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We consider models for genus-1 curves of degree 5, which arise in explicit 5-
descent on elliptic curves. We prove a theorem on the existence of minimal
models with the same invariants as the minimal model of the Jacobian elliptic
curve and give an algorithm for computing such models. Finally we describe how
to reduce genus-1 models of degree 5 defined over Q.

Introduction

Let E be an elliptic curve defined over a number field K . An n-covering of E is a
pair (C, π), where C is a smooth curve of genus 1 and π : C→ E is a morphism,
both defined over K , with the property that π = [n] ◦ψ for some isomorphism
ψ : C→ E defined over K . An n-descent on E computes the everywhere locally
soluble n-coverings of E . For such n-coverings, we have ψ∗(n.0E)∼ D for some
K -rational divisor D on C . The complete linear system |D| defines a morphism
C→ Pn−1. Thus, in the cases n = 2, 3, 4, we may represent C by a binary quartic,
ternary cubic, or pair of quadrics in four variables. In the case n = 5, we obtain
curves C⊂P4 of degree 5 that are defined by the 4×4 Pfaffians of a 5×5 alternating
matrix of linear forms.

The question naturally arises as to how we can choose coordinates on Pn−1 so
that the equations for C have small coefficients. In the cases n = 2, 3, 4, this was
answered in [Cremona et al. 2010] using the combination of two techniques called
minimisation and reduction. In this paper, we extend to the case n= 5. We establish
results on minimisation over an arbitrary local field (immediately implying results
over any number field of class number 1), whereas those for reduction are specific
to the case K = Q. Implementations of our algorithms in the case K = Q are
available in Magma [Bosma et al. 1997].
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1. Genus-1 models

A genus-1 model (of degree 5) is a 5× 5 alternating matrix of linear forms in
variables x1, . . . , x5. We write X5(R) for the space of all genus-1 models with
coefficients in a ring R. Models 8 and 8′ are R-equivalent if 8′ = [A, B]8 for
some A, B ∈ GL5(R). Here the action of A is via 8 7→ A8AT , and the action
of B is via (8i j (x1, . . . , x5)) 7→ (8i j (x ′1, . . . , x ′5)), where x ′j =

∑5
i=1 Bi j xi . The

determinant of the transformation g = [A, B] is det g = (det A)2 det B.
We write Pf(8) for the row vector (p1, . . . , p5), where pi is (−1)i−1 times the

Pfaffian of the 4× 4 submatrix obtained by deleting the i th row and column of 8.
This choice of signs is made so that Pf(8)8= 0. For A ∈ GL5(R), we note that
Pf(A8AT )= Pf(8) adj A.

A genus-1 model 8 ∈ X5(K ) over a field K is nonsingular if the subscheme
C8 = {rank8≤ 2} ⊂ P4 defined by the 4× 4 Pfaffians of 8 is a smooth curve of
genus 1. We write K [X5] for the polynomial ring in the fifty coefficients of a genus-1
model. A polynomial F ∈ K [X5] is an invariant of weight k if F ◦ g = (det g)k F
for all g = [A, B] with A, B ∈ GL5(K ). Taking A and B to be scalar matrices
shows that an invariant of weight k is a homogeneous polynomial of degree 5k.

Theorem 1.1. Let c4, c6,1 ∈ Z[X5] be the invariants of weights 4, 6 and 12
satisfying c3

4− c2
6 = 17281 and scaled as specified in [Fisher 2008].

(i) A model 8 ∈ X5(K ) is nonsingular if and only if 1(8) 6= 0.

(ii) There exist a1, a2, a3, a4, a6 ∈ Z[X5] and b2, b4, b6 ∈ Z[X5] satisfying

b2 = a2
1 + 4a2, b4 = a1a3+ 2a4, b6 = a2

3 + 4a6,

c4 = b2
2− 24b4 and c6 =−b3

2+ 36b2b4− 216b6.
(1)

(iii) If 8 ∈ X5(K ) is nonsingular, then C8 has Jacobian elliptic curve

y2
+ a1xy+ a3 y = x3

+ a2x2
+ a4x + a6,

where ai = ai (8).

For the proof of Theorem 1.1(ii), we use the following lemma:

Lemma 1.2. Let c4, c6,1∈ R=Z[x1, . . . , xN ] be primitive polynomials satisfying
c3

4−c2
6 = 17281. If there exists a1 ∈ R satisfying a2

1c4+c6 ≡ 0 (mod 4), then there
exist a2, a3, a4, a6, b2, b4, b6 ∈ R satisfying (1).

Proof. By unique factorisation in F3[x1, . . . , xN ] and the Chinese remainder theo-
rem, there exists some b2 ∈ R such that c4 ≡ b2

2 (mod 3), c6 ≡−b3
2 (mod 3) and

b2 ≡ a2
1 (mod 4). Then b2c4 + c6 ≡ 0 (mod 12), and c3

4 ≡ c2
6 ≡ b2

2c2
4 (mod 24).

Since c4 is primitive, it follows that c4 ≡ b2
2 (mod 24). Next, putting x = b2 in an
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identity of Kraus [1989],

(x2
− c4)

3
= (x3

− 3xc4− 2c6)(x3
+ 2c6)+ 3(xc4+ c6)

2
+ c2

6− c3
4,

we deduce b3
2 − 3b2c4 − 2c6 ≡ 0 (mod 432). We put b4 = (b2

2 − c4)/24 and
b6= (b3

2−3b2c4−2c6)/432. Then 0≡ c3
4−c2

6 ≡ 16b2
2(b2b6−b2

4) (mod 64), and so
b2b6 ≡ b2

4 (mod 4). By unique factorisation in F2[x1, . . . , xN ], there exists a3 ∈ R
with b4 ≡ a1a3 (mod 2). Then b2

4 ≡ a2
1a2

3 (mod 4), and b6 ≡ a2
3 (mod 4). We put

a2 = (b2− a2
1)/4, a4 = (b4− a1a3)/2 and a6 = (b6− a2

3)/4. �

Proof of Theorem 1.1. (i) This is [Fisher 2008, Theorem 4.4(ii)].

(ii) By Lemma 1.2, it suffices to construct a1 ∈ Z[X5] with a2
1c4+ c6 ≡ 0 (mod 4).

In [Fisher 2008, Section 10], we constructed an invariant a1 ∈ F2[X5] of weight 1
and showed that together with1 it generates the ring of invariants in characteristic 2.
In particular, c4 ≡ a4

1 (mod 2), and c6 ≡ a6
1 (mod 2). So if we lift a1 to Z[X5],

then a2
1c4+ c6 = 2 f for some f ∈ Z[X5]. Since a1 is an invariant mod 2, a2

1 is an
invariant mod 4 and f is an invariant mod 2. Therefore, f ≡ λa6

1 (mod 2) for some
λ ∈ {0, 1}. Hence, a2

1c4± c6 ≡ 0 (mod 4). Specialising to one of the Weierstrass
models in [Fisher 2008, Section 6] shows that the sign is +.

(iii) It is shown in [Fisher 2008, Theorem 4.4(iii)] that if K is a perfect field with
characteristic not 2 or 3, then C8 has Jacobian y2

= x3
− 27c4(8)x − 54c6(8).

The proof is now identical to that of [Cremona et al. 2010, Theorem 2.10]. This
generalises a result of Artin, Rodriguez-Villegas and Tate [Artin et al. 2005] in the
case n = 3. �

2. Minimisation theorems

Let K be a discrete valuation field with ring of integers OK and normalised valuation
v : K×→ Z. We assume throughout that the residue field k is perfect. A genus-1
model 8 ∈ X5(K ) is integral if it has coefficients in OK . If 8 is nonsingular
and integral, then by Theorem 1.1 and the standard formulae for transforming
Weierstrass equations, we have v(1(8)) = v(1E)+ 12 `(8), where 1E is the
minimal discriminant of E = Jac(C8) and `(8) is a nonnegative integer we call the
level. We say that 8 is minimal if v(1(8)), or equivalently the level, is minimal
among all integral models K -equivalent to 8. Notice that if 8′ = g8 for some
g = [A, B] with A, B ∈ GL5(K ), then `(8′)= `(8)+ v(det g).

Theorem 2.1. Let 8 ∈ X5(K ) be nonsingular.

(i) (Weak minimisation theorem) If C8(K ) 6= ∅, then 8 is K -equivalent to an
integral model of level 0.

(ii) (Strong minimisation theorem) If C8(L) 6=∅, where L is an unramified exten-
sion of K , then 8 is K -equivalent to an integral model of level 0.



