polynomial. Then the critical points of fλ
are independent of λ, that is, x0 = O(1). We let x1 ∈ C such that fλ(x1) = x0.
Since each Qi is a nonzero constant polynomial, we immediately conclude that
|x1| � |λ|

mr/d . On the other hand, since U2Rλ ⊂ φ
−1
λ (URλ) [Branner and Hubbard

1988, Corollary 3.3], we conclude that |x1| ≤ 2Rλ, so Rλ � |λ|mr/d . Indeed, if
|x1|> 2Rλ, then there exists z1 ∈URλ such that φ−1

λ (z1)= x1. Using the fact that
φλ is a conjugacy map at∞ for fλ, we would obtain that

x0 = fλ(x1)= fλ(φ−1
λ (z1))= φ

−1
λ (zd

1) ∈URλ,

which contradicts the fact that x0 is not in the analyticity domain of φλ.

Case 2. There exists i = 1, . . . , r such that Qi (x) is not a constant polynomial.
Then the critical points of fλ vary with λ. In particular, there exists a critical point xλ
of maximum absolute value such that |xλ| � |λ|m j/(d−e j ) (for some j = 1, . . . , r ),
where for each i = 1, . . . , r , we have ei = deg(Qi )≤ d − 2. Now, xλ is not in the
domain of analyticity of φλ, and thus, |xλ| ≤ Rλ, which again shows that Rλ→∞
as |λ| →∞. �

Using that Rλ→∞, we will finish our proof. First we note that

|φλ( fλ(x0))| = eGλ( fλ(x0)) = edGλ(x0) = Rd
λ . (7.8)

Note that φλ(z) is analytic on URλ while log |φλ(z)| is continuous for |z| ≥ Rλ.
Moreover, whenever it is defined, Gλ( fλ(z)) = dGλ(z), so also using (7.4), we
obtain (7.8).

Now for |λ| sufficiently large, we have that Rd
λ/2> Rλ (since Rλ→∞ according

to Lemma 7.7). So URd
λ
⊂ φλ(URd

λ/2
) [Branner and Hubbard 1988, Corollary 3.3],

and thus,
| fλ(x0)| ≥

1
2 Rd

λ . (7.9)

Case 1. We have deg(Qi )= 0 for each i . Then x0= O(1) as noticed in Lemma 7.7,
and thus, using (7.9) we obtain that |λ|mr � Rd

λ . Since deg(c)=m ≥mr , we obtain

|c(λ)| ≥ |qm | · |λ|
m
− |O(λm−1)| � Rd

λ > Rλ

if |λ| is sufficiently large.
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Case 2. If not all of the Qi are constant polynomials, then we still know that

|x0| � |λ|
maxr

i=1 mi/(d−ei )� |λ|mr/2

because ei ≤ d − 2 for each i . Therefore,

Rd
λ � | fλ(x0)| � |λ|

dmr/2. (7.10)

On the other hand, |c(λ)| ∼ |λ|m and m ≥ mr , which yield that

|c(λ)| � |λ|m � R2
λ� Rλ

by (7.10). This concludes the proof of Proposition 7.6. �

Therefore, for large |λ|, the point c(λ) is in the domain of analyticity for φλ,
which allows us to conclude that (7.5) holds.

We know from [Carleson and Gamelin 1993] that for each λ ∈ C and for each
z ∈ C sufficiently large in absolute value, we have

φλ(z)= z
∞∏

n=0

( f n+1
λ (z)
f n
λ (z)d

)1/dn+1

, (7.11)

and thus,

φλ(z)= z
∞∏

n=0

(
1+

Q0( f n
λ (z))+

∑r
i=1 Qi ( f n

λ (z)) · λ
mi

f n
λ (z)d

)1/dn+1

, (7.12)

where Q0(x) := P(x)− xd is a polynomial of degree at most equal to d − 2. We
showed in Proposition 7.6 that φλ(c(λ)) is well-defined; furthermore, the function
φλ(c(λ))/c(λ) can be expressed near∞ as the infinite product above. Indeed, for
each n ∈N, the order of magnitude of the numerator in the n-th fraction from the
product appearing in (7.12) when we substitute z = c(λ) is at most

|λ|m+(d−2)mdn
≤ |λ|m(d−1)dn

while the order of magnitude of the denominator is |λ|mdn+1
. This guarantees

the convergence of the product from (7.12) corresponding to φλ(c(λ))/c(λ). We
conclude that

φλ(c(λ)) is an analytic function of λ (for large λ) and moreover (7.13)

φλ(c(λ))= qmλ
m
+ O(λm−1). (7.14)
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8. Proof of Theorem 2.3: Algebraic case

We work under the hypothesis of Theorem 2.3, and we continue with the notation
from the previous sections. Furthermore, we prove Theorem 2.3 under the extra
assumptions that

a, b ∈Q[λ] and ci ∈Q[λ] for each i = 0, . . . , d − 2. (8.1)

Recall that fλ(x) = xd
+
∑d−2

i=0 ci (λ)x i , where we require that ci ∈ Q[λ] for
i = 0, . . . , d−2. Let a, b ∈Q[λ] satisfy the hypotheses (i) and (ii) of Theorem 2.3.
Let K be the number field generated by the coefficients of ci (λ) for i = 0, . . . , d−2
and of a(λ) and b(λ). Let �K be the set of all inequivalent absolute values on K .

Next, assume there exist infinitely many λ such that both a(λ) and b(λ) are
preperiodic for fλ. At the expense of replacing a(λ) by f k

λ (a(λ)) and b(λ) by
f `λ (b(λ)), we may assume that the polynomials

a(λ) and b(λ) have the same leading coefficient and degree m ≥ mr . (8.2)

Let hMa(z) and hMb(z) be the heights of z ∈ K relative to the adelic generalized
Mandelbrot sets Ma :=

∏
v∈�K

Ma,v and Mb as defined in Section 6. Note that if
λ∈ K is a parameter such that a(λ) and b(λ) are preperiodic for fλ, then hMa(λ)= 0
by Corollary 6.12. So we may apply the equidistribution result from [Baker and
Rumely 2010, Theorem 7.52] (see our Theorem 4.3) and conclude that Ma,v =Mb,v
for each place v ∈ �K . Indeed, we know that there exists an infinite sequence
{λn}n∈N of distinct numbers λ ∈ K such that both a(λ) and b(λ) are preperiodic
for fλ. So for each n ∈ N, we may take Sn to be the union of the sets of Galois
conjugates for λm for all 1≤ m ≤ n. Clearly, #Sn→∞ as n→∞, and also each
Sn is Gal(K/K )-invariant. Finally, hMa(Sn)= hMb(Sn)= 0 for all n ∈N, and thus,
Theorem 4.3 applies in this case. We obtain that µMa =µMb , and since they are both
supported on Ma and Mb, respectively, we also get that Ma =Mb. The following
lemma applies in the generality of Theorem 2.3, and it will finish our proof. (Note
that since K is a number field, it has at least one archimedean valuation.)

Lemma 8.3. Let f , a, and b be as in Theorem 2.3; in particular, assume they are
all defined over C. Let | · | be the usual archimedean absolute value on C, and
let Ma and Mb be the corresponding complex Mandelbrot sets. If Ma = Mb, then
a = b.

Proof. Since Ma = Mb, then the corresponding Green functions are also the same,
that is, (using (7.5) and (8.2))

|φλ(a(λ))| = |φλ(b(λ))| for all |λ| sufficiently large.

On the other hand, for |z| large, the function h(z) :=φz(a(z))/φz(b(z)) is an analytic
function of constant absolute value. (Note that the denominator does not vanish
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since φλ is a homeomorphism for a neighborhood of∞.) By the open mapping
theorem, we conclude that h(z) := u is a constant (for some u ∈C of absolute value
equal to 1); that is,

φλ(a(λ))= u ·φλ(b(λ)). (8.4)

Using (7.13) and (7.14) (also note that a(λ) and b(λ) have the same leading coeffi-
cient), we have u = 1. Using that φλ is a homeomorphism on a neighborhood of
the infinity, we conclude that a(λ)= b(λ) for λ sufficiently large in absolute value
and thus for all λ as desired. (Note that a and b are polynomials.) �

Remark 8.5. Our proof (similar to the proof from [Baker and DeMarco 2011]) only
uses in an essential way the information that Ma = Mb, that is, that the Mandelbrot
sets over the complex numbers corresponding to a and b are equal, even though we
know that Ma,v = Mb,v for all places v.

9. Proof of Theorem 2.3: The converse implication

Now we prove the converse implication in Theorem 2.3 in the general case, that is,
for polynomials c0, . . . , cd−2, a, and b with arbitrary complex coefficients. Again
at the expense of replacing a(λ) by f k

λ (a(λ)) and replacing b(λ) by f `λ (b(λ)), we
may assume a(λ)= b(λ). The following result will finish the converse statement
in Theorem 2.3:

Proposition 9.1. Let c ∈ C[λ] of degree m ≥ mr . Let Prep(c) be the set consisting
of all λ∈C such that c(λ) is preperiodic under fλ, and let Mc be the set of all λ∈C

such that the orbit of c(λ) under the action of fλ is bounded with respect to the
usual archimedean metric on C. Then the closure in C of the set Prep(c) contains
∂Mc. In particular, Prep(c) is infinite.

Proof. We first claim that the equation fz(c(z)) = c(z) has only finitely many
solutions. Indeed, according to Lemma 5.2, the degree in z of fz(c(z))− c(z)
is dm, which means that there are at most dm solutions z ∈ C for the equation
fz(c(z))= c(z).

Let x0 ∈ ∂Mc, which is not a solution z to fz(c(z)) = c(z); we will show that
x0 is contained in the closure in C of Prep(c). Since we already know that if
fz(c(z))= c(z), then z ∈ Prep(c), we will be done once we prove that each open
neighborhood U of x0 contains at least one point from Prep(c).

Now, let U be an open neighborhood of x0, and let hi :U→P1(C) for i = 1, 2, 3
be three analytic functions with values taken in the compact Riemann sphere, given
by

h1(z) :=∞, h2(z) := c(z), and h3(z) := gc,1(z)= fz(c(z)).

Furthermore, since x0 is not a solution for the equation h2(z)= h3(z), then we may
assume (at the expense of replacing U with a smaller neighborhood of x0) that the
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closures of h2(U ) and h3(U ) are disjoint. Therefore, the closures of h1(U ), h2(U ),
and h3(U ) in P1(C) are all disjoint.

As before, we let {gc,n}n≥2 be the set of polynomials gc,n(z) := f n
z (c(z)). Since

x0 ∈ ∂Mc, the family of analytic maps {gc,n}n≥2 is not normal on U . Therefore, by
Montel’s theorem [Beardon 1991, Theorem 3.3.6], there exists n ≥ 2 and z ∈ U
such that gc,n(z) = c(z) or gc,n(z) = fz(c(z)). (Clearly, it cannot happen that
gc,n(z)=∞.) Either way, we obtain that z ∈ Prep(c) as desired.

Since γ(Mc) > 0, we know that Mc is an uncountable subset of C, and thus, its
boundary is infinite; hence, Prep(c) is also infinite. �

10. Proof of Theorem 2.3: General case

In this section, we finish the proof of Theorem 2.3. With the same notation as in
Theorem 2.3, we replace a and b with f k

λ (a(λ)) and f `λ (b(λ)), respectively; thus,
a(λ) and b(λ) are polynomials with the same degree and same leading coefficient.
We assume there exist infinitely many λ ∈ C such that both a(λ) and b(λ) are
preperiodic for fλ; we will prove that a = b.

Let K denote the field generated over Q by adjoining the coefficients of each ci

(for i = 1, . . . , d − 2) and adjoining the coefficients of a and of b. According to
Corollary 5.3, if there exists λ ∈ C such that a(λ) (or b(λ)) is preperiodic for fλ,
then λ ∈ K , where K denotes the algebraic closure of K in C. Let �K be the set of
inequivalent absolute values of K corresponding to the divisors of a projective Q-
variety V regular in codimension 1; then the places in �K satisfy a product formula.

As in Section 8, we let hMa(z) and hMb(z) be the heights of z ∈ K relative to
the adelic generalized Mandelbrot sets Ma =

∏
v∈�K

Ma,v and Mb as defined in
Section 6. Note that if λ ∈ K is a parameter such that a(λ) is preperiodic for fλ,
then hMa(λ)= 0 and hMb(λ)= 0, respectively, by Corollary 6.12 again. So arguing
as in Section 8, we may apply the equidistribution result from [Baker and Rumely
2010, Theorem 7.52] (Theorem 4.3) and conclude that Ma,v = Mb,v for each
place v ∈�K .

