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Hopf monoids from class functions
on unitriangular matrices

Marcelo Aguiar, Nantel Bergeron and Nathaniel Thiem

We build, from the collection of all groups of unitriangular matrices, Hopf
monoids in Joyal’s category of species. Such structure is carried by the collection
of class function spaces on those groups and also by the collection of superclass
function spaces in the sense of Diaconis and Isaacs. Superclasses of unitriangular
matrices admit a simple description from which we deduce a combinatorial model
for the Hopf monoid of superclass functions in terms of the Hadamard product
of the Hopf monoids of linear orders and of set partitions. This implies a recent
result relating the Hopf algebra of superclass functions on unitriangular matrices
to symmetric functions in noncommuting variables. We determine the algebraic
structure of the Hopf monoid: it is a free monoid in species with the canonical
Hopf structure. As an application, we derive certain estimates on the number of
conjugacy classes of unitriangular matrices.

Introduction

A Hopf monoid (in Joyal’s category of species) is an algebraic structure akin to
that of a Hopf algebra. Combinatorial structures that compose and decompose give
rise to Hopf monoids. These objects are the subject of [Aguiar and Mahajan 2010,
Part II]. The few basic notions and examples needed for our purposes are reviewed
in Section 1, including the Hopf monoids of linear orders, set partitions, and simple
graphs and the Hadamard product of Hopf monoids.

The main goal of this paper is to construct a Hopf monoid out of the groups of
unitriangular matrices with entries in a finite field and to do this in a transparent
manner. The structure exists on the collection of function spaces on these groups
and also on the collections of class function and superclass function spaces. It is
induced by two simple operations on this collection of groups: the passage from a
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matrix to its principal minors gives rise to the product, and direct sum of matrices
gives rise to the coproduct.

Class functions are defined for arbitrary groups. An abstract notion and theory
of superclass functions (and supercharacters) for arbitrary groups exists [Diaconis
and Isaacs 2008]. While a given group may admit several such theories, there is
a canonical choice of superclasses for a special class of groups known as algebra
groups. These notions are briefly discussed in Section 4.1. Unitriangular groups
are the prototype of such groups, and we employ the corresponding notion of super-
classes in Section 4.2. The study of unitriangular superclasses and supercharacters
was initiated in [André 1995a; 1995b], making use of the method of Kirillov [1995],
and by more elementary means in [Yan 2001].

Preliminaries on unitriangular matrices are discussed in Section 2. The Hopf
monoids f(U) of functions and cf(U) of class functions are constructed in Section 3.
The nature of the construction is fairly general; in particular, the same procedure
yields the Hopf monoid scf(U) of superclass functions in Section 4.2.

Unitriangular matrices over F2 may be identified with simple graphs, and direct
sums and the passage to principal minors correspond to simple operations on graphs.
This yields a combinatorial model for f(U) in terms of the Hadamard product
of the Hopf monoids of linear orders and of graphs, as discussed in Section 3.6.
The conjugacy classes on the unitriangular groups exhibit great complexity and
considerable attention has been devoted to their study [Goodwin 2006; Higman 1960;
Kirillov 1995; Vera-López et al. 2008]. We do not attempt an explicit combinatorial
description of the Hopf monoid cf(U). On the other hand, superclasses are well-
understood (Section 4.3), and such a combinatorial description exists for scf(U). In
Section 4.5, we obtain a combinatorial model in terms of the Hadamard product of
the Hopf monoids of linear orders and of set partitions. This has as a consequence
the main result of [Aguiar et al. 2012], as we explain in Section 6.2.

Employing the combinatorial models, we derive structure theorems for the Hopf
monoids f(U) and scf(U) in Section 5. Our main results state that both are free
monoids with the canonical Hopf structure (in which the generators are primitive).

Applications are presented in Section 6. With the aid of Lagrange’s theorem
for Hopf monoids, one may derive estimates on the number of conjugacy classes
of unitriangular matrices in the form of certain recursive inequalities. We obtain
this application in Section 6.1, where we also formulate a refinement of Higman’s
conjecture on the polynomiality of these numbers. Other applications involving the
Hopf algebra of superclass functions of [Aguiar et al. 2012] are given in Section 6.2.

We employ two fields: the base field k and the field of matrix entries F. We
consider algebras and groups of matrices with entries in F; all other vector spaces
are over k. The field of matrix entries is often assumed to be finite and sometimes
to be F2.
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1. Hopf monoids

We review the basics on Hopf monoids and recall three examples built from lin-
ear orders, set partitions, and simple graphs, respectively. We also consider the
Hadamard product of Hopf monoids. In later sections, Hopf monoids are built from
functions on unitriangular matrices. The constructions of this section will allow us
to provide combinatorial models for them.

1.1. Species and Hopf monoids. For the precise definitions of vector species and
Hopf monoid, we refer to [Aguiar and Mahajan 2010, Chapter 8]. The main
ingredients are reviewed below.

A vector species p is a collection of vector spaces p[I ], one for each finite set I ,
equivariant with respect to bijections I ∼= J . A morphism of species f : p→ q is a
collection of linear maps f I : p[I ] → q[I ] that commute with bijections.

A decomposition of a finite set I is a finite sequence (S1, . . . , Sk) of disjoint
subsets of I whose union is I . In this situation, we write

I = S1 t · · · t Sk .

A Hopf monoid consists of a vector species h equipped with two collections µ
and 1 of linear maps

h[S1]⊗ h[S2]
µS1,S2
−−−→ h[I ] and h[I ]

1S1,S2
−−−−→ h[S1]⊗ h[S2].

There is one map in each collection for each finite set I and each decomposition
I = S1 t S2. This data is subject to a number of axioms, of which the main ones
follow.