1182 Tom Fisher

In this section, we prove the weak minimisation theorem. In Section 3, we
describe an explicit algorithm for minimising. Inspection of this algorithm shows
that the minimal level is unchanged by an unramified extension. Theorem 2.1(ii)
then follows from Theorem 2.1(i). In Section 7, we prove a converse to the strong
minimisation theorem thereby showing this result is best possible.

We refer to [Cremona et al. 2010, Section 2] for notation and results analogous
to those in Section 1 for genus-1 models of degree 4, i.e., quadric intersections. Let
E be an elliptic curve over K and D a K -rational divisor on E of degree n = 4
or 5. The complete linear system |D| defines an embedding E ⊂ Pn−1. The image
is defined by a genus-1 model 8 ∈ Xn(K ), and this model is uniquely determined,
up to K -equivalence, by the pair (E, [D]). Moreover, every nonsingular model
8 ∈ Xn(K ) with C8(K ) 6=∅ arises in this way. Therefore, Theorem 2.1(i) is an
immediate consequence of the following:

Theorem 2.2. Let E/K be an elliptic curve with integral Weierstrass equation

y2
+ a1xy+ a3 y = x3

+ a2x2
+ a4x + a6, (2)

and let D ∈DivK (E) be a divisor on E of degree n = 4 or 5. Then (E, [D]) can be
represented by an integral genus-1 model with the same discriminant as (2).

The case n = 4 is proved in [Cremona et al. 2010, Theorem 3.8]. To deduce the
case n = 5 from the case n = 4, we use the following lemma:

Lemma 2.3. Let D ∈ DivK (E) be a divisor of degree 4, and let P ∈ E(K ). Let
`i , αi and βi for i = 1, 2, 3 be linear forms in x1, . . . , x4 over K . The following
statements are equivalent:

(i) The pair (E, [D]) is represented by the quadric intersection

`1α1+ `2α2+ `3α3 = 0 and `1β1+ `2β2+ `3β3 = 0, (3)

and P is the point defined by `1 = `2 = `3 = 0.

(ii) The pair (E, [D+ P]) is represented by the genus-1 model of degree 5
0 γ α1 α2 α3

0 β1 β2 β3

0 `3 −`2

− 0 `1

0

 , (4)

where γ = x5 and P is the point (x1 : · · · : x5)= (0 : · · · : 0 : 1).

Proof. An isomorphism ψ : C4→ C5 between the curves C4 and C5 defined by (3)
and (4) is given by

ψ : (x1 : x2 : x3 : x4) 7→ (x1`i : x2`i : x3`i : x4`i : α jβk −αkβ j )
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(where i , j and k are any cyclic permutation of 1, 2 and 3) with inverse

ψ−1
: (x1 : x2 : x3 : x4 : x5) 7→ (x1 : x2 : x3 : x4).

The points {`1= `2= `3= 0} ∈C4(K ) and (0 : · · · : 0 : 1)∈C5(K ) are identified by
this isomorphism. To prove the equivalence of (i) and (ii), we note that if C4 ⊂ P3

meets some plane in the divisor D = P1+ P2+ P3+ P4, then the points ψ(Pi ) and
(0 : · · · : 0 : 1) are a hyperplane section for C5 ⊂ P4. �

Lemma 2.4. The genus-1 models (3) and (4) have the same invariants.

Proof. Let 8 be the matrix (4), and write P = Pf(8) = (p1, . . . , p5). Then (3)
and (4) define curves C4 = {p1 = p2 = 0} ⊂ P3 and C5 = {rank8 ≤ 2} ⊂ P4.
According to [Fisher 2008, Section 5.4], there are invariant differentials ω4 on C4

and ω5 on C5 given by

ωn =
x2

1d(x2/x1)

�n(x1, . . . , xn)
,

where

�4 =
∂p1

∂x3

∂p2

∂x4
−
∂p1

∂x4

∂p2

∂x3
and �5 =

∂P
∂x3

∂8

∂x5

∂PT

∂x4
.

In the expression for �5, we have written the partial derivative of a matrix as
a shorthand for the matrix of partial derivatives. Since the only entries of 8 to
involve x5 are in the top left 2× 2 submatrix, it is clear that �4 =±�5. Hence, the
isomorphism ψ : C4→ C5 identifies the invariant differentials ω4 and ω5 (up to
sign). It follows by [Fisher 2008, Proposition 5.23] that (3) and (4) have the same
invariants c4, c6 and 1. �

Proof of Theorem 2.2. Let D ∈DivK (E) be a divisor of degree 4, and let P ∈ E(K ).
We show that if the theorem holds for D, then it holds for D + P . Suppose
(E, [D]) is represented by an integral quadric intersection with discriminant 1.
Since OK is a principal ideal domain, SL4(OK ) acts transitively on P3(K ). So we
may assume P is the point (x1 : x2 : x3 : x4) = (0 : 0 : 0 : 1). Our model is now
of the form (3) with `i = xi for i = 1, 2, 3. We may choose the linear forms αi

and βi to have coefficients in OK . Then the genus-1 model (4) is an integral model
of discriminant 1 representing the pair (E, [D+ P]). �

3. Minimisation algorithms

For 8 ∈ X5(OK ), we write φ ∈ X5(k) for its reduction mod π . The singular locus
Sing Cφ is the set of points P ∈ Cφ with tangent space of dimension greater than 1.
(We make this definition regardless of whether Cφ is a curve. In particular, all
points on components of dimension at least 2 are singular.) For example, if φ
takes the form (4) with γ = x5 and `i , αi and βi linear forms in x1, . . . , x4, then
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P = (0 : · · · : 0 : 1) is singular if and only if `1, `2 and `3 are linearly dependent. An
integral genus-1 model 8 ∈ X5(OK ) is saturated if its 4× 4 Pfaffians p1, . . . , p5

are linearly independent mod π . We write Im for the m×m identity matrix.
Our algorithm for minimising genus-1 models of degree 5 generalises the algo-

rithm for models of degree 3 in [Cremona et al. 2010, Section 4B].

Theorem 3.1. Let 8 ∈ X5(OK ) be saturated and of positive level.

(i) The singular locus Sing Cφ does not span P4.

(ii) Let B ∈ GL5(OK ) represent a change of coordinates on P4 mapping the linear
span of the singular locus in (i) to {xm+1 = · · · = x5 = 0}. Then there exist
A ∈GL5(K ) and µ ∈ K× such that [A, µDiag(Im, π I5−m)B]8 is an integral
model of the same or smaller level.

(iii) If 8 is nonminimal, then repeating the procedure in (ii) either gives a nonsatu-
rated model or decreases the level after finitely many iterations.

As it stands, Theorem 3.1 does not give an algorithm for minimising since we
must show how to find A and µ in (ii) and show how to decrease the level of a
nonsaturated model. We do this in Theorem 3.2 below. Theorem 3.1 is proved in
Sections 4 and 5. In Section 6, we bound the number of iterations required in (iii).

Theorem 3.2. Let 8 ∈ X5(OK ) be nonsingular. Let `0 be the minimum of the levels
of all integral models that are K -equivalent to 8 via a transformation of the form
[A, µI5], where A ∈ GL5(K ) and µ ∈ K×.

(i) We may compute an integral model of the form [A, µI5]8 with level `0 as
follows:

Step 1. Write Pf(8) = (p1, . . . , p5). Compute A = (ai j ) ∈ GL5(K ) and
quadrics q1, . . . , q5 ∈ OK [x1, . . . , x5] such that p j =

∑5
i=1 ai j qi and

q1, . . . , q5 are linearly independent modulo π . Then replace 8 by
[A, µI5]8, where µ ∈ K× is chosen so that 8 has coefficients in OK

not all in πOK .
Step 2. Replace 8 by [A, I5]8, where A ∈GL5(OK ) is chosen so that the first

two rows of8 are divisible by π e with e≥ 0 as large as possible. Then
divide the first row and column by π e.

(ii) If the model computed in Step 1 is nonsaturated, then we may compute an
integral model of level smaller than `0 by modifying Step 2 so that we divide
the first two rows and columns by π e and then make a transformation of the
form [I5, B] to preserve integrality.

Proof. With the notation of Step 1, we have

Pf(A8AT )= Pf(8) adj A = (q1, . . . , q5)A adj A = (det A)(q1, . . . , q5).
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So after Step 1, we have Pf(8) = (λq1, . . . , λq5), where λ = µ2 det A ∈ OK . We
split into the cases v(λ)= 0 and v(λ)≥ 1. First we need two lemmas.

Lemma 3.3. Let 8,8′ ∈ X5(OK ) be nonsingular models with 8′ = [A, µI5]8 for
some A ∈ GL5(K ) and µ ∈ K×.

(i) If 8 is saturated, then `(8′)≥ `(8) with equality if and only if 8 and 8′ are
OK -equivalent.

