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Sharp upper bounds for the Betti numbers
of a given Hilbert polynomial

Giulio Caviglia and Satoshi Murai

We show that there exists a saturated graded ideal in a standard graded polynomial
ring which has the largest total Betti numbers among all saturated graded ideals
for a fixed Hilbert polynomial.

1. Introduction

A classical problem consists in studying the number of minimal generators of ideals
in a local or a graded ring in relation to other invariants of the ring and of the ideals
themselves. In particular, a great amount of work has been done to establish bounds
for the number of generators in terms of certain invariants, for instance, multiplicity,
Krull dimension, and Hilbert functions (see [Macaulay 1927; Sally 1978]). An
important result was proved in [Elías et al. 1991], where the authors established
a sharp upper bound for the number of generators ν(I ) of all perfect ideals I in a
regular local ring (R,m, K ) (or in a polynomial ring over a field K ) in terms of
their multiplicity and their height.

In a subsequent paper, Valla [1994] provides, under the same hypotheses, sharp
upper bounds for every Betti number βR

i (I )= dimK TorR
i (I, K ); notice that with

this notation βR
0 (I )= ν(I ). More surprisingly, Valla proved that among all perfect

ideals with a fixed multiplicity and height in a formal power series ring over a field
K , there exists one which has the largest possible Betti numbers βi .

The main result of this paper is an extension of Valla’s theorem. We will consider
both the local and the graded case, although the result we present for the local case
follows directly from the graded case.

We first consider the graded case. We show that for every fixed Hilbert polynomial
p(t), there exists a point Y in the Hilbert scheme Hilbp(t)

Pn−1 such that βi (IY )≥βi (IX )

for all i and for all X ∈Hilbp(t)
Pn−1 . Equivalently, let S= K [X1, . . . , Xn] be a standard

graded polynomial ring over a field K . We prove:
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Theorem 1.1. Let p(t) be the Hilbert polynomial of a graded ideal of S. There
exists a saturated graded ideal L ⊂ S with Hilbert polynomial p(t) such that
βS

i (S/L)≥ βS
i (S/I ) for all i and for all saturated graded ideals I ⊂ S with Hilbert

polynomial p(t).

Notice that Valla’s result corresponds to the special case of the theorem when
p(t) is constant.

An important result in the study of upper bounds for Betti numbers is the
Bigatti–Hulett–Pardue theorem, which shows that the lex ideal has the largest Betti
numbers among all homogeneous ideals in a standard graded polynomial ring for
a fixed Hilbert function. By using the Bigatti–Hulett–Pardue theorem, we reduce
Theorem 1.1 to a certain combinatorial problem on lex ideals, and prove the theorem
by purely combinatorial methods.

We have chosen to not present an explicit formula of the bounds. We are
convinced that such a formula, in the general case, would be hard to read and to
interpret. Instead, as a part of the proof, we describe the construction of the lex
ideal that achieves the bound. Using the Eliahou–Kervaire resolution it is possible
to write an explicit formula for the total Betti numbers of every lex ideal in terms
of its minimal generators.

In particular, explicit computations of the bounds can be carried out for a given
Hilbert polynomial. Thus, it would be possible to describe an explicit formula of
the bounds for classes of simple enough Hilbert polynomials. For example, in the
special case when the Hilbert polynomials are constant, such a formula was given
by Valla [1994].

Theorem 1.1 induces the following upper bounds of Betti numbers of ideals in a
regular local ring (see Section 3 for the proof): For a regular local ring (R,m, K )
and an ideal I ⊂ R, let pR/I (t) be the Hilbert–Samuel polynomial of R/I with
respect to m (see [Bruns and Herzog 1998, §4.6]).

Theorem 1.2. Let (R,m, K ) be a regular local ring of dimension n, and let p(t)
be a polynomial such that there is an ideal J ⊂ R such that p(t) = pR/J (t).
There exists an ideal L in A = K [[x1, . . . , xn]] with pA/L(t) = p(t) such that
β A

i (A/L)≥ βR
i (R/I ) for all i and for all ideals I ⊂ R with pR/I (t)= p(t).

Unfortunately, the combinatorial part of the proof of Theorem 1.1 is very long
and complicated. Moreover, a construction of ideals which achieve the bound is
not easy to understand. Thus, it would be desirable to get a simpler proof of the
theorem and to get a better understanding for the structure of ideals which attain
maximal Betti numbers.

The paper is structured in the following way: In Sections 2 and 3, we reduce
a problem of Betti numbers to a problem of combinatorics of lexicographic sets
of monomials with a special structure. In Section 4, we introduce key techniques
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to prove the main result. In particular, we give a new proof of Valla’s result.
In Section 5, a construction of ideals which attain maximal Betti numbers of
Theorem 1.1 will be given. In Section 6, we give a proof of the main combinatorial
result about lexicographic sets of monomials, which essentially proves Theorem 1.1.
In Section 7, some examples of ideals with maximal Betti numbers are given.

2. Universal lex ideals

In this section, we introduce basic notations which are used in the paper.
Let S = K [x1, . . . , xn] be a standard graded polynomial ring over a field K . Let

M be a finitely generated graded S-module. The Hilbert function H(M,−) :Z→Z

of M is the numerical function defined by

H(M, k)= dimK Mk

for all k ∈ Z, where Mk is the graded component of M of degree k. We denote
PM(t) by the Hilbert polynomial of M . Thus PM(t) is a polynomial in t satisfying
PM(k)= H(M, k) for k� 0. The numbers

βS
i, j (M)= dimK TorS

i (M, K ) j

are called the graded Betti numbers of M , and βS
i (M)=

∑
j∈Z β

S
i, j (M) are called

the (total) Betti numbers of M .
A set of monomials W ⊂ S is said to be lex if, for all monomials u ∈ W and

v >lex u of the same degree, one has v ∈W , where >lex is the lexicographic order
induced by the ordering x1 >lex · · ·>lex xn . A monomial ideal I ⊂ S is said to be
lex if the set of monomials in I is lex. By the classical Macaulay’s theorem [1927],
for any graded ideal I ⊂ S there exists the unique lex ideal L ⊂ S with the same
Hilbert function as I . Moreover, Bigatti [1993], Hulett [1993], and Pardue [1996]
proved that lex ideals have the largest graded Betti numbers among all graded ideals
having the same Hilbert function.

For any graded ideal I ⊂ S, let

sat I = (I :m∞)
be the saturation of I ⊂ S, where m= (x1, . . . , xn) is the graded maximal ideal of
S. A graded ideal I is said to be saturated if I = sat I . It is well-known that I is
saturated if and only if depth(S/I ) > 0 or I = S.

Let L ⊂ S be a lex ideal. Then sat L is also a lex ideal. It is natural to ask which
lex ideals are saturated. The theory of universal lex ideals gives an answer.

A lex ideal L ⊂ S is said to be universal if L S[xn+1] is also a lex ideal in S[xn+1].
The following are fundamental results on universal lex ideals:
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Lemma 2.1 [Murai and Hibi 2008]. Let L ⊂ S be a lex ideal. The following
conditions are equivalent:

(i) L is universal.

(ii) L is generated by at most n monomials.

(iii) L = S or there exist integers a1, a2, . . . , at ≥ 0 with 1≤ t ≤ n such that

L = (xa1+1
1 , xa1

1 xa2+1
2 , . . . , xa1

1 xa2
2 · · · xat−1

t−1 xat+1
t ). (1)

A relation between universal lex ideals and saturated lex ideals is the following:

Lemma 2.2 [Murai and Hibi 2008]. Let L ( S be a lex ideal. Then depth(S/L)> 0
if and only if L is generated by at most n− 1 monomials.

A lex ideal I ⊂ S is called a proper universal lex ideal if I is generated by at
most n− 1 monomials or I = S.

Let I ⊂ S be a graded ideal. Then there exists the unique lex ideal L ⊂ S with
the same Hilbert function as I . Then sat L is a proper universal lex ideal with the
same Hilbert polynomial as I . This construction I → sat L gives a one-to-one
correspondence between Hilbert polynomials of graded ideals and proper universal
lex ideals:

Proposition 2.3. For any graded ideal I ⊂ S there exists the unique proper universal
lex ideal L ⊂ S with the same Hilbert polynomial as I .

Proof. The existence is obvious. What we must prove is that, if L and L ′ are proper
universal lex ideals with the same Hilbert polynomial then L = L ′.

Since L and L ′ have the same Hilbert polynomial, their Hilbert functions coincide
in sufficiently large degrees. This fact shows Ld = L ′d for d� 0. Thus sat L= sat L ′.
Since L and L ′ are saturated, L = sat L = sat L ′ = L . �

3. 1-lexicographic ideals, Betti numbers and max sequences

In this section, we reduce a problem of Betti numbers of graded ideals to a problem
of combinatorics of lex sets of monomials.

Let S = K [x1, . . . , xn] and S = K [x1, . . . , xn−1]. For a monomial ideal I ⊂ S,
let Ī = I ∩ S. A monomial ideal I ⊂ S is said to be 1-lexicographic if xn is a
nonzero divisor of S/I and Ī is a lex ideal of S.

Lemma 3.1 [Iyengar and Pardue 1999, Proposition 4]. For any saturated graded
ideal I ⊂ S, there exists a 1-lexicographic ideal J ⊂ S with the same Hilbert
function as I such that βS

i, j (I )≤ βS
i, j (J ) for all i, j .
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Lemma 3.2. Let J ⊂ S be a 1-lexicographic ideal. Then:

(i) dimK Jd =∑d
k=0 dimK J̄k for all d ≥ 0.

(ii) βS
i (J )= βS

i ( J̄ ) for all i .

Proof. Condition (ii) is obvious since xn is regular on S/J . Also, for all d ≥ 0,
we have a decomposition Jd =

⊕d
k=0 Jk xd−k

n as K -vector spaces. This equality
proves (i). �

Corollary 3.3. Let J and J ′ be 1-lexicographic ideals in S. If J and J ′ have the
same Hilbert polynomial then J̄d = J̄ ′d for d � 0.

Proof. Lemma 3.2(i) says that dimK Jd − dimK Jd−1 = dim J̄d , so

dimK J̄d = dimK J̄ ′d for d � 0.

Then the statement follows since J̄ and J̄ ′ are lex. �

Next, we describe all 1-lexicographic ideals in S. By Proposition 2.3, fixing a
Hilbert polynomial is equivalent to fixing a proper universal lex ideal U . For a
proper universal lex ideal U ⊂ S, let

L(U )

= {I ⊂ S : I is a lex ideal with I ⊂ sat Ū and dimK (sat Ū )/I = dimK (sat Ū )/Ū }.
Note that dimK (sat J )/J is finite for any graded ideal J ⊂ S since (sat J )/J is
isomorphic to the zeroth local cohomology module H 0

m(S/J ). By using Lemma 3.2,
it is easy to see that if I ∈ L(U ) then I S has the same Hilbert polynomial as U .
Actually, the converse is also true.

Lemma 3.4. Let U be a proper universal lex ideal. If J is a 1-lexicographic ideal
such that PJ (t)= PU (t) then J̄ ∈ L(U ).

Proof. By Corollary 3.3 we have Ūd = J̄d for d � 0, so sat Ū = sat J̄ . Also, since
U and J have the same Hilbert polynomial, for d � 0, one has

dimK Ud =
d∑

k=0

dimK Ūk =
d∑

k=0

dimK (sat Ūk)− dimK (sat Ū/Ū )

and

dimK Jd =
d∑

k=0

dimK J̄k =
d∑

k=0

dimK (sat J̄k)− dimK (sat J̄/ J̄ ).

Since sat J̄ = sat Ū , we have dimK (sat J̄/ J̄ )= dimK (sat Ū/Ū ) and J̄ ∈L(U ). �

By Lemmas 3.1 and 3.4, to prove Theorem 1.1, it is enough to find a lex ideal
which has the largest Betti numbers among all ideals in L(U ). We consider a more
general setting. For any universal lex ideal U ⊂ S (not necessarily proper) and for
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any positive integer c > 0, define

L(U ; c)= {I ⊂U : I is a lex ideal with dimK U/I = c}.
We consider the Betti numbers of ideals in L(U ; c).

We first discuss Betti numbers of lex ideals. We need the following notation:
For any monomial u ∈ S, let max u be the largest integer ` such that x` divides
u, where max(1) = 1. For a set of monomials (or a K -vector space spanned by
monomials) M , let

m≤i (M)= #{u ∈ M :max u ≤ i}
for i = 1, 2, . . . , n, where #X is the cardinality of a finite set X , and

m(M)= (m≤1(M),m≤2(M), . . . ,m≤n(M)
)
.

These numbers are often used to study Betti numbers of lex ideals. The next
formula was proved by Bigatti [1993] and Hulett [1993], by using the famous
Eliahou–Kervaire resolution [1990].

Lemma 3.5. Let I ⊂ S be a lex ideal. Then, for all i, j ,

βS
i,i+ j (I )=

(
n− 1

i

)
dimK I j −

n∑
k=1

(
k− 1

i

)
m≤k(I j−1)−

n−1∑
k=1

(
k− 1
i − 1

)
m≤k(I j ).

