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On a problem of Arnold:
The average multiplicative order

of a given integer
Pär Kurlberg and Carl Pomerance

For coprime integers g and n, let `g(n) denote the multiplicative order of g
modulo n. Motivated by a conjecture of Arnold, we study the average of `g(n)
as n ≤ x ranges over integers coprime to g, and x tending to infinity. Assuming
the generalized Riemann Hypothesis, we show that this average is essentially as
large as the average of the Carmichael lambda function. We also determine the
asymptotics of the average of `g(p) as p ≤ x ranges over primes.

1. Introduction

Given coprime integers g and n with n > 0 and |g| > 1, let `g(n) denote the
multiplicative order of g modulo n, that is, the smallest integer k ≥ 1 such that
gk
≡ 1 mod n. For x ≥ 1 an integer, let

Tg(x) :=
1
x

∑
n≤x

(n,g)=1

`g(n),

essentially the average multiplicative order of g. Arnold [2005] conjectured that if
|g|> 1, then

Tg(x)∼ c(g) x
log x

,

as x→∞, for some constant c(g) > 0. However, Shparlinski [2007] showed that
if the generalized Riemann Hypothesis1 (GRH) is true, then

Tg(x)�
x

log x
exp

(
C(g)(log log log x)3/2

)
,
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n > 1, where Kn is the Kummer extension Q(e2π i/n, g1/n).

981

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2013.7-4
http://dx.doi.org/10.2140/ant.2013.7.981


982 Pär Kurlberg and Carl Pomerance

where C(g) > 0. He also suggested that it should be possible to obtain, again
assuming GRH, a lower bound of the form

Tg(x)≥
x

log x
exp

(
(log log log x)2+o(1)) as x→∞.

Let

B = e−γ
∏

p

(
1− 1

(p−1)2(p+1)

)
= 0.3453720641 . . . , (1)

the product being over primes, and where γ is the Euler–Mascheroni constant. The
principal aim of this paper is to prove the following result.

Theorem 1. Assuming the GRH,

Tg(x)=
x

log x
exp

(
B log log x

log log log x
(1+ o(1))

)
as x→∞,

uniformly in g with 1 < |g| ≤ log x. The upper bound implicit in this result
holds unconditionally.

Let λ(n) denote the exponent of the group (Z/nZ)×, which is commonly known
as Carmichael’s function. We have `g(n)≤λ(n)when (g, n)=1, so we immediately
obtain that

Tg(x)≤
1
x

∑
n≤x

λ(n),

and it is via this inequality that we are able to unconditionally establish the upper
bound implicit in Theorem 1. Indeed, Erdős, Pomerance, and Schmutz [Erdős et al.
1991] determined the average order of λ(n) showing that, as x→∞,

1
x

∑
n≤x

λ(n)= x
log x

exp
(

B log log x
log log log x

(1+ o(1))
)
. (2)

Theorem 1 thus shows under assumption of the GRH that the mean values of λ(n)
and `g(n) are of a similar order of magnitude. We know, on assuming the GRH,
that λ(n)/`g(n) is very small for almost all n (for instance, see [Kurlberg 2003; Li
and Pomerance 2003]; in the latter paper it was in fact shown that λ(n)/`g(n) ≤
(log n)o(log log log n) as n → ∞ on a set of relative asymptotic density 1 among
integers coprime to g), so perhaps Theorem 1 is not very surprising. However, in
[Erdős et al. 1991] it was also shown that the normal order of λ(n) is quite a bit
smaller than the average order: There exists a subset S of the positive integers of
asymptotic density 1 such that for n ∈ S and n→∞,

λ(n)=
n

(log n)log log log n+A+(log log log n)−1+o(1) ,
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where A > 0 is an explicit constant. Thus the main contribution to the average of
λ(n) comes from a density-zero subset of the integers, and to obtain our result on
the average multiplicative order, we must show that `g(n) is large for many n for
which λ(n) is large.

If one averages over g as well, then a result like our Theorem 1 holds uncon-
ditionally. In particular, it follows from [Luca and Shparlinski 2003, Theorem 6]
that

1
x2

∑
n≤x

∑
1<g<n
(g,n)=1

`g(n)=
x

log x
exp

(
B log log x

log log log x
(1+ o(1))

)
as x→∞.

We also note that our methods give that Theorem 1 still holds for g = a/b a
rational number, with uniform error for |a|, |b| ≤ log x , and n ranging over integers
coprime to ab.

1.1. Averaging over prime moduli. We shall always have the letters p, q denoting
prime numbers. Given a rational number g 6= 0,±1 and a prime p not dividing
the numerator or denominator of g, let `g(p) denote the multiplicative order of g
modulo p. For simplicity, when p does divide the numerator or denominator of g,
we let `g(p)= 1.