Associativity. For each decomposition I = S1 t S2 t S3, the diagrams

h[S1]⊗ h[S2]⊗ h[S3]
id⊗µS2,S3 //

µS1,S2⊗id
��

h[S1]⊗ h[S2 t S3]

µS1,S2tS3
��

h[S1 t S2]⊗ h[S3] µS1tS2,S3

// h[I ]

(1)

h[I ]
1S1tS2,S3 //

1S1,S2tS3
��

h[S1 t S2]⊗ h[S3]

1S1,S2⊗id
��

h[S1]⊗ h[S2 t S3] id⊗1S2,S3

// h[S1]⊗ h[S2]⊗ h[S3]

(2)

commute.
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Compatibility. Fix decompositions S1tS2= I =T1tT2, and consider the resulting
pairwise intersections

A := S1 ∩ T1, B := S1 ∩ T2, C := S2 ∩ T1, and D := S2 ∩ T2,

as illustrated below:

S1

S2

T1 T2

A B

C D

(3)

For any such pair of decompositions, the diagram

h[A]⊗ h[B]⊗ h[C]⊗ h[D]
∼= // h[A]⊗ h[C]⊗ h[B]⊗ h[D]

µA,C⊗µB,D

��
h[S1]⊗ h[S2] µS1,S2

//

1A,B⊗1C,D

OO

h[I ]
1T1,T2

// h[T1]⊗ h[T2]

(4)

must commute. The top arrow stands for the map that interchanges the middle
factors.

In addition, the Hopf monoid h is connected if h[∅] = k and the maps

h[I ]⊗ h[∅]
µI,∅ // h[I ]
1I,∅
oo and h[∅]⊗ h[I ]

µ∅,I // h[I ]
1∅,I
oo

are the canonical identifications.
The collection µ is the product, and the collection 1 is the coproduct of the

Hopf monoid h.
A Hopf monoid is (co)commutative if the left (right) diagram below commutes

for all decompositions I = S1 t S2:

h[S1]⊗ h[S2]
∼= //

µS1,S2 !!

h[S2]⊗ h[S1]

µS2,S1}}
h[I ]

h[S1]⊗ h[S2]
∼= // h[S2]⊗ h[S1]

h[I ]
1S1,S2

aa

1S2,S1

==
(5)

The top arrows stand for the map that interchanges the factors.
A morphism of Hopf monoids f : h→ k is a morphism of species that commutes

with µ and 1.
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1.2. The Hopf monoid of linear orders. For any finite set I , L[I ] is the set of all
linear orders on I . For instance, if I = {a, b, c},

L[I ] = {abc, bac, acb, bca, cab, cba}.

Let L[I ] denote the vector space with basis L[I ]. The collection L is a vector
species.

Let I = S1 t S2. Given linear orders `i on Si , i = 1, 2, their concatenation `1 · `2

is a linear order on I . This is the list consisting of the elements of S1 as ordered
by `1 followed by those of S2 as ordered by `2. Given a linear order ` on I and
S⊆ I , the restriction `|S (the list consisting of the elements of S written in the order
in which they appear in `) is a linear order on S. These operations give rise to maps

L[S1]×L[S2] → L[I ],

(`1, `2) 7→ `1 · `2
and

L[I ] → L[S1]×L[S2],

` 7→ (`|S1, `|S2).
(6)

Extending by linearity, we obtain linear maps

µS1,S2 : L[S1]⊗ L[S2] → L[I ] and 1S1,S2 : L[I ] → L[S1]⊗ L[S2]

that turn L into a Hopf monoid. For instance, given linear orders `i on Si , i = 1, 2,
the commutativity of (4) boils down to the fact that the concatenation of `1|A and
`2|C agrees with the restriction to T1 of `1·`2. The Hopf monoid L is cocommutative
but not commutative. For more details, see [Aguiar and Mahajan 2010, Section 8.5].

1.3. The Hopf monoid of set partitions. A partition of a finite set I is a collection
X of disjoint nonempty subsets whose union is I . The subsets are the blocks of X .

Given a partition X of I and S⊆ I , the restriction X |S is the partition of S whose
blocks are the nonempty intersections of the blocks of X with S. Let I = S1 t S2.
Given partitions X i of Si , i = 1, 2, their union is the partition X1 t X2 of I whose
blocks are the blocks of X1 and the blocks of X2. A quasishuffle of X1 and X2 is
any partition of I whose restriction to Si is X i , i = 1, 2.

Let 5[I ] denote the set of partitions of I and 5[I ] the vector space with basis
5[I ]. A Hopf monoid structure on 5 is defined and studied in [Aguiar and
Mahajan 2010, Section 12.6]. Among its various linear bases, we are interested in
the basis {m X } on which the operations are as follows. The product

µS1,S2 :5[S1]⊗5[S2] →5[I ]

is given by

µS1,S2(m X1 ⊗m X2)=
∑

X :
X |S1=X1
X |S2=X2

m X . (7)
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The coproduct
1S1,S2 :5[I ] →5[S1]⊗5[S2]

is given by

1S1,S2(m X )=

{
m X |S1

⊗m X |S2
if S1 is the union of some blocks of X ,

0 otherwise.
(8)

Note that the following conditions are equivalent for a partition X of I :

• S1 is the union of some blocks of X .

• S2 is the union of some blocks of X .

• X = X |S1 t X |S2 .

These operations turn the species 5 into a Hopf monoid that is both commutative
and cocommutative.

1.4. The Hopf monoid of simple graphs. A (simple) graph g on a finite set I is a
relation on I that is symmetric and irreflexive. The elements of I are the vertices
of g There is an edge between two vertices when they are related by g.

Given a graph g on I and S ⊆ I , the restriction g|S is the graph on S whose
edges are the edges of g between elements of S. Let I = S1 t S2. Given graphs gi

of Si , i = 1, 2, their union is the graph g1 t g2 of I whose edges are those of g1

and those of g2. A quasishuffle of g1 and g2 is any graph on I whose restriction
to Si is gi , i = 1, 2.

