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We present a method to determine Frobenius elements in arbitrary Galois exten-
sions of global fields, which may be seen as a generalisation of Euler’s criterion.
It is a part of the general question how to compare splitting fields and identify
conjugacy classes in Galois groups, which we will discuss as well.
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1. Introduction

Take a Galois extension L/Q. Associated to each (unramified) prime p is a Frobe-
nius element Frobp, an element of the Galois group that reduces to x 7→ x p modulo
a prime above p. In the setting when L is the splitting field of a polynomial f ,
this element is intimately connected to the factorisation of f mod p: Viewed as a
permutation of the roots, Frobp is a product of disjoint cycles whose lengths are
the degrees of the irreducible factors.

In this paper, we address the question of how to determine Frobp. Generally,
we study the problem of how to compare splitting fields and identify conjugacy
classes in Galois groups; see Sections 2–4. Our motivation was computing L-series
of Artin representations for arbitrary Galois groups, which requires the knowledge
of Frobenius elements at all primes; see Remark 5.8 and Example 7.7. Obtaining
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them directly from the definition is impractical unless L either has small degree or
is particularly simple to work with.

Let us briefly illustrate the various standard techniques for computing Frobenius
elements. As before, L is the splitting field of a polynomial f ∈ Z[x], and we write
G = Gal(L/Q).

Quadratic fields. Suppose f (x)= x2
− d , so L =Q(

√
d ). For a prime p - 2d , the

Frobenius element is given by the Legendre symbol:

Frobp = id ⇐⇒ f (x) mod p is reducible ⇐⇒

(d
p

)
= 1.

There are two essentially different methods to compute it:

(A) Euler’s criterion
( d

p

)
≡ d(p−1)/2 mod p.

(B) Quadratic reciprocity.

Kummer extensions. Suppose f (x)= x3
−2, so L =Q(ζ3,

3
√

2) and G = S3. For
p 6= 2, 3 the number of cube roots of 2 mod p determines whether Frobp is trivial,
a 3-cycle or a transposition. It is easy to see that the last case is equivalent to
p ≡ 2 mod 3. There are analogues of both (A) and (B) to distinguish between the
first two cases:

(A) Euler’s criterion: Since F×p is cyclic,

2 is a cube mod p ⇐⇒ 2(p−1)/3
≡ 1 mod p.

2 not a cube mod p ⇐⇒ 2(p−1)/3 is another third root of unity z ∈ Fp.

To link this criterion to our main theorem below, let us rephrase it: Let

M =
(

0 0 2
1 0 0
0 1 0

)
∈ GL3(Fp), so that M3

=

(
2 0 0
0 2 0
0 0 2

)
and f (M)= 0.

Then

Frobp = id ⇐⇒ M p−1
=

(
1 0 0
0 1 0
0 0 1

)
⇐⇒

1
3 Tr M p−1

= 1,

Frobp ∈ [(123)] ⇐⇒ M p−1
=

( z 0 0
0 z 0
0 0 z

)
⇐⇒

1
3 Tr M p−1 satisfies t2

+t+1= 0,

Frobp ∈ [(12)] ⇐⇒ M p−1
=

(
0 0 ∗
∗ 0 0
0 ∗ 0

)
⇐⇒

1
3 Tr M p−1

= 0.

(B) Class field theory over Q(ζ3):
Factorise p= (a+bζ3)(a+bζ 3). Then 2 is a cube mod p if and only if the ideal

(a+ bζ3) splits in L , and class field theory says that this is a congruence condition
on a and b. In fact, it is easy to verify that

2 is a cube mod p ⇐⇒ a+ bζ3 ≡±1,±ζ3 or ± ζ 2
3 mod 6.
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Modular forms. See [Zagier 2008, §4.3]. Suppose f (x)= x3
− x − 1, so G = S3

and L is the Hilbert class field of Q(
√
−23). Let ρ be the 2-dimensional irreducible

representation of G. It has an associated Artin L-series

L(ρ, s)=
∞∑

n=1

an

ns ,

whose coefficient ap for a prime p 6= 23 is 2,−1 or 0 depending on whether Frobp

is trivial, a 3-cycle or a transposition. The theory of modular forms tells us that

∞∑
n=1

anqn
= q

∞∏
n=1

(1− qn)(1− q23n),

and is a cusp form of weight 1, level 23 and character
(
·

23

)
. Moreover, for all

integers n not divisible by 23,

an =
1
2

(
#
{

x, y ∈ Z
∣∣ n = x2

+ xy+ 6y2}
− #

{
x, y ∈ Z

∣∣ n = 2x2
+ xy+ 3y2}).

Let us remark that in an arbitrary Galois group G, the L-series of the irreducible
representations of G also pin down the Frobenius elements. The global Langlands
conjecture predicts that, as in this example, all such L-series come from automorphic
forms. This is a massive conjectural generalisation of “method (B)”. Moreover,
like quadratic reciprocity and class field theory, this approach gives expressions for
the L-series coefficients an that do not depend on n being prime. This is crucial
for theoretical applications such as analytic continuation of L-functions. (Note,
however, that formulas such as the one above are not practical for numerically
computing Frobenius elements.)

The purpose of this paper is to extend “method (A)” to arbitrary Galois groups.
Here is an illustration for cubic polynomials of the type of criterion that we obtain.
Note its similarity to the Kummer case.

General cubic. Suppose f (x) = x3
+ bx + c. Pick a prime p - 3b1, where 1 =

−4b3
− 27c2 is the discriminant of f . Let

M =
(

0 0 c
1 0 b
0 1 0

)
∈ GL3(Fp).

Then

f (x) has 3 roots mod p ⇐⇒ Tr M p+1
=−2b,

f (x) has 1 root mod p ⇐⇒ Tr M p+1 satisfies (t + 2b)(t − b)2 =−1,

f (x) is irreducible mod p ⇐⇒ Tr M p+1
= b.

This can be easily checked by hand; alternatively, see Theorem 7.2.
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Our main result for Frobenius elements is the following generalisation of Euler’s
criterion. Note that taking the class of x in Fq [x]/ f (x) is the same as taking a
matrix M with characteristic polynomial f (x), like in the examples above.

Theorem 1.1. Let K be a global field and f (x)∈K [x] a separable polynomial with
Galois group G. There is a polynomial h(x) ∈ K [x] and polynomials 0C ∈ K [X ]
indexed by the conjugacy classes C of G such that

Frobp ∈ C ⇐⇒ 0C
(
Tr Fq [x]

f (x) /Fq
(h(x)xq)

)
= 0 mod p

for almost all primes p of K ; here Fq is the residue field at p.

This is proved in Section 5; see Theorem 5.3. Usually one can take h(x)= x2

(see below); in particular Tr(xq+2) then determines the conjugacy class of Frobp.
In Section 6 we explain how the theorem recovers classical formulas for Frobenius
elements in cyclotomic and Kummer extensions. In Section 7 we give explicit
examples for nonabelian Galois groups, including general cubics, general quartics
and quintics with Galois group D10.

The polynomials 0C are explicitly given by

0C(X)=
∏
σ∈C

(
X −

n∑
j=1

h(a j )σ (a j )
)
,

where a1, . . . , an are the roots of f in some splitting field. The “almost all primes”
in the theorem are those not dividing the denominators of the coefficients of f , its
leading coefficient and the resultants Res(0C , 0C ′) for C 6= C ′; the latter simply
says that the 0C mod p are pairwise coprime. (This condition always fails for
ramified primes; see Remark 5.6.) Finally, the only constraint on the polynomial
h is that the resulting 0C are coprime over K . This holds for almost all h, in the
sense that the admissible ones of degree at most n− 1 form a Zariski dense open
subset of K n . Also, a fixed h with 1< deg h < n (for instance h(x)= x2) will work
for almost all f that define the same field; see Section 8.

