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1. Introduction and the statement of main results

This paper has two interrelated goals: first, to complete the investigation of weak
commensurability of S-arithmetic subgroups of almost simple algebraic groups
begun in [Prasad and Rapinchuk 2009], and second, to contribute to the classical
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problem of characterizing almost simple algebraic groups having the same isomor-
phism or the same isogeny classes of maximal tori over the field of definition.

Let G1 and G2 be two semisimple algebraic groups over a field F of characteristic
zero, and let 0i ⊂Gi (F) be a (finitely generated) Zariski-dense subgroup for i=1, 2.
We recall in Section 7 below the notion of weak commensurability of 01 and 02

introduced in [Prasad and Rapinchuk 2009]. (This notion was inspired by some
problems dealing with isospectral and length-commensurable locally symmetric
spaces, and we state some geometric consequences of our main results in (7-1)
and (7-2).) We further recall that the mere existence of Zariski-dense weakly
commensurable subgroups implies that G1 and G2 either have the same Killing–
Cartan type, or one of them is of type B` and the other is of type C`. Moreover,
cumulatively the results of [Prasad and Rapinchuk 2009; 2010; Garibaldi 2012]
give, by and large, a complete picture of weak commensurability for S-arithmetic
subgroups of almost simple algebraic groups having the same type.

On the other hand, weak commensurability of S-arithmetic subgroups in the case
where G1 is of type B` and G2 is of type C` has not been investigated so far — it
was only pointed out in [Prasad and Rapinchuk 2009] that S-arithmetic subgroups
corresponding to the split forms of such groups are indeed weakly commensurable;
see also Remark 2.6 below. Our first theorem provides a complete characterization
of the situations where S-arithmetic subgroups in the groups of types B and C

are weakly commensurable. In its formulation we will employ the description,
introduced [ibid., §1], of S-arithmetic subgroups of G(F), where G is an absolutely
almost simple algebraic group over a field F of characteristic zero, in terms of
triples (G, K , S) consisting of a number field K ⊂ F , a finite subset S of places of K ,
and an F/K -form G of the adjoint group G — we briefly recall this description in
Section 6.

The following definition will enable us to streamline the statements of our results.

Definition 1.1. Let G1 and G2 be absolutely almost simple algebraic groups of
types B` and C` with ` > 2, respectively, over a number field K . We say that G1

and G2 are twins (over K ) if for each place v of K , both groups are simultaneously
either split or anisotropic over the completion Kv.

Theorem 1.2. Let G1 and G2 be absolutely almost simple algebraic groups over
a field F of characteristic zero having Killing–Cartan types B` and C` (` > 3),
respectively, and let 0i be a Zariski-dense (Gi , K , S)-arithmetic subgroup of Gi (F)
for i = 1, 2. Then 01 and 02 are weakly commensurable if and only if the groups
G1 and G2 are twins.

If Zariski-dense (G1, K1, S1)- and (G2, K2, S2)-arithmetic subgroups are weakly
commensurable then necessarily K1 = K2 and S1 = S2 by [Prasad and Rapinchuk
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2009, Theorem 3], so Theorem 1.2 in fact treats the most general situation. Further-
more, for `= 2 we have B2 = C2, so G1 and G2 have the same type; then 01 and
02 are weakly commensurable if and only if G1 ' G2 over K by [ibid., Theorem 4].
This shows that the assumption `> 3 in Theorem 1.2 is essential — the excluded
case of `= 2 is treated in Theorem 1.5 below.

Turning to the second problem, that of characterizing almost simple algebraic
groups having the same (isomorphic classes of) maximal tori, we would like to
point out that, as we will see shortly, one gets more satisfactory results if instead
of talking about isomorphic groups one talks about isogenous ones. We recall
that algebraic K -groups H1 and H2 are called isogenous if there exists a K -group
H with central K -isogenies πi : H → Hi , i = 1, 2. For semisimple K -groups
G1 and G2, this amounts to the fact that the universal covers G̃1 and G̃2 are
K -isomorphic, and for K -tori T1 and T2 this simply means that there exists a
K -isogeny T1→ T2. Furthermore, we say that two semisimple K -groups G1 and
G2 have the same isogeny classes of maximal K -tori if every maximal K -torus
T1 of G1 is K -isogenous to some maximal K -torus T2 of G2, and vice versa.
Unsurprisingly, K -isogenous groups have the same isogeny classes of maximal tori.
Using the results from [Prasad and Rapinchuk 2009; Garibaldi 2012], we prove the
following partial converse for almost simple groups over number fields.

Proposition 1.3. Let G1 and G2 be absolutely almost simple algebraic groups
over a number field K . Assume that G1 and G2 have the same isogeny classes of
maximal K -tori. Then at least one of the following holds:

(1) G1 and G2 are K -isogenous.

(2) G1 and G2 are of the same Killing–Cartan type, which is one of the following:
A` for ` > 1, D2`+1 for ` > 1, or E6.

(3) One of the groups is of type B` and the other of type C` for some `> 3.

We will prove the proposition in Section 8. As Theorem 1.5 below shows, it is
possible for two isogenous, but not isomorphic, groups to have the same isomor-
phism classes of maximal K -tori, so the conclusion in (1) cannot be strengthened
even if we assume that G1 and G2 have the same maximal tori. On the other
hand, for each of the types listed in (2) one can construct nonisomorphic simply
connected, and hence nonisogenous, groups of this type having the same tori [Prasad
and Rapinchuk 2009, §9], so these types are genuine exceptions. In this paper, we
will sharpen case (3). Specifically, we prove the following in Section 6.

Theorem 1.4. Let G1 and G2 be absolutely almost simple algebraic groups over a
number field K of types B` and C`, respectively, for some `> 3.

(1) The groups G1 and G2 have the same isogeny classes of maximal K -tori if
and only if they are twins.
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(2) The groups G1 and G2 have the same isomorphism classes of maximal K -tori
if and only if they are twins, G1 is adjoint, and G2 is simply connected.

We note that one can give examples of groups G1 and G2 of types B` and C`,
respectively, over the field R of real numbers, that are neither split nor anisotropic but
nevertheless have the same isomorphism classes of maximal R-tori; see Example 3.6.
This shows Theorem 1.4, unlike many statements about algebraic groups over
number fields, is not a global version of the corresponding theorem over local fields.
What is crucial for the proof of Theorem 1.4 (and also Theorem 1.2) is that if the
real groups G1 and G2 are neither split nor anisotropic with G1 adjoint and G2

simply connected then they cannot have the same maximal R-tori; see Corollary 3.4.

The special case B2 = C2. Theorem 1.4 completely settles the question of when
the groups of types B` and C` have isogenous tori for `> 3. The case where `= 2
is special because the root systems B2 and C2 are the same.

Let G1 and G2 be groups of type B2=C2. They have the same isogeny classes of
maximal tori if and only if they are isogenous by Lemma 8.1 below or [Prasad and
Rapinchuk 2009, Theorem 7.5(2)]. In particular, when G1 and G2 are both adjoint
or both simply connected, they have the same isogeny classes of maximal tori if
and only if G1 ' G2 if and only if they have the same maximal tori. It remains
only to give a condition for G1 and G2 to have the same maximal tori when one is
adjoint and the other is simply connected, which we now do.

Theorem 1.5. Let q1 and q2 be 5-dimensional quadratic forms over a number
field K . The groups G1 = SO(q1) and G2 = Spin(q2) have the same isomorphism
classes of maximal K -tori if and only if

(1) q1 is similar to q2, and

(2) q1 and q2 are either both split or both anisotropic at every completion of K .

Notation. For a number field K , we let V K denote the set of all places, and let V K
∞

and V K
f denote the subsets of archimedean and nonarchimedean places. Given a

reductive algebraic group G defined over a field K , for any field extension L/K we
let rkL G denote the L-rank of G, that is, the dimension of a maximal L-split torus.

We write r〈a〉 for the symmetric bilinear form (x, y) 7→ a
∑r

i=1 xi yi on K r , and
adopt similar notation for quadratic forms and hermitian forms.

In Section 6, we systematically use the following: For G1 and G2 absolutely
almost simple groups of types B` and C`, respectively, we put G\

1 for the adjoint
group of G1 (“SO”), and G\

2 for the simply connected cover of G2 (“Sp”).

2. Steinberg’s theorem for algebras with involution

Our proofs of Theorems 1.2 and 1.4 rely on the well-known fact that groups of
classical types can be realized as special unitary groups associated with simple
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algebras with involutions, so their maximal tori correspond to certain commutative
étale subalgebras invariant under the involution. This description enables us to
apply the local-global principles for the existence of an embedding of an étale
algebra with an involutory automorphism into a simple algebra with an involution
[Prasad and Rapinchuk 2010]. To ensure the existence of local embeddings, we
will use an analogue for algebras with involution of the theorem, due to Steinberg
[1965], asserting that if G0 is a quasisplit simply connected almost simple algebraic
group over a field K and G is an inner form of G0 over K , then any maximal
K -torus T of G admits a K -defined embedding into G0. The required analogue
roughly states that if (A, τ ) is an algebra with involution such that the corresponding
group is quasisplit then any commutative étale algebra with involution (E, σ ) that
can potentially embed in (A, τ ) does embed. It can be deduced from the original
Steinberg’s theorem along the lines of [Gille 2004, Proposition 3.2(b)], but in fact
one can give a simple direct argument. To our knowledge, this has not been recorded
in the literature. Further, the argument for type Bn (in Proposition 2.5) extends with
minor modifications to other types. So, despite the fact that we will only use this
statement for algebras corresponding to groups of type Bn and Cn , we will give the
argument for all classical types. We begin by briefly recalling the types of algebras
with involution arising in this context, indicating in each case the étale subalgebras
that give maximal tori.

Description of tori in terms of étale algebras. Let A be a central simple algebra of
dimension n2 over a field L of characteristic other than 2, and let τ be an involution
of A. Set K = Lτ . We recall that τ is said to be of the first or second kind if the
restriction τ |L is trivial or nontrivial, respectively. Furthermore, if τ is an involution
of the first kind, then it is either symplectic (that is, dimK Aτ = n(n − 1)/2) or
orthogonal (that is, dimK Aτ = n(n+ 1)/2).

We also recall the well-known correspondence between involutions on A=Mn(L)
and nondegenerate hermitian or skew-hermitian forms on Ln [Knus et al. 1998]:
Given such a form f , there exists a unique involution τ f such that

f (ax, y)= f (x, τ f (a)y)

for all x, y ∈ Ln and all a ∈ A; then the pair (Mn(L), τ f ) will be denoted by A f .
Moreover, f is symmetric or skew-symmetric if and only if τ f is orthogonal or
symplectic, respectively. Conversely, for any involution τ there exists a form f on
Ln of appropriate type such that τ = τ f , and any two such forms are proportional.
(For involutions of the second kind one can pick the corresponding form to be either
hermitian or skew-hermitian as desired.)

