
Algebra &
Number
Theory

msp

Volume 7

2013
No. 7

On abstract representations of the groups of
rational points of algebraic groups and their

deformations
Igor A. Rapinchuk



msp
ALGEBRA AND NUMBER THEORY 7:7 (2013)

dx.doi.org/10.2140/ant.2013.7.1685

On abstract representations of the groups
of rational points of algebraic groups and
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In this paper, we continue our study, begun in an earlier paper, of abstract
representations of elementary subgroups of Chevalley groups of rank ≥ 2. First,
we extend the methods to analyze representations of elementary groups over
arbitrary associative rings and, as a consequence, prove the conjecture of Borel
and Tits on abstract homomorphisms of the groups of rational points of algebraic
groups for groups of the form SLn,D , where D is a finite-dimensional central
division algebra over a field of characteristic 0. Second, we apply the previous
results to study deformations of representations of elementary subgroups of
universal Chevalley groups of rank ≥ 2 over finitely generated commutative rings.

1. Introduction and statement of the main results

The goal of this paper is twofold. First, we extend the methods and results developed
in our paper [Rapinchuk 2011] to analyze abstract representations of Chevalley
groups over commutative rings to elementary groups over arbitrary associative rings.
As a consequence of this analysis, we prove the conjecture of Borel and Tits [1973,
8.19] on abstract homomorphisms of the groups of rational points of algebraic
groups for groups of the form SLn,D, where D is a finite-dimensional central
division algebra over a field of characteristic 0. Second, we apply the results
of [Rapinchuk 2011] to study deformations of representations of the elementary
subgroup 0= E(8, R) of a universal Chevalley group associated to a root system8

of rank ≥ 2 over a finitely generated commutative ring R. This relies on the
description, obtained in [Rapinchuk 2011], of representations with nonreductive
image, which are at the heart of the Borel–Tits conjecture (recall that representations
with reductive image were completely described in [Borel and Tits 1973]). We also
use techniques of representation and character varieties (see [Lubotzky and Magid
1985]) in conjunction with the fact that such 0 satisfies Kazhdan’s property (T),
which was recently established in [Ershov et al. 2011].
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Before formulating of our first result, let us recall the statement of the Borel–Tits
conjecture. For an algebraic G defined over a field k, let G+ denote the subgroup of
G(k) generated by the k-points of split (smooth) connected unipotent k-subgroups.

Conjecture (BT). Let G and G ′ be algebraic groups defined over infinite fields k
and k ′, respectively. If ρ : G(k)→ G ′(k ′) is any abstract homomorphism such that
ρ(G+) is Zariski-dense in G ′(k ′), then there exist a commutative finite-dimensional
k ′-algebra C and a ring homomorphism fC : k→ C such that ρ = σ ◦ rC/k′ ◦ F ,
where F : G(k)→ C G(C) is induced by fC (C G is the group obtained by change
of scalars), rC/k′ : C G(C)→ RC/k′(C G)(k ′) is the canonical isomorphism (here
RC/k′ denotes the functor of restriction of scalars), and σ is a rational k ′-morphism
of RC/k′(C G) to G ′.

If an abstract homomorphism ρ : G(k)→G ′(k ′) admits a factorization as in (BT),
we will say that ρ has a standard description.

Remarks. (1) Another frequently used definition of G+, which appears in the
introduction of [Borel and Tits 1973], is that it is the subgroup of G(k) generated
by the k-points of the unipotent radicals of the parabolic k-subgroups of G. Recall
that if G is reductive, then the k-split smooth connected unipotent k-subgroups all
lie in the unipotent radicals of minimal parabolic k-subgroups, so in this case, the
two definitions coincide. However, they may differ for general smooth connected
affine k-groups. Now, it follows from [Conrad et al. 2010, Proposition C.3.11,
Theorem C.3.12] that in the case of a general smooth connected affine k-group G,
one can also describe G+ as the subgroup of G(k) generated by the k-points of the
k-split unipotent radicals of the minimal pseudoparabolic k-subgroups.

(2) It was pointed out to us by B. Conrad and G. Prasad that, using techniques from
the theory of pseudoreductive groups (developed in [Conrad et al. 2010, Chapter 9]),
one can construct counterexamples to (BT) over all local and global function fields
of characteristic 2 (or, more generally, over any field k of characteristic 2 such that
[k : k2

]=2). The groups that arise in these counterexamples are perfect and k-simple.
So one should exclude fields of characteristic 2 (and possibly also characteristic 3)
in the statement of (BT).

Our result concerning (BT) is as follows. Given a finite-dimensional central
division algebra D over a field k, we let G = SLn,D denote the algebraic k-group
such that G(k) = SLn(D), the group of elements of GLn(D) having reduced
norm 1; recall that G is an inner form of type Al (see [Knus et al. 1998; Platonov
and Rapinchuk 1994] for details).

Theorem 1. Let D be a finite-dimensional central division algebra over a field k
of characteristic 0, and let G = SLn,D, where n ≥ 3. Let ρ : G(k)→ GLm(K )
be a finite-dimensional linear representation of G(k) over an algebraically closed
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field K of characteristic 0, and set H = ρ(G(k)) (Zariski-closure). Then the
abstract homomorphism ρ : G(k)→ H(K ) has a standard description.

In fact, we will see in Section 3 that a similar, but somewhat weaker, statement
can be established for representations of elementary groups over arbitrary associative
rings, not just division algebras (see Theorem 3.2 for a precise statement). It should
be observed that while the overall structure of the proof of Theorem 1 resembles
that of the Main Theorem of [Rapinchuk 2011], the analogs of the K -theoretic
results of Stein [1973], which played a crucial role in [Rapinchuk 2011], were not
available in the noncommutative setting. So part of our argument is dedicated to
developing the required K -theoretic results, which is done in Section 2 using the
computations of relative K2 groups given by Bak and Rehmann [1982].

As we have already mentioned, results describing representations of a given
group 0 with nonreductive image can be used to analyze deformations of represen-
tations of 0, which is the second major theme of this paper. Formally, over a field of
characteristic 0, deformations of (completely reducible) n-dimensional representa-
tions of a finitely generated group 0 can be understood in terms of the corresponding
character variety Xn(0). For 0 = E(8, R), the elementary subgroup of G(R),
where G is a universal Chevalley–Demazure group scheme corresponding to a
reduced irreducible root system of rank>1 and R is a finitely generated commutative
ring, we use the results of [Rapinchuk 2011] to estimate the dimension of Xn(0)

as a function of n. (We note that it was recently shown in [Ershov et al. 2011] that
such 0 possesses Kazhdan’s property (T) and hence is finitely generated, so the
representation variety Rn(0) and the associated character variety Xn(0) are defined.
See Section 4 for a brief review of these notions and [Lubotzky and Magid 1985]
for complete details.) To put our result into perspective, we recall that for 0 = Fd ,
the free group on d > 1 generators, the dimension ~n(0) := dim Xn(0) is given by

~n(0)= (d − 1)n2
+ 1,

i.e., the growth of ~n(0) is quadratic in n. It follows that the rate of growth cannot
be more than quadratic for any finitely generated group (and it is indeed quadratic
in some important situations such as 0 = πg, the fundamental group of a compact
orientable surface of genus g > 1 [Rapinchuk et al. 1996]). At the other end of the
spectrum are the groups 0, called SS-rigid, for which ~n(0)= 0 for all n ≥ 1. For
example, according to the superrigidity theorem of Margulis [1991, Chapter VII,
Theorems 5.6, 5.25, and A], all irreducible higher-rank lattices are SS-rigid (see
Section 5 regarding the superrigidity of groups like E(8,O), where O is a ring of
algebraic integers). Now, in [Rapinchuk 2013], we show that if 0 is not SS-rigid,
then the rate of growth of ~n(0) is at least linear. It follows that unless 0 is SS-rigid,
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the growth rate of ~n(0) is between linear and quadratic. Our result shows that for
0 = E(8, R) as above, this rate is the minimal possible, namely linear.

To formulate our result, we recall that a pair (8, R) consisting of a reduced
irreducible root system of rank > 1 and a commutative ring R was called nice in
[Rapinchuk 2011] if 2 ∈ R× whenever 8 contains a subsystem of type B2 and
2, 3 ∈ R× if 8 is of type G2.

Theorem 2. Let 8 be a reduced irreducible root system of rank ≥ 2, R a finitely
generated commutative ring such that (8, R) is a nice pair, and G the univer-
sal Chevalley–Demazure group scheme of type 8. Let 0 = E(8, R) denote the
elementary subgroup of G(R), and consider the variety Xn(0) of characters of
n-dimensional representations of 0 over an algebraically closed field K of charac-
teristic 0. Then there exists a constant c = c(R) (depending only on R) such that
~n(0) := dim Xn(0) satisfies

~n(0)≤ c · n

for all n ≥ 1.

The proof is based on a suitable variation of the approach, going back to A. Weil,
of bounding the dimension of the tangent space to Xn(0) at a point [ρ] corresponding
to a representation ρ : 0→ GLn(K ) by the dimension of the cohomology group
H 1(0,AdGLn ◦ ρ). Using the results of [Rapinchuk 2011], we describe the latter
space in terms of certain spaces of derivations of R. This leads to the conclusion that
the constant c in Theorem 2 does not exceed the minimal number of generators d
of R (i.e., the smallest integer such that there exists a surjection Z[X1, . . . , Xd ]� R).
In fact, if R is the ring of integers or S-integers in a number field L , then c= 0 (see
Lemma 4.7), so we obtain that ~n(0)= 0 for all n, i.e., 0 is SS-rigid. We then show
in Section 5 that the results of [Rapinchuk 2011] actually imply that 0 = E(8, R)
is in fact superrigid in this case. The proof of Theorem 2 uses the validity of
property (T) for 0 = E(8, R). On the other hand, groups of this form account for
most of the known examples of linear Kazhdan groups, so it is natural to ask if the
conclusion of Theorem 2 can be extended to all discrete linear Kazhdan groups.

Conjecture. Let 0 be a discrete linear group having Kazhdan’s property (T). Then
there exists a constant c = c(0) such that

~n(0)≤ c · n

for all n ≥ 1.

The paper is organized as follows. In Section 2, we begin by summarizing some
well known facts from K -theory and then use the results of [Bak and Rehmann
1982] to obtain a description of the group K2 of certain associative rings similar
to the one given by Stein in the commutative case. This is then used in the proof
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of Theorem 1, which is given in Section 3, along with similar results for arbitrary
associative rings. Next, we begin Section 4 with a brief review of representation
and character varieties and some related cohomological machinery, after which we
turn to the proof of Theorem 2. Finally, in Section 5, we show how the techniques
of [Rapinchuk 2011], along with some considerations involving derivations, can be
used to establish various rigidity results for the elementary groups E(8,O), where
O is a ring of algebraic integers.

Notations and conventions. Throughout the paper, 8 will denote a reduced irre-
ducible root system of rank ≥ 2. All of our rings are assumed to be associative and
unital. As noted earlier, if R is a commutative ring, we say that the pair (8, R) is
nice if 2 ∈ R× whenever 8 contains a subsystem of type B2 and 2, 3 ∈ R× if 8 is
of type G2. Finally, given an algebraic group H , we let H◦ denote the connected
component of the identity.

2. K -theoretic preliminaries

In this section, we develop the K -theoretic results that will be needed in the proof
of Theorem 1. Even though the statements in this section are consequences of
some well known results, to the best of our knowledge, they have never appeared
explicitly in the literature in the form that we require. The main objective will be
to use the computations of Bak and Rehmann [1982] to establish certain analogs
in the noncommutative setting of Stein’s [1973] description of the group K2 of a
semilocal commutative ring (see Propositions 2.3 and 2.4 below).