Remark 1.2. The method of using polynomials in the roots of f to recognise
conjugacy classes is also used in “Serre’s trick” for alternating groups. For example,
G = A5 has 5 conjugacy classes and all but the two classes of 5-cycles have their
own cycle type. (Recall that the cycle type of Frobenius can be recovered from the
degrees of the factors of the defining quintic f mod p; in practice, these are readily
determined by computing gcd(x pd

− x, f (x)) for d = 1, 2.) It was pointed out by
Serre (see Buhler [1978, p. 53]) that the classes of 5-cycles can be distinguished by
evaluating the square root of the discriminant of f modulo p; see Example 3.9. This
has been generalised by Roberts [2004] to all alternating groups, and was used for
instance by Booker [2005] in his work on L-series for icosahedral representations.
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Finally, let us illustrate our approach to Frobenius elements with a simple case:

Example 1.3. The polynomial f (x)= x5
+2x4

−3x3
+1 has Galois group G=D10

over K =Q. If we number its complex roots by

a1 ≈−3.01, a2 ≈−0.35− 0.53i, a3 ≈ 0.85− 0.31i, a4 = a3, a5 = a2,

then G is generated by the 5-cycle (12345) and complex conjugation (25)(34). It
is easy to see that f (x) is irreducible over F2, so Frob2 ∈ G is in one of the two
conjugacy classes of 5-cycles, either [(12345)] or [(12345)2]. How can we check
which one it is?

Consider the expressions

n1 = a1a2+ a2a3+ a3a4+ a4a5+ a5a1,

n2 = a1a3+ a2a4+ a3a5+ a4a1+ a5a2.

If we think of G as the group of symmetries of a pentagon, the sums are taken over
all edges and over all diagonals, respectively. Therefore they are clearly G-invariant,
and hence rational numbers. Also, as ai are algebraic integers, n1 and n2 are in fact
integers, readily recognised from their complex approximations as being 2 and −5.

Now suppose b1 is a root of f (x) in F25 , and bi = b2
i−1 for i = 2, 3, 4, 5 are its

other roots ordered by the action of the Frobenius automorphism. Then

N = b1b2+ b2b3+ b3b4+ b4b5+ b5b1

is in F2. By considering the reduction modulo a prime q above 2 in the splitting
field, we see that if Frobq is (12345) or (12345)−1, then n1 ≡ N mod 2. Similarly,
if Frobq is (12345)2 or (12345)3, then n2 ≡ N mod 2. Computing in F5

2 (or noting
that N = TrF2[x]/ f (x)(x3)) we find that N = 0, so Frob2 must be in [(12345)].

In the language of Theorem 1.1, we took h(x)= x and proved that

0[(12345)] = (X − 2)2 and 0[(12345)2] = (X + 5)2

distinguish between the two conjugacy classes of 5-cycles: If f (x) is irreducible
mod p (and p 6= 7, so that 2 6≡ −5), then

Frobp ∈ C ⇐⇒ 0C(TrFp[x]/ f (x)(x p+1))= 0 mod p.

This choice of h(x) was in some sense deceptively simple, because the roots ni

of the 0C were integers. (We used that the conjugacy classes of 5-cycles are self-
inverse in D10.) Generally, these roots would be algebraic integers of degree |C |.
For example, h(x)= x2 leads to

0[(12345)] = X2
+ 5X + 18 and 0[(12345)2] = X2

− 11X + 42,

and Tr(x p+2) is a root of one of them whenever f (x) mod p is irreducible.
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Notation. Throughout the paper we use the following notation:

K ground field
f (x) separable polynomial in K [x] of degree n
L some extension of K where f splits completely
a = [a1, . . . , an] ordered roots of f in L
K (a) field generated by the ai over K (a splitting field of f )
Ga Galois group of f , considered as a subgroup of Sn via its

permutation action on [a1, . . . , an].
[9] conjugacy class of 9 ∈ Ga.
p prime of K , when K is a global field
Fq residue field at p
Frobp any (arithmetic) Frobenius element at p in Ga
eF

a, 0,M F
a,9 see Definitions 2.2, 2.7, 3.4 and 4.3.

Recall that a global field is a finite extension of either Q or Fp(T ). The Frobenius
element in Gal(L/K ) at p is characterised by Frobp(x)≡ xq mod q for all x ∈ L
that are integral at some fixed prime q of L above p. The element Frobp is well-
defined modulo inertia and up to conjugation. In particular, its conjugacy class is
well-defined if p is unramified in L/K .

The symmetric group Sn acts on n-tuples by [c1, . . . , cn]
σ
=[cσ−1(1), . . . , cσ−1(n)].

It acts on the ring of polynomials in n variables K [x1, . . . , xn] by σ(xi ) = xσ(i);
thus, for a polynomial F ∈ K [x1, . . . , xn],

Fσ([c1, . . . , cn])= F([c1, . . . , cn]
σ−1
),

where F([ · ]) is the evaluation of F on the n-tuple. Note that all our actions are
left actions.

2. Isomorphisms of splitting fields

In this section we introduce our main tools. The reader who is only interested in
applications to Frobenius elements may skip to Section 5 and prove Theorem 5.3
directly (at the expense of not seeing the origins of 0C ).

As a motivation, consider the following general question:

Problem 2.1. Suppose a given separable polynomial f (x) ∈ K [x] of degree n
splits completely in L ⊃ K and L ′ ⊃ K . Given the roots a1, . . . , an and b1, . . . , bn

of f in L and L ′, find a bijection between them that comes from an isomorphism
of splitting fields of f inside L and L ′.

We assume that we know the Galois group of f over K as a permutation group on
the roots in L , but we do not want to construct the splitting fields explicitly. Instead,
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we will evaluate polynomials in K [x1, . . . , xn] on the roots in L and L ′ taken in
various orders and try to extract information out of the values (as in Example 1.3).

Definition 2.2. For F ∈ K [x1, . . . , xn] define the evaluation map Sn→ K (a) by

eF
a(σ )= F([a1, . . . , an]

σ ).

Definition 2.3. Let T be a subgroup of Sn . A T -invariant F is an element of
K [x1, . . . , xn] whose stabiliser is precisely T .

Remark 2.4. Any F ∈ K [x1, . . . , xn] is evidently T -invariant if we take for T its
stabiliser in Sn . Also, any subgroup T <Sn has a T -invariant, for example,

F =
∑
t∈T

mt , where m = xn−1
1 xn−2

2 · · · xn−1,

since clearly the stabiliser of m in Sn is {1}.

Lemma 2.5. Let F be a T -invariant and σ, τ ∈ Sn .

(1) eF
aτ (σ )= eF

a(στ).

(2) g(eF
a(σ ))= eF

a(σg−1) for g ∈ Ga.

(3) The map eF
a : Sn→ K (a) is constant on the right cosets Tσ .

Proof. (1) eF
aτ (σ )= F((aτ )σ )= F(aστ )= eF

a(στ).

(2) For g ∈ Ga,

g(eF
a(σ ))= g(F([a1, . . . , an]

σ ))= F([g(a1), . . . , g(an)]
σ )

= F(([a1, . . . , an]
g−1
)σ )= F([a1, . . . , an]

σg−1
) = eF

a(σg−1).

(3) For τ ∈ T ,

eF
a(τσ )= F([a1, . . . , an]

τσ )= F(([a1, . . . , an]
σ )τ )

= Fτ
−1
([a1, . . . , an]

σ )= F([a1, . . . , an]
σ ) = eF

a(σ ). �

Remark 2.6. Part (3) of the lemma says that the values of F on the various permu-
tations aσ of the roots are essentially the right cosets of T in Sn . It may accidentally
happen that the same value occurs on two right cosets, but it is always possible
to adjust the original polynomial f to prevent this (see Lemma 8.1c). Part (2) of
Lemma 2.5 says that the action of the Galois group Gal(K (a)/K ) on these values
translates into right multiplication by Ga. This motivates the following:

Definition 2.7. For a double coset D = Tσ0Ga in Sn , define the corresponding
“minimal polynomial”

0F
a,σ0
= 0F

a,D(X)=
∏

σ∈T \D

(X − eF
a(σ )) ∈ K [X ].

By Lemma 2.5(3), this is well-defined.
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Remark 2.8. Note that by Lemma 2.5(2), Ga permutes the linear factors of
0F

a,D transitively, so it is a power of an irreducible polynomial in K [X ]. If
eF

a : T \Sn→ K (a) is injective, then 0F
a,D(X) is irreducible, and hence the minimal

polynomial of eF
a(σ0).

Remark 2.9. The point is that the 0F
a,D(X) are K -rational objects, and they can

be used to compare different splitting fields:

Proposition 2.10. Let a, b be orderings of roots of f in two splitting fields of f ,
and let φ : K (a)→ K (b) be an isomorphism. If eF

a : T \Sn → K (a) is injective,
then for every double coset D ∈ T \Sn/Ga,

0F
a,D(F(b))= 0 ⇐⇒ b= [φ(a1), . . . , φ(an)]

σ for some σ ∈ D.