Let G[I ] denote the set of graphs on I and G[I ] the vector space with basis G[I ].
A Hopf monoid structure on G is defined and studied in [Aguiar and Mahajan 2010,
Section 13.2]. We are interested in the basis {mg} on which the operations are as
follows. The product

µS1,S2 : G[S1]⊗G[S2] → G[I ]

is given by
µS1,S2(mg1 ⊗mg2)=

∑
g:

g|S1=g1
g|S2=g2

mg. (9)

The coproduct
1S1,S2 : G[I ] → G[S1]⊗G[S2]

is given by

1S1,S2(mg)=

{
mg|S1

⊗mg|S2
if no edge of g connects S1 to S2,

0 otherwise.
(10)

Note that no edge of g connects S1 to S2 if and only if g = g|S1 t g|S2 .
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These operations turn the species G into a Hopf monoid that is both commutative
and cocommutative.

Remark 1. The dual of a species p is the collection p∗ of dual vector spaces:
p∗[I ] = p[I ]∗. A species p is said to be finite-dimensional if each space p[I ] is
finite-dimensional. Dualizing the operations of a finite-dimensional Hopf monoid h,
one obtains a Hopf monoid h∗. The Hopf monoid h is called self-dual if h ∼= h∗.
In general, such isomorphism is not unique.

Over a field of characteristic 0, a Hopf monoid that is connected, commutative,
and cocommutative is always self-dual. This is a consequence of the Cartier–Milnor–
Moore theorem. (The isomorphism with the dual is not canonical.)

In particular, the Hopf monoids 5 and G are self-dual. In [Aguiar and Mahajan
2010], the preceding descriptions of these Hopf monoids are stated in terms of their
duals 5∗ and G∗. A different description of 5 is given in [Aguiar and Mahajan
2010, Section 12.6.2]. To reconcile the two, one should use the explicit isomorphism
5∼=5∗ given in [Aguiar and Mahajan 2010, Proposition 12.48].

1.5. The Hadamard product. Given species p and q, their Hadamard product is
the species p× q defined by

( p× q)[I ] = p[I ]⊗ q[I ].

If h and k are Hopf monoids, then so is h× k with the following operations. Let
I = S1 t S2. The product is

(h× k)[S1]⊗ (h× k)[S2] // (h× k)[I ]

h[S1]⊗ k[S1]⊗ h[S2]⊗ k[S2] ∼=

// h[S1]⊗ h[S2]
⊗ k[S1]⊗ k[S2] µS,T⊗µS,T

// h[I ]⊗ k[I ]

and the coproduct is defined dually. If h and k are (co)commutative, then so is
h× k. For more details, see [Aguiar and Mahajan 2010, Section 8.13].

2. Unitriangular matrices

This section sets up the basic notation pertaining to unitriangular matrices and
discusses two simple but important constructions: direct sum of matrices and the
passage from a matrix to its principal minors. The Hopf monoid constructions of
later sections are based on them. The key results are Lemmas 2 and 3. The former
is the reason why we must use unitriangular matrices: for arbitrary matrices, the
passage to principal minors is not multiplicative. The latter will be responsible (in
later sections) for the necessary compatibility between the product and coproduct
of the Hopf monoids.
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Let F be a field, I a finite set, and ` a linear order on I . Let M(I ) denote the
algebra of matrices

A = (ai j )i, j∈I , ai j ∈ F for all i, j ∈ I .

The general linear group GL(I ) consists of the invertible matrices in M(I ), and the
subgroup U(I, `) consists of the upper `-unitriangular matrices

U = (ui j )i, j∈I , ui i = 1 for all i ∈ I and ui j = 0 whenever i >` j .

If `′ is another linear order on I , then U(I, `) and U(I, `′) are conjugate subgroups
of GL(I ). However, we want to keep track of all groups in this collection and of
the manner in which they interact.

2.1. Direct sum of matrices. Suppose I = S1 t S2 is a decomposition. Given
A = (ai j ) ∈M(S1) and B = (bi j ) ∈M(S2), their direct sum is

A⊕ B = (ci j ) ∈M(I ),

the matrix with entries

ci j =


ai j if both i, j ∈ S1,
bi j if both i, j ∈ S2,
0 otherwise.

Let ` ∈ L[I ]. The direct sum of an `|S1-unitriangular and an `|S2-unitriangular
matrix is `-unitriangular. The morphism of algebras

M(S1)×M(S2)→M(I ), (A, B) 7→ A⊕ B

thus restricts to a morphism of groups

σS1,S2 : U(S1, `|S1)×U(S2, `|S2)→ U(I, `). (11)

(The dependence of σS1,S2 on ` is left implicit.)
Direct sum of matrices is associative; thus, for any decomposition I = S1tS2tS3,

the diagram

U(S1, `|S1)×U(S2, `|S2)×U(S3, `|S3)

id×σS2,S3
��

σS1,S2×id
// U(S1t S2, `|S1tS2)×U(S3, `|S3)

σS1tS2,S3

��
U(S1, `|S1)×U(S2t S3, `|S2tS3) σS1,S2tS3

// U(I, `)

(12)
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commutes. Note also that, with these definitions, A⊕ B and B⊕ A are the same
matrix. Thus, the following diagram commutes:

U(S1, `|S1)×U(S2, `|S2)
∼= //

σS1,S2 ((

U(S2, `|S2)×U(S1, `|S1)

σS2,S1vv
U(S1 t S2, `)

(13)

2.2. Principal minors. Given A = (ai j ) ∈M(I ), the principal minor indexed by
S ⊆ I is the matrix

AS = (ai j )i, j∈S.

In general, AS is not invertible even if A is. In addition, the assignment A 7→ AS

does not preserve multiplications. On the other hand, if U is `-unitriangular, then US

is `|S-unitriangular. In regard to multiplicativity, we have the following basic fact.
We say that S is an `-segment if i, k ∈ S and i <` j <` k imply that also j ∈ S.
Let Ei j ∈M(I ) denote the elementary matrix in which the (i, j) entry is 1 and

all other entries are 0.

Lemma 2. Let ` ∈ L[I ] and S ⊆ I . The map

U(I, `)→ U(S, `|S), U 7→US

is a morphism of groups if and only if S is an `-segment.

