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Some consequences of a formula of Mazur
and Rubin for arithmetic local constants

Jan Nekovář

We prove a very general case of the parity conjecture for Selmer groups of elliptic
curves over totally real fields, as well as slightly less general results for classical
modular forms, Hilbert modular forms of parallel weight two and for abelian
varieties with real multiplication.

The main results of this article are the following two instances of the parity
conjecture for Selmer groups (see [Nekovář 2006, Section 12.1] for a general
discussion of this conjecture). Along the way we also prove slightly weaker results
for Hilbert modular forms of parallel weight two with trivial character (Theorems 1.4
and 3.5) and for abelian varieties with real multiplication (Theorem 4.3).

Theorem A. Let E be an elliptic curve over a totally real number field F and let p
be a prime number. The p-Selmer rank of E over F

sp(E/F) := rkZ E(F)+ corkZp X(E/F)[p∞]

(which is also equal to the dimension dimQp H 1
f (F, Vp(E)) of the Bloch–Kato

Selmer group [Bloch and Kato 1990, Definition 5.1] of the Galois representation
Vp(E)= Tp(E)⊗Zp Qp over F) and the analytic rank of E over F

ran(E/F) := ords=1 L(E/F, s)

satisfy
sp(E/F)≡ ran(E/F) (mod 2)

in each of the following cases:

(1) E does not have complex multiplication,

(2) E has complex multiplication and 2 - [F :Q], and

(3) E has complex multiplication by an imaginary quadratic field K ′ and p splits
in K ′/Q.
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Note that potential modularity of E [Wintenberger 2009, Theorem A.1] implies
that the L-function L(E/F, s) has a meromorphic continuation to C and satisfies
the expected functional equation [Taylor 2002, proof of Corollary 2.2; Nekovář
2006, 12.11.6]. As a result, the integer ords=1 L(E/F, s) ∈ Z is well defined.

Various special cases of Theorem A (for F 6=Q) were proved in [Nekovář 2006;
Kim 2009; Nekovář 2009].

If the p-primary part of X(E/F) is finite for some prime number p, then
sp(E/F)= rkZ E(F) and the statement of Theorem A is the conjecture of Birch
and Swinnerton-Dyer for E over F modulo 2.

Theorem B. Let g =
∑
∞

n=1 anqn
∈ S2r (00(N )) for r ≥ 1 be a normalised (a1 = 1)

newform, and let L =Q(a1, a2, . . .) be the (totally real) number field generated by
its coefficients. For any prime p of L above a rational prime p 6= 2, denote by Vp(g)
the two-dimensional representation of GQ = Gal(Q/Q) over Lp attached to g:

det(1− X Frgeom(l) | Vp(g))= 1− al X + l2r−1 X2, for all l - pN .

In the case when r > 1, assume that the residual representation of Vp(g) is irre-
ducible. Then

dimLp H 1
f (Q, Vp(g)(r))≡ ords=r L(g, s) (mod 2).

If g is (the newform associated to) a twist of a p-ordinary eigenform, Theorem B
was proved in [Nekovář 2006, Theorem 12.2.3], even for p = 2 and without the
assumption on the residual representation.

The proofs of Theorems A and B combine the techniques developed in [Nekovář
2001; 2006; 2007a; 2007b; 2008; 2009] and [Aflalo and Nekovář 2010] — namely,
a combination of suitable relative parity results involving two Selmer groups with
an Euler system argument [Nekovář 2007a] applied to a nontrivial Euler system
[Cornut and Vatsal 2007; Aflalo and Nekovář 2010] — with a formula of Mazur and
Rubin [2007, Theorem 1.4]. This formula expresses the difference of the parities
of ranks of Selmer groups corresponding to two self-dual Selmer structures on a
given finite (self-dual) Galois module as a finite sum of terms depending on purely
local data at a finite set of (finite) primes. In a motivic setting, when the two Selmer
structures are obtained by propagation from the Bloch–Kato Selmer structures for
two self-dual geometric Galois representations that are congruent modulo a prime
ideal dividing p, these local terms are expected to mirror the local ε-factors of
the corresponding L-functions. Unfortunately, such a relation to ε-factors remains
conjectural (in the required generality) even in the fairly simple situation relevant to
us, when the two Galois representations come from two congruent Hilbert modular
forms of parallel weight (as in Section 3). This means that we do not have at our
disposal appropriate relative parity results in the generality we desire. To get around
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this problem we apply the formula of Mazur and Rubin in two different global
situations for which the local data agree. We obtain a “birelative” global result
(Theorem 2.2) for the parities of ranks of four different Selmer groups. If we are
able to control three of them (in our case, Theorem 1.4 applies to two of them and
the auxiliary global situation is chosen in such a way that the third Selmer group is
trivial, by an application of another Euler system argument [Kato 2004; Nekovář
2012]), the sought-for parity result for the remaining Selmer group follows. Note
that the formula of Mazur and Rubin is used in the proofs of both Theorems 1.1
(on which Theorem 1.4 relies) and 2.2. This program is carried out for Hilbert
modular forms in Section 3; the results for abelian varieties with real multiplication
are deduced in Section 4. The assumptions on E in Theorem A come from an
application of [Nekovář 2012, corollary of Theorem B′].

Notation and conventions

All representations (in particular, characters) of various Galois groups are assumed to
be continuous. Given a number field F , a choice of an embedding F ↪→ Fv , for each
prime v of F , identifies G Fv = Gal(Fv/Fv) with a subgroup of G F = Gal(F/F).
For each representation V of G F , we denote by Vv its restriction to G Fv . Denote by
S∞ the set of all archimedean primes of F , and by Sp the set of all primes above a
rational prime p of F . For any R[G]-module M and a character χ : G→ R× we
denote by M (χ)

= {m ∈ M | g(m)= χ(g)m for all g ∈ G} the χ -eigenspace for the
action of G on M .