Proof. We have that 0F
a,D(F(b))= 0 if and only if F(b)= φ(x) for some root x of

0F
a,D in K (a). Such roots are eF

a(σ ) for some σ ∈ D, so

0F
a,D(F(b))= 0 ⇐⇒ F(b)= φ(eF

a(σ )) for some σ ∈ D

⇐⇒ F(φ−1(b))= eF
a(σ )= F(aσ )

⇐⇒ φ−1(b)= (aσ )τ = aτσ for some τ ∈ T

⇐⇒ b= φ(aσ
′

)= φ(a)σ
′

for some σ ′ ∈ D. �

Theorem 2.11. Let F be a Ga-invariant with eF
a : Ga\Sn → K (a) injective. If

F(b)= F(a) ∈ K , then ai 7→ bi defines an isomorphism K (a)→ K (b).

Proof. Take T = Ga and D the principal double coset Ga1Ga, and apply the
proposition. Since 0F

a,D(X)= X − F(a), we have 0F
a,D(F(b))= 0, so b= φ(a)σ

for some σ ∈ Ga and some isomorphism φ : K (a)→ K (b). Then φ ◦ σ is the
required isomorphism. �

Remark 2.12. This gives a solution to Problem 2.1:
Pick a Ga-invariant F , for instance using Remark 2.4. Adjusting f if necessary,

we may assume that eF
a : T \Sn → K (a) is injective (Lemma 8.1c). In L ′, keep

permuting the roots of f until F(b) becomes F(a) ∈ K . When this happens,
ai 7→ bi defines an isomorphism of the two splitting fields.

Note however, that in the worst case we are evaluating a polynomial with |G|
terms on |G\Sn/G| permutations. So the complexity is about n! operations, which
is impractical for large n.

Example 2.13 (D10-extensions). Suppose f (x) ∈ K [x] has degree 5, and Ga =

Gal( f/K ) is the dihedral group D10, generated by (12345) and (25)(34). Take

F(x1, . . . , x5)= x1x2+ x2x3+ x3x4+ x4x5+ x5x1.
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This is a T -invariant with T = Ga: It is clearly invariant under D10, and on the
other hand a permutation preserving F is determined by x1 7→ xi , x2 7→ xi±1, so
there are at most 10 choices. In particular, F(a1, . . . , a5) is invariant under the
Galois group, and so lies in K . Substituting the ai into F in all possible orders
gives the values

eF
a (σ

−1)= aσ(1)aσ(2)+ aσ(2)aσ(3)+ aσ(3)aσ(4)+ aσ(4)aσ(5)+ aσ(5)aσ(1).

Clearly each one occurs at least 10 times for varying σ ∈S5, corresponding to the fact
that eF

a factors through D10\S5. The assumption that the map eF
a : T \Sn→ K (a)

is injective simply says that there are no more repetitions, and there are 120/10= 12
distinct values.

Suppose that this is indeed the case, and let b1, . . . , b5 be the roots of f in some
other splitting field. If we substitute the bi in F in all possible orders bσ , we get
again 12 values, one of which is F(a1, . . . , a5) ∈ K . There are 10 isomorphisms
K (a)→ K (b) obtained from one another by composing with Galois. They are
determined by a 7→ bσ for 10 permutations σ ∈ Sn . Clearly, for each of these σ ,
we have F(bσ )= F(a). But, since every value is taken exactly 10 times, we have
the converse as well: if F(bσ )= F(a) for some σ ∈ Sn , then a 7→ bσ must define
an isomorphism of the splitting fields. So to find an isomorphism, we only need to
locate F(a) among the 12 values F(bσ ).

Note that the other values F(bσ ) are not in general K -rational, so we cannot
compare them with the values on a. Their minimal polynomials are the 0F

a,D(X)
for the 4 double cosets D10\S5/D10.

3. Recognising conjugacy in Galois groups

In questions such as computing Frobenius elements in Galois groups it is not
necessary to compare the roots in two splitting fields. It suffices to identify the
conjugacy class of a specific Galois automorphism:

Problem 3.1. Let f (x) ∈ K [x] be a separable polynomial that splits completely
in L ⊃ K , and suppose we know G = Gal( f/K ) as a permutation group on the
roots in L . If L ′ is another field where f splits completely and we are given a
permutation of the roots of f in L ′ that comes from some Galois automorphism,
find the conjugacy class of this automorphism in G.

Remark 3.2. An isomorphism φ of the two splitting fields of f induces an isomor-
phism of Galois groups G and G ′. We would like to identify an element B ∈ G ′

as an element A ∈ G. Note, however, that A depends on the choice of φ. As any
two isomorphisms differ by a Galois automorphism, the conjugacy class [A] is
well-defined and this is what we are after.
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It is easy to see that a solution to Problem 2.1 answers Problem 3.1 as well,
so this is a weaker question. However, we aim for a more practical solution (see
Remark 2.12). We may clearly restrict our attention to one cycle type in Sn . For
convenience, throughout the section we also fix a representative:

Notation 3.3. Fix an element ξ ∈ Sn and write Zξ <Sn for its centraliser.

Definition 3.4. Suppose 9 ∈ Sn is conjugate to ξ , in other words they have the
same cycle type, say ξ = σ09σ

−1
0 . For a T -invariant F and an ordering a of the

roots of f , define the polynomial

M F
a,9(X)=

∏
σ∈(Zξ∩T )\Zξσ0

0F
a,σ (X).

It is well-defined by Lemma 2.5(3). Note that Zξσ0 is the set of all permutations
that conjugate 9 to ξ ; in particular it is independent of the choice of σ0.

Remark 3.5. The situation we have in mind is that we have two sets of roots a and
b of f in different splitting fields. So there is an isomorphism φ : K (a)→ K (b),
but we do not have it explicitly. However, suppose we know that an automorphism
A∈Gal(K (a)/K ) corresponds to B∈Gal(K (b)/K ) under φ, and that they permute
the roots by

A(a)= a9, B(b)= bξ , 9, ξ ∈ Sn.

Then {aσ }σ∈Zξσ0 is the set of all reorderings of a on which A acts as ξ , and M F
a,9(X)

is the smallest K -rational polynomial that has F(aσ ) as roots for all such σ . But
φ−1(b)must be one of these reorderings because B acts on b as ξ . The upshot is that
M F

a,9(X) has F(b) as a root, and its construction does not require the knowledge
of φ. In other words, if M F

a,9(F(b)) 6= 0, then we know that A does not correspond
to B under any isomorphism. (In Section 4 we will take T = Zξ and turn this into
an if and only if statement.)

Lemma 3.6. Let φ : K (a)→ K (b) be an isomorphism of two splitting fields of f ,
and define ρ ∈ Sn by b= φ(aρ). Then M F

a,ρ−18ρ
= M F

b,8.

Proof. Write 9 = ρ−18ρ. Pick σ8 with ξ = σ88σ−1
8 , and let σ9 = σ8ρ, so that

σ99σ
−1
9 = σ8ρ9ρ

−1σ−1
8 = σ88σ

−1
8 = ξ.

By definition,

M F
b,8 =

∏
σ∈(Zξ∩T )\Zξσ8

0F
b,σ , M F

a,9 =
∏

σ∈(Zξ∩T )\Zξσ9

0F
a,σ .
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We claim that 0F
a,sσ9 = 0

F
b,sσ8 for s ∈ Zξ . First we show that they have the same

degree. Because Gb = ρGaρ
−1 by the definition of ρ,

deg0F
a,sσ9 = |T \T sσ9Ga| = |T \T sσ9Gaρ

−1
|

= |T \T sσ8ρGaρ
−1
| = |T \T sσ8Gb| = deg0F

b,sσ8 .

Since both polynomials are powers of irreducible ones, it now suffices to identify
one of the roots:

eF
a (sσ9)= eF

a (sσ8ρ)= F(asσ8ρ))= F(φ−1(b)sσ8))

= F(φ−1(bsσ8))= φ−1(F(bsσ8))= φ−1(eF
b (sσ8)). �

Corollary 3.7. The map 9 7→ M F
a,9 is constant on every conjugacy class of Ga

with cycle type ξ .

Proof. By the lemma above, M F
a,9 = M F

a,g9g−1 for g ∈ Ga. �

We now have an approach to Problem 3.1:

Proposition 3.8. Let a, b be orderings of the roots of f in two different splitting
fields, and suppose 9 ∈ Ga and 8 ∈ Gb have cycle type ξ . If the polynomials M F

a,ψ
are distinct for ψ in different conjugacy classes of Ga of cycle type ξ , then

there is an isomorphism K (a)→ K (b)
under which 9 corresponds to 8

⇐⇒ M F
a,9 = M F

b,8.