For vectors a = (a1, . . . , an), b= (b1, . . . , bn) ∈ Zn , we define

a � b⇔ ai ≥ bi for i = 1, 2, . . . , n.

Corollary 3.6. Let U be a universal lex ideal and I, J ∈L(U ; c). Let MI (resp. MJ )
be the set of all monomials in U \ I (resp. U \ J ). If m(MI ) � m(MJ ) then
βS

i (I )≥ βS
i (J ) for all i .

Proof. Observe that βS
i,i+ j (I )= βS

i,i+ j (J )= 0 for j � 0. Thus, for d� 0, we have
βS

i (I )=
∑d

j=0 β
S
i,i+ j (I ). Let I≤d =⊕d

k=0 Ik . Then by Lemma 3.5,

βS
i (I )=

(
n− 1

i

)
dimK I≤d −

n∑
k=1

(
k− 1

i

)
m≤k(I≤d−1)−

n−1∑
k=1

(
k− 1
i − 1

)
m≤k(I≤d)

and the same formula holds for J . Since, for d � 0,

m(J≤d)= m(U≤d)−m(MJ )� m(U≤d)−m(MI )= m(I≤d),

we have βS
i (I )≥ βS

i (J ) for all i , as desired. �

Next, we study the structure of MI . Let

U = (xa1+1
1 , xa1

1 xa2+1
2 , . . . , xa1

1 xa2
2 · · · xat−1

t−1 xat+1
t )
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be a universal lex ideal, δi = xa1
1 · · · xai−1

i−1 xai+1
i , and bi = a1+· · ·+ ai + 1= deg δi .

(If U = S then t = 1 and a1 =−1.) Let

S(i) = K [xi , . . . , xn].
Then, as K -vector spaces, we have a decomposition

U = δ1S(1)⊕ δ2S(2)⊕ · · ·⊕ δt S(t).

Definition 3.7. A set of monomials N ⊂ S(i) is said to be revlex if, for all monomials
u ∈ N and v <lex u of the same degree, one has v ∈ N . Moreover, N is said to
be super-revlex (in S(i)) if it is revlex and u ∈ N implies v ∈ N for any monomial
v ∈ S(i) of degree ≤ deg u − 1. A multicomplex is a set of monomials N ⊂ S(i)

satisfying that u ∈ N and v|u imply v ∈ N . Thus a multicomplex is the complement
of the set of monomials in a monomial ideal. Note that super-revlex sets are
multicomplexes.

Let I ∈L(U ; c) and MI be the set of monomials in U \ I . Then we can uniquely
write

MI = δ1 M〈1〉 ] δ2 M〈2〉 ] · · · ] δt M〈t〉,

where M〈i〉⊂ S(i) and ] denotes the disjoint union. The following facts are obvious:

Lemma 3.8. (i) Each M〈i〉 is a revlex multicomplex.

(ii) If δi M〈i〉 has a monomial of degree d then δi+1 M〈i+1〉 contains all monomials
of degree d in δi+1S(i+1) for all d.

Lemma 3.8(ii) is equivalent to saying that if M〈i〉 contains a monomial of degree
d then M〈i+1〉 contains all monomials of degree d − ai+1 in S(i+1).

We say that a set of monomials

M = δ1 M〈1〉 ] δ2 M〈2〉 ] · · · ] δt M〈t〉 ⊂U,

where M〈i〉 ⊂ S(i), is a ladder set if it satisfies conditions (i) and (ii) of Lemma 3.8.
The next result is the key result in this paper:

Proposition 3.9. Let U ⊂ S be a universal lex ideal. For any integer c ≥ 0, there
exists a ladder set N ⊂ U with #N = c such that for any ladder set M ⊂ U with
#M = c one has

m(N )� m(M).

We prove Proposition 3.9 in Section 6. Here, we prove Theorem 1.1 by using
Proposition 3.9.

Proof of Theorem 1.1. Let U ⊂ S be a proper universal lex ideal with PU (t)= p(t)
and Ū = U ∩ S. Let c = dimK (sat Ū/Ū ). For any lex ideal I ⊂ sat Ū , let MI be
the set of monomials in (sat Ū \ I ).
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Let N ⊂ sat Ū be a ladder set of monomials with #N = c given in Proposition 3.9.
Consider the ideal J ⊂ S generated by all monomials in sat Ū \ N . Then J ⊂ sat Ū
and MJ = N . In particular, J ∈ L(U ).

Let L = J S. By construction, PL(t)= PU (t)= p(t). We claim that L satisfies
the desired conditions. Let I ⊂ S be a saturated graded ideal with PI (t) = p(t).
By Lemmas 3.1 and 3.4, we may assume that I is a 1-lexicographic ideal with
Ī ∈ L(U ) = L(sat Ū ; c). Since M Ī is a ladder set, by the choice of J , m(MJ ) �
m(M Ī ). Then, by Corollary 3.6,

βS
i (L)= βS

i (J )≥ β S̄
i ( Ī )= βS

i (I )

for all i , as desired. �

Another interesting corollary of Proposition 3.9 is:

Corollary 3.10. Let U ⊂ S be a universal lex ideal and c ≥ 0. There exists a
lex ideal L ⊂ U with dimK U/L = c such that, for any graded ideal I ⊂ U with
dimK U/I = c, one has βS

i (L)≥ βS
i (I ) for all i .

Proof of Theorem 1.2. Let I be an ideal in a regular local ring (R,m, K ) such that
pR/I (t)= p(t). Then the associated graded ring grm(R/I ) has the same Hilbert–
Samuel polynomial as R/I . Also, we may regard grm(R/I ) as a quotient of a
standard graded polynomial ring S = K [x1, . . . , xn] (see [Bruns and Herzog 1998,
Proposition 2.2.5]), and it is known that βR

i (R/I ) ≤ βS
i (grm(R/I )) for all i (see

[Robbiano 1981; Herzog et al. 1986]).
Let S′ = S[xn+1]. By adjoining a variable to grm(R/I ) we obtain a graded ring

that is isomorphic to S′/J for a saturated graded ideal J ⊂ S′. Then pgrm(R/I )(t) is
equal to the Hilbert polynomial of S′/J and βS

i (grm(R/I ))= βS′
i (S

′/J ) for all i .
Let L ′ ⊂ S′ be the saturated ideal with the same Hilbert polynomial as J given in
Theorem 1.1. Observe that L ′ has no generators which are divisible by xn+1 by the
construction given in the proof of Theorem 1.1.

Let L ⊂ A = K [[x1, . . . , xn]] be a monomial ideal having the same generators
as L ′. We claim that L satisfies the desired conditions. By construction, the
Hilbert–Samuel polynomial of A/L is equal to the Hilbert polynomial of S′/L ′ and
β A

i (A/L) = βS′
i (S

′/L ′) for all i . Since βR
i (R/I ) ≤ βS′

i (S
′/J ) ≤ βS′

i (S
′/L ′) and

pR/I (t)= PS′/J (t)= PS′/L ′(t), the ideal L satisfies the desired conditions. �

4. Some tools to study max sequence

In this section, we introduce some tools to study m(−). Let S = K [x1, . . . , xn] and
Ŝ= K [x2, . . . , xn]. From now on, we identify vector spaces spanned by monomials
(such as polynomial rings and monomial ideals) with the set of monomials in the
spaces. First, we introduce pictures, which help to understand the proofs. We
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associate with the set of monomials in S the following picture:

1

x1

x2
1 x1x2 . . . x2

n

x3
1 x2

1 x2 . . . x3
n

x2 xn. . .

S0

S1

S2

S3

Each block represents a set of monomials in S of a fixed degree ordered by the lex
order. We represent a set of monomials M ⊂ S by a shaded picture so that the set
of monomials in the shade is equal to M . For example, here is a representation of
the set M = {1, x1, x2, . . . , xn, x2

n}:

1

x1

x2
1 x1x2 . . . x2

n

x3
1 x2

1 x2 . . . x3
n

x2 xn. . .

M =

Definition 4.1. We define the opposite degree lex order >opdlex by u >opdlex v if

(i) deg u < deg v or

(ii) deg u = deg v and u >lex v.

For monomials u1 ≥opdlex u2, let

[u1, u2] = {v ∈ S : u1 ≥opdlex v ≥opdlex u2}.
A set of monomials M ⊂ S is called an interval if M =[u1, u2] for some monomials
u1, u2 ∈ S. Moreover, we say that M is a lower lex set of degree d if M = [xd

1 , u2],
and that M is an upper revlex set of degree d if M = [u1, xd

n ] (see figure).

Interval Upper rev-lex setLower lex set

u1

u2 xd
n

u1u2

xd
1

A benefit of considering pictures is that we can visualize the map ρ : S→ Ŝ
defined as follows. For any monomial xk

1 u ∈ S with u ∈ Ŝ, let

ρ(xk
1 u)= u.
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This induces a bijection

ρ : Sd =
d⊕

k=0

xk
1 Ŝd−k −→ Ŝ≤d =

d⊕
k=0

Ŝk

xk
1 u −→ u.

It is easy to see that if [u1, u2] ⊂ Sd then ρ([u1, u2])= [ρ(u1), ρ(u2)] is an interval
in Ŝ:

u1 u2 ρ(u2)

ρ(u1)

[u1, u2] ⊂ Sd ρ([u1, u2]) ⊂ Ŝ≤d

In particular:

Lemma 4.2. Let M ⊂ Sd be a set of monomials.

(i) If M is lex then ρ(M) is a lower lex set of degree 0 in Ŝ.

(ii) If M is revlex then ρ(M) is an upper revlex set of degree d in Ŝ.

We define max(1)= 1 in S and max(1)= 2 in Ŝ. For any monomial u ∈ Sd with
u 6= xd

1 , one has max(u)=max(ρ(u)). Hence:

Lemma 4.3. Let M ⊂ Sd be a set of monomials. One has m(M) � m(ρ(M)).
Moreover, if xd

1 6∈ M then m(M)= m(ρ(M)).

Lemma 4.4 (Interval Lemma). Let [u1, u2] be an interval in S, 0≤ a ≤ deg u1, and
b ≥ deg u2. Let L ⊂ S be the lower lex set of degree a and R the upper revlex set of
degree b with #L = #R = #[u1, u2]. Then

m(L)� m
([u1, u2]

)� m(R).

Proof. We use double induction on n and #[u1, u2]. The statement is obvious if
n = 1 or if #[u1, u2] = 1. Suppose n > 1 and #[u1, u2]> 1.

Case 1. We first prove the statement when [u1, u2], L , and R are contained in a
single component Sd for some degree d . We may assume L 6= [u1, u2] and L 6= R.
Then, since xd

1 6∈ [u1, u2], m([u1, u2]) = m(ρ([u1, u2])) and m(R) = m(ρ(R)).
Since ρ(L)⊂ Ŝ≤d is a lower lex set of degree 0, ρ([u1, u2])⊂ Ŝ≤d is an interval,
and ρ(R)⊂ Ŝ≤d is an upper revlex set of degree d in Ŝ. By the induction hypothesis,
we have

m(L)� m(ρ(L))� m(ρ([u1, u2]))� m(ρ(R))= m(R).
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Then the statement follows since m
(
ρ([u1, u2])

)= m([u1, u2]).
Case 2. Now we prove the statement in general. We first prove the statement for L .
We identify Si with the set of monomials in S of degree i . Suppose #[u1, u2]> #Sa .
Then there exist u′1, u′2 ∈ S such that

[u1, u2] = [u1, u′2] ] [u′1, u2]
and #[u1, u′2]= #Sa . Let L ′ be the lower lex set of degree a+1 with #L ′= #[u′1, u2].
By the induction hypothesis, m(Sa)� m([u1, u′2]) and m(L ′)� m([u′1, u2]). Thus

m([u1, u2])� m(Sa ] L ′)= m(L).

Suppose #[u1, u2] ≤ #Sa . Then L ⊂ Sa . Let d = deg u1 and A ⊂ Sd be the lex
set with #A = #[u1, u2]. Then A = xd−a

1 L . Since m(A) = m(L), what we must
prove is:

m(A)� m([u1, u2]).
Since #[u1, u2] ≤ #Sa ≤ #Sd+1, we have deg u2 ≤ d + 1.

If deg u2= d then [u1, u2]⊂ Sd . Then the desired inequality follows from Case 1.
Suppose deg u2 = d + 1. Then

[u1, u2] = [u1, xd
n ] ] [xd+1

1 , u2].
Recall #[u1, u2] ≤ #Sa ≤ #Sd . Let B ⊂ Sd be the lex set with #B = #[xd+1

1 , u2].
Then [xd+1

1 , u2] = x1 B. Since #B+#[u1, xd
n ] = #[u1, u2] ≤ #Sd , B∩[u1, xd

n ] =∅.
Then, by Case 1,

m([u1, u2])= m(B)+m
([u1, xd

n ]
)� m(A)

(see figure).