Proof. Suppose the map is a morphism of groups. Let i, j, k ∈ I be such that i, k ∈ S
and i <` j <` k. The matrices

Id+ Ei j and Id+ E jk

are in U(I, `), and

(Id+ Ei j ) · (Id+ E jk)= Id+ Ei j + E jk + Eik .

If j /∈ S, then the two matrices are in the kernel of the map while their product is
mapped to Id+ Eik 6= Id. Thus, j ∈ S and S is an `-segment.

The converse implication follows from the fact that if U and V are `-unitriangular,
then the (i, k) entry of U V is ∑

i≤` j≤`k

ui jv jk . �

Let I = S1 t S2 be a decomposition with `i ∈ L[Si ], i = 1, 2. We define a map

πS1,S2 : U(I, `1 · `2)→ U(S1, `1)×U(S2, `2) (14)

by
U 7→ (US1,US2).
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Note that S1 is an initial segment for `1 · `2 and S2 is a final segment for `1 · `2.
Thus, πS1,S2 is a morphism of groups by Lemma 2.

If R ⊆ S ⊆ I , then (AS)R = AR . This implies the following commutativity for
any decomposition I = S1 t S2 t S3 and `i ∈ L[Si ], i = 1, 2, 3:

U(I, `1 · `2 · `3)
πS1tS2,S3 //

πS1,S2tS3

��

U(S1 t S2, `1 · `2)×U(S3, `3)

πS1,S2×id

��
U(S1, `1)×U(S2 t S3, `2 · `3) id×πS2,S3

// U(S1, `1)×U(S2, `2)×U(S3, `3)

(15)

2.3. Direct sums and principal minors. The following key result relates the col-
lection of morphisms σ to the collection π :

Lemma 3. Fix two decompositions I = S1 t S2 = T1 t T2, and let A, B, C , and D
be the resulting intersections, as in (3). Let `i be a linear order on Si , i = 1, 2, and
`= `1 · `2. Then the following diagram commutes:

U(T1, `|T1)×U(T2, `|T2)

σT1,T2

��

πA,C×πB,D // U(A, `1|A)×U(C, `2|C)
×U(B, `1|B)×U(D, `2|D)

∼=

��

U(I, `)

πS1,S2

��
U(S1, `1)×U(S2, `2) U(A, `1|A)×U(B, `1|B)

×U(C, `2|C)×U(D, `2|D)σA,B×σC,D

oo

(16)

Proof. First note that since `|T1 = (`1|A) · (`2|C), πA,C does map as stated in the
diagram and similarly for πB,D . The commutativity of the diagram boils down to
the simple fact that

(U ⊕ V )S1 =UA⊕ VB

(and a similar statement for S2, C , and D). This holds for any U ∈ M(T1) and
V ∈M(T2). �

3. A Hopf monoid of (class) functions

We employ the operations of Section 2 (direct sum of matrices and the passage from
a matrix to its principal minors) to build a Hopf monoid structure on the collection
of function spaces on unitriangular matrices. The collection of class function spaces
gives rise to a Hopf submonoid. With matrix entries in F2, the Hopf monoid of
functions may be identified with the Hadamard product of the Hopf monoids of
linear orders and of simple graphs.
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3.1. Functions. Given a set X , let f(X) denote the vector space of functions on X
with values on the base field k. The functor

f : {sets} → {vector spaces}

is contravariant. If at least one of two sets X1 and X2 is finite, then there is a
canonical isomorphism

f(X1× X2)∼= f(X1)⊗ f(X2). (17)

A function f ∈ f(X1×X2) corresponds to
∑

i f 1
i ⊗ f 2

i ∈ f(X1)⊗f(X2) if and only if

f (x1, x2)=
∑

i

f 1
i (x1) f 2

i (x2) for all x1 ∈ X1 and x2 ∈ X2.

Given an element x ∈ X , let κx : X→ k denote its characteristic function:

κx(y)=
{

1 if y = x,
0 if not.

(18)

Suppose now that X is finite. As x runs over the elements of X , the functions κx form
a linear basis of f(X). If ϕ : X→ X ′ is a function and x ′ is an element of X ′, then

κx ′ ◦ϕ =
∑

ϕ(x)=x ′
κx . (19)

Under (17),

κ(x1,x2)↔ κx1 ⊗ κx2 . (20)

3.2. Class functions on groups. Given a group G, let cf(G) denote the vector
space of class functions on G. These are the functions f : G→ k that are constant
on conjugacy classes of G. If ϕ : G→ G ′ is a morphism of groups and f is a class
function on G ′, then f ◦ϕ is a class function on G. In this manner,

cf : {groups} → {vector spaces}

is a contravariant functor. If at least one of two groups G1 and G2 is finite, then
there is a canonical isomorphism

cf(G1×G2)∼= cf(G1)⊗ cf(G2) (21)

obtained by restriction from the isomorphism (17).
Given a conjugacy class C of G, let κC :G→ k denote its characteristic function:

κC(x)=
{

1 if x ∈ C ,
0 if not.

(22)
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Suppose G has finitely many conjugacy classes. As C runs over the conjugacy
classes of G, the functions κC form a linear basis of cf(G). If C ′ is a conjugacy
class of G ′, then

κC ′ ◦ϕ =
∑

ϕ(C)⊆C ′
κC . (23)

The conjugacy classes of G1×G2 are of the form C1×C2, where Ci is a conjugacy
class of Gi , i = 1, 2. Under (21),

κC1×C2 ↔ κC1 ⊗ κC2 . (24)

3.3. Functions on unitriangular matrices. We assume for the rest of this section
that the field F of matrix entries is finite. Thus, all groups U(I, `) of unitriangular
matrices are finite.

We define a vector species f(U) as follows. On a finite set I ,

f(U)[I ] =
⊕
`∈L[I ]

f(U(I, `)).