If , moreover, the M F
a,ψ are pairwise coprime, then this occurs precisely when

M F
a,9(F(b

σ ))= 0 for some (any) σ ∈ Sn with ξ = σ8σ−1.

Proof. “=⇒” is Lemma 3.6. For “⇐=”, pick any isomorphism φ :K (a)→K (b). The
polynomial M F

b,8 agrees with some M F
a,ψ by the lemma, and9 lies in the conjugacy

class of ψ by assumption. Composing φ with an automorphism of K (a)/K (which
corresponds to conjugating ψ) we obtain the required isomorphism. �

Example 3.9 (Serre’s trick [Buhler 1978; Roberts 2004]). Suppose char K 6= 2,
f ∈ K [x] has degree n, and Ga = Gal( f/K ) is the alternating group An . There is
a particularly nice T -invariant with T = An , a “square root of the discriminant”

F(x1, . . . , xn)=
∏
i< j

(xi − x j ).

The only double cosets TσGa in Sn are D = An and its complement D′ in Sn .
Clearly 0F

a,D(X) = X − F(a) and 0F
a,D′(X) = X + F(a), and F(a)2 =1 f is the

discriminant of f . So if b is the list of roots of f in some other splitting field, we
find that

ai 7→ bi defines an isomorphism
K (a)→ K (b)

⇐⇒

∏
i< j

(ai − a j )=
∏
i< j

(bi − b j ).
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This illustrates Theorem 2.11 in the case of An . To explain Proposition 3.8 in this
setting, suppose ξ ∈ Sn is a product of cycles of distinct odd degrees, so that there
are two conjugacy classes [91], [92] in Ga = An of cycle type ξ (for example
5-cycles in A5). Say σ191σ

−1
1 = ξ = σ292σ

−1
2 with σ1 ∈ An and σ2 /∈ An . In this

case Zξ ⊂ An = T , so

M F
a,91

(X)= 0F
a,σ1
(X)= 0F

a,D(X)= X − F(a),

M F
a,92

(X)= 0F
a,σ2
(X)= 0F

a,D′(X)= X + F(a).

Suppose again that b is the list of roots of f in some other splitting field, and
B ∈ Gal(K (b)/K ) is an automorphism of cycle type ξ . Rearranging the bi if
necessary, assume that B acts on the bi as ξ , that is, B(b)= bξ . The statement of
the proposition is that

B comes from [91] under an
isomorphism K (a)→ K (b)

⇐⇒

∏
i< j

(ai − a j )=
∏
i< j

(bi − b j ),

which is precisely Serre’s trick. The same invariant F may sometimes be used in
other subgroups of Sn to distinguish between the conjugacy classes of such cycle
types. (It determines whether the two classes are conjugate in An or not.)

4. The directed edges invariant

As before, suppose f (x) ∈ K [x] is separable and a = [a1, . . . , an] are its (ordered)
roots in a splitting field. We apply the results of Section 3 when T = Zξ , the
centraliser of ξ . This is particularly nice for two reasons: First, the polynomials
M F

a,ψ of Proposition 3.8 are irreducible and distinct, and second, it is easy to write
down a T -invariant with just n terms and of degree 3 (compare the polynomials in
Remark 2.4 and Example 4.2).

Proposition 4.1. Let ξ ∈ Sn with centraliser Zξ . Suppose that F is a Zξ -invariant
such that eF

a : Zξ \ Sn→ K (a) is injective. Let 9,9 ′ ∈ Ga be two elements of cycle
type ξ . Then

(1) M F
a,9 is irreducible, and equals 0F

a,σ for any σ ∈ Sn with ξ = σ9σ−1.

(2) M F
a,9 has degree |[9]|.

(3) M F
a,9 = M F

a,9 ′ if and only if 9 and 9 ′ are conjugate in Ga.

Proof. For brevity, write Z = Zξ . Pick σ, σ ′ ∈ Sn with σ9σ−1
= ξ = σ ′9(σ ′)−1.

(1) By definition,
M F

a,9 =
∏

τ∈(Z∩Z)\Zσ

0F
a,τ = 0

F
a,σ .

It is irreducible by the assumed injectivity of eF
a ; see Remark 2.8.
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(2) By definition,

deg0F
a,σ = |Z\ZσGa| =

|ZσGa|

|Z |
=
|σ−1 ZσGa|

|Z |

=
|Ga|

|Ga∩σ−1 Zσ |
=

|Ga|

|CentGa(9)|
= |[9]|.

(3) If 9 and 9 ′ are conjugate, then M F
a,9 = M F

a,9 ′ by Corollary 3.7. Conversely,
suppose that M F

a,9 = M F
a,9 ′ . Since eF

a is injective, ZσGa = Zσ ′Ga, so σ ′ = sσg
for some s ∈ Z and g ∈ Ga. Then

9 ′ = (σ ′)−1ξσ ′ = g−1σ−1s−1ξsσg = g−1σ−1ξσg = g−19g,

so [9 ′] = [9]. �

Example 4.2 (the directed edges invariant). Let ξ ∈ Sn and fix a polynomial
h ∈ K [x] of degree at least 2. Define

F(x1, . . . , xn)=

n∑
j=1

h(x j ) xξ( j).

It can be visualised as the directed edges in a graph that define the action by ξ . For
instance, for ξ = (1234)(56) ∈ S6 and h(x)= x2,

1 4

2 3

5 6
6

-

?�

-�

F = x2
1 x2+ x2

2 x3+ x2
3 x4+ x2

4 x1+ x2
5 x6+ x2

6 x5

It is clearly a Zξ -invariant.

Definition 4.3. Fix h(x) ∈ K [x]. For each conjugacy class C in Ga define

0C(X)=
∏
σ∈C

(
X −

n∑
j=1

h(a j )σ (a j )
)
.

Lemma 4.4. Let F be as in Example 4.2. Then for every 9 ∈ Ga,

M F
a,9(X)= 0[9](X).

Proof. Pick σ ∈ Sn with σ9σ−1
= ξ . First, suppose τ ∈ [9] and uτ ∈ Sn satisfies

u−1
τ ξuτ = τ . Then

eF
a(uτ )= F(auτ )=

∑
i

h(au−1
τ (i))au−1

τ (ξ(i))=
∑

j

h(a j )au−1
τ ξuτ ( j)=

∑
j

h(a j )τ (a j ).
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On the other hand, note that for t ∈ Zξ and g ∈ Ga,

(tσg)−1ξ(tσg)= g−1σ−1t−1ξ tσg = g−1σ−1ξσg = g−19g.

So for τ = g−19g ∈ [9],

{uτ ∈ Sn|u−1
τ ξuτ = τ } = Zξσg,

because the left-hand side is clearly some right coset of Zξ . This equality gives a
correspondence between [9] and Zξ\ZξσGa. So

M F
a,9(X)= 0

F
a,σ (X)=

∏
u∈(Zξ\ZξσGa)

(X − eF
a(u))

=

∏
τ∈[9]

(
X −

n∑
j=1

h(a)τ (a j )
)
= 0[9](X). �

Corollary 4.5. Let a, b be orderings of the roots of f in two different splitting
fields, and let 9 ∈ Ga and 8 ∈ Gb. If the 0C(X) are pairwise coprime for different
conjugacy classes of Ga, then

there is an isomorphism K (a)→ K (b)
under which 9 corresponds to 8,

⇐⇒ 0[9]
(∑

j h(b j )8(b j )
)
= 0.

The condition that the 0C are coprime is satisfied for h(x) in a Zariski dense open
set in the space of all polynomials of degree at most n− 1.

Proof. The equivalence follows from Proposition 3.8 and the lemma above. For the
last assertion apply Lemma 8.2. �

Example 4.6. Take f (x)= x4
+ 14 over Q. It splits completely over L =Q5 and

L ′ = C, with roots in Q5

a1= 1+3 ·5+2 ·52
+· · · , a2= 2+2 ·5+0 ·52

+· · · , a3=−a1, a4=−a2,

and
b1 =

4
√
−14, b2 = i 4

√
−14, b3 =−

4
√
−14, b4 =−i 4

√
−14

in C (with, say, Arg b1 = π/4). The Galois group of f is G = D8, which we
view as a subgroup of S4 via the action on the ai . It is generated by the 4-cycle
a1 7→ a2 7→ a3 7→ a4 7→ a1 and the transposition a1↔ a3. We will illustrate how to
identify the conjugacy class of complex conjugation b1↔ b4, b2↔ b3 in G, using
the polynomials 0C(x).