A

L

u1

u2

B u1
⇒⇒⇒

[u1, u2] B ⊎ [u1, xd
n ] A L

Next, we prove the statement for R. In the same way as in the proof for L , we
may assume #[u1, u2] ≤ #Sb. Let d = deg u2.

If deg u1 = d then [u1, u2] ⊂ Sd and A= xb−d
1 [u1, u2] is an interval in Sb. Then,

by Case 1, we have m([u1, u2])= m(A)� m(R) as desired. Suppose deg u1 < d.
Then

[u1, u2] = [u1, xd−1
n ] ] [xd

1 , u2].
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Let R′ be the upper revlex set of degree b in S with #R′ = #[u1, xd−1
n ]. Then,

m([u1, u2])�m(R′)+m
([xd

1 , u2]
)= m(R′)+m

([xb
1 , xb−d

1 u2]
)
,

where the first inequality follows from the induction hypothesis on the cardinality.
Since R \ R′ ⊂ Sb is an interval and [xb

1 , xb−d
1 u2] ⊂ Sb is lex, by Case 1 we have

m(R′)+m
([xb

1 , xb−d
1 u2]

)� m(R′)+m(R \ R′)= m(R),

as desired (see figure). �

u1

u2 ⇒⇒⇒

[u1, u2] R′ ⊎ [xd
1 , u2] R′ ⊎ [xb

1 , xb−d
1 u2] R

R′

u2

R′ R

Recall that a set M ⊂ S of monomials is said to be super-revlex if it is revlex
and u ∈ M implies v ∈ M for any monomial v ∈ S of degree ≤ deg u− 1.

Corollary 4.5. Let R ⊂ S be an upper revlex set of degree d and M ⊂ S a super-
revlex set such that #R + #M ≤ #S≤d . Let Q ⊂ S be the super-revlex set with
#Q = #R+ #M. Then

m(Q)� m(R)+m(M).

Proof. Let e =min{k : xk
1 6∈ M} and F = {u ∈ Se : u 6∈ M}. If #F ≥ #R then

Q = M ] (Q \M)

and Q \M ⊂ F is an interval. Thus m(Q \M)� m(R) by the interval lemma.
Suppose #F < #R. Write

R = I ] R′

such that I is an interval with #I = #F and R′ is an upper revlex set of degree d.
Since F is a lex set, the interval lemma shows

m(M)+m(R)= m(M)+m(I )+m(R′)� m(F ]M)+m(R′).

Then F ]M is a super-revlex set containing xe
1 . By repeating this procedure, we

have m(M)+m(R)� m(Q). �

The above corollary proves the next result, which was essentially proved by
Elías, Robbiano and Valla [Elías et al. 1991].

Corollary 4.6. Let R ⊂ S be a finite revlex set of monomials and M ⊂ S the
super-revlex set with #M = #R. Then m(M)� m(R).
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Proof. Let R = ⊎N
i=0 Ri , where Ri is the set of monomials in R of degree i

and N = max{i : Ri 6= ∅}. Let M(≤ j) be the super-revlex set with #M(≤ j) =
#
⊎ j

i=0 Ri . We claim m(M(≤ j))� m
(⊎ j

i=0 Ri
)

for all j . This follows inductively
from Corollary 4.5 as follows:

m
( j⊎

i=0

Ri

)
= m

( j−1⊎
i=0

Ri

)
+m(R j )� m(M(≤ j−1))+m(R j )� m(M(≤ j)).

(We use the induction hypothesis for the second step and use Corollary 4.5 for the
last step.) Then we have m(M)= m(M(≤N ))� m

(⊎N
i=0 Ri

)
. �

We finish this section by proving the result of Valla, which we mentioned in the
introduction.

Corollary 4.7 [Valla 1994]. Let c be a positive integer and M ⊂ S the super-revlex
set with #M = c. Let J ⊂ S be the monomial ideal generated by all monomials
which are not in M. Then, for any homogeneous ideal I ⊂ S with dimK (S/I )= c,
we have βS

i (S/J )≥ βS
i (S/I ) for all i .

Proof. The proof is similar to that of Corollary 3.6. By the Bigatti–Hulett–Pardue
theorem, we may assume that I is lex. Then Lemma 3.5 says, for d � 0, we have

βS
i (I )=

(
n− 1

i

)
dimK I≤d −

n∑
k=1

(
k− 1

i

)
m≤k(I≤d−1)−

n−1∑
k=1

(
k− 1
i − 1

)
m≤k(I≤d)

and the same formula holds for J . Let N ⊂ S be the set of monomials which are
not in I . Since N is a revlex set with #N = c, for d� 0, by Corollary 4.6 we have

m(J≤d)= m(S≤d)−m(M)� m(S≤d)−m(N )= m(I≤d).

Hence βS
i (J )≥ βS

i (I ) for all i as desired. �

The proof given in this section provides a new short proof of the above result.
The most difficult part in the proof is Corollary 4.6. The original proof given in
[Elías et al. 1991] is based on computations of binomial coefficients. On the other
hand, our proof is based on moves of interval sets of monomials.

5. Construction

In this section, we give a construction of sets of monomials which satisfy the
conditions of Proposition 3.9, and study their properties.

Throughout Sections 5 and 6, we fix the following notation: Let a1, a2, . . . , at be
nonnegative integers, where t ≤ n, and let bi = a1+· · ·+ai + 1 for i = 1, 2, . . . , t .
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Let F = Se1⊕Se2⊕· · ·⊕Set be a free S-module with deg ei = bi for i = 1, 2, . . . , t .
We consider the set

U = S(1)e1 ] S(2)e2 ] · · · ] S(t)et ⊂ F.

Note that we identify each S(k) with the set of monomials in it. For i = 1, 2, . . . , t ,
let δi = xa1

1 · · · xai−1
i−1 xai+1

i . Then, by the decomposition given before Definition 3.7,
the above set U can be identified with the set of monomials in the universal lex
ideal (δ1, . . . , δt)= δ1S(1)⊕ · · ·⊕ δt S(t) via the natural correspondence uei ↔ δi u.

We call an element uei ∈U a monomial in U . For each monomial uei ∈U , we
define

max(uei )=
{

i if u = 1,
max(u) otherwise.

Also, for M⊂U , we define m(M)= (m≤1(M),m≤2(M), . . . ,m≤n(M)) in the same
way as in Section 3. We say that a subset M=M〈1〉e1]· · ·]M〈t〉et⊂U is a ladder set
if M〈1〉, . . . ,M〈t〉 satisfy the conditions (i) and (ii) of Lemma 3.8. Then, considering
m(−) of ladder sets in U = S(1)e1]· · ·]S(t)et is equivalent to considering m(−) of
ladder sets in the universal lex ideal (δ1, . . . , δt)= δ1S(1)⊕· · ·⊕δt S(t). In particular,
to prove Proposition 3.9, it is enough to consider ladder sets in U .

Let M ⊂U . We write

U (i) = S(i)ei , M (i) = M ∩U (i), U (≥i) =
t⊎

k=i

S(k)ek, and M (≥i) = M ∩U (≥i).

Note that U (≥i) = ⊎k≥i S(k)ek can be identified with the universal lex ideal in
K [xi , . . . , xn] generated by {(xbi−1

i )xai
i · · · xak−1

k−1 xak+1
k : k = i, i + 1, . . . , t}. For

a subset M ⊂ U , we write Mk for the set of monomials in M of degree k and
M≤ j =⊎ j

k=0 Mk .
As in Section 4, we use pictures to help to understand the proofs. We identify U

with the following picture:

1

x1 . . . xn

x2
1 . . . x2

n 1

x2
2 . . . x2

n
x2 . . . xn

x3 . . . xn

1
· · ·

U (1) U (2) U (3)

x3
1 . . . x3

n

x4
1 . . . x4

n

Note that each low represents the set of monomials in U having the same degree.
Thus, in the previous figure, deg e2 = deg e1+ 2 and deg e3 = deg e2+ 1. Also, we
present a subset M ⊂ U by a shaded picture. For example, the following figure
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represents M = {1, x1, x2, . . . , xn}e1 ] {1}e2:

1

x1 . . . xn

x2
1 . . . x2

n 1

x2
2 . . . x2

n
x2 . . . xn

x3 . . . xn

1
· · ·

M

x3
1 . . . x3

n

x4
1 . . . x4

n

Also, we define the map ρ :U →U by extending the map given in Section 4 as
follows: For xk

i uei ∈U (i) with u ∈ K [xi+1, . . . , xn], let

ρ(xk
i uei )=

{
uei+1 if i ≤ t − 1,
0 if i = t .

We call the above map ρ :U→U the moving map of U . The moving map induces
a bijection from U (i)

j = {uei ∈U (i) : deg u= j−bi } to U (i+1)
≤ j+ai+1

= {uei+1 ∈U (i+1) :
deg u ≤ j − bi } for i = 1, 2, . . . , t − 1.

Lemma 5.1. For N ⊂U (i)
j with i ≤ t−1, one has m(N )�m(ρ(N )). Moreover, if

x j−bi
i ei 6∈ N then m(N )= m(ρ(N )).

Next, we define ladder sets M ⊂U which attain maximal Betti numbers. Recall
that a subset M ⊂U is called a ladder set if the following conditions hold:

(i) {u ∈ S(i) : uei ∈ M (i)} is a revlex multicomplex for i = 1, 2, . . . , t .

(ii) If M (i)
j 6=∅ then M (i+1)

j =U (i+1)
j for i = 1, 2, . . . , t − 1 and for all j ≥ 0.

To simplify the notation, we say that N ⊂U (i) is a super-revlex set (resp. interval,
lower lex set or upper revlex set of degree d) if N ′ = {u ∈ S(i) : uei ∈ N } is super-
revlex (resp. interval, lower lex set or upper revlex set of degree d−bi ) in S(i). For
monomials uei , vei ∈U and for a monomial order > on S(i), we write uei > vei if
u > v.

Definition 5.2. A monomial f = xα1
1 xα2

2 · · · xαn
n e1 ∈U (1)

e is said to be admissible
over U if the following conditions hold:

(i) deg ρi ( f )≤ e+ 1 or ρi ( f )= ei+1 for i = 1, 2, . . . , t − 2.

(ii) ρt−1( f )= et or ρt−1( f )≥opdlex xe+1−bt
t et .

Note that the second condition in (ii) cannot be satisfied when e+1−bt < 0 and that
if t = 1 then all monomials in U are admissible. Also, ρt−1( f )≥opdlex xe+1−bt

t et if
and only if deg ρt−1( f )≤ e or ρt−1( f )= xe+1−bt

t et .
We say that f ∈ U (i)

e is admissible if it is admissible over U (≥i). Note that
xk

i ei ∈U (i) is admissible for all i and k.
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Definition 5.3. Let >dlex be the degree lex order. Thus for monomials u, v ∈ S,
u >dlex v if deg u > deg v or deg u = deg v and u >lex v. We extend >dlex to
monomials in U by uei >dlex ve j if δi u >dlex δ jv. Thus, we have uei >dlex ve j if

(i) deg uei > deg ve j ,

(ii) deg uei = deg ve j and i < j , or

(iii) deg uei = deg ve j , i = j and u >dlex v.

Fix an integer c > 0. Let

f =max
>dlex

{
g ∈U (1) : g is admissible and #{h ∈U : h ≤dlex g} ≤ c

}
and

L(c) = {h ∈U (1) : h ≤dlex f }.
Let M = M (1) ] · · · ]M (t) ⊂U be a set of monomials with #M = c. We say that
M satisfies the maximal condition if M (1) = L(c). Also, we say that M is extremal
if M (≥k) ⊂U (≥k) satisfies the maximal condition in U (≥k) for all k.

Example 5.4. If t = 1 then any monomial in U = S(1)e1 is admissible and extremal
sets can be identified with super-revlex sets in S(1).

Example 5.5. Suppose t = 2. Then f = xα1
1 xα2

2 · · · xαn
n e1, where f 6= xα1

1 e1, is
admissible in U = S(1)e1 ] S(2)e2 if α1 ≥ a2 or f = xa2−1

1 xα2
2 e1. In other words, a

monomial f ∈ S(1)d e1 is admissible if and only if f ≥lex xa2−1
1 xd−a2+1

2 e1 if a2 ≤ d
and f = xd

1 e1 if a2 > d. For example, if deg e1 = 2 and deg e2 = 4 then the
admissible monomials in U (1)

5 = (S(1)3 )e1 are

x3
1 e1, x2

1 x2e1, x2
1 x3e1, . . . , x2

1 xne1, x1x2
2 e1.

Example 5.6. Suppose t = 3. The situation is more complicated. A monomial
f = xα1

1 xα2
2 · · · xαn

n e1 ∈U (1)
e , where f 6= xα1

1 e1 is admissible in U if and only if

• α1 ≥ a2− 1 and

• xα3
3 · · · xαn

n ≥opdlex xe+1−b3
3 or xα3

3 · · · xαn
n = 1.

