
Algebra &
Number
Theory

msp

Volume 7

2013
No. 5

Local and global canonical height functions for
affine space regular automorphisms

Shu Kawaguchi



msp
ALGEBRA AND NUMBER THEORY 7:5 (2013)

dx.doi.org/10.2140/ant.2013.7.1225

Local and global canonical height functions
for affine space regular automorphisms

Shu Kawaguchi

In memory of Professor Masaki Maruyama

Let f : AN
→ AN be a regular polynomial automorphism defined over a number

field K . For each place v of K , we construct the v-adic Green functions G f,v

and G f −1,v (i.e., the v-adic canonical height functions) for f and f −1. Next
we introduce for f the notion of good reduction at v, and using this notion, we
show that the sum of v-adic Green functions over all v gives rise to a canonical
height function for f that satisfies a Northcott-type finiteness property. Using an
earlier result, we recover results on arithmetic properties of f -periodic points and
non- f -periodic points. We also obtain an estimate of growth of heights under f
and f −1, which was independently obtained by Lee by a different method.

Introduction

Height functions are one of the basic tools in diophantine geometry. On abelian
varieties defined over a number field, there exist Néron–Tate canonical height
functions that behave well relative to the n-th power map. Tate’s elegant construction
is via a global method using a relation of an ample divisor relative to the n-th power
map. Néron’s construction is via a local method and gives deeper properties of the
canonical height functions. Both constructions are useful in studying arithmetic
properties of abelian varieties.

In [Kawaguchi 2006], we showed the existence of canonical height functions
for affine plane polynomial automorphisms of dynamical degree at least 2. Our
construction was via a global method using the effectiveness of a certain divisor
on a certain rational surface. In this paper, we use a local method to construct a
canonical height function for affine space regular automorphisms f : AN

→ AN ,
which coincides with the one in [Kawaguchi 2006] when N = 2. We note that
arithmetic properties of polynomial automorphisms over number fields have been
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studied, for example, by Silverman [1994], Denis [1995], Marcello [2000; 2003],
and the author [Kawaguchi 2006].

We recall the definition of regular polynomial automorphisms. Let f :AN
→AN

be a polynomial automorphism of degree d ≥ 2 defined over a field, and let
f : PN 99K PN denote its birational extension to PN . We write f −1 for the inverse
of f , d− for the degree of f −1, and f −1 for its birational extension to PN . Then
f is said to be regular if the intersection of the set of indeterminacy of f and
that of f −1 is empty over an algebraic closure of the field (see Definition 2.1 and
Remark 2.2). Over C, dynamical properties of affine space regular polynomial
automorphisms f are deeply studied, in which the Green function for f plays a
pivotal role; see [Sibony 1999, §2].

In Sections 1 and 2, we construct a Green function (a local canonical height
function) for f over an algebraically closed field � with nontrivial nonarchimedean
absolute value | · |. For x = (x1, . . . , xN ) ∈�

N , we set ‖x‖ =max1≤i≤N {|xi |}. Our
results are put together as follows.

Theorem A (see Proposition 1.1, Lemma 1.3, and Theorem 2.3). Let f :AN
→AN

be a regular polynomial automorphism of degree d ≥ 2 defined over �.

(1) For all x ∈ AN (�), the limits

lim
n→+∞

1
dn log max{‖ f n(x)‖, 1} and lim

n→+∞

1
dn
−

log max{‖ f −n(x)‖, 1}

exist and are nonnegative. We respectively write G f (x)≥ 0 and G f −1(x)≥ 0
for the limits, which we call Green functions for f and f −1. They satisfy the
functional equations G f ( f (x))= dG f (x) and G f −1( f −1(x))= d−G f −1(x).

(2) There are constants c f , c f −1 ∈ R such that, on AN (�),

G f ( · )≤ log max{‖ · ‖, 1}+ c f ,

G f −1( · )≤ log max{‖ · ‖, 1}+ c f −1

(3) There are subsets V+ and V− of AN (�) with V+∪V−=AN (�) and constants
c+, c− ∈ R such that

G f ( · )≥ log max{‖ · ‖, 1}+ c+ on V+,

G f −( · )≥ log max{‖ · ‖, 1}+ c− on V−.

Over C, Green functions are constructed using compactness arguments [Sibony
1999, §2]. Here we use more algebraic arguments based on Hilbert’s Nullstellensatz.
Our construction of V± and c± is rather delicate with a choice of two parameters ε
and δ, which behaves well when we work over number fields in Sections 6 and 7. We
note that over C, our construction gives a different proof of the existence of Green
functions with more explicit estimates (see Section 5). In Section 3, we continue
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to study some basic properties of regular polynomial automorphisms f over �,
characterizing the set of the points with unbounded orbit by G f and showing a
filtration property for f .

Now we turn our attention to number fields. Let f : AN
→ AN be a polynomial

automorphism defined over a number field K . For each place v of K , let Kv

denote the completion of K with respect to v and K v an algebraic closure of Kv.
Then f induces a regular polynomial automorphism over K v, so we have Green
functions G f,v and G f −1,v and estimates with c f,v , c f −1,v , and c±v as in Theorem A.
(Here we use the suffix v to indicate that we work over K v . See Section 5 when v
is archimedean.)

We want to define the canonical height functions ĥ+f and ĥ−f for f as the sum
of G f,v and G f −1,v over all the places v of K . To this end, we introduce the
notion of good reduction at a nonarchimedean place v of K . Let Rv denote the
ring of integers of K v and k̃v the residue field. Recall that the notion of good
reduction for an endomorphism ϕ of P1 over K v is introduced in [Morton and
Silverman 1994], which means that ϕ extends to a morphism over Rv and the
induced morphism ϕ̃ over k̃v has the same degree as ϕ. Here we say that a regular
polynomial automorphism f : AN

→ AN has good reduction at v if f extends to
an automorphism over Rv and the induced morphism f̃ over k̃v is again a regular
polynomial automorphism such that the degrees of f̃ and f̃ −1 are the same as the
degrees of f and f −1, respectively (see Definition 4.1 for the precise definition).

Using the notion of good reduction, we show the existence of canonical height
functions. Let h : AN (K )→ R denote the usual logarithmic Weil height function.

Theorem B (see Proposition 6.2 and Theorem 6.3). Let f :AN
→AN be a regular

polynomial automorphism of degree d ≥ 2 over a number field K . Let d−≥ 2 denote
the degree of f −1.

(1) Then f has good reduction at v except for finitely many places. Further, if this
is the case, we can take the constants c f,v = c f −1,v = c±v = 0 in Theorem A, so

G f ( · )= log max{‖ · ‖, 1} on V+,

G f −1( · )= log max{‖ · ‖, 1} on V−.

(2) For all x ∈ AN (K ), the limits

ĥ+f (x) := lim
n→+∞

1
dn h( f n(x)) and ĥ−f (x) := lim

n→+∞

1
dn
−

h( f −n(x)) (0-1)

exist. Further, we have the decomposition into the sum of local Green functions

ĥ+f (x)=
∑
v∈MK

nvG f,v(x) and ĥ−f (x)=
∑
v∈MK

nvG f −1,v(x).
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(3) We define ĥ f : A
N (K )→ R by ĥ f := ĥ+f + ĥ−f . Then ĥ f satisfies ĥ f �� h

and
1
d

ĥ f ◦ f + 1
d−

ĥ f ◦ f −1
=

(
1+ 1

dd−

)
ĥ f .

Further, for x ∈ AN (K ) we have

ĥ f (x)= 0 ⇐⇒ ĥ+f (x)= 0 ⇐⇒ ĥ−f (x)= 0 ⇐⇒ x is f -periodic.

In [Kawaguchi 2006] we have defined ĥ+f (x) as lim supn→∞
1

dn h( f n(x)), and
similarly for ĥ−f . Theorem B shows that

{ 1
dn h( f n(x))

}+∞
n=0 and

{ 1
dn
−

h( f −n(x))
}+∞

n=0
are in fact convergent sequences, i.e., lim sup can be replaced by lim as in (0-1).

Using estimates on local Green functions over all places, we obtain the following
estimate on global height functions for all N ≥ 2 [Kawaguchi 2006, §4; Silverman
2006, Conjecture 3; 2007, Conjecture 7.18]. This result has been independently
proved by Chong Gyu Lee [2013]. His proof uses a global method and is based on
the effectiveness of a certain divisor (as was done for N = 2 in [Kawaguchi 2006]).

