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On the discrete logarithm problem
in elliptic curves II

Claus Diem

We continue our study on the elliptic curve discrete logarithm problem over finite
extension fields. We show, among others, the following results:

For sequences of prime powers .qi/i2N and natural numbers .ni/i2N with
ni !1 and ni=log.qi/

2! 0 for i !1, the discrete logarithm problem in the
groups of rational points of elliptic curves over the fields Fq

ni
i

can be solved in
subexponential expected time .qni

i /
o.1/.

Let a, b > 0 be fixed. Then the problem over fields Fqn , where q is a prime
power and n a natural number with a � log.q/1=3 � n� b � log.q/, can be solved
in an expected time of eO.log.qn/3=4/.

1. Introduction

In our previous work [Diem 2011b] we have shown that there exist sequences of
finite fields over which the elliptic curve discrete logarithm problem can be solved
in subexponential expected time in the bit-length of the input.

In this work, we strengthen those results. We show that for larger classes of
ground fields the problem can still be solved in subexponential expected time.

Recall that the main result from [Diem 2011b] is as follows.

Theorem 1. The discrete logarithm problem in the groups of rational points of
elliptic curves over finite fields Fqn can be solved in an expected time of

eO.max.log.q/;n2//:

Here and in the following, q is always a prime power and n a natural number.
It follows from this theorem that, for any two sequences .qi/i2N and .ni/i2N of

prime powers and natural numbers with ni!1 and ni=log.qi/! 0 for i !1,
the discrete logarithm problem in the groups of rational points of elliptic curves
over the fields Fq

ni
i

can be solved in an expected time of .qni

i /
o.1/.

The main result of this work is the following stronger theorem.

MSC2010: primary 11Y16; secondary 14H52, 11G20.
Keywords: elliptic curves, discrete logarithm problem.
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Theorem 2. The discrete logarithm problem in the groups of rational points of
elliptic curves over finite fields Fqn can be solved in an expected time of

eO.max.log.q/;n � log.q/1=2;n3=2//:

Note here that

max.log.q/; n �.log.q//1=2; n3=2/D

8<:
log.q/ for n� log.q/1=2;

n �.log.q//1=2 for log.q/1=2� n� log.q/;
n3=2 for log.q/� n:

Theorem 2 gives the following results.

(i) Let sequences of prime powers .qi/i2N and natural numbers .ni/i2N with qi!1

and ni=log.qi/
2! 0 for i !1 be given. Then the discrete logarithm problem in

the groups of rational points of elliptic curves over the fields Fq
ni
i

can be solved in
an expected time of

.q
ni

i /
o.1/:

(ii) Let ˇ 2 Œ1
2
; 1� and a, b > 0 be fixed. Let

˛ WD
1

2ˇC 1
and  WD 1�

1

2
�

1

ˇC 1
D
ˇC 1

2

ˇC 1
:

Then the discrete logarithm problem in the groups of rational points of elliptic
curves over finite fields Fqn with

a � log.q/˛ � n� b � log.q/ˇ (1)

can be solved in an expected time of

eO.log.qn/ /:

Note that ˛ � 1
2

(with equality if ˇ D 1
2

), and  is maximal if ˛ D ˇ D 1
2

, and
then it is equal to 2

3
.

As a special case we obtain that for a, b > 0 the discrete logarithm problem in
the groups of rational points of elliptic curves over finite fields Fqn with

a � log.q/1=3 � n� b � log.q/

can be solved in an expected time of eO.log.qn/3=4/.

(iii) Let ˇ 2 Œ1; 2/ and a, b > 0 be fixed. Let

˛ WD
2�ˇ

3ˇ
and  WD

3

2
�
ˇ

1Cˇ
:
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Then the discrete logarithm problem in the groups of rational points of elliptic
curves over finite fields Fqn with

a � log.q/˛ � n� b � log.q/ˇ

can be solved in an expected time of

eO.log.qn/ /:

The first statement follows immediately from Theorem 2.

The derivation of the second statement from Theorem 2 is as follows:
We have ˇ D . � 1

2
/=.1�  / and ˛ D 1= � 1.

The first inequality in (1) is equivalent to n�a�log.q/1=�1, and this is equivalent
to .1=a / � .n log.q// � log.q/.

The second inequality is equivalent to b1� � log.q/�1=2 � n1� , and this is
equivalent to b1� � .n log.q// � n � log.q/1=2.

Additionally, except if q D 2, we have log.q/ � log.q/ˇ � .1=b/ � n and thus
n � log.q/1=2 � .1=b/ � n3=2.

The results now follow with Theorem 2.

We now show how the third statement follows from Theorem 2. We have
ˇ D 2=.3� 2 / and — as above —˛ D 1= � 1.

For the range a � log.q/˛ � n� log.q/, the result follows from the second point,
so we consider the range log.q/� n� b � log.q/ˇ . We have n� b � log.q/2=.3�2/;
that is, n3=2� � b3=2� � log.q/ . With other words: n3=2 � b3=2� � .n � log.q// .

As an application of Theorem 2 we now consider the discrete logarithm prob-
lem in the groups of rational points of elliptic curves over finite fields of a fixed
characteristic p. We first remark that Theorem 2 does not give a nontrivial result if
q is set to p and n is set to the absolute extension degree of the ground field. We
therefore consider a factorization of the absolute extension degree in the form mn;
that is, we write the cardinality of the ground field in the form pmn. We can then
regard both m and n as the extension degree. One sees that it is advantageous to
regard n as the extension degree provided that n�m and m as the extension degree
otherwise. In this way one obtains:

Theorem 3. Let p be a fixed prime number. Then the discrete logarithm problem in
the groups of rational points of elliptic curves over finite fields Fpmn can be solved
in an expected time of

eO.max.m;n;min.m �n1=2;n �m1=2///:
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Here we have

max.m; n;min.m � n1=2; n �m1=2//D

8̂̂̂<̂
ˆ̂:

m for n�m1=2;

n �m1=2 for m1=2 � n�m;

m � n1=2 for n1=2 �m� n;

n for m� n1=2:

For any fixed prime number p, Theorem 3 gives the following results:

(iv) Let .mi/i2N and .ni/i2N with mi , ni !1 for i !1. Then the discrete
logarithm problem in the groups of rational points of elliptic curves over the finite
fields Fpmi ni can be solved in an expected time of

.pmi ni /o.1/:

(v) Let ˛ � 3 and a, b > 0. Then the discrete logarithm problem in the groups of
rational points of elliptic curves over finite fields Fpmn with

m� a � n˛ and n� b �m˛

can be solved in an expected time of

eO.log.pmn/1�1=.1C˛//:

Just as statement (i) above, statement (iv) is again immediate.
So we consider the last statement. Let ˛ � 3. Note first that 1� 1

1C˛
D

˛
1C˛
D

1
1C1=˛

. We have m1C1=˛ � a1=˛ �mn, so m� a1=.1C˛/ � .mn/˛=.1C˛/. Similarly,
n�a1=.1C˛/ �.mn/˛=.1C˛/. Moreover, 1� 1

1C˛
�

3
4

. Thus, if n�m, then n�m1=2�

.mn/3=4 � .mn/˛=.1C˛/. Analogously, if m� n, then m � n1=2 � .mn/˛=.1C˛/.

Some more information on the results. We give here some more information on
the precise meaning of the statements above and similar statements throughout this
article.

First, we choose some concrete representation of the “abstract input instances”
(elliptic curves E over finite fields K and elements a, b 2E.K/ with a 2 hbi) by
bit-strings. Every “abstract instance” is then given by at least one and finitely many
bit-strings. Concretely, we represent elliptic curves by Weierstraß equations, as
usual. We also choose some (uniform) randomized model of computation with an
appropriate complexity measure, for example, a usual randomized RAM model
with logarithmic cost function or a randomized Turing model.

For a function f from some infinite countable set S to R>0, we define the sets
O.f /, QO, o.f / and Poly.f / as usual (for the latter see also [Diem 2011b]). We
note here that it makes no difference if S is a subset of N or not.

The assertion in Theorem 1 is then as follows: there exists a machine in the given
model and a constant C > 0 such that, if the machine is applied to an instance of
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the elliptic curve discrete logarithm problem over a field Fqn , the expected running
time is bounded by eC �max.log.q/;n2/. The assertions in Theorem 2 and Theorem 3
are analogous. We stress that the expected value concerns only the internal choices
of the computation; there is no averaging over input classes.

Statement (i) means the following: Let .qi/i2N and .ni/i2N be given as indicated.
Then there exists a randomized machine and a sequence .�i/i2N with �i ! 0 for
i!1 such that the expected running time of the machine if applied to an instance
over Fq

ni
i

is bounded by .qni

i /
�i . Statement (iv) is again analogous.

As usual, throughout this article we use the word “algorithm” instead of “ma-
chine”. Also as usual, we use the word “algorithm” in an informal way when we
outline a computation.

Outline. Just as the algorithm in [Diem 2011b], the algorithm for Theorem 2 is
based on the usual index calculus or relation generation and linear method. Again
we use multivariate polynomial systems over Fq to obtain relations. The main
conceptual difference between the new algorithm and the previous algorithm is
that we enlarge the factor base. This enlargement causes some difficulties in the
analysis of the algorithm, and in order to complete the analysis we further modify the
definition of the factor base. We also employ a new algorithm to find decompositions.
Otherwise the index calculus algorithm in [ibid.] is not changed.

Below we outline a preliminary algorithm, and, on the basis of this algorithm,
we discuss under various heuristic assumptions why one should be able to obtain
an expected running time of eO.max.log.q/;n � log.q/1=2//. In the course of this work,
we will change the algorithm in various ways. Unfortunately, even with a modified
algorithm we cannot prove that one can obtain the expected running time one
might expect by heuristic considerations. Indeed, in odd characteristic we can
only complete the analysis under the condition that cn � q for a suitable constant
c > 0. In even characteristic the situation is more fortunate and we can complete
the analysis if nc � q for a suitable constant c > 0. This does however not
lead to an improvement over the result in Theorem 3 applied to fields of even
characteristic.

The index calculus algorithm we employ has the same overall structure as the
one in [ibid.] (see Subsection 2.3 of that work). The changes we perform concern
the definition of the factor base (Steps 4 and 5 of that algorithm) and the relation
generation (Step 6), where a new decomposition algorithm is employed. Because
the overall structure of the algorithm stays the same, we will focus on the parts of
the index algorithm which need to be changed.

In the next section, we give the new algorithm for the constructions leading
to the definition of the factor base. In Section 3 we formulate a decomposition
problem adapted to the new situation and give an algorithm to solve the problem.
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In the fourth and last section, we prove that under suitable conditions on n and q

the probability that a uniformly randomly distributed point P 2E.Fqn/ leads to a
relation between P and factor base elements is large enough. In the last part of this
section, we indicate how Theorem 2 can be obtained. Additionally, in an appendix
we correct two misprints in our previous work [ibid.].

Throughout the article we use the same notation as in our previous work, with
the exception that we now denote an affine defining polynomial for the elliptic
curve by f .x;y/.

The application of the scalar restriction functor, that is, the formation of Weil
restrictions, is crucial in this work. Furthermore, many arguments here are based
on the consideration of tangent spaces. Background information on these topics is
given at the end of this section. The reader should also be familiar with the first two
sections of [ibid.]. Additionally, we assume some familiarity with toric geometry
and its application to solving polynomial systems as given in [Fulton 1993], [Cox
et al. 2005] and in particular in [Rojas 1999].

A preliminary algorithm. The algorithm follows the usual “index calculus” strat-
egy: after some preliminary computations to determine the group structure, we fix
a so-called factor base, generate relations and finally solve the discrete logarithm
problem via linear algebra.

Just as in [Diem 2011b], the factor base is defined in an algebraic way, and the rela-
tions are obtained by solving systems of multivariate polynomial equations over Fq .

Let some instance of the problem with a prime power q, a natural number n� 2

and an elliptic curve E=Fqn be given, where E is (as usual) given by an affine
Weierstraß equation in x and y with neutral element the point at infinity.

The definition of the factor base and the relation generation are as follows:
Let m be some natural number not exceeding n, which will be optimized later,

and let d WD dn=me and ı WD dm� n.
We choose some d-dimensional vector subspace U of the Fq-vector space Fqn

and define the factor base by

F WD fP 2E.Fqn/ j x.P / 2 U g:

Furthermore, if n is not divisible by m (that is, ı ¤ 0), we choose a .d � 1/-
dimensional vector subspace U 0 of U and set

F0 WD fP 2E.Fqn/ j x.P / 2 U 0g:

Given some element P 2E.Fqn/, we want to find a relation

P1C � � �CPm D P
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with Pi 2 F0 for i D 1; : : : ; ı and Pi 2 F for i D ıC 1; : : : ;m. The key idea is
again to find such relations by solving systems of polynomial equations over Fq .
One possibility to obtain such a system is via summation polynomials.

Recall that the .mC 1/-th summation polynomial with respect to the cover-
ing xjE W E ! P1

Fqn
is an irreducible multihomogeneous polynomial SmC1 2

Fqn ŒX1;Y1; : : : ;XmC1;YmC1� such that, for P1; : : : ;PmC1 2 E.Fq/, P1C � � � C

PmC1D 0 if and only if smC1.xjE.P1/; : : : ;xjE.PmC1//D 0; see Proposition 2.1
and Section 3 of [ibid.]. The .mC 1/-th affine summation polynomial with respect
to xjE is the dehomogenization of this polynomial with respect to Y1; : : : ;Ym. This
is a polynomial smC1.x1; : : : ;xmC1/ 2 Fqn Œx1; : : : ;xmC1�.

We choose a basis of Fqn jFq . We expand the variables (or coordinates) x1; : : : ;xm

over Fq with respect to the basis. Then for i D 1; : : : ; ı and i D ıC 1; : : : ;m we
restrict the resulting systems of coordinates to U 0 and U , respectively. In this way
the polynomial smC1.x1; : : : ;xm;x.P // gives rise to a system of n polynomials
in n variables. The polynomial smC1.x1; : : : ;xm;x.P // has degree 2m�1 in each
variable and therefore total degree at most m � 2m�1. Therefore each polynomial in
the system has degree at most m � 2m�1. It follows that “with multiplicities” the
system has at most .m � 2m�1/n Dmn � 2.m�1/ �n isolated solutions over Fq . Here
by an isolated solution we mean an isolated point of the scheme defined by the
system. (This can be seen by intersection theory in Pn

Fq
, similarly to statement a)

in Proposition 2.5 of [ibid.].)
Now, with an algorithm by M. Rojas [1999], one can compute a list of solutions

of the system over Fq containing all isolated solutions over Fq in an expected time
of Poly.mn � 2n � .m�1/ � log.q//D Poly.emn � log.q//.

Let us assume that, for varying P , most solutions over Fq of these systems are
indeed isolated. It is reasonable to estimate the size of F as roughly qd and the size
of F0 as roughly qd�1. This indicates that the expected value of relations obtained
per try is in O.1=m!/.

Disregarding the possibility that some of the relations generated might be linearly
dependent, we need roughly qd relations. This indicates an expected running time of

Poly
�
m! � enmClog.q/ �d�

D Poly
�
enmClog.q/ �n=m

�
for the relation generation part.

The expected running time for the linear algebra part is merely Poly.elog.q/ �d /.
Now, for m WD min.d

p
log.q/e; n/, we obtain, again on the basis of the above

heuristic arguments, a total expected running time of

Poly
�
emax.log.q/;n �

p
log.q//�:

We stress again that we have used various heuristic assumptions. The goal of the
rest of this work is to modify the algorithm in such a way that we can indeed prove
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the claimed expected running time for large input classes. As already stated, we are
however not able to establish the desired expected running time for all instances of
the problem.

Weil restrictions and the scalar restriction functor. Let us recall the definition of
the scalar restriction functor with respect to a finite field extension.

Let Kjk be a finite field extension. Now let X be a quasiprojective K-scheme
of finite type. Then a representing object of the contravariant functor Z 7!

HomK .Z�k K;X / from the category of k-schemes to the category of sets is called
the Weil restriction of X with respect to Kjk. We denote the representing k-scheme
by Resk

k
.X /; as usual we also fix a corresponding natural transformation. A refor-

mulation of the definition is: The Weil restriction of X with respect to Kjk is a k-
scheme ResK

k
.X / together with a morphism u WResK

k
.X /K DResK

k
.X /�k K!X

satisfying the following universal property: For any k-scheme and any K-morphism
˛ W ZK D Z �k K ! X there exists a unique k-morphism ˇ W Z ! ResK

k
.X /

with ˛ D u ıˇK . We denote ˇ by ˛}. Now, the formation of the Weil restriction
defines a functor from the category of quasiprojective K-schemes to the category
of quasiprojective k-schemes; this functor is called the scalar restriction functor.
Furthermore, if X is a group scheme, so is the Weil restriction in an obvious way.

In this work, we often use Weil restrictions of the affine line A1
K
D Spec.KŒx�/.

Note here that ResK
k
.A1

K
/.k/' A1.K/DK. One sees easily the following: Let

b1; : : : ; bn be a k-basis of K. Then An
k
D Spec.kŒx1; : : : ;xn�/ together with the

universal morphism An
K
! A1

K
, given on Z-valued points for any K-scheme Z by

P 7! x1.P /b1C� � �Cxn.P /bn, is a Weil restriction of A1
k

with respect to Kjk (as
a group variety). The choice of a k-basis of K of course corresponds to choosing a
k-homomorphism K � kn.

We would like to have an explicit and canonical description of the Weil restriction
of A1

k
which does not depend on the choice of a basis. For this, let us define for any

finite-dimensional k-vector space V the polynomial algebra kŒV � in the usual way:

kŒV � WD

1M
iD0

V

N
sym

i

:

For some finite-dimensional k-vector space V , let

Ak ŒV � WD Spec.kŒV _�/;

where V _ is the dual space of V . Now, for any k-algebra A, we have Ak ŒV �.A/'

Homk.V
_;A/ ' A˝k V in a natural way. Now, A˝k V is a k-vector space

and therefore in particular an abelian group. We obtain in this way a commutative
group structure on Ak ŒV �. Clearly, Ak ŒV �.k/ is isomorphic to .V;C/ itself. The
association V 7! Ak ŒV � gives rise to a covariant functor from the category of
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finite-dimensional vector spaces over k to the category of affine group varieties
over k. Here, an injective homomorphism U ! V gives a closed embedding
Ak ŒU �! Ak ŒV �, and in particular, for a vector subspace U of V , Ak ŒU � is a group
subvariety of Ak ŒV �.

As a special case of the preceding we have natural isomorphisms Ak ŒK�.A/'

A˝k K for any k-algebra A. Therefore Ak ŒK� is in a natural way a Weil re-
striction of A1

K
with respect to Kjk. We remark that the universal morphism

u W Ak ŒK� �k K ! A1
K

is given as follows: Ak ŒK� �k K is the affine scheme
defined by the K-algebra kŒK_�˝k K'

L1
iD0.K

_/˝symi˝k K, and the universal
morphism corresponds to a homogeneous element of degree 1 in the algebra,
that is, to an element of K_˝k K. This vector space is naturally isomorphic to
the vector space of endomorphisms of K as a vector space over k. The univer-
sal morphism is the element of K_ ˝k K corresponding to the identity in this
space.

We also use Weil restrictions with respect to flat coverings, that is, finite and flat
morphisms. For this and also for other aspects of the scalar restriction functor we
refer to Subsection 4.1 of [Diem 2011b].

Tangent spaces and ramification. We make frequent use of homomorphisms be-
tween tangent spaces to address whether morphisms of schemes over fields are
unramified at rational points. For the convenience of the reader and because we
could not find a suitable reference, we make some general remarks here.

Let k be a field.
Let X be a k-scheme of finite type and P a k-rational point of X . Denoting by

�.P / the residue field at P , we have a canonical isomorphism k ' �.P /. We use
the latter notation if we regard k as an OX ;P -algebra.

The k-vector spaces �X ;P ˝OX;P
�.P / and mP=m

2
P

are canonically isomor-
phic; see [Hartshorne 1977, Chapter II, Proposition 8.7]. Either one of these
spaces is called the cotangent space at P . The Zariski tangent space or simply
tangent space of P in X is TP .X / WD Homk.mP=m

2
P
; k/. The formation of

the tangent spaces behaves well under base change via a field extension over
k. Let us note here that it is important that P is a k-rational point. A special
case which is of importance in this work is: for any finite-dimensional k-vector
space V we have a canonical isomorphism T0.Ak ŒV �/ ' V ; we identify these
spaces.

Let now X be a smooth k-scheme. Then the tangent sheaf of X is TX WD�
_
X
D

HomOX
.�X ;OX /. The canonical homomorphism

TX ;P ' HomOX;P
.�X ;P ;OX ;P /! HomOX;P

.�X ;P ; �.P //

' Homk.�X ;P ˝OX;P
�.P /; k/' TP .X /



1290 Claus Diem

induces a homomorphism of k-vector spaces

TX ;P ˝OX;P
�.P /! TP .X /:

As �X ;P is (by assumption) a free OX ;P -module, this homomorphism is an isomor-
phism. We denote the image of t 2 TX ;P in TP .X / by t.P /.

Now let X and Y be arbitrary k-schemes of finite type, let f W X ! Y be a
morphism of k-schemes and let P 2X . Then the local ring of P in its fiber over
f .P / is OX ;P=f

#.mY;f .P//OX ;P , and f is said to be unramified at P if this local
ring is a finite and separable �.f .P //-algebra. If f is unramified at P then it is in
particular quasifinite at P ; that is, P is isolated in its fiber.

Let now P be a k-rational point of X . Then f is unramified at P if and only if
f #.mY;f .P// generates the maximal ideal of OX ;P . By Nakayama’s lemma, this
is the case if and only if the induced homomorphism between cotangent spaces
f � Wmf .P/=m

2
f .P/
!mP=m

2
P

is surjective. Therefore, f is unramified at P if and
only if the induced homomorphism between tangent spaces f� WTP .X /!Tf .P/.Y /

is injective.

2. The factor base

2A. Some general thoughts. In [Diem 2011b] we first described the algorithm,
which is rather elementary, and later presented the geometric background, involving
in particular the role of the Weil restriction of the elliptic curve with respect to
Fqn jFq .

This approach would also be possible here. However, we now present the
geometric background together with the description of the algorithm. The main
reason for this is that the conditions required for the definition of the factor base
are quite involved but closely related to geometric considerations.

We first make some remarks on the definition of the factor base in [ibid.].
Let an instance with a nontrivial extension of finite fields Fqn jFq and an elliptic

curve E over Fqn be given, where an affine part of E is given by a Weierstraß
equation in x and y with degree 2 in x. Let k WD Fq and K WD Fqn .

Then, in [ibid.], the factor base is defined as follows:
We fix a covering ' WE!P1

K
of degree 2 with ' ı Œ�1�D ' satisfying a certain

condition (Condition 2.7 in [Diem 2011b]). Then the factor base F is the set

fP 2E.K/ j '.P / 2 P1.k/g: (2)

Now there exists a unique automorphism ˛ of P1
k

with ' D ˛ ı xjE . The factor
base is then equal to

fP 2E.K/ j xjE.P / 2 ˛
�1.P1.k//g: (3)
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A geometric description of the definition of the factor base in (2) is as follows: Let
�D id} W P

1
k
! ResK

k
.P1

k
/ be the morphism corresponding to the identity on P1

K

under the universal property of the Weil restriction. This morphism is a closed
immersion; it might be called the canonical immersion.

We define V by the diagram

V
� � //

��

ResK
k
.E/

ResK
k
.'/

��

P1
k
� � � // ResK

k
.P1

k
/

(4)

being Cartesian; cf. [ibid., Subsection 4.3]. Then, under the canonical isomor-
phism E.K/' ResK

k
.E/.k/, the factor base F corresponds to V .k/. Recall here

that as the morphism ' W E ! P1
K

is a flat covering of degree 2, the morphism
ResK

k
.'/ W ResK

k
.E/! ResK

k
.P1

K
/ and the induced morphism V ! P1

k
are flat

coverings of degree 2n.
From a geometric point of view, the equivalence of the two descriptions of the

factor base via (2) and (3) follows from the commutativity of the diagram

V
� � //

��

ResK
k
.E/

ResK
k
.xjE/

��
ResK

k
.'/

uu

P1
k
� � .˛
�1/} //� s

�
&&

ResK
k
.P1

K
/

ResK
k
.˛/

��

ResK
k
.P1

K
/:

Note here that, by the universal property of the Weil restriction of P1
K

with respect
to Kjk, the immersions P1

k
,!ResK

k
.P1

K
/ correspond exactly to the automorphisms

of P1
K

(via ˛ 7! ˛}). Thus, instead of varying the covering ' W E! P1
K

in the
construction of the factor base, we could also have varied the immersion of P1

k
into

ResK
k
.P1

K
/.

2B. The preliminary definition of the factor base. We now give some geomet-
ric background on the definition of the factor base in the preliminary algorithm
outlined in the introduction. We conclude this subsection with a wish list on the
geometric objects related to the definition of the factor base. This then leads to a
modification of the construction of the factor base which is described in the next
subsection.
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Let Ea be the “affine part” of E; that is, Ea WD x�1
jE
.A1

K
/. Furthermore, as

already mentioned above, let m be some natural number not exceeding n and let
d WD dn=me and ı WD dm� n.

In the preliminary algorithm in the introduction we defined the factor base as
follows: we fix a d -dimensional k-vector subspace U of K, and we set

F WD fP 2Ea.K/ j x.P / 2 U g:

We now give a geometric description. As mentioned in the introduction, the
inclusion U ,! K gives rise to a closed immersion Ak ŒU � ! Ak ŒK�, and thus
Ak ŒU � is a group subvariety of Ak ŒK�D ResK

k
.A1

K
/. Defining Va � ResK

k
.E/ by

the diagram

Va
� � //

��

ResK
k
.Ea/

��
ResK

k
.xjEa /

��
Ak ŒU �

� � // Ak ŒK�

(5)

being Cartesian, the factor base corresponds to Va.k/.
In the preliminary algorithm, we also have a .d � 1/-dimensional k-vector

subspace U 0 of U , defining a subset F0 of F. We define V 0a analogously to Va

with Ak ŒU � being substituted by Ak ŒU
0�. Then F0 corresponds to V 0a.k/. As the

maps Va!A and V 0a!A0 are finite flat, every irreducible component of Va has
dimension m and every irreducible component of V 0a has dimension m� 1; see
[Hartshorne 1977, Chapter III, Corollary 9.6].

Now, we would like that the following conditions on Va and V 0a are satisfied:

(1) The addition morphism .ResK
k
.E//m! ResK

k
.E/ induces a dominant mor-

phism from every irreducible component of .V 0a/
ı �V m�ı

a to ResK
k
.E/.

(2) There exists an (absolute) constant c > 0 such that Va.k/ contains at least
c � qd points and V 0a.k/ contains at least c � qd�1 points.

Note that dim..V 0a/
ı � V m�ı

a / D n and therefore the statement in the first item
implies that the morphism .V 0a/

ı �V m�ı
a ! ResK

k
.E/ is generically finite.

With a randomized algorithm it is straightforward to construct in an efficient
way U and U 0 such that the second item is satisfied.

For dD1, the morphism .V 0a/
ı�V m�ı

a !ResK
k
.E/ is surjective and therefore, if

V 0a and Va are irreducible, the first item is satisfied; see [Diem 2011b, Remark 4.21].
However, for d > 1, we cannot even give an example for which we can prove that
the first condition holds. For this reason, we modify the definition of the factor base.

2C. The essential modification. We now discuss the modification of the construc-
tion of the factor base.

We impose the following condition.
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Condition 2.1. The point 0 2 P1
K

is not a branch point of xjE WE! P1
K

and its
preimage in E consists of two K-rational points.

Note that, for qn � 16, there exist at least 5 K-rational points on E, so there
exists a point in E.K/ which is not a ramification point. In the algorithm for the
definition of the factor base, we first pass to a projectively equivalent elliptic curve,
also given in Weierstraß form with the point at infinity being the neutral element,
such that the condition is satisfied. We then fix k-vector subspaces Ui of K of
dimension d � 1 for i D 1; : : : ; ı and of dimension d for i D ıC 1; : : : ;m such
that we have a decomposition

K D

mM
iD1

Ui (6)

and such that some further conditions are satisfied; see Section 2E below. With

Fi WD fP 2Ea.K/ j x.P / 2 Ui �f0gg; (7)

we define the factor base as

F WD

m[
iD1

Fi : (8)

Later, for P 2E.K/, we search for a relation of the form

P1C � � �CPm D P

with Pi 2 Fi .

We now apply the geometric considerations of the previous subsection here.
Decomposition (6) gives rise to a decomposition

Ak ŒK�D

mM
iD1

Ak ŒUi � (9)

in the category of commutative k-group varieties. Decomposition (6) is then
obtained from (9) by taking k-valued points.

Similarly to above, we define Vi � ResK
k
.Ea/ via the diagram

Vi
� � //

��

ResK
k
.Ea/

��
Ak ŒUi �

� � // Ak ŒK�

being Cartesian. Note that the morphism ResK
k
.Ea/! Ak ŒK� is a flat covering of

degree 2n which is unramified at 0 2 Ak ŒK�. As flatness and unramifiedness are
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stable under base change, the morphism Vi!Ak ŒUi � is a flat covering of degree 2n

which is unramified at 0 2 Ak ŒUi � too. In particular, Vi has the same dimension as
the vector space Ui .

Let

am W ResK
k .E/

m
! ResK

k .E/ (10)

be the m-fold addition morphism and

a0m W V1 � � � � �Vm! ResK
k .E/ (11)

be the restriction of am to V1� � � � �Vm. Let P0 be one of the two points of E.K/

which are mapped to 0 by xjE .
Note that ResK

k
..P0/}/D 0. In particular, .P0/} is a k-rational point of all Vi .

Proposition 2.2. The morphism a0m is unramified at ..P0/}; : : : ; .P0/}/.

Remark 2.3. As unramifiedness is an open property, we obtain: a0m is unramified
in an open neighborhood of ..P0/}; : : : ; .P0/}/. Every irreducible component of
V1 � � � � �Vm has dimension n (because we have a flat covering of V1 � � � � �Vm

to Ak ŒK�). Thus the morphism a0m is dominant. If furthermore V1; : : : ;Vm are
irreducible, a0m is generically unramified.

Proof of Proposition 2.2. We wish to show that

.a0m/� W T..P0/}; :::; .P0/}/.V1 � � � � �Vm/! Tm � .P0/}

�
ResK

k .E/
�

is an isomorphism.

As the morphism ResK
k
.xjE/ is unramified at .P0/}, it induces an isomorphism

of tangent spaces

T.P0/}

�
ResK

k .Ea/
�
��! T0.Ak ŒK�/: (12)

Decomposition (9) induces a decomposition of tangent spaces T0.Ak ŒK�/ DLm
iD1 T0.Ak ŒUi �/ which is nothing but the original decomposition of vector spaces

K D
Lm

iD1 Ui . Under isomorphism (12), T.P0/}.Vi/ corresponds to T0.Ak ŒUi �/.
Therefore, we have the decomposition

T.P0/}

�
ResK

k .Ea/
�
D

mM
iD1

T.P0/}.Vi/: (13)

By the next lemma, we have the following commutative diagram whose vertical
maps are isomorphisms:
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T..P0/}; :::; .P0/}/
�
ResK

k
.E/m

�
..p1/�; :::; .pm/�/

��

.am/� // Tm.P0/}

�
ResK

k
.E/

�
�
T.P0/}

�
ResK

k
.E/

��m P
// T.P0/}

�
ResK

k
.E/

�.�.m�1/ � .P0/} /�

OO

Here pi W ResK
k
.E/m! ResK

k
.E/ is the projection to the i-th coordinate and the

map
P
W T.P0/}.ResK

k
.E//! T.P0/}.ResK

k
.E// is the addition of the k-vector

space T.P0/}.ResK
k
.E//.

By restriction of the horizontal maps we obtain the commutative diagram

T..P0/}; :::; .P0/}/.V1 � � � � �Vm/
.am/� //

��

Tm.P0/}

�
ResK

k
.E/

�

T.P0/}.V1/� � � � �T.P0/}.Vm/

P
// T.P0/}

�
ResK

k
.E/

�.�.m�1/ � .P0/} /�

OO

Because of decomposition (13), the addition maps T.P0/}.V1/�� � ��T.P0/}.Vm/

bijectively to T.P0/}.ResK
k
.E//. This gives the desired statement. �

In the following lemma, we use this notation: Let U , V , W be k-vector spaces.
If then ' WU !W and  W V !W are k-linear maps, we denote the induced map
U � V !W by .'  /. If ' WW ! U and  WW ! V are k-linear maps, we
denote the induced map W ! U �V by

�
'

 

�
.

Lemma 2.4. Let k be a field.

(a) Let X1, X2 be two k-schemes, and let P1 2X1.k/, P2 2X2.k/. Let us assume
that X1 is smooth at P1 and X2 is smooth at P2. The points Pi give rise to
closed immersions �i WXi!X1�X2. Let pi WX1�X2!Xi be the canonical
projections. Then the maps

..�1/� .�2/�/ W TP1
.X1/�TP2

.X2/! T.P1;P2/.X1 �X2/

and �
.p1/�
.p2/�

�
W T.P1;P2/.X1 �X2/! TP1

.X1/�TP2
.X2/

are isomorphisms of k-vector spaces which are inverse with respect to each
other.

(b) Let A be an abelian variety over k with addition morphism a WA�A!A and
neutral element O . Let �i WA!A�A be the two canonical immersions. Then
the map a� ı ..�1/� .�2/�/ W TO.A/�TO.A/! TO.A/ is the addition on the
k-vector space TO.A/.
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(c) Let A be an abelian variety over k and P 2A.k/. Then we have a commutative
diagram

TP .A�A/
a� //

 
.p1/�
.p2/�

!
��

T2P .A/

TP .A/�TP .A/

P
// TP .A/;

.�P /�

OO

where the lower map
P
W TP .A/�TP .A/! TP .A/ is the addition morphism

on the k-vector space TP .A/.

Proof. (a) The k-linear map

TP1
.X1/�TP2

.X2/

�
.�1/� .�2/�

�
//T.P1;P2/

.X1 �X2/

 
.p1/�
.p2/�

!
//TP1

.X1/�TP2
.X2/

is obviously the identity. As the dimensions of these k-vector spaces are the same,
the two maps in (a) are both isomorphisms.

(b) We only have to check that the k-linear map a� ı ..�1/� .�2/�/ W TO.A/ �

TO.A/ ! TO.A/ agrees with the addition (which is also k-linear) on the first
and second factor. But restricted to factor i , a� ı ..�1/� .�2/�/ becomes a� ı .�i/�,
which is the identity, just as is the addition when restricted to one of the factors.

(c) Let us consider A as an abelian variety with P as neutral element, and let aP

be the addition law. Then aP D ��P ı a. The commutativity of the diagram then
follows from (b). �

2D. Irreducibility. If the characteristic is odd, in order to complete the analysis
of the relation generation procedure, we need that the Vi are irreducible. In this
subsection, we give some theoretical background for the algorithmic construction
of the Vi such that they are indeed irreducible.

All the statements in this subsection are valid except in the case that the char-
acteristic is 2 and the j -invariant of E is 0, or, in other words, except if E is a
supersingular elliptic curve in characteristic 2. So let us assume that it does not
hold that the characteristic is 2 and j D 0.

Lemma 2.5. Let U be a vector subspace of K, and let Va be defined as in (5).
If Ak ŒU � contains an irreducible scheme containing 0 whose preimage in Va is
irreducible, then Va is irreducible. Likewise, if Ak ŒU � contains a geometrically
irreducible scheme containing 0 whose preimage in Va is geometrically irreducible,
then Va is geometrically irreducible.

Proof. Assume that Va is not irreducible, and let V
.1/

a and V
.2/

a be two irreducible
components of Va. Let A�Ak ŒU � be the étale locus of the flat covering Va!Ak ŒU �
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and Va its preimage on Va. By Condition 2.1 the covering Ea!A1
K

is unramified
at 0. Thus so is the covering ResK

k
.Ea/ ! Ak ŒK� and the induced covering

Va! Ak ŒU �. Thus 0 is contained in A. In particular, A is nonempty and thus a
nonempty open part of Ak ŒU �.

For i D 1; 2, the map V
.i/

a ! Ak ŒU � is surjective. (As the map V
.i/

a ! Ak ŒU � is
flat and finite, by [Hartshorne 1977, Chapter III, Corollary 9.6], V

.i/
a has the same

dimension as Ak ŒU �. The dimension of V
.i/

a is equal to the dimension of its image.
Thus the dimension of the image is equal to Ak ŒU �. Therefore the map is dominant.
As the map is finite, it is in particular closed, and therefore the image is equal to
Ak ŒU �.) Therefore V

.i/
a contains a preimage of 0. Let V

.i/
a be the preimage of A in

V
.i/

a . Then V
.i/
a is a nonempty open part of V

.i/
a which contains a preimage of 0.

As Ak ŒU � is smooth, so is A, and, as furthermore V! A is étale, V is also
smooth. It follows that V

.1/
a and V

.2/
a are disjoint.

Let now S be an irreducible subscheme of Ak ŒU � as in the first claim of the
lemma. As Va! Ak ŒU � is unramified at 0 and 0 2 S by assumption, S \A is a
nonempty open part of S . It follows that the preimage of S \A is a nonempty
open part of the preimage of S and thus also irreducible. Therefore it is contained
in either V

.1/
a or V

.2/
a . On the other hand, as it contains all preimages of 0, it has

nontrivial intersection with both V
.1/
a and V

.2/
a , a contradiction.

The second claim follows via base change to k. �
In the algorithm, we first search for 1-dimensional k-vector subspaces Ti of

K such that the preimages of Ak ŒTi � in ResK
k
.Ea/ with respect to ResK

k
.xjEa

/

are geometrically irreducible. Then we search for suitable k-vector subspaces
Ui of K containing Ti . The preimages Vi of the corresponding group subvari-
eties Ak ŒUi � of Ak ŒK� then contain Ak ŒTi � and are therefore geometrically irre-
ducible.

To choose the spaces Ti we employ ideas from the first subsection of this section
and of our previous work.

Let � 2 K�, and let us consider the vector subspace ��1 � k of K and the
associated group subvariety AŒ��1 � k� of Ak ŒK�. Furthermore, let Wa be the
preimage of AŒ��1 � k� in ResK

k
.Ea/.

Clearly, the group subvariety AŒ��1 �k� is the image under the closed immersion
A1

k
! Ak ŒK� induced by the injective homomorphism of vector spaces k ! K,

a 7! ��1a. This morphism can also be given as follows: Let ˛a WD �x W A1
k
! A1

k
.

Then the morphism A1
k
! Ak ŒK� is equal to .˛�1

a /}.
We now essentially apply the considerations of Section 2A here, restricting

ourselves to the “affine parts”. We set 'a WD ˛a ıxjEa
. Now Wa is the preimage

of �.A1
k
/ in ResK

k
.Ea/ with respect to the covering ResK

k
.'a/. This is very closely

related to the situation studied in [Diem 2011b, Section 2.2] — the only difference is



1298 Claus Diem

that here we use automorphisms of the group variety A1
K

instead of automorphisms
of P1

K
and we restrict ourselves to the “affine parts”.

Lemma 2.6. There are more than qn� 3.n� 1/ � qn=2 elements � 2K� such that,
with Wa as defined as above, Wa is geometrically irreducible.

Proof. By assumption on k and E, the covering xjE W Ek
! P1

k
has two or four

branch points, one of which is at infinity. Thus there are exactly one or three branch
points not equal to infinity.

Let �1;:::;�s2Fq6n�f0g, with s2f1;3g, be the branch points of xjEa
W.Ea/k!A1

k
.

Let �2K� and let ˛ WD �x. Then the branch points of ˛ ıxjEa
W .Ea/k ! A1

k
are

��1; : : : ; ��s . Therefore Condition 2.7 from [ibid.] is equivalent to the following
condition.

Condition 2.7. There exists an i D 1; : : : ; s such that, for j D 1; : : : ; n � 1,
.��i/

qj … f��1; : : : ; ��sg.

As shown in [ibid., Proposition 4.9], if this condition is satisfied, Wa is geomet-
rically irreducible.

We are interested in the probability that, for j D 1; : : : ; n � 1, .��1/
qj …

f��1; : : : ; ��sg.
For j D 1; : : : ; n�1 and `D 1; : : : ; s, the condition .��1/

qj D��` is equivalent
to �qj�1 D �`=�

qj

1
. As the cardinality of the kernel of the map K� ! k�,

a 7! aqj�1 is qgcd.j ;n/ � 1 (see next lemma), there are either no or exactly
qgcd.j ;n/� 1 such elements �.

The situation is now very similar to the situation in [ibid., Lemma 2.10]: in total
there are at most s �

Pn�1
jD1.q

gcd.j ;n/� 1/ elements � for which the condition in the
lemma is not satisfied.

Now a crude estimate is that s �
Pn�1

jD1 qgcd.j ;n/�1 < s � .n� 1/ � qn=2. �
Lemma 2.8. Let q be a prime power and m, n 2 N. Then qm � 1 j qn � 1 if and
only if m j n. Moreover gcd.qm� 1; qn� 1/D qgcd.m;n/� 1.

Proof. If m j n then clearly qm � 1 j qn � 1. So assume that qm � 1 j qn � 1. For
a 2 F�qm we have aqm�1 D 1 and by assumption also aqn�1 D 1. But this means
that a 2 F�qn . Thus Fqm is a subfield of Fqn and thus m j n.

For the second statement, consider the set G WD fa 2 Fqn j aqm�1

D 1g. On the
one hand, as G is a subgroup of the cyclic group F�qm , it has gcd.qm� 1; qn� 1/

elements. On the other hand, G[f0g is a subfield of Fqn , and therefore there exists
some a j n with #G D qa� 1. The result now follows with the first statement. �

2E. The algorithm for the factor base. Let a field extension Kjk as above, an
elliptic curve E=K, two points A, B 2E.K/ with B 2 hAi as well as m 2N with
2�m� n be given, where #K � 16. As always, let d WD dn=me and ı WD dm�n.
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We first choose — with a randomized algorithm — some point P0 2 Ea.K/

which is not a ramification point of xjE and pass from E to its image under the
automorphism of P2

K
given by PD .X.P / WY .P / WZ.P // 7! .X.P /�x.P0/Z.P / W

Y .P / WZ.P //. Let QE be the resulting curve. This is again a curve in Weierstraß
form, x

j QE
is unramified above 0 and the preimage of 0 consists of two K-rational

points. Clearly, this computation can be performed in an expected time which is
polynomially bounded in log.qn/.

So let us now assume that there exists a K-rational point of E which is unramified
under xjE and mapped to 0.

Given an instance as described, we would like to compute a decomposition

K D

mM
iD1

Ui

with dim.Ui/D d �1 for i D 1; : : : ; ı and dim.Ui/D d for i D ıC1; : : : ;m such
that

� #fP 2Ea.K/ j x.P / 2 Ui �f0gg �
1
4
qdim.Ui /;

� if char.k/ is odd: V1; : : : ;Vm are irreducible.

The factor base is then defined as described in (7) and (8) above.

We now give an algorithm for the task just mentioned under the condition that
m� n=2 and q � 4. This is sufficient for the algorithm for Theorem 2.

Algorithm to compute a suitable decomposition of K

Input: A field extension Fqn jFq with q � 4, an elliptic curve E=Fqn in
Weierstraß form with respect to x and y such that there is a K-rational point
of E which is unramified under xjE and mapped to 0, two points
A;B 2E.Fqn/ with B 2 hAi and a natural number m with 2�m� n=2.

Output: A decomposition Fqn D
Lm

iD1 Ui with dim.Ui/D d �1 for i D 1; : : : ; ı

and dim.Ui/D d for i D ıC1; : : : ;m such that the conditions mentioned above
are satisfied.

(1) If q is not a power of 2
For i D 1; : : : ;m do

Repeat
Choose �i 2 F�qn uniformly at random.

Until �i is not contained in hT1; : : : ;Ti�1i and �i satisfies
Condition 2.7.
Let Ti ��1

i � Fq < Fqn .
If q is a power of 2, let Ti f0g for i D 1; : : : ;m.
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(2) Let d  dn=me and ı dm� n.
For i D 1; : : : ;m do

If i � ı, let e d � 1, otherwise let e d .
Repeat

Compute an Fq-vector subspace Ui of Fqn which is uniformly
randomly chosen from the set of e-dimensional Fq-vector subspaces
of Fqn containing Ti with intersection f0g with
U1C � � �CUi�1CTiC1C � � �CTm.

Until fEa.Fqn/ j x.P / 2 Ui �f0gg contains at least 1
4
� qe elements.

(3) Output U1; : : : ;Um.

Remark 2.9. We represent Fq-vector subspaces of Fqn by bases over Fq . Therefore
the definition of Ti is computationally void; we inserted it only to be able to reason
about Ti later.

Note here that, at the end of each iteration of the for-loop in Step 2, we have
a direct sum U1˚ � � �˚Ui ˚TiC1˚ � � �˚Tm inside K, where, for j D 1; : : : ; i ,
Uj contains Tj , dim.Uj / D d � 1 if j � ı and dim.Uj / D d if j > ı. The
vector space Ti corresponds to a 1-dimensional group subscheme of Ak ŒK� whose
preimage in ResK

k
.E/ is geometrically irreducible by the arguments in Lemma 2.6.

By Lemma 2.5, Vi is then also geometrically irreducible. Therefore an output of
the algorithm defines a decomposition KD

Lm
iD1 Ui which satisfies the conditions

given above.
We remark here that the algorithm itself is much more elementary than the

geometric arguments.
The main result of this section is the following proposition.

Proposition 2.10. For 2�m� n=2 and q � 4, following the above algorithm, one
can compute a decomposition of K with the desired properties in an expected time
of Poly.n � qd /D Poly.n � qn=m/.

Proof. We only have to consider the expected running time. For this, we discuss
the steps of the algorithm.

Step 1. Let q be odd. We consider, for a particular iteration of the for-loop, the
expected value of iterations of the repeat-loop.

As i �m, the space hT1; : : : ;Ti�1i contains at most qm�1 � qn=2 elements. By
Lemma 2.6, there are at least qn� 3.n� 1/ � qn=2� qn=2 � qn� 3n � qn=2 elements
� 2K� which do not lie in hT1; : : : ;Ti�1i and which satisfy Condition 2.7. The
probability that this is satisfied is therefore at least 1� 3n=qn=2. For n � 4 and
q � 4, which is the case by assumption, this is at least 1� 3n=2n � 1� 12

16
D

1
4

.
The expected value of iterations of the repeat-loop is therefore at most 4. We can
obtain an expected running time which is polynomially bounded in n � log.q/.
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Step 2. We always have e � 2. In the repeat-loop, the space Ui can be computed in
an expected time which is polynomially bounded in n � log.q/ by the next lemma.
The counting of the set fEa.Fqn/ j x.P / 2 Ui � f0gg can be performed in a time
which is polynomially bounded in qd . The expected number of repetitions of the
loop is at most 14 by Lemma 2.12 below. The expected running time of Step 2 is
then polynomially bounded in qd . �
Lemma 2.11. Let S and T be two Fq-vector subspaces of Fn

q with S \ T D f0g

and S CT ¨ Fn
q , and let e 2 N with dim.T /� e � n� dim.S/ be given. Then in

an expected time which is polynomially bounded in n � log.q/ one can compute an
Fq-vector subspace U of Fn

q which is uniformly randomly chosen from the set of
e-dimensional Fq-vector subspaces U of Fq with T � U and S \U D f0g.

Proof. Consider the following algorithm:

Input: Two Fq-vector subspaces S and T of Fn
q with S \T D f0g, and e 2 N

with dim.T /� e � n� dim.S/.

Output: An Fq-vector subspace U satisfying the conditions in the lemma.

Let v1; : : : ; vdim.T / be the basis of T given with the input.

For i D dim.T /C 1; : : : ; e do
Repeat

Choose vi 2 Fn
q uniformly at random.

Until vi … hv1; : : : ; vi�1iCS .
Output hv1; : : : ; vei.

Obviously the space hv1; : : : ; vei is uniformly randomly distributed in the set
of e-dimensional subspaces U of Fn

q with T � U and S \U D f0g. The claimed
expected running time follows from the fact that the probability that vi is in the
.i � 1C dim.S//-dimensional vector subspace is q.i�1/Cdim.S/�n � 1=q. �
Lemma 2.12. For q � 4 and n � 4, elliptic curves E=Fqn in Weierstraß form,
proper Fq-vector subspaces S and T of Fqn with dim.S/� n�2, S\T D f0g and
S CT ¨ Fn

q and a natural number e with dim.T / < e � n� dim.S/, the following
holds:

Let U be a uniformly randomly distributed vector subspace of Fn
q of dimen-

sion e with T � U and S \ U D f0g. Then, with a probability of at least 1
14

,
#fP 2Ea.Fqn/ j x.P / 2 U �f0gg � 1

4
� qe.

Proof. Let first U be a uniformly randomly distributed e-dimensional Fq-vector
subspace of Fqn . Then, as each point of Fqn � f0g has the same probability of
appearing in U , each point of Fqn �f0g has a probability of

qe � 1

qn� 1
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to appear in U .
Likewise, if S , T and e are as in the lemma and U is a uniformly randomly

distributed e-dimensional vector subspace of Fqn with T � U and U \S D f0g,
each point of Fqn � .S \T / has a probability of

qe � qdim.T /

qn� qdim.S/
�

1

2
� qe�n

to appear in U .
Let

S WD fP 2Ea.Fqn/ j x.P / 2 Sg; T WD fP 2Ea.Fqn/ j x.P / 2 T �f0gg;

N WD #fP 2Ea.Fqn/ j x.P / 2 U �f0gg:

The expected value of N , EŒN �, can be expressed as follows:

EŒN �D #.Ea.Fqn/� .S[T// �
qe � qdim.T /

qn� qdim.S/
C #T

� .#Ea.Fqn/� #S/ �
qe � qdim.T /

qn� qdim.S/
� .qn

� 2 � qn=2
� 2 � qdim.S// � 1

2
� qe�n;

the last inequality by the Hasse–Weil bound.
As q � 4 and n � 4, 2 � qn=2 �

1
8
� qn. As q � 4 and dim.S/ � n � 2,

2 � qdim.S/ � 2 � qn�2 �
1
8
� qn. We obtain

EŒN �� 3
8
� qe:

On the other hand, N � 2 �qe . The claimed bound on the probability that N � 1
4
�qe

now follows by the following elementary probability theoretic argument. We have

3
8
� qe
� EŒN �� P

�
N < 1

4
� qe

�
�

1
4
� qe
CP

�
N � 1

4
� qe

�
� 2 � qe

and thus

3
8
�
�
1�P

�
N � 1

4
� qe

��
�

1
4
CP

�
N � 1

4
� qe

�
� 2D 1

4
C

7
4
�P
�
N � 1

4
� qe

�
:

In other words,
P
�
N � 1

4
� qe

�
�

1
14
: �

After suitable k-vector subspaces Ui of K have been computed, the sets Fi WD

fP 2Ea.Fqn/ j x.P / 2Ui �f0gg are enumerated and sorted for the elements in Fi

(such that given an element of Fi one can easily find its number). The factor base
is then F WD

Sm
iD1 Fi .

The total expected running time for all these computations is polynomially
bounded in n � qd .
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3. The new decomposition algorithm

Just as in the predecessor [Diem 2011b] to this work, the relation generation
relies on an algorithm to compute “decompositions”, and this algorithm is again
based on solving systems of multivariate polynomials over Fq . The definition of a
“decomposition” is however different in this work from the previous one. Moreover,
we do not use summation polynomials anymore, and, more generally, we do not use
the projection to a product of projective lines. The reason for this is that, by avoiding
the projection to projective lines, we can significantly improve the lower bound on
the success probability of the relation generation algorithm. This improvement is
crucial for the derivation of Theorem 2.

We start with some definitions.
As in the previous section, let q be a prime power, n a natural number at least

2, and let us set k WD Fq and K WD Fqn . Let E be an elliptic curve in Weierstraß
form in x and y over K (with zero point at infinity), and let f .x;y/ 2 KŒx;y�

be the defining polynomial of the affine part Ea. (The notation for the defining
polynomial is different from the one in [ibid.].) Let us fix a direct sum decomposition
KD

Lm
iD1 Ui with m�2 into k-vector subspaces. (In this whole section, we do not

impose any conditions on xjE or the direct sum decomposition of K, except that the
decomposition be nontrivial.) Let Fi be defined as above. Finally, let P 2E.K/.

Definition 3.1. A tuple .P1; : : : ;Pm/ 2F1� � � ��Fm with P1C� � �CPm D P is
called a decomposition of P with respect to the direct sum decomposition of K.

Let now Vi be defined as in the previous section. Then, under the isomorphism
E.K/ ' ResK

k
.E/.k/, the set of decompositions of P corresponds to the set of

tuples .P1; : : : ;Pm/2V1.k/�� � ��Vm.k/with
P

i PiDP} and ResK
k
.x/.Pi/¤0.

This is nothing but the set of k-rational points .P1; : : : ;Pm/ of the fiber at P} of
the morphism

V1 � � � � �Vm! ResK
k .E/

induced by the addition morphism on ResK
k
.E/ with ResK

k
.x/.Pi/¤ 0 for all i .

This leads to the next definition.

Definition 3.2. A decomposition .P1; : : : ;Pm/ of P is called isolated if it corre-
sponds to an isolated (k-rational) point of the fiber .V1�� � ��Vm/P} just considered.

The “new decomposition problem” is now the computational problem with the
following specification: The input consists of a prime power q, a natural number n,
an elliptic curve E � P2

Fqn
in Weierstraß form with respect to x and y and point

at infinity as zero point, a direct sum decomposition Fqn D
Lm

iD1 Ui of Fqn into
Fq-vector subspaces with m� 2 and a point P 2E.Fqn/. The output consists of a
list of decompositions of P with respect to the direct sum decomposition of Fqn ,
containing all isolated decompositions.
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For the relation generation, the first crucial result is the following proposition.
Furthermore, we need a nontrivial lower bound on the probability that a uniformly
randomly distributed point in E.Fqn/ has an isolated decomposition with respect
to the chosen decomposition of K, given that certain conditions are satisfied. Such
bounds are established in the next section.

Proposition 3.3. (a) There exists an absolute constant C > 0 such that the number
of isolated decompositions of some point P 2E.Fqn/ is at most eC �mn.

(b) The “new decomposition problem” can be solved in an expected running time
which is polynomially bounded in emn � log.q/.

The rest of this section is devoted to the proof of this proposition.
We now give some background information on the idea of the algorithm and

address claim (a). Computational aspects will be discussed later.
Let us fix an instance as specified in (b), and, as above, let Kjk be the extension

of finite fields under consideration.
We first make the following assumption:

x.P / …

m[
iD1

Ui :

At the end of the section we will discuss an easy modification of the following
arguments and the algorithm for the case that x.P / 2

Sm
iD1 Ui .

The main idea is to use the isomorphism E.K/ ' Cl0.E/. Let us use the
following notation (cf. [Silverman 1986]): For P 2E.K/, the prime divisor defined
by P is denoted by .P /.

For points P1; : : : ;Pm 2E.K/, we have
P

i Pi D P if and only if there exists
a function g 2 K.E/� with .g/ D .P1/C � � � C .Pm/C .�P / � .mC 1/ � .O/.
Moreover, g is uniquely determined “up to a constant” by the points.

Let us assume that P ¤ O . (For the case P D O , the following consid-
erations can easily be modified.) Let p1 WD 1, p2i D xi , p2iC1 WD xi�1y

for i 2 N. Note that, for ` 2 N, .p1/jE ; : : : ; .p`/jE is a basis of L.`O/. Let
L` WD hp1; : : : ;p`i \ ff 2 kŒx;y� j f .�P / D 0g, and let g1; : : : ;gm be a basis
of LmC1 such that g1; : : :gm�1 is a basis of Lm. Then .g1/jE ; : : : ; .gm/jE is a ba-
sis of L..mC1/�.O/�.�P // and .gm/jE …L.m�O�.�P //. Now .P1; : : : ;Pm/ is
a decomposition of P if and only if there exists a tuple .˛1; : : : ; ˛m�1/2Km�1 with

.gmC˛m�1gm�1C� � �C˛1g1/D .P1/C� � �C.Pm/C.�P /�.mC1/�.O/: (14)

Furthermore, there exists at most one such tuple .˛1; : : : ; ˛m�1/ in km�1. The
set of decompositions of P is thus in canonical bijection to the set of tuples
.˛1; : : : ; ˛m�1;P1; : : : ;Pm/2Km�1�Em

a .K/with x.Pi/2Ui�f0g such that (14)
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holds. Note that in any such tuple the points P1; : : : ;Pm;P are distinct. (Recall
that x.P / …

Sm
iD1 Ui by assumption).

Let us recall that the defining polynomial of Ea is denoted by f . Let now

f.i/ WD f .xi ;yi/ 2KŒx1;y1; : : : ;xm;ym�

for all i D 1; : : : ;m; the scheme V .f.1/; : : : ; f.m// is therefore equal to Em
a in

Spec.KŒx1;y1; : : : ;xm;ym�/.
Let

h WD gmC am�1gm�1C � � � a1g1 2KŒx;y; a1; : : : ; am�1�

and let

h.i/ WD gm.xi ;yi/C am�1gm�1.xi ;yi/C � � �C a1g1.xi ;yi/

2KŒa1; : : : ; am�1;x1;y1 : : : ;xm;ym�

for all i D 1; : : : ;m.
The set of decompositions of P is then in canonical bijection to the set of

K-rational points .˛1; : : : ; ˛m�1;P1; : : : ;Pm/ of the scheme V .f.1/; : : : ; f.m/;

h.1/; : : : ;h.m// in Spec.KŒa1; : : : ;am�1;x1;y1; : : : ;xm;ym�/with x.Pi/2Ui�f0g

for all i . Note that we have the canonical projection

V .f.1/; : : : ; f.m/; h.1/; : : : ; h.m//! V .f.1/; : : : ; f.m//DEm
a ;

given on Z-valued points for any k-scheme Z by

.˛1; : : : ; ˛m�1;P1; : : : ;Pm/ 7! .P1; : : : ;Pm/:

It is natural to pass to the Weil restriction of V .f.1/; : : : ; f.m/; h.1/; : : : ; h.m//

here. Let us first fix some notations: Let W be defined by the diagram

W
� � //

��

ResK
k
.V .f.1/; : : : ; f.m/; h.1/; : : : ; h.m///

��

V1 � � � � �Vm
//� � //

��

.ResK
k
.Ea//

m

��
Ak ŒU1�� � � � �Ak ŒUm�

� � // Ak ŒK�

being Cartesian. Now the k-rational points of W correspond exactly to the K-
rational points .˛1; : : : ; ˛m�1;P1; : : : ;Pm/ of V .f.1/; : : : ; f.m/; h.1/; : : : ; h.m//

with Pi 2 Ui .
We now give an explicit description of W via a polynomial system. This

description will serve as a basis for the algorithm.
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Let b1; : : : ; bn be a k-basis of K. (In the algorithm, such a basis is given
with the input.) With this basis, we now identify K with kn and also Ak ŒK�

with An
k

. Moreover, for i D 1; : : : ;m, let bi;1; : : : ; bi; dim.Ui / be a basis of Ui . The
scheme W � ResK

k
.V .f.1/; : : : ; f.m/; h.1/; : : : ; h.m/// can be described explicitly

as follows: Let the polynomials h.i/;j and f.i/;j for i D 1; : : : ;m, j D 1; : : : ; n

in kŒ.a`;j 0/`D1;:::;m�1;j 0D1;:::;n;..xi0;j 0/j 0D1;:::;dim.Ui /;.yi0;j 0/j 0D1;:::;n/i0D1;:::;m�

be defined by

h.i/

��
nP

j 0D1

a`;j 0bj 0

�
`D1; :::;m�1

;
dim.Ui /P
j 0D1

xi;j 0bj 0 ;
nP

j 0D1

yi;j 0bj 0

�
D

nP
jD1

h.i/;j bj ;

f.i/

� dim.Ui /P
j 0D1

xi;j 0bi;j 0 ;
nP

j 0D1

yi;j 0bj 0

�
D

nP
j 0D1

f.i/;j bj :

We have isomorphisms

Vi ' V ..f.i/;j /jD1; :::;n/� Spec.kŒxi;1; : : : ;xi; dim.Ui /;yi;1; : : : ;yi;n�/

and

W ' V
�
.f.i/;j /iD1; :::;m; jD1; :::;n; .h.i/;j /iD1; :::;m; jD1; :::;n

�
(which are canonical for the chosen basis).

The k-rational points of V ..f.i/;j /iD1; :::;m; jD1; :::;n; .h.i/;j /iD1; :::;m; jD1; :::;n/

correspond in an obvious way to the K-rational points .a1; : : : ; am�1;P1; : : : ;Pm/

of V .f.1/; : : : ; f.m/; h.1/; : : : ; h.m// with x.Pi/ 2 Ui . Such points with x.Pi/ 2

Ui �f0g then correspond to the decompositions of P .
We have a polynomial system in 2mn variables and 2mn equations.
We want to obtain a suitable polytope which contains the exponents in the support

of the system.
Let us first consider the total degrees of h.i/;j and f.i/;j with respect to the three

systems of variables .a`;j 0/`;j 0 , .xi0;j 0/i0;j 0 and .yi;j 0/i;j 0 . Concerning the h.i/;j
we have: the total degree with respect to the a`;j 0 is at most 1; the total degree with
respect to the xi0;j 0 is at most bm=2c; the total degree with respect to the yi0;j 0 is
at most 1. Concerning the f.i/;j we have: the total degree with respect to the xi0;j 0

is at most 3; the total degree with respect to the yi0;j 0 is at most 2.
We now consider the a`;j 0 and the yi0;j 0 as one system of variables and the xi0;j 0

as another system of variables. So we have 2 �.m�1/ �n variables in the first system
and the total degrees of all polynomials under consideration with respect to this
system are at most 2. Furthermore, we have n variables in the second system and
the total degrees with respect to this system are at mostmax.3; bm=2c/.
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Let �` WD fx 2 R`
�0
j
P

i xi � 1g. With a suitable numeration, the exponents
are contained in the polytope

P WD 2 ��.2m�1/ �n �max
�

3;

�
m

2

��
��n:

The toric variety T.P / defined by this polytope is P
.2m�1/ �n

k
�Pn

k
. The volume

of the polytope is 2.2m�1/ �n=..2m� 1/ � n/! � max.3; bm=2c/n=n!. The system of
equations defines a system of sections of a line bundle on T.P /, and the degree of
the 0-cycle in the Chow ring of T.P / defined by this system is .2mn/! times the
volume of the polytope; that is,

2.2m�1/ �n
�max

�
3;

�
m

2

��n

�

�
2mn

n

�
< 2.2m�1/ �n

�max
�

3;

�
m

2

��n

� 22mn < 24mn
�max

�
3;

m

2

�n

:

Therefore the scheme defined by the sections on T.P / associated to the equations
has at most 24mn �max.3;m=2/n isolated k-rational points. We have a natural em-
bedding of A2mn

k
into T.P /, and the sections restrict to the equations under this em-

bedding. Thus the scheme V ..f.i/;j /iD1; :::;m; jD1; :::;n; .h.i/;j /iD1; :::;m; jD1; :::;n/

has at most 24mn �max.3;m=2/n 2 eO.mn/ isolated k-rational points.

Let us now turn to algorithmic aspects: It is straightforward to compute a system
.f.i/;j /iD1; :::;m; jD1; :::;n, .h.i/;j /iD1; :::;m; jD1; :::;n as above. We then use Rojas’
algorithm [1999] for sparse polynomial systems to determine all isolated k-rational
solutions. The input and output structure as well as the running time of the algorithm
are given in [ibid., Main Theorem 2.1]; all the following statements on the algorithm
refer to this theorem.

We apply the algorithm with the system of equations and the polytope P de-
fined above. The output of the algorithm is a system of univariate polynomials
h; h1; : : : ; h2mn, the degrees of which are all bounded by the degree of the 0-cycle
defined by the given system of sections in the Chow ring of T.P / and thus by
24mn �max.3;m=2/n. By factoring h and applying the system h1; : : : ; h2mn to the
rational roots, we obtain a list of points in k2mn. This list consists of solutions to
the system and contains all isolated k-rational solutions of the system on A2mn

k
.

The running time of Rojas’ algorithm is polynomially bounded in em �n � log.q/,
and in an expected time which is also polynomially bounded in em �n � log.q/ we
can factor the univariate polynomial h. Explicitly, the running time of Rojas’
algorithm depends on mixed volumes of various systems of polytopes, all of which
are contained in the polytope P . Therefore these mixed volumes are also bounded
by 24mn �max.3;m=2/n.

We obtain the following intermediate result:
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Lemma 3.4.

(a) A system .f.i/;j /iD1; :::;m; jD1; :::;n, .h.i/;j /iD1; :::;m; jD1; :::;n as above has
eO.mn/ isolated k-rational solutions.

(b) Given an instance of the “new decomposition problem”, one can compute
a system .f.i/;j /iD1; :::;m; jD1; :::;n, .h.i/;j /iD1; :::;m; jD1; :::;n as above and a
list of k-rational solutions, containing all isolated k-rational solutions, in an
expected time which is polynomially bounded in emn � log.q/.

This is however not yet the statement we want to prove. Indeed, we still have to
show that in this way we can obtain a list of decompositions of P which contains
all isolated decompositions.

Let P 2Ea.K/.
We first study the geometric fibers of the morphism

V .f.1/; : : : ; f.m/; h.1/; : : : ; h.m//! V .f.1/; : : : ; f.m//DEm
a :

Let .P1; : : : ;Pm/ 2Em
a .k/ such that the points P1; : : : ;Pm;P} are distinct. Then

there is at most one tuple .˛1; : : : ; ˛m�1/ 2 km such that (14) holds, depending on
whether

P
i Pi D P} or not.

Let now D be the closed subscheme of Em
a given on Z-valued points for any

k-scheme Z by

D.Z/D f.P1; : : : ;Pm/ 2Em
a .Z/ j 9i ¤ i 0 W Pi D Pi0 or 9i W Pi D Pg:

Let T WDEm
a �D and let S be the preimage of T in V .f.1/; : : : ; f.m/;h.1/; : : : ;h.m//.

Now the morphism S! T induces an injection on the sets of geometric points and
its image consists of those points .P1; : : : ;Pm/ 2Em

a .k/ with
P

i Pi D P}.
We consider the restriction of the m-fold addition morphism Em ! E to T .

Following the usual notation, let TP be the fiber of this morphism at P . This is an
open subscheme of a scheme isomorphic to Em�1.

The morphism S ! T induces a bijection S.k/! TP .k/. As TP is reduced,
we have an induced morphism S ! TP .

We now pass to Weil restrictions. Note first that we again have the addition
ResK

k
.E/m! ResK

k
.E/ and the fiber .ResK

k
.E/m/P} .

We have a canonical open embedding

ResK
k .T /� ResK

k .E
m
a /'

�
ResK

k .Ea/
�m
:

Note that, under the canonical isomorphism ResK
k
.Ea/

m.k/'Em
a .K/, the points

of ResK
k
.T /.k/ correspond to the points .P1; : : : ;Pm/ 2 Em.K/ which are con-

tained in T .K/, that is, to points .P1; : : : ;Pm/ 2 Em.K/ such that the points
P1; : : : ;Pm;P are distinct.
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Let

V � WD .V1 � � � � �Vm/\ResK
k .T /�

�
ResK

k .Ea/
�m

and let V �
P}

be the fiber of P} under the restriction of the addition morphism
ResK

k
.E/m! ResK

k
.E/ to V �. We have

V �P}
D V �\

�
ResK

k .Ea/
m
�
P}
D V �\Res.T /P} : (15)

Let now P …
Sm

iD1 Ui . The set of k-rational points of V � contains all k-rational
points of ResK

k
.Ea/

m corresponding to decompositions of P . (There might be
more points in V �.k/ because there might be k-rational points .P1; : : : ;Pm/ of V �

with xi.P /D 0 for some i 2 f1; : : : ;mg.) As ResK
k
.T / is open in ResK

k
.Ea/

m, a
k-rational point of V �

1
� � � � �V �m is open in V �

1
� � � � �V �m if and only if it is open

in V1 � � � � �Vm. Therefore, the set of isolated k-rational points of V � contains all
k-rational points of ResK

k
.Ea/

m corresponding to isolated decompositions of P .
Let W � be the preimage of V � in ResK

k
.V .f.1/; : : : ; f.m/; h.1/; : : : ; h.m///. Our

goal is to show that the preimages of the isolated k-rational points of V � are isolated
k-rational points of W �.

We have the Cartesian diagram

ResK
k
.S/

��

� � // ResK
k
.V .f.1/; : : : ; f.m/; h.1/; : : : ; h.m///

��

ResK
k
.T /
� � // ResK

k
.Em

a /' ResK
k
.Ea/

m:

Moreover, as the morphism S! T factors through the fiber TP , by functoriality,
the morphism ResK

k
.S/! Resk

k
.T / factors through the fiber ResK

k
.T /P} . We

claim that we have an induced bijection between ResK
k
.S/.k/ and ResK

k
.T /P}.k/.

For this, we can (obviously) apply the base change to kjk. But over k, the two
Weil restrictions become products of Galois twists of S and T , respectively, and
we have already shown the claim for the factors of the product. The claim thus
follows. By considering the Galois operation, we obtain that, for every algebraic
field extension �jk, we have a bijection between ResK

k
.S/.�/ and .Resk

k
.T //P}.�/.

We are going to use this for �D k.
As V � is contained in ResK

k
.T /, W � is contained in ResK

k
.S/, and we have a

Cartesian diagram

W �

��

� � // ResK
k
.S/

��

V �
� � // ResK

k
.T /:
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The composition W �! ResK
k
.T / (obviously) factors through V � and — as we

have just seen — it factors through .ResK
k
.T //P} . By (15) it factors through V �

P}
.

The morphism
W �! V �P}

again induces a bijection
W �.k/! V �P}

.k/:

Let now .P1; : : : ;Pm/ be an isolated k-rational point of V �. This is a k-rational
point of V � which is open in V �. Then the fiber over .P1; : : : ;Pm/ in W � is open
in W �, and it is a k-rational point. Therefore it is an isolated k-rational point
of W � and also of W .

We note again that for any isolated decomposition of P the corresponding point
in .V1 � � � � � Vm/.k/ lies in V �.k/ and is isolated. Therefore every isolated
decomposition of P defines an isolated k-rational point of W .

This finishes the proof of Proposition 3.3 under the assumption x.P /…
Sm

iD1 Ui .

Modification for x.P / 2
Sm

iD1 Ui . We now discuss the modification for the case
that x.P / 2

Sm
iD1 Ui . Except for finitely many instances, there exists a point

R 2Ea.K/ with x.R/ …
Sm

iD1 Ui and x.P �R/ …
Sm

iD1 Ui .
Let us fix such a point R and let S WD P � R. Let QL` WD hp1; : : : ;p`i \

ff 2 kŒx;y� j f .�R/D 0; f .�S/D 0g. Let Qg1; : : : ; Qgm be a basis of QLmC2 such
that Qg1; : : : ; Qgm�1 is a basis of LmC1. Now a tuple .P1; : : : ;Pm/2F1�� � ��Fm is
a decomposition of P if and only if there exists a tuple .˛1; : : : ; ˛m�1/2Km�1 with

. QgmC˛m�1 Qgm�1C� � �C˛1 Qg1/D .P1/C� � �C.Pm/C.�R/C.�S/�.mC1/�.O/:

Moreover, if such a tuple exists, it is unique. With this modifications, we obtain
again the desired bound on the number of isolated decompositions. Moreover, by
choosing a point R 2Ea.K/ uniformly randomly, we also obtain the algorithmic
result. Note here that, if P is in the factor base, we immediately have a relation, so
we do not need to apply the decomposition algorithm. The bound on the number of
isolated decompositions will however be used later.

4. Analysis and the final result

Let Kjk and E=K be as above and m 2 N with 2 � m � n=2. We assume that
Condition 2.1 is satisfied. Furthermore, let a decomposition KD

Lm
iD1 Ui be given

which satisfies the conditions in Section 2E. Moreover, let Fi and Vi be as above.
As in Section 2C, let P0 2E.K/ be one of the two points in E.K/ lying over 0.
We want to obtain a lower bound on the number of points P 2 E.K/ which

have isolated decompositions. For this goal, we first want to derive an upper bound
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on the number of tuples .P1; : : : ;Pm/ 2 F1 � � � � �Fm which define nonisolated
decompositions.

Let am W ResK
k
.A/ ! ResK

k
.E/ be the m-fold addition morphism and a0m W

V1 � � � � �Vm! ResK
k
.E/ the restriction of am to V1 � � � � �Vm.

We now consider a point .P1; : : : ;Pm/ 2 Em.K/ with x.Pi/ 2 Ui and let
P WD

Pm
iD1 Pi .