As observed in our proof from Section 8 (see Remark 8.5), in order to finish the
proof of Theorem 2.3, it suffices to prove that Ma = Mb, where Ma and Mb are
the complex Mandelbrot sets corresponding to a and b, respectively. By complex
Mandelbrot sets Ma and Mb, we mean the Mandelbrot sets corresponding to a
and b constructed with respect to the usual archimedean metric on C.

As before, Prep(a) and Prep(b) denote the sets of all λ ∈ C such that a(λ)
and b(λ), respectively, are preperiodic for fλ. As proved in Corollary 5.3, we know
that both Prep(a) and Prep(b) are subsets of K . In order to prove that Ma = Mb, it
suffices to prove that Prep(a) differs from Prep(b) in at most finitely many points.
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To ease the notation, we define the symmetric difference of Prep(a) and Prep(b) as

PrepDiff(a, b) := (Prep(a) \Prep(b))∪ (Prep(b) \Prep(a)).

Proposition 10.1. If the set PrepDiff(a, b) is finite, then Ma = Mb.

Proof. Since Ma contains all points λ ∈ C such that limn→∞ log+ | f n
λ (a)|/d

n
= 0,

the maximum modulus principle yields that the complement of Ma in C is connected;
that is, Ma is a full subset of C; see also [Baker and DeMarco 2011]. So both Ma

and Mb are full subsets of C containing the sets Prep(a) and Prep(b) whose closures
contain the boundary of Ma and Mb, respectively (according to Proposition 9.1).
As Prep(a) and Prep(b) differ by at most finitely many elements, we conclude that
Ma = Mb. �

To prove that Prep(a) and Prep(b) differ by at most finitely many elements, we
observe first that if λ∈Prep(a), then ĥ fλ(a(λ))=0, and thus, λσ ∈Ma,v for all v and
all σ ∈Gal(K/K ). (See (3.3); note that a(λ)σ = a(λσ ) since a ∈ K [x].) Similarly,
if λ ∈ Prep(b), then λσ ∈ Mb,v for each place v ∈�K and each Galois morphism σ .
We would like to use the reverse implication, that is, characterize the elements
Prep(a) as the set of all λ ∈ K such that λσ ∈ Ma,v for each place v and for each
Galois morphism σ . This is true if fλ is not isotrivial over Q by Benedetto’s result
[2005]. In this case, Prep(a) and Prep(b) are exactly the sets of λ ∈ K such that
hMa(λ)= 0 and hMa(λ)= 0, respectively. However, notice that if fλ ∈Q[x], then

λσ ∈ Ma,v for all v ∈�K and σ ∈ Gal(K/K ) if and only if a(λ) ∈Q.

We see that in this case, Prep(a) is strictly smaller than the set of λ ∈ K such that
hMa(λ)= 0. So we will prove that Prep(a) and Prep(b) differ by at most finitely
many elements by splitting our analysis into two cases depending on whether
there exist infinitely many λ ∈ C such that fλ is conjugate to a polynomial with
coefficients in Q. The following easy result is key for our argument:

Lemma 10.2. For any λ ∈ C, the polynomial fλ(x) is conjugate to a polynomial
with coefficients in Q if and only if ci (λ) ∈Q for each i = 1, . . . , d − 2.

Proof. One direction is obvious. Now, assume fλ is conjugate to a polynomial with
coefficients in Q. Let δ(x) := ax + b be a linear polynomial so δ−1

◦ fλ ◦ δ ∈Q[x].
Since fλ is in normal form, we note that a, b∈Q for otherwise the leading coefficient
or the next-to-leading coefficient is not algebraic. Now, it is clear that each ci (λ)∈Q

as desired. �

Let S be the set of all λ ∈ C such that fλ is conjugate to a polynomial in Q[x].
Using Lemma 10.2, S ⊂ K since each polynomial ci has coefficients in K and
Q⊂ K . Also, S is Gal(K/K )-invariant since each coefficient of each ci is in K .

Proposition 10.3. PrepDiff(a, b)⊂ S.
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Proof. Let λ ∈ K \ S. Since fλ is not conjugate to a polynomial in Q, using
Benedetto’s result (see also (3.3)) we obtain that a(λ) is preperiodic for fλ if
and only if for each v ∈ �K and σ ∈ Gal(K/K ), the local canonical height of
a(λ)σ = a(λσ ) computed with respect to f σλ equals 0. Since each coefficient of
ci (λ) is defined over K , we get that f σλ = fλσ . Therefore, for each λ ∈ K \ S, we
see that a(λ) or b(λ) is preperiodic for fλ if and only if for all v ∈ �K and all
σ ∈ Gal(K/K ), we have λσ ∈ Ma,v or λσ ∈ Mb,v , respectively. Using the fact that
Ma,v = Mb,v for all v ∈�K , we conclude that if λ ∈ K \ S, then λ ∈ Prep(a) if and
only if λ ∈ Prep(b). Hence, PrepDiff(a, b)⊂ S as desired. �

Lemma 10.4. If λ ∈ S and a(λ) 6∈Q, then a(λ) is not preperiodic for fλ.

Proof. The assertion is immediate since for λ∈ S we have fλ∈Q[x] by the definition
of S (see also Lemma 10.2); hence, the set of preperiodic points of fλ is contained
in Q. By assumption a(λ) 6∈Q; therefore, a(λ) is not preperiodic for fλ. �

Proposition 10.5. The set PrepDiff(a, b) is finite.

Proof. If S is a finite set, then the assertion follows from Proposition 10.3. So in
the remaining part of the proof, we assume that S is an infinite set. By Lemma 10.2
we know that there exist infinitely many λ ∈ K such that ci (λ) ∈ Q for each
i = 0, . . . , d − 2. The following lemma will be key for our proof:

Lemma 10.6. Let L1 ⊂ L2 be algebraically closed fields of characteristic 0, and
let f1, . . . , fn ∈ L2[x]. If there exist infinitely many z ∈ L2 such that fi (z) ∈ L1 for
each i = 1, . . . , n, then there exists h ∈ L2[x], and there exist g1, . . . , gn ∈ L1[x]
such that fi = gi ◦ h for each i = 1, . . . , n.

Proof. Let C ⊂ An be the Zariski closure of the set

{ ( f1(z), . . . , fn(z)) : z ∈ L2 }. (10.7)

Then C is a rational curve that (by our hypothesis) contains infinitely many points
over L1. Therefore, C is defined over L1, and thus, it has a rational parametrization
over L1. Let

(g1, . . . , gn) : A
1
→ C

be a birational morphism defined over L1; we denote by ψ : C→ A1 its inverse.
(For more details, see [Shafarevich 1994, Chapter 1]). Since the closure of C in Pn

(by considering the usual embedding of An
⊂Pn) has only one point at infinity (due

to the parametrization (10.7) of C), we conclude that (perhaps after a change of
coordinates) we may assume each gi is also a polynomial; more precisely, gi ∈ L1[x].
We let h :A1

→A1 be the rational map (defined over L2) given by the composition

h := ψ ◦ ( f1, . . . , fn).
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Therefore, for each i = 1, . . . , n, we have fi = gi ◦ h, and since both fi and gi are
polynomials, we conclude that h is also a polynomial, as desired. �

As an immediate consequence of Lemma 10.6, we have the following result:

Corollary 10.8. Let L1 ⊂ L2 be algebraically closed fields of characteristic 0, and
let f1, . . . , fn ∈ L2[x]. If there exist infinitely many z ∈ L2 such that fi (z) ∈ L1 for
i = 1, . . . , n, then for any i, j ∈ {1, . . . , n} and any z ∈ L2, we have fi (z) ∈ L1 if
and only if f j (z) ∈ L1.

There are two possibilities: Either there exist infinitely many λ ∈ S such that
a(λ) ∈Q or not.

Lemma 10.9. If there exist infinitely many λ ∈ S such that a(λ) ∈ Q, then a = b.
In particular, Prep(a)= Prep(b).

Proof. Using Corollary 10.8 we obtain that actually for all λ ∈ S we have that
a(λ) ∈ Q. So in this case each λσ belongs to each Ma,v for each place v of the
function field K/Q and for each σ ∈Gal(K/K ). (Note that for such λ ∈ S we have
that both fλ ∈ Q[x] and a(λ) ∈ Q, and also note that S is Gal(K/K )-invariant.)
Since Ma,v = Mb,v for each place v, we conclude that λσ ∈ Mb,v for each λ ∈ S,
for each v ∈�K , and for each σ ∈ Gal(K/K ). Since fλ ∈Q[x], we conclude that
b(λ)∈Q as well. Indeed, otherwise |b(λ)σ |v > 1 for some place v and some Galois
morphism σ , and thus, | f n

λ (b(λ
σ ))|v→∞ as n→∞, contradicting the fact that

λσ ∈ Mb,v. Hence, both a(λ) ∈Q and b(λ) ∈Q for λ ∈ S.
Therefore, applying Lemma 10.6 to the polynomials c0, . . . , cd−2, a, and b, we

conclude that there exist polynomials c′0, . . . , c′d−2, a′, b′ ∈Q[x] and h ∈ K [x] such
that

ci = c′i ◦ h for each i = 0, . . . , d − 2 and (10.10)

a = a′ ◦ h and b= b′ ◦ h. (10.11)

We let δ := h(λ) and define the family of polynomials

f ′δ(x) := xd
+

d−2∑
i=0

c′i (δ)x
i .

So we reduced the problem to the case studied in Section 8 for the family of
polynomials f ′δ ∈ Q[x] and to the starting points a′, b′ ∈ Q[δ]. Note that using
hypotheses (i) and (ii) from Theorem 2.3 and also relations (10.10) and (10.11),
a′(δ) and b′(δ) have the same leading coefficient and the same degree, which is
larger than the degrees of the c′i . So since we know there exist infinitely many δ ∈C

such that a′(δ) and b′(δ) are both preperiodic for f ′δ , we conclude that a′ = b′ as
proved in Section 8. Hence, a = b, and thus, Prep(a)= Prep(b). �
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Lemma 10.12. If finitely many λ ∈ S exist such that a(λ) ∈Q, then PrepDiff(a, b)
is finite.

Proof. First, note that there must be at most finitely many λ ∈ S such that b(λ) ∈Q.
Otherwise, arguing as in the proof of Lemma 10.9, we would obtain that for all the
infinitely many λ ∈ S, both a(λ) and b(λ) are in Q, which violates the lemma’s
hypothesis. So let T be the finite subset of S containing all λ such that either
a(λ) ∈Q or b(λ) ∈Q.

Let λ ∈ (K \ T ) ∩ Prep(a). If λ ∈ S, then by Lemma 10.4 we know that
λ 6∈ Prep(a), a contradiction. Therefore, λ 6∈ S, so by Proposition 10.3, we have
λ /∈ PrepDiff(a, b). Similarly, if λ ∈ (K \ T )∩ Prep(b), then λ /∈ PrepDiff(a, b).
Thus, PrepDiff(a, b) is contained in the finite set T . �

Lemmas 10.9 and 10.12 finish the proof of Proposition 10.5. �

Therefore, Proposition 10.5 yields that Prep(a) and Prep(b) differ by at most
finitely many elements. Then it follows from Proposition 10.1 that the corresponding
complex Mandelbrot sets Ma and Mb are equal, so we conclude our proof of
Theorem 2.3 using Lemma 8.3.

11. Connections to the dynamical Manin–Mumford conjecture

We first prove Corollary 2.7, and then we present further connections between our
Question 1.3 and the dynamical Manin–Mumford conjecture formulated by Ghioca,
Tucker, and Zhang [2011].

Proof of Corollary 2.7. At the expense of replacing f by a conjugate δ−1
◦ f ◦ δ

and replacing a and b by δ−1
◦ a and δ−1

◦ b, respectively, we may assume f is in
normal form. By the hypothesis of Corollary 2.7, we know that there are infinitely
many λn ∈Q such that

lim
n→∞

ĥ f (a(λn))+ ĥ f (b(λn))= 0.

We let f := fλ := f be the constant family of polynomials f indexed by λ∈Q. As
before, we let K be the field generated by coefficients of f , a, and b and let hMa(z)
and hMb(z) be the heights of z ∈ K relative to the adelic generalized Mandelbrot
sets Ma :=

∏
v∈�K

Ma,v and Mb, respectively, as defined in Section 6. So we may
apply the equidistribution result from [Baker and Rumely 2010, Theorem 7.52] (see
our Theorem 4.3) and conclude that Ma,v = Mb,v for each place v ∈�K . Indeed,
for each n ∈ N, we may take Sn to be the set of Galois conjugates of λn . Clearly
#Sn→∞ as n→∞ (since the points λn are distinct and their heights are bounded
because the heights of a(λn) and b(λn) are bounded). Finally, limn→∞ hMa(Sn)=

limn→∞ hMb(Sn)= 0 (by Corollary 6.12), and thus, Theorem 4.3 applies in this case.
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Using that Ma,v = Mb,v for an archimedean place v, the same argument as in
the proof of Theorem 2.3 yields that a = b as desired. �

Next we discuss the connection between our Question 1.3 and the dynamical
Manin–Mumford conjecture [Ghioca et al. 2011, Conjecture 1.4]. First we recall
that for a projective variety X and an endomorphism 8 of X , we say that 8 is
polarizable if there exists an integer d > 1 and there exists an ample line bundle L

on X such that 8∗(L)= L⊗d .