Corollary C (see Theorem 7.1). Let f : AN
→ AN be a regular polynomial

automorphism over a number field K . With the notation as above, there exists
a constant c ≥ 0 such that

1
d

h( f (x))+ 1
d−

h( f −1(x))≥
(

1+ 1
dd−

)
h(x)− c (0-2)

for all x ∈ AN (K ). Further, we have

lim inf
x∈AN (K )
h(x)→∞

1
d h( f (x))+ 1

d−
h( f −1(x))

h(x)
= 1+ 1

dd−
.

Since (0-2) holds, by the argument of [Kawaguchi 2006] we recover the results on
f -periodic points and refine the results on non- f -periodic points in [Silverman 1994;
Denis 1995; Marcello 2000; 2003]. For x ∈ AN (K ), let O f (x) := { f n(x) | n ∈ Z }

denote the f -orbit of x . If O f (x) is infinite, we have the canonical height ĥ(O f (x))
of O f (x) (see Equation (7-6)).

Corollary D (see Equation (7-6) and Corollary 7.4). Let f :AN
→AN be a regular

polynomial automorphism over a number field K . With the notation as above,

(1) the set of f -periodic points in AN (K ) is a set of bounded height and

(2) for any infinite orbit O f (x),

#{ y ∈ O f (x) | h(y)≤ T } =
( 1

log d
+

1
log d−

)
log T − ĥ(O f (x))+ O(1)

as T →+∞, where O(1) is independent of T and x but depends on f .
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1. Nonarchimedean Green functions for polynomial maps

Let � be an algebraically closed field with nontrivial nonarchimedean absolute
value | · | and R its ring of integers. For a point x = (x1, . . . , xN ) ∈ AN (�), the
norm of x is defined by ‖x‖ =maxi=1,...,N {|xi |}. We set log+(a) := log max{a, 1}
for a ∈ R≥0 as usual so that log+‖x‖ = log max{‖x‖, 1} = log‖(x, 1)‖.

Let f = ( f1, . . . , fN ) : A
N
→ AN be a polynomial map of degree d ≥ 2 defined

over �, where f1(X), . . . , fN (X) are polynomials in �[X1, . . . , X N ] such that
d =maxi=1,...,N {deg fi }. We write Fi (X, T ) := T d fi (X/T ) ∈�[X1, . . . , X N , T ]
for homogenization of fi . Let f = (F1 : · · · : FN : T d) : PN 99K PN denote the
extension of f to PN . We put F := (F1, . . . , FN , T d) : AN+1

→ AN+1, which is a
lift of f .

For the composition f n
= f ◦ · · · ◦ f , we write f n

= ( f n
1 , . . . , f n

N ). Similarly,
for the composition Fn

= F ◦ · · · ◦ F , we write Fn
= (Fn

1 , . . . , Fn
N , T dn

). Let dn

denote the degree of f n , and let Fni (X, T ) = T dn f n
i (X/T ) ∈ �[X1, . . . , X N , T ]

be homogenization of f n
i . Since Fn

i (X, 1)= f n
i (X)= Fni (X, 1), counting degrees

gives Fn
i (X, T )= T dn

−dn Fni (X, T ).

Proposition 1.1. Let f : AN
→ AN be a polynomial map of degree d ≥ 2 defined

over �. Then for all x ∈ AN (�), 1
dn log+‖ f n(x)‖ converges to a nonnegative real

number as n→+∞.

Proof. We take an r ∈ R so that r Fi ∈ R[X, T ] for all i = 1, . . . , N . We set

an :=
1

dn log+‖ f n(x)‖, bn :=
1

dn log‖Fn(x, 1)‖, cn :=
1

dn log‖(r F)n(x, 1)‖,

where r F = (r F1, . . . , r FN , rT d). We claim that

an = bn = cn −
1− d−n

d − 1
log|r |. (1-1)

Indeed, the first equality follows from ( f n(x), 1) = (Fn(x, 1)). The second
equality follows from (r F)n = r1+d+···+dn−1

Fn
= r (d

n
−1)/(d−1)Fn . It follows from

‖(r F)(x, 1)‖ ≤ ‖(x, 1)‖d that

1
dn log‖(r F)n(x, 1)‖ ≤ 1

dn log‖(r F)n−1(x, 1)‖d = 1
dn−1 log‖(r F)n−1(x, 1)‖.

In other words, {cn}
+∞

n=1 is a nonincreasing sequence. Equation (1-1) implies that
{cn}

+∞

n=1 is bounded from below. Indeed, since an is nonnegative and |r |≤ 1, we have
cn ≥ an +

1
d−1 log|r | ≥ 1

d−1 log|r |. Thus, limn→+∞ cn exists. Equation (1-1) then
gives the existence of limn→+∞ an , which is nonnegative from the definition. �

Proposition 1.1 allows the following definition:
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Definition 1.2. For a polynomial map f :AN
→AN defined over �, we define the

nonnegative function G f : A
N (�)→ R by

G f (x) := lim
n→+∞

1
dn log+‖ f n(x)‖ for x ∈ AN (�)

and call it the Green function for f .

Lemma 1.3. Let C ′f be the maximum of the absolute value of all the coefficients
of fi (X) for 1≤ i ≤ N , and we set

c f =
1

d − 1
log max{C ′f , 1}.

Then
G f ( · )≤ log+‖ · ‖+ c f on AN (�).

Proof. We take r ∈ R such that |r | = 1/max{C ′f , 1}. Then r Fi ∈ R[X, T ] for all
i = 1, . . . , N . From the proof of Proposition 1.1, we have

G f (x)≤ lim
n→+∞

cn −
1

d−1
log|r | ≤ c0−

1
d−1

log|r | = log+‖x‖− 1
d−1

log|r |.

Hence, we get the assertion. �

Lemma 1.4 below shows that for some polynomial maps f , G f is not interesting.
However, we will see in the next section that G f enjoys nice properties for regular
polynomial automorphisms f (see Definition 2.1 and Theorem 2.3).

To state Lemma 1.4, we recall that a polynomial map f is said to be algebraically
stable if dn = dn for all n ≥ 1 [Sibony 1999, §1.4].

Lemma 1.4. If f is not algebraically stable, then G f (x)= 0 for all x ∈ AN (�).

Proof. We take n0 such that dn0 < dn0 , and we put g = f n0 . Proposition 1.1 tells us
that (1/dm

n0
) log+‖gm(x)‖ converges to a nonnegative number as m→+∞. Hence,

1
dn0m log+‖ f n0m(x)‖ =

(
dn0

dn0

)m 1
dm

n0

log+‖gm(x)‖→ 0 as m→+∞.

From Proposition 1.1, we get G f (x)= 0. �

2. Nonarchimedean Green functions for regular automorphisms

In this section, we consider polynomial automorphisms. Let f : AN
→ AN be a

polynomial automorphism of degree d ≥ 2 defined over an algebraically closed
field � with nontrivial nonarchimedean absolute value.

As before, let f = (F1(X, T ) : · · · : FN (X, T ) : T d) : PN 99K PN denote the
extension of f to PN . We denoted by d− the degree of the inverse f −1

:AN
→AN

of f . The integer d− ≥ 2 may be different from d . We denote the extension of f −1

to PN by f −1 = (G1(X, T ) : · · · : G N (X, T ) : T d−) : PN 99K PN .
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Let I+ and I− denote the set of indeterminacy of f and f −1, respectively:

I+ = { (x : 0) ∈ PN (�) | F1(x, 0)= · · · = FN (x, 0)= 0 },

I− = { (x : 0) ∈ PN (�) | G1(x, 0)= · · · = G N (x, 0)= 0 }.

Definition 2.1 [Sibony 1999, §2.2]. A polynomial automorphism f : AN
→ AN is

called regular if I+ ∩ I− =∅.

Remark 2.2. The definition of regular polynomial automorphisms works over any
algebraically closed field.

The purpose of this section is to prove the following theorem, which says that
the Green functions for regular automorphisms exhibit nice properties:

Theorem 2.3. Let � be an algebraically closed field with nontrivial nonarchi-
medean valuation and f : AN

→ AN a regular polynomial automorphism over �.
Then there are open subsets V+ and V− of AN (�) with respect to the topology
induced from the valuation on � and constants c+, c− ∈ R with the properties

(i) G f ( · )≥ log+‖ · ‖+ c+ on V+,

(ii) G f −1( · )≥ log+‖ · ‖+ c− on V−, and

(iii) V+ ∪ V− = AN (�).

Remark 2.4. Over C, corresponding results (and much more) were established by
Sibony [1999, §2.2]. Here since AN (�) is not locally compact in general, we give
a different proof that is more algebraic in nature based on Hilbert’s Nullstellensatz.
We also give V+, V−, c+, and c− with precise estimates so that they work well
when we introduce the notion of good reduction in Section 4.