We begin by recalling some standard definitions. Let R be an associative unital
ring. For 1 ≤ i, j ≤ n, i 6= j , and r ∈ R, let ei j (r) ∈ GLn(R) be the elementary
matrix with r in the (i, j)-th place, and let En(R) denote the subgroup of GLn(R),
called the elementary group, generated by all the ei j (r). If n ≥ 3, it is well known
that the elementary matrices in GLn(R) satisfy the following relations:

(R1) ei j (r)ei j (s)= ei j (r + s).

(R2) [ei j (r), ekl(s)] = 1 if i 6= l and j 6= k.

(R3) [ei j (r), e jl(s)] = eil(rs) if i 6= l.

The Steinberg group over R, denoted Stn(R), is defined to be the group generated by
all symbols xi j (r) with 1≤ i, j ≤ n, i 6= j , and r ∈ R subject to the natural analogs
of the relations (R1)–(R3) written in terms of the xi j (r). From the definition, it is
clear that there exists a canonical surjective group homomorphism

πR : Stn(R)→ En(R), xi j (r) 7→ ei j (r),

and we set
K2(n, R)= ker(Stn(R)

πR
−−→ En(R)).
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It is easy to see that there exist natural homomorphisms Stn(R)→ Stn+1(R) and
En(R) ↪→ En+1(R), which induce homomorphisms K2(n, R)→ K2(n + 1, R)
[Hahn and O’Meara 1989, §1.4]. Also notice that the pair (Stn(R), πR) is functorial
in the following sense: given a homomorphism of rings f : R → S, there is a
commutative diagram of group homomorphisms

Stn(R)

πR

��

F̃
// Stn(S)

πS

��

En(R)
F
// En(S)

where F and F̃ are the homomorphisms induced by f defined on generators by

F : ei j (t) 7→ ei j ( f (t)) and F̃ : xi j (t) 7→ xi j ( f (t)).

It follows from the commutativity of the above diagram that F̃ induces a homomor-
phism K2(n, R)→ K2(n, S). In the following proposition, we derive some general
properties of K2(n, R) that will be needed later in this section:

Proposition 2.1. (a) Suppose R is an associative unital ring such that R/J (R)
is artinian, where J (R) is the Jacobson radical of R. Then the natural map
K2(3, R)→ K2(4, R) is an isomorphism. If , moreover, R is finitely generated
as a module over its center, then K2(n, R) is a central subgroup of Stn(R)
for n ≥ 3.

(b) Suppose C is a commutative finite dimensional algebra over a field K , and let
A=Mm(C) be the ring of m×m matrices over C. For a ∈C and 1≤ k, l ≤m,
let ỹkl(a) ∈ A be the matrix with a as the (k, l) entry and 0 for all other entries.
Then for n ≥ 3, the maps

ψ̃(x A
i j (ỹkl(a)))= xC

(i−1)m+k,( j−1)m+l(a),

ψ(eA
i j (ỹkl(a)))= eC

(i−1)m+k,( j−1)m+l(a),

where the x A
i j (a) and eA

i j (a) are the generators of Stn(A) and En(A) and the
xC

i j (c) and eC
i j (c) are the generators of Stnm(C) and Enm(C), respectively,

define isomorphisms ψ̃ : Stn(A)→ Stnm(C) and ψ : En(A)→ Enm(C) such
that the following diagram commutes:

Stn(A)

πA

��

˜ψ
// Stnm(C)

πC

��

En(A)
ψ
// Enm(C)

(1)

In particular, K2(n,Mm(C))' K2(nm,C).
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Proof. (a) By Theorem 7 of [van der Kallen 1976], the fact that R/Rad(R) is
artinian implies that it has property S R∗2 , and then Theorem 6 of the same work
yields the required isomorphism. Now, if R is finitely generated as a module
over its center, then according to [Hahn and O’Meara 1989, Theorem 1.4.15],
πR : Stn(R)→ En(R) is a central extension for n ≥ 4 (in fact, a universal central
extension for n≥ 5). So in view of the canonical isomorphism K2(3, R)' K2(4, R),
we obtain that K2(n, R) is a central subgroup of Stn(R) for n ≥ 3, as claimed.

(b) First notice that the natural group isomorphism GLn(A)
∼
−→ GLnm(C) restricts

to a group homomorphism ψ : En(A)→ Enm(C). By direct computation with com-
mutator relations, one sees that ψ is surjective for n ≥ 3 and hence an isomorphism.
Moreover, on generators it is given by the second formula in the statement. Now,
since A is generated additively by the ỹkl(a), with 1≤ k, l ≤ m, it follows that the
x̃ A

i j (ỹkl(a)) generate Stn(A), so it suffices to define ψ̃ on these elements and check
the defining relations. This is done by direct computation using the definition of ψ̃
given above.

Next, since without loss of generality m ≥ 2, we have nm ≥ 6, so as noted
in the proof of (a), πC : Stnm(C)→ Enm(C) is a universal central extension and
πA : Stn(A)→ En(A) is a central extension. Hence, there exists a unique group
homomorphism ϕ̃ : Stnm(C)→ Stn(A) making the diagram

Stn(A)

πA

��

Stnm(C)
ϕ̃

oo

πC

��

En(A)
ψ
// Enm(C)

(2)

commute, and by universality, we conclude that ψ̃ ◦ϕ̃= idStnm(C). On the other hand,
by the commutativity of the diagrams (1) and (2), we have that for any x ∈ Stn(A),

(ψ ◦πA ◦ ϕ̃ ◦ ψ̃)(x)= (πC ◦ ψ̃)(x)= (ψ ◦πA)(x).

Sinceψ is an isomorphism, we conclude that (ϕ̃◦ψ̃)(x)= xzx , where zx ∈K2(n, A).
The centrality of K2(n, A) then implies that the map x 7→ zx is a homomor-
phism Stn(A) → K2(n, A), which must be trivial as Stn(A) is a perfect group
and K2(n, A) is commutative. Thus, ϕ̃ ◦ ψ̃ = idStn(A), as required. It then follows
that K2(n, A)' K2(nm,C). �

Next, let us summarize the results of [Bak and Rehmann 1982] dealing with
relative K2 groups of associative rings (see Theorem 2.2 below). From now on, we
will always assume that n ≥ 3. First, we need to introduce some additional notation.
As above, let R be an associative unital ring. Given u ∈ R×, we define, for i 6= j ,
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the following standard elements of Stn(R):

wi j (u)= xi j (u)x j i (−u−1)xi j (u) and hi j (u)= wi j (u)wi j (−1).

Notice that the image πR(hi j (u)) in En(R) is the diagonal matrix with u as the
i-th diagonal entry, u−1 as the j-th diagonal entry, and 1s everywhere else on the
diagonal. We will also need the following noncommutative version of the usual
Steinberg symbols: for u, v ∈ R×, let

c(u, v)= h12(u)h12(v)h12(vu)−1.

One easily sees that πR(c(u, v)) is the diagonal matrix with uvu−1v−1 as its first
diagonal entry and 1s everywhere else on the diagonal. Let Un(R) be the subgroup
of Stn(R) generated by all the c(u, v) with u, v ∈ R×.

As in the commutative case, one can also consider relative versions of these
constructions. Let a be a two-sided ideal of R and

GLn(R, a)= ker(GLn(R)→ GLn(R/a))

be the congruence subgroup of level a. Define En(R, a) to be the normal subgroup
of En(R) generated by all elementary matrices ei j (a) with a ∈ a. Now letting

Stn(R, a)= ker(Stn(R)→ Stn(R/a)),

we have a natural homomorphism Stn(R, a)→ En(R, a), and we set

K2(n, R, a)= ker(Stn(R, a)→ En(R, a)).

Finally, let

Un(R, a) := 〈c(u, 1+ a) | u ∈ R×, 1+ a ∈ (1+ a)∩ R×〉

(notice this is contained in Stn(R, a)). We should point out that even though for
a noncommutative ring, the groups Un(R) and Un(R, a) may not lie in K2(n, R),
it is well known that any element of K2(n, R)∩Un(R) is automatically contained
in the center of Stn(R) [Milnor 1971, Corollary 9.3]. This will be needed in
Proposition 2.3 below.

Theorem 2.2 [Bak and Rehmann 1982, Theorem 2.9, Corollary 2.11]. Let R be
an associative unital ring. Suppose that a is a two-sided ideal contained in the
Jacobson radical J (R) of R and that R is additively generated by R×. Assume
n ≥ 3. Then the following are true:

(1) K2(n, R, a)⊂Un(R, a), and the canonical sequence below is exact:

1→Un(R, a)→Un(R)→Un(R/a)→ 1.
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(2) If , moreover, K2(n, R/a)⊂Un(R/a), then K2(n, R)⊂Un(R) and the natural
sequence

1→ K2(n, R, a)→ K2(n, R)→ K2(n, R/a)→ 1

is exact.

The theorem yields the following:

Proposition 2.3. Suppose that R is either a finite-dimensional algebra over an
algebraically closed field K or a finite ring with 2 ∈ R×. Then K2(n, R)⊂Un(R),
and consequently, K2(n, R) is a central subgroup of Stn(R).

Proof. Let J = J (R) be the Jacobson radical of R. To apply Theorem 2.2, we
need to verify that in both cases, R is additively generated by its units and that
K2(n, R/J )⊂Un(R/J ).

If R is a finite-dimensional algebra over K , then we can view R as a connected
algebraic ring over K , and it follows from [Rapinchuk 2011, Corollary 2.5] that R is
generated by R×.1 Now suppose that R is a finite ring. Since R is obviously artinian,
R/J is semisimple [Lam 2001, Theorem 4.14], so by the Artin–Wedderburn theorem
[Lam 2001, Theorem 3.5] and the fact that finite division rings are commutative
[Lam 2001, Theorem 13.1], we have

R/J ' Mn1(F1)⊕ · · ·⊕Mnr (Fr ),

where F1, . . . , Fr are finite fields with Fi 6= F2, the field of two elements, for all i as
2 ∈ R×. It follows that R/J is additively generated by its units. On the other hand,
the canonical map R→ R/J induces a surjective homomorphism R×→ (R/J )×,
which, combined with the fact that J lies in the linear span of R× [Lam 2001,
Lemma 4.3], yields that R is additively generated by R×.

Next, let us show that K2(n, R/J ) ⊂ Un(R/J ) in both cases. If R is a finite-
dimensional K -algebra, then as above R/J is semisimple. So since there are no
nontrivial division algebras over algebraically closed fields, the Artin–Wedderburn
theorem implies that

R/J ' Mn1(K )⊕ · · ·⊕Mns (K ).

Thus, in both cases, R/J is a direct sum of matrix algebras over fields. Since K2

commutes with finite direct sums, we may assume without loss of generality that
A := R/J ' Mm(F) with F a field. By Proposition 2.1, we have isomorphisms
ψ̃ : Stn(A) → Stnm(F) and ψ : En(A) → Enm(F) that induce an isomorphism

1All the background on algebraic rings needed in this paper can be found in [Rapinchuk 2011, §2].
M. Kassabov has also informed us that the notion of an algebraic ring actually goes back to [Greenberg
1964], where one can find proofs of some basic properties.
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K2(n, A)' K2(nm, F). Now let u ∈ F× and tu = diag(u, 1, . . . , 1) ∈ Mm(F). By
direct computation, one checks that

ψ̃(h A
12(tu))= hF

1,m+1(u),

and therefore, for u, v ∈ F×, we have

ψ̃(c(tu, tv))= c1,m+1(u, v),

where c1,m+1(u, v) = hF
1,m+1(u)h

F
1,m+1(v)h

F
1,m+1(vu)−1. On the other hand, by

Matsumoto’s theorem, the group K2(nm, F) is generated by the Steinberg symbols
c1,m+1(u, v) [Steinberg 1968]; consequently, we see K2(n, R/J ) ⊂ Un(R/J ), as
claimed. Hence, K2(n, R)⊂Un(R) by Theorem 2.2. As noted above, it now follows
from [Milnor 1971, Corollary 9.3] that K2(n, R) lies in the center of Stn(R). �

An important ingredient in the proof of Theorem 1 will be the following:

Proposition 2.4. Let k and K be fields of characteristic 0 with K algebraically
closed. Suppose that D is a finite-dimensional central division algebra over k, A
a finite-dimensional algebra over K , and f : D→ A a ring homomorphism with
Zariski-dense image. Then for n ≥ 3, K2(n, A) coincides with the subgroup

U ′n(A)=
〈
c(u, v) | u, v ∈ f (L×)

〉
,

where L is an arbitrary maximal subfield of D.

