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Moduli spaces for point modules
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Thomas A. Nevins and Susan J. Sierra

The naïve blowup algebras developed by Keeler, Rogalski, and Stafford, after
examples of Rogalski, are the first known class of connected graded algebras that
are noetherian but not strongly noetherian. This failure of the strong noetherian
property is intimately related to the failure of the point modules over such algebras
to behave well in families: puzzlingly, there is no fine moduli scheme for such
modules although point modules correspond bijectively with the points of a
projective variety X . We give a geometric structure to this bijection and prove
that the variety X is a coarse moduli space for point modules. We also describe the
natural moduli stack X∞ for embedded point modules — an analog of a “Hilbert
scheme of one point” — as an infinite blowup of X and establish good properties
of X∞. The natural map X∞→ X is thus a kind of “Hilbert–Chow morphism of
one point" for the naïve blowup algebra.

1. Introduction

One of the important achievements of noncommutative projective geometry is the
classification of noncommutative projective planes, such as the three-dimensional
Sklyanin algebra Skl3, by Artin, Tate, and Van den Bergh [Artin et al. 1990]. More
formally, these are Artin–Schelter regular algebras of dimension 3, noncommutative
graded rings that are close analogs of a commutative polynomial ring in three
variables; see [Stafford and Van den Bergh 2001] for a discussion. The key method
of [Artin et al. 1990] is to study point modules, that is, cyclic graded modules with
the Hilbert series of a point in projective space. Given a noncommutative projective
plane R, the authors describe a moduli scheme for its point modules. This allows
them to construct a homomorphism from R to a well understood ring, providing a
first step in describing the structure of the noncommutative plane itself.

The techniques described above work in a more general context. Let k be
an algebraically closed field; we assume k is uncountable although for some of
the results quoted this hypothesis is unnecessary. A k-algebra R is said to be
strongly noetherian if, for any commutative noetherian k-algebra C , the tensor
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product R⊗k C is again noetherian. By a general result of Artin and Zhang [2001,
Theorem E4.3], if R is a strongly noetherian N-graded k-algebra, then its point
modules are parametrized by a projective scheme. Rogalski and Zhang [2008]
used this result to extend the method of [Artin et al. 1990] to strongly noetherian
connected graded k-algebras that are generated in degree 1. (An N-graded k-
algebra R is connected graded if R0 = k.) Their method constructs a map from the
algebra to a twisted homogeneous coordinate ring (see Section 2 for definitions) on
the scheme X parametrizing point modules. For example, Sklyanin algebras are
strongly noetherian, and here X is an elliptic curve. The homomorphism here gives
the well known embedding of an elliptic curve in a noncommutative P2.

Although it was believed for a time that all connected graded noetherian algebras
would be strongly noetherian, Rogalski [2004] showed this was not the case. His
example was generalized in joint work with Keeler and Stafford [Keeler et al. 2005;
Rogalski and Stafford 2007] to give a geometric construction of a beautiful class of
noncommutative graded algebras, known as naïve blowups, that are noetherian but
not strongly noetherian. Along the way, they showed that point modules for naïve
blowups — viewed as objects of noncommutative projective geometry in a way
we make precise below — cannot behave well in families: there is no fine moduli
scheme of finite type for such modules.

In the present paper, we systematically develop the moduli theory of point
modules for the naïve blowups S of [Keeler et al. 2005; Rogalski and Stafford
2007]. Roughly speaking, we show that there is an analog of a “Hilbert scheme
of one point on Proj(S)” that is an infinite blowup of a projective variety. This
infinite blowup is quasicompact and noetherian as an fpqc-algebraic stack (a notion
we make precise in Section 4). Furthermore, we show there is a coarse “moduli
space for one point on Proj(S)” — it is, in fact, the projective variety from which
the naïve blowup was constructed. These are the first descriptions in the literature
of moduli structures for point modules on a naïve blowup.

More precisely, let X be a projective k-variety of dimension at least 2, let σ be
an automorphism of X , and let L be a σ -ample (see Section 2) invertible sheaf
on X . We follow the standard convention that Lσ

:= σ ∗L. Let P ∈ X (in the body
of the paper, we let P be any zero-dimensional subscheme of X ), and assume that
the σ -orbit of P is critically dense; that is, it is infinite and every infinite subset is
Zariski dense. For n ≥ 0, let

In := IP IσP · · ·I
σ n−1

P and Ln := L⊗Lσ
⊗ · · ·⊗Lσ n−1

.

Define Sn := In ⊗Ln , and let

S := S(X,L, σ, P) :=
⊕
n≥0

H 0(X,Sn).
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The algebra S is the naïve blowup associated to the data (X,L, σ, P).
If L is sufficiently ample, then S is generated in degree 1; alternatively, a

sufficiently large Veronese of S is always generated in degree 1. We will assume
throughout that S is generated in degree 1.

A point module is a graded cyclic S-module M with Hilbert series 1+t+t2
+· · · .

We say M is an embedded point module if we are given, in addition, a surjection
S→M of graded modules. Two embedded point modules M and M ′ are isomorphic
if there is an S-module isomorphism from M to M ′ that intertwines the maps from S.

We begin by constructing a moduli stack for embedded point modules. Recall
that X∞ is a fine moduli space (or stack) for embedded point modules if there is an
S-module quotient S⊗k OX∞→M that is a universal family for point modules; that
is, M is an X∞-flat family of embedded S-point modules with the property that if
S⊗k C→M ′ is any C-flat family of embedded point modules for a commutative k-
algebra C , then there is a morphism Spec(C) f

→X∞ and an isomorphism f ∗M∼=M ′

of families of embedded S-point modules. Let Xn be the blowup of X at In; there
is an inverse system · · ·→ Xn→ Xn−1→· · ·→ X of schemes. Let X∞ := lim

←−
Xn .

This inverse limit exists as a stack. More precisely, in Definition 4.1, we introduce
the notion of an fpqc-algebraic stack. We then have:

Theorem 1.1. The inverse limit X∞ is a noetherian fpqc-algebraic stack. The
morphism X∞→ X is quasicompact. Moreover, X∞ is a fine moduli space for
embedded S-point modules.

We have been told that similar results were known long ago to M. Artin; however,
they seem not to have been very widely known even among experts, nor do they
seem to have appeared in the literature.

Note that the stack X∞ is discrete: its points have no stabilizers. Thus, X∞
is actually a k-space in the terminology of [Laumon and Moret-Bailly 2000]; in
particular, this justifies our use of the phrase “fine moduli space” in the statement
of the theorem. However, X∞ does not seem to have an étale cover by a scheme
and hence does not have the right to be called an algebraic space.

We recall that, by definition, the noncommutative projective scheme associated
to S is the quotient category Qgr-S = Gr-S/Tors-S of graded right S-modules
by the full subcategory of locally bounded modules. A point object in Qgr-S is
the image of (a shift of) a point module. If S is a commutative graded algebra
generated in degree 1, Qgr-S is equivalent to the category of quasicoherent sheaves
on Proj(S); this justifies thinking of Qgr-S as the noncommutative analog of a
projective scheme.

If R is strongly noetherian and generated in degree 1, then a result of Artin and
Stafford [Keeler et al. 2005, Theorem 10.2] shows that point objects of Qgr-R are
parametrized by the same projective scheme X that parametrizes embedded point
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modules. On the other hand, for naïve blowups S = S(X,L, σ, P) as above, we
have:

Theorem 1.2 [Keeler et al. 2005, Theorem 1.1]. The algebra S is noetherian but
not strongly noetherian. Moreover, there is no fine moduli scheme of finite type
over k parametrizing point objects of Qgr-S.

By contrast, [Keeler et al. 2005] gives a simple classification (that fails in families),
namely that point objects are in bijective correspondence with points of X : to a
point x ∈ X , we associate the S-module

⊕
H 0(X, kx ⊗Ln). In the present paper,

we explain how these two facts about point objects of Qgr-S naturally fit together.
Assume that L is sufficiently ample (in the body of the paper, we work with any

σ -ample L by considering shifts of point modules). Let F be the moduli functor
of embedded point modules over S. Define an equivalence relation ∼ on F(C)
by saying that M ∼ N if their images are isomorphic in Qgr-S⊗k C . We obtain
a functor G : Affine schemes→ Sets by sheafifying (in the fpqc topology) the
presheaf Gpre of sets defined by Spec C 7→ F(C)/∼.

A scheme Y is a coarse moduli scheme for point objects if it corepresents
the functor G; that is, there is a natural transformation G→ Homk( · , Y ) that is
universal for natural transformations from G to schemes.

Our main result is the following:

Theorem 1.3. The variety X is a coarse moduli scheme for point objects in Qgr-S.

This gives a geometric structure to the bijection discovered by Keeler, Rogalski,
and Stafford.

Corollary 1.4. There is a fine moduli space X∞ for embedded S-point modules but
only a coarse moduli scheme X for point objects of Qgr-S.

It may be helpful to compare the phenomenon described by Corollary 1.4 to
a related, though quite different, commutative phenomenon. Namely, let Y be
a smooth projective (commutative) surface. Fix n ≥ 1. Let R = C[Y ] denote a
homogeneous coordinate ring of Y (associated to a sufficiently ample invertible sheaf
on Y ), and consider graded quotient modules R→M such that dim Ml =n for l�0.
By a general theorem of Serre, the moduli space for such quotients is the Hilbert
scheme of n points on Y , denoted Hilbn(Y ). This is a smooth projective variety of
dimension 2n. Alternatively, remembering only the corresponding objects [M] of
Qgr-R ' Qcoh(Y ) and imposing the further S-equivalence relation [Huybrechts
and Lehn 1997, Example 4.3.6], we get the moduli space Symn(Y ) for semistable
length-n sheaves on Y , which equals the n-th symmetric product of Y . The latter
moduli space is only a coarse moduli space for semistable sheaves. One has
the Hilbert–Chow morphism Hilbn(Y )→ Symn(Y ), which is defined by taking a
quotient R→ M to the equivalence class of M . It is perhaps helpful to view the
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moduli spaces and map X∞→ X associated to the algebra S in light of the theorems
stated above, that is, as a kind of “noncommutative Hilbert–Chow morphism of one
point” for a naïve blowup algebra S(X,L, σ, P).

In work in preparation, we generalize the results in [Rogalski and Zhang 2008]
by proving a converse, of sorts, to Theorem 1.3. Namely, suppose R is a connected
graded noetherian algebra generated in degree 1, that R has a fine moduli space X∞
for embedded point modules, that R has a projective coarse moduli scheme X for
point objects of Qgr-R, and that the spaces X∞ and X and the morphism X∞→ X
between them have geometric properties similar to those of the spaces we encounter
in the theorems above. Then, we show, there exist an automorphism σ of X , a
zero-dimensional subscheme P ⊂ X supported on points with critically dense
orbits, an ample and σ -ample invertible sheaf L on X , and a homomorphism φ :

R→ S(X,L, σ, P) from R to the naïve blowup associated to this data; furthermore,
φ is surjective in large degree. This construction gives a new tool for analyzing
the structure of rings that are noetherian but not strongly noetherian. Details will
appear in [Nevins and Sierra 2012].

2. Background

In this section, we give needed definitions and background. We begin by discussing
bimodule algebras: this is the correct way to think of the sheaves Sn defined
above. Most of the material in this section was developed in [Van den Bergh 1996;
Artin and Van den Bergh 1990], and we refer the reader there for references. Our
presentation follows that in [Keeler et al. 2005; Sierra 2011].

Convention 2.1. Throughout the paper, by variety (over k), we mean an integral
separated scheme of finite type over k.

Throughout this section, let k be an algebraically closed field and let A denote
an affine noetherian k-scheme, which we think of as a base scheme.

Definition 2.2. Let X be a scheme of finite type over A. An OX -bimodule is a
quasicoherent OX×X -module F such that, for every coherent submodule F′ ⊆ F,
the projection maps p1, p2 : Supp F′→ X are both finite morphisms. The left and
right OX -module structures associated to an OX -bimodule F are defined respectively
as (p1)∗F and (p2)∗F. We make the notational convention that when we refer to
an OX -bimodule simply as an OX -module, we are using the left-handed structure
(for example, when we refer to the global sections or higher cohomology of an
OX -bimodule). All OX -bimodules are assumed to be OA-symmetric.