Conjecture 11.1 (Ghioca, Tucker, Zhang). Let X be a projective variety, define
ϕ : X → X to be a polarizable endomorphism defined over C, and let Y be a
subvariety of X that has no component included into the singular part of X. Then
Y is preperiodic under ϕ if and only if there exists a Zariski dense subset of smooth
points x ∈ Y ∩ Prepϕ(X) such that the tangent subspace of Y at x is preperiodic
under the induced action of ϕ on the Grassmannian Grdim(Y )(TX,x). (Here TX,x

denotes the tangent space of X at the point x.)

Ghioca, Tucker, and Zhang [2011] prove that Conjecture 11.1 holds whenever 8
is a polarizable algebraic group endomorphism of the abelian variety X and also
when X =P1

×P1, Y is a line, and8(x, y)= ( f (x), g(y)) for any rational maps f
and g. We claim that a positive answer to Question 1.3 yields the following special
case of Conjecture 11.1 that is not covered by the results from [Ghioca et al. 2011].
Note that we do not need the condition on preperiodicity of tangent spaces in the
Grassmannian, only an infinite family of preperiodic points; hence, what one would
obtain here is really a special case of Zhang’s original dynamical Manin–Mumford
conjecture (which did not require the extra hypothesis on tangent spaces).

Proposition 11.2. If Question 1.3 holds in the affirmative, then for any endo-
morphism 8 of P1

×P1 given by 8(x, y) := ( f (x), f (y)) for some rational map
f ∈C(x) of degree at least 2, a curve Y ⊂P1

×P1 will contain infinitely many prepe-
riodic points if and only if Y is preperiodic under 8. In particular, Question 1.3
implies Conjecture 11.1 for such Y and 8.

Proof. Let Y ⊂ P1
×P1 be a curve containing infinitely many points (x, y) such

that both x and y are preperiodic for f . Furthermore, we may assume Y projects
dominantly on each coordinate of P1

× P1 since otherwise it is immediate to
conclude that Y contains infinitely many preperiodic points for 8 if and only if
Y = {c}×P1 or Y = P1

×{c}, where c is a preperiodic point for f .
We let f = fλ := f be the constant family of rational functions (equal to f )

indexed by all points λ ∈ Y and let K be the function field of Y . Let (a, b) ∈
P1(K )×P1(K ) be a generic point for Y . By our assumption, there exist infinitely
many λ ∈ Y such that both a(λ) and b(λ) are preperiodic for fλ = f . Since Y
projects dominantly on each coordinate of P1

×P1, we get that neither a nor b
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is preperiodic under the action of f . (Otherwise, a or b would be constant.) So
assuming the answer to Question 1.3 is “yes”, we obtain that the curve Y (C) =
{ (a(λ), b(λ)) : λ ∈ Y } ⊂ P1

K ×K P1
K lies on a preperiodic proper subvariety Z

of P1
× P1 defined over a finite extension of K . More precisely, we get that

Z = Y ⊗C K , so Y must be itself preperiodic under the action of ( f, f ) on P1
×P1.

Conversely, suppose that Y is preperiodic under 8. Then some iterate of Y
contains a dense set of periodic points by [Fakhruddin 2003], so Y contains an
infinite set of preperiodic points. �

Remarks 11.3. (a) In the proof of Proposition 11.2, we did not use the full strength
of the hypothesis from Conjecture 11.1. Instead we used the weaker hypothesis of
[Zhang 1995, Conjecture 2.5] or [Zhang 2006, Conjecture 1.2.1, Conjecture 4.1.7]
(which was the original formulation of the dynamical Manin–Mumford conjecture).
This is not surprising since for curves contained in P1

×P1, the only counterexam-
ples to the original formulation of the dynamical Manin–Mumford conjecture are
expected to occur when 8 := ( f, g) for two distinct Lattès maps.

(b) Finally, we note that a positive answer to Conjecture 11.1 does not yield a
positive answer to Question 1.3. Instead, Question 1.3 goes in a different direction
that is likely to shed more light on the dynamical Manin–Mumford conjecture
especially in the case when Y is a curve in Conjecture 11.1.
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F -blowups of normal surface singularities
Nobuo Hara, Tadakazu Sawada and Takehiko Yasuda

We study F-blowups of non-F-regular normal surface singularities. Especially
the cases of rational double points and simple elliptic singularities are treated in
detail.

1. Introduction

The F-blowup introduced in [Yasuda 2012] is a canonical birational modification
of a variety in positive characteristic. For a nonnegative integer e, the e-th F-
blowup of a variety X is defined as the blowup at Fe

∗
OX , that is, the universal

birational flattening of Fe
∗

OX . Here Fe
∗

OX is the pushforward of the structure sheaf
by the e-iterated Frobenius morphism. It turns out that the F-blowup of a quotient
singularity has a connection with the G-Hilbert scheme [Toda and Yasuda 2009;
Yasuda 2012]. However, the F-blowup has the advantage that it is canonically
defined for arbitrary singularity in positive characteristic, whereas the G-Hilbert
scheme is defined only for a quotient singularity. Actually, it is proved in [Yasuda
2012] that the e-th F-blowup of any curve singularity with e� 0 is normal, and
hence resolves singularities in dimension one.

As is naturally expected, the F-blowup is also connected to F-singularities in
positive characteristic such as F-pure and F-regular singularities. It is proved that
the sequence of F-blowups for an F-pure singularity is monotone [Yasuda 2009]
and that the e-th F-blowup of an F-regular surface singularity coincides with the
minimal resolution for e � 0 [Hara 2012]. However, it is too much to ask for
F-blowups of normal surface singularities to be the minimal resolution or even
smooth in general. Actually, there exist (non-F-regular) rational double points
whose F-blowups are singular [Hara and Sawada 2011].

Although some good aspects as well as pathologies of F-blowups have recently
been discovered as above, their behavior is a mystery yet, even in dimension two.
In this paper, we explore the behavior of F-blowups of certain normal surface
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singularities more in detail. We are mainly concerned with two classes of surface
singularities, that is, non-F-regular rational double points (which exist only in char-
acteristics up to five) and simple elliptic singularities. We will discuss F-blowups
of these singularities, focusing on the normality, smoothness and stabilization of
F-blowup sequences.

For this purpose, we do utilize not only the classical theory of surface singularities,
but also computations with Macaulay2 [Grayson and Stillman 2012], which are
complementary to each other. The key to our computations is two Macaulay2
functions that we will write down. Given a module, the first function computes an
ideal such that the blowups at the ideal and module coincide, following Villamayor’s
description of such an ideal [2006]. Using this together with a built-in function to
compute Rees algebras, one can explicitly compute a graded ring describing the
blowup at a module. The second function we will write computes the Frobenius
pushforward F∗M of a given module M . These functions enable us to investigate F-
blowups in detail, especially for hypersurface surface singularities in characteristic
two or three.

In the case of rational double points, one can apply general theory of rational
surface singularities to show that F-blowups are normal and dominated by the
minimal resolution. Then a version of McKay’s correspondence [Artin and Verdier
1985] enables us to determine the e-th F-blowup by the direct sum decomposition of
Fe
∗

M into indecomposable modules. For F-regular surface singularities R = OX,x ,
all indecomposable reflexive R-modules appear as a direct summand of Fe

∗
R with

e � 0, so that the e-th F-blowup coincides with the minimal resolution [Hara
and Sawada 2011; Hara 2012]. Contrary to this we have the following result for
non-F-regular Frobenius sandwiches in characteristic p ≤ 5.

Theorem 1.1 (see [Hara and Sawada 2011, Example 4.8]). Let (X, x) be a rational
double point of type D0

2n for n≥ 2, E0
7 , E0

8 in p= 2, E0
6 , E0

8 in p= 3 or E0
8 in p= 5;

see [Artin 1977] for the notation. Then for any e ≥ 1, the e-th F-blowup FBe(X)
coincides with the normal surface obtained by contracting all but one exceptional
curve on the minimal resolution X̃ . The unique exceptional curve on FBe(X) is
indicated by the solid circle in Theorem 3.5.

We can analyze other types of non-F-regular rational double points by computer-
aided calculation. In these cases, computations of the blowups at modules are again
useful. For instance, one can see with such computation whether two obtained
indecomposable modules are isomorphic. A particularly interesting result is that
for e ≥ 2, the e-th F-blowup of D1

4- and D1
5-singularities in characteristic two is

the minimal resolution, though D1
4- and D1

5-singularities are not F-regular. In our
computations so far, there is no other non-F-regular rational double point such that
any of its F-blowups is the minimal resolution.
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We will investigate F-blowups of simple elliptic singularities in detail as well.
Since a simple elliptic singularity (X, x) is quasihomogeneous in general, its mini-
mal resolution X̃ has the same structure as the conormal bundle over the elliptic
exceptional curve E , which is identified with the negative section. We can use this
fact to determine the structure of the F-blowups up to normalization, which turns
out to be different according to the self-intersection number E2 and whether the
singularity (X, x) is F-pure or not. We summarize the results obtained in Theorems
4.5, 4.7, 4.13 and Proposition 4.18 in the following.

Theorem 1.2. Let (X, x) be a simple elliptic singularity in characteristic p > 0
with the elliptic exceptional curve E on the minimal resolution X̃ . Let F̃Be(X) be
the normalization of the e-th F-blowup FBe(X) of (X, x) for any e ≥ 1.

(1) If (X, x) is F-pure with E2
=−1, then F̃Be(X) coincides with the blowup of

X̃ at pe
− 1 nontrivial pe-torsion points on E.

(2) If (X, x) is not F-pure with E2
=−1, then F̃Be(X) coincides with the blowup

of X̃ at an ideal supported at a point P0 ∈ E with local expression (t, u pe
−1),

where t and u are local coordinates at P0 ∈ X̃ .

(3) If E2
≤ −2 and −E2 is not a power of p, then F̃Be(X) ∼= X̃ for all e ≥ 1.

Moreover, if (X, x) is F-pure and E2
≤−3, then FBe(X)∼= X̃ .

We cannot determine whether or not an F-blowup is normal in general, but we
see that an F-blowup is nonnormal in some cases with Macaulay2 computation.
The theorem above tells us that an F-blowup coincides with the minimal resolution
in some cases, but in general, F-blowups of simple elliptic singularities behave
badly: They are nonnormal, not dominated by the minimal resolution and the
sequence of F-blowups does not stabilize. The study of F-blowups for simple
elliptic singularities will be pushed further and completed in [Hara 2013].

2. Preliminaries

2a. Blowups at modules. Let X be a Noetherian integral scheme and M a coherent
sheaf on X . For a modification f : Y → X , we denote the torsion-free pullback
( f ∗M)/tors by f ?M, where tors denotes the subsheaf of torsions.

Definition 2.1. A modification f : Y → X is called a flattening of M if f ?M is flat,
or equivalently locally free. A flattening f is said to be universal if every flattening
g : Z→ X of M factors as

g : Z→ Y
f
−→ X.

(The universal flattening exists and is unique. It can be constructed as a subscheme
of a Quot scheme. See for instance [Oneto and Zatini 1991; Villamayor U. 2006].)
The universal flattening is also called the blowup of X at M and denoted by BlM(X).
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The following are basic properties of the blowup at a module, which directly
follow from the definition:

(1) The modification BlM(X)→ X is an isomorphism exactly over the locus where
M is flat.

(2) If N⊂M is a torsion subsheaf, then BlM(X)= BlM/N(X).

(3) If M is an ideal sheaf, then the blowup at M defined above coincides with the
usual blowup with the center M.

The following are examples of blowups at modules. Therefore one can compute
them in the method explained below.

Example 2.2. If X is an algebraic variety over a field k, then its Nash blowup is the
blowup at �X/k , the sheaf of differentials. The higher version of the Nash blowup
is also an example of the blowup at a module; see [Yasuda 2007].

Example 2.3. Let Y be a quasiprojective algebraic variety, G a finite group of
automorphisms of Y and X := Y/G the quotient variety. Then the G-Hilbert
scheme HilbG(Y ) is defined to be the closure of the set of free G-orbits in the
Hilbert scheme of Y ; see [Ito and Nakamura 1996]. One can show that HilbG(Y )
is isomorphic to the blowup at π∗OY , where π : Y → X is the quotient map.