We begin with the following:

Lemma 2.5. Let A, D, and f be as above, and set C = f (k) (Zariski closure).
Then

A ' D⊗k C ' Ms(C) (3)

as K -algebras, where s2
= dimk D. Moreover, if L is any maximal subfield of D,

then the second isomorphism can be chosen so that L ⊗k C ' Ds(C), where
Ds(C)⊂ Ms(C) is the subring of diagonal matrices.

Proof. We start with the proof of the first isomorphism in (3). To begin, we note
that since k and K are both fields of characteristic 0, C is a finite-dimensional
algebra over K by [Rapinchuk 2011, Lemma 2.13, Proposition 2.14]. Moreover,
by [Greenberg 1964, Proposition 5.1], the natural inclusion C ↪→ A is a homo-
morphism of K -algebras (this also follows from the proof of [Rapinchuk 2011,
Proposition 2.14]). Now consider the map

θ : D⊗k C→ A, (x, c) 7→ f (x)c.

We claim that θ is an isomorphism. From the above remark, it is clear that θ
is a homomorphism of K -algebras (where D ⊗k C is endowed with the natural
K -algebra structure coming from C). For surjectivity, first note that since im θ
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contains f (D), it is Zariski-dense in A. On the other hand, let x1, . . . , xs2 be a
basis of D over k. Then

im θ = f (x1)C + · · ·+ f (xs2)C

and therefore is closed. Hence, θ is surjective. To prove injectivity, notice that since
D is a central simple algebra, ker θ = D⊗k c for some ideal c⊂C [Farb and Dennis
1993, Theorem 3.5]. On the other hand, since by construction the restriction θ |c is
an embedding, we have c= 0, and θ is injective.

Now let us consider the second isomorphism. First, since C is a commutative
artinian algebraic ring, by [Rapinchuk 2011, Proposition 2.20], we can write

C = C1× · · ·×Cr ,

where each Ci is a local commutative algebraic ring. Moreover, since tensor products
commute with finite products and Ms(C1× · · · ×Cr ) = Ms(C1)× · · · ×Ms(Cr ),
it suffices to establish the isomorphism when C is a local algebraic ring. So
suppose that is the case, and let J (C) be the Jacobson radical of C . Then it follows
from [Rapinchuk 2011, Corollary 2.6, Proposition 2.19] that C/J (C) ' K , so
composing f with the canonical map C → C/J (C), we obtain an embedding
k ↪→ K . Consequently, as K is algebraically closed, the division algebra D splits
over K , i.e., there exists an isomorphism

τ : D⊗k K
∼
−→ Ms(K ). (4)

Notice also if L is a maximal subfield of D, we can choose τ so that L⊗k K 'Ds(K ).
Indeed, since L is separable over k (as char k = 0) and [L : k] = s, we can write
L = k[X ]/( f ), where f is a separable polynomial of degree s. Then by the Chinese
remainder theorem, L⊗k K ' K s . But any subalgebra of Ms(K ) that is isomorphic
to K s is conjugate to Ds(K ) [Gille and Szamuely 2006, Lemma 2.2.9], so it follows
that τ can be composed with an inner automorphism of Ms(K ) to have the required
form.

Now consider the natural (surjective) map

D⊗k C→ D⊗k (C/J (C))= D⊗k K .

Since D is a central simple algebra, the same argument as above shows that the
kernel of this map is contained in the Jacobson radical J (D⊗k C), and the fact that
D⊗k K ' Ms(K ) is semisimple implies that it actually coincides with J (D⊗k C).
So by the Wedderburn–Malcev theorem [Pierce 1982, Corollary 11.6], there exists
a section

α : Ms(K )' D⊗k K ↪→ D⊗k C.
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We claim that the following map gives the required isomorphism:

β : Ms(K )⊗K C→ D⊗k C, m⊗ c 7→ α(m) · (1⊗ c).

Indeed, injectivity is proved by the same argument as above, and surjectivity
follows by dimension count. Thus, Ms(C) ' Ms(K ) ⊗K C ' D ⊗k C , and it
follows immediately from the above remarks that Ds(C)' L ⊗k C . �

Proof of Proposition 2.4. By Lemma 2.5, we have L ⊗k C ' Ds(C). Moreover,
L ⊗k C ' f (L). Indeed, since k ⊂ L , we have

f (L)⊂ θ(L ⊗k C)⊂ f (L).

On the other hand, the same argument as in the proof of Lemma 2.5 shows that
θ(L ⊗k C) is closed.

Next, since A ' Ms(C) and C is a finite-dimensional K -algebra, there exists by
Proposition 2.1 an isomorphism ψ̃ : Stn(A)→Stns(C) that induces an isomorphism
K2(n, A)' K2(ns,C). Now, C is a semilocal commutative ring that is additively
generated by its units, so K2(ns,C) coincides with the subgroup Uns(C) of Stns(C)
generated by the Steinberg symbols c1,s+1(u, v) taken with respect to the root α1,s+1

(i.e., c1,s+1(u, v)=h1,s+1(u)h1,s+1(v)h1,s+1(vu)−1) by [Stein 1973, Theorem 2.13].
As we noted in the proof of Proposition 2.3, we have

ψ̃(c(tu, tv))= c1,s+1(u, v),

where for u ∈ C×, we set tu = diag(u, 1, . . . , 1) ∈ Ms(C). Thus, K2(n, A) is
contained in the group generated by the symbols c(tu, tv). On the other hand,
since all of the tu are diagonal matrices, they lie in the image of L ⊗k C ; hence,
K2(n, A)⊂U ′n(A). Since clearly U ′n(A)⊂ K2(n, A), this concludes the proof. �

3. Abstract homomorphisms over noncommutative rings

The main goal of this section is to give the proof of Theorem 1. Before beginning
the argument, we would like to give an alternative statement of Theorem 1, which
can be generalized (in a somewhat weaker form) to (essentially) arbitrary associative
rings. First, we need to observe that if B is a finite-dimensional algebra over an
algebraically closed field K , then the elementary group En(B) has the structure
of a connected algebraic K -group. Indeed, using the regular representation of B
over K , it is easy to see that GLn(B) is a Zariski-open subset of Mn(B) and hence
an algebraic group over K . Now let us view B as a connected algebraic ring over K ,
and for i, j ∈ {1, . . . , n}, i 6= j , consider the regular maps

ϕi j : B→ GLn(B), b 7→ ei j (b).
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Set Wi j = imϕi j . Then each Wi j contains the identity matrix In ∈ GLn(B), and
by definition, En(B) is generated by the Wi j . So En(B) is a connected algebraic
group by [Borel 1991, Proposition 2.2].

Theorem 3.1. Suppose k and K are fields of characteristic 0 with K algebraically
closed, D is a finite-dimensional central division algebra over k, and n is an
integer≥3. Let ρ : En(D)→GLm(K ) be a finite-dimensional linear representation,
and set H = ρ(En(D)) (Zariski closure). Then there exist a finite-dimensional
associative K -algebra B, a ring homomorphism f : D→ B with Zariski-dense
image, and a morphism σ : En(B)→ H of algebraic K -groups such that

ρ = σ ◦ F,

where F : En(D)→ En(B) is the group homomorphism induced by f .

We also have the following result for general associative rings:

Theorem 3.2. Suppose R is an associative ring with 2 ∈ R×, K is an algebraically
closed field of characteristic 0, and n is an integer ≥ 3. Let ρ : En(R)→ GLm(K )
be a finite-dimensional linear representation, set H = ρ(En(R)), and let H◦ denote
the connected component of H. If the unipotent radical of H◦ is commutative,
there exist a finite-dimensional associative K -algebra B, a ring homomorphism
f : R→B with Zariski-dense image, and a morphism σ : En(B)→ H of algebraic
K -groups such that for a suitable finite-index subgroup 1⊂ En(R), we have

ρ|1 = (σ ◦ F)|1,

where F : En(R)→ En(B) is the group homomorphism induced by f .

As we indicated in the introduction, the proofs of Theorems 3.1 and 3.2 are based
on a natural extension of the approach developed in our earlier paper [Rapinchuk
2011]. More precisely, we will first associate to ρ an algebraic ring A, then show
that ρ can be lifted to a representation τ̃ : Stn(A)→ H of the Steinberg group,
and finally use the results of Section 2 to verify that σ̃ descends to an abstract
representation of En(A). Then, to conclude the argument, we will prove that this
abstract representation is actually a morphism of algebraic groups.

We begin with the construction of the algebraic ring A attached to a given
representation ρ.

Proposition 3.3. Suppose R is an associative ring, K is an algebraically closed
field, and n ≥ 3. Given a representation ρ : En(R)→ GLm(K ), there exists an
associative algebraic ring A together with a homomorphism of abstract rings
f : R→ A having Zariski-dense image such that for all i, j ∈ {1, . . . , n}, i 6= j ,
there is an injective regular map ψi j : A→ H into H := ρ(En(R)) satisfying

ρ(ei j (t))= ψi j ( f (t)) (5)

for all t ∈ R.
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Proof. This statement goes back to [Kassabov and Sapir 2009] (see also [Rapinchuk
2011, Theorem 3.1]). For the sake of completeness, we indicate the main points of
the construction. Let A = ρ(e13(R)). If α : A× A→ A denotes the restriction of
the matrix product in H to A, it is clear (A,α) is a commutative algebraic subgroup
of H . We let f : R→ A be the map defined by t 7→ ρ(e13(t)). From the definition,
it follows that

α( f (t1), f (t2))= f (t1+ t2)

for all t1, t2 ∈ R. To define the multiplication operation µ : A× A→ A, we will
need the elements

w12 = e12(1)e21(−1)e12(1) and w23 = e23(1)e32(−1)e23(1)

(notice that these are simply the images under πR of the elements wi j (1) considered
in Section 2). By direct computation, one sees that

w−1
12 e13(r)w12 = e23(r), w23e13(r)w−1

23 = e12(r),

and
[e12(r), e23(s)] = e13(rs)

for all r, s ∈ R, where [g, h] = ghg−1h−1. Now let µ : A× A→ H be the regular
map defined by

µ(a1, a2)= [ρ(w23)a1ρ(w23)
−1, ρ(w12)

−1a2ρ(w12)].