For example, if deg e1 = 2, deg e2 = 4, deg e3 = 6, and n = 3 then the set of the
admissible monomials in U (1)

6 = (K [x1, x2, x3]4)e1 are

{x4
1 e1} ∪ {x3

1 x2e1, x3
1 x3e1} ∪ {x2

1 x2
2 e1, x2

1 x2x3e1} ∪ {x1x3
2 e1, x1x2

2 x3e1}.
Example 5.7. Let U = x2

1 S(1) ] x1x3
2 S(2). Suppose c = (n+2

2

)+ 2. Then

max
>dlex

{
f ∈U (1) : f is admissible and #{h ∈U : h ≤dlex f } ≤ c

}= x2
1 e1.

Indeed,

#{h ∈U : h ≤dlex x2
1 e1} = #S(1)≤2 e1 ] {1}e2 =

(
n+ 2

2

)
+ 1
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and

#{h ∈U : h ≤dlex x1x2
2 e1} = #

(
S(1)≤3 \ {x3

1 , x2
1 x2, . . . , x2

1 xn}
)
e1 ] S(2)≤1 e2

=
(

n+ 3
3

)
> c.

By Example 5.5, the lex-smallest admissible monomial in U (1)
5 is x1x2

2 e1. Thus the
extremal set L ⊂U with #L = c is

L = S(1)≤2 e1 ] {1, xn}e2.

Example 5.8. In general, it is not easy to understand the shape of extremal sets,
but in some special cases they are simple.

If b1 = b2 = · · · = bt then any monomial in U is admissible. Thus any extremal
set M in U is of the form

M = {h ∈U : h ≤dlex f }
for some f ∈U .

If b2 > e then the only admissible monomial in U (1)
e is xe−b1

1 e1. Thus if b1�
b2� · · · � bn (for example, if bi+1− bi > c for all i) then any extremal set M in
U with #M = c is of the form

M = S(1)≤d1
e1 ] S(2)≤d2

e2 ] · · · ] S(t−1)
≤dt−1

et−1 ] N ,

where N ⊂ S(t)et and #S(i+1)
≤di+1

ei+1]· · ·]S(t−1)
≤dt−1

et−1]N <#S(i)di+1 for i =1, . . . , t−1.

In the rest of this section, we study properties of extremal sets. Suppose t ≥ 3.
For an integer k≥−a3, we write U (i)[−k]= S(i)e′i , where e′i is a basis element with
deg ei = bi + k. In the picture, U (i)[−k] is the picture obtained from that of U (i)

by moving the blocks k steps above. In particular, for any integer k ≥−a3, U ′ =
U (2) ]⊎t

i=3 U (i)[−k] can be identified with a universal lex ideal in K [x2, . . . , xn]:

U (≥2) U ′ = U (2) ⊎ (
⊎t

i=3 U (i)[−k])

⇒

Lemma 5.9. Suppose t ≥ 3. Let f ∈ U (1)
e , d = deg ρ( f ), and k ≥ −a3 with

e− d + k ≥ 0. Then f is admissible over U if and only if the following conditions
hold:
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• deg ρ( f )≤ e+ 1 or ρ( f )= e2.

• xe−d+k
2 ρ( f ) ∈U (2)

e+k is admissible in U ′ =U (2) ]⊎t
i=3 U (i)[−k].

Proof. Let U ′= S(2)e2]S(3)e′3]· · ·]S(t)e′t with deg e′i = deg ei+k for k= 3, . . . , t ,
and let φ be the moving map of U ′. Let ρi ( f )= ui+1ei+1 for i = 2, . . . , t−1. Then
φi (xe−d+k

2 ρ( f ))= ui+2e′i+2 for i = 1, 2, . . . , t − 2. Thus deg ρi ( f )≤ e+ 1 if and
only if degφi−1(xe−d+k

2 ρ( f ))≤ e+1+k for i ≥ 2. Also, ρt−1( f )≥opdlex xe+1−bt
t et

if and only if φt−2(xe+d+k
2 ρ( f ))≥opdlex xe+1−bt

t e′t . Since deg xe−d+k
2 ρ( f )= e+ k,

the above facts prove the statement. �

By the definition of the maximal condition, the next result is straightforward:

Lemma 5.10. Let M ⊂U be an extremal set.

(i) If #M ≥ #U≤e then M ⊃U≤e.

(ii) If #M ≥ #U (1)
≤e−1 ]U (≥2)

≤e then M ⊃U (1)
≤e−1 ]U (≥2)

≤e .

Proof. Since M is extremal, there exists an f ∈U (1) such that

M (1) = {h ∈U (1) : h ≤dlex f }.

(i) Since xe−b1
1 e1 is admissible and {h ∈U : h≤dlex xe−b1

1 e1}=U≤e, f ≥dlex xe−b1
1 e1.

Then M (1) ⊃ {h ∈U (1) : h ≤dlex xe−b1
1 e1} =U (1)

≤e . Also, since

#M (≥2) = #M − #M (1) ≥ #{h ∈U : h ≤dlex f }− #{h ∈U (1) : h ≤dlex f } ≥ #U (2)
≤e ,

we have M (≥2) ⊃U (2)
≤e by induction on t .

(ii) It is clear that M ⊃U≤e−1 by (i). If deg f ≥ e then

#M ≥ #{h ∈U : h ≤dlex f } ≥ #M (1) ]U (≥2)
≤e .

Then #M (≥2) ≥ #U (≥2)
≤e and M (≥2) ⊃ U (≥2)

≤e by (i) as desired. If deg f < e then
M (1) = U (1)

≤e−1 and #M (≥2) ≥ #U (≥2)
≤e by the assumption. Hence M (≥2) ⊃ U (≥2)

≤e
by (i). �

Corollary 5.11. Extremal sets are ladder sets.

Proof. If M ⊂ U is extremal then M (i) is super-revlex for all i by the maximal
condition. It is enough to prove that if M (1)

e 6= ∅ then M ⊃ U (≥2)
e . If M (1)

e 6= ∅
then there exists an admissible monomial f ∈U (1)

e such that

#M ≥ #{h ∈U : h ≤dlex f } ≥ #U (1)
≤e−1 ]U (≥2)

≤e .

Then the statement follows from Lemma 5.10. �

To simplify notation, for uei , vei ∈U (i) with u ≥opdlex v, we write

[uei , vei ] = {wei ∈U (i) : u ≥opdlex w ≥opdlex v}.
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Lemma 5.12. Suppose t ≥ 2. Let M ⊂U be an extremal set.

(i) If a2 > 0 then M (1)
e 6= 0 if and only if #M ≥ #U (1)

≤e .

(ii) If a2 = 0 and M (1)
e 6= 0 then #M > #U (1)

≤e .

Proof. Let f ∈U (1)
e be the lex-smallest admissible monomial in U (1)

e over U .

(i) It suffices to prove that

#{h ∈U : h ≤dlex f } = #U (1)
≤e . (2)

If f = xe−b1
1 e1 then f ′ = xe−b1−1

1 x2e1 is not admissible. By the definition of
admissibility, one has deg ρ( f ′) = deg x2e2 > e+ 1 and b2 > e. In this case we
have {h ∈U : h ≤dlex f } =U (1)

≤e .
Suppose f 6= xe−b1

1 e1. We prove (2) by using induction on t . Suppose t = 2.
Then f = xa2−1

1 xe+1−b2
2 e1, and

{h ∈U : h ≤dlex f } =U (1)
≤e−1 ] [ f, xe−b1

n e1] ]U (2)
≤e .

Since ρ([ f, xe−b1
n e1])=⊎e+a2

j=e+1 U (2)
j , we have

#{h ∈U : h ≤dlex f } = #U (1)
≤e−1+ #U (2)

≤e+a2
= #U (1)

≤e ,

where we use ρ(U (1)
e )=U (2)

≤e+a2
for the last equality.

Suppose t≥3. Since ρ( f ) 6= e2, we have deg ρ( f )=e+1. Indeed, by Lemma 5.9,
deg ρ( f )≤ e+ 1. On the other hand, since xa2−1

1 xe+1−b2
2 e1 is admissible over U ,

f ≤lex xa2−1
1 xe+1−b2

2 e1. Thus deg ρ( f )≥ deg ρ(xa2−1
1 xe+1−b2

2 e1)= e+ 1.
Consider U ′ =U (2) ]⊎t

i=3 U (i)[−1]. By Lemma 5.9 (consider the case when
d = e+ 1 and k = 1), ρ( f ) is the lex-smallest admissible monomial in U (2)

e+1 over
U ′. Then

#[ρ( f ), xe+1−b2
n e2] ]U (≥2)

≤e = #[ρ( f ), xe+1−b2
n e2] ]U (2)

≤e ]U ′(≥3)
≤e+1

= #{h ∈U ′ : h ≤dlex ρ( f )}
= #U (2)

≤e+1, (3)

where the last equation follows from the induction hypothesis. On the other hand

{h ∈U : h ≤dlex f } = [ f, xe−b1
n e1] ]U (1)

≤e−1 ]U (≥2)
≤e (4)

and

ρ
([ f, xe−b1

n e1]
)= [ρ( f ), xe+1−b2

n e2] ]
e+a2⊎

j=e+2

U (2)
j . (5)

Equations (3), (4), and (5) show that

#{h ∈U : h ≤dlex f } = #U (1)
≤e−1 ]U (2)

≤e+a2
= #U (1)

≤e−1 ]U (1)
e = #U (1)

≤e ,

where the second equality follows since ρ(U (1)
e )=U (2)

≤e+a2
.
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(ii) It suffices to prove that #{h ∈U :h≤dlex f }>#U (1)
≤e . Since a2=0, #U (2)

≤e =#U (1)
e .

Then we have

#{h ∈U : h ≤dlex f }> #U (1)
≤e−1 ]U (2)

≤e = #U (1)
≤e−1 ]U (1)

e =U (1)
≤e ,

as desired. �

Corollary 5.13. Suppose t ≥ 2. Let B ⊂ U (1)
e be the revlex set and N ⊂ U (≥2) a

ladder set with #N ≥ #U (≥2)
≤e−1. Let Y ⊂U be the extremal set with

#Y = #U (1)
≤e−1 ] B ] N .

If #B ] N < #U (1)
e then

Y =U (1)
≤e−1 ] Y (≥2).

Proof. Since #Y ≥ #U≤e−1, we have Y ⊃ U≤e−1 by Lemma 5.10. On the other
hand, since #Y = #U (1)

≤e−1 ] B ] N < #U (1)
≤e by the assumption, we have Y (1)e =∅

by Lemma 5.12. Hence Y (1) =U (1)
≤e−1. �

For monomials f >dlex g ∈U (i), let [ f, g)= [ f, g] \ {g}.
Lemma 5.14. Let f ∈U (1)

e be the lex-smallest admissible monomial in U (1)
e over U

and g >lex h ∈U (1)
e admissible monomials over U such that there are no admissible

monomials in [g, h] except for g and h. Then #[g, h)≤ #[ f, xe−b1
n e1].

Proof. If t = 1 then all monomials are admissible over U . If t = 2 then any
monomial w ∈U (1)

e with w>lex f is admissible over U . Thus the statement is clear
if t ≤ 2.

Suppose t ≥ 3. Since g 6= h we have f 6= xe−b1
1 e1. By the definition of admis-

sibility, we have deg(ρ( f )) = e if a2 = 0 and deg(ρ( f )) = e+ 1 if a2 > 0. We
consider the case when a2 > 0 (the proof for the case when a2 = 0 is similar).

Consider U ′ =U (2) ]⊎t
i=3 U (i)[−1]. Since any monomial w ∈U (1)

e such that
ρ(w)= xk

2 e2 with k ≤ e+ 1−b2 is admissible over U , we have ρ([g, h))⊂ Sd for
some d ≤ e+ 1. Let

A = xe+1−d
2 ρ([g, h))= [xe+1−d

2 ρ(g), xe+1−d
2 ρ(h)

)⊂U (2)
e+1

(see figure).
A

g h
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Let w ∈ A. Then w= xe+1−d
2 ρ(w′) for some w′ ∈ [g, h). Lemma 5.9 says that w

is admissible over U ′ if and only if w′ is admissible over U . Hence A contains no
admissible monomial over U ′ except for xe+1−d

2 ρ(g). By Lemma 5.9, ρ( f )∈U (2)
e+1

is the lex-smallest admissible monomial in U (2)
e+1 over U ′. Then, by the induction

hypothesis,

#A ≤ #[ρ( f ), xe−b2
n e2] = #ρ([ f, xe−b1

n e1])∩U (2)
e+1 ≤ #[ f, xe−b1

n e1].
Then the statement follows since #[g, h)= #ρ([g, h))= #A. �

Lemma 5.15. Let M ⊂ U be an extremal set, e = min{k : xk−b1
1 e1 6∈ M}, and

H =Ue \Me. Let f ∈U (1)
e be the lex-smallest admissible monomial in U (1)

e over
U. Then:

(i) #U≤e+ #[ f, xe−b1
n e1] ≤ #U (1)

≤e+1.

(ii) #M + #H < #U (1)
≤e+1.