There is a tensor product operation on the category of bimodules that has the
expected properties [Van den Bergh 1996, Section 2].

All the bimodules that we consider will be constructed from bimodules of the
following form:
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Definition 2.3. Let X be a projective scheme over A, and let σ, τ ∈ AutA(X). Let
(σ, τ ) denote the map

X→ X ×A X defined by x 7→ (σ (x), τ (x)).

If F is a quasicoherent sheaf on X , we define the OX -bimodule σFτ := (σ, τ )∗F.
If σ = 1 is the identity, we will often omit it; thus, we write Fτ for 1Fτ and F for
the OX -bimodule 1F1 =1∗F, where 1 : X→ X ×A X is the diagonal.

Definition 2.4. Let X be a projective scheme over A. An OX -bimodule algebra, or
simply a bimodule algebra, B is an algebra object in the category of bimodules.
That is, there are a unit map 1 : OX →B and a product map µ :B⊗B→B that
have the usual properties.

We follow [Keeler et al. 2005] and define the following:

Definition 2.5. Let X be a projective scheme over A, and let σ ∈ AutA(X). A
bimodule algebra B is a graded (OX , σ )-bimodule algebra if

(1) there are coherent sheaves Bn on X such that B=
⊕

n∈Z 1(Bn)σ n ,

(2) B0 = OX , and

(3) the multiplication map µ is given by OX -module maps Bn ⊗Bσ n

m → Bn+m ,
satisfying the obvious associativity conditions.

Definition 2.6. Let X be a projective scheme over A, and let σ ∈ AutA(X). Let
R=

⊕
n∈Z(Rn)σ n be a graded (OX , σ )-bimodule algebra. A right R-module M is a

quasicoherent OX -module M together with a right OX -module map µ :M⊗R→M

satisfying the usual axioms. We say that M is graded if there is a direct sum
decomposition M=

⊕
n∈Z(Mn)σ n with multiplication giving a family of OX -module

maps Mn ⊗Rσ n

m →Mn+m obeying the appropriate axioms.
We say that M is coherent if there are a coherent OX -module M′ and a surjective

map M′⊗R→M of ungraded R-modules. We make similar definitions for left
R-modules. The bimodule algebra R is right (left) noetherian if every right (left)
ideal of R is coherent. A graded (OX , σ )-bimodule algebra is right (left) noetherian
if and only if every graded right (left) ideal is coherent.

We recall here some standard notation for module categories over rings and
bimodule algebras. Let C be a commutative ring, and let R be an N-graded C-
algebra. We define Gr-R to be the category of Z-graded right R-modules; morphisms
in Gr-R preserve degree. Let Tors-R be the full subcategory of modules that are
direct limits of right bounded modules. This is a Serre subcategory of Gr-R, so we
may form the quotient category

Qgr-R := Gr-R/Tors-R.
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(We refer the reader to [Gabriel 1962] as a reference for the category theory used
here.) There is a canonical quotient functor from Gr-R to Qgr-R.

We make similar definitions on the left. Further, throughout this paper, we
adopt the convention that if Xyz is a category, then xyz is the full subcategory of
noetherian objects. Thus, we have gr-R and qgr-R, R-qgr, etc. If X is a scheme,
OX -Mod and OX -mod will denote the categories of quasicoherent and coherent
sheaves on X , respectively.

Given a module M ∈gr-R, we define M[n] :=
⊕

i∈Z M[n]i , where M[n]i =Mn+i .
For a graded (OX , σ )-bimodule algebra R, we likewise define Gr-R and gr-R.

The full subcategory Tors-R of Gr-R consists of direct limits of modules that are
coherent as OX -modules, and we similarly define Qgr-R := Gr-R/Tors-R. We
define qgr-R in the obvious way.

If R is an OX -bimodule algebra, its global sections H 0(X,R) inherit an OA-
algebra structure. We call H 0(X,R) the section algebra of R. If R=

⊕
(Rn)σ n is

a graded (OX , σ )-bimodule algebra, then multiplication on H 0(X,R) is induced
from the maps

H 0(X,Rn)⊗A H 0(X,Rm)
1⊗σ n

−−−→ H 0(X,Rn)⊗A H 0(X,Rσ n

m )
µ
−→ H 0(X,Rn+m).

If M is a graded right R-module, then H 0(X,M)=
⊕

n∈Z H 0(X,Mn) is a right
H 0(X,R)-module in the obvious way; thus, H 0(X, · ) is a functor from Gr-R
to Gr-H 0(X,R).

If R = H 0(X,R) and M is a graded right R-module, define M ⊗R R to be the
sheaf associated to the presheaf V 7→M⊗R R(V ). This is a graded right R-module,
and the functor · ⊗RR : Gr-R→ Gr-R is a right adjoint to H 0(X, · ).

The following is a relative version of a standard definition:

Definition 2.7. Let A be an affine k-scheme, and let q : X → A be a projective
morphism. Let σ ∈ AutA(X), and let {Rn}n∈N be a sequence of coherent sheaves
on X . The sequence of bimodules {(Rn)σ n }n∈N is right ample if, for any coherent
OX -module F, the following properties hold:

(1) F⊗Rn is globally generated for n�0 (the natural map q∗q∗(F⊗Rn)→F⊗Rn

is surjective for n� 0) and

(2) Ri q∗(F⊗Rn)= 0 for n� 0 and i ≥ 1.

The sequence {(Rn)σ n }n∈N is left ample if, for any coherent OX -module F, the
following properties hold:

(1) the natural map q∗q∗(Rn ⊗Fσ n
)→Rn ⊗Fσ n

is surjective for n� 0 and

(2) Ri q∗(Rn ⊗Fσ n
)= 0 for n� 0 and i ≥ 1.
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If A= k, we say that an invertible sheaf L on X is σ -ample if the OX -bimodules

{(Ln)σ n }n∈N = {L
⊗n
σ }n∈N

form a right ample sequence. By [Keeler 2000, Theorem 1.2], this is true if and
only if the OX -bimodules {(Ln)σ n }n∈N form a left ample sequence.

The following result is a special case of a result due to Van den Bergh [1996, The-
orem 5.2] although we follow the presentation of [Keeler et al. 2005, Theorem 2.12]:

Theorem 2.8 (Van den Bergh). Let X be a projective k-scheme, and let σ be an
automorphism of X. Let R =

⊕
(Rn)σ n be a right noetherian graded (OX , σ )-

bimodule algebra such that the bimodules {(Rn)σ n } form a right ample sequence.
Then R= H 0(X,R) is also right noetherian, and the functors H 0(X, · ) and · ⊗RR

induce an equivalence of categories qgr-R' qgr-R.

Castelnuovo–Mumford regularity is a useful tool for measuring ampleness and
studying ample sequences. We will need to use relative Castelnuovo–Mumford
regularity; we review the relevant background here. In the next three results, let X
be a projective k-scheme, and let A be a noetherian k-scheme. Let X A := X × A,
and let p : X A→ X and q : X A→ A be the projection maps.

Fix a very ample invertible sheaf OX (1) on X . Let OX A(1) := p∗OX (1); note
OX A(1) is relatively ample for q : X A → A. If F is a coherent sheaf on X A and
n ∈ Z, let F(n) :=F⊗X A OX A(1)

⊗n . We say F is m-regular with respect to OX A(1),
or just m-regular, if Ri q∗F(m − i) = 0 for all i > 0. Since OX A(1) is relatively
ample, F is m-regular for some m. The regularity of F is the minimal m for which
F is m-regular; we write it reg(F).

Castelnuovo–Mumford regularity is usually defined only for k-schemes, so we
will spend a bit of space on the technicalities of working over a more general base.
First note:

Lemma 2.9. Let F be a coherent sheaf on X. Then reg(F)= reg(p∗F). �

The fundamental result on Castelnuovo–Mumford regularity is due to Mumford.

Theorem 2.10 [Lazarsfeld 2004, Example 1.8.24]. Let F be an m-regular coherent
sheaf on X A. Then for every n ≥ 0,

(1) F is (m+ n)-regular;

(2) F(m+ n) is generated by its global sections; that is, the natural map

q∗q∗F(m+ n)→ F(m+ n)

is surjective;

(3) the natural map q∗F(m)⊗A q∗OX A(n)→ q∗F(m+ n) is surjective.
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Lemma 2.11. For any 0-regular invertible sheaf H on X A and any A-point y of X ,
the natural map q∗H

α
−→ q∗(Oy ⊗X A H) is surjective.

Proof. This is standard, but we check the details. Since cohomology commutes
with flat base change, it suffices to consider the case that A = Spec C , where C is
a local ring. Then for any n ∈ Z, we may consider Oy ⊗X A H(n) as an invertible
sheaf on A. Since C is local, as a C-module, this is isomorphic to C .

We thus have q∗(Oy ⊗X A H)∼= C . Let I := Im(α); this is an ideal of C .
Let n ≥ 0, and consider the natural maps

q∗H⊗C q∗OX A(n)
µ

//

�� α⊗1 **

f

--

q∗H(n)

��

I ⊗C q∗OX A(n) // q∗(Oy ⊗X A H)⊗C q∗OX A(n) // q∗(Oy ⊗X A H(n))∼= C

(2.12)

This diagram clearly commutes, and α ⊗ 1 factors through I ⊗C q∗OX A(n) by
construction. Thus, Im f ⊆ I for all n.

On the other hand, by Theorem 2.10(3), µ is surjective. As OX A(1) is relatively
ample, for n� 0, the right-hand vertical map is surjective. Thus, f is surjective
for n� 0, and so I = C . �

Let Z be a closed subscheme of X A. We say that Z has relative dimension ≤ d
if, for all x ∈ A, the fiber q−1(x) has dimension ≤ d as a k(x)-scheme.

The following is a relative version of Proposition 2.7 of [Keeler 2010]:

Proposition 2.13. Let X be a projective k-scheme. There exists a constant D,
depending only on X and on OX (1), so that the following holds: for any noetherian
k-scheme A and for any coherent sheaves F,G on X A such that the closed sub-
scheme of X A where F and G both fail to be locally free has relative dimension ≤ 2,
we have

reg(F⊗X A G)≤ reg(F)+ reg(G)+ D.

Proof. The statement is local on the base, so we may assume without loss of
generality that A = Spec C is affine. Since standard results such as Theorem 2.10
and Lemma 2.11 hold in this relative context, we may repeat the proof of [Keeler
2010, Proposition 2.7]. The relative dimension assumption ensures the vanishing
of Rq∗ that is needed in the proof. �

To end the introduction, we define naïve blowups: these are the algebras and
bimodule algebras that we will work with throughout the paper. Let X be a projective
k-variety. Let σ ∈ Autk(X), and let L be a σ -ample invertible sheaf on X . Let P
be a zero-dimensional subscheme of X . We define ideal sheaves

In := IP IσP · · ·I
σ n−1

P
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for n ≥ 0. Then we define a bimodule algebra S(X,L, σ, P) :=
⊕

n≥0(Sn)σ n ,
where Sn := InLn . Define S(X,L, σ, P) := H 0(X,S(X,L, σ, P)).

Theorem 2.14 [Rogalski and Stafford 2007, Theorems 1.2 and 3.1]. Let X be a
projective k-variety with dim X ≥ 2. Let σ ∈ Autk(X), and let L be a σ -ample
invertible sheaf on X. Let P be a zero-dimensional subscheme of X , and let
S := S(X,L, σ, P) and S := S(X,L, σ, P).

If all points in P have critically dense σ -orbits, then the following hold:

(1) The sequence of bimodules {(Sn)σ n } is a left and right ample sequence.

(2) S and S are left and right noetherian, the categories qgr-S and qgr-S are
equivalent via the global sections functor. Likewise, S-qgr and S-qgr are
equivalent.

(3) The isomorphism classes of simple objects in qgr-S ' qgr-S are in one-to-one
correspondence with the closed points of X , where x ∈ X corresponds to the S-
module

⊕
kx⊗Ln . However, the simple objects in qgr-S are not parametrized

by any scheme of finite type over k.

For technical reasons, we will want to assume that our naïve blowup algebra S is
generated in degree 1. By [Rogalski and Stafford 2007, Propositions 3.18 and 3.19],
this will always be true if we either replace S by a sufficiently large Veronese or
replace L by a sufficiently ample line bundle (for example, if L is ample, by a
sufficiently high tensor power of L). If S is generated in degree 1, then by [Rogalski
and Stafford 2007, Corollary 4.11], the simple objects in qgr-S are the images of
shifts of point modules.