Then the above relations yield

µ( f (t1), f (t2))= f (t1t2),

so, in particular, µ( f (R)× f (R))⊂ f (R), which implies that µ(A× A)⊂ A and
allows us to view µ as a regular map µ : A×A→ A. Since by our assumption R is a
(unital) associative ring and f has Zariski-dense image, it follows that (A,α,µ) is a
(unital) associative algebraic ring as defined in [Rapinchuk 2011, §2]. Furthermore,
by our construction, (5) obviously holds for the inclusion map ψ13 : A→ H . Finally,
using an appropriate element wi j , we can conjugate any root subgroup ei j (R)
into e13(R), from which the existence of all the other maps ψi j follows. �

Remark 3.4. Observe that if R is an infinite division ring, then the algebraic
ring A constructed in Proposition 3.3 is automatically connected. Indeed, the
connected component A◦ is easily seen to be a two-sided ideal of A. So if A 6= A◦,
then f −1(A◦) would be a proper two-sided ideal of finite index in R, which is
impossible. In particular, we see that in the situation of Theorem 3.1, the algebraic
ring associated to ρ is connected.
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Next, we show that the representation ρ can be lifted to a representation of the
Steinberg group Stn(A). The precise statement is given by the following proposition:

Proposition 3.5. Suppose R is an associative ring, K is an algebraically closed
field, and n ≥ 3, and let ρ : En(R)→ GLm(K ) be a representation. Let A and
f : R→ A be the algebraic ring and ring homomorphism constructed in Proposition

3.3. Then there exists a group homomorphism τ̃ : Stn(A)→ H ⊂ GLm(K ) such
that τ̃ : xi j (a) 7→ψi j (a) for all a ∈ A and all i, j ∈ {1, . . . , n}, i 6= j . Consequently,
τ̃ ◦ F̃ = ρ ◦πR , where F̃ : Stn(R)→ Stn(A) is the homomorphism induced by f .

Proof. This proposition is proved in exactly the same way as [Rapinchuk 2011,
Proposition 4.2]. We simply note that since Stn(A) is generated by the symbols
xi j (a) subject to the relations (R1)–(R3) given in Section 2, to establish the existence
of τ̃ , it suffices to verify that relations (R1)–(R3) are satisfied if the xi j (a) are
replaced by ψi j (a), which follows from (5) and the fact that f has Zariski-dense
image. For the second statement, we observe that the maps τ̃ ◦ F̃ and ρ ◦πR both
send the symbol xi j (s) to ψi j ( f (s))= ρ(ei j (s))= (ρ ◦πR)(xi j (s)), so they must
coincide on Stn(R). �

To analyze the representation σ̃ that we have just constructed, we will need some
additional information on the structure of the group Stn(A).

Proposition 3.6. Let K be an algebraically closed field of characteristic 0 and n
an integer ≥ 3. Suppose A is an associative algebraic ring over K such that 2∈ A×,
and let A◦ denote the connected component of 0A. Then

(i) Stn(A)= Stn(A◦)× P , where P is a finite group and

(ii) K2(n, A◦) is a central subgroup of Stn(A◦).

Proof. (i) First, since char K = 0, by [Rapinchuk 2011, Proposition 2.14], we have
A = A◦⊕ S with S a finite ring. So

Stn(A)= Stn(A◦)×Stn(S),

and we need to show that Stn(S) is a finite group. Now, since En(S) is obvi-
ously a finite group and K2(n, S) is by definition the kernel of the canonical map
πS : Stn(S)→ En(S), we see that the finiteness of Stn(S) is equivalent to that
of K2(n, S). On the other hand, since 2∈ S×, Proposition 2.3 implies that K2(n, S)
is a central subgroup of Stn(S). So we can use the argument given in the proof
of [Rapinchuk 2011, Proposition 4.5] and consider the Hochschild–Serre spectral
sequence

H 1(Stn(S),Q/Z)→ H 1(K2(8, S),Q/Z)Stn(S)→ H 2(En(S),Q/Z)
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(where all groups act trivially on Q/Z) corresponding to the short exact sequence

1→ K2(n, S)→ Stn(S)
πS
−→ En(S)→ 1

to conclude that K2(n, S) is finite.

(ii) By [Rapinchuk 2011, Proposition 2.14], A◦ is a finite-dimensional K -algebra,
so the assertion follows from Proposition 2.3. �

Remark 3.7. We would like to point out that the assumption that 2 ∈ A× is needed
to guarantee that the finite ring S that appears in the proof of Proposition 3.6(i) above
is additively generated by its units, which then enables us to use Proposition 2.3 to
conclude that K2(n, S) is a central subgroup of Stn(S). If S is a finite commutative
ring, then, as we show in [Rapinchuk 2011, Proposition 4.5], this assumption is not
needed since in that case S can be written as a finite product of commutative local
rings, which are automatically generated by their units.

To complete the proofs of Theorems 3.1 and 3.2, the basic idea will be to show
that the homomorphism τ̃ constructed in Proposition 3.5 descends to a (rational)
representation of En(A). Let us make this more precise. Given a representation
ρ : En(R)→ GLm(K ), let f : R→ A be the ring homomorphism associated to ρ
(Proposition 3.3), and let F̃ : Stn(R)→Stn(A) and F : En(R)→ En(A) denote the
group homomorphisms induced by f . Then under the hypotheses of Theorems 3.1
and 3.2, we have Stn(A) = Stn(A◦) (Remark 3.4) and Stn(A) = Stn(A◦) × P
(Proposition 3.6), respectively, so in both cases, 1̃ := F̃−1(Stn(A◦)) and1 :=πR(1̃)

are finite-index subgroups of Stn(R) and En(R). Moreover, F(1)⊂ En(A◦) clearly.
Thus, letting σ̃ denote the restriction of τ̃ to Stn(A◦), we see that the solid arrows in

1̃
F̃
//

πR

��

Stn(A◦)

πA◦

��
σ̃

  

1

ρ

**

F
// En(A◦)

σ

((
H◦

(6)

form a commutative diagram. In the remainder of this section, we will show that
under our assumptions, there exists a group homomorphism σ : En(A◦)→ H◦ (in
fact, a morphism of algebraic groups) making the full diagram commute. In the sit-
uation of Theorem 3.1, the existence of the required abstract homomorphism σ will
be shown in Proposition 3.8 below. For Theorem 3.2, we will first need to establish
the somewhat weaker result that there exists a homomorphism σ : En(A◦)→ H
such that σ ◦πA◦ = ν ◦ σ̃ , where Z(H◦) is the center of H◦, H = H◦/Z(H◦), and
ν : H◦→ H is the canonical map (see Proposition 3.10).
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Proposition 3.8. Suppose k and K are fields of characteristic 0 with K alge-
braically closed, D is a finite-dimensional central division algebra over k, and
n is an integer ≥ 3. Let ρ : En(D)→ GLm(K ) be a representation, and let A
denote the algebraic ring associated to ρ (Proposition 3.3). Then A = A◦ is a
finite-dimensional K -algebra and there exists a homomorphism of abstract groups
σ : En(A◦)→ H◦ making the diagram (6) commute.

Proof. We have A= A◦ by Remark 3.4, and A◦ is a finite-dimensional K -algebra by
[Rapinchuk 2011, Proposition 2.14]. Next, by Proposition 2.4, K2(n, A) coincides
with the subgroup

U ′n(A)= 〈c(u, v) | u, v ∈ f (L×)〉

of Stn(A), where L is an arbitrary maximal subfield of D and f : D→ A is the ring
homomorphism associated to ρ. Now, from the construction of σ̃ and the definition
of c(u, v), we have

σ̃ (c(u, v))= H12(u)H12(v)H12(vu)−1,

where for r ∈ A×, we set

H12(r)=W12(r)W12(−1) and W12(r)= ψ12(r)ψ21(−r−1)ψ12(r).

By [Rapinchuk 2011, Proposition 2.4], the map A×→ A×, t 7→ t−1 is regular,
which implies that the map

2 : A×× A×→ H, (u, v) 7→ τ̃ (c(u, v))

is also regular. On the other hand, as we observed earlier, πD(hi j (u)) ∈ En(D) is a
diagonal matrix with u as the i-th diagonal entry, u−1 as the j-th diagonal entry,
and 1s everywhere else on the diagonal. In particular, for u, v ∈ L×, it follows that

πD(h12(u)h12(v)h12(vu)−1)= 1.

So by Proposition 3.5,

σ̃ (c( f (u), f (v)))= ρ(πD(h12(u)h12(v)h12(vu)−1))= 1

for all u, v ∈ L×. By the regularity of 2, we obtain that σ̃ (c(a, b)) = 1 for all
a, b ∈ f (L×), and consequently, σ̃ vanishes on K2(n, A). Since the canonical
homomorphism πA : Stn(A) → En(A) is surjective and K2(n, A) = kerπA by
definition, the existence of σ now follows. �

The proof of Theorem 3.2 will require the following proposition, which contains
analogs of results established in [Rapinchuk 2011, §5]:

Proposition 3.9. Suppose R is an associative ring with 2 ∈ R×, K is an alge-
braically closed field of characteristic 0, and n ≥ 3. Let ρ : En(R)→GLm(K ) be a
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representation, set H = ρ(En(R)), and let A denote the algebraic ring associated
to ρ. Then the following hold:

(i) The group H◦ coincides with σ̃ (Stn(A◦)) and is its own commutator.

(ii) Let U and Z(H◦) be the unipotent radical and center of H◦, respectively. If U
is commutative, then Z(H◦)∩U = {e}, and consequently, Z(H◦) is finite and
is contained in any Levi subgroup of H◦.

Proof. (i) It follows from Proposition 3.5 that σ̃ (Stn(A◦)) coincides with the (ab-
stract) group H⊂ H generated by all theψi j (A◦)with i, j ∈{1, . . . , n}, i 6= j . Since
ψα(A◦) is clearly a connected subgroup of H , by [Borel 1991, Proposition 2.2], H is
Zariski-closed and connected; hence, H⊂H◦. On the other hand, by Proposition 3.6,
Stn(A◦) is a finite-index subgroup of Stn(A), from which it follows that σ̃ (Stn(A))
is Zariski-closed. Since σ̃ (Stn(A)) contains ρ(En(R)), it is Zariski-dense in H
and therefore coincides with H . So H is a closed subgroup of finite index in H ;
hence, H⊃ H◦, and consequently, H= H◦. Furthermore, from the definition of
the Steinberg group, one easily sees that Stn(A◦) coincides with its commutator
subgroup, so the same is true for H◦.

(ii) Using the fact that H◦ coincides with its commutator subgroup, one can now
apply the argument given in the proof of [Rapinchuk 2011, Proposition 5.5]. �

Now set H = H◦/Z(H◦). Since Z(H◦) is a closed normal subgroup of H◦,
H is an (affine) algebraic group and the canonical map ν : H◦→ H is a morphism
of algebraic groups [Borel 1991, Theorem 6.8].

Proposition 3.10. Suppose R is an associative ring with 2 ∈ R×, K is an alge-
braically closed field of characteristic 0, and n ≥ 3. Let ρ : En(R)→GLm(K ) be a
representation, set H = ρ(En(R)), and let A denote the algebraic ring associated
to ρ. Then A◦ is a finite-dimensional K -algebra and there exists a homomorphism
σ : En(A◦)→ H such that σ ◦πA◦ = ν ◦ σ̃ .

Proof. Since char K = 0, by [Rapinchuk 2011, Proposition 2.14], A◦ is a finite-
dimensional K -algebra. Furthermore, H◦ = σ̃ (Stn(A◦)) by Proposition 3.9 and
K2(n, A◦) = kerπA◦ is a central subgroup of Stn(A◦) by Proposition 2.3, from
which the existence of σ follows. �

The remaining step in the proof is to show that the (abstract) homomorphisms
σ : En(A◦)→ H◦ and σ : En(A◦)→ H constructed in Propositions 3.8 and 3.10,
respectively, are actually morphisms of algebraic groups (see Proposition 3.12 be-
low). In the latter case, this will allow us to lift σ to a morphism of algebraic groups
σ : En(A◦)→ H◦ making the diagram (6) commute. Our proof of rationality here
will deviate from the approach of [Rapinchuk 2011] as rather than using results about
the “big cell” of En(A◦), we will instead apply the following geometric lemma:
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Lemma 3.11. Let X , Y , and Z be irreducible varieties over an algebraically closed
field K of characteristic 0. Suppose s : X→Y and t : X→ Z are regular maps with
s dominant such that for any x1, x2 ∈ X with s(x1)= s(x2), we have t (x1)= t (x2).
Then there exists a rational map h : Y 99K Z such that h ◦ s = t on a suitable open
subset of X.