Type 2A`. Let (A, τ ) be a central simple L-algebra of dimension n2 with an invo-
lution τ of the second kind. Then G = SU(A, τ ) is an absolutely almost simple
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simply connected K -group of type 2A` with ` = n− 1, and conversely any such
group corresponds to an algebra with involution (A, τ ) of this kind. Any τ -invariant
étale commutative subalgebra E ⊂ A gives a maximal K -torus

T = RE/K (GL1)∩G = SU(E, τ |E)

of G, and all maximal K -tori are obtained this way; see, for example, [Prasad
and Rapinchuk 2010, Proposition 2.3]. The group G is quasisplit if and only if
A = Mn(L) and τ = τh , where h is a nondegenerate hermitian form on Ln of Witt
index [n/2].

Type B` (` > 2). Let A = Mn(K ) with n = 2`+ 1, and let τ be an orthogonal
involution of A. Then τ = τ f for some nondegenerate symmetric bilinear form
f on K n , and G = SU(A, τ ) = SO( f ) is an adjoint group of type B`, and every
such group is obtained this way. Furthermore, maximal K -tori T of G bijectively
correspond to maximal commutative étale τ -invariant subalgebras E of A (of
dimension n) such that dimK Eτ = ` + 1 under the correspondence given by
T = RE/K (GL1) ∩ G = SU(E, τ |E). Furthermore, any such algebra admits a
decomposition

(E, τ )= (E ′, τ ′)× (K , idK ), (2-1)

where E ′ ⊂ E is a τ -invariant subalgebra of dimension 2`. Finally, the group G is
quasisplit (in fact, split) if and only if f has Witt index `.

Type C` (`> 2). Let A be a central simple K -algebra of dimension n2 with n = 2`,
and let τ be a symplectic involution of A. Then G = SU(A, τ ) is an absolutely
almost simple simply connected group of type C`, and all such groups are obtained
this way. Maximal K -tori of G correspond to maximal commutative étale τ -invariant
subalgebras E ⊂ A (of dimension n) such that dimK Eτ = ` in the fashion described
above. The group G is quasisplit (in fact, split) if and only if A = Mn(K ). Then
τ = τ f , where f is a nondegenerate skew-symmetric form on K n; there is only one
equivalence class of such forms, so in this case G ' Spn .

Type 1,2D` (`> 4). Let A be a central simple K -algebra of dimension n2, where
n = 2`, and let τ be an orthogonal involution of A. Then G = SU(A, τ ) is an
almost absolutely simple K -group of type 1,2D` that is neither simply connected
nor adjoint, and any K -group of this type is K -isogenous to such a group. Maximal
K -tori of G correspond to maximal commutative étale τ -invariant subalgebras
E ⊂ A (of dimension n2) such that dimK Eτ = `. The group G is quasisplit if and
only if A = Mn(K ) and τ = τ f , where f is a symmetric bilinear form on K n of
Witt index `− 1 or `.

Summary. Thus, if A is a central simple L-algebra of dimension n2 (and L = K for
all types except 2A`) then maximal K -tori of the algebraic K -group G = SU(A, τ )



Weakly commensurable subgroups in groups of types B and C 1153

correspond in the manner described above to maximal abelian étale τ -invariant
subalgebras E ⊂ A with dimL E = n such that for σ = τ |E we have

dimK Eσ =
{

n if σ |L 6= idL ,
[(n+ 1)/2] if σ |L = idL .

(2-2)

(The condition is automatically satisfied if σ |L 6= idL .)
Now, let (E, σ ) be an n-dimensional commutative étale L-algebra with an invo-

lution satisfying (2-2). Then the question of whether the K -torus T = SU(E, σ )◦

can be embedded into G = SU(A, τ ), where A is a central simple L-algebra of
dimension n2 with an involution τ such that σ |L = τ |L , translates into the question
of whether there is an embedding (E, σ ) ↪→ (A, τ ) of L-algebras with involution,
which we will now investigate in the cases of interest to us. We note that if G is
quasisplit, then A= Mn(L) in all cases. In this case, the universal way to construct
an embedding (E, σ ) ↪→ (Mn(L), τ ) is described in the following well-known
statement.

Proposition 2.1. Let (E, σ ) be an n-dimensional commutative étale L-algebra
with an involution σ .

(i) For any b∈ E×, the map φb : E×E→ K given by φb(x, y)= trE/L(x ·b·σ(y))
is a nondegenerate sesquilinear form, which is hermitian or skew-hermitian if
and only if b is such.

(ii) Let b ∈ E× be hermitian or skew-hermitian, and let τφb be the involution on
A := EndL(E)' Mn(L) corresponding to φb; then the regular representation
of E gives an embedding (E, σ ) ↪→ (A, τφb)= Aφb of algebras with involution.

(iii) Let τ be an involution on A = Mn(L), and let f be a hermitian or skew-
hermitian form on Ln such that τ f = τ . Then the following conditions are
equivalent:

(a) There exists b ∈ E× of the same type as f such that φb is equivalent to f .
(b) There exists a form h on E ' Ln that is equivalent to f and that satisfies

h(ax, y)= h(x, σ (a)y) for all a, x, y ∈ E . (2-3)

(c) There exists an embedding (E, σ ) ↪→ (A, τ ) as L-algebras with involu-
tions.

Sketch of proof. The nondegeneracy of φb in (i) follows from the fact that the
L-bilinear form on E given by (x, y) 7→ trE/L(xy) is nondegenerate as E/L is
étale; other assertions in (i) and (ii) are immediate consequences of the definitions.
The implications (a) =⇒ (b) =⇒ (c) in (iii) are obvious, and the equivalence of (a)
and (c) (which we will not need) is established in [Prasad and Rapinchuk 2010,
Proposition 7.1]. �
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We also note that in fact any nondegenerate hermitian/skew-hermitian form
h on E satisfying (2-3) is of the form φb for some b ∈ E× of the respective
type. Indeed, since the form φ1 is nondegenerate, we can write h in the form
h(x, y)= trE/L(x · g(σ (y))) for some K -linear automorphism g of E . Then (2-3)
implies that g is E-linear, and therefore is of the form g(x)= bx for some b ∈ E×,
which will necessarily be of appropriate type.

Example 2.2 (involutions of the first kind). According to [Prasad and Rapinchuk
2010, Proposition 2.2], if L = K and (E, σ ) is a K -algebra with involution of
dimension n=2` satisfying (2-2), then (E, σ )' (F[δ]/(δ2

−d), θ),where F = Eσ ,
d ∈ F×, and θ(δ)=−δ.

For invertible b ∈ Eσ and xi , yi ∈ F , we have

φb(x1+ y1δ, x2+ y2δ)= trE/K (bx1x2− bdy1 y2)= trF/K (2b(x1x2− dy1 y2)),

so φb is the transfer from F to K of the symmetric bilinear form 〈2b,−2bd〉.
Clearly, if E is F × F , then φb is hyperbolic.

The example gives the entries in the φb column of Table 1.

Proposition 2.3 (type C). Let (E, σ ) be an étale K -algebra of dimension n = 2`
with involution satisfying (2-2). Then for every symplectic involution τ on Mn(K ),
there is a K -embedding (E, σ ) ↪→ (Mn(K ), τ ).

Proof. It follows from the structure of (E, σ ) in the example that there exists a skew-
symmetric invertible b ∈ E (one can take, for example, the element corresponding
to δ); then by Proposition 2.1(i), the form φb is nondegenerate and skew-symmetric.
On the other hand, since τ is symplectic, we have τ = τ f for some nondegenerate
skew-symmetric form f on K n . As any two such forms are equivalent, our assertion
follows from Proposition 2.1(iii). �

To handle the algebras corresponding to types B and D, we need the following.

Lemma 2.4. Let (E, σ ) be a commutative étale K -algebra with involution of
dimension n = 2` satisfying (2-2). Then there exists a nondegenerate symmetric
bilinear form h on E that satisfies (2-3) and has Witt index > `− 1.

Proof. If K is finite then one can take, for example, h = φ1, so we can assume
in the rest of the argument that K is infinite. It follows from the description of
E that (E ⊗K K , σ ⊗ idK ) ' (M, µ) for K an algebraic closure of K , where
M =

∏`
i=1(K × K ) and µ acts on each copy of K × K by switching components.

Viewing M as an affine n-space, we consider the K -defined subvariety M− :=
{x ∈ M | µ(x) = −x}. Clearly, M− is a K -defined vector space, so the K -points
E− := M− ∩ E are Zariski-dense in M−. On the other hand, let U ⊂ M be the
Zariski-open subvariety of elements with pairwise distinct components; then any
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x ∈U generates M as a K -algebra. Furthermore, it is easy to see that U ∩M− 6=∅,
so U ∩ E− 6=∅.

Fix e ∈U ∩ E−; then 1, e, . . . , en−1 form a K -basis of E . For x ∈ E we define
ci (x) for i = 0, . . . , n− 1 so that x =

∑n−1
i=0 ci (x)ei . Set

h(x, y) := cn−2(xσ(y)).

Clearly, h is symmetric bilinear and satisfies (2-3). Let us show that h is nonde-
generate. If x =

∑n−1
i=0 ci (x)ei is in the radical of h, then so is σ(x), and therefore

also x+ :=
∑`−1

i=0 c2i (x)e2i and x− :=
∑`−1

i=0 c2i+1(x)e2i+1. From h(x+, 1) = 0,
h(x+, e2) = 0, etc., we successively obtain that cn−2(x) = 0, cn−4(x) = 0, etc.,
that is, x+ = 0. Furthermore, we have 0 = h(x−, e−1) = −cn−1(x). Then from
h(x−, e)= 0, h(x−, e3)= 0, etc., we successively obtain cn−3(x)= 0, cn−5(x)= 0,
etc. Thus, x− = 0; hence x = 0, as required. It remains to observe that the subspace
spanned by 1, e, . . . , e`−2 is totally isotropic with respect to h. �

Remark. In an earlier version of this paper, we constructed h in Lemma 2.4 in the
form h = φb using some matrix computations. The current proof, which minimizes
computations, was inspired by [Bhargava and Gross 2011, §5].

Proposition 2.5 (type B). Let (E, σ ) be an étale K -algebra of dimension n= 2`+1
with involution satisfying (2-2). If τ is an orthogonal involution on A = Mn(K )
such that τ = τ f , where f is a nondegenerate symmetric bilinear form on K n of
Witt index `, then there exists an embedding (E, σ ) ↪→ (A, τ ) of K -algebras with
involution.