The morphism a0m WV1�� � ��Vm!ResK
k
.E/ is unramified at ..P1/}; : : : ;.Pm/}/

if and only if ..P1/}; : : : ; .Pm/}/ is an isolated reduced point of the fiber at P}.
We ask ourselves for which tuples .P1; : : : ;Pm/ as above the morphism is ramified
at ..P1/}; : : : ; .Pm/}/. As already pointed out in the proof of Proposition 2.2 the
morphism a0m W V1� � � � �Vm! ResK

k
.E/ is unramified at ..P1/}; : : : ; .Pm/}/ if

and only if the induced map on tangent spaces

.a0m/� W T..P1/}; :::; .Pm/}/.V1 � � � � �Vm/! TP}.V1 � � � � �Vm/

is injective.

We now consider points .P1; : : : ;Pm/2E.K/m with x.Pi/2Ui for all i which
satisfy the following condition.

Condition 4.1. The flat covering xjE is unramified at P1; : : : ;Pm.

This condition is equivalent to the condition that, for every i , the flat covering
ResK

k
.Ea/! ResK

k
.A1

k
/ is unramified at .Pi/}. By base change, this implies that,

for every i , Vi ! Ak ŒUi � is unramified (and thus étale) at .Pi/}. Therefore, Vi

is smooth at .Pi/} and we have an isomorphism of tangent spaces T.Pi /}.Vi/!

T.x.Pi //}.Ak ŒUi �/.

Let such a point .P1; : : : ;Pm/ be given and let again P WD
Pm

iD1 Pi . By
Lemma 2.4 we have a commutative diagram

T..P1/}; :::; .Pm/}/.V1 � � � � �Vm/
.a0m/� //

.�.P0�P1/}; :::; .P0�Pm/} /�

��

TP}

�
ResK

k
.E/

�
.�m � .P0�P/} /�
��

T..P0/}; :::; .P0/}/.V1 � � � � �Vm/
.a0m/� //

��

Tm.P0/}

�
Resk

k
.E/

�

T.P0/}.V1/� � � � �T.P0/}.Vm/ // T.P0/}

�
Resk

k
.E/

�.�.m�1/ � .P0/} /�

OO

where the lower map is the addition on tangent spaces. Moreover, by the proof of
Proposition 2.2, the two lower vertical homomorphisms are isomorphisms. Under
the isomorphism T.P1/}.V1/�� � ��T.Pm/}.Vm/'T..P1/}; :::; .Pm/}/.V1�� � ��Vm/,
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the horizontal map on the left-hand side is

.�.P0�P1/}/� � � � � � .�.P0�Pm/}/� W

T.P1/}.V1/� � � � �T.Pm/}.Vm/! T.P0/}.V1/� � � � �T.P0/}.Vm/:

So the morphism .a0m/� is unramified at ..P1/}; : : : ; .Pm/}/ if and only if we
have a direct sum decomposition

T.P0/}

�
ResK

k .E/
�
D

mM
iD1

.�.P0�Pi /}/�.T.Pi /}.Vi//: (16)

We want to derive a condition under which we do have such a decomposition.
For this, we distinguish between three cases: q odd; q even and j ¤ 0; and q even
and j D 0.

The case that q is odd. We need some facts on tangent vectors of the projective
line and the elliptic curve E. Here and in the following we assume that the defining
polynomial f of Ea is of the form y2� v.x/ (with v monic of degree 3).

Following our usual notation, let P1
K
WD Proj.KŒX;Y �/. We set xP1 WDX=Y 2

K.P1/ (such that K.P1/DK.xP1/).
On P1

K
, we have the meromorphic cotangent vector field dxP1 with divisor

�21. Under duality, this corresponds to a tangent vector field which we denote by
tP1 2 �.P1

k
;T

P1
k
/ and which has divisor 21.

Let R be the ramification divisor of the covering xjE . Then the meromorphic
cotangent vector field dxjE has divisor �4.O/CR, and we have the holomorphic
cotangent vector field dxjE=yjE . This field is invariant under translation; that is,
for every translation � of E we have ��.dxjE=yjE/D dxjE=yjE .

Again under duality, dxjE corresponds to a meromorphic tangent vector field;
we denote this by tE . It has divisor 4.O/�R. So we have the holomorphic tangent
vector field yE tE , which corresponds to dxjE=yjE under duality. Moreover, the
field yE tE is also invariant under translation; that is, for every translation � of E,
��.yjE tE/D yjE tE .

Following the notation fixed in the introduction, for some point P 2E.K/, we
denote the tangent vector in TP .E/ induced by tE by tE.P /.

Let two K-rational points P0 and P1 of E which are not ramification points
under xjE be given and let us consider the homomorphism .�P0�P1

/� W TP1
.E/!

TP0
.E/. This homomorphism is given by y.P1/tE.P1/ 7!y.P0/tE.P0/; that is,

tE.P1/ 7!
y.P0/

y.P1/
tE.P0/: (17)

As in the previous section, Let us fix a basis .bj /j of K over k and bases .bi;j /j
of the Ui . Let us denote the corresponding dual bases by .xj /j and .xi;j /j . The
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bases .bj /j and .bi;j /j define bases of the spaces �.Ak ŒK�;T/ and �.Ak ŒUi �;T/.
We denote these bases by .tj /jD1; :::;n for Ak ŒK� and .ti;j /jD1; :::; dim.Ui / for Ak ŒUi �.

Let P 2E.K/ such that xjE is unramified at P . Then ResK
k
.xjEa

/ defines an iso-
morphism of tangent spaces .ResK

k
.xjEa

//� WTP}.ResK
k
.xjEa

//!Tx.P/}.AŒK�/.
Now, for t 2�.AŒK�;T/, we define t.P}/ WD..ResK

k
.xjEa

//�/
�1.t.x.P /}//. The

isomorphism of tangent vector spaces restricts to an isomorphism of tangent vec-
tor spaces TP}.Vi/! Tx.P/}.AŒUi �/. Thus t.P}/ is in TP}.Vi/ if and only if
t.x.P /}/ is in Tx.P/}.AŒUi �/.

Just as the bases .tj .x.P /}//j and .d.xj /.x.P /}//j are dual to each other, so
are the bases .tj .P}//j and .d.xj /jResK

k
.Ea/

.P}//j .
Let Ai be the coordinate matrix of .bi;j /j with respect to .bj /j . Then this is

also the coordinate matrix of .ti;j /j with respect to .tj /j , and, for any P 2E.K/

as above, it is also the coordinate matrix of .ti;j .P}//j with respect to .tj .P}//j .
For the following, it is important that the matrix does not depend on P .

Let now .P1; : : : ;Pm/ 2Em.K/ with x.Pi/ 2Ui for all i satisfy Condition 4.1.
Then, for each i D 1; : : : ;m, the system .ti;j ..Pi/}//j is a basis of the k-vector
space T.Pi /}.Vi/. We have a direct sum decomposition of T.P0/}.ResK

k
.E// as

in (16) if and only if the elements .t.P0�Pi /}/�.ti;j ..Pi/}// for i D 1; : : : ;m,
j D 1; : : : ; dim.Ui/ form a k-basis of TP}.ResK

k
.E//.

Let, for j D 0; : : : ; n � 1, fj 2 kŒx1; : : : ;xn;y1; : : : ;yn� be defined by f DPn
jD1 bj � fj . Let u W .ResK

k
.Ea//K ! Ea be the universal morphism. We have

the isomorphism

.u; �.u/; : : : ; �n�1.u// W
�
ResK

k .Ea/
�
K
��!

n�1Y
sD0

� s
K jk.Ea/ (18)

corresponding to the isomorphism of K-algebras

n�1O
sD0

KŒx.s/;y.s/�=
�
� s

K jk.f /.x
.s/;y.s//

�
��!KŒx1; : : : ;xn;y1; : : : ;yn�=.f1; : : : ;fn/;

x.s/ 7!

nX
jD1

� s
K jk.bj / �xj ; y.s/ 7!

nX
jD1

� s
K jk.bj / �yj :

Note that, for P 2E.K/, under isomorphism (18) the point P} 2 Resk
k
.E/.k/�

ResK
k
.E/.K/ corresponds to the point .� s.P //sD0; :::;n�1 2

Qn�1
sD0 �

s
K jk

.Ea/.K/.
We have an induced isomorphism �.ResK

k
.Ea/K ; �/'

Ln�1
sD0 �.�

s.Ea/;�/

under which d.x.s//j�s.Ea/ corresponds to
Pn

jD1 �
s
K jk

.bj / � d.xj /jResK
k
.Ea/

. This
isomorphism induces an isomorphism between the cotangent spaces at P} and
.� s.P //sD0; :::;n�1. Let again xjE be unramified at P . If we then apply the
duality between cotangent and tangent spaces, we obtain that tj .P}/ corresponds to
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� s

K jk
.bj / � t�s.Ea/.�

s.P //
�
sD0; :::;n�1

under the induced isomorphism of tangent
spaces at P} and .� s.P //sD0; :::;n�1.

On each of the factors of the product
Qn�1

sD0 �
s
K jk

.Ea/, we can apply the consid-
erations above. We obtain that .�.P0�Pi /}/�.tj ..Pi/}// corresponds to

�
.�.�.P0/��.Pi ///�.�

s
K jk.bj / � t�s.Ea/.�

s.P0///
�
sD0; :::;n�1

D

�
� s

K jk.bj / �
y.s/.�.P0//

y.s/.�.Pi//
� t�s.Ea/.�

s.P0//

�
sD0; :::;n�1

D

�
� s

K jk.bj / �

Pn
`D1 �

s
K jk

.b`/ �y`..P0/}/Pn
`D1 �

s
K jk

.b`/ �y`..Pi/}/
� t�s.Ea/.�

s.P0//

�
sD0; :::;n�1

:

This vector is of course invariant under the Galois operation of Kjk. Let C be
the inverse of the matrix ..� s.bj ///sD0; :::;n�1; jD1; :::;n; this is a matrix of the form
..� s.cu///uD1; :::;n; sD0; :::;n�1. Going back, we have

.�.P0�Pi /}/�.tj ..Pi/}//

D

n�1P
sD0

� s
K jk.bj / �

Pn
`D1 �

s
K jk

.b`/ �y`..P0/}/Ps
`D1 �

s
K jk

.b`/ �y`..Pi/}/
�

�
nP

uD1

� s.cu/.tu..P0/}//

�

D

nP
uD1

n�1P
sD0

� s
K jk

�
bj �

Pn
`D1 b` �y`..P0/}/Ps
`D1 b` �y`..Pi/}/

� cu

�
� .tu.P0/}/:

Let cj ;u WD bj cu �
�Pn

`D1 b` �y`.P0/}
�
2K. (These constants are independent

of P1; : : : ;Pm.) Then

.�.P0�Pi /}/�.tj ..Pi/}//D
nP

uD1

n�1P
sD0

� s
K jk

�
cj ;uPn

`D1 b` �y`..Pi/}/

�
� tu..P0/}/:

Let �i W Vi ,! ResK
k
.E/ be the immersions. It follows that there are constants

ci;j ;u 2K (again independent of P1; : : : ;Pm) with

�
.�.P0�Pi /}/� ı .�i/�

�
ti;j ..Pi/}/

D

nP
uD1

n�1P
sD0

� s
K jk

�
ci;j ;uPn

`D1 b` �yi; `..Pi/}/

�
� tu..P0/}/

D

nP
uD1

n�1P
sD0

�
� s

K jk
.ci;j ;u/Pn

`D1 �
s
K jk

.b`/ �yi; `..Pi/}/

�
� tu..P0/}/:
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Let

M0 WD

��
n�1P
sD0

� s
K jk

.ci;j ;u/Pn
`D1 �

s
K jk

.b`/ �yi; `

��
uD1; :::;n; .iD1; :::;m; jD1; :::; dim.Ui //

2 k..yi0;j 0/i0D1; :::;m; j 0D1; :::;n/
f1; :::;ng�

Sm
iD1

Sdim.Ui /

jD1
f.i;j/g:

Note here that as indicated M0 is a matrix over k..yi0;j 0/i0D1; :::;m; j 0D1; :::;n be-
cause the entries are invariant under the Galois operation. The matrix has the size
n� n. It is however more convenient to use the indicated indices for the columns.
Note further that, for no .P1; : : : ;Pm/2Em.K/ with x.Pi/2Ui for all i satisfying
Condition 4.1 and for no i; s,

Pn
`D1 �

s.b`/ �yi; ` vanishes at ..P1/}; : : : ; .Pn/}/.
We have a direct sum decomposition of T0.ResK

k
.E// as in (16) if and only if

the matrix M0..P1/}; : : : ; .Pn/}/ is nonsingular.
By Proposition 2.2 we know that this matrix is nonsingular for .P1; : : : ;Pn/D

.P0; : : : ;P0/. In particular, the matrix M0 itself is nonsingular.
We now multiply the columns of M by polynomials such that the entries of the

resulting matrix are polynomials. Concretely, we multiply all columns with column
index .i; j /with the polynomial

Qn�1
tD0

�Pn
`D1 �

t
K jk

.b`/�yi; `

�
. The resulting matrix

is

M D

��
n�1P
sD0

� s
K jk.ci;j ;u/ �

n�1Q
tD0
t¤s

�
nP̀
D1

� t
K jk.b`/ �yi; `

���
uD1; :::;n;
.iD1; :::;m; jD1; :::; dim.Ui //

2 kŒ.yi0;j 0/i0D1; :::;m; j 0D1; :::;n�
f1;:::;ng�

Sm
iD1

Sdim.Ui /

jD1
f.i;j/g:

Let d WD det.M /2 kŒ.yi0;j 0/i0;j 0 �. Again for .P1; : : : ;Pm/ as above, d vanishes
at ..P1/}; : : : ; .Pm/}/ if and only if the homomorphism a0m is unramified at
..P1/}; : : : ; .Pm/}/. Furthermore d does not vanish identically on V1 � � � � �Vm

because it does not vanish at ..P0/}; : : : ; .P0/}/.
We want to study the vanishing locus of d on V1� � � � �Vm and derive an upper

bound on the number of k-rational points in the locus.
An entry of M with column index .i; j / is a homogeneous polynomial in the vari-

ables yi;1; : : : ;yi;n of degree n�1. Therefore d is multihomogeneous with respect
to the sets of variables .yi;1; : : : ;yi;n/iD1; :::;m of multidegree .dim.U1/ � .n� 1/;

: : : ; dim.Um/ � .n� 1//. The total degree is therefore n2� n. We want to prove:

Proposition 4.2. The number of k-rational points in the locus of d on V1�� � ��Vm

is at most n5 � 4n � qn�1.

Proof. Let us first mention the following general fact.

Lemma 4.3. Let f be a nontrivial polynomial in Fq Œx1; : : : ;xn� of total degree d .
Then V .f / contains at most d � qn�1 Fq-rational points.
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Proof. As Fq Œx1; : : : ;xn� is factorial, we are immediately reduced to the case that f
is irreducible. If now f D xn�a for some a 2 Fq , we are done. Let us assume that
this is not the case and let a 2 Fq . Now f is not divisible by xn� a. This means
that not every coefficient of f as a polynomial in Fq Œxn�Œx1; : : : ;xn�1� is divisible
by xn � a; in other words, the polynomial f .x1; : : : ;xn�1; a/ is nontrivial. The
result now follows by induction on n. �

We will use resultants to eliminate the “y-variables”. Let us consider the poly-
nomials f , fj and f.i/;j as polynomials in the “y-variables”. Now let

F WDZ2
�f

�
x;

Y

Z

�
2KŒx�ŒY;Z�;

Fj WDZ2
�fj

�
x1; : : : ;xn;

Y1

Z
; : : : ;

Yn

Z

�
2 kŒx1; : : : ;xn�ŒY1; : : : ;Yn;Z�;

F.i/;j WDZ2
�f.i/;j

�
xi;1; : : : ;xi; dim.Ui /;

Yi;1

Z
; : : : ;

Yi;n

Z

�
2 kŒxi;1; : : : ;xi; dim.Ui /�ŒYi;1; : : : ;Yi;n;Z�

be the homogeneous polynomials of degree 2 obtained by “homogenizing with
respect to the y-variables to a homogeneous degree-2 polynomial”. Let us consider
kŒx�ŒY;Z�, kŒx1; : : :xn�ŒY1; : : : ;Yn;Z�, kŒxi;1; : : : ;xi;dim.Ui /�ŒYi;1; : : : ;Yi;n;Z� as
graded rings in the second set of variables. Let V i be the scheme defined by
.F.i/;j /jD1; :::;n in Proj.kŒxi;1; : : : ;xi; dim.Ui /�ŒYi;1; : : : ;Yi;n;Z�/'A

dim.Ui /

k
�Pn

k
.

We have a commutative diagram of canonical embeddings

Vi
� � //
� _

��

V i� _

��
ResK

k
.E/D V .f1; : : : ; fn/

� � // V .F1; : : : ;Fn/:

Lemma 4.4. For each i , the embedding Vi ,! V i is an isomorphism.

Proof. We have to show that V i has no points “at infinity”; that is, the in-
tersection V .Z/ \ V i is trivial. We show in fact the stronger statement that
V .Z/\V .F1; : : : ;Fn/ is trivial.

Let f .s/ WD� s
K jk

.f /.x.s/;y.s// and F .s/ WDF.x.s/;Y .s/;Z/ for sD0; : : : ; n�1.
Let us consider the isomorphism of graded K-algebras

KŒx1; : : : ;xn�ŒY1; : : : ;Yn;Z�!KŒx.1/; : : : ;x.n/�ŒY .1/; : : : ;Y .n/;Z�;

x.s/ 7!

nX
jD1

� s
K jk.bj / �xj ; Y .s/ 7!

nX
jD1

� s
K jk.bj / �Yj ; Z 7!Z:
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We have the following commutative diagram over K:

Spec.KŒx1; : : : ;xn�/

�

Spec.KŒy1; : : : ;yn�/

//
Spec.KŒx.1/; : : : ;x.n/�/

�

Spec.KŒy.1/; : : : ;y.n/�/

ResK
k
.E/D V .f1; : : : ; fn/K

?�

OO

//
� _

��

V .f .1/; : : : ; f .n//D
Qn�1

sD0 �
s
K jk

.Ea/
?�

OO

� _

��

V .F1; : : : ;Fn/K //
� _

��

V .F .1/; : : : ;F .n//� _

��

Spec.KŒx1; : : : ;xn�/

�

Proj.KŒY1; : : : ;Yn;Z�/

//
Spec.KŒx.1/; : : : ;x.n/�/

�

Proj.KŒY .1/; : : : ;Y .n/;Z�/

Here the horizontal maps are induced by the isomorphism mentioned above.
They are clearly isomorphisms. One can easily see that the middle morphism on
the right is an isomorphism: we have F.x.s/;Y .s/; 0/D .Y .s//2, and the scheme
V ..Y .1//2; : : : ; .Y .n//2;Z/ is trivial. Therefore the middle morphism on the left
is an isomorphism too. �

We fix the following notation: for b2N0, .P0/
b
}

is the point ..P0/}; : : : ; .P0/}/

with b entries. Let now for ` D 0; : : : ;m the k-scheme V` be the following
subscheme of V1 � � � � �Vm:

V` WD V1 � � � � �V` � .P0/
m�`
} :

Furthermore, let d` 2 kŒ.yi0;j 0/i0D1; :::; `; j 0D1; :::;n� be the polynomial obtained
from d by evaluating yi0;j 0 for i 0D `C1; : : : ;m and j 0D 1; : : : ; n at .P0/}. Note
that d` does not vanish identically on V` because it does not vanish at .P0/

`
}

.
We want to show by induction on `:

#.V` \V .d//.k/� ` � n4
� 2n
� .2q/.

P`
iD1 dim.Ui //�1:

Recall here that dim.Ui/D dim.Vi/.
The induction base is `D 0. As d does not vanish at .P0/

`
}

, the set V0\V .d/

is empty. Therefore the claim holds.
So let `�m be given and let us assume that the claim holds for `� 1.
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The set .V` \ V .d//.k/ can be divided into two disjoint parts: The first part
consists of the points .P1; : : : ;P`/ with d`�1.P1; : : : ;P`�1/D 0. The second part
consists of the points .P1; : : : ;P`/ with d`�1.P1; : : : ;P`�1/¤ 0.

We first consider points in the first part. As over each point of A1.K/ there
lie at most 2 points of Ea.K/, over each point An.k/ lie at most two points of
ResK

k
.Ea/.k/. In particular, over each point of Ak ŒU`�.k/ lie at most 2 points

of V`.k/. Because of this and because of the induction hypothesis, there are at most

.2q/dim.U`/�.`�1/�n4
�2n
�.2q/.

P`�1
iD1 dim.Ui //�1

D .`�1/�n4
�2n
�.2q/.

P`
iD1 dim.Ui //�1

points in the first part.

We now consider points in the second part.
Let .P1; : : : ;P`�1/2 V1.k/�� � ��V`�1.k/ with d`�1.P1; : : : ;P`�1/¤ 0; that

is, d`.P1; : : : ;P`�1; .P0/}/¤ 0.
The polynomial

d`.P1; : : : ;P`�1/ 2 kŒy`;1; : : : ;y`;n�� kŒx`;1; : : : ;x`; dim.U`/;y`;1; : : : ;y`;n�

is now nontrivial on V`. Since — by the conditions we have imposed — V` is
irreducible, V`\V .d`.P1; : : : ;P`�1// is of codimension 1 in V` by Krull’s Haupt-
idealsatz; with other words, it is of dimension dim.U`/� 1.

The polynomial d`.P1; : : : ;P`�1/ is already homogeneous with respect to
y`;1; : : : ;y`;n; let d 2 kŒY`;1; : : : ;Y`;n;Z�� kŒx`;1; : : : ;x`;dim.U`/�ŒY`;1; : : : ;Y`;n;Z�

be the polynomial obtained by substituting Y`;n for y`;n. This is a homogeneous
polynomial of degree dim.U`/ � .n � 1/ with respect to Y`;1; : : : ;Y`;n;Z. As
V` D V` (Lemma 4.4), we have

V`\V .d`.P1;:::;P`�1//DV `\V .d/DV .F.`/;1;:::;F.`/;n;d/

�Spec.kŒx`;1;:::;x`;dim.U`/�/�Proj.kŒY`;1;:::;Y`;n;Z�/:

Let ResDRes.G1;:::;GnC1/ be the dense multivariate resultant for nC1 homoge-
neous variables and polynomials of (homogeneous) degrees 2; : : : ;2;dim.Ui/�.n�1/.
Here, the G1; : : : ;GnC1 are independent generic polynomials, that is, polynomials
with algebraically independent coefficients. (As in [Diem 2011b], the similarity
between the notation for the Weil restriction and the resultant is accidental.)

Taking the resultant of F.`/;1; : : : ;F.`/;n;d with respect to Y`;1; : : : ;Y`;n;Z, we
obtain Res.F.`/;1; : : : ;F.`/;n;d/, a nontrivial polynomial in kŒx`;1; : : : ;x`; dim.U`/�.
For some point Q 2 An.k/, the resultant Res.F.`/;1; : : : ;F.`/;n;d/ vanishes at Q

if and only if there is a k-rational point in V`\V .d/D V`\V .d`.P1; : : : ;P`�1//

over Q.
We want to determine the multidegree of this polynomial. First we consider

the degrees of Res as a polynomial on the coefficients of the Gj . By [Gelfand
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et al. 1994, Subsection 3.3A] we have: for j D 1; : : : ; n, Res is a homogeneous
polynomial of degree dim.Uj / �.n�1/ �2n�1<n2 �2n�2 in the coefficients of the Gj .
The inequality is obtained as follows: As m � 2, dim.Uj / � dn=2e � .nC 1/=2.
Furthermore, Res is a homogeneous polynomial of degree 2n in the coefficients
of GnC1. Moreover, F.`/;j has degree at most 3 in the x`;j 0 (j 0 D 1; : : : ; dim.Ui/)
and d obviously has degree 0 in the x`;j 0 .

Therefore, Res.F`;1; : : : ;F`;n;d/ has degree at most n � 3 � n2 � 2n�2 in each of
the variables x`;j 0 . Its total degree is thus at most 3n4 � 2n�2. By Lemma 4.3, the
locus the resultant contains at most 3n4 �2n�2 �qdim.U`/�1 k-rational points. As over
each of these points lie at most two k-rational points of V` \V .d.P1; : : : ;P`�1//,
this set contains at most 6n4 � 2n�2 � qdim.U`/�1 points. We now let P1; : : : ;P`�1

vary, and we obtain that there are at most

6n4
� 2n�2

� qdim.U`/�1
� .2q/

P`�1
iD1 dim.Ui /

D 6n4
� 2n�1

� 2
P`�1

iD1 dim.Ui /�1
� q
P`

iD1 dim.Ui /�1 < n4
� 2n
� .2q/.

P`
iD1 dim.Ui //�1

points in the second part of the set .Va\V .d//.k/. (We use that dim.U`/� 2 as
m� n=2.)

Altogether, there are < ` �n4 �2n � .2q/.
P`

iD1 dim.Ui //�1 points in .V`\V .d//.k/.
This concludes the proof of Proposition 4.2. �
There are at most 3 K-rational ramification points in Ea under xjEa

. Therefore,
there are at most 3 � 2m�1 � qn�1 < 2n � qn�1 tuples in F1 � � � � �Fm which do not
satisfy Condition 4.1. Proposition 4.2 gives therefore:

Proposition 4.5. The number of tuples in F1�� � ��Fm which do not define isolated
decompositions is at most .n5 � 4nC 2n/ � qn�1.

The case that q is even and j ¤ 0. Let a 2 K be the ramification point of Ea

over A1
K

. Then dxjE=.xjE � a/ is a holomorphic differential on E.
As above, we obtain a nontrivial polynomial d 2kŒ.xi;j /iD1; :::;m; jD1; :::; dim.Ui /�

of total degree n2�n such that, for points .P1; : : : ;Pm/2E.K/m with x.Pi/2Ui

satisfying Condition 4.1, ..P1/}; : : : ; .Pm/}/ is an isolated reduced point in its
fiber if and only if d..P1/}; : : : ; .Pm/}/D 0.

There are at most .n2 � n/ � qn�1 points in the locus of d on An
k

. Moreover,
over each point of A1.K/ are at most two points of E.K/. The number of points
.P1; : : : ;Pm/2V1.k/�� � ��Vm.k/ satisfying Condition 4.1 which are not isolated
reduced points in their fiber is thus at most 2m � .n2� n/ � qn�1. Therefore:

Proposition 4.6. The number of tuples in F1�� � ��Fm which do not define isolated
decompositions is at most 2m � n2 � qn�1.

The case that q is even and j D 0. In this case, dxjE itself is a holomorphic
differential on E. It follows that .�.P0�Pi /}/�.ti;j ..Pi/}// D .ti;j ..P0/}// for
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any P 2 Ea.K/. Therefore, the morphism a0m W V1 � � � � � Vm ! ResK
k
.E/ is

unramified everywhere and we obtain:

Proposition 4.7. Every decomposition is isolated.

The final result of the analysis. All in all, we have:

Proposition 4.8. For

� 25n � q, or

� q even, n3 � q and m� d
p

log2.q/e,

the following holds: The probability that a uniformly randomly distributed point of
E.K/ has an isolated decomposition is in

1

eO.mn/
D

�
1

emn

��.1/
:

We remark here that the condition m � d
p

log2.q/e is satisfied for m in the
preliminary algorithm presented in the introduction.

Proof. Let first q be odd and the first condition satisfied. By the conditions in
Section 2E, we have #Fi �

1
4
� qdim.Ui / for all i and therefore #.F1 � � � � �Fm/�

.1=4m/ �qn � .1=4n/ �qn. By Proposition 4.5, at most .n5 �4nC2n/ �qn�1 of these
tuples do not define isolated decompositions. So if n5 � 4nC 2n �

1
2
� .1=4n/ � q, we

have at least 1
2
� .1=4n/ � qn tuples which do define isolated decompositions. This

is for example the case if 25n � q and n is large enough, and for every fixed n it
holds if q is large enough. By Proposition 3.3(a) the image of the set of tuples in
F1�� � ��Fm which define isolated decompositions has a size of .1=eO.mn//�qn. The
probability that a uniformly randomly distributed point in E.Fqn/ has an isolated
decomposition is therefore in 1=eO.mn/.

We now consider the case that q is even. The proof is similar to the previous
one, only that we now apply Propositions 4.6 and 4.7. We now want that the
condition 2m � n2 �

1
2
� .1=4m/ � q is satisfied; that is, 2 � 23m � n2 � q. This is

always satisfied under the first condition; that is, 25n � q. Furthermore, under the
condition that m � d

p
log2.q/e the desired condition is in particular satisfied if

2n2 � 2log2.q/�3d
p

log2.q/e. This condition is for example satisfied if n3 � q and n

is large enough, and it holds for every fixed n if q is large enough. �

Derivation of Theorem 2. Finally, we show how Theorem 2 follows. In addition we
show that in characteristic 2 one can obtain a result which on first sight seems to be
an improvement over Theorem 2 but is in fact further improved upon by Theorem 3
which relies solely on Theorem 2.

As already mentioned in the outline in the introduction, the basic structure of
the index calculus algorithm is the same as that in [Diem 2011b]. So we only
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discuss the constructions surrounding the definition of the factor base and briefly
the relation generation and the linear algebra part, using the results proved above.
For an overview over the complete algorithm, we refer to Subsection 2.3 of our
previous work.

The input to the index calculus algorithm consists of a field extension Fqn jFq , an
elliptic curve E=Fqn and points A, B 2E.Fqn/ with B 2 hAi such that 25n� q or q

is even and n3 � q. The following considerations hold for q and n large enough.
An algorithm for all instances under consideration running in the claimed expected
time can be obtained by running the index calculus algorithm “in parallel” with a
brute force computation.

Similarly to the “preliminary algorithm”, we set m WDminfd
p

log2.q/e; bn=2cg.
(We need m� n=2 in order to be able to apply the algorithm for the construction of
a decomposition of K in Section 2E.) So d D dn=me �max.n=

p
log2.q/C 1; 3/

and thus Poly.qd /� eO.max.log.q/;n �
p

log.q///.
The expected running time of the construction of the decomposition of K and

the definition of the factor base is in Poly.n � qd / � eO.max.log.q/;n �
p

log.q/// (see
Proposition 2.10). We have an algorithm for the “new decomposition problem”
with an expected running time of Poly.emn � log.q//� eO.n �

p
log.q// and a success

probability of 1=eO.mn/ (see Propositions 3.3 and 4.8). Therefore the expected
running time of the relation generation part is in Poly.en �

p
log.q/ � m � qd / �

eO.max.log.q/;n �
p

log.q///. The linear algebra part has an expected running time of
Poly.m � qd /� eO.max.log.q/;n �

p
log.q///.

In total, we obtain an expected running time of

eO.max.log.q/;n �
p

log.q///:

We recall again that we have only considered instances with 25n � q or q even
and n3 � q so far. The derivation of Theorem 2 is now analogous to the derivation
of Theorem 1 from [ibid., Proposition 2.11].

We make the following case distinction: If 25n � q, we apply the index calculus
algorithm directly. If 25n > q, we set a WD d5n=log2.q/e and apply the index
calculus algorithm to the curve EFqan , the field extension Fqan jFqa and A, B. Now
25n�qa; thus we can conclude that the index calculus algorithm runs in an expected
running time of eO.max.log.qa/;n �

p
log.qa/// D eO.n3=2/.

This gives Theorem 2 except that in the theorem the field extension Fqn jFq is not
given with the input data. As already pointed out in [ibid.], one can apply the above
algorithm with all possible field extensions “in parallel” to obtain the desired result.

In addition to the derivation of Theorem 2 we now consider only instances in char-
acteristic 2. Under this condition, we can proceed as follows: For n3 � q we apply
the index calculus algorithm directly. For n3 > q, we set a WD d3 log2.n/=log2.q/e
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and proceed as above. We obtain an expected running time of eO.n �
p

log.n//. In
total, we obtain an expected running time of

eO.max.log.q/;n � log.q/1=2;n � log.n/1=2//
I (19)

with q D 2m this is
eO.max.m;n �m1=2;n � log.n/1=2//: (20)

We note however that for the derivation of Theorem 3 we only apply Theorem 2
under the condition that n�m. Under this condition, we do not have an improvement
upon the expected time given in Theorem 2, and in fact Theorem 3 improves upon
the expected time given by (20) if m 2 o.n/.
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Appendix: Misprints in the previous work

I would like to take the opportunity to correct two misprints in [Diem 2011b].

� In Subsection 4.2 the following situation is considered: Let k be a field, let n1>n2,
and let p W .P1

k
/n1 D

Qn1

iD1
Proj.kŒXi ;Yi �/! .P1

k
/n2 D

Qn2

iD1
Proj.kŒXi ;Yi �/ be

the projection to the first n2 factors. Let hi be the class of V .Xi/ in any of the
two Chow rings. Lemma 4.6 is on the push-forward map p� W CH..P1

k
/n1/!

CH..P1
k
/n2/, which is a group homomorphism. There is a misprint in the lemma.

The correct statement is:

Let e 2 f0; 1gn1 . Then p�.h
e1

1
� � � h

e1
n1
/D h

e1

1
� � � h

e2
n2

(rather than being 1)
if en2C1 D � � � D en1

D 1 and p�.h
e1

1
� � � h

e1
n1
/D 0 otherwise.

Computations with the push-forward map are used only once in the analysis
of the algorithm, namely in equalities (6) in Subsection 4.5. Here, the correct
statement is applied.

� In Proposition 4.28 a subset M of f.P1; : : : ;Pn/ 2 E.K/n j 8i D 1; : : : ; n W

'.Pi/ 2P1.k/g is fixed and a lower bound on the number of elements P 2E.K/

such that there exists a '-isolated decomposition .P1; : : : ;Pn/ of P or �P with
P1; : : : ;Pn 2M is given. This lower bound is a difference, and in the subtrahend
a factor of n! is missing. The correct lower bound is

#M � n3 � n! � 22n2�n � .qC 1/n�1

n! � 2n2
:
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In a similar way, the next lower bound is also incorrect. All following bounds
are correct again and no further changes have to be performed for the proof of
Proposition 4.29. Proposition 4.28 is also cited for Proposition 5.9 in [Diem
2011a], which is concerned with an application for fixed n. This proposition is
not at all affected by the cited misprint.
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Identifying Frobenius elements
in Galois groups

Tim Dokchitser and Vladimir Dokchitser

We present a method to determine Frobenius elements in arbitrary Galois exten-
sions of global fields, which may be seen as a generalisation of Euler’s criterion.
It is a part of the general question how to compare splitting fields and identify
conjugacy classes in Galois groups, which we will discuss as well.
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1. Introduction

Take a Galois extension L/Q. Associated to each (unramified) prime p is a Frobe-
nius element Frobp, an element of the Galois group that reduces to x 7→ x p modulo
a prime above p. In the setting when L is the splitting field of a polynomial f ,
this element is intimately connected to the factorisation of f mod p: Viewed as a
permutation of the roots, Frobp is a product of disjoint cycles whose lengths are
the degrees of the irreducible factors.

In this paper, we address the question of how to determine Frobp. Generally,
we study the problem of how to compare splitting fields and identify conjugacy
classes in Galois groups; see Sections 2–4. Our motivation was computing L-series
of Artin representations for arbitrary Galois groups, which requires the knowledge
of Frobenius elements at all primes; see Remark 5.8 and Example 7.7. Obtaining

MSC2010: primary 11R32; secondary 11R42, 12F10.
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them directly from the definition is impractical unless L either has small degree or
is particularly simple to work with.

Let us briefly illustrate the various standard techniques for computing Frobenius
elements. As before, L is the splitting field of a polynomial f ∈ Z[x], and we write
G = Gal(L/Q).

Quadratic fields. Suppose f (x)= x2
− d , so L =Q(

√
d ). For a prime p - 2d , the

Frobenius element is given by the Legendre symbol:

Frobp = id ⇐⇒ f (x) mod p is reducible ⇐⇒

(d
p

)
= 1.

There are two essentially different methods to compute it:

(A) Euler’s criterion
( d

p

)
≡ d(p−1)/2 mod p.

(B) Quadratic reciprocity.

Kummer extensions. Suppose f (x)= x3
−2, so L =Q(ζ3,

3
√

2) and G = S3. For
p 6= 2, 3 the number of cube roots of 2 mod p determines whether Frobp is trivial,
a 3-cycle or a transposition. It is easy to see that the last case is equivalent to
p ≡ 2 mod 3. There are analogues of both (A) and (B) to distinguish between the
first two cases:

(A) Euler’s criterion: Since F×p is cyclic,

2 is a cube mod p ⇐⇒ 2(p−1)/3
≡ 1 mod p.

2 not a cube mod p ⇐⇒ 2(p−1)/3 is another third root of unity z ∈ Fp.

To link this criterion to our main theorem below, let us rephrase it: Let

M =
(

0 0 2
1 0 0
0 1 0

)
∈ GL3(Fp), so that M3

=

(
2 0 0
0 2 0
0 0 2

)
and f (M)= 0.

Then

Frobp = id ⇐⇒ M p−1
=

(
1 0 0
0 1 0
0 0 1

)
⇐⇒

1
3 Tr M p−1

= 1,

Frobp ∈ [(123)] ⇐⇒ M p−1
=

( z 0 0
0 z 0
0 0 z

)
⇐⇒

1
3 Tr M p−1 satisfies t2

+t+1= 0,

Frobp ∈ [(12)] ⇐⇒ M p−1
=

(
0 0 ∗
∗ 0 0
0 ∗ 0

)
⇐⇒

1
3 Tr M p−1

= 0.

(B) Class field theory over Q(ζ3):
Factorise p= (a+bζ3)(a+bζ 3). Then 2 is a cube mod p if and only if the ideal

(a+ bζ3) splits in L , and class field theory says that this is a congruence condition
on a and b. In fact, it is easy to verify that

2 is a cube mod p ⇐⇒ a+ bζ3 ≡±1,±ζ3 or ± ζ 2
3 mod 6.
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Modular forms. See [Zagier 2008, §4.3]. Suppose f (x)= x3
− x − 1, so G = S3

and L is the Hilbert class field of Q(
√
−23). Let ρ be the 2-dimensional irreducible

representation of G. It has an associated Artin L-series

L(ρ, s)=
∞∑

n=1

an

ns ,

whose coefficient ap for a prime p 6= 23 is 2,−1 or 0 depending on whether Frobp

is trivial, a 3-cycle or a transposition. The theory of modular forms tells us that

∞∑
n=1

anqn
= q

∞∏
n=1

(1− qn)(1− q23n),

and is a cusp form of weight 1, level 23 and character
(
·

23

)
. Moreover, for all

integers n not divisible by 23,

an =
1
2

(
#
{

x, y ∈ Z
∣∣ n = x2

+ xy+ 6y2}
− #

{
x, y ∈ Z

∣∣ n = 2x2
+ xy+ 3y2}).

Let us remark that in an arbitrary Galois group G, the L-series of the irreducible
representations of G also pin down the Frobenius elements. The global Langlands
conjecture predicts that, as in this example, all such L-series come from automorphic
forms. This is a massive conjectural generalisation of “method (B)”. Moreover,
like quadratic reciprocity and class field theory, this approach gives expressions for
the L-series coefficients an that do not depend on n being prime. This is crucial
for theoretical applications such as analytic continuation of L-functions. (Note,
however, that formulas such as the one above are not practical for numerically
computing Frobenius elements.)

The purpose of this paper is to extend “method (A)” to arbitrary Galois groups.
Here is an illustration for cubic polynomials of the type of criterion that we obtain.
Note its similarity to the Kummer case.

General cubic. Suppose f (x) = x3
+ bx + c. Pick a prime p - 3b1, where 1 =

−4b3
− 27c2 is the discriminant of f . Let

M =
(

0 0 c
1 0 b
0 1 0

)
∈ GL3(Fp).

Then

f (x) has 3 roots mod p ⇐⇒ Tr M p+1
=−2b,

f (x) has 1 root mod p ⇐⇒ Tr M p+1 satisfies (t + 2b)(t − b)2 =−1,

f (x) is irreducible mod p ⇐⇒ Tr M p+1
= b.

This can be easily checked by hand; alternatively, see Theorem 7.2.
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Our main result for Frobenius elements is the following generalisation of Euler’s
criterion. Note that taking the class of x in Fq [x]/ f (x) is the same as taking a
matrix M with characteristic polynomial f (x), like in the examples above.

Theorem 1.1. Let K be a global field and f (x)∈K [x] a separable polynomial with
Galois group G. There is a polynomial h(x) ∈ K [x] and polynomials 0C ∈ K [X ]
indexed by the conjugacy classes C of G such that

Frobp ∈ C ⇐⇒ 0C
(
Tr Fq [x]

f (x) /Fq
(h(x)xq)

)
= 0 mod p

for almost all primes p of K ; here Fq is the residue field at p.

This is proved in Section 5; see Theorem 5.3. Usually one can take h(x)= x2

(see below); in particular Tr(xq+2) then determines the conjugacy class of Frobp.
In Section 6 we explain how the theorem recovers classical formulas for Frobenius
elements in cyclotomic and Kummer extensions. In Section 7 we give explicit
examples for nonabelian Galois groups, including general cubics, general quartics
and quintics with Galois group D10.

The polynomials 0C are explicitly given by

0C(X)=
∏
σ∈C

(
X −

n∑
j=1

h(a j )σ (a j )
)
,

where a1, . . . , an are the roots of f in some splitting field. The “almost all primes”
in the theorem are those not dividing the denominators of the coefficients of f , its
leading coefficient and the resultants Res(0C , 0C ′) for C 6= C ′; the latter simply
says that the 0C mod p are pairwise coprime. (This condition always fails for
ramified primes; see Remark 5.6.) Finally, the only constraint on the polynomial
h is that the resulting 0C are coprime over K . This holds for almost all h, in the
sense that the admissible ones of degree at most n− 1 form a Zariski dense open
subset of K n . Also, a fixed h with 1< deg h < n (for instance h(x)= x2) will work
for almost all f that define the same field; see Section 8.

Remark 1.2. The method of using polynomials in the roots of f to recognise
conjugacy classes is also used in “Serre’s trick” for alternating groups. For example,
G = A5 has 5 conjugacy classes and all but the two classes of 5-cycles have their
own cycle type. (Recall that the cycle type of Frobenius can be recovered from the
degrees of the factors of the defining quintic f mod p; in practice, these are readily
determined by computing gcd(x pd

− x, f (x)) for d = 1, 2.) It was pointed out by
Serre (see Buhler [1978, p. 53]) that the classes of 5-cycles can be distinguished by
evaluating the square root of the discriminant of f modulo p; see Example 3.9. This
has been generalised by Roberts [2004] to all alternating groups, and was used for
instance by Booker [2005] in his work on L-series for icosahedral representations.
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Finally, let us illustrate our approach to Frobenius elements with a simple case:

Example 1.3. The polynomial f (x)= x5
+2x4

−3x3
+1 has Galois group G=D10

over K =Q. If we number its complex roots by

a1 ≈−3.01, a2 ≈−0.35− 0.53i, a3 ≈ 0.85− 0.31i, a4 = a3, a5 = a2,

then G is generated by the 5-cycle (12345) and complex conjugation (25)(34). It
is easy to see that f (x) is irreducible over F2, so Frob2 ∈ G is in one of the two
conjugacy classes of 5-cycles, either [(12345)] or [(12345)2]. How can we check
which one it is?

Consider the expressions

n1 = a1a2+ a2a3+ a3a4+ a4a5+ a5a1,

n2 = a1a3+ a2a4+ a3a5+ a4a1+ a5a2.

If we think of G as the group of symmetries of a pentagon, the sums are taken over
all edges and over all diagonals, respectively. Therefore they are clearly G-invariant,
and hence rational numbers. Also, as ai are algebraic integers, n1 and n2 are in fact
integers, readily recognised from their complex approximations as being 2 and −5.

Now suppose b1 is a root of f (x) in F25 , and bi = b2
i−1 for i = 2, 3, 4, 5 are its

other roots ordered by the action of the Frobenius automorphism. Then

N = b1b2+ b2b3+ b3b4+ b4b5+ b5b1

is in F2. By considering the reduction modulo a prime q above 2 in the splitting
field, we see that if Frobq is (12345) or (12345)−1, then n1 ≡ N mod 2. Similarly,
if Frobq is (12345)2 or (12345)3, then n2 ≡ N mod 2. Computing in F5

2 (or noting
that N = TrF2[x]/ f (x)(x3)) we find that N = 0, so Frob2 must be in [(12345)].

In the language of Theorem 1.1, we took h(x)= x and proved that

0[(12345)] = (X − 2)2 and 0[(12345)2] = (X + 5)2

distinguish between the two conjugacy classes of 5-cycles: If f (x) is irreducible
mod p (and p 6= 7, so that 2 6≡ −5), then

Frobp ∈ C ⇐⇒ 0C(TrFp[x]/ f (x)(x p+1))= 0 mod p.

This choice of h(x) was in some sense deceptively simple, because the roots ni

of the 0C were integers. (We used that the conjugacy classes of 5-cycles are self-
inverse in D10.) Generally, these roots would be algebraic integers of degree |C |.
For example, h(x)= x2 leads to

0[(12345)] = X2
+ 5X + 18 and 0[(12345)2] = X2

− 11X + 42,

and Tr(x p+2) is a root of one of them whenever f (x) mod p is irreducible.
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Notation. Throughout the paper we use the following notation:

K ground field
f (x) separable polynomial in K [x] of degree n
L some extension of K where f splits completely
a = [a1, . . . , an] ordered roots of f in L
K (a) field generated by the ai over K (a splitting field of f )
Ga Galois group of f , considered as a subgroup of Sn via its

permutation action on [a1, . . . , an].
[9] conjugacy class of 9 ∈ Ga.
p prime of K , when K is a global field
Fq residue field at p
Frobp any (arithmetic) Frobenius element at p in Ga
eF

a, 0,M F
a,9 see Definitions 2.2, 2.7, 3.4 and 4.3.

Recall that a global field is a finite extension of either Q or Fp(T ). The Frobenius
element in Gal(L/K ) at p is characterised by Frobp(x)≡ xq mod q for all x ∈ L
that are integral at some fixed prime q of L above p. The element Frobp is well-
defined modulo inertia and up to conjugation. In particular, its conjugacy class is
well-defined if p is unramified in L/K .

The symmetric group Sn acts on n-tuples by [c1, . . . , cn]
σ
=[cσ−1(1), . . . , cσ−1(n)].

It acts on the ring of polynomials in n variables K [x1, . . . , xn] by σ(xi ) = xσ(i);
thus, for a polynomial F ∈ K [x1, . . . , xn],

Fσ([c1, . . . , cn])= F([c1, . . . , cn]
σ−1
),

where F([ · ]) is the evaluation of F on the n-tuple. Note that all our actions are
left actions.

2. Isomorphisms of splitting fields

In this section we introduce our main tools. The reader who is only interested in
applications to Frobenius elements may skip to Section 5 and prove Theorem 5.3
directly (at the expense of not seeing the origins of 0C ).

As a motivation, consider the following general question:

Problem 2.1. Suppose a given separable polynomial f (x) ∈ K [x] of degree n
splits completely in L ⊃ K and L ′ ⊃ K . Given the roots a1, . . . , an and b1, . . . , bn

of f in L and L ′, find a bijection between them that comes from an isomorphism
of splitting fields of f inside L and L ′.

We assume that we know the Galois group of f over K as a permutation group on
the roots in L , but we do not want to construct the splitting fields explicitly. Instead,
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we will evaluate polynomials in K [x1, . . . , xn] on the roots in L and L ′ taken in
various orders and try to extract information out of the values (as in Example 1.3).

Definition 2.2. For F ∈ K [x1, . . . , xn] define the evaluation map Sn→ K (a) by

eF
a(σ )= F([a1, . . . , an]

σ ).

Definition 2.3. Let T be a subgroup of Sn . A T -invariant F is an element of
K [x1, . . . , xn] whose stabiliser is precisely T .

Remark 2.4. Any F ∈ K [x1, . . . , xn] is evidently T -invariant if we take for T its
stabiliser in Sn . Also, any subgroup T <Sn has a T -invariant, for example,

F =
∑
t∈T

mt , where m = xn−1
1 xn−2

2 · · · xn−1,

since clearly the stabiliser of m in Sn is {1}.

Lemma 2.5. Let F be a T -invariant and σ, τ ∈ Sn .

(1) eF
aτ (σ )= eF

a(στ).

(2) g(eF
a(σ ))= eF

a(σg−1) for g ∈ Ga.

(3) The map eF
a : Sn→ K (a) is constant on the right cosets Tσ .

Proof. (1) eF
aτ (σ )= F((aτ )σ )= F(aστ )= eF

a(στ).

(2) For g ∈ Ga,

g(eF
a(σ ))= g(F([a1, . . . , an]

σ ))= F([g(a1), . . . , g(an)]
σ )

= F(([a1, . . . , an]
g−1
)σ )= F([a1, . . . , an]

σg−1
) = eF

a(σg−1).

(3) For τ ∈ T ,

eF
a(τσ )= F([a1, . . . , an]

τσ )= F(([a1, . . . , an]
σ )τ )

= Fτ
−1
([a1, . . . , an]

σ )= F([a1, . . . , an]
σ ) = eF

a(σ ). �

Remark 2.6. Part (3) of the lemma says that the values of F on the various permu-
tations aσ of the roots are essentially the right cosets of T in Sn . It may accidentally
happen that the same value occurs on two right cosets, but it is always possible
to adjust the original polynomial f to prevent this (see Lemma 8.1c). Part (2) of
Lemma 2.5 says that the action of the Galois group Gal(K (a)/K ) on these values
translates into right multiplication by Ga. This motivates the following:

Definition 2.7. For a double coset D = Tσ0Ga in Sn , define the corresponding
“minimal polynomial”

0F
a,σ0
= 0F

a,D(X)=
∏

σ∈T \D

(X − eF
a(σ )) ∈ K [X ].

By Lemma 2.5(3), this is well-defined.
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Remark 2.8. Note that by Lemma 2.5(2), Ga permutes the linear factors of
0F

a,D transitively, so it is a power of an irreducible polynomial in K [X ]. If
eF

a : T \Sn→ K (a) is injective, then 0F
a,D(X) is irreducible, and hence the minimal

polynomial of eF
a(σ0).

Remark 2.9. The point is that the 0F
a,D(X) are K -rational objects, and they can

be used to compare different splitting fields:

Proposition 2.10. Let a, b be orderings of roots of f in two splitting fields of f ,
and let φ : K (a)→ K (b) be an isomorphism. If eF

a : T \Sn → K (a) is injective,
then for every double coset D ∈ T \Sn/Ga,

0F
a,D(F(b))= 0 ⇐⇒ b= [φ(a1), . . . , φ(an)]

σ for some σ ∈ D.

Proof. We have that 0F
a,D(F(b))= 0 if and only if F(b)= φ(x) for some root x of

0F
a,D in K (a). Such roots are eF

a(σ ) for some σ ∈ D, so

0F
a,D(F(b))= 0 ⇐⇒ F(b)= φ(eF

a(σ )) for some σ ∈ D

⇐⇒ F(φ−1(b))= eF
a(σ )= F(aσ )

⇐⇒ φ−1(b)= (aσ )τ = aτσ for some τ ∈ T

⇐⇒ b= φ(aσ
′

)= φ(a)σ
′

for some σ ′ ∈ D. �

Theorem 2.11. Let F be a Ga-invariant with eF
a : Ga\Sn → K (a) injective. If

F(b)= F(a) ∈ K , then ai 7→ bi defines an isomorphism K (a)→ K (b).

Proof. Take T = Ga and D the principal double coset Ga1Ga, and apply the
proposition. Since 0F

a,D(X)= X − F(a), we have 0F
a,D(F(b))= 0, so b= φ(a)σ

for some σ ∈ Ga and some isomorphism φ : K (a)→ K (b). Then φ ◦ σ is the
required isomorphism. �

Remark 2.12. This gives a solution to Problem 2.1:
Pick a Ga-invariant F , for instance using Remark 2.4. Adjusting f if necessary,

we may assume that eF
a : T \Sn → K (a) is injective (Lemma 8.1c). In L ′, keep

permuting the roots of f until F(b) becomes F(a) ∈ K . When this happens,
ai 7→ bi defines an isomorphism of the two splitting fields.

Note however, that in the worst case we are evaluating a polynomial with |G|
terms on |G\Sn/G| permutations. So the complexity is about n! operations, which
is impractical for large n.

Example 2.13 (D10-extensions). Suppose f (x) ∈ K [x] has degree 5, and Ga =

Gal( f/K ) is the dihedral group D10, generated by (12345) and (25)(34). Take

F(x1, . . . , x5)= x1x2+ x2x3+ x3x4+ x4x5+ x5x1.
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This is a T -invariant with T = Ga: It is clearly invariant under D10, and on the
other hand a permutation preserving F is determined by x1 7→ xi , x2 7→ xi±1, so
there are at most 10 choices. In particular, F(a1, . . . , a5) is invariant under the
Galois group, and so lies in K . Substituting the ai into F in all possible orders
gives the values

eF
a (σ

−1)= aσ(1)aσ(2)+ aσ(2)aσ(3)+ aσ(3)aσ(4)+ aσ(4)aσ(5)+ aσ(5)aσ(1).

Clearly each one occurs at least 10 times for varying σ ∈S5, corresponding to the fact
that eF

a factors through D10\S5. The assumption that the map eF
a : T \Sn→ K (a)

is injective simply says that there are no more repetitions, and there are 120/10= 12
distinct values.

Suppose that this is indeed the case, and let b1, . . . , b5 be the roots of f in some
other splitting field. If we substitute the bi in F in all possible orders bσ , we get
again 12 values, one of which is F(a1, . . . , a5) ∈ K . There are 10 isomorphisms
K (a)→ K (b) obtained from one another by composing with Galois. They are
determined by a 7→ bσ for 10 permutations σ ∈ Sn . Clearly, for each of these σ ,
we have F(bσ )= F(a). But, since every value is taken exactly 10 times, we have
the converse as well: if F(bσ )= F(a) for some σ ∈ Sn , then a 7→ bσ must define
an isomorphism of the splitting fields. So to find an isomorphism, we only need to
locate F(a) among the 12 values F(bσ ).

Note that the other values F(bσ ) are not in general K -rational, so we cannot
compare them with the values on a. Their minimal polynomials are the 0F

a,D(X)
for the 4 double cosets D10\S5/D10.

3. Recognising conjugacy in Galois groups

In questions such as computing Frobenius elements in Galois groups it is not
necessary to compare the roots in two splitting fields. It suffices to identify the
conjugacy class of a specific Galois automorphism:

Problem 3.1. Let f (x) ∈ K [x] be a separable polynomial that splits completely
in L ⊃ K , and suppose we know G = Gal( f/K ) as a permutation group on the
roots in L . If L ′ is another field where f splits completely and we are given a
permutation of the roots of f in L ′ that comes from some Galois automorphism,
find the conjugacy class of this automorphism in G.

Remark 3.2. An isomorphism φ of the two splitting fields of f induces an isomor-
phism of Galois groups G and G ′. We would like to identify an element B ∈ G ′

as an element A ∈ G. Note, however, that A depends on the choice of φ. As any
two isomorphisms differ by a Galois automorphism, the conjugacy class [A] is
well-defined and this is what we are after.
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It is easy to see that a solution to Problem 2.1 answers Problem 3.1 as well,
so this is a weaker question. However, we aim for a more practical solution (see
Remark 2.12). We may clearly restrict our attention to one cycle type in Sn . For
convenience, throughout the section we also fix a representative:

Notation 3.3. Fix an element ξ ∈ Sn and write Zξ <Sn for its centraliser.

Definition 3.4. Suppose 9 ∈ Sn is conjugate to ξ , in other words they have the
same cycle type, say ξ = σ09σ

−1
0 . For a T -invariant F and an ordering a of the

roots of f , define the polynomial

M F
a,9(X)=

∏
σ∈(Zξ∩T )\Zξσ0

0F
a,σ (X).

It is well-defined by Lemma 2.5(3). Note that Zξσ0 is the set of all permutations
that conjugate 9 to ξ ; in particular it is independent of the choice of σ0.

Remark 3.5. The situation we have in mind is that we have two sets of roots a and
b of f in different splitting fields. So there is an isomorphism φ : K (a)→ K (b),
but we do not have it explicitly. However, suppose we know that an automorphism
A∈Gal(K (a)/K ) corresponds to B∈Gal(K (b)/K ) under φ, and that they permute
the roots by

A(a)= a9, B(b)= bξ , 9, ξ ∈ Sn.

Then {aσ }σ∈Zξσ0 is the set of all reorderings of a on which A acts as ξ , and M F
a,9(X)

is the smallest K -rational polynomial that has F(aσ ) as roots for all such σ . But
φ−1(b)must be one of these reorderings because B acts on b as ξ . The upshot is that
M F

a,9(X) has F(b) as a root, and its construction does not require the knowledge
of φ. In other words, if M F

a,9(F(b)) 6= 0, then we know that A does not correspond
to B under any isomorphism. (In Section 4 we will take T = Zξ and turn this into
an if and only if statement.)

Lemma 3.6. Let φ : K (a)→ K (b) be an isomorphism of two splitting fields of f ,
and define ρ ∈ Sn by b= φ(aρ). Then M F

a,ρ−18ρ
= M F

b,8.

Proof. Write 9 = ρ−18ρ. Pick σ8 with ξ = σ88σ−1
8 , and let σ9 = σ8ρ, so that

σ99σ
−1
9 = σ8ρ9ρ

−1σ−1
8 = σ88σ

−1
8 = ξ.

By definition,

M F
b,8 =

∏
σ∈(Zξ∩T )\Zξσ8

0F
b,σ , M F

a,9 =
∏

σ∈(Zξ∩T )\Zξσ9

0F
a,σ .
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We claim that 0F
a,sσ9 = 0

F
b,sσ8 for s ∈ Zξ . First we show that they have the same

degree. Because Gb = ρGaρ
−1 by the definition of ρ,

deg0F
a,sσ9 = |T \T sσ9Ga| = |T \T sσ9Gaρ

−1
|

= |T \T sσ8ρGaρ
−1
| = |T \T sσ8Gb| = deg0F

b,sσ8 .

Since both polynomials are powers of irreducible ones, it now suffices to identify
one of the roots:

eF
a (sσ9)= eF

a (sσ8ρ)= F(asσ8ρ))= F(φ−1(b)sσ8))

= F(φ−1(bsσ8))= φ−1(F(bsσ8))= φ−1(eF
b (sσ8)). �

Corollary 3.7. The map 9 7→ M F
a,9 is constant on every conjugacy class of Ga

with cycle type ξ .

Proof. By the lemma above, M F
a,9 = M F

a,g9g−1 for g ∈ Ga. �

We now have an approach to Problem 3.1:

Proposition 3.8. Let a, b be orderings of the roots of f in two different splitting
fields, and suppose 9 ∈ Ga and 8 ∈ Gb have cycle type ξ . If the polynomials M F

a,ψ
are distinct for ψ in different conjugacy classes of Ga of cycle type ξ , then

there is an isomorphism K (a)→ K (b)
under which 9 corresponds to 8

⇐⇒ M F
a,9 = M F

b,8.

If , moreover, the M F
a,ψ are pairwise coprime, then this occurs precisely when

M F
a,9(F(b

σ ))= 0 for some (any) σ ∈ Sn with ξ = σ8σ−1.

Proof. “=⇒” is Lemma 3.6. For “⇐=”, pick any isomorphism φ :K (a)→K (b). The
polynomial M F

b,8 agrees with some M F
a,ψ by the lemma, and9 lies in the conjugacy

class of ψ by assumption. Composing φ with an automorphism of K (a)/K (which
corresponds to conjugating ψ) we obtain the required isomorphism. �

Example 3.9 (Serre’s trick [Buhler 1978; Roberts 2004]). Suppose char K 6= 2,
f ∈ K [x] has degree n, and Ga = Gal( f/K ) is the alternating group An . There is
a particularly nice T -invariant with T = An , a “square root of the discriminant”

F(x1, . . . , xn)=
∏
i< j

(xi − x j ).

The only double cosets TσGa in Sn are D = An and its complement D′ in Sn .
Clearly 0F

a,D(X) = X − F(a) and 0F
a,D′(X) = X + F(a), and F(a)2 =1 f is the

discriminant of f . So if b is the list of roots of f in some other splitting field, we
find that

ai 7→ bi defines an isomorphism
K (a)→ K (b)

⇐⇒

∏
i< j

(ai − a j )=
∏
i< j

(bi − b j ).
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This illustrates Theorem 2.11 in the case of An . To explain Proposition 3.8 in this
setting, suppose ξ ∈ Sn is a product of cycles of distinct odd degrees, so that there
are two conjugacy classes [91], [92] in Ga = An of cycle type ξ (for example
5-cycles in A5). Say σ191σ

−1
1 = ξ = σ292σ

−1
2 with σ1 ∈ An and σ2 /∈ An . In this

case Zξ ⊂ An = T , so

M F
a,91

(X)= 0F
a,σ1
(X)= 0F

a,D(X)= X − F(a),

M F
a,92

(X)= 0F
a,σ2
(X)= 0F

a,D′(X)= X + F(a).

Suppose again that b is the list of roots of f in some other splitting field, and
B ∈ Gal(K (b)/K ) is an automorphism of cycle type ξ . Rearranging the bi if
necessary, assume that B acts on the bi as ξ , that is, B(b)= bξ . The statement of
the proposition is that

B comes from [91] under an
isomorphism K (a)→ K (b)

⇐⇒

∏
i< j

(ai − a j )=
∏
i< j

(bi − b j ),

which is precisely Serre’s trick. The same invariant F may sometimes be used in
other subgroups of Sn to distinguish between the conjugacy classes of such cycle
types. (It determines whether the two classes are conjugate in An or not.)

4. The directed edges invariant

As before, suppose f (x) ∈ K [x] is separable and a = [a1, . . . , an] are its (ordered)
roots in a splitting field. We apply the results of Section 3 when T = Zξ , the
centraliser of ξ . This is particularly nice for two reasons: First, the polynomials
M F

a,ψ of Proposition 3.8 are irreducible and distinct, and second, it is easy to write
down a T -invariant with just n terms and of degree 3 (compare the polynomials in
Remark 2.4 and Example 4.2).

Proposition 4.1. Let ξ ∈ Sn with centraliser Zξ . Suppose that F is a Zξ -invariant
such that eF

a : Zξ \ Sn→ K (a) is injective. Let 9,9 ′ ∈ Ga be two elements of cycle
type ξ . Then

(1) M F
a,9 is irreducible, and equals 0F

a,σ for any σ ∈ Sn with ξ = σ9σ−1.

(2) M F
a,9 has degree |[9]|.

(3) M F
a,9 = M F

a,9 ′ if and only if 9 and 9 ′ are conjugate in Ga.

Proof. For brevity, write Z = Zξ . Pick σ, σ ′ ∈ Sn with σ9σ−1
= ξ = σ ′9(σ ′)−1.

(1) By definition,
M F

a,9 =
∏

τ∈(Z∩Z)\Zσ

0F
a,τ = 0

F
a,σ .

It is irreducible by the assumed injectivity of eF
a ; see Remark 2.8.
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(2) By definition,

deg0F
a,σ = |Z\ZσGa| =

|ZσGa|

|Z |
=
|σ−1 ZσGa|

|Z |

=
|Ga|

|Ga∩σ−1 Zσ |
=

|Ga|

|CentGa(9)|
= |[9]|.

(3) If 9 and 9 ′ are conjugate, then M F
a,9 = M F

a,9 ′ by Corollary 3.7. Conversely,
suppose that M F

a,9 = M F
a,9 ′ . Since eF

a is injective, ZσGa = Zσ ′Ga, so σ ′ = sσg
for some s ∈ Z and g ∈ Ga. Then

9 ′ = (σ ′)−1ξσ ′ = g−1σ−1s−1ξsσg = g−1σ−1ξσg = g−19g,

so [9 ′] = [9]. �

Example 4.2 (the directed edges invariant). Let ξ ∈ Sn and fix a polynomial
h ∈ K [x] of degree at least 2. Define

F(x1, . . . , xn)=

n∑
j=1

h(x j ) xξ( j).

It can be visualised as the directed edges in a graph that define the action by ξ . For
instance, for ξ = (1234)(56) ∈ S6 and h(x)= x2,

1 4

2 3

5 6
6

-

?�

-�

F = x2
1 x2+ x2

2 x3+ x2
3 x4+ x2

4 x1+ x2
5 x6+ x2

6 x5

It is clearly a Zξ -invariant.

Definition 4.3. Fix h(x) ∈ K [x]. For each conjugacy class C in Ga define

0C(X)=
∏
σ∈C

(
X −

n∑
j=1

h(a j )σ (a j )
)
.

Lemma 4.4. Let F be as in Example 4.2. Then for every 9 ∈ Ga,

M F
a,9(X)= 0[9](X).

Proof. Pick σ ∈ Sn with σ9σ−1
= ξ . First, suppose τ ∈ [9] and uτ ∈ Sn satisfies

u−1
τ ξuτ = τ . Then

eF
a(uτ )= F(auτ )=

∑
i

h(au−1
τ (i))au−1

τ (ξ(i))=
∑

j

h(a j )au−1
τ ξuτ ( j)=

∑
j

h(a j )τ (a j ).
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On the other hand, note that for t ∈ Zξ and g ∈ Ga,

(tσg)−1ξ(tσg)= g−1σ−1t−1ξ tσg = g−1σ−1ξσg = g−19g.

So for τ = g−19g ∈ [9],

{uτ ∈ Sn|u−1
τ ξuτ = τ } = Zξσg,

because the left-hand side is clearly some right coset of Zξ . This equality gives a
correspondence between [9] and Zξ\ZξσGa. So

M F
a,9(X)= 0

F
a,σ (X)=

∏
u∈(Zξ\ZξσGa)

(X − eF
a(u))

=

∏
τ∈[9]

(
X −

n∑
j=1

h(a)τ (a j )
)
= 0[9](X). �

Corollary 4.5. Let a, b be orderings of the roots of f in two different splitting
fields, and let 9 ∈ Ga and 8 ∈ Gb. If the 0C(X) are pairwise coprime for different
conjugacy classes of Ga, then

there is an isomorphism K (a)→ K (b)
under which 9 corresponds to 8,

⇐⇒ 0[9]
(∑

j h(b j )8(b j )
)
= 0.

The condition that the 0C are coprime is satisfied for h(x) in a Zariski dense open
set in the space of all polynomials of degree at most n− 1.

Proof. The equivalence follows from Proposition 3.8 and the lemma above. For the
last assertion apply Lemma 8.2. �

Example 4.6. Take f (x)= x4
+ 14 over Q. It splits completely over L =Q5 and

L ′ = C, with roots in Q5

a1= 1+3 ·5+2 ·52
+· · · , a2= 2+2 ·5+0 ·52

+· · · , a3=−a1, a4=−a2,

and
b1 =

4
√
−14, b2 = i 4

√
−14, b3 =−

4
√
−14, b4 =−i 4

√
−14

in C (with, say, Arg b1 = π/4). The Galois group of f is G = D8, which we
view as a subgroup of S4 via the action on the ai . It is generated by the 4-cycle
a1 7→ a2 7→ a3 7→ a4 7→ a1 and the transposition a1↔ a3. We will illustrate how to
identify the conjugacy class of complex conjugation b1↔ b4, b2↔ b3 in G, using
the polynomials 0C(x).

There are two conjugacy classes of double transpositions in G, namely C1 =

{(12)(34), (14)(23)} and C2 = {(13)(24)}. Let h(x)= x and compute

0C1(X)= (X − (2a1a2+ 2a3a4))(X − (2a1a4+ 2a2a3))= X2
− 224,

0C2(X)= X − (2a1a3+ 2a2a4)= X.
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These are coprime, and Corollary 4.5 applies:

4∑
j=1

b j b̄ j = 2b1b4+ 2b2b3 =
√

224

is a root of 0C1(X), so complex conjugation corresponds to an element of C1.
Note that the coefficients of the 0C(X) were computed as 5-adic numbers. Since

they are integers and we can bound them from the (complex) absolute values of the
roots of f , they can be identified exactly.

5. Frobenius elements

Now suppose K is a global field. We turn to our initial problem of computing
Frobenius elements in Galois groups. We use the following remarkable property of
the directed edges invariant:

Proposition 5.1. Let f (x) ∈ Fq [x] be a polynomial with roots a1, . . . , an ∈ Fq

counted with multiplicity, and let φ = Frobq ∈ Gal(Fq/Fq). For every polynomial
h(x) ∈ Fq [x],

n∑
j=1

h(a j )φ(a j )= TrA/Fq (h(X)X
q),

where X is the class of x in the algebra A = Fq [x]/ f .

This is an immediate consequence of the lemma below (with H(x)= h(x)xq ).

Lemma 5.2. Let k be a field and f (x)∈ k[x] a polynomial with roots a1, . . . , an ∈ k̄
counted with multiplicity. Then for every H(x) ∈ k[x],

n∑
j=1

H(a j )= TrA/k(H(X)),

where X is the class of x in A = k[x]/ f .

Proof. Consider X as a linear map A→ A, Y 7→ XY . Its minimal polynomial
is f , since f (X)= 0 but no linear combination of 1, X, . . . , Xn−1 is zero. So the
generalised eigenvalues of X are exactly the ai , and those of H(X) are therefore
H(ai ) (look at the Jordan normal form of X over k̄). The result follows. �

Theorem 5.3 (generalised Euler’s criterion). Let K be a global field and let
f (x) ∈ K [x] be a separable polynomial with roots a1, . . . , an in K and Galois
group G. Fix h(x) ∈ K [x] and for each conjugacy class C of G, set

0C(X)=
∏
σ∈C

(
X −

n∑
j=1

h(a j )σ (a j )
)
.
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(a) The polynomials 0C(X) have coefficients in K .

(b) Let p be a prime of K with residue field Fq , and C a conjugacy class of G. If
p does not divide the denominators of the coefficients of f and h, the leading
coefficient of f and the resultants Res(0C , 0C ′) for C ′ 6=C , then the coefficients
of 0C(X) are integral at p and

Frobp ∈ C ⇐⇒ 0C
(
Tr Fq [x]

f (x) /Fq
(h(x)xq)

)
= 0 mod p.

(c) For all h(x) in some Zariski dense open set in the space of polynomials of
degree at most n− 1, we have Res(0C , 0C ′) 6= 0 for every pair of conjugacy
classes C 6= C ′.

Proof. (a) This follows from Lemma 4.4, Definition 3.4 and Remark 2.8.

(b) 0C(X) is clearly integral at the required primes.
=⇒: If Frobp ∈C then

∑n
j=1 h(a j )Frobp(a j ) is a root of 0C(X) by the definition

of 0C , and it reduces mod p to Tr(Fq [x]/ f (x))/Fq (h(x)x
q) by Proposition 5.1.

⇐=: The polynomial 0C(X) is distinguished from the others by any one of its
roots mod p by the assumption that p- Res(0C , 0C ′) for C 6= C ′.

(c) Apply Lemma 8.2. �

Remark 5.4 (choice of h). If the resultants Res(0C , 0C ′) are nonzero, then Theorem
5.3(b) describes the Frobenius element for all but finitely many primes p. If one of
the resultants vanishes, or equivalently, 0C has a common factor with some 0C ′ , the
statement does not apply to C for any p. However, this is rare and easily avoided
by choosing a different h; most choices will work by Theorem 5.3(c).

Alternatively, for any fixed h with 1< deg h < n it is possible to replace f by
another polynomial f̃ of degree n with the same splitting field so that the resulting
0C are coprime. To see this, consider

γC(X)=
∏
σ∈C

(
X −

n∑
j=1

h(x j )xσ( j)

)
,

and note that they are coprime as polynomials in X over K (x1, . . . , xn). Now apply
Lemma 8.1(b) to F1 =

∏
C 6=C ′ Res(γC , γC ′) and F2 = 0. We obtain a Zariski dense

open set of polynomials B(t) of degree at most n−1 for which f̃ =
∏

j (x−B(a j ))

works.

Remark 5.5 (Euler’s criterion). The classical criterion

a(p−1)/2
≡

(a
p

)
mod p
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says that a(p−1)/2
=±1 determines whether x2

− a has a root modulo p. Similarly,
to see whether x3

−a has a root modulo p ≡ 1 mod 3 one checks whether a(p−1)/3

is 1 or another third root of unity in F×p , etc.
One can reformulate this as a matrix statement: Take a 2× 2 matrix M with

minimal polynomial x2
− a (respectively 3× 3 and x3

− a). Then M p−1 is the
scalar matrix with a(p−1)/2 or a(p−1)/3, respectively, on the diagonal, so its trace
determines whether the polynomial has a root in Fp; for example, for x3

− a the
distinction is whether 1

3 Tr M p−1 is 1 or a root of x2
+ x + 1.

Theorem 5.3 generalises this to arbitrary polynomials over global fields. Observe
that for a polynomial

f (x)= xn
+ cn−1xn−1

+ · · ·+ c0,

the trace in the theorem can be interpreted as a trace of a matrix, for instance,

Tr Fq [x]
f (x) /Fq

(xd)= Tr


−c0

1 −c1
. . .

...

1 −cn−1


d

mod q.

Therefore (a minor modification of) the trace Tr Mq−1 for a matrix M with minimal
polynomial f determines the splitting behaviour of f mod p and the conjugacy
class of Frobenius, in the same way as above. See also Sections 1 and 7.