Before proving Theorem 2.3, we will need several lemmas. We begin by in-
troducing some notation. Since I+ ∩ I− is empty, F1(X, 0), . . . , FN (X, 0) and
G1(X, 0), . . . ,G N (X, 0) have no solutions in common other than 0. Thus, for each
1≤ i ≤ N , there are polynomials Pi j (X), Qi j (X) ∈�[X ] for 1≤ j ≤ N such that

N∑
j=1

Pi j (X)F j (X, 0)+
N∑

j=1

Qi j (X)G j (X, 0)= Xm
i (2-1)

with some m ≥ 1. Hence, there is a polynomial Ri (X, T ) ∈�[X, T ] such that

N∑
j=1

Pi j (X)F j (X, T )+
N∑

j=1

Qi j (X)G j (X, T )+ T Ri (X, T )= Xm
i . (2-2)

Here we may and do assume that m is independent of i . Replacing Pi j (X) by its
homogeneous part with degree m−d , Qi j (X) by its homogeneous part with degree
m− d−, and Ri (X, T ) by its homogeneous part with degree m− 1, we may and do
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assume that the Pi j (X), Qi j (X), and Ri (X, T ) are homogeneous polynomials with
degree m− d , m− d−, and m− 1, respectively.

Let C ′ be the maximum of the absolute value of all the coefficients of Pi j (X),
Qi j (X), and Ri (X, T ) for 1≤ i ≤ N and 1≤ j ≤ N . We set

C =max{C ′, 1}. (2-3)

We fix real numbers ε> 0 and δ > 0 as follows. First we choose δ to satisfy δ≤ 1
C .

Then choose ε to satisfy

ε ≤min
{δ1/d

C
,
δ1/d−

C

}
.

This ensures ε ≤ 1
C , so in particular, ε ≤ 1. To sum up, we have

ε ≤ 1
C , δ ≤ 1

C , (εC)d ≤ δ, and (εC)d− ≤ δ. (2-4)

For example,

ε =
1

Cmin{d,d−}
and δ =

1
Cmin{d,d−}(min{d,d−}−1) (2-5)

satisfy (2-4).
We define N+δ,ε and V+δ,ε by

N+δ,ε := { x ∈ AN (�) | 1< ε‖x‖ and ‖ f (x)‖< δ‖x‖d },

V+δ,ε := AN (�) \ N+δ,ε = { x ∈ AN (�) | ‖x‖ ≤ 1
ε

or ‖ f (x)‖ ≥ δ‖x‖d }.
(2-6)

Intuitively, points in N+δ,ε are near to the hyperplane {(x : 0) ∈PN (�)} at infinity
(measured by ε) and also near to I+ in “the direction of x” (measured by δ). We note
that both N+δ,ε and V+δ,ε are open and closed with respect to the topology induced
from the valuation of �.

Remark 2.5. We set

N+δ,ε =
{
(x : t) ∈ PN (�)

∣∣ |t |< ε‖x‖ and ‖(F(x, t), td)‖< δ‖(x, t)‖d
}
.

Then N+δ,ε = N+δ,ε∩AN (�). If (x : t)∈ I+, then t = 0 and F(x, t)= 0. Thus, |t | = 0
and ‖(F(x, t), td)‖ = 0, so we have

I+ ⊆ N+δ,ε.

The next lemma says that if a point is not too close to I+, then f maps it to a
point that is also not very close to I+ and that the measurement of “closeness” is
uniform with respect to the point.

Lemma 2.6. We have f (V+δ,ε)⊆ V+δ,ε.
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Proof. Taking the complement, it suffices to show that

f −1(N+δ,ε)⊆ N+δ,ε.

Suppose x = (x1, . . . , xN )∈ N+δ,ε. Without loss of generality, we assume |x1| = ‖x‖.
We note f (x)= (F1(x, 1), . . . , FN (x, 1)) and f −1(x)= (G1(x, 1), . . . ,G N (x, 1)).
Since ε ≤ 1, we have ‖x‖> 1. Then the definition of N+δ,ε gives

1
ε
< ‖x‖, (2-7)

‖ f (x)‖< δ‖x‖d . (2-8)

We need to show that f −1(x) ∈ N+δ,ε, which is equivalent to

1< ε‖ f −1(x)‖, (2-9)

‖x‖< δ‖ f −1(x)‖d . (2-10)

First we show (2-9). To derive a contradiction, we assume that ‖ f −1(x)‖ ≤ 1
ε
. Let

λ > 0 be any small number. We have∣∣∣∣ N∑
j=1

P1 j (x)F j (x, 1)+
N∑

j=1

Q1 j (x)G j (x, 1)+ R1(x, 1)
∣∣∣∣

<max{C‖x‖m−d
· δ‖x‖d , (C + λ)‖x‖m−d− 1

ε
, (C + λ)‖x‖m−1

}

≤max{Cδ‖x‖m, (C + λ)‖x‖m−d−+1, (C + λ)‖x‖m−1
} (from (2-7))

≤max{Cδ‖x‖m, (C + λ)‖x‖m−1
} (since d− ≥ 2).

Since λ > 0 is arbitrary, (2-2) and the assumption that |x1| = ‖x‖ then gives either
‖x‖m ≤ C‖x‖m−1 or ‖x‖m < Cδ‖x‖m . Equivalently, we have either ‖x‖ ≤ C or
1<Cδ. However, the former contradicts (2-4) and (2-7) while the latter contradicts
(2-4). Hence, we get (2-9).

Next we show (2-10). To derive a contradiction, we assume the contrary, i.e.,
‖x‖ ≥ δ‖ f −1(x)‖d . Letting λ > 0 be any small number, we have∣∣∣∣ N∑

j=1

P1 j (x)F j (x, 1)+
N∑

j=1

Q1 j (x)G j (x, 1)+ R1(x, 1)
∣∣∣∣

<max
{
C‖x‖m−d

· δ‖x‖d , (C + λ)‖x‖m−d− · ( 1
δ
)1/d‖x‖1/d , (C + λ)‖x‖m−1}

≤max{Cδ‖x‖m, (C + λ)( 1
δ
)1/d‖x‖m−d−+1/d , (C + λ)‖x‖m−1

}

≤max{Cδ‖x‖m, (C + λ)( 1
δ
)1/d‖x‖m−1

} (since d−−
1
d
≥ 1).

Since λ > 0 is arbitrary, (2-2) and the assumption that |x1| = ‖x‖ gives this time

either ‖x‖ ≤ ( 1
δ
)1/dC or 1< Cδ.
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However, the former contradicts (2-4) and (2-7) while the latter contradicts (2-4).
Hence, we get (2-10), which completes the proof. �

Lemma 2.7. Set C+δ,ε :=min{δ, εd
}. Then

max{‖ f (x)‖, 1} ≥ C+δ,ε ·max{‖x‖d , 1} for all x ∈ V+δ,ε.

Proof. For x ∈ V+δ,ε, the definition of V+δ,ε gives

either ‖x‖ ≤ 1
ε

or max{‖ f (x)‖, 1} ≥ δmax{‖x‖d , 1}.

If the latter holds, then we get the assertion since δ ≥ C+δ,ε. If the former holds,
then C+δ,ε‖x‖

d
≤ 1. We get max{‖ f (x)‖, 1} ≥ 1≥ C+δ,ε ·max{‖x‖d , 1} noting that

C+δ,ε ≤ 1. �

Lemma 2.8. Set c+δ,ε :=
1

d−1 log C+δ,ε. Then

G f (x)≥ log+‖x‖+ c+δ,ε for all x ∈ V+δ,ε.

Proof. Suppose x ∈ V+δ,ε. It follows from Lemma 2.6 that f n(x) ∈ V+δ,ε for all n ≥ 1.
Then Lemma 2.7 gives

log+‖ f n(x)‖ ≥ d log+‖ f n−1(x)‖+ log C+δ,ε.

The usual telescoping argument tells us that

G f (x)= lim
n→+∞

1
dn log+‖ f n(x)‖

= log+‖x‖+
∞∑

n=1

1
dn (log+‖ f n(x)‖− d log+‖ f n−1(x)‖)

≥ log+‖x‖+ c+δ,ε. �

With f −1 in place of f , we define N−δ,ε and V−δ,ε by

N−δ,ε :=
{

x ∈ AN (�)
∣∣ 1< ε‖x‖ and max{‖ f −1(x)‖, 1}< δmax{‖x‖d−, 1}

}
,

V−δ,ε := AN (�) \ N−δ,ε. (2-11)

Then setting c−δ,ε :=
1

d−−1 log min{δ, εd−}, we have

G f −1(x)≥ log+‖x‖+ c−δ,ε for all x ∈ V−δ,ε. (2-12)

The next lemma may be seen as a quantified version of the fact that a point
cannot be too close to both I+ and I− since I+ ∩ I− =∅.