(ii) If 8 and 8′ are of the form output by Step 1, then they are OK -equivalent.

Proof. We have Pf(8′)= Pf(8)M , where M = µ2 adj A.

(i) Since8 is saturated, M has entries in OK . Hence, `(8′)−`(8)= 1
2v(det M)≥ 0

with equality if and only if M ∈GL5(OK ). If M ∈GL5(OK ), then replacing [A, µI5]

by [λA, λ−2µI5] for suitable λ ∈ K×, we may assume A ∈ GL5(OK ). Since 8
and 8′ have the same level, they must therefore be OK -equivalent.

(ii) Since Pf(8) and Pf(8′) are scalar multiples of bases for the same OK -module,
some scalar multiple of M belongs to GL5(OK ). So after replacing [A, µI5] by
[λA, λ−2µI5] for suitable λ ∈ K×, we may assume A ∈GL5(OK ). Since 8 and 8′

are primitive, they must therefore be OK -equivalent. �

Lemma 3.4. Let φ ∈ X5(k) be a genus-1 model all of whose 4× 4 Pfaffians are
identically zero. Then φ is k-equivalent to either

0 `2 `3 `4 `5

0 0 0 0
0 0 0

− 0 0
0

 or


0 x1 x2 0 0

0 x3 0 0
0 0 0

− 0 0
0

 ,
where `2, . . . , `5 are linear forms. �

We now complete the proof of Theorem 3.2. Let e = v(λ). If e = 0, then 8
is saturated and we are done by Lemma 3.3(i). So suppose e ≥ 1. In Step 1, the
matrix A has entries in OK . So v(µ)≤ 0, and the level is increased by

2v(det A)+ 5v(µ)≤ 2v(µ2 det A)= 2e.

Lemma 3.3(ii) shows that when we apply Step 1 to both 8 and the model implicit
in the definition of `0, we obtain models that are OK -equivalent. So it will suffice
to show that Step 2 reduces the level by 2e, whereas the modified version in (ii)
reduces the level by more than 2e.

Since Pf(8) = (λq1, . . . , λq5), we have (q1, . . . , q5)8 = 0. The reduction
of 8 takes one of the forms specified in Lemma 3.4. In the first case, we have
q1` j ≡0 (mod π) for j =2, . . . , 5. This contradicts the choices of q1, . . . , q5 and µ
in Step 1. So we must be in the second case. Replacing 8 by an OK -equivalent
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model, we may assume it takes the form (4) with `i = xi for i = 1, 2, 3 and α1,
α2, α3, β1, β2, β3 and γ linear forms that vanish mod π . By row and column
operations, we may assume α2 ∈ 〈x2, . . . , x5〉 and α3 ∈ 〈x3, . . . , x5〉. Then since
π e
| (x1α1 + x2α2 + x3α3), we have π e

| α1, α2, α3. Likewise, we may assume
π e
| β1, β2, β3. The remaining Pfaffians show that π e

| γ . Step 2 and its modified
version in (ii) now reduce the level by 2e and 3e, respectively. �

Corollary 3.5. For the proof of Theorem 3.1, we are free to replace 8 by an
OK -equivalent model and to replace K by an unramified field extension.

Proof. Let 81,82 ∈ X5(OK ) be OK -equivalent models and 8′1,8
′

2 ∈ X5(OK )

the models returned by Theorem 3.1(ii). Lemma 3.3(i) and [Cremona et al. 2010,
Lemma 4.1] together show that if8′1 is saturated and `(8′1)=`(8

′

2), then8′1 and8′2
are OK -equivalent. Therefore, the number of iterations required in Theorem 3.1(iii)
depends only on the OK -equivalence class of 8.

For the final statement, we note that the performance of the algorithms in Theo-
rems 3.1 and 3.2 is unchanged by an unramified field extension. �

Replacing K by its strict Henselisation, we may assume in the next three sections
that K is Henselian and its residue field k is algebraically closed.

4. The singular locus

In this section and the next, we prove Theorem 3.1.

Lemma 4.1. Let φ ∈ X5(k) be a genus-1 model. Suppose 0 ⊂ Cφ is either a line
or a (nonsingular) conic. Then either 0 ⊂ Sing Cφ or

#(0 ∩Sing Cφ)=

{
1 if c4(φ)= c6(φ)= 0,
2 otherwise.

Proof. (i) If Cφ contains the line 0 = {x3 = x4 = x5 = 0} but not every point
on 0 is singular, then (unless Cφ is a cone, which is an easy special case with
c4(φ)= c6(φ)= 0) we may suppose φ is

0 x1 x2 ∗ ∗

0 ∗ α β

0 γ δ

− 0 x5

0

 ,

where α, β, γ, δ and the entries ∗ are linear forms in x3, x4, x5. By row and column
operations (and substitutions for x1 and x2), we may suppose α, β, γ and δ do not
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involve x5. We write α = α3x3+α4x4, . . . , δ = δ3x3+ δ4x4 and put

q(s, t)= det
((
γ3 γ4

δ3 δ4

)
s−

(
α3 α4

β3 β4

)
t
)
.

By the Jacobian criterion, we have

0 ∩Sing Cφ = { (s : t : 0 : 0 : 0) | q(s, t)= 0 }.

A calculation using Lemma 2.4 shows that c4(φ) = 1(q)2 and c6(φ) = −1(q)3,
where 1(q) is the discriminant of the binary quadratic form q .

(ii) Suppose Cφ contains the conic 0 = { f (x1, x2, x3) = x4 = x5 = 0} but not
every point on 0 is singular. Let Pf(φ) = (p1, . . . , p5). Replacing φ by an
equivalent model, we may suppose pi (x1, x2, x3, 0, 0) = 0 for i = 1, 2, 3, 4 and
p5(x1, x2, x3, 0, 0)= f . Since Pf(φ)φ= 0 and 0 is not contained in any component
of Cφ of higher dimension, we may further suppose the last column of φ has entries
x4, x5, 0, 0, 0. The monomials appearing in the invariants c4 and c6 are limited by the
fact they are invariant under all pairs of diagonal matrices. These restrictions show
that c4(φ) and c6(φ) are unchanged if we set x4 = x5 = 0 in all entries of φ outside
the last row and column. Writing f =

∑
i≤ j ai j xi x j and φ34 =

∑
bi xi , we put

δ =

∣∣∣∣∣∣∣∣
2a11 a12 a13 b1

a12 2a22 a23 b2

a13 a23 2a33 b3

b1 b2 b3 0

∣∣∣∣∣∣∣∣ .
A calculation using Lemma 2.4 shows that c4(φ) = δ

2 and c6(φ) = −δ
3. By a

change of coordinates, we may suppose f = x1x3− x2
2 . Then δ is the discriminant

of the binary quadratic form q(s, t) = φ34(s2, st, t2, 0, 0), and by the Jacobian
criterion,

0 ∩Sing Cφ = { (s2
: st : t2

: 0 : 0) | q(s, t)= 0 }. �

Lemma 4.2. Let φ ∈ X5(k) be a genus-1 model. Suppose the 4 × 4 Pfaffians
p1, . . . , p5 are linearly independent and c4(φ)= c6(φ)= 0. Then either Sing Cφ is
a linear subspace of P4 or φ is equivalent to a model of the form

0 ξ α β η

0 γ δ x5

0 x5 0
− 0 0

0

 , (5)

where ξ , η, α, β, γ and δ are linear forms in x1, . . . , x5.
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Proof. If P1, P2 ∈ Sing Cφ are distinct and the line ` between them is contained
in Cφ , then by Lemma 4.1, we have ` ⊂ Sing Cφ . So either Sing Cφ is a linear
subspace of P4 or there exist P1, P2 ∈ Sing Cφ joined by a line not contained in Cφ .
We move these points to (1 : 0 : · · · : 0) and (0 : 1 : · · · : 0). Writing φ =

∑
xi Mi ,

the matrices M1 and M2 have rank 2, but their sum has rank 4. Therefore, φ is
equivalent to a model with φ12 = x1, φ34 = x2 and all other φi j (for i < j) linear
forms in x3, x4, x5. Since P1 and P2 are singular, φ35 and φ45 are linearly dependent
and φ15 and φ25 are linearly dependent. So the space of linear forms spanned by
the entries of the last column has dimension at most 2. In fact, it has dimension
exactly 2 since p1, . . . , p5 are linearly independent.