Remark 5.6 (ramified primes). The condition that p does not divide any resultant
Res(0C , 0C ′) excludes all primes that ramify in the splitting field of f over K .
Indeed, if σ 6= 1 is an element of inertia at q for some q|p, it is easy to see that 0[1]
and 0[σ ] have a common root mod p.

Remark 5.7 (extending to all p). In order to deal with the primes dividing the
resultants, we may work over the completion Kp instead of the residue field Fq .
Compute the splitting field L/Kp of f and the roots b1, . . . , bn . Choose a lift 9 of
the Frobenius element in Gal(L/Kp) and evaluate

n∑
j=1

h(b j )9(b j ).

This number is now a root of precisely one of the 0C , and this C is the conjugacy
class of the chosen Frobenius lift 9. (See Corollary 4.5.)

Remark 5.8 (Artin L-functions). Suppose L/K is a Galois extension of number
fields with Galois group G, represented as a splitting field of some polynomial
f (x) ∈ K [x]. Recall that a complex representation ρ of G is called an Artin



1342 Tim and Vladimir Dokchitser

representation. It has an L-series defined by the Euler product over all primes of K ,

L(ρ, s)=
∏
p

1
Pp(q−s)

.

Here q is the size of the residue field at p and Pp(T ) = det(1− Frobp T | ρ Ip) is
the inverse characteristic polynomial of Frobenius on the subspace of ρ fixed by
the inertia group Ip at p.

Theorem 5.3 and Remark 5.7 allow us to explicitly compute the coefficients of
such L-series. For the unramified primes, they recover the conjugacy class of Frobp
in G, which determines the local polynomial Pp(T ). For the ramified primes, it
suffices to find the restriction of ρ to the local Galois group Gp at p with respect
to an embedding Gp ↪→ G as a decomposition group. Assuming we can find Gp,
Remark 5.7 enables us to identify the conjugacy class in G of any element of Gp,
under this embedding. This is sufficient to compute the character of ρ on Gp, and
thus also ρ Ip and Pp(T ). Note that we have not actually found the decomposition
group at p as a subgroup of G, which appears to be a harder problem.

This algorithm to compute Frobenius elements and L-series of Artin representa-
tions has now been implemented in Magma [Bosma et al. 1997]. For the functional
equation of the L-series one also needs to identify the conjugacy class of the
complex conjugation. If G is represented as acting on the roots of f in a p-adic
field, this can be done with the same method. (See Corollary 4.5 and Example 4.6.)

Remark 5.9 (complexity). From the complexity point of view, the computation of
Frobenius elements for “good” primes has two steps:

One is the initial precomputation of the polynomials 0C , each of which takes
O(n|C |) operations in some field containing the a j (for instance C or Qp). This
needs to be done for all conjugacy classes that are not determined by their cycle
type.

The second step deals with a specific prime p of K with residue field Fq . We
determine the cycle type of Frobp by computing gcd( f, xq j

−x) for j ≤ n/2, which
takes O(n log q) multiplications of n× n matrices over Fq . Then we evaluate the
trace Tr(h(x)xq) with another O(n + log q) matrix multiplications. Finally, we
substitute the trace into all 0C corresponding to the cycle type of Frobp, which is
O(d) coefficient reductions and multiplications in Fq , where d is the number of
elements in G of this cycle type.

Here is as an illustration for polynomials of degree at most 11. There are 474
transitive groups G on at most 11 points, for each of which we took a polynomial
f ∈ Q[x] with Gal f = G as a permutation group on the roots. (We used the
database in Magma [Bosma et al. 1997, V2.16].) For each G we computed Frobp

for all p< 100000 with p -1 f , using Serre’s trick (Example 3.9) and the algorithm
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above. Together with the Galois group computation and the precomputation of
the 0C this took under 15 seconds on a 3GHz dual-core CPU for each G, with
only four exceptions: G = A2

5 oC2, A2
5 oC2

2, A2
5 oC4 and M11. These took 17,

254, 1512 and 61 seconds respectively, with approximately 10–30 seconds taken
by computing Frobenius elements and the rest by precomputing the 0C(x). These
four groups have large conjugacy classes of the same cycle type (the largest being
the two classes of size 1800 for A2

5 oC4).

Remark 5.10 (additional symmetries). Suppose all conjugacy classes of elements
of some order o and a fixed cycle type are closed under the power maps g 7→ gk

for k in some nontrivial subgroup H ⊂ (Z/oZ)× (for instance they are self-inverse,
like in dihedral groups). Then one may replace 0C(X) in Theorem 5.3 by

∏
σ

(
X −

n∑
j=1

h(a j )
(∑

k∈H

σ k(a j )
))
,

taking the product over some representatives for C modulo the action of H , and
modifying the trace accordingly. In practice, this speeds up the computation of
the 0C , as their degree drops by a factor of |H |.

6. Examples: Abelian groups

If the Galois group is abelian, its conjugacy classes are of size 1, and all the 0C of
Theorem 5.3 are linear, that is, 0C(X)= X −rC with rC ∈ K . For a good choice of
h(x) and all but finitely many primes p, the trace Tr(h(x)xq) agrees with exactly
one of the rC modulo p, which then determines the conjugacy class of Frobp.

In the examples below, ζn denotes a primitive n-th root of unity.

Example 6.1. Let K =Q(i) and

f (x)= x4
+ 2x3

+ (3+ 3i)x2
+ 4i x − 1+ i.

Its complex roots are

a1 =−0.31795− 0.57510i, a2 = 0.50870− 1.1289i,

a3 =−1.4682+ 1.8471i, a4 =−0.72255− 0.14308i,

to 5 decimal places. The splitting field L is a C4-extension of Q(i), non-Galois
over Q, and the Galois group of L/K is 〈(1234)〉 < S4. Take h(x) = x2. An
elementary computation gives

0[id] = X − (10+ 6i), 0[(1234)] = X − (4+ 4i),

0[(13)(24)] = X − (−2+ 2i), 0[(1432)] = X + 8.
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For a prime p 6= (1+ i), (2− i), (3) (the primes dividing rC − rC ′ for C 6= C ′) with
residue field Fq , we deduce that the Frobenius at p is determined by

Tr(Fq [x]/ f (x))/Fq (x
q+2)≡ 10+ 6i 4+ 4i −2+ 2i −8

Frobp = id (1234) (13)(24) (1432)

Example 6.2 (Kummer extensions). Suppose ζ = ζn ∈ K and L = K ( n
√

s ) is a
Kummer extension of degree n. It is abelian with Galois group Cn whose elements
are determined by

σi :
n
√

s 7→ ζ i n
√

s for i = 1, . . . , n.

Take f (x)= xn
− s and h(x)= xn−1. Then

0[σi ](X)= X −
n∑

j=1

h(ζ j n
√

s )σi (ζ
j n
√

s )= X − ns · ζ i .

For a prime p of K with residue field Fq , because n |q − 1, we have

Tr(Fq [x]/ f (x))/Fq (h(x)x
q)= Tr(Fq [x]/xn−s)/Fq (x

q+n−1)

= Tr(Fq [x]/xn−s)/Fq (s
(q−1)/n+1)= ns · s(q−1)/n.

So Theorem 5.3 says that for p- ns,

Frobp = σi ⇐⇒ s(q−1)/n
≡ ζ i mod p,

which is the classical criterion for Kummer extensions.

Example 6.3 (Q(ζp)/Q). Let ζ = ζp for some prime p > 2, and take

K =Q, L =Q(ζ ), f (x)= x p−1
+ · · ·+ x + 1.

Thus Gal(L/K )∼= (Z/pZ)×, with elements σi : ζ 7→ ζ i for i = 1, . . . , p− 1. For
h(x)= x2 we have 0[σi ](X)= X − ri with ri ∈Q given by

ri =

p−1∑
j=1

(ζ j )2σi (ζ
j )=

p−1∑
j=1

ζ j (2+i)
=

{
−1 if i 6= p− 2,
p− 1 if i = p− 2.

For a prime q of Q,

Tr(Fq [x]/ f (x))/Fq (h(x)x
q)= Tr(Fq [x]/ f (x))/Fq (x

q+2)≡ Tr(Z[x]/ f (x))/Z(xq+2) mod q

≡ TrF/Q(ζ
q+2)≡

{
−1 mod q if p - q + 2,
p− 1 mod q if p |q + 2.

Hence Theorem 5.3(b) shows that for all q 6= p,

Frobq = σp−2 ⇐⇒ q ≡−2 mod p.
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The same computation with h(x)= x p−k for varying k yields the classical criterion

Frobq = σk ⇐⇒ q ≡ k mod p.

Note that none of these h(x) work for all conjugacy classes simultaneously, because
the 0[σ j ] are not coprime. This tends to happen when the roots of f are “too nice”
and h(x) is “too simple”. By Lemma 8.2, most h do work. In our example, a
general polynomial

h(x)= λ1x p−1
+ · · ·+ λp−1x + λp has 0[σi ](X)= X + h(1)− pλi ,

and these are distinct if and only if λ1, . . . , λp−1 are. The primes to which the
theorem then applies are those not dividing p

∏
(λi − λ j ).

Example 6.4 (cyclotomic extensions). In general, suppose L = K (ζn) is some
cyclotomic extension, and f (x) is the minimal polynomial of ζn over K . As
in the previous example, G = Gal(L/K ) ↪→ (Z/nZ)×, and we write σi for the
automorphism with σi (ζn) = ζ

i
n . We do the same computation as above: For

h(x)= xk and p a prime of K with residue field Fq ,

0[σi ](X)= X −
∑
g∈G

g(ζn)
kσi (g(ζn))= X −

∑
g∈G

g(ζn)
k+i
= X −TrL/K (ζ

k+i
n ),

Tr(Fq [x]/ f (x))/Fq (x
k+q)≡ TrL/K (ζ

k+q
n ) mod p.

Because TrL/K (ζ
j

n ) is |G| precisely when n | j , the polynomial 0[σn−k ] differs from
all the other 0[σ j ], and we find that

Frobp = σn−k ⇐⇒ q ≡ n− k mod n

for almost all p. (One may improve “almost all” to “all p- n” by taking several h.)

Remark 6.5. The fact that we obtained a simple formula for Frobenius elements for
cyclotomic and Kummer extensions relied on the existence of a universal expression
for the trace Tr(h(x)xq) mod p. It follows from class field theory that there are
such formulas in all abelian extensions.

For instance, consider Example 6.1 of a C4-extension of K = Q(i) from the
point of view of class field theory. There the conductor of L/K is

N = (1+ i)4(2− i)= 8− 4i,

and the group (OK /N )× is C4×C4×C2, with generators i , 7 and 3− 2i , respec-
tively. For a prime p = (α) ⊂ Z[i] not dividing N , if α ≡ ia7b(3− 2i)c mod N ,
then Frobp = (1234)b.
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Now compare this with the description of Frobenius in Example 6.1. Writing
Fq = Z[i]/p and Tr for Tr(Fq [x]/ f (x))/Fq , we get 4 congruences for the traces:

p= (α), α ≡ ia70(3− 2i)c mod N ⇐⇒ Tr(xq+2)≡ 10+ 6i mod p,

p= (α), α ≡ ia71(3− 2i)c mod N ⇐⇒ Tr(xq+2)≡ 4+ 4i mod p,

p= (α), α ≡ ia72(3− 2i)c mod N ⇐⇒ Tr(xq+2)≡−2+ 2i mod p,

p= (α), α ≡ ia73(3− 2i)c mod N ⇐⇒ Tr(xq+2)≡−8 mod p

for p 6= (1+ i), (2− i), (3).
Note that if one had a way to prove these congruences directly, one would have

a proof of Artin reciprocity in the extension L/K .

7. Examples: Nonabelian groups

We continue with examples to Theorem 5.3. When G is nonabelian, the only
difference is that the 0C are no longer linear.

Example 7.1. Let K = Q and f (x) = x3
− 2. It has Galois group S3 and roots

a1 =
3
√

2, a2 = ζ
3
√

2 and a3 = ζ
2 3
√

2, where ζ is a primitive cube root of unity.
Take h(x)= x2/6 (the factor 1

6 is only chosen for convenience) and compute the
polynomials 0C for the three conjugacy classes:

0[id] = X − 1
6(a

2
1a1+ a2

2a2+ a2
3a3)

= X − 1,

0[(12)] = (X − 1
6(a

2
1a2+ a2

2a1+ a3
3))(X −

1
6(a

2
1a3+ a3

2 + a2
3a1))

· (X − 1
6(a

3
1 + a2

2a3+ a2
3a2))

= (X − 1
3(ζ + ζ

2
+ 1))(X − 1

3(ζ
2
+ 1+ ζ ))(X − 1

3(1+ ζ + ζ
2))

= X3,

0[(123)] = (X − 1
6(a

2
1a2+ a2

2a3+ a2
3a1))(X − 1

6(a
2
1a3+ a2

2a1+ a2
3a2))

= (X − 1
3(ζ + ζ + ζ ))(X −

1
3(ζ

2
+ ζ 2
+ ζ 2))= (X − ζ )(X − ζ 2)

= X2
+ X + 1.

On the other hand, for a rational prime q = 3m+ k with k = 1 or 2,

Tr(Fq [x]/x3−2)/Fq

( 1
6 xq+2)

= Tr
( 1

6 2m+1xk−1)
=

{
2m if k = 1,
0 if k = 2

=

{
2(q−1/3) if q ≡ 1 mod 3,
0 if q ≡ 2 mod 3.
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The conclusion of Theorem 5.3 is that, as expected, for q 6= 2, 3,

q ≡ 1 mod 3, 2 ∈ (Fq)
×3

=⇒ Frobq = id,

q ≡ 1 mod 3, 2 /∈ (Fq)
×3

=⇒ Frobq ∈ [(123)],

q ≡ 2 mod 3 =⇒ Frobq ∈ [(12)].

Clearly, an identical computation goes through for f (x)= x3
−c (with h(x)= x2/3c)

over any global field K with ζ 6⊂ K .

We can also take a general cubic polynomial and obtain an analogue of Euler’s
criterion for its factorisation modulo primes:

Theorem 7.2. Let f (x) = x3
+ bx + c be a separable cubic polynomial over a

global field K , and p a prime of K with residue field Fq . Write

T = Tr(Fq [x]/ f (x))/Fq (x
q+1)= Tr

0 0 −c
1 0 −b
0 1 0

q+1

mod p.

If p does not divide 3b(4b3
+ 27c2) and the denominators of b and c, then

T ≡−2b mod p ⇐⇒ f (x) has 3 roots mod p,

T ≡ b mod p ⇐⇒ f (x) is irreducible mod p,

T is a root of x3
− 3b2x − 2b3

− 27c2
⇐⇒ f (x) has 1 root mod p.

Proof. We compute the polynomials 0C for G = S3, h(x) = x by expressing
their coefficients in terms the elementary symmetric functions a1 + a2 + a3 = 0,
a1a2+ a2a3+ a3a1 = b and a1a2a3 =−c:

0[id] = X − (a2
1 + a2

2 + a2
3)= X − (a1+ a2+ a3)

2
+ 2(a1a2+ a1a3+ a2a3)

= X + 2b,

0[(12)] = (X − (a1a2+ a2a1+ a2
3))(X − (a1a2+ a2a1+ a2

3))

· (X − (a1a2+ a2a1+ a2
3))

= X3
− 3b2 X − 2b3

− 27c2,

0[(123)] = (X − (a1a2+ a2a3+ a3a1))(X − (a1a3+ a2a1+ a3a2))

= (X − b)2.

The least common multiple of their pairwise resultants is 3b(4b3
+ 27c2), which

completes the proof by Theorem 5.3. �

An identical computation can be done for polynomials of higher degree, as
long as one has the patience to work out the coefficients of the 0C . Here is the
corresponding result for quartics:
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Theorem 7.3. Let f (x) = x4
+ bx2

+ cx + d be a separable quartic polynomial
over K , and p a prime of K with residue field Fq . Then the value

Tr Fq [x]
f (x) /Fq

(xq+1)

is a root of one of the polynomials

0[id] = X + 2b,

0[(12)(34)] = X3
− 2bX2

− 16d X + 32bd − 8c2,

0[(12)] = X6
+ 4bX5

+ (2b2
+ 8d)X4

+ (−12b3
+ 48bd − 26c2)X3

− (23b4
− 120b2d + 108bc2

+ 112d2)X2

− (16b5
− 128b3d + 138b2c2

+ 256bd2
+ 216c2d)X − 4b6

+ 48b4d − 56b3c2
− 192b2d2

− 288bc2d − 27c4
+ 256d3,

0[(123)] = X4
+ (−2b2

+ 8d)X2
− 8c2 X + b4

− 8b2d + 8bc2
+ 16d2,

0[(1234)] = X3
− 2bX2

+ (b2
− 4d)X + c2.

If p does not divide the denominators of b, c and d and the pairwise resultants of
the 0C , then this determines the degrees in the factorisation of f mod p: They are
the cycle lengths of the permutation in the index of 0.

A theorem of Brumer (see [Jensen et al. 2002, Theorem 2.3.5]) states that any
Galois extension L/K with Galois group G = D10 is a splitting field of

fa,b(x)= x5
+ (a− 3)x4

+ (b− a+ 3)x3
+ (a2

− a− 1− 2b)x2
+ bx + a

for some a, b ∈ K . Using a similar argument to G = S3 and S4, we find:

Theorem 7.4. Suppose L/K is the splitting field of fa,b(x) as above, with

G = Gal(L/K )∼= D10.

If p is a prime of K with residue field Fq , not dividing 3a−b+1 and the denominators
of a and b and such that f mod p is irreducible, then

Tr Fq [x]
f (x) /Fq

(xq+1)

is either−2a+b+1 or a+2 modulo p. This determines which of the two conjugacy
classes of 5-cycles contains Frobp .

Remark 7.5. In this setting, if Frobp is not a 5-cycle, it is either the identity or an
element of order 2. In the former case,

Tr Fq [x]
f (x) /Fq

(xq+1)= a2
− 4a− 2b+ 3 mod p;
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in the latter the trace is a root of

0[(23)(45)]

= X5
− (a− 3)2 X4

+ (31− 2a3
+ 4b− 3b2

+ a2(11+ 2b)− 2a(21+ 2b))X3

+ (12a3(3+ 2b)− a2(137+ 44b)+ a(114+ 6b− 28b2)

− 51+ 7a4
− 4a5

− 20b+ 14b2
− 2b3)X2

+ (40+ 16a5
− 8a6

+ 32b− 17b2
− 4b3

+ a4(58+ 42b)+ a2(182+ 18b− 52b2)

+ 4a3(−49− 21b+ b2)− 2a(65+ 13b− 17b2
+ 6b3))X

+ 8a6
− 4a7

+ 4a5(7+ 5b)− 4a4(32+ 17b)+ 2a3(123+ 85b+ 4b2)

−a2(245+218b+24b2)−2a(−30−6b+51b2
+22b3)+2(−6−8b+3b2

+b3
−4b4).

Example 7.6. Here is another example, to illustrate what the 0C look like in
general. Take K = Q and L = Q(E[3]), the 3-torsion field of the elliptic curve
E : y2

+ y = x3
− x2. Then Gal(L/K )∼= GL2(F3), and L is the splitting field of

f (x)= x8
− 9x7

+ 18x6
+ 33x5

− 93x4
− 15x3

− 23x2
− 36x − 27.

The 0C for h(x)= x2 are

0[id] = X−144,
0[(13)(24)(56)(78)] = X−3,
0[(24)(57)(68)] = X12

−699X11
+204666X10

−32922129X9
+3212225793X8

−196600821903X7
+7340079612456X6

−145234777501584X5

+566948224573848X4
+26747700562448082X3

−187604198442957555X2
−2946247136394353892X
−24290099658154516203,

0[(148)(273)] = X8
−546X7

+120102X6
−14088342X5

+989228043X4

−43566817716X3
+1248800990265X2

−21583664066961X
+167939769912993,

0[(1432)(5768)] = X6
−258X5

+26448X4
−1344378X3

+34859664X2

−445164021X+2926293624,
0[(174382)(56)] = X8

−264X7
+29292X6

−1698042X5
+51288993X4

−654852960X3
+3360584547X2

−277935306777X+7299371089503,
0[(15473628)] = X6

−258X5
+26250X4

−1336755X3
+35700471X2

−477465444X+2707751520,
0[(16483527)] = X6

−258X5
+28230X4

−1674048X3
+57362760X2

−1097286921X+9616023198.

Example 7.7. As an indication of the kind of Artin L-series that may be numer-
ically computed, we give an example with a big Galois group over Q. We take
G=PGSp(4, F3) of order 51840, realised through the Galois action on the 3-torsion
of the Jacobian of a genus 2 curve, and evaluate the Artin L-series of an irreducible
6-dimensional representation of G.
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Specifically, G is the unique double cover of the simple group Sp(4, F3)/F
×

3 in
PGL(4, F3)= GL(4, F3)/F

×

3 . To obtain it as a Galois group, take the hyperelliptic
curve

C/Q : y2
− (x2

+ 1)y = x5
− x4
+ x3
− x2.

Consider the field Q(J [3]) obtained by adjoining to Q the coordinates of the 3-
torsion points of its Jacobian J/Q. Then Gal(Q(J [3])/Q) is GSp(4, F3). The group
we want is G =GSp(4, F3)/{±1}, and it can be obtained from the Galois action on
the 40 lines through the origin in J [3]. Specifically, if (P)+ (Q)− 2(O) ∈ J [3] is
a nonzero point with P = (xP , yP), Q = (xQ, yQ), the minimal polynomial f of
xP xQ over Q has Galois group G;

f = x40
+ 27x39

+ 39x38
− 61x37

+ · · ·+ 2259x3
+ 3471x2

+ 1057x + 69.

In its action on the roots of f , the group has several conjugacy classes of the same
cycle type, and the largest 0C that we need has degree 2160 (using Remark 5.10).

The group has two irreducible 6-dimensional representations, ρ and ρ ′ (whose
traces on elements of order 10 in G are +1 and −1, respectively). The curve C

has good reduction outside 2 and 3, so L/Q is unramified at all primes p 6= 2, 3.
The conductor of ρ is 210317 and we used our machinery to compute the local
polynomials for the Artin L-series L(ρ, s) for primes up to 410203. Using Magma
[Bosma et al. 1997], we then evaluate

L(ρ, 1)≈ 1.852529796, L(ρ, 2)≈ 1.119877506,

to 10-digit precision. This computation relies implicitly on the validity of Artin’s
conjecture for ρ. It took half an hour on a 3GHz dual-core CPU to compute
Gal( f/Q), 5 hours for the 0C , 3 hours for the local information at p = 2, and
3 (ramification groups, conductor exponents etc.), 3 minutes for the Frobenius
elements and the local polynomial computation and half an hour for each of the
L-values.

8. Appendix: Two lemmas on Zariski density

Lemma 8.1. Suppose K is an infinite field, f ∈ K [t] is a separable polynomial of
degree n and a1, . . . , an are its roots in some splitting field L.

(a) If F,G ∈ K [x1, . . . , xn] take the same values on

x1 = β0+β1a1+ · · ·+βn−1an−1
1 , . . . , xn = β0+β1an + · · ·+βn−1an−1

n

for all [β1, . . . , βn] ∈ K n , then F = G.

(b) Suppose F1, . . . , Fd ∈ K [x1, . . . , xn] are distinct. There exists a polynomial
B(t)= β0+· · ·+βn−1tn−1

∈ K [t] such that B(a1), . . . , B(an) generate L and
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the Fi take distinct values on [B(a1), . . . , B(an)]. The set of such B contains
a Zariski dense open subset of K ⊕ K t ⊕ · · ·⊕ K tn−1.

(c) Let F be a T -invariant for some T <Sn . There is a Zariski dense open set of
polynomials B(t) ∈ K ⊕K t⊕· · ·⊕K tn−1 for which a′ = [B(a1), . . . , B(an)]

generate L and eF
a′ : T \Sn→ L is injective.

Proof. (a) Let U = K (t1, . . . , tn). As a first step, we observe that K n is Zariski
dense in An

U =U n: This is clear for n= 1 as K is infinite; generally, if K n were not
Zariski dense, it would be contained in a (not necessarily irreducible) hypersurface
of some degree d , so it would contain at most d hyperplanes. But, by induction, it
contains all {r}×U n−1 for all r ∈ K , which gives a contradiction.

Therefore, as F and G are continuous in the Zariski topology, they agree on all
of U n , that is, on all the combinations above with [β1, . . . , βn] ∈U n . Now solve
the system of equations

∑n−1
j=0 a j

i β j = t j for β1, . . . , βn . (This is possible because
ai 6= ak for i 6= k, so the Vandermonde matrix is invertible.) Using this solution we
find that F(t1, . . . , tn)= G(t1, . . . , tn), so F = G as polynomials.

(b) Put F(x1, . . . , xn) =
∏

i< j (xi − x j )(Fi − F j ) and G = 0 and apply (a). This
gives a polynomial B(t) = β0 + · · · + βn−1tn−1

∈ K [t] that clearly satisfies the
“distinct values” condition. Furthermore, B(ai ) 6= B(a j ) guarantees the “generate L”
condition as well: The Galois action permutes the B(ai ) in the same way as the ai ,
so the Galois group has the same order. Finally, consider F(B(a1), . . . , B(an)) as
a polynomial in β0, . . . , βn−1. Its zero set is Zariski closed in An and we proved
that its complement is nonempty. This proves the last claim.

(c) Apply (b) to the set of polynomials {Fσ }σ∈T \Sn , using that, by definition,
eF

a′(σ
−1)= F((a′)σ−1

)= Fσ (a′). �

Lemma 8.2. Suppose K is an infinite field, f ∈ K [t] is a separable polynomial of
degree n and a1, . . . , an are its roots in some splitting field L. Then on a Zariski
dense open set of polynomials h(x) in K ⊕ K x ⊕ · · ·⊕ K xn−1 ∼= An

K , the values

vh(σ )=

n∑
j=1

h(a j )σ (a j )

for σ ∈ G = Gal(L/K ) are distinct.

Proof. For any σ ∈G, the map Eσ : h 7→ vh(σ ) is K -linear K n
→ L . So Eσ agrees

with Eτ on a K -linear subspace for every σ, τ ∈ G. If none of these subspaces is
all of K n , then the complement of their union is the desired set (nonempty since K
is infinite). It remains to prove that Eσ 6= Eτ for σ 6= τ .

Suppose Eσ = Eτ : K n
→ L . Then their extensions by linearity to maps Ln

→ L
agree as well. In other words, vh(σ )= vh(τ ) for all h in L⊕ Lx⊕· · ·⊕ Lxn−1. In
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particular, taking
h(x)=

∏
j 6=i

(x − a j )

we get that σ(ai )= τ(ai ). As this holds for all i , it follows that σ = τ . �
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Weak approximation for cubic
hypersurfaces of large dimension

Mike Swarbrick Jones

We address the problem of weak approximation for general cubic hypersurfaces
defined over number fields with arbitrary singular locus. In particular, weak
approximation is established for the smooth locus of projective, geometrically
integral, nonconical cubic hypersurfaces of dimension at least 17. The proof
utilises the Hardy–Littlewood circle method and the fibration method.

1. Introduction

Let k be an algebraic number field. The possible existence and structure of k-rational
points on hypersurfaces defined over k is a major theme in number theory and
arithmetic geometry. Let X ⊂ Pn−1

k be a variety defined over k. Given a place ν
of k, define kν to be the completion with respect to that place. If X is smooth, recall
that weak approximation holds for X if X (k) 6=∅ and the image of the diagonal
embedding

X (k)→
∏
ν∈S

X (kν)

is dense for any finite set of places S. Given a possibly singular X , we shall consider
weak approximation for Xsmooth, the smooth locus of X .

We say that X is k-rational if there is a k-birational map Pn−1
k 99K X . Weak

approximation is a birational invariant of smooth integral varieties, and since weak
approximation holds on Pm

k for any positive integer m, it must hold for any smooth
k-rational variety.

A classical observation is that a quadric k-hypersurface Q with a nonsingular
k-point will be k-rational, provided it is geometrically integral. Essentially this is
because we can parameterise the surface by lines through the k-point. In this case, the
smooth locus of the quadric satisfies weak approximation. The Hasse–Minkowski
theorem implies that Qsmooth(k) 6=∅⇐⇒ Qsmooth(kν) 6=∅ for all places ν of k.

MSC2010: primary 11G35; secondary 11D25, 11D72, 11P55, 14G25.
Keywords: cubic hypersurfaces, weak approximation, local-global principles, fibration method, circle

method, many variables.
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For larger degree hypersurfaces, relatively little is known. The emergence of
counterexamples to weak approximation, even when rational points are present, is
an indication that the situation is much more complex. For instance, with k =Q

we have a cubic surface from [Swinnerton-Dyer 1962],

x1(x2
2 + x2

3)= (4x4− 7x1)(x2
4 − 2x2

1). (1-1)

Ignoring the subvariety x1 = x4 = 0, this has two components over the reals: one
with x4/x1 ≥ 7/4, which contains infinitely many rational points, and the other with
|x4/x1| ≤

√
2, which contains none. Clearly then this fails weak approximation.

This counterexample can be accounted for by the Brauer–Manin obstruction. A
conjecture of Colliot-Thélène [2003] states that this will be the only such obstruction
for rationally connected varieties such as cubic hypersurfaces of dimension at least 2.

Suppose (once and for all) that Y ⊂ Pn−1
k is a geometrically integral, nonconical

cubic hypersurface given by the zero locus of a cubic form C ∈ k[x1, . . . , xn].
The Brauer group of Ysmooth will be trivial if its dimension is at least 3, and the
codimension of the singular locus is at least 4 (see the appendix by Colliot-Thélène
in [Browning 2010]). Thus, we expect that these assumptions, together with
Ysmooth(k) 6=∅, imply that weak approximation holds for Ysmooth.

We should note at this point that Y (k) 6= ∅ for n ≥ 16 by the Corollary in
[Pleasants 1975]. Furthermore, Y (K ) 6= ∅ =⇒ Ysmooth(K ) 6= ∅ for any field K ,
for example, by [Kollár 2002, Theorem 2.3], and so the Hasse principle holds on
Ysmooth as soon as n ≥ 16.

Let us now consider a few cases where weak approximation for Ysmooth is known.
We shall assume that Ysmooth(kν) 6=∅ for all ν since otherwise the matter is trivial
(this is in fact guaranteed if n ≥ 10; see, for example, [Birch and Lewis 1960]).
First a classical remark: if Ysing(k) 6=∅, where Ysing is the singular locus, then we
can parameterise Y by means of lines through a rational singular point, so Y is
k-rational. If Y contains two conjugate singular points and n ≥ 7, it follows from
work of Harari [1995, §5.1; 1994]. If Y contains three conjugate singular points, it is
known for n = 4 [Coray 1976, Corollary 2; Coray and Tsfasman 1988, Theorem A]
and for n ≥ 6 [Colliot-Thélène and Salberger 1989], but counterexamples exist for
n = 5 [ibid., Section 8]. If n ≥ 5 and Y is smooth and contains a k-rational line,
then it follows from §5.2.2 of [Harari 1995]. Finally, Corollary 2 of [Skinner 1997]
shows that if Y is smooth, n ≥ 17 is sufficient.

Note that all the results mentioned so far rely fundamentally on the shape of the
singular locus of Y , either that it is empty or contains some arithmetic structure. The
aim of this paper is to consider general cubic hypersurfaces Y with arbitrary singular
locus and to obtain a reasonable lower bound on the dimension required to guarantee
that Ysmooth satisfies weak approximation. Our main result is the following:
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Theorem A. Let Y ⊂ Pn−1
k be a geometrically integral, nonconical cubic hypersur-

face defined over k. If n ≥ 19, then Ysmooth satisfies weak approximation.

In a qualitative sense, this result is best possible in that the geometrically integral
and nonconical assumptions cannot be eliminated. For example, we could consider
the union of a line and a quadric having no nonsingular rational points, or we could
take a cone over the surface (1-1).

2. Structure of the proof

Theorem A is related to the result of Skinner [1997, Corollary 2], which was
obtained using the Hardy–Littlewood circle method. This is advantageous when
the dimension of the singular locus is small. The circle method can also be an
effective tool when the equations involved have large ‘h-invariant’. This concept
was originally introduced by Davenport and Lewis [1964].

Given a cubic form C , define the h-invariant of C , h = hk(C), as follows: h is
the smallest positive integer such that C(x) is expressible identically as

L1(x)Q1(x)+ · · ·+ Lh(x)Qh(x), (2-1)

where L i and Qi are linear and quadratic forms, respectively, with coefficients
in k. Similarly, for the cubic hypersurface Y , we shall define hk(Y ) to mean the h-
invariant of the underlying cubic form. Finally, for a cubic polynomial f , we define
hk( f ) to be the h-invariant of the homogeneous cubic part of the polynomial. Clearly
it is an invariant with respect to nonsingular linear transformations on x over k.
Also note that hk(Y ) ≤ n with equality if and only if Y (k) = ∅. Furthermore, if
n≥hk(Y )+r+1, there is a k-rational r -plane contained in Y given by L i =0 in (2-1).

Our strategy is to show weak approximation for two classes of cubics, the union
of which contains all of those considered in Theorem A. The first class is cubics
for which the h-invariant is sufficiently large.

Lemma 1. Suppose we have a geometrically integral, nonconical cubic hypersur-
face Y defined over k. If hk(Y )≥ 16, then Ysmooth satisfies weak approximation.

To prove this, we take a cue from the concluding remarks of [Skinner 1997]
and note that to find k-rational points that are p-adically close to a p-adic point, it
is sufficient to find integer points that are in specific classes modulo pt for some
integer t ; this is equivalent to finding integral solutions to a cubic polynomial f ,
where the cubic part has the same h-invariant as the original cubic form. For large h,
this problem is tailor-made for the circle method. Indeed, we will use a mild
generalisation of a previous result of Pleasants [1975] that obtains an asymptotic
expression for the number of integral solutions to f in an expanding region under
the assumption that hk( f )≥ 16.
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The second class of cubic hypersurfaces we consider are those for which the
dimension is somewhat larger than the h-invariant.

Lemma 2. Suppose we have a geometrically integral, nonconical cubic hypersur-
face Y defined over k. If n ≥ hk(Y )+ 4, then Ysmooth satisfies weak approximation.

This is based on the fibration method (see, for example, [Colliot-Thélène 2003]
for a more general description), which reduces the question to proving weak approx-
imation for the fibres of a particular map involving Y . Thanks to the assumptions of
the lemma, the fibres in question are quadrics of dimension at least 3. As noted in
the introduction, a quadric Q will satisfy weak approximation if Qsmooth(kν) 6=∅
for each place ν of k. A well known theorem of Hasse [1923] tells us that this holds
if the underlying quadratic form has rank at least 5 and Qsmooth(kν) 6=∅ for each
real place ν. We must then find conditions on Y under which we can assume that for
a generic fibre Q, this is the case. This is achieved using an elementary argument.

Lemmas 1 and 2 immediately give Theorem A.

3. Proof of Lemma 1

First we introduce some notation. Let k be of degree d over Q, and let o be the
ring of integers of k with Z-basis ω1, . . . , ωd . Let m be an integral ideal of o with
Z-basis τ1, . . . , τd .

Define σ1, . . . , σd1 to be the distinct real embeddings of k and σd1+1, . . . , σd1+2d2

the distinct complex embeddings such that σd1+i is conjugate to σd1+d2+i . Put ki to
be the completion of k with respect to the embedding σi for i = 1, . . . , d1+ d2.

Define V to be the commutative R-algebra
⊕d1+d2

i=1 ki ∼= k⊗Q R that has dimen-
sion d. For an element x ∈ V , we write πi (x) for its projection onto the i-th
summand (so x =

⊕
πi (x)). There is a canonical embedding of k into V given by

α→
⊕
σi (α), and we identify k with its image in V . Under this image, m forms a

lattice in V , and τ1, . . . , τd form a real basis for V .
We define a distance function | · |τ on V as follows:

|x |τ = |x1τ1+ · · ·+ xdτd |τ =max
i
|xi |.

This extends to V n in the obvious way: if x = (x (1), . . . , x (n)) ∈ V n , then

|x|τ =max
j
|x ( j)
|τ .

We note that there will be some constant c, dependent only on k and the choice of
basis τ1, . . . , τd , such that

|πi (x)| ≤ c|x |τ (3-1)

for all x ∈ V and 1≤ i ≤ d1+ d2 (since each πi is linear, this is clear).
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For any point b ∈ V n , let B(b) be the box

B(b)= { x ∈ V n
: |x− b|τ < ρ/2 }, (3-2)

where ρ will always be a real number 0< ρ < 1.
For any set A ⊂ V n and positive real number P , we define PA to be the set
{ x ∈ V n

: P−1x ∈A }. Given a polynomial ψ(x1, . . . , xn) defined over k, we shall
be interested in the quantity

Nψ,A,m(P)= #{ x ∈ PA∩mn
: ψ(x)= 0 }

and its asymptotic behaviour as P→∞.
We can now state the generalisation of the main theorem of [Pleasants 1975] we

shall use.

Lemma 3 (Pleasants). Let m be an integral ideal of o, and let f (x) be a cubic
polynomial over k with homogeneous cubic part C(x) that is not the cube of a
linear form. Suppose that hk( f ) ≥ 16 and that for every integral ideal a of o, the
congruence

f (x)≡ 0 (mod a) (3-3)

has nonsingular solutions in mn . Also, let ζ 0 =
⊕d1+d2

i=1 ζ i , where each ζ i ∈ πi (V )n

is a nonsingular solution to C(x)= 0. Then there exists a set R⊂ V n containing ζ 0
and a real constant c f,R,m > 0 such that

N f,R,m(P)= c f,R,mP (n−3)d
+ o(P (n−3)d).

Proof. In the case where m= o, this is equivalent to Lemmas 6.1, 7.1, 7.2, and 7.4
of [Pleasants 1975], which were proved using the circle method. However, all
the arguments go through unchanged to prove the generalisation. Indeed, if one
just changes the words ‘integral points’ to ‘elements of m’ and ‘ω1, . . . , ωd’ to
‘τ1, . . . , τd’ in the relevant places, essentially all the arguments work verbatim in
the same way. In terms of the circle method, the commutative algebra V does
not behave differently whether m is the ring of integers or an arbitrary integral
ideal, and the nontrivial algebraic number theory results required [Pleasants 1975,
Section 4] were not specific to o. �

It is straightforward to show that a suitable ζ 0 exists, for example, the argument
following [Pleasants 1975, Lemma 7.2]. Thus, Lemma 3 shows that any such cubic
polynomial has infinitely many solutions in mn .

We now prove Lemma 1. Recall Y is the hypersurface associated to a rational
cubic form C with hk(C)≥ 16. As noted in the introduction, since Y is not a cone
and C has at least ten variables, the congruences (3-3) have nonsingular solutions
in on for all ideals a. Then it is clear upon taking m= o in Lemma 3 that Y (k) 6=∅.
Furthermore, this implies that Ysmooth(k) 6= ∅ as in the introduction. Suppose
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we are given ε > 0, any finite set of places S, and any set of nonsingular points
{ xν= (x

(1)
ν , . . . , x (n)ν )∈Ysmooth(kν) :ν∈ S }. To show that weak approximation holds

for Ysmooth, it suffices to show there exists a point x = (x (1), . . . , x (n)) ∈ Ysmooth(k)
such that |x (i)− x (i)ν |ν < ε for each i and every ν ∈ S (where | · |ν is the valuation
with respect to ν). We follow the line of argument of [Skinner 1997, Section 5].

Let ε < 1, S, and {xν}ν∈S be given. Write S = S∞ ∪ S f , where S∞ consists of
infinite places and S f consists of finite places. Without loss of generality, we can
assume that S∞ consists of all the infinite places of k since there are only finitely
many of them and Ysmooth(kν)⊃ Ysmooth(k) 6=∅ for all ν. We may also assume that
ordν(x

(i)
ν )≥ 0 for every i and every ν ∈ S f .

We can find a = (a(1), . . . , a(n)) ∈ on such that |a(i)− x (i)ν |ν < ε/3 for all i and
ν ∈ S f (by the Chinese remainder theorem). Let

rν =min
i

ordν{a(i)− x (i)ν },

and let pν be the prime ideal corresponding to ν. Put

m=
∏
ν∈S f

prν
ν .

Consider f (x)=C(x+a), a cubic polynomial defined over k. Let t be a positive
integer. Choose D ≡ 1 (mod mt) to be a positive integer such that

D >
2c
ε

with c as in (3-1). For each infinite place ν, let

rν = Dxν .

Put

ζ 0 =

d1+d2⊕
i=1

rνi ∈ V n,

where νi is the infinite place corresponding to the embedding σi . Note that ζ 0
satisfies the conditions of Lemma 3. Take a set R as in Lemma 3 centred at ζ 0. In
[Pleasants 1975], the region R is essentially a box-like shape, and the only extra
condition it needs to have is that it is sufficiently small. Therefore, we can take its
‘diameter’ with respect to | · |τ to be as small as we like, and we can assume it is
contained inside a box of side length ρ < 1 as in (3-2).

We consider the congruence conditions (3-3). For any finite place ν 6∈ S f , we
have oν =mν , and so any point in Ysmooth(kν) will give rise to a nonsingular solution
in mn

ν of f (x)= 0. On the other hand, if ν ∈ S f , then xν − a ∈mn
ν is a nonsingular
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solution to f (x)= 0. Thus, the conditions hold for all integral ideals a in k by the
Chinese remainder theorem.

Finally, we note that the cubic part of f is just C and hk(C) ≥ 16. Thus, the
conditions for Lemma 3 are met, so for a sufficiently large integer P ≡ 1 (mod mt),
there exists a point y ∈mn

∩ PR that is a zero of f , and thus, z = y+ a is a zero
of C . Also, since we can have arbitrarily many such points, we can choose one
such that z 6= 0. We now fix our point x to be z/(D P).

For ν ∈ S∞ we have

|D Px (i)ν − y(i)|ν ≤ ρcP < cP,

whence

|x (i)ν − x (i)|ν =
∣∣∣x (i)ν − z(i)

D P

∣∣∣
ν

≤

∣∣∣x (i)ν − y(i)

D P

∣∣∣
ν
+
|a(i)|ν
D P

≤
c
D
+
|a(i)|ν
D P

< ε

for P sufficiently large.
For every ν ∈ S f and when D P ≡ 1 (mod mt) for sufficiently large t , we have

|x (i)ν − x (i)|ν =
∣∣∣x (i)ν − z(i)

D P

∣∣∣
ν

≤ |x (i)ν − z(i)|ν +
|D P−1|ν
|D P|ν

|z(i)|ν

≤ |x (i)ν − z(i)|ν + 2−t

=
∣∣(z(i)− a(i))− (x (i)ν − a(i))

∣∣
ν
+ 2−t

≤
2
3ε+ 2−t < ε.

Finally, we note that by taking ε sufficiently small, we can make x be arbitrarily
close to a nonsingular point on Y (kν) for each ν ∈ S. In this way, we may clearly
assume that x ∈ Ysmooth(k). This proves Lemma 1. �

4. Proof of Lemma 2

Throughout this section, we shall suppose that h = hk(Y ) and that n ≥ h+ 4. In
fact, for simplification, we shall only consider the case n = h+4, other cases being
handled similarly. After a change of variables if necessary, we can express the cubic
form C in terms of variables (x, y)= (x1 . . . , x4, y1, . . . , yh) as follows:

Y : C(x, y)= y1 Q1(x1, . . . , x4, y1, . . . , yh)+ · · ·

+yh Qh(x1, . . . , x4, y1, . . . , yh)= 0,



1360 Mike Swarbrick Jones

where the Qi are quadratic forms defined over k. Clearly Y (k) 6=∅ since h < n, so
Ysmooth(k) 6=∅ as in the introduction.

Consider the three-dimensional linear space L given by y1 = · · · = yh = 0. Take
the blow-up W of Y along L . Let z1, . . . , zh be coordinates for Ah

k . Then the variety
given by the vanishing of C and yi z j − y j zi for all i, j ∈ {1, . . . , h} is L ∪W . Our
plan is to prove weak approximation for Wsmooth, which, by birationality, will prove
it for Ysmooth.

Let π :W → Ah
k be the projection (x, y, z) 7→ z. The generic fibres of this map

are quadrics in P4
k . Abusing our notation slightly, suppose that for y ∈ Ah

k \ {0}, the
fibre of W/Ah

k at the point y is given by the quadric

X y : Q y(x, t)= 0. (4-1)
Then we see that

Q y(x, t)t = C(x, yt). (4-2)

For an alternative description of the fibres, consider a generic four-dimensional
linear space L4 that contains L . Then this cuts out on Y the union of L and one
such quadric Q.

We now quote a simple case of the fibration method, which is given in the paper
of Colliot-Thélène, Sansuc, and Swinnerton-Dyer [1987]. To avoid confusion, we
say that a generic fibre of a fibration Z/X , for varieties X and Z , is one where the
image lies in some Zariski dense open subset X ′ ⊂ X .

Lemma 4. Let X be a smooth geometrically integral variety such that X (k) 6=∅
and X satisfies weak approximation. Let Z/X be a fibration such that the generic
fibre is a smooth quadric of dimension at least 3. Then weak approximation holds
for any smooth model of Z.

Proof. This is essentially [Colliot-Thélène et al. 1987, Proposition 3.9] with the
caveat that only the generic fibre is smooth. This amounts to trivial changes in the
argument that we will not discuss here. �

We may write

Y : C(x, y)=
h∑

i=1

yi Qi (x)+ 2
4∑

j=1

x j q j ( y)+ c( y),

where Qi and q j are quadratic forms and c is a cubic form. Then by (4-2), Q y
takes the form

Q y(x, t)=
h∑

i=1

yi Qi (x)+ 2
4∑

j=1

x j q j ( y)t + c( y)t2. (4-3)

We rewrite this in terms of a 5× 5 matrix A = A( y) defined by

Q y(x, t)= (x, t)T A(x, t).
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Also we consider the 4× 4 submatrices Mi given by Qi (x)= xT Mi x.
By (4-3), A must take the shape

A( y)=


q1( y)∑

i yi Mi
...

q4( y)
q1( y) · · · q4( y) c( y)

 . (4-4)

Now we can reduce Lemma 2 to the following:

Lemma 5. Suppose Y is as in Lemma 2. For y ∈ Ah
k , we define A( y) as in (4-4).

Either A( y) is generically of full rank, or Ysing(k) 6=∅.

If A( y) is generically of full rank at least 5, then Q y is generically smooth and
of dimension at least 3, so we apply Lemma 4 with Z =W and X = Ah

k to prove
weak approximation for Wsmooth and hence Ysmooth. In the alternative, Ysing(k) 6=∅,
which is sufficient for weak approximation as noted in the introduction.

We now establish Lemma 5. Note that the equation det[A( y)] = 0 defines
an algebraic set, A say, in Ah

k , so if A( y) is not generically of full rank, then
det[A( y)] = 0 identically in y.

We examine the leading 4× 4 submatrix M = M( y)=
∑

i yi Mi .

Lemma 6. Let M1, . . . ,Mh be m×m symmetric matrices defined over an arbitrary
field k with char(k) 6= 2. For (y1, . . . , yh) ∈ kh , put M(y1, . . . , yh) =

∑
i yi Mi .

Either there exists a vector v ∈ Am
k such that vT Miv = 0 for each 1≤ i ≤ h, or the

polynomial det[M( y)] is not identically zero in y.

Proof. This is essentially contained in [Colliot-Thélène et al. 1987, Lemma 1.14],
which deals with the case h = 2, but there are enough changes to warrant giving
detail. We proceed by induction. Suppose that det[M( y)] = 0 identically. If h = 1,
then the lemma follows from the fact that det(M1) = 0 implies that M1 has a
nonzero null space. Now assume that h ≥ 2 and that the lemma is true for smaller
values of h. If M1 = · · · = Mh = 0, then the lemma is obvious. So we assume that
M1 6= 0. Inserting y = (1, 0, . . . , 0), we see that det(M1)= 0. Since char(k) 6= 2,
we can choose a basis v1, . . . , vm of Am

k such that M1 = diag(a1, . . . , ar , 0, . . . , 0)
with each ai 6= 0 for some 0< r < m. Let M ′2, . . . ,M ′h be the (m− r)× (m− r)
symmetric matrices corresponding to the basis elements vr+1, . . . , vm . Then for
fixed y2, . . . , yh , the coefficient of yr

1 in det[M( y)] is a1 · · · ar det [
∑h

i=2 yi M ′i ].
Hence, by assumption this must vanish identically. By the induction hypothesis,
this implies that there is a nonzero vector w = (br+1, . . . , bm) ∈ Am−r such that
wt M ′iw = 0 for 2≤ i ≤ h. Then v = (0, . . . , 0, br+1, . . . , bm) satisfies vT Miv = 0
for 1≤ i ≤ h. �
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Now we prove Lemma 5. First suppose that det[M( y)] is identically zero. Then
we apply the previous lemma with m = 4 to show that there is a nonzero v ∈ Ah

k
such that vT Miv = 0 for 1≤ i ≤ h, i.e., Qi (v)= 0. We can assume after a change
of variables that this vector is (1, 0, 0, 0). Now note that this implies there is no x2

1
term in any of the Qi . This implies that all terms in C(x, y) are at most linear in x1.
But then Ysing(k) 6=∅ since it contains the point (1, 0, . . . , 0), so we are done.

Next, we suppose that det[M( y)] is not identically zero. In particular, after a
change of variables involving only y1, . . . , yh , we can assume that it is not zero at
(1, 0 . . . , 0), so det(M1) 6= 0. Now applying another change of variables involving
only x1, . . . , x4, we can assume that M1 = diag(a1, . . . , a4) with a j ∈ k×.

We write

q j ( y)= 2d j y2
1 + · · · for 1≤ j ≤ 4

and

c( y)= ey3
1 + y2

1 L(y2, . . . , yh)+ · · · ,

with L a linear form defined over k.
Assume that det[A( y)] is identically zero. Now

C(x, y1, 0 . . . , 0)= y1

( 4∑
j=1

a j x2
j

)
+

4∑
j=1

2d j x j y2
1 + ey3

1

= y1

4∑
j=1

a j

( 4∑
j=1

x j +
d j

a j
y1

)2

+ e′y3
1

for some e′ ∈ k. The invertible linear change of variables x ′j = x j + (d j/a j )y1

shows that we can assume that each d j = 0. The coefficient of y7
1 in det[A( y)] is

a1 · · · a4e, which must be zero; hence, e = 0. The coefficient of y6
1 in det[A( y)] is

a1 · · · a4L(y2, . . . , yh), which is also identically zero in y2, . . . , yh; hence, L = 0.
Now we see that all terms in C are at most linear in y1; consequently, the point
(x0, y0)= (0, 0, 0, 0; 1, 0, . . . , 0) lies in Ysing(k), completing the proof of the lemma.

�
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The Picard crossed module of
a braided tensor category

Alexei Davydov and Dmitri Nikshych

For a finite braided tensor category C we introduce its Picard crossed module
P(C) consisting of the group of invertible C-module categories and the group
of braided tensor autoequivalences of C. We describe P(C) in terms of braided
autoequivalences of the Drinfeld center of C. As an illustration, we compute the
Picard crossed module of a braided pointed fusion category.

1. Introduction

Tensor categories can be thought of as categorical analogues of associative alge-
bras. One can adapt standard notions and constructions of the classical theory of
associative algebras to tensor categories. Analogues of (bi-)modules over algebras
are (bi-@)module categories over tensor categories [Quillen 1973; Janelidze and
Kelly 2001; Ostrik 2003b].

Given an algebra C the isomorphism classes of invertible C-bimodules form
a group BrPic(C) called the Brauer–Picard group of C . There is a well-known
homomorphism

φ : BrPic(C)→ Aut(Z(C)), (1)

where Z(C) denotes the center of C , constructed as follows. Given an invertible
C-bimodule M and z ∈ Z(C), the element φ(M)(z) ∈ Z(C) is defined by the
condition that the endomorphism of M given by the left multiplication by φ(M)(z)
equals that given by the right multiplication by z.

There is an analogue of the homomorphism (1) for tensor categories. Given a
finite tensor category C one defines its Brauer–Picard group BrPic(C) of equiva-
lence classes of invertible C-bimodule categories (see [Etingof et al. 2010]) and a
homomorphism

8 : BrPic(C)→ Autbr(Z(C)), (2)
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where Z(C) is the Drinfeld center of C and Autbr(Z(C)) is the group of braided
autoequivalences of Z(C).

It was shown in [Etingof et al. 2010] that (2) is an isomorphism when C is a
fusion category.

Braided tensor categories are analogues of commutative algebras. Similarly to the
classical case, module categories over a braided tensor category C can be regarded
as bimodule categories. In this case the group BrPic(C) contains a subgroup Pic(C),
called the Picard group of C, consisting of invertible C-module categories [Etingof
et al. 2010]. One defines a homomorphism

∂ : Pic(C)→ Autbr(C) (3)

in a way parallel to (2). The classical analogue of (3) for commutative algebras
is trivial, but in general ∂ is far from being trivial. It was shown in [Etingof et al.
2010] that it is an isomorphism for every nondegenerate braided fusion category C.

Groups Pic(C) and Autbr(C) play important roles in the theory of braided tensor
categories. In particular, they are used in the classification of group extensions of
fusion categories [Etingof et al. 2010]. They also appear as parts of an important
invariant of C called the core, studied in [Drinfeld et al. 2010]. We thus hope that
our description of the algebraic structure formed by these groups will shed more
light on these constructions.

The starting point of this paper is a conjecture of V. Drinfeld that for a braided
tensor category C the pair P(C) = (Pic(C),Autbr(C)) along with the homomor-
phism (3) and the natural action of Autbr(C) on Pic(C) is a crossed module, called
the Picard crossed module of C. See Section 3D for the definition of a crossed
module and [Joyal and Street 1993; Drinfeld et al. 2010, Appendix E.5.3] for an
interpretation of crossed modules in terms of monoidal categories. We prove this
conjecture in Theorem 3.10.

For a finite tensor category C we define its Brauer–Picard group BrPic(C) as
the group of equivalence classes of invertible exact C-bimodule categories. We
prove in Theorem 4.1 that the canonical homomorphism (2) is an isomorphism.
This extends the corresponding result for fusion categories proved in [Etingof et al.
2010].

Next, for a braided finite tensor category C we show in Theorem 4.3 that the
image of Pic(C)⊂ BrPic(C) under the isomorphism (2) is the subgroup of braided
autoequivalences of Z(C) trivializable on C.

Finally, we explicitly compute the Picard crossed module of a pointed braided
fusion category in Section 5. It turns out that the Picard groups of pointed braided
fusion categories interpolate between the orthogonal groups of quadratic forms and
the exterior squares of finite abelian groups.
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The paper is organized as follows.
Section 2 contains basic facts about finite tensor categories and module categories

over them. Here we also define the Brauer–Picard group of a finite tensor category
and the Picard group of a finite braided tensor category. (They were previously
defined in [Etingof et al. 2010] in the setting of fusion categories.)

In Section 3 we introduce the Picard crossed module of a braided tensor category.
In Section 4 we prove our Main Theorems 4.1 and 4.3 and describe the Picard

crossed module of a braided tensor category in terms of braided autoequivalences
of its center.

Section 5 is devoted to the computation of the Picard crossed module of a pointed
braided fusion category and its invariants.

2. Preliminaries

2A. General conventions. We work over an algebraically closed field k. Recall
that a k-linear abelian category C is finite if

(i) C has finite dimensional spaces of morphisms;

(ii) every object of C has finite length;

(iii) C has enough projectives, that is, every simple object of C has a projective
cover; and

(iv) there are finitely many isomorphism classes of simple objects in C.

All abelian categories considered in this paper will be finite. Any such category is
equivalent to the category Rep(A) of finite dimensional representations of a finite
dimensional k-algebra A. All functors between such categories will be additive
and k-linear. We use the symbol ' for equivalence between categories and the
symbol ∼= for isomorphisms between objects.

In this paper we freely use basic results of the theory of finite tensor categories
and module categories over them [Bakalov and Kirillov 2001; Etingof and Ostrik
2004; Ostrik 2003b] and the theory of braided categories [Joyal and Street 1993;
Drinfeld et al. 2010].

2B. Tensor categories. By a tensor category we mean a finite rigid tensor category
A whose unit object 1 is simple [Etingof and Ostrik 2004]. A semisimple tensor
category is called a fusion category.

Let A be a tensor category with the associativity constraint

aX,Y,Z : (X ⊗ Y )⊗ Z
'
−→ X ⊗ (Y ⊗ Z).

The tensor category with the opposite tensor product X ⊗op Y := Y ⊗ X and the
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accordingly adjusted associativity constraint aop

(X ⊗op Y )⊗op Z
aop

X,Y,Z // X ⊗op (Y ⊗op Z)

Z ⊗ (Y ⊗ X)
a−1

Z ,Y,X // (Z ⊗ Y )⊗ X

will be called the category opposite to A and will be denoted Aop.
Let A and B be tensor categories. Their Deligne tensor product [Deligne 2002]

will be denoted by A�B.

Definition 2.1. Let A be a tensor category and let B⊂A be a tensor subcategory.
A tensor autoequivalence α of A is called trivializable on B if the restriction α|B
is isomorphic to idB as a tensor functor.

We will denote by Aut(A) (respectively, Aut(A,B)) the group of isomorphism
classes of tensor autoequivalences of A (respectively, tensor autoequivalences of A

trivializable on B).

2C. Braided tensor categories. Recall that a braided tensor category C is a finite
tensor category equipped with a natural isomorphism

cX,Y : X ⊗ Y
'
−→ Y ⊗ X

satisfying the hexagon axioms [Joyal and Street 1993]. The braiding of C gives
rise to a tensor equivalence between C and Cop.

An important example of a braided tensor category is the center Z(A) of a finite
tensor category A. It is defined as the category whose objects are pairs (Z , γ ),
where X is an object of A and γ is a natural family of isomorphisms

γX : X ⊗ Z
'
−→ Z ⊗ X, X ∈A,

called half-braidings, satisfying compatibility conditions. The center is a finite
braided tensor category with the braiding given by

δZ : (Z , γ )⊗ (Y, δ)
'
−→ (Y, δ)⊗ (Z , γ ).

Let Crev denote the tensor category C equipped with the reversed braiding

c̃X,Y = c−1
Y,X .

For a braided tensor category C there are canonical embeddings C ↪→ Z(C) and
Crev ↪→ Z(C) given by

X 7→ (X, c−,X ) and X 7→ (X, c̃−,X ). (4)
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For a braided tensor category C the embeddings (4) combine into a single braided
tensor functor

C�Crev
→ Z(C). (5)

A braided tensor category C is called factorizable if the functor (5) is an equivalence.
We will denote by Autbr(C) the group of isomorphism classes of braided tensor

autoequivalences of a braided tensor category C.
Recall that a tensor category is called pointed if its every simple object is

invertible.

Example 2.2. Let C be a pointed braided fusion category. Then isomorphism
classes of simple objects of C form a finite abelian group A.

The associativity constraint of C determines a 3-cocycle ω : A× A× A→ k×.
The braiding determines a function

c : A× A→ k× (6)

satisfying the following identities coming from the hexagon axioms of the braided
tensor category:

c(x, y+ z)c(x, y)−1c(x, z)−1
= ω(x, y, z)ω(y, x, z)−1ω(y, z, x), (7)

c(x + y, z)c(x, z)−1c(y, z)−1
= ω(x, y, z)−1ω(x, z, y)ω(z, x, y)−1, (8)

for all x, y, z ∈ A. Following [Eilenberg and Mac Lane 1953; 1954], we denote by
Z3

ab(A, k×) the set of pairs (ω, c), where ω is a 3-cocycle on A and c is a function
satisfying (7) and (8). Note that Z3

ab(A, k×) is a group with respect to pointwise
multiplication.

Thus, every pointed braided fusion category determines an element of Z3
ab(A, k×).

Conversely, given (ω, c) ∈ Z3
ab(A, k×) one defines a braided category structure on

the fusion category VecA of finite dimensional A-graded vector spaces using ω for
the associativity constraint and c for braiding.

Let C and C′ be pointed braided fusion categories corresponding to (ω, c) ∈
Z3

ab(A, k×) and (ω′, c′) ∈ Z3
ab(A

′, k×), respectively. A tensor functor F : C→ C′

gives rise to a group homomorphism f : A→ A′. The tensor structure of F gives
rise to a map φ : A×A→ k×. The coherence axiom for the tensor structure becomes
the 2-coboundary condition

φ(y, z)φ(x + y, z)−1φ(x, y+ z)−1φ(x, y)−1

= ω(x, y, z)ω′( f (x), f (y), f (z))−1, (9)

for all x, y, z ∈ A. Here ω,ω′ are the associativity constraints in C,C′ respectively.
The tensor functor F is braided if

c(x, y)c′( f (x), f (y))−1
= φ(x, y)φ(y, x)−1. (10)
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Tensor autoequivalences isomorphic to the identity functor (identity f ) define
an equivalence relation on the group of pairs (ω, c), where (ω, c) and (ω′, c′) are
related as in (9) and (10) with trivial f . The quotient group is known as the third
abelian cohomology H 3

ab(A, k×) [Eilenberg and Mac Lane 1954]. Elements of the
latter group parametrize equivalence classes of pointed braided fusion categories.

The function
q(x) := c(x, x), x ∈ A

is a quadratic form on A, that is, q(−x)= q(x) and the symmetric function

σ(x, y)=
q(x + y)
q(a)q(b)

, x, y ∈ A (11)

is bimultiplicative. We have the identity

σ(x, y)= c(x, y)c(y, x), x, y ∈ A. (12)

Mac Lane proved that the map (ω, c) 7→ q defines an isomorphism between
H 3

ab(A, k∗) and the group of quadratic forms A→ k×.
By associating to C the pair (A, q) one gets a functor from the 1-categorical

contraction of the 2-category of pointed braided fusion categories to the category
of premetric groups. Each objects of the latter category is a finite abelian group
equipped with a quadratic form, and the morphisms are group homomorphisms
preserving the quadratic forms (that is, orthogonal homomorphisms).

It was proved by Joyal and Street [1993] that the above functor is an equivalence
(see also [Drinfeld et al. 2010, Appendix D]). The braided fusion category associated
to (A, q) will be denoted C(A, q).

It follows from the above that

Autbr(C(A, q))= O(A, q),

where O(A, q) denotes the group of orthogonal automorphisms of (A, q), that is,
automorphisms α : A→ A such that q ◦α = q .

2D. Centralizers in braided tensor categories.

Definition 2.3 (M. Müger [2003]). Two objects X and Y of a braided tensor category
C are said to centralize each other if

cY,X cX,Y = idX⊗Y .

The centralizer D′ of a tensor subcategory D⊂C is defined to be the full subcategory
of objects of C that centralize each object of D. It is easy to see that D′ is a tensor
subcategory.
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We will denote the self-centralizer C′ of C by Zsym(C) and call it the symmetric
center of C. We say that C is nondegenerate if and only if Zsym(C) is trivial, that
is, consists of extensions of the unit object 1.

Remark 2.4. It was shown in [Drinfeld et al. 2010, Proposition 3.7] that a braided
fusion category C is nondegenerate if and only if it is factorizable.

Let C be a braided tensor category. Let us identify C and Crev with their images
in Z(C) under the embeddings (4). Then C and Crev are centralizers of each other.

Example 2.5. Let us describe the centralizers in the pointed braided fusion category
C(A, q), see Example 2.2. Two simple objects x, y ∈ A of this category centralize
each other if and only if σ(x, y) = 1, where σ is the bimultiplicative symmetric
function (11) corresponding to q. That is, in this case the centralizing property
coincides with orthogonality.

Every fusion subcategory of C(A, q) corresponds to a subgroup B ⊂ A and is
equivalent to C(B, q|B). We have C(B, q|B)′ = C(B⊥, q|B⊥), where B⊥ is the
subgroup of A orthogonal to B. In particular,

Zsym(C(A, q))= C(A⊥, q|A⊥),

where A⊥ = {a ∈ A | σ(a, b) = 1 for all b ∈ A} is the kernel of σ . The category
C(A, q) is nondegenerate if and only if σ is nondegenerate.

2E. Module categories over tensor categories. Let A be a finite tensor category.
A left A-module category (see [Quillen 1973; Janelidze and Kelly 2001; Ostrik
2003b]) is a finite category M together with a bifunctor

A×M→M, (X,M) 7→ X ∗M

equipped with a functorial isomorphism

aX,Y,M : X ∗ (Y ∗M)
'
−→ (X ⊗ Y ) ∗M, X, Y ∈A,M ∈M,

called the associativity constraint, plus a unit constraint, the whole satisfying natural
compatibility axioms.

Equivalently, M is a left module category over A if there is given a tensor functor
A→ End(M) to the tensor category End(M) of endofunctors of M (with tensor
structure given by composition of functors).

A right A-module category is defined in a similar way. It corresponds to a tensor
functor Aop

→ End(M). For a right A-module category M the category obtained
from M reversing the directions of morphisms is a left A-module category via

X �M = M ∗ X∗, M ∈M, X ∈A.

We will denote this category Mop and call it the opposite module category.
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Functors between A-module categories and natural transformations between
them are defined in an obvious way, see [Ostrik 2003b].

Let A be a tensor category. Following [Etingof and Ostrik 2004] we say that an
A-module category M is exact if for any projective object P of A and every object
M of M the object P ⊗M is projective. An A-module category M is exact if and
only if for every C-module category N any C-module functor M→ N is exact.

Example 2.6. If A is a fusion category then an A-module category is exact if and
only if it is semisimple.

Note 2.7. All module categories in this paper are assumed to be exact.

Given an indecomposable left A-module category M the dual category of A with
respect to M is the category A∗M = FunA(M,M) of A-module endofunctors of M.
It was shown in [Etingof and Ostrik 2004, Section 3.3] that A∗M is a finite tensor
category. Furthermore, M is an exact indecomposable left A∗M-module category
and there is a canonical tensor equivalence A∼= (A∗M)

∗

M.

Remark 2.8. It was proved in [Etingof and Ostrik 2004, Theorem 3.31] that the
assignment

N 7→ FunA(M,N)

is an equivalence between the 2-category of exact left A-module categories and
that of exact right A∗M-module categories.

2F. Bimodule categories. Let A,B be tensor categories.
By definition, an (A−B)-bimodule category M is an (A�Bop)-module category.
Equivalently, a category M is an (A−B)-bimodule category if it has left A-

module and right B-module category structures compatible by a collection of
isomorphisms aX,M,Y : X ∗ (M ∗ Y )→ (X ∗ M) ∗ Y called middle associativity
constraints natural in X ∈A, Y ∈B,M ∈M, and such that the diagrams

X∗(Y∗(M∗Z))

(X⊗Y )∗(M∗Z)
aX,Y,M∗Z

==

((X⊗Y )∗M)∗Z

aX⊗Y,M,Z

!!

X∗((Y∗M)∗Z)

1∗aY,M,Z

��
(X∗(Y∗M))∗ZaX,Y∗M,Z
//

aX,Y,M∗1

OO

and

X∗(M∗(Z⊗W ))

(X∗M)∗(Z⊗W )
aX,M,Z⊗W

==

((X∗M)∗Z)∗W

aX∗M,Z ,W

!!

X∗((M∗Z)∗W )

1∗aM,Z ,W

��
(X∗(M∗Z))∗WaX,M∗Z ,W
//

aX,M,Z∗1

OO

commute for all X, Y ∈A, Z ,W ∈B, and M ∈M.

Example 2.9. A left A-module category M has a structure of an (A− (A∗M)
op)-

bimodule category.
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2G. Tensor product of module categories and the Brauer–Picard group of a ten-
sor category. Let A be a finite tensor category, let M be a right A-module category,
and let N be a left A-module category. The A-module tensor product of M and N

was defined in [Etingof et al. 2010, Section 3.1]. Let us recall this definition. A
bifunctor F :M×N→ K, where K is an abelian category, is called A-balanced if
there exists a family of isomorphisms F(M ⊗ X, N )

'
−→ F(M, X ⊗ N ) natural in

M ∈M, N ∈ N, and X ∈A satisfying coherence axioms. Let Funbal,re(M×N,K)

denote the category of A-balanced functors from M×N to K right exact in each
variable.

The A-module tensor product of M and N is an abelian category M�A N together
with the C-balanced bifunctor

BM,N :M×N→M�A N

which is right exact in each variable and for every abelian category K induces an
equivalence

Funbal,re(M×N,A)' Funre(M�A N,K).

Here and below, the subscript re indicates that functors under consideration are right
exact. The existence of the A-module tensor product was established in [Etingof
et al. 2010, Section 3.2]. Namely, it was shown that

M�A N' FunA,re(M
op,N). (13)

Note that although the categories considered in [Etingof et al. 2010] were assumed to
be semisimple the proof of this particular result does not use semisimplicity. Indeed,
first observe that M � N is equivalent to Funre(M

op,N), since for M = Rep(A)
and N= Rep(B), where A and B are algebras, both categories are identified with
Rep(A⊗B). Next, by [Etingof et al. 2010, Proposition 3.5] every balanced bifunctor
M×N→ K that is right exact in every variable canonically factors through the
functor

M�N' Funre(M
op,N)

BM,N
−−→ FunA,re(M

op,N),

where BM,N is the left adjoint to the forgetful functor

FunA,re(M
op,N)→ Funre(M

op,N).

Furthermore, if M and N are A-bimodule categories then so is M �A N (the
A-bimodule structure on M�A N is induced by the A-bimodule structure on M�N).

Proposition 2.10. Let M and N be exact A-bimodule categories. Then M�A N is
an exact A-bimodule category.
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Proof. It is enough to check that for all objects F in M�A N and projective objects
P1, P2 in C the object P1⊗ F ⊗ P2 is projective. That is, we need to show that the
compositions of an A-module functor F :Mop

→ N with the functors

Mop
→Mop

: M 7→ M ⊗ P1,

N→ N : N 7→ N ⊗ P2

are projective objects in FunA(M
op,N). This is clear since the latter category

is exact over A∗M and A∗N and the right multiplications by P1, P2 are A-module
endofunctors. �

We say that an exact A-bimodule category M is invertible if there exists an exact
A-bimodule category N such that

M�A N' N�A M'A,

where A is viewed as an A-bimodule category via the regular left and right actions
of A.

Remark 2.11. It was proved in [Etingof et al. 2010, Propositon 4.2] that an A-
bimodule category M is invertible if and only if the tensor functor

L :A→ (A∗M)
op
: X 7→ ?⊗ X (14)

is an equivalence.

The group of equivalence classes of invertible A-bimodule categories is called
the Brauer–Picard group of A and is denoted by BrPic(A).

2H. Module categories over braided tensor categories. Let now C be a braided
tensor category with the braiding

cX,Y : X ⊗ Y
'
−→ Y ⊗ X, X, Y ∈ C.

The braiding of C gives a tensor structure on the multiplication functor C�C→ C

[Joyal and Street 1993]. Hence, there is a canonical tensor functor

⊗ : C�Cop
' C�C→ C. (15)

This allows us to turn any left C-module category M into a C-bimodule category
as follows. The right action is M ∗ X := X ∗ M for all X ∈ C and M ∈ M. Let
aX,Y,M : X ⊗ (Y ⊗ M)

'
−→ (X ⊗ Y )⊗ M denote the left C-module associativity

constraint of M. The right C-module associativity constraint of M is given by

(M ∗ X) ∗ Y
aM,X,Y // M ∗ (X ⊗ Y )

Y ∗ (X ∗M)
aY,X,M // (Y ⊗ X) ∗M

cY,X // (X ⊗ Y ) ∗M

(16)
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and the middle associativity constraint is given by

X ∗ (M ∗ Y )
aX,Y,M // (X ∗M) ∗ Y

X ∗ (Y ∗M)
aX,Y,M // (X ⊗ Y ) ∗M

cX,Y // (Y ⊗ X) ∗M
a−1

Y,X,M // Y ∗ (X ∗M)

(17)

for all X, Y ∈ C and M ∈M.
Let Mod(C) and Bimod(C) denote the 2-categories of exact module and bi-

module categories over C, respectively. The above tensor functor (15) yields a
2-functor

B :Mod(C)→ Bimod(C). (18)

Clearly, the 2-functor B is an embedding of 2-categories.

Definition 2.12. We will call a C-bimodule category one-sided if it is equivalent
to B(M) for some left C-module category M.

Remark 2.13. One can give an explicit characterization of one-sided categories.
Namely, a C-bimodule category M is one-sided if it is equipped with a collection
of isomorphisms

dM,X : M ∗ X→ X ∗M, (19)

natural in X ∈ C and M ∈M, such that the diagrams

M ∗ (X ⊗ Y )
aM,X,Y

vv

dM,X⊗Y // (X ⊗ Y ) ∗M

(M ∗ X) ∗ Y

dM,X 1 ((

X ∗ (Y ∗M)

aX,Y,M
hh

(X ∗M) ∗ Y
a−1

X,M,Y // X ∗ (M ∗ Y )
1dM,Y

66
(20)

and

(X ∗M) ∗ Y
dX∗M,Y // Y ∗ (X ∗M)

aY,X,M

((
X ∗ (M ∗ Y )

1∗dM,Y ''

aX,M,Y
77

X ∗ (M ∗ Y ),

X ∗ (Y ∗M)
aX,Y,M // (X ⊗ Y ) ∗M

cX,Y ∗1

66
(21)

commute, where a denotes the associativity constraint of M.
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Given left C-module categories M and N, there is an obvious C-bimodule equiv-
alence

B
(
B(M)�C N

)
'B(M)�C B(N).