Let r be the rank of M, K the function field of X and fix an isomorphism∧r M⊗ K ∼= K . Then define a fractional ideal sheaf

IM := Im
(∧r M→

∧r M⊗ K ∼= K
)
.

Proposition 2.4 (see [Oneto and Zatini 1991; Villamayor U. 2006]). The blowup
at M is isomorphic to the blowup at IM,

BlIM(X)= ProjX

(⊕
n≥0

In
M

)
.

Note that although IM depends on the choice of the isomorphism
∧r M⊗K ∼= K ,

the isomorphism class of IM and so BlI(X) are independent of it.
We will now recall Villamayor’s method [2006] for computing IM in the affine

case. Suppose that X = Spec R. Abusing the notation, we identify the sheaf M with
the corresponding R-module M , the fractional ideal sheaf IM with the fractional
ideal IM ⊂ K , and so forth. Let

Rm A
−→ Rn

→ M→ 0

be a presentation of M given by an n×m matrix A. Here and hereafter we think
of elements of free modules as column vectors and the map A : Rm

→ Rn is given
by left multiplication with A, that is, v 7→ Av. We call A a presentation matrix
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of M . Then there exist n− r columns of A such that if A′ denotes the submatrix of
A formed by these columns, then

M ′ := Coker(Rn−r A′
−→ Rn)

has rank r . Then M is a quotient of M ′ by some torsion submodule of M ′. Therefore
the blowups at M and M ′ are equal.

Proposition 2.5 [Villamayor U. 2006]. The ideal generated by (n−r)-minors of A′,
which is by definition the r-th Fitting ideal of M ′, is equal to IM for a suitable
choice of isomorphism

∧r M ⊗ K ∼= K .

The computation of this ideal is implemented in Macaulay2 as

villamayorIdeal = M -> (
r := rank M;
P := presentation M;
s := rank source P;
t := rank target P;
I := {};
for j to s-1 when #I < t-r do (

J := append(I,j);
if rank coker P_J == t - #J then I = J;

);
fittingIdeal(r,coker P_I);

);

Once the ideal IM was computed, then the blowup at M is computed as the projective
spectrum of the Rees algebra of the ideal:

BlM(X)= Proj R[IM t], R[IM t] :=
⊕
i≥0

I i
M t i
⊂ R[t].

The computation of Rees algebras has been already implemented in Macaulay2 as
reesAlgebra.

The computation of blowups at modules is useful for studying modules them-
selves. For instance, one can see that two given modules are not isomorphic if the
associated blowups are not isomorphic.

2b. F-blowups. Suppose now that X is a Noetherian integral scheme of character-
istic p > 0 and that its (absolute) Frobenius morphism F : X→ X is finite.

Definition 2.6 [Yasuda 2012]. For a nonnegative integer e, we define the e-th
F-blowup of X to be the blowup of X at Fe

∗
OX and denote it by FBe(X).
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From [Kunz 1969], if e > 0, then the flat locus of Fe
∗

OX coincides with the
regular locus of X . Therefore the e-th F-blowup is an isomorphism exactly over
the regular locus.

If X is an algebraic variety over an algebraically closed field k, then there is a
more moduli-theoretic construction of F-blowups, which was actually the original
definition of F-blowups in [Yasuda 2012]: The e-th F-blowup is isomorphic
(over Z ) to the closure of the set

{[(Fe)−1(x)] | nonsingular point x ∈ X (k)}

in the Hilbert scheme of zero-dimensional subschemes. Here (Fe)−1(x) is the
scheme-theoretic inverse image and a closed subscheme of X with length pe dim X ,
and [(Fe)−1(x)] is the corresponding point in the Hilbert scheme.

2c. Computing the Frobenius pushforward. Let us now suppose that X is affine,
say X = Spec R. In order to compute F-blowups of X along the lines explained
above, we need to first compute a presentation of Fe

∗
R. For later use, we will

explain more generally how to compute Fe
∗

M for any finitely generated R-module
M in the case where R is finitely generated over the prime field Fp.

2c1. The case of a polynomial ring. Set S = Fp[x1, . . . , xn] and q = pe. A mono-
mial xa

= xa1
1 · · · x

an
n defines an S-linear map

µxa : S→ S, f 7→ xa f.

Then we reinterpret this map according to another S-module structure on S by
g · f := gq f . We denote this new S-module by S′, which is a free S-module of rank
qn and nothing but Fe

∗
S. We also denote the map µxa regarded as an endomorphism

of S′ by µ′xa , which is nothing but Fe
∗
µxa .

Let 3 := {0, 1, . . . , q − 1}n . Then qn monomials xb for b ∈3 form a standard
basis of S′. For such a monomial xb, we have

µxa (xb)= xa+b
= xq((a+b)÷q)x (a+b)%q .

Here ÷q and %q respectively denote the quotient and the remainder by the
component-wise division by q . We rewrite it as

µ′xa (xb)= x (a+b)÷q
· x (a+b)%q .

Thus we obtain:

Lemma 2.7. The defining matrix, U (a, e)= (ui j )i, j∈3, of µ′xa with respect to the
standard basis is given by

ui j =

{
x (a+ j)÷q i = (a+ j)%q,
0 otherwise.
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Then for a polynomial f =
∑

a caxa
∈ S, if µ f : S→ S denotes the multiplication

with f , then µ′f = Fe
∗
µ f is defined by the matrix

U ( f, e) :=
∑

a

ca ·U (a, e).

Note that since the coefficient field is Fp and the Frobenius map of Fp is the identity
map, we do not have to change the coefficients ca .

Let

A =

a11 · · · a1m
...

. . .
...

al1 · · · alm


be an l × m matrix with entries in S, which defines an S-linear map Sm

→ Sl

denoted again by A. Then the Fe
∗

A : (S′)⊕m
→ (S′)⊕l is given by qnl×qnm matrix

U (A, e)=

U (a11, e) · · · U (a1m, e)
...

. . .
...

U (al1, e) · · · U (alm, e)

 .
Therefore:

Proposition 2.8. If A is a presentation matrix of an S-module M , then U (A, e) is
a presentation matrix of Fe

∗
M.

2c2. The general case. Suppose that R is the quotient ring S/I , I = ( f1, . . . , fl),
and M is a finitely generated R-module. Then we first have to compute a presentation
of M as an S-module. Let A be a matrix with entries in S and let Ā be the matrix
with entries in R induced from A. Suppose that Ā is a presentation matrix of M :

Rm Ā
−→ Rn

→ M→ 0.

Let M̃ be the S-module with the presentation matrix A:

Sm A
−→ Sn

→ M̃→ 0.

Then M = R⊗S M̃ . The S-module R has a standard presentation

Sl ( f1,..., fl )
−−−−−→ S→ R→ 0.

Now a presentation of M as an S-module can be computed from those of R and M̃ .
If B is a presentation matrix of M as an S-module, then U (B, e) is one of Fe

∗
M

as an S-module. If U (B, e) denotes the matrix with entries in R induced from
U (B, e), then U (B, e) is a presentation matrix of Fe

∗
M as an R-module.
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2c3. Implementation in Macaulay2. The following Macaulay2 function returns
the pushforward Fe

∗
M of the given module M , following the recipe explained above:

frobeniusPushForward = (M, e) -> (
R := ring M;
p := char R;
assert(p > 0); q := p^e;
I := ideal R;
l := numgens I;
B := gens ideal R;
S := ambient R;
n := numgens S;
qSequence := i ->

apply(0..n-1, j -> (i % q^(n-j)) // q^(n-j-1));
toNumber := i -> sum(n, j -> i_j * q^(n-j-1) );
qQuotient := i -> apply(i, j -> j // q);
qRemainder := i -> apply(i, j -> j % q);
monoToMatrix := m ->

(coefficients m)_1_(0,0)
* map(S^(q^n),S^(q^n),

(i,j) -> (e = (toList qSequence i) + (exponents m)_0;
if(toNumber qRemainder e) == j

then S_(toList qQuotient e)
else 0));

polyToMatrix := f ->
if f == 0_S

then map(S^(q^n),S^(q^n),0_S)
else sum(terms f, i -> monoToMatrix i);

basisToMatrix := b ->
fold((i, j)->(i | j),

apply((flatten entries b), polyToMatrix));
matrixToMatrix := m ->

fold((i, j)->(i || j),
apply(apply(entries m, i -> matrix{i}), basisToMatrix));

ROverS := coker map(S^1,S^l, entries B);
PresenOverR := presentation minimalPresentation M;
PresenOverS := presentation minimalPresentation(

coker(sub(PresenOverR,S))**ROverS);
L := matrixToMatrix PresenOverS;
minimalPresentation coker sub(L,R)

);
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Note that in the computations with Macaulay2, columns and rows of matrices
should be indexed by single indices rather than multiindices. For this aim, the
inner functions qSequence and toNumber above define bijections between the sets
{0, 1, . . . , qn

− 1} and 3 that are inverses to each other.
Note that one can compute Fe

∗
M also with the built-in function PushForward

in the case where the ring and the module are (weighted) homogeneous.

2d. Computing the singular and nonnormal loci of a blowup. We often would
like to know if a given blowup is smooth or normal, or to know where the singular
locus or the nonnormal locus is. One way to compute the singular locus of BlI (X)
is to compute the singular locus of Spec R[I t]. For instance, suppose that we have
an expression of R[I t] as a quotient of a polynomial ring over R,

R[I t] = R[t1, . . . , tn]/J.

Then BlI (X) is smooth if and only if the singular locus of Spec R[I t] is contained
in the closed subset V (t1, . . . , tn) ⊂ Spec R[I t]. This method is useful when the
Rees algebra is relatively simple. Otherwise, the computation may not finish in a
reasonable time.

In that case, an alternative way is to compute the singular loci of affine charts.
With the notation above, the blowup BlI (X) is covered by n affine charts corre-
sponding to the variables t1, . . . , tn . Their coordinate rings are

R[t1, . . . , tn]/(J + (ti − 1)) for i = 1, . . . , n.

These rings are likely to become simpler than R[I t] and easier to compute the
singular loci. Computation of these rings is implemented as follows:

affineCharts = S -> (
T := (flattenRing S)_0;
varsOfS := apply(flatten entries vars S, i->sub(i, T));
apply(varsOfS, i -> minimalPresentation(T / ideal(i - 1)))

);

The same method can apply to find the nonnormal locus.

2e. Embedding F-blowups into the Grassmannian and the projective space. As
already mentioned above, F-blowups are constructed as a subscheme of the Grass-
mannian. Then further composing with the Plücker embedding, we obtain an
embedding into a projective space over X .

To describe this embedding, let X = Spec R be of dimension n, let K be the
function field of X , and let the fractional ideal I = Im(

∧pn
R1/pe

→ K ) be generated
by m+1 elements s0, . . . , sm . Then, being the blowup of X at I , the e-th F-blowup
FBe(X) of X is embedded into the projective space Pm

X over X .
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Suppose now that f : Y→ X is any flattening of R1/pe ∼= Fe
∗

OX . Then we have a
surjection O⊕m+1

Y → f ? I = det f ?R1/pe
induced by s0, . . . , sm , which gives rise to

a morphism 8e : Y → Pm
X such that 8∗eOP(1)∼= det f ?R1/pe

, and the image 8e(Y )
of this morphism is nothing but FBe(X)= BlI (X).

In dimension two where the existence of resolution of singularities is established
in arbitrary characteristic, we can study F-blowups downwards from a resolution that
flattens the OX -module Fe

∗
OX ∼= O

1/pe

X . The following is an immediate consequence
of the observation above.

Proposition 2.9. Let X be a surface over k and let f : X̃→ X be a resolution with
irreducible exceptional curves E1, . . . , Es . Suppose that f ?O1/pe

X is flat, so that we
have a birational morphism 8e : X̃→ FBe(X). Then 8e(Ei ) is a curve on FBe(X)
if c1( f ?O1/pe

X )Ei > 0, and Ei contracts to a point on FBe(X) if c1( f ?O1/pe

X )Ei = 0.

3. F-blowups of rational surface singularities

Throughout this section we work under the following notation:

k an algebraically closed field of characteristic p > 0,

(X, x) a rational surface singularity defined over k with local ring R=OX,x ,

f : X̃→ X the minimal resolution of (X, x) with Exc( f )=
⋃s

i=1 Ei .

The situation is quite simple in this case because of the following fact [Artin
and Verdier 1985]: If M is a reflexive OX -module,1 then its torsion-free pullback
M̃ = f ?M = f ∗M/ torsion is an f -generated locally free OX̃ -module such that
f∗M̃ =M and R1 f∗M̃ = 0. Note that this vanishing of the higher direct image is an
easy consequence of the rationality of the singularity (X, x) and the f -generation
of M̃ , which gives rise to a surjection O⊕n

X̃
→→ M̃ .

