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A conjecture of Manin predicts the distribution of K -rational points on certain
algebraic varieties defined over a number field K . In recent years, a method using
universal torsors has been successfully applied to several hard special cases of
Manin’s conjecture over the field Q. Combining this method with techniques
developed by Schanuel, we give a proof of Manin’s conjecture over arbitrary
number fields for the singular cubic surface S given by the equation x3

0 = x1x2x3.
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1. Introduction

We consider the cubic surface S ⊆ P3 defined over any number field K by the
equation

x3
0 = x1x2x3.

It is toric, has three singular points (0 : 1 : 0 : 0), (0 : 0 : 1 : 0), (0 : 0 : 0 : 1), and
contains three lines L i := {x0= xi = 0}, for i ∈ {1, 2, 3}. The set S(K ) of K -rational
points on S is infinite.

The Weil height of x = (x0 : x1 : x2 : x3) ∈ P3(K ) is defined by

H(x)=
∏

ν∈M(K )

max{|x0|ν, |x1|ν, |x2|ν, |x3|ν}
dν .

Here, M(K ) is the set of places of K , the absolute values | · |ν are normalized such
that they extend the usual absolute values on Q, and dν is the local degree [Kν :Qp],
if ν extends the place p of Q.
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It is well known that there are only finitely many points of bounded height in
P3(K ), so it makes sense to study the number of K -rational points on S of height
bounded by B, as B tends to infinity. A generalization of a conjecture by Manin
[Franke et al. 1989; Batyrev and Tschinkel 1998b], applied to our case, links the
asymptotic behavior of this quantity to geometric features of S, provided that we
exclude the points lying on the lines L i . Indeed, the number of K -rational points
of bounded height on these lines dominates the number of K -rational points on the
rest of S, whereas much of the geometric information about S would be lost when
considering just the lines.

Therefore, we denote by U the complement of the three lines in S and define the
counting function

N (B) := |{x ∈U (K ) | H(x)≤ B}|.

Here, U (K ) is the set of K -rational points on U . The above-mentioned generaliza-
tion of Manin’s conjecture [Franke et al. 1989; Batyrev and Tschinkel 1998b] to
Fano varieties with at worst canonical singularities predicts in this case that

N (B)∼ cB(log B)6,

with a positive leading constant c = cS,K ,H . A conjectural interpretation of the
leading constant in Manin’s conjecture was given by Peyre [1995] and extended
to Fano varieties with at worst canonical singularities by Batyrev and Tschinkel
[1998b]. When writing “Manin’s conjecture”, we implicitly include the conjecture
about the leading constant.

Manin’s conjecture has been proved for smooth toric varieties over arbitrary
number fields by Batyrev and Tschinkel [1998a], studying the height zeta function
with the help of Fourier analysis. In [Batyrev and Tschinkel 1998b] they explain
how this result can be applied to prove Manin’s conjecture for our singular surface S.
Similar methods work for other varieties that are equivariant compactifications of
certain algebraic groups; for example, see [Chambert-Loir and Tschinkel 2002].

Salberger [1998] gave a new proof of Manin’s conjecture for split toric varieties
over the field Q of rational numbers by a fundamentally different approach using
universal torsors. These were first introduced by Colliot-Thélène and Sansuc [1980;
1987] to study the Hasse principle. In the context of Manin’s conjecture, the
basic idea is to find a parametrization of the rational points on the variety under
consideration that makes it feasible to count them by analytic number theory.

Based on Salberger’s ideas, proofs were found for several hard special cases of
Manin’s conjecture over Q, to which the methods of Batyrev and Tschinkel cannot
be applied; see for instance [Baier and Browning 2013; de la Bretèche 2002; de la
Bretèche and Browning 2011; de la Bretèche et al. 2007; de la Bretèche and Fouvry
2004; de la Bretèche et al. 2012; Browning and Derenthal 2009; Le Boudec 2012].
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For our surface S, independent proofs of Manin’s conjecture over Q were given by
de la Bretèche [1998], Fouvry [1998], Salberger [1998], Heath-Brown and Moroz
[1999], and de la Bretèche and Swinnerton-Dyer [2007], with the help of such
parametrizations. The best error terms have been obtained in [de la Bretèche 1998;
de la Bretèche and Swinnerton-Dyer 2007].

In a first attempt to generalize universal torsor techniques to number fields other
than Q, Derenthal and Janda [2013] modified the approach by Heath-Brown and
Moroz [1999] and successfully applied it to the case of imaginary quadratic number
fields of class number 1.

In this article, we combine the method of Derenthal and Janda with ideas devel-
oped by Schanuel [1979] and apply it to arbitrary number fields. To the author’s
best knowledge, this is the first example of universal torsor techniques applied
to a special case of Manin’s conjecture over general number fields, aside from
Schanuel’s result for Pn . Hopefully, similar approaches will lead to results for
nontoric varieties.

Before we state the theorem, let us fix some notation: by 1K , hK , RK , and ωK ,
we denote the discriminant, class number, regulator, and number of roots of unity
of K . Moreover, r and s denote the number of real and complex places of K , and
q := r + s− 1. We write OK for the ring of integers of K and Na for the absolute
norm of the nonzero fractional ideal a of K .

Theorem 1. For every number field K , we have

N (B)= cK B(log B)6+ O(B(log B)5),

for B ≥ e. Here, the implicit O-constant depends on K , and

cK :=
9q

4 · 6!

(
2r (2π)s
√
|1K |

)9(hK RK

ωK

)7∏
p

(
1−

1
Np

)7(
1+

7
Np
+

1
Np2

)
,

where the product runs over all nonzero prime ideals p of OK .

The leading constant. Let us check the leading constant cK in Theorem 1 against
the expected one. According to [Batyrev and Tschinkel 1998b, Section 3.4, Step 4],
it should have the form

γK−1(U )δK−1(U )τK−1(U )
6!

,

where γK−1(U ) is the volume of a certain polytope depending only on U , δK−1(U )
is a cohomological invariant, and τK−1(U ) is a generalized version of the Tamagawa
number introduced by Peyre [1995] for smooth Fano varieties.

Derenthal and Janda [2013, Section 3] computed these constants for our U over
arbitrary number fields K , using a minimal desingularization S̃ of S constructed
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by blow-ups of P2 in six rational points: We have δK−1(U ) = 1, and, as already
given in [Batyrev and Tschinkel 1998b, Section 5.3], γK−1(U )= 1

36 . The Tamagawa
number τK−1(U ) is an adelic invariant given as a product of local densities with
certain convergence factors

τK−1(U )=
(

2r (2π)shK RK

ωK
√
|1K |

)7

|1K |
−1
∏
ν|∞

ωK−1,ν(S̃(Kν))
∏
ν-∞

λ−1
ν ωK−1,ν(S̃(Kν)).

For the Archimedean densities, we have

ωK−1,ν(S̃(Kν))=

{
36 if Kν = R,

36π2 if Kν = C.

The non-Archimedean density at the place ν corresponding to the prime ideal p of
OK is given by

λ−1
ν ωK−1,ν(S̃(Kν))=

(
1−

1
Np

)7(
1+

7
Np
+

1
Np2

)
.

Putting this together, we see that the constant cK in Theorem 1 is as expected.

More notation. The ideal class of a nonzero fractional ideal a of K is denoted by
[a]. We write PK for the group of nonzero principal fractional ideals of K . We
denote the real embeddings by σ1, . . . , σr : K → R and the complex embeddings
by σr+1, σ r+1, . . . , σr+s , σ r+s : K → C. The componentwise continuation of σi

to K n is also denoted by σi . If ν is the place corresponding to σi then we put
di := dν . When convenient, we write α(i) := σi (α) for α ∈ K . If a, b are fractional
ideals of K , we put (a, b) := a+ b. For any point x = (x0, . . . , xn) ∈ K n+1, let
J(x) := (x0OK , . . . , xnOK ). Then, for x ∈ K 4,

H(x)=NJ(x)−1
r+s∏
i=1

max
{
|x (i)0 |, |x

(i)
1 |, |x

(i)
2 |, |x

(i)
3 |
}di
.

We fix, once and for all, a system of fundamental units of OK , and denote by
F the multiplicative subgroup of K× generated by this system. Then F is a free
Abelian group of rank q, and the unit group O×K is the direct product O×K = µK F,
where µK is the group of roots of unity in K .

Moreover, we fix, once and for all, a system C of integral representatives for
the ideal classes of OK , that is, a set of hK nonzero ideals of OK , one from every
ideal class.