Hence, when C is braided, the group BrPic(C) contains a subgroup Pic(C)
consisting of equivalence classes of one-sided invertible C-bimodule categories.
Following [Etingof et al. 2010], we call this group the Picard group of C.

In what follows we will omit the 2-functor B from notation and identify invertible
C-module categories with their images in Bimod(C).

2I. The α-induction. Let C be a braided tensor category and let M be a C-module
category. There is a pair of tensor functors

α±M : C→ C∗M (22)

defined as follows (see [Böckenhauer et al. 2001; Ostrik 2003b]). For each X ∈ C

the endofunctors α±M(X) :M→M coincide with left multiplication by X , that is,

α±M(X)= X ⊗−.

Their C-module functor structures are given by

α+M(X)(Y ⊗M)= X ⊗ Y ⊗M
cX,Y
−−→ Y ⊗ X ⊗M = Y ⊗α+M(X)(M),

α−M(X)(M ⊗ Y )= X ⊗ Y ⊗M
c−1

Y,X
−−→ Y ⊗ X ⊗M = Y ⊗α−M(X)(M),

for all X, Y ∈ C and M ∈M. Here we suppress the associativity constraints.
When M is invertible the functors α±M are equivalences and the functor ∂M :C→C

defined by

(α−M ) ◦ ∂M = α
+

M (23)

is a braided autoequivalence of C. The assignment M 7→ ∂M gives rise to a group
homomorphism

∂ : Pic(C)→ Autbr(C), M 7→ ∂M. (24)

To be precise, the condition (23) defines a tensor autoequivalence of C. The reason
why it is braided is explained in Remark 4.5 (see also [Etingof et al. 2010] for
details in the fusion case).

3. The Picard crossed module of a braided tensor category

3A. Algebras and their modules. We refer the reader to [Ostrik 2003b] for basic
definitions and facts about algebras in tensor categories and modules over them.
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Let A be an algebra in a tensor category A with the multiplication µ : A⊗A→ A
and let M be a right A-module in A with the structural map ν : M ⊗ A→ M . For
any X ∈A there is an A-module structure on X ⊗M defined by

idX ⊗ ν : X ⊗M ⊗ A→ X ⊗M.

Thus the category AA of right A-modules in A is a left A-module category via

A×AA→AA, (X,M) 7→ X ⊗M.

Similarly, the category AA of left A-modules in A is a right A-module category.
We say that an algebra A is exact if the A-module categories AA and AA are

exact.

Remark 3.1. Let A be an algebra in A. Then the left A-module category (AA)op

is equivalent to AA.

It was shown in [Etingof and Ostrik 2004] that every left (respectively, right)
A-module category is equivalent to AA (respectively, to AA) for some algebra A in
A.

Let A be an algebra in a tensor category A and M be a left A-module category.
Define AM (the category of A-modules in M) as the category of pairs (M,m), where
M is an object of M and m : A∗M→ M is a morphism in M such that the diagram

A ∗ (A ∗M)

aA,A,M

��

1∗m // A ∗M
m

##
M

(A⊗ A) ∗M
µ∗1 // A ∗M

m

;;

commutes.
A morphism between (M,m) and (M ′,m′) is a morphism f : M → M ′ such

that f ◦m = m′ ◦ (idA ∗ f ).

Lemma 3.2. Let A be a finite tensor category and let M be an exact right A-module
category. The functor

T : FunA(AA,M)→ AM : F 7→ F(A) (25)

is an equivalence of categories.

Proof. For any A-module functor F :AA→M the object F(A) ∈M has a structure
of an A-module,

A ∗ F(A)
'
−→ F(A⊗ A)

F(µ)
−−→ F(A), (26)
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where the first arrow is given by the A-module structure of F and the second
arrow is the image of the multiplication of A. It is easy to see that A-module
transformations between A-module functors F,G correspond to morphisms of
A-modules F(A),G(A) in M. Thus, T is a well-defined functor.

Define a functor S : AM→FunA(AA,M) by M 7→ SM , where SM(X)= X⊗A M .
It is clear that SM is an A-module functor and that T ◦S is isomorphic to the identity
endofunctor of AM.

Also, S ◦ T is isomorphic to the identity functor since for every A-module
functor F :AA→M and a right A-module X in A there is a natural isomorphism
X ⊗A F(A)∼= F(X). Thus, T is an equivalence. �

A particular case of Lemma 3.2 that will be useful for us later is the category of
A-modules in M = AB , where B is an exact algebra in A. The category AAB is
the category of (A-B)-bimodules in C.

Corollary 3.3. The functor

FunA(AA,AB)→ AAB, F 7→ F(A)

is an equivalence of categories.

3B. Tensor product of algebras in a braided category. Let now C be a braided
tensor category and let A be an algebra in C. Given a left C-module category M, the
braiding in C allows us to turn AM into a left C-module category. In this situation
the functor FunC(CA,M)

∼
−→ AM from Lemma 3.2 is an equivalence of C-module

categories.
It is well-known that for braided C the tensor product A⊗ B of two algebras

A, B ∈ C has an algebra structure, with the multiplication map µA⊗B defined as

A⊗ B⊗ A⊗ B
idA⊗cB,A⊗idB
−−−−−−−−→ A⊗ A⊗ B⊗ B

µA⊗µB
−−−−→ A⊗ B,

where µA and µB are multiplications of algebras A and B, respectively (here we
suppress the associativity constraints in C).

Let Aop
= A denote the algebra with the multiplication opposite to that of A:

A⊗ A
cA,A
−−→ A⊗ A

µA
−→ A.

Proposition 3.4. Let C be a braided tensor category and let A and B be exact
algebras in C. Then

CA �C CB ' CA⊗B

as C-module categories.

Proof. Note that a left C-module category CA considered as a right C-module
category is equivalent to AopC. By Remark 3.1 the opposite category (AopC)op is
equivalent to CAop as a left C-module category.
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Hence, using (13) and Corollary 3.3 we obtain CA�CCB'FunC

(
(AopC)op,CB

)
'

FunC(CAop,CB)' AopCB 'CA⊗B, since an (A⊗B)-module in C is the same thing
as an (Aop

− B)-bimodule. �

3C. Azumaya algebras. Here we recall the characterization of algebras in C whose
categories of modules are invertible.

Let A be an exact algebra in a braided tensor category C.
Note that multiplication on A, via

A⊗ Aop
⊗ A

idA⊗cA,A
−−−−−→ A⊗ A⊗ A

µA⊗idA
−−−−→ A⊗ A

µA
−→ A,

induces a homomorphism of algebras

A⊗ Aop
→ A⊗ A∗, (27)

where A∗ is the dual object to A and the multiplication in A⊗ A∗ is defined using
the evaluation morphism.

Definition 3.5. An exact algebra A in a braided tensor category C is Azumaya if
the map (27) is an isomorphism.

It was established in [Van Oystaeyen and Zhang 1998, Theorem 3.1] that A is
an Azumaya algebra if and only if the tensor functors

α±CA
: C→ ACA

defined in (22) are equivalences. Thus, the Picard group of C is isomorphic to the
group of Morita equivalence classes of Azumaya algebras (the latter group was
considered in [Van Oystaeyen and Zhang 1998]).

Let A be an Azumaya algebra in C. Let ∂A = ∂CA denote the braided autoequiv-
alence introduced in (24). By definition of ∂A, there exists a natural isomorphism
of right A-modules

φX : A⊗ X
'
−→ ∂A(X)⊗ A, X ∈ C.

This means that the following diagram commutes:

A⊗ X ⊗ A
φX⊗idA //

cA,X⊗idA ��

∂A(X)⊗ A⊗ A

id∂A(X)⊗µA

��

X ⊗ A⊗ A
idX⊗µA ��

X ⊗ A
cX,A
��

A⊗ X
φX // ∂A(X)⊗ A.

(28)
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The tensor structure

νX,Y : ∂A(X ⊗ Y )
'
−→ ∂A(X)⊗ ∂A(Y ), X, Y ∈ C

of ∂A satisfies the following commutative diagram:

A⊗ X ⊗ Y
φX⊗idY //

φX⊗Y
��

∂A(X)⊗ A⊗ Y

id∂A(X)⊗φY

��
∂A(X ⊗ Y )⊗ A

νX,Y // ∂A(X)⊗ ∂A(Y )⊗ A.

(29)

Lemma 3.6. The diagram

A⊗ X ⊗ A⊗ Y
φX⊗φY //

cX,A

��

∂A(X)⊗ A⊗ ∂A(Y )⊗ A

cA,∂A(Y )

��
A⊗ A⊗ X ⊗ Y

m A

��

∂A(X)⊗ ∂A(Y )⊗ A⊗ A

m A

��
A⊗ X ⊗ Y

φX⊗Y // ∂A(X ⊗ Y )⊗ A
νX,Y // ∂A(X)⊗ ∂A(Y )⊗ A

(30)

is commutative (here, as usual, we suppress the associativity constraints and identity
morphisms).

Proof. Note that compositions of the left and the right vertical arrows in diagram
(30) coincide, respectively, with the canonical epimorphisms

A⊗ X ⊗ A⊗ Y → (A⊗ X)⊗A (A⊗ Y )∼= A⊗ X ⊗ Y

and

∂A(X)⊗ A⊗ ∂A(Y )⊗ A→ (∂A(X)⊗ A)⊗A (∂A(Y )⊗ A)∼= ∂A(X)⊗ ∂A(Y )⊗ A.

Hence, the diagram

A⊗ X ⊗ A⊗ Y
φX⊗φY //

cX,A

��

∂A(X)⊗ A⊗ ∂A(Y )⊗ A

cA,∂A(Y )

��
A⊗ A⊗ X ⊗ Y

µA

��

∂A(X)⊗ ∂A(Y )⊗ A⊗ A

m A

��
A⊗ X ⊗ Y

φX // ∂A(X)⊗ A⊗ Y
φY // ∂A(X)⊗ ∂A(Y )⊗ A

(31)

is commutative by functoriality of ⊗A. But the bottom row composition in diagram
(31) coincides with that of diagram (30) by the identity (29). �
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Let B be an algebra in C and suppose that A is an Azumaya algebra in C. Then
∂A(B) is also an algebra in C. We will denote by

µB : B⊗ B→ B and µ∂A(B) : ∂A(B)⊗ ∂A(B)→ ∂A(B)

the multiplications of B and ∂A(B) respectively.

Proposition 3.7. The morphism φB : A⊗ B→ ∂A(B)⊗ A is an isomorphism of
algebras.

Proof. Consider the diagram

A⊗ B⊗ A⊗ B
φB⊗φB //

cB,A

��

∂A(B)⊗ A⊗ ∂A(B)⊗ A

cA,∂A(B)

��
A⊗ A⊗ B⊗ B

µA

��

∂A(B)⊗ ∂A(B)⊗ A⊗ A

µA

��
A⊗ B⊗ B

φB⊗B //

µB

��

∂A(B⊗ B)⊗ A
νB,B // ∂A(B)⊗ ∂A(B)⊗ A

µ∂A(B)

��
A⊗ B

φB // ∂(B)⊗ A.

(32)

The upper subdiagram is commutative by Lemma 3.6 and the lower subdiagram is
the definition of multiplication µ∂A(B). Hence, diagram (32) is commutative. This
is precisely the property of φB being an algebra homomorphism. �

3D. Definition of the Picard crossed module.

Definition 3.8. A crossed module (G,C) is a pair of groups G and C together with
an action of G on C , denoted by (g, c) 7→ gc, and a homomorphism ∂ : C → G
satisfying

∂(gc)= g∂(c)g−1 (33)
and

∂(c)c′ = cc′c−1 c, c′ ∈ C, g ∈ G. (34)

Let (G1,C1) and (G2,C2) be crossed modules with structural maps ∂1 : C1→ G1

and ∂1 : C2→ G2. A homomorphism between these crossed modules is a pair of
group homomorphisms γ : G1→ G2 and φ : C1→ C2 such that ∂2 ◦ φ = γ ◦ ∂1

and φ(gc)= γ (g)φ(c) for all c ∈ C1 and g ∈ G1.

Remark 3.9. It is clear that the kernel of the homomorphism ∂ in Definition 3.8 is
a subgroup of the center of C and the image of ∂ is a normal subgroup of G.

Let C be a braided tensor category. Set

G := Autbr(C), C := Pic(C). (35)
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In (24) we defined a canonical homomorphism

∂ : C→ G :M 7→ ∂M.

There is also a canonical action of Autbr(C) on Pic(C). Namely, for g ∈Autbr(C)

and a C-module category M the category gM is defined as follows. As an abelian
category, gM=M. The action of C on M is defined by

X �M := g−1(X) ∗M for all M ∈M, X ∈ C.

Note that for an algebra A ∈ C the C-module category g(CA) is equivalent to Cg(A).
Here g(A) is the algebra with multiplication µg(A) = g(µA).

Theorem 3.10. The pair (G,C) = (Autbr(C),Pic(C)) equipped with the above
structural operations is a crossed module.

Proof. To check the axiom (33), note that tensor equivalences

α±gM : C→ C∗gM

defined in (22) satisfy α±gM ∼= α
±

M ◦ g−1. Hence,

∂gM
∼= (α

−
gM)
−1
◦α+gM

∼= g ◦ ∂M ◦ g−1 for all M ∈ Pic(C), g ∈ G. (36)

Let us check axiom (34). Take M,N ∈ Pic(C) and let A and B be algebras in C

such that M' CA and N' CB . By Proposition 3.4 we have

M�C N' CA⊗B and ∂MN�C M' C∂M(B)⊗A.

Since by Proposition 3.7 the algebras A⊗ B and ∂M(B)⊗ A are isomorphic, we
conclude M�C N' ∂MN�C M, as required. �

Definition 3.11. We will call the pair
(
Autbr(C),Pic(C)

)
the Picard crossed module

of C and denote it P(C).

4. Picard crossed module and braided autoequivalences of the center

In this section we give a characterization of the Picard crossed module of a braided
tensor category C in terms of braided autoequivalences of Z(C).

4A. The Brauer–Picard group and braided autoequivalences of the center. Let
M be an exact left C-module category. It can be regarded as a (C�C∗M)-module
category. The following constructions are taken from [Etingof and Ostrik 2004,
Section 3.4]: There are canonical equivalences

aM : Z(C)−→∼ (C�C∗M)
∗

M : (Z , γ ) 7→ Z ∗ ?, (37)
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where the left C-module functor structure of aM(Z , γ ) is given by

X ∗ (Z ∗M)
aX,Z ,M
−−−→ (X ⊗ Z) ∗M

γX
−→ (Z ⊗ X) ∗M

a−1
Z ,X,M
−−−→ Z ∗ (X ∗M) (38)

for all X ∈ C and M ∈M, and its left C∗M-module functor structure

F(Z ∗M)
'
−→ Z ∗ F(M) (39)

for F ∈ C∗M is given using the C-module functor structure of F .
One defines a functor

ãM : Z(C
∗

M)−→
∼ (C�C∗M)

∗

M (40)

in an analogous way.
The composition ã−1

M ◦ aM is a braided tensor equivalence between Z(C) and
Z(C∗M)

rev
= Z((C∗M)

op).
When M is an invertible C-bimodule category, the composition of ãM and the

braided tensor equivalence Z(C)
∼
−→ Z((C∗M)

op) induced by the tensor equivalence

L : C−→∼ (C∗M)
op
: X 7→ ? ∗ X

from Remark 2.11 gives a tensor equivalence

bM : Z(C)−→∼ (C�C∗M)
∗

M : (Z , γ ) 7→ ? ∗ Z , (41)

where the left C-module functor structure of bM(Z , γ ) is given by the middle
associativity constraint of M,

X ∗ (M ∗ Z)
aX,M,Z
−−−→ (X ∗M) ∗ Z , (42)

while the right C-module functor structure (which is the same as the left C∗M-module
functor structure upon the identification C∗M ' Cop) of bM(Z , γ ) is given using the
right C-module associativity constraint of M and the half-braiding:

(M ∗ Z) ∗ Y
aM,Z ,Y
−−−→ M ∗ (Z ⊗ Y )

γ−1
Y
−−→ M ∗ (Y ⊗ Z)

a−1
M,Y,Z
−−−→ (M ∗ Y ) ∗ Z , (43)

for all X, Y ∈ C and M ∈M.
Thus, we have a canonical braided tensor autoequivalence

8(M)= b−1
M ◦ aM : Z(C)→ Z(C). (44)

The following result was proved in [Etingof et al. 2010, Section 5] when C is a
fusion category. This argument carries over verbatim to the case of finite tensor
categories. We recall the proof for the reader’s convenience and also for future
reference.
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Theorem 4.1. Let C be a finite tensor category. The assignment M 7→8(M), where
8(M) is defined in (44), gives rise to a group isomorphism

8 : BrPic(C)
'
−→ Autbr(Z(C)). (45)

Proof. To see that 8 is a homomorphism observe that the C-bimodule functor
of right multiplication by an object Z ∈ Z(C) on M �C N, where M and N are
invertible C-bimodule categories, is isomorphic to the well-defined functor of
“middle” multiplication by (8(N)) (Z), which, in turn, is isomorphic to the functor
of left multiplication by

(
8(M) ◦8(N)

)
(Z). This gives a natural isomorphism of

tensor functors 8(M) ◦8(N)∼=8(M�C N). Hence, 8 is a homomorphism.
Let us recall the construction of the map

9 : Autbr(Z(C))→ BrPic(C), (46)

inverse to the homomorphism (45).
Let F :Z(C)→C and I :C→Z(C) denote the canonical forgetful functor and its

right adjoint. Given a braided autoequivalence α∈Autbr(Z(C)) let Lα :=α−1(I (1)).
The category LαZ(C) is a finite tensor category with respect to ⊗Lα .

Let us show that the algebra F(Lα) ∈ C is exact, that is, that the category LαC

of F(Lα)-modules in C is exact. By Lemma 3.2 this category is equivalent to
FunZ(C)(Z(C)Lα ,C) as a C-module category. By Remark 2.8 the latter category is
exact as a FunZ(C)(C,C)-module category. In particular, it is exact as a C-module
category.

Let
F(Lα)=

⊕
i∈J

L i
α

be the decomposition of F(Lα) into a direct sum of indecomposable exact algebras
in C.

For any i ∈ J the composition

C
ι
−→ LαZ(C)

F
−→ F(Lα)CF(Lα)

πi
−→ L i

α
CL i

α
(47)

is a tensor equivalence, where

ι : C−→∼ LαZ(C) : X 7→ α−1(I (X)) (48)

and πi is a projection from F(Lα)CF(Lα) =
⊕

i, j∈J L i CL j to the (i, i) component.
Hence, CL i gets a structure of an invertible C-bimodule category. Its equivalence

class does not depend on a particular i ∈ J . One sets 9(α) := CL i .
The verification of the identities 8 ◦9 = id and 9 ◦8 = id is the same as in

[Etingof et al. 2010, Section 5.3]. �
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Remark 4.2. Note that BrPic(C) and Autbr(Z(C)) are monoidal groupoids (that is,
monoidal categories in which every object is invertible). In fact, the assignment
(45) is a monoidal equivalence rather than just a group isomorphism, see [Etingof
et al. 2010, Section 5].

4B. The image of Pic(C) in Autbr(Z(C)). Recall from Section 2H that the group
BrPic(C) contains a subgroup Pic(C) consisting of equivalence classes of invertible
C-module categories (regarded as one-sided C-bimodule categories).

Our goal now is to describe the image of Pic(C) in Autbr(Z(C)) under isomor-
phism (45).

Let Autbr(Z(C);C)⊂ Autbr(Z(C)) be the subgroup consisting of isomorphism
classes of braided autoequivalences of Z(C) trivializable on C, see Definition 2.1.

The next theorem was suggested to us by V. Drinfeld.

Theorem 4.3. Let C be a braided tensor category. The canonical isomorphism
8 : BrPic(C)

'
−→ Autbr(Z(C)) restricts to an isomorphism

8|Pic(C) : Pic(C)
'
−→ Autbr(Z(C);C). (49)

Proof. First, let us show that 8(Pic(C))⊂ Autbr(Z(C);C). Let M be an invertible
one-sided C-module category. Let 8(M) ∈ Autbr(Z(C)) be the braided autoequiva-
lence of Z(C) defined in Section 4A. The equivalences aM and bM defined in (37)
and (41) can be explicitly described as follows. Let (Z , γ ) be an object in Z(C),
where

γX : X ⊗ Z→ Z ⊗ X, X ∈ C

is the half-braiding. Then aM(Z , γ )(M)= Z ∗M and its left and right C-module
functor structures are found by translating (38) and (39) to our setting:

X ∗ (Z ∗M)

aX,Z ,M

��

' // Z ∗ (X ∗M)

(X ⊗ Z) ∗M
γX // (Z ⊗ X) ∗M

a−1
Z ,X,M

OO
(50)

and

(Z ∗M) ∗ Y ' // Z ∗ (M ∗ Y )

Y ∗ (Z ∗M)
aY,Z ,M // (Y ⊗ Z) ∗M

c−1
Z ,Y // (Z ⊗ Y ) ∗M

a−1
Z ,Y,M // Z ∗ (Y ∗M)

(51)

for all X, Y ∈ C and M ∈ M, where a denotes the left C-module associativity
constraint of M.
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Also, bM(Z , γ )(M)=M ∗Z = Z ∗M as a functor and its left and right C-module
functor structures are found from (42) and (43):

X ∗ (M ∗ Z) ' // (X ∗M) ∗ Z

X ∗ (Z ∗M)
aX,Z ,M // (X ⊗ Z) ∗M

cX,Z // (Z ⊗ X) ∗M
a−1

Z ,X,M // Z ∗ (X ∗M)

(52)

and

(M ∗ Z) ∗ Y ' // (M ∗ Y ) ∗ Z

Y ∗ (Z ∗M)

aY,Z ,M

��

Z ∗ (Y ∗M)

(Y ⊗ Z) ∗M
cY,Z // (Z ⊗ Y ) ∗M

γ−1
Y // (Y ⊗ Z) ∗M

c−1
Z ,Y // (Z ⊗ Y ) ∗M

a−1
Z ,Y,M

OO
(53)

for all X, Y ∈ C and M ∈M.
The diagrams (52) and (51) are nothing but middle associativity isomorphism

(17) and its inverse. The diagram (53) uses the right C-module associativity (16)
and its inverse as well as the half-braiding of Z .

Since C is embedded into Z(C) via

Z 7→ (Z , c−,Z ),

that is, γX = cX,Z in this case, we see from (50), (51) and (52), (53) that the
restrictions of aM and bM on the subcategory C⊂ Z(C) coincide, that is, 8(M) is
trivializable on C. So 8(Pic(C))⊂ Autbr(Z(C);C).

It remains to show that 8(Pic(C)) = Autbr(Z(C);C). Let α ∈ Autbr(Z(C);C).
We need to show that the equivalence class of invertible C-bimodule category
M :=9(α)

(
where 9 : BrPic(C)→ Autbr(Z(C)) is the inverse of 8, see (46)

)
is

in Pic(C).
According to the description from the proof of Theorem 4.1 M is equivalent to

any indecomposable component of the C-module category CF(Lα) of left modules
over the algebra F(Lα), where Lα = α−1(I (1)) ∈ Z(C). Thus, it suffices to show
that the C-bimodule category CF(Lα) is one-sided.

The left action of X ∈ C on CF(Lα) is via tensor multiplication:

X ∗M = X ⊗M. (54)

The right action of X is via module multiplication over F(Lα) with the image of X
under equivalence (47). Let us describe this action explicitly. Since I (X)∼= X⊗ I (1)
for all X ∈ C ⊂ Z(C) and α is trivializable on C we see that equivalence (48) in
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our situation becomes

C−→∼ Z(C)Lα : X 7→ X ⊗ Lα. (55)

Therefore, the right action of X on CF(Lα) is given by

M ∗ X = M ⊗F(Lα) (X ⊗ F(Lα))∼= M ⊗ X (56)

for all X ∈ C,M ∈ CF(Lα). The action of F(Lα) on M ∗ X ∼= M ⊗ X is given by

M ⊗ X ⊗ F(Lα)
1⊗cX,F(Lα)
−−−−−−→ M ⊗ F(Lα)⊗ X

ρM⊗1
−−−→ M ⊗ X,

where we omit the associativity constraints. Here ρM : M ⊗ F(Lα)→ M denotes
the F(Lα)-module structure on M .

We have a natural family of F(Lα)-module isomorphisms

dM,X := cM,X : M ⊗ X→ X ⊗M.

To show that the C-bimodule category CF(Lα) is one-sided we need to check that
isomorphisms dX,M satisfy commutative diagrams (20) and (21). But these diagrams
are nothing but hexagon axioms of the braiding.

Thus, Autbr(Z(C);C)⊂8(Pic(C)) and the proof is complete. �

4C. A characterization of the Picard crossed module. Let C be a finite braided
tensor category. There is a canonical homomorphism

6 : Autbr(Z(C);C)→ Autbr(C) (57)

defined as follows. Every braided autoequivalence α ∈ Autbr(Z(C)) trivializable
on C maps the centralizer C in Z(C) to itself. This centralizer is Crev

⊂ Z(C).
Hence, α restricts to a braided autoequivalence of Crev, that is, to an element of
Autbr(Crev)= Autbr(C) which we denote 6(α).

Lemma 4.4. Let C be a braided tensor category. The composition

Pic(C)
8
−→ Autbr(Z(C);C)

6
−→ Autbr(C)

coincides with homomorphism ∂ : Pic(C)→ Autbr(C) defined in (24).

Proof. We need to show that for each invertible C-module category M the restriction
of the braided autoequivalence 8(M) on Crev

⊂ Z(C) is isomorphic to ∂M defined
in (23). This result follows from comparing definitions. Indeed, 8(M)= b−1

M ◦ aM,
where aM and bM are defined in (37) and (41), and ∂M = (α

−

M)
−1
◦α+M, where α±M

are defined in (22).
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Thus, it suffices to check the commutativity of the diagrams

Z(C)
aM // (C�Cop)∗M

��

Z(C)
bM // (C�Cop)∗M

��

and

Crev

OO

α+M // C∗M Crev

OO

α−M // C∗M,

(58)

where the arrows Crev
→ Z(C) are given by the embedding (4) and the arrows

(C � Cop)∗M→ C∗M are given by the restriction of C-bimodule functors to left C-
module functors. The commutativity is checked directly using definitions of α±M in
Section 2I and explicit formulas (50) and (52) for the C-module functor structures
of aM(Z , γ ) and bM(Z , γ ), where (Z , γ ) is an object in Z(C). In the bottom row
of (58) we use that Crev

= C as tensor categories.
Hence, 8(M)|Crev = ∂M in Autbr(C)= Autbr(Crev). �

Remark 4.5. Lemma 4.4 shows that the homomorphism ∂ : Pic(C)→ Aut(C)
defined in (24) factors through Pic(C)→ Autbr(C).

The next corollary was established in [Etingof et al. 2010] for braided fusion
categories.

Corollary 4.6. Let C be a factorizable braided tensor category. Then ∂ : Pic(C)→
Autbr(C) is an isomorphism.

Proof. We have Z(C)∼=C�Crev and Autbr(Z(C);C)=Autbr(Crev)=Autbr(C). �

There is canonical action of Autbr(C) on Autbr(Z(C);C) defined as follows. Any
tensor autoequivalence g of C induces a braided autoequivalence g̃ ∈ Autbr(Z(C)):

g̃(Z , γ )= (g(Z), γ g),

where (γ g)X : X ⊗ g(Z)
'
−→ g(Z)⊗ X is given by (γ g)X = g(γg−1(X)).

For all g ∈ Autbr(C) and α ∈ Autbr(Z(C);C) set

gα := g̃ ◦α ◦ g̃−1. (59)

It is clear that gα is trivializable on C, that is, (59) defines the required action.

Lemma 4.7. The isomorphism

8 : Pic(C)−→∼ Autbr(Z(C);C)

is Autbr(C)-equivariant; that is,

8(gM)= g8(M)
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for all g ∈ Autbr(C) and M ∈ Pic(C).

Proof. This is an immediate consequence of the identities

agM = aM ◦ g̃−1 and bgM = bM ◦ g̃−1.

We have 8(gM)= b−1
gM ◦ agM = g̃ ◦8(M) ◦ g̃−1

=
g8(M). �

Corollary 4.8. The pair of groups
(
Autbr(C),Autbr(Z(C);C)

)
along with the ac-

tion (59) and homomorphism6 :Autbr(Z(C);C)→Autbr(C) from (57) is a crossed
module.

Proof. This follows from Lemmas 4.4 and 4.7. �

We will call the crossed module
(
Autbr(C),Autbr(Z(C);C)

)
the autoequivalence

crossed module of C and denote it by A(C).

Corollary 4.9. The pair of group isomorphisms (idAutbr(C),8) is an isomorphism
of crossed modules

P(C)∼= A(C). (60)

Proof. This follows from Lemmas 4.4 and 4.7. �

4D. On the kernel and cokernel of ∂ : Pic(C) → Autbr(C). Since the Picard
crossed module P(C) is isomorphic to the autoequivalence crossed module of
A(C), the kernel of ∂ : Pic(C) → Autbr(C) is isomorphic to the kernel of the
restriction map ∂ : Autbr(Z(C),C)→ Autbr(C).

The natural tensor embeddings Zsym(C) ↪→ C,Crev allow us to look at C and
Crev as Zsym(C)-module categories. The functor C � Crev

→ Z(C) of (5) is
clearly balanced with respect to these module structures. Hence, it factors through
C�Zsym(C) Crev. Here the tensor product C�Zsym(C) Crev of module categories over
a symmetric tensor category Zsym(C) has a natural structure of braided tensor
category, see [Davydov et al. 2013]. The image of C�Zsym(C)C

rev in Z(C) coincides
with the full tensor subcategory C∨Crev generated by C and Crev in Z(C).

Proposition 4.10. The kernel of the restriction map ∂ :Autbr(Z(C),C)→Autbr(C)

coincides with the group Autbr(Z(C),C∨Crev) of braided autoequivalences of Z(C)

trivializable on C∨Crev.

Proof. The kernel of the restriction map ∂ : Autbr(Z(C),C)→ Autbr(C) coincides
with the subgroup Autbr(Z(C)) of braided autoequivalences of Z(C), trivializable
on both C and Crev. All we need to show is that a braided autoequivalence of Z(C)

that is trivializable on both C and Crev is trivializable on C∨Crev.
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A braided autoequivalence F of Z(C) stabilizing both C and Crev and trivializable
on Zsym(C) fits into a commutative diagram:

C�Crev

F�F
��

// ++
C�Zsym(C) Crev

F�Zsym(C)F

��

// Z(C)

F
��

C�Crev // 33C�Zsym(C) Crev // Z(C).

Thus a braided autoequivalence F of Z(C) that is trivializable on both C and Crev

is also trivializable on C∨Crev. �

Note that there is a canonical homomorphism

j : Pic(Zsym(C))→ ker
(
Pic(C)

∂
−→ Autbr(C;Zsym(C))

)
(61)

given by the induction of module categories. Namely, if M is an invertible Zsym(C)-
module category then

j (M)= C�Zsym(C) M.

To see that j (M) is in the kernel of ∂ , let us take an algebra A in Zsym(C) such that
M' Zsym(C)A. By Lemma 3.2 we have

j (M)= FunZsym(C)(C,M)' CA.

The functors α±j (M) coincide with each other since cX,A = c−1
A,X for all objects X in

C, that is, ∂( j (M)) is a trivial autoequivalence.
Let Zsym(C) be the symmetric center of C, see Section 2D. Clearly the restrictions

of α±M to Zsym(C) coincide. Hence for an invertible M the autoequivalence ∂M is
trivializable on Zsym(C), that is, the restriction of ∂M to Zsym(C) is isomorphic to
the identity functor. Thus the homomorphism (24) factors as follows.

Pic(C)→ Autbr(C;Zsym(C))→ Autbr(C).

Hence, the restriction map defines canonical homomorphism from the cokernel
of ∂:

coker
(
Pic(C)

∂
−→ Autbr(C)

)
→ Autbr(Zsym(C)). (62)

5. The Picard crossed module of a pointed braided fusion category

Let A be a finite abelian group and let q : A→ k× be a quadratic form on A. In this
section we explicitly compute the Picard crossed module of the pointed braided
fusion category C := C(A, q) associated to the pair (A, q) as in Example 2.2.
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Note that C(A, q)rev
' C(A, q−1).

5A. Invertible module categories over a braided pointed fusion category. The
classification of module categories over pointed fusion categories is well-known
[Ostrik 2003a]. Any indecomposable C-module category M corresponds to a pair
(B, γ ), where B ⊂ A is a subgroup and γ : B× B→ k× is a function such that

d(γ )(x, y, z) :=
γ (x + y, z)γ (x, y)
γ (x, y+ z)γ (y, z)

= ω(x, y, z), x, y, z ∈ B. (63)

Here ω : A3
→ k× is the 3-cocycle defining the associativity constraint of C.

The pair (B, γ ) is constructed from M as follows. The simple objects of M form
a transitive A-set and B denotes the stabilizer of a point in this set. The function
γ : B×B→ k× comes from the module associativity constraint of M. This function
is determined by M up to a 2-coboundary.

Let us define a function β : B× B→ k× by

β(x, y)= c(x, y)
γ (x, y)
γ (y, x)

, x, y ∈ B, (64)

where the function c : A× A→ k× is defined in Example 2.2.

Proposition 5.1. The function (64) is bimultiplicative and satisfies

β(x, x)= q(x) for all x ∈ B. (65)

Proof. For all x, y, z ∈ B we compute

β(x, y+ z)

= c(x, y+ z)
γ (x, y+ z)γ (y, z)
γ (y+ z, x)γ (y, z)

= c(x, y+ z)
γ (x+ y, z)γ (x, y)
γ (y, z+ x)γ (z, x)

ω−1(x, y, z)ω−1(y, z, x)

= c(x, y+ z)
γ (y+ x, z)γ (y, x)
γ (y, x+ z)γ (x, z)

γ (x, y)
γ (y, x)

γ (x, z)
γ (z, x)

ω−1(x, y, z)ω−1(y, z, x)

= β(x, y)β(x, z)
c(x, y+ z)

c(x, y)c(x, z)
ω(y, x, z)

ω(x, y, z)ω(y, z, x)

= β(x, y)β(x, z).

In the second and the fourth equalities we used identity (63) and in the last equality
we used (7). Thus, β is multiplicative in the second argument. That it is mul-
tiplicative in the first argument is proved in a similar way. Finally, the identity
β(x, x)= q(x) is obtained by setting y = x in (64). �
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Corollary 5.2. There is a bijection between
equivalence classes of

indecomposable module
C(A, q)-categories

 and


pairs (B, β), where B is a subgroup of A,
β : B× B→ k× is bimultiplicative and

β(x, x)= q(x), x ∈ B

 .
Proof. Let B be a subgroup of A corresponding to an indecomposable C-module
category. Formula (64) defines a map between sets{

maps γ : B× B→ k×

such that d(γ )= ω
modulo coboundaries

}
−→

 β ∈ Hom(B⊗2, k×)
such that

β(x, x)= q(x), x ∈ B

 . (66)

We need to prove that (66) is a bijection.
Let γ1, γ2 be 2-cochains on B such that d(γ1)= d(γ2)= ω and such that

c(x, y)
γ1(x, y)
γ1(y, x)

= c(x, y)
γ2(x, y)
γ2(y, x)

, x, y ∈ B.

Then γ2/γ1 is a symmetric 2-cocycle on B. Since a symmetric 2-cocycle is co-
homologically trivial, γ1 and γ2 differ by a coboundary. Thus the map (66) is
injective.

Consider the diagram

H 3
ab(A, k×) //

resB

��

H 3(A, k×)

resB

��
Hom(B⊗2, k×) // H 3

ab(B, k×) // H 3(B, k×)

(67)

with commutative square and the bottom row exact in the middle term. (Abelian
cohomology groups were defined in Example 2.2.) Let q be a quadratic form on A,
identified with an element of H 3

ab(A, k×). It follows from diagram (67) that q is in
the kernel of the composition

H 3
ab(A, k×)→ H 3(A, k×)→ H 3(B, k×)

if and only if the restriction of q to B can be represented by some bimultiplicative
β : B⊗2

→ k×. This proves surjectivity of (66). �

Remark 5.3. Note that the condition (65) along with identity (12) imply

β(x, y)β(y, x)= σ(x, y), x, y ∈ B. (68)

By M(B, β) we will denote a module category corresponding to the pair (B, β)
under the bijection from Corollary 5.2.

The following lemma is a special case of the result proved in [Naidu 2007]:
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Lemma 5.4. Let M = M(B, β) be a C(A, q)-module category. Then the group
AutC(M) of isomorphism classes of C-module autoequivalences of M fits into a
short exact sequence:

1 // B̂ // AutC(M) // A/B // 1

Proof. The homomorphism AutC(M)→ A/B assigns the effect of a C-equivalence
on the set A/B of simple objects of M. It is clear that this homomorphism is
surjective (it is enough to look at the images of α-inductions).

The kernel of the homomorphism AutC(M)→ A/B consists of isomorphism
classes of C-equivalences isomorphic to the identity functor. With a choice of
simple object m ∈M a C-module structure on the identity functor on M gives rise
to a character ψ ∈ B̂

ψ(b)idm : m = b ∗m→ b ∗m = m.

It follows from Shapiro’s lemma that the character determines the C-module struc-
ture. �

Proposition 5.5. The C(A, q)-module category M(B, β) is invertible if and only if
the form β : B× B→ k× is nondegenerate.

Proof. Note that M=M(B, β) is invertible if and only if the α-inductions

α±M : C→ EndC(M)

from Section 2I induce isomorphisms of groups A→ AutC(M) on the level of
isomorphism classes of objects. We can see that α-inductions give morphisms of
short exact sequences:

0 // B //

��

A //

α±M
��

A/B // 0

0 // B̂ // AutC(M) // A/B // 0.

The homomorphisms B→ B̂ can be recovered from the C-module functor structures
of α±M(a) for a ∈ A. The C-module functor structure for α+M(a) is given by the
diagram

a(bm)
α+M(a)b,m //

γ (a,b)
��

b(am)

γ (b,a)
��

(ab)m
c(a,b) // (ba)m

so that α+M(a)b,m = β(a, b) for a, b ∈ B. Here m is a simple object of M. Thus, the
corresponding homomorphism B→ B̂ has the form b→ β(b,−).
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Similarly, the C-structure for α−M(a) is defined by

a(bm)
α−M(a)b,m //

γ (a,b)
��

b(am)

γ (b,a)
��

(ab)m
c(b,a)−1

// (ba)m.

Hence, α−M(a)b,m = β(b, a)−1 for a, b ∈ B and the corresponding homomorphism
B→ B̂ has a form b→ β(−, b)−1. �

From the proof of Proposition 5.5 we have the following:

Corollary 5.6. The homomorphism ∂ :Pic(C(A, q))→Autbr(A, q) sends the class
of M(B, β) into the unique automorphism g ∈ O(A, q) such that

• g(B)⊂ B,

• g induces the identity on A/B, and

• β(b, g(c))= β(c, b)−1 for all b, c ∈ B.

Remark 5.7. It follows from (68) that the last condition in Corollary 5.6 can be
written as β(b, g(c)− c) = σ(b, c)−1 for all b, c ∈ B. This gives an alternative
description of g (compare [Davydov et al. 2011]; the graph of −g is the Lagrangian
subgroup 0(B, β)⊂ (A⊕ A, q ⊕ q−1) there):

• g(a)− a ∈ B for any a ∈ A and

• β(b, g(a)− a)= σ(b, a)−1 for all b ∈ B.

In accordance with the crossed module axiom (36) the map

∂ : Pic(C(A, q))→ O(A, q)

is O(A, q)-equivariant: ∂(h(B, β)) = h ◦ ∂(B, β) ◦ h−1 for h ∈ O(A, q). Here
h(B, β) = (h(B), h(β)) with h(β)(a, b) = β(h−1(a), h−1(b)) and hM(B, β) '
M(h(B, β)).

This gives a description of the map ∂ for the Picard crossed module P(C(A, q)).
The part which is unclear in this presentation is the group structure of Pic(C(A, q)).
It appears that the group operation is more accessible on the level of the autoe-
quivalence crossed module A(C(A, q)) (recall that A(C(A, q))'P(C(A, q)) by
Corollary 4.9). In the remaining sections we compute this crossed module.

5B. The center of a pointed braided fusion category. Let C = C(A, q) be a
pointed braided fusion category. The following fact is no doubt known to experts
but we were unable to locate a reference in the literature:

Proposition 5.8. The center Z(C) is pointed and Z(C)' C(A⊕ Â, Q), where

Q(a, φ)= 〈φ, a〉q(a). (69)
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Proof. For any a ∈ A and φ ∈ Â there is an invertible object Za,φ in Z(C) which is
equal to a as an object of C and has a half-braiding given by

c(x, a)〈φ, x〉ida+x : x ⊗ Za,φ
'
−→ Za,φ ⊗ x, (70)

where c : A×2
→ k× is the function (6) determining the braiding of C. That

the morphism (70) is indeed a central structure on a (that is, satisfies necessary
coherence conditions) follows from identities (7) and (8).

Thus, Z(C) contains |A|2 nonisomorphic invertible simple objects. Since the
dimension of Z(C) is dim(C)2 = |A|2, the category Z(C) is pointed. Furthermore,
Za,φ⊗ Za′,φ′ = Zaa′,φφ′, a, a′ ∈ A, φ, φ′ ∈ Â, that is, the group of invertible objects
of Z(C) is A⊕ Â. Finally, from (70) we see that the braiding on Za,φ ⊗ Za,φ is
given by the scalar 〈φ, a〉q(a). �

Remark 5.9. Let
σ(a, b) :=

q(a+ b)
q(a)q(b)

, x, y ∈ A (71)

be the bimultiplicative form corresponding to the quadratic form q : A→ k×. Then
the bimultiplicative form corresponding to the form Q defined in (69) is

B((a, φ), (a′, φ′))=
Q(a+ a′, φ+φ′)
Q(a, φ)Q(a′, φ′)

= 〈φ′, a〉〈φ, a′〉σ(a, a′), a, a′ ∈ A, φ, φ′ ∈ Â.

Remark 5.10. Note that in general the category Z(VecωA), where A is an abelian
group and ω ∈ Z3(A, k×), is not pointed, see [Goff et al. 2007].

Let σ : A× A→ k× be the symmetric bimultiplicative form (71). For any a ∈ A
define a homomorphism σ̃ : A→ Â by

〈σ̃ (a), x〉 = σ(a, x) for all x ∈ A.

The embeddings C(A, q),C(A, q)rev ↪→ Z(C(A, q)) defined in (4) are given by
injective orthogonal homomorphisms

(A, q)→ (A⊕ Â, Q) : a 7→ (a, 0),

(A, q−1)→ (A⊕ Â, Q) : a 7→ (a,−σ̃ (a)).

5C. The Picard group of C(A, q). By Theorem 4.3 any invertible C(A,q)-module
category corresponds to an orthogonal automorphism α ∈ O(A⊕ Â, Q) such that
α(a, 0)= (a, 0) for all a ∈ A.

Proposition 5.11. Let f : Â→ A be a group homomorphism satisfying the following
conditions:

(i) id Â− σ̃ f is invertible;
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(ii) 〈φ, f (φ)〉 = q( f (φ)) for all φ ∈ Â.

Then the map

α f (a, φ)=
(
a+ f (φ), φ− σ̃ f (φ)

)
, a ∈ A, φ ∈ Â (72)

is an orthogonal automorphism of (A⊕ Â, Q) that restricts to the identity on A.
Conversely, any orthogonal automorphism with this property is of the form (72)

for a unique homomorphism f : Â→ A satisfying conditions (i) and (ii).

Proof. Suppose a group homomorphism f : Â→ A is given. Clearly, α f is a
homomorphism and its restriction to A is the identity. Condition (i) in the statement
of the proposition is equivalent to α f being invertible. Let us explore the property
of α f being orthogonal. We compute

Q(α f (a, φ))= Q
(
a+ f (φ), φ− σ̃ f (φ)

)
= Q(a, φ)Q

(
f (φ),−σ̃ f (φ)

)
B
(
(a, φ), ( f (φ),−σ̃ f (φ))

)
= Q(a, φ)σ

(
f (φ), f (φ)

)−1q( f (φ))〈φ, f (φ)〉

= Q(a, φ)q( f (φ))−1
〈φ, f (φ)〉,

whence α f is orthogonal if and only if condition (ii) is satisfied.
Let us prove the converse statement. Let α ∈O(A⊕ Â, Q) be such that α restricts

to the identity on A. Let f : Â→ A and g : Â→ Â be homomorphisms such that
α(0, φ)= ( f (φ), g(φ)) for all φ ∈ Â. Since α preserves the quadratic form Q, the
condition Q(0, φ)= 1 implies Q( f (φ), g(φ))= 1, which is equivalent to

〈g(φ), f (φ)〉q( f (φ))= 1. (73)

Next, for arbitrary a ∈ A and φ ∈ Â we have

α(a, φ)= (a+ f (φ), g(φ)). (74)

We have Q(α(a, φ))= Q(a, φ)= 〈φ, a〉q(a). On the other hand, we compute

Q(α(a, φ))= Q
(
a+ f (φ), g(φ)

)
= Q(a, 1)Q

(
f (φ), g(φ)

)
〈g(φ), a〉σ(a, f (φ))

= q(a)〈g(φ), a〉σ( f (φ), a)

= q(a)〈g(φ)+ σ̃ f (φ), a〉.

Comparing two expressions we obtain

g(φ)= φ− σ̃ f (φ) for all φ ∈ Â. (75)

This along with (74) yields (72).
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Substituting (75) into (73) we obtain

〈φ, f (φ)〉q( f (φ))= 〈σ̃ f (φ), f (φ)〉 = σ( f (φ), f (φ))= q( f (φ))2,

whence 〈φ, f (φ)〉 = q( f (φ)) as required. �

Let P(A, q) be the set of group homomorphisms f : Â→ A satisfying conditions
(i) and (ii) of Proposition 5.11, that is,

P(A, q) :=

homomorphisms f : Â→ A such that
id Â− σ̃ ◦ f is invertible and

〈φ, f (φ)〉 = q( f (φ)) for all φ ∈ Â

 . (76)

Endow the set P(A, q) with the binary operation

f � g = f + g− f ◦ σ̃ ◦ g, f, g ∈ P(A, q). (77)

Proposition 5.12. The set P(A, q) with the operation � defined in (77) is a group.
Furthermore, the map

f 7→ α f : P(A, q)→ Autbr(Z(C(A, q)),C(A, q)
)
, (78)

where α f ∈ Autbr(Z(C(A, q))) is defined in (72), is a group isomorphism.

Proof. By Proposition 5.11 the assignment (78) is a bijection. Since

α f ◦αg = α f �g for all f, g ∈ P(A, q),

we see that P(A, q) is a group and the assignment (78) is a group isomorphism. �

Remark 5.13. Clearly, the identity element of P(A, q) is the zero homomorphism.
Let us describe the inverse of f ∈ P(A, q).

It is immediate from (77) that the inverse of f is given by the formula

f −1
= ( f ◦ σ̃ − idA)

−1
◦ f. (79)

Let f ∗ : Â→ A denote the homomorphism dual to f . We claim that f ∗ ∈ P(A, q)
and that f ∗ is the inverse of f with respect to the multiplication �. Indeed, equality
of quadratic forms in condition (ii) of Proposition 5.11 implies equality of the
corresponding bilinear forms

〈 f + f ∗(φ), ψ〉 = σ( f (φ), f (ψ)), φ,ψ ∈ Â,

whence f + f ∗ = f ∗ ◦ σ̃ ◦ f , that is, f ∗ coincides with the right hand side of (79).

Corollary 5.14. There is a group isomorphism P(A, q)∼= Pic(C(A, q)).

Proof. This follows from Proposition 5.12 and Theorem 4.3. �
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Remark 5.15. We have two parametrizations for the group Pic(C(A, q)). The first
one is given in terms of pairs (B, β), where B⊂ A is a subgroup and β : B×B→ k×

is a nondegenerate bimultiplicative map such that β(x, x) = q(x) for all x ∈ B,
see Corollary 5.2 and Proposition 5.5. The second one is given in terms of the
set P(A, q) consisting of homomorphisms f : Â→ A satisfying conditions listed
in (76).

Let us establish a bijection between these parametrizations. Let M=M(B, β)
denote the invertible C(A, q)-module category corresponding to a pair (B, β) as
above. Let 8(M) denote the corresponding braided autoequivalence of Z(C(A, q)
defined as in (44). By Proposition 5.11 8(M)= α f for a unique f ∈ P(A, q). Let
φ ∈ Â and let b = f (φ). Then b is uniquely determined by the condition

8(M)(Z0,φ)= Zb,ψ for some ψ ∈ Â.

Equivalently,
aM(Z0,φ)= bM(Zb,ψ),

where aM and bM are functors defined in (37) and (41). Note that b ∈ B since the
functor aM(Z0,φ) is identical on the classes of isomorphic objects of M.

Take x ∈ B and compare isomorphisms

x ⊗ aM(Z0,φ)(?)
'
−→ aM(Z0,φ)(x ⊗ ?) (80)

and

x ⊗ bM(Zb,ψ)(?)
'
−→ bM(Zb,ψ)(x ⊗ ?) (81)

coming from left C(A, q)-module functor structures of aM(Z0,φ) and bM(Z0,φ).
Using Equations (50) and (70) we see that the isomorphism (80) is given by

x ⊗ (Z0,φ ⊗ ?)
〈φ,x〉
−−−→ Z0,φ ⊗ (x ⊗ ?). (82)

On the other hand, using (52) we see that the isomorphism (81) is given by

x ⊗ (Zb,ψ ⊗ ?)
γ (x,b)
−−−→ (x ⊗ Zb,ψ)⊗ ?

c(x,b)
−−−→ (Zb,ψ ⊗ x)⊗ ?

γ (b,x)−1

−−−−−→ Zb,ψ ⊗ (x ⊗ ?), (83)

where γ : B × B → k× is the function that determines the module associativity
of M(B, β)— see (63) — and c : A× A→ k× is the braiding of C(A, q). From
(64) we see that the product of scalars in the composition (83) is equal to β(x, b).
Since β is nondegenerate it follows that b = f (φ) is completely determined by the
condition

〈φ, x〉 = β(x, b).
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Thus, the homomorphism f : Â → A corresponding to (B, β) is given by the
composition

f : Â→ B̂
β̂
−→ B ↪→ A, (84)

where Â→ B̂ is the surjection dual to the embedding B ↪→ A and β̂ : B̂ −→∼ B is
the isomorphism induced by β.

Example 5.16. (i) Suppose q is nondegenerate (that is, the category C(A, q) is
nondegenerate). Then σ̃ : A→ Â is an isomorphism and the map

P(A, q)→ O(A, q) given by f 7→ idA− f ◦ σ̃

is an isomorphism.

(ii) Suppose q = 1 (that is, the category C(A, q) is tannakian). Then

P(A, q)= {φ : Â→ A | 〈φ, f (φ)〉 = 1}.

Thus, elements of P(A, q) are identified with alternating bimultiplicative maps
Â× Â→ k× and

P(A, q)∼=
∧2 A ∼= H 2( Â, k×);

see [Etingof et al. 2010, Corollary 3.17].

(iii) Suppose that σ = 1 but q 6= 1 (that is, the category C(A, q) is symmetric but
not tannakian). In this case q ∈ Â is a character of order 2. Let 〈q〉 denote the
subgroup of Â generated by q . We have

P(A, q)∼=
{

H 2( Â, k×) if 〈q〉 is a direct summand in Â,
H 2( Â, k×)×Z/2Z otherwise.

This agrees with the result of [Carnovale 2006] in the case of semisimple Hopf
algebras.

5D. Description of the Picard crossed module of C(A, q). Let C(A, q) be a
pointed braided fusion category. By Corollary 4.9 the Picard crossed module
of C is isomorphic to the autoequivalence crossed module

A(C(A, q))

=
(
Autbr(Z(C(A, q));C(A, q)),Autbr(C(A, q))

)
∼=
(
P(A, q), O(A, q)

)
introduced in Section 3D.

By Lemma 4.4 the structural homomorphism

∂ : Pic(C(A, q))∼= Autbr(Z(C(A, q));C(A, q))→ Autbr(C(A, q)) (85)

is given by restriction of the autoequivalences in Autbr(Z(C(A, q));C(A, q)) to
C(A, q)rev

⊂ Z(C(A, q)).
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Let us describe ∂ explicitly. We already observed that the tensor subcategory
C(A, q)rev

⊂ Z(C(A, q)) corresponds to the subgroup {(a,−â) | a ∈ A} ⊂ A⊕ Â.
Given f ∈ P(A, q) we have

α f (a,−σ̃ (a))= (a− f σ̃ (a),−(σ̃ (a)− σ̃ f σ̃ (a)).

Hence,
∂( f )= idA− f ◦ σ̃ , f ∈ P(A, q). (86)

Next, for any g ∈ O(A, q) let g̃ ∈ O(A⊕ Â, Q) be the orthogonal automorphism
induced by g, that is, g̃(a, φ)= (g(a), φ ◦ g−1). It is straightforward to check the
identity

g̃ ◦α f ◦ g̃−1
= α(g f ),

where
g f = g ◦ f ◦ g−1, g ∈ O(A, q), f ∈ P(A, q). (87)

Thus, the autoequivalence crossed module of C(A, q) is

A(C(A, q))' (P(A, q), O(A, q))

with structural operations (86) and (87).

5E. Invariants of P(C(A, q)). The kernel and the cokernel of the homomor-
phism ∂ are important invariants of a crossed module. Below, we compute the
kernel of ∂ for the crossed module P(C(A, q)). We also describe the cokernel of ∂
for the crossed module P(C(A, q)) when Zsym(C(A, q)) is tannakian.

As before, let A⊥ ⊂ A denote the kernel of σ . Note that C(A⊥, q|A⊥) =
Zsym(C(A, q)) is a symmetric fusion category.

Proposition 5.17. The group homomorphism (61)

j : Pic(C(A⊥, q|A⊥))→ ker(∂)

is an isomorphism.

Proof. The homomorphism j can be explicitly described as follows. For g in
P(A⊥, q|A⊥) the image j (g) ∈ P(A, q) is the composition

j (g) : Â→ Â⊥
g
−→ A⊥ ↪→ A,

where the first arrow is the restriction of a character and the last arrow is the
embedding.

We will construct the inverse homomorphisms

i : Ker(∂)→ Pic(C(A⊥, q|A⊥))
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to j . Let f ∈ Ker(∂). Then f ◦ σ̃ = 0; that is, f |
Â/A⊥
= 0. By Remark 5.13 we

also have f ∗ ∈ Ker(∂), and hence f ∗ ◦ σ̃ = 0. Taking the dual we get σ̃ ◦ f = 0,
that is, f ( Â)⊂ A⊥. Hence f descends to a homomorphism

i( f ) : Â⊥ ∼= Â/ ̂(A/A⊥)→ A⊥,

which is easily seen to be in P(A⊥, q|A⊥). �

Now let C(A, q)) be a pointed category whose symmetric center Zsym(C(A, q))
is tannakian. In other words let q|A⊥ = 1. Note that in this case the form q descends
to A/A⊥ (we denote the descendent form by q̃). Below, we describe the kernel of
the homomorphism (62) for C(A, q).

Proposition 5.18. Let q|A⊥ = 1. Then the kernel of the canonical homomor-
phism (62)

coker
(
Pic(C(A, q))

∂
−→ Autbr(C(A, q))

)
→ Aut(A⊥)

is isomorphic to the abelian group Hom(A/A⊥, A⊥). In other words, the cokernel
C = coker

(
Pic(C(A, q))

∂
−→ Autbr(C(A, q))

)
fits into an exact sequence

0 // Hom(A/A⊥, A⊥) // C // Aut(A⊥) . (88)

Proof. From the commutativity of the diagram

P(A, q) ∂ //

��

O(A, q)

��
P(A/A⊥, q̃)

∂

' // O(A/A⊥, q̃)

it follows that coker
(
P(A, q)

∂
−→ O(A, q)

)
coincides with

ker
(
O(A, q)→ O(A/A⊥, q̃)

)
/im(∂)∩ ker

(
O(A, q)→ O(A/A⊥, q̃)

)
.

Now ker
(
O(A, q)→ O(A/A⊥, q̃)

)
consists of automorphisms of the form idA+φ

for φ ∈ Hom(A, A⊥). Indeed any element of ker
(
O(A, q)→ O(A/A⊥, q̃)

)
must

have this form and conversely any automorphisms of this form preserves q:

q(a+φ(a))= q(a)q(φ(a))σ (a, φ(a))= q(a).

Note that composition of automorphisms induces the following group operation on
Hom(A, A⊥):

φ ∗ψ = φ+ψ +φ ◦ψ.

It is straightforward that C = {φ ∈ Hom(A, A⊥) | idA + φ is invertible} with the
group operation ∗ fits into an exact sequence (88).
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All we need to show now is that the intersection of im(∂) with the kernel
of O(A, q) → O(A/A⊥, q̃) is trivial. Assume that ∂( f ) = idA + φ for φ in
Hom(A, A⊥). Then φ=− f ◦σ̃ so that im( f )⊂ A⊥. We also have ∂( f ∗)= idA+ψ

for ψ ∈ Hom(A, A⊥), which implies that im( f ∗)⊂ A⊥. Then

φ =− f ◦ σ̃ =−(σ̃ ◦ f ∗)∗ = 0. �
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A Gross–Zagier formula for quaternion
algebras over totally real fields

Eyal Z. Goren and Kristin E. Lauter

We prove a higher dimensional generalization of Gross and Zagier’s theorem
on the factorization of differences of singular moduli. Their result is proved
by giving a counting formula for the number of isomorphisms between elliptic
curves with complex multiplication by two different imaginary quadratic fields K
and K ′ when the curves are reduced modulo a supersingular prime and its powers.
Equivalently, the Gross–Zagier formula counts optimal embeddings of the ring of
integers of an imaginary quadratic field into particular maximal orders in Bp,∞,
the definite quaternion algebra over Q ramified only at p and infinity. Our work
gives an analogous counting formula for the number of simultaneous embeddings
of the rings of integers of primitive CM fields into superspecial orders in definite
quaternion algebras over totally real fields of strict class number 1. Our results can
also be viewed as a counting formula for the number of isomorphisms modulo p| p
between abelian varieties with CM by different fields. Our counting formula can
also be used to determine which superspecial primes appear in the factorizations
of differences of values of Siegel modular functions at CM points associated to
two different CM fields and to give a bound on those supersingular primes that
can appear. In the special case of Jacobians of genus-2 curves, this provides infor-
mation about the factorizations of numerators of Igusa invariants and so is also
relevant to the problem of constructing genus-2 curves for use in cryptography.

1. Introduction

The celebrated theorem of Gross and Zagier [1985] gives a factorization of norms
of differences of singular moduli: values of the modular j-function evaluated at
CM points associated to imaginary quadratic fields. Let K and K ′ be two imaginary
quadratic fields with relatively prime fundamental discriminants d and d ′. For τ
and τ ′ running through equivalence classes of imaginary quadratic integers in the
upper half-plane modulo SL2(Z) with disc(τ ) = d, disc(τ ′) = d ′, and w and w′

MSC2010: primary 11G15, 11G16; secondary 11G18, 11R27.
Keywords: CM abelian varieties, singular moduli, quaternion algebras, superspecial orders.
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equal to the number of roots of unity in K and K ′, respectively, define

J (d, d ′)=
( ∏
[τ ],[τ ′]

( j (τ )− j (τ ′))
)4/(ww′)

.

Then the Gross–Zagier thereom states that if λ is a prime of OK of characteristic p,

ordλ J (d, d ′)= 1
2

∑
x∈Z

∑
n≥1

δ(x)R
(

dd ′−x2

4pn

)
,

where R(m) is the number of ideals of OK of norm m and δ(x) = 1 unless x is
divisible by d , in which case it is 2. Their results can also be viewed as a counting
formula for the number of isomorphisms between the reductions modulo primes
and their powers of elliptic curves with complex multiplication by two different
imaginary quadratic fields K and K ′. This in turn is equivalent to counting optimal
embeddings of the ring of integers of an imaginary quadratic field into particular
maximal orders in Bp,∞, the definite quaternion algebra over Q ramified only at p
and infinity. Gross and Zagier gave an algebraic proof of this result under the
additional assumption that d is prime, and the algebraic proof of the theorem was
extended to arbitrary fundamental, relatively prime discriminants in a series of
papers by Dorman [1988; 1989a; 1989b].

In this paper, we prove a generalization to higher dimensions of Gross and
Zagier’s theorem, which can also be viewed in three ways: (1) a statement about
primes in the factorization of differences of values of Siegel modular functions
at CM points associated to two different CM fields, (2) a counting formula for
isomorphisms modulo p between abelian varieties with CM by different fields, and
(3) a counting formula for simultaneous embeddings of the rings of integers of two
primitive CM fields into superspecial orders in certain definite quaternion algebras
over a totally real field.

First we explain our interest in these three contexts. Assume throughout that K
and K ′ are primitive CM fields with a common totally real subfield K+ = K ′+ = L
and [L :Q] = g, where L has strict class number 1. In the special case of g = 2,
we are inspired by some concrete calculations of values of certain Siegel modular
functions at CM points associated to primitive quartic CM fields. Let C and C ′

be two genus-2 curves whose Jacobians J and J ′ have complex multiplication
(CM) by K and K ′. In analogy with the modular j -invariant for elliptic curves, for
genus-2 curves Igusa defined ten modular invariants. Equality of these ten invariants
determines whether two curves are isomorphic geometrically, so primes appearing
in the factorization of all ten differences correspond to primes where the curves
become isomorphic when reduced modulo that prime. Concrete calculations and
the tables of van Wamelen [1999] suggest that such primes are “small”. An explicit
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characterization of such primes gives information about the numerators of Igusa
invariants and thus has some value computationally as well.

Thus, we are led to be interested in counting the number of isomorphisms modulo
various primes and their powers between abelian varieties with CM by two different
CM fields K and K ′. The existence of an isomorphism modulo p between abelian
varieties with CM by two different CM fields K and K ′ with K+ = K ′+ implies
supersingular reduction modulo p. Fixing an abelian variety A with CM by K ,
each isomorphism modulo p with an abelian variety A′ with CM by K ′ gives an
embedding of OK ′ into EndOL (A). In the case of superspecial reduction, we can
give a very explicit description of the orders EndOL (A), which allows us to derive a
formula that counts such embeddings.

Nicole introduced the notion of superspecial orders in definite quaternion algebras
over totally real fields as a generalization of maximal orders in definite quaternion
algebras over Q; see [Nicole 2005; 2008]. These orders were further studied in
[Charles et al. 2009a; 2009b; Goren and Lauter 2009], where related Ramanujan
graphs were constructed and certain cryptographic applications suggested. Through-
out this paper, assume that p is a prime number that is unramified in the totally real
field L of degree g and strict class number h+(L)= 1. Under these assumptions,
a superspecial order in Bp,L := Bp,∞ ⊗Q L is an Eichler order of level p. The
connection with geometry is given in the thesis of Nicole, where it is shown that
EndOL (A) is a superspecial order for A a principally polarized superspecial abelian
variety with RM over Fp. Conversely, every superspecial order arises in this way
from such an abelian variety A.

Next we give an overview of the results of the paper. The core of the paper
is the generalization of Dorman’s work constructing and classifying superspecial
orders in Bp,L with an optimal embedding of a CM number field K with K+ = L .
First, Section 3 is devoted to giving a description of the quaternion algebra Bp,L

with a fixed embedding of the CM field K for superspecial primes, i.e., unramified
primes p such that an abelian variety with CM by K has superspecial reduction
modulo a prime P| p in a field of definition of the abelian variety. Sections 4 and 5
establish a classification of superspecial orders with an optimal embedding of K ,
giving both an explicit construction of all such superspecial orders and a bijection
(up to conjugation by elements of K×) with the class group of K (Theorem 5.7).
These three sections together establish the generalization to g > 1 of Dorman’s
work on orders [1989a] and fix several gaps in his proofs.

Section 6 gives a method for counting embeddings by counting elements of the
superspecial orders with a prescribed trace and norm in a way that generalizes the
Gross–Zagier formula. Our method is very similar to Gross–Zagier’s and Dorman’s;
their results are the special case g = 1. To make the link between the algebraic and
the geometric sides of the story, we include the determination of endomorphism
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rings of superspecial abelian varieties in Section 7. Section 8 connects the counting
formula for isomorphisms between CM abelian varieties with the counting formula
for embeddings into superspecial orders.

The main result of the paper is an explicitly computable counting formula for the
number of isomorphisms modulo P| p between abelian varieties with CM by two
different CM fields K and K ′ with K+= K ′+ (Theorems 6.5 and 8.2). This formula
can be viewed as an intersection number under the assumption that a reasonable
lemma in intersection theory holds (Section 9). Less precisely, we refer to this
value as a “coincidence number”. It also has an algebraic interpretation as the
number of “optimal triples” of embeddings of OK and OK ′ into superspecial orders
(Section 8.4).

For primes of supersingular reduction for CM abelian varieties, a separate com-
putation of the endomorphism rings is given in Section 10. In Section 11, a volume
argument such as was used in [Goren and Lauter 2007] is given to establish a bound
on primes p of either supersingular or superspecial reduction, where isomorphisms
exist modulo p between CM points associated to K and K ′. In Section 12, an
example of two Galois CM fields is given and all primes dividing the differences of
the Igusa invariants are examined and compared with our counting formula.

The authors thank the referee for helpful comments to improve the paper.

2. Preliminaries

2.1. Quadratic reciprocity for number fields. Let L be a number field and γ and δ
prime elements of L that are nonassociates such that (γ δ, 2)= 1. Define(

γ

δ

)
=

{
1 if γ =� mod δ,
−1 else.

Let B :=
(
γ,δ

L

)
be the quaternion algebra over L defined by the elements γ and δ.

For any place η of L , including the infinite places, define

(γ, δ)η :=

{
1 if B⊗L Lη is split,
−1 else,

and we have the following analogue of quadratic reciprocity for the number field L:

Proposition 2.1. (1) If η is a finite prime such that η - 2, then (γ, δ)η = 1 if and
only if x2

− γ y2
− δz2

= 0 has a nontrivial solution modulo η.

(2) If η is complex, then (γ, δ)η = 1.

(3) If η is real (η : L→ R), then (γ, δ)η = 1 if and only if η(γ ) > 0 or η(δ) > 0.
That is, (γ, δ)η =−1 if and only if both η(γ ) and η(δ) are negative.
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(4)
(
γ

δ

)(
δ

γ

)
= (−1)r(γ,δ) ·

∏
η |2

(γ, δ)η,

where r(γ, δ) equals the number of real places η such that both η(γ ) and η(δ)
are negative. In particular, if either γ or δ are totally positive, then(

γ

δ

)(
δ

γ

)
= (γ, δ)2 :=

∏
η |2

(γ, δ)η.

(5)
(
−1
γ

)
(−1, γ )2 = (−1)r(γ ),

where r(γ ) is the number of real places η such that η(γ ) is negative.

Proof. We prove (1). By [Vignéras 1980, Chapter II, Corollary 1.2], (γ, δ)η = 1 if
and only if x2

−γ y2
−δz2

= 0 has a nontrivial solution in Lη, where by “nontrivial”
we mean a solution where at least one of the variables with nonzero coefficients
is nonzero. Suppose that x2

− γ y2
− δz2

= 0 has a nontrivial solution in Lη.
By multiplying by a common denominator, we can assume x, y, z ∈ OLη and
one of them is a unit. Then reducing modulo η, we get a nontrivial solution to
x2
− γ y2

− δz2
≡ 0 mod η. Conversely, suppose x2

− γ y2
− δz2

≡ 0 mod η has a
nontrivial solution. By Hensel’s lemma, we can lift the solution to OLη .

Part (2) is clear, and (3) follows from loc. cit. because x2
−η(γ )y2

−η(δ)z2
= 0

has a nontrivial solution in R3 if and only if either η(γ ) > 0 or η(δ) > 0.
To prove (4), first note that (γ, δ)γ = 1 if and only if x2

− γ y2
− δz2

= 0
has a nontrivial solution modulo γ if and only if δ = (x/z)2 for some nonzero
x, z ∈ OL/(γ ) if and only if

(
δ
γ

)
= 1. By the product formula,

1=
∏
η

(γ, δ)η = (−1)r(γ,δ)(γ, δ)2
(
δ

γ

)(
γ

δ

) ∏
η finite
η-2γ δ

(γ, δ)η.

But for η - 2γ δ, x2
−γ y2

−δz2
= 0 has a nontrivial solution modulo η, so (γ, δ)η= 1.

Similarly for (5), for any real place η, η(γ ) > 0 if and only if (−1, γ )η = 1, so
it follows from the product formula that

1=
∏
η

(−1, γ )η = (−1)r(γ )
(
−1
γ

)
(−1, γ )2. �

2.2. The ring of integers in CM fields. Let K be a CM field with a totally real
subfield K+ = L . Assume that L has strict class number 1. Let DK/L be the
different of the extension, and let η denote a prime ideal of OL .

Lemma 2.2. (1) OK = OL [t], where t2
+ at + b = 0 for some a, b ∈ OL , and

D−1
K/L = (1/

√
d) with d = a2

− 4b a totally negative element of OL .
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(2) Assume for η |2 that if η |a then b is not a square modulo η. Then (d, 2)= 1,
and d is square-free.

Proof. Part (1) is proved in [Goren and Lauter 2006, Lemma 3.1].
We now prove (2). Since OK = OL [t]/(t2

+ at + b), the prime decomposition
of every prime η is determined by the prime factorization of t2

+ at + b mod η. If
η is ramified, that implies that t2

+ at + b ≡ (t − c)2 mod η for some c ∈ OL/(η).
But since η |2, we have

(t − c)2 ≡ t2
− c2
≡ t2
+ c2 mod η,

so
t2
+ at + b ≡ (t − c)2 mod η ⇐⇒ η |a and b =� mod η.

Thus, our condition implies that OK is unramified over all primes η |2. It follows
that (d, 2)= 1.

Next we prove that d is square-free. Let η be a prime of OL not dividing 2. For
η |d, we have OK ⊗OL OLη = OLη [

√
d] because OK = OL [(−a +

√
d)/2]. Write

OLη [
√

d] = OLη [
√

u ·αr
η], where u is a unit at η and αr

η |d . If r > 1, then

OLη
[√

u ·αr
η

]
= OLη +OLη ·

√
u ·αr

η

has no element of valuation 1, which is not possible. Indeed, if π is a uniformizer
of OKη

with valuation normalized so that valη(OLη) = Z≥0, then for x ∈ OLη ,
valπ (x)= 2 valη(x) ∈ 2Z≥0, and

valπ
(√

u ·αr
η

)
=

1
2 valπ (u ·αr

η)= valη(u ·αr
η)= r.

In other words, we have shown that discriminants of quadratic extensions of p-adic
fields are square-free when p 6= 2. �

Lemma 2.3. We have OK = OL [(a′ +
√

d)/2] exactly for the a′ ∈ OL such that
a′ ≡ a mod 2OL . Such a′ satisfy (a′)2 ≡ d mod 4OL . Conversely, given a′ ∈ OL

such that (a′)2 ≡ d mod 4OL , we have OK = OL [(a′+
√

d)/2].

Proof. If a′≡a mod 2OL , we have OK =OL [t]=OL [(a+
√

d)/2]=OL [(a′+
√

d)/2]
if a′ ≡ a mod 2OL . We have d = a2

− 4b ≡ a2 mod 4OL . Then also (a′)2 =
(a+ 2y)2 = a2

+ 4ay+ 4y2
≡ d mod 4OL .

If OL [(a+
√

d)/2] = OL [(a′+
√

d)/2], then

a+
√

d
2
= u+ v

(a′+
√

d
2

)
,

which implies that
a+
√

d = 2u+ va′+ v
√

d,

and so
v = 1 and a = 2u+ a′ =⇒ a ≡ a′ mod 2OL .
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Finally, suppose a′ ∈ OL satisfies (a′)2 ≡ d mod 4OL . Then (a′ +
√

d)/2 is
integral. Therefore, we get successively

a′+
√

d
2
= u+ v ·

(
a+
√

d
2

)
,

from which we get successively

a′+
√

d = 2u+ va+ v
√

d, v = 1, a ≡ a′ mod 2OL . �

2.3. CM points on Hilbert modular varieties. Assume that L is a totally real field,
[L : Q] = g, and L has strict class number 1; we write h+L = 1. This implies
that (OL

×)+ = (OL
×)2. In this case, the Hilbert modular variety HL associated

to L is geometrically irreducible and affords the following description. It is the
moduli space for triples (A, ι : OL → End(A), η), where A is a complex abelian
variety of dimension g, ι is a ring embedding, and η is a principal OL -polarization
or, equivalently, η is a principal polarization and the associated Rosati involution
fixes OL elementwise. We have HL ∼= SL2(OL) \H

g; see [Goren 2002, Chapter 2,
§2]. Our interest is in the parametrization of CM points on HL .