Replacing φ by an equivalent model, we may assume it has last column with
entries x4, x5, 0, 0, 0. The transformation used here does not move P1 and P2 but
may change the matrices M1 and M2. Let 0 = {x4 = x5 = p5 = 0} ⊂ Cφ . Then P1

and P2 are contained in 0, but the line between them is not. It follows that 0 is
either a nonsingular conic or a pair of concurrent lines. In either case, Lemma 4.1
shows that 0 ⊂ Sing Cφ . By the Jacobian criterion, it follows that φ34 ∈ 〈x4, x5〉.
However, φ34 is nonzero since p1, . . . , p5 are linearly independent. Therefore, φ is
equivalent to a model of the form (5). �

Lemma 4.3. Let 8 ∈ X5(OK ) be a saturated nonsingular model with reduction φ
of the form (5). Suppose Sing Cφ has linear span {xm+1 = · · · = x5 = 0}.

(i) There exist A ∈ GL5(K ) and µ ∈ K× such that [A, µDiag(Im, π I5−m)]8 is
an integral model of the same or smaller level.

(ii) Suppose that either δ = 0 and 845 ≡ 0 (mod π2) or 835 ≡845 ≡ 0 (mod π2).
Then there is a transformation as in (i) that decreases the level.

Proof. Computing the 4× 4 Pfaffians of (5), we find

Cφ = {η = x5 = αδ−βγ = 0} ∪ {γ = δ = x5 = 0}. (6)

First suppose γ , δ and x5 are linearly dependent. By an OK -equivalence, we may
assume δ = 0. Then {γ = x5 = 0} ⊂ Sing Cφ ⊂ {x5 = 0}. Therefore, m = 3 or 4.
The required transformations are as follows:

m = 3 m = 4
(i) A = Diag(π, 1, 1, 1, 1), µ= π−1 A = Diag(π, π, 1, 1, 1), µ= π−1

(ii) A = Diag(π, 1, 1, 1, 1), µ= π−1 A = Diag(π, 1, 1, π−1, π−1), µ= 1

Now suppose γ , δ and x5 are linearly independent. Since8 is saturated, η and x5

are linearly independent. A calculation shows Sing Cφ is the first of the two compo-
nents in (6). Therefore, m= 2 or 3. If m= 2, then we may assume β, γ , δ, η and φ25
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are linear forms in x3, x4 and x5. The required transformations are as follows:

m = 2 m = 3
(i) A = Diag(π, 1, 1, 1, 1), µ= π−1 A = Diag(1, 1, 1, 1, π−1), µ= 1

(ii) A = Diag(1, 1, 1, π−1, π−1), µ= 1 A = Diag(π, π, 1, 1, π−1), µ= π−1 �

We now prove the first two parts of Theorem 3.1. Let 8 ∈ X5(OK ) be saturated
and of positive level. Lemma 4.2 shows that either Sing Cφ is a linear subspace or
Cφ is contained in a hyperplane. Since Cφ is defined by five linearly independent
quadrics, it cannot be all of P4. This proves Theorem 3.1(i).

The proof of Theorem 3.1(ii) in the case φ takes the form (5) was already given in
Lemma 4.3(i). So by Lemma 4.2, we may assume Sing Cφ ={xm+1= · · · = x5= 0}.
We apply Lemma 3.4 to the reduction mod π of [I5,Diag(Im, π I5−m)]8. In the
second case of that lemma, we have m ≥ 3. We take A =Diag(1, 1, 1, 1, π−1) and
µ = 1. Otherwise, we are in the first case. If m ≥ 2, then we take µ = π−1 and
A =Diag(π, 1, 1, 1, 1). It remains to treat the case m = 1; in other words, the case
Sing Cφ is a point.

By [Fisher 2008, Lemma 5.8], every component of Cφ has dimension at least 1.
So if Sing Cφ is just a point, then there are also smooth points on Cφ . Since K is
Henselian, it follows that C8(K ) 6=∅, and so by Theorem 2.1(i), 8 is nonminimal.
With this extra hypothesis, we show in the next section that the singular point on Cφ
is nonregular (as a point on the OK -scheme C8).

We may suppose φ12 = x1 and all other φi j (for i < j) are linear forms in
x2, . . . , x5. Since P = (1 : 0 : · · · : 0) is singular, φ34, φ35 and φ45 are linearly depen-
dent. So replacing 8 by an OK -equivalent model, we may assume φ45 = 0. In the
presence of the stronger condition that P is nonregular, we may further arrange that
the coefficient of x1 in 845 is divisible by π2. Taking A =Diag(1, 1, 1, π−1, π−1)

and µ= 1 now preserves the level.

5. Weights and slopes

In this section, we complete the proof of Theorem 3.1.

Definition 5.1. (i) The set of weights is

W=

{
(r, s) ∈ Z5

×Z5
∣∣∣∣ r1 ≤ r2 ≤ · · · ≤ r5, s1 ≤ s2 ≤ · · · ≤ s5,

2
∑5

i=1 ri = 1+
∑5

i=1 si

}
.

(ii) A weight for 8 ∈ X5(OK ) is (r, s) ∈W such that the model

[Diag(π−r1, . . . , π−r5),Diag(π s1, . . . , π s5)]8 (7)

has coefficients in OK .
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(iii) Let w = (r, s) and w′ = (r ′, s ′) be weights. Then w dominates w′ if

max(ri + r j − sk, 0)≥max(r ′i + r ′j − s ′k, 0)

for all 1≤ i < j ≤ 5 and 1≤ k ≤ 5.

Let 1= (1, 1, . . . , 1). Then λ∈Z acts on W as (r, s) 7→ (r+λ1, s+2λ1). Since
weights in the same Z-orbit determine the same transformation (7), we may regard
such weights as equivalent.

Lemma 5.2. Let 8 ∈ X5(OK ) be an integral genus-1 model.

(i) If 8 is nonminimal, then it is OK -equivalent to a model with a weight.

(ii) If 8 has weight w and w dominates w′, then 8 has weight w′.

Proof. (i) By hypothesis, there exist A, B ∈ GL5(K ) with [A, B]8 integral and
2v(det A)+ v(det B)=−1. We put A and B in Smith normal form.

(ii) Let 8= (8i j ) with 8i j =
∑

k ai jk xk . Then 8 has weight (r, s) if and only if
v(ai jk)≥max(ri + r j − sk, 0) for all 1≤ i < j ≤ 5 and 1≤ k ≤ 5. �

Lemma 5.3. Let 8 ∈ X5(OK ) have weight (r, s) ∈W with either r1 + r4 > s1 or
r2+r3 > s1. Then P = (1 : 0 : · · · : 0) ∈Cφ is a singular point. Moreover, if s1 < s3,
then P is nonregular (as a point on the OK -scheme C8).

Proof. We write φ =
∑

xi Mi . If r1+ r4 > s1, then the only nonzero entries of M1

are in the top left 3× 3 submatrix. If r2+ r3 > s1, then the only nonzero entries
of M1 are in the first row and column. In both cases, rank M1 ≤ 2, and so P ∈ Cφ .
If M1 = 0, then P is singular (and nonregular). So we may assume M1 6= 0. We
are free to multiply rows of 8 by units in OK and to subtract OK -multiples of later
rows from earlier rows (it being understood that we also make the corresponding
column operations). In particular, these operations do not upset our hypothesis that
8 has weight (r, s). Let Ei j be the 5× 5 matrix with a 1 in the (i, j)-place and 0s
elsewhere. By row and column operations, we reduce to the case M1 = Ei j − E j i ,
where (i, j) ∈ {(1, 2), (1, 3), (1, 4), (1, 5), (2, 3)}. Let a < b < c be chosen such
that {i, j, a, b, c} = {1, . . . , 5}. Since ri + r j ≤ s1 ≤ s2, it follows by the definition
of W that

s3+ s4+ s5 < (ra + rb)+ (ra + rc)+ (rb+ rc).

Therefore, at least one of the following three inequalities holds:

s3 < ra + rb =⇒ φab, φac, φbc ∈ 〈x4, x5〉,

s4 < ra + rc =⇒ φac, φbc ∈ 〈x5〉,

s5 < rb+ rc =⇒ φbc = 0.

Since the tangent space at P is {φab = φac = φbc = 0}, it follows that P ∈ Cφ is a
singular point.
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If s1 < s3, then the same argument shows there is some OK -linear combination of
8ab, 8ac and 8bc (with not all coefficients in πOK ) that not only vanishes mod π
but whose coefficient of x1 vanishes mod π2. Hence, P is nonregular. �

Lemma 5.4. Let (r, s) ∈W be a weight with r1+ r4 ≤ s1 and r2+ r3 ≤ s1. Then
(r, s) dominates one of the weights w1, . . . , w7 in the following table:

r1 r2 r3 r4 r5 s1 s2 s3 s4 s5

w1 0 0 0 0 1 0 0 0 0 1
w2 0 0 1 1 1 1 1 1 1 1
w3 0 0 1 1 2 1 1 1 2 2
w4 0 1 1 2 2 2 2 2 2 3
w5 0 1 1 2 3 2 2 2 3 4
w6 0 1 1 2 3 2 2 3 3 3
w7 0 1 2 3 4 3 3 4 4 5

Proof. We checked the lemma by writing a computer program using the simplex
algorithm. See the proof of Lemma 6.1 for details. �

Definition 5.5. The slope of 8 ∈ X5(OK ) is the least possible value of v(det B) for
B ∈ GL5(K ) a matrix with entries in OK for which there exist A ∈ GL5(K ) and
µ ∈ K× such that [A, µB]8 is an integral model of smaller level.