2. Passing to a universal torsor

In this section, we find a parametrization of the rational points of bounded height on
U by (almost) integral points on an open subset of A9

K , subject to some height- and
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coprimality conditions, and up to a certain action of (O×K )
7. This parametrization

has the merit that, due to the coprimality conditions, the non-Archimedean parts of
the height conditions are trivial.

Over Q and imaginary quadratic number fields, the action of (O×K )
7 makes no

problems, since then O×K is finite. In general, that is not the case; this is one of the
main difficulties which we have to overcome.

While we will use purely number-theoretic arguments, we mention that the open
subset of A9 is a universal torsor over S, and that our construction is motivated by
geometric considerations; see [Derenthal and Janda 2013]. The choice of indices
might seem slightly counterintuitive at the beginning. It is, however, closely related
to those geometric considerations and will lead to a rather symmetric result.

Parametrization. Let 90 : K 3
→ K 4 be given by

90(x23, x31, x12)= (x12x23x31, x12x2
31, x23x2

12, x31x2
23).

We will also consider90 as a rational map P2 99KP3. Let W ⊆P2 be the open subset

W = {(x23 : x31 : x12) ∈ P2
| x12x23x31 6= 0}.

Then 90 induces a bijection between W (K ) ⊆ P2(K ) and U (K ) ⊆ P3(K ) with
inverse (x0 : x1 : x2 : x3) 7→ (x2

0 : x0x1 : x1x2). Therefore,

N (B)= |{x ∈W (K ) | H(90(x))≤ B}|. (2-1)

Whenever indices j , k, l appear in an expression, this expression is understood
to hold for all ( j, k, l) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)} =: A.

Lemma 2.1. Let b1, b2, b3 be nonzero ideals of OK , and let c := (b1, b2, b3). Then
there exist unique nonzero ideals a1, a2, a3, a12, a21, a23, a32, a31, a13 of OK

such that

b j = c · a jk · a
2
k · alk · a j · ak j , (2-2)

and such that the following coprimality conditions hold:

(ak, a j )= OK , (2-3)

(ak, ak j )= OK , (2-4)

(ak, a jl)= OK , (2-5)

(ak, al j )= OK , (2-6)

(ak, akl)= OK , (2-7)

(alk, a jk)= OK , (2-8)

(alk, al j )= OK , (2-9)

(alk, a jl)= OK , (2-10)

(a jk, akl)= OK . (2-11)

Conversely, given ideals ak , a jk , alk as in (2-3)–(2-11), the ideals b j defined by
(2-2) satisfy (b1, b2, b3)= c.
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Proof. It is enough to prove the lemma if c= OK , since we can always replace b j

by c−1b j . In this case, we have (b j , b
2
k)(bl, b j ) | b j . Let

a jk :=
b j

(b j , b
2
k)(bl, b j )

, ak :=

( b j

(b j , bk)
, bk

)
, and alk :=

(b j , bk)

ak
. (2-12)

Then the a jk , ak , alk are nonzero ideals of OK and (2-2) holds, since

(b j , b
2
k)= (b j , bk)ak = a2

kalk and (bl, b j )= a jak j .

One readily verifies that the left-hand sides in conditions (2-3)–(2-6), (2-9), and
(2-10) divide (b1, b2, b3) = OK . Similarly, the left-hand sides in (2-7), (2-11)
divide (b j/(b j , bk), bk/(b j , bk)) = OK , and the left-hand side in (2-8) divides
(bk/ak, b j/((b j , bk)ak))= OK .

Now assume that (2-2) holds, with given nonzero ideals ak , a jk , alk satisfying the
coprimality conditions (2-3)–(2-11). These conditions imply that (b j , bk)= akalk ,
and furthermore (b j/(akalk), bk) = ak . Thus, the ak ,alk are as in (2-12). Clearly,
this holds as well for the a jk , and uniqueness is proved.

The last assertion is again a direct consequence of (2-3)–(2-11). �

The coprimality conditions (2-3)–(2-11) can be expressed in a more convenient
way: Let G=(V, E) be the graph with vertex set V:={1, 2, 3, 12, 21, 23, 32, 31, 13}
and edge set E := {{k, jk}, {k, lk}, {kl, lk} | ( j, k, l)∈ A}. We can draw it as follows:

1 21 12 2

31 13 3 23 32

Then (2-3)–(2-11) hold if and only if (av, aw)= OK for all pairs (v,w) of nonadja-
cent vertices of V . If we denote the edge set of the complement graph by E ′, this
means that

for any {v,w} ∈ E ′, we have (av, aw)= OK . (2-13)

For every point (x23 : x31 : x12) ∈W (K ), the ideal class [J(x23, x31, x12)] is well-
defined, and [J(x23, x31, x12)]=[C], for some C ∈C. By multiplying with a suitable
element of K×, we can choose a representative x = (x23, x31, x12) ∈ (OK \ {0})3

with J(x)= C . This representative is unique up to scalar multiplication by units
in O×K .

We apply Lemma 2.1 to the principal ideals b j := x jkOK and obtain

x jkOK = C · a jk · a
2
k · alk · a j · ak j ,

with unique ideals av of OK satisfying (2-13). For all v ∈ V \ {12, 23, 31}, there
is a unique Cv ∈ C with [av] = [C−1

v ]. Choose yv ∈ K× with yvOK = avCv, and
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define y12, y23, y31 ∈ K× by the equations

x jk = y jk · y2
k · ylk · y j · yk j . (2-14)

Then
y jkOK = a jkC jk with C jk := CC−2

k C−1
lk C−1

j C−1
k j .

For C = (C,C1,C2,C3,C21,C32,C13) ∈ C7, we define MC as the set of all
y = (yv)v∈V ∈ (K×)9 such that

yv ∈ Cv for all v ∈ V , and the ideals av := yvC−1
v satisfy (2-13). (2-15)

By what we have shown above, relations (2-14) define a surjective mapping

φ :
⋃

C∈C7

MC →W (K ).

If y ∈ MC and φ( y)= (x23 : x31 : x12) with x jk as in (2-14) then

x jkOK = C · a jk · a
2
k · alk · a j · ak j .

By Lemma 2.1, we have J(x23, x31, x12)= C , and the av (and thus as well the Cv)
are uniquely determined by the x jkOK . In particular, the sets MC , C ∈ C7, are
pairwise disjoint. Moreover, (x23, x31, x12) and the yv, v ∈ V , are determined by
φ( y) up to multiplication by units. Therefore, φ( y)= φ(z) if and only if there are
units ζ , ζv ∈ O×K with

zv = ζv yv for all v ∈ V and ζ jkζ
2
k ζlkζ jζk j = ζ for all ( j, k, l) ∈ A.

By eliminating the ζ jk , we see that φ( y)= φ(z) if and only if y and z are in the
same orbit of the action � of (O×K )

7 on (K×)9 given by

(ζ, ζ1, ζ2, ζ3, ζ21, ζ32, ζ13)� (yv)v := (zv)v, (2-16)

where zv := ζv yv for all v ∈ V \ {12, 23, 31} and z jk := ζ ζ
−2
k ζ−1

lk ζ
−1
j ζ−1

k j y jk .
In what follows, it will be more convenient to work with the free Abelian subgroup

F of O×K generated by our fixed system of fundamental units. Clearly, (O×K )
7 is the

direct product (O×K )
7
= µ7

K ·F
7. Since the action of (O×K )

7 on (K×)9 is free, every
orbit of (K×)9 under the action of (O×K )

7 is the union of |µ7
K | = ω

7
K orbits under

the action of F7.
Let R be a system of representatives for the orbits of (K×)9 under the action

of F7. Then φ induces an ω7
K -to-1 map

φ :
⋃

C∈C7

(MC ∩R)→W (K ).

The benefits of our construction become apparent in the height condition. With
x = (x23, x31, x12) as in (2-14), we have ψ0(x)= y2

1 y2
2 y2

3 y21 y32 y13 ·ψ( y), where
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ψ( y)= (ψ( y)0, ψ( y)1, ψ( y)2, ψ( y)3),
with

ψ( y)0 :=
∏
v∈V

yv and ψ( y) j := y3
j y jk y jl y2

k j y2
l j for 1≤ j ≤ 3.

Therefore,

H(ψ0(x))= H(ψ( y))=NJ(ψ( y))−1
r+s∏
i=1

max
0≤ j≤3

{
|ψ( y)(i)j |

}di
.

A straightforward computation using yv = avCv and (2-13) shows that

J(ψ( y))= C3C−2
1 C−2

2 C−2
3 C−1

21 C−1
32 C−1

13 .