2.3.1. Abelian varieties with CM. Let K be a CM field such that K+ = L . We
consider triples

(A, ι : OK → End(A), η) (2-1)

such that A is a g-dimensional complex abelian variety, ι is a ring homomorphism,
and η is a principal OK -polarization, by which we mean a principal polarization
whose associated Rosati involution induces complex conjugation on K .

Such datum produces a point on HL , namely, the point parametrizing (A, ι|OL , η).
This will be examined later. First we want to classify triples (A, ι, η) as in (2-1) up
to isomorphism.

To a triple (A, ι, η), we may associate a CM type 8 that records the induced
action of K on TA,0, the tangent space to A at the origin. The theory of complex
multiplication then asserts the existence of a fractional ideal a of K such that

(A, ι)∼= (Cg/8(a), ιcan),

where 8(a) is the lattice {(ϕ1(a), . . . , ϕg(a)) : a ∈ a } and 8= {ϕ1, . . . , ϕg}; ιcan is
the canonical action of OK on that abelian variety obtained by extending the natural
action on 8(a). Furthermore, the principal polarization η is induced from a paring
on K of the form

(x, y) 7→ TrK/Q(ax y)

for some a ∈ K . The conditions on a ensuring the associated polarization, say ηa ,
is principal are these:
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(1) (a)= (DKaa)
−1.

(2) a =−a.

(3) Im(ϕi (a)) > 0 for i = 1, . . . , g.

It follows easily that for every λ ∈ K×, the principally polarized abelian variety
associated to (8, a, a) in the manner above is isomorphic to that associated to
(8, λa, (λλ)−1a). Furthermore, any isomorphism of principally polarized abelian
varieties (A, ι, η)∼= (A′, ι′, η′) as in (2-1) arises that way.

Now, given a fractional ideal a of K , the ideal aa is of the form bOK for some
fractional ideal b of L , and since hL = 1, we can write (aa)−1

= λOK for a suitable
λ∈ L . The fractional ideal D−1

K is of the form d−1/2OK , where d is a totally negative
element of L . Thus,

(DKaa)
−1
= (λd−1/2),

and λd−1/2 = −λd−1/2. We are free to change λ by any unit ε ∈ OL
×. Since

(OL
×)+ = (OL

×)2, it follows easily that for any choice of signs s1, . . . , sg in {±1},
there is a unit ε ∈ OL

× such that the sign of ϕi (ε) is si . Since

Im
(
ϕi
(
ελ
√

d
−1))
= ϕi (ε) Im

(
ϕi
(
λ
√

d
−1))

,

by choosing ε properly we may arrange Im(ϕi (ελ
√

d
−1
)) > 0 for all i = 1, . . . , g.

We have thus shown that for every fractional ideal a of K , there is a suitable a such
that (8, a, a) gives a principally polarized abelian variety with CM by K .

Our discussion so far shows that the isomorphism classes of principally polarized
abelian varieties with CM by OK are in bijection with equivalence classes of the set

{(8, a, a) :8 is a CM type, a satisfies (1)–(3) above relative to (8, a) }.

The equivalence relation is (8, a, a)∼ (8, λa, λλa) for λ ∈ K× and, further, that
every pair (8, a), where 8 is a CM type and a is a fractional ideal, appears in a
suitable triple (8, a, a).

Given (8, a, a) and (8, a, b), there is a unit ε1 ∈ OK
× such that b= ε1a because

both a and b generate the ideal (DKaa)
−1. Since a =−a and b =−b, it follows

that ε1 ∈ OL
×, and since Im(ϕ(a)) > 0 and Im(ϕ(b)) > 0, it follows that ε1 ∈ OL

×,+.
Using that OL

×,+
=OL

×,2, we conclude that there is an ε ∈OL such that ε1= ε
2
= εε.

That is, (8, a, a)∼ (8, a, b). We therefore conclude that, in the strict class number 1
case, isomorphism classes of principally polarized abelian varieties with CM by K
and a fixed CM type are parametrized by the ideal classes of K .

2.3.2. CM points on HL . Let (A, ι : OK → End(A)) be a complex abelian variety
with CM by K (so [K :Q] = 2 dim(A)). Since h+L = 1, it carries a unique principal
polarization up to isomorphism. Consider EndOL (A). We use [Chai 1995, Lemma 6,
p. 464]. In the notation of that lemma since A has CM, only cases III(a) and IV
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can arise. But since we are working over the complex numbers, in fact only case
IV can arise, and according to which, A ∼ Bn , where B is of dimension g/n
and has CM by a CM field K0 whose totally real subfield L0 is contained in L
and satisfies [L : L0] = n. One has End0

L(A) = L ⊗L0 K0, which is a CM field
according to that lemma. It follows, because K is primitive, that End0

L(A)= K . As
a consequence, once a RM structure is specified on A, there are precisely two CM
structures extending it; if ι : OK → End(A) is one of them, the other is ι := ι ◦ τ ,
where τ is complex conjugation on K . If ι has CM type 8, then ι has CM type 8.
Let F be the set of CM types for K .

Proposition 2.4. Let (8, [a]) ∼ (8, [a]) (= (8, [a−1
])) define an equivalence

relation ∼ on F×Cl(K ). Then the set F×Cl(K )/∼ has 2g−1
×# Cl(K ) elements

and is in a natural bijection with the K -CM points on HL , that is, with the points
(A, ι : OL→ End(A), η) for which we can extend ι to an embedding OK → End(A)
whose image is fixed (as a set) by the Rosati involution associated to η.

3. Quaternion algebras over totally real fields

Let L be a totally real number field of degree g and strict class number 1. Let p be
a prime number unramified in L , and let

Bp,L := Bp,∞⊗Q L ,

where Bp,∞ is the rational quaternion algebra ramified at p and∞ alone. Let

S := {p GOL : p| p }

be the set of prime ideals of L above p, and let

S0 = {p ∈ S : f (p/p)≡ 1 mod 2 }

be those with odd residue degree. The algebra Bp,L is ramified precisely at all
infinite places and at the primes p ∈ S0.

The rest of this section and Sections 4 and 5 are devoted to giving a description
of the quaternion algebra Bp,L and a classification of some particular orders under
the assumptions that all primes p ∈ S \ S0 split in K and all primes p ∈ S0 are inert
in K . First we prove that this assumption is satisfied when p is an unramified prime
of superspecial reduction for an abelian variety with CM by K .

3.1. Splitting behavior in the case of superspecial reduction.
Proposition 3.1. Let p be a rational prime unramified in K . Let A be an abelian
variety with CM by OK defined over a number field M with good reduction at a prime
ideal pM of M dividing the rational prime p. Assume that A has supersingular
reduction modulo pM . Then every prime in S0 is inert in K . Assume further that A
has superspecial reduction; then every prime in S \ S0 is split in K .
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Proof. Since A has supersingular reduction, say A, End0
L(A)∼= Bp,L = Bp,∞⊗Q L

[Chai 1995, Lemma 6], and so

K ↪→ Bp,L .

Thus, at every prime P of K above a prime p of L , the field KP splits the quaternion
algebra Bp,L⊗L Lp. The quaternion algebra Bp,L is ramified precisely at the primes
in S0 and at infinity, so if p ∈ S0, we find that each KP is a quadratic field extension
of Lp; that is, since p is unramified in K , all the primes in S0 are inert in K .

Assume now that there is a prime p ∈ S \ S0 that is inert in K , and let P be the
prime of K above p. Let us denote the embedding of OL into W (Fp) associated to p

{ϕ1, . . . , ϕ f } and f = f (p/p), where we may order the embeddings so that σ ◦
ϕi = ϕi+1 and σ denotes the Frobenius automorphism. Each embedding ϕi is the
restriction of two embeddings of OK into W (Fp) that we denote ψ1

i and ψ2
i , where

one is the composition of the other with complex conjugation. Since P is inert over
p, σ still acts transitively on the set {ψ j

i : i = 1, . . . , f, j = 1, 2 }.
The Dieudonné module of A decomposes as D =

⊕
p| p D(p) relative to the OL

structure. Let H := D(p). Then H decomposes further as

H =
f⊕

i=1

H(ϕi )=

f⊕
i=1

(H(ψ1
i )⊕ H(ψ2

i )),

where H(ϕi ) is a free W (Fp)-module of rank 2 on which OL acts via ϕi , and
it decomposes into a direct sum of two free W (Fp)-modules of rank 1, H(ψ1

i )

and H(ψ2
i ), on which OK acts by ψ1

i and ψ2
i , respectively. Now, the transitivity of

the action of σ on the ψ j
i means that we can order them so that

σ ◦ψ1
i = ψ

1
i+1, i = 1, 2, . . . , f − 1,

σ ◦ψ1
f = ψ

2
1 ,

σ ◦ψ2
i = ψ

2
i+1, i = 1, 2, . . . , f − 1,

σ ◦ψ2
f = ψ

1
1 .

Let us choose a basis {e j
i : i = 1, 2, . . . , f, j = 1, 2 } for H such that e j

i spans
H(ψ j

i ). Note that the kernel of Frobenius on H := H mod p is an OK -module and
is one-dimensional in every H(ϕi ) because A satisfies the Rapoport condition or,
alternately, for each i , precisely one of {ψ1

i , ψ
2
i } belongs to the CM type. Suppose,

without loss of generality, that e1
1 spans the kernel of Frobenius in H(ϕ1); then we

must have that Fr(e2
1), which is equal up to a unit to e2

2, spans the kernel of Frobenius
in H(ϕ2) (this is where “superspecial” is being used), and by the same rationale, we
find that the kernel of Frobenius in H(ϕi ) is spanned by e1

i for i odd and by e2
i for i

even. In particular, the kernel of Frobenius in H(ϕ f ) is spanned by e2
f because f is
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even. Now, by the same rationale, Fr(e1
f ) spans the kernel of Frobenius in H(ϕ1),

and it lies in H(ψ2
1 ) because σ ◦ψ1

f = ψ
2
1 . This is a contradiction. �

3.2. A description of Bp,L . Next we give a description of the quaternion algebra
Bp,L in terms of a CM field K for a certain set of primes p, which according to
Proposition 3.1 includes the superspecial primes of K . This description generalizes
the approach of Gross and Zagier.

Notation. If q is a prime ideal of L , let αq denote a totally positive generator of q.
It is unique up to an element of OL

×+
= OL

×,2. Write p =
∏

p∈S αp.

Proposition 3.2. Let K be a CM field and K+= L. Assume p is odd and unramified
in L and that all primes p ∈ S \ S0 split in K and all primes p ∈ S0 are inert in K .
These conditions imply that K embeds in Bp,L . Assume that the discriminant
dK/L = (d) satisfies (d, 2p) = 1. Then there is a totally negative prime element
α0 ∈ OL such that (α0, 2pd)= 1, the ideal (α0) is split in K , and

Bp,L ∼=

(d, α0 p
L

)
.

Proof. We first need a lemma.

Lemma 3.3 (Primes in arithmetic progressions). Let L be a number field, and let
ν1, . . . , νt be some of L’s embeddings into R. Let rCOL be an integral ideal and
r ∈ OL an element such that (r, r)= 1. Then there is a prime element α ∈ OL such
that α ≡ r mod r and νi (α) > 0 for i = 1, . . . , t .

Proof. We may assume νi (r) > 0 for i = 1, . . . , t . Indeed, one may replace r
by r+n for any element n ∈ r. Since r⊗Q= L , for any c ∈R, r contains elements
n such that ν(n)> c for every real place ν of L . Taking C =max{|νi (r)| : νi (r)< 0 }
and a suitable element n ∈ r, we get νi (r + n) > 0 for i = 1, . . . , t .

Consider the modulus rν1ν2 · · · νt = m and the ray class group modulo m,
I (m)/P(m). Here I (m) is the multiplicative group of fractional ideals prime
to m and P(m) is the subgroup of principal ideals having a generator β such
that β ≡ 1 mod m and νi (β) > 0 for i = 1, . . . , t . Let L(m) be the correspond-
ing class field with Gal(L(m)/L) ∼= I (m)/P(m). The ideal (r) is an element of
I (m)/P(m). Let

σ := ((r), L(m)/L) ∈ Gal(L(m)/L)

be the Artin symbol. By Chebotarev, there is a prime ideal p such that (p,m)=1 and

σ = σp = (p, L(m)/L).

Also, p is equivalent to (r) modulo P(m) and hence also principal. Indeed,

σp|HL = σ |HL = ((r), L(m)/L)|HL = 1.
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Since Gal(HL/L) ∼= I/P , we must have that p is principal. Let (α1) = p. By
construction, (α1) = (r) in I (m)/P(m). That means that the ideal (α1r−1) has a
generator uα1r−1, u ∈ OL

×, such that

uα1r−1
≡ 1 mod m.

Let α= uα1. Then α≡ r mod m, meaning α≡ r mod r, and for every i = 1, . . . , t ,
νi (α) has the same sign as νi (r), i.e., is positive. �

According to Lemma 3.3, we can choose α0 ∈ OL satisfying these conditions:

(1) α0 is a totally negative prime element of OL .

(2) α0≡ p mod ηN for each η |2 and some N� 0 (for the choice of N , see below).

(3) α0 ≡ p mod q for each q|d .

(4) α0 ≡ 1 mod p.

Since x2
−dy2

−α0 pz2
≡ 0 mod ηN has a nontrivial solution and N is large enough,

by Hensel’s lemma there is a p-adic solution. We therefore have

(d, α0 p)η = 1 for all η |2,
(
α0
q

)
=

( p
q

)
for all q|d (3-1)

and (α0, 2pd)= 1.
To show that Bp,L ∼=

(d, α0 p
L

)
, we need to check the following:

1. (d, α0 p)η = 1 for all η |2. This follows from (3-1).

2. (d, α0 p)η=1 for all finite ηwith η -dα0 p. This is because x2
−dy2

−α0 pz2
≡0

mod η has a nontrivial solution.

3. (d, α0 p)η = 1 for all finite η such that η |d . This is so because x2
−α0 pz2

≡

0 mod η has a nontrivial solution if and only if
(
α0 p
η

)
= 1, which is true by (3).

4. (d, α0 p)η = 1 for all η ∈ S \ S0. Indeed, x2
− dy2

≡ 0 mod η has a nontrivial
solution if and only if d =� mod η, which holds if and only if η splits in K .

5. (d, α0 p)η=1 if η=α0. This is so because the congruence x2
−dy2

≡0 mod α0

has a nontrivial solution if and only if
( d
α0

)
= 1. We will examine this below.

6. (d, α0 p)η =−1 for all η ∈ S0. Indeed, x2
−dy2

≡ 0 mod η has only the trivial
solution if and only if d 6=� mod η, which holds if and only if η is inert in K .

7. (d, α0 p)η =−1 for all η real. This is so because x2
− dy2

−α0 pz2
= 0 in R

has only the trivial solution (since −d and −α0 p are both positive).

So it remains to prove only that
( d
α0

)
= 1.
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Write d = (−1) ·
∏

q|d αq and p =
∏

p| p αp. Then( d
α0

)
=

(
−1
α0

)∏
q|d

(
αq
α0

)
=

(
−1
α0

)∏
q|d

((
α0
αq

)
(α0, αq)2

)
(by quadratic reciprocity)

=

(
−1
α0

)∏
q|d

(∏
p| p

(
αp
αq

))
(α0, αq)2

(
since

(
α0
q

)
=
( p
q

))
=

(
−1
α0

)
(α0,−d)2

∏
q|d, p| p

(
αp
αq

)
=

(
−1
α0

)
(α0,−d)2

∏
q|d, p| p

(
αq
αp

)
(αp, αq)2 (by quadratic reciprocity)

=

(
−1
α0

)
(α0,−d)2

∏
p| p

(
−d
αp

)
(−d, αp)2

=

(
−1
α0

)
(α0,−1)2(α0, d)2

∏
p| p

(
−1
αp

)
(αp,−1)2(αp, d)2

( d
αp

)
= (−1)g(α0, d)2

∏
p| p

(αp, d)2
( d
αp

)
(by Proposition 2.1(5))

= (−1)g(α0 p, d)2(−1)#S0 (by our assumptions on K ).

This equals (−1)g+#S0 since (α0 p, d)η = 1 for all η |2; but the exponent, being
the number of ramified primes of Bp,L , is necessarily even. This concludes the
proof. �

3.3. Another description of the quaternion algebra Bp,L .

Definition 3.4. For α, β ∈ K , define

[α, β] :=

(
α β

α0 pβ α

)
∈ M2(K ).

Lemma 3.5. With assumptions as in Proposition 3.2, Bp,L ∼= {[α, β] : α, β ∈ K }.

Proof. Proposition 3.2 implies that Bp,L = L⊕Li⊕L j⊕Li j with i2
= d , j2

=α0 p,
and i j =− j i . We can write this as K ⊕ K j with the multiplicative structure such
that, for x, y ∈ K , we have x(y j)= (xy) j , j2

= α0 p, and

x j = (x1+ x2i) j = x1 j + x2i j = j x1− j i x2 = j (x1− i x2)= j x .

So for the isomorphism x + y j→[x, y] to respect the multiplicative structure, it is
enough to check the following:
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(1) [α, 0][0, β] = [0, αβ], so(
α 0
0 α

)(
0 β

α0 pβ 0

)
=

(
0 αβ

α0 pαβ 0

)
,

(2) [0, 1]2 = [α0 p, 0], so(
0 1
α0 p 0

)(
0 1
α0 p 0

)
=

(
α0 p 0

0 α0 p

)
,

(3) [α, 0][0, 1] = [0, 1][α, 0], so(
α 0
0 α

)(
0 1
α0 p 0

)
=

(
0 α

α0 pα 0

)
=

(
0 1
α0 p 0

)(
α 0
0 α

)
. �

4. Orders in the quaternion algebra Bp,L

By Proposition 3.2, the ideal α0OL splits in K . Write

α0OK =A ·A,

and let D= DK/L = (
√

d) be the different ideal of K/L .

Definition 4.1. Let a be an integral ideal of OK . For each q|d , fix a solution λq to

x2
≡ α0 p mod q.

Let ε(a, q) ∈ {±1} be a choice of sign for each q|d and λ ∈ L , (λ, d)= 1, such that

(1) λ≡ ε(a, q)λq mod q,∀q|d and

(2) λA−1a−1a is an integral ideal of OK .

This is possible by the Chinese remainder theorem and using (A−1a−1a, d)= 1.
We shall denote ε(a) the vector of signs {ε(a, q) : q|d }. When we need to

emphasize the dependence of λ on the choice of signs, we shall write λε(a) instead
of λ. For example, one particular choice of signs that we will often make is
ε(a, q)= (−1)valq̃(a), where q̃COK is an ideal such that qOK = q̃2, and we denote
λa the corresponding λ.

Let l ∈ OL be any nonzero element such that (l, α0da−1a)= 1 and l is split in
K/L . In particular, l could be a power of p. Now define

R := R(a, λ, l)=
{
[α, β] : α ∈ D−1, β ∈ D−1A−1la−1a, α ≡ λβ mod OK

}
.

Proposition 4.2. Apply assumptions as in Proposition 3.2. In particular, K is a
CM field such that K+ = L has strict class number 1, the discriminant of K/L
is prime to 2 and thus square-free, and p is odd and unramified in K . All primes
p ∈ S \ S0 split in K , and all primes p ∈ S0 are inert in K . Then:
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(1) R is an order of Bp,L containing OK .

(2) R has discriminant p · l.

(3) R does not depend on the choice of λ as long as λ satisfies the same local sign
conditions.

Proof. (1) It should be clear that R is a finitely generated OL -module containing
OK = {[α, 0] : α ∈ OK }. We need to show that R is closed under multiplication.
The multiplication formula is

[x, y][z, w] = [xz+α0 pyw, xw+ yz],

and we need to show that, for [x, y], [z, w] ∈ R, also [x, y][z, w] ∈ R.

Step 1: Show that xz+α0 pyw ∈ D−1.

A priori, xz ∈ D−2, and

α0 pyw ∈ α0 pD−1A−1la−1aD−1A−1la−1a

= α0 pD−2(AA)−1l2
= pD−2l2

⊆ D−2m,

so it is enough to show that valq̃(xz+ α0 pyw) ≥−1 for all q̃|D. Let q= q̃∩OL .
Then qOK = q̃2. We will work q-adically. Let π ∈ OKq̃

be a uniformizer such that
π =−π (the extension of complex conjugation from K to K q̃).

Lemma 4.3. Such a π exists.

Proof. Choose a uniformizer π0 of OLq , and let K1 = Lq(
√
π0). Then for K1 there

exists such a uniformizer. So it is enough to show that if q|q and q 6= 2 then any
q-adic field L1 has a unique quadratic ramified extension. By local class field
theory, ramified quadratic extensions are in bijection with subgroups of index 2
of O×L1

. There is a unique subgroup of index 2 of O×L1
since it contains O×2

L1
and

O×L1
/O×2

L1
∼= Z/2Z. �

Note that D−1A−1la−1aOKq̃
= (1/π)OKq̃

since (A, q̃) = 1, (l, q̃) = 1, and
(a−1a, q̃)= 1 because a−1a has no ramified or inert primes. Write then x = x0/π ,
y = y0/π , z = z0/π , and w = w0/π with x0, y0, z0, w0 ∈ OKq̃

. So

x ≡ λy mod OK =⇒ x0− λy0 ∈ (π) and z ≡ λw mod OK =⇒ z0− λw0 ∈ (π).

Now

xz+α0 pyw = 1
π2 (x0z0−α0 py0w0),
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so it is enough to show valq̃(x0z0−α0 py0w0)≥ 1. But

x0z0−α0 py0w0 ≡ λy0λw0−α0 py0w0 mod (π)

≡ λ2 y0w0−α0 py0w0 mod (π)

because conjugation is trivial mod (π)

≡ (λ2
−α0 p)y0w0

≡ (λ2
q−α0 p)y0w0

≡ 0 mod (π).

Step 2: Show that xw+ yz ∈ D−1A−1la−1a.

A priori, xw, yz ∈ D−2A−1la−1a, so we just need to show valq̃(xw+ yz)≥−1 at
all primes q̃|D. We need to show valq̃(x0w0− y0z0)≥ 1, using the same notation
as in 1. We have, modulo (π), x0w0− y0z0 = x0w0− y0z0 = λy0w0− λy0w0 = 0.

Step 3: Show that xz+α0 pyw− λ(xw+ yz) ∈ OK .

A priori, by steps 1 and 2, xz+α0 pyw ∈ D−1 and

λ(xw+ yz) ∈ D−1lλA−1a−1a⊂ D−1l ⊂ D−1

since λA−1a−1a⊆ OK . Therefore, we just need to show that for all q̃|D,

valq̃(xz+α0 pyw− λ(xw+ yz))≥ 0.

Using the same notation as above, this is equivalent to

valq̃(x0z0−α0 py0w0− λ(x0w0− y0z0))≥ 2.

Write x0 = λy0+πx1 and z0 = λw0+π z1. Then

(λy0+πx1)(λw0+π z1)−α0 py0w0− λ(λy0+πx1)w0+ λy0(λw0−π z1)

= (λ2
−α0 p)y0w0+ λπy0(z1− z1)≡ 0 mod π2

since (z1− z1) ∈ (π) and (λ2
−α0 p) ∈ qOLq ⊂ (π

2). This proves conclusion (1) of
the proposition.

(2) We need to compute the discriminant of

R = R(a, λ, l)=
{
[α, β] : α ∈ D−1, β ∈ D−1A−1la−1a, α ≡ λβ mod OK

}
.

Let
R′ := {[α, β] : α ∈ OK , β ∈ la−1a }.

Then R′ is an OL -module of rank 4.

Lemma 4.4. We have disc(R′)= (lα0 pd)2.
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Proof. The quadratic form on R′ is det[α, β] = αα−α0 pββ =: q([α, β]). Note this
quadratic form coincides with the norm form on the quaternion algebra Bp,L ; writing

[α, β] = [α, 0] + [0, β][0, 1] = (α1+α2i)+ (β1+β2i) j,

where i2
= d and j2

= α0 p, we have

Norm(α1+α2i +β1 j +β2i j)= α2
1 −α

2
2d −β2

1α0 p+β2
2 dα0 p

= (α1+α2i)(α1−α2i)−α0 p(β1+β2i)(β1−β2i)

= αα−α0 pββ.

The associated bilinear form is

〈[α, β], [γ, δ]〉 = αγ +αγ −α0 p(βδ+βδ),

where 1
2〈x, x〉 = q(x). Note that 〈[α, 0], [0, δ]〉 = 0,

〈[α1, 0], [α2, 0]〉 = α1α2+α1α2 = TrK/L α1α2,

〈[0, β1], [0, β2]〉 = −α0 p(β1β2+β1β2)=−α0 p TrK/L β1β2.

To compute the discriminant of R′ with respect to the bilinear form, we need to
compute the determinant of the matrix (〈xi , x j 〉) for {xi } a basis for R′. Choose
a basis {w1, w2} for OK as an OL -module (for example, {1, t}). Choose a basis
{w3, w4} for la−1a as an OL -module. By the above calculations, we see that

det(〈wi , w j 〉)= det(M1) det(M2),

where

M1 =

(
2w1w1 w1w2+w2w1

w1w2+w2w1 2w2w2

)
= (Tr(wiw j )), i, j = 1, 2,

M2 =−α0 p
(

2w3w3 w3w4+w4w3

w3w4+w4w3 2w4w2

)
=−α0 p(Tr(wiw j )), i, j = 3, 4.

We have

det(M1)=− discK/L(OK ) and det(M2)=−(α0 p) discK/L(la−1a).

For any OK -ideal b, discK/L(b)= discK/L(OK )NormK/L(b)
2 [Lang 1986, Propo-

sition 13, p. 66], so

disc(R′)= discK/L(OK )
2 NormK/L(la−1a)2(α0 p)2 = (lα0 pd)2.

We remark that this uses that l is split in K/L . In a typical application, l will be
a prime lying above p. If p is inert in L , then it will automatically be split in K/L
according to the hypotheses of Proposition 3.2. If l is not split in K/L , we get a
higher power of l in the final answer. �
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In order to show that R has discriminant p · l, the following lemma is needed:

Lemma 4.5. The following sequence is exact:

0→ R′ ↪→ R
ψ
−→ D−1A−1/OK → 0,

where

[α, β] 7→ β ∈
D−1A−1la−1a

la−1a
∼= D−1A−1/OK .

Proof. First, R′ ⊆ R because α ∈ OK and λβ ∈ λla−1a = (λa−1a)l ⊆ OK l ⊆ OK .
Since λβ ∈ OK , clearly α ≡ λβ mod OK . Now:

• Exactness at R: Clearly R′ ⊆ Ker(ψ). Now suppose [α, β] ∈ Ker(ψ). Then
β ∈ la−1a, and so α ∈ OK because λβ ∈ OK by the definition of λ and α ≡
λβ mod OK . So [α, β] ∈ R′.

• Surjectivity of ψ : Let β ∈ D−1A−1la−1a. Then we have [λβ, β] ∈ R because
λβ ∈ D−1l(λA−1a−1a)⊆ D−1lOK ⊆ D−1. �

Thus, discK/L(R) = discK/L(R′)/NormK/L(DA)2 = (lα0 pd)2/(α0d)2 = l2 p2,
so the discriminant of R as an order of Bp,L is lp. This proves conclusion (2).

(3) Finally, R is independent of the choice of λ assuming λ satisfies the same local
sign conditions. Suppose both λ and λ′ satisfy the conditions of Definition 4.1. Let
[α, β] ∈ R(a, λ, l), so α ∈ D−1, β ∈ D−1A−1la−1a, and α ≡ λβ mod OK . Then

α− λβ ∈ OK =⇒ (
√

dα)− λ(
√

dβ) ∈ (
√

d),

and

(
√

dα)− λ′(
√

dβ)− (λ− λ′)(
√

dβ) ∈ (
√

d).

Now, because d is square-free and for all q|d we have λ′ = e(a, q)λq ≡ λ mod q,
it follows that λ− λ′ ∈ (d). But

λ− λ′ ∈ (d)=⇒ (λ− λ′)
√

dβ ∈ dlA−1a−1a

and

λ
√

dβ − λ′
√

dβ ∈ OK

by the definitions of λ and λ′, so

(λ− λ′)
√

dβ ∈ OK ∩ dlA−1a−1a⊆ (d).

It follows that (
√

dα)− λ′(
√

dβ) ∈ (
√

d), so α ≡ λ′β mod OK . �
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5. Classification of superspecial orders of Bp,L in which OK embeds, having
chosen an embedding K ↪→ Bp,L

By a superspecial order in Bp,L , we mean an order of discriminant pOL . An example
is R⊗Z OL for a maximal order R of Bp,∞. Let K be a primitive CM field such
that K+ = L . As before, d will denote a totally negative generator of the relative
different ideal DK/L . In this section, we classify the superspecial orders in which
OK embeds, relying on the results in Section 4 and making the particular choice
of local signs ε(a, q)= (−1)valq̃(a), where q̃COK is an ideal such that qOK = q̃2,
and we denote λa the corresponding λ. We shall prove that, once the embedding
K ↪→ Bp,L has been fixed, the isomorphism classes of the superspecial orders in
which OK embeds are in bijection with the ideal class group of K (Theorem 5.7).
Our classification of these orders will be achieved through a series of lemmas:

Lemma 5.1. Let R1 and R2 be two superspecial orders in Bp,L . Then R1 ∼= R2

over K if and only if there exists µ ∈ K such that R1 = µR2µ
−1.

Proof. By Skolem–Noether, R1 ∼= R2 if and only if there exists µ ∈ B×p,L such that
R1 = µR2µ

−1. This is a K -automorphism if and only if µ ∈ CentBp,L (K )= K . �

Lemma 5.2. Given a and λ as in Definition 4.1, there exists c|d such that we have
R(a, λ)= R(ac, λac).

Proof. We have R(ac, λac, l)= R(a, λa · λ(−1)valq̃(c), l) because

λac ≡ (−1)valq̃(ac)λq mod q for all q|d,

so
λac ≡ λa(−1)valq̃(c) mod q for all q|d.

So as c ranges over the ideals dividing d , we get all sign vectors ε(a) that appear in
the left-hand side and each one once. �

Lemma 5.3. Fix {b1, . . . , bh} representatives for the class group of K and the
choice of local signs as above. Then every R(a, λa) is isomorphic to R(b, λb) for
some b ∈ {b1, . . . , bh}.

Proof. Let µ ∈ K× be such that b= µa for some (unique) b ∈ {b1, . . . , bh}. Then

µ−1 R(a, λa)µ

=

{(
µ−1 0
0 µ−1

)(
α β

α0 pβ α

)(
µ 0
0 µ

)
: α ∈ D−1, β ∈ D−1A−1a−1a, α ≡ λaβ mod OK

}
=

{(
α (µ/µ)β

α0 p((µ/µ)β) α

)
: α∈D−1, β ∈D−1A−1a−1a, α≡λaβ mod OK

}
.
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By setting b = µ
µ
β, this is equal to{(

α b
α0 pb α

)
: α ∈ D−1, b ∈ D−1A−1b−1b, α ≡ λa

µ

µ
b mod OK

}
because b= µa,

µ

µ
β ∈ D−1A−1a−1a

µ

µ
= D−1A−1b−1b,

and α ≡ λa(µ/µ)(µ/µ)β = λa(µ/µ)b mod OK .

Now it remains to show α ≡ λa(µ/µ)b mod OK if and only if α ≡ λbb mod OK .
In other words, we must show that the following two conditions are equivalent:

(
√

dα)≡ λa
µ

µ
(
√

db) mod q̃ for all q̃|
√

dOK ,

(
√

dα)≡ λb(
√

db) mod q̃ for all q̃|
√

dOK .

This can be checked in OKq̃
for every q̃. The point is that (−1)valq̃(b) = (−1)valq̃(a) ·

(−1)valq̃(µ), and so it is enough to show that µ/µ≡ (−1)valq̃(µ) mod q̃. This follows
from the fact that OKq̃

= OLq[π ] with π =−π , so writing µ= πr
· u with u ∈ O×Kq̃

,
we have u = u mod q̃ and

µ

µ
= (−1)r u

u
≡ (−1)r mod q̃.

Thus, we have proved that µ−1 R(a, λa)µ= R(µa, λµa). �

Lemma 5.4. We have R(a, λa)= R(b, λb) if and only if a−1a=b−1b and valq̃(a)≡
valq̃(b) mod 2 for all q̃|d.

Proof. (⇐) This is obvious.

(⇒) Let β ∈ D−1A−1a−1a and α := λaβ. Since λaA−1a−1a⊆ OK , it follows that
α ∈D−1. Therefore, [α, β] ∈ R(a, λa)= R(b, λb), so β ∈D−1A−1b−1b. Therefore,
D−1A−1a−1a⊆ D−1A−1b−1b. By symmetry, we have equality.

Furthermore, since [λaβ, β] ∈ R(b, λb), we have

λaβ ≡ λbβ mod OK for all β ∈ D−1A−1a−1a.

Otherwise said,

β(λa− λb)≡ 0 mod OK for all β ∈ D−1A−1a−1a,

and this implies
λa ≡ λb mod D−1A−1a−1a.

We conclude that

λa ≡ λb mod q̃ for all q̃|d (because (D,Aaa−1)= 1).
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It follows that

(−1)valq̃(a) = (−1)valq̃(b) for all q̃|d. �

Lemma 5.5. For b, b′ ∈ {b1, . . . , bh}, R(b, λb)∼ R(b′, λb′) if and only if b= b′.

Proof. (⇐) This is obvious.

(⇒) Suppose R(b, λb)= µ−1 R(b′, λb′)µ= R(µb′, λµb′) (this second equality was
proved in Lemma 5.3 above). By Lemma 5.4, this implies

b−1b= b′−1b′
µ

µ
or b′b−1µ= b′b−1µ.

An ideal fC OK satisfies f = f if and only if f = j ·
∏

q̃|d q̃
s(q̃) for j ∈ L . Indeed,

write f as a product of inert, split, and ramified prime ideals. Inert prime ideals are
generated by elements of L . Split prime ideals must appear in the factorization to
the same power as their complex conjugate because of the condition f= f. Thus, it
is actually some power of their norm that appears, and that is also generated by an
element of L . What remains is a product of some ramified primes.

Applying this to the ideal f= b′b−1µ, we find that

µb′ = j ·
∏
q̃|d

q̃s(q̃)
· b.

Note that R(µb′, λµb′)= R((µ/j)b′, λ(µ/j)b′), so we can replace µ by µ/j to obtain
R(b, λb)= R(µb′, λµb′) with µb′ of the form

µb′ =
∏
q̃|d

q̃s(q̃)
· b.

Now λb = λµb′ implies that each s(q̃) is even, so µb′ = kb for some k ∈ K . Thus,
b′ = b because they are already representatives for the class group. �

Lemma 5.6. Any superspecial order R ⊇ OK is isomorphic to some R(a, λ).

Proof. Let c be a prime ideal of L . For any ideal a of Kc, define orders Rc(a, λa)

of (Bp,L)c exactly the same way as for R(a, λa). The orders have the same properties
that were proved for the R(a, λa) in Proposition 4.2: independent of the choice of λ
and conductor pOLc .

Then for an ideal a of K , we have R(a, λa)c = Rc(ac, λac). Let R be an order
of Bp,L that contains OK of discriminant pOL . For every c, the order Rc is an
Eichler order of discriminant pOLc as is the order R(O, λO)c, where O represents
the trivial ideal class. For every c, there is a µc ∈ (Bp,L)

×
c such that

Rc = µ
−1
c R(O, λO)cµc
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because Eichler orders of the same discriminant are locally conjugate. Furthermore,

Rc =M2(OLc)⊆ (Bp,L)c =M2(Lc)

for almost all c, and the same holds for R(a, λa). Now it is enough to show that we
can choose µc ∈ K×c for all c because in that case

Rc = µ
−1
c R(O, λO)cµc = Rc((µc), λ(µc))

for a collection of elements

{µc : cCOL prime, µc = 1 for almost all c, µc ∈ K×c }.

Therefore, there is an ideal a of K such that, for all c, ac = (µc). The two orders R
and R(a, λa) are equal because they are equal locally everywhere, and we are done.

To show that we may choose µc ∈ K×c for all c, we use [Vignéras 1980, Theo-
rems 3.1 and 3.2, pages 43–44] to produce an element νc such that

(1) ν−1
c (µ−1

c R(O, λO)cµc)νc = µ
−1
c R(O, λO)cµc = Rc and

(2) the embedding of OKc into Rc is the embedding of OKc into R(O, λO)c conju-
gated by νcµc.

Since conjugation by νcµc fixes Kc pointwise, this implies νcµc commutes with Kc,
and so νcµc ∈ K×c . �

Our conclusion is that isomorphism classes of superspecial orders of Bp,L in
which OK embeds are the isomorphism classes of R(a, λa). Thus, we have proved
the following theorem:

Theorem 5.7. Fix an embedding of K ↪→ Bp,L . The isomorphism classes of the
superspecial orders in which OK embeds are in bijection with the ideal class group
of K via the map

[a] 7→ R(a, λa).

Remark 5.8. In the case L = Q, Theorem 5.7 provides a different proof for the
main theorems of Dorman’s paper [1989a] on global orders in definite quaternion
algebras and corrects several minor errors and gaps in the proofs there. For example,
we correct the missing condition on the integrality for λD−1A−1a−1a and the
resulting mistake in the proof of Proposition 2, and we give a different proof of the
one-to-one correspondence.

6. Main theorems on counting formulas

6.1. Assumptions and notation. Let L be a totally real field of degree g of strict
class number 1, p a rational prime that is unramified in L , and K a primitive CM
field with K+ = L . Using the same notation as in Lemma 2.2, write the ring of
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integers of K , OK = OL [t], where t2
+ at + b = 0 for some a, b ∈ OL , and the

different D= DK/L = (
√

d) with d = a2
− 4b a totally negative element of OL .

Assume as in Proposition 3.2 that all primes p ∈ S \ S0 split in K and all primes
p ∈ S0 are inert in K and that the discriminant dK/L = (d) satisfies (d, 2)= 1 and
(d, p)= 1. Let α0 ∈ OL be a totally negative prime element such that

Bp,L ∼=

(d, α0 p
L

)
,

where (α0, 2pd)= 1, α0≡ p mod q for each q|d , α0≡ 1 mod p, and α0OK =A·A.
For l ∈ OL such that (l, α0da−1a)= 1, let

R := R(a, λ, l)=
{
[α, β] : α ∈ D−1, β ∈ D−1A−1la−1a, α ≡ λβ mod OK

}
.

6.2. Counting simultaneous embeddings. Let K ′ be another CM field that has
OK ′ = OL [w] and

discK ′/L = (Tr(w)2− 4 Norm(w))= (d ′)

generated by a totally negative element d ′ of L .
Now we are assuming we are in the situation where an abelian variety A with

CM by K has superspecial reduction modulo p, and we fix an isomorphism

EndOL (A)∼= R(a, λ)

for some unique aCOK (Lemma 5.6, Theorem 5.7). Then, to count simultaneous
embeddings of OK ′ = OL [ω], i.e., embeddings OK ′→EndOL (A), we count elements
[α, β] ∈ R(a, λ) with trace equal to Tr(ω) and with norm equal to Norm(ω), that
is, elements of the set S(a, λ, 1), where

S(a, λ, l)=
{
[α, β] =

(
α β

α0 pβ α

)
∈ R(a, λ, l)

: Tr[α, β] = Tr(w),Norm[α, β] = Norm(w)
}
.

Let [α, β] be an element of this set. Since

OK = OL +OL ·
a+
√

d
2
=

{
2l1+ l2(a+

√
d)

2
: l1, l2 ∈ OL

}
=

{
l3+ l4

√
d

2
: l3, l4 ∈ OL , l3− al4 ≡ 0 mod 2OL

}
,

we can write α ∈ D−1 in the form α = (l3+ l4
√

d)/2
√

d, where l3, l4 ∈ OL with
l3− al4 ≡ 0 mod 2OL , and in this notation, Tr(α)= Tr([α, β])= l4. So

α =
x+Tr(w)

√
d

2
√

d
, x ∈ OL , x − a Tr(w)≡ 0 mod 2OL ,
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where a =−Tr(t) and

β =
l
√

d
γ, γ ∈A−1a−1a.

Since
Norm[α, β] = det[α, β] = αα−α0 pββ

=
x +Tr(w)

√
d

2
√

d
·

x −Tr(w)
√

d

−2
√

d
−α0 p

l2

−d
γ γ

=
1
−4d

(x2
−Tr(w)2d − 4α0 pl2γ γ ),

it follows that

−d
(
4 Norm(w)−Tr(w)2

)
= x2
− 4α0 pl2γ γ .

So an element [α, β] of the set S(a, λ, l) gives rise to a solution (x, γ ) to

dd ′ = x2
− 4α0 pl2γ γ

with γ ∈A−1a−1a, x ∈ OL , and x ≡ a Tr(w) mod 2OL , where x2
− dd ′ is a totally

negative element of OL because α0 is. Call this set of conditions on x conditions C.
Our analysis allows us to define a function φ : S(a, λ, l)→ S1(a, x, l) that sends
[α, β] 7→ γ (it is used in the proof of Theorem 6.5 below), where the set S1(a, x, l)
is defined for an integral ideal a and x satisfying conditions C by

S1(a, x, l) :=
{
γ ∈A−1a−1a : Norm(γ )= γ γ =

x2
− dd ′

4α0 pl2

}
.

For γ ∈A−1a−1a, the ideal generated by γ can be written as (γ )=A−1a−1a ·b

for b an ideal of OK , and Norm(b)= α0 Norm(γ ). We let S2(a, x, l) be the set

S2(a, x, l) :=
{
bCOK : Norm(b)=

x2
− dd ′

4pl2 , b∼ a2A

}
.

Proposition 6.1. The map S1(a, x, l)→ S2(a, x, l) that sends γ 7→bγ = (γ )Aaa−1

is a surjective [wK : 1]-map, where wK equals the number of roots of unity in K .

Proof. To show that the map is [wK : 1], we first show bγ = bδ if and only if γ =µδ,
where µ is a root of unity in K . Since bγ depends only on (γ ), the “only if” part
is clear. Now if bγ = bδ, then (γ ) = (δ), so γ = µδ for some µ ∈ OK

×, but also
Norm(γ )=Norm(δ)=Norm(µ) ·Norm(γ ) implies Norm(µ)= 1 implies µ∈µK .

Next we show that the map is surjective. Given b∈ S2(a, x, l), let γ be a generator
of A−1a−1ab. Then γ ∈A−1a−1a, and

(Norm(γ ))= (γ γ )=
(

x2
− dd ′

4α0 pl2

)
.
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Hence, there exists a totally positive unit ε′ ∈ OL
×+
= OL

×2 with ε′ = ε2 such that

ε′γ γ =
x2
− dd ′

4α0 pl2 .

Changing γ to εγ ,

γ γ =
x2
− dd ′

4α0 pl2 .

So γ ∈ S1(a, x, l), and since it is still true that (γ )=A−1a−1ab, we have bγ = b. �

Now given an element γ of S1(a, x, l), we can construct elements of S(a, λ, l)
as follows. Let

α =
x+Tr(w)

√
d

2
√

d
and β =

l
√

d
γ.

First, we note that α ∈ D−1 if and only if (x +Tr(w)
√

d)/2 ∈ OK if and only if
x ∈ OL and x ≡ a Tr(w) mod 2OL , which holds because x satisfies conditions C.

Next, note that β= (l/
√

d)γ ∈D−1A−1la−1a if and only if γ ∈A−1a−1a, which
holds by the definition of the set S1(a, x).

It remains to check that the congruence α ≡ λβ mod OK is satisfied. Since
γ ∈ S1(a, x, l),

x2
− 4α0 pl2γ γ = dd ′ ≡ 0 mod d.

Next, the congruence λ2
≡ α0 p mod d implies that

x2
− 4α0 pl2γ γ + 4l2γ γ (α0 p− λ2)≡ 0 mod d,

and so
x2
− 4λ2l2γ γ ≡ 0 mod d.

Therefore,

(x +Tr(w)
√

d)(x −Tr(w)
√

d)− 4λ2l2γ γ ≡ 0 mod d.

Using x +Tr(w)
√

d = 2
√

dα and lγ =
√

dβ, we get

−4d(αα− λ2ββ)≡ 0 mod d.

Since (d, 2) = 1, it follows that αα ≡ λ2ββ mod OK . Now, α and λβ belong to
D−1
= (1/

√
d)OK , and hence,

α1 :=
√

dα and β1 :=
√

dλβ

are in OK , and we have α1α1 ≡ β1β1 mod d. Equivalently, this relation holds
modulo all ideals q of OL dividing d:

α1α1 ≡ β1β1 mod q for all q|d, qCOL . (6-1)
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Let q̃C OK be a prime such that qOK = q̃2. Then OK /q̃ ∼= OL/q, and complex
conjugation hence acts trivially modulo q̃. So (6-1) is equivalent to

α2
1 ≡ β

2
1 mod q̃ for all q̃|dOK , q̃COK ,

which is equivalent to

α1 ≡±β1 mod q̃ for all q̃|dOK , q̃COK .

So this shows that there exists a choice of signs ε(a, q) and a λ depending on
this choice for which the congruence condition is satisfied, and [α, β] ∈ S(a, λ, l).
However, for any ideal q for which x ≡ 0 mod q, both signs will work. This
motivates the following definitions and theorem:

Definition 6.2. (1) For x ∈ OL , let δ(x) := 2#{q|d:x≡0 mod q }.

(2) Let τ := #{q|d}.

For clarity, we also repeat previous definitions.

Definition 6.3 (conditions C). We say that x ∈ OL satisfies C if x ≡ a Tr(w)
mod 2OL , x2

− dd ′ is totally negative, and (x2
− dd ′)/4pl2

∈ OL .

Definition 6.4. We write λε(a) to emphasize the dependence of λ on the choice
of signs. For example, for aCOK , let λa = λε(a), where ε(a, q)= (−1)valq̃(a) and
q̃COK is an ideal such that qOK = q̃2.

Theorem 6.5.

(1)
∑
ε(a)

#S(a, λε(a), l)=
∑

x satisfies C

δ(x) · #S1(a, x, l)

= wK

∑
x satisfies C

δ(x) · #S2(a, x, l).

(2)
∑
ε(a)

#S(a, λε(a), l)=
∑
c|d

cCOK

#S(ac, λac, l).

Proof. To avoid confusion, we remark that in (1), the first summation is a sum over
2τ elements, one of them being #S(a, λa, l). The second equality of (1) follows
from Proposition 6.1. To prove the first equality in (1), we refer to the construction
given above of the map φ : S(a, λ, l)→ S1(a, x, l). It can be extended to a map

φ :
∐
ε(a)

S(a, λε(a), l)→
∐

x satisfies C

S1(a, x, l).

We claim that φ is a surjective map that is [δ(x) : 1]. Given an element γ of
S1(a, x, l), we constructed above, for some possible choice of signs ε(a) determining
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λ, an element of S(a, λ, l)

α =
x+Tr(w)

√
d

2
√

d
and β =

l
√

d
γ.

For any ideal q̃|d, let µ(x, γ ) ∈ {±1} be such that α1 ≡ µ(x, γ )β1 mod q̃, where
α1=
√

dα and β1=
√

dλβ. Given ε(a), we have α≡ λε(a)β mod OK if and only if,
for all q̃|d , either α1≡β1≡ 0 mod q̃ or β1 6≡ 0 mod q̃ and ε(a, q)≡µ(x, γ ) mod q̃.
It follows that for a given (x, γ ), the number of sign vectors ε(a) such that we have
α ≡ λε(a)β mod OK is equal to

2#{q̃|d:
√

dα≡0 mod q̃ }.

Now since valq̃(
√

dα) = valq̃(x + Tr(w)
√

d) ≥ min{valq̃(x), valq̃(Tr(w)
√

d)}, it
follows that

valq̃(
√

dα) > 0 ⇐⇒ valq̃(x) > 0 ⇐⇒ valq̃(x) > 0,

so the number of sign vectors ε(a) such that α ≡ λε(a)β mod OK is equal to
2#{q|d:x≡0 mod q }.

The second assertion in the theorem follows from the same argument given in
the proof of Lemma 5.2. �

7. Endomorphism rings of abelian surfaces with complex multiplication

Let K be a primitive CM field of degree 4 over the rational numbers. Let W =W (Fp)

be the Witt ring, and let

(A, ι : OK → EndW (A))

be an abelian scheme over W of relative dimension 2 such that A (mod p) is
superspecial. Assume also that p is unramified in K . Then R :=EndOL (A (mod p))
is a superspecial order of the quaternion algebra Bp,L [Nicole 2008, Proposition 4.1].

Theorem 7.1. One has

EndOL ,W/(pn)(A (mod pn))= OK + pn−1 R.

This theorem is a generalization of a theorem of Gross that deals with the case of
elliptic curves [1986], but our method of proof is different; it is based on crystalline
deformation theory.

Proof. Consider A (mod pn). We have an identification

H1
d R(A (mod pn))∼= H 1

Crys(A (mod p)/W )⊗W/(pn).
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Using that W/(pn+1)→W/(pn) has canonical divided power structure, we know
the deformations of A (mod pn) to an abelian scheme B over W/(pn+1) are in func-
torial correspondence with direct summands of H 1

Crys(A (mod p)/W )⊗W/(pn+1)

such that the following diagram commutes:

M

mod pn

��

⊆ H 1
Crys(A (mod p)/W )⊗W/(pn+1)

mod pn

��

ωA (mod pn) ⊆ H 1
Crys(A (mod p)/W )⊗W/(pn)

where ωA (mod pn) are the relative differentials at the origin of A (mod pn).
We shall show that there exists a unique such B to which the OK -action extends,

namely, a unique M fixed under the OK action on H 1
Crys(A (mod p)/W ). We may

conclude then that for that M there is an isomorphism

EndOL (A (mod pn+1))⊗ZZp∼=EndOL

(
M⊂H 1

Crys(A (mod p)/W )⊗W/(pn+1)
)

∩EndOL (A (mod pn+1))⊗Z Zp. (7-1)

We then calculate the right-hand side and find that it is equal to (OK + pn R)⊗Z Zp.
Since we know a priori that EndOL (A (mod pn+1)) has index equal to a power of p
in R [Goren and Lauter 2012, Proposition 6.1], our theorem will follow.

First, the uniqueness of M is easy to establish. We have an isomorphism of
OK ⊗Z W modules

H 1
Crys(A (mod p)/W )∼=

⊕
ϕ∈Emb(OK ,W )

W (ϕ),

where W (ϕ) is just W with the OK action given by ϕ. Since p is unramified, for all
n≥1, W (ϕ) 6∼=W (ϕ′) (mod pn) as OK -modules for any distinct ϕ, ϕ′∈Emb(OK ,W ).
If 8 is the CM-type of A, it follows that if M is a direct summand of rank g, which
is an OK -submodule, then M must be

⊕
ϕ∈8 W (ϕ) (mod pn+1).

Let Rn := EndOL ,W/(pn)(A (mod pn)). We prove by induction on n that

Rn = OK + pn−1 R.

As remarked, it is enough to prove that after p-adic completion, and in fact, we
actually calculate the right-hand side of (7-1). The case n = 1 is tautological.

Since we assumed that A (mod p) is superspecial and p is unramified in K ,
there are, according to [Goren and Lauter 2012, Tables 3.3.1(ii), 3.4.1(iii) and (iv),
and 3.5.1(iii) and (vi)] and the results of Yu [2004], precisely two possibilities for
H 1

Crys(A (mod p)/W ), equivalently for the Dieudonné module of A (mod p), as an
OK ⊗Z Zp-module. Our calculations are done separately according to these cases.
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Case 1: In this case, the completions at p of the rings are

OL ,p ∼= Zp⊕Zp and OK ,p ∼= Zp2 ⊕Zp2,

where we write Zp2 for W (Fp2). The Dieudonné module D is a direct sum of
Dieudonné modules

D= D1⊕D2,

where for i = 1, 2, Di has a basis relative to which Frobenius is given by the matrix(
0 p
1 0

)
,

and the i th copy of Zp2 in OK ,p acts on Di by

a 7→
(

a
aσ

)
and Di+1 (mod 2) by zero. (Here σ is the Frobenius automorphism of Zp2 .) Clearly,

EndOL (D)= End(D1)×End(D2),

and, as one can easily check,

End(Di )=

{(
α pβ
βσ ασ

)
: α, β ∈W (Fp2)

}
.

(The restriction on the entries
(a

c
b
d

)
comes from the identity(

a b
c d

)(
0 p
1 0

)
=

(
0 p
1 0

)(
aσ bσ

cσ dσ

)
that an endomorphism of the Dieudonné module must satisfy.)

Now, for every n, ωA (mod pn) = SpanW/(pn){(0 1)T} ⊕ SpanW/(pn){(0 1)T} in
the decomposition D= D1⊕D2. By induction, the endomorphisms in EndOL (D)

preserving ωA (mod pn) are

(OK + pn−1 R)⊗Z Zp

=

{((
α pnβ

pn−1βσ ασ

)
,

(
γ pnδ

pn−1δσ γ σ

))
: α, β, γ, δ ∈W (Fp2)

}
.

The condition for such an endomorphism to preserve ωA (mod pn+1) is that the vectors(
α pnβ

pn−1βσ ασ

)(
0
1

)
and

(
γ pnδ

pn−1δσ γ σ

)(
0
1

)
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are multiples of (0 1)T modulo pn+1. This is the case precisely when β and δ,
respectively, are in pW . Thus, End(A (mod pn+1))⊗Z Zp = (OK + pn R)⊗Z Zp,
and the proof is complete in Case 1.

Case 2: In this case, the completions at p of the rings are

OL ,p ∼= Zp2 and OK ,p ∼= Zp2 ⊕Zp2,

where Zp2 is embedded diagonally in Zp2 ⊕ Zp2 . The Dieudonné module has a
basis {e1, e2, e3, e4} relative to which

Fr=


0 0 p 0
0 0 0 1
1 0 0 0
0 p 0 0

 .
The element (a, b) ∈ OK ,p acts by the diagonal matrix diag(a, b, aσ , bσ ), and so
a ∈ OL ,p acts by diag(a, a, aσ , aσ ). Change the order of the basis elements to get
a new basis {e1, e4, e3, e2}. Then Frobenius is given by(

0 pI2

I2 0

)
,

and (a, b) ∈ OK ,p acts by the diagonal matrix diag(a, bσ , aσ , b), and so a ∈ OL ,p

acts by diag(a, aσ , aσ , a).
The condition for a matrix (

A B
C D

)
∈ M4(W )

to be in End(D) is(
A B
C D

)(
0 pI2

I2 0

)
=

(
0 pI2

I2 0

)(
Aσ Bσ

Cσ Dσ

)
,

and so we find

End(D)=
{(

A pCσ

C Aσ

)
: A,C ∈ M2(W (Fp2))

}
.

For such a matrix to be in EndOL (D), it must commute with all matrices of the form
diag(a, aσ , aσ , a), where a runs over W (Fp2). An easy computation gives

EndOL (D)=

{(
A pCσ

C Aσ

)
: diagonal matrices A,C ∈ M2(W (Fp2))

}
.

We have ωA (mod pn) = Span{e3, e2}, where e3 and e2 are the last two vectors in the
current basis. One argues by induction, as before, to prove that the endomorphisms
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in EndOL (D) preserving ωA (mod pn) are precisely those of the form{(
A pnCσ

pn−1C Aσ

)
: diagonal matrices A,C ∈ M2(W (Fp2))

}
∼= (OK + pn−1 R)⊗Z Zp.

That completes the proof of Case 2 and hence of the theorem. �

8. Geometric interpretation

Let W :=W (Fp) and Q :=W⊗Z Q; Q is the completion of the maximal unramified
extension of Qp. Assume that p is unramified in K , and consider the functor on
W -schemes associating to a W -scheme S the isomorphism classes of triples

A = (A, ι, η), (8-1)

where A→ S is an abelian scheme of relative dimension g, ι : OK → EndS(A) is
a ring homomorphism, and η is a principal polarization of A inducing complex
conjugation on K . Arguments as in [Goren and Lauter 2007] show that this functor
is represented by an étale scheme over W whose complex points are in natural
bijection with F×Cl(K ) as described in Proposition 2.4. In particular, isomorphism
classes of A over Fp as in (8-1), or more generally of A over W/(pn), are also in
bijection with (F×Cl(K ))/∼ once we have fixed an identification of Hom(K ,C)

with Hom(K ,Qp). This allows us to speak about the CM type of A over W/(pn).
Of course, this is nothing but the isomorphism class of the representation of OK on
the Lie algebra of A and is determined by its reduction modulo p.

Consider pairs (A, ι) over Fp such that A is a g-dimensional abelian variety and
ι : OK → End(A) is a ring homomorphism such that (A, ι|OL ) satisfies the Rapoport
condition. One knows that there exists a principal OL -polarization η on A, unique
up to isomorphism. We claim that η automatically induces complex conjugation
on K . This can be verified by case-by-case analysis using [Chai 1995, Lemma 6].

8.1. Isomorphisms of CM abelian varieties. Now fix a CM field K ′ whose totally
real subfield is L . Consider (A, ιA : OK → End(A)) and (A′, ιA′ : OK ′→ End(A′))
over Fp, and assume that we are given an isomorphism

α : (A, ιA|OL )−→
∼ (A′, ιA′ |OL ).

We then get an embedding

jα : OK ′→ End(A), jα(r)= α−1
◦ ιA′(r) ◦α.

If β : (A, ιA|OL )−→
∼ (A′, ιA′ |OL ) is another isomorphism, then

β = γ ◦α,
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where

γ ∈ Aut(A′, ιA′ |OL ) and jβ(r)= α−1
◦ γ−1

◦ ιA′(r) ◦ γ ◦α.

This gives another embedding of OK ′ into End(A). The embeddings are equal if
and only if γ−1

◦ ιA′(r) ◦ γ = ιA′(r) for all r ∈ OK ′ . This, in turn is equivalent to
γ ∈ CentEnd0(A′)(K

′)∩Aut((A′, ιA′ |OL ))= O×K ′ . (Here CentEnd0(A′)(K
′) denotes the

centralizer of K ′ in End0(A′).) Thus, each isomorphism class of (A′, ιA′) such that
(A, ιA|OL )

∼= (A′, ιA′ |OL ) gives us

#(Aut((A′, ιA′ |OL ))/O
×

K ′)= #(Aut((A, ιA|OL ))/O
×

K ′)

distinct embeddings of OK ′ into End(A).

8.2. Counting isomorphisms in the superspecial case. Now assume we are in the
superspecial reduction situation, and fix an isomorphism

EndOL (A)∼= R(a, λa)

for some unique aCOK (Lemma 5.6 and Theorem 5.7). With OK ′ =OL [ω] as before,
to give an embedding OK ′→ EndOL (A) is to choose an element [α, β] ∈ R(a, λa)
with trace equal to Tr(ω) and norm equal to Norm(ω), that is, an element of the set
S(a, λa, 1). Such an embedding makes (A, ιA|OL ) into an abelian variety with CM
by OK ′ , and so the embedding OK ′→ EndOL (A) arises via a particular isomorphism

(A, ιA : OK → End(A))−→∼ (A′, ι′ : OK ′→ End(A′))

(where, in fact, we may take A = A′ and ι′ restricts to ιA on OL ). We conclude that

#S(a,λa, 1)
#(R(a,λa)×/O×K ′)

=#
{
(A′, ιA′ :OK ′→EndOL (A

′))/Fp : (A′, ιA′ |OL )−→
∼ (A, ιA|OL )

}
(where on the left-hand side we consider (A′, ιA′ : OK ′→ EndOL (A

′)) up to isomor-
phism with CM by OK ′ , of course). Exactly the same analysis is valid over W/(pn),
and using EndW/(pn)(A, ι|OL )

∼= R(a, λa, pn−1) as follows from Theorem 7.1, we get

#S(a, λa, pn−1)

#(R(a, λa, pn−1)×/O×K ′)

= #
{
(A′, ιA′ : OK ′→ EndOL (A

′))/W/(pn) : (A′, ιA′ |OL )−→
∼ (A, ιA|OL )

}
. (8-2)

8.3. Counting formulas for the number of isomorphisms for superspecial CM
types. Now fix a superspecial CM type 8 of K , namely, a CM type arising for
some superspecial abelian variety. By [Goren and Lauter 2012], then any abelian
variety with CM by OK of CM type 8 is superspecial.
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We consider representatives A = (A, ιA : OK → End(A)) for the isomorphism
classes with CM type 8. For each such A, we may choose an isomorphism

f A : End0
L
(

A)−→∼ Bp,L

and hence get an embedding

f A ◦ ιA : K → Bp,L .

By Skolem–Noether, we may conjugate the identifications f A so that the embeddings
f A ◦ ιA are the same, and in fact, this will be the case if f A1 and f A2 are related by a
CM isogeny to begin with. Then for every A, f A(EndOL (A)) is a superspecial order
containing OK . This order is uniquely determined by A up to conjugation by K×.

By our results, the representatives for these orders modulo conjugation by K×

are precisely the orders R(a, λa) as a ranges over representatives for Cl(OK ). We
therefore conclude:

Theorem 8.1. We have (where, of course, the A′ are taken up to isomorphism)∑
a

#S(a, λa, pn−1)

=

∑
A/(W/(pn))

with CM type 8

#
(

EndOL ,W/(pn)(A)×

O×K ′

)
·#
{

A′ with CM by OK ′ such that
(A′, ιA′ |OL )

∼= (A, ιA|OL )

}
. (8-3)

If we wish not to fix a CM type on K , we get the following:

Theorem 8.2. We have

#{superspecial CM types}×
∑
a

#S(a, λa, pn−1)

=

∑
A/(W/(pn))

with CM by OK

#
(EndOL ,W/(pn)(A)×

O×K ′

)
· #
{

A′ with CM by OK ′ such that
(A′, ιA′ |OL )

∼= (A, ιA|OL )

}
. (8-4)

8.4. Counting formulas for pairs of embeddings into superspecial orders. The
left-hand side of (8-3), for n = 1, has another interpretation. Consider a pair of
embeddings ι : OK → R and ι′ : OK ′ → R into a superspecial order R such that
both restrict to a fixed, given embedding of OL into R. We call it an optimal triple
(ι, ι′, R). We say that (ι, ι′, R) is conjugate to ( j, j ′, R̃) if there exists t ∈ B×p,L
such that t−1 Rt = R̃ and t−1ι(x)t = j (x) for all x ∈ OK

× and t−1ι′(x)t = j ′(x)
for all x ∈ O×K ′ .

To count the number of conjugacy classes of optimal triples, let us fix an embed-
ding I :K→ Bp,L . Then any optimal triple is conjugate to (I |OK , ι

′, R), where R is a
superspecial order containing I (OK ). We may still conjugate by K× and so assume
that R = R(a, λa) for some a. We may still conjugate by OK

×, and if K 6= K ′, that
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induces a faithful action of OK
×/OL

× on the embeddings ι′ : OK ′ → R(a, λa) if
they exist at all. We conclude that

#(OK
×/OL

×)−1
∑
a

#S(a, λa, 1)= #{optimal triples up to conjugation}.

Corollary 8.3. The number of optimal triples up to conjugation equals

#(OK
×/OL

×)−1
∑
a

#S(a, λa, 1)

=

∑
A/(W/(pn))

with CM type 8

#(OK
×/OL

×)−1#(O×K ′/OL
×)−1 #

(
EndOL ,W/(pn)(A)×

O×L

)

× #
{

A′ with CM by OK ′ such that
(A′, ιA′ |OL )

∼= (A, ιA|OL )

}
. (8-5)

If we multiply the whole set of equalities (8-5) above by the number of superspecial
types for K , we may be justified in calling the new right-hand side of (8-5) the
“coincidence number of K and K ′ at p” as it counts the number of coincidences
between abelian varieties with CM by K and abelian varieties with CM by K ′ in
characteristic p once one considers them as abelian varieties with RM only.

9. The connection to moduli spaces

In their paper [1985], Gross and Zagier give a beautiful formula. Let E1 and E2 be
two elliptic curves over W =W (Fp). Let ji be the j -invariant of Ei . Their formula is

valp( j1− j2)=
1
2

∑
n≥1

# Isomn(E1, E2),

where Isomn denotes the isomorphisms between the reduction of Ei modulo (pn).
The proof Gross and Zagier provided is through direct manipulations of Weier-

strass equations. A more conceptual proof was given by Brian Conrad in [2004].
The proof makes essential use of moduli spaces but uses many features unique to
modular curves and hence is not readily amenable to generalization. This result is
the basis of interpreting their theorem on J (d, d ′) and ordλ(J (d, d ′)) (cf. Section 1)
as an arithmetic intersection number. It thus remains a question of how to give
an interpretation for our theorems, Theorem 8.2 for example, as an intersection
number of CM points on Shimura varieties.

One possibility is to use Shimura curves associated with quaternion algebras
over totally real fields split at exactly one infinite prime. This approach entails
using the p-adic, not-quite-canonical models for these Shimura curves, following
Morita, Carayol, and Boutot–Carayol. The other possibility is to view these CM
0-cycles as lying on a Hilbert modular variety. This approach is complicated by the
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fact that there is no “robust” definition of the arithmetic intersection of 0-cycles
(1-cycles on the arithmetic models) once their codimension is bigger than 1. This
calls for an ad-hoc approach, and it has its own challenging problems.

For now, we will replace the notion of an intersection number with something
less precise and define instead a coincidence number, which does not reflect the
power to which various primes may appear in the differences of invariants but at
least reflects whether a prime appears in the factorizations of the differences of
invariants. In Section 12, we will give an example to illustrate the coincidence
number in computations.

Let L be a totally real field with strict class number 1 and Ki with i = 1, 2 two
CM fields containing L as their maximal totally real subfield. Let p be a prime
unramified in both K1 and K2. For each CM field, we can associate a 0-cycle
CM(Ki ) on the generic fiber of the Hilbert modular variety HL parametrizing
principally polarized abelian varieties with RM by OL (Section 2.3). Each point xη
in CM(Ki ) can be extended to a W (Fp)-point x on HL [Goren and Lauter 2012,
Lemma 2.3]. This implicitly depends on a choice of a prime p in a common
field of definition for all the CM abelian varieties under consideration. We write
CM(K1)=

∑
i xi and CM(K2)=

∑
j y j . We then define the arithmetic coincidence

number (for lack of better terminology) of CM(K1) and CM(K2) as

CM(K1)∧ CM(K2)=
∑

i j

xi∧y j ,

where xi∧y j is defined as 1 if xi and y j have isomorphic reduction modulo p and
as 0 otherwise. In this notation, Theorem 8.2 implies the following:

Corollary 9.1. The contribution from a prime p of superspecial reduction to
CM(K1)∧ CM(K2) is equal to #{superspecial CM types}×

∑
a #S(a, λa, 1).1 This

number, and in particular whether it is zero, can be effectively calculated.

10. Supersingular orders

Theorem 10.1. Let p be a rational prime and k an algebraically closed field of
characteristic p. Let K be a quartic CM field, and let L = K+ be its real subfield.
Let A/k be an abelian surface that is supersingular, but not superspecial, with
complex multiplication by OK . Let O := EndOL (A), where the endomorphisms are
over k. Let Bp,∞ be the quaternion algebra over Q ramified at only p and∞, and
let Bp,L := Bp,∞⊗Q L. Then O is an Eichler order of Bp,L of discriminant p2.

Proof. Let H be a quaternion algebra over a number field F , and let R be an order
of H containing OF . Recall that R is called an Eichler order if it is the intersection
of two maximal orders. This is a local property [Vignéras 1980, p. 84]. If F denotes

1Likewise, the notion of superspecial CM types depends on the implicit choice of p.
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now a nonarchimedean local field with uniformizer π , then an order of H containing
OF is Eichler (namely, is the intersection of two maximal orders of H ) if and only
if it is conjugate to the order

M =
(

OF OF

πnOF OF

)
for some positive integer n [Vignéras 1980, p. 39].

We wish to find the completion of O at every rational prime ideal l of OL .
First, since there exists an isogeny of degree a power of p between any two

supersingular abelian surfaces A and A′ with real multiplication respecting the
real multiplication structure [Bachmat and Goren 1999], for l - p, we have that
Ol := O⊗OL OL ,l ∼= O′l, where O′ = EndOL (A

′). We may choose for A′ the surface
E ⊗Z OL , where E is a supersingular elliptic curve with R = End(E) a maximal
order in Bp,∞. Then O′ = End(A′)= R⊗Z OL , so O′ and O are maximal orders at l.

We remark that according to the classification of the reduction of abelian surfaces
with CM, the situation we consider occurs if and only if p is inert in K , that is, in
the following cases:

(a) K/Q is cyclic Galois and p inert in K [Goren and Lauter 2012, Table 3,
case (iii)], and

(b) K/Q is non-Galois and p inert in K [Goren and Lauter 2012, Table 5, case (vii)].

Following the conventions of [Goren and Lauter 2012], the Dieudonné module of
the p-divisible group of the reduction of A modulo pL is

D∼=W(1)⊕W(y2)⊕W(y)⊕W(y3),

where W(α) denotes the Witt vectors of Fp, where OK acts through the embedding
α : K →Qp. Let σ denote the Frobenius automorphism of W. Then

(a) OL acts on D by l 7→ diag(l, l, σ (l), σ (l)), and

(b) OK acts on D by k 7→ diag(k, σ 2(k), σ (k), σ 3(k)).

The p-adic CM type is {1, y3
} according to our conventions, but since the situation

is symmetric, we may assume that the p-adic CM type is {1, y}, and so Frobenius
is given in the standard basis by the matrix

Fr=


0 0 0 1
0 0 p 0
p 0 0 0
0 1 0 0

 .
By a theorem of Tate, End(A)⊗Z Zp ∼= End(D), where on the right the endomor-
phisms are as Dieudonné modules (cf. [Waterhouse and Milne 1971, Theorem 5]),
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namely, in this case, W-linear maps D→ D that commute with Frobenius. In the
same way,

Op = EndOL (A)⊗OL OL p = EndOL (A)⊗Z Zp ∼= EndOL (D).

Since Op commutes with OL , one finds that Op is given by block diagonal matrix
with blocks of size 2. Writing the general such matrix as

M =


m11 m12

m21 m22

n11 n12

n21 n22

 ,
the condition M ·Fr= Fr ·σ(M) gives, after a short computation,

Op =




m11 m12

p2mσ 2

12 mσ 2

11
mσ

11 pmσ
12

pmσ 3

12 mσ 3

11

 : mi j ∈W(Fp4)

 .
Since p is inert in L , the quaternion algebra Bp,L is ramified only at the two places
at infinity. In particular, Bp,L ⊗L L p ∼= M2(Qp2), where Qp2 =W(Fp2)⊗Z Q. To
determine the nature of Op, we want to recognize it as a suborder of M2(W(Fp2)).

The case p 6= 2. Put

i :=
(

1
p2

)
and j :=

(
α

ασ
2

)
,

where α is chosen such that W(Fp4)=W(Fp2)[α] and ασ
2
=−α. We have then

i2
= p2, j2

= α2, and k := i j =− j i =
(

−α

p2α

)
.

Writing m1 = x1+ y1α and m2 = x2+ y2α with xi , yi ∈W(Fp2), we can write(
m11 m12

p2mσ 2

12 mσ 2

11

)
= x1

(
1

1

)
+ y1

(
α

ασ
2

)
+ x2

(
1

p2

)
− y2

(
−α

p2α

)
= x1 · 1+ y1 · j + x2 · i − y2 · k.

Conversely, for any xi , yi ∈W(Fp2), we get an element of Op. Thus,

Op =W(Fp2) · 1⊕W(Fp2) · i ⊕W(Fp2) · j ⊕W(Fp2) · k.

Let I = p−1i , J = j , and K = I J =−J I . Then I 2
= 1, J 2

=α2, and K 2
=−α2.

The module
R =W(Fp2)[1, I, J, K ]
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is in fact an order of M2(Qp2), and it has discriminant 1. It must then be isomorphic
to M2(Wp2), and, indeed, if we send

1 7→
(

1
1

)
, I 7→

(
1
−1

)
, J 7→

(
α2

1

)
, and K 7→

(
α2

−1

)
,

we get the isomorphism R ∼= M2(W(Fp2)). Under this isomorphism, Op is mapped
isomorphically to the order spanned over W(Fp2) by the matrices(

1
1

)
,

(
p
−p

)
,

(
α2

1

)
, and

(
pα2

−p

)
,

which can be described as{(
a b
c d

)
: a, b, c, d ∈W(Fp2), p |(a− d), p |(b−α2c)

}
.

Now conjugate Op by the matrix

A =
(

1 α

α−1
−1

)
.

Using

2A−1
(

a b
c d

)
A =

(
a+α−1b+αc+ d α(a− d)+ (α2c− b)

α−1(a− d)+α−2(b−α2c) a−α−1b−αc+ d

)
,

we find that Op is conjugate to a suborder of

R′ =
(

W(Fp2) pW(Fp2)

pW(Fp2) W(Fp2)

)
.