Proof. Let W ⊂ X × Y × Z be the subset

W = {(x, y, z) | s(x)= y, t (x)= z}.

Notice that W is the graph of the morphism

ϕ : X→ Y × Z , x 7→ (s(x), t (x)),

so W is an irreducible variety isomorphic to X . Now consider the projection
prY×Z : X × Y × Z → Y × Z , and let U = prY×Z (W ) and V = U , where the bar
denotes the Zariski closure. Then V is an irreducible variety. Moreover, U is
constructible by [Humphreys 1975, Theorem 4.4] so in particular contains a dense
open subset P of V , which is itself an irreducible variety. Let now p : P→Y be the
projection to the first component. We claim that p gives a birational isomorphism
between P and Y . From our assumptions, we see that p is dominant, and since
char K = 0, p is also separable. So it follows from [Humphreys 1975, Theorem
4.6] that to show that p is birational, we only need to verify that it is injective.
Consider u1 = (y1, z1) and u2 = (y2, z2) in P , with y1 = y2. By our construction,
there exist x1, x2 ∈ X such that s(x1)= y1, t (x1)= z1, s(x2)= y2, and t (x2)= z2.
Since s(x1)= s(x2), we have t (x1)= t (x2), so u1 = u2, as needed.

Since p is birational, we can now take h = πZ ◦ p−1
: Y 99K Z , where we let

πZ : Y × Z→ Z be the projection. �

Now let ρ : En(R)→ GLm(K ) be a representation as in Theorem 3.1 or 3.2,
and let A denote the algebraic ring associated to ρ. Also let Q be the set of all
pairs (i, j) with 1≤ i, j ≤ n, i 6= j . Then, as we already observed at the beginning
of this section, En(A◦) is the connected algebraic group generated by the images
Wq = imϕq of the regular maps

ϕq : A◦→ GLn(A◦), a 7→ eq(a)

for all q ∈ Q. In particular, [Borel 1991, Proposition 2.2] implies that there exists a
finite sequence (α(1), . . . , α(v)) in Q such that

En(A◦)=W ε1
α(1) · · ·W

εv
α(v),

where each εi =±1. Let

X =
v∏

i=1

(A◦)α(i)
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be the product of v copies of A◦ indexed by the α(i), and define a regular map
s : X→ En(A◦) by

s(aα(1), . . . , aα(v))= ϕα(1)(aα(1))ε1 · · ·ϕα(v)(aα(v))εv . (7)

Also let

t : X→ H◦, t (aα(1), . . . , aα(v))= ψα(1)(aα(1))ε1 · · ·ψα(v)(aα(v))εv , (8)

where the ψα(i) are the regular maps from Proposition 3.3. With this setup, we can
now prove:

Proposition 3.12. The homomorphisms σ : En(A◦)→ H◦ and σ : En(A◦)→ H
constructed in Propositions 3.8 and 3.10, respectively, are morphisms of algebraic
groups.

Proof. We will only consider σ as the argument for σ is completely analogous. Set
Y = En(A◦) and Z = H◦, and let s : X → Y and t : X → Z be the regular maps
defined in (7) and (8). From the construction of σ , it is clear that (σ ◦ s)(x)= t (x),
so in particular, s(x1)= s(x2) for x1, x2 ∈ X implies that t (x1)= t (x2). Hence, by
Lemma 3.11, σ is a rational map. Therefore, there exists an open subset V ⊂ En(A◦)
such that σ |V is regular. So it follows from the next lemma that σ : En(A◦)→ H◦

is a morphism. �

Lemma 3.13 [Rapinchuk 2011, Lemma 6.4]. Let K be an algebraically closed
field, and let G and G′ be affine algebraic groups over K with G connected. Suppose
f : G→ G′ is an abstract group homomorphism,2 and assume there exists a Zariski-
open set V ⊂ G such that ϕ := f |V is a regular map. Then f is a morphism of
algebraic groups.

Theorem 3.1 now follows from Propositions 3.8 and 3.12 with B= A◦ (= A).
For Theorem 3.2, we again take B = A◦, and it remains to show that one can
lift the morphism σ : En(A◦)→ H to a morphism σ : En(A◦)→ H◦ making the
diagram (6) commute. This is accomplished through a suitable modification of the
argument used in the proof of [Rapinchuk 2011, Proposition 6.6]. For this, we need
some analogs of results contained in [Rapinchuk 2011, §6] regarding the structure
of En(B) as an algebraic K -group, where B is an arbitrary finite-dimensional
algebra over an algebraically closed field K . Let J = J (B) be the Jacobson radical
of B. Then by the Wedderburn–Malcev theorem [Pierce 1982, Corollary 11.6],
there exists a semisimple subalgebra B ⊂ B such that B = B ⊕ J as K -vector
spaces and B ' B/J as K -algebras. Furthermore, since K is algebraically closed,
the Artin–Wedderburn theorem implies that

B = Mn1(K )× · · ·×Mnr (K ).

2Here we tacitly identify G and G′ with the corresponding groups G(K ) and G′(K ) of K -points.
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Now consider the group homomorphism En(B)→ En(B) induced by the canonical
map B→ B/J (notice that this is a morphism of algebraic groups as B→ B/J is
a homomorphism of algebraic rings: see [Rapinchuk 2011, Lemma 2.9]), and let
En(J ) be its kernel. It is clear that En(J ) is a closed normal subgroup of En(B).
Note that

En(Mni (K ))' Enni (K )' SLnni (K ),

so En(B) is a semisimple simply connected algebraic group. It is also easy to see
that for any a, b ≥ 1, we have

[GLn(B, J a),GLn(B, J b)] ⊂ GLn(B, J a+b),

where GLn(B, J s)= ker(GLn(B)→ GLn(B/J s)). Since J is a nilpotent ideal, it
follows that En(J ) is a nilpotent group. In particular, we obtain that

En(B)= En(J )o E(B) (9)

is a Levi decomposition of En(B) [Rapinchuk 2011, Proposition 6.5].
Now, using the Levi decomposition (9) for B = B as well as the fact that the

center Z(H◦) is finite (Proposition 3.9), one can directly imitate the argument of
[Rapinchuk 2011, Proposition 6.6] to conclude the proof of Theorem 3.2.

Finally, to derive Theorem 1 from Theorem 3.1, we first note that by Lemma 2.5,
we have K -algebra isomorphisms

B' D⊗k C ' Ms(C),

where s2
= dimk D and C = f (k) (as above, f : D→B is the ring homomorphism

associated to ρ). Consequently, En(B)' En(Ms(C))' Ens(C). Moreover, since
C is a finite-dimensional K -algebra, in particular a semilocal commutative ring,
Ens(C) ' SLns(C) [Matsumoto 1966, Corollary 2]. So since G = SLn,D is K -
isomorphic to SLns [Platonov and Rapinchuk 1994, 2.3.1], we see En(B)' G(C).
Letting fC : k→ C be the restriction of f to k, we now obtain Theorem 1.

4. Applications to representation varieties
and deformations of representations

In this section, we will prove Theorem 2. To estimate the dimension of the character
variety Xn(0) for an elementary subgroup 0 as in the statement of Theorem 2, we
will exploit the well known connection, going back to A. Weil, between the tangent
space of Xn(0) at a given point and the 1-cohomology of 0 with coefficients in the
space of a naturally associated representation. We then use the results of [Rapinchuk
2011] on standard descriptions of representations of 0 to relate the latter space
to a certain space of derivations of the finitely generated ring R used to define 0
(see Proposition 4.4). Since the dimensions of spaces of derivations are finite and
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are bounded by a constant depending only on R, we obtain the required bound
on dim Xn(0). Throughout this section, we will work over a fixed algebraically
closed field K of characteristic 0.

We begin by summarizing some key definitions and basic properties related
to representation and character varieties, mostly following the first two chapters
of [Lubotzky and Magid 1985]. Let 0 be a finitely generated group, and fix an
integer n ≥ 1. Recall that the n-th representation scheme of 0 is the functor Rn(0)

from the category of commutative K -algebras to the category of sets defined by

Rn(0)(A)= Hom(0,GLn(A)).

More generally, if G is a linear algebraic group over K , we let the representation
scheme of 0 with values in G be the functor R(0,G) defined by

R(0,G)(A)= Hom(0,G(A)).

Because for any commutative K -algebra A, a homomorphism ρ : 0→ GLn(A) is
determined by the images of the generators, subject to the defining relations of 0,
one shows that Rn(0) is an affine K -scheme represented by a finitely generated
K -algebra An(0). Similarly, R(0,G) is an affine K -scheme represented by a
finitely generated K -algebra A(0,G) [Lubotzky and Magid 1985, Proposition 1.2].
The set Rn(0)(K ) of K -points of Rn(0) is then denoted Rn(0) and is called the
n-th representation variety of 0. It is an affine variety over K with coordinate
ring An(0)= An(0)red, the quotient of An(0) by its nilradical. The representation
variety R(0,G) is defined analogously.

Now let ρ0 ∈ R(0,G). To describe the Zariski tangent space of R(0,G) at ρ0,
denoted Tρ0(R(0,G)), we will use the algebra of dual numbers K [ε] (where
ε2
= 0). More specifically, it is well known that R(0,G)(K [ε]) is the tangent

bundle of R(0,G), and therefore, Tρ0(R(0,G)) can be identified with the fiber
over ρ0 of the map µ : R(0,G)(K [ε])→R(0,G)(K ) induced by the augmentation
homomorphism K [ε]→ K , ε 7→ 0 [Borel 1991, AG 16.2]. In other words, we have

Tρ0(R(0,G))= {ρ ∈ Hom(0,G(K [ε])) | µ ◦ ρ = ρ0}.

For us, it will be useful to have the following alternative description of Tρ0(R(0,G)).
Let g̃ be the Lie algebra of G. Notice that g̃ has a natural 0-action given by

γ · x = Ad(ρ0(γ ))x

for γ ∈ 0 and x ∈ g̃, where Ad : G(K )→GL(g̃) is the adjoint representation. Now
Tρ0(R(0,G)) can be identified with the space Z1(0, g̃) of 1-cocycles [Lubotzky
and Magid 1985, Proposition 2.2]. Indeed, an element c ∈ Z1(0, g̃) is by definition
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a map c : 0→ g̃ such that

c(γ1γ2)= c(γ1)+Ad(ρ0(γ1))c(γ2).

On the other hand, we have an isomorphism G(K [ε])' g̃oG given by

B+Cε 7→ (C B−1, B).

Hence, an element ρ ∈ Tρ0(R(0,G)) is a homomorphism ρ : 0→ g̃o G whose
projection to the second factor is ρ0. In other words, it arises from a map c : 0→ g̃

such that the map
0→ g̃oG, γ 7→ (c(γ ), ρ0(γ ))

is a group homomorphism. With the above identification, this translates into the
condition

c(γ1γ2)= c(γ1)+Ad(ρ0(γ1))c(γ2),

giving the required isomorphism of Tρ0(R(0,G)) with Z1(0, g̃). Also notice that
for any finite-index subgroup 1 ⊂ 0 (which is automatically finitely generated),
the natural restriction maps R(0,G)→R(1,G) and Z1(0, g̃)→ Z1(1, g̃) induce
a commutative diagram

Tρ0(R(0,G)) //

��

Z1(0, g̃)

��

Tρ0(R(1,G)) // Z1(1, g̃)

where the horizontal maps are the isomorphisms described above.
Next, let us recall a characterization of the space B1(0, g̃) of 1-coboundaries

that will be used later; for this, we need to consider the action of G(K ) on R(0,G).
Given ρ0 ∈ R(0,G), let ψρ0 : G(K )→ R(0,G) be the orbit map, i.e., the map
defined by

ψρ0(T )= Tρ0T−1, T ∈ G(K ).

