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A Gross–Zagier formula for quaternion
algebras over totally real fields

Eyal Z. Goren and Kristin E. Lauter

We prove a higher dimensional generalization of Gross and Zagier’s theorem
on the factorization of differences of singular moduli. Their result is proved
by giving a counting formula for the number of isomorphisms between elliptic
curves with complex multiplication by two different imaginary quadratic fields K
and K ′ when the curves are reduced modulo a supersingular prime and its powers.
Equivalently, the Gross–Zagier formula counts optimal embeddings of the ring of
integers of an imaginary quadratic field into particular maximal orders in Bp,∞,
the definite quaternion algebra over Q ramified only at p and infinity. Our work
gives an analogous counting formula for the number of simultaneous embeddings
of the rings of integers of primitive CM fields into superspecial orders in definite
quaternion algebras over totally real fields of strict class number 1. Our results can
also be viewed as a counting formula for the number of isomorphisms modulo p| p
between abelian varieties with CM by different fields. Our counting formula can
also be used to determine which superspecial primes appear in the factorizations
of differences of values of Siegel modular functions at CM points associated to
two different CM fields and to give a bound on those supersingular primes that
can appear. In the special case of Jacobians of genus-2 curves, this provides infor-
mation about the factorizations of numerators of Igusa invariants and so is also
relevant to the problem of constructing genus-2 curves for use in cryptography.

1. Introduction

The celebrated theorem of Gross and Zagier [1985] gives a factorization of norms
of differences of singular moduli: values of the modular j-function evaluated at
CM points associated to imaginary quadratic fields. Let K and K ′ be two imaginary
quadratic fields with relatively prime fundamental discriminants d and d ′. For τ
and τ ′ running through equivalence classes of imaginary quadratic integers in the
upper half-plane modulo SL2(Z) with disc(τ ) = d, disc(τ ′) = d ′, and w and w′
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equal to the number of roots of unity in K and K ′, respectively, define

J (d, d ′)=
( ∏
[τ ],[τ ′]

( j (τ )− j (τ ′))
)4/(ww′)

.

Then the Gross–Zagier thereom states that if λ is a prime of OK of characteristic p,

ordλ J (d, d ′)= 1
2

∑
x∈Z

∑
n≥1

δ(x)R
(

dd ′−x2

4pn

)
,

where R(m) is the number of ideals of OK of norm m and δ(x) = 1 unless x is
divisible by d , in which case it is 2. Their results can also be viewed as a counting
formula for the number of isomorphisms between the reductions modulo primes
and their powers of elliptic curves with complex multiplication by two different
imaginary quadratic fields K and K ′. This in turn is equivalent to counting optimal
embeddings of the ring of integers of an imaginary quadratic field into particular
maximal orders in Bp,∞, the definite quaternion algebra over Q ramified only at p
and infinity. Gross and Zagier gave an algebraic proof of this result under the
additional assumption that d is prime, and the algebraic proof of the theorem was
extended to arbitrary fundamental, relatively prime discriminants in a series of
papers by Dorman [1988; 1989a; 1989b].

In this paper, we prove a generalization to higher dimensions of Gross and
Zagier’s theorem, which can also be viewed in three ways: (1) a statement about
primes in the factorization of differences of values of Siegel modular functions
at CM points associated to two different CM fields, (2) a counting formula for
isomorphisms modulo p between abelian varieties with CM by different fields, and
(3) a counting formula for simultaneous embeddings of the rings of integers of two
primitive CM fields into superspecial orders in certain definite quaternion algebras
over a totally real field.

First we explain our interest in these three contexts. Assume throughout that K
and K ′ are primitive CM fields with a common totally real subfield K+ = K ′+ = L
and [L :Q] = g, where L has strict class number 1. In the special case of g = 2,
we are inspired by some concrete calculations of values of certain Siegel modular
functions at CM points associated to primitive quartic CM fields. Let C and C ′

be two genus-2 curves whose Jacobians J and J ′ have complex multiplication
(CM) by K and K ′. In analogy with the modular j -invariant for elliptic curves, for
genus-2 curves Igusa defined ten modular invariants. Equality of these ten invariants
determines whether two curves are isomorphic geometrically, so primes appearing
in the factorization of all ten differences correspond to primes where the curves
become isomorphic when reduced modulo that prime. Concrete calculations and
the tables of van Wamelen [1999] suggest that such primes are “small”. An explicit
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characterization of such primes gives information about the numerators of Igusa
invariants and thus has some value computationally as well.

Thus, we are led to be interested in counting the number of isomorphisms modulo
various primes and their powers between abelian varieties with CM by two different
CM fields K and K ′. The existence of an isomorphism modulo p between abelian
varieties with CM by two different CM fields K and K ′ with K+ = K ′+ implies
supersingular reduction modulo p. Fixing an abelian variety A with CM by K ,
each isomorphism modulo p with an abelian variety A′ with CM by K ′ gives an
embedding of OK ′ into EndOL (A). In the case of superspecial reduction, we can
give a very explicit description of the orders EndOL (A), which allows us to derive a
formula that counts such embeddings.

Nicole introduced the notion of superspecial orders in definite quaternion algebras
over totally real fields as a generalization of maximal orders in definite quaternion
algebras over Q; see [Nicole 2005; 2008]. These orders were further studied in
[Charles et al. 2009a; 2009b; Goren and Lauter 2009], where related Ramanujan
graphs were constructed and certain cryptographic applications suggested. Through-
out this paper, assume that p is a prime number that is unramified in the totally real
field L of degree g and strict class number h+(L)= 1. Under these assumptions,
a superspecial order in Bp,L := Bp,∞ ⊗Q L is an Eichler order of level p. The
connection with geometry is given in the thesis of Nicole, where it is shown that
EndOL (A) is a superspecial order for A a principally polarized superspecial abelian
variety with RM over Fp. Conversely, every superspecial order arises in this way
from such an abelian variety A.

Next we give an overview of the results of the paper. The core of the paper
is the generalization of Dorman’s work constructing and classifying superspecial
orders in Bp,L with an optimal embedding of a CM number field K with K+ = L .
First, Section 3 is devoted to giving a description of the quaternion algebra Bp,L

with a fixed embedding of the CM field K for superspecial primes, i.e., unramified
primes p such that an abelian variety with CM by K has superspecial reduction
modulo a prime P| p in a field of definition of the abelian variety. Sections 4 and 5
establish a classification of superspecial orders with an optimal embedding of K ,
giving both an explicit construction of all such superspecial orders and a bijection
(up to conjugation by elements of K×) with the class group of K (Theorem 5.7).
These three sections together establish the generalization to g > 1 of Dorman’s
work on orders [1989a] and fix several gaps in his proofs.

Section 6 gives a method for counting embeddings by counting elements of the
superspecial orders with a prescribed trace and norm in a way that generalizes the
Gross–Zagier formula. Our method is very similar to Gross–Zagier’s and Dorman’s;
their results are the special case g = 1. To make the link between the algebraic and
the geometric sides of the story, we include the determination of endomorphism
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rings of superspecial abelian varieties in Section 7. Section 8 connects the counting
formula for isomorphisms between CM abelian varieties with the counting formula
for embeddings into superspecial orders.

The main result of the paper is an explicitly computable counting formula for the
number of isomorphisms modulo P| p between abelian varieties with CM by two
different CM fields K and K ′ with K+= K ′+ (Theorems 6.5 and 8.2). This formula
can be viewed as an intersection number under the assumption that a reasonable
lemma in intersection theory holds (Section 9). Less precisely, we refer to this
value as a “coincidence number”. It also has an algebraic interpretation as the
number of “optimal triples” of embeddings of OK and OK ′ into superspecial orders
(Section 8.4).

For primes of supersingular reduction for CM abelian varieties, a separate com-
putation of the endomorphism rings is given in Section 10. In Section 11, a volume
argument such as was used in [Goren and Lauter 2007] is given to establish a bound
on primes p of either supersingular or superspecial reduction, where isomorphisms
exist modulo p between CM points associated to K and K ′. In Section 12, an
example of two Galois CM fields is given and all primes dividing the differences of
the Igusa invariants are examined and compared with our counting formula.

The authors thank the referee for helpful comments to improve the paper.

2. Preliminaries

2.1. Quadratic reciprocity for number fields. Let L be a number field and γ and δ
prime elements of L that are nonassociates such that (γ δ, 2)= 1. Define(

γ

δ

)
=

{
1 if γ =� mod δ,
−1 else.

Let B :=
(
γ,δ

L

)
be the quaternion algebra over L defined by the elements γ and δ.

For any place η of L , including the infinite places, define

(γ, δ)η :=

{
1 if B⊗L Lη is split,
−1 else,

and we have the following analogue of quadratic reciprocity for the number field L:

Proposition 2.1. (1) If η is a finite prime such that η - 2, then (γ, δ)η = 1 if and
only if x2

− γ y2
− δz2

= 0 has a nontrivial solution modulo η.

(2) If η is complex, then (γ, δ)η = 1.

(3) If η is real (η : L→ R), then (γ, δ)η = 1 if and only if η(γ ) > 0 or η(δ) > 0.
That is, (γ, δ)η =−1 if and only if both η(γ ) and η(δ) are negative.
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(4)
(
γ

δ

)(
δ

γ

)
= (−1)r(γ,δ) ·

∏
η |2

(γ, δ)η,

where r(γ, δ) equals the number of real places η such that both η(γ ) and η(δ)
are negative. In particular, if either γ or δ are totally positive, then(

γ

δ

)(
δ

γ

)
= (γ, δ)2 :=

∏
η |2

(γ, δ)η.

(5)
(
−1
γ

)
(−1, γ )2 = (−1)r(γ ),

where r(γ ) is the number of real places η such that η(γ ) is negative.

Proof. We prove (1). By [Vignéras 1980, Chapter II, Corollary 1.2], (γ, δ)η = 1 if
and only if x2

−γ y2
−δz2

= 0 has a nontrivial solution in Lη, where by “nontrivial”
we mean a solution where at least one of the variables with nonzero coefficients
is nonzero. Suppose that x2

− γ y2
− δz2

= 0 has a nontrivial solution in Lη.
By multiplying by a common denominator, we can assume x, y, z ∈ OLη and
one of them is a unit. Then reducing modulo η, we get a nontrivial solution to
x2
− γ y2

− δz2
≡ 0 mod η. Conversely, suppose x2

− γ y2
− δz2

≡ 0 mod η has a
nontrivial solution. By Hensel’s lemma, we can lift the solution to OLη .

Part (2) is clear, and (3) follows from loc. cit. because x2
−η(γ )y2

−η(δ)z2
= 0

has a nontrivial solution in R3 if and only if either η(γ ) > 0 or η(δ) > 0.
To prove (4), first note that (γ, δ)γ = 1 if and only if x2

− γ y2
− δz2

= 0
has a nontrivial solution modulo γ if and only if δ = (x/z)2 for some nonzero
x, z ∈ OL/(γ ) if and only if

(
δ
γ

)
= 1. By the product formula,

1=
∏
η

(γ, δ)η = (−1)r(γ,δ)(γ, δ)2
(
δ

γ

)(
γ

δ

) ∏
η finite
η-2γ δ

(γ, δ)η.

But for η - 2γ δ, x2
−γ y2

−δz2
= 0 has a nontrivial solution modulo η, so (γ, δ)η= 1.

Similarly for (5), for any real place η, η(γ ) > 0 if and only if (−1, γ )η = 1, so
it follows from the product formula that

1=
∏
η

(−1, γ )η = (−1)r(γ )
(
−1
γ

)
(−1, γ )2. �

2.2. The ring of integers in CM fields. Let K be a CM field with a totally real
subfield K+ = L . Assume that L has strict class number 1. Let DK/L be the
different of the extension, and let η denote a prime ideal of OL .

Lemma 2.2. (1) OK = OL [t], where t2
+ at + b = 0 for some a, b ∈ OL , and

D−1
K/L = (1/

√
d) with d = a2

− 4b a totally negative element of OL .
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(2) Assume for η |2 that if η |a then b is not a square modulo η. Then (d, 2)= 1,
and d is square-free.

Proof. Part (1) is proved in [Goren and Lauter 2006, Lemma 3.1].
We now prove (2). Since OK = OL [t]/(t2

+ at + b), the prime decomposition
of every prime η is determined by the prime factorization of t2

+ at + b mod η. If
η is ramified, that implies that t2

+ at + b ≡ (t − c)2 mod η for some c ∈ OL/(η).
But since η |2, we have

(t − c)2 ≡ t2
− c2
≡ t2
+ c2 mod η,

so
t2
+ at + b ≡ (t − c)2 mod η ⇐⇒ η |a and b =� mod η.

Thus, our condition implies that OK is unramified over all primes η |2. It follows
that (d, 2)= 1.

Next we prove that d is square-free. Let η be a prime of OL not dividing 2. For
η |d, we have OK ⊗OL OLη = OLη [

√
d] because OK = OL [(−a +

√
d)/2]. Write

OLη [
√

d] = OLη [
√

u ·αr
η], where u is a unit at η and αr

η |d . If r > 1, then

OLη
[√

u ·αr
η

]
= OLη +OLη ·

√
u ·αr

η

has no element of valuation 1, which is not possible. Indeed, if π is a uniformizer
of OKη

with valuation normalized so that valη(OLη) = Z≥0, then for x ∈ OLη ,
valπ (x)= 2 valη(x) ∈ 2Z≥0, and

valπ
(√

u ·αr
η

)
=

1
2 valπ (u ·αr

η)= valη(u ·αr
η)= r.