Proof. Pick a decomposition (2-1), and then use Lemma 2.4 to find a form h′

on E ′ with the properties described therein. We can write h′ = h′1 ⊥ h′2, where
h′1 is a direct sum of `− 1 hyperbolic planes and h′2 is a binary form. Choose a
1-dimensional form h′′ so that h′2 ⊥ h′′ is isotropic, and consider h = h′ ⊥ h′′ on
E = E ′× K . Then h is a nondegenerate symmetric bilinear form on E satisfying
(2-3) and having Witt index `. So, h is equivalent to f ; hence (E, σ ) embeds in
(A, τ ) by Proposition 2.1(iii). �

Remark 2.6. Let now G1 be the K -split adjoint group SO2`+1 of type B` and
G2 be the K -split simply connected group Sp2` of type C`, where ` > 2. It was
observed in [Prasad and Rapinchuk 2009, Example 6.7] that G1 and G2 have the
same isomorphism classes of maximal K -tori over any field K of characteristic
not 2. This was derived from the fact that G1 and G2 have isomorphic Weyl
groups using the results of [Gille 2004; Raghunathan 2004]. Now, we are in a
position to give a much simpler explanation of this phenomenon. Indeed, G1 =

SU(A1, τ1), where A1 = M2`+1(K ) and τ1 is an orthogonal involution on A1

corresponding to a nondegenerate symmetric bilinear form on K 2`+1 of Witt index `,
and G2= SU(A2, τ2), where A2= M2`(K ) and τ2 is a symplectic involution on A2
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corresponding to a nondegenerate skew-symmetric form on K 2`. Any maximal K -
torus T2 of G2 is of the form SU(E2, σ2), where E2 is a 2`-dimensional commutative
τ2-invariant subalgebra of A2, and σ2 = τ2|E2 , with (E2, σ2) satisfying (2-2). Set
(E1, σ1) = (E2, σ2) × (K , idK ). According to Proposition 2.5, there exists an
embedding (E1, σ1) ↪→ (A1, τ1), which gives rise to a K -isomorphism between
T2 and the maximal K -torus T1 = SU(E1, σ1) of G1. This, combined with the
symmetric argument based on Proposition 2.3, yields the required fact. Then,
repeating the argument given in [Prasad and Rapinchuk 2009, Example 6.7], we
conclude that if K is a number field then for any finite subset S ⊂ V K containing
V K
∞

, the S-arithmetic subgroups of G1 and G2 are weakly commensurable.

Turning now to type D`, we first observe that if (E, σ ) is a K -algebra with
involution of dimension n = 2` satisfying (2-2) then the determinant — viewed
as an element of K×/K×2 — of the symmetric bilinear form φb for invertible
b ∈ Eσ does not depend on b [Brusamarello et al. 2003, Corollary 4.2] and will
be denoted d(E, σ ). Now, if τ is an involution on A = Mn(K ) that corresponds
to a symmetric bilinear form f on K n having determinant d( f ), then it follows
from Proposition 2.1(iii) that an embedding (E, σ ) ↪→ (A, τ ) can exist only if
d(E, σ )= d( f ) in K×/K×2.

Proposition 2.7. Let (E, σ ) be an étale K -algebra of dimension n = 2` with
involution satisfying (2-2). If τ is an orthogonal involution on A = Mn(K ) such
that τ = τ f , where f is a nondegenerate symmetric bilinear form on K n of Witt
index at least `− 1 such that d(E, σ ) = d( f ) (in K×/K×2), then there exists an
embedding (E, σ ) ↪→ (A, τ ) of K -algebras with involution.

Proof. Let h be the symmetric bilinear form on E constructed in Lemma 2.4. As we
observed after Proposition 2.1, h is actually of the form h = φb for some invertible
b ∈ Eσ , so d(h)= d(E, σ ). We can write h = h1 ⊥ h2, where h1 is a direct sum of
`− 1 hyperbolic planes and h2 is a binary form. Similarly, f = f1 ⊥ f2, where f1

is a direct sum of `− 1 hyperbolic planes and f2 is binary. Then d(E, σ )= d( f )
implies that d(h2)= d( f2), so h2 and f2 are similar. Thus, a suitable multiple of h
is equivalent to f , and our claim follows from Proposition 2.1(iii). �

Finally, we will treat algebras corresponding to the groups of type 2A`. Here L
will be a quadratic extension of K and all involutions will restrict to the nontrivial
automorphism of L/K .

Proposition 2.8 (type A). Let (E, σ ) be an étale n-dimensional L-algebra with
involution. If τ is a unitary involution on A= Mn(L) such that τ = τ f , where f is a
hermitian form on Ln having Witt index m := [n/2], then there exists an embedding
(E, σ ) ↪→ (A, τ ) of L-algebras with involution.
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Proof. It is enough to construct a nondegenerate hermitian form on E that satisfies
(2-3) and has Witt index m. If K is finite, one can take, for example, h = φ1, so
we can assume that K is infinite. Set F = Eσ so that E = F ⊗K L . Since K is
infinite, arguing as in the proof of Lemma 2.4, one can find e ∈ F so that F = K [e].
Then any x ∈ E admits a unique presentation of the form x =

∑n−1
i=0 ei

⊗ci (x) with
ci (x) ∈ L . Define

h(x, y) := cn−1(xσ(y)).

It is easy to see h is a hermitian form satisfying (2-3); let us show that it is
nondegenerate. If x is in the radical of h, then from h(x, 1)= 0, h(x, e)= 0, etc.,
we successively obtain that cn−1(x)= 0, cn−2(x)= 0, etc. Thus, x = 0, proving the
nondegeneracy of h. Since 2(m−1)<n−1, the subspace spanned by 1, e, . . . , em−1

is totally isotropic; hence the Witt index of h is m, as required. �

3. Maximal tori in real groups of types B and C

This section is devoted to determining the isomorphism classes of maximal tori in
certain linear algebraic groups, primarily of types B and C, over the real numbers.
Recall that every torus T over R is R-isomorphic to the product

(GL1)
α
× (R(1)

C/R(GL1))
β
× (RC/R(GL1))

γ (3-1)

for uniquely determined nonnegative integers α, β, γ [Voskresenskiı̆ 1998, p. 64],
and then the group T (R) is topologically isomorphic to (R×)α × (S1)β × (C×)γ ,
where S1 is the group of complex numbers of modulus 1. The fact that T is
isomorphic to a maximal R-torus of a given reductive R-group G typically imposes
serious restrictions on the numbers α, β and γ . To illustrate this, we first consider
the following easy example.

Example 3.1. Every maximal R-torus in G = GLn,H, where H is the algebra of
Hamiltonian quaternions, is isomorphic to (RC/R(GL1))

n . Indeed, every maximal
R-torus in G is of the form RE/R(GL1), where E is a maximal commutative 2n-
dimensional étale subalgebra of A = Mn(H). Any commutative 2n-dimensional
étale R-algebra E is isomorphic to Rα ×Cγ with α+ 2γ = 2n. But in order for
E to have an R-embedding in A, we must have α = 0 and then γ = n [Prasad and
Rapinchuk 2010, 2.6], so our claim follows.

We now recall the standard notation for some classical real algebraic groups. We
let SO(r, n−r) denote the special orthogonal group of the n-dimensional quadratic
form q = r〈1〉 ⊥ (n − r)〈−1〉. Similarly, we let Sp(r, n − r) denote the special
unitary group of the n-dimensional hermitian form h = r〈1〉 ⊥ (n− r)〈−1〉 over H

with the standard involution. Every adjoint R-group of type B` is isomorphic to
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some SO(r, n− r) for n = 2`+ 1 and some 06 r 6 n, and every nonsplit simply
connected R-group of type C` is isomorphic to Sp(r, `− r) some 06 r 6 `.

Lemma 3.2 (adjoint B` over R). The maximal R-tori in G = SO(r, n− r), where
n= 2`+1, are of the form (3-1) with α+β+2γ = ` and α+2γ 6 s :=min(r, n−r).

Proof. Let τ be the involution on A = Mn(K ) that corresponds to the symmetric
bilinear form f associated with the quadratic form q = r〈1〉 ⊥ (n− r)〈−1〉 so that
G = SU(A, τ ). Let T be a maximal R-torus of G written in the form (3-1). Since
the rank of G is `, we immediately obtain dim T = α+β + 2γ = `. Furthermore,
we have T = SU(E, σ ), where E ⊂ A is a τ -invariant maximal commutative étale
subalgebra, σ = τ |E , and (2-2) holds. There are exactly 4 isomorphism classes
of indecomposable étale R-algebras with involution, which are listed in Table 1.
Using this information, we can write

(E, σ )= Rδ1 × (R×R)δ2 ×Cδ3 × (C×C)δ4,

where the involutions on factors are as in the table. Comparing this with the structure
of T , we obtain δ2 = α, δ3 = β, and δ4 = γ . According to Proposition 2.1(iii), there
exists b ∈ Eσ such that φb is equivalent to f . But the Witt index of f is s (which
equals the R-rank of G), and the Witt index of φb is > δ2+ 2δ4. Thus, α+ 2γ 6 s.
(We note that rkR T = α+ γ , immediately yielding the restriction α+ γ 6 s. So,
the restriction we have actually obtained is stronger than one can a priori expect.)

Conversely, suppose α, β, γ satisfy the two constraints, and assume that r > n−r
(otherwise we can replace the quadratic form q defining G with −q); in particular,
r > `. Consider the étale R-algebra

(E, σ )= R× (R×R)α ×Cβ × (C×C)γ =: (E1, σ1)× · · ·× (E4, σ4)

of dimension 1 + 2α + 2β + 4γ = 2` + 1 = n, where the involutions on the
factors R, R × R, . . . are as described in Table 1. (Clearly, E satisfies (2-2).)
Let us show that there exists b = (b1, . . . , b4) ∈ Eσ such that φb is equivalent
to f . Set b2 = ((1, 1), . . . , (1, 1)) and b4 = ((1, 1), . . . , (1, 1)). Then the quadratic
form associated with the bilinear form (φ2,4)(b2,b4) on E2 × E4 is equivalent to
(α+ 2γ )(〈1〉 ⊥ 〈−1〉). Since t := (n− r)− (α+ 2γ )> 0, we can choose b1 =±1
and b3 = (±1, . . . ,±1) so that the quadratic form associated with (φ1,3)(b1,b3) is
equivalent to (2β + 1− t)〈1〉 ⊥ t〈−1〉. Then b = (b1, . . . , b4) is as required. By
Proposition 2.1(iii), there exists an embedding (E, σ ) ↪→ (A, τ ), and therefore
an R-defined embedding SU(E, σ ) ↪→ SU(A, τ ) = G. Finally, it follows from
our construction and Table 1 that T = SU(E, σ ) is a torus having the required
structure. �

Lemma 3.3 (simply connected C` over R). The maximal R-tori in the group G =
Sp(r, `−r) are of the form (3-1) with α= 0, β+2γ = ` and γ 6 s :=min(r, `−r).
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E σ φb for b ∈ Eσ SU(E, σ )

R Id 〈b〉 {1}
R×R switch 〈1,−1〉 GL1

C conjugation 〈b, b〉 R(1)
C/R(GL1)

C×C switch 〈1,−1〉⊕ 〈1,−1〉 RC/R(GL1)

Table 1. Isomorphism classes of indecomposable étale R-algebras
with involution and their associated symmetric bilinear forms and
unitary groups.