We now complete the proof of Theorem 3.1. Since 8 ∈ X5(OK ) is nonminimal,
it has a slope σ , say. Lemma 3.3(i) shows that if σ = 0, then 8 is nonsaturated. So
we may assume σ > 0. By Lemma 5.2 (and Corollary 3.5), we may replace 8 by
an OK -equivalent model with a weight, say (r, s). Moreover, we may assume the
weight realises the slope, i.e., σ =

∑5
i=1(si − s1).

Suppose that either r1+r4> s1 or r2+r3> s1. Since σ > 0, there exists 1≤m≤ 4
such that s1 = · · · = sm < sm+1. Lemma 5.3 shows (by first making unimodular
transformations involving only x1, . . . , xm) that

{xm+1 = · · · = x5 = 0} ⊂ Sing Cφ. (8)

Moreover, if m = 1, then the point we have constructed is nonregular. (This is
needed to complete the proof of Theorem 3.1(ii) at the end of Section 4.)

Regardless of whether we have equality in (8), it follows that if the level is
preserved, then the slope is decreased. So after finitely many iterations, 8 is either
nonsaturated or has weight (r, s) with r1+r4 ≤ s1 and r2+r3 ≤ s1. In this last case,
Lemmas 5.2 and 5.4 show that 8 has weight w for some w ∈ {w1, . . . , w7}. If
w ∈ {w1, w2, w6}, then8 is nonsaturated. If w ∈ {w5, w7}, then8 is OK -equivalent
to a model with weight w3. (This is achieved by a unimodular transformation
involving only the second and third rows and columns, respectively a unimodular
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transformation involving only x3 and x4.) Finally, if w ∈ {w3, w4}, then 8 is
OK -equivalent to a model of the form considered in Lemma 4.3(ii).

6. The number of iterations

We have shown that if we start with a nonminimal model, then iterating the procedure
in Theorem 3.1(ii) eventually gives a nonsaturated model or decreases the level. In
this section, we show that the maximum number of iterations required is 5. (In our
Magma implementation, we count the use of Theorem 3.2 to decrease the level of
a nonsaturated model as a further iteration. With this convention, the maximum
number of iterations is 6.)

Lemma 6.1. Let (r, s) ∈W be a weight. Then (r, s) dominates one of the weights
w1, . . . , w29 in the following table. (The weights in Lemma 5.4 appear with new
numberings. We have marked these weights in bold.)

r1 r2 r3 r4 r5 s1 s2 s3 s4 s5 λν

w1 0 0 0 0 0 −1 0 0 0 0 1
w2 0 0 0 0 1 0 0 0 0 1 1
w3 0 0 1 1 1 1 1 1 1 1 1
w4 0 1 1 1 1 1 1 1 2 2 1
w5 0 0 0 1 1 0 0 1 1 1 3
w6 0 0 0 1 1 0 0 0 1 2 3
w7 0 0 1 1 1 0 0 1 2 2 3
w8 0 0 1 1 1 0 1 1 1 2 3
w9 0 1 1 2 2 2 2 2 2 3 3
w10 0 0 1 1 2 1 1 1 2 2 4
w11 0 0 1 1 2 0 0 2 2 3 5
w12 0 0 1 1 2 0 1 2 2 2 8
w13 0 0 1 1 2 0 1 1 2 3 8
w14 0 1 1 1 2 1 2 2 2 2 4
w15 0 1 1 1 2 1 1 2 2 3 4

r1 r2 r3 r4 r5 s1 s2 s3 s4 s5 λν

w16 0 1 1 2 2 1 2 2 3 3 7
w17 0 1 1 2 2 1 2 2 2 4 6
w18 0 1 1 2 2 1 1 2 3 4 7
w19 0 1 1 2 3 2 2 3 3 3 6
w20 0 1 1 2 3 2 2 2 3 4 7
w21 0 1 1 2 3 1 2 3 3 4 13
w22 0 1 1 2 3 1 2 2 3 5 12
w23 0 1 2 2 3 2 3 3 3 4 9
w24 0 1 2 2 3 2 2 3 4 4 9
w25 0 1 2 2 3 1 3 3 4 4 10
w26 0 1 2 2 3 1 2 3 4 5 15
w27 0 1 2 3 4 3 3 4 4 5 12
w28 0 1 2 3 4 2 3 4 5 5 20
w29 0 1 2 3 4 1 3 4 5 6 22

Proof. We define a standard inequality to be an inequality of the form ri+r j ≤ sk+m,
where 1≤ i < j ≤ 5, 1≤ k ≤ 5 and m is a nonnegative integer. The condition that
(r, s) ∈W does not dominate wν is equivalent to a list of λν standard inequalities,
at least one of which must hold, where λν is as given in the table. For example,
(r, s)�w1 if and only if r1+r2 ≤ s1, whereas (r, s)�w5 if and only if r1+r4 ≤ s2

or r4+ r5 ≤ s2+ 1 or r4+ r5 ≤ s5. (We have used the conditions r1 ≤ · · · ≤ r5 and
s1 ≤ · · · ≤ s5 to remove redundant inequalities.)

We wrote a program using the simplex algorithm to maximise
∑
(2ri − si ) for

(r, s) ∈ R10 subject to 0 ≤ r1 ≤ · · · ≤ r5, 0 ≤ s1 ≤ · · · ≤ s5 and a list of standard
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inequalities. Our program starts with the basic feasible solution (r, s)= (0, 0). If
there is a finite maximum and it is less than 1, then (by definition of W) there are
no weights satisfying these inequalities. If the maximum is 1, then we add the
constraint

∑
(2ri − si )= 1. We then use the simplex algorithm to maximise each

of the functions ri + r j − sk in turn. In the case of a finite maximum α, we obtain
an additional standard inequality ri + r j ≤ sk +max(bαc, 0). Then running our
original program on the enlarged set of standard inequalities, we may still be able
to show that

∑
(2ri − si ) < 1.

After processing the inequalities coming from w1, . . . , wν for ν = 1, . . . , 29, the
number of cases remaining were

1, 1, 1, 1, 3, 5, 8, 13, 16, 30, 31, 49, 58, 47, 60,

64, 58, 53, 45, 36, 39, 34, 25, 15, 14, 10, 3, 1, 0.

The final 0 indicates that no cases remain, and this proves the lemma. The proof of
Lemma 5.4 is similar but easier. �

If 8 ∈ X5(OK ) is nonminimal, then by Lemmas 5.2 and 6.1 it has slope at
most 14. This already shows that the algorithm in Theorem 3.1(iii) takes at most
fourteen iterations. The next lemma improves this bound to seven iterations.

Lemma 6.2. If the procedure in Theorem 3.1(ii) returns a saturated model with the
same level, then the slope goes down by at least 2.

Proof. We revisit the proof of Theorem 3.1(iii) at the end of Section 5. If the slope
goes down by only 1, then Sing Cφ spans a hyperplane. If Sing Cφ is a hyperplane,
then the proof of Theorem 3.1(ii) at the end of Section 4 shows that the level is
decreased. Otherwise, by Lemma 4.2 we may assume φ takes the form (5). We then
follow the proof of Lemma 4.3(i) with m = 4. After applying the transformation
suggested there, the second row of φ has at most one nonzero entry. This implies
that 8 is nonsaturated. �

The next lemma will be used to show that only five iterations are required.

Lemma 6.3. Let 8 ∈ X5(OK ) be nonminimal and of slope greater than 10. Then
replacing 8 by an OK -equivalent model, we may assume it has weight w29 and the
coefficient of xk in 8i j is a unit for

(i, j, k) ∈

{(1, 2, 1), (1, 4, 2), (1, 5, 3), (2, 3, 2), (2, 4, 3), (2, 5, 4), (3, 4, 4), (3, 5, 5)}.