In other words, we have shown that discriminants of quadratic extensions of p-adic
fields are square-free when p 6= 2. �

Lemma 2.3. We have OK = OL [(a′ +
√

d)/2] exactly for the a′ ∈ OL such that
a′ ≡ a mod 2OL . Such a′ satisfy (a′)2 ≡ d mod 4OL . Conversely, given a′ ∈ OL

such that (a′)2 ≡ d mod 4OL , we have OK = OL [(a′+
√

d)/2].

Proof. If a′≡a mod 2OL , we have OK =OL [t]=OL [(a+
√

d)/2]=OL [(a′+
√

d)/2]
if a′ ≡ a mod 2OL . We have d = a2

− 4b ≡ a2 mod 4OL . Then also (a′)2 =
(a+ 2y)2 = a2

+ 4ay+ 4y2
≡ d mod 4OL .

If OL [(a+
√

d)/2] = OL [(a′+
√

d)/2], then

a+
√

d
2
= u+ v

(a′+
√

d
2

)
,

which implies that
a+
√

d = 2u+ va′+ v
√

d,

and so
v = 1 and a = 2u+ a′ =⇒ a ≡ a′ mod 2OL .
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Finally, suppose a′ ∈ OL satisfies (a′)2 ≡ d mod 4OL . Then (a′ +
√

d)/2 is
integral. Therefore, we get successively

a′+
√

d
2
= u+ v ·

(
a+
√

d
2

)
,

from which we get successively

a′+
√

d = 2u+ va+ v
√

d, v = 1, a ≡ a′ mod 2OL . �

2.3. CM points on Hilbert modular varieties. Assume that L is a totally real field,
[L : Q] = g, and L has strict class number 1; we write h+L = 1. This implies
that (OL

×)+ = (OL
×)2. In this case, the Hilbert modular variety HL associated

to L is geometrically irreducible and affords the following description. It is the
moduli space for triples (A, ι : OL → End(A), η), where A is a complex abelian
variety of dimension g, ι is a ring embedding, and η is a principal OL -polarization
or, equivalently, η is a principal polarization and the associated Rosati involution
fixes OL elementwise. We have HL ∼= SL2(OL) \H

g; see [Goren 2002, Chapter 2,
§2]. Our interest is in the parametrization of CM points on HL .

2.3.1. Abelian varieties with CM. Let K be a CM field such that K+ = L . We
consider triples

(A, ι : OK → End(A), η) (2-1)

such that A is a g-dimensional complex abelian variety, ι is a ring homomorphism,
and η is a principal OK -polarization, by which we mean a principal polarization
whose associated Rosati involution induces complex conjugation on K .

Such datum produces a point on HL , namely, the point parametrizing (A, ι|OL , η).
This will be examined later. First we want to classify triples (A, ι, η) as in (2-1) up
to isomorphism.

To a triple (A, ι, η), we may associate a CM type 8 that records the induced
action of K on TA,0, the tangent space to A at the origin. The theory of complex
multiplication then asserts the existence of a fractional ideal a of K such that

(A, ι)∼= (Cg/8(a), ιcan),

where 8(a) is the lattice {(ϕ1(a), . . . , ϕg(a)) : a ∈ a } and 8= {ϕ1, . . . , ϕg}; ιcan is
the canonical action of OK on that abelian variety obtained by extending the natural
action on 8(a). Furthermore, the principal polarization η is induced from a paring
on K of the form

(x, y) 7→ TrK/Q(ax y)

for some a ∈ K . The conditions on a ensuring the associated polarization, say ηa ,
is principal are these:
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(1) (a)= (DKaa)
−1.

(2) a =−a.

(3) Im(ϕi (a)) > 0 for i = 1, . . . , g.

It follows easily that for every λ ∈ K×, the principally polarized abelian variety
associated to (8, a, a) in the manner above is isomorphic to that associated to
(8, λa, (λλ)−1a). Furthermore, any isomorphism of principally polarized abelian
varieties (A, ι, η)∼= (A′, ι′, η′) as in (2-1) arises that way.

Now, given a fractional ideal a of K , the ideal aa is of the form bOK for some
fractional ideal b of L , and since hL = 1, we can write (aa)−1

= λOK for a suitable
λ∈ L . The fractional ideal D−1

K is of the form d−1/2OK , where d is a totally negative
element of L . Thus,

(DKaa)
−1
= (λd−1/2),

and λd−1/2 = −λd−1/2. We are free to change λ by any unit ε ∈ OL
×. Since

(OL
×)+ = (OL

×)2, it follows easily that for any choice of signs s1, . . . , sg in {±1},
there is a unit ε ∈ OL

× such that the sign of ϕi (ε) is si . Since

Im
(
ϕi
(
ελ
√

d
−1))
= ϕi (ε) Im

(
ϕi
(
λ
√

d
−1))

,

by choosing ε properly we may arrange Im(ϕi (ελ
√

d
−1
)) > 0 for all i = 1, . . . , g.

We have thus shown that for every fractional ideal a of K , there is a suitable a such
that (8, a, a) gives a principally polarized abelian variety with CM by K .

Our discussion so far shows that the isomorphism classes of principally polarized
abelian varieties with CM by OK are in bijection with equivalence classes of the set

{(8, a, a) :8 is a CM type, a satisfies (1)–(3) above relative to (8, a) }.

The equivalence relation is (8, a, a)∼ (8, λa, λλa) for λ ∈ K× and, further, that
every pair (8, a), where 8 is a CM type and a is a fractional ideal, appears in a
suitable triple (8, a, a).

Given (8, a, a) and (8, a, b), there is a unit ε1 ∈ OK
× such that b= ε1a because

both a and b generate the ideal (DKaa)
−1. Since a =−a and b =−b, it follows

that ε1 ∈ OL
×, and since Im(ϕ(a)) > 0 and Im(ϕ(b)) > 0, it follows that ε1 ∈ OL

×,+.
Using that OL

×,+
=OL

×,2, we conclude that there is an ε ∈OL such that ε1= ε
2
= εε.

That is, (8, a, a)∼ (8, a, b). We therefore conclude that, in the strict class number 1
case, isomorphism classes of principally polarized abelian varieties with CM by K
and a fixed CM type are parametrized by the ideal classes of K .

2.3.2. CM points on HL . Let (A, ι : OK → End(A)) be a complex abelian variety
with CM by K (so [K :Q] = 2 dim(A)). Since h+L = 1, it carries a unique principal
polarization up to isomorphism. Consider EndOL (A). We use [Chai 1995, Lemma 6,
p. 464]. In the notation of that lemma since A has CM, only cases III(a) and IV
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can arise. But since we are working over the complex numbers, in fact only case
IV can arise, and according to which, A ∼ Bn , where B is of dimension g/n
and has CM by a CM field K0 whose totally real subfield L0 is contained in L
and satisfies [L : L0] = n. One has End0

L(A) = L ⊗L0 K0, which is a CM field
according to that lemma. It follows, because K is primitive, that End0

L(A)= K . As
a consequence, once a RM structure is specified on A, there are precisely two CM
structures extending it; if ι : OK → End(A) is one of them, the other is ι := ι ◦ τ ,
where τ is complex conjugation on K . If ι has CM type 8, then ι has CM type 8.
Let F be the set of CM types for K .

Proposition 2.4. Let (8, [a]) ∼ (8, [a]) (= (8, [a−1
])) define an equivalence

relation ∼ on F×Cl(K ). Then the set F×Cl(K )/∼ has 2g−1
×# Cl(K ) elements

and is in a natural bijection with the K -CM points on HL , that is, with the points
(A, ι : OL→ End(A), η) for which we can extend ι to an embedding OK → End(A)
whose image is fixed (as a set) by the Rosati involution associated to η.

3. Quaternion algebras over totally real fields

Let L be a totally real number field of degree g and strict class number 1. Let p be
a prime number unramified in L , and let

Bp,L := Bp,∞⊗Q L ,

where Bp,∞ is the rational quaternion algebra ramified at p and∞ alone. Let

S := {p GOL : p| p }

be the set of prime ideals of L above p, and let

S0 = {p ∈ S : f (p/p)≡ 1 mod 2 }

be those with odd residue degree. The algebra Bp,L is ramified precisely at all
infinite places and at the primes p ∈ S0.

The rest of this section and Sections 4 and 5 are devoted to giving a description
of the quaternion algebra Bp,L and a classification of some particular orders under
the assumptions that all primes p ∈ S \ S0 split in K and all primes p ∈ S0 are inert
in K . First we prove that this assumption is satisfied when p is an unramified prime
of superspecial reduction for an abelian variety with CM by K .

3.1. Splitting behavior in the case of superspecial reduction.
Proposition 3.1. Let p be a rational prime unramified in K . Let A be an abelian
variety with CM by OK defined over a number field M with good reduction at a prime
ideal pM of M dividing the rational prime p. Assume that A has supersingular
reduction modulo pM . Then every prime in S0 is inert in K . Assume further that A
has superspecial reduction; then every prime in S \ S0 is split in K .
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Proof. Since A has supersingular reduction, say A, End0
L(A)∼= Bp,L = Bp,∞⊗Q L

[Chai 1995, Lemma 6], and so

K ↪→ Bp,L .

Thus, at every prime P of K above a prime p of L , the field KP splits the quaternion
algebra Bp,L⊗L Lp. The quaternion algebra Bp,L is ramified precisely at the primes
in S0 and at infinity, so if p ∈ S0, we find that each KP is a quadratic field extension
of Lp; that is, since p is unramified in K , all the primes in S0 are inert in K .

Assume now that there is a prime p ∈ S \ S0 that is inert in K , and let P be the
prime of K above p. Let us denote the embedding of OL into W (Fp) associated to p

{ϕ1, . . . , ϕ f } and f = f (p/p), where we may order the embeddings so that σ ◦
ϕi = ϕi+1 and σ denotes the Frobenius automorphism. Each embedding ϕi is the
restriction of two embeddings of OK into W (Fp) that we denote ψ1

i and ψ2
i , where

one is the composition of the other with complex conjugation. Since P is inert over
p, σ still acts transitively on the set {ψ j

i : i = 1, . . . , f, j = 1, 2 }.
The Dieudonné module of A decomposes as D =

⊕
p| p D(p) relative to the OL

structure. Let H := D(p). Then H decomposes further as

H =
f⊕

i=1

H(ϕi )=

f⊕
i=1

(H(ψ1
i )⊕ H(ψ2

i )),

where H(ϕi ) is a free W (Fp)-module of rank 2 on which OL acts via ϕi , and
it decomposes into a direct sum of two free W (Fp)-modules of rank 1, H(ψ1

i )

and H(ψ2
i ), on which OK acts by ψ1

i and ψ2
i , respectively. Now, the transitivity of

the action of σ on the ψ j
i means that we can order them so that

σ ◦ψ1
i = ψ

1
i+1, i = 1, 2, . . . , f − 1,

σ ◦ψ1
f = ψ

2
1 ,

σ ◦ψ2
i = ψ

2
i+1, i = 1, 2, . . . , f − 1,

σ ◦ψ2
f = ψ

1
1 .

Let us choose a basis {e j
i : i = 1, 2, . . . , f, j = 1, 2 } for H such that e j

i spans
H(ψ j

i ). Note that the kernel of Frobenius on H := H mod p is an OK -module and
is one-dimensional in every H(ϕi ) because A satisfies the Rapoport condition or,
alternately, for each i , precisely one of {ψ1

i , ψ
2
i } belongs to the CM type. Suppose,

without loss of generality, that e1
1 spans the kernel of Frobenius in H(ϕ1); then we

must have that Fr(e2
1), which is equal up to a unit to e2

2, spans the kernel of Frobenius
in H(ϕ2) (this is where “superspecial” is being used), and by the same rationale, we
find that the kernel of Frobenius in H(ϕi ) is spanned by e1

i for i odd and by e2
i for i

even. In particular, the kernel of Frobenius in H(ϕ f ) is spanned by e2
f because f is
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even. Now, by the same rationale, Fr(e1
f ) spans the kernel of Frobenius in H(ϕ1),

and it lies in H(ψ2
1 ) because σ ◦ψ1

f = ψ
2
1 . This is a contradiction. �

3.2. A description of Bp,L . Next we give a description of the quaternion algebra
Bp,L in terms of a CM field K for a certain set of primes p, which according to
Proposition 3.1 includes the superspecial primes of K . This description generalizes
the approach of Gross and Zagier.

Notation. If q is a prime ideal of L , let αq denote a totally positive generator of q.
It is unique up to an element of OL

×+
= OL

×,2. Write p =
∏

p∈S αp.