Lemma 3.1 [Hara 2012, Lemma 1.8]. If M is a reflexive OX -module of rank r , then
the natural map

∧r M→ f∗(det M̃) is surjective.

Proposition 3.2. The e-th F-blowup FBe(X) of a rational surface singularity
(X, x) is dominated by the minimal resolution X̃ and has only rational singularities
for all e ≥ 0.

Proof. Because M := R1/pe
is a reflexive R-module, its torsion-free pullback

M̃ = f ?R1/pe
to X̃ is flat, so that the minimal resolution f : X̃ → X factors

through the universal flattening FBe(X) of R1/pe
. On the other hand, the ideal

I = IM for M = R1/pe
is I = H 0(X̃ , det M̃) by Lemma 3.1, so that we can take

I to be an integrally closed ideal in R, or complete ideal in the sense of Lipman
[1969]. Then the Rees algebra R[I t] is normal by [ibid., Proposition 8.1], so

1 We always assume that M is a finitely generated OX -module.
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FBe(X)= Proj R[I t] is normal. It then follows from [Artin 1962] that FBe(X) has
only rational singularities. �

Corollary 3.3. Let (X, x) be a rational surface singularity over k.

(1) For any e ≥ 0, the e-th F-blowup FBe(X) is obtained by contracting some
of the exceptional curves E1, . . . , Es on the minimal resolution X̃ to normal
points with at most rational singularities.

(2) The minimal resolution X̃ of (X, x) is obtained by finitely many iteration of
F-blowups. More explicitly, for any sequence of positive integers e1, . . . , es ,
we have X̃ = FBes (FBes−1( · · · FBe2(FBe1(X)) · · · )).

The behavior of F-blowups is especially nice for F-regular surface singularities.
Namely, the e-th F-blowup of any F-regular surface singularity is the minimal
resolution for e� 0 [Hara 2012]. We next consider F-blowups of non-F-regular
rational double points more in detail. In this case we can use the classification of
rational double points in characteristic p > 0 [Artin 1977], as well as the following:

Lemma 3.4 [Artin and Verdier 1985]. Let (X, x) be a rational double point and
let Z0 =

∑s
i=1 ri Ei be the fundamental cycle on the minimal resolution X̃ . Then

there is a one-to-one correspondence between the exceptional curves Ei of f and
the isomorphism classes of nontrivial indecomposable reflexive OX -modules Mi ,
satisfying the following properties.

(1) rank Mi = ri for 1≤ i ≤ s.

(2) c1(M̃i )E j = δi j for 1≤ i, j ≤ s.

In what follows, we use the notation of [Artin 1977] for rational double points
in positive characteristic.

Among non-F-regular rational double points, Frobenius sandwiches have par-
ticularly easy to analyze F-blowups. Let X be a Frobenius sandwich of a smooth
surface S, that is, the Frobenius morphism of S factors as F : S

π
−→X → S. Then

F-blowups of X are also the universal flattening of the reflexive OX -module π∗OS

[Hara and Sawada 2011, Proposition 4.3]. Thanks to this observation, we can study
F-blowups of the Frobenius sandwich X via π∗OS instead of Fe

∗
OX . For example,

we find whether the irreducible exceptional curve Ei appears on FBe(X) or not by
evaluating the intersection number c1( f ?(π∗OS))Ei in Proposition 2.9.

3a. D0
2n-singularities. Here we consider a D0

2n-singularity for n ≥ 2 in p = 2 as a
Frobenius sandwich. Let A2

= Spec k[x, y] and π : A2
→ X = A2/δ the quotient

map by a vector field δ = (x2
+ nxyn−1)∂/∂x + yn∂/∂y ∈ Derk OA2 . Here

OX = k[x, y]δ = k[x2, y2, x2 y+ xyn
] ∼= k[X, Y, Z ]/(Z2

+ X2Y + XY n)
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and X has a D0
2n-singularity. Then R = OX = k[X, Y, Z ]/(Z2

+ X2Y + XY n) is a
graded ring with deg X = 2(n−1), deg Y = 2 and deg Z = 2n−1. The 4(n−1)-st
Veronese ring of R is

R(4(n−1))
= k[X2, Y 2(n−1), XY n−1

] ∼= k[u, v, w]/(w2
− uv).

Set x0 = u1/2
= X = x2 and x1 = v

1/2
= Y n−1

= y2(n−1). Then

R(4(n−1)) ∼= k[x2
0 , x2

1 , x0x1] = k[x0, x1]
(2),

so that Proj R ∼= P1 with homogeneous coordinates (x0 : x1)= (x2
: y2(n−1)). Let

s = x1/x0 = y2(n−1)/x2 be the affine coordinate of U0 = D+(x0) ⊂ Proj R ∼= P1

and pick a homogeneous element t = Z/X = y(x+ yn−1)/x ∈ R of degree 1. Since

t2(n−1)
=

x1(x1− x0)
n−1

xn−1
0

,

the Q-divisor
D = 1

2(n−1)
(0)+ 1

2(1)−
1
2(∞)

on P1 gives R =
⊕

n≥0 H 0(P1, nD)tn (the Pinkham–Demazure construction).
Let g : X ′→ X = Spec R be the weighted blowup with respect to the weight

(2(n− 1), 2, 2n− 1). Then X ′ ∼= SpecP1(
⊕

n≥0 OP1(nD)tn) admits an affine mor-
phism ρ : X ′→ P1 that is an A1-bundle over P1

\{0, 1,∞}, and the exceptional
curve of g is the negative section E ∼= P1 of ρ. Let X ′0 = ρ

−1U0. Then

OX ′0 = k
[
s, t, t2

s−1
,

t3

s−1
, . . . ,

t2(n−1)−2

(s−1)n−2 ,
t2(n−1)−1

(s−1)n−2 ,
t2(n−1)

s(s−1)n−1

]
and X ′ has an A2n−3-singularity on E |X ′0

∼= Spec k[s] at s = 0.
To resolve the A2n−3-singularity, we may replace

X ′0 = ρ
−1U0 by V = ρ−1(U0\{1}).

The affine coordinate ring of V is

OV = OX ′0

[ 1
s−1

]
= k[s, t, t2(n−1)/s]s−1.

The minimal resolution h : Ṽ → V of V is given by

Ṽ =
2(n−1)⋃

i=1

Ṽi , where Ṽi = Spec k[s/t i−1, t i/s]s−1.

Let Ẽ ∼= P1 be the h-exceptional curve lying on Ṽn−2 ∪ Ṽn−1:

Ẽ = Spec k[tn−2/s] ∪Spec k[s/tn−2
] ⊂ Ṽn−2 ∪ Ṽn−1.
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Now suppose that n is even; n = 2k with k ≥ 1. Let ϕ = tn−2/s(s− 1)k−1 and
ψ = tn−1/s(s− 1)k−1. Then ϕ,ψ ∈ OṼn−2

and x = ψ + yϕ. Thus

(h ◦ g)?(π∗OA2)|Ṽn−2
= Im(OṼn−2

⊗OX OA2 → k(A2))= k[s/tn−3, tn−2/s, x, y]s−1

is a free OṼn−2
-module with basis 1, y. Similarly it follows that (h ◦g)?(π∗OA2)|Ṽn−1

is a free OṼn−1
-module with basis 1, x . The transition matrix of the two bases on

Ṽn−2 ∩ Ṽn−1 is given by

(1 x)= (1 y)
(

1 tn−1/s(s− 1)k−1

0 tn−2/s(s− 1)k−1

)
.

Since s − 1 is a unit on V , the intersection number of L = c1((h ◦ g)?(π∗OA2))

with Ẽ is L Ẽ = 1. In light of Lemma 3.4, this means that the reflexive OX -module
π∗OA2 of rank 2 is the indecomposable one corresponding to Ẽ , which is identified
with the exceptional curve En+1 on the minimal resolution X̃ indicated in the figure
below:

E1

|

E2 —E3— E4− · · ·− En+1− · · ·− E2n

In the case where n = 2k + 1 with k ≥ 1, we obtain the same conclusion that
c1((h ◦ g)?(π∗OA2)) · Ei = δi,n+1.

Thus we conclude that for all e ≥ 1, the e-th F-blowup FBe(X) coincides with
the normal surface obtained by contracting all exceptional curves on X̃ except
En+1.

Putting the result above together with [Hara and Sawada 2011, Example 4.8],
we obtain the following.

Theorem 3.5. Let (X, x) be a rational double point of type D0
2n for n ≥ 2, E0

7 , E0
8

in p = 2, E0
6 , E0

8 in p = 3 or E0
8 in p = 5. Then for any e ≥ 1, the e-th F-blowup

FBe(X) coincides with the normal surface obtained by contracting the exceptional
curves on the minimal resolution X̃ corresponding to the blank circles in the figure
below:

(1) D0
2n-singularity for n ≥ 2 in p = 2:

◦ ◦

◦

· · · ◦ • ◦ · · · ◦︸ ︷︷ ︸
n−1

︸ ︷︷ ︸
n−1
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(2) E0
7-singularity in p = 2:

◦ ◦ ◦

•

◦ ◦ ◦

(3) E0
8-singularity in p = 2:

• ◦ ◦

◦

◦ ◦ ◦ ◦

(4) E0
6-singularity in p = 3:

◦ ◦ •

◦

◦ ◦

(5) E0
8-singularity in p = 3:

◦ ◦ ◦

•

◦ ◦ ◦ ◦

(6) E0
8-singularity in p = 5:

◦ ◦ ◦

◦

• ◦ ◦ ◦

We want to emphasize that all rational double points listed in Theorem 3.5 are
non-F-regular Frobenius sandwiches2 and their F-blowups FBe(X) with e ≥ 1
have only a single exceptional curve corresponding to the solid circle. In particular,
their F-blowups do not coincide with the minimal resolution.

We are also able to apply Macaulay2 to study F-blowups of a few non-F-regular
rational double points that are not supposed to be Frobenius sandwiches.

3b. D1
4- and D1

5-singularities in p = 2. First we consider the case of a D1
4-

singularity in p = 2: Let X = Spec R with R = k[x, y, z]/(z2
+ x2 y+ xy2

+ xyz).
Using the Macaulay2 function frobeniusPushForward in Section 2c3, we see
that the presentation matrix of F∗R is equivalent to(

z x + y+ z
xy z

)
⊕

(
z y

x(x + y+ z) z

)
⊕

(
z y(x + y+ z)
x z

)
⊕ 0,

where 0 is the zero matrix of size 1. Then the cokernel of each matrix of size 2
defines a nontrivial reflexive R-module of rank 1 and those reflexive R-modules are
different from each other. Thus FB1(X) coincides with the normal surface obtained

2 We expect that all non-F-regular Frobenius sandwich rational double points are exhausted
in Theorem 3.5, although we have not proved it yet. On the other hand, any F-regular Frobenius
sandwich double point is an A pe−1-singularity and its e-th F-blowup is the minimal resolution for
e� 0; see [Hara and Sawada 2011; Yasuda 2012].
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by contracting the exceptional curve E1 on the minimal resolution X̃ indicated in
the figure below:

E3

|

E2 — E1 — E4

Furthermore, we see that the reflexive R-module corresponding to the central curve
E1 appears as a direct summand of the Frobenius pushforward of each nontrivial
rank 1 reflexive module corresponding to Ei with i = 2, 3, 4. Thus FBe(X) is the
minimal resolution for e ≥ 2, since the D1

4-singularity is F-pure. A similar result
holds for the case of a D1

5-singularity. Note that D1
4- and D1

5-singularities are not
F-regular.

Remark 3.6. The D1
4-singularity in p = 2 is a wild quotient singularity, that is,

there exists a group G of order 2 acting on Y = Spec k[[x, y]] such that the quotient
X=Y/G has the D1

4-singularity. Although F-blowups of a tame quotient singularity
are always dominated by the G-Hilbert scheme [Yasuda 2012], this example shows
that the same does not hold for wild quotients. Let R = k[[x, y]]G ⊂ S = k[[x, y]]
be the invariant subring. Then S is an R-module of rank 2. Thus the blowup of X
at the R-module S, which coincides with the G-Hilbert scheme HilbG(Y ), has at
most two irreducible exceptional curves. On the other hand, the F-blowups FBe(X)
of the D1

4-singularity have more than three irreducible exceptional curves. Hence
the e-th F-blowup FBe(X) of the D1

4-singularity is not dominated by the G-Hilbert
scheme HilbG(Y ) for all e ≥ 1.

3c. E0
6-singularity in p = 2. Let R = k[x, y, z]/(z2

+ x3
+ y2z) and X = Spec R.