Further, given k ∈ Z+, let

Dg(k) :=
[
Q(g1/k, e2π i/k) :Q

]
denote the degree of the Kummer extension obtained by taking the splitting field of
X k
− g. Let rad(k) denote the largest squarefree divisor of k and let ω(k) be the

number of primes dividing rad(k).

Theorem 2. Given g ∈Q, g 6= 0,±1, define

cg :=

∞∑
k=1

φ(k) rad(k)(−1)ω(k)

k2 Dg(k)
.

The series for cg converges absolutely, and, assuming the GRH,

1
π(x)

∑
p≤x

`g(p)= 1
2 cg · x + O

(
x

(log x)2−4/ log log log x

)
.

Furthermore, with g = a/b, where a, b ∈ Z, the error estimate holds uniformly for
|a|, |b| ≤ x.

At the heart of our claims of uniformity, both in Theorems 1 and 2, is our
Theorem 6 in Section 2.
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Though perhaps not obvious from the definition, cg > 0 for all g 6= 0,±1. In
order to determine cg, define

c :=
∏

p

(
1−

p
p3− 1

)
= 0.5759599689 . . . ,

the product being over primes; cg turns out to be a positive rational multiple of c.
To sum the series that defines cg we will need some further notation. For p a prime
and α ∈Q∗, let vp(α) be the exponential p-valuation at α, that is, it is the integer
for which p−vp(α)α is invertible modulo p. Write g =±gh

0 , where h is a positive
integer and g0 > 0 is not an exact power of a rational number, and write g0 = g1g2

2 ,
where g1 is a squarefree integer and g2 is a rational. Let e = v2(h) and define
1(g) = g1 if g1 ≡ 1 mod 4, and 1(g) = 4g1 if g1 ≡ 2 or 3 mod 4. For g > 0,
define n = lcm(2e+1,1(g)). For g < 0, define n = 2g1 if e= 0 and g1 ≡ 3 mod 4,
or e = 1 and g1 ≡ 2 mod 4; let n = lcm(2e+2,1(g)) otherwise.

Consider the multiplicative function f (k)= (−1)ω(k)rad(k)(h, k)/k3. We note
that for p prime and j ≥ 1,

f (p j )=−p1−3 j+min( j,vp(h))).

Given an integer t ≥ 1, define F(p, t) and F(p) by

F(p, t) :=
t−1∑
j=0

f (p j ) and F(p) :=
∞∑
j=0

f (p j ).

In particular, we note that if p - h, then

F(p)= 1−
∞∑
j=1

p1−3 j
= 1−

p
p3− 1

. (3)

Proposition 3. With notation as above, if g < 0 and e > 0, we have

cg = c ·
∏
p | h

F(p)
1− p

p3−1

·

(
1−

F(2, e+ 1)− 1
2F(2)

+

∏
p | n

(
1−

F(p, vp(n))
F(p)

))
;

otherwise

cg = c ·
∏
p | h

F(p)
1− p

p3−1

·

(
1+

∏
p | n

(
1−

F(p, vp(n))
F(p)

))
.

For example, if g = 2, then h = 1, e = 0, and n = 8. Thus

c2 = c ·
(

1+ 1−
F(2, 3)
F(2)

)
= c ·

(
2−

1− 2/(21)3− 2/(22)3

1− 2/(8− 1)

)
= c · 159

160 .
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We remark that the universal constant

c =
∏

p

(
1−

p
p3− 1

)
is already present in the work of Stephens on prime divisors of recurrence sequences.
Motivated by a conjecture of Laxton, Stephens [1976] showed that on GRH, the
limit

lim
x→∞

1
π(x)

∑
p≤x

`g(p)
p− 1

exists and equals c times a rational correction factor depending on g. In fact, from
the result it is easy deduce our Theorem 2 with a somewhat better error term.
However, Stephens only treats integral g that are not powers, the error term is
not uniform in g, and, as noted by Moree and Stevenhagen [2000], the correction
factors must be adjusted in certain cases.

Theorem 2 might also be compared with the work of Pappalardi [1995]. In fact,
his method suggests an alternate route to our Theorem 2, and would allow the
upper bound

1
π(x)

∑
p≤x

`g(p)≤ 1
2(cg + o(1))x,

as x→∞ to be established unconditionally. The advantage of our method is that
it avoids computing the density of those primes for which g has a given index.

Finally, Theorem 2 should also be contrasted with the unconditional result of
Luca [2005] that

1
π(x)

∑
p≤x

1
(p−1)2

p−1∑
g=1

`g(p)= c+ O(1/(log x)κ)

for any fixed κ > 0. By partial summation one can then obtain

1
π(x)

∑
p≤x

1
p−1

p−1∑
g=1

`g(p)∼ 1
2 c · x as x→∞,

a result that is more comparable to Theorem 2.