There are two conjugacy classes of double transpositions in G, namely C1 =

{(12)(34), (14)(23)} and C2 = {(13)(24)}. Let h(x)= x and compute

0C1(X)= (X − (2a1a2+ 2a3a4))(X − (2a1a4+ 2a2a3))= X2
− 224,

0C2(X)= X − (2a1a3+ 2a2a4)= X.



Identifying Frobenius elements in Galois groups 1339

These are coprime, and Corollary 4.5 applies:

4∑
j=1

b j b̄ j = 2b1b4+ 2b2b3 =
√

224

is a root of 0C1(X), so complex conjugation corresponds to an element of C1.
Note that the coefficients of the 0C(X) were computed as 5-adic numbers. Since

they are integers and we can bound them from the (complex) absolute values of the
roots of f , they can be identified exactly.

5. Frobenius elements

Now suppose K is a global field. We turn to our initial problem of computing
Frobenius elements in Galois groups. We use the following remarkable property of
the directed edges invariant:

Proposition 5.1. Let f (x) ∈ Fq [x] be a polynomial with roots a1, . . . , an ∈ Fq

counted with multiplicity, and let φ = Frobq ∈ Gal(Fq/Fq). For every polynomial
h(x) ∈ Fq [x],

n∑
j=1

h(a j )φ(a j )= TrA/Fq (h(X)X
q),

where X is the class of x in the algebra A = Fq [x]/ f .

This is an immediate consequence of the lemma below (with H(x)= h(x)xq ).

Lemma 5.2. Let k be a field and f (x)∈ k[x] a polynomial with roots a1, . . . , an ∈ k̄
counted with multiplicity. Then for every H(x) ∈ k[x],

n∑
j=1

H(a j )= TrA/k(H(X)),

where X is the class of x in A = k[x]/ f .

Proof. Consider X as a linear map A→ A, Y 7→ XY . Its minimal polynomial
is f , since f (X)= 0 but no linear combination of 1, X, . . . , Xn−1 is zero. So the
generalised eigenvalues of X are exactly the ai , and those of H(X) are therefore
H(ai ) (look at the Jordan normal form of X over k̄). The result follows. �

Theorem 5.3 (generalised Euler’s criterion). Let K be a global field and let
f (x) ∈ K [x] be a separable polynomial with roots a1, . . . , an in K and Galois
group G. Fix h(x) ∈ K [x] and for each conjugacy class C of G, set

0C(X)=
∏
σ∈C

(
X −

n∑
j=1

h(a j )σ (a j )
)
.
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(a) The polynomials 0C(X) have coefficients in K .

(b) Let p be a prime of K with residue field Fq , and C a conjugacy class of G. If
p does not divide the denominators of the coefficients of f and h, the leading
coefficient of f and the resultants Res(0C , 0C ′) for C ′ 6=C , then the coefficients
of 0C(X) are integral at p and

Frobp ∈ C ⇐⇒ 0C
(
Tr Fq [x]

f (x) /Fq
(h(x)xq)

)
= 0 mod p.

(c) For all h(x) in some Zariski dense open set in the space of polynomials of
degree at most n− 1, we have Res(0C , 0C ′) 6= 0 for every pair of conjugacy
classes C 6= C ′.

Proof. (a) This follows from Lemma 4.4, Definition 3.4 and Remark 2.8.

(b) 0C(X) is clearly integral at the required primes.
=⇒: If Frobp ∈C then

∑n
j=1 h(a j )Frobp(a j ) is a root of 0C(X) by the definition

of 0C , and it reduces mod p to Tr(Fq [x]/ f (x))/Fq (h(x)x
q) by Proposition 5.1.

⇐=: The polynomial 0C(X) is distinguished from the others by any one of its
roots mod p by the assumption that p- Res(0C , 0C ′) for C 6= C ′.

(c) Apply Lemma 8.2. �

Remark 5.4 (choice of h). If the resultants Res(0C , 0C ′) are nonzero, then Theorem
5.3(b) describes the Frobenius element for all but finitely many primes p. If one of
the resultants vanishes, or equivalently, 0C has a common factor with some 0C ′ , the
statement does not apply to C for any p. However, this is rare and easily avoided
by choosing a different h; most choices will work by Theorem 5.3(c).

Alternatively, for any fixed h with 1< deg h < n it is possible to replace f by
another polynomial f̃ of degree n with the same splitting field so that the resulting
0C are coprime. To see this, consider

γC(X)=
∏
σ∈C

(
X −

n∑
j=1

h(x j )xσ( j)

)
,

and note that they are coprime as polynomials in X over K (x1, . . . , xn). Now apply
Lemma 8.1(b) to F1 =

∏
C 6=C ′ Res(γC , γC ′) and F2 = 0. We obtain a Zariski dense

open set of polynomials B(t) of degree at most n−1 for which f̃ =
∏

j (x−B(a j ))

works.

Remark 5.5 (Euler’s criterion). The classical criterion

a(p−1)/2
≡

(a
p

)
mod p
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says that a(p−1)/2
=±1 determines whether x2

− a has a root modulo p. Similarly,
to see whether x3

−a has a root modulo p ≡ 1 mod 3 one checks whether a(p−1)/3

is 1 or another third root of unity in F×p , etc.
One can reformulate this as a matrix statement: Take a 2× 2 matrix M with

minimal polynomial x2
− a (respectively 3× 3 and x3

− a). Then M p−1 is the
scalar matrix with a(p−1)/2 or a(p−1)/3, respectively, on the diagonal, so its trace
determines whether the polynomial has a root in Fp; for example, for x3

− a the
distinction is whether 1

3 Tr M p−1 is 1 or a root of x2
+ x + 1.

Theorem 5.3 generalises this to arbitrary polynomials over global fields. Observe
that for a polynomial

f (x)= xn
+ cn−1xn−1

+ · · ·+ c0,

the trace in the theorem can be interpreted as a trace of a matrix, for instance,

Tr Fq [x]
f (x) /Fq

(xd)= Tr


−c0

1 −c1
. . .

...

1 −cn−1


d

mod q.

Therefore (a minor modification of) the trace Tr Mq−1 for a matrix M with minimal
polynomial f determines the splitting behaviour of f mod p and the conjugacy
class of Frobenius, in the same way as above. See also Sections 1 and 7.

Remark 5.6 (ramified primes). The condition that p does not divide any resultant
Res(0C , 0C ′) excludes all primes that ramify in the splitting field of f over K .
Indeed, if σ 6= 1 is an element of inertia at q for some q|p, it is easy to see that 0[1]
and 0[σ ] have a common root mod p.

Remark 5.7 (extending to all p). In order to deal with the primes dividing the
resultants, we may work over the completion Kp instead of the residue field Fq .
Compute the splitting field L/Kp of f and the roots b1, . . . , bn . Choose a lift 9 of
the Frobenius element in Gal(L/Kp) and evaluate

n∑
j=1

h(b j )9(b j ).

This number is now a root of precisely one of the 0C , and this C is the conjugacy
class of the chosen Frobenius lift 9. (See Corollary 4.5.)

Remark 5.8 (Artin L-functions). Suppose L/K is a Galois extension of number
fields with Galois group G, represented as a splitting field of some polynomial
f (x) ∈ K [x]. Recall that a complex representation ρ of G is called an Artin
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representation. It has an L-series defined by the Euler product over all primes of K ,

L(ρ, s)=
∏
p

1
Pp(q−s)

.

Here q is the size of the residue field at p and Pp(T ) = det(1− Frobp T | ρ Ip) is
the inverse characteristic polynomial of Frobenius on the subspace of ρ fixed by
the inertia group Ip at p.

Theorem 5.3 and Remark 5.7 allow us to explicitly compute the coefficients of
such L-series. For the unramified primes, they recover the conjugacy class of Frobp
in G, which determines the local polynomial Pp(T ). For the ramified primes, it
suffices to find the restriction of ρ to the local Galois group Gp at p with respect
to an embedding Gp ↪→ G as a decomposition group. Assuming we can find Gp,
Remark 5.7 enables us to identify the conjugacy class in G of any element of Gp,
under this embedding. This is sufficient to compute the character of ρ on Gp, and
thus also ρ Ip and Pp(T ). Note that we have not actually found the decomposition
group at p as a subgroup of G, which appears to be a harder problem.