By our construction, ψ( y) satisfies the equation ψ( y)30=ψ( y)1ψ( y)2ψ( y)3. Since
this holds as well for all conjugates, the maximum is always one of |ψ( y)(i)1 |,
|ψ( y)(i)2 |, |ψ( y)(i)3 |. We define

R(B) :=
{

y ∈R

∣∣∣∣ r+s∏
i=1

max
1≤ j≤3

{
|σi (y3

j y jk y jl y2
k j y2

l j )|
}di
≤ B

}
. (2-17)

The results of this section can be summarized as follows.

Proposition 2.2. Let MC be as in (2-15), let R be any system of representatives for
the orbits of (K×)9 under the action � of F7 given by (2-16), and let R(B) be as
in (2-17). Then MC ∩R(B) is finite for all B > 0, C ∈ C7, and

N (B)= 1
ω7

K

∑
C∈C7

|MC ∩R(uC B)|,

where uC :=N(C3C−2
1 C−2

2 C−2
3 C−1

21 C−1
32 C−1

13 ).

A system of representatives for the orbits. We construct a system R of representa-
tives for the orbits of (K×)9 under the action � of F7 given by (2-16).

Lemma 2.3. Let α1, α2, α3 ∈ F and consider the system of equations

ζ ζ−2
k ζ−1

j = α j , for ( j, k) ∈ {(1, 2), (2, 3), (3, 1)}, (2-18)

with variables ζ , ζ j ∈ F.

(i) If α1α2α3 is not a cube in F then this system has no solutions.

(ii) If α1α2α3 = ξ
3 with ξ ∈ F then the solutions are given by

ζ1 = δ, ζ2 = δξ
−1α3, ζ3 = δξα

−1
2 , ζ = δ3ξα−1

2 α3,

for all δ ∈ F.
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Proof. Equations (2-18) imply that

ζ 3ζ−9
j = α jα

−2
k α4

l = α1α2α3α
−3
k α3

l , (2-19)

which proves (i).
Now assume that α1α2α3 = ξ

3 for some ξ ∈F. Then ξ is unique since F is free
Abelian. Direct computations verify that the values given in (ii) are solutions.

Given any solution (ζ, ζ1, ζ2, ζ3) of (2-18), let δ := ζ1. Then (2-19) with j = 1
shows that ζ has the desired form. Similar computations using (2-19) with j = 2
and j = 3 prove that ζ2 and ζ3 are as desired. �

Let H be the subgroup of (K×)6 of all α = (α12, α21, α23, α32, α31, α13) ∈ F6

for which α12α
2
21α23α

2
32α31α

2
13 is a cube in F.

Lemma 2.4. Let R1⊆ (K×)3 be a system of representatives for the orbits of (K×)3

under the action of F by scalar multiplication, and let R2 ⊆ (K×)6 be a system of
representatives for (K×)6/H. Then R := R1×R2 is a system of representatives
for the orbits of (K×)9 under the action � of F7.

Proof. Let y = (yv)v∈V ∈ (K×)9. Then there is a unique α ∈ H such that

(α12 y12, α21 y21, α23 y23, α32 y32, α31 y31, α13 y13) ∈R2.

The elements ζ = (ζ, ζ1, ζ2, ζ3, ζ21, ζ32, ζ13) ∈ F7 with ζ � y ∈ (K×)3 ×R2 are
those satisfying

ζk j = αk j and ζ ζ−2
k ζ−1

lk ζ
−1
j ζ−1

k j = α jk . (2-20)

With α j := α jkαk jαlk , this simplifies to (2-18). Now

α1α2α3 = α12α
2
21α23α

2
32α31α

2
13

is a cube in F, so ζ , ζ1, ζ2, ζ3 are of the form given in Lemma 2.3(ii), for δ ∈
F. There is exactly one δ ∈ F such that the corresponding ζ1, ζ2, ζ3 satisfy
(ζ1 y1, ζ2 y2, ζ3 y3) ∈R1. Hence, there is exactly one ζ ∈ F7 with ζ � y ∈R. �

Lemma 2.5. Let R⊆ K× be a system of representatives for K×/F, and let RF⊆F

be a system of representatives for F/{ξ 3
| ξ ∈ F}. Then

R2 :=
⋃
ρ∈RF

(ρR× R× R× R× R× R)

is a system of representatives for (K×)6/H.

Proof. Clearly,
⋃
ρ∈RF

ρR is a system of representatives for K×/{ξ 3
| ξ ∈ F}.

Let y ∈ (K×)6. For all v ∈ {21, 23, 32, 31, 13}, there is exactly one αv ∈ F with
αv yv ∈ R. Moreover, there is exactly one ξ ∈ F such that

y12(α
2
21α23α

2
32α31α

2
13)
−1ξ 3
∈

⋃
ρ∈RF

ρR.



1460 Christopher Frei

Hence, there is exactly one α12 := (α
2
21α23α

2
32α31α

2
13)
−1ξ 3
∈ F such that

α = (α12, α21, α23, α32, α31, α13) ∈ H and α y ∈R2. �

We choose the system R=R1×R2 as in Lemma 2.4, where R1 is any system of
representatives for the diagonal action of F on (K×)3, and R2 is as in Lemma 2.5.

3. Proof of Theorem 1

This section is a generalization of [Derenthal and Janda 2013, Section 5]. We
reduce Theorem 1 to a central lemma (Lemma 3.1), whose proof will take up the
rest of the article. We assume that K is of degree d ≥ 2. Over Q, one would need
to replace Lemma 5.2 by a slightly more intricate argument to make the sum over
the error terms converge, for which we refer to [Heath-Brown and Moroz 1999].

Möbius inversions. Let C = (C,C1,C2,C3,C21,C32,C13) ∈ C7 be fixed. We
investigate the quantity |MC ∩R(uC B)| from Proposition 2.2. We can write

|MC ∩R(uC B)| =
∑

y∈R(uC B)
(2-15) holds

1.

Möbius inversion for all the coprimality conditions in (2-13) yields

|MC ∩R(uC B)| =
∑

(de)e∈E ′
{0}6=deEOK

(∏
e∈E ′

µ(de)

) ∑
y∈R(uC B)

∀e={v,w}∈E ′:yv∈deCv,yw∈deCw

1, (3-1)

where each de runs over all nonzero ideals of OK and µ is the Möbius function for
nonzero ideals of OK . Lemma 3.1 will imply that the last sum is always finite and
nonzero for at most finitely many (de)e∈E ′ . With av :=

⋂
v∈e∈E ′ deCv, we obtain∑

y∈R(uC B)
∀e={v,w}∈E ′ : yv∈deCv , yw∈deCw

1=
∑

y∈R(uC B)
∀v : yv∈av

1. (3-2)

We estimate this sum by the following lemma. Its proof is central to this article and
will be given in Section 5.

Lemma 3.1. For every v ∈ V , let av be a fractional ideal of K with Nav ≥ c, for
some constant c > 0 depending only on K . With R(B) as in (2-17), we have∑
y∈R(B)
∀v:yv∈av

1= 9q

4·6!

(
2r (2π)s
√
|1K |

)9 R7
K∏

v∈V Nav
B(log B)6

+ O

(
max j {Na j }

1/d∏
j Na j

∏
i 6= j Na

1−2/(3d)
i j

B(log B)5
)
,

for B ≥ e. The implicit O-constant depends on K .
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For any (de)e∈E ′ and v ∈ V , we define rv :=N(∩v∈e∈E ′de),

R1 :=
∏
v∈V

rv, and R2 :=max
j
{r j }
−1/d

∏
j

r j

∏
i 6= j

r1−2/(3d)
i j . (3-3)

We notice that Nav =N(∩v∈e∈E ′deCv)=N(Cv)rv . Recall that we defined C jk :=

CC−2
k C−1

lk C−1
j C−1

k j for jk ∈ {12, 23, 31}, so∏
v∈V

NCv =N(C3C−2
1 C−2

2 C−2
3 C−1

21 C−1
32 C−1

13 )= uC .

Since the C , C j , Ck j are members of the fixed finite set C, their absolute norms are
bounded from below and above by positive constants depending only on K . With
this and Lemma 3.1, we obtain∑

y∈R(uC B)
yv∈av

1= 9q

4·6!