2. Some preliminary results

For an integer m ≥ 2, we let P(m) denote the largest prime dividing m, and we let
P(1)= 1.

Given a rational number g 6= 0,±1, we recall the notation h, e, n described in
Section 1.1, and for a positive integer k, we recall that Dg(k) is the degree of the
splitting field of X k

− g over Q. We record a result of Wagstaff on Dg(k); see
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Proposition 4.1 and the second paragraph in the proof of Theorem 2.2 in [Wagstaff
1982].

Proposition 4. With notation as above,

Dg(k)=
φ(k) · k

(k, h) · εg(k)
, (4)

where φ is Euler’s function and εg(k) is defined as follows: If g > 0, then

εg(k) :=
{

2 if n | k,
1 if n - k.

If g < 0, then

εg(k) :=


2 if n | k,
1
2 if 2 | k and 2e+1 - k,
1 otherwise.

We also record a GRH-conditional version of the Chebotarev density theorem
for Kummerian fields over Q; see [Hooley 1967, Section 5; Lagarias and Odlyzko
1977, Theorem 1]. Let ig(p) = (p − 1)/`g(p), the index of 〈g〉 in (Z/pZ)∗

when g ∈ (Z/pZ)∗.

Theorem 5. Assume the GRH. Suppose g = a/b 6= 0,±1, where a, b are integers
of absolute value at most x. For each integer k ≤ x , the number of primes p ≤ x for
which k | ig(p) is

1
Dg(k)

π(x)+ O(x1/2 log x).

Note that k | ig(p) if and only if xk
− g splits completely modulo p. Also note

that the trivial bound x/k is majorized by the error term in Theorem 5 when
k ≥ x1/2/ log x . In fact, the error term majorizes the main term for k ≥ x1/4.

We will need the following uniform version of [Kurlberg and Pomerance 2005,
Theorem 23].

Theorem 6. If the GRH is true, then for x, L with 1 ≤ L ≤ log x and g = a/b 6=
0,±1, where a, b are integers with |a|, |b| ≤ x , we have∣∣∣{p ≤ x : `g(p)≤

p− 1
L

}∣∣∣� π(x)
L
·

hτ(h)
φ(h)

+
x log log x

log2 x

uniformly, where τ(h) is the number of divisors of h.

Proof. Since the proof is rather similar to the proofs of the main theorem in [Hooley
1967], Theorem 2 in [Kurlberg 2003], and Theorem 23 in [Kurlberg and Pomerance
2005], we only give a brief outline. We see that `g(p) ≤ (p− 1)/L implies that
ig(p) ≥ L . Further, in the case that p | ab, where we are defining `g(p) = 1 and
hence ig(p)= p−1, the number of primes p is O(log x). So we assume that p - ab.
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First step: Consider primes p ≤ x such that ig(p) > x1/2 log2 x . Such a prime p
divides ak

− bk for some positive integer k < x1/2/ log2 x . Since ω(|ak
− bk
|)�

k log x , it follows that the number of primes p in this case is

O((x1/2/ log2 x)2 log x)= O(x/ log3 x).

Second step: Consider primes p such that q | ig(p) for some prime q in the interval
I := [x1/2/log2 x, x1/2 log2 x]. We may bound this by considering primes p ≤ x
such that p ≡ 1 mod q for some prime q ∈ I . The Brun–Titchmarsh inequality
then gives that the number of such primes p is at most a constant times∑

q∈I

x
φ(q) log(x/q)

�
x

log x

∑
q∈I

1
q
�

x log log x

log2 x
.

Third step: Now consider primes p such that q | ig(p) for some prime q in the
interval [L , x1/2/log2 x). In this range we use Proposition 4 and Theorem 5 to get
on the GRH that

|{p ≤ x : q | ig(p)}| �
π(x)(q, h)

qφ(q)
+ x1/2 log x .

Summing over primes q , we find that the number of such p is bounded by a constant
times ∑

q∈[L ,x1/2/log2 x)

(
π(x)(q, h)

q2 + x1/2 log x
)
�
π(x)ω(h)

L
+

x
log2 x

.