Proposition 3.2. Let K be a CM field and K+= L. Assume p is odd and unramified
in L and that all primes p ∈ S \ S0 split in K and all primes p ∈ S0 are inert in K .
These conditions imply that K embeds in Bp,L . Assume that the discriminant
dK/L = (d) satisfies (d, 2p) = 1. Then there is a totally negative prime element
α0 ∈ OL such that (α0, 2pd)= 1, the ideal (α0) is split in K , and

Bp,L ∼=

(d, α0 p
L

)
.

Proof. We first need a lemma.

Lemma 3.3 (Primes in arithmetic progressions). Let L be a number field, and let
ν1, . . . , νt be some of L’s embeddings into R. Let rCOL be an integral ideal and
r ∈ OL an element such that (r, r)= 1. Then there is a prime element α ∈ OL such
that α ≡ r mod r and νi (α) > 0 for i = 1, . . . , t .

Proof. We may assume νi (r) > 0 for i = 1, . . . , t . Indeed, one may replace r
by r+n for any element n ∈ r. Since r⊗Q= L , for any c ∈R, r contains elements
n such that ν(n)> c for every real place ν of L . Taking C =max{|νi (r)| : νi (r)< 0 }
and a suitable element n ∈ r, we get νi (r + n) > 0 for i = 1, . . . , t .

Consider the modulus rν1ν2 · · · νt = m and the ray class group modulo m,
I (m)/P(m). Here I (m) is the multiplicative group of fractional ideals prime
to m and P(m) is the subgroup of principal ideals having a generator β such
that β ≡ 1 mod m and νi (β) > 0 for i = 1, . . . , t . Let L(m) be the correspond-
ing class field with Gal(L(m)/L) ∼= I (m)/P(m). The ideal (r) is an element of
I (m)/P(m). Let

σ := ((r), L(m)/L) ∈ Gal(L(m)/L)

be the Artin symbol. By Chebotarev, there is a prime ideal p such that (p,m)=1 and

σ = σp = (p, L(m)/L).

Also, p is equivalent to (r) modulo P(m) and hence also principal. Indeed,

σp|HL = σ |HL = ((r), L(m)/L)|HL = 1.
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Since Gal(HL/L) ∼= I/P , we must have that p is principal. Let (α1) = p. By
construction, (α1) = (r) in I (m)/P(m). That means that the ideal (α1r−1) has a
generator uα1r−1, u ∈ OL

×, such that

uα1r−1
≡ 1 mod m.

Let α= uα1. Then α≡ r mod m, meaning α≡ r mod r, and for every i = 1, . . . , t ,
νi (α) has the same sign as νi (r), i.e., is positive. �

According to Lemma 3.3, we can choose α0 ∈ OL satisfying these conditions:

(1) α0 is a totally negative prime element of OL .

(2) α0≡ p mod ηN for each η |2 and some N� 0 (for the choice of N , see below).

(3) α0 ≡ p mod q for each q|d .

(4) α0 ≡ 1 mod p.

Since x2
−dy2

−α0 pz2
≡ 0 mod ηN has a nontrivial solution and N is large enough,

by Hensel’s lemma there is a p-adic solution. We therefore have

(d, α0 p)η = 1 for all η |2,
(
α0
q

)
=

( p
q

)
for all q|d (3-1)

and (α0, 2pd)= 1.
To show that Bp,L ∼=

(d, α0 p
L

)
, we need to check the following:

1. (d, α0 p)η = 1 for all η |2. This follows from (3-1).

2. (d, α0 p)η=1 for all finite ηwith η -dα0 p. This is because x2
−dy2

−α0 pz2
≡0

mod η has a nontrivial solution.

3. (d, α0 p)η = 1 for all finite η such that η |d . This is so because x2
−α0 pz2

≡

0 mod η has a nontrivial solution if and only if
(
α0 p
η

)
= 1, which is true by (3).

4. (d, α0 p)η = 1 for all η ∈ S \ S0. Indeed, x2
− dy2

≡ 0 mod η has a nontrivial
solution if and only if d =� mod η, which holds if and only if η splits in K .

5. (d, α0 p)η=1 if η=α0. This is so because the congruence x2
−dy2

≡0 mod α0

has a nontrivial solution if and only if
( d
α0

)
= 1. We will examine this below.

6. (d, α0 p)η =−1 for all η ∈ S0. Indeed, x2
−dy2

≡ 0 mod η has only the trivial
solution if and only if d 6=� mod η, which holds if and only if η is inert in K .

7. (d, α0 p)η =−1 for all η real. This is so because x2
− dy2

−α0 pz2
= 0 in R

has only the trivial solution (since −d and −α0 p are both positive).

So it remains to prove only that
( d
α0

)
= 1.
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Write d = (−1) ·
∏

q|d αq and p =
∏

p| p αp. Then( d
α0

)
=

(
−1
α0

)∏
q|d

(
αq
α0

)
=

(
−1
α0

)∏
q|d

((
α0
αq

)
(α0, αq)2

)
(by quadratic reciprocity)

=

(
−1
α0

)∏
q|d

(∏
p| p

(
αp
αq

))
(α0, αq)2

(
since

(
α0
q

)
=
( p
q

))
=

(
−1
α0

)
(α0,−d)2

∏
q|d, p| p

(
αp
αq

)
=

(
−1
α0

)
(α0,−d)2

∏
q|d, p| p

(
αq
αp

)
(αp, αq)2 (by quadratic reciprocity)

=

(
−1
α0

)
(α0,−d)2

∏
p| p

(
−d
αp

)
(−d, αp)2

=

(
−1
α0

)
(α0,−1)2(α0, d)2

∏
p| p

(
−1
αp

)
(αp,−1)2(αp, d)2

( d
αp

)
= (−1)g(α0, d)2

∏
p| p

(αp, d)2
( d
αp

)
(by Proposition 2.1(5))

= (−1)g(α0 p, d)2(−1)#S0 (by our assumptions on K ).

This equals (−1)g+#S0 since (α0 p, d)η = 1 for all η |2; but the exponent, being
the number of ramified primes of Bp,L , is necessarily even. This concludes the
proof. �

3.3. Another description of the quaternion algebra Bp,L .

Definition 3.4. For α, β ∈ K , define

[α, β] :=

(
α β

α0 pβ α

)
∈ M2(K ).

Lemma 3.5. With assumptions as in Proposition 3.2, Bp,L ∼= {[α, β] : α, β ∈ K }.

Proof. Proposition 3.2 implies that Bp,L = L⊕Li⊕L j⊕Li j with i2
= d , j2

=α0 p,
and i j =− j i . We can write this as K ⊕ K j with the multiplicative structure such
that, for x, y ∈ K , we have x(y j)= (xy) j , j2

= α0 p, and

x j = (x1+ x2i) j = x1 j + x2i j = j x1− j i x2 = j (x1− i x2)= j x .

So for the isomorphism x + y j→[x, y] to respect the multiplicative structure, it is
enough to check the following:
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(1) [α, 0][0, β] = [0, αβ], so(
α 0
0 α

)(
0 β

α0 pβ 0

)
=

(
0 αβ

α0 pαβ 0

)
,

(2) [0, 1]2 = [α0 p, 0], so(
0 1
α0 p 0

)(
0 1
α0 p 0

)
=

(
α0 p 0

0 α0 p

)
,

(3) [α, 0][0, 1] = [0, 1][α, 0], so(
α 0
0 α

)(
0 1
α0 p 0

)
=

(
0 α

α0 pα 0

)
=

(
0 1
α0 p 0

)(
α 0
0 α

)
. �

4. Orders in the quaternion algebra Bp,L

By Proposition 3.2, the ideal α0OL splits in K . Write

α0OK =A ·A,

and let D= DK/L = (
√

d) be the different ideal of K/L .

Definition 4.1. Let a be an integral ideal of OK . For each q|d , fix a solution λq to

x2
≡ α0 p mod q.

Let ε(a, q) ∈ {±1} be a choice of sign for each q|d and λ ∈ L , (λ, d)= 1, such that

(1) λ≡ ε(a, q)λq mod q,∀q|d and

(2) λA−1a−1a is an integral ideal of OK .

This is possible by the Chinese remainder theorem and using (A−1a−1a, d)= 1.
We shall denote ε(a) the vector of signs {ε(a, q) : q|d }. When we need to

emphasize the dependence of λ on the choice of signs, we shall write λε(a) instead
of λ. For example, one particular choice of signs that we will often make is
ε(a, q)= (−1)valq̃(a), where q̃COK is an ideal such that qOK = q̃2, and we denote
λa the corresponding λ.

Let l ∈ OL be any nonzero element such that (l, α0da−1a)= 1 and l is split in
K/L . In particular, l could be a power of p. Now define

R := R(a, λ, l)=
{
[α, β] : α ∈ D−1, β ∈ D−1A−1la−1a, α ≡ λβ mod OK

}
.

Proposition 4.2. Apply assumptions as in Proposition 3.2. In particular, K is a
CM field such that K+ = L has strict class number 1, the discriminant of K/L
is prime to 2 and thus square-free, and p is odd and unramified in K . All primes
p ∈ S \ S0 split in K , and all primes p ∈ S0 are inert in K . Then:
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(1) R is an order of Bp,L containing OK .

(2) R has discriminant p · l.

(3) R does not depend on the choice of λ as long as λ satisfies the same local sign
conditions.

Proof. (1) It should be clear that R is a finitely generated OL -module containing
OK = {[α, 0] : α ∈ OK }. We need to show that R is closed under multiplication.
The multiplication formula is

[x, y][z, w] = [xz+α0 pyw, xw+ yz],

and we need to show that, for [x, y], [z, w] ∈ R, also [x, y][z, w] ∈ R.

Step 1: Show that xz+α0 pyw ∈ D−1.

A priori, xz ∈ D−2, and

α0 pyw ∈ α0 pD−1A−1la−1aD−1A−1la−1a

= α0 pD−2(AA)−1l2
= pD−2l2

⊆ D−2m,

so it is enough to show that valq̃(xz+ α0 pyw) ≥−1 for all q̃|D. Let q= q̃∩OL .
Then qOK = q̃2. We will work q-adically. Let π ∈ OKq̃

be a uniformizer such that
π =−π (the extension of complex conjugation from K to K q̃).

Lemma 4.3. Such a π exists.

Proof. Choose a uniformizer π0 of OLq , and let K1 = Lq(
√
π0). Then for K1 there

exists such a uniformizer. So it is enough to show that if q|q and q 6= 2 then any
q-adic field L1 has a unique quadratic ramified extension. By local class field
theory, ramified quadratic extensions are in bijection with subgroups of index 2
of O×L1

. There is a unique subgroup of index 2 of O×L1
since it contains O×2

L1
and

O×L1
/O×2

L1
∼= Z/2Z. �

Note that D−1A−1la−1aOKq̃
= (1/π)OKq̃

since (A, q̃) = 1, (l, q̃) = 1, and
(a−1a, q̃)= 1 because a−1a has no ramified or inert primes. Write then x = x0/π ,
y = y0/π , z = z0/π , and w = w0/π with x0, y0, z0, w0 ∈ OKq̃

. So

x ≡ λy mod OK =⇒ x0− λy0 ∈ (π) and z ≡ λw mod OK =⇒ z0− λw0 ∈ (π).

Now

xz+α0 pyw = 1
π2 (x0z0−α0 py0w0),
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so it is enough to show valq̃(x0z0−α0 py0w0)≥ 1. But

x0z0−α0 py0w0 ≡ λy0λw0−α0 py0w0 mod (π)

≡ λ2 y0w0−α0 py0w0 mod (π)

because conjugation is trivial mod (π)

≡ (λ2
−α0 p)y0w0

≡ (λ2
q−α0 p)y0w0

≡ 0 mod (π).

Step 2: Show that xw+ yz ∈ D−1A−1la−1a.

A priori, xw, yz ∈ D−2A−1la−1a, so we just need to show valq̃(xw+ yz)≥−1 at
all primes q̃|D. We need to show valq̃(x0w0− y0z0)≥ 1, using the same notation
as in 1. We have, modulo (π), x0w0− y0z0 = x0w0− y0z0 = λy0w0− λy0w0 = 0.

Step 3: Show that xz+α0 pyw− λ(xw+ yz) ∈ OK .

A priori, by steps 1 and 2, xz+α0 pyw ∈ D−1 and

λ(xw+ yz) ∈ D−1lλA−1a−1a⊂ D−1l ⊂ D−1

since λA−1a−1a⊆ OK . Therefore, we just need to show that for all q̃|D,

valq̃(xz+α0 pyw− λ(xw+ yz))≥ 0.

Using the same notation as above, this is equivalent to

valq̃(x0z0−α0 py0w0− λ(x0w0− y0z0))≥ 2.

Write x0 = λy0+πx1 and z0 = λw0+π z1. Then

(λy0+πx1)(λw0+π z1)−α0 py0w0− λ(λy0+πx1)w0+ λy0(λw0−π z1)

= (λ2
−α0 p)y0w0+ λπy0(z1− z1)≡ 0 mod π2

since (z1− z1) ∈ (π) and (λ2
−α0 p) ∈ qOLq ⊂ (π

2). This proves conclusion (1) of
the proposition.

(2) We need to compute the discriminant of

R = R(a, λ, l)=
{
[α, β] : α ∈ D−1, β ∈ D−1A−1la−1a, α ≡ λβ mod OK

}
.