1. A parity result for Hilbert modular
forms of parallel weight two

Theorem 1.1 (an abstract cohomological version of the case S=∅ of [Mazur and
Rubin 2007, Theorem 7.1]). Let F be a number field, and let V be a geometric
representation (in the sense of Fontaine and Mazur) of G F with coefficients in a
finite extension K of Qp, where p 6= 2. Assume that

(1) there exists a nondegenerate skew-symmetric G F -equivariant bilinear pairing
〈 · , · 〉 : V × V → K(1) and

(2) after possibly multiplying 〈 · , · 〉 by an element of K×, there exists a G F -stable
OK-lattice T ⊂ V that is self-dual (that is, for which the rescaled pairing
defines an isomorphism T ∼→ T ∗(1)). (This is automatic if dimK(V )= 2, for
any T .)

Let K/F be a quadratic extension, and let K ′ be a cyclic extension of K of p-power
order, dihedral over F. Assume that no finite prime of K stable under Gal(K/F)
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ramifies in K ′/K . Then, for each character χ : Gal(K ′/K )→ K×,

dimK H 1
f (K

′, V )(χ
±1)
− dimK H 0(K ′, V )(χ

±1)

≡ dimK H 1
f (K , V )− dimK H 0(K , V ) (mod 2).

Proof. Fix a finite set S of primes of F containing S∞ ∪ Sp such that V is
unramified outside S. Fix a uniformiser t ∈ O = OK and denote by k = O/tO

the residue field of K. The K-subspaces H 1
f (Fv, V ) ⊂ H 1(Fv, V ) for v 6∈ S∞

define, by propagation [Mazur and Rubin 2004, Example 1.1.2], a Selmer structure
H 1

f (Fv, X) ⊂ H 1(Fv, X) on each X = T , V/T , T/tnT , T = T/tT , which is
cartesian on {T/tnT }n≤∞ [Mazur and Rubin 2004, Lemma 3.7.1]. The exact
sequences

0→ H 0(F, V/T )⊗O k→ H 1
f (F, T )→ H 1

f (F, V/T )[t] → 0,

0→ H 0(Fv, T )⊗O k→ H 0(Fv, T )→ H 1
f (Fv, T )[t] → 0

imply that

dimk H 1
f (F, V/T )[t] − dimK H 0(F, V )

= dimk H 1
f (F, T )− dimk H 0(F, T ), (1.1.1)

and

dimk(H 1
f (Fv, T )= H 1

f (Fv, T )⊗O k)

= dimk H 0(Fv, T )+ dimK H 1
f (Fv, V )− dimK H 0(Fv, V ). (1.1.2)

So far we have not used the assumptions (1) and (2) of the theorem, but we are
going to do it now. The existence of a nondegenerate skew-symmetric bilinear
pairing on H 1

f (F, V/T )/(H 1
f (F, T )⊗O K/O) with values in K/O constructed in

[Flach 1990] (taking into account [Bloch and Kato 1990, Proposition 3.8]) implies
that

dimK H 1
f (F, V )= corkO (H 1

f (F, T )⊗O K/O)≡ dimk H 1
f (F, V/T )[t] (mod 2);

we deduce from (1.1.1) that

dimK H 1
f (F, V )− dimK H 0(F, V )

≡ dimk H 1
f (F, T )− dimk H 0(F, T ) (mod 2). (1.1.3)

The induced representation IndGal(K ′/F)
Gal(K ′/K )(χ) has a natural model I [χ ] (free of rank

two) over O, which is equipped with a nondegenerate symmetric G F -equivariant
pairing I [χ ] × I [χ ] → O inducing an isomorphism I [χ ] ∼→ I [χ ]∗. By Shapiro’s
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lemma,

H 1
f (F, V ⊗ I [χ ])= H 1

f (K , V ⊗χ) = (H 1
f (K

′, V )⊗χ)Gal(K ′/K )

= H 1
f (K

′, V )(χ
−1),

H j (F, V ⊗ I [χ ])= H j (K , V ⊗χ)= H j (K ′, V )(χ
−1).

Since I [χ ] ∼→ I [χ−1
], these groups are respectively isomorphic to H 1

f (K
′, V )(χ)

and H j (K ′, V )(χ).
The discussion leading to (1.1.1)–(1.1.3) applies to V ⊗ I [χ ] and the self-dual

lattice T ⊗O I [χ ]. Note there is a canonical identification T ⊗ I [χ ] = T ⊗ I [1],
where we have denoted by “1” the trivial character of Gal(K ′/K ) (this notation,
which occurs only in Theorem 1.1 and Lemma 1.2, should not be confused with
the Tate twist “(1)”). However, the Selmer structures H 1

f,χ (Fv, · ) and H 1
f,1(Fv, · )

on the G F -module T ⊗ I [χ ] = T ⊗ I [1] obtained by propagation of the subspaces
H 1

f (Fv, V⊗ I [χ ])⊂ H 1(Fv, V⊗ I [χ ]) and H 1
f (Fv, V⊗ I [1])⊂ H 1(Fv, V⊗ I [1]),

respectively, are not necessarily the same. The formula [Mazur and Rubin 2007,
Theorem 1.4] applies in our case, since both Selmer structures H 1

f,χ and H 1
f,1 are

self-dual, thanks to [Bloch and Kato 1990, Proposition 3.8]; it yields

dimk H 1
f,χ (F, T ⊗ I [χ ])−dimk H 1

f,1(F, T ⊗ I [1])≡
∑

v∈S−S∞

δv (mod 2), (1.1.4)

where

δv ≡ dimk H 1
f,1(F, T ⊗ I [1])/(H 1

f,1(F, T ⊗ I [1])∩ H 1
f,χ (F, T ⊗ I [χ ])) (mod 2).