Then X has an E0
6-singularity in characteristic p = 2. Write

A1 =


z y x 0
yz z 0 x
x2 0 z y
0 x2 yz z

 , A2 =


x y2
+ z y 0

z x2 0 xy
0 0 x y2

+ z
0 0 z x2

 and A3 =
tA2.

Then their cokernels define nontrivial reflexive R-modules of rank 2 and those
R-modules are different from each other. Now we see that presentation matri-
ces of F∗R and F2

∗
R are equivalent to A⊕2

1 and A⊕4
1 ⊕ A⊕2

2 ⊕ A⊕2
3 , respectively.

Furthermore, a direct summand other than A1, A2 and A3 does not appear in the
presentation matrices of Fe

∗
R for e≥ 2. Since the blowup of X at Coker A1 has only

one singular point, we can specify the exceptional curve on the minimal resolution
corresponding to Coker A1. The resulting descriptions of FBe(X) are summarized
in the following.

Proposition 3.7. Let (X, x) be a rational double point of type D1
4 , D1

5 or E0
6 in

characteristic p = 2. Then the e-th F-blowup FBe(X) of (X, x) coincides with
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the normal surface obtained by contracting the exceptional curves on the minimal
resolution X̃ corresponding to the blank circles in the figure below:

(1) D1
4 and D1

5-singularity in p = 2:

e = 1:

• ◦

•

•

and

◦ •

◦

◦ •

For e ≥ 2, the F-blowups FBe(X) of both singularities coincide with the
minimal resolution.

(2) E0
6-singularity in p = 2:

e = 1:

◦ ◦ ◦

•

◦ ◦

e ≥ 2:

◦ • ◦

•

• ◦

We can also compute the first F-blowup FB1(X) of a few other rational double
points with Macaulay2.

Example 3.8. (1) E1
6-singularity in p=2: Let R=k[x, y, z]/(z2

+x2 y+xy2
+xyz)

and X = Spec R. Then X has an E1
6-singularity. Write

A =



z 0 0 0 x z
0 z y 0 y x

xy yz z x2
+ yz 0 0

0 0 x x y 0
x2 xz 0 yz z 0

xy+ y2 x2 0 xy 0 z


.

Then the cokernel of A defines an indecomposable reflexive R-module of rank 3.
The presentation matrix of F∗R is equivalent to A⊕0, where 0 is the zero matrix of
size 1. Thus FB1(X) has a unique exceptional curve corresponding to the solid circle
in the figure below and has three singular points (an A1- and two A2-singularities) on
it:

◦ ◦ •

◦

◦ ◦

(2) E3
8-singularity in p= 2: Let R= k[x, y, z]/(z2

+x3
+y5
+y3z) and X =Spec R.

Then X has an E3
8-singularity. In this case, F∗R has two kinds of indecomposable

reflexive R-modules. Since rank F∗R = 4, we see that F∗R is a direct sum of
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indecomposable reflexive R-modules of rank 2 corresponding to the solid circles in
the figure below:

• ◦ ◦

◦

◦ ◦ ◦ •

Thus FB1(X) has two exceptional curves corresponding to the solid circles meeting
at the unique singular point of type D6.

4. F-blowups of simple elliptic singularities

In this section (X, x) will denote a simple elliptic singularity defined over an
algebraically closed field k of characteristic p > 0 unless otherwise noted. Then by
a result of Hirokado [2004], (X, x) is quasihomogeneous. So we may assume that
X = Spec R for a graded k-algebra

R = R(E, L)=
⊕
n≥0

H 0(E, Ln)tn,

where E is an elliptic curve over k, L is an ample line bundle on E and deg t = 1.
The minimal resolution f : X̃→ X of X is described as follows: X̃ has an A1-bundle
structure π : X̃ = SpecE(L

ntn)→ E over E , and its zero-section, which we also
denote by E , is the exceptional curve of f . Its self-intersection number is E2

=

− deg L . Our situation is summarized in the following diagram:

E � � //

id   

X̃
f //

π

��

X

E

To compute the F-blowup FBe(X) of X , we will look at the structure of the
torsion-free pullback f ?R1/q of R1/q ∼= Fe

∗
OX , where q = pe. For this purpose we

decompose

R1/q
=

⊕
n≥0

H 0(E, Fe
∗

Ln)tn/q as R1/q
=

q−1⊕
i=0

[R1/q
]i/q mod Z,

where

[R1/q
]i/q mod Z =

⊕
0≤n≡i mod q

H 0(E, Fe
∗

Ln)tn/q ∼=
⊕
m≥0

H 0(E, Lm
⊗ Fe
∗

L i )

is an R-summand of R1/q for i = 0, 1, . . . , q − 1; see [Smith and Van den Bergh
1997].
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In what follows we put q = pe and d = deg L =−E2.

Lemma 4.1. If 1≤ i ≤ q − 1 and q 6= di , then X̃ is a flattening of [R1/q
]i/q mod Z.

Proof. First of all, the locally free sheaf Lm
⊗ Fe
∗

L i on E is generated by its global
sections if m ≥ 1, or m = 0 and q < di . To see this, let P ∈ E and consider the
exact sequence

0→ Lm(−P)⊗ Fe
∗

L i
→ Lm

⊗ Fe
∗

L i
→ κ(P)⊗ Lm

⊗ Fe
∗

L i
→ 0. (1)

Since h1(Lm(−P)⊗ Fe
∗

L i ) = h1(Lqm+i (−q P)) = h0(L−qm−i (q P)) = 0 by the
assumption, the induced map H 0(E, Lm

⊗ Fe
∗

L i )→ H 0(E, κ(P)⊗ Lm
⊗ Fe
∗

L i )

is surjective, that is, Lm
⊗ Fe
∗

L is generated by its global sections at P ∈ E . Hence

f ?[R1/q
]i/q mod Z = Im([R1/q

]i/q mod Z⊗R OX̃ → Fe
∗

OX̃ )

= Im
(⊕

m≥0

H 0(E, Lm
⊗ Fe
∗

L i )⊗k OE
α
−→

⊕
m≥0

Lm
⊗ Fe
∗

L i
)

= Im(H 0(E, Fe
∗

L i )⊗OE
α0
−→ Fe

∗
L i ) ⊕

⊕
m≥1

Lm
⊗ Fe
∗

L i

⊂

⊕
m≥0

Lm
⊗ Fe
∗

L i ∼= π
∗Fe
∗

L i ,

where αm (m ≥ 0) is the graded part of the map α of degree m, and in particular,
f ?[R1/q

]i/q mod Z
∼= π∗Fe

∗
L i if q < di . Since π∗Fe

∗
L i is a locally free OX̃ -module,

we consider the case q > di . Since αm is surjective for m ≥ 1, the OX̃ -module
Coker(α) = Coker(α0) is regarded as a coherent sheaf on the exceptional curve
E ⊂ X̃ of f .

Claim. Coker(α) = Coker(α0) is a locally free sheaf on E , so that it has depth 1
as an OX̃ -module at each point on E ⊂ X̃ .

To prove the claim, note that h0(Fe
∗

L i )= h0(L i )=di by Riemann–Roch and that
Fe
∗

L i is a locally free sheaf on E of rank q , so that the rank of Coker(α)=Coker(α0)

as an OE -module is at least q − di . On the other hand, since

H 0(E,OE(−P)⊗ Fe
∗

L i )= H 0(E, L i (−q P))= 0

by our assumption, the cohomology long exact sequence of (3) for m = 0 turns out
to be

0→ H 0(E, Fe
∗

L i )→ κ(P)⊗ Fe
∗

L i
→ H 1(E,OE(−P)⊗ Fe

∗
L i )→ 0,

from which we see that the minimal number of local generators of Coker(α) is
dim Coker(α0)⊗ κ(P)= q − di . Comparing the rank and the minimal number of
local generators, we conclude that Coker(α)= Coker(α0) is a locally free sheaf on
E of rank q − di .
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Now we have an exact sequence of OX̃ -modules

0→ f ?[R1/q
]i/q mod Z→ π∗Fe

∗
L i
→ Coker(α)→ 0,

in which π∗Fe
∗

L i and Coker(α) have depth 2 and 1, respectively. Thus the depth
of f ?[R1/q

]i/q mod Z is 2, so that it is locally free on X̃ . �

Remark 4.2. In the case where 1≤ i ≤ q − 1 and q = di , an argument similar to
that in the proof of Lemma 4.1 shows that f ?[R1/q

]i/q mod Z is not flat at P ∈ E ⊂ X̃
if and only if L i ∼= OE(q P).

Corollary 4.3. If q = pe > 1 and d =−E2 is not a power of the characteristic p,
then X̃ is the normalization of the blowup BlNq (X) of X = Spec R at the R-module

Nq =

q−1⊕
i=1

[R1/q
]i/q mod Z.

Proof. First we will see that Nq is not flat if q = pe > 1. For, if Nq is flat, then
the OX,x -module O

1/q
X,x has a free summand of rank at least q(q − 1). However, the

rank of the free summand of O
1/q
X,x is exactly equal to 1, since OX,x is a Gorenstein

F-pure local ring with isolated non-F-regular locus; see [Aberbach and Enescu
2005; Sannai and Watanabe 2011, Theorem 5.1].

Now by Lemma 4.1, the minimal resolution f : X̃→ X is a flattening of Nq , so
it factors as

f : X̃
g
−→ BlNq (X)

h
−→ X.

Since Nq is not flat and X is normal, h is not an isomorphism and has an exceptional
curve, which is equal to g(E). Hence g is finite (and birational), so that X̃ is the
normalization of BlNq (X). �

Next we consider the structure of f ?[R1/q
]0 mod Z, which depends on whether

R is F-pure or not. This is equivalent to saying whether the elliptic curve E is
ordinary or supersingular, since the section ring R = R(E, L) is F-pure if and only
if E = Proj R is F-split.

4a. The F-pure case. We first consider the case where R is F-pure, or equivalently,
E is an ordinary elliptic curve. In this case, given a fixed point P0 ∈ E as the identity
element of the group law of E , there are exactly q = pe distinct q-torsion points
P0, . . . , Pq−1. In other words, there are exactly q nonisomorphic q-torsion line
bundles L0, . . . , Lq−1 ∈ Pic◦(E) given by L i = OE(Pi − P0). Then Fe

∗
OE splits

into line bundles as

Fe
∗

OE ∼=

q−1⊕
i=0

L i . (2)
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Indeed, since OE is a direct summand of Fe
∗

OE by F-splitting, each L i is a direct
summand of L i ⊗ Fe

∗
OE ∼= Fe

∗
Fe∗L i ∼= Fe

∗
(Lq

i )
∼= Fe

∗
OE ; see [Atiyah 1957].

Lemma 4.4. Let E be an ordinary elliptic curve.

(1) Suppose d = 1 and choose the identity element P0 ∈ E so that L ∼= OE(P0).
Then f ?[R1/q

]0 mod Z is not flat exactly at the q − 1 distinct q-torsion points
P1, . . . , Pq−1 ∈ E ⊂ X̃ other than P0. Moreover, [R1/q

]0 mod Z is flattened by
blowing up the points P1, . . . , Pq−1.

(2) If d ≥ 2, then X̃ is a flattening of [R1/q
]0 mod Z.

Proof. Corresponding to the splitting of Fe
∗

OE as in the formula (2) above, the R-
module [R1/q

]0 mod Z has a splitting [R1/q
]0 mod Z

∼=
⊕q−1

i=0 Ji into q nonisomorphic
reflexive R-modules R = J0, J1, . . . , Jq−1 of rank 1, where

Ji = 0∗(L i ) :=
⊕
m∈Z

H 0(E, L i ⊗ Lm)=
⊕
m≥0

H 0(E, L i ⊗ Lm).

In case (1) where d = 1, it is sufficient to show the following:

Claim. For i = 1, . . . , q−1, f ? Ji is not flat exactly at the single point Pi ∈ E ⊂ X̃ .
If σi : X̃ i → X̃ is the blowup at Pi , then ( f ◦ σi )

? Ji is invertible.

To prove the claim, note that deg L = 1 and deg L i = 0. Then the following holds
for the linear system |L i ⊗ Lm

| on E : |L i | = ∅, |L i ⊗ L| = Bs |L i ⊗ L| = {Pi }

and |L i ⊗ Lm
| is base point free for m ≥ 2. Hence, as in the proof of the previous

lemma,

f ? Ji = Im(Ji ⊗R OX̃ → Fe
∗

OX̃ )

= Im
(⊕

m≥0

H 0(E, L i ⊗ Lm)⊗k OE →
⊕
m≥0

L i ⊗ Lm
)

= L i ⊗ L(−Pi )⊕
⊕
m≥2

L i ⊗ Lm
⊂

⊕
m≥1

L i ⊗ Lm ∼= OX̃ (−E)⊗π∗L i ,

where L i⊗L(−Pi )∼=OE ⊂ L i⊗L is the graded part of degree m= 1. We therefore
have the following exact sequence of OX̃ -modules:

0→ f ? Ji → OX̃ (−E)⊗π∗L i → κ(Pi )→ 0,

which tells us that f ? Ji = IPi · OX̃ (−E)⊗ π∗L i , where IPi is the ideal sheaf
defining the closed point Pi ∈ X̃ . Now the claim follows immediately.