(
2r (2π)s
√
|1K |

)9

R7
K

B
R1
(log B)6+ O

( B
R2
(log B)5

)
,

whenever B ≥ e/uC . Otherwise, the error term dominates the main term. Let

ω :=
∑

(de)e∈E ′
{0}6=deEOK

∏
e∈E ′

µ(de)R−1
1 , ρ :=

∑
(de)e∈E ′
{0}6=deEOK

∏
e∈E ′
|µ(de)|R−1

2 . (3-4)

We will see in Lemma 3.2 that these sums converge under our assumption that
d ≥ 2. Since the sum defining ρ converges, (3-1) and (3-2) yield

|MC ∩R(uC B)| =
9q

4 · 6!

(
2r (2π)s
√
|1K |

)9

R7
KωB(log B)6+ O(B(log B)5).

Computation of the constant. We notice that the above expression for

|MC ∩R(uC B)|

does not depend on C ∈ C7. Therefore, Proposition 2.2 implies

N (B)= 9q

4·6!

(
2r (2π)s
√
|1K |

)9(hK RK
ωK

)7
ωB(log B)6+ O(B(log B)5).

Theorem 1 is an immediate consequence of the following lemma.

Lemma 3.2. Let ω, ρ be as in (3-4), with R1, R2 as in (3-3). If d ≥ 2 then both
sums converge, and

ω =
∏
p

(
1− 1

Np

)7(
1+ 7

Np
+

1
Np2

)
, (3-5)

where the product runs over all nonzero prime ideals p of OK .
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Proof. The proof is a straightforward generalization of the one in [Derenthal
and Janda 2013, Section 5]. An obvious modification of the argument given
there shows that the Euler factor of ρ corresponding to a prime ideal p of OK is
1+O(Np−(6d−5)/(3d)), so the sum defining ρ is convergent whenever d ≥ 2. Since
ω ≤ ρ, the sum defining ω converges as well.

Let A(x) be the polynomial defined [ibid., Section 5], and Ap the Euler factor of
ω corresponding to p. Then we have Ap = A(Np−1), and (3-5) follows from the
investigation of A(x) [ibid., Section 5]. �

This completes our proof of Theorem 1, up to proving Lemma 3.1.

4. Auxiliary results

Let n, M be positive integers and L > 0. By Lip(n,M, L) we denote the set of
all subsets B of Rn for which there exist M maps 8 : [0, 1]n−1

→ Rn satisfying a
Lipschitz condition

|8(v)−8(w)| ≤ L|v−w|

such that B is covered by the union of the images of the maps 8. Here, | · | is the
usual Euclidean norm. (The subsets in Lip(1,M, L) are just those with at most
M elements.) We will use the following lemma to bound the error terms when
estimating a sum by an integral. Part (i) generalizes an argument used in [Lang
1994, Chapter VI, Theorem 2].

Lemma 4.1. Let D, B⊆ Rn be bounded subsets with B ∈ Lip(n,M, L).

(i) Let 3⊆ Rn be a lattice. Then

|{λ ∈3 | (λ+ D)∩B 6=∅}| �3,D M(L + 1)n−1.

(ii) If D, B are compact then {x ∈ Rn
| (x + D)∩B 6=∅} is measurable and

Vol{x ∈ Rn
| (x + D)∩B 6=∅} �D M(L + 1)n−1.

Proof. For x ∈ Rn , we have (x + D)∩B 6=∅ if and only if x ∈B− D. If B and
D are compact, the set B− D is compact as well. This proves measurability of the
set in (ii).

Let 8 : [0, 1]n−1
→ Rn be one of the M maps with Lipschitz constant L whose

images cover B. We split up [0, 1]n−1 into Ln−1
1 subcubes of side length 1/L1,

where L1 := bLc+ 1. Let C be one of those subcubes. Then 8(C) has diameter
at most

√
n− 1L/L1 ≤

√
n− 1, so it is contained in a closed ball Bz(2

√
n− 1) of

radius 2
√

n− 1 centered at some point z ∈ Rn .
Since D is bounded, it is contained in a closed zero-centered ball B0(RD)

of some radius RD. Every point x ∈ Rn with (x + D) ∩ 8(C) 6= ∅ satisfies
x ∈ Bz(2

√
n− 1)− B0(RD)= Bz(2

√
n− 1+ RD).



Counting rational points over number fields on a singular cubic surface 1463

The number of lattice points in such a ball is finite and can be bounded indepen-
dently from z. Therefore,

|{λ ∈3 | (λ+ D)∩8(C) 6=∅}| �3,D 1. (4-1)

Moreover,

Vol{x ∈ Rn
| (x + D)∩8(C) 6=∅} ≤ Vol Bz(2

√
n− 1+ RD)�D 1. (4-2)

Summing (4-1) and (4-2) over all C and 8 yields (i) and (ii). �

Counting lattice points. We will need to count lattice points in certain bounded
subsets of Rn for lattices 3⊆Rn of the form 3=31×· · ·×3r , where each 3i is
a lattice in Rni and n1+· · ·+nr = n. Then we have det(3)= det(31) · · · det(3r ),
and the successive minima (with respect to the unit ball) of3 are just the successive
minima of 31, . . . , 3r . Several authors (for instance [Christensen and Gubler
2008; Masser and Vaaler 2007]) provide counting results where the first successive
minimum is reflected in the error term by making an argument from [Lang 1994,
Chapter VI, Theorem 2] explicit. For our application, we need the error term to
reflect information about all the lattices 3i , which is accomplished with the help of
a theorem by Widmer.

Theorem 4.2 [Widmer 2010, Theorem 5.4]. Let3 be a lattice in Rn with successive
minima (with respect to the unit ball) λ1, . . . , λn . Let B be a bounded set in Rn with
boundary ∂B ∈ Lip(n,M, L). Then B is measurable, and moreover∣∣∣|B∩3| − Vol B

det3

∣∣∣≤ c0(n)M max
0≤k<n

Lk

λ1 · · · λk
.

For k = 0, the expression in the maximum is to be understood as 1. Furthermore,
one can choose c0(n)= n3n2/2.

Let λi1 ≤ · · · ≤ λini be the successive minima of 3i , and assume that the 3i are
ordered in such a way that λ11 ≤ λ21 ≤ · · · ≤ λr1 holds.

Corollary 4.3. Let 3 and 3i be as above, and let B⊆ Rn be a bounded set with
boundary ∂B ∈ Lip(n,M, L). Then B is measurable and∣∣∣|B∩3| − Vol B

det3

∣∣∣≤ c0(n)M
r−1∏
i=1

( L
λi1
+ 1

)ni
( L
λr1
+ 1

)nr−1
.

Proof. We use Theorem 4.2. Let λ1 ≤ · · · ≤ λn be the successive minima of 3, that
is, the λi j in correct order. Clearly,

max
0≤k<n

Lk

λ1 · · · λk
≤

n−1∏
j=1

(
L
λ j
+ 1

)
≤

r∏
i=1

(
L
λi1
+ 1

)ni
/(

L
λi01
+ 1

)
,
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where i0 is chosen such that λi0ni0
= λn . The last expression is at most

r−1∏
i=1

(
L
λi1
+ 1

)ni
(

L
λr1
+ 1

)nr−1

. �

Lemma 4.4. Let 3 and 3i be as above, and let B ⊆ Rn be contained in a zero-
centered ball of radius R. Assume, moreover, that ∂B ∈ Lip(n,M, L), and that the
following property holds for all x ∈B:

If we write x = (x1, . . . , xr ) with xi ∈ Rni then xi 6= 0 for all i . (4-3)

Then B is measurable and, for all T ≥ 0, we have∣∣∣∣|T B∩3| −
T n Vol B

det3

∣∣∣∣�n,M,R,L

r−1∏
i=1

(
T
λi1

)ni
(

T
λr1

)nr−1

.

Proof. By Theorem 4.2, B is measurable. We start with the case where T R < λr1.
Suppose that a = (a1, . . . , ar ) ∈ T B ∩ 3. Then ar 6= 0 by (4-3). Therefore,
|a| ≥ |ar | ≥ λr1 > T R, so a /∈ T B, a contradiction. Hence, |T B∩3| = 0. Denote
by V1 the volume of a ball of radius 1 in Rn . Then Vol B≤ RnV1. We denote the
successive minima of 3 again by λ1, . . . , λn . By Minkowski’s second theorem
we have

T n Vol B
det3

≤
V12n(RT )n

λ1 · · · λnV1
≤ 2n Rn−1

r−1∏
i=1

(
T
λi1

)ni
(

T
λr1

)nr−1

.