Proof. By Lemma 5.2, we know that 8 is OK -equivalent to a model with one of the
twenty-nine weights listed in Lemma 6.1. For all but one of these weights (r, s), we
have

∑5
i=1(si−s1)≤ 10. The remaining case is w29. If one of the coefficients listed

is not a unit, then 8 has weight wν for some ν ∈ {1, 5, 13, 26, 16, 21, 8, 12}. �
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We write [ j, . . . , 5] for a linear combination of x j , . . . , x5 and underline in cases
where we know the coefficient is nonzero. If the slope is at most 10, then at most
five iterations are needed. Thus, Lemma 6.3 shows that we can reduce to the case
where 8 ∈ X5(OK ) has reduction φ ∈ X5(k) of the form

0 [1, 2, 3, 4, 5] [2, 3, 4, 5] [2, 3, 4, 5] [3, 4, 5]
0 [2, 3, 4, 5] [3, 4, 5] [4, 5]

0 [4, 5] [5]
0 0

0

 .

Let Pf(φ)= (p1, . . . , p5). By considering the partial derivatives of p1, p2 and p4

with respect to x1, x2 and x3, we see that if P = (x1 : · · · : x5) ∈ Sing Cφ , then
x5 = 0. Then since P ∈ Cφ , we have x4 = x3 = x2 = 0. So (1 : 0 : · · · : 0) is the
unique singular point.

Our algorithm applies the transformation

[Diag(1, 1, 1, π−1, π−1),Diag(1, π, π, π, π)].

The result is a model 8 with weight w26 = (0, 1, 2, 2, 3; 1, 2, 3, 4, 5) whose reduc-
tion φ takes the form 

0 [1] 0 [2, 3, 4, 5] [3, 4, 5]
0 0 [3, 4, 5] [4, 5]

0 [4, 5] [5]
0 [5]

0

 .

A calculation similar to that above shows that Sing Cφ = {x3 = x4 = x5 = 0}.
Our algorithm applies the transformation

[Diag(π, 1, 1, 1, 1),Diag(π−1, π−1, 1, 1, 1)].

The result is a model 8 with weight w13 = (0, 0, 1, 1, 2; 0, 1, 1, 2, 3) whose reduc-
tion φ takes the form 

0 [1] 0 [2] 0
0 [2] [2, 3, 4, 5] [4, 5]

0 [4, 5] [5]
0 [5]

0

 .

A calculation similar to that above shows that Sing Cφ = {x2 = x4 = x5 = 0}.
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The next transformation [Diag(1, π, 1, 1, 1),Diag(π−1, 1, π−1, 1, 1)] gives a
model with weight w15 = (0, 1, 1, 1, 2; 1, 1, 2, 2, 3). So after three iterations, the
slope is at most 4. It follows by Lemma 6.2 that at most five iterations are required.

Example 6.4. The simplest example of a genus-1 model satisfying the conditions
of Lemma 6.3 is

8=


0 x1 0 x2 x3

0 x2 x3 x4

0 x4 x5

− 0 0
0

 .
We find that C8 is a rational curve with a cusp parametrised by

(s : t) 7→ (−s5
: s3t2

: s2t3
: st4
: t5).

In this case, our algorithm takes the maximum of exactly five iterations to give a
nonsaturated model. (The first three iterations are already described above.) Al-
though the model in this example is singular, there are π -adically close nonsingular
models that are treated in the same way by our algorithm.

7. Insoluble models

In this section, we prove a result converse to the strong minimisation theorem. This
is analogous to the results for models of degrees n = 2, 3, 4 proved in [Cremona
et al. 2010, Section 5]. As in Section 2, we work over a discrete valuation field K .
We write K sh for the strict Henselisation of K . (If K is a p-adic field, then this is
the maximal unramified extension.)

Theorem 7.1. If 8 ∈ X5(K ) is nonsingular and C8(K sh) = ∅, then the minimal
level is at least 1 and is equal to 1 if char(k) 6= 5.

As in Section 6, we write [ j, . . . , 5] for a linear combination of x j , . . . , x5 and
underline in cases where we require the coefficient is nonzero.

Definition 7.2. A genus-1 model 8 ∈ X5(OK ) is critical if it has reduction mod π
of the form 

0 [1, 2, 3, 4, 5] [2, 3, 4, 5] [3, 4, 5] [4, 5]
0 [3, 4, 5] [4, 5] [5]

0 [5] 0
0 0

0


and π−1835 and π−1845 have reductions mod π of the form [1, 2, 3, 4, 5] and
[2, 3, 4, 5].
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We show in the next three lemmas that critical models are insoluble, minimal
and of positive level. We then take K = K sh and show that every insoluble model
8 ∈ X5(K ) is K -equivalent to a critical model.

Lemma 7.3. Critical models are insoluble over K .

Proof. Suppose (x1, . . . , x5) ∈ K 5 is a nonzero solution with min{v(xi )} = 0. By
considering the 4× 4 Pfaffians, we successively deduce π | x5, π | x4, . . . , π | x1.
In particular, min{v(xi )}> 0. This is the required contradiction. �

Since the definition of a critical model is unchanged by an unramified field
extension, it follows immediately that critical models are insoluble over K sh.

Lemma 7.4. Critical models are minimal.

Proof. It is easy to see that critical models are saturated. Moreover, every point on
Cφ = {x3 = x4 = x5 = 0} is singular. Our algorithm (see Theorem 3.1) makes the
transformation [Diag(π, 1, 1, 1, 1), π−1 Diag(1, 1, π, π, π)]. This gives an integral
model of the same level that is OK -equivalent (by a pair of cyclic permutation
matrices) to a critical model.

If 8 were nonminimal, then our algorithm would succeed in reducing the level.
But on the contrary, when given a critical model our algorithm endlessly cycles
between five OK -equivalence classes. �

The next lemma describes the possible levels of a critical model. To treat the
cases char(k)= 2, 3, we need to work with the a-invariants defined in Section 1.
Although these are not SL5×SL5-invariant, if we make our choices of a1, b2 and a3

so as not to introduce any new monomials when we lift to characteristic 0, then
they will be invariant under all pairs of diagonal matrices. It follows by the proof
of Lemma 1.2 that a1, . . . , a6 are isobaric, i.e.,

ai ◦ [Diag(λ1, . . . , λ5),Diag(µ1, . . . , µ5)] =

(∏
λν

)2i(∏
µν

)i

ai .

Lemma 7.5. The level of a critical model is at least 1 and equal to 1 if char(k) 6= 5.

Proof. Applying

[Diag(1, π−1/5, π−2/5, π−3/5, π−4/5),Diag(π1/5, π2/5, π3/5, π4/5, π)]

to a critical model 8 gives a model with coefficients in OK [π
1/5
]. It follows by the

isobaric property that π i
| ai (8) for all i . Hence, 8 has positive level.
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The model with coefficients in OK [π
1/5
] has reduction

0 λ1x1 µ2x2 −µ3x3 −λ4x4

0 λ3x3 µ4x4 −µ5x5

0 λ5x5 µ1x1

0 λ2x2

0


for some λ1, . . . , λ5, µ1 . . . , µ5 ∈ k×. The invariants of this model are

c4(λ, µ)= λ
4
+ 228λ3µ+ 494λ2µ2

− 228λµ3
+µ4,

c6(λ, µ)=−λ
6
+ 522λ5µ+ 10005λ4µ2

+ 10005λ2µ4
− 522λµ5

−µ6

and1(λ,µ)= λµ(λ2
−11λµ−µ2)5, where λ=

∏
λi and µ=

∏
µi . Computing a

resultant shows that if char(k) 6=5, then c4(λ, µ) and1(λ,µ) have no common roots.
Therefore, the critical model 8 with which we started satisfies either v(c4(8))= 4
or v(1(8))= 12. It follows that 8 has level at most 1. �

Remark 7.6. The following example of a critical model of level 2 over K =Q5

shows that the hypothesis char(k) 6= 5 cannot be removed from Lemma 7.5:
0 x1 x2 −x3 −x4

0 x3 x4 −x5

0 x5 35x1

− 0 5x2

0

 .
We recall that the minimal level is unchanged by an unramified field extension.

Replacing K by K sh, we may assume for the rest of this section that K is Henselian
and its residue field k is algebraically closed. To complete the proof of Theorem 7.1,
we show the following:

Theorem 7.7. If8∈ X5(OK ) is minimal and C8(K )=∅, then8 is OK -equivalent
to a critical model.

We start the proof of Theorem 7.7 with the following lemma:

Lemma 7.8. If 8 ∈ X5(OK ) is minimal, then its reduction φ ∈ X5(k) has the
following properties:

(i) the 4× 4 Pfaffians of φ are linearly independent,

(ii) the subscheme Cφ ⊂ P4 does not contain a plane and

(iii) the entries of φ span the space of linear forms on P4.

Proof. (i) This follows by Theorem 3.2 and Lemma 3.3(i).
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(ii) Suppose Cφ contains the plane {x4 = x5 = 0}. By Lemma 3.4, we may assume
the reduction mod π of [I5,Diag(1, 1, 1, π, π)]8 takes one of the two forms given
in the lemma. We decrease the level by applying either [Diag(π, 1, 1, 1, 1), π−1 I5]

or [Diag(1, 1, 1, π−1, π−1), B], where B is chosen to preserve integrality.