Proof. We use induction on t . If t = 1 then the statements are obvious. Suppose
t > 1.

(i) If a2 > 0 then by Lemma 5.12

#U≤e+ #[ f, xe−b1
n e1] = #{h ∈U : h ≤dlex f }+ #U (1)

e = #U (1)
≤e + #U (1)

e < #U (1)
≤e+1

as desired. Suppose a2 = 0. Then

ρ([ f, xe−b1
n e1])= [ρ( f ), xe−b2

n e1] ⊂U (2)
e

and ρ( f ) is the lex-smallest admissible monomial in U (2)
e over U (≥2) by Lemma 5.9.

Then by the induction hypothesis,

#U≤e+ #[ f, xe−b1
n e1] = #U (1)

≤e +
(
#U (≥2)
≤e + #[ρ( f ), xe−b2

n e2]
)

≤ #U (1)
≤e + #U (2)

≤e+1

= #U (1)
≤e+1

as desired.

(ii) Suppose M (2)
e 6=U (2)

e . Then M (1)
e =∅. Since M (≥2) is extremal over U (≥2), by

the induction hypothesis,

#M + #H = #U (1)
≤e−1 ]M (≥2)+ #U (1)

e ] H (≥2) < #U (1)
≤e + #U (2)

≤e+1 ≤ #U (1)
≤e+1,

where we use #U (1)
e+1 = #U (2)

≤e+1+a2
≥ #U (2)

≤e+1 for the last inequality.

Suppose M (2)
e =U (2)

e . Let g =max>dlex M (1) and let

µ=min
>dlex
{h ∈U (1)

≤e : h is admissible over U and h >dlex g}.
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Then [µ, g)⊂U (1)
e since g ≥dlex xe−b1−1

1 e1. Since M is extremal,

#M < #{h ∈U : h ≤dlex µ}.
Since M (1) = {h ∈U (1) : h ≤dlex g}, H = [xe−b1

1 e1, g). Thus

#M + #H < #{h ∈U : h ≤dlex µ}+ #[xe−b1
1 e1, g)

= #U≤e+ #[µ, g)

≤ #U≤e+ #[ f, xe−b1
n e1],

where the last inequality follows from Lemma 5.14. Then the desired inequality
follows from (i). �

6. Proof of the main theorem

Let U = S(1)e1 ] S(2)e2 ] · · · ] S(t)et be as in Section 5. The aim of this section is
to prove the next result, which proves Proposition 3.9.

Theorem 6.1. Let M⊂U be a ladder set and L⊂U the extremal set with #L=#M.
Then m(L)� m(M).

The proof is by case analysis, and occupies the next three subsections.
In the rest of this section, we fix a ladder set M ⊂U .

Preliminary of the proof. For two subsets A, B ⊂U , we define

A� B⇔ #A = #B and m(A)� m(B).

Let X ⊂U (1) be the super-revlex set with #X = #M (1). Then
{
k : M (1)

k 6=∅
}⊃

{k : Xk 6= ∅}. Thus X ∪ M (≥2) is also a ladder set in U . Since X � M (1) by
Corollary 4.6, we have:

Lemma 6.2. There exists a ladder set N ⊂ U such that N (1) is super-revlex and
N � M.

Thus, in the rest of this section we assume that M (1) is super-revlex. Let

e =min{k+ b1 : xk
1 e1 6∈ M}

and

f =max
>dlex

{
g ∈U (1)

≤e : g is admissible over U and #{h ∈U : h ≤dlex g} ≤ #M
}
,

where f = 0 if #{h ∈U : h ≤dlex e1}> #M . Since xe−b1−1
1 e1 is admissible over U

(when e 6= b1), we have f = xe−b1−1
1 e1 or deg f = e. We will prove:
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Proposition 6.3. With the same notation as above, there exists a ladder set N such
that N � M and

N (1) = {h ∈U (1) : h ≤dlex f },
where {h ∈U (1) : h ≤dlex f } =∅ if f = 0.

The above proposition proves Theorem 6.1. Indeed, by applying the above
proposition repeatedly, one obtains a set N which satisfies the maximal condition
and N � M . Then apply the induction on t . Also, if t = 1 then Proposition 6.3
follows from Corollary 4.6. In the rest of this section, we assume that t > 1 and
that the statement is true when the number of the free basis of U is at most t − 1.
By the above argument, we may assume that Theorem 6.1 is also true when the
number of the free basis of U is at most t − 1.

Lemma 6.4. There exists a ladder set N ⊂U with N �M and min{k+b1 : xk
1 e1 6∈

N (1)} = e satisfying the following conditions:

(A1) N (1) is super-revlex and N (≥2) is extremal in U (≥2).

(A2) ρ(N (1)
e )∪ N (2) ⊃U (2)

≤e+a2
or ρ(N (1)

e )∩ N (2) =∅.

(A3) If t=2 and ρ
(
N (1)

e
)∩N (2)=∅ then N (1)

e =∅. If t≥3 and ρ
(
N (1)

e
)∩N (2)=∅

then N (1)
e =∅ or there exists a d ≥ e such that N (2) =U (2)

≤d and N (3)
d+1 6=U (3)

d+1.

Proof. Let F = M (1)
e . Then M = (U (1)

≤e−1 ] F
) ] M (2) ] M (≥3) since M (1) is

super-revlex.

Step 1. We first prove that there exits N satisfying (A1). Let X be the extremal set
in U (≥2) with #X = #M (≥2). Let

N = M (1) ] X =U (1)
≤e−1 ] F ] X.

Since we assume that Theorem 6.1 is true for U (≥2), N � M . What we must prove
is that N is a ladder set. Since M (≥2) ⊃ U (≥2)

≤e−1, #X = #M (≥2) ≥ #U (≥2)
≤e−1. Then

Lemma 5.10 says X ⊃ U (≥2)
≤e−1, which shows that N is a ladder set if F = ∅. If

F 6= ∅ then by the definition of ladder sets, M (≥2) ⊃ U (≥2)
≤e , and X ⊃ U (≥2)

≤e by
Lemma 5.10. Hence N is a ladder set.

Step 2. We prove that if M satisfies (A1) but does not satisfy either (A2) or (A3) then
there exists an N satisfying (A2) and (A3) such that N � M and #N (1) is strictly
smaller than #M (1). We may assume ρ(F)∪M (2) 6⊃U (2)

≤e+a2
and F 6=∅, otherwise

M itself satisfies the desired conditions. Note that F 6=∅ implies M (2) ⊃U (2)
≤e . Let

a =min{k : M (2)
k 6=U (2)

k },
b =max{k : k ≤ e+ a2, ρ(F)k 6=U (2)

k },
d =max{k : M (3)

k =U (3)
k },
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where d =∞ if n = 2. Let H =U (2)
≤d \M (2) (see figure).

H

U (1)
≤e−1

F

M

The set ρ(F) equals ρ(F)b ]⊎e+a2
j=b+1 U (2)

j , since it is an upper revlex set of
degree e+ a2. Suppose H =∅. Then M (2) =U (2)

≤d . Since ρ(F)∪M (2) 6⊃U (2)
≤e+a2

,
we have b > d and ρ(F)∩ M (2) = ∅, which say that M satisfies (A2) and (A3).
Suppose H 6= ∅. Observe that for any super-revlex set L with U (2)

≤e ⊂ L ⊂ U (2)
≤d ,

M (1) ] L ]M (≥3) is a ladder set.

Case 1: Suppose #H ≥ #F . (Note that if t = 2 then we always have #H ≥ #F .)
Then M (2) is super-revlex since we assume that M (≥2) is extremal and ρ(F) is an
upper revlex set of degree e+ a2 with #M (2)+ #ρ(F) ≤ #U (2)

≤d . Let R ⊂ U (2) be
the super-revlex set in U (2) with #R = #M (2)+ #ρ(F). By Corollary 4.5,

m(R)� m(M (2))+m(ρ(F))= m(M (2))+m(F). (6)

Also, since R is super-revlex, U (2)
≤e ⊂ R ⊂U (2)

≤d . Thus

N =U (1)
≤e−1 ] R ]M (≥3)

is a ladder set. Then N (1)
e = ∅ and N � M by (6). Hence N satisfies (A2) and

(A3).

Case 2: Suppose #H < #F . Observe that M (2) ∪ ρ(F) contains all monomials of
degree k in U (2) for k < a and b< k ≤ e+a2. Since M ∪ρ(F) 6⊃U (2)

≤e+a2
, we have

a ≤ b.
Let I ⊂ ρ(F) be the interval in U (2) such that #I = #Ha and ρ(F)\ I is an upper

revlex set of degree e+a2, and let F ′ ⊂ F be the revlex set with ρ(F ′)= ρ(F) \ I .
Since Ha is a lower lex set of degree a, the interval lemma gives

m
(
M (2))+m

(
ρ(F)

)� m
(
Ha ]M (2))+m

(
ρ(F) \ I

)
= m

(
U (2)
≤a
)+m

(
ρ(F ′)

)
.

This is illustrated at the top of the next page.
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ρ(F ′)U (2)
≤aρ(F)M (2)

Ha I
+

⇒
+

Suppose ρ(F ′)∪U (2)
≤a ⊃U (2)

≤e+a2
. Then

N = (U (1)
≤e−1 ] F ′

)]U (2)
≤a ]M (≥3)

is a ladder set and satisfies N � M and conditions (A2) and (A3) since

ρ(N (1)
e )∪ N (2) ⊃U (2)

≤e+a2
.

Suppose ρ(F ′)∪U (2)
≤a 6⊃U (2)

≤e+a2
. Then ρ(F ′)⊂⊎e+a2

j=a+1 U (2)
j . Since we assume

#H < #F , #F ′ = #F − #Ha > #(H \ Ha). Let J ⊂ ρ(F ′) be the interval in
U (2) such that #J = #(H \ Ha) and ρ(F ′) \ J is an upper revlex set of degree
e + a2, and let F ′′ ⊂ F ′ be the revlex set satisfying ρ(F ′′) = ρ(F ′) \ J . Since
H \Ha =⊎d

j=a+1 U (2)
j is a lower lex set of degree a+1, the interval lemma yields

m
(
U (2)
≤a
)+m

(
ρ(F ′)

)� m
(
M (2) ] H

)+m
(
ρ(F ′′)

)= m
(
U (2)
≤d

)+m
(
ρ(F ′′)

)
(see figure).

ρ(F ′)U (2)
≤aρ(F)M (2)

Ha

+
⇒

+

ρ(F ′′)U (2)
≤d

⇒
+

I
J

Then
N = (U (1)

≤e−1 ] F ′′
)]U (2)

≤d ]M (≥3)

is a ladder set and satisfies N � M and conditions (A2) and (A3).
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Finally, since Step 1 does not change the first component M (1) and Step 2
decreases the first component, by applying Steps 1 and 2 repeatedly, we obtain a
set N ⊂U satisfying conditions (A1), (A2), and (A3). �

Lemma 6.4 says that to prove Proposition 6.3 we may assume that M satisfies
(A1), (A2), and (A3). Thus in the rest of this section we assume that M satisfies
these conditions. Also, we may assume f 6= 0 since the proposition follows from
the induction hypothesis when f = 0.

Proof of Proposition 6.3 when f 6= xe−b1−1
1 e1. In this case we have deg f = e.

Let
f = xα1

1 · · · xαn
n e1

and F = M (1)
e . Since xe−b1

1 e1 6∈ F by the choice of e, we have m(F)= m(ρ(F)).
Also, we have

M (≥2) ⊃U (≥2)
≤e .

Indeed, this is obvious when F 6=∅ by the definition of ladder sets. If F =∅ then

#M (≥2) = #M − #U (1)
≤e−1 ≥ #{h ∈U : h ≤dlex f }− #U (1)

≤e−1 ≥ #U (2)
≤e ,

and since M (≥2) is extremal we have M (≥2) ⊃U (≥2)
≤e by Lemma 5.10. Let

ε = deg ρ( f )= α2+ · · ·+αn + b2.

Case 1. Suppose ρ(F) ⊂ ⊎e+a2
j=ε U (2)

j and #F + #M (2) \⊎e
j=ε U (2)

j ≤ #U (2)
≤e+a2

.