Lemma 2.9. V+δ,ε ∪ V−δ,ε = AN (�), or equivalently, N+δ,ε ∩ N−δ,ε =∅.
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Proof. Taking the complement, it suffices to show that N+δ,ε ∩ N−δ,ε =∅. To derive
a contradiction, we assume that there is an x ∈ N+δ,ε ∩ N−δ,ε. Then we have

‖x‖> 1
ε
, (2-13)

‖ f (x)‖< δ‖x‖d , (2-14)

‖ f −1(x)‖< δ‖x‖d− . (2-15)

Without loss of generality, we assume that |x1| = ‖x‖. Let λ > 0 be any small
number. By (2-13)–(2-15), we have∣∣∣∣ N∑

j=1

P1 j (x)F j (x, 1)+
N∑

j=1

Q1 j (x)G j (x, 1)+ R1(x, 1)
∣∣∣∣

<max{C‖x‖m−d
· δ‖x‖d ,C‖x‖m−d− · δ‖x‖d−, (C + λ)‖x‖m−1

}

≤max{Cδ‖x‖m, (C + λ)‖x‖m−1
}.

Since λ is arbitrary, it follows from (2-2) that ‖x‖m <Cδ‖x‖m or ‖x‖m ≤C‖x‖m−1.
Hence, we get

either 1< Cδ or ‖x‖ ≤ C.

However, the former contradicts (2-4) while the latter contradicts (2-4) and (2-13).
Thus, we have N+δ,ε ∩ N−δ,ε =∅. �

Proof of Theorem 2.3. Let δ and ε be constants satisfying (2-4). Then Theorem 2.3
holds with V± = V±δ,ε and c± = c±δ,ε. Indeed, the condition (i) follows from
Lemma 2.8 and the condition (ii) from (2-12) while the condition (iii) follows from
Lemma 2.9. �

3. Nonarchimedean Green functions and the set of escaping points

In this section, we continue to study basic properties of regular polynomial automor-
phisms defined over �. We keep the notation and the assumption of Section 2. In
particular, f :AN

→AN denotes a regular polynomial automorphism of degree d≥2
defined over �.

In analogy with the field of complex numbers, we define the set W+ of escaping
points and the set K+ of nonescaping points by

W+ := { x ∈ AN (�) | ‖ f n(x)‖→+∞ (n→+∞) },

K+ := { x ∈ AN (�) | { f n(x)}+∞n=0 is bounded with respect to ‖ · ‖ }.

Then the following theorem holds, which is a nonarchimedean version of the results
of [Bedford and Smillie 1991, §2 and §3; Sibony 1999, §2]:
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Theorem 3.1. Let f : AN
→ AN be a regular polynomial automorphism over �,

and let G f be the Green function for f .

(1) The set K+ is exactly the set of points where G f vanish:

K+ = { x ∈ AN (�) | G f (x)= 0 }.

(2) AN (�)=W+qK+ (disjoint union).

To prove Theorem 3.1, we need the following two lemmas. Recall that δ and ε
are fixed constants satisfying (2-4).

Lemma 3.2. For any x ∈ N+δ,ε/2, one has ‖x‖ ≤ 1
2‖ f −1(x)‖.

Proof. It follows from x ∈ N+δ,ε/2 that

‖x‖> 2
ε

and ‖ f (x)‖< δ‖x‖d . (3-1)

To derive a contradiction, we assume that ‖x‖ > 1
2‖ f −1(x)‖. Without loss of

generality, we assume that |x1| = ‖x‖. Then (we take λ= C here)∣∣∣∣ N∑
j=1

P1 j (x)F j (x, 1)+
N∑

j=1

Q1 j (x)G j (x, 1)+ R1(x, 1)
∣∣∣∣

<max{C‖x‖m−d
· δ‖x‖d ,C‖x‖m−d− · 2‖x‖, 2C‖x‖m−1

}

≤max{Cδ‖x‖m, 2C‖x‖m−1
}.

Using (2-2), we get

either 1< Cδ or ‖x‖< 2C.

However, the former contradicts (2-4). If the latter holds, then Equation (3-1)
implies 1< Cε, contradicting (2-4). This completes the proof. �

Lemma 3.3. For any x ∈AN (�), one has f n(x) ∈ V+δ,ε/2 for all sufficiently large n.

Proof. Note that ε2 and δ satisfy (2-4) with ε
2 in place of ε. Thus, if x ∈ V+δ,ε/2, then

Lemma 2.6 gives f n(x) ∈ V+δ,ε/2 for all n ≥ 0.
Suppose now that x ∈ N+δ,ε/2. We take a positive integer n0 so that ‖x‖ ≤ 2n0+1/ε.

We claim that f n0(x) ∈ V+δ,ε/2. Indeed, if we assume the contrary, then Lemma 3.2
applied to x, . . . , f n0(x) ∈ N+δ,ε/2 gives

2
ε
< ‖ f n0(x)‖ ≤ 1

2‖ f n0−1(x)‖ ≤ · · · ≤
1

2n0
‖x‖,

which contradicts our choice of n0. Thus, f n(x) ∈ V+δ,ε/2 for all n ≥ n0. �
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Proof of Theorem 3.1. (1) We get K+ ⊆ { x ∈ AN (�) | G f (x) = 0 } from
Definition 1.2. To show the other inclusion, we assume that G f (x) = 0. Then
G f ( f n(x)) = dnG f (x) = 0 for all n ≥ 0. By Lemma 3.3, we take n0 such that
f n0(x) ∈ V+δ,ε/2. It follows from Lemmas 2.6 and 2.8 (applied to ε

2 in place of ε)
that

G f ( f n(x))≥ log+‖ f n(x)‖+ c+δ,ε/2

for all n≥ n0. Combined with G f ( f n(x))= 0, we see that ‖ f n(x)‖≤ exp(−c+δ,ε/2)
for all n ≥ n0. Thus, { x ∈ AN (�) | G f (x)= 0 } ⊆ K+.

(2) If x /∈ K+, then G f (x) > 0 by (1). Definition 1.2 then gives ‖ f n(x)‖→+∞
as n→+∞. �

With f −1 in place of f , we put

W− := { x ∈ AN (�) | ‖ f −n(x)‖→+∞ (n→+∞) },

K− := { x ∈ AN (�) | { f −n(x)}+∞n=0 is bounded with respect to ‖ · ‖ }.

Then we have AN (�)=W−qK− as in Theorem 3.1.
In the rest of this section, we give filtrations of AN relative to f over nonar-

chimedean fields as in [Bedford and Smillie 1991, §2.2; Shafikov and Wolf 2003,
§3] over C.

We set

Bε = { x ∈ AN (�) | ‖x‖ ≤ 1
ε
},

U+δ,ε = { x ∈ AN (�) | ‖x‖> 1
ε

and ‖ f (x)‖ ≥ δ‖x‖d },

where δ and ε are constants satisfying (2-4).
Since ε ≤ 1 and δ/εd

≥ Cd
≥ 1 by (2-4), we have

U+δ,ε =
{

x ∈ AN (�)
∣∣ ‖x‖> 1

ε
and max{‖ f (x)‖, 1} ≥ δmax{‖x‖, 1}d

}
so that Bε qU+δ,ε = V+δ,ε.

Proposition 3.4. We assume that ε and δ satisfy

εd−1
≤ δ and εd−−1

≤ δ (3-2)

in addition to (2-4) (for example, if we take ε and δ as (2-5), then they also satisfy
(3-2)). Then we have the following:

(1) AN (�)= Bε qU+δ,ε q N+δ,ε (disjoint union),

(2) f (U+δ,ε)⊆U+δ,ε and f (Bε qU+δ,ε)⊆ Bε qU+δ,ε, and

(3) f −1(N+δ,ε)⊆ N+δ,ε and f −1(Bε q N+δ,ε)⊆ Bε q N+δ,ε.
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Proof. (1) This is obvious from the definition.