In other words, f(U)[I ] is the direct sum of the spaces of functions on all unitriangu-
lar groups on I . A bijection σ : I ∼= J induces an isomorphism U(I, `)∼=U(J, σ ·`)
and therefore an isomorphism f(U)[I ] ∼= f(U)[J ]. Thus, f(U) is a species.

Let I = S1 t S2 and `i ∈ L[Si ], i = 1, 2. Applying the functor f to the morphism
πS1,S2 in (14) and composing with the isomorphism in (17), we obtain a linear map

f(U(S1, `1))⊗ f(U(S2, `2))→ f(U(I, `1 · `2)).

Adding over all `1 ∈ L[S1] and `2 ∈ L[S2], we obtain a linear map

µS1,S2 : f(U)[S1]⊗ f(U)[S2] → f(U)[I ]. (25)

Explicitly, given functions f : U(S1, `1)→ k and g : U(S2, `2)→ k,

µS1,S2( f ⊗ g) : U(I, `1 · `2)→ k

is the function given by
U 7→ f (US1)g(US2). (26)

Similarly, from the map σS1,S2 in (11), we obtain the components

f(U(I, `))→ f(U(S1, `|S1))⊗ f(U(S2, `|S2))

(one for each ` ∈ L[I ]) of a linear map

1S1,S2 : f(U)[I ] → f(U)[S1]⊗ f(U)[S2]. (27)
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Explicitly, given a function f : U(I, `)→ k, we have 1S1,S2( f ) =
∑

i f 1
i ⊗ f 2

i ,
where

f 1
i : U(S1, `|S1)→ k and f 2

i : U(S2, `|S2)→ k

are functions such that

f (U1⊕U2)=
∑

i

f 1
i (U1) f 2

i (U2)

for all U1 ∈ U(S1, `|S1) and U2 ∈ U(S2, `|S2). (28)

Proposition 4. With the operations (25) and (27), the species f(U) is a connected
Hopf monoid. It is cocommutative.

Proof. Axioms (1), (2), and (4) follow from (12), (15), and (16) by functoriality. In
the same manner, cocommutativity (5) follows from (13). �

We describe the operations on the basis of characteristic functions (18). Let
Ui ∈U(Si , `i ), i=1, 2. It follows from (19) and (20), or from (26), that the product is

µS1,S2(κU1 ⊗ κU2)=
∑

πS1,S2 (U )=(U1,U2)

κU =
∑

US1=U1
US2=U2

κU . (29)

Similarly, the coproduct is

1S1,S2(κU )=
∑

σS1,S2 (U1,U2)=U

κU1 ⊗ κU2 =

{
κUS1
⊗ κUS2

if U =US1 ⊕US2 ,
0 otherwise.

(30)

3.4. Constant functions. Let 1` denote the constant function on U(I, `) with
value 1. Let I = S1 t S2. It follows from (26) that

µS1,S2(1`1 ⊗ 1`2)= 1`1·`2

for any `1 ∈ L[S1] and `2 ∈ L[S2]. Similarly, we see from (28) that

1S1,S2(1`)= 1`|S1
⊗ 1`|S2

for any ` ∈ L[I ]. We thus have:

Corollary 5. The collection of maps

L[I ] → f(U)[I ], ` 7→ 1`

is an injective morphism of Hopf monoids.
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3.5. Class functions on unitriangular matrices. Let cf(U)[I ] be the direct sum
of the spaces of class functions on all unitriangular groups on I :

cf(U)[I ] =
⊕
`∈L[I ]

cf(U(I, `)).

This defines a subspecies cf(U) of f(U).
Proceeding in the same manner as in Section 3.3, we obtain linear maps

cf(U)[S1]⊗ cf(U)[S2]
µS1,S2 // cf(U)[I ]
1S1,S2

oo

by applying the functor cf to the morphisms πS1,S2 and σS1,S2 . This is meaningful
since the latter are morphisms of groups (in the case of πS1,S2 , by Lemma 2).

Proposition 6. With these operations, the species cf(U) is a connected cocommuta-
tive Hopf monoid. It is a Hopf submonoid of f(U).

Proof. As in the proof of Proposition 4, the first statement follows by functoriality.
The second follows from the naturality of the inclusion of class functions and its
compatibility with the isomorphisms in (17) and (21). �

We describe the operations on the basis of characteristic functions (22). Let Ci

be a conjugacy class of U(Si , `i ), i = 1, 2. It follows from (23) and (24) that the
product is

µS1,S2(κC1 ⊗ κC2)=
∑

πS1,S2 (C)⊆C1×C2

κC , (31)

where the sum is over conjugacy classes C in U(I, `1·`2). Similarly, the coproduct is

1S1,S2(κC)=
∑

σS1,S2 (C1×C2)⊆C

κC1 ⊗ κC2 . (32)

Here C is a conjugacy class of U(I, `), and the sum is over pairs of conjugacy
classes Ci of U(Si , `|Si ).

Remark 7. Let
F : {groups} → {vector spaces}

be a functor that is contravariant and bilax monoidal in the sense of [Aguiar and
Mahajan 2010, Section 3.1]. The construction of the Hopf monoids f(U) and
cf(U) can be carried out for any such functor F in place of cf in exactly the same
manner. It can also be carried out for a covariant bilax monoidal functor F in
a similar manner.
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3.6. A combinatorial model. To a unitriangular matrix U ∈ U(I, `), we associate
a graph g(U ) on I as follows: there is an edge between i and j if i < j in ` and
ui j 6= 0. For example, given nonzero entries a, b, c ∈ F,

`= hi jk, U =


1 0 0 a

1 b c
1 0

1

 H⇒ g(U )= • • • •

h i j k
. (33)

Recall the Hopf monoids L and G and the notion of Hadamard product from
Section 1. Let

φ : L× G→ f(U)

be the map with components

(L× G)[I ] → f(U)[I ]

given as follows. On a basis element `⊗mg ∈ L[I ]⊗G[I ] = (L×G)[I ], we set

φ(`⊗mg)=
∑

U∈U(I,`)
g(U )=g

κU ∈ f(U(I, `))⊆ f(U)[I ] (34)

and extend by linearity. The map relates the m-basis of G to the basis of character-
istic functions (18) of f(U).