Let
R′ := {[α, β] : α ∈ OK , β ∈ la−1a }.

Then R′ is an OL -module of rank 4.

Lemma 4.4. We have disc(R′)= (lα0 pd)2.
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Proof. The quadratic form on R′ is det[α, β] = αα−α0 pββ =: q([α, β]). Note this
quadratic form coincides with the norm form on the quaternion algebra Bp,L ; writing

[α, β] = [α, 0] + [0, β][0, 1] = (α1+α2i)+ (β1+β2i) j,

where i2
= d and j2

= α0 p, we have

Norm(α1+α2i +β1 j +β2i j)= α2
1 −α

2
2d −β2

1α0 p+β2
2 dα0 p

= (α1+α2i)(α1−α2i)−α0 p(β1+β2i)(β1−β2i)

= αα−α0 pββ.

The associated bilinear form is

〈[α, β], [γ, δ]〉 = αγ +αγ −α0 p(βδ+βδ),

where 1
2〈x, x〉 = q(x). Note that 〈[α, 0], [0, δ]〉 = 0,

〈[α1, 0], [α2, 0]〉 = α1α2+α1α2 = TrK/L α1α2,

〈[0, β1], [0, β2]〉 = −α0 p(β1β2+β1β2)=−α0 p TrK/L β1β2.

To compute the discriminant of R′ with respect to the bilinear form, we need to
compute the determinant of the matrix (〈xi , x j 〉) for {xi } a basis for R′. Choose
a basis {w1, w2} for OK as an OL -module (for example, {1, t}). Choose a basis
{w3, w4} for la−1a as an OL -module. By the above calculations, we see that

det(〈wi , w j 〉)= det(M1) det(M2),

where

M1 =

(
2w1w1 w1w2+w2w1

w1w2+w2w1 2w2w2

)
= (Tr(wiw j )), i, j = 1, 2,

M2 =−α0 p
(

2w3w3 w3w4+w4w3

w3w4+w4w3 2w4w2

)
=−α0 p(Tr(wiw j )), i, j = 3, 4.

We have

det(M1)=− discK/L(OK ) and det(M2)=−(α0 p) discK/L(la−1a).

For any OK -ideal b, discK/L(b)= discK/L(OK )NormK/L(b)
2 [Lang 1986, Propo-

sition 13, p. 66], so

disc(R′)= discK/L(OK )
2 NormK/L(la−1a)2(α0 p)2 = (lα0 pd)2.

We remark that this uses that l is split in K/L . In a typical application, l will be
a prime lying above p. If p is inert in L , then it will automatically be split in K/L
according to the hypotheses of Proposition 3.2. If l is not split in K/L , we get a
higher power of l in the final answer. �
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In order to show that R has discriminant p · l, the following lemma is needed:

Lemma 4.5. The following sequence is exact:

0→ R′ ↪→ R
ψ
−→ D−1A−1/OK → 0,

where

[α, β] 7→ β ∈
D−1A−1la−1a

la−1a
∼= D−1A−1/OK .

Proof. First, R′ ⊆ R because α ∈ OK and λβ ∈ λla−1a = (λa−1a)l ⊆ OK l ⊆ OK .
Since λβ ∈ OK , clearly α ≡ λβ mod OK . Now:

• Exactness at R: Clearly R′ ⊆ Ker(ψ). Now suppose [α, β] ∈ Ker(ψ). Then
β ∈ la−1a, and so α ∈ OK because λβ ∈ OK by the definition of λ and α ≡
λβ mod OK . So [α, β] ∈ R′.

• Surjectivity of ψ : Let β ∈ D−1A−1la−1a. Then we have [λβ, β] ∈ R because
λβ ∈ D−1l(λA−1a−1a)⊆ D−1lOK ⊆ D−1. �

Thus, discK/L(R) = discK/L(R′)/NormK/L(DA)2 = (lα0 pd)2/(α0d)2 = l2 p2,
so the discriminant of R as an order of Bp,L is lp. This proves conclusion (2).

(3) Finally, R is independent of the choice of λ assuming λ satisfies the same local
sign conditions. Suppose both λ and λ′ satisfy the conditions of Definition 4.1. Let
[α, β] ∈ R(a, λ, l), so α ∈ D−1, β ∈ D−1A−1la−1a, and α ≡ λβ mod OK . Then

α− λβ ∈ OK =⇒ (
√

dα)− λ(
√

dβ) ∈ (
√

d),

and

(
√

dα)− λ′(
√

dβ)− (λ− λ′)(
√

dβ) ∈ (
√

d).

Now, because d is square-free and for all q|d we have λ′ = e(a, q)λq ≡ λ mod q,
it follows that λ− λ′ ∈ (d). But

λ− λ′ ∈ (d)=⇒ (λ− λ′)
√

dβ ∈ dlA−1a−1a

and

λ
√

dβ − λ′
√

dβ ∈ OK

by the definitions of λ and λ′, so

(λ− λ′)
√

dβ ∈ OK ∩ dlA−1a−1a⊆ (d).

It follows that (
√

dα)− λ′(
√

dβ) ∈ (
√

d), so α ≡ λ′β mod OK . �
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5. Classification of superspecial orders of Bp,L in which OK embeds, having
chosen an embedding K ↪→ Bp,L

By a superspecial order in Bp,L , we mean an order of discriminant pOL . An example
is R⊗Z OL for a maximal order R of Bp,∞. Let K be a primitive CM field such
that K+ = L . As before, d will denote a totally negative generator of the relative
different ideal DK/L . In this section, we classify the superspecial orders in which
OK embeds, relying on the results in Section 4 and making the particular choice
of local signs ε(a, q)= (−1)valq̃(a), where q̃COK is an ideal such that qOK = q̃2,
and we denote λa the corresponding λ. We shall prove that, once the embedding
K ↪→ Bp,L has been fixed, the isomorphism classes of the superspecial orders in
which OK embeds are in bijection with the ideal class group of K (Theorem 5.7).
Our classification of these orders will be achieved through a series of lemmas:

Lemma 5.1. Let R1 and R2 be two superspecial orders in Bp,L . Then R1 ∼= R2

over K if and only if there exists µ ∈ K such that R1 = µR2µ
−1.

Proof. By Skolem–Noether, R1 ∼= R2 if and only if there exists µ ∈ B×p,L such that
R1 = µR2µ

−1. This is a K -automorphism if and only if µ ∈ CentBp,L (K )= K . �

Lemma 5.2. Given a and λ as in Definition 4.1, there exists c|d such that we have
R(a, λ)= R(ac, λac).

Proof. We have R(ac, λac, l)= R(a, λa · λ(−1)valq̃(c), l) because

λac ≡ (−1)valq̃(ac)λq mod q for all q|d,

so
λac ≡ λa(−1)valq̃(c) mod q for all q|d.

So as c ranges over the ideals dividing d , we get all sign vectors ε(a) that appear in
the left-hand side and each one once. �

Lemma 5.3. Fix {b1, . . . , bh} representatives for the class group of K and the
choice of local signs as above. Then every R(a, λa) is isomorphic to R(b, λb) for
some b ∈ {b1, . . . , bh}.

Proof. Let µ ∈ K× be such that b= µa for some (unique) b ∈ {b1, . . . , bh}. Then

µ−1 R(a, λa)µ

=

{(
µ−1 0
0 µ−1

)(
α β

α0 pβ α

)(
µ 0
0 µ

)
: α ∈ D−1, β ∈ D−1A−1a−1a, α ≡ λaβ mod OK

}
=

{(
α (µ/µ)β

α0 p((µ/µ)β) α

)
: α∈D−1, β ∈D−1A−1a−1a, α≡λaβ mod OK

}
.
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By setting b = µ
µ
β, this is equal to{(

α b
α0 pb α

)
: α ∈ D−1, b ∈ D−1A−1b−1b, α ≡ λa

µ

µ
b mod OK

}
because b= µa,

µ

µ
β ∈ D−1A−1a−1a

µ

µ
= D−1A−1b−1b,

and α ≡ λa(µ/µ)(µ/µ)β = λa(µ/µ)b mod OK .

Now it remains to show α ≡ λa(µ/µ)b mod OK if and only if α ≡ λbb mod OK .
In other words, we must show that the following two conditions are equivalent:

(
√

dα)≡ λa
µ

µ
(
√

db) mod q̃ for all q̃|
√

dOK ,

(
√

dα)≡ λb(
√

db) mod q̃ for all q̃|
√

dOK .

This can be checked in OKq̃
for every q̃. The point is that (−1)valq̃(b) = (−1)valq̃(a) ·

(−1)valq̃(µ), and so it is enough to show that µ/µ≡ (−1)valq̃(µ) mod q̃. This follows
from the fact that OKq̃

= OLq[π ] with π =−π , so writing µ= πr
· u with u ∈ O×Kq̃

,
we have u = u mod q̃ and

µ

µ
= (−1)r u

u
≡ (−1)r mod q̃.

Thus, we have proved that µ−1 R(a, λa)µ= R(µa, λµa). �

Lemma 5.4. We have R(a, λa)= R(b, λb) if and only if a−1a=b−1b and valq̃(a)≡
valq̃(b) mod 2 for all q̃|d.

Proof. (⇐) This is obvious.

(⇒) Let β ∈ D−1A−1a−1a and α := λaβ. Since λaA−1a−1a⊆ OK , it follows that
α ∈D−1. Therefore, [α, β] ∈ R(a, λa)= R(b, λb), so β ∈D−1A−1b−1b. Therefore,
D−1A−1a−1a⊆ D−1A−1b−1b. By symmetry, we have equality.

Furthermore, since [λaβ, β] ∈ R(b, λb), we have

λaβ ≡ λbβ mod OK for all β ∈ D−1A−1a−1a.

Otherwise said,

β(λa− λb)≡ 0 mod OK for all β ∈ D−1A−1a−1a,

and this implies
λa ≡ λb mod D−1A−1a−1a.

We conclude that

λa ≡ λb mod q̃ for all q̃|d (because (D,Aaa−1)= 1).
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It follows that

(−1)valq̃(a) = (−1)valq̃(b) for all q̃|d. �

Lemma 5.5. For b, b′ ∈ {b1, . . . , bh}, R(b, λb)∼ R(b′, λb′) if and only if b= b′.

Proof. (⇐) This is obvious.

(⇒) Suppose R(b, λb)= µ−1 R(b′, λb′)µ= R(µb′, λµb′) (this second equality was
proved in Lemma 5.3 above). By Lemma 5.4, this implies

b−1b= b′−1b′
µ

µ
or b′b−1µ= b′b−1µ.

An ideal fC OK satisfies f = f if and only if f = j ·
∏

q̃|d q̃
s(q̃) for j ∈ L . Indeed,

write f as a product of inert, split, and ramified prime ideals. Inert prime ideals are
generated by elements of L . Split prime ideals must appear in the factorization to
the same power as their complex conjugate because of the condition f= f. Thus, it
is actually some power of their norm that appears, and that is also generated by an
element of L . What remains is a product of some ramified primes.

Applying this to the ideal f= b′b−1µ, we find that

µb′ = j ·
∏
q̃|d

q̃s(q̃)
· b.

Note that R(µb′, λµb′)= R((µ/j)b′, λ(µ/j)b′), so we can replace µ by µ/j to obtain
R(b, λb)= R(µb′, λµb′) with µb′ of the form

µb′ =
∏
q̃|d

q̃s(q̃)
· b.

Now λb = λµb′ implies that each s(q̃) is even, so µb′ = kb for some k ∈ K . Thus,
b′ = b because they are already representatives for the class group. �

Lemma 5.6. Any superspecial order R ⊇ OK is isomorphic to some R(a, λ).

Proof. Let c be a prime ideal of L . For any ideal a of Kc, define orders Rc(a, λa)

of (Bp,L)c exactly the same way as for R(a, λa). The orders have the same properties
that were proved for the R(a, λa) in Proposition 4.2: independent of the choice of λ
and conductor pOLc .

Then for an ideal a of K , we have R(a, λa)c = Rc(ac, λac). Let R be an order
of Bp,L that contains OK of discriminant pOL . For every c, the order Rc is an
Eichler order of discriminant pOLc as is the order R(O, λO)c, where O represents
the trivial ideal class. For every c, there is a µc ∈ (Bp,L)

×
c such that

Rc = µ
−1
c R(O, λO)cµc
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because Eichler orders of the same discriminant are locally conjugate. Furthermore,

Rc =M2(OLc)⊆ (Bp,L)c =M2(Lc)

for almost all c, and the same holds for R(a, λa). Now it is enough to show that we
can choose µc ∈ K×c for all c because in that case

Rc = µ
−1
c R(O, λO)cµc = Rc((µc), λ(µc))

for a collection of elements

{µc : cCOL prime, µc = 1 for almost all c, µc ∈ K×c }.

Therefore, there is an ideal a of K such that, for all c, ac = (µc). The two orders R
and R(a, λa) are equal because they are equal locally everywhere, and we are done.

To show that we may choose µc ∈ K×c for all c, we use [Vignéras 1980, Theo-
rems 3.1 and 3.2, pages 43–44] to produce an element νc such that

(1) ν−1
c (µ−1

c R(O, λO)cµc)νc = µ
−1
c R(O, λO)cµc = Rc and

(2) the embedding of OKc into Rc is the embedding of OKc into R(O, λO)c conju-
gated by νcµc.