(2) Since Bε qU+δ,ε = V+δ,ε, we have f (Bε qU+δ,ε)⊆ Bε qU+δ,ε by Lemma 2.6.
Suppose that x ∈U+δ,ε. Then

‖ f (x)‖ ≥ δ‖x‖d >
δ

εd ≥
1
ε
, (3-3)

where we have used (3-2) in the last inequality. Also since x ∈U+δ,ε ⊆ V+δ,ε, we have
f (x)∈V+δ,ε by Lemma 2.6. Since f (x) /∈ Bε by (3-3), we get f (x)∈V+δ,ε\Bε=U+δ,ε.
Hence, f (U+δ,ε)⊆U+δ,ε.

(3) We put

U−δ,ε = { x ∈ AN (�) | ‖x‖> 1
ε

and ‖ f −1(x)‖ ≥ δ‖x‖d− } (3-4)

=
{

x ∈ AN (�)
∣∣ ‖x‖> 1

ε
and max{‖ f −1(x)‖, 1} ≥ δmax{‖x‖, 1}d−

}
,

where the second equality follows from δ/εd
−
≥ Cd− ≥ 1 by (2-4). Then as in (2),

we have f −1(U−δ,ε)⊆U−δ,ε. Since BεqU−δ,ε = V−δ,ε, Lemma 2.9 implies N+δ,ε ⊆U−δ,ε.
Suppose that x ∈ N+δ,ε. Then

f −1(x) ∈ f −1(N+δ,ε)⊆ f −1(U−δ,ε)⊆U−δ,ε.

In particular, ‖ f −1(x)‖> 1
ε

so that f −1(x) /∈ Bε. On the other hand, since x /∈U+δ,ε
and f (U+δ,ε)⊆U+δ,ε, we get f −1(x) /∈U+δ,ε, so f −1(x)∈ N+δ,ε=AN (�)\(BεqU+δ,ε).
We conclude that f −1(N+δ,ε)⊆ N+δ,ε.

Next we show f −1(Bε q N+δ,ε)⊆ Bε q N+δ,ε. Since U+δ,ε = AN (�) \ (Bε q N+δ,ε),
it suffices to show that f −1(U+δ,ε)⊇U+δ,ε, which is obvious from f (U+δ,ε)⊆U+δ,ε. �

Proposition 3.5. We assume that ε and δ satisfy

εd−1 < δ and εd−−1 < δ (3-5)

in addition to (2-4). Then we have

(1)
⋃
+∞

n=0 f −n(U+δ,ε)=W+ and

(2)
⋃
+∞

n=0 f n(N+δ,ε)=W−.

Proof. (1) We set r := δ/εd−1 > 1. We first show that U+δ,ε ⊆W+. Indeed, if
x ∈U+δ,ε, then

‖ f (x)‖ ≥ δ‖x‖d >
δ

εd−1

1
ε
= r

1
ε
.

Since f (U+δ,ε) ⊆ U+δ,ε, we inductively get ‖ f n(x)‖ > r (d
n
−1)/(d−1) 1

ε
for all n ≥ 0.

Hence, x ∈W+. This completes the proof of U+δ,ε ⊆W+. Since f −1(W+)=W+,
we get f −n(U+δ,ε)⊆W+ for all n ≥ 0 so that

⋃
+∞

n=0 f −n(U+δ,ε)⊆W+.
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To show the inclusion
⋃
+∞

n=0 f −n(U+δ,ε)⊇W+, suppose that x /∈
⋃
+∞

n=0 f −n(U+δ,ε).
We need to show that x ∈ K+. Since f n(x) /∈U+δ,ε, we have either f n(x) ∈ Bε or
f n(x) ∈ N+δ,ε.

Case 1. Suppose there is an n0≥0 such that f n0(x)∈ Bε. Then f n0+1(x)∈ BεqU+δ,ε
by Proposition 3.4(2). Since f n0+1(x) /∈U+δ,ε, we obtain f n0+1(x)∈ Bε. Inductively,
f n(x) ∈ Bε for all n ≥ n0, so we conclude that x ∈ K+.

Case 2. Suppose that f n(x) ∈ N+δ,ε for all n ≥ 0. By Lemma 3.3, there is an n0 ≥ 0
such that f n(x) ∈ V+δ,ε/2 for all n ≥ n0. Then for all n ≥ n0, we have

f n(x) ∈ V+δ,ε/2 ∩ N+δ,ε ⊆ { y ∈ AN (�) | 1
ε
< ‖y‖ ≤ 2

ε
}.

Hence, x ∈ K+.

In both cases, we have x ∈ K+, so we get
⋃
+∞

n=0 f −n(U+δ,ε)⊇W+.

(2) Let U−δ,ε be the set defined by (3-4). Then
⋃
+∞

n=0 f n(U−δ,ε)=W− by the argument
in (1), and so

⋃
+∞

n=0 f n(N+δ,ε) ⊆ W−. To show the other inclusion, suppose that
x /∈

⋃
+∞

n=0 f n(N+δ,ε). Then we have either f −n(x) ∈ Bε or f −n(x) ∈U+δ,ε.

Case 1. If there is an n0 ≥ 0 such that f −n0(x) ∈ Bε, then the argument of Case 1
of (1) together with Proposition 3.4(3) gives f −n(x) ∈ Bε for all n ≥ n0.

Case 2. Suppose that f −n(x) ∈U+δ,ε for all n ≥ 0. Then the argument of Case 2
of (1) together with Lemma 3.3 with f −1 in place of f gives 1

ε
< ‖x‖< 2

ε
for

sufficiently large n.

In both cases, we get x ∈ K−. Hence,
⋃
+∞

n=0 f n(N+δ,ε)⊇W−. �

Remark 3.6. If we take

0< ε <
1

Cmin{d,d−}
and δ =

1
Cmin{d,d−}(min{d,d−}−1) ,

then they satisfy both (2-4) and (3-5).

4. Regular automorphisms having good reduction

Morton and Silverman [1994] introduced the notion of having good reduction for
endomorphisms of P1 over �, which has been useful in studying endomorphisms
of P1 over a global field. For endomorphisms of PN having good reduction,
see for example [Kawaguchi and Silverman 2007, Remark 12; 2009]. In this
section, we introduce the notion of having good reduction for regular polynomial
automorphisms of AN over �. This notion will be useful in studying regular
polynomial automorphisms over a global field in Sections 6 and 7.

As in Section 1, R denotes the ring of integers of �. Let M be the maximal ideal
of R and k̃ := R/M the residue field. Note that k̃ is algebraically closed since � is
algebraically closed.
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Definition 4.1 (Good reduction). Let f = ( f1, . . . , fN ) : A
N
→ AN be a regular

polynomial automorphism over an algebraically closed field � with nontrivial
nonarchimedean absolute value, and let f −1

= (g1, . . . , gN ) : A
N
→ AN denote its

inverse. We write d and d− for the degrees of f and f −1, respectively. We say that
f has good reduction if the following three conditions are satisfied:

(i) We have that f extends to the polynomial automorphism f :AN
R →AN

R over R,
so both f1(X), . . . , fN (X) and g1(X), . . . , gN (X) are in R[X1, . . . , X N ].

(ii) Let f̃ = ( f̃1, . . . , f̃N ) :A
N
k̃
→AN

k̃
and f̃ −1= (g̃1, . . . , g̃N ) :A

N
k̃
→AN

k̃
be the

induced polynomial automorphisms over k̃. Then the degrees of f̃ and f̃ −1

are equal to d and d−, respectively.

(iii) We have that f̃ is regular (see Remark 2.2).

We give some equivalent conditions for regular polynomial automorphisms f
to have good reduction. As in Section 1, let Fi (X, T ) and G j (X, T ) be the ho-
mogenization of fi (X) and g j (X). If Fi (X, T ) and G j (X, T ) are defined over R,
F̃i (X, T ) and G̃ j (X, T ) denote their reductions to k̃. Let ρ : R→ k̃ be the natural
map.

Proposition 4.2. Let f be a regular polynomial automorphism of AN over �.
Assume that f satisfies the conditions (i) and (ii) of Definition 4.1. Then the
following are equivalent:

(1) We have that f has good reduction, i.e., f also satisfies Definition 4.1(iii).

(2) As ideals in R[X1, . . . , X N , T ], one has

(X1, . . . , X N , T )k ⊆ (F1(X, T ), . . . , FN (X, T ),G1(X, T ), . . . ,G N (X, T ), T )

for some integer k ≥ 1.

(3) As ideals in R[X1, . . . , X N ], one has

(X1, . . . , X N )
`
⊆ (F1(X, 0), . . . , FN (X, 0),G1(X, 0), . . . ,G N (X, 0))

for some integer `≥ 1.