Now assume T R≥λr1. Clearly, Vol(T B)=T n Vol B and ∂(T B)∈Lip(n,M, T L).
To finish the proof, we use Corollary 4.3 and observe that

r−1∏
i=1

(
T L
λi1
+ 1

)ni
(

T L
λr1
+ 1

)nr−1

≤

r−1∏
i=1

(
T (L+R)
λi1

)ni
(

T (L+R)
λr1

)nr−1

= (L + R)n−1
r−1∏
i=1

(
T
λi1

)ni
(

T
λr1

)nr−1

. �

The basic sets. Here, we describe the sets B to which Lemma 4.4 will be applied.
These sets were introduced in [Schanuel 1979] and, in a more general context, in
[Masser and Vaaler 2007]. Our notation is similar to that of the latter. When talking
about lattices, volumes, etc., we identify C with R2.

Let 6 be the hyperplane in Rr+s where x1+ · · · + xr+s = 0. It is well known
that the map l : K×→ Rr+s defined by l(α)= (d1 log |α(1)|, . . . , dr+s log |α(r+s)

|)

induces a group homomorphism of O×K onto a lattice in 6, with kernel µK . In
particular, l induces a group isomorphism from F to l(O×K ). Let F be a fundamental
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parallelotope for this lattice, and let δ := (d1, . . . , dr+s) ∈ Rr+s . We define the
vector sums

F(∞) := F +Rδ and F(T ) := F + (−∞, log T ] δ for T > 0.

Then F(∞) is a system of representatives for the orbits of the additive action of
l(F)= l(O×K ) on Rr+s . Let Sn

F (T ) be the set of all

(z1,1, . . . , z1,n, . . . , zr+s,1, . . . , zr+s,n) ∈ (R
n
\ {0})r × (Cn

\ {0})s

such that (
di log max

1≤ j≤n
{|zi, j |}

)r+s
i=1 ∈ F(T ).

Since F ⊆6 and d1+ · · ·+ dr+s = d , this is equivalent to

(di log max
1≤ j≤n

{|zi, j |})
r+s
i=1 ∈ F(∞) and

r+s∏
i=1

max
1≤ j≤n

{|zi, j |}
di ≤ T d .

The set Sn
F (∞) is defined similarly. Here are some basic properties of Sn

F (T ):

(i) Sn
F (T )= T Sn

F (1) is homogeneously expanding.

(ii) Sn
F (1) is bounded.

(iii) ∂Sn
F (1) ∈ Lip(nd,Mn, Ln) for some Mn , Ln .

(iv) Sn
F (1) is measurable and Vol Sn

F (1)= nq2nrπns RK .

Properties (i), (ii) follow directly from the definition, and (iii), (iv) are immediate
consequences of Lemmas 3 and 4 of [Masser and Vaaler 2007]. Strictly speaking,
the case n = 1 is not covered in that paper, but the proofs remain correct without
change. We need a slightly modified version: Define

Sn∗
F (T ) := Sn

F (T )∩ ((R
×)nr
× (C×)ns). (4-4)

Then (i)–(iv) hold as well for Sn∗
F (T ). This is clear for (i), (ii), (iv). For (iii), let

X := (Rnr
× Cns) \ ((R×)nr

× (C×)ns). Then ∂Sn∗
F (1) ⊆ ∂Sn

F (1) ∪ (S
n
F (1) ∩ X).

Since Sn
F (1) is bounded and X is a union of finitely many proper subspaces, we

have (Sn
F (1)∩ X) ∈ Lip(nd,M ′n, L ′n), for suitably chosen M ′n , L ′n , so

∂Sn∗
F (1) ∈ Lip(nd,Mn +M ′n,max{Ln, L ′n}).

5. Proof of Lemma 3.1

Whenever we use Vinogradov’s� notation, the implicit constant may depend on K .
Let us start by summing over y1, y2, y3, for fixed y jk , yk j . Write

V ′ := V \ {1, 2, 3} = {12, 21, 23, 32, 31, 13}.
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For any choice of yv , v ∈ V ′, we define ξ j := y jk y jl y2
k j y2

l j . The height condition in
(2-17) implies that

|N (y j )
3 N (ξ j )| =

r+s∏
i=1

|σi (y3
j ξ j )|

di ≤ B.

For y j ∈ a j , we obtain |N (ξ j )| ≤ B|N (y j )|
−3
≤ BNa−3

j . By our choice of R in
Lemma 2.4, we can write the sum in Lemma 3.1 as∑

y∈R(B)
yv∈av

1=
∑

(yv)v∈V ′∈R2
yv∈av

∀ j :|N (ξ j )|≤BNa−3
j

∑
(y1,y2,y3)∈R1

y j∈a j∏r+s
i=1 max

j
{|σi (y3

j ξ j )|}
di≤B

1. (5-1)

The first summation. Here, we handle the inner sum in (5-1). The necessary tool
is provided in Lemma 5.2.

Lemma 5.1. Let a be a fractional ideal of K , and let τ be the linear automorphism
of Rr

×Cs (regarded as Rd) given by τ(z1, . . . , zr+s)= (t1z1, . . . , tr+szr+s), with
t1, . . . , tr+s > 0. Let σ : K → Rr

×Cs be the standard embedding. Then τ ◦ σ(a)
is a lattice in Rr

×Cs of determinant

det(τ ◦ σ(a))= td1
1 · · · t

dr+s
r+s · 2

−s
·N(a j ) ·

√
|1K |

and first successive minimum λ≥ (td1
1 · · · t

dr+s
r+s ·Na)1/d .

Proof. For d = 1, the lemma is trivial, so we assume d ≥ 2. Classically, σ(a) is a
lattice in Rr

×Cs of determinant 2−sN(a j )
√
|1K |. Since τ is a linear automorphism

of determinant td1
1 · · · t

dr+s
r+s , it follows immediately that τ ◦σ(a) is a lattice with the

correct determinant.
For λ, we slightly generalize the argument in [Masser and Vaaler 2007, Lemma

5] (see also [Widmer 2010, Lemma 9.7]). There is an α ∈ a with λ = |τ ◦ σ(α)|.
By the inequality of weighted arithmetic and geometric means, we have

λ2
=

r+s∑
i=1

|tiα(i)|2 ≥ 1
2

r+s∑
i=1

di |tiα(i)|2 ≥
d
2

( r+s∏
i=1

|tiα(i)|di

)2
d
≥
(
td1
1 · · · t

dr+s
r+s |N (α)|

) 2
d .

The lemma follows upon noticing that |N (α)| ≥Na. �

Lemma 5.2. Given constants Ci j > 0, for i ∈ {1, . . . , r + s} and j ∈ {1, 2, 3}, let

C j := Cd1
1 j · · ·C

dr+s
r+s, j .

Let a1, a2, a3 6= {0} be fractional ideals of K , and R1 a system of representatives
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for the orbits of (K×)3 under the action of F by scalar multiplication. Define

M1(T ) := (a1× a2× a3)∩

{
(y1, y2, y3) ∈R1

∣∣∣∣ r+s∏
i=1

max
1≤ j≤3

{Ci j |y
(i)
j |}

di ≤ T d
}
.

Then M1(T ) is finite and

|M1(T )| =
3q23r (2π)3s RK

(
√
|1k |)3C1C2C3Na1Na2Na3

T 3d
+ O

(
T 3d−1 max j {C jNa j }

1/d

C1C2C3Na1Na2Na3

)
for all T > 0. The implicit O-constant depends only on K .

Proof. We notice that |M1(T )| does not depend on the choice of R1, since both
a1× a2× a3 and the height condition are invariant under scalar multiplication of
(y1, y2, y3) by units. Hence, it is enough to prove the lemma with a specific choice
of R1, which we construct below.

Let σ : K 3
→ R3r

×C3s be the embedding given by σ( y) = (σi ( y))r+s
i=1 . For

i ∈ {1, . . . , r+ s}, let φi be the linear automorphism of R3 (if i ≤ r ) or C3 (if i > r )
given by φi (z1, z2, z3)= (Ci1z1,Ci2z2,Ci3z3), and let φ : R3r

×C3s
→ R3r

×C3s

be the automorphism obtained by applying the φi componentwise.
With S3∗

F (T ) as in (4-4), we define R1 as the set of all y ∈ (K×)3 such that
φ ◦σ( y) ∈ S3∗

F (∞). Then R1 is a system of representatives for the orbits of (K×)3

under the action of F by scalar multiplication. Indeed, for any y ∈ (K×)3 and
ζ ∈ F, we have

(di log max
1≤ j≤3

{|Ci jσi (ζ y j )|})
r+s
i=1 = (di log max

1≤ j≤3
{|Ci jσi (y j )|})

r+s
i=1 + l(ζ ),

and F(∞) is a system of representatives for the orbits of the additive action of l(F)
on Rr+s .