Fourth step: For the remaining primes p, any prime divisor q | ig(p) is smaller
than L . Hence ig(p) must be divisible by some integer d in the interval [L , L2

].
By Proposition 4 and Theorem 5, assuming the GRH, we have∣∣{p ≤ x : d | ig(p)}

∣∣ ≤ 2
π(x)(d, h)

dφ(d)
+ O(x1/2 log x). (5)

Hence the total number of such p is bounded by∑
d∈[L ,L2]

(
2
π(x)(d, h)

dφ(d)
+ O(x1/2 log x)

)
�
π(x)

L
hτ(h)
φ(h)

,

where the last estimate follows from∑
d∈[L ,L2]

(d, h)
dφ(d)

≤

∑
m | h

∑
d∈[L ,L2

]

m | d

m
dφ(d)

≤

∑
m | h

∑
k≥L/m

1
φ(m)kφ(k)

�

∑
m | h

m
Lφ(m)

=
h

Lφ(h)

∑
m | h

m
φ(m)

·
φ(h)

h
≤

hτ(h)
Lφ(h)

. (6)
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Here we used the bound ∑
k≥T

1
kφ(k)

� 1/T

for T > 0, which follows by an elementary argument from the bound∑
k≥T

1
k2 � 1/T

and the identity

k/φ(k)=
∑
j | k

µ2( j)
φ( j)

.

Indeed,∑
k≥T

1
kφ(k)

=

∑
j

µ2( j)
φ( j) j2

∑
l≥T/j

1
l2 �

1
T

∑
j≤T

1
φ( j) j

+

∑
j>T

1
j2 �

1
T
. �

Corollary 7. Assume the GRH is true. Let m ≥ 2 be an integer and x ≥ 107 a real
number. Let y= log log x and assume that m≤ log y/ log log y. Let g=a/b 6=0,±1,
where a, b are integers with |a|, |b| ≤ exp((log x)3/m), and let h be as above.
Then uniformly, ∑

p≤x
P(ig(p))>m

1
p
� y

(
1
m
+

∑
q | h
q>m

1
q

)
.

Proof. This result is more a corollary of the proof of Theorem 6 than its statement.
We consider intervals I j := (e j , e j+1

] for j ≤ log x , with j a nonnegative integer.
The sum of reciprocals of all primes p ≤ exp((log x)1/m) is y/m+ O(1), so this
contribution to the sum is under control. We thus may restrict to the consideration
of primes p ∈ I j for j > (log x)1/m . For such an integer j , let t = e j+1. If q | ig(p)
for some prime q > t1/2 log2 t , then `g(p) ≤ t1/2/ log2 t , and the number of such
primes is

O
( ∑

k≤t1/2/ log2 t

k log |ab|
)
= O(t log |ab|/ log4 t),

so that the sum of their reciprocals is O(log |ab|/ log4 t)= O((log x)3/m/j4). Sum-
ming this for j > (log x)1/m , we get O(1), which is acceptable.

For J := (t1/2/ log2 t, t1/2 log2 t], with t = e j+1, we have that the reciprocal
sum of the primes p ∈ I j with some q ∈ J dividing ig(p) (so that q | p − 1) is
O(log log t/ log2 t) = O(log j/j2). Summing this for j > (log x)1/m is o(1) as
x→∞ and is acceptable.

For q ≤ t1/2/ log2 t we need the GRH. As in the proof of Theorem 6, the number
of primes p ∈ I j with q | ig(p) is bounded by a constant times

t
log t

(q, h)
q2 + t1/2 log t.
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Thus, the reciprocal sum of these primes p is

O
(
(q, h)

q2 log t
+

log t
t1/2

)
= O

(
(q, h)
q2 j

+
j

e j/2

)
.

We sum this expression over primes q with m < q � e j/2 /j2, getting

O
(

1
jm log m

+
1
j

∑
q | h,q>m

1
q
+

1
j2

)
.

Summing on j ≤ log x completes the proof. �

3. Proof of Theorem 1

Let x be large and let g be an integer with 1< |g| ≤ log x . Define

y = log log x, m = by/ log3 yc, D = m! , Sk = {p ≤ x : (p− 1, D)= 2k}.

Then S1, S2, . . . , SD/2 are disjoint sets of primes whose union equals {2< p ≤ x}.
Let

S̃k =

{
p ∈ Sk : p - g,

p− 1
2k

∣∣∣ `g(p)
}

(7)

be the subset of Sk , where `g(p) is “large”. Note that if k ≤ log y, p ∈ Sk \ S̃k ,
and p - g, there is some prime q >m with q | (p−1)/`g(p), so that P(ig(p)) >m.
Indeed, for x sufficiently large, we have log y ≤ m/2, and thus k ≤ log y implies
that each prime dividing D also divides D/(2k), so that (p− 1, D)= 2k implies
that the least prime factor of (p− 1)/(2k) exceeds m.