3. Blowing up arbitrary zero-dimensional schemes

For the rest of the paper, let k be an uncountable algebraically closed field. Let X be
a projective variety over k, let σ ∈Autk(X), and let L be a σ -ample invertible sheaf
on X . Let P be a zero-dimensional subscheme of X supported at points with dense
(later, critically dense) orbits. Let S := S(X,L, σ, P), and let S := S(X,L, σ, P).
In this paper, we compare three objects: the scheme parametrizing length-n truncated
point modules over S, the scheme parametrizing length-n truncated point modules
over S, and the blowup of X at the ideal sheaf In = IP · · ·I

σ n−1

P . In this section,
we focus on the blowup of X . We first give some general lemmas on blowing up
the defining ideals of zero-dimensional schemes. These are elementary, but we give
proofs for completeness.

Suppose that X is a variety and that f : Y → X is a surjective, projective
morphism of schemes. Let η be the generic point of X . We define

Y o
:= f −1(η)
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and refer to Y o, by abuse of terminology, as the relevant component of Y . In our
situation, f will always be generically one-to-one and Y o will be irreducible with
f |Y o birational onto its image.

Lemma 3.1. Let A be a variety of dimension ≥ 2. Let I be the ideal sheaf of a
zero-dimensional subscheme of A, and let π : X→ A be the blowup of A at I. Let
W be the scheme parametrizing colength-1 ideals inside I. Let φ : W → A be
the canonical morphism that sends an ideal J to the support of I/J. Then there
is a closed immersion c : X → W that gives an isomorphism between X and W o.
Further, the following diagram commutes:

X c
//

π
��

W

φ~~

A

Proof. Without loss of generality, A = Spec C is affine; let I := I(A). We may
identify W with Proj SymC(I ) [Kleiman 1990, Proposition 2.2]; under this identifi-
cation, φ :W→ A is induced by the inclusion C ↪→ SymC(I ). There is a canonical
surjective map of graded C-algebras SymC(I )→C⊕

⊕
n≥1 I n , which is the identity

on C . This induces a closed immersion c : X→W with φc=π as claimed. Further,
both π : X→ A and φ :W → A are isomorphisms away from Cosupp I. Thus, c
gives a birational closed immersion (and therefore an isomorphism) onto W o. �

Lemma 3.2. Let A be a variety of dimension ≥ 2, and let I and J be ideal sheaves
on A. Let K := IJ. Define i : X→ A to be the blowup of A at I, j : Y → A to be
the blowup of A at J, and k : Z→ A to be the blowup of A at K.

(a) There are morphisms ξ : Z→ X and ω : Z→ Y so that the diagram

Z
ξ
//

k ��

ω

��

X

i
��

Y
j
// A

commutes.

(b) We have Z ∼= (X ×A Y )o.

(c) Let W be the moduli scheme of subsheaves of K of colength 1, and let V be the
moduli scheme of subsheaves of I of colength 1. Let c : Z→W and d : X→ V
be the maps from Lemma 3.1, and let Z ′ := c(Z) and X ′ := d(X). Then the
map ξ ′ : Z ′→ X ′ induced from ξ sends K′ ⊂ K to (K′ : J)∩I.

Proof. (a) Since ξ−1(K)OZ = ξ
−1(I)ξ−1(J)OZ is invertible, the inverse images

of both I and J on Z are invertible. By the universal property of blowing up
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[Hartshorne 1977, Proposition 7.14], the morphisms ξ : Z → X and ω : Z → Y
exist and commute as claimed.

For (b) and (c), we may without loss of generality assume A = Spec C is affine.

(b) Let U := (X ×A Y )o. Let A′ := ArCosupp K. Then U is the closure of A′ in
Pn

A×A Pm
A for appropriate n and m.

Let φ : Pn
A ×A Pm

A → 6n,m ⊂ Pnm+m+n
A be the Segre embedding. Note that

the canonical embeddings Z ⊆ W ⊆ Pnm+m+n
A actually have W ⊆ 6n,m . Since

φ′ := φ|U is the identity over A′ and Z ⊆ 6n,m is the closure of A′ in Pnm+n+m
A ,

we have φ′(U )= Z .
Let p : X ×A Y → X and q : X ×A Y → Y be the projection maps. From the

commutative diagram in (a), we obtain a morphism r : Z→ X ×A Y with qr = ω
and pr = ξ . Further, r restricts to (φ′)−1 over A′. Thus, r(Z)=U , and φ′ :U→ Z
is an isomorphism.

(c) A point (x, y)∈Pn
A×APm

A corresponds to a pair of linear ideals n⊂C[x0, . . . , xn]

and m ⊂ C[y0, . . . , ym]. Let C[(xi y j )i, j ] ⊂ C[(xi )i ][(y j ) j ] be the homogeneous
coordinate ring of 6n,m . It is clear the ideal defining φ(x, y)= {x}×Pm

∩Pn
×{y}

in C[xi y j ] is generated by n1 · (y0, . . . , ym)+ (x0, . . . , xn) ·m1.
Let (x, y) ∈ (X ×A Y )o, where x corresponds to the colength-1 ideal I′ ⊆ I and

y corresponds to J′ ⊆ J. That I′J+ IJ′ gives the ideal K′ ⊂ K corresponding
to φ(x, y) follows from the previous paragraph together with the fact that the
isomorphism φ′ between (X ×A Y )o and Z is given by the Segre embedding.

Since φ′ is an isomorphism, any ideal K′ corresponding to a point z ∈ Z may be
written K′=I′J+IJ′ for appropriate I′ and J′. We thus have I′⊆ (K′ :J)∩I$I.
Since I′ is colength-1, this implies that I′ = (K′ : J)∩I as claimed. �

Corollary 3.3. Let X be a projective variety of dimension≥2, let σ ∈Autk(X), and
let I be an ideal sheaf on X. Let In := IIσ · · ·Iσ

n−1
. For all n≥ 0, let an : Xn→ X

be the blowup of X at In . Then there are birational morphisms αn : Xn → Xn−1

(for n ≥ 1) and βn : Xn→ Xn−1 (for n ≥ 2) so that the diagrams

Xn
αn

//

an
  

Xn−1

an−1
||

X

and

Xn
βn
//

an

��

Xn−1

an−1

��

X
σ
// X

commute.

Proof. Let K := In , and let ζ : X ′n−1 → X be the blowup of X at Iσn−1. Since
(Ip)

σ ∼= Iσ−1(p), there is an isomorphism θ : X ′n−1→ Xn−1 so that the following
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diagram commutes:

X ′n−1
θ
//

ζ

��

Xn−1

an−1

��

X
σ

// X

Apply Lemma 3.2(a) with I = Iσn−1 and J = I1. We obtain a morphism
γ : Xn→ X ′n−1 so that

Xn
γ
//

an
""

X ′n−1

ζ

��

θ
// Xn−1

an−1

��

X
σ

// X

commutes. Let βn := θγ : Xn→ Xn−1.
Let αn be the morphism Xn→ Xn−1 given by Lemma 3.2(a) with I= In−1 and

J= Iσ
n−1

1 . The diagram

Xn
αn
//

an
""

Xn−1

an−1

��

X

commutes as required. �

We will frequently suppress the subscripts on the maps αn , an , etc., when the
source and target are indicated. Note that the equation an = α1◦· · ·◦αn that follows
from Corollary 3.3 may be written more compactly as a = αn

: Xn→ X .

4. Infinite blowups

In this section, we prove some general properties of infinite blowups that will be
useful when we consider moduli spaces of embedded point modules. Such infinite
blowups can be handled in two ways: either as pro-objects in the category of
schemes or as stacks via the (inverse) limits of such pro-objects in the category
of spaces or of stacks. We’ve chosen to treat infinite blowups as the limits rather
than as pro-objects. This is formally the correct choice in the sense that the limit
formally contains less information than the pro-object. We note that in our setting,
we could also work with the pro-object with no difficulties; however, we have found
the language of stacks more natural.

We begin with some technical preliminaries on schemes and stacks. We will
work with stacks in the fpqc (fidèlement plat et quasicompact) topology; the fpqc
topology of schemes is discussed in [Vistoli 2005, Section 2.3.2]. We are interested
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in a class of stacks that are apparently not algebraic but for which a certain amount
of algebraic geometry is still possible. More precisely, recall that a stack X is
called algebraic if the diagonal morphism of X is representable, separated, and
quasicompact; and it has an fppf atlas f : Z → X that is a scheme; that is, f is
representable, faithfully flat, and finitely presented. By Artin’s theorem [Laumon
and Moret-Bailly 2000, Théorème 10.1], the second condition is equivalent to
requiring the existence of a smooth, surjective, and representable f .

Our stacks are very similar to algebraic stacks, but it seems not to be possible to
find a finite-type f for which Z is a scheme. On the other hand, we can find f for
which Z is a scheme and f is fpqc — and even formally étale — so in some sense
our stacks are the fpqc analogs of algebraic stacks.

Definition 4.1. We will refer to a stack X for which the diagonal 1 : X→ X×k X

is representable, separated, and quasicompact, and which admits a representable
fpqc morphism Z→ X from a scheme Z , as fpqc-algebraic.

Note that “separated” and “quasicompact” make sense for fpqc stacks by [EGA
IV.2 1965, Proposition 2.7.1 and Corollaire 2.6.4]. Unfortunately, in this weaker
setting, there are fewer notions of algebraic geometry that one can check fpqc-
locally and hence fewer adjectives that one can sensibly apply to fpqc-algebraic
stacks. Still, one can make sense, for example, of representable morphisms being
separated, quasiseparated, locally of finite type or of finite presentation, proper,
closed immersions, affine, etc., by [EGA IV.2 1965, Proposition 2.7.1].

Recall [EGA IV.4 1967, Définition 17.1.1] that a morphism of schemes f : X→Y
is formally étale if, for every affine scheme Y ′, closed subscheme Y ′0⊂Y ′ defined by
a nilpotent ideal, and morphism Y ′→Y , the map HomY (Y ′, X)→HomY (Y ′0, X) is
bijective. By faithfully flat descent [Vistoli 2005], the definition extends immediately
to stacks in the étale, fppf, and fpqc topologies of schemes.

We will say that an fpqc-algebraic stack X is noetherian if it admits an fpqc atlas
Z→ X by a noetherian scheme Z . Unfortunately, since fpqc morphisms need not
be of finite type even locally, it does not seem to be possible to check this property
on an arbitrary atlas Y → X.

Suppose we have a sequence of schemes {Xn | n ∈N} and projective morphisms
πn : Xn → Xn−1. We define the infinite blowup X∞ to be the presheaf of sets
X∞ = lim

←−
Xn: more precisely, let h X∞ : Schemesop

→ Sets be the functor of points
whose value on a scheme A is

h X∞(A)= {(ζn : A→ Xn)n∈N | πnζn = ζn−1}.

For each n, there is an induced map π : X∞→ Xn , where the target space Xn is
indicated explicitly.
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Proposition 4.2. Suppose that X := X0 is a variety of dimension ≥ 2 and there are
maps πn : Xn→ Xn−1 as above. Then the stack X∞ is a sheaf in the fpqc topology.

Further, suppose that the maps πn satisfy the following conditions:

(i) For all n, π−1
n is defined at all but finitely many points of Xo

n−1. That is, the
set of exceptional points of π−1

: X 99K X∞ is countable; let {zm}m∈N be an
enumeration of this set.

(ii) The set {zm} is critically dense.

(iii) For all m, there is some n(m) so that, for n ≥ n(m), the map πn is a local
isomorphism at all points in the preimage of zm .

(iv) For all m ∈ N, there is an ideal sheaf Jm on X , cosupported at zm , so that
Xn(m) is a closed subscheme of Proj SymX Jm above a neighborhood of zm .
That is, Xn(m)→ X factors as

Xn(m)
cm
−→ Proj SymX Jm

pm
−→ X,

where pm :Proj SymX Jm→ X is the natural map and cm is a closed immersion
over a neighborhood of zm .

(v) There is some D ∈ N so that mD
zm

OX,zm ⊆ Jm ⊆ OX,zm for every m.