This algorithm to compute Frobenius elements and L-series of Artin representa-
tions has now been implemented in Magma [Bosma et al. 1997]. For the functional
equation of the L-series one also needs to identify the conjugacy class of the
complex conjugation. If G is represented as acting on the roots of f in a p-adic
field, this can be done with the same method. (See Corollary 4.5 and Example 4.6.)

Remark 5.9 (complexity). From the complexity point of view, the computation of
Frobenius elements for “good” primes has two steps:

One is the initial precomputation of the polynomials 0C , each of which takes
O(n|C |) operations in some field containing the a j (for instance C or Qp). This
needs to be done for all conjugacy classes that are not determined by their cycle
type.

The second step deals with a specific prime p of K with residue field Fq . We
determine the cycle type of Frobp by computing gcd( f, xq j

−x) for j ≤ n/2, which
takes O(n log q) multiplications of n× n matrices over Fq . Then we evaluate the
trace Tr(h(x)xq) with another O(n + log q) matrix multiplications. Finally, we
substitute the trace into all 0C corresponding to the cycle type of Frobp, which is
O(d) coefficient reductions and multiplications in Fq , where d is the number of
elements in G of this cycle type.

Here is as an illustration for polynomials of degree at most 11. There are 474
transitive groups G on at most 11 points, for each of which we took a polynomial
f ∈ Q[x] with Gal f = G as a permutation group on the roots. (We used the
database in Magma [Bosma et al. 1997, V2.16].) For each G we computed Frobp

for all p< 100000 with p -1 f , using Serre’s trick (Example 3.9) and the algorithm
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above. Together with the Galois group computation and the precomputation of
the 0C this took under 15 seconds on a 3GHz dual-core CPU for each G, with
only four exceptions: G = A2

5 oC2, A2
5 oC2

2, A2
5 oC4 and M11. These took 17,

254, 1512 and 61 seconds respectively, with approximately 10–30 seconds taken
by computing Frobenius elements and the rest by precomputing the 0C(x). These
four groups have large conjugacy classes of the same cycle type (the largest being
the two classes of size 1800 for A2

5 oC4).

Remark 5.10 (additional symmetries). Suppose all conjugacy classes of elements
of some order o and a fixed cycle type are closed under the power maps g 7→ gk

for k in some nontrivial subgroup H ⊂ (Z/oZ)× (for instance they are self-inverse,
like in dihedral groups). Then one may replace 0C(X) in Theorem 5.3 by

∏
σ

(
X −

n∑
j=1

h(a j )
(∑

k∈H

σ k(a j )
))
,

taking the product over some representatives for C modulo the action of H , and
modifying the trace accordingly. In practice, this speeds up the computation of
the 0C , as their degree drops by a factor of |H |.

6. Examples: Abelian groups

If the Galois group is abelian, its conjugacy classes are of size 1, and all the 0C of
Theorem 5.3 are linear, that is, 0C(X)= X −rC with rC ∈ K . For a good choice of
h(x) and all but finitely many primes p, the trace Tr(h(x)xq) agrees with exactly
one of the rC modulo p, which then determines the conjugacy class of Frobp.

In the examples below, ζn denotes a primitive n-th root of unity.

Example 6.1. Let K =Q(i) and

f (x)= x4
+ 2x3

+ (3+ 3i)x2
+ 4i x − 1+ i.

Its complex roots are

a1 =−0.31795− 0.57510i, a2 = 0.50870− 1.1289i,

a3 =−1.4682+ 1.8471i, a4 =−0.72255− 0.14308i,

to 5 decimal places. The splitting field L is a C4-extension of Q(i), non-Galois
over Q, and the Galois group of L/K is 〈(1234)〉 < S4. Take h(x) = x2. An
elementary computation gives

0[id] = X − (10+ 6i), 0[(1234)] = X − (4+ 4i),

0[(13)(24)] = X − (−2+ 2i), 0[(1432)] = X + 8.
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For a prime p 6= (1+ i), (2− i), (3) (the primes dividing rC − rC ′ for C 6= C ′) with
residue field Fq , we deduce that the Frobenius at p is determined by

Tr(Fq [x]/ f (x))/Fq (x
q+2)≡ 10+ 6i 4+ 4i −2+ 2i −8

Frobp = id (1234) (13)(24) (1432)

Example 6.2 (Kummer extensions). Suppose ζ = ζn ∈ K and L = K ( n
√

s ) is a
Kummer extension of degree n. It is abelian with Galois group Cn whose elements
are determined by

σi :
n
√

s 7→ ζ i n
√

s for i = 1, . . . , n.

Take f (x)= xn
− s and h(x)= xn−1. Then

0[σi ](X)= X −
n∑

j=1

h(ζ j n
√

s )σi (ζ
j n
√

s )= X − ns · ζ i .

For a prime p of K with residue field Fq , because n |q − 1, we have

Tr(Fq [x]/ f (x))/Fq (h(x)x
q)= Tr(Fq [x]/xn−s)/Fq (x

q+n−1)

= Tr(Fq [x]/xn−s)/Fq (s
(q−1)/n+1)= ns · s(q−1)/n.

So Theorem 5.3 says that for p- ns,

Frobp = σi ⇐⇒ s(q−1)/n
≡ ζ i mod p,

which is the classical criterion for Kummer extensions.

Example 6.3 (Q(ζp)/Q). Let ζ = ζp for some prime p > 2, and take

K =Q, L =Q(ζ ), f (x)= x p−1
+ · · ·+ x + 1.

Thus Gal(L/K )∼= (Z/pZ)×, with elements σi : ζ 7→ ζ i for i = 1, . . . , p− 1. For
h(x)= x2 we have 0[σi ](X)= X − ri with ri ∈Q given by

ri =

p−1∑
j=1

(ζ j )2σi (ζ
j )=

p−1∑
j=1

ζ j (2+i)
=

{
−1 if i 6= p− 2,
p− 1 if i = p− 2.

For a prime q of Q,

Tr(Fq [x]/ f (x))/Fq (h(x)x
q)= Tr(Fq [x]/ f (x))/Fq (x

q+2)≡ Tr(Z[x]/ f (x))/Z(xq+2) mod q

≡ TrF/Q(ζ
q+2)≡

{
−1 mod q if p - q + 2,
p− 1 mod q if p |q + 2.

Hence Theorem 5.3(b) shows that for all q 6= p,

Frobq = σp−2 ⇐⇒ q ≡−2 mod p.
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The same computation with h(x)= x p−k for varying k yields the classical criterion

Frobq = σk ⇐⇒ q ≡ k mod p.

Note that none of these h(x) work for all conjugacy classes simultaneously, because
the 0[σ j ] are not coprime. This tends to happen when the roots of f are “too nice”
and h(x) is “too simple”. By Lemma 8.2, most h do work. In our example, a
general polynomial

h(x)= λ1x p−1
+ · · ·+ λp−1x + λp has 0[σi ](X)= X + h(1)− pλi ,

and these are distinct if and only if λ1, . . . , λp−1 are. The primes to which the
theorem then applies are those not dividing p

∏
(λi − λ j ).

Example 6.4 (cyclotomic extensions). In general, suppose L = K (ζn) is some
cyclotomic extension, and f (x) is the minimal polynomial of ζn over K . As
in the previous example, G = Gal(L/K ) ↪→ (Z/nZ)×, and we write σi for the
automorphism with σi (ζn) = ζ

i
n . We do the same computation as above: For

h(x)= xk and p a prime of K with residue field Fq ,

0[σi ](X)= X −
∑
g∈G

g(ζn)
kσi (g(ζn))= X −

∑
g∈G

g(ζn)
k+i
= X −TrL/K (ζ

k+i
n ),

Tr(Fq [x]/ f (x))/Fq (x
k+q)≡ TrL/K (ζ

k+q
n ) mod p.

Because TrL/K (ζ
j

n ) is |G| precisely when n | j , the polynomial 0[σn−k ] differs from
all the other 0[σ j ], and we find that

Frobp = σn−k ⇐⇒ q ≡ n− k mod n

for almost all p. (One may improve “almost all” to “all p- n” by taking several h.)

Remark 6.5. The fact that we obtained a simple formula for Frobenius elements for
cyclotomic and Kummer extensions relied on the existence of a universal expression
for the trace Tr(h(x)xq) mod p. It follows from class field theory that there are
such formulas in all abelian extensions.