Direct computation shows that under the isomorphism Tρ0(R(0,G))' Z1(0, g̃), the
image of the differential (dψρ0)e : Te(G)→ Tρ0(R(0,G))⊂ Tρ0(R(0,G)) consists
of maps τ : 0→ g̃ such that there exists A ∈ g̃ with

τ(γ )= A−Ad(ρ0(γ ))A

for all γ ∈ 0, i.e., the image coincides with B1(0, g̃) [Lubotzky and Magid 1985,
Proposition 2.3]. In fact, if O(ρ0) is the orbit of ρ0 in R(0,G) under the action
of G(K ), then B1(0, g̃) can be identified with Tρ0(O(ρ0))⊂Tρ0(R(0,G)) [Lubotzky
and Magid 1985, Corollary 2.4].
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As a special case of the preceding constructions, we can consider the action
of GLn(K ) on Rn(0). The n-th character variety of 0, denoted Xn(0), is by
definition the (categorical) quotient of Rn(0) by GLn(K ); i.e., it is the affine K -
variety with coordinate ring An(0)

GLn(K ). Let π : Rn(0)→ Xn(0) be the canonical
map. Then each fiber π−1(x) contains a semisimple representation, and moreover,
if ρ1, ρ2 ∈ Rn(0) are semisimple with π(ρ1) = π(ρ2), then ρ1 = Tρ2T−1 for
some T ∈ GLn(K ). In particular, we see that π induces a bijection between
the isomorphism classes of semisimple representations and the points of Xn(0)

[Lubotzky and Magid 1985, Theorem 1.28].
We turn to the proof of Theorem 2. In the remainder of this section, 0 will be the

elementary subgroup E(8, R)⊂G(R), where8 is a reduced irreducible root system
of rank ≥ 2, G a universal Chevalley–Demazure group scheme of type 8, and R a
finitely generated commutative ring such that (8, R) is a nice pair. By recent work
of Ershov, Jaikin-Zapirain, and Kassabov [2011], it is known that 0 has Kazhdan’s
property (T). In particular, 0 is finitely generated and satisfies the condition

for any finite-index subgroup 1⊂ 0, the abelianization 1ab
=1/[1,1] is finite

(FAb)
[de la Harpe and Valette 1989]. This has the following consequence:

Proposition 4.1 [Rapinchuk 1999, Proposition 2]. Let0 be a group satisfying (FAb).
For any n ≥ 1, there exists a finite collection G1, . . . ,Gd of algebraic subgroups of
GLn(K ) such that for any completely reducible representation ρ : 0→ GLn(K ),
the Zariski closure ρ(0) is conjugate to one of the Gi . Moreover, for each i , the
connected component G◦i is a semisimple group.

Thus, if we denote by Rn(0)ss the set of completely reducible representations
ρ : 0→ GLn(K ), we have3

Rn(0)ss =
⋃

i∈{1,...,d},
g∈GLn(K )

gR′(0,Gi )g−1,

where for an algebraic subgroup G⊂ GLn(K ), we set

R′(0,G)= {ρ : 0→ G | ρ(0)= G}.

Therefore, letting π : Rn(0)→ Xn(0) be the canonical map, we obtain that

Xn(0)=

d⋃
i=1

π(R′(0,Gi )). (10)

3Observe that if G ⊂ GLn(K ) is an algebraic subgroup such that G◦ is semisimple, then G is
completely reducible; hence, any representation ρ : 0 → GLn(K ) with ρ(0) = G is completely
reducible.



Representations of algebraic groups and deformations 1709

Notice that if G⊂ GLn(K ) is an algebraic group such that G◦ is semisimple, then
R′(0,G) is an open subvariety of R(0,G). Indeed, let

R′′(0,G)= {ρ : 0→ G | ρ(0)⊃ G◦}.

Since G◦ is semisimple, R′′(0,G) is easily seen to be an open subvariety in R(0,G)

[Rapinchuk 1998, Lemma 4]. On the other hand, we obviously have

R′(0,G)= R′′(0,G)∩
(
R(0,G) \

⋃l
i=1 R(0,Hi )

)
,

where H1, . . . ,Hl are the algebraic subgroups of G such that

G ) Hi ⊃ G◦.

Now let W ⊂ Xn(0) be an irreducible component of maximal dimension so that
dim Xn(0) = dim W . Then it follows from (10) that we can find an irreducible
component V of some R′(0,Gi ) such that π(V ) = W . Since π |V is dominant
and separable (as char K = 0), it follows from [Borel 1991, AG 17.3] that there
exists ρ0 ∈ V that is a simple point (of R′(0,Gi )) such that π(ρ0) is simple and
the differential

(dπ)ρ0 : Tρ0(V )→ Tπ(ρ0)(W ) (11)

is surjective. Next, let ψρ0 : Gi → R(0,Gi ) be the orbit map. By the construction
of π , we have (π ◦ψρ0)(T )= π(ρ0) for any T ∈ Gi , so d(π ◦ψρ0)e = 0. On the
other hand, as we noted above, the image of the differential (dψρ0)e is the space
B = B1(0, g̃i ), where g̃i is the Lie algebra of Gi with 0-action given by Ad ◦ ρ0.
Since ρ0 is a simple point, it lies on a unique irreducible component of R′(0,Gi ), so
it follows that the image ofψρ0 (i.e., the orbit of ρ0) is contained in V . Consequently,
(11) factors through

Tρ0(V )/B→ Tπ(ρ0)(W ).

Since obviously dimK Tρ0(V )≤ dimK Tρ0(R(0,Gi )) and

Tρ0(R(0,Gi ))' Z1(0, g̃),

we therefore obtain that

dim Xn(0)= dim W ≤ dimK H 1(0, g̃i ). (12)

Thus, the proof of Theorem 2 is now reduced to considering the following situation.
Suppose ρ0 : 0→GLn(K ) is a completely reducible representation, set G= ρ0(0)

(note that the connected component G◦ is semisimple), and let g̃ be the Lie algebra
of G, considered as a 0-module via Ad ◦ ρ0. We need to give an upper bound on
dimK H 1(0, g̃). This will be made more precise in Proposition 4.4 below after
some preparatory remarks.
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First, notice that for the purpose of estimating dimK H 1(0, g̃), we may compose
ρ0 with the adjoint representation and assume without loss of generality that the
group G is adjoint. Now, since G◦ is semisimple, ρ0 has a standard description by
[Rapinchuk 2011, Theorem 6.7], i.e., there exist a commutative finite-dimensional
K -algebra A0, a ring homomorphism

f0 : R→ A0 (13)

with Zariski-dense image, and a morphism of algebraic groups

θ : G(A0)→ G (14)

such that on a suitable finite-index subgroup 1⊂ 0, we have

ρ0|1 = (θ ◦ F0)|1, (15)

where F0 : 0→ G(A0) is the group homomorphism induced by f0. Moreover, it
follows from [Rapinchuk 2011, Proposition 5.3] that θ(G(A0))= G◦.

Next, let G1, . . . ,Gr be the (almost) simple components of G◦ [Borel 1991,
Proposition 14.10]. Since G◦ is adjoint, the product map

G1× · · ·×Gr → G◦

is an isomorphism. The following lemma gives a more detailed description of A0:

Lemma 4.2. The algebraic ring A0 is isomorphic to the product K × · · ·× K︸ ︷︷ ︸
r copies

.

Proof. Let J0 be the Jacobson radical of A0. Since G◦ is semisimple (in particu-
lar, reductive), J0 = {0} by [Rapinchuk 2011, Lemma 5.7], and consequently by
[Rapinchuk 2011, Proposition 2.20], we have

A0 ' K (1)
× · · ·× K (s),

where K (i)
' K for all i . Thus, G(A0)=G(K (1))×· · ·×G(K (s)). As we observed

above, the map θ is surjective, so since G(K ) is an almost simple group, it follows
that s ≥ r . On the other hand, by [Rapinchuk 2011, Theorem 3.1], for each
root α ∈8, there exists an injective map ψα : A0→ G such that

θ(eα(a))= ψα(a), (16)

where eα(A0) is the 1-parameter root subgroup of G(A0) corresponding to the root α
[Rapinchuk 2011, Proposition 4.2]. Now if s > r , then θ would kill some simple
component G(K (i)) of G(A0). Since G(K (i)) intersects each root subgroup eα(A0),
the maps ψα would not be injective, a contradiction. So s = r , as claimed. �
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Thus, we can write f0 : R→ A0 as

f0(t)= ( f (1)0 (t), . . . , f (r)0 (t)) (17)

for some ring homomorphisms f (i)0 : R→ K .

Remark 4.3. Notice that for each i , the image θ(G(K (i))) intersects a unique sim-
ple factor of G◦, say θ(G(K (i)))∩Gi 6= {e}, and then θ(G(K (i)))=Gi . Furthermore,
it follows from the proof of Lemma 4.2 that θ is an isogeny, so since char K = 0,
the differential (dθ)e : g→ g̃i gives an isomorphism of Lie algebras. In particular,
we see that the Lie algebras of all the simple factors Gi are isomorphic (in fact, they
are isomorphic as G(K )-modules with G(K ) acting via Ad ◦ θ ).

To formulate the next result, we need to introduce some notation. Suppose
g : R→ K is a ring homomorphism. Then we will let Derg(R, K ) denote the space
of K -valued derivations of R with respect to g, i.e., an element δ ∈ Derg(R, K ) is
a map δ : R→ K such that for any r1, r2,∈ R,

δ(r1+ r2)= δ(r1)+ δ(r2) and δ(r1r2)= δ(r1)g(r2)+ g(r1)δ(r2).

Proposition 4.4. Suppose ρ0 : 0 → GLn(K ) is a linear representation, and set
G= ρ0(0). Let g̃ denote the Lie algebra of G, and assume G◦ is semisimple. Then

dimK H 1(0, g̃)≤

r∑
i=1

dimK Der f (i)0 (R, K ),

where the f (i)0 are the ring homomorphisms appearing in (17).

We first note two facts that will be needed in the proof. Let 3⊂ 0 be any finite-
index subgroup. Then, as we have already seen, the space of 1-cocycles Z1(3, g̃)

can be naturally identified with the tangent space

Tρ0(R(3,G))= {ρ ∈ Hom(3,G(K [ε])) | µ ◦ ρ = ρ0}. (18)

Also observe that the restriction map

res0/3 : H 1(0, g̃)→ H 1(3, g̃)

is injective. Indeed, since [0 :3]<∞, the corestriction map

cor0/3 : H 1(3, g̃)→ H 1(0, g̃)

is defined and the composition cor0/3 ◦ res0/3 coincides with multiplication by
[0 :3]. Since char K = 0, the injectivity of res0/3 follows.

Proof of Proposition 4.4. Set

X = Der f (1)0 (R, K )⊕ · · ·⊕Der f (r)0 (R, K ),
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and let 1⊂ 0 be the finite-index subgroup appearing in (15). We will show that
there exists a linear map ψ : X→ H 1(1, g̃) such that

res(H 1(0, g̃))⊂ im(ψ). (19)

The proposition then follows from the injectivity of the restriction map.
The map ψ is constructed as follows. Choose derivations δi ∈ Der f (i)0 (R, K ) for

i = 1, . . . , r , and let
B = K [ε]× · · · × K [ε]︸ ︷︷ ︸

r copies

(with ε2
= 0). Then

fδ1,...,δr : R→ B, s 7→ ( f (1)0 (s)+ δ1(s)ε, . . . , f (r)0 (s)+ δr (s)ε)

is a ring homomorphism and hence induces a group homomorphism

Fδ1,...,δr : 0→ G(B)

(recall that 0 = E(R)⊂ G(R)). On the other hand, we have

G(B)' (g⊕ · · ·⊕ g)o (G(K )× · · ·×G(K ))' Lie(G(A0))oG(A0)

and
G(K [ε])' g̃oG,

so we can define a group homomorphism θ̃ : G(B)→ G(K [ε]) by the formula

(x, g) 7→ ((dθ)e(x), θ(g)),

where θ : G(A0)→ G is the morphism appearing in (14). Notice that since by
Remark 4.3, the differential of θ gives a homomorphism

(dθ)e : g→ g̃i

for each factor g of Lie(G(A0)), the map θ̃ can also be described as follows. Let
x1, . . . , xr ∈ g and g ∈ G(A0). Then

θ̃ (x1, . . . , xr , g)=
( r∑

i=1

(dθ)e(xi ), θ(g)
)
.