Combining (1.1.4) with (1.1.3) for T ⊗O I [χ ] and T ⊗O I [1], we obtain

χ f (K , V ⊗χ)−χ f (K , V )≡
∑

v∈S−S∞

δv (mod 2), (1.1.5)

where we have put

χ f (K ,W ) := dimK H 1
f (K ,W )− dimK H 0(K ,W ). (1.1.6)

To conclude the proof, it remains to prove the following lemma.

Lemma 1.2. Under the assumptions of Theorem 1.1, we have δv ≡ 0 (mod 2) for
all v ∈ S− S∞.

Proof. If there is a unique prime w | v in K , then χw (that is, the restriction of
χ to G Kw

) is unramified by assumption, and therefore trivial [Mazur and Rubin
2007, Lemma 6.5]. It follows that I [χ ]v = I [1]v; hence H 1

f,χ (Fv, T ⊗ I [χ ]) =
H 1

f,1(Fv, T ⊗ I [1]).
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The case when v splits as vOK =ww
′ requires a more detailed argument. In this

case Kw = Fv = Kw′ , I [1]v = 1⊕ 1 and I [χ ]v = χw⊕χ−1
w . As

δv ≡ dimk

( Y ⊕ Y
(Y ∩ Z+)⊕ (Y ∩ Z−)

)
(mod 2),

where

Y = Im(H 1
f (Fv, T )⊗O k ↪→ H 1(Fv, T )),

Z± = Im(H 1
f (Fv, T ⊗χ±1

w )⊗O k ↪→ H 1(Fv, T ⊗χ±1
w )= H 1(Fv, T )),

we must show that

dimk(Y ∩ Z+)≡ dimk(Y ∩ Z−) (mod 2).

Firstly, the local duality

H 1(Fv, T )× H 1(Fv, T )→ H 2(Fv, k(1)) ∼→ k

is a nondegenerate symmetric bilinear pairing under which Y⊥ = Y and Z⊥
±
= Z∓,

by [Bloch and Kato 1990, Proposition 3.8]. Secondly, (1.1.2) applied to T ⊗χ±1
w

yields (since T ⊗χ±1
w = T )

dimk(Z±)−dimk H 0(Fv, T )= dimK H 1
f (Fv, V ⊗χ±1

w )−dimK H 0(Fv, V ⊗χ±1
w ).

If v - p, then the right-hand side is equal to zero, but if v | p, then it is equal, by
[Bloch and Kato 1990, Corollary 3.8.4], to

dimK Dd R(Vv ⊗χ±1
w )/Fil0

= dimK Dd R(Vv)/Fil0,

which does not depend on the sign ±. In either case,

dimk(Z+)= dimk(Z−)= 1
2 dimk H 1(Fv, T )= dimk(Y )

and

dimk(Y ∩ Z+)= dimk(Y )+ dimk(Z+)− dimk(Y + Z+)

= dimk H 1(Fv, T )− dimk(Y + Z+)

= dimk(Y + Z+)⊥ = dimk(Y⊥ ∩ Z⊥
+
)= dimk(Y ∩ Z−),

as required. The lemma (and Theorem 1.1) is proved. �

1.3. If V arises as a subquotient of H 2r−1
et (X ⊗F F,K)(r) for some proper and

smooth scheme X over F , then H 0(L , V ) = 0 for all finite extensions L/F , by
Deligne’s proof of Weil’s conjectures. Theorem 1.1 in this case states that

dimK H 1
f (K

′, V )(χ
±1)
≡ dimK H 1

f (K , V ) (mod 2). (1.3.1)
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This remark applies, in particular, to V = Vp(g)(r) as in Theorem B, and to any
subrepresentation of Vp(A)⊗Qp K, where A is an abelian variety over F .

Theorem 1.4 (generalisation of [Nekovář 2009, Theorem 1]). Let g ∈ S2(n, 1) be a
cuspidal Hilbert modular newform of parallel weight two and trivial character over
a totally real number field F. Let L be the (totally real) number field generated by
its Hecke eigenvalues λv(g). For any prime p of L above a rational prime p 6= 2,
denote by Vp(g) the two-dimensional representation of G F over Lp attached to g:

det(1− X Frgeom(v) | Vp(g))= 1− λv(g)X + N (v)X2, for all v - pn.

Assume that at least one of the following three conditions is satisfied:

(a) 2 - [F :Q],

(b) there exists a nonarchimedean prime of F at which the local component of the
automorphic representation π(g) of PGL2(AF ) attached to g is a twist of the
Steinberg representation, or

(c) there exists a nonarchimedean prime v0 of F at which the local component of
π(g) is supercuspidal.

Then

dimLp H 1
f (F, Vp(g)(1))≡ ran(F, g) (mod 2),

where ran(F, g) := ords=1 L(g, s).

Proof. Assume either (a) or (b). In the case when g corresponds to an elliptic
curve defined over F this result was proved in [Nekovář 2009]. The argument there
applies in general, with the following modifications: We replace the conductor of
E by n (the level of g) and use Theorem 1.1 instead of [Mazur and Rubin 2007,
Theorem 7.1]. As Vp(g)(1) arises as a subrepresentation of Vp(A)⊗Qp Lp, where
A is the Jacobian of a suitable Shimura curve, (1.3.1) applies in this case.