Since conjugation by νcµc fixes Kc pointwise, this implies νcµc commutes with Kc,
and so νcµc ∈ K×c . �

Our conclusion is that isomorphism classes of superspecial orders of Bp,L in
which OK embeds are the isomorphism classes of R(a, λa). Thus, we have proved
the following theorem:

Theorem 5.7. Fix an embedding of K ↪→ Bp,L . The isomorphism classes of the
superspecial orders in which OK embeds are in bijection with the ideal class group
of K via the map

[a] 7→ R(a, λa).

Remark 5.8. In the case L = Q, Theorem 5.7 provides a different proof for the
main theorems of Dorman’s paper [1989a] on global orders in definite quaternion
algebras and corrects several minor errors and gaps in the proofs there. For example,
we correct the missing condition on the integrality for λD−1A−1a−1a and the
resulting mistake in the proof of Proposition 2, and we give a different proof of the
one-to-one correspondence.

6. Main theorems on counting formulas

6.1. Assumptions and notation. Let L be a totally real field of degree g of strict
class number 1, p a rational prime that is unramified in L , and K a primitive CM
field with K+ = L . Using the same notation as in Lemma 2.2, write the ring of
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integers of K , OK = OL [t], where t2
+ at + b = 0 for some a, b ∈ OL , and the

different D= DK/L = (
√

d) with d = a2
− 4b a totally negative element of OL .

Assume as in Proposition 3.2 that all primes p ∈ S \ S0 split in K and all primes
p ∈ S0 are inert in K and that the discriminant dK/L = (d) satisfies (d, 2)= 1 and
(d, p)= 1. Let α0 ∈ OL be a totally negative prime element such that

Bp,L ∼=

(d, α0 p
L

)
,

where (α0, 2pd)= 1, α0≡ p mod q for each q|d , α0≡ 1 mod p, and α0OK =A·A.
For l ∈ OL such that (l, α0da−1a)= 1, let

R := R(a, λ, l)=
{
[α, β] : α ∈ D−1, β ∈ D−1A−1la−1a, α ≡ λβ mod OK

}
.

6.2. Counting simultaneous embeddings. Let K ′ be another CM field that has
OK ′ = OL [w] and

discK ′/L = (Tr(w)2− 4 Norm(w))= (d ′)

generated by a totally negative element d ′ of L .
Now we are assuming we are in the situation where an abelian variety A with

CM by K has superspecial reduction modulo p, and we fix an isomorphism

EndOL (A)∼= R(a, λ)

for some unique aCOK (Lemma 5.6, Theorem 5.7). Then, to count simultaneous
embeddings of OK ′ = OL [ω], i.e., embeddings OK ′→EndOL (A), we count elements
[α, β] ∈ R(a, λ) with trace equal to Tr(ω) and with norm equal to Norm(ω), that
is, elements of the set S(a, λ, 1), where

S(a, λ, l)=
{
[α, β] =

(
α β

α0 pβ α

)
∈ R(a, λ, l)

: Tr[α, β] = Tr(w),Norm[α, β] = Norm(w)
}
.

Let [α, β] be an element of this set. Since

OK = OL +OL ·
a+
√

d
2
=

{
2l1+ l2(a+

√
d)

2
: l1, l2 ∈ OL

}
=

{
l3+ l4

√
d

2
: l3, l4 ∈ OL , l3− al4 ≡ 0 mod 2OL

}
,

we can write α ∈ D−1 in the form α = (l3+ l4
√

d)/2
√

d, where l3, l4 ∈ OL with
l3− al4 ≡ 0 mod 2OL , and in this notation, Tr(α)= Tr([α, β])= l4. So

α =
x+Tr(w)

√
d

2
√

d
, x ∈ OL , x − a Tr(w)≡ 0 mod 2OL ,
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where a =−Tr(t) and

β =
l
√

d
γ, γ ∈A−1a−1a.

Since
Norm[α, β] = det[α, β] = αα−α0 pββ

=
x +Tr(w)

√
d

2
√

d
·

x −Tr(w)
√

d

−2
√

d
−α0 p

l2

−d
γ γ

=
1
−4d

(x2
−Tr(w)2d − 4α0 pl2γ γ ),

it follows that

−d
(
4 Norm(w)−Tr(w)2

)
= x2
− 4α0 pl2γ γ .

So an element [α, β] of the set S(a, λ, l) gives rise to a solution (x, γ ) to

dd ′ = x2
− 4α0 pl2γ γ

with γ ∈A−1a−1a, x ∈ OL , and x ≡ a Tr(w) mod 2OL , where x2
− dd ′ is a totally

negative element of OL because α0 is. Call this set of conditions on x conditions C.
Our analysis allows us to define a function φ : S(a, λ, l)→ S1(a, x, l) that sends
[α, β] 7→ γ (it is used in the proof of Theorem 6.5 below), where the set S1(a, x, l)
is defined for an integral ideal a and x satisfying conditions C by

S1(a, x, l) :=
{
γ ∈A−1a−1a : Norm(γ )= γ γ =

x2
− dd ′

4α0 pl2

}
.

For γ ∈A−1a−1a, the ideal generated by γ can be written as (γ )=A−1a−1a ·b

for b an ideal of OK , and Norm(b)= α0 Norm(γ ). We let S2(a, x, l) be the set

S2(a, x, l) :=
{
bCOK : Norm(b)=

x2
− dd ′

4pl2 , b∼ a2A

}
.

Proposition 6.1. The map S1(a, x, l)→ S2(a, x, l) that sends γ 7→bγ = (γ )Aaa−1

is a surjective [wK : 1]-map, where wK equals the number of roots of unity in K .

Proof. To show that the map is [wK : 1], we first show bγ = bδ if and only if γ =µδ,
where µ is a root of unity in K . Since bγ depends only on (γ ), the “only if” part
is clear. Now if bγ = bδ, then (γ ) = (δ), so γ = µδ for some µ ∈ OK

×, but also
Norm(γ )=Norm(δ)=Norm(µ) ·Norm(γ ) implies Norm(µ)= 1 implies µ∈µK .

Next we show that the map is surjective. Given b∈ S2(a, x, l), let γ be a generator
of A−1a−1ab. Then γ ∈A−1a−1a, and

(Norm(γ ))= (γ γ )=
(

x2
− dd ′

4α0 pl2

)
.
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Hence, there exists a totally positive unit ε′ ∈ OL
×+
= OL

×2 with ε′ = ε2 such that

ε′γ γ =
x2
− dd ′

4α0 pl2 .

Changing γ to εγ ,

γ γ =
x2
− dd ′

4α0 pl2 .

So γ ∈ S1(a, x, l), and since it is still true that (γ )=A−1a−1ab, we have bγ = b. �

Now given an element γ of S1(a, x, l), we can construct elements of S(a, λ, l)
as follows. Let

α =
x+Tr(w)

√
d

2
√

d
and β =

l
√

d
γ.

First, we note that α ∈ D−1 if and only if (x +Tr(w)
√

d)/2 ∈ OK if and only if
x ∈ OL and x ≡ a Tr(w) mod 2OL , which holds because x satisfies conditions C.

Next, note that β= (l/
√

d)γ ∈D−1A−1la−1a if and only if γ ∈A−1a−1a, which
holds by the definition of the set S1(a, x).

It remains to check that the congruence α ≡ λβ mod OK is satisfied. Since
γ ∈ S1(a, x, l),

x2
− 4α0 pl2γ γ = dd ′ ≡ 0 mod d.

Next, the congruence λ2
≡ α0 p mod d implies that

x2
− 4α0 pl2γ γ + 4l2γ γ (α0 p− λ2)≡ 0 mod d,

and so
x2
− 4λ2l2γ γ ≡ 0 mod d.

Therefore,

(x +Tr(w)
√

d)(x −Tr(w)
√

d)− 4λ2l2γ γ ≡ 0 mod d.

Using x +Tr(w)
√

d = 2
√

dα and lγ =
√

dβ, we get

−4d(αα− λ2ββ)≡ 0 mod d.

Since (d, 2) = 1, it follows that αα ≡ λ2ββ mod OK . Now, α and λβ belong to
D−1
= (1/

√
d)OK , and hence,

α1 :=
√

dα and β1 :=
√

dλβ

are in OK , and we have α1α1 ≡ β1β1 mod d. Equivalently, this relation holds
modulo all ideals q of OL dividing d:

α1α1 ≡ β1β1 mod q for all q|d, qCOL . (6-1)
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Let q̃C OK be a prime such that qOK = q̃2. Then OK /q̃ ∼= OL/q, and complex
conjugation hence acts trivially modulo q̃. So (6-1) is equivalent to

α2
1 ≡ β

2
1 mod q̃ for all q̃|dOK , q̃COK ,

which is equivalent to

α1 ≡±β1 mod q̃ for all q̃|dOK , q̃COK .

So this shows that there exists a choice of signs ε(a, q) and a λ depending on
this choice for which the congruence condition is satisfied, and [α, β] ∈ S(a, λ, l).
However, for any ideal q for which x ≡ 0 mod q, both signs will work. This
motivates the following definitions and theorem:

Definition 6.2. (1) For x ∈ OL , let δ(x) := 2#{q|d:x≡0 mod q }.

(2) Let τ := #{q|d}.

For clarity, we also repeat previous definitions.

Definition 6.3 (conditions C). We say that x ∈ OL satisfies C if x ≡ a Tr(w)
mod 2OL , x2

− dd ′ is totally negative, and (x2
− dd ′)/4pl2

∈ OL .

Definition 6.4. We write λε(a) to emphasize the dependence of λ on the choice
of signs. For example, for aCOK , let λa = λε(a), where ε(a, q)= (−1)valq̃(a) and
q̃COK is an ideal such that qOK = q̃2.

Theorem 6.5.

(1)
∑
ε(a)

#S(a, λε(a), l)=
∑

x satisfies C

δ(x) · #S1(a, x, l)

= wK

∑
x satisfies C

δ(x) · #S2(a, x, l).

(2)
∑
ε(a)

#S(a, λε(a), l)=
∑
c|d

cCOK

#S(ac, λac, l).

Proof. To avoid confusion, we remark that in (1), the first summation is a sum over
2τ elements, one of them being #S(a, λa, l). The second equality of (1) follows
from Proposition 6.1. To prove the first equality in (1), we refer to the construction
given above of the map φ : S(a, λ, l)→ S1(a, x, l). It can be extended to a map

φ :
∐
ε(a)

S(a, λε(a), l)→
∐

x satisfies C

S1(a, x, l).

We claim that φ is a surjective map that is [δ(x) : 1]. Given an element γ of
S1(a, x, l), we constructed above, for some possible choice of signs ε(a) determining
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λ, an element of S(a, λ, l)

α =
x+Tr(w)

√
d

2
√

d
and β =

l
√

d
γ.

For any ideal q̃|d, let µ(x, γ ) ∈ {±1} be such that α1 ≡ µ(x, γ )β1 mod q̃, where
α1=
√

dα and β1=
√

dλβ. Given ε(a), we have α≡ λε(a)β mod OK if and only if,
for all q̃|d , either α1≡β1≡ 0 mod q̃ or β1 6≡ 0 mod q̃ and ε(a, q)≡µ(x, γ ) mod q̃.
It follows that for a given (x, γ ), the number of sign vectors ε(a) such that we have
α ≡ λε(a)β mod OK is equal to

2#{q̃|d:
√

dα≡0 mod q̃ }.

Now since valq̃(
√

dα) = valq̃(x + Tr(w)
√

d) ≥ min{valq̃(x), valq̃(Tr(w)
√

d)}, it
follows that

valq̃(
√

dα) > 0 ⇐⇒ valq̃(x) > 0 ⇐⇒ valq̃(x) > 0,

so the number of sign vectors ε(a) such that α ≡ λε(a)β mod OK is equal to
2#{q|d:x≡0 mod q }.

The second assertion in the theorem follows from the same argument given in
the proof of Lemma 5.2. �

7. Endomorphism rings of abelian surfaces with complex multiplication

Let K be a primitive CM field of degree 4 over the rational numbers. Let W =W (Fp)

be the Witt ring, and let

(A, ι : OK → EndW (A))

be an abelian scheme over W of relative dimension 2 such that A (mod p) is
superspecial. Assume also that p is unramified in K . Then R :=EndOL (A (mod p))
is a superspecial order of the quaternion algebra Bp,L [Nicole 2008, Proposition 4.1].

Theorem 7.1. One has

EndOL ,W/(pn)(A (mod pn))= OK + pn−1 R.

This theorem is a generalization of a theorem of Gross that deals with the case of
elliptic curves [1986], but our method of proof is different; it is based on crystalline
deformation theory.