Then:

(1) The stack X∞ is fpqc-algebraic.

(1a) X∞ has a representable, formally étale, fpqc cover by an affine scheme
U → X∞.

(1b) The diagonal morphism1 : X∞→ X∞×k X∞ is representable, separated,
and quasicompact.

(2) The morphism π : X∞→ X is quasicompact.

(3) X∞ is noetherian as an fpqc-algebraic stack.

Proof. Because any limit of an inverse system of sheaves taken in the category of
presheaves is already a sheaf [Hartshorne 1977, Exercise II.1.12], X∞ is a sheaf in
the fpqc topology.

Now assume that (i)–(v) hold. For n ∈ N, let Wn be the scheme-theoretic image
of cn . Let

X ′n :=W0×X W1×X · · · ×X Wn−1.

Let π ′n : X ′n → X ′n−1 be projection on the first n − 1 factors. We show we can
assume without loss of generality that Xn = X ′n; that is, we claim that

lim
←−
π ′

X ′n ∼= lim
←−
π

Xn.
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Let k ∈ N. Let K (k) := max{k, n(0), . . . , n(k − 1)}. For each 0 ≤ m ≤ k − 1,
there is a morphism

X K (k)
πK (k)−n(m)

−−−−−→ Xn(m)
cm
−→Wm .

Since these agree on the base, we obtain an induced φk : X K (k)→ X ′k . The φk are
clearly compatible with the inverse systems π and π ′. Taking the limit, we obtain

φ : lim
←−

X K (k)→ lim
←−

X ′k .

Now let N (k) := k+max{m | zm ∈ Fk}, where Fk is the set of fundamental points
of X 99K Xk . We claim there is a morphism ψk : X ′N (k)→ Xk . There is certainly a
rational map defined over X r {Fk} since there Xk is locally isomorphic to X . Let
zm ∈ Fk , and let n′(m) :=max{k, n(m)}. The rational map

X ′N (k)→Wm 99K Xn′(m)→ Xk

is then defined over a neighborhood of zm . These maps clearly agree on overlaps,
so we may glue to define ψk as claimed. Let

ψ : lim
←−

X ′N (k)→ lim
←−

Xk

be the limit of the ψk . It is clear that ψ = φ−1; note that by construction both N (k)
and K (k) go to infinity as k→∞.

Going forward, we replace Xn by X ′n . Thus, let Yn := Proj SymX Jn , and assume
that there are closed immersions in : Xn→ Y0×X · · · ×X Yn−1 so that the πn are
given by restricting the projection maps.

It suffices to prove the proposition in the case that X = Spec C is affine; note
that we can choose an affine subset of X that contains all zn . Let Jn ⊆ C be the
ideal cosupported at zn so that (Jn)zn = Jn . Let mp denote the maximal ideal of C
corresponding to p.

Claim 4.3. There is an N such that every ideal Jm , m ∈ N, is generated by at most
N elements.

Proof. Embed X in an affine space; i.e., choose a closed immersion X ⊆ Al . Then
each point of Al , hence a fortiori each point of X , is cut out scheme-theoretically by
l elements of C , and the power of the maximal ideal mD

zm
appearing in hypothesis (v)

of the proposition is generated by N0 :=
(D+l−1

l−1

)
elements of C . Now Jm contains

mD
zm

, and

dim(Jm/m
D
zm
)≤ dim C/mD

zm
≤ dim k[u1, . . . , ul]/(u1, . . . , ul)

D
=: N1.

Thus, Jm is generated by at most N := N0+ N1 elements. �
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We continue with the proof of the proposition.

(1a) To construct an affine scheme U with a representable, formally étale morphism
U → X∞, we proceed as follows. For each n and for each 1≤ i ≤ N , we choose
hypersurfaces Dn,i = V (dn,i )⊂ X with the following properties:

(A) For all n, the elements dn,1, . . . , dn,N generate Jn .

(B) For all n and i , the hypersurface Dn,i does not contain any irreducible compo-
nent Z of a hypersurface Dm, j with m < n or m = n and j < i .

(C) For all n and each m 6= n, zm /∈ Dn,i for any i .

We can make such choices because k is uncountable and X is affine (note that in
order to satisfy (B), the choice of each Dn,i will depend on finitely many earlier
choices).

Let Z(n1,...,nN ) := Dn1,1 ∩ · · · ∩ DnN ,N for each N -tuple of positive integers
(n1, . . . , nN ). Note that zm /∈ Z(n1,...,nN ) unless (n1, . . . , nN ) = (m,m, . . . ,m) by
property (C). Note also that, since Z(n1,...,nN ) is a union of intersections of pairwise
distinct irreducible hypersurfaces, it has codimension at least 2 in X .

Now let Z (1) :=
⋃
(n1,...,nN )

Z(n1,...,nN ). This is a countable union of irreducible
subsets of X of codimension at least 2. We may choose one point lying on each
component of Z (1)r{zm}m∈N. Now, for each n, choose a hypersurface Dn,N+1 such
that zn ∈ Dn,N+1, the local ideal of Dn,N+1 at zn is contained in Jn , and Dn,N+1

avoids all the (countably many) chosen points of components of Z (1) and all zm ,
m 6= n. Then for each n, Z (1)∩Dn,N+1 is a countable union of irreducible algebraic
subsets of codimension at least 3 (it is a union of proper intersections of Dn,N+1

with irreducible subsets of codimension at least 2). Let Z (2) :=
⋃

n(Z
(1)
∩Dn,N+1).

Repeating the previous construction with Z (2), we get hypersurfaces Dn,N+2 such
that each Z (2) ∩ Dn,N+2 is a countable union of irreducible subsets of codimension
at least 4. Iterating, we eventually define hypersurfaces Dn,N+i , i = 1, . . . , d , with
the following properties:

(A′ ) For all m ∈N, a scheme-theoretic equality Spec(C/Jm)= Dm,1∩· · ·∩Dm,N+d

exists.

(B′ ) For every sequence (n1, . . . , nN+d) of positive integers, we have a set-theoretic
equality

Dn1,1 ∩ · · · ∩ DnN+d ,N+d =

{
zm if (n1, . . . , nN+d)= (m, . . . ,m),
∅ otherwise.

(C) For all n and each m 6= n, zm /∈ Dn,i for any i .

For 0 ≤ n ≤ m − 1, we abusively let D̃n,i ⊂ Xo
m denote the proper transform

of Dn,i . By construction, D̃n,1 ∩ · · · ∩ D̃n,N+d =∅.
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For each m ∈ N, the map C N+d
→ Jm , ei 7→ dm,i induces a closed immersion

Ym → PN+d−1
X . Let Vm,i ⊆ Ym be the open affine given by ei 6= 0. Note that

Vm,i ∩ Xo
m = Xo

m r D̃m,i (recall Xo
m here denotes the closure in Xm of the preimage

in Xm of the generic point of X ). Let

Un,i := Xn ∩ (V0,i ×X V1,i ×X · · · ×X Vn−1,i .)

The Un,i are open and affine. Since Dm,i 63 zn for m 6= n, the set
⋃

i Un,i includes
all irreducible components of Xn except possibly for Xo

n . But

Xo
n r

N+d⋃
i=1

Un,i =
⋂

i

n−1⋃
m=0

D̃m,i =
⋃
m

⋂
i

D̃m,i =∅.

Thus, the Un,i are an open affine cover of Xn .
Since πn|Un,i is obtained by base extension from the affine morphism Vn−1,i→ X ,

it is affine, and πn(Un,i )⊆Un−1,i . Writing Ci := lim
−→

Cm,i and Ui := Spec Ci , we
get Ui = lim

←−
Um,i ; all the Ui are affine schemes. By construction, we obtain induced

maps Ui → X∞. Let U :=
⊔

i Ui .

Claim 4.4. The induced morphism U → X∞ is representable and formally étale.

Proof. Since each map Ui → X∞ is a limit of formally étale morphisms, each
is itself formally étale. We must show that if T is a scheme equipped with a
morphism T → X∞, then T ×X∞ U → T is a scheme over T . Each morphism
T ×Xm Um,i→ T is an affine open immersion since the morphisms Um,i→ Xm are
affine open immersions. Hence, the morphism lim

←−
(T ×Xm Um,i )→ T is an inverse

limit of schemes affine over T and thus is itself a scheme affine over T [EGA IV.3
1966, Proposition 8.2.3]. The claim now follows from this result:

Lemma 4.5. For any scheme T equipped with a morphism T → X∞, we have
T ×X∞ Ui ∼= lim

←−
(T ×Xm Um,i ). �

Claim 4.6. The map U → X∞ is surjective.

Proof. Surjectivity for representable morphisms can be checked locally on the target
by [Laumon and Moret-Bailly 2000, 3.10]. Thus, we may change base along a
map T → X∞ from a scheme T , and taking a point that is the image of a map
Spec(K )→ T where K is a field containing k, it suffices to find Spec(K )→ U
making the diagram

Spec(K ) // U

��

Spec(K ) // X∞

(4.7)

commute.
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Thus, suppose we are given a map Spec(K )→ X∞; let yn denote its image (i.e.,
the image of the unique point of Spec(K )) in Xn . Let In denote the (finite) set of
those i so that yn ∈ Un,i . Since the Un,i cover Xn , each In is nonempty; further,
In ⊆ In−1. The intersection

⋂
n In is thus nonempty and contains some i0. The maps

Spec(K )→Um,i0 for m� 0 define a map f :Spec(K )→Ui0 = lim
←−

Um,i0 ⊂U , and
thus, defining the map in the top row of (4.7) to be f gives the desired commutative
diagram. This proves the claim. �

Returning to the proof of Proposition 4.2(1a), let R :=U ×X∞ U . If we define
Ri j := Ui ×X∞ U j , then we have R =

⊔
i, j Ri j . Note that Ri j is a scheme affine

over Ui by the previous paragraph. Since affine schemes are quasicompact, this
proves that the morphism U → X∞ is quasicompact. Furthermore, O(Ri j ) is
a localization of Ci (obtained by inverting the images of the elements dn, j ), so
Ri j→Ui is flat. We have already proved that U→ X∞ is surjective, so we conclude
that U→ X∞ is faithfully flat. It follows that U→ X∞ is fpqc using [Vistoli 2005,
Proposition 2.33(iii)]. This completes the proof of (1a).

(1b) The diagonal 1 : X∞ → X∞ ×k X∞ is the inverse limit of the diagonals
1n : Xn→ Xn×k Xn . Similarly to Lemma 4.5, if V→ X∞×k X∞ is any morphism
from a scheme V , we get X∞×X∞×kX∞ V ∼= lim

←−
Xn ×Xn×kXn V . Since each Xn

is separated over k, each morphism Xn ×Xn×kXn V → V is a closed immersion;
hence, X∞×X∞×kX∞ V → V is a closed immersion. This proves (1b).

(2) Again, we may assume that X is affine. Then, as above, we have an fpqc cover
U p
→ X∞ by an affine scheme U . Since an affine scheme is quasicompact and a

continuous image of a quasicompact space is quasicompact, X∞ is quasicompact
as desired.

(3) By our definition, it suffices to prove that U is noetherian or, equivalently, that
each Ci is a noetherian ring. This follows as in [Artin et al. 1999, Theorem 1.5].
We will need the following:

Lemma 4.8. Let A be a commutative noetherian ring, and (with M an n×m matrix
acting by left multiplication) let J be an ideal of A with a resolution

Am M
−→ An

→ J → 0.

Let A′ := A[t1, . . . , tn−1]/(t1, . . . , tn−1, 1)M. Let P ′ be a prime of A′, and let
P := P ′ ∩ A. If P and J are comaximal, then P A′ = P ′.

Note that A′ is the coordinate ring of a chart of Proj SymA J .

Proof. We may localize at P , so without loss of generality, J = A. Then A′∼= A[g−1
]

for some g ∈ A. The result follows. �

We return to the proof of (3). It suffices to show, by [Eisenbud 1995, Exercise
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2.22], that each prime of Ci is finitely generated. Let P̃ 6= 0 be a prime of Ci .
Let P := P̃ ∩C , and let Pn := P̃ ∩Cn,i . By critical density, there is some n ∈ N

so that if m ≥ n, then Jm and P are comaximal. It follows from Lemma 4.8 that
Pm = PnCm,i for m ≥ n. So P̃ =

⋃
Pm = PnCi . This is finitely generated because

Cn,i is noetherian, so Pn is finitely generated.