Now assume (c). Thanks to (a) we can assume that 2 | [F :Q]. In addition, we
can assume, as in [Nekovář 2009, Step 3] (after replacing F by a suitable cyclic
extension of odd degree), that there exists a prime P | p in F , with P 6= v0. Let K
be any totally imaginary quadratic extension of F in which P splits and that satisfies
the properties of Lemma 1.5 below (and such that g does not have CM by K ). As
in [Nekovář 2008, 1.2–1.5] (for χ = 1, 6 = {P}, and c = 1), the generalisation
of [Cornut and Vatsal 2007, Theorem 4.1] proved in [Aflalo and Nekovář 2010,
Theorem 4.3.1] combined with [Nekovář 2007a, Theorem 3.2] implies that there
is a finite cyclic subextension K ′/K of the ring class field extension K [P∞]/K
and a character χ of Gal(K ′/K ) for which 2 - dimK H 1

f (K
′, Vp(g)(1))(χ), where
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K= Lp(χ). Theorem 1.1 then yields

2 - dimLp H 1
f (K , Vp(g)(1))

= dimLp H 1
f (F, Vp(g)(1))+ dimLp H 1

f (F, Vp(g⊗α)(1)), (?)

where α is the quadratic character associated to K/F . We can now vary K as in
the endgame of [Nekovář 2001]:

If 2 - ran(F, g), then 2 | ran(F, g⊗α) for any α as in Lemma 1.5 below. According to
[Waldspurger 1991, Theorem 4] and [Friedberg and Hoffstein 1995, Theorem B.1]
there exists such an α satisfying ran(F, g⊗α)=0, which implies that H 1

f (F, Vp(g⊗
α)(1)) = 0, by [Nekovář 2012, Theorem B(b)]; thus 2 - dimLp H 1

f (F, Vp(g)(1)),
by (?).

If 2 | ran(F, g), then 2 - ran(F, g⊗ α) for any α as in Lemma 1.5. The previous
argument applies to g⊗α, yielding 2 - dimLp H 1

f (F, Vp(g⊗α)(1)). Applying (?)
again, we obtain 2 | dimLp H 1

f (F, Vp(g)(1)). �

Lemma 1.5. Let g be as in Theorem 1.4(c). If 2 | [F : Q], then there exists a
character µ : G Fv0 → {±1} such that, for any character α : G F → {±1} satisfying

αv0 = µ, αv = 1 for all v | n with v 6= v0, αv(−1)=−1 for all v ∈ S∞,

the corresponding quadratic extension K = F Ker(α) of F is totally imaginary and
2 - ran(F, g)+ ran(F, g⊗α).

Proof. See [Nekovář 2012, Proposition 2.10.2]. �

2. A relative parity result with a twist

2.1. Assume that V satisfies the assumption (1) of Theorem 1.1. For each nonar-
chimedean prime v of F we write, as in [Nekovář 2007b, Proposition 2.2.1(1)],

εv(V )= εv(Vv)= ε(W D(Vv), ψ, dxψ) ∈ {±1},

where ψ is any nontrivial additive character of Fv , where dxψ is the corresponding
self-dual Haar measure on Fv, and where W D(Vv) is the representation of the
Weil–Deligne group of Fv attached to Vv if v - p, or to Dpst(Vv) if v | p (see
[Deligne 1973, 8.4; Fontaine 1994; Fontaine and Perrin-Riou 1994, I.1.3.2]).

Theorem 2.2. Let F and K be as in Theorem 1.1 (in particular, p 6= 2). Let V and
V ′ be geometric representations of G F with coefficients in K that satisfy assumptions
(1) and (2) of Theorem 1.1. Let T ⊂ V and T ′ ⊂ V ′ be G F -stable O-lattices,
self-dual with respect to the corresponding pairings 〈 · , · 〉 : T × T → O(1) and
〈 · , · 〉′ :T ′×T ′→O(1). Assume that there exists an isomorphism of k[G F ]-modules
u : T ′ = T ′⊗O k ∼→ T = T ⊗O k compatible with the pairings induced by 〈 · , · 〉 on
T and by 〈 · , · 〉′ on T ′. Let S be a finite set of primes of F containing S∞ ∪ Sp and
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all primes at which V or V ′ is ramified. If α : G F → {±1} is a character such that
αv = 1 for all v ∈ S− S∞, then (using the notation from (1.1.6)):

χ f (F, V )−χ f (F, V ′)≡ χ f (F, V ⊗α)−χ f (F, V ′⊗α) (mod 2),

εv(V )/εv(V ′)= εv(V ⊗α)/εv(V ′⊗α) for all v 6∈ S∞.

Proof. As remarked in the course of the proof of Theorem 1.1, the Selmer structure
H 1

f (Fv, T ) obtained by propagation of H 1
f (Fv, V ) ⊂ H 1(Fv, V ) is self-dual; so

is the structure H 1
f ′(Fv, T ) obtained by propagation of H 1

f (Fv, V ′)⊂ H 1(Fv, V ′),
composed with the isomorphism H 1(Fv, T ′) ∼→H 1(Fv,T ) induced by u. Combin-
ing [Mazur and Rubin 2007, Theorem 1.4] with (1.1.3) we obtain

χ f (F, V )−χ f (F, V ′)≡ dimk H 1
f (F, T )− dimk H 1

f ′(F, T )

≡

∑
v∈S−S∞

δv(Tv, T ′v) (mod 2), (2.2.1)

where

δv(Tv, T ′v)≡ dimk H 1
f (Fv, T )/(H 1

f (Fv, T )∩ H 1
f ′(F, T )) (mod 2).

Set S(α)= S ∪ {v | αv is ramified}. We claim that

H j (Fv, T ⊗α)= 0 for all v ∈ S(α)− S and j = 0, 1, 2. (2.2.2)

Indeed, H 0(Fv, T ⊗ α) ⊂ (T ⊗ α)Iv = 0 (since p 6= 2) and H 2(Fv, T ⊗ α) =
H 0(Fv, (T ⊗α)∗(1))∗= H 0(Fv, T ⊗α)∗= 0, by local duality. Finally, by the local
Euler characteristic formula, H 1(Fv, T ⊗α)= 0.