Proof. Consider A (mod pn). We have an identification

H1
d R(A (mod pn))∼= H 1

Crys(A (mod p)/W )⊗W/(pn).
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Using that W/(pn+1)→W/(pn) has canonical divided power structure, we know
the deformations of A (mod pn) to an abelian scheme B over W/(pn+1) are in func-
torial correspondence with direct summands of H 1

Crys(A (mod p)/W )⊗W/(pn+1)

such that the following diagram commutes:

M

mod pn

��

⊆ H 1
Crys(A (mod p)/W )⊗W/(pn+1)

mod pn

��

ωA (mod pn) ⊆ H 1
Crys(A (mod p)/W )⊗W/(pn)

where ωA (mod pn) are the relative differentials at the origin of A (mod pn).
We shall show that there exists a unique such B to which the OK -action extends,

namely, a unique M fixed under the OK action on H 1
Crys(A (mod p)/W ). We may

conclude then that for that M there is an isomorphism

EndOL (A (mod pn+1))⊗ZZp∼=EndOL

(
M⊂H 1

Crys(A (mod p)/W )⊗W/(pn+1)
)

∩EndOL (A (mod pn+1))⊗Z Zp. (7-1)

We then calculate the right-hand side and find that it is equal to (OK + pn R)⊗Z Zp.
Since we know a priori that EndOL (A (mod pn+1)) has index equal to a power of p
in R [Goren and Lauter 2012, Proposition 6.1], our theorem will follow.

First, the uniqueness of M is easy to establish. We have an isomorphism of
OK ⊗Z W modules

H 1
Crys(A (mod p)/W )∼=

⊕
ϕ∈Emb(OK ,W )

W (ϕ),

where W (ϕ) is just W with the OK action given by ϕ. Since p is unramified, for all
n≥1, W (ϕ) 6∼=W (ϕ′) (mod pn) as OK -modules for any distinct ϕ, ϕ′∈Emb(OK ,W ).
If 8 is the CM-type of A, it follows that if M is a direct summand of rank g, which
is an OK -submodule, then M must be

⊕
ϕ∈8 W (ϕ) (mod pn+1).

Let Rn := EndOL ,W/(pn)(A (mod pn)). We prove by induction on n that

Rn = OK + pn−1 R.

As remarked, it is enough to prove that after p-adic completion, and in fact, we
actually calculate the right-hand side of (7-1). The case n = 1 is tautological.

Since we assumed that A (mod p) is superspecial and p is unramified in K ,
there are, according to [Goren and Lauter 2012, Tables 3.3.1(ii), 3.4.1(iii) and (iv),
and 3.5.1(iii) and (vi)] and the results of Yu [2004], precisely two possibilities for
H 1

Crys(A (mod p)/W ), equivalently for the Dieudonné module of A (mod p), as an
OK ⊗Z Zp-module. Our calculations are done separately according to these cases.
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Case 1: In this case, the completions at p of the rings are

OL ,p ∼= Zp⊕Zp and OK ,p ∼= Zp2 ⊕Zp2,

where we write Zp2 for W (Fp2). The Dieudonné module D is a direct sum of
Dieudonné modules

D= D1⊕D2,

where for i = 1, 2, Di has a basis relative to which Frobenius is given by the matrix(
0 p
1 0

)
,

and the i th copy of Zp2 in OK ,p acts on Di by

a 7→
(

a
aσ

)
and Di+1 (mod 2) by zero. (Here σ is the Frobenius automorphism of Zp2 .) Clearly,

EndOL (D)= End(D1)×End(D2),

and, as one can easily check,

End(Di )=

{(
α pβ
βσ ασ

)
: α, β ∈W (Fp2)

}
.

(The restriction on the entries
(a

c
b
d

)
comes from the identity(

a b
c d

)(
0 p
1 0

)
=

(
0 p
1 0

)(
aσ bσ

cσ dσ

)
that an endomorphism of the Dieudonné module must satisfy.)

Now, for every n, ωA (mod pn) = SpanW/(pn){(0 1)T} ⊕ SpanW/(pn){(0 1)T} in
the decomposition D= D1⊕D2. By induction, the endomorphisms in EndOL (D)

preserving ωA (mod pn) are

(OK + pn−1 R)⊗Z Zp

=

{((
α pnβ

pn−1βσ ασ

)
,

(
γ pnδ

pn−1δσ γ σ

))
: α, β, γ, δ ∈W (Fp2)

}
.

The condition for such an endomorphism to preserve ωA (mod pn+1) is that the vectors(
α pnβ

pn−1βσ ασ

)(
0
1

)
and

(
γ pnδ

pn−1δσ γ σ

)(
0
1

)
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are multiples of (0 1)T modulo pn+1. This is the case precisely when β and δ,
respectively, are in pW . Thus, End(A (mod pn+1))⊗Z Zp = (OK + pn R)⊗Z Zp,
and the proof is complete in Case 1.

Case 2: In this case, the completions at p of the rings are

OL ,p ∼= Zp2 and OK ,p ∼= Zp2 ⊕Zp2,

where Zp2 is embedded diagonally in Zp2 ⊕ Zp2 . The Dieudonné module has a
basis {e1, e2, e3, e4} relative to which

Fr=


0 0 p 0
0 0 0 1
1 0 0 0
0 p 0 0

 .
The element (a, b) ∈ OK ,p acts by the diagonal matrix diag(a, b, aσ , bσ ), and so
a ∈ OL ,p acts by diag(a, a, aσ , aσ ). Change the order of the basis elements to get
a new basis {e1, e4, e3, e2}. Then Frobenius is given by(

0 pI2

I2 0

)
,

and (a, b) ∈ OK ,p acts by the diagonal matrix diag(a, bσ , aσ , b), and so a ∈ OL ,p

acts by diag(a, aσ , aσ , a).
The condition for a matrix (

A B
C D

)
∈ M4(W )

to be in End(D) is(
A B
C D

)(
0 pI2

I2 0

)
=

(
0 pI2

I2 0

)(
Aσ Bσ

Cσ Dσ

)
,

and so we find

End(D)=
{(

A pCσ

C Aσ

)
: A,C ∈ M2(W (Fp2))

}
.

For such a matrix to be in EndOL (D), it must commute with all matrices of the form
diag(a, aσ , aσ , a), where a runs over W (Fp2). An easy computation gives

EndOL (D)=

{(
A pCσ

C Aσ

)
: diagonal matrices A,C ∈ M2(W (Fp2))

}
.

We have ωA (mod pn) = Span{e3, e2}, where e3 and e2 are the last two vectors in the
current basis. One argues by induction, as before, to prove that the endomorphisms
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in EndOL (D) preserving ωA (mod pn) are precisely those of the form{(
A pnCσ

pn−1C Aσ

)
: diagonal matrices A,C ∈ M2(W (Fp2))

}
∼= (OK + pn−1 R)⊗Z Zp.

That completes the proof of Case 2 and hence of the theorem. �

8. Geometric interpretation

Let W :=W (Fp) and Q :=W⊗Z Q; Q is the completion of the maximal unramified
extension of Qp. Assume that p is unramified in K , and consider the functor on
W -schemes associating to a W -scheme S the isomorphism classes of triples

A = (A, ι, η), (8-1)

where A→ S is an abelian scheme of relative dimension g, ι : OK → EndS(A) is
a ring homomorphism, and η is a principal polarization of A inducing complex
conjugation on K . Arguments as in [Goren and Lauter 2007] show that this functor
is represented by an étale scheme over W whose complex points are in natural
bijection with F×Cl(K ) as described in Proposition 2.4. In particular, isomorphism
classes of A over Fp as in (8-1), or more generally of A over W/(pn), are also in
bijection with (F×Cl(K ))/∼ once we have fixed an identification of Hom(K ,C)

with Hom(K ,Qp). This allows us to speak about the CM type of A over W/(pn).
Of course, this is nothing but the isomorphism class of the representation of OK on
the Lie algebra of A and is determined by its reduction modulo p.

Consider pairs (A, ι) over Fp such that A is a g-dimensional abelian variety and
ι : OK → End(A) is a ring homomorphism such that (A, ι|OL ) satisfies the Rapoport
condition. One knows that there exists a principal OL -polarization η on A, unique
up to isomorphism. We claim that η automatically induces complex conjugation
on K . This can be verified by case-by-case analysis using [Chai 1995, Lemma 6].

8.1. Isomorphisms of CM abelian varieties. Now fix a CM field K ′ whose totally
real subfield is L . Consider (A, ιA : OK → End(A)) and (A′, ιA′ : OK ′→ End(A′))
over Fp, and assume that we are given an isomorphism

α : (A, ιA|OL )−→
∼ (A′, ιA′ |OL ).

We then get an embedding

jα : OK ′→ End(A), jα(r)= α−1
◦ ιA′(r) ◦α.

If β : (A, ιA|OL )−→
∼ (A′, ιA′ |OL ) is another isomorphism, then

β = γ ◦α,
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where

γ ∈ Aut(A′, ιA′ |OL ) and jβ(r)= α−1
◦ γ−1

◦ ιA′(r) ◦ γ ◦α.

This gives another embedding of OK ′ into End(A). The embeddings are equal if
and only if γ−1

◦ ιA′(r) ◦ γ = ιA′(r) for all r ∈ OK ′ . This, in turn is equivalent to
γ ∈ CentEnd0(A′)(K

′)∩Aut((A′, ιA′ |OL ))= O×K ′ . (Here CentEnd0(A′)(K
′) denotes the

centralizer of K ′ in End0(A′).) Thus, each isomorphism class of (A′, ιA′) such that
(A, ιA|OL )

∼= (A′, ιA′ |OL ) gives us

#(Aut((A′, ιA′ |OL ))/O
×

K ′)= #(Aut((A, ιA|OL ))/O
×

K ′)

distinct embeddings of OK ′ into End(A).

8.2. Counting isomorphisms in the superspecial case. Now assume we are in the
superspecial reduction situation, and fix an isomorphism

EndOL (A)∼= R(a, λa)

for some unique aCOK (Lemma 5.6 and Theorem 5.7). With OK ′ =OL [ω] as before,
to give an embedding OK ′→ EndOL (A) is to choose an element [α, β] ∈ R(a, λa)
with trace equal to Tr(ω) and norm equal to Norm(ω), that is, an element of the set
S(a, λa, 1). Such an embedding makes (A, ιA|OL ) into an abelian variety with CM
by OK ′ , and so the embedding OK ′→ EndOL (A) arises via a particular isomorphism

(A, ιA : OK → End(A))−→∼ (A′, ι′ : OK ′→ End(A′))

(where, in fact, we may take A = A′ and ι′ restricts to ιA on OL ). We conclude that

#S(a,λa, 1)
#(R(a,λa)×/O×K ′)

=#
{
(A′, ιA′ :OK ′→EndOL (A

′))/Fp : (A′, ιA′ |OL )−→
∼ (A, ιA|OL )

}
(where on the left-hand side we consider (A′, ιA′ : OK ′→ EndOL (A

′)) up to isomor-
phism with CM by OK ′ , of course). Exactly the same analysis is valid over W/(pn),
and using EndW/(pn)(A, ι|OL )

∼= R(a, λa, pn−1) as follows from Theorem 7.1, we get

#S(a, λa, pn−1)

#(R(a, λa, pn−1)×/O×K ′)

= #
{
(A′, ιA′ : OK ′→ EndOL (A

′))/W/(pn) : (A′, ιA′ |OL )−→
∼ (A, ιA|OL )

}
. (8-2)

8.3. Counting formulas for the number of isomorphisms for superspecial CM
types. Now fix a superspecial CM type 8 of K , namely, a CM type arising for
some superspecial abelian variety. By [Goren and Lauter 2012], then any abelian
variety with CM by OK of CM type 8 is superspecial.
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We consider representatives A = (A, ιA : OK → End(A)) for the isomorphism
classes with CM type 8. For each such A, we may choose an isomorphism

f A : End0
L
(

A)−→∼ Bp,L

and hence get an embedding

f A ◦ ιA : K → Bp,L .

By Skolem–Noether, we may conjugate the identifications f A so that the embeddings
f A ◦ ιA are the same, and in fact, this will be the case if f A1 and f A2 are related by a
CM isogeny to begin with. Then for every A, f A(EndOL (A)) is a superspecial order
containing OK . This order is uniquely determined by A up to conjugation by K×.

By our results, the representatives for these orders modulo conjugation by K×

are precisely the orders R(a, λa) as a ranges over representatives for Cl(OK ). We
therefore conclude:

Theorem 8.1. We have (where, of course, the A′ are taken up to isomorphism)∑
a

#S(a, λa, pn−1)

=

∑
A/(W/(pn))

with CM type 8

#
(

EndOL ,W/(pn)(A)×

O×K ′

)
·#
{

A′ with CM by OK ′ such that
(A′, ιA′ |OL )

∼= (A, ιA|OL )

}
. (8-3)

If we wish not to fix a CM type on K , we get the following:

Theorem 8.2. We have

#{superspecial CM types}×
∑
a

#S(a, λa, pn−1)

=

∑
A/(W/(pn))

with CM by OK

#
(EndOL ,W/(pn)(A)×

O×K ′

)
· #
{

A′ with CM by OK ′ such that
(A′, ιA′ |OL )

∼= (A, ιA|OL )

}
. (8-4)

8.4. Counting formulas for pairs of embeddings into superspecial orders. The
left-hand side of (8-3), for n = 1, has another interpretation. Consider a pair of
embeddings ι : OK → R and ι′ : OK ′ → R into a superspecial order R such that
both restrict to a fixed, given embedding of OL into R. We call it an optimal triple
(ι, ι′, R). We say that (ι, ι′, R) is conjugate to ( j, j ′, R̃) if there exists t ∈ B×p,L
such that t−1 Rt = R̃ and t−1ι(x)t = j (x) for all x ∈ OK

× and t−1ι′(x)t = j ′(x)
for all x ∈ O×K ′ .