Proof. Let τ be the involution on A = M`(H) that gives rise to the hermitian form
f = r〈1〉 ⊥ (`− r)〈−1〉, so that G = SU(A, τ ). Every maximal R-torus T of G is
of the form T = SU(E, σ ) for some (2`)-dimensional étale τ -invariant subalgebra
E of A, where σ = τ |E and condition (2-2) holds. As in Example 3.1, E ' C`

as R-algebras, and therefore (E, σ ) = Cδ1 × (C × C)δ2, where the involutions
on C and C × C are as in Table 1. Then in (3-1) for T = SU(E, σ ) we have
α = 0, β = δ1 and γ = δ2. By dimension count, we get β + 2γ = `. Furthermore,
γ = rkR T 6 rkR G = s.

Conversely, suppose that T has parameters α, β and γ satisfying our constraints.
Consider (E, σ )= Cβ × (C×C)γ with the involutions as above, and assume (as
we may) that `− r 6 r . Note that

(z, w) 7→
(

z 0
0 w

)
defines an embedding of algebras with involutions C×C ↪→ (M2(H), θ), where
θ(x) = J−1 x̄ t J with J =

(
0 1
1 0

)
, where x̄ is obtained by applying quaternionic

conjugation to all entries. Consider the involution θ̂ on A given by θ̂ (x)= Ĵ−1 x̄ t Ĵ ,
where

Ĵ = diag(1, . . . , 1︸ ︷︷ ︸
r−γ

,−1, . . . ,−1︸ ︷︷ ︸
β−(r−γ )

, J, . . . , J︸ ︷︷ ︸
γ

).

Then it follows from our construction that there exists an embedding (E, σ ) ↪→
(A, θ). Noting that (A, τ ) ' (A, θ), we obtain an embedding (E, σ ) ↪→ (A, τ ).
So, there exists an R-embedding SU(E, σ ) ↪→ SU(A, τ ) = G, and it remains to
observe that T = SU(E, σ ) is a torus having the required structure. �

Alternatively, the results of Lemmas 3.2 and 3.3 can be deduced from the more
general classification of maximal R-tori in simple real algebraic groups obtained
in [Ðoković and Thǎńg 1994]. For the reader’s convenience we have included the
direct proofs above, written in the same language as the rest of the paper.
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Corollary 3.4. Let G1 be an adjoint real group of type B`, and let G2 be a simply
connected real group of type C`. The groups G1 and G2 have the same isomorphism
classes of maximal R-tori if and only if G1 and G2 are either both split or both
anisotropic.

Proof. Since every R-anisotropic torus T is of the form (R(1)
C/R(GL1))

dim T , there
is nothing to prove if both groups are anisotropic. If both groups are split, our
claim follows from Remark 2.6. Clearly, G1 and G2 cannot have the same maximal
tori if one of the groups is anisotropic and the other is isotropic. So, it remains to
consider the case, where both groups are isotropic but not split. Then G1 contains
the torus with α = 1, β = `− 1, and γ = 0 by Lemma 3.2, but G2 does not by
Lemma 3.3. �

Remark 3.5. Our argument shows that if G1 is isotropic and G2 is not split, then
G1 has a maximal R-torus that is not isomorphic to any R-torus of G2. Moreover, by
Lemma 3.2, a maximal R-torus T1 of G1 that contains a maximal R-split torus has
parameters α = s, β = `− s and γ = 0, and hence does not allow an R-embedding
into G2. In particular, if G1 = SO(n− 1, 1) and G2 is not split then every isotropic
maximal R-torus of G1 is not isomorphic to a subtorus of G2.

Example 3.6 (absolute rank 3). As an empirical illustration of the landscape over R,
we divide the 14 real groups of types B3 and C3 into equivalence classes under
the relation “have isomorphic collections of maximal tori”. For forms of SO7

or Sp6, the maximal tori are described by Lemmas 3.2 and 3.3. Also, the four
anisotropic (compact) forms obviously make up one equivalence class. For the
other groups one can use a computer program such as the Atlas software [Adams
and du Cloux 2009] to find the maximal tori. In summary, the groups SO(1, 6),
SO(2, 5), and Spin(2, 5) are each their own equivalence class, and we find the
following nonsingleton equivalence classes:

{4 anisotropic forms}, {Sp6,SO(4, 3)}, {PSp6,Spin(4, 3)},

and {Sp(1, 2),PSp(1, 2),Spin(1, 6)}.

In particular, Spin(1, 6) and PSp(1, 2) have the same isomorphism classes of max-
imal tori and yet are neither both split nor both anisotropic. This situation is
dual to the one considered and eliminated in Corollary 3.4 (adjoint B` and simply
connected C`).

For completeness, we mention the (much easier) analogue of Corollary 3.4 for
nonarchimedean local fields.

Lemma 3.7. Let G1 and G2 be absolutely almost simple groups of type B` and
C`, respectively, with `> 3, over K a nonarchimedean local field of characteristic
not 2. The following are equivalent:
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(1) The groups G1 and G2 have the same isogeny classes of maximal K -tori.

(2) rkK G1 = rkK G2.

(3) G1 and G2 are split.

Proof. (1) obviously implies (2). Suppose (2) and that G2 is not split. Then

[`/2] = rkK G2 = rkK G1 > `− 1,

but this is impossible because `> 3, hence (3).
To prove (3) implies (1), we may assume that G1 is split adjoint and G2 is split

simply connected. Combining Propositions 2.3 and 2.5 with (2-1) gives that G1

and G2 have the same isogeny classes of maximal tori. �

4. Local-global principles for embedding étale algebras with involution

The last ingredient we need to develop before proving Theorem 1.4 in Section 6 is a
result guaranteeing in our situation the validity of the local-global principle for the
existence of an embedding of an étale algebra with involution into a simple algebra
with involution. This issue was analyzed in [Prasad and Rapinchuk 2010]: although
the local-global principle may fail (see [ibid., Example 7.5]), it can be shown to
hold under rather general conditions. For our purposes we need the following case.

Let (E, σ ) be an étale algebra with involution over a number field K of dimension
n = 2m and satisfying (2-2). Then E = F[x]/(x2

− d), where F = Eσ is an m-
dimensional étale K -algebra and d ∈ F×, with the involution defined by x 7→ −x
as in Example 2.2. We write F =

∏r
j=1 F j , where F j is a field extension of K ,

and suppose that in terms of this decomposition d = (d1, . . . , dr ). Let τ be an
orthogonal involution on A = Mn(K ).

Proposition 4.1 [Prasad and Rapinchuk 2010, Theorem 7.3]. Assume that for every
v ∈ V K there exists a Kv-embedding

ιv : (E ⊗K Kv, σ ⊗ idKv
) ↪→ (A⊗K Kv, τ ⊗ idKv

).

If it holds that

for every finite subset V ⊂ V K , there exists v0 ∈ V K
\ V such that

for j = 1, . . . , r , if d j /∈ F×j
2, then d j /∈ (F j ⊗K Kv0)

×2,
(�)

then there exists an embedding ι : (E, σ ) ↪→ (A, τ ). Furthermore, (�) automatically
holds if F is a field.

We will now derive from the proposition the following statement, in which n
can be odd or even.
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Lemma 4.2. Let K be a number field, let (E, σ ) be an n-dimensional étale algebra
with involution satisfying (2-2), and let τ be an orthogonal involution on A=Mn(K ).
Assume that for every v ∈ V K there is an embedding

ιv : (E ⊗K Kv, σ ⊗ idKv
) ↪→ (A⊗K Kv, τ ⊗ idKv

).

Then in each of the situations

(1) n 6 5 or

(2) there is a real v ∈ V K such that (E⊗K Kv, σ ⊗ idKv
) is isomorphic to (C, )m

or (C, )m × (R, idR) depending on whether n = 2m or n = 2m+ 1,

there exists an embedding ι : (E, σ ) ↪→ (A, τ ).

Proof. First, we will reduce the argument to the case of even n, that is, when E
satisfies one of the following conditions:

(1′) n = 2 or 4, or

(2′) there is a real v ∈ V K such that (E⊗K Kv, σ ⊗ idKv
) is isomorphic to (C, )m .

Indeed, let n = 2m+ 1 and suppose E satisfies condition (1) or (2) of the lemma.
Then by [Prasad and Rapinchuk 2010, Proposition 7.2], (E, σ )= (E ′, σ ′)×(K , idK )

and there exists an orthogonal involution τ ′ on A′ = Mn−1(K ) such that for every
v ∈ V K there is an embedding

ι′v : (E
′
⊗K Kv, σ

′
⊗ idKv

) ↪→ (A′⊗K Kv, τ
′
⊗ idKv

),

and the existence of an embedding ι′ : (E ′, σ ′) ↪→ (A′, τ ′) is equivalent to the
existence of an embedding ι : (E, σ ) ↪→ (A, τ ). Clearly, E ′ satisfies the respective
condition (1′) or (2′). So, if we assume that the lemma has already been established
for E ′, then the existence of ι follows.

Now, suppose that dimK E = 2m and E satisfies (2-2). Write E = F[x]/(x2
−d),

where F = Eσ =
∏r

j=1 F j and d = (d1, . . . , dr ) with d j ∈ F×j . Assume that there
exist K -embeddings ϕ j : F j ↪→ K such that if

M = ϕ1(F1) · · ·ϕr (Fr ) and N = M
(√
ϕ1(d1), . . . ,

√
ϕr (dr )

)
,

then there is λ ∈ Gal(N/M) with the property

λ
(√
ϕ j (d j )

)
=−

√
ϕ j (d j ) whenever d j /∈ F×j for j = 1, . . . , r . (4-1)

Let P be the normal closure of N over K , and let µ ∈ k Gal(P/K ) be such
that µ|N = λ. By Chebotarev’s density theorem [Cassels and Fröhlich 2010,
Chapter 7, 2.4], for any finite V ⊂ V K , there exists a nonarchimedean v0 ∈ V K

\V
that is unramified in P and for which the Frobenius automorphism Fr(w0|v0) is µ
for a suitable extension w0|v0. Then it follows from (4-1) that d j /∈ (F jw0

)×2 for
any j such that d j /∈ F×2

j , and therefore condition (�) holds.
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Let now (E, σ ) be an étale algebra with involution satisfying (1′) or (2′) for
which embeddings ιv exist for all v ∈ V K . In order to derive the existence of
ι from Proposition 4.1, we need to check (�), for which it is enough to find an
automorphism λ as in the previous paragraph. Suppose that (1′) holds. Then
F = Eσ has dimension 1 or 2, respectively. Since we don’t need to consider the
case where F is a field (see Proposition 4.1), the only remaining case is where
F = K × K . Clearly, K (

√
d1,
√

d2) always has an automorphism λ such that
λ(
√

d j )=−
√

d j if d j /∈ K×2, as required. Finally, suppose that (2′) holds. Then
F ⊗K Kv ' Rm , and d = (δ1, . . . , δm) in Rm with δi < 0 for all i . Then for any
embeddings ϕ j : F j ↪→ C we have ϕ j (F j ) ⊂ R and the restriction λ of complex
conjugation satisfies λ(

√
d j )=−

√
d j for all j , concluding the argument. �

Remark. Example 7.5 in [Prasad and Rapinchuk 2010] shows that there exists
(E, σ ) with E of dimension 6 for which the local-global principle for embeddings
fails, so in terms of dimension the condition (1) in Lemma 4.2 is sharp.