Observe that M (2) ⊃⊎e
j=ε U (2)

j . Let P be the super-revlex set with

#P = #M (2) \
e⊎

j=ε
U (2)

j ,

and let Q ⊂U (2) be the super-revlex set with #Q = #F+#M (2) \⊎e
j=ε U (2)

j . Since

ρ(F) is an upper revlex set of degree e+ a2 and M (2) \⊎e
j=ε U (2)

j is revlex, by
Corollaries 4.5 and 4.6, we have

m(Q)� m(P)+m
(
ρ(F)

)� m
(

M (2) \
e⊎

j=ε
U (2)

j

)
+m(F) (7)

(see the first two steps in Figure 1).
Observe that Q ⊂U (2)

≤e+a2
since #Q ≤ #U (2)

≤e+a2
by the assumption of Case 1. Let

U ′ =U (2) ]⊎t
i=3 U (i)[−a2]. Since M (≥3)[−a2] ⊃U (≥3)

≤e [−a2] =U ′(≥3)
≤e+a2

,

Q ]M (≥3)[−a2] ⊂U ′

is a ladder set in U ′ (see the third step in Figure 1).
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P

ρ(F)

F

M \ U (2)
[ǫ,e]

Q Q

Y Y

U (1)
≤e−1 U (1)

≤e−1

U (1)
≤e−1U (1)

≤e−1

U (1)
≤e−1 U (1)

≤e−1

M (≥3) M (≥3)

M (≥3)

M (≥3)[−a2]

U (1)
≤e−1 ⊎ ρ(F) ⊎ P ⊎ M (≥3)

U (1)
≤e−1 ⊎ Q ⊎ M (≥3) U (1)

≤e−1 ⊎ Q ⊎ M (≥3)[−a2]

⇒

⇒⇒

ρ(H)

X

U (1)
≤e−1 ⊎ X U (1)

≤e−1 ⊎ (

ρ(H) ⊎ U (2)
≤ǫ−1

)⊎ Y

⇒ ⇒

⇒ H

U (1)
≤e−1

Y [+a2]

U (1)
≤e−1 ⊎ H ⊎ U (2)

≤ǫ−1 ⊎ Y [+a2]

Figure 1. Some steps in the proof of Proposition 6.3 in the case
when f 6= xe−b1−1

1 e1. See bottom of previous page and middle and
bottom of page 1047.



1046 Giulio Caviglia and Satoshi Murai

Let g be the largest admissible monomial in U (2)
≤e+a2

over U ′ with respect to>dlex

satisfying
#{h ∈U ′ : h ≤dlex g} ≤ #Q ]M[−a2](≥3).

By the induction hypothesis, there exists Y ⊂U ′(≥3) such that

X = {h ∈U (2) : h ≤dlex g} ] Y ⊂U ′

is a ladder set in U ′ and
X � Q ]M (≥3). (8)

Lemma 6.5. Let d = e+ a2− ε. Then g ≥lex xd
2ρ( f ).

Proof. Consider
L = {h ∈U : h ≤dlex f }.

Then #M ≥ #L and L(≥2) = U (≥2)
≤e . Thus L(2) \⊎e

j=ε U (2)
j = U (2)

≤ε−1. Let F ′ =
L(1)e = [ f, xe−b1

n e1]. Then ρ(F ′)= [ρ( f ), xε−b2
n e2] ]⊎e+a2

j=ε+1 U (2)
j . Also, ρ(F ′) is

disjoint from L(2) \⊎e
j=ε U (2)

j and

m
(
ρ(F ′)]

(
L(2) \

e⊎
j=ε

U (2)
j

))
= m

(
U (2)
≤e+a2

\ [xε−b2
2 e2, ρ( f )

))
= m

(
U (2)
≤e+a2

\ [xe+a2−b2
2 e2, xd

2ρ( f )
))
.

Let

R =U (2)
≤e+a2

\ [xe+a2−b2
2 e2, xd

2ρ( f )
)=U (2)

≤e+a2−1 ]
[
xd

2ρ( f ), xe+a2−b2
n e2

]
(see figure).

ρ(F ′)

U (1)
≤ǫ−1

U (1)
≤ǫ−1 ⊎ ρ(F ′) R

R
⇒

Then R ] L(≥3)[−a2] ⊂U ′ is a ladder set in U ′ and xd
2ρ( f ) is admissible over U ′

by Lemma 5.9. On the other hand,

#R ] L(≥3) = #L − #U (1)
≤e−1− #

e⊎
j=ε

U (2)
j ≤ #M − #U (1)

≤e−1− #
e⊎

j=ε
U (2)

j = #X.
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Since xd
2ρ( f ) is admissible over U ′ and since R ] L(≥3)[−a2] = {h ∈U ′ : h ≤dlex

xd
2ρ( f )}, by the choice of g, we have

g ≥lex xd
2ρ( f )

as desired. �

By Lemma 6.5, g is divisible by xd
2 . Let H ⊂U (1)

e be the revlex set such that

ρ(H)=
e+a2⊎
j=ε

U (2)
j \ x−d

2

[
xe+a2−b2

2 e2, g
)
.

Then by Lemma 4.3

m(H)+m
(
U (2)
≤ε−1

)� m
(
U (2)
≤e+a2

\ [xe+a2−b2
2 e2, g)

)= m
(
X (2)). (9)

Let
N = (U (1)

≤e−1 ] H
)]U (2)

≤e ] Y [+a2] ⊂U.

Since X is a ladder set, Y ⊃U ′(≥3)
≤e+a2

and Y [+a2] ⊃U (≥3)
≤e . Thus N is a ladder set

in U . We claim that N satisfies the desired conditions.
A routine computation shows

#M \
e⊎

j=ε
U (2)

j = #U (1)
≤e−1 ] Q ]M (≥3) = #U (1)

≤e−1 ] X = #N \
e⊎

j=ε
U (2)

j

(see Figure 1). Thus #N = #M . Let µ=max>lex H . Then xd
2ρ(µ)= g. We claim

that µ = f . Since g ≥lex xd
2ρ( f ), µ ≥lex f . Since g is admissible over U ′, µ

is admissible over U by Lemma 5.9 (If t = 2 then Lemma 5.9 is not applicable;
however, if t = 2 then any monomial h ∈U (1)

e with h>lex f is admissible). However,
since #N = #M and N ⊃ {h ∈U : h ≤dlex µ}, by the choice of f , we have f = µ.

It remains to prove N � M . This follows from (7), (8), and (9) as follows:

M \
e⊎

j=ε
U (2)

j =
(
U (1)
≤e−1 ] F

)](M (2) \
e⊎

j=ε
U (2)

j

)
]M (≥3)

�U (1)
≤e−1 ] Q ]M (≥3)

�U (1)
≤e−1 ] X

� (
U (1)
≤e−1 ] H

)]U (2)
≤ε−1 ] Y [+a2] = N \

e⊎
j=ε

U (2)
j

(see Figure 1).
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Case 2. Suppose ρ(F)⊂⊎e+a2
j=ε U (2)

j and #F + #M (2) \⊎e
j=ε U (2)

j > #U (2)
≤e+a2

.

Lemma 6.6. We have f = xα1
1 xα2

2 e1; that is, α3 = · · · = αn = 0.

Proof. Suppose f 6= xα1
1 xα2

2 e1. Let g = xα1
1 xα2+α3+···+αn

2 e1. Then g >dlex f is
admissible over U by the definition of admissibility. Also,

#M < #{h ∈U : h ≤dlex g} = #
(
U (1)
≤e−1 ] [g, xe−b1

n ]e1
)]U (2)

≤e ]U (≥3)
≤e .

Since ρ([g, xe−b1
n e1])=⊎e+a2

i=ε U (2)
i and M (≥3) ⊃U (≥3)

≤e ,

#F + #
(

M (2) \
e⊎

j=ε
U (2)

j

)
= (#M − #U (1)

≤e−1− #M (≥3))− #
e⊎

j=ε
U (2)

j

< #[g, xe−b1
n e1] + #U (2)

≤e − #
e⊎

j=ε
U (2)

j = #U (2)
≤e+a2

,

which contradicts the assumption of Case 2. Thus f = xα1
1 xα2

2 e1. �

Lemma 6.6 says that ρ( f )= xε−b2
2 e2. In particular, ρ([ f, xe−b1

n e1])=⋃e+a2
j=ε U (2)

j .
Let

H =
e+a2⊎
j=ε

U (2)
j \ ρ(F)

(see figure).

H

ρ(F)

F

H

Since ρ(F) is an upper revlex set of degree e+ a2, H is a lower lex set of degree
ε. Also, since #F + #M (2) > #U (2)

≤e+a2
, ρ(F) ∪ M (2) ⊃ U (≥2)

≤e+a2
by (A2). Thus

M (2) ⊃ H .
Let R be the super-revlex set in U (2) with #R = #M (2) \ H . Since M (2) \ H is

revlex, by Corollary 4.6 we have

R� M (2) \ H. (10)

Then since #R ≤ #M (2),
R ]M (≥3) ⊂U (≥2)

is a ladder set (see the third picture in Figure 2).
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M

f f⇒H
F

ff ⇒⇒

{h ∈ U (1) : h ≤dlex f } ⊎ R ⊎ M (≥3) N = {h ∈ U (1) : h ≤dlex f } ⊎ Y

Y

U (1)
≤e−1U (1)

≤e−1

U (1)
≤e−1 U (1)

≤e−1

M (≥3)

M (≥3) M (≥3)

{h ∈ U (1) : h ≤dlex f } ⊎ (M (2) \ H) ⊎ M (≥3)

R

Figure 2. Toward the proof of Case 2.

Let Y ⊂ U (≥2) be the extremal set in U (≥2) with #Y = #R ]M (≥3). We claim
that

N = {h ∈U (1) : h ≤dlex f } ] Y

satisfies the desired conditions. Indeed, we have

M = (U (1)
≤e−1 ] F ] H

)] (M (2) \ H)]M (≥3)

� (
U (1)
≤e−1 ] [ f, xe−b1

n e1]
)] R ]M (≥3)

� {h ∈U (1) : h ≤dlex f } ] Y = N

(see Figure 2) since ρ(F)] H =⊎e+a2
j=ε U (2)

j = ρ([ f, xe−b1
n e2]), by (10).

It remains to prove that N is a ladder set. Since

#Y = #M − #{h ∈U (1) : h ≤dlex f } ≥ #U (≥2)
≤e

by the choice of f , we have Y ⊃U (≥2)
≤e by Lemma 5.10. This fact guarantees that

N is a ladder set.

Case 3. Suppose ρ(F) 6⊂⊎e+a2
j=ε U (2)

j . Then ρ(F) properly contains
⊎e+a2

j=ε U (2)
j

since ρ(F) is an upper revlex set of degree e+a2. In particular, F properly contains
[ f, xe−b1

n e1]. We claim:

Lemma 6.7. We have f = xα1
1 xα2

2 e1 and α2 6= 0.
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Proof. If αk 6= 0 for some k ≥ 3 then xα1
1 xα2+···+αn

2 e1 >dlex f is admissible over U .
Then by the choice of f , F ⊂ [xα1

1 xα2+···+αn
2 e1, xe−b1

n e1] and

ρ(F)⊂ ρ([xα1
1 xα2+···+αn

2 e1, xe−b1
n e1]

)= e+a2⊎
j=ε

U (2)
j ,

a contradiction. Also, if α2 = 0 then ε = deg ρ( f )= 0 which implies

ρ(F)⊂ ρ(U (1)
e )=U (2)

≤e+a2
=

e+a2⊎
j=ε

U (2)
j ,

a contradiction. �

Recall ε = deg ρ( f ). Thus α2 = ε− b2 by Lemma 6.7. Let

H = {h ∈ F : h >lex f }
and

g =max
>lex

H.

By the choice of f , H contains no admissible monomials over U . By Lemma 6.7,
ρ(F \ H) = ⊎e+a2

j=ε U (2)
j . Hence H 6= ∅ by the assumption of Case 3. Since

xα1+1
1 xα2−1

2 e1 is admissible over U ,

ρ(H)⊂ ρ([xα1+1
1 xα2−1

2 e1, xα1
1 xα2

2 e1)
)=U (2)

ε−1

is revlex. Also, ε− 1> b2 since U (2)
b2
= {e2} and H 6=∅.

If t = 2 then any monomial h ∈U (1)
e with h >lex f is admissible, which implies

H =∅. Thus we may assume t ≥ 3.
To prove the statement, it is enough to prove that there exists an extremal set

Z ⊂U (≥3) such that
Z � H ]M (≥3). (11)

Indeed, if such a Z exists then N = (M (1) \ H) ] M (2) ] Z satisfies the desired
conditions. Recall that ε ≤ e+ 1 by the definition of admissibility.

Subcase 3-1. Suppose a3 ≥ e− (ε− 1).
Let d = e− (ε− 1). We consider

U ′ =U (2) ]
t⊎

i=3

U (i)[+d].

This set is well-defined since a3 ≥ d . Recall ρ(H)⊂U (2)
ε−1. Let

Y = ρ(H)]U (2)
≤ε−2 ]M (≥3)[+d]
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(see figure).

M (≥3)

ρ(H)
M (≥3)[+d]ρ(H)

U (2)
≤ǫ−2

ρ(H) ⊎ U (2)
≤ǫ−2 ⊎ M (≥3) Y

⇒

U (2)
≤ǫ−2

Then Y is a ladder set since M (≥3) ⊃ U (≥3)
≤ε−1+d = U (≥3)

≤e . Also, U (2)
≤ε−2 6= ∅ since

ε− 1> b2.
Let µ ∈ U (2)

≤ε−1 be the largest admissible monomial in U (2)
≤ε−1 over U ′ with

respect to >dlex satisfying #{h ∈U ′ : h ≤dlex µ} ≤ #Y . Then since we assume that
Proposition 6.3 is true for U ′, there exists an extremal set Z ⊂U ′(≥3) such that

Y � {h ∈U (2) : h ≤dlex µ} ] Z .