(2) If deg L ≥ 2, then the same argument as in (1) shows that f ? Ji is isomorphic to
OX̃ (−E)⊗π∗L i , which is invertible. �

We now state a structure theorem for F-blowups of F-pure Ẽ8-singularities, that
is, F-pure simple elliptic singularities with E2

=−1.
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Theorem 4.5. Let (X, x) be an F-pure simple elliptic singularity with the ellip-
tic exceptional curve E on the minimal resolution X̃ such that E2

= −1. Let
P0, . . . , Pq−1 ∈ E be the q = pe distinct q-torsion points on E ⊂ X̃ , where the
identity element P0 is chosen so that

OX̃ (−E)⊗OE ∼= OE(P0),

and let Z = {P1, . . . , Pq−1} ⊂ X̃ . Then for any e ≥ 1, the normalization of the
e-th F-blowup FBe(X) coincides with the blowup BlZ (X̃) of X̃ at the nontrivial
q-torsion points.

In particular, the e-th F-blowup of X is not dominated by the minimal resolution
of the singularity (X, x), and the monotonic sequence of F-blowups (see [Yasuda
2009]),

· · · → FBe(X)→ · · · → FB2(X)→ FB1(X)→ X,

does not stabilize.

Proof. Since Nq =
⊕q−1

i=1 [R
1/q
]i/q mod Z is a direct summand of R1/q as an R-

module, we have a morphism FBe(X) → BlNq (X) over X . If we denote the
normalization of FBe(X) by F̃Be(X), then we have a morphism ϕ : F̃Be(X)→ X̃
by Corollary 4.3. On the other hand, since BlZ (X̃) is a flattening of R1/q by
Lemmas 4.1 and 4.4, we have a morphism BlZ (X̃) → FBe(X) over X , which
induces ψ : BlZ (X̃)→ F̃Be(X). Thus the blowup π : BlZ (X̃)→ X̃ at Z ⊂ X̃
factors as

π = ϕ ◦ψ : BlZ (X̃)
ψ
−→ F̃Be(X)

ϕ
−→ X̃ .

Since f ?R1/q is not flat exactly at Z = {P1, . . . , Pq−1} by Lemma 4.4, ϕ has
an exceptional curve over every Pi and ψ is finite (and birational), by the same
argument as in the proof of Corollary 4.3. Since F̃Be(X) is normal, ψ is an
isomorphism, that is, BlZ (X̃)∼= F̃Be(X) as required. �

The theorem above has nothing to say about the normality of the F-blowups.
Let us take a look at a Macaulay2 computation.

Example 4.6. From [Hirokado 2004, Corollary 4.3], the variety

X = Spec F2[x, y, z]/(y2
+ x3
+ xyz+ z6)

has a simple elliptic singularity of type Ẽ8. Moreover from Fedder’s criterion
[1983], this is F-pure. Note that since F-blowups are compatible with extensions
of perfect fields [Yasuda 2012], the fact that the base field is not algebraically
closed does not pose a problem. By Macaulay2 computation, one can check the
following: The first F-blowup FB1(X) is nonnormal and its exceptional set consists
of two projective lines E1 and E2, which intersect transversally at one point. The
normalization F̃B1(X) of FB1(X) is smooth. The inverse image of E1 in F̃B1(X)
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is a smooth elliptic curve, which agrees with Theorem 4.5. In particular, this
experimental result shows that the normalization in the theorem is really necessary.

Next we consider the case where E2
≤−2.

Theorem 4.7. Let (X, x) be an F-pure simple elliptic singularity with the elliptic
exceptional curve E on the minimal resolution X̃ such that E2

≤−2. Assume further
that d =−E2 is not a power of the characteristic p. Then X̃ is the normalization of
the e-th F-blowup FBe(X) for all e ≥ 1. Moreover, if E2

≤−3, then X̃ ∼= FBe(X)
for all e ≥ 1.

Proof. Since X̃ is a flattening of R1/q by Lemmas 4.1 and 4.4, we see that X̃ is the
normalization of FBe(X) as in the proof of Corollary 4.3.

To deduce a stronger conclusion in the special case E2
≤ −3, we need the

following:

Lemma 4.8 [Mumford 1970]. Let V be a projective variety, F a coherent sheaf
on V and let L be a line bundle on V generated by its global sections. Suppose that
H i (V,F⊗ L−i )= 0 for all i > 0. Then the natural map

H 0(V,F)⊗ H 0(V, L)⊗n
→ H 0(V,F⊗ Ln)

is surjective for all n ≥ 1.

Lemma 4.9. Let H1, . . . , Hn be line bundles on an elliptic curve E of deg Hi ≥ 3
for i = 1, . . . , n. Then the natural map

H 0(E, H1)⊗ · · ·⊗ H 0(E, Hn)→ H 0(E, H1⊗ · · ·⊗ Hn)

is surjective.

Proof. The case n ≥ 3 is easily reduced to the case n = 2 by induction on n, so
let n = 2. If deg H1 > deg H2, then H 1(E, H1⊗ H−1

2 )= 0, so that the surjectivity
of the map H 0(E, H1)⊗ H 0(E, H2) → H 0(E, H1 ⊗ H2) immediately follows
from Mumford’s lemma. Suppose that deg H1 = deg H2 and let L = H2 − P
for any fixed point P ∈ E . Then L is globally generated since deg L ≥ 2, and
H 1(E, H1⊗ L−1)= 0 since deg(H1⊗ L−1)= 1> 0. Hence the map

H 0(E, H1)⊗ H 0(E, L)→ H 0(E, H1⊗ L)

is surjective by Mumford’s lemma. We now consider the following commutative
diagram with exact rows:

0 // H 0(H1)⊗ H 0(L)

��

// H 0(H1)⊗ H 0(H2)

��

// H 0(H1)⊗ H 0(H2⊗ κ(P)) //

��

0

0 // H 0(H1⊗ L) // H 0(H1⊗ H2) // H 0(H1⊗ H2⊗ κ(P)),
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where we have just verified the surjectivity of the vertical map on the left, and the
vanishing of the right upper corner comes from H 1(E, L) = 0. So, to prove the
required surjectivity of the vertical map in the middle, it suffices to show that the
vertical map on the right is surjective, by the five-lemma. This map is factorized as

H 0(H1)⊗ H 0(H2⊗ κ(P))
α
−→ H 0(H1⊗ κ(P))⊗ H 0(H2⊗ κ(P))

β
−→ H 0(H1⊗ H2⊗ κ(P)).

Here α is surjective because of the vanishing H 1(E, H1(−P)) = 0, and β is
identified with the multiplication map k⊗2

−→∼ k, which is clearly surjective. Thus
β ◦α is surjective, and the lemma is proved. �

We continue the proof of Theorem 4.7 in the case E2
≤ −3. Consider the

decomposition (2) of Fe
∗

OE into q= pe-torsion line bundles OE = L0, L1, . . . , Lq−1

on E . We fix any i with 0< i ≤ q − 1 and let I ⊂ R be an ideal isomorphic to the
reflexive R-module

Ji = 0∗(L i )=
⊕
n≥1

H 0(E, L i ⊗ Ln)tn

of rank 1, which is a nontrivial R-summand of R1/q . Then the minimal resolution
f : X̃→ X = Spec R is factorized as

f : X̃→ FBe(X)→ BlI (X)→ X,

where the blowup BlI (X) = Proj R[I t] of X with respect to the ideal I has an
exceptional curve that is the image of E ⊂ X̃ , since I ∼= Ji is not a flat R-module.
It follows that X̃ is the normalization of BlI (X). So, to prove the theorem, it is
sufficient to show that the Rees algebra R[I t] is normal.

To prove the normality of R[I t] =
⊕

m≥0 I m tm , note that its normalization is

R̃[I t] =
⊕
m≥0

I m tm,

where I m ⊆ R is the integral closure of the ideal I m ; see [Lipman 1969]. Note also
that

I OX̃
∼= f ? Ji ∼=

⊕
n≥1

(L i ⊗ Ln)tn ∼= OX̃ (−E)⊗π∗L i

is an invertible sheaf on X̃ by Lemma 4.4, so that

I m ∼= H 0(X̃ ,OX̃ (−m E)⊗π∗Lm
i )
∼=

⊕
n≥m

H 0(E, Lm
i ⊗ Ln)tn for all m ≥ 1.
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Now, since deg L ≥ 3, we can apply Lemma 4.9 to H1 = · · · = Hm := L i ⊗ L and
Hm+1 = · · · = Hn := L to obtain the surjectivity of the map

H 0(E, L i ⊗ L)⊗m
⊗ H 0(E, L)⊗n−m

→ H 0(E, Lm
i ⊗ Ln)

for all n ≥m ≥ 1. This implies that the multiplication map I⊗m
→ I m is surjective

in all degree n. Since I = I is integrally closed, we conclude that I m
= I m , from

which the normality of the Rees algebra R[I t] follows. �

Example 4.10. Let

X = Spec F2[x, y, z]/(y2
+ xyz+ x3z+ xz3).

Again from [Hirokado 2004, Corollary 4.3] and Fedder’s criterion, X has an F-
pure simple elliptic singularity of type Ẽ7 at the origin. The exceptional set of
FB1(X) consists of three projective lines. It shows that it is necessary to suppose
in Theorem 4.7 that d =−E2 is not a power of p. The normalization of FB1(X) is
smooth.

Example 4.11. The variety

X = Spec F2[x, y, z]/(y2z+ xyz+ x3
+ z3)

has an F-pure simple elliptic singularity of type Ẽ6. By Macaulay2 computations,
we can see that FB1(X) is smooth and the exceptional set is a smooth elliptic curve,
as expected from Theorem 4.7.

4b. The non-F-pure case. Now we consider the structure of f ?[R1/q
]0 mod Z as-

suming that R is not F-pure, or equivalently, E is a supersingular elliptic curve. In
this case E has no nontrivial q-torsion point under the group law. Then, contrary to
the F-pure case, Fe

∗
OE turns out to be indecomposable as we will see below.

For any elliptic curve E and an integer r > 0, there exists an indecomposable
vector bundle Fr on E of rank r and degree zero with h0(Fr ) = 1, determined
inductively by F1 = OE and the unique nontrivial extension

0→ Fr−1→ Fr → OE → 0. (3)

Note that Fr is self-dual and (3) is the dual sequence of that in [Atiyah 1957,
Theorem 5].

Lemma 4.12 (see [Atiyah 1957; Tango 1972]). If E is a supersingular elliptic
curve, then Fe

∗
OE ∼= Fq for all q = pe.
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Proof. Let Fe
∗

OE =E1⊕· · ·⊕En be the decomposition of Fe
∗

OE into indecomposable
bundles Ei of rank ri and degree di . Then d1+· · ·+dn=χ(Fe

∗
OE)= 0 by Riemann–

Roch. Pick a nontrivial line bundle L of degree zero. Then
n∑

i=1

h0(Ei ⊗ L)= h0(L ⊗ Fe
∗

OE)= h0(Lq)= 0,

since there is no nontrivial q-torsion line bundle on a supersingular elliptic curve.
Hence di = deg(Ei ⊗ L) ≤ 0 for all i = 1, . . . , n. Thus the indecomposable
summands Ei of Fe

∗
OE have degree di = 0, and exactly one of them, say E1, has a

nonzero global section since h0(Fe
∗

OE)= 1. Then by [Atiyah 1957, Theorem 5], we
have E1 ∼=Fr1 and Ei ∼=Fri ⊗ L i for i = 2, . . . , n, where L2, . . . , Ln are nontrivial
line bundles of degree zero. Suppose that n ≥ 2. Then L−1

2 ⊗ Fe
∗

OE has a nonzero
global section since its direct summand Fr2 does. On the other hand, however,
H 0(E, L−1

2 ⊗ Fe
∗

OE)= H 0(E, L−q
2 )= 0 since L2 is not a q-torsion line bundle by

our assumption. We thus conclude that n = 1, that is, Fe
∗

OE ∼= Fq . �

Now for each r , we consider the graded R-module

Mr =
⊕
n≥0

H 0(E,Fr ⊗ Ln)tn

and regard its torsion-free pullback M̃r = f ?Mr to the minimal resolution X̃ of
X = Spec R as a subsheaf of

Mr =
⊕
n≥0

(Fr ⊗ Ln)tn.