Now, θ̃ ◦ Fδ1,...,δr is a homomorphism 0→ G(K [ε]), and in view of (15), we have

µ ◦ (θ̃ ◦ Fδ1,...,δr |1)= ρ0.

It follows from (18) that

cδ1,...,δr := θ̃ ◦ pr ◦Fδ1,...,δr |1,
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where pr : G(B)→ Lie(G(A0)) is the projection, is an element of Z1(1, g̃). Now
put

ψ((δ1, . . . , δr ))= [cδ1,...,δr ],

where [cδ1,...,δr ] denotes the class of cδ1,...,δr in H 1(1, g̃).
Let us now turn to the proof of the inclusion (19). Suppose ρ : 0→ G(K [ε])

is a homomorphism with µ ◦ ρ = ρ0. By [Rapinchuk 2011, Proposition 2.14,
Theorem 3.1], we can associative to ρ a commutative finite-dimensional K -algebra
A together with a ring homomorphism f : R→ A with Zariski-dense image.

Lemma 4.5. Let A be the finite-dimensional commutative K -algebra associated
to ρ. Then

A ' K̃ (1)
× · · ·× K̃ (r),

where, as above, r is the number of simple components of G◦ and, for each i , K̃ (i) is
isomorphic to either K or K [ε] (with ε2

= 0).

Proof. Let J be the Jacobson radical of A. Since the unipotent radical U of ρ(0)◦ is
commutative (which follows from the fact that g̃ is the unipotent radical of G(K [ε])),
we have J 2

= {0} by [Rapinchuk 2011, Lemma 5.7]. Now by our assumption,
µ ◦ ρ = ρ0, where µ : G(K [ε])→ G(K ) is the homomorphism induced by ring
homomorphism K [ε] → K , ε 7→ 0. In particular, for any root α ∈8, we have

µ(ρ(eα(r)))= ρ0(eα(r)) (20)

for all r ∈ R. Since µ is a morphism of algebraic groups and the algebraic rings A
and A0 associated to ρ and ρ0, respectively, are by construction the connected com-
ponents of ρ(eα(R)) and ρ0(eα(R)) for any root α [Rapinchuk 2011, Theorem 3.1],
it follows that µ induces a surjective map ν : A→ A0. Moreover, since (20) holds
for all roots α ∈8, the construction of the ring operations on A and A0 given in
[Rapinchuk 2011, Theorem 3.1] implies that ν is actually a ring homomorphism.
Also notice that since J is commutative and nilpotent, we have J ⊂ ker ν by the
definition of µ. On the other hand, the ring A0 is semisimple by Lemma 4.2, so
J = ker ν. Thus, A0 ' A/J ' K × · · ·× K .

Next, by the Wedderburn–Malcev theorem, we can find a semisimple subalgebra
B̃ ⊂ A such that A = B̃⊕ J as K -vector spaces and B̃ ' A/J ' K × · · ·× K as
K -algebras [Pierce 1982, Corollary 11.6]. Let ei ∈ B̃ be the i-th standard basis
vector. Since e1, . . . , er are idempotent and we have e1+· · ·+ er = 1 and ei e j = 0
for i 6= j , it follows that we can write A =

⊕r
i=1 Ai , where Ai = ei A. Clearly,

Ai = B̃i⊕ Ji with B̃i = ei B̃ ' K and Ji = ei J ; in particular, Ai is a local K -algebra
with maximal ideal Ji such that J 2

i = {0}. To complete the proof, it obviously
suffices to show that si := dimK Ji ≤ 1 for all i .
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Now, by [Rapinchuk 2011, Proposition 6.5], for each i = 1, . . . , r , we have a
Levi decomposition

G(Ai )= (g⊕ · · ·⊕ g)︸ ︷︷ ︸
si copies

oG(K ),

where g is the Lie algebra of G(K ). Also, by [Rapinchuk 2011, Theorem 6.7],
there exists a morphism

σ : G(A)→ G(K [ε]) (21)

of algebraic groups such that for a suitable subgroup of finite index1′⊂0, we have

ρ|1′ = σ ◦ F |1′, (22)

where F : 0 → G(A) denotes the group homomorphism induced by f . Since
µ ◦ ρ = ρ0 and for 1̃=1∩1′, we have

ρ0|1̃ = (θ ◦ F0)|1̃ and ρ|1̃ = σ ◦ F |1̃

by (15) and (22), it follows that the diagram

G(A) σ
//

ν̃

��

G(K [ε])

µ

��

G(A0)
θ

// G

(23)

commutes (where ν̃ is the homomorphism induced by ν). Now Remark 4.3, together
with the definition of ν, implies that (θ ◦ ν̃)(G(Ai )) = Gi , where Gi is a simple
factor of G. Since G(Ai ) coincides with its commutator subgroup [Stein 1971,
Corollary 4.4], we obtain that σ(G(Ai )) is a subgroup of G(K [ε]) that maps to Gi

under µ and coincides with its commutator, so the fact that the simple factors
G1, . . . ,Gr of G commute elementwise implies that σ(G(Ai ))⊂ g̃i oGi , where gi

is the Lie algebra of Gi . On the other hand, by [Rapinchuk 2011, Theorem 3.1], for
each root α ∈8, there exists an injective map ψ̃α : A→ G(K [ε]) such that

σ(eα(a))= ψ̃α(a), (24)

where eα(A) is the 1-parameter root subgroup of G(A) corresponding to the root α.
So since g̃i ' g by Remark 4.3, the same argument as in the proof of Lemma 4.2
shows that si ≤ 1. �

For ease of notation, we will view A as a subalgebra of

Ã := K [ε]× · · · × K [ε]︸ ︷︷ ︸
r copies

. (25)
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Then, using the lemma and the assumption that µ ◦ ρ = ρ0, we can write the
homomorphism f : R→ A in the form

f (t)= ( f (1)0 (t)+ δ1(t)ε, . . . , f (r)0 (t)+ δr (t)ε) (26)

with (δ1, . . . , δr ) ∈ X and δi = 0 for i = r2+ 1, . . . , r .
To describe the cohomology class corresponding to ρ, we will now need to

analyze more closely the morphism σ introduced in (21). First, we note that if
A = A/J and G(A, J ) is the congruence subgroup

G(A, J )= ker(G(A)→ G(A)),

then by [Rapinchuk 2011, Proposition 6.5],

G(A)= G(A, J )oG(A)

is a Levi decomposition of G(A). Now by [Borel 1991, Proposition 11.23], any
two Levi subgroups of (G(K [ε]))◦ are conjugate under an element of the unipotent
radical Ru(G(K [ε]))◦, which can be identified with G◦(K [ε], (ε)) ' g̃. In our
case, we can apply this to the groups σ(G(A)) and θ(G(A0)) = G◦ (where θ is
the morphism from (14)) to conclude that Bθ(G(A0))B−1

= σ(G(A)) for some
B ∈ G(K [ε], (ε)) ' g̃. By direct computation, one sees that for any X ∈ G and
B = I + εY ∈ G(K [ε], (ε)),

B X B−1
= (I + ε(Y − XY X−1))X,

which shows that

ρ(γ )= σ(F(γ ))=
(
(σ ◦ pr ◦F)(γ )+ Y −Ad(θ(F0(γ ))(Y ), θ(F0(γ )))

)
for all γ ∈ 1̃ = 1 ∩ 1′ (where 1 and 1′ are the finite-index subgroups of 0
appearing in (15) and (22), respectively). Since θ(F0(γ ))= ρ0(γ ) for γ ∈ 1̃, we
can rewrite this as

ρ(γ )= (c(γ ), ρ0(γ )),

where
c(γ )= (σ ◦ pr ◦F)(γ )+ Y −Ad(ρ0(γ ))(Y ).

Using (18), we obtain c ∈ Z1(1̃, g̃). Now let bY ∈ B1(1̃, g̃) be the 1-coboundary
defined by bY (γ )= Y −Ad(ρ0(γ ))Y , and put c̃ = c− bY (thus, c̃ and c define the
same element of H 1(1̃, g̃)). Then

c̃(γ )= (σ ◦ pr ◦F)(γ )

for all γ ∈ 1̃. To complete the proof of the proposition, we will need the following:
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Lemma 4.6. Assume that K is an algebraically closed field of characteristic 0. Let
π : G→G′ be an isogeny of absolutely almost simple algebraic groups. Let g and g′

denote the Lie algebras of G and G′, respectively. Set

H= goG and H′ = g′oG′,

where G and G′ act on g and g′, respectively, via the adjoint representation. Then
for any morphism ϕ : H→H′ such that ϕ|G = π , there exists a ∈ K such that

ϕ(X, g)= (a(dπ)e(X), π(g)).

Proof. Since char K = 0 and g and g′ are simple Lie algebras, the adjoint rep-
resentations Ad : G→ GL(g) and Ad : G′→ GL(g′) are both irreducible. Let us
now view g′ as a G-module with G acting via π . Then both ϕ|g and (dπ)e are
G-equivariant homomorphisms of irreducible G-modules. So by Schur’s lemma,
ϕ|g = a(dπ)e for some a ∈ K [Artin 1991, Theorem 9.6]. �

Now, as above, we consider A as a subalgebra of the algebra Ã appearing in (25);
after possible renumbering, we may assume that, in the notation of Lemma 4.5,
we have K̃ (i)

' K [ε] for i = 1, . . . , s, where s = dimK J (A), and K̃ (i)
' K for

i = s+ 1, . . . , r . We will view G(A) as a subgroup of

G( Ã)' Lie(G(A0))oG(A0)

and write G(A0)=G(K (1))×· · ·×G(K (r)) and Lie(G(A0))= g1⊕· · ·⊕gr , where
G(K (i)) = G(K ) and gi = g for all i . We will also regard σ : G(A)→ G(K [ε])
as a morphism σ : G( Ã)→ G(K [ε]) with σ |gi = 0 for all i > s. Now since by
our construction, the cocycles c and c̃ lie in the same cohomology class, we may
assume without loss of generality that σ has the form

σ(x1, . . . , xr , g)= (σ |g1⊕···⊕gr (x1, . . . , xr ), θ(g))

for (x1, . . . , xr , g)∈ (g1⊕· · ·⊕gr )oG(A). By Remark 4.3, for each factor G(K (i))

of G(A0), the differential (dθ)e : gi→ g̃i yields an isomorphism of G(K )-modules
(with G(K ) acting on g̃i via Ad◦ θ ). Furthermore, since σ |G(A)= θ , the same argu-
ment as used in the proof of Lemma 4.5 shows that σ(gi )= g̃i for i = 1, . . . , s. Now
applying Lemma 4.6 to the restrictions σ |gioG(K (i)) and ((dθ)e, θ)|gioG(K (i)), we get

σ |gi = a(dθ)e|gi

for some a ∈ K (possibly 0). Repeating for all factors shows that we have

σ |g1⊕···⊕gr (x1, . . . xr )=

r∑
i=1

ai (dθ)e(xi )
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for (x1, . . . , xr ) ∈ g1⊕ · · · ⊕ gr . So replacing the element (δ1, . . . , δr ) in (26) by
(a1δ1, . . . , arδr ), we have

c̃(γ )= cδ1,...,δr (γ )

for all γ ∈ 1̃. Now let ψ((δ1, . . . , δr )) = dδ1,...,δr ∈ Z1(1, g̃), and let cρ be the
element of Z1(0, g̃) corresponding to ρ. It follows that

res1/1̃(res0/1([cρ]))= res1/1̃([dδ1,...,δr ]),

where

res0/1 : H 1(0, g̃)→ H 1(1, g̃) and res1/1̃ : H 1(1, g̃)→ H 1(1̃, g̃)

are the restriction maps. So the injectivity of the restriction maps yields

res0/1([cρ])= [dδ1,...,δr ],

which shows that
res(H 1(0, g̃))⊂ im(ψ).