To prove (11), it is enough to prove {h ∈U (2) : h ≤dlex µ} =U (2)
≤ε−2; in other words:

Lemma 6.8. µ= xε−2−b2
2 e2.

Proof. Recall that U (2)
≤ε−2 6=∅. It is enough to prove that degµ 6= ε−1. Suppose to

the contrary that degµ= ε− 1. Let µ′ ∈U (1)
e be a monomial such that ρ(µ′)= µ.

Then µ′ is admissible over U by Lemma 5.9. Also,

#Y − #U (2)
≤ε−2 ≥ #[µ, xε−1−b2

n e2] + #U ′(≥3)
≤ε−1 = #[µ, xε−1−b2

n e2] + #U (≥3)
≤e .

Since #M (≥3) + #H = #Y − #U (2)
≤ε−2 and since ρ

([µ′, f )
) = [µ, xε−1−b2

n e2], we
have

#M = #(M \ H)]M (2) ] H ]M (≥3)

≥ #(M \ H)]U (2)
≤e + #[µ, xε−1−b2

n e2] ] Z

≥ #[µ′, f )] (M \ H)]U (≥2)
≤e = #{h ∈U : h ≤dlex µ

′},
which contradicts the maximality of f since µ′ >lex g >lex f and µ′ is admissible
over U . �

Subcase 3-2. Suppose a3 < e− (ε− 1). We consider

X = xe−(ε−1)
2 ρ(H)⊂U (2)

e ,

as illustrated at the top of the next page.
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M

H XH

X

Let
Y = {h ∈U (2) : h ≤dlex xe−(ε−1)

2 ρ(g)
}]M (≥3),

as on the left part of the figure:

M (≥3)
X

Y

Z

W

⇒
g′ µ

Further, let
g′ =max

>dlex
(Y (2) \ X).

Since e− (ε− 1) > a3, e− (ε− 1)≥ 1. Thus

g′ = xe−(ε−1)−1
2 xε−b2

3 e2

and
Y (2) = X ] {h ∈U (2) : h ≤dlex g′}.

Since a3 < e− (ε− 1), deg ρ(g′)= ε+ a3 ≤ e. Thus g′ is admissible over U (≥2).
Let µ be the largest admissible monomial in U (2)

≤e over U (≥2) with respect to
>dlex with #{h ∈U (≥2) : h ≤dlex µ} ≤ #Y . Since Lemma 5.9 says that X contains
no admissible monomials over U (≥2),

µ≥dlex g′ and µ 6∈ X.

Since we assume that Proposition 6.3 is true for U (≥2), there exists an extremal set
Z ⊂U (≥3) such that

W = {h ∈U (2) : h ≤dlex µ} ] Z

is a ladder set and
W � Y,

as shown in the figure immediately above.
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Lemma 6.9. µ= g′.

Proof. Suppose to the contrary that µ 6= g′. Then µ >dlex g′ and

W = [µ, xe−(ε−1)
2 ρ(g)

)] Y (2) ] Z .

Then there exists µ′ ∈U (1)
e such that

xe−(ε−1)
2 ρ(µ′)= µ.

By Lemma 5.9, µ′ is admissible over U and µ′ >lex g >lex f . Observe that

#M (≥3)+ #H = #Z ] [µ, g′)= #Z + #[µ′, f )

by the construction of Y and Z . Since Z ⊃U (≥3)
≤e ,

#M ≥ #(M (1) \ H)] H ]U (2)
≤e ]M (≥3)

= #(M (1) \ H)]U (2)
≤e ] Z ] [µ′, f )

≥ #(M (1) \ H)] [µ′, f )]U (2)
≤e ]U (≥3)

≤e

= #{h ∈U : h ≤dlex µ
′}.

Since µ′ is admissible over U , this contradicts the maximality of f . �

Now
W = {h ∈U (2) : h ≤dlex g′} ] Z

and since W � Y and Y = X ] {h ∈U (2) : h ≤dlex g′} ]M (≥3), we have

m(Z)� m(X ]M (≥3))= m(H ]M (≥3)),

which proves (11). This completes the proof of Proposition 6.3 when f 6= xe−b1−1
1 e1.

Proof of Proposition 6.3 when f = xe−b1−1
1 e1. Let F =M (1)

e . If F =∅ then there
is nothing to prove. Thus we may assume F 6=∅. Then M ⊃U (≥2)

≤e since M is a
ladder set.

Case 1. Suppose a2 = 0. Then deg e1 = deg e2 = b1. Since xe−b1
2 e1 is admissible

over U , xe−b1
2 e1 6∈ F . Indeed, if xe−b1

2 e1 ∈ F then M ⊃ {h ∈U : h ≤dlex xe−b1
2 e1},

which contradicts the maximality of f . Thus

F ⊂ [xe−b1
2 e1, xe−b1

n e1]
and

ρ(F)⊂ ρ([xe−b1
2 e1, xe−b1

n e1]
)=U (2)

e .

Consider
X = ρ(F)]U (2)

≤e−1 ]M (≥3) ⊂U (≥2)
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and let Y ⊂ U (≥2) be the extremal set with #Y = #X . Since X is a ladder set in
U (≥2), by the induction hypothesis we have

Y � X.

Lemma 6.10. Y (2) =U (2)
≤e−1.

Proof. Suppose to the contrary that Y (2) 6= U (2)
≤e−1. Let g = ḡe2 be the largest

admissible monomial in Y (2)≤e over U (≥2) with respect to >dlex. Since X ⊃U (≥2)
≤e−1,

we have Y ⊃U (2)
≤e−1 by Lemma 5.10. Thus deg g = e and Y ⊃U (≥3)

≤e .
Let g′ = ḡe1. Since g = ḡe2 is admissible over U (≥2) and since ρ(g′)= g, g′ is

admissible over U by Lemma 5.9. Observe that #Y = #X ≤ #F + #M (≥2)− #U (2)
e .

Then
#M = #U (1)

≤e−1 ] F ]M (≥2)

≥ #U (1)
≤e−1+ #U (2)

e + #Y

≥ #U (1)
≤e−1+ #U (2)

e + #{h ∈U (≥2) : h ≤dlex g}
= #U (1)

≤e−1+ #U (2)
e + #U (2)

≤e−1 ] [g, xe−b1
n e2] ]U (≥3)

≤e

= #U (1)
≤e−1+ #U (≥2)

≤e + #[g′, xe−b1
n e1]

= #{h ∈U : h ≤dlex g′},
which contradicts the maximality of f . Hence Y (2) =U (2)

≤e−1. �

Then, since Y � X , we have

Y (≥3)� F ]M (≥3). (12)

Let
N =U (1)

≤e−1 ]M (2) ] Y (≥3).

Then N is a ladder set since #Y (≥3) ≥ #M (≥3). Also, N � M by (12). Thus N
satisfies the desired conditions.

Case 2. Suppose a2 > 0. Since deg f 6= e, by Lemma 5.12 we have

#M < #U (1)
≤e . (13)

Hence
#F + #M (2) ≤ #M − #U (1)

≤e−1 < #U (1)
e ≤ #U (2)

≤e+a2
. (14)

Then, by (A2) and (A3), we may assume that ρ(F)∩M (2) =∅, t ≥ 3, and there
exists a d ≥ e such that M (2) =U (2)

≤d and M (3)
d+1 6=U (3)

d+1. Let

A= {ue2 ∈ ρ(F)e+a2 : x (e+a2)−(d+1)
2 divides u and u/x (e+a2)−(d+1)

2 e2 6∈ ρ(F)d+1
}
,

as illustrated in the second picture at the top of the next page.



Upper bounds for Betti numbers of a Hilbert polynomial 1055

M

F

⇒⇒

⇒⇒

⇒

Q

U (1)
≤e−1 ⊎ (M (2) \ A) ⊎ E ⊎ M (≥3)

N = U (1)
≤e−1 ⊎ P ⊎ Q[+a2]

U (1)
≤e−1 U (1)

≤e−1

U (1)
≤e−1U (1)

≤e−1

U (1)
≤e−1 U (1)

≤e−1

M (≥3) M (≥3)

M (≥3)[−a2]

M (≥3)

M (2) M (2)

U (1)
≤e−1 ⊎ (M (2) ⊎ ρ(F)) ⊎ M (≥3)

U (1)
≤e−1 ⊎ (M (2) \ A) ⊎ E ⊎ M (≥3)[−a2]

P P
Q[+a2]

U≤e−1 ⊎ P ⊎ Q

A B

E
B

E
B

Also set

E = x−(e+a2+d+1)
2 A ⊂U (2)

d+1 and B = ρ(F)e+a2 \ A ⊂U (2)
e+a2

.

Subcase 2-1. Suppose #B+ #M (≥3) < #U (2)
e+a2

. Consider

U ′ =U (2) ]
t⊎

i=3

U (i)[−a2].

Since M (≥3)[−a2] ⊃U ′(≥3)
≤e+a2

, by Corollary 5.13 and by the induction hypothesis,
there exists the extremal set Q ⊂U ′(≥3) such that

Q� B ]M (≥3). (15)
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Let P be the super-revlex set in U (2) with #P = #M (2)+#ρ(F) \ B. Then since
ρ(F)≤e+a2−1 ] E is revlex, Corollary 4.6 shows

m
(
M (2) ] ρ(F) \ B

)= m(M (2))+m
(
ρ(F)≤e+a2−1 ] E

)� m(P) (16)

(see the second step in the figure on the previous page). We claim that

N =U (1)
≤e−1 ] P ] Q[+a2] ⊂U

satisfies the desired conditions. Indeed, by (15) and (16),

m(N )� m
(
U (1)
≤e−1 ]M (2) ] (ρ(F) \ B)] (B ]M (≥3))

)= m(M)

(see figure on the previous page).
It remains to prove that N is a ladder set. If ρ(F) \ B =∅ then P = M (2), and

therefore N is a ladder set since #Q ≥ #M (≥3). Suppose ρ(F)\ B 6=∅. Recall that
ρ(F)∩M (2) =∅. Since

#U (2)
≤e ≤ #M (2) ≤ #P = #ρ(F)≤e+a2−1 ] E ]M (2) ≤ #U (2)

≤e+a2−1,

we have
U (2)
≤e ⊂ P ⊂U (2)

≤e+a2−1.

Then by Lemma 5.10 what we must prove is that

#Q ≥ #U (≥3)
≤e+a2−1.

Since #S(i)k =
∑n

j=i #S( j)
k−1 for all i > 0 and k > 0, we have

#U (3)
k ≥

t∑
j=3

#U ( j)
k−1 = #U (≥3)

k−1 (17)

for all k > 0. Since ρ(F) \ B 6=∅, #B = #ρ(F)e+a2 \ A ≥ #U (2)
e+a2
− #U (2)

d+1. Thus

#B ≥ #U (2)
e+a2
− #U (2)

d+1 = #
e+a2⊎

j=d+2

U (3)
j+a3
≥ #

e+a2⊎
j=d+2

U (3)
j ≥

e+a2−1∑
j=d+1

#U (≥3)
j ,

(we use (17) for the last step) and therefore

#Q = #M (≥3)+ #B ≥ #U (≥3)
≤d +

e+a2−1∑
d+1

U (≥3)
j ≥ #U (≥3)

≤e+a2−1

as desired.

Subcase 2-2. Suppose #B+ #M (≥3) ≥ #U (2)
e+a2

.

Lemma 6.11. ρ(F) 6⊃⊎e+a2
j=d+2 U (2)

j .
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Proof. Suppose to the contrary that ρ(F)⊃⊎e+a2
j=d+2 U (2)

j . Then

#ρ(F) \ B = #
(
ρ(F) \ (A] B)

)] E = #
e+a2−1⊎
j=d+1

U (2)
j

by the choice of E . Then #(ρ(F) \ B)]M (2) = #U (2)
≤e+a2−1 and

#M = #U (1)
≤e−1 ] ρ(F)]M (2) ]M (≥3) ≥ #U (1)

≤e−1+ #U (2)
≤e+a2−1+ #U (2)

e+a2
= #U (1)

≤e ,

where we use the assumption #B+#M (≥3) ≥ #U (2)
e+a2

for the second step. However,
this contradicts (13). �

The above lemma says that e+ a2 ≥ d + 2 and ρ(F)d+1 =∅. Thus B does not
contain any monomial ue2 such that u is divisible by x (e+a2)−(d+1)

2 . Hence

ρ(B)⊂
e+a2+a3⊎

j=d+2+a3

U (3)
j . (18)

Since M (3)
d+1 6=U (3)

d+1, by Lemma 5.15,

#M (≥3) < #U (3)
≤d+2.

Lemma 6.12. a3 = 0.

Proof. If a3 > 0 then

#B+ #M (≥3) < #
e+a2+a3⊎

j=d+2+a3

U (3)
j + #U (3)

≤d+2 ≤U (3)
≤e+a2+a3

= #U (2)
e+a2

,

which contradicts the assumption of Subcase 2-2. �

Let
H = {h ∈U (≥3)

d+1 : h 6∈ M (≥3)}
(see figure).