For convenience of further reference, we will also quote the local-global principle
for embeddings in the case of symplectic involutions.

Lemma 4.3 [Prasad and Rapinchuk 2010, Theorem 5.1]. Let A be a central simple
K -algebra of dimension n2 with a symplectic involution τ (then, of course, n
is necessarily even), and let (E, σ ) be an n-dimensional étale K -algebra with
involution satisfying (2-2). If for every v ∈ V K there exists an embedding

ιv : (E ⊗K Kv, σ ⊗ idKv
) ↪→ (A⊗K Kv, τ ⊗ idKv

),

then there exists an embedding (E, σ ) ↪→ (A, τ ).

5. Function field analogue of Theorem 1.4

We recall the following immediate consequence of the rationality of the variety of
maximal tori (see [Harder 1968; Platonov and Rapinchuk 1994, Corollary 7.3]),
which will be used repeatedly: Let G be a reductive algebraic group over a number
field K ; then given any v ∈ V K and any maximal Kv-torus T (v) of G there exists
a maximal K -torus T of G that is conjugate to T (v) by an element of G(Kv).
In particular, for any v ∈ V K there exists a maximal K -torus T of G such that
rkKv

T = rkKv
G. It follows that if G1 and G2 are reductive K -groups having the

same isogeny classes of maximal K -tori, then

rkKv
G1 = rkKv

G2 for all v ∈ V K . (5-1)

The remark made in the previous paragraph remains valid for global function
fields, which can be used to give the following analogue of Theorem 1.4: Suppose
G1 and G2 are absolutely almost simple algebraic groups of types B` and C` (`> 3)



1164 Skip Garibaldi and Andrei Rapinchuk

over a global field K of characteristic greater than 2. The groups G1 and G2 have
the same isogeny classes of maximal K -tori if and only if they are split. Indeed, if
the two groups have the same isogeny classes of maximal K -tori, then both groups
are Kv-split for every v (by (5-1) and Lemma 3.7); hence both groups are K -split
(by the Hasse principle). The converse holds by Remark 2.6.

6. Proof of Theorem 1.4

Throughout this section G1 and G2 will denote absolutely almost simple algebraic
groups of types B` and C` for some ` > 3 defined over a number field K . In
Definition 1.1 we defined what it means for G1 and G2 to be twins. We now
observe that since G1 and G2 cannot be Kv-anisotropic for v ∈ V K

f , they are twins
if and only if both of the following conditions hold:

rkKv
G1 = rkKv

G2 = ` for all v ∈ V K
f , (6-1)

rkKv
G1 = rkKv

G2 = 0 or ` for all v ∈ V K
∞

. (6-2)

We also note that if G1 and G2 are twins over K then they remain twins over any
finite extension L/K . If K has r real places, then (by the Hasse principle) there
are exactly 4 · 2r pairs of K -groups G1, G2 that are twins, equivalently, 2r pairs if
one only counts the groups G1 and G2 up to isogeny.

Now, let G1 and G2 be as above, with G1 adjoint and G2 simply connected.
Then Gi = SU(Ai , τi ) for i = 1, 2, where A1 = Mn1(K ), n1 = 2`+ 1 and the
involution τ1 is orthogonal, and A2 is a central simple K -algebra of dimension n2

2
with n2 = 2` and the involution τ2 is symplectic. Any maximal K -torus Ti of Gi

is of the form SU(Ei , σi ), where Ei ⊂ Ai is an ni -dimensional étale τi -invariant
K -subalgebra and σi = τi |Ei so that (2-2) holds. For i = 1, we can always write
(E1, σ1)= (E ′1, σ

′

1)× (K , idK ). For i = 2, we set (E+2 , σ
+

2 )= (E2, σ2)× (K , idK ).

Proposition 6.1. Let (A1, τ1) and (A2, τ2) be algebras with involution as above,
and assume that G1 = SU(A1, τ1) and G2 = SU(A2, τ2) are twins. If (E1, σ1)

is isomorphic to an n1-dimensional étale subalgebra of (A1, τ1) satisfying (2-2),
then (E ′1, σ

′

1) is isomorphic to a subalgebra of (A2, τ2). Conversely, if (E2, σ2) is
isomorphic to an n2-dimensional étale subalgebra of (A2, τ2) satisfying (2-2) then
(E+2 , σ

+

2 ) is isomorphic to a subalgebra of (A1, τ1). Thus, the correspondences

(E1, σ1) 7→ (E ′1, σ
′

1) and (E2, σ2) 7→ (E+2 , σ
+

2 )

implement mutually inverse bijections between the sets of isomorphism classes of n1-
and n2-dimensional étale subalgebras of (A1, τ1) and (A2, τ2) that are invariant
under the respective involutions and satisfy (2-2).

Proof. If we have rkKv
G1 = rkKv

G2 = ` for all v ∈ V K
∞

then the groups G1

and G2 are K -split by (6-1) and the Hasse principle. Then τ1 corresponds to a
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nondegenerate symmetric bilinear form of Witt index `, and A2 = Mn2(K ) with τ2

corresponding to a nondegenerate skew-symmetric form. In this case, our claim
immediately follows from Propositions 2.3 and 2.5, as in Remark 2.6. So, we may
assume that there is a real v0 ∈ V K

∞
such that rkKv0

G1 = rkKv0
G2 = 0. Observe that

given any real v ∈ V K
∞

satisfying rkKv
G1 = rkKv

G2 = 0, the data in Table 1 shows
that for any n1-dimensional τ1-invariant étale subalgebra E1 ⊂ A1 satisfying (2-2)
and σ1 = τ1|E1 , we have

(E1⊗K Kv, σ1⊗ idKv
)' (C, )`× (R, idR), (6-3)

and for any n2-dimensional τ2-invariant étale subalgebra E2 ⊂ A2 satisfying (2-2)
and σ2 = τ2|E2 we have

(E2⊗K Kv, σ2⊗ idKv
)' (C, )`. (6-4)

Let (E1, σ1) be as in the statement of the proposition. We first show that for any
v ∈ V K there is an embedding ιv : (E ′1⊗K Kv, σ

′

1⊗ idKv
) ↪→ (A2⊗K Kv, τ2⊗ idKv

).
If rkKv

G1= rkKv
G2= `, this follows from Proposition 2.3. Otherwise, v is real, and

rkKv
G1 = rkKv

G2 = 0, so we see from (6-3) that (E ′1⊗K Kv, σ
′

1⊗ idKv
)' (C, )`.

Then the existence of ιv follows from the argument given in the proof of Lemma 3.3.
Now, applying Lemma 4.3 we obtain the existence of an embedding

ι : (E ′1, σ
′

1) ↪→ (A2, τ2),

as required.
Conversely, let (E2, σ2) be as in the proposition. Then arguing as above (using

Proposition 2.5 and the proof of Lemma 3.2) we obtain the existence of local
embeddings ιv : (E+2 ⊗K Kv, σ

+

2 ⊗ idKv
) ↪→ (A1⊗K Kv, τ1⊗ idKv

) for all v ∈ V K .
It follows from (6-4) that

(E+2 ⊗K Kv0, σ
+

2 ⊗ idKv0
)' (C, )`× (R, idR).

This enables us to use Lemma 4.2 which yields the existence of an embedding
(E+2 , σ

+

2 ) ↪→ (A1, τ1), completing the argument. �

The following consequence of the proposition proves the “if” component in both
parts, (1) and (2), of Theorem 1.4.

Corollary 6.2. Let G1 and G2 be absolutely almost simple algebraic groups of
types B` and C`, respectively, that are twins.

(i) G1 and G2 have the same isogeny classes of maximal K -tori.

(ii) If G1 is adjoint and G2 is simply connected then G1 and G2 have the same
isomorphism classes of maximal K -tori.
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Proof. Statement (ii) easily follows from the proposition, and (i) is an immediate
consequence of (ii). �

Remark 6.3. The assumption that ` > 3 was never used in Proposition 6.1 and
Corollary 6.2. So, these statements remain valid also for ` = 2, which will be
helpful in Section 8.

We now turn to the proof of the “only if” direction in both parts of Theorem 1.4,
where the assumption ` > 3 becomes essential and will be kept throughout the
rest of the section. This direction requires a bit more work and involves the notion
of generic tori. To recall the relevant definitions, we let G denote a semisimple
algebraic K -group, and fix a maximal K -torus T of G. Furthermore, we let8(G, T )
denote the corresponding root system, and let KT denote the minimal splitting field
of T over K . The natural action of Gal(KT /K ) on the group of characters X (T )
gives rise to an injective group homomorphism

θT : Gal(KT /K )→ Aut(8(G, T )).

We say that T is generic (over K ) if θT (Gal(KT /K )) contains the Weyl group
W (G, T ). As the following statement shows, generic tori with prescribed local
properties always exist.

Proposition 6.4 [Prasad and Rapinchuk 2009, Corollary 3.2]. Let G be an abso-
lutely almost simple algebraic K -group, and let V ⊂ V K be a finite subset. Suppose
that for each v ∈ V we are given a maximal Kv-torus T (v) of G. Then there exists a
maximal K -torus T of G which is generic over K and which is conjugate to T (v)

by an element of G(Kv) for all v ∈ V .

We now return to the situation where G1 and G2 are absolutely almost simple
K -groups of types B` and C` (`> 3), respectively. We let G\

1 denote the adjoint
group of G1, and G\

2 the simply connected cover of G2. Furthermore, given a
maximal K -torus Ti of Gi , we let T \

i denote the image of Ti in G\
i if i = 1 and the

preimage of Ti in G\
i if i = 2.

Proposition 6.5. Let Ti be a generic maximal K -torus of Gi , where i = 1, 2. If
there exists a K -isogeny π : Ti → T3−i onto a maximal K -torus of G3−i , then there
exists a K -isomorphism T \

i ' T \

3−i .