Thus, from Theorem 6,

|Sk \ S̃k | ≤
∣∣{p ≤ x : `g(p) < p/m}

∣∣+∑
p|g

1�
π(x)

m
·

hτ(h)
φ(h)

uniformly for k ≤ log y. Using this it is easy to see that Sk and S̃k are of similar
size when k is small. However, we shall essentially measure the “size” of Sk or S̃k

by the sum of the reciprocals of its members and for this we will use Corollary 7.
We define

Ek :=
∑
p∈Sk

1<pα≤x

1
pα

and Ẽk :=
∑
p∈S̃k

1<pα≤x

1
pα
.

By Lemma 1 of [Erdős et al. 1991],

Ek =
y

log y
· Pk · (1+ o(1)) (8)
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uniformly for k ≤ log2 y, where

Pk =
e−γ

k

∏
q>2

(
1− 1

(q−1)2
) ∏

q | k, q>2

q − 1
q − 2

. (9)

Note that, with B given by (1),
∞∑

k=1

Pk

2k
= B. (10)

The next lemma shows that not much is lost when restricting to primes p ∈ S̃k .

Lemma 8. For k ≤ log y, we uniformly have

Ẽk = Ek ·

(
1+ O

( log5 y
y

))
.

Proof. By (8) and (9), we have

Ek �
y

k log y
≥

y

log2 y
, (11)

and it is thus sufficient to show that
∑

p∈Sk\S̃k
1/p� log3 y since the contribution

from prime powers pα for α ≥ 2 is O(1). As we have seen, if k ≤ log y and
p ∈ Sk \ S̃k , then either p | g or P(ig(p)) >m. Hence, using Corollary 7 and noting
that the hypothesis |g| ≤ log x implies that h� y and so h has at most one prime
factor q > m, we have∑

p∈Ek\Ẽk

1
p
�

y
m
=

y

by/ log3 yc
� log3 y. �

Lemma 9. We have ∑
k≤log y

Ek

2k
=

By
log y

(1+ o(1)),

where B is given by (1).

Proof. This follows immediately from (8), (9), and (10). �

Given a vector j = ( j1, j2, . . . , jD/2) with each ji ∈ Z≥0, let

‖ j‖ := j1+ j2+ · · ·+ jD/2.

Paralleling the notation �i (x; j) from [Erdős et al. 1991], we let

• �̃1(x; j) be the set of integers that can be formed by taking products of v=‖ j‖
distinct primes p1, p2, . . . , pv so that

– for each i , pi < x1/y3
, and

– the first j1 primes are in S̃1, the next j2 are in S̃2, etc.;
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• �̃2(x; j) be the set of integers u= p1 p2 · · · pv∈�̃1(x; j)where (pi−1, p j−1)
divides D for all i 6= j ;

• �̃3(x; j) be the set of integers of the form n = up, where u ∈ �̃2(x; j) and p
satisfies (p− 1, D)= 2, max(x/(2u), x1/y) < p ≤ x/u and `g(p) > p/y2;

• �̃4(x; j) be the set of integers n = (p1 p2 · · · pv)p in �̃3(x; j) with the addi-
tional property that (p− 1, pi − 1)= 2 for all i .

(In the third bullet, note that the max is not strictly necessary since when x is
sufficiently large, x/(2u) > x1/y .)

3.1. Some lemmas. We shall also need the following analogues of [Erdős et al.
1991, Lemmas 2–4]. Let

J := { j : 0≤ jk ≤ Ek/k for k ≤ log y, and jk = 0 for k > log y}.

Lemma 10. If j ∈ J , n ∈ �̃4(x; j), and x ≥ x1, then

`g(n)≥ c1
x
y3

∏
k≤log y

(2k)− jk ,

where x1, c1 > 0 are absolute constants.

Proof. Suppose that n = (p1 p2 · · · pv)p ∈ �̃4(x; j). Let di = (pi − 1, D), and
let ui := (pi − 1)/di . By (7), ui divides `g(pi ) for all i , and by the definition of
�̃3(x; j) we also have `g(p) > p/y2. Since (p−1)/2 is coprime to (pi −1)/2 for
each i and each (pi − 1, p j − 1) | D for i 6= j , we have u1, . . . , uv, p− 1 pairwise
coprime. But

`g(n)= lcm[`g(p1), `g(p2), . . . , `g(pv), `g(p)],

so we find that, using the minimal order of Euler’s function and `g(p) > p/y2,

`g(n)≥ u1u2 · · · uv`g(p)≥
φ(n)

y2 ·
∏v

i=1 di

�
n

y2 · log log n ·
∏l

k=1(2k) jk
�

x

y3 ·
∏l

k=1(2k) jk
,

where we recall that di = (pi−1, D)= 2k if pi ∈ S̃k , and that n ∈ �̃4(x; j) implies
that n > x/2. �

Lemma 11. If j ∈ J , u ∈ �̃2(x; j), and x ≥ x2, then∣∣{p : up ∈ �̃4(x; j)}
∣∣> c2x/(uy log x),

where x2, c2 > 0 are absolute constants.
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Proof. Note that ‖ j‖ ≤
∑l

k=1 Ek/k� y/ log y for j ∈ J , by (8) and (9). For such
vectors j , Lemma 3 of [Erdős et al. 1991] implies that the number of primes p with
max(x/2u, x1/y) < p ≤ x/u, (p−1, D)= 2, and (p−1, pi −1)= 2 for all pi | u
is� x/(uy log x). Thus it suffices to show that∣∣{p ≤ x/u : (p− 1, D)= 2, `g(p)≤ p/y2

}
∣∣= o(x/(uy log x)).

As we have seen, ‖ j‖� y/ log y for j ∈ J , so that u ∈ �̃2(x; j) has u ≤ x1/y2
for

all large x . Thus, Theorem 6 implies that∑
p≤x/u

`g(p)≤p/y2

1�
π(x/u)

y2 �
x

uy2 log x
= o

( x
uy log x

)
.

The result follows. �

Lemma 12. If j ∈ J , then for x ≥ x3,∑
u∈�̃2(x; j)

1
u
> exp

(
−c3 y log log y

log2 y

) ∏
k≤log y

E jk
k

jk !
,

where x3, c3 > 0 are absolute constants.

Proof. The sum in the lemma is equal to

1
j1! j2! · · · jblog yc!

∑
〈p1,p2,...,pv〉

1
p1 p2 · · · pv

,

where the sum is over sequences of distinct primes for which the first j1 are in S̃1,
the next j2 are in S̃2, and so on, and also each (pi − 1, p j − 1) | D for i 6= j . Such
a sum is estimated from below in Lemma 4 of [Erdős et al. 1991] but without the
extra conditions that differentiate S̃k from Sk . The key prime reciprocal sum there
is estimated on pages 381–383 to be

Ek

(
1+ O

(
log log y

log y

))
.

In our case we have the extra conditions that p -g and (p−1)/2k | `g(p), which alters
the sum by a factor of 1+O(log5 y/y) by Lemma 8. But the factor 1+O(log5 y/y)
is negligible compared with the factor 1+ O(log log y/ log y), so we have exactly
the same expression in our current case. �

3.2. Conclusion. For brevity, let l = blog yc. We clearly have

Tg(x)≥
1
x

∑
j∈J

∑
n∈�̃4(x; j)

`g(n).
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By Lemma 10, we thus have

Tg(x)�
1
y3

∑
j∈J

l∏
k=1

(2k)− jk
∑

n∈�̃4(x; j)

1.

Now, ∑
n∈�̃4(x; j)

1=
∑

u∈�̃2(x; j)

∑
up∈�̃4(x; j)

1,

and by Lemma 11, this is

�

∑
u∈�̃2(x; j)

x
uy log x

,

which in turn by Lemma 12 is

�
x

y log x
exp

(
−c3 y log log y

log2 y

) l∏
k=1

E jk
k

jk !
.

Hence

Tg(x)�
x

y4 log x
exp

(
−c3 y log log y

log2 y

)∑
j∈J

l∏
k=1

(2k)− jk E jk
k

jk !
.

Now, ∑
j∈J

l∏
k=1

(2k)− jk E jk
k

jk !
=

l∏
k=1

( [Ek/k]∑
jk=0

(Ek/2k) jk

jk !

)
.

Note that
∑2w

j=0w
j/j !> ew /2 for w ≥ 1 and also that Ek/2k ≥ 1 for x sufficiently

large, as Ek � y/(k log y) by (11). Thus,

∑
j∈J

l∏
k=1

(2k)− jk E jk
k

jk !
> 2−l exp

( l∑
k=1

Ek

2k

)
.

Hence

Tg(x)�
x

y4 log x
exp

(
−c3 y log log y

log2 y

)
2−l exp

( l∑
k=1

Ek

2k

)
.

By Lemma 9 we thus have the lower bound in the theorem. The proof is concluded.



994 Pär Kurlberg and Carl Pomerance

4. Averaging over prime moduli — the proofs

4.1. Proof of Theorem 2. Let z = log x and abbreviate `g(p) and ig(p) by `(p)
and i(p), respectively. We have∑

p≤x

`(p)=
∑
p≤x

i(p)≤z

`(p)+
∑
p≤x

i(p)>z

`(p)= A+ E,

say. Writing `(p)= (p−1)/ i(p) and using the identity 1/ i(p)=
∑

uv|i(p) µ(v)/u,
we find that

A =
∑
p≤x

i(p)≤z

(p− 1)
∑

uv | i(p)

µ(v)

u

=

∑
p≤x

(p− 1)
∑

uv | i(p)
uv≤z

µ(v)

u
−

∑
p≤x

i(p)>z

(p− 1)
∑

uv | i(p)
uv≤z

µ(v)

u

= A1− E1,

say. The main term A1 is

A1 =
∑
uv≤z

µ(v)

u

∑
p≤x

uv|i(p)

(p− 1).