To count the number of conjugacy classes of optimal triples, let us fix an embed-
ding I :K→ Bp,L . Then any optimal triple is conjugate to (I |OK , ι

′, R), where R is a
superspecial order containing I (OK ). We may still conjugate by K× and so assume
that R = R(a, λa) for some a. We may still conjugate by OK

×, and if K 6= K ′, that
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induces a faithful action of OK
×/OL

× on the embeddings ι′ : OK ′ → R(a, λa) if
they exist at all. We conclude that

#(OK
×/OL

×)−1
∑
a

#S(a, λa, 1)= #{optimal triples up to conjugation}.

Corollary 8.3. The number of optimal triples up to conjugation equals

#(OK
×/OL

×)−1
∑
a

#S(a, λa, 1)

=

∑
A/(W/(pn))

with CM type 8

#(OK
×/OL

×)−1#(O×K ′/OL
×)−1 #

(
EndOL ,W/(pn)(A)×

O×L

)

× #
{

A′ with CM by OK ′ such that
(A′, ιA′ |OL )

∼= (A, ιA|OL )

}
. (8-5)

If we multiply the whole set of equalities (8-5) above by the number of superspecial
types for K , we may be justified in calling the new right-hand side of (8-5) the
“coincidence number of K and K ′ at p” as it counts the number of coincidences
between abelian varieties with CM by K and abelian varieties with CM by K ′ in
characteristic p once one considers them as abelian varieties with RM only.

9. The connection to moduli spaces

In their paper [1985], Gross and Zagier give a beautiful formula. Let E1 and E2 be
two elliptic curves over W =W (Fp). Let ji be the j -invariant of Ei . Their formula is

valp( j1− j2)=
1
2

∑
n≥1

# Isomn(E1, E2),

where Isomn denotes the isomorphisms between the reduction of Ei modulo (pn).
The proof Gross and Zagier provided is through direct manipulations of Weier-

strass equations. A more conceptual proof was given by Brian Conrad in [2004].
The proof makes essential use of moduli spaces but uses many features unique to
modular curves and hence is not readily amenable to generalization. This result is
the basis of interpreting their theorem on J (d, d ′) and ordλ(J (d, d ′)) (cf. Section 1)
as an arithmetic intersection number. It thus remains a question of how to give
an interpretation for our theorems, Theorem 8.2 for example, as an intersection
number of CM points on Shimura varieties.

One possibility is to use Shimura curves associated with quaternion algebras
over totally real fields split at exactly one infinite prime. This approach entails
using the p-adic, not-quite-canonical models for these Shimura curves, following
Morita, Carayol, and Boutot–Carayol. The other possibility is to view these CM
0-cycles as lying on a Hilbert modular variety. This approach is complicated by the
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fact that there is no “robust” definition of the arithmetic intersection of 0-cycles
(1-cycles on the arithmetic models) once their codimension is bigger than 1. This
calls for an ad-hoc approach, and it has its own challenging problems.

For now, we will replace the notion of an intersection number with something
less precise and define instead a coincidence number, which does not reflect the
power to which various primes may appear in the differences of invariants but at
least reflects whether a prime appears in the factorizations of the differences of
invariants. In Section 12, we will give an example to illustrate the coincidence
number in computations.

Let L be a totally real field with strict class number 1 and Ki with i = 1, 2 two
CM fields containing L as their maximal totally real subfield. Let p be a prime
unramified in both K1 and K2. For each CM field, we can associate a 0-cycle
CM(Ki ) on the generic fiber of the Hilbert modular variety HL parametrizing
principally polarized abelian varieties with RM by OL (Section 2.3). Each point xη
in CM(Ki ) can be extended to a W (Fp)-point x on HL [Goren and Lauter 2012,
Lemma 2.3]. This implicitly depends on a choice of a prime p in a common
field of definition for all the CM abelian varieties under consideration. We write
CM(K1)=

∑
i xi and CM(K2)=

∑
j y j . We then define the arithmetic coincidence

number (for lack of better terminology) of CM(K1) and CM(K2) as

CM(K1)∧ CM(K2)=
∑

i j

xi∧y j ,

where xi∧y j is defined as 1 if xi and y j have isomorphic reduction modulo p and
as 0 otherwise. In this notation, Theorem 8.2 implies the following:

Corollary 9.1. The contribution from a prime p of superspecial reduction to
CM(K1)∧ CM(K2) is equal to #{superspecial CM types}×

∑
a #S(a, λa, 1).1 This

number, and in particular whether it is zero, can be effectively calculated.

10. Supersingular orders

Theorem 10.1. Let p be a rational prime and k an algebraically closed field of
characteristic p. Let K be a quartic CM field, and let L = K+ be its real subfield.
Let A/k be an abelian surface that is supersingular, but not superspecial, with
complex multiplication by OK . Let O := EndOL (A), where the endomorphisms are
over k. Let Bp,∞ be the quaternion algebra over Q ramified at only p and∞, and
let Bp,L := Bp,∞⊗Q L. Then O is an Eichler order of Bp,L of discriminant p2.

Proof. Let H be a quaternion algebra over a number field F , and let R be an order
of H containing OF . Recall that R is called an Eichler order if it is the intersection
of two maximal orders. This is a local property [Vignéras 1980, p. 84]. If F denotes

1Likewise, the notion of superspecial CM types depends on the implicit choice of p.
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now a nonarchimedean local field with uniformizer π , then an order of H containing
OF is Eichler (namely, is the intersection of two maximal orders of H ) if and only
if it is conjugate to the order

M =
(

OF OF

πnOF OF

)
for some positive integer n [Vignéras 1980, p. 39].

We wish to find the completion of O at every rational prime ideal l of OL .
First, since there exists an isogeny of degree a power of p between any two

supersingular abelian surfaces A and A′ with real multiplication respecting the
real multiplication structure [Bachmat and Goren 1999], for l - p, we have that
Ol := O⊗OL OL ,l ∼= O′l, where O′ = EndOL (A

′). We may choose for A′ the surface
E ⊗Z OL , where E is a supersingular elliptic curve with R = End(E) a maximal
order in Bp,∞. Then O′ = End(A′)= R⊗Z OL , so O′ and O are maximal orders at l.

We remark that according to the classification of the reduction of abelian surfaces
with CM, the situation we consider occurs if and only if p is inert in K , that is, in
the following cases:

(a) K/Q is cyclic Galois and p inert in K [Goren and Lauter 2012, Table 3,
case (iii)], and

(b) K/Q is non-Galois and p inert in K [Goren and Lauter 2012, Table 5, case (vii)].

Following the conventions of [Goren and Lauter 2012], the Dieudonné module of
the p-divisible group of the reduction of A modulo pL is

D∼=W(1)⊕W(y2)⊕W(y)⊕W(y3),

where W(α) denotes the Witt vectors of Fp, where OK acts through the embedding
α : K →Qp. Let σ denote the Frobenius automorphism of W. Then

(a) OL acts on D by l 7→ diag(l, l, σ (l), σ (l)), and

(b) OK acts on D by k 7→ diag(k, σ 2(k), σ (k), σ 3(k)).

The p-adic CM type is {1, y3
} according to our conventions, but since the situation

is symmetric, we may assume that the p-adic CM type is {1, y}, and so Frobenius
is given in the standard basis by the matrix

Fr=


0 0 0 1
0 0 p 0
p 0 0 0
0 1 0 0

 .
By a theorem of Tate, End(A)⊗Z Zp ∼= End(D), where on the right the endomor-
phisms are as Dieudonné modules (cf. [Waterhouse and Milne 1971, Theorem 5]),
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namely, in this case, W-linear maps D→ D that commute with Frobenius. In the
same way,

Op = EndOL (A)⊗OL OL p = EndOL (A)⊗Z Zp ∼= EndOL (D).

Since Op commutes with OL , one finds that Op is given by block diagonal matrix
with blocks of size 2. Writing the general such matrix as

M =


m11 m12

m21 m22

n11 n12

n21 n22

 ,
the condition M ·Fr= Fr ·σ(M) gives, after a short computation,

Op =




m11 m12

p2mσ 2

12 mσ 2

11
mσ

11 pmσ
12

pmσ 3

12 mσ 3

11

 : mi j ∈W(Fp4)

 .
Since p is inert in L , the quaternion algebra Bp,L is ramified only at the two places
at infinity. In particular, Bp,L ⊗L L p ∼= M2(Qp2), where Qp2 =W(Fp2)⊗Z Q. To
determine the nature of Op, we want to recognize it as a suborder of M2(W(Fp2)).

The case p 6= 2. Put

i :=
(

1
p2

)
and j :=

(
α

ασ
2

)
,

where α is chosen such that W(Fp4)=W(Fp2)[α] and ασ
2
=−α. We have then

i2
= p2, j2

= α2, and k := i j =− j i =
(

−α

p2α

)
.

Writing m1 = x1+ y1α and m2 = x2+ y2α with xi , yi ∈W(Fp2), we can write(
m11 m12

p2mσ 2

12 mσ 2

11

)
= x1

(
1

1

)
+ y1

(
α

ασ
2

)
+ x2

(
1

p2

)
− y2

(
−α

p2α

)
= x1 · 1+ y1 · j + x2 · i − y2 · k.

Conversely, for any xi , yi ∈W(Fp2), we get an element of Op. Thus,

Op =W(Fp2) · 1⊕W(Fp2) · i ⊕W(Fp2) · j ⊕W(Fp2) · k.

Let I = p−1i , J = j , and K = I J =−J I . Then I 2
= 1, J 2

=α2, and K 2
=−α2.

The module
R =W(Fp2)[1, I, J, K ]
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is in fact an order of M2(Qp2), and it has discriminant 1. It must then be isomorphic
to M2(Wp2), and, indeed, if we send

1 7→
(

1
1

)
, I 7→

(
1
−1

)
, J 7→

(
α2

1

)
, and K 7→

(
α2

−1

)
,

we get the isomorphism R ∼= M2(W(Fp2)). Under this isomorphism, Op is mapped
isomorphically to the order spanned over W(Fp2) by the matrices(

1
1

)
,

(
p
−p

)
,

(
α2

1

)
, and

(
pα2

−p

)
,

which can be described as{(
a b
c d

)
: a, b, c, d ∈W(Fp2), p |(a− d), p |(b−α2c)

}
.

Now conjugate Op by the matrix

A =
(

1 α

α−1
−1

)
.

Using

2A−1
(

a b
c d

)
A =

(
a+α−1b+αc+ d α(a− d)+ (α2c− b)

α−1(a− d)+α−2(b−α2c) a−α−1b−αc+ d

)
,

we find that Op is conjugate to a suborder of

R′ =
(

W(Fp2) pW(Fp2)

pW(Fp2) W(Fp2)

)
.

However, comparing the discriminant of Op, which is p2, and of R′, which is p2 as
well, we conclude that Op is isomorphic to R′. Further conjugation by the matrix(

1/p
1

)
shows that Op is isomorphic to the order

R′′ =
{(

a b
c d

)
: a, b, c, d ∈W(Fp2), p2

|c
}
,

which is an Eichler order of discriminant p2.

The case p = 2. We may find α ∈W(Fp2) such that W(Fp4)=W(Fp2)[(1+α)/2]
and ασ

2
=−α. Indeed, for a suitable ε ∈W(Fp2)×, we have W(Fp4)=W(Fp2)[β],

where β2
+β + ε = 0. Note that β is a unit. Take α =−(2β + 1).
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To make the analogy with the previous case more visible, we keep using p
instead of 2 in most places. As before, we let

i =
(

1
p2

)
, j =

(
α

−α

)
, and k = i j =− j i =

(
−α

αp2

)
.

Writing m1 = x1+ y1(1+α)/2 and m2 = x2+ y2(1+α)/2 with xi , yi ∈W(Fp2),
we can write,(

m11 m12

p2mσ 2

12 mσ 2

11

)
= x1 · 1+ y1 ·

1+ j
2
+ x2 · i + y2 ·

i−k
2
,

and one concludes that

Op =W(Fp2) · 1⊕W(Fp2) · i ⊕W(Fp2) ·
1+ j

2
⊕W(Fp2) ·

i−k
2
.

One can verify directly that the right side is indeed an order and its discriminant is p2.
The order Op contains the order W(Fp2)[1, i, j, k] =W(Fp2)[1, I, J, K ], where

I = i , J = j/α, and K = k/α. Note that I 2
= p2, J 2

= 1, K 2
= −p2, and

I J =−J I = K . Consider the linear map

W(Fp2)[1, I, J, K ] → M2(W(Fp2))

determined by

1 7→
(

1
1

)
, I 7→

(
2

2

)
, J 7→

(
1
−1

)
, and K 7→

(
−2

2

)
.

One checks that this map is a ring homomorphism and verifies that

Op ∼=W(Fp2)

[(
1

1

)
,

(1+α
2

1−α
2

)
, 2
(

1
1

)
, 2
( 1+α

2
1−α

2

)]
.