Proof. (1) H⇒ (3). It suffices to show that

(X1, . . . , X N )
`
⊆ (F1(X, 0)d−, . . . , FN (X, 0)d−,G1(X, 0)d , . . . ,G N (X, 0)d)

(4-1)
for some `≥ 1. We set

I =
{

r ∈ R
∣∣∣∣ there is an `≥ 1 such that r(X1, . . . , X N )

`
⊆

(F1(X, 0)d−, . . . , FN (X, 0)d−,G1(X, 0)d , . . . ,G N (X, 0)d)

}
.

Since f is regular, I is a nonzero ideal of R.
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We claim that ρ(I ) 6= 0. Indeed, suppose that ρ(I )= 0. Then elimination theory
tells us that there is a point x = (x1 : · · · : xn) ∈ PN−1(k̃) such that F̃i (x, 0) = 0
and G̃ j (x, 0)= 0 for all i and j ; see [Kawaguchi and Silverman 2007, Theorem 6].
Since f satisfies condition (ii), F̃i (X, T ) and G̃ j (X, T ) are the homogenizations
of f̃i and g̃ j , respectively. Then the existence of such an x ∈ PN−1(k̃) contradicts
condition (iii), which yields the claim.

Since ρ(I ) 6= 0, there is an r ∈ I such that r ∈ R× = R \M . Then I = R, and
we obtain Equation (4-1).

(3) H⇒ (1). The assumption of (3) gives, as ideals in k̃[X ],

(X1, . . . , X N )
`
⊆(ρ(F1(X,0)), . . . ,ρ(FN (X,0)),ρ(G1(X,0)), . . . ,ρ(G N (X,0))).

Since ρ(Fi (X, 0)) = F̃i (X, 0) and ρ(G j (X, 0)) = G̃ j (X, 0), we obtain that f̃ is
regular.

(2) H⇒ (3). We have only to put T = 0.

(3) H⇒ (2). It suffices to show that for any α= 1, . . . , N , there are an integer k ≥ 1
and polynomials Pi (X, T ), Q j (X, T ), and R(X, T ) defined over R such that

X k
α =

N∑
i=1

Pi (X, T )F(X, T )+
N∑

j=1

Q j (X, T )G j (X, T )+ T R(X, T ). (4-2)

By the assumption of (iii), there are an integer `≥ 1 and polynomials Pi (X) and
Q j (X) defined over R such that

X`
α =

N∑
i=1

Pi (X)F(X, 0)+
N∑

j=1

Q j (X)G j (X, 0).

We set k := `, Pi (X, T ) := Pi (X), and Q j (X, T ) := Q j (X). Then

X k
α −

N∑
i=1

Pi (X, T )F(X, T )−
N∑

j=1

Q j (X, T )G j (X, T )

is a polynomial in R[X, T ] that is divisible by T . Hence, there is a polynomial
R(X, T ) in R[X, T ] satisfying Equation (4-2). �

Suppose now that a regular polynomial automorphism f has good reduction.
By Proposition 4.2, for each 1≤ i ≤ N there are polynomials Pi j (X) and Qi j (X)
in R[X ] that satisfy (2-1). Then the polynomial Ri (X, T ) in (2-2) is also defined
over R, and the constant C in (2-3) is equal to 1. This means that ε = 1 and δ = 1
satisfy (2-4). It follows that when f has good reduction, G f and log+‖ · ‖ are
related simply.
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Proposition 4.3. Suppose that f has good reduction.

(1) G f ( · )≤ log+‖ · ‖ and G f −1( · )≤ log+‖ · ‖ on AN (�).

(2) log+‖ · ‖ = G f ( · ) on V+1,1 and log+‖ · ‖ = G f −1( · ) on V−1,1. Moreover,
AN (�)= V+1,1 ∪ V−1,1.

Proof. (1) Since the fi (X) are defined over R, in the proof of Lemma 1.3 we
may take r = 1 so that c f = 0. Thus, G f ( · )≤ log+‖ · ‖ on AN (�). The estimate
for G f −1 is similar.

(2) Since ε= 1 and δ = 1 satisfy (2-4), Lemma 2.9 gives AN (�)= V+1,1∪V−1,1. The
constant c+1,1 in Lemma 2.8 is equal to 0, and thus, combined with (1), we have
log+‖x‖ = G f (x) for all x ∈ V+1,1. The estimate for G f −1 is similar. �

5. Green functions for regular automorphisms over C

In this section, we remark that the proof of Theorem 2.3 gives a different proof
(more explicit and without compactness arguments) of the corresponding estimates
of Green functions over C.

We write the usual absolute value of C for | · |∞, and we set ‖x‖∞ :=maxi {|xi |∞}

for x = (x1, . . . , xN ) ∈ AN (C).
Let f = ( f1, . . . , fN ) : A

N
→ AN be a regular polynomial automorphism of

degree d ≥ 2 defined over C. Then the Green function for f is defined by [Sibony
1999, §2]

G f (x) := lim
n→+∞

1
dn log+‖ f n(x)‖ for x ∈ AN (C). (5-1)

Let ‖ f ‖∞ be the maximum of the absolute values of all the coefficients of fi (X)
for 1≤ i ≤ N , and set c f,∞ =

1
d−1 log max

{(N+d−1
d

)
‖ f ‖∞, 1

}
. Note that

(N+d−1
d

)
is the number of monomials of degree d in the ring of homogeneous polynomials
in N variables. Since

log+‖ f (x)‖ ≤ d log+‖x‖+ log max
{(N+d−1

d

)
‖ f ‖∞, 1

}
, (5-2)

we get
G f (x)≤ log+‖x‖+ c f,∞ for any x ∈ AN (C). (5-3)

Let Pi j (X), Qi j (X) ∈ C[X ] and R(X, T ) ∈ C[X, T ] be polynomials satisfying
(2-2). As before, we may and do assume that the Pi j (X), Qi j (X), and Ri (X, T )
are homogeneous polynomials with degree m− d , m− d−, and m− 1, respectively.
We write ‖P‖∞ for the maximum of the absolute values of all the coefficients of
Pi j (X) for 1 ≤ i ≤ N and 1 ≤ j ≤ N , and we write ‖Q‖∞ and ‖R‖∞ similarly.
We set

C ′
∞
=max

{(N+m−d−1
m−d

)
‖P‖∞,

(N+m−d−−1
m−d−

)
‖Q‖∞,

(N+m
m−1

)
‖R‖∞, 1

}
.
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We note the above formula for C ′
∞

is not as explicit as in the nonarchimedean
case since it involves the coefficients of P , Q, and R and not only those of F and G.
However, ‖P‖∞, ‖Q‖∞, and ‖R‖∞ can be expressed in terms of F and G via
an effective version of Hilbert’s Nullstellensatz (see [Masser and Wüstholz 1983,
Chapter 4] for example).

We put
C∞ = (2N + 1)C ′

∞
.

Fix real numbers ε > 0 and δ > 0 satisfying (2-4) with C∞ in place of C . We
define N±δ,ε and V±δ,ε by (2-6) and (2-11) with C in place of �. Then exactly as in
Theorem 2.3, we have the following:

Theorem 5.1. Let f : AN
→ AN be a regular polynomial automorphism over C.

(i) G f ( · )≥ log+‖ · ‖+ c+δ,ε on V+δ,ε.

(ii) G f −1( · )≥ log+‖ · ‖+ c−δ,ε on V−δ,ε.

(iii) V+δ,ε ∪ V−δ,ε = AN (�).

6. Global theory of regular automorphisms

In this section, we turn our attention to regular automorphisms over a number field.
Let K be a number field and OK its ring of integers. We fix an embedding

K ⊂ K into an algebraic closure. Let MK be the set of absolute values on K . We
extend the absolute values on K to those on K .

Let L be a finite extension field of K . For x ∈ AN (L), we define

h(x)=
∑
v∈MK

nv log+‖x‖v, (6-1)

where nv=[Lv :Kv]/[L : K ]. This gives rise to the logarithmic Weil height function

h : AN (K )→ R.

For more details on height functions, we refer the reader to [Bombieri and Gubler
2006; Hindry and Silverman 2000; Lang 1983].

Let f :AN
→AN be a regular polynomial automorphism over K (see Remark 2.2).

If the coefficients of f are all defined over K , then we say that f is a regular
polynomial automorphism over K .

Lemma 6.1. If f : AN
→ AN is a polynomial automorphism over K , then the

coefficients of f −1 are also all defined over K .