By a simple partial summation using Theorem 5, the inner sum here is

Li(x2)

Dg(uv)
+ O(x3/2 log x)

assuming the GRH. Thus,

A1 = Li(x2)

(∑
uv≤z

µ(v)

u Dg(uv)

)
+ O

(
x3/2 log x

∑
n≤z

∣∣∣∣∑
uv=n

µ(v)

u

∣∣∣∣).
The inner sum in the O-term is bounded by φ(n)/n, so the O-term is O(x3/2 log2 x).
Recalling that rad(n) denotes the largest squarefree divisor of n, we note that∑

v|k µ(v)v =
∏

p|k(1− p)= (−1)ω(k)φ(rad(k)), and hence

∑
uv=k

µ(v)

u Dg(uv)
=

∑
v|k

µ(v)v

Dg(k)k
=
(−1)ω(k)φ(rad(k))

Dg(k)k
.

On noting that φ(rad(k))= φ(k)rad(k)/k, we have∑
u,v

µ(v)

u Dg(uv)
=

∑
k≥1

(−1)ω(k)rad(k)φ(k)
Dg(k)k2 = cg.
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Thus, with ψ(h) := hτ(h)/φ(h),∑
uv≤z

µ(v)

uvDg(uv)
= cg −

∑
k>z

(−1)ω(k)rad(k)φ(k)
Dg(k)k2 = cg + O(ψ(h)/z),

by Proposition 4 and the same argument as in the fourth step of the proof of
Theorem 6 (in particular, see (6)). It now follows that

A1 = Li(x2)(cg + O(ψ(h)/z)).

It remains to estimate the two error terms E, E1. Using Theorem 6, we have

E � x
z
·

x log log x

log2 x
ψ(h)�

x2ψ(h)

log2 x
.

Toward estimating E1, we note that

fz(n) :=
∣∣∣∣∑
uv | n
uv≤z

µ(v)

u

∣∣∣∣≤∑
d | n
d≤z

∣∣∣∣∑
v|d

µ(v)v

d

∣∣∣∣=∑
d | n
d≤z

φ(rad(d))
d

≤ z.

Further, from the last sum we get

fz(n)≤
∏
pa
‖n

p≤z

(
1+

p− 1
p
+ · · ·+

p− 1
pa

)
< 2ω(nz),

where nz denotes the largest divisor of n composed of primes in [1, z]. We have

|E1| ≤
∑
p≤x

i(p)>z

(p− 1) fz(i(p))≤ x
∑
p≤x

i(p)>z

fz(i(p)).

Let w := 4 log z/ log log z. We break the sum above into three possibly overlapping
parts:

E1,1 := x
∑
p≤x

i(p)>z
ω(i(p)z)≤w

fz(i(p)), E1,2:= x
∑
p≤x

z<i(p)≤x1/2 log2 x
ω(i(p)z)>w

fz(i(p)),

E1,3 := x
∑
p≤x

i(p)>x1/2 log2 x

fz(i(p)).

Using Theorem 6, we have

E1,1 ≤ x2w
∑
p≤x

i(p)>z

1� 2wψ(h)
x2 log log x

log2 x
.



996 Pär Kurlberg and Carl Pomerance

The estimate for E1,3 is similarly brief, this time using the “first step” in the proof
of Theorem 6. We have

E1,3 ≤ xz
∑
p≤x

i(p)>x1/2 log2 x

1�
x2

log2 x
.

The estimate for E1,2 takes a little work. By the Brun–Titchmarsh inequality,

E1,2 ≤ xz
∑

z<n≤x1/2 log2 x
ω(nz)>w

π(x; n, 1)�
x2z

log x

∑
z<n≤x1/2 log2 x

ω(nz)>w

1
φ(n)

≤ x2
∑

P(m)≤z
ω(m)>w

1
φ(m)

∑
n≤x1/2 log2 x

1
φ(n)

� x2 log x
∑

P(m)≤z
ω(m)>w

1
φ(m)

.

This last sum is smaller than∑
k>w

1
k!

(∑
p≤z

( 1
p− 1

+
1

p(p− 1)
+ · · ·

))k
=

∑
k>w

1
k!

(∑
p≤z

p
(p− 1)2

)k

=

∑
k>w

1
k!

(
log log z+ O(1)

)k
.