The proof below is an adaptation of [Prasad and Rapinchuk 2009, Lemma 4.3
and Remark 4.4].

Proof. We have KT1=KT2=: L , and let G=Gal(L/K ). Then θT j is an isomorphism
of G on W j = W (G j , T j ) for j = 1, 2. The isogeny π induces a G-equivariant
homomorphism of character groups π∗ : X (T3−i )→ X (Ti ). Let X \

j = X (T \
j ); we

need to prove that there is a G-equivariant isomorphism ψ : X \

3−i → X \
i . (We recall
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that X \

1 is the subgroup of X (T1) generated by all the roots in 81 =8(G1, T1), and
X \

2 is generated by the weights of the root system 82 =8(G2, T2).)
To avoid cumbersome notation, we will assume that i = 1. (This does not restrict

generality as along with π there is always a K -isogeny π ′ : T3−i → Ti .) Consider

φ = π∗⊗ idR : V2 = X (T2)⊗Z R→ X (T1)⊗Z R= V2

and µ : W2→W1 defined by µ= θT1 ◦ θ
−1
T2

. Then the fact that π∗ is G-equivariant
implies that

φ(w · v)= µ(w) ·φ(v) for all v ∈ V2, w ∈W2. (6-5)

On the other hand, it follows from the explicit description of the root systems as in
[Bourbaki 2002] that there exists a linear isomorphism φ0 : V2→ V1 and a group
isomorphism µ0 : W2→W1 such that

φ0(w · v)= µ0(w) ·φ0(v) for all v ∈ V2, w ∈W2, (6-6)

φ0 takes the short roots of 82 to the long roots of 81, and (1/2)φ0 takes the long
roots of 82 to the short roots of 81, consequently φ0(X

\

2)= X \

1. (We identify W j

with the Weyl group of the root system 8 j .)
We claim that there exists a nonzero λ ∈ R and z ∈W1 such that

φ(v)= λ · z ·φ0(v) and µ(w)= z ·µ0(w) · z−1 for all v ∈ V2, w ∈W2.

Indeed, it was shown in [Prasad and Rapinchuk 2009, Lemma 4.3] (using that
`> 3) that a suitable multiple φ′ = λ−1

·φ takes the short roots of 82 to the long
roots of 82, and (1/2)φ0 takes the long roots of 82 to the short roots of 81. Then
z := φ′◦φ−1

0 is an automorphism of 81 and hence can be identified with an element
of W1. This gives the formula for φ, and then the formula for µ follows from (6-5)
and (6-6).

Put ψ := λ−1
· φ. Then ψ(X \

2) = z(φ0(X
\

2)) = X \

1, and ψ is G-equivariant, as
required. �

Corollary 6.6. Let Ti be a generic maximal K -torus of Gi . If there exists v ∈ V
such that T \

i does not allow a Kv-defined embedding into G\

3−i , then Ti is not K -
isogenous to any maximal K -torus T3−i of G3−i . Thus, if G1 and G2 have the same
isogeny classes of maximal K -tori, then G\

1 and G\

2 have the same isomorphism
classes of maximal Kv-tori for all v ∈ V .

Proof. The first assertion immediately follows from the proposition. To derive the
second assertion from the first, we observe that given v ∈ V and a maximal Kv-torus
Ti of G\

i that does not allow a Kv-embedding into G\

3−i , we can find a maximal
K -torus Ti of Gi such that T \

i is conjugate to Ti by an element G\
i (Kv). �
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Proof of Theorem 1.4, “only if”. Assume G1 and G2 have the same isogeny classes
of maximal K -tori. Then by Corollary 6.6, G\

1 and G\

2 have the same isomorphism
classes of maximal Kv-tori for all v. It follows that G1 and G2 are twins (by
Corollary 3.4 for v real and Lemma 3.7 for v finite), completing the proof of part
(1) of Theorem 1.4.

Now suppose that G1 and G2 have the same isomorphism classes of maximal K -
tori, in particular, there is a K -isomorphism π : T1→T2 between two generic K -tori.
Then as in the proof of Proposition 6.5, π∗ induces φ : V2→ V1, which necessarily
satisfies φ(X (T2)) = X (T1) and φ(X (T \

2 )) = X (T \

1 ). Since X (T \

1 ) ⊆ X (T1) and
X (T \

2 )⊇ X (T2), this is possible only if both inclusions are in fact equalities, that
is, G1 = G\

1 and G2 = G\

2. This completes the proof of part (2) of Theorem 1.4. �

7. Weakly commensurable subgroups and proof of Theorem 1.2

We begin by recalling the notion of weak commensurability of Zariski-dense sub-
groups introduced in [Prasad and Rapinchuk 2009]. Let G1 and G2 be semisimple
algebraic groups over a field F of characteristic zero, and let 0i ⊂ Gi (F) be a
Zariski-dense subgroup for i = 1, 2. Semisimple elements γi ∈ 0i are weakly
commensurable if there exist maximal F-tori Ti of Gi such that γi ∈ Ti (F) and
for some characters χi ∈ X (Ti ) we have χ1(γ1) = χ2(γ2) 6= 1. Furthermore, the
subgroups 01 and 02 are weakly commensurable if every semisimple element
γ1 ∈01 of infinite order is weakly commensurable to some γ2 ∈02 of infinite order,
and vice versa.

The focus in [ibid.] was on analyzing when two Zariski-dense S-arithmetic
subgroups in absolutely almost simple algebraic groups are weakly commensurable.
This analysis was based on a description of such S-arithmetic groups in terms
of triples, which we will now briefly recall. Let G be a (connected) absolutely
almost simple algebraic group defined over a field F of characteristic zero, G be
its adjoint group, and π : G→ G be the natural isogeny. Suppose we are given the
following data:

• a number field K with a fixed embedding K ↪→ F ,

• a finite set S of valuations of K containing all archimedean valuations, and

• an F/K -form G of G (that is, a K -defined algebraic group such that there
exists an F-defined isomorphism of algebraic groups F G ' G, where F G is
the group obtained from G by the extension of scalars F/K ).

(It is assumed in addition that S does not contain any nonarchimedean valuations v
such that G is Kv-anisotropic.) We then have an embedding ι : G(K ) ↪→ G(F) and
a natural S-arithmetic subgroup G(OK (S)), where OK (S) is the ring of S-integers
in K , defined in terms of a fixed K -embedding G ↪→ GLn , that is, G(OK (S)) =
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G(K )∩GLn(OK (S)). A subgroup 0 of G(F) such that π(0) is commensurable
with ι(G(OK (S))) is called (G, K , S)-arithmetic. (It should be pointed out that we
do not fix an F-defined isomorphism F G' G in this definition, and by varying it
we obtain a class of subgroups invariant under F-defined automorphisms of G in
the obvious sense.)

It was shown in [ibid.] that if Gi is absolutely almost simple and 0i is Zariski-
dense and (Gi , Ki , Si )-arithmetic for i = 1, 2, then the weak commensurability of
01 and 02 implies that K1 = K2 =: K and S1 = S2 =: S, and additionally either
G1 and G2 are of the same type or one of them is of type B` and the other is of
type C` for some `> 3. That paper also contains many precise conditions for two
S-arithmetic subgroups to be weakly commensurable in the case where G1 and
G2 are of the same type. The goal of this section is to prove Theorem 1.2, which
provides such conditions when one of the groups is of type B` and the other of type
C` (`> 3). In conjunction with the previous results, this completes the investigation
of weak commensurability of S-arithmetic subgroups in absolutely almost simple
groups over number fields.

Proof of Theorem 1.2. Let G1 and G2 be absolutely almost simple algebraic groups
of types B` and C` (`> 3), respectively, defined over a number field K , and let 0i

be a Zariski-dense (Gi , K , S)-arithmetic subgroup of Gi .
Suppose that G1 and G2 are twins. Then by Theorem 1.4, they have the same

isogeny classes of maximal K -tori. This automatically implies that 01 and 02 are
weakly commensurable. To see this, we basically need to repeat the argument given
in [Prasad and Rapinchuk 2009, Example 6.5], which we also give here for the
reader’s convenience. First, we may assume without any loss of generality that G1

and G2 are adjoint (see [ibid., Lemma 2.4]); hence 0i ⊂ Gi (K ). Let γ1 ∈ 01 be a
semisimple element of infinite order, and let T1 be a maximal K -torus of G1 that
contains γ1. Then there exists a K -isogeny ϕ : T1→ T2 onto a maximal K -torus
T2 of G2. The subgroup ϕ(T1(K )∩01) is an S-arithmetic subgroup of T2(K ), so
there exists n > 0 such that γ2 := ϕ(γ1)

n
∈ 02. Let χ1 ∈ ϕ

∗(X (T2)) be a character
such that χ1(γ1) is not a root of unity, and let χ2 ∈ X (T2) be such that ϕ∗(χ2)= χ1.
Then

(nχ1)(γ1)= χ1(γ1)
n
= χ2(γ2) 6= 1,

which implies that 01 and 02 are weakly commensurable.
Conversely, suppose that 01 and 02 are weakly commensurable. According to

[ibid., Theorem 6.2], this in particular implies that

rkKv
G1 = rkKv

G2 for all v ∈ V K .

As we have seen in Lemma 3.7, for v ∈ V K
f and the groups under consideration,

the equality of ranks implies that both groups are actually Kv-split, verifying
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condition (6-1). Assume that condition (6-2) fails for a real v0 ∈ V K
∞

. Then by
Corollary 3.4, there is an i ∈ {1, 2} and a maximal Kv0-torus Ti of G

\
i that does

not allow a Kv0-embedding into G
\

3−i ; obviously Ti is Kv0-isotropic. Let T (v0)
i be

a maximal Kv0-torus of Gi such that (T \
i )
(v0) = Ti . Furthermore, for v ∈ S \ {v0}

we let T (v)
i denote a maximal Kv-torus of Gi such that rkKv

T (v)
i = rkKv

Gi . Using
Proposition 6.4, we can find a maximal K -torus Ti of Gi that is generic and that
is conjugate to T (v) by an element of Gi (Kv) for all v ∈ S ∪ {v0}. Then clearly
rkS Ti :=

∑
v∈S rkKv

Ti > 0 as rkS Gi > 0. By Dirichlet’s theorem [Platonov and
Rapinchuk 1994, Theorem 5.12], the group of S-integral points Ti (OK (S)) has the
structure H ×Zd , where d = rkS Ti − rkK Ti . Since Ti is obviously K -anisotropic,
we conclude that there exists γi ∈ Ti (K )∩0i of infinite order (as in the previous
paragraph, we are assuming that G1 and G2 are adjoint, and hence 0 j ⊂ G j (K )
for j = 1, 2). Then γi is weakly commensurable to some semisimple γ3−i ∈ 03−i

of infinite order. Let T3−i be a maximal K -torus of G3−i containing γ3−i . By
the isogeny theorem [Prasad and Rapinchuk 2009, Theorem 4.2], the tori Ti and
T3−i are K -isogenous. Using Proposition 6.5, we conclude that T \

i and T \

3−i are
K -isomorphic. This implies that over Kv0 , the torus Ti ' T \

i has an embedding into
G3−i , a contradiction, proving (6-2) and completing the proof of Theorem 1.2. �

As we already mentioned, the notion of weak commensurability was introduced
to tackle some differential-geometric problems dealing with length-commensurable
and isospectral locally symmetric spaces, and we conclude this section with a sample
of geometric consequences — established in [Prasad and Rapinchuk 2013] — of the
results of the current paper. For a Riemannian manifold M , we let L(M) denote the
weak length spectrum of M , that is, the collection of lengths of all closed geodesics
in M . Two Riemannian manifolds M1 and M2 are called length-commensurable if
Q · L(M1)=Q · L(M2).