Let 3 := φ ◦σ(a1×a2×a3). Then 3 is a lattice in R3r
×C3s , and φ ◦σ induces

a one-to-one correspondence between M1(T ) and 3∩ S3∗
F (T ). Therefore,

|M1(T )| = |3∩ S3∗
F (T )|. (5-2)

Since S3∗
F (T ) is bounded, M1(T ) is finite. To simplify the notation, we change the

order of coordinates by

(z11, z12, z13, . . . , zr+s,1, zr+s,2, zr+s,3) 7→ (z11, . . . , zr+s,1, . . . , z13, . . . , zr+s,3).

This way, R3r
×C3s becomes (Rr

×Cs)3, and 3 becomes

3= τ1 ◦ σ(a1)× τ2 ◦ σ(a2)× τ3 ◦ σ(a3),

where σ : K →Rr
×Cs is the standard embedding given by σ(y)= (σi (y))ri=1 and

τ j (z1, . . . , zr+s) := (C1 j z1, . . . ,Cr+s, j zr+s).
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Each 3 j := τ j ◦ σ(a j ) is a lattice in Rr
×Cs

= Rd . Let λ j be the first successive
minimum of 3 j . By Lemma 5.1, we have

det3= det31 · det32 · det33 = 2−3s(
√
|1K |)

3C1C2C3Na1Na2Na3

and λ j ≥ (C jNa j )
1/d . The lemma now follows from (5-2), Lemma 4.4 and the

properties of the basic sets discussed on pages 1464–1465. �

The inner sum in (5-1) is exactly |M1(T )| in Lemma 5.2, with

Ci j := |σi (ξ j )|
1/3, C j := |N (ξ j )|

1/3 and T := B1/(3d).

Observe that C1C2C3 = |N (ξ1ξ2ξ3)|
1/3
=
∏
v∈V ′ |N (yv)|. We define

M(B, (av)v) :=
∑

(yv)v∈V ′∈R2
yv∈av

∀ j :|N (ξ j )|≤BNa−3
j

1∏
v∈V ′ |N (yv)|

, (5-3)

R(B, (av)v) :=
∑

(yv)v∈V ′∈R2
yv∈av

∀ j :|N (ξ j )|≤BNa−3
j

max j {|N (ξ j )|}
1/(3d)∏

v∈V ′ |N (yv)|
. (5-4)

Then (5-1) and Lemma 5.2 imply∑
y∈R(B)
yv∈av

1=
3q23r (2π)3s RK B

(
√
|1K |)3Na1Na2Na3

M(B, (av)v)

+ O
(

max j {Na j }
1/d

Na1Na2Na3
B1−1/(3d)R(B, (av)v)

)
. (5-5)

Recall that the Nav are bounded from below by a positive constant c depending
only on K . This implies, for example,

N(a jka jla
2
k ja

2
l j )

1/(3d)
�

∏
v∈V ′

Na2/(3d)
v , (5-6)

N(a3
ja jka jla

2
k ja

2
l j )
−1
≤ c2, (5-7)

for some constant c2 ≥ 1 depending only on K .

The error term. With R2 as in Lemma 2.5, the term R(B, (av)v) has the form

R(B, (av)v)=
∑
ρ∈RF

∑
∀v 6=12 : yv∈R∩av

y12∈ρR∩a12

∀ j :|N (ξ j )|≤BNa−3
j

max j {|N (ξ j )|}
1/(3d)∏

v∈V ′ |N (yv)|
.
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Both R and ρR are systems of representatives for K×/F, so they contain exactly
ωK generators for every nonzero principal fractional ideal of K . Let Hv be the
principal fractional ideal Hv = yvOK . The norm condition and the summand in
the inner sum depend only on (Hv)v∈V ′ . Therefore, the sum does not depend on ρ.
Since |RF| = 3q

� 1, we obtain

R(B, (av)v)�
∑

{0}6=Hv∈PK , v∈V ′
Hv⊆av

∀ j :N(H jk H jl H2
k j H2

l j )≤BNa−3
j

max j {N(H jk H jl H 2
k j H 2

l j )}
1/(3d)∏

v∈V ′ N(Hv)
.

We replace Hv by Hva−1
v EOK and use (5-6), (5-7) to bound this sum by

�
1∏

v∈V ′
N(av)1−2/(3d)

∑
{0}6=HvEOK , v∈V ′

Hv∈[av]−1

∀ j :N(H jk H jl H2
k j H2

l j )≤c2 B

max j {N(H jk H jl H 2
k j H 2

l j )}
1/(3d)∏

v∈V ′ N(Hv)
.

Let us denote the above sum by R1(B, (av)v). What follows is a rather straight-
forward generalization of arguments used by Heath-Brown and Moroz [1999] and
Derenthal and Janda [2013]. By symmetry, we may assume that the maximum in
the summand is taken for j = 1. This allows us to bound R1(B, (av)v) by

�

∑
{0}6=HvEOK , v∈V ′

∀ j :N(H jk H jl H2
k j H2

l j )≤c2 B

1
N(H12 H13)1−1/(3d)N(H21 H31)1−2/(3d)N(H23 H32)

�

∑
{0}6=Hi jEOK , i 6=1

NHi j≤c2 B

1
N(H21 H31)1−2/(3d)N(H23 H32)

∑
{0}6=UEOK
NU≤u

d(U )
NU 1−1/(3d) ,

where u := c2 BN(H21 H31)
−2 and d is the divisor function for nonzero ideals.

Lemma 5.3. For T ≥ 1, we have∑
{0}6=aEOK
Na≤T

Naα �

{
T α+1 if − 1< α ≤ 0,
max{1, log T } if α =−1.

Proof. This is a straightforward generalization of [Derenthal and Janda 2013,
Lemma 4]. The proof uses Abel’s summation formula and the well known fact that

|{{0} 6= aEOK |Na≤ T }| � T . �



1470 Christopher Frei

In the following computation, the sums run over nonzero ideals of OK . Using
Lemma 5.3, we obtain∑

NU≤u

d(U )
NU 1−1/(3d) =

∑
NU≤u

∑
V |U

NU−1+1/(3d)

=

∑
NV≤u

NV−1+1/(3d)
∑

NU≤u/NV

NU−1+1/(3d)

�

∑
NV≤c2 B

NV−1+1/(3d)(u/NV )1/(3d)
� u1/(3d) log B.

Therefore,

R1(B, (av)v)� B1/(3d) log B
∑

{0}6=Hi jEOK ,i 6=1
NHi j≤c2 B

1
N(H21 H31 H23 H32)

� B1/(3d)(log B)5.

Having estimated R1(B, (av)v) and thus R(B, (av)v), we obtain from (5-5):∑
y∈R(B)
yv∈av

1=
3q23r (2π)3s RK B

(
√
|1K |)3Na1Na2Na3

M(B, (av)v)

+ O

(
max j {Na j }

1/d∏
j Na j

∏
i 6= j Na

1−2/(3d)
i j

B(log B)5
)
. (5-8)

The main term. Just as before, we have

M(B, (av)v)=
∑
ρ∈RF

∑
∀v 6=12 : yv∈R∩av

y12∈ρR∩a12

∀ j :|N (ξ j )|≤BNa−3
j

1∏
v∈V ′ |N (yv)|

.

For all v ∈ V ′, let bv ∈ C with [bv] = [av], and tv ∈ K× with tvav = bv . Moreover,
we define b j :=N(a3

ja jka jla
2
k ja

2
l j )
−1N(b jkb jlb

2
k jb

2
l j ). Then (5-7) implies that

b j ≤ c3 for all j ∈ {1, 2, 3}, (5-9)

with a constant c3 ≥ 1 depending only on K . We replace yv by tv yv and obtain

M(B, (av)v)=
( ∏
v∈V ′

Nbv
Nav

) ∑
ρ∈RF

∑
∀v 6=12:yv∈tvR∩bv

y12∈tvρR∩b12
∀ j :|N (ξ j )|≤b j B

1∏
v∈V ′ |N (yv)|

.
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Again, the inner sum does not depend on the sets of representatives tvR, tvρR
for K×/F. Thus,

M(B, (av)v)= 3q
(∏
v∈V ′

Nbv
Nav

) ∑
yv∈R∩bv,v∈V ′
∀ j :|N (ξ j )|≤b j B

1∏
v∈V ′ |N (yv)|

, (5-10)

where R is any system of representatives for K×/F. Let σ : K → Rr
×Cs be the

standard embedding, and let S1
F (T ) be defined as on page 1465. We choose R to

be the set of all y ∈ K× with σ(y) ∈ S1
F (∞). This is indeed a set of representatives

for K×/F: For any y ∈ K×, ζ ∈ F, we have

(di log |σi (ζ y)|)r+s
i=1 = (di log |σi (y)|)r+s

i=1 + l(ζ ),

and F(∞) is a system of representatives for the orbits of the additive action of l(F)
on Rr+s . We will first consider the sum

M1(B, (bv)v) :=
∑

yv∈R∩bv,v∈V ′
∀ j :|N (ξ j )|≤B

1∏
v∈V ′ |N (yv)|

.