The terms in this series are decaying at least geometrically by a large factor, so by
a weak form of Stirling’s formula, we have∑

P(m)≤z
ω(m)>w

1
m
� exp

(
w log log log z−w logw+w+ O(w/ log log z)

)
.

By our choice for w, this last expression is smaller than exp(−3 log z)= (log x)−3

for all large values of x . Hence, E1,2� x2/log2 x .
Noting that ψ(h)� τ(h) log log x , we conclude that∑

p≤x

`(p)= A+ E = A1+ E + O
(
E1,1+ E1,2+ E1,3

)
= cgLi(x2)+ O

( x2

log2 x

(
ψ(h)+ 2wψ(h) log log x + 1+ 1

))
= cgLi(x2)+ O

(
2wτ(h) ·

x2(log log x)2

log2 x

)

=
1
2 cgxπ(x)+ O

( x2

(log x)2−4/ log log log x

)
,
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using that Li(x2) = 1
2 xπ(x)+ O(x2/ log2 x), the definition of w, and h ≤ log x

together with Wigert’s theorem for the maximal order of the divisor function τ(h).
This completes the proof.

4.2. Proof of Proposition 3. We begin with the cases g > 0, or g < 0 and e = 0.
Recalling that Dg(k)= φ(k)k/(εg(k)(k, h)), we find that

cg =
∑
k≥1

(−1)ω(k)rad(k)φ(k)
Dg(k)k2 =

∑
k≥1

(−1)ω(k)rad(k)(k, h)εg(k)
k3 . (12)

Now, since εg(k) equals 1 if n - k, and 2 otherwise, (12) equals

∑
k≥1

(−1)ω(k)rad(k)(h, k)
k3 +

∑
n | k

(−1)ω(k)rad(k)(h, k)
k3 =

∑
k≥1

( f (k)+ f (kn)), (13)

where the function f (k)= (−1)ω(k)rad(k)(h, k)/k3 is multiplicative.
If p - h and j ≥ 1, we have f (p j ) = −p/p3 j . On the other hand, writing

h =
∏

p|h peh,p we have f (p j )=−p1+min( j,eh,p)/p3 j for p | h and j ≥ 1. Since f
is multiplicative,∑

k≥1

( f (k)+ f (kn))=
∑

k:rad(k) | hn

( f (k)+ f (kn)) ·
∑

(k,hn)=1

f (k).

Now, for p - h and j ≥ 1, we have f (p j )=−rad(p j )/p3 j
=−p/p3 j ; hence∑

j≥0

f (p j )= 1−
p

p3(1− 1/p3)
= 1−

p
p3− 1

and thus ∑
(k,hn)=1

f (k)=
∏
p-hn

F(p)=
∏
p-hn

(
1−

p
p3− 1

)
=

c∏
p | hn

(
1− p

p3−1

) .
Similarly,

∑
rad(k) | hn f (k)=

∏
p | hn F(p) and∑

rad(k) | hn

f (kn)=
∏
p | hn

( ∑
j≥en,p

f (p j )
)
=

∏
p | hn

(
F(p)− F(p, en,p)

)
.

Hence∑
rad(k) | hn

f (k)+
∑

rad(k) | hn

f (kn)=
∏
p | hn

F(p)+
∏
p|hn

(
F(p)− F(p, en,p)

)
=

∏
p|hn

F(p) ·
(

1+
∏
p|hn

(
1−

F(p, en,p)

F(p)

))
.
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Thus

cg =
c∏

p | hn(1−
p

p3−1)
·

∏
p | hn

F(p) ·
(

1+
∏
p | hn

(
1−

F(p, en,p)

F(p)

))
,

which, by (3), simplifies to

cg = c ·
∏
p|h

F(p)
1− p

p3−1

·

(
1+

∏
p | hn

(
1−

F(p, en,p)

F(p)

))
.

The case g< 0 and e> 0 is similar: using the multiplicativity of f together with
the definition of εg(k), we find that

cg =
∑
k≥1

( f (k)+ f (kn))− 1
2

e∑
j=1

∑
(k,2)=1

f (2 j k)

=

∏
p

F(p)+
∏

p

(F(p)− F(p, en,p))−
1
2 · (F(2, e+ 1)− 1) ·

∏
p>2

F(p)

=

∏
p

F(p)
(

1+
∏
p | n

(
1−

F(p, en,p)

F(p)

)
−

F(2, e+ 1)− 1
2F(2)

)
.

Again using the fact that∏
p

F(p)=
∏
p-h

(
1−

p
p3+ 1

)∏
p | h

F(p)= c ·
∏
p | h

F(p)
1− p/(p3+ 1)

,

the proof is concluded.
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