However, comparing the discriminant of Op, which is p2, and of R′, which is p2 as
well, we conclude that Op is isomorphic to R′. Further conjugation by the matrix(

1/p
1

)
shows that Op is isomorphic to the order

R′′ =
{(

a b
c d

)
: a, b, c, d ∈W(Fp2), p2

|c
}
,

which is an Eichler order of discriminant p2.

The case p = 2. We may find α ∈W(Fp2) such that W(Fp4)=W(Fp2)[(1+α)/2]
and ασ

2
=−α. Indeed, for a suitable ε ∈W(Fp2)×, we have W(Fp4)=W(Fp2)[β],

where β2
+β + ε = 0. Note that β is a unit. Take α =−(2β + 1).
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To make the analogy with the previous case more visible, we keep using p
instead of 2 in most places. As before, we let

i =
(

1
p2

)
, j =

(
α

−α

)
, and k = i j =− j i =

(
−α

αp2

)
.

Writing m1 = x1+ y1(1+α)/2 and m2 = x2+ y2(1+α)/2 with xi , yi ∈W(Fp2),
we can write,(

m11 m12

p2mσ 2

12 mσ 2

11

)
= x1 · 1+ y1 ·

1+ j
2
+ x2 · i + y2 ·

i−k
2
,

and one concludes that

Op =W(Fp2) · 1⊕W(Fp2) · i ⊕W(Fp2) ·
1+ j

2
⊕W(Fp2) ·

i−k
2
.

One can verify directly that the right side is indeed an order and its discriminant is p2.
The order Op contains the order W(Fp2)[1, i, j, k] =W(Fp2)[1, I, J, K ], where

I = i , J = j/α, and K = k/α. Note that I 2
= p2, J 2

= 1, K 2
= −p2, and

I J =−J I = K . Consider the linear map

W(Fp2)[1, I, J, K ] → M2(W(Fp2))

determined by

1 7→
(

1
1

)
, I 7→

(
2

2

)
, J 7→

(
1
−1

)
, and K 7→

(
−2

2

)
.

One checks that this map is a ring homomorphism and verifies that

Op ∼=W(Fp2)

[(
1

1

)
,

(1+α
2

1−α
2

)
, 2
(

1
1

)
, 2
( 1+α

2
1−α

2

)]
.

Let u := (1+α)/(1−α)=β2/ε. Then u and 1−u=2+u/β are units. It follows that

Op ∼=W(Fp2)

[(
1 0
0 0

)
,

(
0 0
0 1

)
, 2
(

0 1
0 0

)
, 2
(

0 0
1 0

)]
=

{(
a b
c d

)
: a, b, c, d ∈W(Fp2), p |b, p |c

}
.

An additional conjugation as in the case p 6= 2 shows that this is an Eichler order
of discriminant p2. �
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11. A crude version of Gross–Zagier’s result on singular moduli

Let A be a g-dimensional abelian variety over a field k. Let L be a totally real field
of degree g over Q of strict class number 1, and let Ki with i = 1, 2 be two CM
fields contained in some algebraic closure of L such that K+1 = K+2 = L . We allow
K1 = K2. Assume we are given two embeddings

ϕi : Ki → End0
k(A) := Endk(A)⊗Z Q

such that
ϕ1|L = ϕ2|L and ϕ1(K ) 6= ϕ2(K ).

Lemma 11.1. The field k has positive characteristic p. The abelian variety is
supersingular, and End0(A)∼= Bp,L , where Bp,L = Bp,∞⊗Q L and Bp,∞ is “the”
quaternion algebra over Q ramified at p and∞.

Proof. This follows easily from the classification of the endomorphism algebras of
abelian varieties with real multiplication as in [Chai 1995, Lemma 6]; one observes
that under our assumptions, the centralizer of L in End0

k(A) is an L-vector space of
dimension greater than 2. �

Let Oi ⊆ Ki be orders containing OL . The order Oi is determined by its conductor
ci , which is an integral ideal of OL for which we choose a generator ci [Goren and
Lauter 2009, Lemma 4.1]. In fact, one can write

OKi = OL [κi ],

where −mi = B2
i − 4Ci is a totally negative element of OL and κi satisfies a

quadratic equation x2
+ Bi x + Ci for Bi ,Ci ∈ OL . The relative different ideal

DKi/L is equal to OKi [1/
√
−mi ] [Goren and Lauter 2006, Lemma 3.1]. We have

OKi = OL [κi ] ⊇ OL [
√
−mi ] ⊇ OL [2κi ], and so

Oi = OL [ciκi ] ⊇ OL [ci
√
−mi ] ⊇ OL [2ciκi ].

The discriminant of Oi relative to OL , discKi/L(Oi ), is equal to the OL -ideal gener-
ated by c2

i mi , and the discriminant of Oi relative to Z, disc(Oi )= discK/Q(Oi ), is
equal to NormL/Q(c2

i mi ) · disc(OL)
2. (In general, we use “disc” to denote absolute

discriminant, that is, relative to Z.)
Let B be any totally definite quaternion algebra over L; that is, B⊗L ,σ R is a

division algebra for any embedding σ : L→ R, and let d be its discriminant. Let

ϕi : Ki → B

be two embeddings such that ϕ1|L = ϕ2|L and ϕ1(K1) 6= ϕ2(K2). Let

ki = ϕi (ci
√
−mi ).
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Let O be an order of B, which we assume to contain ϕi (Oi ) for i = 1, 2 and hence
also OL (we view ϕi as the identity maps on L). Let d+ be the discriminant of O.
As in [Goren and Lauter 2007], subject to the assumption ϕ1(K1) 6= ϕ2(K2), one
proves the following lemma:

Lemma 11.2. The OL module 3 = OL + OLk1 + OLk2 + OLk1k2 has finite index
in O and is in fact a direct sum 3= OL ⊕OLk1⊕OLk2⊕OLk1k2.

Theorem 11.3. Let α = Trd(k1k2). We have a divisibility of integral ideals in L:

d+ |(4 Nrd(k1)Nrd(k2)−α
2) in OL .

Furthermore,

NL/Q(d
+)≤ 4g disc(O1)·disc(O2)

disc(OL)4
.

Proof. The discriminant of the order 3 relative to L , discB/L(3), is divisible by
the discriminant of O; namely, it is an integral ideal of L divisible by d+. Using the
basis {1, k1, k2, k1k2} for3 and putting α=Trd(k1k2), we find that the discriminant
of 3 is the OL -ideal generated by

det


2 0 0 α

0 2 Nrd(k1) −α 0
0 −α 2 Nrd(k2) 0
α 0 0 2 Nrd(k1)Nrd(k2)

= (4 Nrd(k1)Nrd(k2)−α
2)2,

and so d+ |(4 Nrd(k1)Nrd(k2)−α
2) in OL . Thus,

NL/Q(d
+)|NL/Q(4 Nrd(k1)Nrd(k2)−α

2) in Z.

Now, 4 Nrd(k1)Nrd(k2)−α
2 is a totally positive element of OL . Indeed, this is just

the Cauchy–Schwartz inequality applied to the bilinear form Trd(x y) under every
embedding L→ R. We can therefore conclude that

NL/Q(d
+)≤ NL/Q(4 Nrd(k1)Nrd(k2)).

We conclude that

NL/Q(d
+)≤ disc(OL)

−44−g
2∏

i=1

4g disc(OL)
2 NL/Q Nrd(ki )

≤ disc(OL)
−44−g

2∏
i=1

disc(OL [2ciκi ])

= disc(OL)
−44g

2∏
i=1

disc(OL [ciκi ])= 4g disc(O1)·disc(O2)

disc(OL)4
. �
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p Unramified
(inert/split)

Inert Ramified Ramified

Reduction ssp s.sing, not ssp ssp ssp

Rapoport? Yes Yes Yes No

r ′ 2 4 2 1

Table 3
(K cyclic)

ii, iv, v iii vi

Table 4
(K biquadratic)

iii, iv, vii, viii vi ix, x, xi

iii, vi, viii, ix, xvi, xvii, xviii,Table 5
(K non-Galois)

x, xi, xiii, xv, vii xix, xx, xxi, xxiv,
xxii, xxiii xxv, xxvi

Table 1. The case [L :Q] = 2. Table numbers refer to [Goren and
Lauter 2012]. The column headings refer to the decomposition
of p in L . “Reduction” refers to the reduction of the abelian
variety modulo p. The abbreviations “s.sing.” and “ssp” mean
“supersingular” and “superspecial”.

Corollary 11.4. (1) Let Ai be an abelian variety with CM by OKi . Choose a
common field of definition M for A1 and A2 such that M contains the normal
closure of both K1 and K2 and both Ai have good reduction over M. Let p be
a prime ideal of M , (p)= p∩Z, and suppose that

A1 (mod p)∼= A2 (mod p).

Let r be the number of prime ideals q in OL for which e(q/p) f (q/p) is odd. If
r > 0, then

p ≤
(

4g discK1 · discK2

disc(OL)4

)1/r

.

(2) Suppose that [L :Q]= 2 and that Ai are principally polarized abelian surfaces.
Then we have the bound

p ≤
(

16
discK1 · discK2

disc(OL)4

)1/r ′

according to the cases listed in Table 1 (and no other case is possible).

Proof. Since the Ai are principally polarized abelian surfaces, they satisfy the
Deligne–Pappas condition and, when p is unramified, even the Rapoport condition.
We can therefore use the results of [Bachmat and Goren 1999; Nicole 2005].

If p is split in L , then every supersingular abelian variety is superspecial. In that
case, EndOL (A) is an order of discriminant pOL in Bp,L , and we apply (1) with r =2.
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If p is inert, then the reduction is necessarily supersingular by Lemma 11.1 and
may or may not be superspecial. If it is superspecial, then, again, EndOL (A) is an
order of discriminant pOL in Bp,L , and the bound holds with r ′ = 2.

If the reduction is supersingular and not superspecial, then in fact EndOL (A) has
discriminant p2OL , and so we may take r ′ = 4.

Next we consider the case when p is ramified. There are three cases. The first
is when we have superspecial reduction and the Rapoport condition holds. In that
case, EndOL (A) has discriminant pOL , and we may take r ′ = 2. The second case is
when we have superspecial reduction and the Rapoport condition does not hold (but
the Deligne–Pappas condition holds). In this case, EndOL (A) has discriminant p,
where p is the prime of OL above p, and we can take r ′ = 1. The last possibility is,
ostensibly, that we have supersingular reduction, which is not superspecial. This in
fact never happens in the presence of CM by the full ring of integers. It is interesting
to note, though, that for supersingular and not superspecial reduction, the abelian
variety A has a unique copy of the group scheme αp contained in it, which is
therefore preserved under all endomorphisms. Thus, End(A) ↪→ End(A/αp), and
A/αp is superspecial but doesn’t satisfy the Rapoport condition [Andreatta and
Goren 2003]. And so, were this case to occur, we could have taken r ′ = 1. �

Remark 11.5. Suppose that r = 0. Then g is even, and a maximal order R ⊂ Bp,L

has discriminant 1 since Bp,L can only be ramified at primes dividing p, and if
F/Qp is a field extension and [F :Qp] = α, then Bp,∞⊗Qp F is split if and only
if α is even. Taking F = Lq, we have that α = e(q/p) f (q/p). For every prime
p (and for any decomposition behavior of p), there certainly exist supersingular
abelian varieties A with RM such that EndOL (A)= R. This is easily achieved by
choosing an R-stable lattice of the Dieudonné module of A. Experience shows,
however, that such abelian varieties tend to be badly behaved; for example, the
Deligne–Pappas condition tends to fail when p is unramified (it fails in the cases
we have checked, and we did not find an example where it holds), or in other cases,
such as when p is totally ramified, the Deligne–Pappas condition holds, but the
endomorphism ring is not the maximal order. Thus, one would expect that under
the Deligne–Pappas condition the discriminant of EndOL (A) is never 1 and, if so,
one obtains a version of Corollary 11.4(1) in all cases.

In fact, one can be more optimistic and guess that the largest order O aris-
ing for a supersingular characteristic p abelian variety with RM A satisfying the
Deligne–Rapoport condition also arises for some superspecial such abelian variety.
Superspecial abelian varieties with RM were studied by Nicole [2005; 2008]. When
p is unramified in L and A is superspecial, EndOL (A) has discriminant pOL . When
p is ramified in L , larger orders arise [Nicole 2005, Theorem 2.8.5], but at least when
p is totally ramified, pOL = p[L:Q], still the largest order arising (for a superspecial
abelian variety) has discriminant p.
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12. Computations: g = 2

Consider the two primitive Galois quartic CM fields K ′ =Q(
√
−85+ 34

√
5) and

K = Q(ζ5). The common real quadratic subfield L = K+ = K ′+ = Q(
√

5) has
strict class number 1 as it has class number 1 and a unit (1+

√
5)/2 of negative

norm. The field K has class number 1, and the triple of absolute Igusa invariants of
the principally polarized abelian surface with CM by K is i1 = i2 = i3 = 0. The
field K ′ has class number 2, and the triple of absolute Igusa invariants for one of
the CM points associated to K ′ is

i1 =
233
·310
·55
·195
·5215

7112 , i2 =
223
·310
·55
·195
·5213

718 ,

i3 =
216
·37
·54
·193
·5212

·755777339
718 .

Genus-2 curves over Q with these invariants are given by the affine models

y2
= x5
− 1,

y2
=−584x6

− 4020x5
+ 28860x4

+ 130240x3
− 514920x2

− 190244x − 289455

for Q(ζ5) and K ′, respectively. In this case, the triple of absolute invariants is
insufficient to determine whether the two curves are isomorphic modulo a prime p
since the first invariant is zero. To understand for which primes the curves are
isomorphic, it is necessary to compute all ten Igusa invariants for the CM point
associated to K ′ to determine which primes divide all ten invariants (see [Goren
and Lauter 2012, Section 2.2] for an explanation, especially Consequence 3 at the
end of the subsection). In particular, primes that divide the differences of all ten
Igusa invariants associated to two CM points of K and K ′ are primes for which the
coincidence number of K and K ′ defined in Section 9 is nonzero.

The prime 19 appears in all three invariants, and checking all ten invariants, we
find that they too are all zero modulo 19. There is also a positive contribution at the
prime p= 19 in our formula in (8-3), which implies a nonzero coincidence number.
Since K has class number 1, there is only one superspecial order R(O, λ). We find
an element x ∈ OL satisfying conditions C and count the elements in S2(O, x). Let
d and d ′ be as in Section 6. We find that for x = 3

√
5−3, the ideal in OL generated

by (x2
− dd ′)/4 factors as

p2
2p19,1p19,2.

We see that there is a positive contribution for p = 19 in our formula because this
factorization has both split factors for 19, and 2 is totally inert in K/L but appears
to the power 2, so (x2

− dd ′)/(4 · 19) is a norm of an ideal from K/L , and the set
S2(O, x) is nonempty.
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Consider the other primes that are common to all three numerators in this example.
The prime 5 is ramified in L , so our results do not cover it; neither do our formulas
pertain to the prime 2, which also appears in all three numerators. The prime 3
divides all ten invariants but is supersingular, not superspecial, and it certainly
satisfies the crude bound Theorem 11.3 from Section 11. The prime 521 does not
divide all ten invariants.
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Counting rational points over
number fields on a singular cubic surface

Christopher Frei

A conjecture of Manin predicts the distribution of K -rational points on certain
algebraic varieties defined over a number field K . In recent years, a method using
universal torsors has been successfully applied to several hard special cases of
Manin’s conjecture over the field Q. Combining this method with techniques
developed by Schanuel, we give a proof of Manin’s conjecture over arbitrary
number fields for the singular cubic surface S given by the equation x3

0 = x1x2x3.
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1. Introduction

We consider the cubic surface S ⊆ P3 defined over any number field K by the
equation

x3
0 = x1x2x3.

It is toric, has three singular points (0 : 1 : 0 : 0), (0 : 0 : 1 : 0), (0 : 0 : 0 : 1), and
contains three lines L i := {x0= xi = 0}, for i ∈ {1, 2, 3}. The set S(K ) of K -rational
points on S is infinite.

The Weil height of x = (x0 : x1 : x2 : x3) ∈ P3(K ) is defined by

H(x)=
∏

ν∈M(K )

max{|x0|ν, |x1|ν, |x2|ν, |x3|ν}
dν .

Here, M(K ) is the set of places of K , the absolute values | · |ν are normalized such
that they extend the usual absolute values on Q, and dν is the local degree [Kν :Qp],
if ν extends the place p of Q.
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Keywords: Manin’s conjecture, number fields, rational points, singular cubic surface.

1451

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2013.7-6
http://dx.doi.org/10.2140/ant.2013.7.1451


1452 Christopher Frei

It is well known that there are only finitely many points of bounded height in
P3(K ), so it makes sense to study the number of K -rational points on S of height
bounded by B, as B tends to infinity. A generalization of a conjecture by Manin
[Franke et al. 1989; Batyrev and Tschinkel 1998b], applied to our case, links the
asymptotic behavior of this quantity to geometric features of S, provided that we
exclude the points lying on the lines L i . Indeed, the number of K -rational points
of bounded height on these lines dominates the number of K -rational points on the
rest of S, whereas much of the geometric information about S would be lost when
considering just the lines.

Therefore, we denote by U the complement of the three lines in S and define the
counting function

N (B) := |{x ∈U (K ) | H(x)≤ B}|.

Here, U (K ) is the set of K -rational points on U . The above-mentioned generaliza-
tion of Manin’s conjecture [Franke et al. 1989; Batyrev and Tschinkel 1998b] to
Fano varieties with at worst canonical singularities predicts in this case that

N (B)∼ cB(log B)6,

with a positive leading constant c = cS,K ,H . A conjectural interpretation of the
leading constant in Manin’s conjecture was given by Peyre [1995] and extended
to Fano varieties with at worst canonical singularities by Batyrev and Tschinkel
[1998b]. When writing “Manin’s conjecture”, we implicitly include the conjecture
about the leading constant.

Manin’s conjecture has been proved for smooth toric varieties over arbitrary
number fields by Batyrev and Tschinkel [1998a], studying the height zeta function
with the help of Fourier analysis. In [Batyrev and Tschinkel 1998b] they explain
how this result can be applied to prove Manin’s conjecture for our singular surface S.
Similar methods work for other varieties that are equivariant compactifications of
certain algebraic groups; for example, see [Chambert-Loir and Tschinkel 2002].

Salberger [1998] gave a new proof of Manin’s conjecture for split toric varieties
over the field Q of rational numbers by a fundamentally different approach using
universal torsors. These were first introduced by Colliot-Thélène and Sansuc [1980;
1987] to study the Hasse principle. In the context of Manin’s conjecture, the
basic idea is to find a parametrization of the rational points on the variety under
consideration that makes it feasible to count them by analytic number theory.

Based on Salberger’s ideas, proofs were found for several hard special cases of
Manin’s conjecture over Q, to which the methods of Batyrev and Tschinkel cannot
be applied; see for instance [Baier and Browning 2013; de la Bretèche 2002; de la
Bretèche and Browning 2011; de la Bretèche et al. 2007; de la Bretèche and Fouvry
2004; de la Bretèche et al. 2012; Browning and Derenthal 2009; Le Boudec 2012].
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For our surface S, independent proofs of Manin’s conjecture over Q were given by
de la Bretèche [1998], Fouvry [1998], Salberger [1998], Heath-Brown and Moroz
[1999], and de la Bretèche and Swinnerton-Dyer [2007], with the help of such
parametrizations. The best error terms have been obtained in [de la Bretèche 1998;
de la Bretèche and Swinnerton-Dyer 2007].

In a first attempt to generalize universal torsor techniques to number fields other
than Q, Derenthal and Janda [2013] modified the approach by Heath-Brown and
Moroz [1999] and successfully applied it to the case of imaginary quadratic number
fields of class number 1.

In this article, we combine the method of Derenthal and Janda with ideas devel-
oped by Schanuel [1979] and apply it to arbitrary number fields. To the author’s
best knowledge, this is the first example of universal torsor techniques applied
to a special case of Manin’s conjecture over general number fields, aside from
Schanuel’s result for Pn . Hopefully, similar approaches will lead to results for
nontoric varieties.

Before we state the theorem, let us fix some notation: by 1K , hK , RK , and ωK ,
we denote the discriminant, class number, regulator, and number of roots of unity
of K . Moreover, r and s denote the number of real and complex places of K , and
q := r + s− 1. We write OK for the ring of integers of K and Na for the absolute
norm of the nonzero fractional ideal a of K .

Theorem 1. For every number field K , we have

N (B)= cK B(log B)6+ O(B(log B)5),

for B ≥ e. Here, the implicit O-constant depends on K , and

cK :=
9q

4 · 6!

(
2r (2π)s
√
|1K |

)9(hK RK

ωK

)7∏
p

(
1−

1
Np

)7(
1+

7
Np
+

1
Np2

)
,

where the product runs over all nonzero prime ideals p of OK .

The leading constant. Let us check the leading constant cK in Theorem 1 against
the expected one. According to [Batyrev and Tschinkel 1998b, Section 3.4, Step 4],
it should have the form

γK−1(U )δK−1(U )τK−1(U )
6!

,

where γK−1(U ) is the volume of a certain polytope depending only on U , δK−1(U )
is a cohomological invariant, and τK−1(U ) is a generalized version of the Tamagawa
number introduced by Peyre [1995] for smooth Fano varieties.

Derenthal and Janda [2013, Section 3] computed these constants for our U over
arbitrary number fields K , using a minimal desingularization S̃ of S constructed
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by blow-ups of P2 in six rational points: We have δK−1(U ) = 1, and, as already
given in [Batyrev and Tschinkel 1998b, Section 5.3], γK−1(U )= 1

36 . The Tamagawa
number τK−1(U ) is an adelic invariant given as a product of local densities with
certain convergence factors

τK−1(U )=
(

2r (2π)shK RK

ωK
√
|1K |

)7

|1K |
−1
∏
ν|∞

ωK−1,ν(S̃(Kν))
∏
ν-∞

λ−1
ν ωK−1,ν(S̃(Kν)).

For the Archimedean densities, we have

ωK−1,ν(S̃(Kν))=

{
36 if Kν = R,

36π2 if Kν = C.

The non-Archimedean density at the place ν corresponding to the prime ideal p of
OK is given by

λ−1
ν ωK−1,ν(S̃(Kν))=

(
1−

1
Np

)7(
1+

7
Np
+

1
Np2

)
.

Putting this together, we see that the constant cK in Theorem 1 is as expected.

More notation. The ideal class of a nonzero fractional ideal a of K is denoted by
[a]. We write PK for the group of nonzero principal fractional ideals of K . We
denote the real embeddings by σ1, . . . , σr : K → R and the complex embeddings
by σr+1, σ r+1, . . . , σr+s , σ r+s : K → C. The componentwise continuation of σi

to K n is also denoted by σi . If ν is the place corresponding to σi then we put
di := dν . When convenient, we write α(i) := σi (α) for α ∈ K . If a, b are fractional
ideals of K , we put (a, b) := a+ b. For any point x = (x0, . . . , xn) ∈ K n+1, let
J(x) := (x0OK , . . . , xnOK ). Then, for x ∈ K 4,

H(x)=NJ(x)−1
r+s∏
i=1

max
{
|x (i)0 |, |x

(i)
1 |, |x

(i)
2 |, |x

(i)
3 |
}di
.

We fix, once and for all, a system of fundamental units of OK , and denote by
F the multiplicative subgroup of K× generated by this system. Then F is a free
Abelian group of rank q, and the unit group O×K is the direct product O×K = µK F,
where µK is the group of roots of unity in K .

Moreover, we fix, once and for all, a system C of integral representatives for
the ideal classes of OK , that is, a set of hK nonzero ideals of OK , one from every
ideal class.

2. Passing to a universal torsor

In this section, we find a parametrization of the rational points of bounded height on
U by (almost) integral points on an open subset of A9

K , subject to some height- and
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coprimality conditions, and up to a certain action of (O×K )
7. This parametrization

has the merit that, due to the coprimality conditions, the non-Archimedean parts of
the height conditions are trivial.

Over Q and imaginary quadratic number fields, the action of (O×K )
7 makes no

problems, since then O×K is finite. In general, that is not the case; this is one of the
main difficulties which we have to overcome.

While we will use purely number-theoretic arguments, we mention that the open
subset of A9 is a universal torsor over S, and that our construction is motivated by
geometric considerations; see [Derenthal and Janda 2013]. The choice of indices
might seem slightly counterintuitive at the beginning. It is, however, closely related
to those geometric considerations and will lead to a rather symmetric result.

Parametrization. Let 90 : K 3
→ K 4 be given by

90(x23, x31, x12)= (x12x23x31, x12x2
31, x23x2

12, x31x2
23).

We will also consider90 as a rational map P2 99KP3. Let W ⊆P2 be the open subset

W = {(x23 : x31 : x12) ∈ P2
| x12x23x31 6= 0}.

Then 90 induces a bijection between W (K ) ⊆ P2(K ) and U (K ) ⊆ P3(K ) with
inverse (x0 : x1 : x2 : x3) 7→ (x2

0 : x0x1 : x1x2). Therefore,

N (B)= |{x ∈W (K ) | H(90(x))≤ B}|. (2-1)

Whenever indices j , k, l appear in an expression, this expression is understood
to hold for all ( j, k, l) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)} =: A.

Lemma 2.1. Let b1, b2, b3 be nonzero ideals of OK , and let c := (b1, b2, b3). Then
there exist unique nonzero ideals a1, a2, a3, a12, a21, a23, a32, a31, a13 of OK

such that

b j = c · a jk · a
2
k · alk · a j · ak j , (2-2)

and such that the following coprimality conditions hold:

(ak, a j )= OK , (2-3)

(ak, ak j )= OK , (2-4)

(ak, a jl)= OK , (2-5)

(ak, al j )= OK , (2-6)

(ak, akl)= OK , (2-7)

(alk, a jk)= OK , (2-8)

(alk, al j )= OK , (2-9)

(alk, a jl)= OK , (2-10)

(a jk, akl)= OK . (2-11)

Conversely, given ideals ak , a jk , alk as in (2-3)–(2-11), the ideals b j defined by
(2-2) satisfy (b1, b2, b3)= c.
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Proof. It is enough to prove the lemma if c= OK , since we can always replace b j

by c−1b j . In this case, we have (b j , b
2
k)(bl, b j ) | b j . Let

a jk :=
b j

(b j , b
2
k)(bl, b j )

, ak :=

( b j

(b j , bk)
, bk

)
, and alk :=

(b j , bk)

ak
. (2-12)

Then the a jk , ak , alk are nonzero ideals of OK and (2-2) holds, since

(b j , b
2
k)= (b j , bk)ak = a2

kalk and (bl, b j )= a jak j .

One readily verifies that the left-hand sides in conditions (2-3)–(2-6), (2-9), and
(2-10) divide (b1, b2, b3) = OK . Similarly, the left-hand sides in (2-7), (2-11)
divide (b j/(b j , bk), bk/(b j , bk)) = OK , and the left-hand side in (2-8) divides
(bk/ak, b j/((b j , bk)ak))= OK .

Now assume that (2-2) holds, with given nonzero ideals ak , a jk , alk satisfying the
coprimality conditions (2-3)–(2-11). These conditions imply that (b j , bk)= akalk ,
and furthermore (b j/(akalk), bk) = ak . Thus, the ak ,alk are as in (2-12). Clearly,
this holds as well for the a jk , and uniqueness is proved.

The last assertion is again a direct consequence of (2-3)–(2-11). �

The coprimality conditions (2-3)–(2-11) can be expressed in a more convenient
way: Let G=(V, E) be the graph with vertex set V:={1, 2, 3, 12, 21, 23, 32, 31, 13}
and edge set E := {{k, jk}, {k, lk}, {kl, lk} | ( j, k, l)∈ A}. We can draw it as follows:

1 21 12 2

31 13 3 23 32

Then (2-3)–(2-11) hold if and only if (av, aw)= OK for all pairs (v,w) of nonadja-
cent vertices of V . If we denote the edge set of the complement graph by E ′, this
means that

for any {v,w} ∈ E ′, we have (av, aw)= OK . (2-13)

For every point (x23 : x31 : x12) ∈W (K ), the ideal class [J(x23, x31, x12)] is well-
defined, and [J(x23, x31, x12)]=[C], for some C ∈C. By multiplying with a suitable
element of K×, we can choose a representative x = (x23, x31, x12) ∈ (OK \ {0})3

with J(x)= C . This representative is unique up to scalar multiplication by units
in O×K .

We apply Lemma 2.1 to the principal ideals b j := x jkOK and obtain

x jkOK = C · a jk · a
2
k · alk · a j · ak j ,

with unique ideals av of OK satisfying (2-13). For all v ∈ V \ {12, 23, 31}, there
is a unique Cv ∈ C with [av] = [C−1

v ]. Choose yv ∈ K× with yvOK = avCv, and
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define y12, y23, y31 ∈ K× by the equations

x jk = y jk · y2
k · ylk · y j · yk j . (2-14)

Then
y jkOK = a jkC jk with C jk := CC−2

k C−1
lk C−1

j C−1
k j .

For C = (C,C1,C2,C3,C21,C32,C13) ∈ C7, we define MC as the set of all
y = (yv)v∈V ∈ (K×)9 such that

yv ∈ Cv for all v ∈ V , and the ideals av := yvC−1
v satisfy (2-13). (2-15)

By what we have shown above, relations (2-14) define a surjective mapping

φ :
⋃

C∈C7

MC →W (K ).

If y ∈ MC and φ( y)= (x23 : x31 : x12) with x jk as in (2-14) then

x jkOK = C · a jk · a
2
k · alk · a j · ak j .

By Lemma 2.1, we have J(x23, x31, x12)= C , and the av (and thus as well the Cv)
are uniquely determined by the x jkOK . In particular, the sets MC , C ∈ C7, are
pairwise disjoint. Moreover, (x23, x31, x12) and the yv, v ∈ V , are determined by
φ( y) up to multiplication by units. Therefore, φ( y)= φ(z) if and only if there are
units ζ , ζv ∈ O×K with

zv = ζv yv for all v ∈ V and ζ jkζ
2
k ζlkζ jζk j = ζ for all ( j, k, l) ∈ A.

By eliminating the ζ jk , we see that φ( y)= φ(z) if and only if y and z are in the
same orbit of the action � of (O×K )

7 on (K×)9 given by

(ζ, ζ1, ζ2, ζ3, ζ21, ζ32, ζ13)� (yv)v := (zv)v, (2-16)

where zv := ζv yv for all v ∈ V \ {12, 23, 31} and z jk := ζ ζ
−2
k ζ−1

lk ζ
−1
j ζ−1

k j y jk .
In what follows, it will be more convenient to work with the free Abelian subgroup

F of O×K generated by our fixed system of fundamental units. Clearly, (O×K )
7 is the

direct product (O×K )
7
= µ7

K ·F
7. Since the action of (O×K )

7 on (K×)9 is free, every
orbit of (K×)9 under the action of (O×K )

7 is the union of |µ7
K | = ω

7
K orbits under

the action of F7.
Let R be a system of representatives for the orbits of (K×)9 under the action

of F7. Then φ induces an ω7
K -to-1 map

φ :
⋃

C∈C7

(MC ∩R)→W (K ).

The benefits of our construction become apparent in the height condition. With
x = (x23, x31, x12) as in (2-14), we have ψ0(x)= y2

1 y2
2 y2

3 y21 y32 y13 ·ψ( y), where
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ψ( y)= (ψ( y)0, ψ( y)1, ψ( y)2, ψ( y)3),
with

ψ( y)0 :=
∏
v∈V

yv and ψ( y) j := y3
j y jk y jl y2

k j y2
l j for 1≤ j ≤ 3.

Therefore,

H(ψ0(x))= H(ψ( y))=NJ(ψ( y))−1
r+s∏
i=1

max
0≤ j≤3

{
|ψ( y)(i)j |

}di
.

A straightforward computation using yv = avCv and (2-13) shows that

J(ψ( y))= C3C−2
1 C−2

2 C−2
3 C−1

21 C−1
32 C−1

13 .

By our construction, ψ( y) satisfies the equation ψ( y)30=ψ( y)1ψ( y)2ψ( y)3. Since
this holds as well for all conjugates, the maximum is always one of |ψ( y)(i)1 |,
|ψ( y)(i)2 |, |ψ( y)(i)3 |. We define

R(B) :=
{

y ∈R

∣∣∣∣ r+s∏
i=1

max
1≤ j≤3

{
|σi (y3

j y jk y jl y2
k j y2

l j )|
}di
≤ B

}
. (2-17)

The results of this section can be summarized as follows.

Proposition 2.2. Let MC be as in (2-15), let R be any system of representatives for
the orbits of (K×)9 under the action � of F7 given by (2-16), and let R(B) be as
in (2-17). Then MC ∩R(B) is finite for all B > 0, C ∈ C7, and

N (B)= 1
ω7

K

∑
C∈C7

|MC ∩R(uC B)|,

where uC :=N(C3C−2
1 C−2

2 C−2
3 C−1

21 C−1
32 C−1

13 ).

A system of representatives for the orbits. We construct a system R of representa-
tives for the orbits of (K×)9 under the action � of F7 given by (2-16).

Lemma 2.3. Let α1, α2, α3 ∈ F and consider the system of equations

ζ ζ−2
k ζ−1

j = α j , for ( j, k) ∈ {(1, 2), (2, 3), (3, 1)}, (2-18)

with variables ζ , ζ j ∈ F.

(i) If α1α2α3 is not a cube in F then this system has no solutions.

(ii) If α1α2α3 = ξ
3 with ξ ∈ F then the solutions are given by

ζ1 = δ, ζ2 = δξ
−1α3, ζ3 = δξα

−1
2 , ζ = δ3ξα−1

2 α3,

for all δ ∈ F.
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Proof. Equations (2-18) imply that

ζ 3ζ−9
j = α jα

−2
k α4

l = α1α2α3α
−3
k α3

l , (2-19)

which proves (i).
Now assume that α1α2α3 = ξ

3 for some ξ ∈F. Then ξ is unique since F is free
Abelian. Direct computations verify that the values given in (ii) are solutions.

Given any solution (ζ, ζ1, ζ2, ζ3) of (2-18), let δ := ζ1. Then (2-19) with j = 1
shows that ζ has the desired form. Similar computations using (2-19) with j = 2
and j = 3 prove that ζ2 and ζ3 are as desired. �

Let H be the subgroup of (K×)6 of all α = (α12, α21, α23, α32, α31, α13) ∈ F6

for which α12α
2
21α23α

2
32α31α

2
13 is a cube in F.

Lemma 2.4. Let R1⊆ (K×)3 be a system of representatives for the orbits of (K×)3

under the action of F by scalar multiplication, and let R2 ⊆ (K×)6 be a system of
representatives for (K×)6/H. Then R := R1×R2 is a system of representatives
for the orbits of (K×)9 under the action � of F7.

Proof. Let y = (yv)v∈V ∈ (K×)9. Then there is a unique α ∈ H such that

(α12 y12, α21 y21, α23 y23, α32 y32, α31 y31, α13 y13) ∈R2.

The elements ζ = (ζ, ζ1, ζ2, ζ3, ζ21, ζ32, ζ13) ∈ F7 with ζ � y ∈ (K×)3 ×R2 are
those satisfying

ζk j = αk j and ζ ζ−2
k ζ−1

lk ζ
−1
j ζ−1

k j = α jk . (2-20)

With α j := α jkαk jαlk , this simplifies to (2-18). Now

α1α2α3 = α12α
2
21α23α

2
32α31α

2
13

is a cube in F, so ζ , ζ1, ζ2, ζ3 are of the form given in Lemma 2.3(ii), for δ ∈
F. There is exactly one δ ∈ F such that the corresponding ζ1, ζ2, ζ3 satisfy
(ζ1 y1, ζ2 y2, ζ3 y3) ∈R1. Hence, there is exactly one ζ ∈ F7 with ζ � y ∈R. �

Lemma 2.5. Let R⊆ K× be a system of representatives for K×/F, and let RF⊆F

be a system of representatives for F/{ξ 3
| ξ ∈ F}. Then

R2 :=
⋃
ρ∈RF

(ρR× R× R× R× R× R)

is a system of representatives for (K×)6/H.

Proof. Clearly,
⋃
ρ∈RF

ρR is a system of representatives for K×/{ξ 3
| ξ ∈ F}.

Let y ∈ (K×)6. For all v ∈ {21, 23, 32, 31, 13}, there is exactly one αv ∈ F with
αv yv ∈ R. Moreover, there is exactly one ξ ∈ F such that

y12(α
2
21α23α

2
32α31α

2
13)
−1ξ 3
∈

⋃
ρ∈RF

ρR.
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Hence, there is exactly one α12 := (α
2
21α23α

2
32α31α

2
13)
−1ξ 3
∈ F such that

α = (α12, α21, α23, α32, α31, α13) ∈ H and α y ∈R2. �

We choose the system R=R1×R2 as in Lemma 2.4, where R1 is any system of
representatives for the diagonal action of F on (K×)3, and R2 is as in Lemma 2.5.

3. Proof of Theorem 1

This section is a generalization of [Derenthal and Janda 2013, Section 5]. We
reduce Theorem 1 to a central lemma (Lemma 3.1), whose proof will take up the
rest of the article. We assume that K is of degree d ≥ 2. Over Q, one would need
to replace Lemma 5.2 by a slightly more intricate argument to make the sum over
the error terms converge, for which we refer to [Heath-Brown and Moroz 1999].

Möbius inversions. Let C = (C,C1,C2,C3,C21,C32,C13) ∈ C7 be fixed. We
investigate the quantity |MC ∩R(uC B)| from Proposition 2.2. We can write

|MC ∩R(uC B)| =
∑

y∈R(uC B)
(2-15) holds

1.

Möbius inversion for all the coprimality conditions in (2-13) yields

|MC ∩R(uC B)| =
∑

(de)e∈E ′
{0}6=deEOK

(∏
e∈E ′

µ(de)

) ∑
y∈R(uC B)

∀e={v,w}∈E ′:yv∈deCv,yw∈deCw

1, (3-1)

where each de runs over all nonzero ideals of OK and µ is the Möbius function for
nonzero ideals of OK . Lemma 3.1 will imply that the last sum is always finite and
nonzero for at most finitely many (de)e∈E ′ . With av :=

⋂
v∈e∈E ′ deCv, we obtain∑

y∈R(uC B)
∀e={v,w}∈E ′ : yv∈deCv , yw∈deCw

1=
∑

y∈R(uC B)
∀v : yv∈av

1. (3-2)

We estimate this sum by the following lemma. Its proof is central to this article and
will be given in Section 5.

Lemma 3.1. For every v ∈ V , let av be a fractional ideal of K with Nav ≥ c, for
some constant c > 0 depending only on K . With R(B) as in (2-17), we have∑
y∈R(B)
∀v:yv∈av

1= 9q

4·6!

(
2r (2π)s
√
|1K |

)9 R7
K∏

v∈V Nav
B(log B)6

+ O

(
max j {Na j }

1/d∏
j Na j

∏
i 6= j Na

1−2/(3d)
i j

B(log B)5
)
,

for B ≥ e. The implicit O-constant depends on K .
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For any (de)e∈E ′ and v ∈ V , we define rv :=N(∩v∈e∈E ′de),

R1 :=
∏
v∈V

rv, and R2 :=max
j
{r j }
−1/d

∏
j

r j

∏
i 6= j

r1−2/(3d)
i j . (3-3)

We notice that Nav =N(∩v∈e∈E ′deCv)=N(Cv)rv . Recall that we defined C jk :=

CC−2
k C−1

lk C−1
j C−1

k j for jk ∈ {12, 23, 31}, so∏
v∈V

NCv =N(C3C−2
1 C−2

2 C−2
3 C−1

21 C−1
32 C−1

13 )= uC .

Since the C , C j , Ck j are members of the fixed finite set C, their absolute norms are
bounded from below and above by positive constants depending only on K . With
this and Lemma 3.1, we obtain∑

y∈R(uC B)
yv∈av

1= 9q

4·6!

(
2r (2π)s
√
|1K |

)9

R7
K

B
R1
(log B)6+ O

( B
R2
(log B)5

)
,

whenever B ≥ e/uC . Otherwise, the error term dominates the main term. Let

ω :=
∑

(de)e∈E ′
{0}6=deEOK

∏
e∈E ′

µ(de)R−1
1 , ρ :=

∑
(de)e∈E ′
{0}6=deEOK

∏
e∈E ′
|µ(de)|R−1

2 . (3-4)

We will see in Lemma 3.2 that these sums converge under our assumption that
d ≥ 2. Since the sum defining ρ converges, (3-1) and (3-2) yield

|MC ∩R(uC B)| =
9q

4 · 6!

(
2r (2π)s
√
|1K |

)9

R7
KωB(log B)6+ O(B(log B)5).

Computation of the constant. We notice that the above expression for

|MC ∩R(uC B)|

does not depend on C ∈ C7. Therefore, Proposition 2.2 implies

N (B)= 9q

4·6!

(
2r (2π)s
√
|1K |

)9(hK RK
ωK

)7
ωB(log B)6+ O(B(log B)5).

Theorem 1 is an immediate consequence of the following lemma.

Lemma 3.2. Let ω, ρ be as in (3-4), with R1, R2 as in (3-3). If d ≥ 2 then both
sums converge, and

ω =
∏
p

(
1− 1

Np

)7(
1+ 7

Np
+

1
Np2

)
, (3-5)

where the product runs over all nonzero prime ideals p of OK .
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Proof. The proof is a straightforward generalization of the one in [Derenthal
and Janda 2013, Section 5]. An obvious modification of the argument given
there shows that the Euler factor of ρ corresponding to a prime ideal p of OK is
1+O(Np−(6d−5)/(3d)), so the sum defining ρ is convergent whenever d ≥ 2. Since
ω ≤ ρ, the sum defining ω converges as well.

Let A(x) be the polynomial defined [ibid., Section 5], and Ap the Euler factor of
ω corresponding to p. Then we have Ap = A(Np−1), and (3-5) follows from the
investigation of A(x) [ibid., Section 5]. �

This completes our proof of Theorem 1, up to proving Lemma 3.1.

4. Auxiliary results

Let n, M be positive integers and L > 0. By Lip(n,M, L) we denote the set of
all subsets B of Rn for which there exist M maps 8 : [0, 1]n−1

→ Rn satisfying a
Lipschitz condition

|8(v)−8(w)| ≤ L|v−w|

such that B is covered by the union of the images of the maps 8. Here, | · | is the
usual Euclidean norm. (The subsets in Lip(1,M, L) are just those with at most
M elements.) We will use the following lemma to bound the error terms when
estimating a sum by an integral. Part (i) generalizes an argument used in [Lang
1994, Chapter VI, Theorem 2].

Lemma 4.1. Let D, B⊆ Rn be bounded subsets with B ∈ Lip(n,M, L).

(i) Let 3⊆ Rn be a lattice. Then

|{λ ∈3 | (λ+ D)∩B 6=∅}| �3,D M(L + 1)n−1.

(ii) If D, B are compact then {x ∈ Rn
| (x + D)∩B 6=∅} is measurable and

Vol{x ∈ Rn
| (x + D)∩B 6=∅} �D M(L + 1)n−1.

Proof. For x ∈ Rn , we have (x + D)∩B 6=∅ if and only if x ∈B− D. If B and
D are compact, the set B− D is compact as well. This proves measurability of the
set in (ii).

Let 8 : [0, 1]n−1
→ Rn be one of the M maps with Lipschitz constant L whose

images cover B. We split up [0, 1]n−1 into Ln−1
1 subcubes of side length 1/L1,

where L1 := bLc+ 1. Let C be one of those subcubes. Then 8(C) has diameter
at most

√
n− 1L/L1 ≤

√
n− 1, so it is contained in a closed ball Bz(2

√
n− 1) of

radius 2
√

n− 1 centered at some point z ∈ Rn .
Since D is bounded, it is contained in a closed zero-centered ball B0(RD)

of some radius RD. Every point x ∈ Rn with (x + D) ∩ 8(C) 6= ∅ satisfies
x ∈ Bz(2

√
n− 1)− B0(RD)= Bz(2

√
n− 1+ RD).
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The number of lattice points in such a ball is finite and can be bounded indepen-
dently from z. Therefore,

|{λ ∈3 | (λ+ D)∩8(C) 6=∅}| �3,D 1. (4-1)

Moreover,

Vol{x ∈ Rn
| (x + D)∩8(C) 6=∅} ≤ Vol Bz(2

√
n− 1+ RD)�D 1. (4-2)

Summing (4-1) and (4-2) over all C and 8 yields (i) and (ii). �

Counting lattice points. We will need to count lattice points in certain bounded
subsets of Rn for lattices 3⊆Rn of the form 3=31×· · ·×3r , where each 3i is
a lattice in Rni and n1+· · ·+nr = n. Then we have det(3)= det(31) · · · det(3r ),
and the successive minima (with respect to the unit ball) of3 are just the successive
minima of 31, . . . , 3r . Several authors (for instance [Christensen and Gubler
2008; Masser and Vaaler 2007]) provide counting results where the first successive
minimum is reflected in the error term by making an argument from [Lang 1994,
Chapter VI, Theorem 2] explicit. For our application, we need the error term to
reflect information about all the lattices 3i , which is accomplished with the help of
a theorem by Widmer.

Theorem 4.2 [Widmer 2010, Theorem 5.4]. Let3 be a lattice in Rn with successive
minima (with respect to the unit ball) λ1, . . . , λn . Let B be a bounded set in Rn with
boundary ∂B ∈ Lip(n,M, L). Then B is measurable, and moreover∣∣∣|B∩3| − Vol B

det3

∣∣∣≤ c0(n)M max
0≤k<n

Lk

λ1 · · · λk
.

For k = 0, the expression in the maximum is to be understood as 1. Furthermore,
one can choose c0(n)= n3n2/2.

Let λi1 ≤ · · · ≤ λini be the successive minima of 3i , and assume that the 3i are
ordered in such a way that λ11 ≤ λ21 ≤ · · · ≤ λr1 holds.

Corollary 4.3. Let 3 and 3i be as above, and let B⊆ Rn be a bounded set with
boundary ∂B ∈ Lip(n,M, L). Then B is measurable and∣∣∣|B∩3| − Vol B

det3

∣∣∣≤ c0(n)M
r−1∏
i=1

( L
λi1
+ 1

)ni
( L
λr1
+ 1

)nr−1
.

Proof. We use Theorem 4.2. Let λ1 ≤ · · · ≤ λn be the successive minima of 3, that
is, the λi j in correct order. Clearly,

max
0≤k<n

Lk

λ1 · · · λk
≤

n−1∏
j=1

(
L
λ j
+ 1

)
≤

r∏
i=1

(
L
λi1
+ 1

)ni
/(

L
λi01
+ 1

)
,
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where i0 is chosen such that λi0ni0
= λn . The last expression is at most

r−1∏
i=1

(
L
λi1
+ 1

)ni
(

L
λr1
+ 1

)nr−1

. �

Lemma 4.4. Let 3 and 3i be as above, and let B ⊆ Rn be contained in a zero-
centered ball of radius R. Assume, moreover, that ∂B ∈ Lip(n,M, L), and that the
following property holds for all x ∈B:

If we write x = (x1, . . . , xr ) with xi ∈ Rni then xi 6= 0 for all i . (4-3)

Then B is measurable and, for all T ≥ 0, we have∣∣∣∣|T B∩3| −
T n Vol B

det3

∣∣∣∣�n,M,R,L

r−1∏
i=1

(
T
λi1

)ni
(

T
λr1

)nr−1

.

Proof. By Theorem 4.2, B is measurable. We start with the case where T R < λr1.
Suppose that a = (a1, . . . , ar ) ∈ T B ∩ 3. Then ar 6= 0 by (4-3). Therefore,
|a| ≥ |ar | ≥ λr1 > T R, so a /∈ T B, a contradiction. Hence, |T B∩3| = 0. Denote
by V1 the volume of a ball of radius 1 in Rn . Then Vol B≤ RnV1. We denote the
successive minima of 3 again by λ1, . . . , λn . By Minkowski’s second theorem
we have

T n Vol B
det3

≤
V12n(RT )n

λ1 · · · λnV1
≤ 2n Rn−1

r−1∏
i=1

(
T
λi1

)ni
(

T
λr1

)nr−1

.

Now assume T R≥λr1. Clearly, Vol(T B)=T n Vol B and ∂(T B)∈Lip(n,M, T L).
To finish the proof, we use Corollary 4.3 and observe that

r−1∏
i=1

(
T L
λi1
+ 1

)ni
(

T L
λr1
+ 1

)nr−1

≤

r−1∏
i=1

(
T (L+R)
λi1

)ni
(

T (L+R)
λr1

)nr−1

= (L + R)n−1
r−1∏
i=1

(
T
λi1

)ni
(

T
λr1

)nr−1

. �

The basic sets. Here, we describe the sets B to which Lemma 4.4 will be applied.
These sets were introduced in [Schanuel 1979] and, in a more general context, in
[Masser and Vaaler 2007]. Our notation is similar to that of the latter. When talking
about lattices, volumes, etc., we identify C with R2.

Let 6 be the hyperplane in Rr+s where x1+ · · · + xr+s = 0. It is well known
that the map l : K×→ Rr+s defined by l(α)= (d1 log |α(1)|, . . . , dr+s log |α(r+s)

|)

induces a group homomorphism of O×K onto a lattice in 6, with kernel µK . In
particular, l induces a group isomorphism from F to l(O×K ). Let F be a fundamental
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parallelotope for this lattice, and let δ := (d1, . . . , dr+s) ∈ Rr+s . We define the
vector sums

F(∞) := F +Rδ and F(T ) := F + (−∞, log T ] δ for T > 0.

Then F(∞) is a system of representatives for the orbits of the additive action of
l(F)= l(O×K ) on Rr+s . Let Sn

F (T ) be the set of all

(z1,1, . . . , z1,n, . . . , zr+s,1, . . . , zr+s,n) ∈ (R
n
\ {0})r × (Cn

\ {0})s

such that (
di log max

1≤ j≤n
{|zi, j |}

)r+s
i=1 ∈ F(T ).

Since F ⊆6 and d1+ · · ·+ dr+s = d , this is equivalent to

(di log max
1≤ j≤n

{|zi, j |})
r+s
i=1 ∈ F(∞) and

r+s∏
i=1

max
1≤ j≤n

{|zi, j |}
di ≤ T d .

The set Sn
F (∞) is defined similarly. Here are some basic properties of Sn

F (T ):

(i) Sn
F (T )= T Sn

F (1) is homogeneously expanding.

(ii) Sn
F (1) is bounded.

(iii) ∂Sn
F (1) ∈ Lip(nd,Mn, Ln) for some Mn , Ln .

(iv) Sn
F (1) is measurable and Vol Sn

F (1)= nq2nrπns RK .

Properties (i), (ii) follow directly from the definition, and (iii), (iv) are immediate
consequences of Lemmas 3 and 4 of [Masser and Vaaler 2007]. Strictly speaking,
the case n = 1 is not covered in that paper, but the proofs remain correct without
change. We need a slightly modified version: Define

Sn∗
F (T ) := Sn

F (T )∩ ((R
×)nr
× (C×)ns). (4-4)

Then (i)–(iv) hold as well for Sn∗
F (T ). This is clear for (i), (ii), (iv). For (iii), let

X := (Rnr
× Cns) \ ((R×)nr

× (C×)ns). Then ∂Sn∗
F (1) ⊆ ∂Sn

F (1) ∪ (S
n
F (1) ∩ X).

Since Sn
F (1) is bounded and X is a union of finitely many proper subspaces, we

have (Sn
F (1)∩ X) ∈ Lip(nd,M ′n, L ′n), for suitably chosen M ′n , L ′n , so

∂Sn∗
F (1) ∈ Lip(nd,Mn +M ′n,max{Ln, L ′n}).

5. Proof of Lemma 3.1

Whenever we use Vinogradov’s� notation, the implicit constant may depend on K .
Let us start by summing over y1, y2, y3, for fixed y jk , yk j . Write

V ′ := V \ {1, 2, 3} = {12, 21, 23, 32, 31, 13}.
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For any choice of yv , v ∈ V ′, we define ξ j := y jk y jl y2
k j y2

l j . The height condition in
(2-17) implies that

|N (y j )
3 N (ξ j )| =

r+s∏
i=1

|σi (y3
j ξ j )|

di ≤ B.

For y j ∈ a j , we obtain |N (ξ j )| ≤ B|N (y j )|
−3
≤ BNa−3

j . By our choice of R in
Lemma 2.4, we can write the sum in Lemma 3.1 as∑

y∈R(B)
yv∈av

1=
∑

(yv)v∈V ′∈R2
yv∈av

∀ j :|N (ξ j )|≤BNa−3
j

∑
(y1,y2,y3)∈R1

y j∈a j∏r+s
i=1 max

j
{|σi (y3

j ξ j )|}
di≤B

1. (5-1)

The first summation. Here, we handle the inner sum in (5-1). The necessary tool
is provided in Lemma 5.2.

Lemma 5.1. Let a be a fractional ideal of K , and let τ be the linear automorphism
of Rr

×Cs (regarded as Rd) given by τ(z1, . . . , zr+s)= (t1z1, . . . , tr+szr+s), with
t1, . . . , tr+s > 0. Let σ : K → Rr

×Cs be the standard embedding. Then τ ◦ σ(a)
is a lattice in Rr

×Cs of determinant

det(τ ◦ σ(a))= td1
1 · · · t

dr+s
r+s · 2

−s
·N(a j ) ·

√
|1K |

and first successive minimum λ≥ (td1
1 · · · t

dr+s
r+s ·Na)1/d .

Proof. For d = 1, the lemma is trivial, so we assume d ≥ 2. Classically, σ(a) is a
lattice in Rr

×Cs of determinant 2−sN(a j )
√
|1K |. Since τ is a linear automorphism

of determinant td1
1 · · · t

dr+s
r+s , it follows immediately that τ ◦σ(a) is a lattice with the

correct determinant.
For λ, we slightly generalize the argument in [Masser and Vaaler 2007, Lemma

5] (see also [Widmer 2010, Lemma 9.7]). There is an α ∈ a with λ = |τ ◦ σ(α)|.
By the inequality of weighted arithmetic and geometric means, we have

λ2
=

r+s∑
i=1

|tiα(i)|2 ≥ 1
2

r+s∑
i=1

di |tiα(i)|2 ≥
d
2

( r+s∏
i=1

|tiα(i)|di

)2
d
≥
(
td1
1 · · · t

dr+s
r+s |N (α)|

) 2
d .

The lemma follows upon noticing that |N (α)| ≥Na. �

Lemma 5.2. Given constants Ci j > 0, for i ∈ {1, . . . , r + s} and j ∈ {1, 2, 3}, let

C j := Cd1
1 j · · ·C

dr+s
r+s, j .

Let a1, a2, a3 6= {0} be fractional ideals of K , and R1 a system of representatives
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for the orbits of (K×)3 under the action of F by scalar multiplication. Define

M1(T ) := (a1× a2× a3)∩

{
(y1, y2, y3) ∈R1

∣∣∣∣ r+s∏
i=1

max
1≤ j≤3

{Ci j |y
(i)
j |}

di ≤ T d
}
.

Then M1(T ) is finite and

|M1(T )| =
3q23r (2π)3s RK

(
√
|1k |)3C1C2C3Na1Na2Na3

T 3d
+ O

(
T 3d−1 max j {C jNa j }

1/d

C1C2C3Na1Na2Na3

)
for all T > 0. The implicit O-constant depends only on K .

Proof. We notice that |M1(T )| does not depend on the choice of R1, since both
a1× a2× a3 and the height condition are invariant under scalar multiplication of
(y1, y2, y3) by units. Hence, it is enough to prove the lemma with a specific choice
of R1, which we construct below.

Let σ : K 3
→ R3r

×C3s be the embedding given by σ( y) = (σi ( y))r+s
i=1 . For

i ∈ {1, . . . , r+ s}, let φi be the linear automorphism of R3 (if i ≤ r ) or C3 (if i > r )
given by φi (z1, z2, z3)= (Ci1z1,Ci2z2,Ci3z3), and let φ : R3r

×C3s
→ R3r

×C3s

be the automorphism obtained by applying the φi componentwise.
With S3∗

F (T ) as in (4-4), we define R1 as the set of all y ∈ (K×)3 such that
φ ◦σ( y) ∈ S3∗

F (∞). Then R1 is a system of representatives for the orbits of (K×)3

under the action of F by scalar multiplication. Indeed, for any y ∈ (K×)3 and
ζ ∈ F, we have

(di log max
1≤ j≤3

{|Ci jσi (ζ y j )|})
r+s
i=1 = (di log max

1≤ j≤3
{|Ci jσi (y j )|})

r+s
i=1 + l(ζ ),

and F(∞) is a system of representatives for the orbits of the additive action of l(F)
on Rr+s .

Let 3 := φ ◦σ(a1×a2×a3). Then 3 is a lattice in R3r
×C3s , and φ ◦σ induces

a one-to-one correspondence between M1(T ) and 3∩ S3∗
F (T ). Therefore,

|M1(T )| = |3∩ S3∗
F (T )|. (5-2)

Since S3∗
F (T ) is bounded, M1(T ) is finite. To simplify the notation, we change the

order of coordinates by

(z11, z12, z13, . . . , zr+s,1, zr+s,2, zr+s,3) 7→ (z11, . . . , zr+s,1, . . . , z13, . . . , zr+s,3).

This way, R3r
×C3s becomes (Rr

×Cs)3, and 3 becomes

3= τ1 ◦ σ(a1)× τ2 ◦ σ(a2)× τ3 ◦ σ(a3),

where σ : K →Rr
×Cs is the standard embedding given by σ(y)= (σi (y))ri=1 and

τ j (z1, . . . , zr+s) := (C1 j z1, . . . ,Cr+s, j zr+s).



1468 Christopher Frei

Each 3 j := τ j ◦ σ(a j ) is a lattice in Rr
×Cs

= Rd . Let λ j be the first successive
minimum of 3 j . By Lemma 5.1, we have

det3= det31 · det32 · det33 = 2−3s(
√
|1K |)

3C1C2C3Na1Na2Na3

and λ j ≥ (C jNa j )
1/d . The lemma now follows from (5-2), Lemma 4.4 and the

properties of the basic sets discussed on pages 1464–1465. �

The inner sum in (5-1) is exactly |M1(T )| in Lemma 5.2, with

Ci j := |σi (ξ j )|
1/3, C j := |N (ξ j )|

1/3 and T := B1/(3d).

Observe that C1C2C3 = |N (ξ1ξ2ξ3)|
1/3
=
∏
v∈V ′ |N (yv)|. We define

M(B, (av)v) :=
∑

(yv)v∈V ′∈R2
yv∈av

∀ j :|N (ξ j )|≤BNa−3
j

1∏
v∈V ′ |N (yv)|

, (5-3)

R(B, (av)v) :=
∑

(yv)v∈V ′∈R2
yv∈av

∀ j :|N (ξ j )|≤BNa−3
j

max j {|N (ξ j )|}
1/(3d)∏

v∈V ′ |N (yv)|
. (5-4)

Then (5-1) and Lemma 5.2 imply∑
y∈R(B)
yv∈av

1=
3q23r (2π)3s RK B

(
√
|1K |)3Na1Na2Na3

M(B, (av)v)

+ O
(

max j {Na j }
1/d

Na1Na2Na3
B1−1/(3d)R(B, (av)v)

)
. (5-5)

Recall that the Nav are bounded from below by a positive constant c depending
only on K . This implies, for example,

N(a jka jla
2
k ja

2
l j )

1/(3d)
�

∏
v∈V ′

Na2/(3d)
v , (5-6)

N(a3
ja jka jla

2
k ja

2
l j )
−1
≤ c2, (5-7)

for some constant c2 ≥ 1 depending only on K .

The error term. With R2 as in Lemma 2.5, the term R(B, (av)v) has the form

R(B, (av)v)=
∑
ρ∈RF

∑
∀v 6=12 : yv∈R∩av

y12∈ρR∩a12

∀ j :|N (ξ j )|≤BNa−3
j

max j {|N (ξ j )|}
1/(3d)∏

v∈V ′ |N (yv)|
.
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Both R and ρR are systems of representatives for K×/F, so they contain exactly
ωK generators for every nonzero principal fractional ideal of K . Let Hv be the
principal fractional ideal Hv = yvOK . The norm condition and the summand in
the inner sum depend only on (Hv)v∈V ′ . Therefore, the sum does not depend on ρ.
Since |RF| = 3q

� 1, we obtain

R(B, (av)v)�
∑

{0}6=Hv∈PK , v∈V ′
Hv⊆av

∀ j :N(H jk H jl H2
k j H2

l j )≤BNa−3
j

max j {N(H jk H jl H 2
k j H 2

l j )}
1/(3d)∏

v∈V ′ N(Hv)
.

We replace Hv by Hva−1
v EOK and use (5-6), (5-7) to bound this sum by

�
1∏

v∈V ′
N(av)1−2/(3d)

∑
{0}6=HvEOK , v∈V ′

Hv∈[av]−1

∀ j :N(H jk H jl H2
k j H2

l j )≤c2 B

max j {N(H jk H jl H 2
k j H 2

l j )}
1/(3d)∏

v∈V ′ N(Hv)
.

Let us denote the above sum by R1(B, (av)v). What follows is a rather straight-
forward generalization of arguments used by Heath-Brown and Moroz [1999] and
Derenthal and Janda [2013]. By symmetry, we may assume that the maximum in
the summand is taken for j = 1. This allows us to bound R1(B, (av)v) by

�

∑
{0}6=HvEOK , v∈V ′

∀ j :N(H jk H jl H2
k j H2

l j )≤c2 B

1
N(H12 H13)1−1/(3d)N(H21 H31)1−2/(3d)N(H23 H32)

�

∑
{0}6=Hi jEOK , i 6=1

NHi j≤c2 B

1
N(H21 H31)1−2/(3d)N(H23 H32)

∑
{0}6=UEOK
NU≤u

d(U )
NU 1−1/(3d) ,

where u := c2 BN(H21 H31)
−2 and d is the divisor function for nonzero ideals.

Lemma 5.3. For T ≥ 1, we have∑
{0}6=aEOK
Na≤T

Naα �

{
T α+1 if − 1< α ≤ 0,
max{1, log T } if α =−1.

Proof. This is a straightforward generalization of [Derenthal and Janda 2013,
Lemma 4]. The proof uses Abel’s summation formula and the well known fact that

|{{0} 6= aEOK |Na≤ T }| � T . �
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In the following computation, the sums run over nonzero ideals of OK . Using
Lemma 5.3, we obtain∑

NU≤u

d(U )
NU 1−1/(3d) =

∑
NU≤u

∑
V |U

NU−1+1/(3d)

=

∑
NV≤u

NV−1+1/(3d)
∑

NU≤u/NV

NU−1+1/(3d)

�

∑
NV≤c2 B

NV−1+1/(3d)(u/NV )1/(3d)
� u1/(3d) log B.

Therefore,

R1(B, (av)v)� B1/(3d) log B
∑

{0}6=Hi jEOK ,i 6=1
NHi j≤c2 B

1
N(H21 H31 H23 H32)

� B1/(3d)(log B)5.

Having estimated R1(B, (av)v) and thus R(B, (av)v), we obtain from (5-5):∑
y∈R(B)
yv∈av

1=
3q23r (2π)3s RK B

(
√
|1K |)3Na1Na2Na3

M(B, (av)v)

+ O

(
max j {Na j }

1/d∏
j Na j

∏
i 6= j Na

1−2/(3d)
i j

B(log B)5
)
. (5-8)

The main term. Just as before, we have

M(B, (av)v)=
∑
ρ∈RF

∑
∀v 6=12 : yv∈R∩av

y12∈ρR∩a12

∀ j :|N (ξ j )|≤BNa−3
j

1∏
v∈V ′ |N (yv)|

.

For all v ∈ V ′, let bv ∈ C with [bv] = [av], and tv ∈ K× with tvav = bv . Moreover,
we define b j :=N(a3

ja jka jla
2
k ja

2
l j )
−1N(b jkb jlb

2
k jb

2
l j ). Then (5-7) implies that

b j ≤ c3 for all j ∈ {1, 2, 3}, (5-9)

with a constant c3 ≥ 1 depending only on K . We replace yv by tv yv and obtain

M(B, (av)v)=
( ∏
v∈V ′

Nbv
Nav

) ∑
ρ∈RF

∑
∀v 6=12:yv∈tvR∩bv

y12∈tvρR∩b12
∀ j :|N (ξ j )|≤b j B

1∏
v∈V ′ |N (yv)|

.
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Again, the inner sum does not depend on the sets of representatives tvR, tvρR
for K×/F. Thus,

M(B, (av)v)= 3q
(∏
v∈V ′

Nbv
Nav

) ∑
yv∈R∩bv,v∈V ′
∀ j :|N (ξ j )|≤b j B

1∏
v∈V ′ |N (yv)|

, (5-10)

where R is any system of representatives for K×/F. Let σ : K → Rr
×Cs be the

standard embedding, and let S1
F (T ) be defined as on page 1465. We choose R to

be the set of all y ∈ K× with σ(y) ∈ S1
F (∞). This is indeed a set of representatives

for K×/F: For any y ∈ K×, ζ ∈ F, we have

(di log |σi (ζ y)|)r+s
i=1 = (di log |σi (y)|)r+s

i=1 + l(ζ ),

and F(∞) is a system of representatives for the orbits of the additive action of l(F)
on Rr+s . We will first consider the sum

M1(B, (bv)v) :=
∑

yv∈R∩bv,v∈V ′
∀ j :|N (ξ j )|≤B

1∏
v∈V ′ |N (yv)|

.

For any z ∈ Rr
×Cs , let N (z) := |z1|

d1 · · · |zr+s |
dr+s . We define M(B) as the set of

all (zv)v∈V ′ ∈ (R
r
×Cs)6 such that

for all v ∈ V ′, we have zv ∈ S1
F (∞) and N (zv)≥ 1, and

for all j, we have N (z jk)N (z jl)N (zk j )
2 N (zl j )

2
≤ B.

Then M(B) is bounded for all B. Let 3 be the lattice in (Rr
×Cs)6 defined by

3 :=
∏
v∈V ′

σ(bv).

By the componentwise extension of σ to K 6, we obtain

M1(B, (bv)v)=
∑

(zv)v∈3∩M(B)

1∏
v∈V ′ N (zv)

. (5-11)

We identify C with R2 and estimate this sum by an integral. Let

I (B) :=
( 2s
√
|1K |

)6 1∏
v∈V ′ Nbv

∫
M(B)

∏
v∈V ′

d zv
N (zv)

.

Lemma 5.4. We have∑
(zv)v∈3∩M(B)

1∏
v∈V ′ N (zv)

= I (B)+ O((log B)5)

for B ≥ e. The implicit O-constant depends on K .
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Proof. This is a generalization of [Derenthal and Janda 2013, Lemma 5]. Let
us fix some notation. For v ∈ V ′, let Fv be a fundamental parallelotope for the
lattice σ(bv) ⊆ Rr

× Cs
= Rd , and let Rv be the minimal d-dimensional inter-

val containing Fv. We denote the side lengths of Rv by lv,1, . . . , lv,d . For any
z = (z1, . . . , zd) ∈ Rd satisfying

|zi | ≥ 1+ lv,i for all i ∈ {1, . . . , d}, (5-12)

let Rv(z) be the (unique) translate of Rv such that z is the corner of Rv(z) at utmost
distance from the origin, and let Fv(z) be the (unique) translate of Fv contained in
Rv(z). Similarly, for any z with

|zi | ≥ 1 for all i ∈ {1, . . . , d}, (5-13)

let R′v(z) be the (unique) translate of Rv such that z is the corner of R′v(z) closest
to the origin, and let F ′v(z) be the (unique) translate of Fv contained in R′v(z).
Consistently with the above definition of N (z) for z ∈ Rr

×Cs , we let

N (z) := |z1 · · · zr (z2
r+1+ z2

r+2) · · · (z
2
d−1+ z2

d)|.

Since N (z)≥ N ( y) for all y ∈ Fv(z), we have

1
N (z) ≤

1
Vol Fv(z)

∫
Fv(z)

d y
N ( y) =

2s
√
|1K |Nbv

∫
Fv(z)

d y
N ( y) . (5-14)

Similarly,

1
N (z) ≥

1
Vol F ′v(z)

∫
F ′v(z)

d y
N ( y) =

2s
√
|1K |Nbv

∫
F ′v(z)

d y
N ( y) . (5-15)

Clearly, if z 6= z′ ∈ σ(bv) with (5-12) then Fv(z)∩Fv(z′)=∅. Let us first prove that

∑
(zv)v∈3∩M(B)

1∏
v∈V ′ N (zv)

≤ I (B)+ O((log B)5). (5-16)

To this end, we define

E(B) := {(zv)v ∈ M(B) | all zv satisfy (5-12) and Fv(zv)⊆ S1
F (∞)},

and G(B) :=M(B)\E(B). Keep in mind that E(B) and G(B) depend on (bv)v∈V ′ .
For any (zv)v ∈3∩ E(B), we have

∏
v Fv(zv)⊆ M(B). Therefore,∑

(zv)v∈3∩E(B)

1∏
v∈V ′ N (zv)

≤

∑
(zv)v∈3∩E(B)

∏
v∈V ′

2s
√
|1K |Nbv

∫
Fv(zv)

d y
N ( y)

≤

(
2s
√
|1K |

)6 1∏
v∈V ′ Nbv

∑
(zv)v∈3∩E(B)

∏
v∈V ′

∫
Fv(zv)

d zv
N (zv)

≤ I (B).
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We need to prove that ∑
(zv)v∈3∩G(B)

1∏
v∈V ′ N (zv)

= O((log B)5). (5-17)

For every (zv)v ∈3∩G(B), there is at least one w ∈ V ′ such that either

zw does not satisfy (5-12) (5-18)

or

zw satisfies (5-12) and Fw(zw) 6⊆ S1
F (∞). (5-19)

Therefore, we have∑
(zv)v∈3∩G(B)

1∏
v∈V ′ N (zv)

≤

∑
w∈V ′

∑
(zv)v∈3∩S1

F (∞)
6

N (zv)≤B
(5-18) or (5-19)

1∏
v∈V ′ N (zv)

=

∑
w∈V ′

( ∏
v 6=w

∑
z∈σ(bv)∩S1

F (∞)

N (z)≤B

1
N (z)

) ∑
z∈σ(bw)∩S1

F (∞)

N (z)≤B
(5-18) or (5-19) for z

1
N (z) . (5-20)

Now ∑
z∈σ(bv)∩S1

F (∞)

N (z)≤B

1
N (z) = ωK

∑
{0}6=H∈PK

H⊆bv
NH≤B

1
NH
≤

∑
{0}6=HEOK
NH≤B

1
NH
� log B, (5-21)

by Lemma 5.3. Moreover, we write

∑
z∈σ(bw)∩S1

F (∞)

N (z)≤B
(5-18) or (5-19) for z

1
N (z) =

B∑
n=1

an ·
1
n
, (5-22)

with an :=
∣∣{z ∈ σ(bw) ∩ S1

F (∞) | N (z) = n, (5-18) or (5-19) holds for z}
∣∣. We

will apply the Abel sum formula, so we need to understand

A(T ) :=
∑
n≤T

an =
∣∣{z ∈ σ(bw)∩ S1

F (T
1/d) | (5-18) or (5-19) holds for z}

∣∣.
Let

H := {z ∈ Rd
| z1 · · · zd = 0}, (5-23)
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and let Dw be the d-dimensional interval

Dw := [−(lw,1+ 1), lw,1+ 1]× · · · × [−(lw,d + 1), lw,d + 1] ⊆ Rd . (5-24)

Then any z counted by A(T ) satisfies (z + Dw) ∩ H 6= ∅ (if (5-18) holds) or
z + Dw 6⊆ S1

F (T
1/d) (if (5-19) holds). Therefore, any such z is contained in

A1(T )∪ A2(T ), where

A1(T ) : = {z ∈ σ(bw) | (z+ Dw)∩ ∂S1
F (T

1/d) 6=∅}

⊇ {z ∈ σ(bw)∩ S1
F (T

1/d) | (z+ Dw) 6⊆ S1
F (T

1/d)},

A2(T ) : = {z ∈ σ(bw) | (z+ Dw)∩ (S1
F (T

1/d)∩ H) 6=∅}

⊇ {z ∈ σ(bw)∩ S1
F (T

1/d) | (z+ Dw)⊆ S1
F (T

1/d), (zw + Dw)∩ H 6=∅}.

Now ∂S1
F (T

1/d) = T 1/d∂S1
F (1) ∈ Lip(d,M1, T 1/d L1). We recall that bv ∈ C, so

Lemma 4.1(i) implies that

|A1(T )| � M1(L1T 1/d
+ 1)d−1

� T (d−1)/d for all T ≥ 1.

Moreover, S1
F (T

1/d)∩H=T 1/d(S1
F (1)∩H), and clearly S1

F (1)∩H∈Lip(d, M̃1, L̃1)

for some M̃1 and L̃1. By Lemma 4.1(i),

|A2(T )| � M̃1(L̃1T 1/d
+ 1)d−1

� T (d−1)/d for all T ≥ 1.