For any z ∈ Rr
×Cs , let N (z) := |z1|

d1 · · · |zr+s |
dr+s . We define M(B) as the set of

all (zv)v∈V ′ ∈ (R
r
×Cs)6 such that

for all v ∈ V ′, we have zv ∈ S1
F (∞) and N (zv)≥ 1, and

for all j, we have N (z jk)N (z jl)N (zk j )
2 N (zl j )

2
≤ B.

Then M(B) is bounded for all B. Let 3 be the lattice in (Rr
×Cs)6 defined by

3 :=
∏
v∈V ′

σ(bv).

By the componentwise extension of σ to K 6, we obtain

M1(B, (bv)v)=
∑

(zv)v∈3∩M(B)

1∏
v∈V ′ N (zv)

. (5-11)

We identify C with R2 and estimate this sum by an integral. Let

I (B) :=
( 2s
√
|1K |

)6 1∏
v∈V ′ Nbv

∫
M(B)

∏
v∈V ′

d zv
N (zv)

.

Lemma 5.4. We have∑
(zv)v∈3∩M(B)

1∏
v∈V ′ N (zv)

= I (B)+ O((log B)5)

for B ≥ e. The implicit O-constant depends on K .
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Proof. This is a generalization of [Derenthal and Janda 2013, Lemma 5]. Let
us fix some notation. For v ∈ V ′, let Fv be a fundamental parallelotope for the
lattice σ(bv) ⊆ Rr

× Cs
= Rd , and let Rv be the minimal d-dimensional inter-

val containing Fv. We denote the side lengths of Rv by lv,1, . . . , lv,d . For any
z = (z1, . . . , zd) ∈ Rd satisfying

|zi | ≥ 1+ lv,i for all i ∈ {1, . . . , d}, (5-12)

let Rv(z) be the (unique) translate of Rv such that z is the corner of Rv(z) at utmost
distance from the origin, and let Fv(z) be the (unique) translate of Fv contained in
Rv(z). Similarly, for any z with

|zi | ≥ 1 for all i ∈ {1, . . . , d}, (5-13)

let R′v(z) be the (unique) translate of Rv such that z is the corner of R′v(z) closest
to the origin, and let F ′v(z) be the (unique) translate of Fv contained in R′v(z).
Consistently with the above definition of N (z) for z ∈ Rr

×Cs , we let

N (z) := |z1 · · · zr (z2
r+1+ z2

r+2) · · · (z
2
d−1+ z2

d)|.

Since N (z)≥ N ( y) for all y ∈ Fv(z), we have

1
N (z) ≤

1
Vol Fv(z)

∫
Fv(z)

d y
N ( y) =

2s
√
|1K |Nbv

∫
Fv(z)

d y
N ( y) . (5-14)

Similarly,

1
N (z) ≥

1
Vol F ′v(z)

∫
F ′v(z)

d y
N ( y) =

2s
√
|1K |Nbv

∫
F ′v(z)

d y
N ( y) . (5-15)

Clearly, if z 6= z′ ∈ σ(bv) with (5-12) then Fv(z)∩Fv(z′)=∅. Let us first prove that

∑
(zv)v∈3∩M(B)

1∏
v∈V ′ N (zv)

≤ I (B)+ O((log B)5). (5-16)

To this end, we define

E(B) := {(zv)v ∈ M(B) | all zv satisfy (5-12) and Fv(zv)⊆ S1
F (∞)},

and G(B) :=M(B)\E(B). Keep in mind that E(B) and G(B) depend on (bv)v∈V ′ .
For any (zv)v ∈3∩ E(B), we have

∏
v Fv(zv)⊆ M(B). Therefore,∑

(zv)v∈3∩E(B)

1∏
v∈V ′ N (zv)

≤

∑
(zv)v∈3∩E(B)

∏
v∈V ′

2s
√
|1K |Nbv

∫
Fv(zv)

d y
N ( y)

≤

(
2s
√
|1K |

)6 1∏
v∈V ′ Nbv

∑
(zv)v∈3∩E(B)

∏
v∈V ′

∫
Fv(zv)

d zv
N (zv)

≤ I (B).
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We need to prove that ∑
(zv)v∈3∩G(B)

1∏
v∈V ′ N (zv)

= O((log B)5). (5-17)

For every (zv)v ∈3∩G(B), there is at least one w ∈ V ′ such that either

zw does not satisfy (5-12) (5-18)

or

zw satisfies (5-12) and Fw(zw) 6⊆ S1
F (∞). (5-19)

Therefore, we have∑
(zv)v∈3∩G(B)

1∏
v∈V ′ N (zv)

≤

∑
w∈V ′

∑
(zv)v∈3∩S1

F (∞)
6

N (zv)≤B
(5-18) or (5-19)

1∏
v∈V ′ N (zv)

=

∑
w∈V ′

( ∏
v 6=w

∑
z∈σ(bv)∩S1

F (∞)

N (z)≤B

1
N (z)

) ∑
z∈σ(bw)∩S1

F (∞)

N (z)≤B
(5-18) or (5-19) for z

1
N (z) . (5-20)

Now ∑
z∈σ(bv)∩S1

F (∞)

N (z)≤B

1
N (z) = ωK

∑
{0}6=H∈PK

H⊆bv
NH≤B

1
NH
≤

∑
{0}6=HEOK
NH≤B

1
NH
� log B, (5-21)

by Lemma 5.3. Moreover, we write

∑
z∈σ(bw)∩S1

F (∞)

N (z)≤B
(5-18) or (5-19) for z

1
N (z) =

B∑
n=1

an ·
1
n
, (5-22)

with an :=
∣∣{z ∈ σ(bw) ∩ S1

F (∞) | N (z) = n, (5-18) or (5-19) holds for z}
∣∣. We

will apply the Abel sum formula, so we need to understand

A(T ) :=
∑
n≤T

an =
∣∣{z ∈ σ(bw)∩ S1

F (T
1/d) | (5-18) or (5-19) holds for z}

∣∣.
Let

H := {z ∈ Rd
| z1 · · · zd = 0}, (5-23)
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and let Dw be the d-dimensional interval

Dw := [−(lw,1+ 1), lw,1+ 1]× · · · × [−(lw,d + 1), lw,d + 1] ⊆ Rd . (5-24)

Then any z counted by A(T ) satisfies (z + Dw) ∩ H 6= ∅ (if (5-18) holds) or
z + Dw 6⊆ S1

F (T
1/d) (if (5-19) holds). Therefore, any such z is contained in

A1(T )∪ A2(T ), where

A1(T ) : = {z ∈ σ(bw) | (z+ Dw)∩ ∂S1
F (T

1/d) 6=∅}

⊇ {z ∈ σ(bw)∩ S1
F (T

1/d) | (z+ Dw) 6⊆ S1
F (T

1/d)},

A2(T ) : = {z ∈ σ(bw) | (z+ Dw)∩ (S1
F (T

1/d)∩ H) 6=∅}

⊇ {z ∈ σ(bw)∩ S1
F (T

1/d) | (z+ Dw)⊆ S1
F (T

1/d), (zw + Dw)∩ H 6=∅}.

Now ∂S1
F (T

1/d) = T 1/d∂S1
F (1) ∈ Lip(d,M1, T 1/d L1). We recall that bv ∈ C, so

Lemma 4.1(i) implies that

|A1(T )| � M1(L1T 1/d
+ 1)d−1

� T (d−1)/d for all T ≥ 1.

Moreover, S1
F (T

1/d)∩H=T 1/d(S1
F (1)∩H), and clearly S1

F (1)∩H∈Lip(d, M̃1, L̃1)

for some M̃1 and L̃1. By Lemma 4.1(i),

|A2(T )| � M̃1(L̃1T 1/d
+ 1)d−1

� T (d−1)/d for all T ≥ 1.