Let u := (1+α)/(1−α)=β2/ε. Then u and 1−u=2+u/β are units. It follows that

Op ∼=W(Fp2)

[(
1 0
0 0

)
,

(
0 0
0 1

)
, 2
(

0 1
0 0

)
, 2
(

0 0
1 0

)]
=

{(
a b
c d

)
: a, b, c, d ∈W(Fp2), p |b, p |c

}
.

An additional conjugation as in the case p 6= 2 shows that this is an Eichler order
of discriminant p2. �
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11. A crude version of Gross–Zagier’s result on singular moduli

Let A be a g-dimensional abelian variety over a field k. Let L be a totally real field
of degree g over Q of strict class number 1, and let Ki with i = 1, 2 be two CM
fields contained in some algebraic closure of L such that K+1 = K+2 = L . We allow
K1 = K2. Assume we are given two embeddings

ϕi : Ki → End0
k(A) := Endk(A)⊗Z Q

such that
ϕ1|L = ϕ2|L and ϕ1(K ) 6= ϕ2(K ).

Lemma 11.1. The field k has positive characteristic p. The abelian variety is
supersingular, and End0(A)∼= Bp,L , where Bp,L = Bp,∞⊗Q L and Bp,∞ is “the”
quaternion algebra over Q ramified at p and∞.

Proof. This follows easily from the classification of the endomorphism algebras of
abelian varieties with real multiplication as in [Chai 1995, Lemma 6]; one observes
that under our assumptions, the centralizer of L in End0

k(A) is an L-vector space of
dimension greater than 2. �

Let Oi ⊆ Ki be orders containing OL . The order Oi is determined by its conductor
ci , which is an integral ideal of OL for which we choose a generator ci [Goren and
Lauter 2009, Lemma 4.1]. In fact, one can write

OKi = OL [κi ],

where −mi = B2
i − 4Ci is a totally negative element of OL and κi satisfies a

quadratic equation x2
+ Bi x + Ci for Bi ,Ci ∈ OL . The relative different ideal

DKi/L is equal to OKi [1/
√
−mi ] [Goren and Lauter 2006, Lemma 3.1]. We have

OKi = OL [κi ] ⊇ OL [
√
−mi ] ⊇ OL [2κi ], and so

Oi = OL [ciκi ] ⊇ OL [ci
√
−mi ] ⊇ OL [2ciκi ].

The discriminant of Oi relative to OL , discKi/L(Oi ), is equal to the OL -ideal gener-
ated by c2

i mi , and the discriminant of Oi relative to Z, disc(Oi )= discK/Q(Oi ), is
equal to NormL/Q(c2

i mi ) · disc(OL)
2. (In general, we use “disc” to denote absolute

discriminant, that is, relative to Z.)
Let B be any totally definite quaternion algebra over L; that is, B⊗L ,σ R is a

division algebra for any embedding σ : L→ R, and let d be its discriminant. Let

ϕi : Ki → B

be two embeddings such that ϕ1|L = ϕ2|L and ϕ1(K1) 6= ϕ2(K2). Let

ki = ϕi (ci
√
−mi ).
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Let O be an order of B, which we assume to contain ϕi (Oi ) for i = 1, 2 and hence
also OL (we view ϕi as the identity maps on L). Let d+ be the discriminant of O.
As in [Goren and Lauter 2007], subject to the assumption ϕ1(K1) 6= ϕ2(K2), one
proves the following lemma:

Lemma 11.2. The OL module 3 = OL + OLk1 + OLk2 + OLk1k2 has finite index
in O and is in fact a direct sum 3= OL ⊕OLk1⊕OLk2⊕OLk1k2.

Theorem 11.3. Let α = Trd(k1k2). We have a divisibility of integral ideals in L:

d+ |(4 Nrd(k1)Nrd(k2)−α
2) in OL .

Furthermore,

NL/Q(d
+)≤ 4g disc(O1)·disc(O2)

disc(OL)4
.

Proof. The discriminant of the order 3 relative to L , discB/L(3), is divisible by
the discriminant of O; namely, it is an integral ideal of L divisible by d+. Using the
basis {1, k1, k2, k1k2} for3 and putting α=Trd(k1k2), we find that the discriminant
of 3 is the OL -ideal generated by

det


2 0 0 α

0 2 Nrd(k1) −α 0
0 −α 2 Nrd(k2) 0
α 0 0 2 Nrd(k1)Nrd(k2)

= (4 Nrd(k1)Nrd(k2)−α
2)2,

and so d+ |(4 Nrd(k1)Nrd(k2)−α
2) in OL . Thus,

NL/Q(d
+)|NL/Q(4 Nrd(k1)Nrd(k2)−α

2) in Z.

Now, 4 Nrd(k1)Nrd(k2)−α
2 is a totally positive element of OL . Indeed, this is just

the Cauchy–Schwartz inequality applied to the bilinear form Trd(x y) under every
embedding L→ R. We can therefore conclude that

NL/Q(d
+)≤ NL/Q(4 Nrd(k1)Nrd(k2)).

We conclude that

NL/Q(d
+)≤ disc(OL)

−44−g
2∏

i=1

4g disc(OL)
2 NL/Q Nrd(ki )

≤ disc(OL)
−44−g

2∏
i=1

disc(OL [2ciκi ])

= disc(OL)
−44g

2∏
i=1

disc(OL [ciκi ])= 4g disc(O1)·disc(O2)

disc(OL)4
. �
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p Unramified
(inert/split)

Inert Ramified Ramified

Reduction ssp s.sing, not ssp ssp ssp

Rapoport? Yes Yes Yes No

r ′ 2 4 2 1

Table 3
(K cyclic)

ii, iv, v iii vi

Table 4
(K biquadratic)

iii, iv, vii, viii vi ix, x, xi

iii, vi, viii, ix, xvi, xvii, xviii,Table 5
(K non-Galois)

x, xi, xiii, xv, vii xix, xx, xxi, xxiv,
xxii, xxiii xxv, xxvi

Table 1. The case [L :Q] = 2. Table numbers refer to [Goren and
Lauter 2012]. The column headings refer to the decomposition
of p in L . “Reduction” refers to the reduction of the abelian
variety modulo p. The abbreviations “s.sing.” and “ssp” mean
“supersingular” and “superspecial”.

Corollary 11.4. (1) Let Ai be an abelian variety with CM by OKi . Choose a
common field of definition M for A1 and A2 such that M contains the normal
closure of both K1 and K2 and both Ai have good reduction over M. Let p be
a prime ideal of M , (p)= p∩Z, and suppose that

A1 (mod p)∼= A2 (mod p).

Let r be the number of prime ideals q in OL for which e(q/p) f (q/p) is odd. If
r > 0, then

p ≤
(

4g discK1 · discK2

disc(OL)4

)1/r

.

(2) Suppose that [L :Q]= 2 and that Ai are principally polarized abelian surfaces.
Then we have the bound

p ≤
(

16
discK1 · discK2

disc(OL)4

)1/r ′

according to the cases listed in Table 1 (and no other case is possible).

Proof. Since the Ai are principally polarized abelian surfaces, they satisfy the
Deligne–Pappas condition and, when p is unramified, even the Rapoport condition.
We can therefore use the results of [Bachmat and Goren 1999; Nicole 2005].

If p is split in L , then every supersingular abelian variety is superspecial. In that
case, EndOL (A) is an order of discriminant pOL in Bp,L , and we apply (1) with r =2.
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If p is inert, then the reduction is necessarily supersingular by Lemma 11.1 and
may or may not be superspecial. If it is superspecial, then, again, EndOL (A) is an
order of discriminant pOL in Bp,L , and the bound holds with r ′ = 2.

If the reduction is supersingular and not superspecial, then in fact EndOL (A) has
discriminant p2OL , and so we may take r ′ = 4.

Next we consider the case when p is ramified. There are three cases. The first
is when we have superspecial reduction and the Rapoport condition holds. In that
case, EndOL (A) has discriminant pOL , and we may take r ′ = 2. The second case is
when we have superspecial reduction and the Rapoport condition does not hold (but
the Deligne–Pappas condition holds). In this case, EndOL (A) has discriminant p,
where p is the prime of OL above p, and we can take r ′ = 1. The last possibility is,
ostensibly, that we have supersingular reduction, which is not superspecial. This in
fact never happens in the presence of CM by the full ring of integers. It is interesting
to note, though, that for supersingular and not superspecial reduction, the abelian
variety A has a unique copy of the group scheme αp contained in it, which is
therefore preserved under all endomorphisms. Thus, End(A) ↪→ End(A/αp), and
A/αp is superspecial but doesn’t satisfy the Rapoport condition [Andreatta and
Goren 2003]. And so, were this case to occur, we could have taken r ′ = 1. �

Remark 11.5. Suppose that r = 0. Then g is even, and a maximal order R ⊂ Bp,L

has discriminant 1 since Bp,L can only be ramified at primes dividing p, and if
F/Qp is a field extension and [F :Qp] = α, then Bp,∞⊗Qp F is split if and only
if α is even. Taking F = Lq, we have that α = e(q/p) f (q/p). For every prime
p (and for any decomposition behavior of p), there certainly exist supersingular
abelian varieties A with RM such that EndOL (A)= R. This is easily achieved by
choosing an R-stable lattice of the Dieudonné module of A. Experience shows,
however, that such abelian varieties tend to be badly behaved; for example, the
Deligne–Pappas condition tends to fail when p is unramified (it fails in the cases
we have checked, and we did not find an example where it holds), or in other cases,
such as when p is totally ramified, the Deligne–Pappas condition holds, but the
endomorphism ring is not the maximal order. Thus, one would expect that under
the Deligne–Pappas condition the discriminant of EndOL (A) is never 1 and, if so,
one obtains a version of Corollary 11.4(1) in all cases.

In fact, one can be more optimistic and guess that the largest order O aris-
ing for a supersingular characteristic p abelian variety with RM A satisfying the
Deligne–Rapoport condition also arises for some superspecial such abelian variety.
Superspecial abelian varieties with RM were studied by Nicole [2005; 2008]. When
p is unramified in L and A is superspecial, EndOL (A) has discriminant pOL . When
p is ramified in L , larger orders arise [Nicole 2005, Theorem 2.8.5], but at least when
p is totally ramified, pOL = p[L:Q], still the largest order arising (for a superspecial
abelian variety) has discriminant p.
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12. Computations: g = 2

Consider the two primitive Galois quartic CM fields K ′ =Q(
√
−85+ 34

√
5) and

K = Q(ζ5). The common real quadratic subfield L = K+ = K ′+ = Q(
√

5) has
strict class number 1 as it has class number 1 and a unit (1+

√
5)/2 of negative

norm. The field K has class number 1, and the triple of absolute Igusa invariants of
the principally polarized abelian surface with CM by K is i1 = i2 = i3 = 0. The
field K ′ has class number 2, and the triple of absolute Igusa invariants for one of
the CM points associated to K ′ is

i1 =
233
·310
·55
·195
·5215

7112 , i2 =
223
·310
·55
·195
·5213

718 ,

i3 =
216
·37
·54
·193
·5212

·755777339
718 .

Genus-2 curves over Q with these invariants are given by the affine models

y2
= x5
− 1,

y2
=−584x6

− 4020x5
+ 28860x4

+ 130240x3
− 514920x2

− 190244x − 289455

for Q(ζ5) and K ′, respectively. In this case, the triple of absolute invariants is
insufficient to determine whether the two curves are isomorphic modulo a prime p
since the first invariant is zero. To understand for which primes the curves are
isomorphic, it is necessary to compute all ten Igusa invariants for the CM point
associated to K ′ to determine which primes divide all ten invariants (see [Goren
and Lauter 2012, Section 2.2] for an explanation, especially Consequence 3 at the
end of the subsection). In particular, primes that divide the differences of all ten
Igusa invariants associated to two CM points of K and K ′ are primes for which the
coincidence number of K and K ′ defined in Section 9 is nonzero.

The prime 19 appears in all three invariants, and checking all ten invariants, we
find that they too are all zero modulo 19. There is also a positive contribution at the
prime p= 19 in our formula in (8-3), which implies a nonzero coincidence number.
Since K has class number 1, there is only one superspecial order R(O, λ). We find
an element x ∈ OL satisfying conditions C and count the elements in S2(O, x). Let
d and d ′ be as in Section 6. We find that for x = 3

√
5−3, the ideal in OL generated

by (x2
− dd ′)/4 factors as

p2
2p19,1p19,2.

We see that there is a positive contribution for p = 19 in our formula because this
factorization has both split factors for 19, and 2 is totally inert in K/L but appears
to the power 2, so (x2

− dd ′)/(4 · 19) is a norm of an ideal from K/L , and the set
S2(O, x) is nonempty.
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Consider the other primes that are common to all three numerators in this example.
The prime 5 is ramified in L , so our results do not cover it; neither do our formulas
pertain to the prime 2, which also appears in all three numerators. The prime 3
divides all ten invariants but is supersingular, not superspecial, and it certainly
satisfies the crude bound Theorem 11.3 from Section 11. The prime 521 does not
divide all ten invariants.
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