H

M
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By Lemma 5.15,
#H + #M (≥3) < #U (3)

≤d+2.

Since a3 = 0, by the assumption of Subcase 2-2,

#B ≥ #U (2)
e+a2
− #M (≥3) = #U (3)

≤e+a2
− #M (≥3) > #H + #

e+a2⊎
j=d+3

U (3)
j .

Let
B = I ] J ]G,

where I is the set of lex-largest #H monomials in B and G is the revlex set with
ρ(G)=⊎e+a2

j=d+3 U (3)
j (see figure):

I J G

H

B ⊎ M (≥3)

Since a3 = 0, (18) says ρ(B)⊂⊎e+a2
j=d+2 U (2)

j . Hence ρ(I )⊂U (3)
d+2. Let C ⊂U (3)

d+2
be the lex set in U (3)

d+2 with #C = #H . If we regard U (≥3) as a universal lex ideal in
K [x3, . . . , xn], then H and C are lex sets in K [x3, . . . , xn]with the same cardinality.
Hence C = x3 H . Then, by the interval lemma,

m(H)= m(C)� m(ρ(I ))= m(I ). (19)

Let P ⊂ U (2) be the super-revlex set with #P = #A + #J + #M (2). By the
choice of G, G is the set of all monomials ue2 ∈ ρ(F) such that u is not divisible
by xe+a2−(d+2)

2 . Also, since B does not contain any monomial ue2 such that u is
divisible by xe+a2−(d+1)

2 , any monomial in J is divisible by xe+a2−(d+2)
2 e2. Then

x−(e+a2)+d+2
2 J ⊂U (2)

d+2 is a revlex set. Since M (2)]E](x−(e+a2)+(d+2)
2 J ) is revlex,

we have

m(P)� m
(
M (2) ] E ] x−(e+a2)+(d+1)

2 J
)= m

(
M (2) ] A] J

)
. (20)

JA J

M (2) ⊎ A ⊎ J M (2) ⊎ E ⊎ J M (2) ⊎ E ⊎ x−(e+a2)+d+2
2 J P

⇒⇒⇒ E E

M (2)M (2)M (2)
P
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Let
Q = ρ(F) \ (A] B)= ρ(F)≤e+a2−1.

Subcase 2-2-a. Suppose that #P + #Q ≤ #U (2)
≤e+a2−1. Let R ⊂ U (2) be the super-

revlex set with #R = #P + #Q. Then since Q is an upper revlex set of degree
e+ a2− 1, by Corollary 4.5 and (20)

R� P ] Q� M (2) ] A] J ] Q. (21)

On the other hand, by Lemma 5.15,

#H + #M (≥3) < #U (3)
≤d+2.

Then since ρ(G)=⊎e+a2
j=d+3 U (3)

j ,

#I ]G ]M (≥3) = #G ] H ]M (≥3) < #U (3)
≤e+a2

= #U (2)
e+a2

.

Let U ′=U (2)⊎t
i=3 U (i)[−a2]. Observe that M (3)[−a2]⊃U ′(≥3)

≤e+a2
. Then Corollary

5.13 and (19) say that there exists an extremal set Z ⊂U (≥3)[−a2] such that

Z � G ] H ] (M (≥3)[−a2]
)� G ] I ]M (≥3). (22)

I G

H

I ⊎ G ⊎ M (≥3)

G

G ⊎ H ⊎ M (≥3) Z [+a2]

⇒⇒

We claim that
N =U (1)

≤e−1 ] R ] Z [+a2]
satisfies the desired conditions. Indeed, by (21) and (22),

N �U (1)
≤e−1 ] (M (2) ] A] J ] Q)]G ] I ]M (≥3)

�U (1)
≤e−1 ] F ]M (2) ]M (≥3) = M.

(We use ρ(F)= A] I ] J ]G ] Q and m(F)= m(ρ(F)) for the second step.)
It remains to prove that N is a ladder set. Since U (2)

≤d ⊂ R ⊂ U (2)
≤e+a2−1 it is

enough to prove that Z [+a2] ⊃U (≥3)
≤e+a2−1. Since ρ(G)=⊎e+a2

j=d+3 U (3)
j ,

#Z = #(H ]M (≥3) ]G)≥ #U (≥3)
≤d+1 ]

e+a2⊎
j=d+3

U (3)
j ≥ #U (≥3)

≤e+a2−1.
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(We use #U (3)
j ≥#U (≥3)

j−1 for the last step.) Then Z [+a2]⊃U (≥3)
≤e+a2−1 by Lemma 5.10

as desired.

Subcase 2-2-b. Suppose that #P + #Q > #U (2)
≤e+a2−1. Note that

#P + #Q+ #I + #G = #F + #M (2).

Then #M (2)]F > #U (2)
≤e+a2−1. Let R be the super-revlex set with #R= #M (2)+#F .

Then #R = #M (2) + #F ≤ #U (2)
≤e+a2

by (14). Since #R ≥ #P + #Q > U (2)
≤e+a2−1,

there exists a revlex set B ′ ⊂U (2)
e+a2

such that

R =U (2)
≤e+a2−1 ] B ′.

Also by Corollary 4.5,

B ′ ]U (2)
≤e+a2−1 = R� M (2) ] ρ(F). (23)

Since #F + #M (≥2) < #U (2)
≤e+a2

, we have #B ′ + #M (≥3) < #U (2)
e+a2

. Then by
Corollary 5.13 there exists the extremal set Z ⊂U (≥3)[−a2] such that

B ′ ] (M (≥3)[−a2])� Z . (24)

We claim that
N =U (1)

≤e−1 ]U (2)
≤e+a2−1 ] Z [+a2]

satisfies the desired conditions.
By (23) and (24),

N �U (1)
≤e−1 ]U (2)

≤e+a2−1 ] B ′ ]M (≥3)�U (1)
≤e−1 ] F ]M (2) ]M (≥3) = M.

M U (1)
≤e−1 ⊎ ρ(F) ⊎ M (≥2)

U (1)
≤e−1 ⊎ R ⊎ M (≥3) N = U (1)

≤e−1 ⊎ U (2)
≤e+a2−1 ⊎ Z [+a2]

U (1)
≤e−1

M (2) M (≥3)

U (1)
≤e−1

M (≥3)U (2)
≤e+a2−1

B ′

U (1)
≤e−1

U (2)
≤e+a2−1 Z [+a2]

ρ(F)

⇒

⇒⇒

F

U (1)
≤e−1

M (2) M (≥3)
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It remains to prove that N is a ladder set. What we must prove is:

Z [+a2] ⊃U (≥3)
≤e+a2−1.

By the assumption of Subcase 2-2-b,

#M (2)+ #F − #(I ]G)= #Q+ #P > #U (2)
≤e+a2−1.

Then
#B ′ = #M (2)+ #F − #U (2)

≤e+a2−1 > #I ]G.

Then in the same way as the computation of #Z in Subcase 2-2-a, we have

#Z = #M (≥3) ] B ′ ≥ #M (≥3) ] (I ]G)≥ #U (≥3)
≤e+a2−1.

Then by Lemma 5.10, Z [+a2] ⊃U (≥3)
≤e+a2−1 as desired.

7. Examples

In this section, we give some examples of saturated graded ideals which attain
maximal Betti numbers for a fixed Hilbert polynomial. Observe that, by the decom-
position given before Definition 3.7, the Hilbert polynomial of a proper universal
lex ideal I = (δ1, δ2, . . . , δt) is given by

HI (t)=
(

t − b1+ n− 1
n− 1

)
+
(

t − b2+ n− 2
n− 2

)
+ · · ·+

(
t − bt + n− t

n− t

)
,

where bi = deg δi for i = 1, 2, . . . , t .

Example 7.1. Let S = K [x1, . . . , x4] and S = K [x1, . . . , x3]. Consider the ideal
I = (x3

1 , x2
1 x2, x1x2

2 , x3
2 , x2

1 x3)⊂ S. Then

HI (t)= 1
6 t3+ t2− 19

6 t + 1=
(

t + 2
3

)
+
(

t − 4
2

)
+
(

t − 9
1

)
and the proper universal lex ideal with the same Hilbert polynomial as I is

L = (x1, x6
2 , x5

2 x5
3).

Let
U = sat L̄ = (L̄ : x∞3 )= (x1, x5

2)⊂ S

and c = dimK U/L̄ = 5. Then the extremal set M ⊂U with #M = 5 is

M = x1{1, x1, x2, x3} ] x5
2{1}.

Then the ideal in S generated by all monomials in U \M is

J = x1(x2
1 , x1x2, x1x3, x2

2 , x2x3, x2
3)+ x5

2(x2, x3)⊂ S,
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and J has the largest total Betti numbers among all saturated graded ideals in S
having the same Hilbert polynomial as I .

Example 7.2. Let S = K [x1, . . . , x5] and S = K [x1, . . . , x4]. Consider the ideal
I = (x1, x2

2 , x2x3
3 , x2x2

3 x15
4 ). Then I is a proper universal lex ideal. Let

U = sat Ī = ( Ī : x∞4 )= (x1, x2
2 , x2x2

3)⊂ S

and c = dim U/ Ī = 15. Then the extremal set M ⊂U with #M = 15 is

M = x1{1, x1, x2, x3, x4, x2x3, x2x4, x2
3 , x3x4, x2

4} ] x2
2{1, x2, x3, x4} ] x2x2

3{1}.
Then the ideal in S generated by all monomials in U \M is

J =x1(x2
1 , x1x2, x1x3, x1x4, x2

2 , x2x2
3 , x2x3x4, x2x2

4 , x3
3 , x2

3 x4, x3x2
4 , x3

4)

+ x2
2(x

2
2 , x2x3, x2x4, x2

3 , x3x4, x2
4)+ x2x2

3(x3, x4)

and J has the largest total Betti numbers among all saturated graded ideals in S
having the same Hilbert polynomial as I .

Finally, we give an explicit formula of the bounds in Theorem 1.1 for one special
case. For positive integers a and d, let

a =
(

ad + d
d

)
+
(

ad−1+ d − 1
d − 1

)
+ · · ·+

(
at + t

t

)
be the d-th binomial representation of a. Thus ad , . . . , at are integers satisfying
ad ≥ ad−1 ≥ · · · ≥ at ≥ 0 with t ≥ 1. We define

a〈d〉 =
(

ad − 1+ d
d

)
+
(

ad−1− 1+ d − 1
d − 1

)
+ · · ·+

(
at − 1+ t

t

)
.

Also, for k = 0, 1, . . . , n−1, we inductively define a〈d,k〉 by a〈d,0〉 = a and a〈d,k〉 =
(a〈d,k−1〉)〈d〉 for k ≥ 1, where 0〈d〉 = 0. The following formula is due to Valla [1994,
Proposition 5]:

Lemma 7.3. Let c be a positive integer, M ⊂ S the super-revlex set with #M = c,
and let J ⊂ S be the ideal generated by all monomials which are not in M. Let e be
the unique integer such that

(e−1+n
n

)≤ c <
(e+n

n

)
and let r = c− (e−1+n

n

)
. Then, for

i ≥ 1, one has

βS
i (S/J )=

(
e+ i − 2

e− 1

)(
e+ n− 1
i + e− 1

)
+

n−1∑
k=1

(
k

i − 1

)
r〈e,n−k〉. (25)

The right-hand side of (25) only depends on c, n, and i . Thus we denote it by
Bi (c, n).
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Let b and c be positive integers. Consider the polynomial

p(t)=
(

t − b+ n− 1
n− 1

)
+ · · ·+

(
t − b+ 2

2

)
+
(

t − b− c+ 2
1

)
. (26)

The universal lex ideal having the Hilbert polynomial (26) is

L = (xb
1 , . . . , xb−1

1 xn−2, xb−1
1 xc

n−1).

Then U = sat L̄ = (xb−1
1 ) and dimK (sat L̄)/L̄ = c. In this case, an ideal which

attains the bound in Theorem 1.1 was considered in Example 5.4. Let M ⊂ S̄ =
K [x1, . . . , xn−1] be the super-revlex set with #M = c and let J ⊂ S be the ideal
generated by all monomials in S̄ which are not in M . Then the ideal L = xb−1

1 J
attains the bound. In particular, by Lemma 7.3, we have:

Proposition 7.4. Let I ⊂ S be a saturated graded ideal whose Hilbert polynomial
is of the form (26). Then βS

i (S/I )≤ Bi (c, n− 1) for all i ≥ 1.

Remark 7.5. When b = 1, the above proposition is the result of Valla [1994] who
considered the case when the Hilbert polynomial of S/I is constant. Indeed, if
PS/I (t) is equal to a constant number c then

PI (t)=
(

t+n−1
n−1

)
−c =

(
t−1+n−1

n−1

)
+ · · ·+

(
t−1+2

2

)
+
(

t−1−c+2
1

)
.
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