The pairings 〈 · , · 〉 and 〈 · , · 〉′ and the isomorphism u induce the same data for
T ⊗α and T ′⊗α. Applying (2.2.1) to these twisted modules, we obtain

χ f (F, V ⊗α)−χ f (F, V ′⊗α)≡
∑

v∈S(α)−S∞

δv((T ⊗α)v, (T ′⊗α)v)

≡

∑
v∈S−S∞

δv((T ⊗α)v, (T ′⊗α)v)

≡

∑
v∈S−S∞

δv(Tv, T ′v)

≡ χ f (F, V )−χ f (F, V ′) (mod 2),

where the second congruence follows from (2.2.2) and the third from the fact that
αv = 1 for all v ∈ S− S∞.

Let us now prove the statement about local ε-constants. For v ∈ S− S∞ there is
nothing to prove, as (W ⊗α)v =Wv (here W = V, V ′); hence εv(W ⊗α)= εv(W ).
For v 6∈ S(α) all four ε-constants are equal to 1. Finally, for v ∈ S(α)−S, εv(W )= 1
(W = V, V ′). It follows from (2.2.2) that (W ⊗ α)Iv = 0, which implies that
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εv(W ⊗ α) = ε0,v(W ⊗ α). As the local ε0-constants at primes not dividing p
are compatible with congruences modulo p [Deligne 1973, Theorem 6.5], the
isomorphism T ′ ⊗ α ∼→ T ⊗ α implies that εv(V ⊗ α), εv(V ′ ⊗ α) ∈ {±1} are
congruent modulo p; therefore they are equal to each other. �

2.3. In practice, we are often given a slightly different set of data:

2.3.1 representations V and V ′ that satisfy the assumption (1) of Theorem 1.1;

2.3.2 a G F -stable O-lattice T ⊂ V , self-dual with respect to 〈 · , · 〉 : T ×T → O(1),

2.3.3 for which T = T ⊗O k is an absolutely irreducible representation of G F , and

2.3.4 a dense set of elements g ∈ G F for which Tr(g | V )≡ Tr(g | V ′) (mod tO).

The condition 2.3.4 implies that, for any G F -stable O-lattice T ′ ⊂ V ′, the
semisimplification T ′ss of T ′ is isomorphic to T ss , which is in turn equal to
T , by condition 2.3.3. It follows that there is an isomorphism u : T ′ ∼→ T of
k[G F ]-modules, which is unique up to a scalar in k× (again by condition 2.3.3).
Irreducibility of T ′ implies that any G F -stable O-lattice in V ′ is of the form aT ′ for
some a ∈ K×; as a result, T ′ satisfies the assumption (2) of Theorem 1.1. Finally,
the pairings induced on T by 〈 · , · 〉 (and respectively by 〈 · , · 〉′ and u) coincide up
to a multiplicative factor b ∈ k× (by condition 2.3.3). After multiplying 〈 · , · 〉′ by a
suitable element of O×, we obtain b= 1. In other words, the conditions 2.3.1–2.3.4
give rise to the data required in Theorem 2.2.

3. Two applications of Theorem 2.2 to modular forms

3.1. Let F be a totally real number field. If g ∈ Sk(n, 1) is a cuspidal Hilbert
newform over F of level n, of trivial character and parallel weight k (necessarily
even), then its completed L-function coincides, up to a shift, with the L-function
of the automorphic representation π(g) of PGL2(AF ) associated to g:

(L∞ · L)(g, s)= L(π(g), s− (k− 1)/2), L∞(g, s)= 0C(s)[F :Q].

Since the 0-factor L∞(g, s) has no zero nor pole at the central point s = k/2 of
the functional equation, the parity of the analytic rank of g over F ,

ran(F, g) := ords=k/2 L(g, s),

can be read off from the corresponding ε-constant in the functional equation

L(π(g), s)= ε(π(g), s)L(π(g), 1− s),

(−1)ran(F,g) = ε
(
π(g), 1

2

)
=

∏
v

εv
(
π(g)v, 1

2

)
.

If L , Lp, and Vp(g) are as in Theorem B (with an appropriate modification if F 6=Q;
see Theorem 1.4 in the case k = 2), then the Galois representation V = Vp(g)(k/2)
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satisfies the assumption (1) of Theorem 1.1. The conjectures of Bloch and Kato
[1990; Fontaine and Perrin-Riou 1994] predict that

dimLp H 1
f (F, V )= ran(F, g).

We are interested in this conjecture modulo 2:

dimLp H 1
f (F, V )≡ ran(F, g) (mod 2).

3.2. Let g ∈ Sk(n, 1) be as in Section 3.1. If F ′/F is a quadratic extension and
α : Gal(F ′/F) ∼→ {±1} the corresponding quadratic character, then we have

H 1
f (F
′, V )= H 1

f (F, V )⊕ H 1
f (F, V ⊗α) (3.2.1)

and
L(g⊗ F ′, s)= L(g, s)L(g⊗α, s),

ran(F ′, g)= ran(F, g)+ ran(F, g⊗α),
(3.2.2)

where we have denoted, somewhat abusively, by g′ = g ⊗ F ′ the base change
of g to an automorphic form on PGL2(AF ′) and by ran(F ′, g) the analytic rank
ran(F ′, g⊗F ′) (strictly speaking, it is the automorphic representation of PGL2(AF ′)

attached to g′ that is the base change of π(g)).

3.3. Proof of Theorem B. The claim for r = 1 is a special case of Theorem 1.4(a).
If r > 1, then it follows from [Ribet 1994, Theorems 2.1 and 2.2, Corollary 3.2] (the
author would like to thank F. Diamond for pointing out this reference) and from our
assumption about the residual representation of Vp(g) that there exists a normalised
newform g1 ∈ S2(N1, ω

2−2r ) of level N1 dividing pN whose coefficients lie in a
number field L ′ ⊃ L and that satisfies, for a suitable prime p′ | p of L ′,

Tr(g | Vp′(g1))≡ Tr(g | Vp(g)⊗Lp L ′p′) (mod p′) for all g ∈ GQ.