Proposition 4.2 is now proved. �

Corollary 4.9. Let X be a projective variety, let σ ∈ Autk(X), and let L be a
σ -ample invertible sheaf on X. Let P be a zero-dimensional subscheme of X , all
of whose points have critically dense σ -orbits. Let In := IP IσP · · ·I

σ n−1

P . Let
an : Xn→ X be the blowup of X at In as in Corollary 3.3. Let αn : Xn→ Xn−1 be
given by Corollary 3.3. Then the limit

X∞ := lim
←−

Xn

is a noetherian fpqc-algebraic stack.

Proof. This follows immediately from Proposition 4.2. �

5. Moduli schemes for truncated point modules

Let X be a projective variety, let σ ∈ Autk(X), and let L be a σ -ample invertible
sheaf on X . Let P be a zero-dimensional subscheme of X , all of whose points have
critically dense σ -orbits. We define S := S(X,L, σ, P) and S := S(X,L, σ, P) as
in Section 2. As usual, we assume that S is generated in degree 1.

In this section, we construct moduli schemes of truncated point modules over S

and S. In the next section, we compare them. We begin by constructing moduli
schemes for shifted point modules for an arbitrary connected graded noetherian
algebra generated in degree 1, generalizing slightly results of [Artin et al. 1990;
Rogalski and Stafford 2009].

Let C be any commutative k-algebra. Recall that we use subscript notation to
denote changing base. Thus, if R is a k-algebra, we write RC := R ⊗k C . We
write XC := X ×k Spec C . Recall that a C-point module (over R) is a graded factor
M of RC so that Mi is rank-1 projective for i ≥ 0. An l-shifted C-point module
(over R) is a factor of (RC)≥l that is rank-1 projective in degree ≥ l. A truncated
l-shifted C-point module of length m is a factor module of (RC)≥l so that Mi is
rank-1 projective over C for l ≤ i ≤ l+m−1 and Mi = 0 for i ≥ l+m. Since these
modules depend on a finite number of parameters, they are clearly parametrized
up to isomorphism by a projective scheme. For fixed l ≤ n, we let lYn denote the
l-shifted length-(n− l + 1) point scheme of R. A point in lYn gives a surjection
R≥l→M (up to isomorphism) or equivalently a submodule of R≥l with appropriate
Hilbert series. Thus, we say that lYn parametrizes embedded (shifted truncated)
point modules. The map M 7→ M/Mn induces a morphism χn : lYn→ lYn−1.
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For later use, we explicitly construct a projective embedding of lYn .

Proposition 5.1 [Artin et al. 1990, Section 3]. Let R be a connected graded k-
algebra generated in degree 1.

(1) For all l ≤ n ∈ N, there is a closed immersion

l5n : lYn→ P((R⊗l
1 )
∨)×P(R∨1 )

×(n−l).

(2) Fix l ≤ n, and let

π : P((R⊗l
1 )
∨)×P(R∨1 )

×(n−l)
→ P((R⊗l

1 )
∨)×P(R∨1 )

×(n−l−1)

be projection onto the first n−l factors. Then the following diagram commutes:

lYn
l5n

//

χn

��

P((R⊗l
1 )
∨)×P(R∨1 )

×(n−l)

π

��

lYn−1
l5n−1

// P((R⊗l
1 )
∨)×P(R∨1 )

×(n−l−1)

(5.2)

Proof. (1) Let T = T •(R1) denote the tensor algebra on the finite-dimensional
k-vector space R1. We identify T1 canonically with R1 and Tl with R⊗l

1 .
Given an element f ∈ Tn , we get an (l, 1, . . . , 1)-form

f̃ : T∨l × (T
∨

1 )
×(n−l)

→ k

by pairing with f . The map is k-multilinear; hence, f̃ defines a hypersurface Y ( f̃ )
in P(T∨l )× (P(T

∨

1 ))
×(n−l). More generally, given a collection { fi } of elements

of Tn , we get a closed subscheme

Y ({ f̃i })⊆ P(T∨l )× (P(T
∨

1 ))
×(n−l).

Let I be the kernel of the natural surjection T � R. Then the above construction
gives a closed subscheme Y ( Ĩn)⊆ P(T∨l )× (P(T

∨

1 ))
×(n−l). We claim that Y ( Ĩn)

is naturally isomorphic to lYn .
Let C be a commutative k-algebra, and let RC = R⊗k C and TC = T ⊗k C with

the gradings induced from R and T , respectively. Suppose that α : (RC)≥l→ M is
an embedded l-shifted truncated C-point module of length n− l + 1. We write α :
(TC)≥l→M for the composite of the two surjections. Assume that M=

⊕n
i=l mi ·C

is a free graded C-module on generators mi . Then α determines C-linear maps
a j : T1⊗k C→ C for 1≤ j ≤ n− l by ml+ j−1x =ml+ j a j (x) for x ∈ T1⊗k C and
a C-linear map b : Tl ⊗k C → C by α(y) = mlb(y) for y ∈ Tl ⊗k C . Since M is
a (shifted truncated) point module, hence generated in degree l, these maps are
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surjective. Hence, they determine a morphism

5(α)= (b, a1, . . . , an−l) : Spec(C)→ P(T∨l )× (P(T
∨

1 ))
×(n−l).

We see immediately from the construction that if f ∈ In ⊗k C , then f̃ (5(α))= 0.
In particular, 5(α) factors through Y ( Ĩn).

It follows immediately that the above construction defines a morphism 5 from
the moduli functor of shifted truncated point modules with free (as C-modules)
graded components to Y ( Ĩn). Since the latter is a scheme, hence a sheaf in the
fpqc topology, 5 induces a morphism, which we denote l5n , from the moduli
functor lYn for all shifted truncated C-point modules over R to Y ( Ĩn).

Claim 5.3. The morphism l5n is an isomorphism; that is, Y ( Ĩn)∼= lYn represents
the moduli functor of embedded truncated l-shifted C-point modules over R of
length n− l + 1.

Proof. A morphism Spec(C)→ Y ( Ĩn) ⊆ P(T∨l )× (P(T
∨

1 ))
×(n−l) gives a tuple

(b, a1, . . . , an−l) where each a j is a surjective C-linear map a j : T1⊗k C→ N j and
each N j is a finitely generated projective C-module of rank 1; and b : Tl⊗k C→Ml

is a surjective C-linear map onto a finitely generated projective C-module Ml of
rank 1.

Assume first that Ml and each N j is a free C-module, and choose basis elements.
Define a TC -module M =

⊕n
j=l m j ·C by m j−1x = m j a j−l(x) for x ∈ T1⊗k C .

Moreover, define a map α : (TC)≥l→M by α(y)=mlb(y) for y ∈ Tl and extending
linearly. It is a consequence of the construction of Y ( Ĩn) that the map α factors
through (RC)≥l and makes M an l-shifted truncated C-point module over R.

Next, we observe that the functor5 (on shifted truncated point modules with free
C-module components) and the above construction (on maps Spec(C)→ Y ( Ĩn)

for which the modules N j and Ml are free C-modules) give mutual inverses. This
follows from the argument of [Artin et al. 1990, 3.9], which uses only the freeness
condition. In particular, the functor 5 is injective.

To prove that the sheafification l5n is an isomorphism, then it suffices to show
that 5 is locally surjective; that is, for every morphism Spec(C)→ Y ( Ĩn), there is
a faithfully flat morphism Spec(C ′)→ Spec(C) and a shifted truncated C ′-point
module with free C ′-module components, whose image under 5 is the composite
map Spec(C ′)→ Y ( Ĩn). But it is standard that such a homomorphism C → C ′

can be found that makes each N j and Ml trivial, and now the construction of
the previous paragraph proves the existence of the desired shifted truncated point
module. This completes the proof of the claim. �

Now part (1) of the proposition follows from the claim, and (2) follows by
construction. �
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Proposition 5.4 [Artin et al. 1990, Proposition 3.6]. Let R be a connected graded
k-algebra generated in degree 1. Let n > l, and consider the truncation morphism

χn : lYn→ lYn−1.

Let y ∈ lYn−1, and suppose that dimχ−1
n (y)= 0. Then χ−1

n is defined and is a local
isomorphism locally in a neighborhood of y.

Proof. We consider the commutative diagram (5.2) of Proposition 5.1(2). By
Proposition 5.1(1), the horizontal maps are closed immersions. Since the defining
equations of Y ( Ĩn)⊆ P(T∨l )× (P(T

∨

1 ))
×(n−l) are (l, 1, . . . , 1)-forms and in partic-

ular are linear in the last coordinate, the fibers of χn are linear subspaces of P(T∨1 ).
The result follows as in the proof of [Artin et al. 1990, Proposition 3.6(ii)]. �

Proposition 5.5 [Rogalski and Stafford 2009, Proposition 2.5]. Let R be a noe-
therian connected graded k-algebra generated in degree 1. For n > l ≥ 0, de-
fine χn : lYn → lYn−1 as in the beginning of the section. Let n0 ≥ 0, and let
{yn ∈ lYn | n ≥ n0} be a sequence of (not necessarily closed) points so that
χn(yn) = yn−1 for all n > n0. Then for all n � n0, the fiber χ−1

n (yn−1) is a
singleton and χ−1

n is defined and is a local isomorphism at yn−1.

Proof. This follows as in the proof of [Rogalski and Stafford 2009, Proposition 2.5],
using Proposition 5.4 instead of [Artin et al. 1990, Proposition 3.6(ii)]. �

We are interested in studying the limit lY∞ := lim
←−

lYn; however, we first study
the point schemes of S. That is, for n ≥ l ≥ 0, it is clear that we may also define a
scheme that parametrizes factor modules M of S≥l so that, as graded OX -modules,
M∼= kx t l

⊕· · ·⊕kx tn for some x ∈ X . We say that x is the support of M. We let l Zn

denote this l-shifted length-(n− l+1) truncated point scheme of S. More formally,
a Spec(C)-point of l Zn will be a factor module M of S≥l ⊗k C that is isomorphic
as a graded OXC -module to a direct sum Pl ⊕· · ·⊕ Pn , where each Pi is a coherent
OXC -module that is finite over C (in the sense that its support in XC is finite over
Spec(C)) and is a rank-1 projective C-module (which is well defined because of
the finite support condition). We let Zn := 0 Zn be the unshifted length-(n+1) point
scheme of S.

For all n > l ≥ 0, there are maps

φn : l Zn→ l Zn−1 defined by M 7→M/Mn.

If l = 0 and M is a truncated point module of length n over S, then M[1]≥0 is
also cyclic (since S is generated in degree 1) and so is a factor of S in a unique
way up to a scalar. This induces a map

ψn : Zn→ Zn−1 defined by M 7→M[1]≥0.

It is clear that ψn and φn map relevant components to relevant components.
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Lemma 5.6. Let fn : l Zn → X be the map that sends a module M to its support.
The following diagrams commute:

l Zn

φ

��

f

||

X

l Zn−1

f

bb (5.7)

0 Zn

ψ

��

f=φn
// X

σ

��

0 Zn−1
f=φn−1

// X

(5.8)

Proof. It is clear by construction that if M is a shifted truncated point module and
M′ is a further factor of M, then M and M′ have the same support. Thus, (5.7)
commutes.

Let M be a truncated point module corresponding to a point z∈ 0 Zn . Let x := f (z).
By [Keeler et al. 2005, Lemma 5.5], we have M[1]n ∼= (Mn+1)

σ−1 ∼= (kx)
σ−1 ∼= kσ(x).

Thus, fψ(z)= σ f (z) as claimed, and (5.8) commutes. �

Recall that Sn = InLn .