(iii) This is clear, as we could otherwise decrease the level by dividing one of the
coordinates by π . �

Lemma 7.9. Let φ ∈ X5(k) be a genus-1 model satisfying the conclusions of
Lemma 7.8. Suppose that every point on Cφ is singular. Then φ is k-equivalent to

0 0 x1 x3 x4

0 x2 x4 x5

0 x5 0
− 0 0

0

 or


0 x1 0 x3 x4

0 x2 x4 x5

0 x5 0
− 0 0

0

 or


0 x1 x2 x3 x4

0 x3 x4 x5

0 x5 0
− 0 0

0

 .
Our proof of Lemma 7.9 uses the following classification of degenerations of

the twisted cubic. (Only the last sentence of the statement is needed.)

Lemma 7.10. Letψ be a 3×2 matrix of linear forms in R= k[x1, . . . , x4]. Suppose
the 2× 2 minors of ψ are linearly independent and no linear combination of them
has rank 1. Then ψ is GL2×GL3×GL4-equivalent to one of the following:x1 x2

x2 x3

x3 x4

 ,
x1 x2

x2 x3

x4 0

 ,
x1 x2

0 x3

x4 0

 or

x1 0
x2 x2

0 x3

 . (9)

In particular, the locus of smooth points on 0 = {rankψ ≤ 1} ⊂ P3 spans P3.

Proof. We may realise 0 as the intersection of the image of the Segre embedding
P1
×P2

→ P5 with a linear subspace P3. So every component of 0 has dimension
at least 1. If every component has dimension 1, then by the Buchsbaum–Eisenbud
acyclicity criterion, there is a minimal free resolution

0→ R(−3)2
ψ
→ R(−2)3

M
→ R, (10)

where M is the vector of 2× 2 minors of ψ . If in addition dim TP0 = 1 for every
P ∈ 0, then by an argument using Serre’s criterion [Eisenbud 1995, Section 18.3],
the ideal in R generated by the 2× 2 minors of ψ is a prime ideal. By (10), the
Hilbert polynomial is

h(t)=
(

t + 3
3

)
− 3

(
t + 1

3

)
+ 2

(
t
3

)
= 3t + 1.

Therefore, 0 is a twisted cubic and ψ is equivalent to the first of the matrices in (9).
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In all other cases, dim TP0 > 1 for some P ∈ 0. First suppose rankψ(P)= 1.
Moving P to (1 : 0 : 0 : 0), we may suppose

ψ =

x1 α

δ β

γ 0

 ,
where α, β, γ and δ are linear forms in x2, x3, x4. Our hypotheses on the 2× 2
minors ensure that α, β and γ are linearly independent; say they are x2, x3 and x4.
By row and column operations (and a substitution for x1), we may assume δ is a
multiple of x2. This gives the second and third cases in (9).

Now suppose rankψ(P)= 0. Let Q ∈ 0 be any other point. If rankψ(Q)= 0,
then the 2× 2 minors are binary quadratic forms, and so some linear combination
has rank 1. Therefore, rankψ(Q) = 1. If dim TQ0 > 1, then our earlier analysis
applies (and in fact gives a contradiction). Otherwise, we may assume

ψ =

x1 0
α x2

β x3

 ,
where α and β are linear forms in x2, x3. (The 0 in the top right has been cleared
by row operations.) Since αx3−βx2 is a rank-2 quadratic form in x2, x3, we can
make a change of coordinates so that 0 = {x1x2 = x1x3 = x2x3 = 0}. Then ψ is
equivalent to the last of the matrices in (9).

For the final statement, we note that the four cases correspond geometrically
to (i) a twisted cubic, (ii) a conic and a line, (iii) three nonconcurrent lines and
(iv) three concurrent lines. In each case, 0 spans P3, and the only singular points
are the points where the components meet. �

Proof of Lemma 7.9. Let P ∈ Cφ be a singular point. Moving P to (1 : 0 : 0 : 0 : 0),
we may assume φ takes the form

0 x1 `2 α1 β1

0 `3 α2 β2

0 α3 β3

− 0 0
0

 ,
where `i , αi and βi are linear forms in x2, . . . , x5. Let ψ be the top right 3× 2
submatrix, and let 0 ⊂ P3 be the curve defined by its 2× 2 minors. Since the 2× 2
minors of ψ are a subset of the 4× 4 Pfaffians of φ, they are linearly independent.
In particular, α3 and β3 cannot both vanish identically. Without loss of generality,
α3 is nonzero.
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Suppose no linear combination of the 2× 2 minors of ψ has rank 1. Then by
Lemma 7.10, there is a smooth point Q = (x2 : x3 : x4 : x5) on 0 with α3(Q) 6= 0.
Solving for x1 gives a smooth point (x1 : x2 : · · · : x5) on Cφ . This is a contradiction.
Therefore, some linear combination of the 2× 2 minors of ψ has rank 1. It is then
easy to see that φ is k-equivalent to a model of the form (5).

By properties (i) and (ii), η and x5 are linearly independent, and γ , δ and x5 are
linearly independent. However, if η, γ , δ and x5 were linearly independent, then
taking them to be x2, . . . , x5 would give that (0 : 1 : 0 : 0 : 0) is a smooth point on Cφ .
By row and column operations, we may therefore suppose η = δ (= x4, say).

By property (ii), β, x4 and x5 are linearly independent, and γ , x4 and x5 are
linearly independent. By row and column operations (and substitutions for the xi ),
we may suppose β = x3 and γ = x2 or x3. If γ = x2, then by further row and
column operations (and substitutions for the xi ), we may suppose α is a multiple
of x1. The lemma now follows using property (iii). �

Proof of Theorem 7.7. Since K is Henselian, any smooth point on Cφ lifts to a
K -point on C8. So we may assume φ takes one of the three forms in Lemma 7.9.
In the first two cases, φ defines a pair of concurrent lines with multiplicities 2 and 3.
(These cases may be distinguished by the dimension of the tangent space at the
point of intersection.) In the third case, it defines a line with multiplicity 5.

We apply the transformation [Diag(1, 1, 1, 1, π−1),Diag(1, 1, 1, π, π)]. This
gives an integral model of the same level. So the reduction must again be k-
equivalent to one of the three models in Lemma 7.9. We tidy up by an OK -
equivalence that cyclically permutes the rows and columns and makes substitutions
for x4 and x5. The reduction φ ∈ X5(k) now takes the form

0 x4 x5 α β

0 0 x1 x3

0 x2 0
− 0 0

0

 or


0 x4 x5 α β

0 x1 0 x3

0 x2 0
− 0 0

0

 or


0 x4 x5 α β

0 x1 x2 x3

0 x3 0
− 0 0

0

 ,
where α and β are linear forms in x1, x2, x3.

In the first case, (0 : 0 : 0 : 1 : 0) is a point with tangent space of dimension 3,
and Cφ contains points not on the line {x1 = x2 = x3 = 0}. So the transformation
has moved us to the second case.

In the second case, we obtain a contradiction as follows. If α = x1+ λx2+µx3,
then adding µ times the fifth row/column to the third row/column and making
substitutions for x1 and x5, we may assume µ= 0. Then (0 : 0 : 1 : 0 : 0) is a smooth
point on Cφ . Likewise, if β = x1+ λx2+µx3, then subtracting λ times the fourth
row/column from the second row/column and making substitutions for x1 and x4,
we may assume λ= 0. Then (0 : 1 : 0 : 0 : 0) is a smooth point on Cφ . We are forced
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to the conclusion that neither α nor β involves x1. But then Cφ contains the plane
{x2 = x3 = 0}, and by Lemma 7.8, this contradicts that 8 is minimal.

In the third case, we show that if the transformation above brings us back to the
third case, then the original model is critical. If β = x1+ λx2+µx3, then adding
λ times the fourth row/column to the third row/column and making substitutions
for x1 and x5, we may assume λ= 0. Then Cφ contains the lines {x1= x2= x3= 0}
and {x1 = x3 = x5 = 0}. So if the transformation returns us to third case, then β
cannot involve x1. Since Cφ does not contain a plane and the 4× 4 Pfaffians of φ
are linearly independent, α must involve x1 and β must involve x2. It follows by
Definition 7.2 that the original model is OK -equivalent to a critical model. �

8. Reduction

Let C ⊂ P4 be a genus-1 normal curve of degree 5 defined over Q. We may
represent it by a nonsingular genus-1 model 8 ∈ X5(Z). Running the algorithm in
Section 3 locally at p for all primes p dividing the discriminant 1(8), we obtain
a Q-equivalent model (still with coefficients in Z) whose discriminant is minimal
in absolute value. If C is everywhere locally soluble, then this discriminant is
the minimal discriminant of E = Jac(C). It remains to make a GL5(Z) change of
coordinates on P4 so that (after running the LLL algorithm on the space of five
quadrics defining the curve) the coefficients (and not just the invariants) are small.
The general method, described in [Cremona et al. 2010, Section 6], is to run the
LLL algorithm on the Gram matrix for the (unique) Heisenberg invariant inner
product. In this section, we outline how to compute this inner product in the case
n = 5.