Let g′ ∈ S2(N ′, 1) be the newform associated to g1 ⊗ ω
r−1 (of level dividing N

multiplied by a suitable power of p); set K = L ′p′ , O = OK, V = Vp(g)(r)⊗Lp K

and V ′ = Vp′(g′)(1)= Vp′(g1)(1)⊗ωr−1.
The representations V and V ′ satisfy conditions 2.3.1 and 2.3.4 (note that

Zp(r) and Zp(1)⊗ ωr−1 have the same residual representation Fp(r)). Fix any
GQ-stable O-lattice T ⊂ V . It satisfies condition 2.3.3 (irreducibility implies
absolute irreducibility, as the action of the complex conjugation on T has two
distinct eigenvalues ±1 contained in k = O/tO) and, after rescaling the symplectic
form 〈 · , · 〉 : V × V → K(1), also condition 2.3.2. The discussion in Section 2.3
implies that the assumptions of Theorem 2.2 are satisfied. Using, in addition,
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Section 1.3, we deduce that

dimK H 1
f (Q, V )− dimK H 1

f (Q, V ′)

≡ dimK H 1
f (Q, V ⊗α)− dimK H 1

f (Q, V ′⊗α) (mod 2), (3.3.1)

whenever α : GQ→ {±1} is a character satisfying

αl = 1 for all l | pN . (3.3.2)

According to Theorem 1.4(a),

dimK H 1
f (Q, V ′)≡ ran(Q, g′) (mod 2),

dimK H 1
f (Q, V ′⊗α)≡ ran(Q, g′⊗α) (mod 2).

(3.3.3)

Combining (3.3.1) and (3.3.3) with Lemma 3.4 below, we obtain

dimK H 1
f (Q, V )− ran(Q, g)

≡ dimK H 1
f (Q, V ⊗α)− ran(Q, g⊗α) (mod 2). (3.3.4)

It follows from the nonvanishing results of [Waldspurger 1991, Theorem 4; Friedberg
and Hoffstein 1995, Theorem B.1] that there exists a character α satisfying (3.3.2)
for which ran(Q, g⊗α)= 0. A fundamental result of Kato [2004, Theorem 14.2(2)]
then implies that H 1

f (Q, V ⊗α)= 0. The congruence (3.3.4) for this particular α
becomes

dimK H 1
f (Q, V )≡ ran(Q, g) (mod 2),

which proves Theorem B.

Lemma 3.4. For any character α satisfying (3.3.2) we have

ran(Q, g)− ran(Q, g′)≡ ran(Q, g⊗α)− ran(Q, g′⊗α) (mod 2).

Proof. To simplify the notation we write εv(h)= εv
(
π(h)v, 1

2

)
for the corresponding

local ε-constants. It is enough to show that, for any prime v of Q,

εv(g)/εv(g′)= εv(g⊗α)/εv(g′⊗α). (3.4.1)

Firstly, ε∞(h)= ε∞(h⊗ α) (h = g, g′), since the twist by α does not change the
weight. Secondly, if l is a prime number dividing pN , then (3.3.2) implies that
π(h⊗α)l = π(h)l (h = g, g′); hence εl(h⊗α)= εl(h). Finally, if l does not divide
pN , then π(g)l = π(µ,µ−1) and π(g′)l = π(µ′, µ′−1) are unramified principal
series representations with trivial central characters; it follows that π(g ⊗ α) =
π(µαl, µ

−1αl), π(g′⊗α)= π(µ′αl, µ
′−1αl) and

εl(g)= µ(−1)= 1= µ′(−1)= εl(g′),

εl(g⊗α)= (µαl)(−1)= αl(−1)= (µ′αl)(−1)= εl(g′⊗α),
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which completes the proof of (3.4.1). �

Theorem 3.5. Let g ∈ S2(n, 1), L and p | p (p 6= 2) be as in Theorem 1.4. Assume
that 2 | [F :Q], that the residual representation Tp(g)/pTp(g) (where Tp(g)⊂ Vp(g)
is a G F -stable OL ,p-lattice) is an irreducible G F -module and that one of the
following two conditions holds:

(1) g has no complex multiplication and Vp(g) is not quaternionic (in the sense of
Section 3.6 below);

(2) g has complex multiplication: g is the theta series attached to an alge-
braic Hecke character A×K (g) → L ′×, where K (g) and L ′ are totally imag-
inary quadratic extensions of F and L , respectively, p splits in L ′/L and
Vp(g)|G K (g) = ψ1 ⊕ ψ2, where ψi : G K (g) → L×p are characters for which
ψ2(Ker(ψ1)) is infinite.

Then
dimLp H 1

f (F, Vp(g)(1))≡ ran(F, g) (mod 2).