Therefore, A(T )� T (d−1)/d for T ≥ 1. The Abel sum formula yields

B∑
n=1

an ·
1
n
= A(B)/B+

∫ B

t=1
A(t)/t2 dt � B−1/d

+

∫ B

t=1
t−(1+1/d)dt � 1.

With (5-20), (5-21), (5-22), we see that (5-17) holds, which finishes the proof of
(5-16). Let us prove the other inequality, that is

I (B)≤
∑

(zv)v∈3∩M(B)

1∏
v∈V ′ N (zv)

+ O((log B)5). (5-25)

For every v ∈ V ′ and every z ∈Rd satisfying (5-12), there is a unique λv(z)∈ σ(bv)
with (5-13) such that z ∈ F ′v(λv(z)). In a similar way as above, we define

E ′(B) := {(zv)v ∈ M(B) | all zv satisfy (5-12) and λv(zv) ∈ S1
F (∞)},

and G ′(B) := M(B) \ E ′(B). Both E ′(B) and G ′(B) are clearly measurable. For
any (zv)v in E ′(B), the point (λv(zv))v is the unique element of 3∩M(B) with



Counting rational points over number fields on a singular cubic surface 1475

zv ∈ F ′v(λv(zv)) for all v ∈ V ′. With this and (5-15), we obtain

26s

(
√
|1K |)6

∏
v∈V ′

Nbv

∫
E ′(B)

∏
v∈V ′

d zv
N (zv)

≤

∑
(λv)v∈
3∩M(B)

∏
v∈V ′

2s
√
|1K |Nbv

∫
F ′v(λv)

d z
N (z)

≤

∑
(λv)v∈3∩M(B)

1∏
v∈V ′ N (λv)

. (5-26)

We need to prove that(
2s
√
|1K |

)6 1∏
v∈V ′ Nbv

∫
G ′(B)

∏
v∈V ′

d zv
N (zv)

= O((log B)5). (5-27)

For every (zv)v ∈ G ′(B), there is some w ∈ V ′ such that either

zw does not satisfy (5-12) (5-28)

or

zw satisfies (5-12) and λw(zw) /∈ S1
F (∞). (5-29)

Similarly to (5-20), we obtain∫
G ′(B)

∏
v∈V ′

d zv
N (zv)

≤

∑
w∈V ′

(∏
v 6=w

∫
z∈S1

F (∞)

1≤N (z)≤B

d z
N (z)

) ∫
z∈S1

F (∞)

1≤N (z)≤B
(5-28) or (5-29) for z

d z
N (z) . (5-30)

We denote the Lebesgue measure on R, Rd by m1, md . The restriction of N to
S1

F (∞) defines a measurable function N1 : S1
F (∞)→ R. Since

(md ◦ N−1
1 )((a, b])= Vol S1

F (b
1/d)−Vol S1

F (a
1/d)= (b− a)Vol S1

F (1)

for all 0< a ≤ b ∈ R, we obtain md ◦ N−1
1 = Vol S1

F (1)m1 on R>0. Therefore,∫
z∈S1

F (∞)

1≤N (z)≤B

d z
N (z) =

∫
N−1

1 ([1,B])

dmd
N1(z)

=

∫
[1,B]

1
t

d(md ◦N−1
1 )=Vol S1

F (1) log B. (5-31)

Let A(T ) := {z ∈ S1
F (∞) | 1 ≤ N (z) ≤ T , (5-28) or (5-29) holds for z}. Then

A(T ) is measurable for all T and the restriction of N to A(B) defines a mea-
surable function N2 : A(B)→ [1, B]. For any E ⊆ [1, B] with m1(E) = 0, we
have N−1

2 (E) ⊆ N−1
1 (E) and (md ◦ N−1

1 )(E) = 0. Thus, md ◦ N−1
2 is absolutely

continuous. With the distribution function F(T ) := (md ◦ N−1
2 )([1, T ]), we obtain∫

A(B)

d z
N (z) =

∫
N−1

2 ([1,B])

dmd
N2(z)

=

∫
[1,B]

1
t

d(md ◦ N−1
2 )=

∫ B

1

1
t

d F(t). (5-32)
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Integration by parts for the Stieltjes integral on the right-hand side suggests that we
need to find a suitable bound for F(T ). Clearly,

F(T )= Vol(N−1
2 ([1, T ]))= Vol A(T ).

With H , Dw as in (5-23), (5-24), let

A1(T ) := {z ∈ Rd
| (z+ Dw)∩ ∂S1

F (T
1/d) 6=∅},

A2(T ) := {z ∈ Rd
| (z+ Dw)∩ (S1

F (T 1/d)∩ H) 6=∅}.

A similar argument to before shows that A(T )⊆ A1(T )∪ A2(T ). We already know
that ∂S1

F (T
1/d) ∈ Lip(d,M1, T 1/d L1) and S1

F (T
1/d) ∩ H ∈ Lip(n, M̃1, T 1/d L̃1).

The same holds of course for the closure. By Lemma 4.1(ii) we obtain

Vol A1(T )� T (d−1)/d , Vol A2(T )� T (d−1)/d for T ≥ 1,

and thus F(T )� T (d−1)/d for T ≥ 1. Integration by parts gives∫ B

1

1
t

d F(t)= F(B)/B− F(1)−
∫ B

1
F d 1

t
� B−1/d

+

∫ B

1
t−(1+1/d) dt � 1.

With (5-30), (5-31) and (5-32), we obtain (5-27). Together with (5-26) this gives
(5-25). �

Lemma 5.5. We have

I (B)= 1
4·6!

(
2r (2π)s RK
√
|1K |

)6 1∏
v∈V ′ Nbv

(log B)6.

Proof. Let mn denote the Lebesgue measure on Rn . We define the measur-
able function f : (S1

F (∞))
6
→ R6 by f ((zv)v∈V ′) = (N (zv))v∈V ′ . For any cell

E :=
∏
v∈V ′(av, bv], with 0< av ≤ bv, we have

(m6d ◦ f −1)(E)=
∏
v∈V ′

(Vol S1
F (b

1/d
v )−Vol S1

F (a
1/d
v ))= (Vol S1

F (1))
6m6(E).

Thus, m6d ◦ f −1
= (Vol S1

F (1))
6m6 on (R≥0)6. Let

MQ(B) := {(tv)v∈V ′ ∈ R6
| tv ≥ 1 for all v and t jk t jl t2

k j t
2
l j ≤ B for all j}.

Then∫
M(B)

∏
v∈V ′

d zv
N (zv)

=

∫
f −1(MQ(B))

∏
v∈V ′

1
f (z)v

dm6d =

∫
MQ(B)

∏
v∈V ′

1
tv

d(m6d ◦ f −1)

= (Vol S1
F (1))

6
∫

MQ(B)

∏
v∈V ′

1
tv

dm6 =
(Vol S1

F (1))
6

4·6!
(log B)6.

The last integral is computed at the end of [Heath-Brown and Moroz 1999]. �
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We define

C0(K ) :=
1

4·6!

(
2r (2π)s RK
√
|1K |

)6

and C(K ) := 3qC0(K ).

Then (5-11) and the previous two lemmata imply that

M1(B, (bv)v)=
C0(K )∏
v∈V ′ Nbv

(log B)6+ O(log B)5.

Keep in mind that bv ∈ C for all v ∈ V ′. With (5-9), (5-10), we obtain

M(B, (av)v)≤
C(K )∏
v∈V ′ Nav

(log B)6+ O
(

1∏
v∈V ′ Nav

(log B)5
)
.

Let R := max j {Na j }
1/d ∏

v∈V ′ Na
2/(3d)
v . Then R ≥ c4 > 0 for some constant c4

depending only on K . This implies in particular that log R � R. Moreover, we
have 1/(c5 R3d)≤ b j for some constant c5 ≥ 1 depending only on K . Therefore,

M(B, (av)v)≥ 3q
( ∏
v∈V ′

Nbv
Nav

)
M1(B/(c5 R3d), (bv)v).

Whenever B ≥ ec5 R3d , we obtain

M(B, (av)v)≥
C(K )∏
v∈V ′ Nav

log(B/(c5 R3d))6+O
(

1∏
v∈V ′ Nav

log(B/(c5 R3d))5
)

=
C(K )∏
v∈V ′ Nav

(log B)6+ O
(

R∏
v∈V ′ Nav

(log B)5
)
.

This result holds as well if e ≤ B < ec5 R3d , since then the error term dominates
the main term. Therefore,

M(B, (av)v)=
C(K )∏
v∈V ′ Nav

(log B)6+ O
(

R∏
v∈V ′ Nav

(log B)5
)
,

and Lemma 3.1 follows from (5-8).
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