We recall that the Heisenberg group is the subgroup of SL5(C) consisting of
matrices MT that describe the action of T ∈ E[5] on C ⊂ P4 by translation. For
T 6= 0E , we call the five points in P4 fixed by MT a syzygetic 5-tuple. It may be
shown (for example, by adapting the proof of [Fisher 2012, Proposition 4.1] or
using that H 1(R, E[5]) is trivial) that 8 is SL5(R)×SL5(R)-equivalent to a model
in Hesse form: 

0 ax0 bx1 −bx2 −ax3

0 ax2 bx3 −bx4

0 ax4 bx0

− 0 ax1

0

 . (11)

The invariants of this model are

c4 = a20
+ 228a15b5

+ 494a10b10
− 228a5b15

+ b20,

c6 =−a30
+ 522a25b5

+ 10005a20b10
+ 10005a10b20

− 522a5b25
− b30
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and 1= D5, where D = ab(a10
− 11a5b5

− b10). For a model in Hesse form, the
Heisenberg group is generated by Diag(1, ζ, . . . , ζ 4), where ζ is a primitive fifth
root of unity, and a cyclic permutation matrix. Since these matrices are unitary, the
Heisenberg invariant inner product is the standard inner product on R5.

The Hessian, introduced in [Fisher 2012], is an SL5×SL5-equivariant polyno-
mial map H : X5→ X5 with the property that the Hessian of (11) is of the same
form with a and b replaced by −∂D/∂b and ∂D/∂a.

Theorem 8.1. Let 8 ∈ X5(C) be a nonsingular genus-1 model with invariants c4

and c6. Let A be the 3× 5 matrix of quadrics such that λ8+µH(8) has 4× 4
Pfaffians

{ λ2 A1i + λµA2i +µ
2 A3i | i = 1, . . . , 5 }.

Then X = {rank A ≤ 1} ⊂ P4 consists of thirty points, and the syzygetic 5-tuples
for C8 are the fibres of the map α :X→P2 given by the first (or indeed any) column
of A. The image of α is the set of six points (x : y : z) ∈ P2 satisfying

rank

0 5x y 6c4x + z
x y 6c4x − z 8c6x
y −z 8c6x 9c2

4x

≤ 2. (12)

Proof. It suffices to prove this for 8 in Hesse form. Then X is defined by

rank

 x2
0 x2

1 x2
2 x2

3 x2
4

x1x4 x0x2 x1x3 x2x4 x0x3

x2x3 x3x4 x0x4 x0x1 x1x2

≤ 1 (13)

and by [Barth et al. 1987, Proposition 1] is a set of thirty points. Evaluating the
columns of (13) at these points, we obtain (1 : 0 : 0) and (1 : ζ i

: ζ−i ) for i = 0, . . . , 4.
These are the points (ξ : η : ν) ∈ P2 satisfying

rank

ξ η ν 0
ν ξ 0 −η
0 0 η ν

≤ 2. (14)

The remaining statements follow by direct calculation. In particular, our descrip-
tion (12) of the image of α is checked by making the substitutionx

y
z

=
 ab b2

−a2

−a(∂D/∂a)+ b(∂D/∂b) −2b(∂D/∂a) −2a(∂D/∂b)
−(∂D/∂b)(∂D/∂a) (∂D/∂a)2 −(∂D/∂b)2

ξη
ν

 .
We note that this change of coordinates and the matrix relating the 3× 3 minors
of (12) and (14) each have determinant a constant times a power of D. �
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After computing the Hessian exactly (using the algorithm in [Fisher 2012, Sec-
tion 11]), we use Theorem 8.1 to compute the syzygetic 5-tuples numerically. We
then compute a Gram matrix for the Heisenberg invariant inner product as follows.

Proposition 8.2. Let C ⊂ P4 be a genus-1 normal curve defined over R.

(i) Exactly two of the syzygetic 5-tuples for C are defined over R, say

Y = { yi y j = 0 | i < j } ⊂ P4 and Z = { zi z j = 0 | i < j } ⊂ P4,

where y0, . . . , y4 and z0, . . . , z4 are linear forms in C[x0, . . . , x4].

(ii) One of the 5-tuples in (i) has 5 real points, and the other has 1 real point. We
may therefore arrange that y0, . . . , y4 and z0 have real coefficients and that
the pairs z1, z4 and z2, z3 are complex conjugates.

(iii) The Heisenberg invariant quadratic form spans the 1-dimensional real vector
space

〈y2
0 , . . . , y2

4〉 ∩ 〈z
2
0, z1z4, z2z3〉.

Proof. For C in Hesse form, we may take yi = xi and zi =
∑4

j=0 ζ
i j x j . In this

case, the Heisenberg invariant quadratic form is x2
0 + · · ·+ x2

4 . �

9. Examples

Wuthrich [2001] constructed an element of order 5 in the Tate–Shafarevich group
of the elliptic curve E/Q with Weierstrass equation

y2
+ xy+ y = x3

+ x2
− 3146x + 39049.

His example (see also [Fisher 2008, Section 9]) is defined by the 4× 4 Pfaffians of
0 310x1+ 3x2+ 162x5 −34x1− 5x2− 14x5 10x1+ 28x4+ 16x5 80x1− 32x4

0 6x1+ 3x2+ 2x5 −6x1+ 7x3− 4x4 −14x2− 8x3

0 −x3 2x2

− 0 −4x1

0

 .

This model has discriminant 21321E , where 1E is the minimal discriminant of E .
In other words, the model is minimal at all primes except p = 2, where the level
is 11. Minimisation and reduction suggest the change of coordinates

x1

x2

x3

x4

x5

←


0 4 −8 4 8
0 0 0 0 16
0 −4 4 0 12
4 5 −15 2 7
4 −12 20 −12 −8




x1

x2

x3

x4

x5
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so that Wuthrich’s example simplifies to

8=


0 x2+ x5 −x5 −x1+ x2 x4

0 x2− x3+ x4 x1+ x2+ x3− x4− x5 x1− x2− x3− x4− x5

0 x1− x2+ 2x3− x4− x5 −x2− x4+ x5

− 0 −x3− x4− 2x5

0

 .
Our Magma function DoubleGenusOneModel, described in [Fisher 2013], computes
a genus-1 model 8′ that represents twice the class of 8 in the 5-Selmer group. This
model has entries

8′12= 3534132778x1+3583651940x2−881947110x3−323014538x4+3395115339x5,

8′13= 5079379222x1−2965539950x2+11022202860x3+12821590868x4+640276471x5,

8′14=−10098238458x1−1274966110x2−7873816170x3−3456923272x4−62353929x5,

8′15=−12929747724x1−6790511810x2−11113305270x3−15161763156x4

+3241937033x5,

8′23=−3381247332x1+3810679160x2+5919634530x3+75326852x4−1245085426x5,

8′24=−3572860258x1−5569480730x2−953739600x3−2138046812x4−858145244x5,

8′25=−4674149266x1−943631490x2−6754488160x3+751535046x4+117685567x5,

8′34=−1851228934x1+5238146110x2−165588410x3−2070411506x4+678105748x5,

8′35=−6992835070x1−3744630360x2+3130208220x3−4523781310x4+433739425x5,

8′45= 780078472x1+2039763820x2−450062790x3−7105731722x4+1625466111x5.

The discriminant of 8′ is 149
E . In particular, this model is nonminimal at all bad

primes of E . Minimisation and reduction suggest the change of coordinates
x1

x2

x3

x4

x5

←


92 −36 −153 129 −131
−54 84 5 −206 139
−63 −174 −60 −79 53
−111 106 206 −115 −162
314 −466 158 −328 −12




x1

x2

x3

x4

x5


so that 8′ simplifies to

0 −x4+ x5 x3− x4+ x5 x2− x5 x1− x2+ x3− x4− 2x5

0 x1+ x5 −x2− x3 −x2+ x5

0 x4 −x1

− 0 x1+ x4− x5

0

 .
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See also [Creutz and Miller 2012, Section 7.4] for an example where our algo-
rithms are used to help find a Mordell–Weil generator of large height.
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