Proposition 8. Let F be an arbitrary finite field. The map φ : L× G→ f(U) is an
injective morphism of Hopf monoids.

Proof. From the definition of the Hopf monoid operations on a Hadamard product
and formulas (6) and (9), it follows that

µS1,S2

(
(`1⊗mg1)⊗ (`2⊗mg2)

)
=

∑
g|S1=g1
g|S2=g2

`1 · `2⊗mg.

Comparing with (29), we see that products are preserved since given U ∈ U(I, `),
we have

g(USi )= g(U )|Si .

The verification for coproducts is similar, employing (6), (10), and (30) and the fact
that given I = S1 t S2 and Ui ∈ U(Si , `|Si ), we have

g(U1⊕U2)= g(U1)t g(U2).

Consider the map ψ : f(U)→ L× G given by

ψ(κU )= `⊗mg(U ) (35)
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for any U ∈ U(I, `). Then

ψφ(`⊗mg)= (q − 1)e(g)`⊗mg,

where q is the cardinality of F and e(g) is the number of edges in g. Thus, φ is
injective. �

We mention that the map ψ in (35) is a morphism of comonoids but not of
monoids in general.

Assume now that the matrix entries are from F2, the field with two elements.
In this case, the matrix U is uniquely determined by the linear order ` and the
graph g(U ). Therefore, the map φ is invertible with inverse ψ .

Corollary 9. There is an isomorphism of Hopf monoids

f(U)∼= L× G

between the Hopf monoid of functions on unitriangular matrices with entries in F2

and the Hadamard product of the Hopf monoids of linear orders and simple graphs.

On an arbitrary function f : U(I, `)→ k, the isomorphism is given by

ψ( f )= `⊗
∑

U∈U(I,`)

f (U )mg(U ).

The coefficients of the m-basis elements are the values of f .

4. A Hopf monoid of superclass functions

An abstract notion of superclass (and supercharacter) has been introduced by
Diaconis and Isaacs [2008]. We only need a minimal amount of related concepts
that we review in Sections 4.1 and 4.2. For this purpose, we first place ourselves in
the setting of algebra groups. In Section 4.2, we construct a Hopf monoid structure
on the collection of spaces of superclass functions on the unitriangular groups by
the same procedure as that in Section 3. The combinatorics of these superclasses
is understood from the thesis of Yan [2001] (reviewed in slightly different terms
in Section 4.3), and this allows us to obtain an explicit description for the Hopf
monoid operations in Section 4.4. This leads to a theorem in Section 4.5 identifying
the Hopf monoid of superclass functions with matrix entries in F2 to the Hadamard
product of the Hopf monoids of linear orders and set partitions. The combinatorial
models for functions and for superclass functions are related in Section 4.6.

4.1. Superclass functions on algebra groups. Let n be a nilpotent algebra: an
associative, nonunital algebra in which every element is nilpotent. Let n= F⊕ n

denote the result of adjoining a unit to n. The set

G(n)= {1+ n | n ∈ n}
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is a subgroup of the group of invertible elements of n. A group of this form is called
an algebra group. (This is the terminology employed in [Diaconis and Isaacs 2008]
and, in a slightly different context, [André 1999; Isaacs 1995].)

A morphism of nilpotent algebras ϕ :m→n has a unique unital extension m→n,
and this sends G(m) to G(n). A morphism of algebra groups is a map of this form.

Warning. When we refer to the algebra group G(n), it is implicitly assumed that
the algebra n is given as well.

Following Yan [2001], we define an equivalence relation on G(n) as follows.
Given x, y ∈ G(n), we write x ∼ y if there exist g, h ∈ G(n) such that

y− 1= g(x − 1)h. (36)

Following now Diaconis and Isaacs [2008], we refer to the equivalence classes
of this relation as superclasses and to the functions G(n)→ k constant on these
classes as superclass functions. The set of such functions is denoted scf(G(n)).

Since
gxg−1

− 1= g(x − 1)g−1,

we have that x ∼ gxg−1 for any x, g ∈ G(n). Thus, each superclass is a union of
conjugacy classes, and hence, every superclass function is a class function:

scf(G(n))⊆ cf(G(n)). (37)

A morphism ϕ : G(m) → G(n) of algebra groups preserves the relation ∼.
Therefore, if f : G(n) → k is a superclass function on G(n), then f ◦ ϕ is a
superclass function on G(m). In this manner,

scf : {algebra groups} → {vector spaces}

is a contravariant functor. In addition, the inclusion (37) is natural with respect to
morphisms of algebra groups.

The direct product of two algebra groups is another algebra group. Indeed,

G(n1)×G(n2)∼= G(n1⊕ n2)

and n1⊕ n2 is nilpotent. Moreover,

(x1, x2)∼ (y1, y2) ⇐⇒ (x1 ∼ y1 and x2 ∼ y2).

Therefore, a superclass of the product is a pair of superclasses from the factors, and
if at least one of the two groups is finite, there is a canonical isomorphism

scf(G(n1)×G(n2))∼= scf(G(n1))⊗ scf(G(n2)).
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4.2. Superclass functions on unitriangular matrices. Given a finite set I and a
linear order ` on I , let n(I, `) denote the subalgebra of M(I ) consisting of strictly
upper-triangular matrices

N = (ni j )i, j∈I , ni j = 0 whenever i ≥` j .

Then n(I, `) is nilpotent and G(n(I, `))= U(I, `). Thus, the unitriangular groups
are algebra groups.

We assume from now on that the field F is finite.
We define, for each finite set I ,

scf(U)[I ] =
⊕
`∈L[I ]

scf(U(I, `)).