Proposition 5.9. For n≥0, let Xn be the blowup of X at In . Let αn, βn :Xn→ Xn−1

be as in Corollary 3.3.
Then for all n > l ≥ 0, there are isomorphisms jn : Xn→ l Zo

n ⊆ l Zn so that the
following diagrams commute:

Xn

αn

��

jn
// l Zn

φn

��

Xn−1 jn−1

// l Zn−1

and

Xn

βn

��

jn
// 0 Zn

ψn

��

Xn−1 jn−1

// 0 Zn−1

Proof. We will do the case that l = 0; the general case is similar. Let Zn := 0 Zn . For
0 ≤ i ≤ n, let Wi = Proj SymX Ii be the scheme parametrizing colength-1 ideals
inside Ii , and let ci : X i →Wi be the map from Lemma 3.1. Let

rn : Xn→ X ×W1× · · ·×Wn

be the composition

Xn
αn
×αn−1

×···×1
−−−−−−−−→ X × X1× · · ·× Xn

c0×···×cn
−−−−−→ X ×W1× · · ·×Wn.
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Since this is the composition of the graph of a morphism with a closed immersion,
it is also a closed immersion and is an isomorphism onto its image.

Now, a point in Zn corresponds to an ideal J⊂S so that the factor is a truncated
point module of length n + 1, and there is thus a canonical closed immersion
δn : Zn→ X ×W1×· · ·×Wn . The map δn sends a graded right ideal J of S to the
tuple (J0,J1, . . . ,Jn).

Conversely, a point (J0, . . . ,Jn) ∈ X ×W1× · · · ×Wn is in Im(δ) if and only
if we have Ji S

σ i

j ⊆ Ji+ j for all i + j ≤ n. It follows from Lemma 3.2(c) that
Im(rn) ⊆ Im(δn). Since rn and δn are closed immersions and Xn is reduced, we
may define jn = δ−1

n rn : Xn→ Zn .
Let U := X rCosupp In . Then f −1

n and a−1
n are defined on U , and the diagram

X ×W1× · · ·×Wn

Xn jn
//

rn
66

Zn

δn
hh

U
a−1

n

hh

f −1
n

66

commutes. Since rn and δn are closed,

rn(Xn)= rn(a−1
n (U ))= rna−1

n (U )= δn f −1
n (U )= δn( f −1

n (U ))= δn(Zo
n).

Therefore, jn is an isomorphism to Zo
n .

Let q : X ×W1× · · ·×Wn→ X ×W1× · · ·×Wn−1 be projection onto the first
n factors. Consider the diagram

Xn
rn

//

αn

��

X ×W1× · · ·×Wn

q
��

Zn
δn

oo

φn

��

Xn−1 rn−1
// X ×W1× · · ·×Wn−1 Zn−1

δn−1

oo

From the definitions of rn and δn , we see that this diagram commutes; since
jn = δ−1

n rn , the following diagram commutes:

Xn
jn
//

αn

��

Zn

φn

��

Xn−1 jn−1

// Zn−1

Let X ′n := Im(rn) ⊂ X ×W1 × · · · ×Wn , and let β ′n : X ′n → X ′n−1 be the map
induced from βn . The proof of Corollary 3.3 shows that if (J0,J1, . . . ,Jn) ∈ X ′n ,
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then its image under β ′n is

β ′n((J0,J1, . . . ,Jn))= (F0, . . . ,Fn−1) ∈ X ′n−1, (5.10)

where Fi := (Ji+1 : I1)
σ−1
∩Ii .

Now let J be the ideal defining a truncated point module of length n+ 1. By
abuse of notation, we think of J as a point in Zn . Let M := S/J. Then we
have ψ(J)i = (AnnS(M1))i for 0 ≤ i ≤ n − 1. Thus, I1(ψ(J)i )

σ
⊆ Ji+1 or

ψ(J)i ⊆ (Ji+1 :I1)
σ−1
∩Ii . If J∈ Im( jn), then we have equality by the computation

in (5.10). Thus, the diagram

Xn rn
//

βn

��

jn
**X ′n

δ−1
n

//

β ′n
��

Zn

ψn

��

Xn−1
rn−1
//

jn−1

33X ′n−1

δ−1
n−1
// Zn−1

commutes. �

To end this section, we construct stacks l Z∞ and lY∞ that are fine moduli spaces
for (shifted) embedded point modules and give some of their properties. A version
of the following result was known long ago to M. Artin; however, it does not seem
to have appeared in the literature:

Theorem 5.11. Fix l ∈ N. For n ≥ l, let Xn be the blowup of X at In . Let lYn be
the moduli space of l-shifted length-(n− l + 1) point modules over S. Let l Zn be
the moduli space of l-shifted length-(n− l + 1) point modules over S. Define the
morphisms χn : lYn→ lYn−1, φn : l Zn→ l Zn−1, and αn : Xn→ Xn−1 as above. Let

l Z∞ := lim
←−
φn

l Zn, lY∞ := lim
←−
χn

lYn, and X∞ := lim
←−
αn

Xn.

Then the stack lY∞ is a sheaf in the fpqc topology and is a fine moduli space for l-
shifted embedded point modules over S. The stack l Z∞ is noetherian fpqc-algebraic
and is a fine moduli space for l-shifted embedded point modules over S. The
relevant component of l Z∞ is isomorphic to X∞.

Proof. We suppress the subscript l in the proof.
For n ≥ l, let Fn be the moduli functor for truncated l-shifted point modules over

S, so Yn ∼= Fn . Define a contravariant functor

F : Affine schemes→ Sets,

Spec C 7→ {Embedded l-shifted C-point modules over S}.

By descent theory, F is a sheaf in the fpqc topology. More precisely, recall that
quasicoherent sheaves form a stack in the fpqc topology [Vistoli 2005, Section 4.2.2];
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consequently, the (graded) quotients of S≥l form a sheaf of sets in the fpqc topology.
Moreover, as in the first paragraph of [Vistoli 2005, Section 4.2.3], those quotients
of S≥l that are S-module quotients form a subsheaf in the fpqc topology; this
subsheaf is F . It is formal that F is isomorphic to the functor hY∞ .

Likewise, Z∞ parametrizes l-shifted point modules over S. We show that (i)–(v)
of Proposition 4.2 apply to Z∞. We have Sn =InLn; let Pn ⊂ X be the subscheme
defined by In . Consider the maps

Zn
φn
//

fn

22Zn−1
fn−1

// X

from Lemma 5.6. Now, f −1
n is defined away from Pn , and

⋃
n Pn is a countable

critically dense set. Thus, (i) and (ii) hold.
Let x ∈

⋃
Pn . As the points in P have infinite orbits, there is some m ∈N so that

x 6∈ σ−n(P) for all n ≥m. Let zm ∈ Zm with fm(zm)= x , corresponding to a right
ideal J⊆ S≥l with S≥l/J∼=

⊕m
j=l Ox . Let J′ := J≤m ·S. For any j ≥ 0, we have

(Sσ
m

j )x = (L
σm

j )x , and so J′ gives the unique preimage of zm in Z∞. A similar
uniqueness holds upon base extension, so the scheme-theoretic preimage of zm

in Z∞ is a k-point, and 8−1
m is defined and is a local isomorphism at zm .

For j ≥ l, let W j := Proj SymX In . As in the proof of Proposition 5.9, we may
regard Zn as a closed subscheme of Wl × · · · ×Wn , and (iv) and (v) follow from
this and the fact that the orbits of points in P are infinite. By Proposition 4.2, then
Z∞ is a noetherian fpqc-algebraic stack.

Consider the morphisms jn : Xn
∼=
→Zo

n ⊆ Zn from Proposition 5.9. Commutativity
of the first diagram there gives an induced isomorphism j : X∞→ Zo

∞
⊆ Z∞. �

6. Comparing moduli of points

In this section, we prove that lY∞ is also noetherian fpqc-algebraic and that, at least
for sufficiently large l, the stacks l Z∞ and lY∞ are isomorphic.

In the following pages, we will always use the following notation. We write a
commutative k-algebra C as p : k→ C to indicate the structure map explicitly. We
write XC := X ⊗k Spec C . We abuse notation and let p also denote the projection
map 1⊗ p : XC → X . We let q : XC → Spec C be projection on the second factor.

Suppose that p : k→ C is a commutative k-algebra and y : Spec C → X is a
C-point of X . Then y determines a section of q, which we also call y. This is
a morphism y : Spec C → XC . We define Iy ⊆ OXC to be the ideal sheaf of the
corresponding closed subscheme of XC . We define Oy := OXC/Iy .

We use the relative regularity results from Section 2 to study the pullbacks of the
sheaves Sn to XC . Fix a very ample invertible sheaf OX (1) on X , which we will
use to measure regularity.
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Lemma 6.1. Suppose p : k→ C is a commutative noetherian k-algebra. Then
{p∗Sn}n≥0 is a right ample sequence on XC .

Proof. Let F be a coherent sheaf on XC . By [Rogalski and Stafford 2007, Corollary
3.14], limn→∞ reg(Sn) = −∞. Thus, limn→∞ reg(p∗Sn) = −∞ by Lemma 2.9.
Since each Sn is invertible away from a dimension-0 set, p∗Sn is invertible away
from a locus of relative dimension 0. By Proposition 2.13, F⊗XC p∗Sn is 0-regular
for n� 0. Theorem 2.10 shows that (1) and (2) of Definition 2.7 apply. �

We now prove a uniform regularity result for certain subsheaves of a pullback of
some Sn .

Lemma 6.2. There exists m ≥ 0 so that the following holds for any n ≥ m: for any
commutative noetherian k-algebra p : k→ C , for any C-point y of X , and for any
coherent sheaf K on XC so that Iy p∗Sn ⊆K⊆ p∗Sn , K is 0-regular. In particular,
K is globally generated and R1q∗K= 0.

Proof. Let D be the constant from Proposition 2.13, and let r := reg(OX ). By
[Rogalski and Stafford 2007, Corollary 3.14], we have limn→∞ reg(Sn) = −∞.
Let m be such that for all n ≥ m, reg(Sn)≤−r − D− 1. We claim this m satisfies
the conclusions of the lemma.

Fix a commutative noetherian k-algebra p : k→ C and a C-point y of X . We
first claim that reg(Iy)≤ r+1. To see this, let i ≥ 1 and consider the exact sequence

Ri−1q∗OXC (r + 1− i)
α
−→ Ri−1q∗Oy(r + 1− i)

→ Ri q∗Iy(r + 1− i)→ Ri q∗OXC (r + 1− i).

The last term vanishes as OXC is (r+1)-regular by Lemma 2.9 and Theorem 2.10(1).
If i≥2, then Ri−1q∗Oy(r+1−i)=0 for dimension reasons, so Ri q∗Iy(r+1−i)=0.
On the other hand, if i = 1, then because OXC (r) is 0-regular, by Lemma 2.11, α is
surjective. Again, Ri q∗Iy(r + 1− i)= 0. Thus, Iy is (r + 1)-regular as claimed.

Let n ≥ m. By Lemma 2.9, reg(p∗Sn) = reg(Sn). Note that Iy and p∗Sn are
both locally free away from a set of relative dimension 0. Thus, the hypotheses of
Proposition 2.13 apply, and by that result, we have

reg(Iy ⊗XC p∗Sn)≤ reg(Iy)+ reg(p∗Sn)+ D

≤ r + 1+ D+ reg(p∗Sn)= r + 1+ D+ reg(Sn).

Our choice of n ensures this is nonpositive. In particular, Iy⊗XC p∗Sn is 0-regular.
Let Iy p∗Sn ⊆ K⊆ p∗Sn . There is a natural map f : Iy ⊗XC p∗Sn→ K given

by the composition Iy ⊗XC p∗Sn→ Iy · p∗Sn ⊆K. The kernel and cokernel of f
are supported on a set of relative dimension 0, and it is an easy exercise to show
that K is therefore also 0-regular. By Theorem 2.10, K is globally generated and
R1q∗K= 0 as claimed. �
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Definition 6.3. We call a positive integer m satisfying the conclusion of Lemma 6.2
a positivity parameter.

The proof of Lemma 6.2 shows that if we are willing to replace L by a sufficiently
ample invertible sheaf, we may in fact assume that m = 1 is a positivity parameter.
(By [Keeler 2000, Theorem 1.2], the existence of a σ -ample sheaf means that any
ample invertible sheaf is σ -ample.)

Corollary 6.4. Let p : k→ C be a noetherian commutative k-algebra. Let m be a
positivity parameter (Definition 6.3), and let n ≥ m.

(1) If J⊂ p∗Sn is a sheaf on XC so that p∗Sn/J has support on XC that is finite
over Spec(C) and is a rank-1 projective C-module, then q∗J is a C-submodule
of q∗ p∗Sn = Sn ⊗C such that the cokernel is rank-1 projective.