To obtain information on the flattening of R1/q , we consider the torsion-free
pullback f ?Mr of Mr to the minimal resolution, because [R1/q

]0 mod Z
∼= Mq by

Lemma 4.12.

4b1. Non-F-pure Ẽ8-singularities. We first consider the case of Ẽ8-singularities,
that is, the case deg L =−E2

= 1. In this case, L ∼= OE(P0) for a point P0 ∈ E .
We fix any point P ∈ E and let V ⊂ E be a sufficiently small open neighborhood

V of P on which L and Fr trivialize. We choose a local basis e1, . . . , er of Fr on V
inductively as follows. For r = 1, let e1 be a (local) basis of F1= OE corresponding
to its global section 1 ∈ H 0(E,OE). For r ≥ 2, we think of Fr−1 as a subbundle of
Fr via the exact sequence (3), and extend the local basis e1, . . . , er−1 of Fr−1 on
V to a local basis e1, . . . , er of Fr .

Let U = π−1V ⊂ X̃ . Then, with the local trivialization L|V ∼= OV and

Fr |V ∼=

r⊕
i=1

OV ei ∼= O⊕r
V
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as above, we have

Mr |U ∼=

r⊕
i=1

OU ei ∼= O⊕r
U ,

where OU =
⊕

n≥0(L|V )
ntn ∼=

⊕
n≥0 OV tn

= OV [t]. Note that the fiber coordinate
t and a regular parameter u at P ∈ E form a system of coordinates of U . With this
notation we shall express generators of the OU -module M̃r |U ⊆Mr |U , which come
from homogeneous elements of the graded R-module Mr .

First note that the degree zero piece [Mr ]0 = H 0(E,Fr )= H 0(E,F1) of Mr is
a one-dimensional k-vector space, so that its contribution to the generation of M̃r |U

is just e1. It is also easy to see that the graded parts of M̃r |U and Mr |U coincide
in degree ≥ 2 and are generated by t2e1, . . . , t2er , since Fr ⊗ Ln is generated by
global sections for n ≥ 2. It remains to consider the contribution of the degree one
piece [Mr ]1 = H 0(E,Fr ⊗ L)t to the generation of M̃r |U . To this end, note that
we have an exact sequence

0→ H 0(E,Fi ⊗ L)→ H 0(E,Fi+1⊗ L)→ H 0(E, L)→ 0

for 1≤ i≤r−1, via which we regard H 0(E,Fi⊗L) as a subspace of H 0(E,Fr⊗L).
Then, since h0(Fi ⊗ L)= i by Riemann–Roch, we can choose a basis s1, . . . , sr of
H 0(E,Fr ⊗ L) so that s1, . . . , si form a basis of H 0(E,Fi ⊗ L) for 1≤ i ≤ r . It
also follows from exact sequence (3)⊗L that the global sections s1, . . . , si generate
Fi⊗L on E \{P0}, so that they give a basis of Fi⊗L⊗K as a vector space over the
function field K of E . On the other hand, e1, . . . , ei can also be viewed as a basis
of Fi ⊗ L⊗ K ∼= K⊕i under the local trivialization Fi ⊗ L|V ∼=

⊕i
j=1 OV ei ∼= O⊕i

V
induced from Fi |V ∼= O⊕i

V and L|V ∼= OV . We will compare the basis consisting of
si ⊗ 1 and the standard basis e1, . . . , er of Fr ⊗ L ⊗ K ∼= K⊕r using the following
commutative diagram with exact rows:

0 // H 0(Fi−1⊗ L)⊗OV //

��

H 0(Fi ⊗ L)⊗OV //

��

H 0(L)⊗OV //

��

0

0 // Fi−1⊗ L|V //

∼=

��

Fi ⊗ L|V //

∼=

��

L|V //

∼=

��

0

0 // O⊕i−1
V

// O⊕i
V

// OV // 0

Suppose now that P = P0. Since Bs |L| = {P0}, we may choose a regular
parameter u at P0 ∈ E so that s1⊗ 1= u. It then follows from the diagram above
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that

si ⊗ 1= uei +

i−1∑
j=1

ai, j e j ,

where the ai j are local regular functions on V . We claim that we can replace
s1, . . . , sr so that they satisfy the following condition:

u|ai, j for 1≤ j ≤ i − 2 but ai,i−1 is not divisible by u. (4)

To prove the claim, there is nothing to do for i = 1. So let i = 2 and suppose
u|a2,1. We consider a k-linear map H 0(E, L)→ H 0(E,F2⊗ L) given by s1 7→ s2,
which gives rise to a K -linear map K ∼= L ⊗ K → F2 ⊗ L ⊗ K ∼= K 2 sending
1 = u−1(s1⊗ 1) 7→ u−1(s2⊗ 1) = e2+ (a21/u)e1. Since a21/u ∈ OV , this gives a
splitting of the surjective map O⊕2

V
∼=F2⊗L|V → L|V ∼=OV at P0 ∈ V , as well as at

any other point. Then we have a global splitting of the surjective map F2⊗ L→ L ,
contradicting the nontriviality of the extension (3). Thus a2,1(P0) 6= 0. Next let i ≥ 3.
Then by induction, we may replace si by si −

∑i−2
j=1(ai, j (P0)/a j+1, j (P0))s j+1 to

assume that u|ai, j for 1≤ j ≤ i − 2. It then follows that ai,i−1 is not divisible by u
because otherwise, s1 7→ si would give a global splitting of Fi ⊗ L→ L as above.

Consequently, local generators of M̃r on a neighborhood U0 of P0 are described
as

M̃r |U0 = OU0〈e1, tuei + ai,i−1tei−1, t2ei | 2≤ i ≤ r〉

= OU0〈e1, tuei + ai,i−1tei−1, t2er | 2≤ i ≤ r〉,

where ai,i−1(P0) 6= 0. Accordingly the ideal IM̃r
⊂ OX̃ defined in Section 2 has the

following local expression:

IM̃r
|U0
∼= (tr , tr−1ur−1)∼= (t, ur−1).

If P0 6= P ∈U then M̃r |U = OU 〈e1, tei | 2≤ i ≤ r〉 ∼= O⊕r
U by a similar argument.

Summarizing the argument so far, we have

Theorem 4.13. Let (X, x) be a non-F-pure simple elliptic singularity with the
elliptic exceptional curve E on the minimal resolution X̃ such that E2

=−1. Let P0

be the point on E ⊂ X̃ such that OX̃ (−E)⊗OE ∼= OE(P0) and let Ie ⊂ OX̃ be the
ideal sheaf defining a fat point supported at P0 ∈ X̃ whose local expression at P0 is

(Ie)P0 = (t, u pe
−1)

as above. Then for any e ≥ 1, the blowup BlIe(X̃) of X̃ at Ie coincides with the
normalization of the e-th F-blowup FBe(X).

Proof. We know that Y = BlIe(X̃) is a flattening of R1/pe
from the argument above

and Corollary 4.3. It is also easy to see that the exceptional curve of the blowup
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π : Y → X̃ is a single P1. Then the same argument as in the proof of Theorem 4.5
shows that π factors through the normalized F-blowup F̃Be(X) as

π = ϕ ◦ψ : Y = BlIe(X̃)
ψ
−→ F̃Be(X)

ϕ
−→ X̃

and that ψ gives an isomorphism Y ∼= F̃Be(X). �

Remark 4.14. Theorem 4.13 says that the e-th normalized F-blowup F̃Be(X) has
the exceptional set consisting of an elliptic curve E1 ∼= E and a smooth rational
curve E2 ∼= P1, and has an Ape−2-singularity on E2 \ E1. The theorem also says
that FBe(X) does not dominate FBe′(X) whenever e and e′ are distinct positive
integers. In other words, the monotonicity of F-blowup sequences breaks down for
non-F-pure Ẽ8-singularities; compare to the F-pure case [Yasuda 2009]. On the
other hand, it again has nothing to say about the normality of FBe(X).

Let us examine our observation with Macaulay2 computation.

Example 4.15. The variety

X = Spec F3[x, y, z]/(x(x − z2)(x − 2z2)− y2)

has a non-F-pure simple elliptic singularity of type Ẽ8. The exceptional set of
FB1(X) is the union of a smooth elliptic curve E1 and a projective line E2. We
could not check the normality of FB1(X) by Macaulay2 computation only, but we
could check the following using Macaulay2:

FB1(X) is normal at the generic points of E1 and E2, and there is a point
on E2 \ E1 where FB1(X) is normal but singular. The blowup of FB1(X)
at this point has the projective line as its exceptional locus.

(∗)

It agrees with the fact that FB1(X) has an A1-singularity on E2 \ E1 as stated in
the remark above.

Proposition 4.16. For X as in Example 4.15, if (∗) is correct, then FB1(X) is
normal.

Proof. We may replace the base field F3 with an algebraically closed field k. Being
quasihomogeneous, X has a k∗-action. From the construction or the universality,
the action lifts to F-blowups of X . Every point of the divisor E1 ⊂ FB1(X),
which is a smooth elliptic curve, is fixed by the k∗-action. On the other hand, the
divisor E2 ∼= P1 has exactly two fixed points. One is the singular but normal point
mentioned above and the other is the intersection E1 ∩ E2. Since the normal locus
is open and there is the k∗-action, FB1(X) is normal along E2 possibly except at
E1 ∩ E2. Therefore it is now enough to show that FB1(X) is normal along E1. Let
Ẽ1 and Ẽ2 be the preimages of E1 and E2 on the normalization F̃B1(X) of FB1(X).
Then for each i = 1, 2, since Ei is normal and FB1(X) is normal at the generic
point of Ei , the map Ẽi → Ei is an isomorphism.
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Let A be the complete local ring of FB1(X) at a point z on E1. Its normalization
is k[[s, t]]. We choose local coordinates s, t so that the k∗-action on k[[s, t]] is linear
and locally s = 0 defines Ẽ1 and t = 0 defines the only one-dimensional orbit
closure passing through the point over z. Then the k∗-action on t is trivial and the
one on s is nontrivial. Since Ẽi → Ei for i = 1, 2 are isomorphisms, the composite
maps A ↪→ k[[s, t]] → k[[s]] and A ↪→ k[[s, t]] → k[[t]] are surjective. Therefore A
contains formal power series of the forms

f = f1s+ f2t + (higher terms), (for fi ∈ k, f1 6= 0),

g = g1s+ g2t + (higher terms), (for gi ∈ k, g2 6= 0).

Then by a suitable linear combination of them, we obtain a formal power series

h = h1s+ h2t + (higher terms), (for hi ∈ k, h1 6= 0, h2 6= 0)

contained in A. Then for 1 6= λ ∈ k∗, λh ∈ A has a linear part linearly independent
of that of h. It follows that A = k[[s, t]] and hence FB1(X) is normal. �

Example 4.17. The variety

X = Spec F2[x, y, z]/(y2
+ yz3

+ x3)

has a non-F-pure simple elliptic singularity of type Ẽ8. The Frobenius pushforward
F∗OX of the coordinate ring decomposes into the direct sum of two modules, say
N1 and N2. Then F∗Ni for i = 1, 2 further decomposes as F∗Ni = Ni1⊕ Ni2. By
Macaulay2 computation, we saw that the torsion-free pullbacks Ñ1 and Ñ11 of N1

and N11 are nonflat at a point and those of the others are flat. Moreover the ideals
associated to Ñ1 and Ñ11 as in Proposition 2.5 are respectively of the forms (u, v)
and (u, v3) around the point with respect to some local coordinates u, v. The last
result coincides with Theorem 4.13.

4b2. Non-F-pure simple elliptic singularities with E2
≤−2. In this case, we have

deg L =−E2
≥ 2. Then the argument in Section 4b1 shows that M̃r is flat.

Proposition 4.18. Let (X, x) be a non-F-pure simple elliptic singularity with el-
liptic exceptional curve E on the minimal resolution X̃ . Suppose E2

≤ −2 and
d =−E2 is not a power of the characteristic p. Then X̃ is the normalization of the
e-th F-blowup FBe(X) for all e ≥ 1.

Proof. Since X̃ is a flattening of R1/q
= Mq ⊕ Nq by Lemmas 4.1 and 4.12 and

Section 4b1, the proof goes similarly to that of Theorem 4.7. Note that O
1/q
X,x has no

free summand in this case, since OX,x is not F-pure. �

Example 4.19. The variety

X = Spec F2[x, y, z]/(y2z+ yz2
+ x3)
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has a non-F-pure simple elliptic singularity of type Ẽ6. We could check that
FB1(X) is the minimal resolution.

Remark 4.20. The behavior of F-blowups remains unsettled in some cases, that is,
(i) the case E2

≤−2 and −E2 is a power of p; and (ii) the normality of F-blowups
of non-F-pure simple elliptic singularities with E2

≤ −3. These cases will be
treated in [Hara 2013].
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