Proof. As in the proof of Theorem B, the G F -modules Vp(g)(1) ⊃ Tp(g)(1)
satisfy conditions 2.3.1–2.3.3. The level raising machinery [Taylor 1989] together
with [Deligne and Serre 1974, Lemme 6.11] imply that there exists a newform
g′ ∈ S2(n

′, 1) of level n′ satisfying q | n′ | nq (for a suitable prime q - n) whose
Hecke eigenvalues lie in a number field L ′ ⊃ L and satisfy

λv(g′)≡ λv(g) (mod p′) for all v - pnq

for a suitable prime p′ | p of L ′. It follows from the Čebotarev density theorem that
the representations V = Vp(g)(1)⊗Lp K, T = Tp(g)(1)⊗OL ,p OK (where K= L ′p′),
and V ′ = Vp′(g′)(1) satisfy conditions 2.3.1–2.3.4. Applying Theorem 2.2 and
taking into account Section 1.3, we obtain, for any character α : G F → {±1}
satisfying

αv = 1 for all v | pnq, (3.5.1)

that

dimK H 1
f (F, V )− dimK H 1

f (F, V ′)

≡ dimK H 1
f (F, V ⊗α)− dimK H 1

f (F, V ′⊗α) (mod 2). (3.5.2)

Since ordq(n′) = 1, the local representation π(g′)q is the twist of the Steinberg
representation by an unramified character of order one or two. Then Theorem 1.4(b)
applies to g′ and its quadratic twists:

dimK H 1
f (F, V ′)≡ ran(F, g′) (mod 2),

dimK H 1
f (F, V ′⊗α)≡ ran(F, g′⊗α) (mod 2). (3.5.3)
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The argument used in the proof of Lemma 3.4 applies, yielding

ran(F, g)− ran(F, g′)≡ ran(F, g⊗α)− ran(F, g′⊗α) (mod 2). (3.5.4)

Combining (3.5.2)–(3.5.4), we obtain

dimK H 1
f (F, V )− ran(F, g)

≡ dimK H 1
f (F, V ⊗α)− ran(F, g⊗α) (mod 2), (3.5.5)

for any quadratic character α satisfying (3.5.1). As in the proof 3.3, it follows
from [Waldspurger 1991, Theorem 4; Friedberg and Hoffstein 1995, Theorem B.1]
that there exists α satisfying (3.5.1) such that ran(F, g⊗α)= 0. A generalisation
of [Longo 2006, Theorem C] proved in [Nekovář 2012, Theorem B] implies that
H 1

f (F, V ⊗α)= 0 (this is where the assumptions (1) and (2) come in, by [Nekovář
2012, B.5.5(2) and B.6.5(2)], respectively). The congruence (3.5.5) for this α yields
the desired result. �

3.6. (Non)quaternionic representations. If g from Theorem 3.5 does not have
complex multiplication, recall from [Nekovář 2012, Appendix B.3] that there exists
a finite abelian group 0 ⊂ Aut(L/Q) of exponent at most two and a quaternion
algebra D over L0 such that, for each finite prime p of L , the Lie algebra of the
Galois image

Im(G F → AutLp(Vp(g)) ∼→ GL2(Lp))

is equal to
{x ∈ Dp0 ⊂ M2(Lp) | Trd(x) ∈Qp},

where p0 is the prime of L0 ⊂ L below p and Dp0 = D⊗L0 (L0)p0 .
As in [Nekovář 2012, B.4.7] we say that Vp(g) is quaternionic if Dp0 is a division

algebra (which can happen only for finitely many p).
According to [Nekovář 2012, B.4.8(1)], if the extension Lp/(L0)p0 is unramified

and the residual representation Tp(g)/pTp(g) is an irreducible G F -module, then
Vp(g) is not quaternionic. In particular, the condition “Vp(g) is not quaternionic”
can be omitted in Theorem 3.5(1) if Lp/(L0)p0 is unramified.

4. Parity results for abelian varieties with real multiplication

4.1. Let F and L be totally real number fields, and let A be an abelian variety over
F satisfying

dim(A)= [L :Q], OL = EndF (A). (4.1.1)

For each finite prime p of L the two-dimensional Lp-representation Vp(A) :=
Tp(A)⊗OL⊗Zp Lp of G F satisfies the assumptions of Theorem 1.1 (with K= Lp).
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Recall that A is modular (over F) if there exists a cuspidal Hilbert modular
newform g ∈ S2(n, 1) whose field of Hecke eigenvalues is equal to ι(L)⊂ C (for
some embedding ι : L ↪→ C) and that satisfies

Vp(A) ∼→ Vp(g)(1)

for one (equivalently, for each) finite prime p of L . This is, in turn, equivalent to an
equality of L-functions,

L(ιA/F, s)= L(g, s)

(Euler factor by Euler factor), which implies that

L(σ ιA/F, s)= L(σg, s) for all σ ∈ Aut(C).

4.2. The potential automorphy results of [Barnet-Lamb et al. 2010, Theorems 4.5.1
and 5.3.1] imply that every abelian variety A satisfying (4.1.1) is potentially modular
in the following sense: For each finite extension M/F there exists a totally real
finite extension F ′/F that is linearly disjoint from M/F such that A ⊗F F ′ is
modular over F ′.

As in [Nekovář 2006, 12.11.6; 2009, Step 4], a minor improvement (use of
Solomon’s induction theorem [Curtis and Reiner 1981, Theorem 15.10] instead of
the usual Brauer theorem) of an argument of Taylor [2002, proof of Corollary 2.2]
implies that there exist intermediate fields F ⊂ Fi ⊂ F ′ and integers ni with the
following properties:

4.2.1 A is modular over each Fi : there exists a Hilbert modular newform gi of
parallel weight 2 over Fi such that L(ιA/Fi , s)= L(gi , s) and Vp(A)|G Fi

∼→

Vp(gi )(1) for each finite prime p of L .

4.2.2 L(ιA/F, s)=
∏

i L(ιA/Fi , s)ni =
∏

i L(gi , s)ni .

4.2.3 Vp(A)=
⊕

i ni IndG F
G Fi
(Vp(A)|G Fi

)=
⊕

i ni IndG F
G Fi
(Vp(gi )(1)) in the Grothen-

dieck ring of Lp[G F ]-modules.