(2) If K $ J ⊂ p∗Sn are sheaves on XC so that p∗Sn/J is a rank-1 projective
C-module, then q∗K $ q∗J.

(3) If J,J′ ⊆ p∗Sn are sheaves on XC so that p∗Sn/J and p∗Sn/J
′ are rank-1

projective C-modules, then q∗J= q∗J′ if and only if J= J′.

Proof. (1) Let x ∈ Spec C be a closed point. Consider the fiber square

Xx //

��

�

XC

q
��

{x} // Spec C

Let Jx := J|Xx . Since p∗Sn/J is flat over Spec C , Jx ⊆ p∗Sn|Xx
∼= Sn ⊗k k(x).

Further, (Sn ⊗k k(x))/Jx ∼= Ox . By our choice of n, therefore, H 1(Xx ,Jx)= 0.
Now J is the kernel of a surjective morphism of flat sheaves and so is flat

over Spec C . Since H 1(Xx ,Jx) = 0, by the theorem on cohomology and base
change [Hartshorne 1977, Theorem III.12.11(a)], we have R1q∗J⊗C k(x)= 0. The
C-module R1q∗J thus vanishes at every closed point and is therefore 0.

The complex

0→ q∗J→ q∗ p∗Sn→ q∗(p∗Sn/J)→ 0

is thus exact. By assumption, q∗(p∗Sn/J) is a rank-1 projective C-module. Since
cohomology commutes with flat base change [Hartshorne 1977, Proposition III.9.3],
we have q∗ p∗Sn ∼= H 0(X,Sn)⊗k C = Sn ⊗k C .

(2) Since m is a positivity parameter, J is globally generated, and it follows imme-
diately that q∗K 6= q∗J.

(3) From (2), we have

q∗(J∩J′)= q∗J ⇐⇒ J∩J′ = J ⇐⇒ J⊆ J′.
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It follows from our assumptions that this occurs if and only if J= J′. Further,

q∗J= q∗(J∩J′)= q∗(J)∩ q∗J′ ⇐⇒ q∗J⊆ q∗J′.

From (1), we obtain that this is equivalent to q∗J= q∗J′. �

We now apply these regularity results to show that lY∞ ∼= l Z∞ for l � 0. We
will need the following easy lemma:

Lemma 6.5. Let A and B be commutative noetherian local k-algebras with residue
field k and s : A→ B a local homomorphism. If s∗ :Homalg(B,C)→Homalg(A,C)
is surjective for all finite-dimensional commutative local k-algebras C , then s is
injective.

Proof. Let m be the maximal ideal of A, and let n be the maximal ideal of B. Let
f ∈ ker s. Suppose first that there is some k so that f ∈mk−1rmk . Let C := A/mk ,
and let π : A→ C be the natural map. Then C is a finite-dimensional artinian local
k-algebra. Now, π( f ) 6= 0 but s( f )= 0. Thus, π 6∈ Im(s∗), a contradiction.

We thus have ker s ⊆
⋂

k m
k . By the Artin–Rees lemma, ker s = 0. �

Proposition 6.6. Let m be a positivity parameter, and let n ≥ l ≥ m. Let l Zn

be the l-shifted length-(n − l + 1) point scheme of S with truncation morphism
φn : Zn → Zn−1 as in Proposition 5.9. Let lYn be the l-shifted length-(n− l + 1)
point scheme of S with truncation morphism χn : lYn→ lYn−1 as in Theorem 5.11.
Let l Z∞ := lim

←−
l Zn , and let lY∞ := lim

←−
Yn .

Then the global section functor induces a closed immersion sn : l Zn → lYn so
that the following diagram commutes:

l Zn
sn

//

φn

��

lYn

χn

��

l Zn−1 sn−1
// lYn−1

(6.7)

Proof. Let p : k→ C be a commutative noetherian k-algebra. Let p : XC→ X and
q : XC→ Spec C be the two projection maps as usual. Note that if J⊂ p∗S≥l is the
defining ideal of an l-shifted length-(n− l + 1) truncated C-point module over S,
then by Corollary 6.4(1), q∗J is the defining ideal of an l-shifted length-(n− l+ 1)
truncated C-point module over S. Thus, sn is well defined. By Corollary 6.4(3),
sn is injective on k-points and on k[ε] points. It is standard [Harris 1992, proof of
Theorem 14.9] that, because sn is projective, sn is a closed immersion. That (6.7)
commutes is immediate. �

We will see that lY∞ and l Z∞ are isomorphic. It does not seem to be generally
true that lYn and l Zn are isomorphic, but we will see that there is an induced
isomorphism of certain naturally defined closed subschemes.
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Let l ∈ N. For any n, let 8n : l Z∞→ l Zn and ϒn : lY∞→ lYn be the induced
maps. For any n ≥ l, define l Z ′n ⊆ l Zn to be the image of 8n : l Z∞→ l Zn . That is,

l Z ′n =
⋂
i≥0

Im(φi
: l Zn+i → l Zn).

Since l Zn is noetherian and the φn are closed, this is a closed subscheme of l Zn

equal to Im(φk
: l Zn+k→ l Zn) for some k. Similarly, let lY ′n = Im(ϒn : lY∞→ lYn).

Clearly l Z∞= lim
←−

l Z ′n and lY∞= lim
←−

lY ′n . We refer to l Z ′n and lY ′n as essential point
schemes as modules in l Z ′n and lY ′n are truncations of honest (shifted) point modules.

Theorem 6.8. Let m be a positivity parameter, and let n ≥ l ≥ m.

(1) The morphism sn : l Zn→ lYn defined in Proposition 6.6 induces an isomorphism
of essential point schemes

s ′n : l Z ′n
∼=
−→ lY ′n.

(2) The limit s : l Z∞→ lY∞ is an isomorphism of stacks.

Proof. Since the subscript l will remain fixed, we suppress it in the notation. Let
s ′n := sn|Z ′n . It follows from commutativity of (6.7) that s ′n(Z

′
n)⊆ Y ′n .

We next prove (2). The limit s = lim
←−

sn is clearly a morphism of stacks, that is,
a natural transformation of functors. Let C be a commutative finite-dimensional
local k-algebra. We will show that s is bijective on C-points.

Let y ∈ Y∞(C) be a C-point of Y∞, which by Theorem 5.11 corresponds to an
exact sequence

0→ J → (SC)≥l→ M→ 0,

where M is an l-shifted SC -point module.
For i ≥ l, let Ji ⊆ p∗Si be the subsheaf generated by Ji ⊆ q∗ p∗Si . Let J :=⊕
i≥l Ji . We will show that M := p∗S≥l/J is an l-shifted p∗S-point module, that

is, that there is a C-point y of X so that Mn ∼= Oy ⊗ p∗Ln for all n ≥ l.
Since p∗S j is globally generated for j ≥ m, we have Ji p∗Sσ

i

j ⊆ Ji+ j for i ≥ l
and j ≥ m. Therefore, M is a coherent right module over the bimodule algebra
S′ := OXC ⊕

⊕
j≥m p∗S j . Further, each M j is clearly torsion over X as Spec C is

zero-dimensional. As in [Rogalski and Stafford 2007, Lemma 4.1(1)], it follows
from critical density of the orbits of the points in P that there are a coherent X -
torsion sheaf F on XC and n0 ≥ l so that M j ∼=F⊗XC p∗L j for j ≥ n0. By critical
density again, there is n1 ≥ n0 so that

Supp(F)∩ p−1(σ− j (P))=∅

for j ≥ n1. This implies that for j ≥ n1 and k ≥ 1, we have

M j · p∗Sσ
j

k =M j ⊗XC p∗Sσ
j

k =M j ⊗XC p∗Lσ j

k
∼=M j+k
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and J j (p∗Sσ
j

k )= J j+k . (In particular, J≥n1 and M≥n1 are right p∗S-modules.)
By Lemma 6.1, {p∗Sσ

j

k }k≥0 is right ample on XC . As in [Rogalski and Stafford
2009, Lemma 9.3], for any i ≥ l and k�0, we have q∗(Ji p∗Sσ

i

k )= Ji (SC)k ⊆ Ji+k .
For i ≥ n1 and for k ≥ 1, we have q∗(Ji p∗Sσ

i

k )= q∗Ji+k ⊇ Ji+k . There is thus
n2 ≥ n1 so that J j = q∗J j for j ≥ n2.

It follows from Lemma 6.1 that there is n3 ≥ n2 so that the top row of

0 // q∗J j // (SC) j // q∗M j // 0

J j q∗(F⊗XC p∗L j )

is exact for j ≥ n3. Thus, q∗(F⊗XC p∗L j ) ∼= (SC) j/J j ∼= C for j ≥ n3. Since
{p∗L j } is right ample, this implies that F∼= Oy for some C-point y of X .

For l ≤ i ≤ n3, let J′i := Ji +Iy p∗Si . By choice of l, J′i is 0-regular. Thus, the
rows of the commutative diagram

0 // Ji

⊆

��

// (SC)i // C

α

��

// 0

0 // q∗J′i // q∗ p∗Si // q∗(p∗Si/J
′

i )
// 0

(6.9)

are exact, and α is therefore surjective. This shows that, as a (C ∼= Oy)-module,
p∗Si/J

′

i is cyclic.
Let N := AnnC(p∗Si/J

′

i ). For i � 0, p∗Si/Ji ∼= Oy ⊗XC p∗Li is killed by Iy .
Thus, for i � 0, we have (J′i )y = (Ji )y + (Iy p∗Si )y = (Ji )y , and

(Ji+ j )y ⊇ (Ji )y(p∗Sσ
i

j )y = (J
′

i )y(p∗Sσ
i

j )y

⊇ N (p∗Si )y(p∗Sσ
i

j )y = N (p∗Si+ j )y .

As AnnC(p∗Si+ j/Ji+ j )= 0 for j � 0, we must have N = 0.
Thus, in fact p∗Si/J

′

i
∼= Oy ∼= C . Looking again at (6.9), we see that α is an

isomorphism, and so Ji = q∗J′i . As J′i is 0-regular, it is globally generated: in other
words, Ji = J′i .

We still need to show J is a p∗S-module. Let i ≥ l, and suppose Ji p∗Sσ
i

1 6⊆ Ji+1,
so (Ji+1+Ji p∗Sσ

i

1 )/Ji+1 is a nonzero submodule of p∗Si+1/Ji+1 ∼= Oy . Since
(Ji+1+Ji p∗Sσ

i

1 )S
σ i+1

j ⊆ Ji+ j+1 for all j � 0, a similar argument to the last
paragraph but one produces a contradiction.

Thus, p∗S≥l/J is an l-shifted C-point module for S, and q∗J= J . This shows
that s : Z∞→ Y∞ induces a surjection on C-points. It follows from Corollary 6.4(3)
that s is injective on C-points.
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Consider the commutative diagram

Z∞
s
//

8n
��

Y∞

ϒn
��

Z ′n s′n
// Y ′n.

(6.10)

Let x ∈ X be a k-point. There is some N so that for n≥N ,8n is a local isomorphism
at all points in the preimage of x . We claim that for n ≥ N , in fact all maps in
(6.10) are local isomorphisms at all points in the preimage of x . In particular, s
is an isomorphism in the preimage of x ; since x was arbitrary, s is therefore an
isomorphism of stacks.

So it suffices to prove the claim. We may work locally. If z ∈ Z∞ is a point lying
over x , let zn , y, and yn be the images of z in Z ′n , Y∞, and Y ′n , respectively. Let
B := OZ∞,z

∼= OZ ′n,zn . Let A := OY∞,y , and let A′ := OY ′n,yn . We have a commutative
diagram of local homomorphisms

B As#
oo

B A′
(s′n)

#
oo

ϒ#
n

OO

As ϒn is scheme-theoretically surjective, ϒ#
n is injective. It follows from

Proposition 5.5 that A is isomorphic to a local ring of some Y ′m and in particular is
a noetherian k-algebra. By Lemma 6.5, s# is injective. Thus, (s ′n)

# is injective. As
sn is a closed immersion, (s ′n)

# is also surjective and thus an isomorphism; thus, all
maps in (6.10) are local isomorphisms above x . This proves the claim as required.