For instance, consider Example 6.1 of a C4-extension of K = Q(i) from the
point of view of class field theory. There the conductor of L/K is

N = (1+ i)4(2− i)= 8− 4i,

and the group (OK /N )× is C4×C4×C2, with generators i , 7 and 3− 2i , respec-
tively. For a prime p = (α) ⊂ Z[i] not dividing N , if α ≡ ia7b(3− 2i)c mod N ,
then Frobp = (1234)b.
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Now compare this with the description of Frobenius in Example 6.1. Writing
Fq = Z[i]/p and Tr for Tr(Fq [x]/ f (x))/Fq , we get 4 congruences for the traces:

p= (α), α ≡ ia70(3− 2i)c mod N ⇐⇒ Tr(xq+2)≡ 10+ 6i mod p,

p= (α), α ≡ ia71(3− 2i)c mod N ⇐⇒ Tr(xq+2)≡ 4+ 4i mod p,

p= (α), α ≡ ia72(3− 2i)c mod N ⇐⇒ Tr(xq+2)≡−2+ 2i mod p,

p= (α), α ≡ ia73(3− 2i)c mod N ⇐⇒ Tr(xq+2)≡−8 mod p

for p 6= (1+ i), (2− i), (3).
Note that if one had a way to prove these congruences directly, one would have

a proof of Artin reciprocity in the extension L/K .

7. Examples: Nonabelian groups

We continue with examples to Theorem 5.3. When G is nonabelian, the only
difference is that the 0C are no longer linear.

Example 7.1. Let K = Q and f (x) = x3
− 2. It has Galois group S3 and roots

a1 =
3
√

2, a2 = ζ
3
√

2 and a3 = ζ
2 3
√

2, where ζ is a primitive cube root of unity.
Take h(x)= x2/6 (the factor 1

6 is only chosen for convenience) and compute the
polynomials 0C for the three conjugacy classes:

0[id] = X − 1
6(a

2
1a1+ a2

2a2+ a2
3a3)

= X − 1,

0[(12)] = (X − 1
6(a

2
1a2+ a2

2a1+ a3
3))(X −

1
6(a

2
1a3+ a3

2 + a2
3a1))

· (X − 1
6(a

3
1 + a2

2a3+ a2
3a2))

= (X − 1
3(ζ + ζ

2
+ 1))(X − 1

3(ζ
2
+ 1+ ζ ))(X − 1

3(1+ ζ + ζ
2))

= X3,

0[(123)] = (X − 1
6(a

2
1a2+ a2

2a3+ a2
3a1))(X − 1

6(a
2
1a3+ a2

2a1+ a2
3a2))

= (X − 1
3(ζ + ζ + ζ ))(X −

1
3(ζ

2
+ ζ 2
+ ζ 2))= (X − ζ )(X − ζ 2)

= X2
+ X + 1.

On the other hand, for a rational prime q = 3m+ k with k = 1 or 2,

Tr(Fq [x]/x3−2)/Fq

( 1
6 xq+2)

= Tr
( 1

6 2m+1xk−1)
=

{
2m if k = 1,
0 if k = 2

=

{
2(q−1/3) if q ≡ 1 mod 3,
0 if q ≡ 2 mod 3.
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The conclusion of Theorem 5.3 is that, as expected, for q 6= 2, 3,

q ≡ 1 mod 3, 2 ∈ (Fq)
×3

=⇒ Frobq = id,

q ≡ 1 mod 3, 2 /∈ (Fq)
×3

=⇒ Frobq ∈ [(123)],

q ≡ 2 mod 3 =⇒ Frobq ∈ [(12)].

Clearly, an identical computation goes through for f (x)= x3
−c (with h(x)= x2/3c)

over any global field K with ζ 6⊂ K .

We can also take a general cubic polynomial and obtain an analogue of Euler’s
criterion for its factorisation modulo primes:

Theorem 7.2. Let f (x) = x3
+ bx + c be a separable cubic polynomial over a

global field K , and p a prime of K with residue field Fq . Write

T = Tr(Fq [x]/ f (x))/Fq (x
q+1)= Tr

0 0 −c
1 0 −b
0 1 0

q+1

mod p.

If p does not divide 3b(4b3
+ 27c2) and the denominators of b and c, then

T ≡−2b mod p ⇐⇒ f (x) has 3 roots mod p,

T ≡ b mod p ⇐⇒ f (x) is irreducible mod p,

T is a root of x3
− 3b2x − 2b3

− 27c2
⇐⇒ f (x) has 1 root mod p.

Proof. We compute the polynomials 0C for G = S3, h(x) = x by expressing
their coefficients in terms the elementary symmetric functions a1 + a2 + a3 = 0,
a1a2+ a2a3+ a3a1 = b and a1a2a3 =−c:

0[id] = X − (a2
1 + a2

2 + a2
3)= X − (a1+ a2+ a3)

2
+ 2(a1a2+ a1a3+ a2a3)

= X + 2b,

0[(12)] = (X − (a1a2+ a2a1+ a2
3))(X − (a1a2+ a2a1+ a2

3))

· (X − (a1a2+ a2a1+ a2
3))

= X3
− 3b2 X − 2b3

− 27c2,

0[(123)] = (X − (a1a2+ a2a3+ a3a1))(X − (a1a3+ a2a1+ a3a2))

= (X − b)2.

The least common multiple of their pairwise resultants is 3b(4b3
+ 27c2), which

completes the proof by Theorem 5.3. �

An identical computation can be done for polynomials of higher degree, as
long as one has the patience to work out the coefficients of the 0C . Here is the
corresponding result for quartics:



1348 Tim and Vladimir Dokchitser

Theorem 7.3. Let f (x) = x4
+ bx2

+ cx + d be a separable quartic polynomial
over K , and p a prime of K with residue field Fq . Then the value

Tr Fq [x]
f (x) /Fq

(xq+1)

is a root of one of the polynomials

0[id] = X + 2b,

0[(12)(34)] = X3
− 2bX2

− 16d X + 32bd − 8c2,

0[(12)] = X6
+ 4bX5

+ (2b2
+ 8d)X4

+ (−12b3
+ 48bd − 26c2)X3

− (23b4
− 120b2d + 108bc2

+ 112d2)X2

− (16b5
− 128b3d + 138b2c2

+ 256bd2
+ 216c2d)X − 4b6

+ 48b4d − 56b3c2
− 192b2d2

− 288bc2d − 27c4
+ 256d3,

0[(123)] = X4
+ (−2b2

+ 8d)X2
− 8c2 X + b4

− 8b2d + 8bc2
+ 16d2,

0[(1234)] = X3
− 2bX2

+ (b2
− 4d)X + c2.

If p does not divide the denominators of b, c and d and the pairwise resultants of
the 0C , then this determines the degrees in the factorisation of f mod p: They are
the cycle lengths of the permutation in the index of 0.

A theorem of Brumer (see [Jensen et al. 2002, Theorem 2.3.5]) states that any
Galois extension L/K with Galois group G = D10 is a splitting field of

fa,b(x)= x5
+ (a− 3)x4

+ (b− a+ 3)x3
+ (a2

− a− 1− 2b)x2
+ bx + a

for some a, b ∈ K . Using a similar argument to G = S3 and S4, we find:

Theorem 7.4. Suppose L/K is the splitting field of fa,b(x) as above, with

G = Gal(L/K )∼= D10.

If p is a prime of K with residue field Fq , not dividing 3a−b+1 and the denominators
of a and b and such that f mod p is irreducible, then

Tr Fq [x]
f (x) /Fq

(xq+1)

is either−2a+b+1 or a+2 modulo p. This determines which of the two conjugacy
classes of 5-cycles contains Frobp .

Remark 7.5. In this setting, if Frobp is not a 5-cycle, it is either the identity or an
element of order 2. In the former case,

Tr Fq [x]
f (x) /Fq

(xq+1)= a2
− 4a− 2b+ 3 mod p;
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in the latter the trace is a root of

0[(23)(45)]

= X5
− (a− 3)2 X4

+ (31− 2a3
+ 4b− 3b2

+ a2(11+ 2b)− 2a(21+ 2b))X3

+ (12a3(3+ 2b)− a2(137+ 44b)+ a(114+ 6b− 28b2)

− 51+ 7a4
− 4a5

− 20b+ 14b2
− 2b3)X2

+ (40+ 16a5
− 8a6

+ 32b− 17b2
− 4b3

+ a4(58+ 42b)+ a2(182+ 18b− 52b2)

+ 4a3(−49− 21b+ b2)− 2a(65+ 13b− 17b2
+ 6b3))X

+ 8a6
− 4a7

+ 4a5(7+ 5b)− 4a4(32+ 17b)+ 2a3(123+ 85b+ 4b2)

−a2(245+218b+24b2)−2a(−30−6b+51b2
+22b3)+2(−6−8b+3b2

+b3
−4b4).