This completes the proof of the proposition. �

Proof of Theorem 2. In view of (12) and Proposition 4.4, it remains to show that
r ≤ n and to give a bound on the dimension of the space Derg(R, K ), for any ring
homomorphism g : R→ K , which is independent of g. Notice that G◦ ⊂ GLn(K )
and G◦ = G1× · · ·×Gr , so we have

n ≥ rk G◦ =

r∑
i=1

rk Gi ≥ r

as needed. For the second task, we have the following (elementary) lemma:

Lemma 4.7. Let R be a finitely generated commutative ring, and let d denote the
minimal number of generators of R (i.e., the smallest integer such that there exists
a surjection Z[x1, . . . , xd ]� R). Then for any field K and ring homomorphism
g : R → K , dimK Derg(R, K ) ≤ d. If , moreover, K is a field of characteris-
tic 0, R is an integral domain with field of fractions L , and g is injective, then
dimK Derg(R, K ) ≤ l, where l is the transcendence degree of L over its prime
subfield.

Proof. Let S = {r1, . . . , rd} be a minimal set of generators of R. Since any element
δ∈Derg(R, K ) is completely determined by its values on the elements of S, the map

δ 7→ (δ(r1), . . . , δ(rd))

defines an injection Derg(R, K )→ K d , so dimK Derg(R, K )≤ d as claimed.
Now suppose that R is a finitely generated integral domain and g is injective.

Since char K = 0, after possibly localizing R with respect to the multiplicative
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set Z \ {0} (which does not affect the dimension of the space Derg(R, K )), we
can use Noether’s normalization lemma to write R as an integral extension of
S =Q[x1, . . . , xl] so that the field of fractions of R is a separable extension of that
of S. Combining this with the assumption that g is injective, one easily sees that
any derivation δ of R is uniquely determined by its restriction to S [Lang 2002,
Chapter VII, Theorem 5.1], so in particular,

dimK Derg(R, K )≤ dimK Derg(S, K )=: s.

On the other hand, the argument given in the previous paragraph shows that s ≤ l,
which completes the proof. �

Remark 4.8. Notice that the estimate dimK Derg(R, K )≤ l may not be true if g is
not injective. Indeed, take K =Q, and let R0=Z[X, Y ] and R=Z[X, Y ]/(X3

−Y 2).
Furthermore, let

f : Z[X, Y ] →Q, ϕ(X, Y ) 7→ ϕ(0, 0)

and g : R → Q denote the induced homomorphism. The space Der f (R0,Q) is
spanned by the linearly independent derivations δx and δy defined by

δx(ϕ(X, Y ))=
∂ϕ

∂X
(0, 0) and δy(ϕ(X, Y ))=

∂ϕ

∂Y
(0, 0),

so dimQ Der f (R0,Q)= 2. Now notice that the natural map

Derg(R,Q)→ Der f (R0,Q)

is bijective. Indeed, it is obviously injective, and since any δ ∈ Der f (R0,Q)

vanishes on the elements of the ideal (X3
− Y 2)R0, it is also surjective. Thus,

dimQ Derg(R,Q) = 2. On the other hand, if L is the fraction field of R, then
l := tr degQ L is 1.

5. Applications to rigidity

In this section, we will show how our results from [Rapinchuk 2011] imply various
forms of classical rigidity for the elementary groups E(8,O), where 8 is a reduced
irreducible root system of rank > 1 and O is a ring of algebraic integers (or S-
integers) in a number field. It is worth mentioning that all forms of rigidity ultimately
boil down to the fact that O does not admit nontrivial derivations.

To fix notations, let 8 be a reduced irreducible root system of rank > 1, G the
universal Chevalley–Demazure group scheme of type 8, and O a ring of algebraic
S-integers in a number field L such that (8,O) is a nice pair. Furthermore, let
0 = E(8,O) be the elementary subgroup of G(O).
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Proposition 5.1. Let ρ : 0→ GLm(K ) be an abstract linear representation over
an algebraically closed field K of characteristic 0. Then there exist

(i) a finite-dimensional commutative K -algebra

A ' K (1)
× · · ·× K (r)

with K (i)
' K for all i ,

(ii) a ring homomorphism f = ( f (1), . . . , f (r)) : O→ A with Zariski-dense image,
where each f (i) : O→ K (i) is the restriction to O of an embedding ϕi : L ↪→ K
and ϕ1, . . . , ϕr are all distinct, and

(iii) a morphism of algebraic groups σ : G(A)→ GLm(K )

such that for a suitable subgroup of finite index 1⊂ 0, we have

ρ|1 = σ |1.

Proof. Let H = ρ(0), where, as before, the bar denotes Zariski closure. We begin
by showing that the connected component H◦ is automatically reductive. Suppose
this is not the case, and let U be the unipotent radical of H◦. Since the commutator
subgroup U ′ = [U,U ] is a closed normal subgroup of H , the quotient Ȟ = H/U ′

is affine, so we have a closed embedding ι : Ȟ → GLm′(K ) for some m′. Then
ρ̌ = ι ◦π ◦ ρ, where π : H → Ȟ is the quotient map, is a linear representation of
0 such that ρ̌(0)◦ = Ȟ◦ has commutative unipotent radical. So we can now apply
[Rapinchuk 2011, Theorem 6.7] to obtain a finite-dimensional commutative K -
algebra Ǎ, a ring homomorphism f̌ : O→ Ǎ (which is injective as any nonzero ideal
in O has finite index) with Zariski-dense image, and a morphism σ̌ : G( Ǎ)→ Ȟ of
algebraic groups such that for a suitable finite-index subgroup 1̌⊂ 0, we have

ρ̌|1̌ = (σ̌ ◦ F̌)|1̌,

where F̌ : 0→ G( Ǎ) is the group homomorphism induced by f̌ .
Now let J be the Jacobson radical of Ǎ. Since Ȟ◦ has commutative unipotent

radical, J 2
= {0} by [Rapinchuk 2011, Lemma 5.7]. We claim that in fact J = {0}.

Indeed, using the Wedderburn–Malcev theorem as in the proof of Lemma 4.5, we
can write Ǎ=

⊕r
i=1 Ǎi , where for each i , Ǎi = K ⊕ Ji is a finite-dimensional local

K -algebra with maximal ideal Ji such that J 2
i = {0}. Then it suffices to show that

Ji = {0} for all i . So we may assume that Ǎ is itself a local K -algebra of this form.
Then, fixing a K -basis {ε1, . . . , εs} of J , we have

f̌ (x)= f0(x)+ δ1(x)ε1+ · · ·+ δs(x)εs,

where f0 : O→ K is an injective ring homomorphism and δ1, . . . , δs ∈Der f0(O, K ).
On the other hand, since the fraction field of O is a number field, it follows from
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Lemma 4.7 that the derivations δ1, . . . , δs are identically zero. So the fact that f̌
has Zariski-dense image forces J = {0}. Consequently, Ǎ ' K × · · ·× K .

Now by [Rapinchuk 2011, Proposition 5.3], σ̌ : G( Ǎ)→ Ȟ◦ is surjective, so Ȟ◦

is semisimple and in particular reductive [Borel 1991, Proposition 14.10]. It follows
that U = [U,U ] [Borel 1991, Corollary 14.11], and hence, being a nilpotent group,
U = {e}, which contradicts our original assumption. Thus, H◦ must be reductive,
as claimed.

We can now apply [Rapinchuk 2011, Theorem 6.7] to ρ to obtain a finite-
dimensional commutative K -algebra A, a ring homomorphism f : O→ A with
Zariski-dense image, and a morphism σ : G(A)→ H of algebraic groups such that
for a suitable subgroup of finite index 1⊂ 0, we have

ρ|1 = (σ ◦ F)|1.

Moreover, the fact that H◦ is reductive implies that A = K × · · ·× K [Rapinchuk
2011, Proposition 2.20, Lemma 5.7]. So we can write f = ( f (1), . . . , f (r)) for
some ring homomorphisms f (1), . . . , f (r) : O→ K . It is easy to see that all of
the f (i) are injective, and since L is the fraction field of O, it follows that each
homomorphism f (i) is a restriction to O of an embedding ϕi : L ↪→ K . Finally, since
f has Zariski-dense image, all of the ϕi must be distinct, completing the proof. �

Keeping the notations of the proposition, we have the following:

Corollary 5.2. Any representation ρ : 0→ GLm(K ) is completely reducible.

Proof. By Proposition 5.1, we have ρ|1 = σ |1, so since G(B) is a semisimple
group and char K = 0, ρ|1 is completely reducible. Since 1 is a finite-index
subgroup of 0, it follows that ρ is also completely reducible. �

SS-rigidity and local rigidity. Notice that since by Lemma 4.7 there are no nonzero
derivations δ : O→ K , Proposition 4.4 and the estimate given in (12) yield that
for 0 = E(8,O), we have dim Xn(0)= 0 for all n ≥ 1, i.e., 0 is SS-rigid. In fact,
Corollary 5.2 implies that 0 is locally rigid, that is, H 1(0,Ad◦ρ)= 0 for any repre-
sentation ρ : 0→ GLm(K ). This is shown in [Lubotzky and Magid 1985], and we
recall the argument for the reader’s convenience. Let V = K m . It is well known that

H 1(0,EndK (V, V ))= Ext10(V, V )

[Lubotzky and Magid 1985, page 37], and Ext10(V, V )= 0 by Corollary 5.2. But
Ad ◦ ρ, whose underlying vector space is Mm(K ), can be naturally identified as a
0-module with EndK (V, V ), so H 1(0,Ad ◦ ρ)= 0, as claimed.

Superrigidity (compare [Bass et al. 1967, §16; Margulis 1991, Chapter VII]). Let
0=SLn(Z) (n≥3) and consider an abstract representation ρ : 0→GLm(K ). There
exists a rational representation σ : SLn(K )→ GLm(K ) such that ρ|1 = σ |1 for a
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suitable finite-index subgroup 1⊂0. Indeed, let f : Z→ A be the homomorphism
associated to ρ. Since A ' K (1)

× · · · × K (r) by Proposition 5.1, we see that f
is simply a diagonal embedding of Z into K × · · ·× K . But f has Zariski-dense
image, so r = 1, and the rest follows.

Notice that for a general ring of S-integers O, the algebraic group G(A) that
arises in Proposition 5.1 can be described as follows. Let G= RL/Q(L G), where
L G is the algebraic group obtained from G by extending scalars from Q to L and
RL/Q is the functor of restriction of scalars. Then G(K )'G(K )×· · ·×G(K ) with
the factors corresponding to all of the distinct embeddings of L into K [Platonov
and Rapinchuk 1994, §2.1.2]. The group G(A) is then obtained from G(K ) by
simply projecting to the factors corresponding to the embeddings ϕ1, . . . , ϕr , so
any representation of E(8,O) factors through G.

Remark 5.3. Let us point out that another situation in which Der f (R, K ) = 0
occurs is if K is a field of characteristic p > 0 and R is a commutative ring of
characteristic p such that R p

= R. This allows one to use arguments similar to the
ones presented in this section to recover results of Seitz [1997]. Details will be
published elsewhere.
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