Proof. We take a finite Galois extension field L of K such that the coefficients
of f −1 are elements of L . For every σ ∈ Gal(L/K ), the uniqueness of the inverse
gives ( f −1)σ = f −1. Thus, the coefficients of f −1 are in fact elements of K . �
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In [Kawaguchi 2006], we constructed (global) canonical height functions ĥ+f
and ĥ−f for polynomial automorphisms f over K under the assumption that there
exists a constant c ≥ 0 such that

1
d

h( f (x))+ 1
d−

h( f −1(x))≥
(

1+ 1
dd−

)
h(x)− c (6-2)

for all x ∈AN (K ), where d and d− denote the degrees of f and f −1. (We showed in
op. cit. that (6-2) holds for regular polynomial automorphisms in dimension N = 2
by a global method, i.e., a method using the effectiveness of a certain divisor on a
certain rational surface.)

In the following, using properties of local Green functions studied in the previous
sections, we will first construct in Theorem 6.3 (global) canonical height functions
h+f and h−f for regular polynomial automorphisms. Indeed, we will construct h+f
and h−f as appropriate sums of local Green functions. Then we show local versions
of (6-2) for all places v, and summing them up, we will obtain (6-2) for regular
polynomial automorphisms in any dimension N ≥ 2 in Theorem 7.1.

For a finite subset S of MK that contains all the archimedean absolute values
of K , we let OK ,S denote the ring of S-integers:

OK ,S = { x ∈ K | ‖x‖v ≤ 1 for all v /∈ S }.

Proposition 6.2. Let f : AN
→ AN be a regular polynomial automorphism of

degree d ≥ 2 over a number field K . Then there exists a finite subset S of MK that
contains all the archimedean absolute values of K with the following property: for
all v /∈ S, f induces a regular polynomial automorphism over K v that has good
reduction.

Proof. We write f = ( f1, . . . , fN ) and let Fi (X, T ) ∈ K [X, T ] be the homoge-
nization of fi . Let d− denote the degree of f −1

= (g1, . . . , gN ), and in virtue of
Lemma 6.1, let G j (X, T ) ∈ K [X, T ] be the homogenization of g j . Then there
are an integer m and homogeneous polynomials Pi j (X) ∈ K [X ] of degree m− d,
Qi j (X) ∈ K [X ] of degree m− d−, and Ri (X, T ) ∈ K [X, T ] of degree m− 1 such
that (2-2) holds as polynomials in K [X, T ].

We take a finite subset S of MK that contains all the archimedean absolute values
of K with the following properties:

(i) The coefficients of Fi (X, T ), G j (X, T ), Pi j (X), Qi j (X), and Ri (X, T ) are
all in OK ,S .

(ii) For v /∈ S, we let ρv :OK ,S→ k̃v denote the natural map, where k̃v is the residue
field of (OK )v. Then deg( f )= deg(ρv( f )) and deg( f −1)= deg(ρv( f −1)).

Then for any v /∈ S, f ×K K v : A
N
K v
→ AN

K v
satisfies the properties (i) and (ii) of

Definition 4.1 and (3) of Proposition 4.2. Hence, f ×K K v has good reduction. �
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Theorem 6.3. Let f : AN
→ AN be a regular polynomial automorphism of degree

d ≥ 2 over a number field K . Let d− ≥ 2 denote the degree of f −1.

(1) For all x ∈ AN (K ), the limits

lim
n→+∞

1
dn h( f n(x)) and lim

n→+∞

1
dn
−

h( f −n(x))

exist. We write ĥ+f (x) and ĥ−f (x) for the limits, respectively.

(2) (Global-to-local decomposition) For each place v∈MK , let G f,v and G f −1,v be
the Green functions for f and f −1 at v, respectively. Then for all x ∈ AN (K ),

ĥ+f (x)=
∑
v∈MK

nvG f,v(x) and ĥ−f (x)=
∑
v∈MK

nvG f −1,v(x).

(3) We define ĥ f : A
N (K )→ R by

ĥ f := ĥ+f + ĥ−f .

Then ĥ f satisfies the following two conditions:

(3i) 1
d ĥ f ◦ f + 1

d−
ĥ f ◦ f −1

= (1+ 1
dd−
)ĥ f on AN (K ) and

(3ii) h+ O(1)≤ ĥ f ≤ 2h+ O(1) on AN (K ).

(4) The function ĥ f has the following uniqueness property: if h′ : AN (K )→ R is
a function satisfying the condition (3i) such that h′ = ĥ f +O(1), then h′ = ĥ f .

(5) The functions ĥ+f , ĥ−f , and ĥ f are nonnegative. Further, for x ∈ AN (K ) we
have

ĥ f (x)= 0 ⇐⇒ ĥ+f (x)= 0 ⇐⇒ ĥ−f (x)= 0 ⇐⇒ x is f -periodic.

Proof. For each v ∈ MK , we have estimates of Green functions for f at v as
in Lemmas 1.3 and 2.8. We use the suffix v when we work over the absolute
value v ∈ MK . For example, the Green function for f at v is denoted G f,v and
constants c f and c±ε,δ in Lemmas 1.3 and 2.8 and (2-12) are denoted c f,v and c±ε,δ,v ,
respectively.

Let S be a finite subset of MK as in Proposition 6.2.

(1)(2) We fix x ∈ AN (K ). We will show the existence of h+f (x) and the decomposi-
tion h+f (x)=

∑
v∈MK

nvG f,v(x). The existence and decomposition for h−f (x) are
shown similarly.

For v ∈ MK and n ≥ 0, we set

G+v,n(x) :=
1

dn log+‖ f n(x)‖v.

Then the following are true:
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• We have 0 ≤ G+v,n(x) ≤ log+‖x‖v + c f,v for all v ∈ MK and n ≥ 0 from
Proposition 1.1, Lemma 1.3, and Equations (5-2) and (5-3). Indeed, if v is
nonarchimedean, then with r in the proof of Proposition 1.1, we have only to
set c f,v =−

1
d−1 log|r |. If v is archimedean, then by (5-2) we have only to set

c f,v =
1

d−1 log max
{(N+d−1

d

)
‖ f ‖∞, 1

}
.

• We have limn→+∞ G+v,n(x)= G f,v(x) from Definition 1.2 and Equation (5-1).

• We have 1
dn h( f n(x))=

∑
v∈MK

nvG+v,n(x) from Equation (6-1).

• We may take c f,v = 0 for any v /∈ S from Propositions 4.3 and 6.2.

• We have
∑

v∈MK
nv(log+‖x‖v + c f,v)= h(x)+

∑
v∈S nvc f,v <+∞.

Lebesgue’s dominated convergence theorem then implies that
∑

v∈MK
nvG+v,n(x)

converges as n→+∞ and that

lim
n→+∞

1
dn h( f n(x))= lim

n→+∞

∑
v∈MK

nvG+v,n(x)

=

∑
v∈MK

lim
n→+∞

nvG+v,n(x)=
∑
v∈MK

nvG f,v(x).

This completes the proof of (1) and (2)

(3)(4)(5) First we have

ĥ f (x)=
∑
v∈MK

nvG f,v(x)+
∑
v∈MK

nvG f −1,v(x) (6-3)

≤

∑
v∈MK

nv(2 log+‖x‖v + c f,v + c f −1,v)= 2ĥ(x)+
∑
v∈S

nv(c f,v + c f −1,v).

On the other hand, we have

• min{c+ε,δ,v, c−ε,δ,v}+ log+‖x‖ ≤ G f,v(x)+G f −1,v(x) from Lemma 2.8, (2-12),
and Theorem 5.1 and

• for any v /∈ S, we may take ε = 1 and δ = 1 and min{c+1,1,v, c−1,1,v} = 0 from
Propositions 4.3 and 6.2.

Then

ĥ f (x)=
∑
v∈MK

nvG f,v(x)+
∑
v∈MK

nvG f −1,v(x)

≥

∑
v∈MK

nv(log+‖x‖v +min{c+ε,δ,v, c−ε,δ,v})= ĥnv(x)+
∑
v∈S

nv min{c+ε,δ,v, c−ε,δ,v}.

(6-4)

Equations (6-3) and (6-4) give (3ii). For the rest of the proof, see [Kawaguchi 2006,
Theorem 4.2(2–4)]. �
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Remark 6.4. Theorem 6.3(1) shows that
{ 1

dn h( f n(x))
}+∞

n=0 and
{ 1

dn
−

h( f −n(x))
}+∞

n=0
are convergent sequences, which gives an improvement of [Kawaguchi 2006] since
we replace lim sup by lim in the definition of ĥ±f .

We now introduce another function

h̃ f (x) :=
∑
v∈MK

nv max{G f,v(x),G f −1,v(x)} (6-5)

for x ∈AN (K ). The next proposition shows that h̃ f also behaves well relative to f .