This defines a species scf(U). Proceeding in the same manner as in Sections 3.3
and 3.5, we obtain linear maps

scf(U)[S1]⊗ scf(U)[S2]
µS1,S2 // scf(U)[I ]
1S1,S2

oo

by applying the functor scf to the morphisms πS1,S2 and σS1,S2 . This is meaningful
since the latter are morphisms of algebra groups: it was noted in Section 2.1 that
σS1,S2 is the restriction of a morphism defined on the full matrix algebras while
the considerations of Lemma 2 show that πS1,S2 is the restriction of a morphism
defined on the algebra of upper-triangular matrices.

Proposition 10. With these operations, the species scf(U) is a connected cocom-
mutative Hopf monoid. It is a Hopf submonoid of cf(U).

Proof. As in the proof of Proposition 4, the first statement follows by functoriality.
The second follows from the naturality of the inclusion (37). �

(31) and (32) continue to hold for the (co)product of superclass functions.
The constant function 1` is a superclass function. Thus, the morphism of Hopf

monoids of Corollary 5 factors through scf(U) and cf(U):

L ↪→ scf(U) ↪→ cf(U) ↪→ f(U).

4.3. Combinatorics of the superclasses. Yan [2001] showed superclasses are para-
metrized by certain combinatorial data essentially along the lines presented below.

According to (36), two unitriangular matrices U1 and U2 are in the same super-
class if and only if U2−Id is obtained from U1−Id by a sequence of elementary row
and column operations. The available operations are from the unitriangular group
itself, so the pivot entries cannot be normalized. Thus, each superclass contains
a unique matrix U such that U − Id has at most one nonzero entry in each row



Hopf monoids from class functions on unitriangular matrices 1761

and each column. We refer to this matrix U as the canonical representative of the
superclass.

We proceed to encode such representatives in terms of combinatorial data.
We first discuss the combinatorial data. Let ` be a linear order on a finite set I

and X a partition of I . Let us say that i, j ∈ I bound an arc if

• i precedes j in `,

• i and j are in the same block of X , say S, and

• no other element of S lies between i and j in the order `.

The set of arcs is

A(X, `) := {(i, j) | i and j bound an arc}.

Consider also a function
α : A(X, `)→ F×

from the set of arcs to the nonzero elements of F. We say that the pair (X, α) is an
arc diagram on the linearly ordered set (I, `). We may visualize an arc diagram:

•

a

• •

c

•

b

• •

f g h i j k

Here the combinatorial data is

`= f ghi jk, X ={{ f, i, j}, {g}, {h, k}}, α( f, i)= a, α(i, j)= b, α(h, k)= c.

Fix the linear order `. To an arc diagram (X, α) on (I, `), we associate a matrix
UX,α with entries

ui j =


α(i, j) if (i, j) ∈ A(X, `),
1 if i = j ,
0 otherwise.

Clearly, the matrix UX,α is `-unitriangular and UX,α − Id has at most one nonzero
entry in each row and each column. In the above example,

UX,α =



1 0 0 a 0 0
1 0 0 0 0

1 0 0 c
1 d 0

1 0
1


.

Conversely, any canonical representative matrix U ∈ U(I, `) is of the form UX,α

for a unique arc diagram (X, α) on (I, `): the location of the nonzero entries
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determines the set of arcs, and the values of the entries determine the function α.
The smallest equivalence relation on I containing the set of arcs determines the
partition X .

In conclusion, the canonical representatives, and hence the superclasses, are in
bijection with the set of arc diagrams. We let CX,α denote the superclass of U(I, `)
containing UX,α , and we write κX,α for the characteristic function of this class. As
(X, α) runs over all arc diagrams on (I, `), these functions form a basis of the space
scf(U(I, `)).

We describe principal minors and direct sums of the canonical representatives. To
this end, fix ` ∈ L[I ] and recall the notions of union and restriction of set partitions
discussed in Section 1.3.

Let S⊆ I be an arbitrary subset. Given a partition X of I , let A(X, `)|S denote the
subset of A(X, `) consisting of those arcs (i, j) where both i and j belong to S. We
let α|S denote the restriction of α to A(X, `)|S . We have A(X, `)|S ⊆ A(X |S, `|S),
and if S is an `-segment, then

A(X, `)|S = A(X |S, `|S). (38)

In this case, we obtain an arc diagram (X |S, α|S) on (S, `|S), and we have

(UX,α)S =UX |S,α|S . (39)

Suppose now that I = S1tS2 and (X i , αi ) is an arc diagram on (Si , `|Si ), i = 1, 2.
Then

A(X1 t X2, `)= A(X1, `|S1)t A(X2, `|S2). (40)

Let α1 t α2 denote the common extension of α1 and α2 to this set. Then the pair
(X1 t X2, α1 tα2) is then an arc diagram on (I, `) and

UX1,α1 ⊕UX2,α2 =UX1tX2,α1tα2 . (41)

4.4. Combinatorics of the (co)product. We now describe the product and coprod-
uct of the Hopf monoid scf(U) on the basis {κX,α} of Section 4.3. We employ (31)
and (32), which, as discussed in Section 4.2, hold for superclass functions.

Let I = S1 t S2 and `i ∈ L[Si ], i = 1, 2, and consider the product

scf(U(S1, `1))× scf(U(S2, `2))→ scf(U(I, `1 · `2)).

Let (X i , αi ) be an arc diagram on (I, `i ), i = 1, 2. According to (31), we have

µS1,S2(κX1,α1 ⊗ κX2,α2)=
∑

πS1,S2 (CX,α)⊆CX1,α1×CX2,α2

κX,α,
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a sum over arc diagrams (X, α) on (I, `1 · `2). Since πS,T preserves superclasses,

πS1,S2(CX,α)⊆ CX1,α1 ×CX2,α2 ⇐⇒ πS1,S2(UX,α) ∈ CX1,α1 ×CX2,α2

⇐⇒ (UX,α)Si ∈ CX i ,αi , i = 1, 2.

In view of (39), this is in turn equivalent to

X |Si = X i and α|Si ,= αi , i = 1, 2.