Example 7.6. Here is another example, to illustrate what the 0C look like in
general. Take K = Q and L = Q(E[3]), the 3-torsion field of the elliptic curve
E : y2

+ y = x3
− x2. Then Gal(L/K )∼= GL2(F3), and L is the splitting field of

f (x)= x8
− 9x7

+ 18x6
+ 33x5

− 93x4
− 15x3

− 23x2
− 36x − 27.

The 0C for h(x)= x2 are

0[id] = X−144,
0[(13)(24)(56)(78)] = X−3,
0[(24)(57)(68)] = X12

−699X11
+204666X10

−32922129X9
+3212225793X8

−196600821903X7
+7340079612456X6

−145234777501584X5

+566948224573848X4
+26747700562448082X3

−187604198442957555X2
−2946247136394353892X
−24290099658154516203,

0[(148)(273)] = X8
−546X7

+120102X6
−14088342X5

+989228043X4

−43566817716X3
+1248800990265X2

−21583664066961X
+167939769912993,

0[(1432)(5768)] = X6
−258X5

+26448X4
−1344378X3

+34859664X2

−445164021X+2926293624,
0[(174382)(56)] = X8

−264X7
+29292X6

−1698042X5
+51288993X4

−654852960X3
+3360584547X2

−277935306777X+7299371089503,
0[(15473628)] = X6

−258X5
+26250X4

−1336755X3
+35700471X2

−477465444X+2707751520,
0[(16483527)] = X6

−258X5
+28230X4

−1674048X3
+57362760X2

−1097286921X+9616023198.

Example 7.7. As an indication of the kind of Artin L-series that may be numer-
ically computed, we give an example with a big Galois group over Q. We take
G=PGSp(4, F3) of order 51840, realised through the Galois action on the 3-torsion
of the Jacobian of a genus 2 curve, and evaluate the Artin L-series of an irreducible
6-dimensional representation of G.
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Specifically, G is the unique double cover of the simple group Sp(4, F3)/F
×

3 in
PGL(4, F3)= GL(4, F3)/F

×

3 . To obtain it as a Galois group, take the hyperelliptic
curve

C/Q : y2
− (x2

+ 1)y = x5
− x4
+ x3
− x2.

Consider the field Q(J [3]) obtained by adjoining to Q the coordinates of the 3-
torsion points of its Jacobian J/Q. Then Gal(Q(J [3])/Q) is GSp(4, F3). The group
we want is G =GSp(4, F3)/{±1}, and it can be obtained from the Galois action on
the 40 lines through the origin in J [3]. Specifically, if (P)+ (Q)− 2(O) ∈ J [3] is
a nonzero point with P = (xP , yP), Q = (xQ, yQ), the minimal polynomial f of
xP xQ over Q has Galois group G;

f = x40
+ 27x39

+ 39x38
− 61x37

+ · · ·+ 2259x3
+ 3471x2

+ 1057x + 69.

In its action on the roots of f , the group has several conjugacy classes of the same
cycle type, and the largest 0C that we need has degree 2160 (using Remark 5.10).

The group has two irreducible 6-dimensional representations, ρ and ρ ′ (whose
traces on elements of order 10 in G are +1 and −1, respectively). The curve C

has good reduction outside 2 and 3, so L/Q is unramified at all primes p 6= 2, 3.
The conductor of ρ is 210317 and we used our machinery to compute the local
polynomials for the Artin L-series L(ρ, s) for primes up to 410203. Using Magma
[Bosma et al. 1997], we then evaluate

L(ρ, 1)≈ 1.852529796, L(ρ, 2)≈ 1.119877506,

to 10-digit precision. This computation relies implicitly on the validity of Artin’s
conjecture for ρ. It took half an hour on a 3GHz dual-core CPU to compute
Gal( f/Q), 5 hours for the 0C , 3 hours for the local information at p = 2, and
3 (ramification groups, conductor exponents etc.), 3 minutes for the Frobenius
elements and the local polynomial computation and half an hour for each of the
L-values.

8. Appendix: Two lemmas on Zariski density

Lemma 8.1. Suppose K is an infinite field, f ∈ K [t] is a separable polynomial of
degree n and a1, . . . , an are its roots in some splitting field L.

(a) If F,G ∈ K [x1, . . . , xn] take the same values on

x1 = β0+β1a1+ · · ·+βn−1an−1
1 , . . . , xn = β0+β1an + · · ·+βn−1an−1

n

for all [β1, . . . , βn] ∈ K n , then F = G.

(b) Suppose F1, . . . , Fd ∈ K [x1, . . . , xn] are distinct. There exists a polynomial
B(t)= β0+· · ·+βn−1tn−1

∈ K [t] such that B(a1), . . . , B(an) generate L and
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the Fi take distinct values on [B(a1), . . . , B(an)]. The set of such B contains
a Zariski dense open subset of K ⊕ K t ⊕ · · ·⊕ K tn−1.

(c) Let F be a T -invariant for some T <Sn . There is a Zariski dense open set of
polynomials B(t) ∈ K ⊕K t⊕· · ·⊕K tn−1 for which a′ = [B(a1), . . . , B(an)]

generate L and eF
a′ : T \Sn→ L is injective.

Proof. (a) Let U = K (t1, . . . , tn). As a first step, we observe that K n is Zariski
dense in An

U =U n: This is clear for n= 1 as K is infinite; generally, if K n were not
Zariski dense, it would be contained in a (not necessarily irreducible) hypersurface
of some degree d , so it would contain at most d hyperplanes. But, by induction, it
contains all {r}×U n−1 for all r ∈ K , which gives a contradiction.

Therefore, as F and G are continuous in the Zariski topology, they agree on all
of U n , that is, on all the combinations above with [β1, . . . , βn] ∈U n . Now solve
the system of equations

∑n−1
j=0 a j

i β j = t j for β1, . . . , βn . (This is possible because
ai 6= ak for i 6= k, so the Vandermonde matrix is invertible.) Using this solution we
find that F(t1, . . . , tn)= G(t1, . . . , tn), so F = G as polynomials.

(b) Put F(x1, . . . , xn) =
∏

i< j (xi − x j )(Fi − F j ) and G = 0 and apply (a). This
gives a polynomial B(t) = β0 + · · · + βn−1tn−1

∈ K [t] that clearly satisfies the
“distinct values” condition. Furthermore, B(ai ) 6= B(a j ) guarantees the “generate L”
condition as well: The Galois action permutes the B(ai ) in the same way as the ai ,
so the Galois group has the same order. Finally, consider F(B(a1), . . . , B(an)) as
a polynomial in β0, . . . , βn−1. Its zero set is Zariski closed in An and we proved
that its complement is nonempty. This proves the last claim.

(c) Apply (b) to the set of polynomials {Fσ }σ∈T \Sn , using that, by definition,
eF

a′(σ
−1)= F((a′)σ−1

)= Fσ (a′). �

Lemma 8.2. Suppose K is an infinite field, f ∈ K [t] is a separable polynomial of
degree n and a1, . . . , an are its roots in some splitting field L. Then on a Zariski
dense open set of polynomials h(x) in K ⊕ K x ⊕ · · ·⊕ K xn−1 ∼= An

K , the values

vh(σ )=

n∑
j=1

h(a j )σ (a j )

for σ ∈ G = Gal(L/K ) are distinct.

Proof. For any σ ∈G, the map Eσ : h 7→ vh(σ ) is K -linear K n
→ L . So Eσ agrees

with Eτ on a K -linear subspace for every σ, τ ∈ G. If none of these subspaces is
all of K n , then the complement of their union is the desired set (nonempty since K
is infinite). It remains to prove that Eσ 6= Eτ for σ 6= τ .

Suppose Eσ = Eτ : K n
→ L . Then their extensions by linearity to maps Ln

→ L
agree as well. In other words, vh(σ )= vh(τ ) for all h in L⊕ Lx⊕· · ·⊕ Lxn−1. In
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particular, taking
h(x)=

∏
j 6=i

(x − a j )

we get that σ(ai )= τ(ai ). As this holds for all i , it follows that σ = τ . �
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