Proposition 6.5. (1) On AN (K ), h̃ f = h+ O(1).

(2) For x ∈ AN (K ), we have h̃ f (x)= 0 if and only if ĥ f (x)= 0.

Proof. (1) We use the notation of the proof of Theorem 6.3. By Lemmas 1.3 and 2.8,
Equations (2-12) and (5-3), and Theorem 5.1, we have

log+‖x‖v +min{c+ε,δ,v, c−ε,δ,v}

≤max{G f,v(x),G f −1,v(x)} ≤ log+‖x‖v +max{c f,v, c f −1,v}.

Summing up over all places v, we get

h(x)+
∑
v∈MK

nv min{c+ε,δ,v, c−ε,δ,v} ≤ h̃ f (x)≤ h(x)+
∑
v∈MK

nv max{c f,v, c f −1,v}.

Since we have c f,v = c f −1,v = c+ε,δ,v = c−ε,δ,v = 0 except for finitely many v (indeed
for every v /∈ S), this gives the assertion.

(2) Since G f,v and G f −1,v are nonnegative functions, we see that h̃ f (x)= 0 if and
only if G f,v(x)= G f −1,v(x)= 0 for every v ∈ M if and only if ĥ f (x)= 0. �

7. Arithmetic properties of regular polynomial automorphisms

In this section, we give some applications of local and global canonical height
functions. The first application is the following theorem on the usual height function
[Kawaguchi 2006, §4; Silverman 2006, Conjecture 3; 2007, Conjecture 7.18], which
is independently obtained by Lee [2013] via a different method (global method based
on the effectiveness of a certain divisor as in the case of N =2 in [Kawaguchi 2006]).

Theorem 7.1. Let f : AN
→ AN be a regular polynomial automorphism over a

number field K . Let d and d− be the degrees of f and f −1.

(1) There exists a constant c ≥ 0 such that

1
d

h( f (x))+ 1
d−

h( f −1(x))≥
(

1+ 1
dd−

)
h(x)− c

for all x ∈ AN (K ).
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(2) We have

lim inf
x∈AN (K )
h(x)→∞

1
d h( f (x))+ 1

d−
h( f −1(x))

h(x)
= 1+ 1

dd−
. (7-1)

Proof. (1) We set
G̃ f,v :=max{G f,v,G f −1,v}.

Claim 7.1.1. For all x ∈ AN (K ), we have

1
d

G̃ f,v( f (x))+ 1
d−

G̃ f,v( f −1(x))≥
(

1+ 1
dd−

)
G̃ f,v(x). (7-2)

We first show that Claim 7.1.1 implies (1). Indeed, we assume Claim 7.1.1. Then
summing up over all v, we have

1
d

h̃( f (x))+ 1
d−

h̃( f −1(x))≥
(

1+ 1
dd−

)
h̃(x). (7-3)

Since h̃ f = h+ O(1) by Proposition 6.5(1), Equation (7-3) yields (1).
To show Claim 7.1.1, for notational convenience let A = G f,v(x), B = G f −1,v(x),

and γ = 1
dd−

. Then the definition of G̃ f,v and G̃ f −1,v and the functional equation
of G f,v(x) and G f −1,v(x) show that the equality (7-2) is equivalent to

max{A, γ B}+max{γ A, B} ≥ (1+ γ )max{A, B}. (7-4)

But the left-hand side of (7-4) is

max{(1+ γ )A, A+ B, γ (A+ B), (1+ γ )B},

which is clearly greater than or equal to the right-hand side of (7-4). This completes
the proof of Claim 7.1.1 and hence the proof of Theorem 7.1(1).

(2) From (1), we obtain

lim inf
x∈AN (K )
h(x)→∞

1
d h( f (x))+ 1

d−
h( f −1(x))

h(x)
≥ 1+ 1

dd−
.

On the other hand, it is shown in [Kawaguchi 2006, Proposition 4.4] that for any
polynomial automorphism f : AN

→ AN , one has

lim inf
x∈AN (K )
h(x)→∞

1
d h( f (x))+ 1

d−
h( f −1(x))

h(x)
≤ 1+ 1

dd−
. (7-5)

Combining these two inequalities gives the assertion. �
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Remark 7.2. It is shown in [Kawaguchi 2006, Theorem 4.4] that the equality (7-1)
holds in dimension N = 2 for regular polynomial automorphisms. Theorem 7.1(2)
asserts that the equality holds in any dimension N ≥ 2 for regular polynomial
automorphisms.

Theorem 6.3 recovers the following theorem on f -periodic points.

Corollary 7.3 [Marcello 2000]. Let f : AN
→ AN be a regular polynomial auto-

morphism over a number field K . Then the set of f -periodic points in AN (K ) is a
set of bounded height. In particular, for any integer D ≥ 1 the set

{ x ∈ AN (K ) | x is f -periodic, [K (x) : K ] ≤ D }

is finite.

Proof. By Theorem 6.3(3ii)(5), ĥ f satisfies ĥ f �� h, and a point x ∈ AN (K ) is
f -periodic if and only if ĥ f (x)= 0. Thus, we get the assertion. �

For a non- f -periodic point x , let O f (x) := { f n(x) | n ∈ Z } denote the f -orbit
of x . We define the canonical height of the orbit O f (x) by

ĥ f (O f (x))=
log ĥ+f (x)

log d
+

log ĥ−f (x)

log d−
. (7-6)

We note that for any integer n, Theorem 6.3 implies that

log ĥ+f ( f n(x))

log d
+

log ĥ−f ( f n(x))

log d−
=

log dn ĥ+f (x)

log d
+

log d−n
− ĥ−f (x)

log d−

=
log ĥ+f (x)

log d
+

log ĥ−f (x)

log d−
.

Thus, the value ĥ f (O f (x)) depends only on the orbit O f (x) and not the particular
choice of the point x in the orbit. The next corollary gives a refinement of [Marcello
2003, Corollary B].

Corollary 7.4. Let f : AN
→ AN be a regular polynomial automorphism over a

number field K . Let d and d− be the degrees of f and f −1. Then for any infinite
orbit O f (x),

#{ y ∈ O f (x) | h(y)≤ T } =
( 1

log d
+

1
log d−

)
log T − ĥ(O f (x))+ O(1)

as T→+∞. Here the O(1) bound depends only f , independent of the orbit O f (x).

Proof. Since f satisfies (7-3), we apply [Kawaguchi 2006, Theorem 5.2]. �
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In the rest of this section, we consider some global-to-local arithmetic properties.
Suppose that f is a regular polynomial automorphism. By Theorem 6.3(2)(5),
x ∈AN (K ) is f -periodic if and only if G f,v(x)= 0 for all v ∈MK . By Theorem 3.1
for nonarchimedean v and [Sibony 1999, §2] for archimedean v, G f,v(x) = 0 is
equivalent to { f n(x)}+∞n=0 being bounded with respect to ‖ · ‖v. Thus, we see that
x ∈AN (K ) is f -periodic if and only if { f n(x)}+∞n=0 is bounded with respect to ‖ · ‖v
for all v ∈ MK .

This actually holds for any polynomial map f , replacing f -periodic points by
f -preperiodic points (see [Call and Goldstine 1997, Corollary 6.3] for N = 1).

Proposition 7.5. Let f : AN
→ AN be a polynomial map over a number field K .

For x ∈ AN (K ), the following are equivalent:

(i) x is f -preperiodic and

(ii) for every v ∈ MK , { f n(x)}+∞n=0 is bounded with respect to the v-adic topology.

Proof. Taking a finite extension field of K over which x is defined if necessary,
we may assume that x is defined over K . It is obvious that (i) implies (ii). We
assume (ii) and show (i). We take a finite subset S of MK containing the set of all
archimedean absolute values such that x and f are defined over OK ,S . Then for
any v /∈ S, we have

‖ f n(x)‖v ≤ 1 for all n ≥ 0.

Since we assume (ii), there is a constant Cv for each v ∈ S such that

‖ f n(x)‖v ≤ Cv for all n ≥ 0.

Then we have

h( f n(x))=
∑
v∈MK

nv log+‖ f n(x)‖ ≤
∑
v∈S

nvCv for all n ≥ 0.

Then

{ f n(x) | n ≥ 0 } ⊆
{

y ∈ AN (K )
∣∣∣∣ h(y)≤

∑
v∈S

nvCv

}
.

Since the latter set is finite, the set { f n(x)}n≥0 is finite, so x is f -preperiodic. �
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