Therefore, A(T )� T (d−1)/d for T ≥ 1. The Abel sum formula yields

B∑
n=1

an ·
1
n
= A(B)/B+

∫ B

t=1
A(t)/t2 dt � B−1/d

+

∫ B

t=1
t−(1+1/d)dt � 1.

With (5-20), (5-21), (5-22), we see that (5-17) holds, which finishes the proof of
(5-16). Let us prove the other inequality, that is

I (B)≤
∑

(zv)v∈3∩M(B)

1∏
v∈V ′ N (zv)

+ O((log B)5). (5-25)

For every v ∈ V ′ and every z ∈Rd satisfying (5-12), there is a unique λv(z)∈ σ(bv)
with (5-13) such that z ∈ F ′v(λv(z)). In a similar way as above, we define

E ′(B) := {(zv)v ∈ M(B) | all zv satisfy (5-12) and λv(zv) ∈ S1
F (∞)},

and G ′(B) := M(B) \ E ′(B). Both E ′(B) and G ′(B) are clearly measurable. For
any (zv)v in E ′(B), the point (λv(zv))v is the unique element of 3∩M(B) with
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zv ∈ F ′v(λv(zv)) for all v ∈ V ′. With this and (5-15), we obtain

26s

(
√
|1K |)6

∏
v∈V ′

Nbv

∫
E ′(B)

∏
v∈V ′

d zv
N (zv)

≤

∑
(λv)v∈
3∩M(B)

∏
v∈V ′

2s
√
|1K |Nbv

∫
F ′v(λv)

d z
N (z)

≤

∑
(λv)v∈3∩M(B)

1∏
v∈V ′ N (λv)

. (5-26)

We need to prove that(
2s
√
|1K |

)6 1∏
v∈V ′ Nbv

∫
G ′(B)

∏
v∈V ′

d zv
N (zv)

= O((log B)5). (5-27)

For every (zv)v ∈ G ′(B), there is some w ∈ V ′ such that either

zw does not satisfy (5-12) (5-28)

or

zw satisfies (5-12) and λw(zw) /∈ S1
F (∞). (5-29)

Similarly to (5-20), we obtain∫
G ′(B)

∏
v∈V ′

d zv
N (zv)

≤

∑
w∈V ′

(∏
v 6=w

∫
z∈S1

F (∞)

1≤N (z)≤B

d z
N (z)

) ∫
z∈S1

F (∞)

1≤N (z)≤B
(5-28) or (5-29) for z

d z
N (z) . (5-30)

We denote the Lebesgue measure on R, Rd by m1, md . The restriction of N to
S1

F (∞) defines a measurable function N1 : S1
F (∞)→ R. Since

(md ◦ N−1
1 )((a, b])= Vol S1

F (b
1/d)−Vol S1

F (a
1/d)= (b− a)Vol S1

F (1)

for all 0< a ≤ b ∈ R, we obtain md ◦ N−1
1 = Vol S1

F (1)m1 on R>0. Therefore,∫
z∈S1

F (∞)

1≤N (z)≤B

d z
N (z) =

∫
N−1

1 ([1,B])

dmd
N1(z)

=

∫
[1,B]

1
t

d(md ◦N−1
1 )=Vol S1

F (1) log B. (5-31)

Let A(T ) := {z ∈ S1
F (∞) | 1 ≤ N (z) ≤ T , (5-28) or (5-29) holds for z}. Then

A(T ) is measurable for all T and the restriction of N to A(B) defines a mea-
surable function N2 : A(B)→ [1, B]. For any E ⊆ [1, B] with m1(E) = 0, we
have N−1

2 (E) ⊆ N−1
1 (E) and (md ◦ N−1

1 )(E) = 0. Thus, md ◦ N−1
2 is absolutely

continuous. With the distribution function F(T ) := (md ◦ N−1
2 )([1, T ]), we obtain∫

A(B)

d z
N (z) =

∫
N−1

2 ([1,B])

dmd
N2(z)

=

∫
[1,B]

1
t

d(md ◦ N−1
2 )=

∫ B

1

1
t

d F(t). (5-32)
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Integration by parts for the Stieltjes integral on the right-hand side suggests that we
need to find a suitable bound for F(T ). Clearly,

F(T )= Vol(N−1
2 ([1, T ]))= Vol A(T ).

With H , Dw as in (5-23), (5-24), let

A1(T ) := {z ∈ Rd
| (z+ Dw)∩ ∂S1

F (T
1/d) 6=∅},

A2(T ) := {z ∈ Rd
| (z+ Dw)∩ (S1

F (T 1/d)∩ H) 6=∅}.

A similar argument to before shows that A(T )⊆ A1(T )∪ A2(T ). We already know
that ∂S1

F (T
1/d) ∈ Lip(d,M1, T 1/d L1) and S1

F (T
1/d) ∩ H ∈ Lip(n, M̃1, T 1/d L̃1).

The same holds of course for the closure. By Lemma 4.1(ii) we obtain

Vol A1(T )� T (d−1)/d , Vol A2(T )� T (d−1)/d for T ≥ 1,

and thus F(T )� T (d−1)/d for T ≥ 1. Integration by parts gives∫ B

1

1
t

d F(t)= F(B)/B− F(1)−
∫ B

1
F d 1

t
� B−1/d

+

∫ B

1
t−(1+1/d) dt � 1.

With (5-30), (5-31) and (5-32), we obtain (5-27). Together with (5-26) this gives
(5-25). �

Lemma 5.5. We have

I (B)= 1
4·6!

(
2r (2π)s RK
√
|1K |

)6 1∏
v∈V ′ Nbv

(log B)6.

Proof. Let mn denote the Lebesgue measure on Rn . We define the measur-
able function f : (S1

F (∞))
6
→ R6 by f ((zv)v∈V ′) = (N (zv))v∈V ′ . For any cell

E :=
∏
v∈V ′(av, bv], with 0< av ≤ bv, we have

(m6d ◦ f −1)(E)=
∏
v∈V ′

(Vol S1
F (b

1/d
v )−Vol S1

F (a
1/d
v ))= (Vol S1

F (1))
6m6(E).

Thus, m6d ◦ f −1
= (Vol S1

F (1))
6m6 on (R≥0)6. Let

MQ(B) := {(tv)v∈V ′ ∈ R6
| tv ≥ 1 for all v and t jk t jl t2

k j t
2
l j ≤ B for all j}.

Then∫
M(B)

∏
v∈V ′

d zv
N (zv)

=

∫
f −1(MQ(B))

∏
v∈V ′

1
f (z)v

dm6d =

∫
MQ(B)

∏
v∈V ′

1
tv

d(m6d ◦ f −1)

= (Vol S1
F (1))

6
∫

MQ(B)

∏
v∈V ′

1
tv

dm6 =
(Vol S1

F (1))
6

4·6!
(log B)6.

The last integral is computed at the end of [Heath-Brown and Moroz 1999]. �
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We define

C0(K ) :=
1

4·6!

(
2r (2π)s RK
√
|1K |

)6

and C(K ) := 3qC0(K ).

Then (5-11) and the previous two lemmata imply that

M1(B, (bv)v)=
C0(K )∏
v∈V ′ Nbv

(log B)6+ O(log B)5.

Keep in mind that bv ∈ C for all v ∈ V ′. With (5-9), (5-10), we obtain

M(B, (av)v)≤
C(K )∏
v∈V ′ Nav

(log B)6+ O
(

1∏
v∈V ′ Nav

(log B)5
)
.

Let R := max j {Na j }
1/d ∏

v∈V ′ Na
2/(3d)
v . Then R ≥ c4 > 0 for some constant c4

depending only on K . This implies in particular that log R � R. Moreover, we
have 1/(c5 R3d)≤ b j for some constant c5 ≥ 1 depending only on K . Therefore,

M(B, (av)v)≥ 3q
( ∏
v∈V ′

Nbv
Nav

)
M1(B/(c5 R3d), (bv)v).

Whenever B ≥ ec5 R3d , we obtain

M(B, (av)v)≥
C(K )∏
v∈V ′ Nav

log(B/(c5 R3d))6+O
(

1∏
v∈V ′ Nav

log(B/(c5 R3d))5
)

=
C(K )∏
v∈V ′ Nav

(log B)6+ O
(

R∏
v∈V ′ Nav

(log B)5
)
.

This result holds as well if e ≤ B < ec5 R3d , since then the error term dominates
the main term. Therefore,

M(B, (av)v)=
C(K )∏
v∈V ′ Nav

(log B)6+ O
(

R∏
v∈V ′ Nav

(log B)5
)
,

and Lemma 3.1 follows from (5-8).
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On the ample cone of a rational surface
with an anticanonical cycle

Robert Friedman

Let Y be a smooth rational surface, and let D be a cycle of rational curves on Y
that is an anticanonical divisor, i.e., an element of |−KY |. Looijenga studied the
geometry of such surfaces Y in case D has at most five components and identified
a geometrically significant subset R of the divisor classes of square−2 orthogonal
to the components of D. Motivated by recent work of Gross, Hacking, and Keel
on the global Torelli theorem for pairs (Y, D), we attempt to generalize some of
Looijenga’s results in case D has more than five components. In particular, given
an integral isometry f of H 2(Y ) that preserves the classes of the components
of D, we investigate the relationship between the condition that f preserves the
“generic” ample cone of Y and the condition that f preserves the set R.

Introduction

The ample cone of a del Pezzo surface Y (or rather the associated dual polyhedron)
was studied classically by, among others, Gosset, Schoute, Kantor, Coble, Todd,
Coxeter, and Du Val. For a brief historical discussion, one can consult the remarks
in [Coxeter 1973, §11.x]. From this point of view, the lines on Y are the main
object of geometric interest as they are the walls of the ample cone or the vertices
of the dual polyhedron. The corresponding root system (in case K 2

Y ≤ 6) only
manifests itself geometrically by allowing del Pezzo surfaces with rational double
points or, equivalently, smooth surfaces Y with −KY nef and big but not ample.
This is explicitly worked out in [Du Val 1934]. On the other hand, the root system,
or rather its Weyl group, appears for a smooth del Pezzo surface as a group of
symmetries of the ample cone, a fact which (in a somewhat different guise) was
already known to Cartan. Perhaps the culmination of the classical side of the story
is [Du Val 1937], where the blowup of P2 at n ≥ 9 points is also systematically
considered. In modern times, Manin explained the appearance of the Weyl group
by noting that the orthogonal complement to KY in H 2(Y ;Z) is a root lattice 3.
Moreover, given any root of 3, in other words an element β of square −2, there

MSC2010: 14J26.
Keywords: rational surface, anticanonical cycle, exceptional curve, ample cone.
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exists a deformation of Y for which β =±[C], where C is a smooth rational curve
of self-intersection −2. For modern expositions of the theory, see for example the
book of Manin [1986] or the account of Demazure [1980a; 1980b; 1980c; 1980d].

In general, it seems hard to study an arbitrary rational surface Y without imposing
some extra conditions. One very natural condition is that −KY is effective, i.e.,
that −KY = D for an effective divisor D. In case the intersection matrix of D
is negative definite, such pairs (Y, D) arise naturally in the study of minimally
elliptic singularities: the case where D is a smooth elliptic curve corresponds to
the case of simple elliptic singularities, the case where D is a nodal curve or a
cycle of smooth rational curves meeting transversally corresponds to the case of
cusp singularities, and the case where D is reduced but has one component with
a cusp, two components with a tacnode, or three components meeting at a point
corresponds to triangle singularities. From this point of view, the case where D is a
cycle of rational curves is the most plentiful. The systematic study of such surfaces
in case the intersection matrix of D is negative definite dates back to [Looijenga
1981]. However, for various technical reasons, most of the results of that paper
are proved under the assumption that the number of components in the cycle is at
most 5. Some of the main points of Looijenga’s seminal paper are as follows. Let
R denote the set of elements in H 2(Y ;Z) of square −2 that are orthogonal to the
components of D and that are of the form ±[C], where C is a smooth rational curve
disjoint from D, for some deformation of the pair (Y, D). In terms of deformations
of singularities, the set R is related to the possible rational double point singularities
that can arise as deformations of the dual cusp to the cusp singularity corresponding
to D. Looijenga noted that, in general, there exist elements in H 2(Y ;Z) of square
−2 that are orthogonal to the components of D but that do not lie in R. Moreover,
reflections in elements of the set R give symmetries of the “generic” ample cone
(which is the same as the ample cone in case there are no smooth rational curves on
Y disjoint from D). Finally, still under the assumption of at most five components,
any isometry of H 2(Y ;Z) that preserves the positive cone, the classes [Di ], and
the set R preserves the generic ample cone.

This paper, which is an attempt to see how much of [Looijenga 1981] can be
generalized to the case of arbitrarily many components, is motivated by a question
raised by the recent work of Gross, Hacking, and Keel [Gross et al. 2013] on,
among other matters, the global Torelli theorem for pairs (Y, D) where D is an
anticanonical cycle on the rational surface Y . In order to formulate this theorem in
a fairly general way, one would like to characterize the isometries f of H 2(Y,Z),
preserving the positive cone and fixing the classes [Di ], which preserve the ample
cone of Y . It is natural to ask if, at least in the generic case, the condition that
f (R) = R is sufficient. In this paper, we give various criteria on R that insure
that, if an isometry f of H 2(Y ;Z) preserves the positive cone, the classes [Di ],
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and the set R, then f preserves the generic ample cone. Typically, one needs
a hypothesis that says that R is large. For example, one such hypothesis is that
there is a subset of R that spans a negative definite codimension-1 subspace of the
orthogonal complement to the components of D. In theory, at least under various
extra hypotheses, such a result gives a necessary and sufficient condition for an
isometry to preserve the generic ample cone. In practice, however, the determination
of the set R in general is a difficult problem, which seems close in its complexity to
the problem of describing the generic ample cone of Y . Finally, we show that some
assumptions on (Y, D) are necessary by giving examples where R =∅, so that the
condition that an isometry f preserves R is automatic, and of isometries f such
that f preserves the positive cone, the classes [Di ], and (vacuously) the set R but f
does not preserve the generic ample cone. We do not yet have a good understanding
of the relationship between preserving the ample cone and preserving the set R.

An outline of this paper is as follows. The preliminary Section 1 reviews
standard methods for constructing nef classes on algebraic surfaces and applies this
to the study of when the normal surface obtained by contracting a negative definite
anticanonical cycle on a rational surface is projective. In Section 2, we analyze
the ample cone and generic ample cone of a pair (Y, D) and show that the set R
defined by Looijenga is exactly the set of elements β in H 2(Y ;Z) of square −2
that are orthogonal to the components of D such that reflection about β preserves
the generic ample cone. Much of the material of Section 2 overlaps with results
in [Gross et al. 2013], proved there by somewhat different methods. Section 3 is
devoted to giving various sufficient conditions for an isometry f of H 2(Y ;Z) to
preserve the generic ample cone, including the one described above. Section 4 gives
examples of pairs (Y, D) satisfying the sufficient conditions of Section 3 where the
number of components of D and the multiplicity −D2 are arbitrarily large as well
as examples showing that some hypotheses on (Y, D) are necessary.

Notation and conventions. We work over C. If X is a smooth projective surface
with h1(OX )= h2(OX )= 0 and α ∈ H 2(X;Z), we let Lα denote the corresponding
holomorphic line bundle, i.e., c1(Lα)= α. Given a curve C or divisor class G on X ,
we let [C] or [G] denote the corresponding element of H 2(X;Z). Intersection
pairing on curves or divisors, or on elements in the second cohomology of a smooth
surface (viewed as a canonically oriented 4-manifold), is denoted by multiplication.

1. Preliminaries

In this paper, Y denotes a smooth rational surface with −KY = D =
∑r

i=1 Di a
(reduced) cycle of rational curves; i.e., each Di is a smooth rational curve and Di

meets Di±1 transversally, where i is taken mod r except for r = 1, in which case
D1 = D is an irreducible nodal curve. We note, however, that many of the results
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in this paper can be generalized to the case where D ∈ |−KY | is not assumed to be
a cycle. The integer r = r(D) is called the length of D. An orientation of D is an
orientation of the dual graph (with appropriate modifications in case r = 1). We
shall abbreviate the data of the surface Y and the oriented cycle D by (Y, D) and
refer to it as an anticanonical pair. If the intersection matrix (Di · D j ) is negative
definite, we say that (Y, D) is a negative definite anticanonical pair.

Definition 1.1. An irreducible curve E on Y is an exceptional curve if E ∼= P1,
E2
= −1, and E 6= Di for any i . An irreducible curve C on Y is a −2-curve if

C ∼= P1, C2
=−2, and C 6= Di for any i . Let 1Y be the set of all −2-curves on Y ,

and let W(1Y ) be the group of integral isometries of H 2(Y ;R) generated by the
reflections in the classes in the set 1Y .

Definition 1.2. Let3=3(Y, D)⊆ H 2(Y ;Z) be the orthogonal complement of the
lattice spanned by the classes [Di ]. Fixing the identification Pic0 D ∼= Gm defined
by the orientation of the cycle D, we define the period homomorphism ϕY :3→Gm

as follows: if α ∈3 and Lα is the corresponding line bundle, then ϕY (α) ∈ Gm is
the image of the line bundle of multidegree 0 on D defined by Lα|D. Clearly ϕY is
a homomorphism. The period map is the function that associates to the pair (Y, D)
the homomorphism ϕY :3→ Gm .

By [Looijenga 1981; Friedman and Scattone 1986; Friedman 1984], we have:

Theorem 1.3. The period map is surjective. More precisely, given Y as above
and given an arbitrary homomorphism ϕ :3→ Gm , there exists a deformation of
the pair (Y, D) over a smooth connected base, which we can take to be (Gm)

n for
some n, such that the monodromy of the family is trivial and there exists a fiber of
the deformation, say (Y ′, D′), such that ϕY ′ = ϕ under the induced identification of
3(Y ′, D′) with 3. �

For future reference, we recall some standard facts about negative definite curves
on a surface.

Lemma 1.4. Let X be a smooth projective surface, and let G1, . . . ,Gn be irre-
ducible curves on X such that the intersection matrix (Gi ·G j ) is negative definite.
Let F be an effective divisor on X not necessarily reduced or irreducible and such
that, for all i , Gi is not a component of F.

(i) Given ri ∈ R, if (F +
∑

i ri Gi ) ·G j = 0 for all j , then ri ≥ 0 for all i , and,
for every subset I of {1, . . . , n}, if

⋃
i∈I Gi is a connected curve such that

F ·G j 6= 0 for some j ∈ I , then ri > 0 for i ∈ I .

(ii) Given si , ti ∈R, if [F]+
∑

i si [Gi ]=
∑

i ti [Gi ], then F = 0 and si = ti for all i .

The following general result is also well known:
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Proposition 1.5. Let X be a smooth projective surface, and let G1, . . . ,Gn be
irreducible curves on X such that the intersection matrix (Gi · G j ) is negative
definite. (We do not, however, assume that

⋃
i Gi is connected.) Then there exists a

nef and big divisor H on X such that H ·G j = 0 for all j and, if C is an irreducible
curve such that C 6= G j for any j , then H · C > 0. In fact, the set of nef and
big R-divisors that are orthogonal to {G1, . . . ,Gn} is a nonempty open subset
of {G1, . . . ,Gn}

⊥
⊗R.

Proof. Fix an ample divisor H0 on X . Since (Gi · G j ) is negative definite,
there exist ri ∈ Q such that

(∑
i ri Gi

)
· G j = −(H0 · G j ) for every j . Hence,

(H0+
∑

i ri Gi ) ·G j = 0. By Lemma 1.4, ri > 0 for every i . There exists an N > 0
such that Nri ∈ Z for all i . Then H = N (H0 +

∑
i ri Gi ) is an effective divisor

satisfying H ·G j = 0 for all j . If C is an irreducible curve such that C 6= G j for
any j , then H0·C>0 and Gi ·C≥0 for all i . Hence, H ·C>0. In particular, H is nef.
Finally, H is big since H 2

= N H ·(H0+
∑

i ri Gi )= N (H ·H0) > 0 as H0 is ample.
To see the final statement, we apply the above argument to an ample R-divisor x

(i.e., an element in the interior of the ample cone) to see that x+
∑

i ri Gi is a nef and
big R-divisor orthogonal to {G1, . . . ,Gn}. As x+

∑
i ri Gi is simply the orthogonal

projection p of x onto {G1, . . . ,Gn}
⊥
⊗R and p : H 2(X;R)→ {G1, . . . ,Gn}

⊥
⊗R

is an open map, the image of the interior of the ample cone of X is then a nonempty
open subset of {G1, . . . ,Gn}

⊥
⊗R consisting of nef and big R-divisors orthogonal

to {G1, . . . ,Gn}. �

Applying the above construction to X = Y and D1, . . . , Dr , we can find a nef
and big divisor H such that H ·D j = 0 for all j and such that, if C is an irreducible
curve such that C 6= D j for any j , then H ·C > 0.

Proposition 1.6. Let (Y, D) be a negative definite anticanonical pair, and let H
be a nef and big divisor such that H · D j = 0 for all j and such that, if C is an
irreducible curve such that C 6= D j for any j , then H ·C > 0. Suppose in addition
that OY (H)|D = OD , i.e., that ϕY ([H ])= 1. Then the Di are not fixed components
of |H |. Hence, if Y denotes the normal complex surface obtained by contracting
the Di , then H induces an ample divisor H on Y and |3H | defines an embedding
of Y in PN for some N.

Proof. Consider the exact sequence

0→ OY (H − D)→ OY (H)→ OD→ 0.

Looking at the long exact cohomology sequence, as

H 1(Y ;OY (H − D))= H 1(Y ;OY (H)⊗ KY )

is Serre dual to H 1(Y ;OY (−H))= 0, by Ramanujam’s vanishing theorem, there
exists a section of OY (H) that is nowhere vanishing on D, proving the first statement.
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The second follows from the Nakai–Moishezon criterion and the third from general
results on linear series on anticanonical pairs [Friedman 1983]. �

Remark 1.7. By the surjectivity of the period map (Theorem 1.3), for any (Y, D)
a negative definite anticanonical pair and H a nef and big divisor on Y such that
H ·D j = 0 for all j and H ·C > 0 for all curves C 6= Di , there exists a deformation
of the pair (Y, D) such that the divisor corresponding to H has trivial restriction
to D. More generally, one can consider deformations such that ϕY ([H ]) is a torsion
point of Gm . In this case, if Y is the normal surface obtained by contracting D,
then Y is projective. Note that this implies that the set of pairs (Y, D) such that Y
is projective is Zariski dense in the moduli space. However, as the set of torsion
points is not dense in Gm in the classical topology, the set of projective surfaces Y
will not be dense in the classical topology.

2. Roots and nodal classes

Definition 2.1. Let C= C(Y ) be the positive cone of Y , i.e.,

C= {x ∈ H 2(Y ;R) : x2 > 0}.

Then C has two components, and exactly one of them, say C+ = C+(Y ), contains
the classes of ample divisors. We also define

C+D = C+D(Y )= {x ∈ C+ : x · [Di ] ≥ 0 for all i}.

Let A(Y )⊆ C+ ⊆ H 2(Y ;R) be (the closure of) the ample (nef,Kähler) cone of Y
in C+. By definition, A(Y ) is closed in C+ but not in general in H 2(Y ;R).

Definition 2.2. Let α ∈ H 2(Y ;Z), α 6= 0. The oriented wall W α associated to α is
the set {x ∈ C+ : x ·α = 0}, i.e., the intersection of C+ with the orthogonal space
to α together with the preferred half space defined by x ·α≥ 0. If C is a curve on Y ,
we write W C for W [C]. A standard result (see, for example, [Friedman and Morgan
1988, II (1.8)]) shows that, if I is a subset of H 2(Y ;Z) and there exists an N ∈ Z+

such that −N ≤ α2 < 0 for all α ∈ I , then the collection of walls {W α
: α ∈ I } is

locally finite on C+. Finally, we say that W α is a face of A(Y ) if ∂A(Y ) ∩W α

contains a nonempty open subset of W α and x ·α ≥ 0 for all x ∈A(Y ).

Lemma 2.3. A(Y ) is the set of all x ∈ C+ such that x · [Di ] ≥ 0, x · [E] ≥ 0 for all
exceptional curves E , and x ·[C]≥ 0 for all−2-curves C. Moreover, if α is the class
associated to an exceptional or −2-curve, or α = [Di ] for some i such that D2

i < 0,
then W α is a face of A(Y ). If α and β are two such classes, W α

=W β
⇐⇒ α = β.

Proof. For the first claim, it is enough to show that, if G is an irreducible curve on Y
with G2 < 0, then G is either Di for some i , an exceptional curve, or a −2-curve.
This follows immediately from adjunction since, if G 6= Di for any i , then G ·D≥ 0



On the ample cone of a rational surface with an anticanonical cycle 1487

and −2≤ 2pa(G)− 2= G2
−G · D < 0; hence, pa(G)= 0 and either G2

=−2,
G · D = 0, or G2

= G · D =−1. The last two statements follow from the openness
statement in Proposition 1.5 and the fact that no two distinct classes of the types
listed above are multiples of each other. �

As an alternate characterization of the classes in the previous lemma, we have
the following:

Lemma 2.4. Let H be a nef divisor such that H · D > 0.

(i) If α ∈ H 2(Y ;Z) with α2
= α · [KY ] = −1, then α · [H ] ≥ 0 if and only if α

is the class of an effective curve. In particular, the wall W α does not pass
through the interior of A(Y ). (See [Friedman and Morgan 1988, p. 332] for a
more general statement.)

(ii) If β ∈ H 2(Y ;Z) with β2
=−2, β ·[Di ]= 0 for all i , β ·[H ]≥ 0, and ϕY (β)= 1,

then ±β is the class of an effective curve, and β is effective if β · [H ]> 0.

Hence, the ample cone A(Y ) is the set of all x ∈ C+ such that x · [Di ] ≥ 0 and
x ·α ≥ 0 for all classes α and β as described in (i) and (ii) above, where in case (ii)
we assume in addition that β is effective or equivalently that β · [H ]> 0 for some
nef divisor H.

Proof. (i) Clearly, if α is the class of an effective curve, then α · [H ] ≥ 0 since
H is nef. Conversely, assume that α2

= α · [KY ] = −1 and that α · [H ] ≥ 0. By
the Riemann–Roch theorem, χ(Lα)= 1. Hence, either h0(Lα) > 0 or h2(Lα) > 0.
But h2(Lα) = h0(L−1

α ⊗ KY ) and [H ] · (−α − [D]) < 0 by assumption. Thus,
h0(Lα) > 0 and hence α is the class of an effective curve.

(ii) As in (i), H ·(−β−[D]) < 0, and hence, h0(L−1
β ⊗ KY )= 0. Thus, h2(Lβ)= 0.

Suppose that h0(Lβ)= 0. Then, by the Riemann–Roch theorem, χ(Lβ)= 0 and
hence h1(Lβ) = 0. Hence, h1(L−1

β ⊗ KY )= 0. Since ϕY (β) = 1, L±1
β |D = OD.

Thus, there is an exact sequence

0→ L−1
β ⊗OY (−D)→ L−1

β → OD→ 0.

Since H 1(L−1
β ⊗ KY )= H 1(L−1

β ⊗ OY (−D))= 0, the map H 0(L−1
β )→ H 0(OD)

is surjective and hence −β is the class of an effective curve. �

Definition 2.5. Let α ∈ H 2(Y ;Z). Then α is a numerical exceptional curve if
α2
= α · [KY ] = −1. The numerical exceptional curve α is effective if h0(Lα) > 0,

i.e., if α = [G], where G is an effective curve.

A minor variation of the proof of Lemma 2.4 shows the following:

Lemma 2.6. Let H be a nef and big divisor such that H ·G > 0 for all irreducible
curves G not equal to Di for some i , and let α be a numerical exceptional curve.
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(i) Suppose that [H ] · α ≥ 0. Then either [H ] · α > 0 and α is effective or
H · D = [H ] ·α = 0 and α is an integral linear combination of the [Di ].

(ii) If (Y, D) is negative definite and α is an integral linear combination of the
[Di ], then either some component Di is a smooth rational curve of self-
intersection −1 or K 2

Y =−1, α = KY , and hence α is not effective.

(iii) If no component Di is a smooth rational curve of self-intersection −1, then α
is effective if and only if [H ] ·α > 0.

Proof. (i) As in the proof of Lemma 2.4, either α or −α − [D] is the class
of an effective divisor. If −α − [D] is the class of an effective divisor, then
0≤ [H ] · (−α− [D])≤ 0, so [H ] ·α = H · D = 0. In particular, (Y, D) is negative
definite. Moreover, if G is an effective divisor with [G] = −α− [D], then every
component of G is equal to some Di . Hence, [G] and therefore α =−[G] − [D]
are integral linear combinations of the [Di ].

(ii) Suppose that α is an integral linear combination of the [Di ] but that no Di is a
smooth rational curve of self-intersection −1. We shall show that K 2

Y = −1 and
α = KY . First suppose that K 2

Y =−1. Then
⊕

i Z · [Di ] = Z · [KY ]⊕ L , where L ,
the orthogonal complement of [KY ] in

⊕
i Z · [Di ], is even and negative definite.

Thus, α = a[KY ] +β, with either β = 0 or β2
≤−2, and α2

=−a2
+β2. Hence,

if α2
= α · [KY ] = −1, the only possibility is β = 0 and a = 1. In case K 2

Y <−1,
D is reducible, and no Di is a smooth rational curve of self-intersection −1, then
D2

i ≤ −2 for all i and either D2
i ≤ −4 for some i or there exist i 6= j such that

D2
i = D2

j =−3. In this case, it is easy to check that, for all integers ai such that
ai 6= 0 for some i ,

(∑
i ai Di

)2
<−1. This contradicts α2

=−1.

(iii) If [H ] · α > 0, then α is effective by (i). If [H ] · α < 0, then clearly α is not
effective. Suppose that [H ] · α = 0; we must show that, again, α is not effective.
Suppose that α = [G] is effective. By the hypothesis on H , every component of G
is a Di for some i so that α=

∑
i ai [Di ] for some ai ∈Z, ai ≥ 0. Let I ⊆ {1, . . . , r}

be the set of i such that ai > 0. Then H · Di = 0 for all i ∈ I . If I = {1, . . . , r},
then (Y, D) is negative definite and we are done by (ii). Otherwise,

⋃
i∈I Di is a

union of chains of curves whose components Di satisfy D2
i ≤−2. It is then easy

to check that α2 <−1 in this case, a contradiction. Hence, α is not effective. �

Definition 2.7. Let Yt be a generic small deformation of Y , and identify H 2(Yt ;R)

with H 2(Y ;R). Define Agen =Agen(Y ) to be the ample cone A(Yt) of Yt , viewed
as a subset of H 2(Y ;R).

Lemma 2.8. With notation as above, the following are true:

(i) If there do not exist any −2-curves on Y , then A(Y )=Agen. More generally,
Agen is the set of all x ∈C+ such that x · [Di ] ≥ 0 and x ·α ≥ 0 for all effective
numerical exceptional curves. In particular, A(Y )⊆Agen.
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(ii) We have A(Y )= {x ∈Agen : x · [C] ≥ 0 for all −2-curves C}.

Proof. Let Y be a surface with no −2-curves (such surfaces exist and are generic
by the surjectivity of the period map (Theorem 1.3)). Fix a nef divisor H on Y
with H · D > 0. Then A(Y ) is the set of all x ∈ C+ such that x · [Di ] ≥ 0 and
x · [E] ≥ 0 for all exceptional curves E , and this last condition is equivalent to
x · α ≥ 0 for all α ∈ H 2(Y ;Z) such that α2

= α · [KY ] = −1 and α · [H ] ≥ 0 by
Lemma 2.4. Since this condition is independent of the choice of Y , because we can
choose the divisor H to be ample and to vary in a small deformation, the first part
of (i) follows, and the remaining statements are clear. �

In fact, the argument above shows the following:

Lemma 2.9. The set of effective numerical exceptional curves and the set Agen

are locally constant and hence are invariant in a global deformation with trivial
monodromy under the induced identifications. �

Lemma 2.10. If C is a−2-curve on Y , then the wall W C meets the interior of Agen,
and in fact, rC(Agen)=Agen, where rC : H 2(Y ;R)→ H 2(Y ;R) is reflection in the
class [C]. Hence, A(Y ) is a fundamental domain for the action of the group W(1Y )

on Agen, where W(1Y ) is the group generated by the reflections in the classes in
the set 1Y of −2-curves on Y .

Proof. Clearly, if rC(Agen)=Agen, then W C meets the interior of Agen. To see that
rC(Agen)=Agen, assume first more generally that β ∈3 is any class with β2

=−2,
and let rβ be the corresponding reflection. Then rβ permutes the set of α∈ H 2(Y ;Z)
such that α2

=α ·[KY ]=−1 but does not necessarily preserve the condition that α is
effective, i.e., that α ·[H ] ≥ 0 for some nef divisor H on Y with H ·D> 0. However,
for β = [C], there exists by Proposition 1.5 a nef and big divisor H0 such that
H0 ·C = 0 and H ·D> 0. Hence, [H0] is invariant under rC , and so rC permutes the
set of α∈H 2(Y ;Z) such that α2

=α·[KY ]=−1 and α·[H0]≥0. Thus, rC permutes
the set of effective numerical exceptional curves and hence the faces of Agen so that
rC(Agen)=Agen. Since A(Y )⊆Agen is given by Lemma 2.8(ii), the final statement
is then a general result in the theory of reflection groups [Bourbaki 1981, V §3]. �

Remark 2.11. (i) The argument for the first part of Lemma 2.10 essentially boils
down to the following. Let Y be the normal surface obtained by contracting C .
Then the reflection rC is the monodromy associated to a generic smoothing of the
singular surface Y , and the cone Agen is invariant under monodromy.

(ii) If E is an exceptional curve, then W E is a face of A(Y ). For a generic Y
(i.e., no −2-curves), Lemma 2.10 then says that the set of exceptional curves on Y
is invariant under the reflection group generated by all classes of square −2 that
become the classes of a −2-curve under some specialization. A somewhat more
involved statement holds in the nongeneric case.
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Lemma 2.12. With W(1Y ) as in Definition 1.1, for all w ∈W(1Y ) and all β ∈3,
ϕY (w(α))= ϕY (α).

Proof. This is clear since ϕY ([C])= 1 implies ϕY (rC(α))= ϕY (α) for all α ∈3. �

Lemma 2.13. Suppose that C =
∑

i ai Ci , where the Ci are −2-curves, ai ∈ Z,
C2
= −2, the support of C is connected, and (Ci ·C j ) is negative definite. Then

there exists an element w in the group generated by reflections in the [Ci ] such that
w([C])= [Ci ] for some i .

Proof. This follows from the well known fact that, if R is an irreducible root system
such that all roots have the same length, then the Weyl group W(R) acts transitively
on the set of roots. �

Theorem 2.14. Let β ∈3 with β2
=−2. Then the following are equivalent:

(i) Let Y1 be a deformation of Y with trivial monodromy such that ϕY1(β) = 1.
Then, with W(1Y1) as in Definition 1.1, there exists w ∈ W(1Y1) such that
w(β) = [C], where C is a −2-curve on Y1. In particular, if Y1 is generic
subject to the condition that ϕY1(β)= 1 (i.e., if KerϕY1 =Z ·β), then±β = [C]
for a −2-curve C.

(ii) The wall W β meets the interior of Agen.

(iii) If rβ is reflection in the class β, then rβ(Agen)=Agen.

Proof. Lemma 2.10 implies that (i)=⇒ (iii) in case Y = Y1 and β = [C] where C
is a −2-curve. The case where w(β)= [C] follows easily from this since, for all
w ∈W(1Y1), w ◦ rβ ◦w−1

= rw(β). Lemma 2.9 then handles the case where Y1 is
replaced by a general deformation Y . Also, clearly (iii) =⇒ (ii). So it is enough
to show that (ii) =⇒ (i). In fact, by Lemma 2.13, it is enough to show that, if Y
is any surface such that ϕY (β)= 1 and W β meets the interior of Agen, then there
exists a w ∈W(1Y ) such that w(β)= [

∑
i ai Ci ] where ai ∈ Z+, the Ci are curves

disjoint from D, and
⋃

i Ci is connected.
By hypothesis, there exists an x in the interior of Agen such that x · β = 0. In

particular, x · [Di ] > 0 for all i . We can assume that x = [H ] is the class of a
divisor H . After replacing x by w(x) and β by w(β) for some w ∈W(1Y ), we can
assume that x (and hence H ) lies in A(Y ) so that H is a nef and big divisor with
H · Di > 0 for all i , and we still have ϕY (β)= 1 by Lemma 2.12. By Lemma 2.4,
possibly after replacing β by −β, β = [

∑
i ai Ci ] where the Ci are irreducible

curves and ai ∈ Z+. Since β · [H ] =
∑

i ai (Ci ·H)= 0, Ci ·H ≥ 0, and D j ·H > 0,
Ci · H = 0 for all i , and no Ci is equal to D j for any j . Hence, the Ci are curves
meeting each D j in at most finitely many points and

∑
i ai (Ci · D j ) = 0 so that

Ci ∩D j =∅. Finally, each (Ci )
2< 0 by Hodge index, and so each Ci is a−2-curve.

Moreover, the Ci span a negative definite lattice, and in particular, their classes are
independent. From this, the statement about the connectedness of

⋃
i Ci is clear. �
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Definition 2.15. Let R= RY be the set of all β ∈3 such that β2
=−2 and such that

there exists some deformation of Y for which β becomes the class of a −2-curve.
Following [Gross et al. 2013], we call R the set of Looijenga roots (or briefly roots)
of Y . Note that R only depends on the deformation type of Y .

The definition of R is slightly ill-posed since we have not specified an identi-
fication of the cohomologies of the fibers along the deformation. In particular, if
β = [C] is a −2-curve on Y , then by Remark 2.11(i) if Y ′ is a nearby deformation
of Y , then a general smoothing of the ordinary double point on the contraction of C
on Y has monodromy that sends [C] to −[C], and hence, −β ∈ R as well. To avoid
this issue, it is simpler to define R to be the set of β ∈3, β2

=−2, which satisfy
either of the equivalent conditions Theorem 2.14(ii)–(iii).

Given Y , let1Y be the set of classes of−2-curves on Y and W(1Y ) the reflection
group generated by1Y . Finally set Rnod, the set of nodal classes, to be W(1Y )·1Y .
Then Rnod

⊆ R.

Corollary 2.16. (i) If f : H 2(Y ;Z)→ H 2(Y ;Z) is an integral isometry preserv-
ing the classes [Di ] such that f (Agen)=Agen, then f (R)= R.

(ii) If W(R) is the reflection group generated by reflections in the elements of R,
then W(R) · R = R and w(Agen)=Agen for all w ∈W(R). �

Remark 2.17. A result similar to Theorem 2.14 classifies the elements of H 2(Y ;Z)
that are represented by the class of a smoothly embedded 2-sphere of self-intersection
−2 in terms of the “super P-cell” of [Friedman and Morgan 1988].

For the case where the length r(D)≤ 5, Looijenga [1981] defines a subset RL

of 3 by starting with a particular configuration B of elements of square −2 (a root
basis in his terminology) and setting RL =W(B) · B, where W(B) is the reflection
group generated by B. In fact, the set RL is just the set R of Looijenga roots.

Proposition 2.18. In the above notation, RL = R.

Proof. It is easy to see from the construction of [Looijenga 1981, I §2] that B ⊆ R.
Hence, RL⊆ R. Conversely, if α∈ R, then, by Corollary 2.16(ii), rα(Agen)=Agen. It
then follows from [Looijenga 1981, Proposition I (4.7)] that rα ∈W(B). By a general
result in the theory of reflection groups [Bourbaki 1981, V §3.2, Theorem 1(iv)],
rα = rβ for some β ∈ RL . Thus, α = ±β so that α ∈ RL . Hence, R ⊆ RL , and
therefore, RL = R. �

Example 2.19. Let (Y, D) be the blowup of P2 at N ≥ 10 general points on an
irreducible nodal cubic curve. We let h be the pullback of the class of a line on P2

and e1, . . . , eN be the classes of the exceptional curves.

(i) Let α = −3h +
∑10

i=1 ei . Then α2
= α · [KY ] = −1 so that α is a numerical

exceptional curve. But there exists a nef and big divisor H (for example h) such that
α·[H ]<0 so that α is not effective. Hence, α·x≤0 for all x ∈A(Y )=Agen since W α
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does not pass through the interior of Agen. Note that W α is never a face of Agen. For
N = 10, W−α is a face of Agen, but this is no longer the case for N ≥ 11. Thus, the
condition α·[H ]≥0 for some H such that H ·D>0 is necessary for α to be effective.

More generally, let f = 3h −
∑9

i=1 ei and set α = k f + e10 (the case above
corresponds to k =−1). As above, α is a numerical exceptional curve. For k ≤−1,
h ·α < 0. Hence, α is not effective. For k ≥ 1, α is effective but it is not the class of
an exceptional curve: for all x ∈Agen, x · f > 0, and x · e10 ≥ 0. Hence, x ·α > 0
for all x ∈ Agen. Thus, W α is not a face of Agen and so α is not the class of an
exceptional curve.

(ii) With α any of the classes as above, suppose that N ≥ 11 and k 6= 0 and set
β = α− e11. Then β2

=−2 and β · [KY ] = 0. However,

rβ(e11)= e11+ (e11 ·β)β = α.

Since W e11 is a face of Agen and W α is not a face of Agen, rβ(Agen) 6=Agen. Hence,
β does not satisfy any of the equivalent conditions of Theorem 2.14 so that β /∈ R.

Remark 2.20. In the situation of the example above, it is well known that if D
is irreducible, N ≤ 9 (i.e., D2

≥ 0), and there are no −2-curves on Y , then every
numerical exceptional curve is the class of an exceptional curve, so (i) above is
best possible. A generalization is given in Proposition 3.3 below. We shall show in
Proposition 3.5 that the example in (ii) is best possible as well.

The numerical exceptional curves given in Example 2.19(i) were known to
Du Val. In fact, he showed that they are essentially the only numerical exceptional
curves in case Y is the blowup of P2 at ten points [Du Val 1937, pp. 46–47].

Proposition 2.21. Suppose that (Y, D) is the blowup of P2 at ten points lying on
an irreducible cubic, that Y is generic in the sense that there are no −2-curves
on Y , and that α is a numerical exceptional curve. Then there exists an exceptional
curve E on Y and an integer k such that α is the class of k(D+ E)+ E.

Proof. Suppose that α is a numerical exceptional curve on Y . Then, since K 2
Y =−1,

λ = α+ [D] = α− [KY ] satisfies λ2
= λ · α = λ · [KY ] = 0. In particular, λ ∈ 3.

Conversely, given an isotropic vector λ ∈ 3, if we set α = λ+ [KY ], then α is a
numerical exceptional curve.

Any isotropic vector λ∈3 can be uniquely written as nλ0, where n ∈Z and λ0 is
primitive and lies in C+. Note that H 2(Y ;Z)=Z[KY ]⊕3 and that3=U⊕(−E8)

(both sums orthogonal). An easy exercise shows that, if Aut+(3) is the group of
integral isometries A of 3 such that A(C+ ∩3)= C+ ∩3, i.e., A has real spinor
norm equal to 1, then every A ∈ Aut+(3) extends uniquely to an integral isometry
of H 2(Y ;Z) fixing [KY ] and hence [D] and moreover that Aut+(3) acts transitively
on the set of (nonzero) primitive isotropic vectors in C+ ∩3. Hence, there exists
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an A ∈ Aut+(3) such that A(λ0) = f in the notation of Example 2.19. If we
continue to let A denote the extension of A to an isometry of H 2(Y ;Z), then
A(α) = n f + [KY ] = (n − 1) f + e10 since f = −[KY ] + e10. It follows that
α= (n−1)λ0+ A−1(e10). Using Proposition 3.5 below, A−1 preserves the walls of
the ample cone of Y , and thus, A−1(e10)= e is the class of an exceptional curve E ,
and λ0 = A−1( f )= A−1([D]+ e10)= [D]+ E . Hence, setting k = n− 1, α is the
class of k(D+ E)+ E as claimed. �

The proof above shows the following:

Corollary 2.22. Let (Y, D) be the blowup of P2 at ten points lying on an irreducible
cubic and such that there are no −2-curves on Y , let α be a numerical exceptional
curve on Y , and let λ= α− [KY ]. Then

(i) α is effective if and only if λ ∈ (C+−{0})∩3,

(ii) α is not effective if and only if λ ∈ (−C+)∩3, and

(iii) α is the class of an exceptional curve if and only if λ is a primitive isotropic
vector in C+ ∩3. Thus, there is a bijection from the set of exceptional curves
on Y to the set of primitive isotropic vectors in C+ ∩3. �

Remark 2.23. In the above situation, let W be the group generated by the reflections
in the classes e1− e2, . . . , e9− e10, h− e2− e2− e3, which are easily seen to be
Looijenga roots. A classical argument (usually called Noether’s inequality) shows
that, if λ0 is a primitive integral isotropic vector in 3 lying in C+, then there exists
w ∈W such that w(λ0)= f = 3h−

∑9
i=1 ei in the notation of Example 2.19. Thus,

W acts transitively on the set of such vectors. Using standard results about the affine
Weyl group of E8, it is then easy to see that W=Aut+(3). This was already noted
in [Du Val 1937].

3. Roots and the ample cone

By Corollary 2.16, if f : H 2(Y ;Z)→ H 2(Y ;Z) is an integral isometry preserving
the classes [Di ] such that f (Agen)=Agen, then f (R)= R. In this section, we find
criteria for when the converse holds.

Lemma 3.1. Let f : H 2(Y ;Z)→ H 2(Y ;Z) be an integral isometry preserving C+

and the classes [Di ]. If f (Agen)∩Agen contains an open set, then f (Agen)=Agen.

Proof. Choosing x ∈ f (Agen)∩Agen corresponding to an ample divisor, it is easy
to see that f (Agen) and Agen have the same set of walls and hence are equal. �

Next we deal with the case where one component of D is a smooth rational curve
of self-intersection −1.
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Lemma 3.2. Suppose that D is reducible and that D2
r = −1. Let (Y , D) be the

anticanonical pair obtained by contracting Dr . Then any isometry f of H 2(Y ;Z)
preserving the classes [Di ], 1≤ i ≤ r , defines an isometry f of H 2(Y ;Z) preserving
the classes [Di ], 1≤ i≤r−1, and conversely. Moreover, f preserves Agen(Y ) if and
only if f preserves Agen(Y ), and RY is naturally identified with the roots RY of Y .

Proof. The first statement is clear. Identifying H 2(Y ,Z) with [Dr ]
⊥
⊆ H 2(Y ;Z),

it is clear that Agen(Y )∩ [Dr ]
⊥
=Agen(Y ). Hence, if f preserves Agen(Y ), then f

preserves Agen(Y ). Since a divisor H on Y is ample if and only if N H−Dr is ample
for all N � 0, it follows that, if f preserves Agen(Y ), then f (Agen(Y ))∩Agen(Y )
contains an open set, and hence, f (Agen(Y ))=Agen(Y ) by Lemma 3.1. It follows
from this and from Theorem 2.14 that RY is naturally identified with RY (or directly
from the definition by noting that there is a bijection from the set of deformations
of (Y, D) to those of (Y , D)). �

Henceforth, then, we shall always assume if need be that no component of D is
a smooth rational curve of self-intersection −1.

We turn to the straightforward case where (Y, D) is not negative definite.

Proposition 3.3. Suppose that (Y, D) and (Y ′, D′) are two anticanonical pairs with
r(D)= r(D′) and neither pair is negative definite. If f : H 2(Y ;Z)→ H 2(Y ′;Z)
is an integral isometry with f ([Di ])= [D′i ] for all i , then f (Agen(Y ))=Agen(Y ′)
and hence f (RY )= RY ′ . Moreover,

RY = {β ∈3(Y, D) : β2
=−2}.

Proof. By Lemma 3.2, we may assume that no Di has self-intersection −1. The
statement that the cycle is not negative definite is then equivalent to the statement
that either D2

j ≥ 0 for some j or D2
i = −2 for all i and r ≥ 2. In the first case,

D j is nef and D j · D > 0. Hence, if α is a numerical exceptional curve such that
α · [D j ] ≥ 0, then α is effective by Lemma 2.4. Thus, Agen(Y ) is the set of all
x ∈ C+D(Y ) such that x · α ≥ 0 for all numerical exceptional curves α such that
α · [D j ] ≥ 0. Since f (α)2 = α2, f ([D j ]) = [D′j ], and f (α) · [KY ′] = α · [KY ], it
follows that f (Agen(Y ))=Agen(Y ′). Applying this to reflection in a class β of
square −2 in 3(Y, D) then implies that β ∈ RY .

The case where D2
i =−2 for every i is similar, using the nef divisor D =

∑
i Di

with D2
= 0. If α is a numerical exceptional curve, then α is effective since

(−α+[KY ]) · [D] = α · [KY ] =−1. The rest of the argument proceeds as before. �

Remark 3.4. If D is irreducible and not negative definite (i.e., D2
≥ 0) and there

are no −2-curves on Y , then, as is well known and noted in Remark 2.20, every
numerical exceptional curve is the class of an exceptional curve. However, if D is
reducible but not negative definite, then, even if there are no −2-curves on Y , there
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may well exist numerical exceptional curves that are not effective and effective
numerical exceptional curves that are not the class of an exceptional curve.

From now on, we assume that D is negative definite. The case K 2
Y = −1 can

also be handled by straightforward methods as noted in [Looijenga 1981]. (See
also [Friedman and Morgan 1988, II (2.7)(c)] in case D is irreducible.)

Proposition 3.5. Let (Y, D) and (Y ′, D′) be two negative definite anticanonical
pairs with r(D) = r(D′) and K 2

Y = K 2
Y ′ = −1. Let f : H 2(Y ;Z)→ H 2(Y ′;Z)

be an isometry such that f ([Di ])= [D′i ] for all i and f (C+(Y ))= C+(Y ′). Then
f (Agen(Y ))=Agen(Y ′). Moreover,

RY = {β ∈3(Y, D) : β2
=−2}.

Hence, f (RY )= RY ′ .

Proof. Since (Y, D) is negative definite, no component of D is a smooth rational
curve of self-intersection −1. Fix a nef and big divisor H such that H · Di = 0
for all i and H ·G > 0 for every irreducible curve G 6= Di . If α is a numerical
exceptional curve, (α− [KY ])

2
= (α+ [D])2 = 0. By Lemma 2.6, α is effective

if and only if [H ] · α > 0 if and only if [H ] · (α + [D]) > 0. By the light cone
lemma [Friedman and Morgan 1988, p. 320], this last condition is equivalent to
α+[D] ∈ C+−{0}. Since this condition is clearly preserved by an isometry f as
in the statement of the proposition, we see that f (Agen(Y ))=Agen(Y ′). The final
statement then follows as in the proof of Proposition 3.3. �

Remark 3.6. The hypothesis K 2
Y =−1 implies that r(D)≤ 10, so there are only

finitely many examples of the above type. For r(D)= 10, there is essentially just
one combinatorial possibility for (Y, D) neglecting the orientation [Friedman and
Miranda 1983, (4.7)], where it is easy to check that this is the only possibility. For
r(D)= 9, however, there are two different possibilities for the combinatorial type
of (Y, D) (again ignoring the orientation). Begin with an anticanonical pair (Y , D),
where Y is a rational elliptic surface and D = D0+ · · ·+ D8 is a fiber of type Ã8

(or I9 in Kodaira’s notation). There is a unique such rational elliptic surface Y , and
its Mordell–Weil group has order 3 (see, for example, [Miranda and Persson 1986]).
In particular, possibly after relabeling the components, there is an exceptional curve
meeting Di if and only if i = 0, 3, 6. It is easy to see that blowing up a point on
a component Di meeting an exceptional curve leads to a different combinatorial
possibility for an anticanonical pair (Y, D) with K 2

Y = −1 and r(D) = 9 than
blowing up a point on a component Di that does not meet an exceptional curve.

We turn now to the case where (Y, D) is negative definite but with no assumption
on K 2

Y .
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Definition 3.7. A point x ∈C+∩3 is R-distinguished if there exists a codimension-1
negative definite subspace V of 3⊗R spanned by elements of R such that x ∈ V⊥.
Note that the definition only depends on the deformation type of the pair (Y, D).

Remark 3.8. Clearly, if V is a codimension-1 negative definite subspace of 3⊗R

spanned by elements of R, then V is defined over Q and V⊥ ∩ (3⊗R) is a one-
dimensional subspace of H 2(Y ;R) defined over Q and spanned by an h ∈ H 2(Y ;Z)
with h2 > 0, h · [Di ] = 0, and h · β = 0 for all β ∈ R ∩ V . Hence, if h ∈ C+ ∩3,
then h is R-distinguished.

Also, if the rank of 3 is one, then {0} is a codimension-1 negative definite
subspace of 3⊗R, and hence, every point of C+ ∩3 is R-distinguished.

However, as we shall see, there exist deformation types (Y, D) with no R-
distinguished points.

The following is also clear:

Lemma 3.9. Let (Y, D) and (Y ′, D′) be two anticanonical pairs with r(D)=r(D′),
and let f : H 2(Y ;Z)→ H 2(Y ′;Z) be an isometry such that f ([Di ])=[D′i ] for all i ,
f (C+(Y ))= C+(Y ′), and f (RY )= RY ′ . Then, if x is an RY -distinguished point of
C+(Y )∩3(Y, D), f (x) is an RY ′-distinguished point of C+(Y ′)∩3(Y ′, D′).

Our goal now is to prove this:

Theorem 3.10. Suppose that (Y, D) and (Y ′, D′) are two anticanonical pairs
such that r(D)= r(D′). Let f : H 2(Y ;Z)→ H 2(Y ′;Z) be an isometry such that
f ([Di ])=[D′i ] for all i , f (C+(Y ))=C+(Y ′), and f (RY )= RY ′ . If there exists an
R-distinguished point of C+ ∩3, then f (Agen(Y ))=Agen(Y ′).

We begin by showing:

Proposition 3.11. Let x be an R-distinguished point of C+ ∩3. Then x ∈ Agen.
Moreover, if α is a numerical exceptional curve and α is not in the span of the [D j ],
then α is effective if and only if α · x ≥ 0.

Proof. It is enough by Lemma 2.9 to check this on some (global) deformation
of (Y, D) with trivial monodromy. By Theorem 1.3, we can assume that

KerϕY = V ∩3,

where V is as in the definition of R-distinguished. In particular, if C ∈1Y , i.e., C is
a−2-curve on Y , then [C]∈V . It follows from Theorem 2.14(i) that every β ∈V∩R
is a sum of elements of1Y so that1Y spans V over Q. Thus, there exist −2-curves
C1, . . . ,Ck such that V is spanned by the classes [Ci ], and the intersection matrix
(Ci · C j ) is negative definite. The classes [C1], . . . , [Ck], [D1], . . . , [Dr ] span a
negative definite sublattice of H 2(Y ;Z). By Proposition 1.5, there exists a nef and
big divisor H such that H is perpendicular to the curves C1, . . . ,Ck, D1, . . . , Dr .
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Clearly, then [H ] ∈A(Y )⊆Agen and [H ] = t x for some t ∈ R+. Hence, x ∈Agen

as well. Note that [H ]⊥ is spanned over Q by [C1], . . . , [Ck], [D1], . . . , [Dr ].
Since x ∈ A(Y ), if α is effective, x · α ≥ 0. Conversely, suppose that α is

a numerical exceptional curve with x · α ≥ 0 and that α is not effective. Then
−α + [KY ] = [G], where G is effective, and H · (−α + [KY ]) = −α · [H ] ≤ 0.
Hence, (−α+ [KY ]) · [H ] = 0.

Claim 3.12. We have −α+ [KY ] =
∑

i ai [Ci ] +
∑

j b j [D j ], where ai , b j ∈ Z.

Proof. In any case, since −α + [KY ] is perpendicular to [H ], there must exist
ai , b j ∈Q such that −α+[KY ] =

∑
i ai [Ci ]+

∑
j b j [D j ]. There exist ni ,m j ∈ Z

such that−α+[KY ]= [G]=
∑

i ni [Ci ]+
∑

j m j [D j ]+[F], where F is an effective
curve not containing Ci or D j in its support for any i, j . By Lemma 1.4(ii), F = 0,
ai = ni , and b j = m j for all i, j . Hence, ai , b j ∈ Z. �

Because −α + [KY ] is an integral linear combination of the [Ci ] and [D j ],
the same holds for α. Then α =

∑
i ci [Ci ] +

∑
j d j [D j ] with ci , d j ∈ Z. How-

ever, α2
= −1 =

(∑
i ci Ci

)2
+
(∑

j d j D j
)2. Both terms are nonpositive, and so(∑

i ci Ci
)2
≥−1. But if

∑
i ci Ci 6= 0, then

(∑
i ci Ci

)2
≤−2. Thus,

∑
i ci Ci = 0

and α lies in the span of the [D j ]. Conversely, if α is not in the span of the [D j ]

and α · x ≥ 0, then α is the class of an effective curve. �

Proof of Theorem 3.10. It follows from Proposition 3.11 that, if x ∈C+(Y )∩3(Y, D)
is RY -distinguished, then Agen(Y ) is the set of all y ∈ C+D(Y ) such that α · y ≥ 0
for all α a numerical exceptional curve on Y , not in the span of the [Di ], such that
α · x ≥ 0. Let f be an isometry satisfying the conditions of the theorem. Then f (x)
is RY ′-distinguished, and f (Agen(Y )) is clearly the set of all y ∈ C+D′(Y

′) such that
α · y ≥ 0 for all α a numerical exceptional curve on Y ′, not in the span of the [D′i ],
such that α · f (x)≥ 0. Again by Proposition 3.11, this set is exactly Agen(Y ′). �

Theorem 3.10 covers all of the cases in [Looijenga 1981] except for the case of
five components: by inspection of the root diagrams on [Looijenga 1981, pp. 275–
277], the complement of any trivalent vertex spans a negative definite codimension-1
subspace except in the case of five components. To give a direct argument along the
above lines that also handles this case (and all of the other cases in [Looijenga 1981]),
we recall the basic setup there: there exists a subset B = {β1, . . . , βn} ⊆ R such that
B is a basis for 3⊗R, and there exist ni ∈Z+ such that

(∑
i niβi

)
·β j > 0 for all j

(compare also [Looijenga 1980, (1.18)]). In particular, note that the intersection
matrix (βi · β j ) is nonsingular. Finally, by the classification of [Looijenga 1981,
Theorem (1.1)], there exists a deformation of (Y, D) for which βi = [Ci ] is the class
of a −2-curve for all i . (With some care, this explicit argument could be avoided
by appealing to the surjectivity of the period map and Theorem 2.14(i).)
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Theorem 3.13. Let (Y, D) and (Y ′, D′) be two anticanonical pairs satisfying the
hypotheses of the preceding paragraph, both negative definite, with r(D)= r(D′),
and let f : H 2(Y ;Z)→ H 2(Y ′;Z) be an isometry such that f ([Di ]) = [D′i ] for
all i , f (C+(Y ))= C+(Y ′), and f (RY )= RY ′ . Then f (Agen(Y ))=Agen(Y ′).

Sketch of the proof. With notation as in the paragraph preceding the statement of
the theorem, let h =

∑
i niβi have the property that h · βi > 0. By the arguments

used in the proof of Theorem 3.10, it is enough to show that h ∈ Agen and that,
if α is a numerical exceptional curve and α is not in the span of the [D j ], then
α is effective if and only if α · h ≥ 0. Also, it is enough to prove this for some
deformation of (Y, D), so we can assume βi = [Ci ] is the class of a −2-curve for
all i and hence that h is the class of H =

∑
i ni Ci . By construction, H ·C j > 0

for every j . Hence, H is nef and big. By Lemma 2.6, it is enough to show that,
if G is an irreducible curve not equal to Di for any i , then H ·G > 0. Since H is
nef, it suffices to rule out the case H ·G = 0, in which case G2 < 0. As G 6= D j

for any j , then G is either a −2-curve or an exceptional curve. The case where
G is a −2-curve is impossible since then G is orthogonal to the span of the [Ci ],
but the [Ci ] span 3 over Q and the intersection form is nondegenerate. So G = E
is an exceptional curve disjoint from the Ci . If (Y , D) is the anticanonical pair
obtained by contracting E , then the [Ci ] define classes in 3=3(Y , D). Since the
intersection form (Ci ·C j ) is nondegenerate, the rank of 3 is at least that of 3. It
is easy to check that the classes of D1, . . . , Dr are linearly independent: if say E
meets D1, then the intersection matrix of D2, . . . , Dr is still negative definite and
then Lemma 1.4(ii) (with F = D1 and G1, . . . ,Gn = D2, . . . , Dr ) shows that the
classes of D1, . . . , Dr are linearly independent. Hence, the rank of H 2(Y ;Z) is
greater than or equal to the rank of H 2(Y ;Z), which contradicts the fact that Y is
obtained from Y by contracting an exceptional curve. �

4. Some examples

Example 4.1. We provide a series of examples that satisfy the hypotheses of
Theorem 3.10, where the number of components and the multiplicities are arbitrarily
large. Let (Y , D) be the anticanonical pair obtained by making k+6 infinitely near
blowups starting with the double point of a nodal cubic. Thus, D= D0+· · ·+Dk+6,
where D2

0=−k, D2
i =−2, 1≤ i ≤ k+5, and D2

k+6=−1. Now blow up N ≥1 points
p1, . . . , pN on Dk+6, and let (Y, D) be the resulting anticanonical pair. Note that
(Y, D) is negative definite as long as k≥ 3 or k= 2 and N ≥ 2. Clearly r(D)= k+7
and K 2

Y = 3− k− N . It follows that 3=3(Y, D) has rank N . If E1, . . . , EN are
the exceptional curves corresponding to p1, . . . , pN , then the classes [Ei ]− [Ei+1]

span a negative definite root lattice of type AN−1 in3. By making all of the blowups
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infinitely near to the first point, we see that all of the classes [Ei ]− [Ei+1] lie in R.
Hence, (Y, D) satisfies the hypotheses of Theorem 3.10.

Next we turn to examples where the rank of 3 is small. The case where the
rank of 3 is 1 is covered by Theorem 3.10 as well as the case where the rank of 3
is 2 and R 6=∅. Note that, conjecturally at least, the case where R 6=∅ should be
related to the question of whether the dual cusp singularity deforms to an ordinary
double point. It is easy to construct examples where the rank of 3 is 2 and with
R 6=∅: begin with an anticanonical pair (Ŷ , D̂) where the rank of 3(Ŷ , D̂) is 1,
locate a component D̂i such that there exists an exceptional curve E on Ŷ with
E · D̂i = 1, and blow up a point of D̂i to obtain a new anticanonical pair (Y, D)
together with exceptional curves E and E ′ (where we continue to let E denote the
pullback to Y and E ′ the new exceptional curve) such that [E]− [E ′] ∈ R. So our
interest is in finding examples where R =∅.

Remark 4.2. In case the rank of 3 is 2 and R 6= ∅, it is easy to see that either
(Agen ∩3)/R

+ is a closed (compact) interval or Agen ∩3= C+ ∩3 (and in fact
both cases arise). In either case, there is at most one wall W β with β ∈ R passing
through the interior of Agen ∩3, and hence, either R =∅ or R = {±β}.

Example 4.3. We give an example where the rank of 3 is 2 and there are no
β ∈ 3 such that β2

= −2 (in particular, R = ∅; hence, the condition f (R) = R
is automatic for every isometry f ) and of an isometry f that preserves C+ and
the classes [Di ] but not the generic ample cone. Let (Y , D) be the anticanonical
pair obtained by making nine infinitely near blowups starting with the double point
of a nodal cubic. Thus, D = D0+ · · · + D9, where D0 = 3H − 2E1−

∑9
i=2 Ei ,

Di = Ei − Ei+1, 1 ≤ i ≤ 8, and D9 = E9. Make two more blowups, one at a
point p10 on D9 and one at a point p11 on D4. This yields an anticanonical pair
(Y, D) with D0 = 3H − 2E1 −

∑9
i=2 Ei , Di = Ei − Ei+1, i > 0 and i 6= 4, and

D4 = E4− E5− E11. Thus,

(−d0, . . . ,−d9)= (3, 2, 2, 2, 3, 2, 2, 2, 2, 2),

i.e., D is of type
(

3 3
3 5

)
, with dual cycle

(
6 8
0 0

)
in the notation of [Friedman and

Miranda 1983]. Set

G1= 5H−2
4∑

i=1

Ei−

10∑
i=5

Ei−E11 and G2= 10H−5
4∑

i=1

Ei−

10∑
i=5

Ei−4E11.

It is straightforward to check that (Gi · D j )= 0 for i = 1, 2 and 0≤ j ≤ 9. Hence,
G1,G2 ∈3. Also,

G2
1 = 2, G2

2 =−22, G1 ·G2 = 0.
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The corresponding quadratic form

q(n,m)= (nG1+mG2)
2
= 2n2

− 22m2

has discriminant −44=−22
· 11. Note that this is consistent with the fact that the

discriminant of the dual cycle is

det
(
−6 2

2 −8

)
= 44.

It is easy to see that G1 and G2 are linearly independent mod 2 and hence span a
primitive lattice, which must therefore equal 3.

First, we claim that there is no element of 3 of square −2. This is equivalent to
the statement that there is no solution in integers to the equation n2

− 11m2
=−1,

i.e., that the fundamental unit in Z[
√

11] has norm 1. But clearly if there were an
integral solution to n2

−11m2
=−1, then since −11≡ 1 mod 4, we could write −1

as a sum of two squares mod 4, which is impossible. In fact, the fundamental unit
in Z[
√

11] is 10+ 3
√

11. Thus, if R is the set of roots for (Y, D), then R =∅. In
particular, any isometry f trivially satisfies f (R)= R.

Finally, we claim there is an isometry f of H 2(Y ;Z) such that f ([Di ])= [Di ]

for all i and f (C+)=C+ but such that f does not preserve the generic ample cone.
Note the unit group U of Z[

√
11] acts as a group of isometries on 3 and hence acts

as a group of isometries (with Q-coefficients) of the lattice

H 2(Y ;Q)= (3⊗Q)⊕
⊕

i

Q[Di ],

fixing the classes [Di ]. Also, any isometry of 3 that is trivial on the discriminant
group 3∨/3 extends to an integral isometry of H 2(Y ;Z) fixing the [Di ]. Con-
cretely, the discriminant form3∨/3∼=Z/2Z⊕Z/22Z. If µ= 10+3

√
11, then it is

easy to check that the automorphism of 3 corresponding to µ2
= 199+60

√
11 acts

trivially on 3∨/3 and hence defines an isometry f of H 2(Y ;Z) fixing the [Di ].
Then f acts freely on (C+∩3)/R+, which is just a copy of R (and f acts on it via
translation). But the intersection of the generic ample cone with3 has the nontrivial
wall W E11 so that the intersection cannot be all of C+∩3. It follows that f ±1 does
not preserve the generic ample cone. Explicitly, let (Ŷ , D̂) be the surface obtained
by contracting E11 and let Ĝ1=4G1−G2=10H−3

∑10
i=1 Ei be the pullback of the

positive generator of 3(Ŷ , D̂). Thus, Ĝ1 is nef and big so that Ĝ1 ∈Agen. Clearly
Ĝ1 ∈ W E11 . If A = ( a 11b

b a ) is the isometry of 3 corresponding to multiplication
by the unit a + b

√
11, then A(G1) = aG1 + bG2, A(G2) = 11bG1 + aG2, and

A(Ĝ1)= (4a− 11b)G1+ (4b− a)G2. Thus,

E11 · A(Ĝ1)= (4a− 11b)+ 4(4b− a)= 5b.



On the ample cone of a rational surface with an anticanonical cycle 1501

Hence, E11 · A(Ĝ1) < 0 if b < 0. Taking f −1, which corresponds to 199− 60
√

11,
we see that f −1(Ĝ1) /∈Agen.

Example 4.4. In this example, the rank of 3 is 2 and R = ∅, but there exist
infinitely many β ∈ 3 such that β2

= −2. The condition f (R) = R is again
automatic for every isometry f , and reflection about every β ∈3 with β2

=−2 is
an isometry that preserves C+ and the classes [Di ] but not the generic ample cone.

As in the previous example, let (Y , D) be the anticanonical pair obtained by
making nine infinitely near blowups starting with the double point of a nodal cubic.
Thus, D = D0 + · · · + D9, where D0 = 3H − 2E1 −

∑9
i=2 Ei , Di = Ei − Ei+1,

1 ≤ i ≤ 8, and D9 = E9. Make two more blowups, one at a point p10 on D9

and one at a point p11 on D0. This yields an anticanonical pair (Y, D) with
D0 = 3H − 2E1−

∑9
i=2 Ei − E11 and Di = Ei − Ei+1, 1≤ i ≤ 9. Thus,

(−d0, . . . ,−d9)= (4, 2, 2, 2, 2, 2, 2, 2, 2, 2),

i.e., D is of type ( 4
9 ), with dual cycle ( 12

1 ) in the notation of [Friedman and Miranda
1983]. Set

G1 = 10H − 3
10∑

i=1

Ei and G2 = 3H −
10∑

i=1

Ei + E11.

It is straightforward to check that (Gi · D j )= 0 for i = 1, 2 and 0≤ j ≤ 9. Hence,
G1,G2 ∈3. Also,

G2
1 = 10, G2

2 =−2, and G1 ·G2 = 0.

The corresponding quadratic form

q(n,m)= (nG1+mG2)
2
= 10n2

− 2m2

has discriminant −20=−22
· 5. Note that this is consistent with the fact that the

discriminant of the dual cycle is

det
(
−12 2

2 −2

)
= 20.

It is easy to see that G1 and G2 are linearly independent mod 2 and hence span a
primitive lattice, which must therefore equal 3.

To give a partial description of Agen ∩3, note that (as for Ĝ1 in the previous
example) G1 is the pullback to Y of a positive generator for 3(Ŷ , D̂), where Ŷ
denotes the surface obtained by contracting E11. Thus, G1 is nef and big so that
G1 ∈Agen and also G1 ∈W E11 . Hence,

C+ ∩3= {nG1+mG2 : 5n2
−m2 > 0, n > 0},
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i.e., n > 0 and −n
√

5 < m < n
√

5. The condition E11 · (nG1 +mG2) ≥ 0 gives
m ≤ 0. To get a second inequality on n and m, let

E ′ = 5H − 4E11−

10∑
i=1

Ei .

Then (E ′)2 = E ′ · KY =−1, and H · E ′ > 0. Hence, E ′ is effective. (In fact, one
can show that E ′ is generically the class of an exceptional curve.) Thus, for all
nG1+mG2 ∈Agen,

E ′ · (nG1+mG2)= 20n+ 9m ≥ 0;

hence,
Agen ∩3⊆ {nG1+mG2 : n > 0, −20

9 n ≤ m ≤ 0}.

Next we describe the classes β ∈3 with β2
=−2. The element β= aG1+bG2 ∈3

satisfies β2
=−2 if and only if 5a2

−b2
=−1, i.e., if and only if b+a

√
5 is a unit in

the (nonintegrally closed) ring Z[
√

5]. For example, the class G2 corresponds to 1;
as we have seen, the wall W G2 =W E11 . The fundamental unit in Z[

√
5] is easily

checked to be 9+ 4
√

5. However, since we are only concerned with walls that are
rays in the fourth quadrant {(nG1+mG2) : n> 0, m< 0}, we shall consider instead
±(9− 4

√
5) and shall choose the sign corresponding to β = 4G1− 9G2. Note that

β · (nG1+mG2)= 40n+ 18m = 0⇐⇒ E ′ · (nG1+mG2)= 0.

Hence, W β
=W E ′ . Moreover, for every γ ∈3 such that γ 2

=−2 and such that the
wall W γ passes through the fourth quadrant, either W γ

=W β or the corresponding
ray W γ lies below W β . Thus, for every γ ∈3 with γ 2

=−2, rγ does not preserve
Agen ∩3. Hence, R =∅.

Note that, aside from the isometries rβ , where β2
=−2, one can also construct

isometries of infinite order preserving C+ and the classes [Di ] that do not preserve
Agen using multiplication by fundamental units in Z[

√
5] as in the previous example.

Remark 4.5. The exceptional curve E ′ used in the above example is part of a
general series of such. For n ≥ 0, let Y be the blowup of P2 at 2n + 1 points
p0, . . . , p2n with corresponding exceptional curves E0, . . . , E2n , and consider the
divisor

A = nH − (n− 1)E0−

2n∑
i=1

Ei .