It follows that, for each σ ∈ Aut(C), the L-function

L(σ ιA/F, s)=
∏

i

L(σgi , s)ni

has a meromorphic continuation to C and satisfies the expected functional equation.
In particular, the analytic rank

ran(σ ιA/F) := ords=1 L(σ ιA/F, s) ∈ Z

is defined. Since the ε-constant in the functional equation of L(σgi , s) does not
depend on σ , the parity

ran(τ A/F) (mod 2) ∈ Z/2Z
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of the analytic rank ran(τ A/F) does not depend on the embedding τ : L ↪→ C.

Theorem 4.3. Let A, F and L be as in (4.1.1). Let p be a prime of L above a
rational prime p 6= 2. Assume that at least one of the following conditions holds:

(a) A is modular over F and 2 - [F :Q].
(b) A does not have potentially good reduction everywhere.

(c) A does not have complex multiplication, A[p] is an irreducible G F -module,
and the simple algebra C := EndF (A) ⊗ Q satisfies C ⊗Z(C) Z(C)pC

∼→

Mn(Z(C)pC ), where pC is the prime of Z(C)⊂ L below p (the latter condition
follows from the irreducibility of A[p] if Lp/Z(C)pC is unramified).

(d) A has complex multiplication by a totally imaginary quadratic extension L ′

of L (defined over a totally imaginary quadratic extension K (A) of F), A[p]
is an irreducible G F -module, p splits in L ′/L , and the image of G K (A) in
AutL ′⊗L Lp(Vp(A))= L×p × L×p contains an open subgroup of Z×p ×Z×p .

(e) A[p] is a reducible G F -module, Lp/Qp is unramified and p > 2[Lp :Qp]+ 1.

Then the Selmer rank

dimLp H 1
f (F, Vp(A))= rkOL A(F)+ corkOL ,p X(A/F)[p∞]

satisfies
dimLp H 1

f (F, Vp(A))≡ ran(τ A/F) (mod 2),

for each embedding τ : L ↪→ C.

Proof. The case (a) follows from Theorem 1.4(a). In the cases (b)–(e) we have,
thanks to Section 4.2,

dimLp H 1
f (F, Vp(A))− ran(τ A/F)

≡

∑
i

ni
(
dimLp H 1

f (Fi , Vp(gi )(1))− ran(Fi , gi )
)
(mod 2),

which means that we can replace F by Fi and assume that A is modular over
F (taking M = F(A[p]) in Section 4.2 we ensure that A[p] is irreducible as a
G Fi -module in cases (c) or (d)). The case (b) then follows from Theorem 1.4(b)
and the cases (c) and (d) from Theorem 3.5 (using [Nekovář 2012, B.6.5(2)]). In
case (e) we can assume, thanks to Theorem 1.4(c), that π(g) is a principal series
representation at each finite prime of F , which implies that A acquires locally at
each completion of F (hence also globally, by [Artin and Tate 1990, Chapter 10,
Theorem 5]) good reduction over a suitable cyclic extension. The result then follows
from an OL ,p-equivariant version of the proof of [Coates et al. 2010, Theorem 2.1].

�
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4.4. Proof of Theorem A. As in the proof of Theorem 4.3, potential modularity
of E [Wintenberger 2009, Theorem A.1] together with properties 4.2.2 and 4.2.3
imply that we can write sp(E/F)− ran(E/F) as an integral linear combination of
sp(E/Fi )− ran(E/Fi ), for suitable totally real extensions Fi/F over which E is
modular. It is enough, therefore, to replace F by Fi and consider only the case
when E is modular over F (which is automatic if E has complex multiplication).

Assume first that p=2. It follows from [Waldspurger 1991, Theorem 4; Friedberg
and Hoffstein 1995, Theorem B.1] that there exists a nontrivial quadratic character
α : G F → {±1} such that ran(E ⊗ α/F) = 0. This implies, by [Nekovář 2012,
corollary of Theorem B′], that s2(E ⊗ α/F) = 0. Let F ′/F be the quadratic
extension corresponding to α. Since

s2(E/F ′)≡ ran(E/F ′) (mod 2)

by [Dokchitser and Dokchitser 2011, Corollary 4.8], we conclude by the following
analogue of (3.2.1) and (3.2.2):

sp(E/F ′)= sp(E/F)+ sp(E ⊗α/F), ran(E/F ′)= ran(E/F)+ ran(E ⊗α/F).

If p 6= 2, we can assume that 2 | [F :Q], in view of [Nekovář 2009, Theorem 1(a)].
Theorem 4.3(c),(d) (respectively (e)) then implies the desired result if E[p] is an
irreducible G F -module (respectively when E[p] is reducible and p > 3). The
remaining case when p = 3 and E[3] is a reducible G F -module is treated in
[Dokchitser and Dokchitser 2011, Corollary 5.8].

4.5. Further absolute parity results (it would be too cumbersome to list them all
here) follow from a combination of Theorem A with the relative parity results
proved in [Mazur and Rubin 2007, Theorems 6.4 and 7.1; 2008, Theorem 1.1;
Dokchitser and Dokchitser 2009, Theorems 4.3 and 4.5; 2011, Proposition 6.12;
Greenberg 2011, Section 11.8; de La Rochefoucauld 2011, Theorem 2.1].

4.6. Our proof of Theorem A in the case when E[p] is a reducible G F -module uses
Theorem 1.4(c), which relies on several very recent technical advances: [Aflalo
and Nekovář 2010; Nekovář 2012] and [Yuan et al. 2008] (used in the proof of
[Nekovář 2012, Theorem B(b)]). It would be desirable to have a more direct proof
in the reducible case.1

4.7. The conclusion of Theorem A also holds in the case when E has complex
multiplication (and hence is modular over F), p 6= 2 and the conductor of E
is not a square, by Theorem 1.4(c) (conductors are preserved under the local
Langlands correspondence and the conductor of any principal series representation
of PGL2(Fv) is a square).

1 Added in proof: This is done in [Česnavičius 2012].
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