We now prove (1). Consider the diagram (6.10). By Proposition 6.6, sn : Zn→Yn

is a closed immersion. Thus, the restriction s ′n : Z
′
n→ Y ′n is also a closed immersion.

On the other hand, Y ′n is the scheme-theoretic image of ϒn and s is an isomor-
phism. Thus, the composition ϒns = s ′n8n is scheme-theoretically surjective, so
s ′n is scheme-theoretically surjective. But a scheme-theoretically surjective closed
immersion is an isomorphism. �

Of course, the defining ideal of a 1-shifted point module also defines a 0-shifted
point module, so if the positivity parameter m=1, the conclusions of Theorem 6.8 in
fact hold for m= 0. In this situation, we will refer to m= 0 as a positivity parameter,
by slight abuse of notation, since we need only the isomorphism lY∞ ∼= l Z∞ for
l ≥ m in the sequel.

Corollary 6.11. Let l ∈N, and let lY∞ be the moduli stack of embedded l-shifted
S-point modules as above. Then lY∞ is a noetherian fpqc-algebraic stack.
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Proof. We know that lY∞ is a sheaf in the fpqc topology by Theorem 5.11. Let m
be a positivity parameter. If l ≥ m, then lY∞ ∼= l Z∞ is noetherian fpqc-algebraic
by Theorem 5.11.

Suppose then that l < m. Let T : lY∞ → mY∞ be the morphism defined by
T (M) :=M≥m . It is straightforward that T is a morphism of functors and the product

8m × T : lY∞→ lYm ×X (mY∞)

is a closed immersion. Since mY∞ is noetherian by the first paragraph, it has an
fpqc cover U → mY∞ by a noetherian affine scheme U . This cover can clearly
be lifted and refined to induce an fpqc cover V → lYm ×X (mY∞) where V is a
noetherian affine scheme. But then the Cartesian product

V ′ //

��
�

lY∞
8m×T
��

V // lYm ×X (m Z∞)

gives an fpqc cover V ′→ Y∞. Since 8m × T is a closed immersion, so is V ′→ V .
Thus, V ′ is isomorphic to a closed subscheme of V and is noetherian and affine. �

Let m be a positivity parameter, and let l≥m. We note that the relevant component
of lY∞ ∼= l Z∞ is the component containing the k(X)-point corresponding to the
generic point module k(X)zl

⊕k(X)zl+1
⊕· · · , which is isomorphic to (Qgr(S))≥l .

7. A coarse moduli space for point modules

In this section, we consider point modules up to module isomorphism in qgr-S and
show that the scheme X is a coarse moduli scheme for this functor.

We define the following maps. For any l, let 8 : l Z∞→ X be the map induced
from the fn . Let 9 : 0 Z∞→ 0 Z∞ be the map induced from ψn : 0 Zn → 0 Zn−1.
Taking the limit of (5.8), we obtain that

89 = σ8 : 0 Z∞→ X.

For any noetherian commutative k-algebra C , there is a graded (OXC , σ × 1)-
bimodule algebra SC given by pulling back S along the projection map XC → X .
Taking global sections gives a functor Gr-SC → Gr-SC . If C = k, this induces an
equivalence qgr-SC→qgr-SC by Theorem 2.8. In order to avoid the issues involved
with extending this result to bimodule algebras over arbitrary base schemes, we
work instead with point modules in Qgr-SC and Qgr-SC .

Let l≥m, where m is a positivity parameter (Definition 6.3), and let F be the mod-
uli functor of (embedded) l-shifted point modules over S as in the previous section.
Define an equivalence relation ∼ on F(C) by saying that M ∼ N if their images are
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isomorphic in Qgr-SC . Define a contravariant functor G : Affine schemes→ Sets
by sheafifying, in the fpqc topology, the presheaf Gpre of sets Spec C 7→ F(C)/∼.
Let µ : F→ G be the natural map, F∼= l Z∞ the moduli functor of l-shifted point
modules over S, and G := F/∼ as above. Let µ : F→ G be the natural map.

We recall that an : Xn→ X is the blowup of X at In and that by Corollary 3.3
there are morphisms α : Xn+1→ Xn that intertwine with the maps an .

We briefly discuss point modules over local rings. We note that if C is a local
ring of a point of Zo

∞
∼= X∞ with maximal ideal m, then the map hZ∞(C)→F(C)

has a particularly simple form. Let ζ : Spec C → X∞ be the induced morphism.
By critical density, there is some n ≥m so that ζn(m) is not a fundamental point of
any of the maps αi

: X i+n→ Xn for any i > 0. Let xn := ζn(m). Define

a−1
n (S j ) := a−1

n (I j )⊗Xn a∗n L j .

Then a−1
n (S j ) is flat at xn for all j . Let

M :=
⊕
j≥0

a−1
n (S j )xn .

Then M is flat over C and is the C-point module corresponding to ζ . The C-action
on M is obvious; to define the S-action on M, let x := an(xn). Then there are maps

M j ⊗k Si (X)→M j ⊗k Sσ
j

i (X)→M j ⊗OX,x (S
σ j

i )x → a−1
n (S j+i )xn .

This gives a right S-action on M; by letting C act naturally on the left and identifying
C with Cop, we obtain an action of SC on M .

If C is a local ring, we do not know if SC is necessarily noetherian. However,
C-point modules in Qgr-SC are well behaved as follows.

Lemma 7.1. Let C be a commutative noetherian local k-algebra. Let N and M
be l-shifted C-point modules with M ∼= N in Qgr-SC . Then for some k, we have
M≥k ∼= N≥k .

Proof. The torsion submodules of M and N are trivial. Thus,

HomQgr-SC (M, N )= lim
−→

HomGr-SC (M
′, N ),

where the limit is taken over all submodules M ′⊆M with M/M ′ torsion. If M ∼= N
in Qgr-SC , then there is some submodule M ′ ⊆ M so that M/M ′ is torsion and so
that there is a homomorphism f : M ′→ N so that ker f and N/ f (M ′) are torsion.
Since M and N are torsion-free, we must have ker f = 0.

Thus, it suffices to show that if N is an l-shifted C-point module and M ⊆ N is
a graded submodule with T := N/M torsion, then Tn = 0 for n� 0.



830 Thomas A. Nevins and Susan J. Sierra

Let L be the residue field of C . By assumption, N is C-flat. Thus, there is an
exact sequence

0→ TorC
1 (T, L)→ ML → NL → TL → 0.

By [Artin et al. 1999, Theorem 5.1], the algebra RL is noetherian. Thus, NL and TL

are also noetherian. Since TL is torsion, it is finite-dimensional. Thus, for n� 0,
we have (TL)n = (Tn)⊗C L = 0. By Nakayama’s lemma, Tn = 0. �

Lemma 7.2. Let C be a noetherian local ring, and let M and N be C-point modules
over S, corresponding to morphisms fM, fN : Spec C→ 0 Z∞. If N∼M, then there
is some k so that 9k fM =9

k fN.

Proof. Let m be a positivity parameter, and let M := s(M≥m) and N := s(N≥m).
Then M ∼ N ; by Lemma 7.1, there is some k, which we may take to be at least m,
so that M≥k ∼= N≥k . Since k Z∞ ∼= kY∞, we have M≥k ∼= N≥k . Thus, the modules
M[k]≥0 ∼=N[k]≥0 correspond to the same point of 0 Z∞; that is, 9k fM =9

k fN. �

We now show that X is a coarse moduli space for 0 Z∞/∼. In fact, we prove this
result in greater generality to be able to analyze the spaces lY∞.

Proposition 7.3. Let Z∞ := 0 Z∞. Let V∞ be a closed algebraic substack of Z∞
so that X∞ ⊆ V∞ ⊆ Z∞, and assume that V∞ = lim

←−
Vn , where Vn ⊂ Zn is a

closed subscheme that maps into Vn−1 under Zn → Zn−1 for all n. Then X is a
coarse moduli space for V∞/∼. More precisely, let H be the image of V∞ under
µ : Z∞→ G. Then

(1) the morphism 8 : V∞→ X factors via V∞
µ
→H t

→ X and

(2) every morphism H→ A where A is a scheme (of finite type) factors uniquely
through H t

→ X.

Proof. (1) It suffices to prove that if C is a commutative noetherian ring and M∼N

are C-point modules over S, corresponding to maps fM, fN : Spec C→ Z∞, then
we have 8 fM =8 fN : Spec C→ X . To show this, it suffices to consider the case
that C is local. By Lemma 7.2, 9k fM =9

k fN for some k. Thus, as required,

8 fM = σ
−k89k fM = σ

−k89k fN =8 fN.

(2) Let ν :H→ h A be a natural transformation for some scheme A. For all n ∈ N,
let Pn be the subscheme of X defined by In . Fix any closed point x ∈ X r

⋃
Pn;

some such x exists since k is uncountable. Let C := OX,x . The induced map
Spec C → X∞ → V∞ gives a C-point module Mx as described above; its ∼-
equivalence class is an element of H(C). Applying ν, we therefore have a morphism
Spec C→ A. This extends to a morphism gx :Ux → A for some open subset Ux

of X . It follows from critical density of the orbits of points in P that X r
⋃

Pn
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is quasicompact. Thus, we may take finitely many Ux , say U1, . . . ,Uk , that cover
X r

⋃
Pn with maps gi :Ui → A. These maps all agree on the generic point of X

and so agree on overlaps Ui ∩U j .
Let U :=

⋃k
i=1 Ui , and let g :U→ A be the induced map. Then X rU ⊆

⋃
Pn

is a closed subset of X , and so X rU = {z1, . . . , zr } for some z1, . . . , zr ∈
⋃

Pn .
Let n be such that for any i > 0, the map φi

: Zn+i → Zn is a local isomorphism at
all points in the preimage of {z1, . . . , zr }.

Let 8n : Z∞ → Zn be the map induced from the φm . There is an induced
map f −1

n (U ) ∩ Vn → U → A. Further, for every y ∈ V∞ r8−1(U ), the map
Spec OV∞,y→V∞→H→ A factors through V∞→Vn as8n is a local isomorphism
at y. We thus obtain morphisms Spec OVn,y→ A for all y ∈Vn . Using these, we may
extend g to give a morphism θ : Vn→ A so that the following diagram commutes:

V∞
µ
//

8n
��

H

ν

��

Vn
θ
//

fn
��

A

U
g

>>

We claim that θ contracts each of the loci f −1
n (z j )∩ Vn to a point. To see this,

let x, y ∈8−1(z j )∩ V∞, corresponding to maps fx , fy : Spec k→ V∞. We must
show that θ8n fx = θ8n fy .

Since for k� 0, σ k(z j ) is not in
⋃

Pn ,8 is a local isomorphism at9k(8−1(z j )).
We have

89k fx = σ
k8 fx = σ

k8 fy =89
k fy

and so 9k fx =9
k fy . Therefore, µ fx = µ fy , and so

θ8n fx = νµ fx = νµ fy = θ8n fy

as we wanted.
The morphism θ : Vn→ A thus factors set-theoretically to give a map from X

to A. Since X is smooth at all zi by critical density of the orbits of the zi , it is well
known that θ also factors scheme-theoretically.

Consequently, we have the morphism X → A that we sought. This proves
Proposition 7.3. �

Theorem 7.4. Fix a positivity parameter m (Definition 6.3), and let l ≥ m. Then X
is a coarse moduli space for G = F/∼.

Proof. As above, we let G denote the functor of l-shifted point modules over S

modulo ∼. By Theorem 6.8(2), it is enough to show that X is a coarse moduli
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space for G. Let L : l Z∞→ 0 Z∞ be the map that sends M 7→M[l]. Notice that if
M and N are l-shifted point modules, then M∼ N if and only if M[l] ∼ N[l]. That
is, if we let G′ be the functor of (unshifted) point modules over S modulo ∼, then
L induces an inclusion G→ G′ so that the diagram

l Z∞
L
//

µ

��

0 Z∞

µ

��

G
L
// G′

commutes. Let Vn := Im(l Zl+n→ 0 Zn) and V∞ := lim
←−

Vn , so V∞ = L(l Z∞).
Note that L is injective on X∞ ⊆ lY∞. Thus, V∞ satisfies the hypotheses of

Proposition 7.3, so X is a coarse moduli scheme for H=µ(V∞)∼=µ(l Z∞)∼=G. �
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