Then A2
= A · KY = −1, and it is easy to see that there exist p0, . . . , p2n such

that A is the class of an exceptional curve. In fact, if F1 is the blowup of P2 at p0,
then 6 = nH − (n− 1)E0 is very ample on F1 and, for an anticanonical divisor
D ∈ |−KF1 | = |3H − E0|, 6 · D = 2n + 1. From this, it is easy to see that we
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can choose the points p1, . . . , p2n to lie on the image of D in P2, and hence, we
can arrange the blowup Y to have (for example) an irreducible anticanonical nodal
curve.
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Commuting involutions
of Lie algebras, commuting varieties,

and simple Jordan algebras
Dmitri I. Panyushev

Let σ1 and σ2 be commuting involutions of a connected reductive algebraic group
G with g= Lie(G). Let

g=
⊕

i, j=0,1

gi j

be the corresponding Z2 × Z2-grading. If {α, β, γ } = {01, 10, 11}, then [ , ]
maps gα × gβ into gγ , and the zero fiber of this bracket is called a Eσ -commuting
variety. The commuting variety of g and commuting varieties related to one
involution are particular cases of this construction. We develop a general theory
of such varieties and point out some cases, when they have especially good
properties. If G/Gσ1 is a Hermitian symmetric space of tube type, then one can
find three conjugate pairwise commuting involutions σ1, σ2, and σ3 = σ1σ2. In
this case, any Eσ -commuting variety is isomorphic to the commuting variety of
the simple Jordan algebra associated with σ1. As an application, we show that if
J is the Jordan algebra of symmetric matrices, then the product map J× J→ J is
equidimensional, while for all other simple Jordan algebras equidimensionality
fails.
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Introduction

The ground field k is algebraically closed and char k = 0. Let G be a connected
reductive algebraic group with Lie(G) = g. Richardson [1979] proved that any
pair of commuting elements of g can be approximated by pairs of commuting
semisimple elements. More precisely, if t⊂ g is a Cartan subalgebra (CSA), then

{(x, y) ∈ g× g | [x, y] = 0} = G·(t× t), (0-1)

where a bar indicates the Zariski closure. The left-hand side is called the commuting
variety of g, denoted E(g). That is, E(g) is the zero fiber of the multiplication map

g× g
[ , ]
−→ g.

It follows from (0-1) that E(g) is irreducible and dimE(g) = dim g+ rk g. For
arbitrary Lie algebras, for example, for Borel subalgebras of g, the commuting
variety can be reducible [Vasconcelos 1994, p. 237].

There are several directions to take in generalizing Richardson’s work.

First, for given subvarieties U, V ⊂ g, one can consider the restriction of [ , ] to
U × V and study properties of E(g)∩ (U × V ). For instance:

– Let σ be an involution of g with the corresponding Z2-grading g = g0⊕ g1.
Taking U = V = g1 yields the commuting variety E(g1) := E(g)∩ (g1× g1),
which was considered first in [Panyushev 1994b]. Here the structure of E(g1)

heavily depends on σ . If g1 contains a CSA of g, then E(g1) is an irreducible
normal complete intersection [Panyushev 1994b]. At the other extreme, if
the symmetric space G/G0 is of rank 1, then E(g1) is often reducible. In
[Panyushev and Yakimova 2007], the question of irreducibility of E(g1) is
resolved for all but three involutions of simple Lie algebras, and the remaining
cases are settled in [Bulois 2011]. It seems, however, that there is no simple
rule to distinguish the involutions for which E(g1) is irreducible.

– Another natural possibility is to take U=V =N , whereN is the set of nilpotent
elements of g. This leads to the nilpotent commuting variety of g, E(N ), which
is often reducible. However, E(N ) is equidimensional, dimE(N ) = dim g,
and the structure of irreducible components is well understood [Premet 2003].

– An interesting situation with U 6= V occurs if g =
⊕

i∈Z g(i) is Z-graded,
U = g(i), and V = g(−i), see [Panyushev 1999, §3].

Second, one may look at commuting varieties related to other types of algebras.
If A is any algebra, then E(A) is defined to be the zero fiber of the multiplication
map A×A→A. It is a natural task to study the commuting variety of a simple
Jordan algebra. As far as I know, this problem has not been addressed before.
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In this article, we elaborate on both directions outlined above. We study certain
“commuting varieties” associated with Z2×Z2-gradings of g (the first direction). It
turns out that, for some gradings, these new commuting varieties are isomorphic to
the commuting variety of simple Jordan algebras (the second direction). To describe
our results more precisely, we need some notation. Let σ1 and σ2 be different
commuting involutions of a connected reductive algebraic group G. This yields a
Z2×Z2-grading of g:

g=
⊕

i, j=0,1

gi j , where gi j = {x ∈ g | σ1(x)= (−1)i x and σ2(x)= (−1) j x}. (0-2)

Then σ1, σ2, and σ3 = σ1σ2 are pairwise commuting involutions, and following
[Vergne 1995] we say that (0-2) is a quaternionic decomposition of g. For, if
(α, β, γ ) is any permutation of the set of indices {01, 10, 11}, then [g00, gα] ⊂ gα
and [gα, gβ] ⊂ gγ . The conjugacy classes of pairs of commuting involutions are
classified, see [Kollross 2009] and references therein. Therefore, it is not difficult
to write down explicitly all the quaternionic decompositions of simple Lie algebras.
This article is a continuation of [Panyushev 2013], where we developed some theory
on Cartan subspaces related to (0-2) and studied invariants of degenerations of
isotropy representations involved.

Set Eσ = (σ1, σ2, σ3), and let G00 denote the connected subgroup of G with
Lie algebra g00. A Eσ-commuting variety is the zero fiber of the bracket [ , ] :
gα × gβ → gγ . Associated with (0-2), one has three essentially different such
varieties that are parameterized by the choice of γ ∈{01, 10, 11}. All these mappings
are G00-equivariant, and all Eσ-commuting varieties are G00-varieties. The above-
mentioned varieties E(g1) can be obtained as a special case of this construction,
see Example 3.1. We usually stick to one particular choice of the commutator,
ϕ : g10×g11→ g01, and try to realize what assumptions on Eσ imply good properties
of E := ϕ−1(0) and other fibers of ϕ. Clearly, ϕ can be regarded as a quadratic
map from g1? := g10⊕ g11 to g01. Let c1? be a Cartan subspace (CSS) in g1?. Say
that c1? is homogeneous if it is σ2-stable (or, equivalently, σ3-stable), that is, if
c1? = a10⊕ a11 with a1 j ⊂ g1 j . We prove:

• If c1? is a homogeneous CSS, then the closure of G00·c1? is an irreducible
component of E (Theorem 3.4). (Such irreducible components are said to
be standard). However, there can be several standard components, of dif-
ferent dimensions, and there can also exist some “nonstandard” irreducible
components.

• All homogeneous CSS in g1? are G00-conjugate (that is, E has only one
standard component) if and only if dim c1? = dim c10+ dim c11, where c1 j are
CSS in g1 j (Theorem 3.7).
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• The commutator map ϕ is dominant if and only if there exist x ∈ g10 and
y ∈ g11 such that zg(x)01 ∩ zg(y)01 = {0}.

However, one cannot expect really good properties for ϕ and E without extra
assumptions. One natural assumption is that some of involutions in Eσ are conjugate.
Another possibility is that some of the σi possess prescribed properties. Our more
specific results are:

(1) If σ1 and σ2 are conjugate, then ϕ is surjective and dimϕ−1(ξ) > dim g11 for
all ξ ∈ g01 (Proposition 3.8). We also provide a method for detecting subvarieties
of E whose dimension is larger than dim g11. This exploits certain restricted root
systems related to decomposition (0-2), see Section 5.

(2) If σ1 and σ2 are involutions of maximal rank (hence they are conjugate), then
ϕ is surjective and equidimensional, each irreducible component of E is standard,
and the scheme ϕ−1(0) is a reduced complete intersection (Theorem 4.1).

(3) Let g be simple and σ a Hermitian involution (that is, gσ is not semisimple). If
the Hermitian symmetric space G/Gσ is of tube type, then there exists a commuting
triple Eσ such that each σi is conjugate to σ , and in this case E is isomorphic to the
commuting variety of the corresponding simple Jordan algebra, see Section 6.

(4) The relationship with Eσ-commuting varieties implies that the multiplication map
J× J

◦
→ J is equidimensional if and only if J is the Jordan algebra of symmetric

matrices. The commuting variety of a simple Jordan algebra J is reducible, since
J×{0} and {0}×J are always irreducible components, and there are certainly some
other components.

(5) The results stated in (2) rely on an interesting property of Z2-gradings. For any
e ∈ g0, its centralizer in g is also Z2-graded: ge

= ge
0⊕ ge

1. Then we prove that

dim ge
0+ rk g> dim ge

1

and the equality occurs only if e = 0 and σ is of maximal rank. However, the
proof of this inequality (Theorem 4.4) is not quite uniform, and a better proof is
welcome! The required case-by-case calculations are lengthy and tedious, so not
all of them are actually presented, and a part is placed in the Appendix. We hope
that an a priori proof of this inequality might be related to a geometric property of
centralizers of nilpotent elements in g0, see Conjecture 4.6.

– Throughout, G is a connected reductive algebraic group and g= Lie(G). Then
zg(a) is the centralizer of a subspace a ⊂ g, and the centralizer of x ∈ g is
denoted by zg(x) or gx .

– R(λ) is a simple finite-dimensional G-module with highest weight λ.

– Algebraic groups are denoted by capital Roman letters and their Lie algebras
are denoted by the corresponding lower-case Gothic letters.



Commuting involutions, commuting varieties, and simple Jordan algebras 1509

1. Preliminaries on involutions and commuting varieties

The set of all involutions of g is denoted by Inv(g). The group of inner automor-
phisms Int(G)' G/Z(G) acts on Inv(g) by conjugation. Two involutions are said
to be conjugate if they lie in the same Int(G)-orbit. If σ ∈ Inv(g), then g= g0⊕ g1

is the corresponding Z2-grading of g, where gi = {x ∈ g | σ(x) = (−1)i x}. We
also say that (g, g0) is a symmetric pair. Whenever we wish to stress that g0 and
g1 are determined by σ , we write gσ and g(σ )1 for them. We assume that σ is
induced by an involution of G, which is denoted by the same letter. The connected
subgroup of G with Lie algebra g0 is denoted by G0. Hence G0 is the identity
component of Gσ

= {g ∈ G | σ(g) = g}. The representation of G0 in g1 is the
isotropy representation of the symmetric space G/G0.

We freely use the invariant-theoretic results on the G0-action on g1 obtained in
[Kostant and Rallis 1971]. A Cartan subspace (CSS) is a maximal subspace of g1

consisting of pairwise commuting semisimple elements. The Cartan subspaces are
characterized by the following property:

Suppose that a subspace a⊂ g1 consists of pairwise commuting semisim-
ple elements. Then a is a CSS if and only if zg(a)∩ g1 = a [Kostant and
Rallis 1971, Chapter I].

(1-1)

An element x ∈ g1 is called G0-regular if the orbit G0·x is of maximal dimension.
Let c be a CSS of g1. Below, we summarize some basic properties of the Cartan
subspaces and isotropy representations:

– All CSS of g1 are G0-conjugate and G0·c is dense in g1.

– Every semisimple element of g1 is G0-conjugate to an element of c.

– A semisimple element x ∈ g1 is G0-regular ⇐⇒ zg(x)∩ g1 is a CSS.

– The orbit G0·x is closed if and only if x is semisimple.

– The closure of G0·x contains the origin if and only if x is nilpotent.

– The number of nilpotent G0-orbits in g1 is finite.

We say that σ ∈ Inv(g) is of maximal rank if g1 contains a Cartan subalgebra of g.

The following facts are well known:

(1) dim g1− dim g0 6 rk g for any σ , and the equality holds if and only if σ is of
maximal rank.

(2) All involutions of maximal rank are conjugate.

(3) The involutions of maximal rank are inner if and only if all exponents of g are
odd.
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Lemma 1.1 [Kostant and Rallis 1971, Proposition 5]. For any x ∈ g1, one has
dim g0 − dim gx

0 = dim g1 − dim gx
1 . Equivalently, dim G·x = 2 dim G0·x for all

x ∈ g1.

Consequently, if σ is of maximal rank, then

dim gx
1 = dim gx

0 + rk g. (1-2)

The property of having maximal rank is inheritable in the following sense.

Lemma 1.2. Let σ be of maximal rank and x ∈ g1 semisimple. Then the restriction
of σ to gx and [gx , gx

] is also of maximal rank.

The commuting variety associated with σ is

E(g1)= {(x, y) ∈ g1× g1 | [x, y] = 0}. (1-3)

That is, E(g1) is the zero fiber of the commutator map [ , ]1 : g1× g1→ g0. The
following is known:

• G0·(c× c) is always an irreducible component of E(g1) [Panyushev 1994b,
Proposition 3.7].

• If σ is of maximal rank, then G0·(c× c)= E(g1) and g1× g1→ g0 is equidi-
mensional [Panyushev 1994b, Theorem 3.2]; moreover, all the fibers of [ , ]1
are irreducible and normal [Panyushev 1994b, Corollary 4.4].

• E(g1) can be reducible [Panyushev 1994b, Example 3.5].

Example 1.3. Suppose that g̃= g⊕ g and σ(x, y)= (y, x). Then g̃0 =1(g) and
g̃1 = {(x,−x) | x ∈ g}. Here the commutator g̃1× g̃1→ g̃0 coincides with the usual
commutator g× g→ g and E(g̃1) is isomorphic to the usual commuting variety of
a semisimple Lie algebra g. By a result of Richardson [1979], E(g) is irreducible
and dimE(g)= dim g+ rk g.

A torus S of G is called σ-anisotropic if σ(s)= s−1 for all s ∈ S. All maximal
σ-anisotropic tori are G0-conjugate, and if C ⊂ G is a maximal σ-anisotropic torus,
then Lie(C) is a CSS in g1. Recall that a restricted root of C is any nontrivial weight
in the decomposition of g into the sum of weight spaces of C . Write 9C(G/G0)

or just 9(G/G0) for the set of all restricted roots. Then

g= gC
⊕

( ⊕
γ∈9(G/G0)

gγ

)
. (1-4)

We use additive notation for the operation in X(C), the character group of C , and
regard 9(G/G0) as a subset of the vector space X(C)⊗Z R. The set 9(G/G0)

satisfies the usual axioms of finite root systems [Helgason 1978]. The notable
difference from the structure theory of split semisimple Lie algebras is that the
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root system 9(G/G0) can be nonreduced and that multiplicities mγ = dim gγ
(γ ∈9(G/G0)) can be greater than 1.

For all involutions of simple Lie algebras, the restricted root systems and the
respective multiplicities are known, see [Helgason 1978, Chapter X, Table VI].

2. Commuting involutions and quaternionic decompositions

Let σ1 and σ2 be different commuting involutions of g. Then the corresponding
Z2×Z2-grading of g is

g=
⊕

i, j=0,1

gi j , where gi j = {x ∈ g | σ1(x)= (−1)i x and σ2(x)= (−1) j x}. (2-1)

We also say that it is a quaternionic decomposition of g (determined by σ1 and σ2).
Set σ3 := σ1σ2 and Eσ = (σ1, σ2, σ3). The pairwise commuting involutions σ1, σ2,
and σ3 are said to be big. The induced involutions on the fixed-point subalgebras gσ1 ,
gσ2 , and gσ3 are said to be little. The same terminology applies to the corresponding
Z2-gradings, isotropy representations, and CSS. Thus, associated with (2-1), one
has three big and three little Z2-gradings. It is convenient for us to organize the
summands of (2-1) in a 2× 2 “matrix”:

g=
g00 g01

g10 g11
⊕

σ2

σ1. (2-2)

Here the horizontal (resp. vertical) dotted line separates the eigenspaces of σ1

(resp. σ2), whereas two diagonals of this matrix represent the eigenspaces of σ3.
Hence the first row, first column, and main diagonal represent the three little
Z2-gradings (of gσ1 , gσ2 , and gσ3 , respectively).

We repeatedly use the following notation for the eigenspaces of σ1 and σ2:

gσ1 = g0? := g00⊕g01, g1? := g10⊕g11, gσ2 = g?0 := g00⊕g10, g?1 := g01⊕g11.

Likewise, G0? (resp. G?0) is the connected subgroup of G corresponding to g0? (resp.
g?0), G00 is the connected subgroup of G corresponding to g00, etc. If q is a Eσ-stable
subalgebra of g, then q=

⊕
i, j qi j is the induced quaternionic decomposition of q,

and Q and Q00 are the corresponding connected subgroups.
Following [Vinberg 2005, 0.3], we say that a triple {σ1, σ2, σ3} ⊂ Inv(g) is a

triad if all three involutions are conjugate and σ1σ2 = σ3. A complete classification
of triads is obtained in [Vinberg 2005, §3]. The triads lead to the “most symmetric”
quaternionic decompositions. In [Panyushev 2013], we considered less restrictive
conditions on the σi . We say that {σ1, σ2} ⊂ Inv(g) is a dyad if σ1 and σ2 are
conjugate and σ1σ2 = σ2σ1 (no conditions on σ3!).
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The product of two conjugate involutions (not necessarily commuting) is al-
ways an inner automorphism of g. For, if σ2 = Int(g)·σ1· Int(g−1), then σ1σ2 =

Int(σ1(g)g−1). Therefore, any triad consists of inner involutions. (But not every
inner involution gives rise to a triad!) Any involution can be a member of a dyad
[Panyushev 2013, Proposition 2.4]. But the third involution, σ3, is then necessarily
inner.

Proposition 2.1 (see [Panyushev 2013, Proposition 2.2(1)]). Suppose that µ ∈
Inv(g) is inner. Then there are commuting involutions of maximal rank, σ1 and σ2,
such that µ = σ1σ2. Moreover, σ1 and σ2 induce an involution of maximal rank
of gµ.

For (i j) 6= (00), let ci j be a CSS of gi j ; that is, a little CSS related to the little
Z2-grading g00⊕ gi j . There are also big CSS in the (−1)-eigenspaces of three big
involutions:

c1? ⊂ g1?, c?1 ⊂ g?1, c?,1−? ⊂ g?,1−? := g01⊕ g10.

Each little CSS can be included in two big CSS. For example, because g10⊂ g1? and
g10⊂ g?,1−?, one can choose Cartan subspaces c1? and c?,1−? such that c10⊂ c1? and
c10 ⊂ c?,1−?. If at least one equality occurs among all such inclusions, then this will
be referred to as a coincidence of CSS (for a given quaternionic decomposition).

In [Panyushev 2013], we obtained two sufficient conditions for a coincidence of
CSS:

Theorem 2.2 (see [Panyushev 2013, Theorems 3.3 and 3.7]).

(1) Suppose that σ1 is of maximal rank. Then
• any little CSS c11 ⊂ g11 is also a CSS in g?1, that is, for σ2, and
• any little CSS c10 ⊂ g10 is also a CSS in g10⊕ g01, that is, for σ3.

(2) Suppose that {σ1, σ2} is a dyad. Then any little CSS c11 ⊂ g11 is also a CSS in
g1? or g?1, that is, for σ1 or σ2.

The coincidences of CSS in Theorem 2.2(2) can formally be expressed as c11= c1?

or c11=c?1, and likewise in all other possible cases. In view of (1-1), any coincidence
of CSS can be restated as certain property of the little CSS in question. For instance,
the first coincidence in Theorem 2.2(1) means that if x ∈ g11 is a generic semisimple
element (that is, x belong to a unique little CSS), then zg(x)?1 = zg(x)11 = c11, and
hence zg(x)01 = 0.

3. Commuting varieties and homogeneous Cartan subspaces

Consider a quaternionic decomposition (2-2). For any permutation (α, β, γ ) of the
set {01, 10, 11}, there is the commutator mapping ϕγα,β : gα × gβ → gγ . Clearly,
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ϕ
γ

α,β is G00-equivariant. As our main interest is in fibers of this mapping, we do
not distinguish ϕγα,β and ϕγβ,α. We concentrate on the following problems:

• When is ϕγα,β dominant?

• What is the dimension of (ϕγα,β)
−1(0)?

• How to describe the irreducible components of (ϕγα,β)
−1(0)?

• When is ϕγα,β equidimensional?

The variety E
γ

α,β = (ϕ
γ

α,β)
−1(0) is said to be a Eσ-commuting variety. For general

quaternionic decompositions, one has three such varieties, and their properties can
be rather different. We mainly restrict ourselves to considering the test case:

ϕ = ϕ01
10,11 : g10× g11→ g01. (3-1)

and also write E in place of E01
10,11. Note that we can regard ϕ as a quadratic map

from g1? to g01, and E as subvariety of g1?. The following example shows that the
commuting variety in (1-3) is a particular case of this construction.

Example 3.1. Let g be a reductive Lie algebra and σ an involution of g with the
corresponding Z2-grading g= g0⊕ g1. Set g̃= g⊕ g and define three involutions
of g̃ as follows:

σ1(x1, x2)= (σ (x1), σ (x2)), σ2(x1, x2)= (x2, x1), σ3 = σ1σ2.

Then g̃σ1 = g0⊕g0; g̃σ2 =1(g), the diagonal in g⊕g; and g̃σ3 = {(x, σ (x)) | x ∈ g}.
Set1−(M) := {(m,−m) |m ∈M} for any subspace M ⊂g. Then the corresponding
quaternionic decomposition is

g̃=
1(g0) 1−(g0)

1(g1) 1−(g1)
⊕

σ2

σ1.

Upon the obvious identifications 1(g1)'1−(g1)' g1, etc., our test commutator
map g̃10 × g̃11 → g̃01 becomes the commutator g1 × g1 → g0 associated with
σ ∈ Inv(g); whereas two other commutator maps are identified with the bracket
g0×g1→ g1. Therefore, the concept of a Eσ-commuting variety provides a uniform
setting for studying the fibers of both g1× g1→ g0 and g0× g1→ g1.

Lemma 3.2. The commutator map (3-1) is dominant if and only if there exist x ∈g10

and y ∈ g11 such that zg(x)01 ∩ zg(y)01 = {0}.

Proof. A morphism of irreducible varieties is dominant if and only if its differential at
some point is onto. As ϕ is bilinear, an easy computation shows that dϕ(x,y)(ξ, η)=
[x, η] + [ξ, y], ξ ∈ g10, η ∈ g11. Hence Im dϕ(x,y) = [g11, x] + [g10, y], and taking
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the orthogonal complement with respect to the restriction of the Killing form to g01

yields (Im dϕ(x,y))⊥ = zg(x)01 ∩ zg(y)01. �

As we see below, certain CSS in g1? play an important role in describing irre-
ducible components of E.

Definition 1. A big CSS c1? ⊂ g1? is said to be homogeneous if it is σ2-stable (or,
equivalently, σ3-stable). In other words, if one has c1? = a10⊕ a11 with a1 j ⊂ g1 j .

Remark. A coincidence of CSS means that there is a homogeneous CSS of special
form. For instance, if c11 = c1?, then c11 is a homogeneous CSS in g1?, with trivial
g10-component.

Lemma 3.3. (1) Homogeneous CSS always exist.

(2) Moreover, if x ∈ g10 and y ∈ g11 are commuting semisimple elements, then
there exists a homogeneous CSS in g1? containing both of them.

Proof. (1) Take a little CSS c10 and consider the Eσ-stable reductive subalgebra
zg(c10). If ã11 is a little CSS in zg(c10)11, then c10⊕ ã11 is a homogeneous CSS in
g1?.

(2) Consider the Eσ-stable reductive subalgebra l= zg(x)∩ zg(y). By the previous
part, there exists a homogeneous CSS in l1?, say c̃1?. Since x and y are central in l,
we have x, y ∈ c̃1?. It is also clear that c̃1? is a CSS in g1?. �

If c1?= a10⊕a11 is a homogeneous CSS, then [a01, a11]= 0 and hence G00·c1?⊂

E. However, a stronger result is true.

Theorem 3.4. (i) Let c1? be a homogeneous CSS in g1?. Then G00·c1? ⊂ E is an
irreducible component of E.

(ii) If two homogeneous CSS in g1? are not G00-conjugate, then the corresponding
irreducible components are different.

Proof. (i) The centralizer of c1? is Eσ-stable. Hence zg(c1?)=
⊕

i, j=0,1 ai j , and here
c1?= a10⊕a11. Recall that G0?·c1?= g1?. Therefore, dim c1?+dim G0?−dim a00−

dim a01 = dim g1?. It follows that

dim G00·c1? = dim c1?+dim G00−dim a00 = dim g1?−dim g01+dim a01. (3-2)

On the other hand, let x + y ∈ c1? (x ∈ g10, y ∈ g11). The proof of Lemma 3.2
shows that dim(Im dϕ(x,y))= dim g01−dim(zg(x)01∩ zg(y)01). Now, if x+ y ∈ c1?

is generic, then zg(x) ∩ zg(y) = zg(x + y) = zg(c1?). Hence dim(Im dϕ(x,y)) =
dim g01 − dim a01. This means that any irreducible component of E containing
(x, y) has dimension at most

dim g1?− dim(Im dϕ(x,y))= dim g1?− dim g01+ dim a01.
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Comparing with (3-2) shows that G00·c1? is an irreducible component of E contain-
ing (x, y), and (x, y) is a smooth point of G00·c1?.

(ii) As we have just shown, if x + y ∈ c1? is generic, then it belongs to a unique
irreducible component of E (and to a unique CSS in g1?). �

Claim 3.5. The number of G00-orbits of homogeneous CSS in g1? is finite.

First proof. Since the number of irreducible components is finite, this readily follows
from Theorem 3.4. However, it can also be proved in a different way. As the second
proof has its own merits, we provide it below.

Second proof. Recall that G00 ⊂ G0? are connected reductive groups and all big
CSS in g1? form a single G0?-orbit. Let c1? be a homogeneous CSS. Set

N = {g ∈ G0? | g·c1? = c1?}, M= {g ∈ G0? | g·c1? is homogeneous }.

Note that N is reductive, but not connected, since N is mapped onto the (finite)
little Weyl group associated with c1?. If g ∈M, s ∈ G00, and z ∈ N , then sgz ∈M.
Therefore, M is a union of (G00, N )-cosets, and our task is to prove that G00\M/N
is finite.

If g ∈M, then g·c1? = σ2(g)c1?. Hence g−1σ2(g) ∈ N . Since G00 ⊂ Gσ2 , the
map

ψM : G00\M→ N , G00g 7→ g−1σ2(g),

is well defined. Note that N is σ2-stable and the range of ψM belongs to the closed
subset

Q= Q(N )= {g ∈ N | σ2(g)= g−1
}.

The twisted N -action on N is defined by z ? x = zxσ2(z)−1. Obviously, Q is stable
under the twisted action of N . Moreover, ψM(gz) = z−1ψM(g)σ2(z). Hence
Im(ϕM)⊂ Q is the union of twisted N -orbits, and each twisted N -orbit gives rise
to a G00-orbit of homogeneous CSS. It follows from [Richardson 1982, §9] that Q
is a finite union of twisted N -orbits, which is sufficient for our purpose. (See also
the remark below.) �

Remark 3.6. Richardson’s results on twisted orbits [Richardson 1982, §9], specifi-
cally Proposition 9.1, are stated for a connected reductive group G, whereas we
apply them to the reductive nonconnected group N (in place of G). But his argument
can easily be adjusted to cover the case of nonconnected reductive groups. That is,
one can give a version of Richardson’s Proposition 9.1 for nonconnected groups G.

Definition 2. For a homogeneous CSS c1?⊂g1?, the irreducible component G00·c1?

of E is said to be standard.
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Since all big CSS in g1? are G0?-conjugate, their centralizers in g0? are essen-
tially “the same”. The centralizer in g0? of a homogeneous CSS splits, and these
splittings can be quite different. That is, dim zg(c1?)01 can be different for different
homogeneous CSS, and this leads to a new phenomenon that standard irreducible
components of E may have different dimensions, see (3-2). Moreover, there can
also be some “nonstandard” irreducible components of E that contain no semisimple
elements at all.

By Theorem 3.4, a necessary condition for E to be irreducible is that all homoge-
neous CSS in g1? are G00-conjugate, that is, there is only one standard component.
If c1? = a10⊕ a11 is a homogeneous CSS with dim a1i = di , then (d0, d1) is called
the dimension vector. Obviously, two homogeneous CSS with different dimension
vectors are not G00-conjugate.

Theorem 3.7. (1) If c1? = a10⊕ a11 is a homogeneous CSS with dimension vector
(d0, d1), then d0 6 dim c10 and d1 6 dim c11; hence dim c1? 6 dim c10+ dim c11.

(2) All homogeneous CSS in g1? are G00-conjugate if and only if dim c1?=dim c10+

dim c11.

Proof. (1) Being a toral subalgebra of g1 j , a1 j is contained in a little CSS in g1 j .

(2) “If” part. Let c1? and c̃1? = ã10⊕ ã11 be two homogeneous CSS. By part (1),
dim a01 = dim ã01 = dim c10. Therefore, both a01 and ã01 are little CSS, they are
both G00-conjugate, and we may assume that a01 = ã01. Consider then the Eσ-stable
reductive algebra zg(a10). As a10 is a central toral subalgebra, zg(a10) = a10⊕ s,
where s is reductive and Eσ-stable. By construction, s10 = {0} and a11, ã11 ⊂ s11.
Moreover, these are little CSS in s11 (otherwise, c1? or c̃1? wouldn’t be maximal).
Therefore, a01 and ã01 are S00-conjugate, which implies that c1? and c̃1? and G00-
conjugate.

“Only if” part. Assuming that dim c1? < dim c10 + dim c11, we construct two ho-
mogeneous CSS with different dimension vectors. First, let us take a little CSS
c10 and choose a little CSS in zg(c10)11, say ã11. This yields a homogeneous CSS
with dimension vector (dim c10, dim c1?−dim c10). On the other hand, one can start
with a little CSS c11, etc., which yields a homogeneous CSS with dimension vector
(dim c1?− dim c11, dim c11). �

Note that dim ci j > 0 whenever gi j 6= {0}. Therefore, a coincidence of CSS of
the form c11 = c1? or c10 = c1? certainly excludes the possibility of having a unique
standard component of E. For our test commutator (3-1), one may envisage several
examples of good behavior (not necessarily all together):

(1) All irreducible components of E are standard (possibly of different dimension).

(2) ϕ is surjective and equidimensional, and hence flat.

(3) E has a unique standard component, but there may be other components too.
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Property (3) always holds in the setting of Example 3.1, with any σ ; and for σ of
maximal rank, one gets a rare situation, where all three properties are satisfied. All
quaternionic decompositions of simple Lie algebras can be written out explicitly,
and then the presence of (3) amounts to a routine verification of the equality in
Theorem 3.7(2).

Proposition 3.8. Let {σ1, σ2} be a dyad. Then dim g10=dim g01 and ϕ :g10×g11→

g01 is onto. (Therefore, dimϕ−1(ξ)> dim g11 for all ξ ∈ g01.) Moreover, {0}× g11

is a standard irreducible component of E of minimal dimension.

Proof. Since dim gσ1 = dim gσ2 , we have dim g10 = dim g01. By Theorem 2.2(2),
any little CSS c11 ⊂ g11 is also a big CSS in g1?. Therefore, c11 is a homogeneous
CSS and G00·c11 = g11 is an irreducible component of E. Furthermore, if x ∈ c11 is
generic, then zg(x)∩ g1? = c11, that is, zg(x)∩ g10 = {0}. Therefore, dim[g10, x] =
dim g10, that is, [g10, x] = g01. �

4. Dyads of maximal rank and commuting varieties

Let {σ1, σ2} be a dyad of maximal rank, that is, both σ1 and σ2 are of maximal
rank. Recall that this implies that σ3 = σ1σ2 is inner, dim g01 = dim g10, and, by
Proposition 2.1, gσ3 = g00⊕ g11 is a Z2-grading of maximal rank. In particular, g11

contains a CSA of g and any CSS in g1? or g?1 is a CSA. The main result of this
section is the following.

Theorem 4.1. Let {σ1, σ2} be a dyad of maximal rank. Then

(i) the commutator mapping ϕ : g10×g11→ g01 is surjective and equidimensional,

(ii) each irreducible component of E= ϕ−1(0) is standard, that is, is the closure
of the G00-saturation of a homogeneous CSS in g1?, and

(iii) the ideal of E is generated by quadrics ϕ#(g∗01), where ϕ#
: k[g01]→ k[g10]⊗

k[g11] is the comorphism (that is, the scheme ϕ−1(0) is a reduced complete
intersection).

Proof. If q is a Eσ-stable reductive subalgebra of g, then Eq stands for the zero
fiber of the commutator q10 × q11 → q01. Clearly, Eq ⊂ E = Eg. Since σ1 and
σ2 are of maximal rank, the center of g, z(g), is contained in g11. Consequently,
Eg'E[g,g]×z(g) and without loss of generality, we may assume that g is semisimple.

By Proposition 3.8, ϕ is onto and dimE > dim g11. In this situation, ϕ is
equidimensional if and only if dimE= dim g11. If c1? is a homogeneous CSS, then
it is necessarily a CSA of g. That is, zg(c1?)01 = 0 for all homogeneous CSS and
dim G00·c1? = dim g11. Hence all the standard components of E have the same
(expected) dimension, and for (i) and (ii) it suffices to prove that there are no other
irreducible components.

To this end, we argue by induction on rk g= dim c11.
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– If dim c11 = 1, then g= sl2 and the assertion is true.

– Suppose that rk g> 1 and the assertion holds for all dyads of maximal rank
for semisimple algebras of rank smaller than rk g.

(1) Take (x, y) ∈ E and y ∈ g11, and let y = ys + yn be the Jordan decomposition.
Then [x, ys] = 0. If ys 6= 0, then yn ∈ s := [zg(ys), zg(ys)] and rk s < rk g. By
Lemma 1.2, σi |s, i = 1, 2, are again involutions of maximal rank. Let z denote the
center of zg(ys), so that zg(ys)= z⊕s and ys ∈ z. Since both σ1 and σ2 are of maximal
rank, z⊂ g11 and hence x ∈ s. By the induction assumption, (x, yn) ∈ s10⊕ s11 lies
in a standard irreducible component of Es. Obviously, adding a central summand
does not affect this property, hence (x, y) lies in a standard component of Ezg(ys).
As rk zg(ys)= rk g, this also means that (x, y) lies in a standard component of E.

(2) Hence it suffices to consider the case in which y = yn . Write N11 for the closed
set of all nilpotent elements in g11. Let K be an irreducible component of E, hence
dim K > dim g11. Then K1 := K ∩ (g10 ×N11) is a closed subvariety of K. If
K1 6= K, then, by part (1), all the points in K \ K1 belong to standard irreducible
components. Consequently, K must be one of the standard components.

(3) The next possibility is that K = K1. Let p : g10× g11→ g11 be the projection.
Then p(K) ⊂ N11, and therefore p(K) = G00·y is the closure of a nilpotent
G00-orbit.

If y=0, then K=g10×{0}. Let c10 be a little CSS. The fact that G00·(c10×{0})=
g10 × {0} is an irreducible component of E implies that zg(c10)11 = {0}, whence
c10 is also a CSS in g1?. That is, c10 is a CSA of g. (Incidentally, this means that
the (-1)-eigenspace of σ3 contains a CSA, that is, {σ1, σ2, σ3} is actually a triad.)
Anyway, we see that if y = 0, then such K appears to be a standard component.

(4) Finally, we prove that the case in which K = K1 and y 6= 0 is impossible.
Assuming the contrary, we would have

dim g11 6 dim K 6 dim G00·y+ dim p−1(y)

= dim g00− dim zg(y)00+ dim zg(y)10 = dim g11− dim zg(y)11+ dim zg(y)10.

The last equality uses Lemma 1.1. Hence, the existence of such a component K
would imply that dim zg(y)11 6 dim zg(y)10 for some nonzero y ∈N11 ⊂ g11. One
can rewrite the last condition so that it will only depend on the (inner) involution
σ3. Since {σ1, σ2} is a dyad, we have dim zg(y)10 = dim zg(y)01; and since σ3 is
inner and gσ3 = g00⊕ g11 is a Z2-grading of maximal rank, we have dim zg(y)11 =

dim zg(y)00+ rk gσ3 = dim zg(y)00+ rk g, see (1-2). Then

dim zg(y)11+ dim zg(y)00+ rk g= 2 dim zg(y)11 6 2 dim zg(y)10

= dim zg(y)10+ dim zg(y)01.
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In other words, if the assumption were true, we would have

dim(zg(y)∩ gσ3)+ rk g6 dim(zg(y)∩ g
(σ3)
1 ) (4-1)

for some nonzero nilpotent y ∈ g11. (Note that since gσ3 = g00⊕g11 is a Z2-grading
of maximal rank, g11 meets all nilpotent orbits in gσ3 [Antonyan 1982]. Therefore,
a priori, y can be any nonzero nilpotent element of gσ3 .) However, Theorem 4.4
shows that (4-1) is never satisfied if y 6= 0. This completes the proof of parts (i)
and (ii).

For (iii), it suffices to prove that each irreducible component of E contains a
point (x, y) such that dϕ(x,y) is onto, that is, Im dϕ(x,y) = g01, see [Richardson
1981, Lemma 2.3]. Since each irreducible component of E is the closure of the
G00-saturation of a homogeneous CSA, it contains a point (x, y) such that zg(x)01∩

zg(y)01 = {0} and then dϕ(x,y) is onto, as shown in the proof of Lemma 3.2. �

Remark 4.2. (1) For any inner σ ∈ Inv(g), there exist commuting involutions of
maximal rank σ1 and σ2 such that σ = σ1σ2, see Proposition 2.1. Therefore, there
are sufficiently many quaternionic decompositions, where Theorem 4.1 applies.

(2) For an arbitrary dyad {σ1, σ2}, it can happen that all irreducible components of
E are standard, but they have different dimensions. That is, ϕ : g10× g11→ g01 is
not equidimensional, but still any pair of commuting elements in g10× g11 can be
approximated by a pair of commuting semisimple elements.

Example 4.3. Let σ1 be an involution of g = son such that gσ1 = son−1. This
can be included in a dyad {σ1, σ2} such that gσ3 = son−2× so2. The quaternionic
decomposition is

g=
son−2 R($1)

R($1) R(0)
⊕

σ2

σ1,

where the trivial son−2-module R(0) is just the central torus so2 in gσ3 . Here
dim c10 = dim c11 = 1 and the zero fiber of multiplication g10× g11→ g01 consists
of two irreducible components, g10×{0}'kn−2 and {0}×g11'k. Both components
are standard.

The following auxiliary result does not refer to quaternionic decompositions; it
concerns the case of a sole involution.

Theorem 4.4. Let σ be an arbitrary involution of g and g = g0 ⊕ g1 the corre-
sponding Z2-grading. For any nonzero x ∈ g0, we have

dim gx
0 + rk g− dim gx

1 > 0. (4-2)
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More precisely, one always has dim gx
0 + rk g− dim gx

1 > 0 and the equality only
occurs if x = 0 and σ is of maximal rank.

Remark 4.5. For application to Theorem 4.1, we only need the case when x is
nilpotent and σ is inner. But, surprisingly, the assertion appears to be absolutely
general. Unfortunately, our proof is not conceptual, after all. Having successfully
reduced the problem to noneven nilpotent elements of g0, we then resort to case-
by-case considerations. Certainly, there must be a better proof!

Proof. Note that dim G·x is even and, therefore, the left-hand side in (4-2) is always
even; hence the more accurate assertion is that dim gx

0 + rk g− dim gx
1 > 2 for all

nonzero x ∈ g0.

(1) If x = 0, then we have dim g0+ rk g− dim g1 > 0, and the equality holds if and
only if σ is of maximal rank.

(2) If x is nonzero semisimple, then gx is a σ-stable reductive subalgebra and x is a
central element of gx that belongs to gx

0 . Write gx
= z⊕ s, where s= [gx , gx

] and
z is the center. Then dim z0 > 0 and

dim gx
0 + rk g− dim gx

1 = (dim s0+ rk s− dim s1)+ 2 dim z0 > 2.

(3) If x is nonnilpotent, then using the Jordan decomposition x = xs + xn , we
reduce the problem to the same property for the nilpotent element xn in the σ-stable
reductive subalgebra zg(xs).

(4) From now on, we assume that x = e ∈ g0 is nonzero and nilpotent. Choose an
sl2-triple {e, h, f } ⊂ g0. Suppose that e is even in g, that is, the eigenvalues of ad h
in g are even. Then dim gh

= dim ge and dim gh
0 = dim ge

0. Thus, the assertion is
reduced to the same assertion for h ∈ g0 and we are again in the setting of part (2).

(5) Suppose that e is even in g0, but not in g. That is, the eigenvalues of ad h in g0

are even, but ad h has also some odd eigenvalues in g1. Decomposing g into the
sum of σ-stable ideals, we may assume that either g is simple or g= s⊕ s, where s

is simple and σ is the permutation involution. In the second case, if e is even in
g0 =1(s), then e is also even in g. Therefore, without loss of generality, we may
assume that g is simple.

Let us decompose g1 according to the parity of ad h-eigenvalues: g1=godd
1 ⊕g

even
1 .

By assumption, godd
1 6= 0. Then g̃ := [godd

1 , godd
1 ]⊕godd

1 is an ideal of g that does not
meet geven

1 . Therefore, g̃= g and geven
1 = 0. Hence ge

0 = (g
e)even and ge

1 = (g
e)odd.

Consider the Z-grading of g determined by the eigenvalues of h, g=
⊕

i∈Z g(i). The
sl2-theory shows that dim(ge)even

= dim g(0) and dim(ge)odd
= dim g(1). Hence

dim ge
0= dim g(0) and dim ge

1= dim g(1). Finally, it follows from Vinberg’s lemma
[Vinberg 1976, §2.3] that the group G(0) has finitely many orbits in g(1), whence
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dim g(1) 6 dim g(0). Thus, in this case the stronger inequality dim ge
0 > dim ge

1
holds.

(6) Thus, it remains to handle the case in which a nilpotent element e ∈ g0 is not
even. Here we do not know an a priori argument and resort to the case-by-case
considerations.

(7) If g is a classical Lie algebra, then the nilpotent orbits in g and g0 are param-
eterised by partitions, and we use the explicit formulae for dim ge and dim ge

0 in
terms of partitions. Some of these calculations are presented in the Appendix.

(8) If g is an exceptional simple Lie algebra, then, for any noneven nilpotent element
e ∈ g0, we determine the corresponding nilpotent orbit in g and then compare the
dimensions of ge

0 and dim ge. While rather boring, the verification is, however, not
very difficult.

For σ inner, we use the seminal work [Dynkin 1952, Tables 16–20], in which
Dynkin computed, for all simple three-dimensional subalgebras in exceptional
Lie algebras, the “minimal including regular semisimple subalgebras” and the
corresponding weighted Dynkin diagrams. See also comments on this article in
[Dynkin 2000, pp. 309–312], where a few errors occurring in [Dynkin 1952] are
corrected.

To convey the idea, consider some examples related to an (inner) involution of
g= E8 with g0 = D8 = so16. There are 33 noneven nilpotent orbits in g0. (Recall
that e ∈ so16 is noneven if and only if the partition of e contains both odd and even
parts.)

(a) Let e ∈ so16 be a nilpotent element corresponding to the partition (11, 2, 2, 1).
Using [Hesselink 1976, Corollary 3.8(a)] or [Kraft and Procesi 1982, Proposi-
tion 2.4], we obtain dim ge

0= 16. This partition also shows that a minimal including
regular semisimple subalgebra of D8 containing e is of type D6+A1. (Here (11, 1)
is the partition of the regular nilpotent element of D6 and any pair of equal parts
(n, n) gives rise to the simple summand An−1.) Then using [Dynkin 1952, Table 20],
we detect the simple three-dimensional subalgebra in E8 with minimal including
regular semisimple subalgebra of type D6+A1. The corresponding nilpotent orbit
has the modern label E7(a3) and here dim ge

= 28. Hence dim ge
1 = 12 and (4-2)

holds.

(b) Let e ∈ so16 correspond to the partition (7, 5, 2, 2). By [Hesselink 1976, Corol-
lary 3.8(a)], dim ge

0 = 22. Here a minimal including regular semisimple subalgebra
is of type D6(a2)+A1, because the partition (7, 5) determines the distinguished
nilpotent orbit in D6, which is denoted by D6(a2). Using [Dynkin 1952, Table 20],
we detect the corresponding nilpotent orbit in g. This orbit is denoted nowadays by
E7(a5) and here dim ge

= 42.
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(c) Let e ∈ so16 correspond to the partition (7, 4, 4, 1). By [Hesselink 1976, Corol-
lary 3.8(a)], dim ge

0 = 22. Here a minimal including regular semisimple subalgebra
is of type D4+A3. Using [Dynkin 1952, Table 20], we detect the corresponding
nilpotent orbit in g. This orbit is denoted nowadays by D6(a2) and here dim ge

= 44.

If σ is outer, then g is of type E6. In the respective two cases, we use the information
on e ∈ g0 for decomposing g1 as a 〈e, h, f 〉-module, which allows us to compute
dim ge

1. �

A case-free proof of Theorem 4.4 might be derived from the following conjectural
invariant-theoretic property of centralizers. Recall that g= g0⊕ g1 and e ∈ g0. Let
Ge

0 be the connected subgroup of G0 with Lie algebra ge
0. Then Ge

0 acts on (ge
1)
∗

and we write k((ge
1)
∗)G

e
0 for the field of Ge

0-invariant rational functions on (ge
1)
∗.

Conjecture 4.6. For any e ∈ g0 ∩N , we have trdeg k((ge
1)
∗)G

e
0 6 rk g.

By Rosenlicht’s theorem [Brion 2000, Chapter I.6],

trdeg k((ge
1)
∗)G

e
0 = dim ge

1− max
ξ∈(ge

1)
∗

dim Ge
0·ξ.

If e 6= 0, then the one-dimensional unipotent group exp(te), t ∈ k, acts trivially on
ge

1 and hence maxξ∈(ge
1)
∗ dim Ge

0·ξ 6 dim ge
0− 1. Therefore, if the conjecture were

true, we would obtain dim ge
1− dim ge

0+ 16 rk g, as required. Perhaps, this can be
related to the Elashvili conjecture, which asserts that trdeg k((ge)∗)G

e
= rk g for all

e ∈N .

Remark 4.7. Inequality (4-2) can be written as dim gx
0 > dim Bx , where Bx is the

variety of Borel subalgebras of g containing x (the Springer fiber of x). (Recall that
dim Bx = (dim gx

− rk g)/2.)

5. Commuting varieties and restricted root systems

Here we assume that {σ1, σ2} is a dyad. As above, we consider the commutator map
ϕ : g10×g11→ g01 and the Eσ-commuting variety E=ϕ−1(0). Then dimE> dim g11

and E has a standard irreducible component of expected dimension dim g11; namely,
{0}× g11, see Proposition 3.8.

In this section, we describe a method for detecting subvarieties of E of large
dimension. This method is based on comparing restricted root systems for little and
big symmetric spaces related to the quaternionic decomposition in question.

Take a little CSS c11 ⊂ g11. Then, by Theorem 2.2(2), c11 is also a CSS in g1?

and g?1, which is equivalent to that zg(c11)10 = zg(c11)01 = {0} and zg(c11)11 = c11.
Our idea is to replace c11 with a proper subspace c̃ such that

c̃ still contains G00-regular elements. (5-1)
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Then we consider ĉ := zg(c̃)10× c̃⊂ E and compute the dimension of G00·ĉ. Since
G00·c11 = g11, we have

dim G00+ dim c11− dim zg(c11)00 = dim g11.

Set T00(ĉ)= {g ∈ G00 | g·y ∈ ĉ for generic y ∈ ĉ}, and likewise for c11. In view of
(5-1), we have dim T00(ĉ)= dim TT00(c11)= dim zg(c11)00. Then

dim G00·ĉ= dim G00+ dim ĉ− dim T00(ĉ)

= (dim G00+dim c11−dim zg(c11)00)+(dim zg(c̃)10−dim c11+dim c̃)

= dim g11+ (dim ĉ− dim c11). (5-2)

Thus, we obtain a subvariety of larger dimension, if dim zg(c̃)10+dim c̃> dim c11.
Of course, it is not always possible to construct such a c̃. Our sufficient condition
exploits restricted root systems. Set h= gσ3 , and let H denote the corresponding
connected (reductive) subgroup of G. Write σ̄ for the restriction to H of σ1 or σ2.

Let C11= exp(c11)⊂ H ⊂G be the corresponding torus. The coincidence of CSS
means that C11 is a maximal σ1-anisotropic torus in G and a maximal σ̄-anisotropic
torus in H . Accordingly, one obtains the inclusion of two restricted root systems
relative to C11:

9(H/G00)⊂9(G/G0?).

Identifying restricted roots and their differentials, one may consider restricted roots
as linear forms on c11. Then the set of G00-regular elements of c11 is

{x ∈ c11 | µ(x)6=0 for all µ ∈9(H/G00)}

and the set of G0?-regular elements is {x ∈ c11 | µ(x)6=0 for all µ ∈9(G/G0?)}.

Proposition 5.1. Assume that µ ∈9(G/G0?) and rµ 6∈9(H/G00) for any r ∈Q.
If mµ > 1, then dimE> dim g11+mµ− 1> dim g11.

Proof. Under this assumption, c̃ :=Ker(µ)⊂ c11 still contains G00-regular elements,
and dim c̃=dim c11−1. Furthermore, zg(c̃) is Eσ-stable and zg(c̃)= zg(c11)⊕gµ⊕g−µ.
Recall that zg(c11) is contained in g00⊕ g11. Clearly, gµ⊕ g−µ is also Eσ-stable and
is contained in g01⊕ g10.

Since {σ1, σ2} is a dyad, dim(gµ ⊕ g−µ) ∩ g10 = dim(gµ ⊕ g−µ) ∩ g01 = mµ.
Hence dim zg(c̃)10 = mµ, and the assertion follows from (5-2). �

Remark 5.2. (1) Such a construction gives nothing, if all root multiplicities in
9(G/G0?) are equal to 1. For instance, if σ1 is of maximal rank.

(2) The procedure described in the previous proof admits obvious modifications.
Roughly speaking, if there are linearly independent roots µ1, µ2, . . . , in9(G/G0?),
with large multiplicities, such that Q− span{µ1, µ2, . . . } ∩9(H/G00)=∅, then
one can take c̃= Ker(µ1, µ2, . . . ), see Proposition 6.5.
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Although it is convenient to stick to one specific Eσ-commuting variety in theoret-
ical considerations, it may happen that in concrete examples different Eσ-commuting
varieties exhibit different good (or bad) properties.

Example 5.3. Let σ1 be an outer involution of g = sl2n with gσ1 = sp2n . In
[Panyushev 2013, §2], we gave a method for describing all the dyads including
σ1, which exploits the restricted root system 9(G/Gσ1). This implies that one can
find σ2 conjugated σ1 such that the inner involution σ3 = σ1σ2 has the fixed-point
subalgebra h=sl2m⊕sl2n−2m⊕t1. The corresponding quaternionic decomposition is

sl2n =
sp2m ⊕ sp2n−2m R($1)R($

′

1)

R($1)R($
′

1) R($2)+R($
′

2)+R(0)
⊕

σ2

σ1,

where $i (resp. $ ′i ) are fundamental weights of sp2m (resp. sp2n−2m), and R(λ) is
a simple module of the respective simple Lie algebra with highest weight λ.

• Here G = SL2n , G0? = Sp2n , H = SL2m × SL2(n−m) × T1, and G00 = Sp2m ×

Sp2(n−m). According to [Helgason 1978, Chapter X, Table VI], we have 9(G/G0?)

= An−1, 9(H/G00) = Am−1+An−m−1, and all root multiplicities in 9(G/G0?)

equal 4. Since 9(H/G00) has fewer roots, Proposition 5.1 implies that E has an
irreducible component of dimension greater than dim g11+ (4−1) and our test map
ϕ : g10× g11→ g01 is not equidimensional.

• Here dim c01 = dim c10 = min{m, n − m} and any big CSS in g10 ⊕ g01 is of
dimension 2 min{m, n−m}. By Theorem 3.7(2), this means that all homogeneous
CSS in g10⊕ g01 are G00-conjugate, and therefore the Eσ-commuting variety related
to the commutator g10⊕ g01→ g11 has a unique standard component.

Example 5.4. Let σ be an involution of g = E7 with gσ = D6 × A1. It can be
included in two nonconjugate triads [Kollross 2009]. One of them has g00=D4×A3

1,
with quaternionic decomposition

E7 =
D4×A3

1 R($4)R($)R($
′′)

R($3)R($)R($
′) R($1)R($

′)R($ ′′)
⊕

σ2

σ1,

where $ , $ ′, and $ ′′ are the fundamental weights of the simple factors of A3
1, and

$i are fundamental weights of D4. Here dim gi j = 32 for (i j) 6= (00) and our test
commutator map is

ϕ : R($3)R($)R($
′)×R($1)R($

′)R($ ′′)→ R($4)R($)R($
′′).



Commuting involutions, commuting varieties, and simple Jordan algebras 1525

Using [Helgason 1978, Chapter X, Table VI], we find that rk(E7/D6 ×A1) = 4
and the restricted root system 9(E7/D6 × A1) is of type F4; whereas rk(D6 ×

A1/D4×A3
1)= rk(D6/D4×A2

1)= 4 and the corresponding root system is of type
B4. The long (resp. short) roots of B4 are also long (resp. short) roots of F4, and
the multiplicities are mlong = 1 and mshort = 4. However, the root system B4 has
fewer short roots than F4. Therefore, Proposition 5.1 applies here, and E has an
irreducible component of dimension at least mshort− 1+ dim g11 = 35.
Example 5.5. Let σ be an involution of g = F4 with gσ = B4 = so9. Up to
conjugacy, this involution can be included in a unique triad [Kollross 2009], with
quaternionic decomposition

F4 =
D4 R($4)

R($3) R($1)
⊕

σ2

σ1,

where dimR($i ) = 8 and the main diagonal represents the little involution of
gσ3 = B4 = so9. Our test commutator is the bilinear D4-equivariant mapping
R($3) × R($1)→ R($4). Here rk(F4/B4) = 1 and the restricted root system
9(F4/B4) is of type BC1. The restricted root system 9(B4/D4) is of type C1.
Since all little and big CSS are one-dimensional, Proposition 5.1 does not help here.
Actually, the only standard components of E are g10×{0} and {0}× g11, both of
dimension eight. Below, we describe an “intermediate” nonstandard irreducible
component of dimension eleven.

Let x ∈ g11 ' R($1) be a nonzero nilpotent element. All such elements form
a sole seven-dimensional SO8-orbit. By Lemma 1.1, dim SO9·x = 2·7 = 14 and
hence dim(so9)

x
= 22. The only nilpotent SO9-orbit of dimension fourteen in so9

is the orbit of short root vectors. The short roots of gσ3 = B4 are also short roots
of g= F4. Therefore, a minimal including regular semisimple subalgebra is Ã1 in
Dynkin’s notation. This implies that dim zg(x)= 30 and completely determines the
dimension matrix of the spaces zg(x)i j :

21 4

4 1
.

Here the one-dimensional space g11 is just the line kx . Then dim G00·(zg(x)10⊕ kx)
= 4+7= 11. Using the projection E→ g11, one can prove that G00·(zg(x)10⊕ kx)
is the only new irreducible component of E. It is contained in N10×N11. Thus, E
has three irreducible components.

6. Triads of Hermitian involutions and simple Jordan algebras

In this section, g is assumed to be simple. We say that σ ∈ Inv(g) is Hermitian if g0

is not semisimple. All these involutions are associated with Z-gradings of g with
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only three nonzero terms (short gradings), that is, with parabolic subalgebras with
abelian nilpotent radical. Let g= g(−1)⊕g(0)⊕g(1) be a short grading. Then p=

g(0)⊕ g(1) is a (maximal) parabolic subalgebra with abelian nilpotent radical, and
one defines a Hermitian involution σ by letting gσ = g(0) and g(σ )1 = g(−1)⊕g(1).

Since g is simple, the center of g(0) is one-dimensional and there is a unique
h ∈ g(0) such that g(i) = {x ∈ g | [h, x] = 2i x}. By [Vinberg 1976, §2.3], the
reductive group G(0) has finitely many orbits in g(1). Let O be the dense G(0)-orbit
in g(1) and e ∈ O. Set g(i)e = g(i)∩ ge.

For future reference, we provide a proof of the following well-known assertion.

Lemma 6.1. h ∈ [g, e] ⇐⇒ g(0)e is reductive.

Proof. (1) If h ∈ [g, e], then h = [e, f ] for some f ∈ g(−1) and therefore, {e, h, f }
is an sl2-triple. Then g(0)e = zg(e, h, f ), which is reductive.

(2) For e∈O, we have dim g(0)e=dim g(0)−dim g(1). Using the Kirillov–Kostant
form associated with e, we see that dim g(−1)−dim g(−1)e=dim g(0)−dim g(0)e.
Hence g(−1)e = 0 and ge

= g(0)e ⊕ g(1). Set k = g(0)e, and let ( )⊥ denote
the orthocomplement with respect to the Killing form. Then [g, e] = (ge)⊥ =

g(1)⊕ (k⊥∩g(0)). Now, if k is reductive, then the restriction of the Killing form to
k is nondegenerate and m := k⊥ ∩ g(0) is a k-stable complement to k in g(0). Since
dim[g(−1), e] = dim g(1) = dim g(0)− dim k, we conclude that m = [g(−1), e].
Thus, e acts on g as follows:{

g(−1)−→∼ m−→∼ g(1)→ 0

k→ 0.
(6-1)

Let {e, h̃, f } be an sl2-triple with h̃∈g(0) and f ∈g(−1). Such a triple always exists,
see [Vinberg 1979, §2]. Then (6-1) shows that g is a sum of three-dimensional and
one-dimensional sl2-modules, and that gh̃

= k⊕m. Since g(0) has a one-dimensional
center, one must have h̃ = h. Thus, h ∈ [g, e]. �

Theorem 6.2. Suppose that a Hermitian involution σ = σ1 has the property that
g(0)e is reductive. Then σ1 can be included in a triad.

Proof. Using the notation of the previous proof, we set k=g(0)e and take (the unique)
f ∈ g(−1) such that h = [e, f ]. Then {e, h, f } is an sl2-triple, [e, g(−1)] =:m is
a complementary k-submodule to k in g(0), and [e, [e, g(−1)]] = g(1). This also
shows that g(−1), m, and g(1) are isomorphic k-modules.

In this case, k is the fixed-point subalgebra of an involution of g(0) and for
this involution the (−1)-eigenspace is m (see [Panyushev 1994a, proof of Proposi-
tion 3.3]). Let σ2 denote this involution of g(0). Then σ2(h)=−h. We extend σ2 to
the whole of g by letting σ2(e)= f . Then σ2([x, e])= [−x, f ] for all x ∈m, which
defines σ2 on g(1) and shows that σ2(g(1))⊂ g(−1). Clearly, σ1 and σ2 commute.
Furthermore, σ1 and σ2 are different involutions of the three-dimensional simple
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subalgebra 〈e, h, f 〉. This implies that σ1, σ2, and σ3 = σ1σ2 are already conjugate
with respect to PSL2 = Aut〈e, h, f 〉. In particular, {σ1, σ2, σ3} is a triad. �

This theorem can be derived from the classification of triads, but our direct
construction allows us to visualize the resulting quaternionic decomposition rather
explicitly. We have

g=
k m

[m, e− f ] [m, e+ f ]
⊕

σ2

σ1. (6-2)

Here h ∈ m= g01, e+ f ∈ [m, e− f ] = g10, and e− f ∈ [m, e+ f ] = g11. Note
also that k⊕m= g(0) and [m, e− f ]⊕ [m, e+ f ] = g(1)⊕ g(−1).

Remark. If g(0)e is not reductive, then such a triad may not exist. For instance, if
g= sl2n and g0= slm×sl2n−m×t1 with n 6=m and m odd, then there is no respective
triad, see [Vinberg 2005, 3.2].

As is well known, if g(0)e is reductive, then g(−1) has a structure of a simple
Jordan algebra. Namely, for x, y ∈ g(−1), we set

x ◦ y = [x, [e, y]] ∈ g(−1).

Then {g(−1), ◦} is a simple Jordan algebra [Tits 1962; Kantor 1964]. (See also
[Kac 1980, §4] for possible generalizations). Here k = g00 is the Lie algebra of
derivations of {g(−1), ◦}. The triad constructed in Theorem 6.2 is called a Jordan
triad.

Definition 3. The commuting variety of a Jordan algebra {J, ◦} is

E(J)= {(x, y) | x ◦ y = 0} ⊂ J× J.

The Jordan triad (6-2) provides a link between the commutator mapping ϕ :
g10× g11→ g01 and the commuting variety of the simple Jordan algebra g(−1).

Theorem 6.3. The commuting variety of the Jordan algebra {g(−1), ◦} is isomor-
phic to the zero fiber of the commutator mapping ϕ : g10 × g11 = [m, e − f ] ×
[m, e+ f ] →m= g01.

Proof. Any element of m can uniquely be written as [x, e] with x ∈ g(−1). So, if
[x, e], [y, e] ∈m are arbitrary, then [[x, e], e− f ] ∈ g10 and [[y, e], e+ f ] ∈ g11 are
arbitrary and ϕ takes the corresponding pair to

[
[[x, e], e− f ], [[y, e], e+ f ]

]
∈

m= g01. It is a good exercise in the Jacobi identity to check that[
[[x, e], e− f ], [[y, e], e+ f ]

]
= 2

[
[[x, e], y], e

]
.
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(One should use the fact that h = [e, f ] is the defining element of the short grading.
Hence [[x, e], f ] = 2x , etc.) Since a = [[x, e], y] ∈ g(−1) and ge

∩g(−1)= 0, we
have [a, e] = 0 if and only if a = 0. Therefore,

([[x, e], e− f ], [[y, e], e+ f ]) ∈ ϕ−1(0) ⇐⇒ [[x, e], y] = 0

⇐⇒ (x, y) ∈ E(g(−1)). �

If J is a simple Jordan algebra, then the operator L x : J→ J, L x(y) = x ◦ y,
is invertible for almost all x . Therefore, J× {0} and {0} × J are two irreducible
components of E(J). Clearly, there are some other irreducible components. It is an
interesting problem to determine all the components of E(J) and their dimensions.

The list of Hermitian involutions leading to Jordan triads and simple Jordan
algebras is given in Table 1. We point out the semisimple subalgebra s=[g(0), g(0)]
and the structure of g(1) as a s-module. Here the $i are the fundamental weights
of s.

Remark. The Jordan multiplication in the space Skew2n of usual skew-symmetric
matrices is defined as follows. If A, B, J ∈ Skew2n and J is nondegenerate, then
A ◦ B = 1

2 (AJ B+ B J A).

There are some coincidences for small n. Namely,

Item 1 (n = 1)' Item 2 (n = 1), Item 1 (n = 2)' Item 4 (n = 3).

Furthermore, if n = 1 in Item 3, then g is not simple. This explains the conditions
on n given in the last column. For Item 2, the Hermitian involution (of sp2n) is of
maximal rank and the respective Jordan algebra is the algebra Symn of symmetric
n× n matrices. Therefore, by Theorems 4.1 and 6.3, the multiplication morphism
◦ : Symn × Symn→ Symn is equidimensional, that is, dimE(Symn)= dim Symn =

(n2
+ n)/2.

In all other cases, the multiplication morphism J×J→ J is not equidimensional,
see Proposition 6.5. Before checking this, we give an “elementary” explanation for
the Jordan algebra of all matrices (Item 1).

g s g(1) k J

1 sl2n sln⊕sln R($1)⊗R($
′

1) sln n×n matrices n>1
2 sp2n sln R(2$1) son symmetric n×n matrices n>2
3 so4n sl2n R($2) sp2n skew-symm. 2n×2n matrices n>2
4 son+2 son R($1) son−1 spin-factor n>4
5 E7 E6 R($1) F4 the Albert algebra

Table 1. List of Hermitian involutions leading to Jordan triads and
simple Jordan algebras.
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Example 6.4. Let M be the associative (and also Lie and Jordan) algebra of all
n × n matrices. That is, we exploit the usual matrix product, the Lie bracket
[A, B] = AB− B A, and the Jordan product A ◦ B = (AB+ B A)/2. Let χ(B)=
det(λI − B)=

∑
i χn−i (B)λi be the characteristic polynomial of a matrix B. Let

zJ(B) and zLie(B) denote the Jordan and Lie centralizers of B, respectively. Consider
the subvariety

M〈2〉 = {B ∈M | χ2i+1(B)= 0 for all i}.

It is an irreducible complete intersection and codimM〈2〉 = [n+1/2] (see [Richard-
son 1987, Lemma 5.3]). We also need the dense open subset Mreg of regular
elements (in the Lie algebra sense) and the subvariety

Mev
= {B ∈M | B is conjugate to −B}.

If B ∈Mev and AB A−1
= −B, then A ∈ zJ (B) and the mapping C ∈ zLie(B) 7→

AC ∈ zJ(B) is a linear isomorphism. In particular, dim zJ(B)= dim zLie(B). The
following is clear:

• M〈2〉 ∩Mreg
6=∅ (it contains a regular nilpotent element).

• Mev
⊂M〈2〉 and Mev

∩Mreg
6=∅.

Claim. We have M〈2〉 ∩Mreg
⊂ Mev. In particular, dim zJ (B) = n for almost all

B ∈M〈2〉.

Proof. If B ∈M〈2〉∩Mreg, then B and−B are both regular and have the same Jordan
blocks and the same eigenvalues. Hence B and −B are conjugate. �

Let EJ (M) denote the Jordan commuting variety and p : EJ (M) → M the
projection to the first factor. The previous analysis implies that

dim p−1(M〈2〉 ∩Mreg)= dimM〈2〉+ n = n2
+ [n/2].

Thus, dimEJ (M)>n2
+[n/2]>dimM. One can prove that this yields an irreducible

component of maximal dimension; that is, dimEJ (M)= n2
+ [n/2].

Table 2 contains information on the restricted root systems associated with Jordan
triads. For a Hermitian involution σ , we point out Lie algebras g, h= gσ , g00 = k,
the restricted root systems 9(G/H) and 9(H/G00), and the multiplicity of the
short roots in 9(G/H), denoted mshort. For all items in Table 2, the multiplicity
of long roots in 9(G/H) equals 1 and 9(H/G00) is embedded in 9(G/H) as a
subset of short roots.

The root system of type Cn has some short roots that are not roots of An−1.
Therefore, Proposition 5.1 guarantees the existence of a subvariety in E(J) of
dimension dim J+mshort− 1, which is larger than the dimension of a generic fiber
if mshort > 1. However, a clever choice of c̃⊂ c11 (see Remark 5.2(2)) allows us to
get a better lower bound on dimE(J):
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g h g00 9(G/H) mshort 9(H/G00)

1 sl2n sln ⊕ sln ⊕ t1 sln Cn 2 An−1

2 sp2n gln son Cn 1 An−1

3 so4n gl2n sp2n Cn 4 An−1

4 son+2 son ⊕ so2 son−1 C2 n− 2 A1

5 E7 E6⊕ t1 F4 C3 8 A2

Table 2. Restricted root systems associated with Jordan triads.

Proposition 6.5. For all items in Table 2, we have

dimE(J)> dim J+ (mshort− 1)[r/2],

where r is the rank of 9(G/H).

Proof. Using Theorem 6.3, we identify E(J) with the zero fiber of the quadratic
covariant g10× g11→ g10 and work in the setting of Section 5. Let ε1, . . . , εr be
the usual basis of X(C11)⊗Q such that the roots of 9(G/H) are ±εi ± ε j (i 6= j )
and ±2εi . The roots in 9(H/G00) are ±(εi − ε j ). Therefore, g10⊕ g01 is the sum
of root spaces corresponding to ±(εi + ε j ) and ±2εi . Set

c̃=
{

x ∈ c11
∣∣ (εi + εr+1−i )(x)= 0 for i = 1, 2, . . . ,

[r+1
2

]}
.

Then dim c̃ = [r/2], and we have 2[r/2] short roots of g10 ⊕ g01 vanishing on c̃.
Moreover, if r is odd, then the long roots ±2ε[r+1/2] also vanish on c̃. Therefore,

dim zg(c̃)10 =
1
2

dim(zg(c̃)∩ (g10⊕ g01))=

{
mshort·r/2 if r is even,
mshort·[r/2] + 1 if r is odd.

In both cases, this yields dim G00·(zg(c̃)10⊕ c̃)= dim g11+ (mshort− 1)[r/2]. �

For the Jordan algebra of all matrices (related to a Hermitian involution of
sl2n), the above construction of c̃ gives exactly the subvariety of Example 6.4. It
is plausible that the lower bound of Proposition 6.5 provides the exact value of
dimE(J).

Remark 6.6. It is curious that, for all Hermitian involutions leading to Jordan
triads, the restricted root system is of type Cn; whereas, for all other Hermitian
involutions, the restricted root system 9 is of type BCn . Namely, the symmetric
pairs gln+m ⊃ gln × glm × t1 (n < m) and so4n+2 ⊃ gl2n+1 lead to 9 ' BCn;
E6 ⊃ D5× t1 leads to 9 ' BC2.

Appendix: Computations in classical Lie algebras

Here we provide some computations related to the proof of Theorem 4.4 for nilpotent
elements in classical Lie algebras.
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Let λ= (λ1, . . . , λs) be a partition and e ∈ gln a nilpotent element corresponding
to λ, also denoted by e ∼ λ. Then

∑
λi = n and

dim(gln)
e
= n+ 2

∑
i< j

min{λi , λ j }, dim(sln)e = dim(gln)
e
− 1. (A.1)

If e is a nilpotent element in son or sp2n , with respective parity conditions on λ,
then

dim(sp2n)
e
=

dim(gl2n)
e
+ #{i | λi is odd}

2
, (A.2)

dim(son)
e
=

dim(gln)e− #{i | λi is odd}
2

. (A.3)

See [Hesselink 1976, (3.8); Kraft and Procesi 1982, 2.4]. Below, we consider several
symmetric pairs with classical g and check that (4-2) is satisfied for all nonzero
nilpotent elements of g0. There is no need to consider only noneven nilpotent
elements in g0, since the computations go through without this assumption.

A.1 (g,g0)= (sln, son). If e ∈ son and e ∼ λ, then using (A.1) and (A.3) yields

dim ge
0=

dim(gln)e− #{i | λi is odd}
2

, dim ge
1=

dim(gln)e+ #{i | λi is odd}
2

−1.

Therefore, dim ge
0−dim ge

1+(n−1)= n−#{i |λi is odd}. Here the parity condition
means that each even part of λ occurs an even number of times. Since e 6= 0, that
is, λ 6= (1, . . . , 1), the minimal value is 2, and it is attained for λ= (3, 1n−3).

A.2 (g,g0) = (sp2n,gln). If e ∈ gln and e ∼ λ, then the partition of e as an
element of sp2n is obtained by doubling λ, that is, each part λi is replaced with
(λi , λi ). Then dim ge

0 = dim(gln)e is given by (A.1), and using (A.2) yields

dim ge
1 = 2

∑
i

[
λi + 1

2

]
+ 2

∑
i< j

min{λi , λ j }.

Hence

dim ge
0− dim ge

1+ n = 2n− 2
∑

i

[
λi + 1

2

]
= n− #{i | λi is odd}.

For e 6= 0, the minimal value 2 is attained for λ= (2, 1n−2) or (3, 1n−3).

A.3 (g,g0)= (so2n,gln). If e ∈ gln and e∼ λ, then dim ge
0 = dim(gln)e is again

given by (A.1), using this time (A.3), and we obtain

dim ge
1 = 2

∑
i

[
λi

2

]
+ 2

∑
i< j

min{λi , λ j }.
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Hence the result is even better than in the previous case. Indeed, we have here
dim ge

0− dim ge
1 > 0.

A.4 (g,g0)= (sln+m, sln×slm×t1). Here n,m > 1. A nilpotent element e ∈ g0

is determined by two partitions, e ∼ (λ;µ)= ((λ1, . . . , λk); (µ1, . . . , µs)). Using
(A.1), we obtain

dim ge
0 = n+m− 1+ 2

∑
i< j

min{λi , λ j }+ 2
∑
i< j

min{µi , µ j },

dim ge
1 = 2

∑
i, j

min{λi , µ j }.

Therefore,

dim ge
0− dim ge

1+ (n+m− 1)

= 2
(

n+m− 1+
∑
i< j

min{λi , λ j }+
∑
i< j

min{µi , µ j }−
∑
i, j

min{λi , µ j }

)
.

Since n =
∑

i λi , m =
∑

j µ j , and
∑

i< j min{λi , λ j } =
∑

i>2(i − 1)λi , half of the
right-hand side equals

F(λ;µ) :=
k∑

i=1

iλi +

s∑
j=1

jµ j − 1−
k∑

i=1

s∑
j=1

min{λi , µ j }.

Arguing by induction, we prove that F(λ;µ)> 0 for all λ and µ, and if n+m > 3,
then F(λ;µ) > 0.

(1) First, F(1n
; 1m)= (n−m)2/2+(n+m)/2−1, which is positive if (n,m) 6= (1, 1).

(2) The inequality is easily verified, if λ or µ consists of only one part.

(3) Suppose that k > 2 and s > 2. Write λ= (λ1,λ
′) and µ= (µ1,µ

′). Then

F(λ;µ)=F(λ′;µ′)+max{λ1, µ1}+
∑
i>2

(λi−min{λi , µ1})+
∑
j>2

(µj−min{λ1, µj })

>F(λ′;µ′)+max{λ1, µ1}>max{λ1, µ1}.

Here max{λ1, µ1} arises as λ1+µ1−min{λ1, µ1}.
We omit the computations related to the remaining classical symmetric pairs

(sl2n, sp2n), (sp2n+2m, sp2n × sp2m), and (son+m, son × som).
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