Let M1 be an arithmetic quotient of the real hyperbolic space Hp (p> 5),
and M2 be an arithmetic quotient of the quaternionic hyperbolic space
H

q
H (q > 2). Then M1 and M2 are not length-commensurable.

(7-1)

Theorem 1.2 is used to handle the case p = 2n and q = n− 1 for n > 3; for other
p and q , the claim follows from [Prasad and Rapinchuk 2009, Theorem 8.15].

Now, let X1 be the symmetric space of the real Lie group G1 = SO(n+ 1, n),
and let X2 be the symmetric space of the real Lie group G2 = Sp2n , where n > 3.

Let Mi be the quotient of Xi by a (Gi , K )-arithmetic subgroup of Gi for
i = 1, 2. If G1 and G2 are twins, then

Q · L(M2)= λ ·Q · L(M1), where λ=

√
2n+2
2n−1

.

(7-2)
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(We refer to [Prasad and Rapinchuk 2009, §1] for the notion of arithmeticity and
the explanation of other terms used here.) We finally note that even though one can
make M1 and M2 length-commensurable by scaling the metric on one of them, this
will never make them isospectral [Yeung 2011].

8. Proofs of Proposition 1.3 and Theorem 1.5

Proof of Proposition 1.3. We can assume that G1 and G2 are connected absolutely
almost simple adjoint K -groups having the same isogeny classes of maximal K -tori.
Assume that provisions (2) and (3) of the proposition do not hold; let us show
that (1) must hold. First, by [Prasad and Rapinchuk 2009, Theorem 7.5], G1 and
G2 have the same Killing–Cartan type. Furthermore, if L i is the minimal Galois
extension of K over which Gi becomes an inner form then L1 = L2; in other
words, G1 and G2 are inner twists of the same quasisplit K -group. So, the required
assertion is a consequence of the following lemma. �

Lemma 8.1. Let G1 and G2 be connected absolutely almost simple adjoint K -
groups of the same Killing–Cartan type, which is different from A` (` > 1), D2`+1

(` > 1) or E6. Assume that G1 and G2 are inner twists of the same quasisplit
K -group (which holds automatically if G1 and G2 are not of type D). If G1 and G2

have the same isogeny classes of maximal K -tori then G1 ' G2.

Proof. First, suppose that the groups are not of type D. As we have seen in Section 5,
the fact that G1 and G2 have the same isogeny classes of maximal K -tori implies
that rkKv

G1 = rkKv
G2 for all v ∈ V K . For groups of one of the types under

consideration, this implies that G1 ' G2 over Kv for all v ∈ V K and then our
assertion follows from the Hasse principle for Galois cohomology of adjoint groups;
see [Prasad and Rapinchuk 2009, §6] for details of the argument.

Now, suppose the groups are of type D2` for some `> 2. There exists a maximal
K -torus T1 of G1 that is generic and such that rkKv

T1 = rkKv
G1 at every place v

where at least one of G1 or G2 is not quasisplit. (The set of such v is finite; see
[Platonov and Rapinchuk 1994, Theorem 6.7].) By hypothesis, T1 is isogenous to a
maximal K -torus T2 of G2, which is necessarily also generic. Following [Prasad
and Rapinchuk 2009, Lemma 4.3 and Remark 4.4], one finds a K -isomorphism
T1→ T2 that extends to a K -isomorphism G1→ G2. Then our assertion follows
from Theorem 20 in [Garibaldi 2012]. �

Proof of Theorem 1.5. The “if” direction is actually contained in Corollary 6.2 —
see Remark 6.3. For the “only if” direction, we first observe that if G1 and G2 have
the same isomorphism classes of maximal K -tori then by Lemma 8.1 the groups
SO(q1) and SO(q2) are isomorphic; hence the forms q1 and q2 are similar, yielding
assertion (1). Thus, we can assume that G1 = SO(q) and G2 = Spin(q) for a single
quadratic form q.
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To prove assertion (2), it is enough to show that if v ∈ V K is such that the Witt
index of q over Kv is 1 then there exists a 2-dimensional Kv-torus T1 that has a
Kv-embedding into G1 but does not allow a Kv-embedding into G2. For this we
pick a quadratic extension L/Kv and set

T1 = GL1×R(1)L/Kv
(GL1).

We can write q = q ′ ⊥ q ′′, where q ′ is a hyperbolic plane. Then SO(q ′) = GL1

and SO(q ′′)= PSL1,D , where D is a quaternion division algebra over Kv . Since L
embeds in D, the torus R(1)L/Kv

(GL1) embeds in SL1,D and then also in PSL1,D . It
follows that T1 embeds in G1=SO(q). On the other hand, let T2⊂G2 be a maximal
Kv-torus that splits over L . We can identify G2 with SU(A, τ ), where A= M2(D)
with D a quaternion division algebra over K and τ is a symplectic involution on A.
Let E2 be the Kv-subalgebra of A generated by T2(Kv). Then E2⊗Kv

L ' L4. As
in Section 3, we conclude that (E2, τ |E2) is isomorphic to (L , σ )× (L , σ ), where
σ is the nontrivial automorphism of L , or to (L × L , λ), where λ is the switch
involution. Then T2 = SU(E2, τ |E2) is isomorphic, respectively, to R(1)L/Kv

(GL1)
2

or RL/Kv
(GL1). Neither such torus can be isomorphic to T1. �

9. Alternative proofs via Galois cohomology

Although the main body of the paper demonstrates the effectiveness (and in fact the
ubiquity) of the technique of étale algebras in dealing with maximal tori of classical
groups, it is worth pointing out that some parts of the argument can also be given
in the language of Galois cohomology of algebraic groups. In this section, we will
illustrate such an exchange by giving a cohomological proof of the “if” direction of
Theorem 1.4(2), that is, of Corollary 6.2(ii).

Our main tool is Proposition 9.1, for which we need some notation. Let G be
a connected semisimple algebraic group over a number field K . Fix a maximal
K -torus T of G, and let N = NG(T ) and W = N/T denote, respectively, its
normalizer and the corresponding Weyl group. For any field extension P/K , we let
θP : H 1(P, N )→ H 1(P,W ) denote the map induced by the natural K -morphism
N →W , and let

C(P) := Ker
(
H 1(P, N )→ H 1(P,G)

)
.

The elements of C(P) are in one-to-one correspondence with the G(P)-conjugacy
classes of maximal P-tori in G; see for example [Prasad and Rapinchuk 2009,
Lemma 9.1] where this correspondence is described explicitly. There is an obvious
K -defined map W → Aut T , so for any ξ ∈ H 1(K ,W ) one can consider the
corresponding twisted K -torus ξT .



Weakly commensurable subgroups in groups of types B and C 1173

Proposition 9.1. Assume that there exists a subset V0 ⊂ V K
∞

such that G is Kv-
anisotropic for all v ∈ V0 and is Kv-split for all v ∈ V K

\ V0. Then the sequence

C(K )
θK
−→ H 1(K ,W )

∏
ρv

−−−→

∏
v∈V0

H 1(Kv,W ) (9-1)

is exact.

Here ρv denotes the natural restriction map H 1(K ,W )→ H 1(Kv,W ).

Proof. If V0 is empty then it follows from the Hasse principle for adjoint groups
[Platonov and Rapinchuk 1994, Theorem 6.22] that G is K -split. In this case it was
shown by Gille [2004] and Raghunathan [2004] (or earlier by Kottwitz [1982]) that
θK (C(K ))= H 1(K ,W ), and our claim follows. So, we will assume in the rest of
the argument that V0 is not empty.

We first prove that ρvθK = 0 for all v ∈ V0. Given ξ ∈ C(K ), one can pick
g ∈ G(K ) such that n(σ ) := g−1σ(g) belongs to N (K ) for all σ ∈ Gal(K/K ),
and the cocycle σ 7→ n(σ ) represents ξ . Then the maximal torus T ′ = gT g−1 is
defined over K . Now, let v ∈ V0. According to our definitions, G is anisotropic
over Kv = R, so it follows from the conjugacy of maximal tori in compact Lie
groups that T and T ′ are conjugate by an element of G(Kv). Then the one-to-one
correspondence between the elements of C(Kv) and the G(Kv)-conjugacy classes
of maximal Kv-tori in G (or a simple direct computation) implies that the image
of ξ under the restriction map C(K )→ C(Kv) is trivial, and hence the image of
θK (ξ) under the restriction map H 1(K ,W )→ H 1(Kv,W ) is trivial as well.

Now suppose that G is simply connected; we verify that every ξ ∈
⋂
v∈V0

ker ρv
is in the image of θK . Pick v ∈ V0. Since ξ lies in the kernel of H 1(K ,W )→

H 1(Kv,W ), the twisted torus ξT is Kv-isomorphic to T , hence Kv anisotropic (as
G is Kv-anisotropic). Thus,

Ker
(
H 2(K , ξT )→

∏
v∈V K H 2(Kv, ξT )

)
= 0

by [Prasad and Rapinchuk 2009, Proposition 6.12]. Invoking [ibid., Theorem 9.2],
we see that to prove the inclusion ξ ∈ θK (C(K )), it is enough to show that ρv(ξ) ∈
θKv
(C(Kv)) for all v ∈ V K . If v ∈ V0 then by construction ρv(ξ) is trivial, and

there is nothing to prove. Otherwise, the group G is Kv-split, so by the result
of Gille, Kottwitz and Raghunathan we have θKv

(C(Kv))= H 1(Kv,W ), and the
inclusion ρv(ξ) ∈ θKv

(C(Kv)) is obvious. Since ξ was arbitrary, we have proved
that

⋂
ker ρv is contained in the image of θK .

In case G is not simply connected, we fix a K -defined universal cover π : G̃→G
of G and use the tilde to denote the objects associated with G̃. Then π yields a
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K -isomorphism of W̃ and W and we have a commutative diagram

C̃(K )
θ̃K
−−−→ H 1(K , W̃ )

∏
ρ̃v

−−−→
∏
v∈V0

H 1(Kv, W̃ )y ∥∥∥ ∥∥∥
C(K )

θK
−−−→ H 1(K ,W )

∏
ρv

−−−→
∏
v∈V0

H 1(Kv,W ).

The top row is exact by the previous paragraph; hence
⋂

ker ρv is contained in the
image of θK . �

We now begin to work our way towards the proof of Theorem 1.4(2) and
Corollary 6.2(ii). Let G1 be adjoint of type B` and let G2 be simply connected of
type C` for some ` > 2. We will use a subscript i ∈ {1, 2} to denote the objects
associated with Gi . In particular, we let Ti denote a maximal torus of Gi , and let
Ni = NGi (Ti ) and Wi = Ni/Ti be its normalizer and the Weyl group. Then Wi

naturally acts on Ti by conjugation. We say that the morphisms of algebraic groups
ϕ : T1→ T2 and ψ : W1→W2 are compatible if

ϕ(w · t)= ψ(w) ·ϕ(t) for all t ∈ T1, w ∈W1.

Lemma 9.2. One can pick maximal K -tori Ti of Gi for i = 1, 2 so that there exist
compatible K -defined isomorphisms ϕ : T1→ T2 and ψ : W1→W2.

Proof. Imitating the argument given in [Platonov and Rapinchuk 1994, Proposition
6.16], it is easy to see that there exists a quadratic extension L/K that splits both
G1 and G2. Indeed, let Vi be the (finite) set of places v ∈ V K such that Gi does
not split over Kv , and let V = V1 ∪ V2. Pick a quadratic extension L/K so that the
local degree [Lw : Kv] = 2 for all v ∈ V and w|v. We claim that L is as required.
By the Hasse principle, it is enough to show that both G1 and G2 split over Lw for
any w ∈ V L . For a given w, we let v ∈ V K be the place that lies below w. If v /∈ V
then by our construction G1 and G2 split already over Kv, and there is nothing to
prove. If v ∈ V then [Lw : Kv] = 2, and then the proof of [ibid., Proposition 6.16]
gives that G1 and G2 split over Lw, as required.

Now, let σ ∈ Gal(L/K ) be a generator. According to [ibid., Lemma 6.17],
for each i ∈ {1, 2}, there exists an L-defined Borel subgroup Bi of Gi such that
Ti := Bi ∩ Bσi is a maximal K -torus of Gi that splits over L . Considering the
action of σ on the root system 8(Gi , Ti ), we see that it takes the system of positive
roots corresponding to Bi into the system of negative roots. For groups of types B`
and C`, this implies that σ acts on the character group X (Ti ) as multiplication by
(−1). It easily follows from the description of the corresponding root systems (see
[Bourbaki 2002]) that there exist compatible (in the obvious sense) isomorphisms
ϕ∗ : X (T2)→ X (T1) (of abelian groups) and ψ : W1 → W2 (of abstract groups
considered as subgroups of GL(X (T1)) and GL(X (T2))). Then ϕ∗ gives rise to an
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isomorphism ϕ : T1→ T2 of algebraic groups that is compatible (as defined above)
with ψ (which can be considered as a morphism of algebraic groups). It remains to
observe that since σ acts on X (T1) and X (T2) as multiplication by (−1), both ϕ
and ψ are K -defined (in fact, σ acts on W1 and W2 trivially). �

Remark. If both groups G1 and G2 are K -split then one can, of course, take for
T1 and T2 their maximal K -split tori.

For the rest of the paper, we fix compatible K -defined isomorphisms

ϕ0
: T 0

1 → T 0
2 and ψ0

: W 0
1 →W 0

2 .

(Thus, we henceforth slightly change the notation used in Lemma 9.2.) Given
arbitrary maximal K -tori Ti of Gi for i = 1, 2, we pick elements gi ∈G(K ) so that
Ti = gi T 0

i g−1
i , and then for any σ ∈ Gal(K/K ), the element ni (σ ) := g−1

i σ(gi )

belongs to N 0
i (K ). Let ϕ = ϕ(g1, g2) be the morphism T1→ T2 defined by

ϕ(t)= g2ϕ
0(g−1

1 tg1)g−1
2 ,

and let ν0
i : N 0

i →W 0
i denote the canonical morphism.

Lemma 9.3. If

ψ0(ν0
1(n1(σ )))= ν

0
2(n2(σ )) for all σ ∈ Gal(K/K ) (9-2)

then ϕ = ϕ(g1, g2) is defined over K .

Proof. We need to show that ϕ commutes with every σ ∈ Gal(K/K ). Since ϕ0 is
defined over K , for any t ∈ T1(K ), we have

σ(ϕ(t))= σ(g2)ϕ
0(σ (g1)

−1σ(t)σ (g1))σ (g2)
−1

= g2n2(σ )ϕ
0(n1(σ )

−1g−1
1 σ(t)g1n1(σ ))n2(σ )

−1g−1
2

= g2
(
(ν0

2(n2(σ ))) ·ϕ
0((ν0

1(n1(σ ))) · (g−1
1 σ(t)g1))

)
g−1

2 .

Since ϕ0 is compatible with ψ0, condition (9-2) implies that the latter reduces to

g2ϕ
0(g−1

1 σ(t)g1)g−1
2 = ϕ(σ(t)).

It follows that σ(ϕ(t))= ϕ(σ(t)), that is, ϕ commutes with σ , as required. �

Pursuant to the notation above, for an extension P/K and i = 1, 2, we set

Ci (P)= Ker
(
H 1(P, N 0

i )→ H 1(P,Gi )
)
,

and let θi P : H 1(P, N 0
i )→ H 1(P,W 0

i ) denote the canonical map (induced by νi ).
The isomorphism H 1(K ,W 0

1 )→ H 1(K ,W 0
2 ) induced by ψ0 will still be denoted

by ψ0.
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Lemma 9.4. Assume that

ψ0(C1(K ))= C2(K ). (9-3)

Then for i = 1 or 2, given any maximal K -torus Ti of Gi and an element gi ∈Gi (K )
such that Ti = gi T 0

i g−1
i , there exists g3−i ∈ G3−i (K ) such that the maximal torus

T3−i :=g3−i T 0
3−i g

−1
3−i and the isomorphism ϕ(g1, g2) : T1→T2 are K -defined. Thus,

in this case G1 and G2 have the same isomorphism classes of maximal K -tori.

Proof. To keep our notation simple, we will give an argument for i =1 (the argument
in the case i =2 is totally symmetric). As above, we set n1(σ )= g−1

1 σ(g1)∈ N 0
1 (K )

for σ ∈ Gal(K/K ), observing that these elements define a cohomology class
n1 ∈ C1(K ). Then (9-3) implies that there exists h2 ∈ G2(K ) such that for the
cohomology class m2∈C2(K ) defined by the elements m2(σ )=h−1

2 σ(h2)∈N 0
2 (K ),

we have ψ0(θ1K (n1)) = θ2K (m2) in H 1(K ,W2). Then there exists w2 ∈ W2(K )
such that

ψ0(ν0
1(n1(σ )))= w

−1
2 ν0

2(m2(σ ))σ (w2) for all σ ∈ Gal(K/K ). (9-4)

Picking z2 ∈ N 0
2 (K ) so that ν0

2(z2)= w2, and setting

g2 = h2z2 and n2(σ )= g−1
2 σ(g2) ∈ N 0

2 (K ) for σ ∈ Gal(K/K ),

we obtain from (9-4) that (9-2) holds. Then g2 is as required. Indeed, the fact
that n2(σ ) ∈ N 0

2 (K ) implies that T2 = g2T 0
2 g−1

2 is defined over K , and Lemma 9.3
yields that the morphism ϕ(g1, g2) : T1→ T2 is also defined over K . �

Proof of Corollary 6.2(ii). Suppose that G1 and G2 are twins, and let V0 be the set of
all archimedean places v ∈ V K such that G1 and G2 are both Kv-anisotropic. Then
for any v ∈V K

\V0, both G1 and G2 are Kv-split. Then according to Proposition 9.1
we have

θi K (Ci (K ))= ker
(
H 1(K ,W 0

i )→
∏
v∈V0

H 1(Kv,W 0
i )
)

for i = 1, 2, and as ψ0 :W 0
1 →W 0

2 is an isomorphism, condition (9-3) holds, and
the claim follows from Lemma 9.4. �

Remark. It follows from the explicit description of the root systems of types B`
and C` that the isomorphism ϕ in Lemma 9.2 can be chosen so that for t ∈ T1(K )
there exist λ1, . . . , λ` ∈ K× such that the values of the roots α ∈8(G1, T1) on t
are

λ±1
i , i = 1, . . . , `, and λ±1

i · λ
±1
j , i, j = 1, . . . , `, i 6= j,

and the values of the roots α ∈8(G2, T2) on φ(t) are

λ±2
i , i = 1, . . . , `, and λ±1

i · λ
±1
j , i, j = 1, . . . , `, i 6= j.
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Then any identification of the form ϕ(g1, g2) also has this property, which was used
in [Prasad and Rapinchuk 2013].

Alternatively, suppose that Gi for i=1, 2 is realized as SU(Ai , τi ) as described in
the beginning of Section 6. Let E1 be a (τ1⊗ idK )-invariant maximal commutative
étale K -subalgebra of A1⊗K K satisfying (2-2), and let σ1 = τ1|E1 . Then in the
notation of Section 6, the algebra (E ′1, σ

′

1) admits a K -embedding embedding into
(A2⊗K K , τ2⊗ idK ), and we let (E2, σ2) the image of this embedding. It is easy
to see that if we let Ti denote the maximal torus of Gi defined by (Ei , σi ) then the
isomorphism T1' T2 coming from the isomorphism of algebras (E ′1, σ

′

1)' (E2, σ2)

is the same as the isomorphism coming from the description of the root systems
(see the proof of Lemma 9.2); in particular, it is compatible with the natural
isomorphism of the Weyl groups. So, the assertion of Lemma 9.2 means that
given any K -algebras with involutions (A1, τ1) and (A2, τ2) as above, there exists
a τ1-invariant maximal commutative étale K -subalgebra E1 of A1 that satisfies
(2-2) and is such that for σ1 = τ1|E1 , the algebra (E ′1, σ

′

1) admits an embedding into
(A2, σ2). Moreover, by Corollary 6.2(ii), if the corresponding groups G1 and G2

are twins then the correspondence (E1, σ1) 7→ (E ′1, σ
′

1) gives a bijection between
the sets of isomorphism classes of maximal commutative étale K -subalgebras of
(A1, τ1) and (A2, τ2) that are invariant under the respective involutions and satisfy
(2-2). Thus, we recover Proposition 6.1.
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