In conclusion,
µS1,S2(κX1,α1 ⊗ κX2,α2)=

∑
X |Si=X i
α|Si=αi

κX,α. (42)

The sum is over all arc diagrams (X, α) on (I, `1 · `2) whose restriction to Si is
(X i , αi ) for i = 1, 2.

Take now ` ∈ L[I ], I = S1 t S2, and consider the coproduct

scf(U(I, `))→ scf(U(S1, `|S1))× scf(U(S2, `|S2)).

Let (X, α) be an arc diagram on (I, `). According to (32), we have

1S1,S2(κX,α)=
∑

σS1,S2 (CX1,α1×CX2,α2 )⊆CX,α

κX1,α1 ⊗ κX2,α2,

a sum over arc diagrams (X i , αi ) on (Si , `|Si ). The superclass CX1,α1 × CX2,α2

contains (UX1,α1,UX2,α2), and hence, its image under σS1,S2 contains

UX1,α1 ⊕UX2,α2 =UX1tX2,α1tα2

by (41). Therefore,

σS1,S2(CX1,α1 ×CX2,α2)⊆ CX,α ⇐⇒ X1 t X2 = X and α1 tα2 = α.

Note that X1 t X2 = X if and only if S1 (or equivalently, S2) is a union of blocks
of X . In this case, X i = X |Si and αi = α|Si . In conclusion,

1S1,S2(κX,α)=

{
κX |S1 ,α|S1

⊗ κX |S2 ,α|S2
if S1 is the union of some blocks of X ,

0 otherwise.
(43)

4.5. Decomposition as a Hadamard product. The apparent similarity between the
combinatorial description of the Hopf monoid operations of scf(U) in Section 4.4
and those of the Hopf monoids L and 5 in Sections 1.2 and 1.3 can be formalized.
Recall the Hadamard product of Hopf monoids from Section 1.5.

Let
φ : L×5→ scf(U)
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be the map with components

(L×5)[I ] → scf(U)[I ]

given as follows. On a basis element `⊗m X ∈ L[I ]⊗5[I ] = (L×5)[I ], we set

φ(`⊗m X )=
∑

α:A(X,`)→F×

κX,α ∈ scf(U(I, `))⊆ scf(U)[I ] (44)

and extend by linearity. The morphism φ adds labels to the arcs in all possible ways.

Proposition 11. Let F be an arbitrary finite field. The map φ : L×5→ scf(U) is
an injective morphism of Hopf monoids.

Proof. This follows by comparing definitions, as in the proof of Proposition 8. The
relevant equations are (6), (7), and (8) for the operations of L×5 and (42) and (43)
for the operations of scf(U). �

When the field of matrix entries is F2, the arc labels are uniquely determined.
The map φ is then invertible with inverse ψ given by

ψ(κX,α)= `⊗m X

for any arc diagram (X, α) on a linearly ordered set (I, `). We thus have:

Corollary 12. There is an isomorphism of Hopf monoids

scf(U)∼= L×5

between the Hopf monoid of superclass functions on unitriangular matrices with
entries in F2 and the Hadamard product of the Hopf monoids of linear orders and
set partitions.

4.6. Relating the combinatorial models. The results of Section 4.5 provide a com-
binatorial model for the Hopf monoid scf(U). They parallel those of Section 3.6 that
do the same for f(U). We now interpret the inclusion scf(U) ↪→ f(U) in these terms.

Let X be a partition on a linearly ordered set (I, `). We may regard the set of
arcs A(X, `) as a simple graph on I . Let G(X, `) denote the set of simple graphs g
on I such that

• g contains the graph A(X, `) and

• if i < j in ` and g \ A(X, `) contains an edge between i and j , then there
exists k such that

i < k < j in ` and either (i, k) ∈ A(X, `) or (k, j) ∈ A(X, `).
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The following illustrates the extra edges (dotted) that may be present in g when an
arc (solid) is present in A(X, `):

. . . • . . . • . . . • . . . • . . .

Define a map
L×5→ L× G

with components

(L×5)[I ] → (L× G)[I ], `⊗m X 7→ `⊗
∑

g∈G(X,`)

mg.

Proposition 13. The map L ×5 → L × G is an injective morphism of Hopf
monoids. Moreover, the following diagram commutes:

L×5
� � //

φ

��

L× G

φ

��
scf(U) �

� // f(U)

Proof. It is enough to prove the commutativity of the diagram since all other maps
in the diagram are injective morphisms. The commutativity boils down to the
following fact. Given X ∈5[I ], ` ∈ L[I ], and U ∈ U(I, `),

U ∈ CX,α for some α : A(X, `)→ F× ⇐⇒ g(U ) ∈ G(X, `).

This expresses the fact that a matrix U belongs to the superclass CX,α if and only if
the nonzero entries of U − Id are located either above or to the right of the nonzero
entries of the representative UX,α. �

5. Freeness

We prove that the Hopf monoids f(U) and scf(U) are free and the Hopf structure is
isomorphic to the canonical one on a free monoid. We assume that the base field k
is of characteristic 0, which enables us to apply the results of the Appendix.

5.1. A partial order on arc diagrams. Let (I, `) be a linearly ordered set. Given
arc diagrams (X, α) and (Y, β) on (I, `), we write

(X, α)≤ (Y, β)

if
A(X, `)⊆ A(Y, `) and β|A(X,`) = α.
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In other words, every arc of X is an arc of Y and with the same label. In particular,
the partition Y is coarser than X . On the other hand, the following arc diagrams
are incomparable (regardless of the labels) even though the partition on the right is
the coarsest one:

• • •

i j k
• • •

i j k

The poset of arc diagrams has a unique minimum (the partition into singletons,
for which there are no arcs) but several maximal elements. The arc diagrams above
are the two maximal elements when `= i jk (up to a choice of labels).

A partition X of the linearly ordered set (I, `) is atomic if no proper initial
`-segment of I is a union of blocks of X . Equivalently, there is no decomposition
I = S1 t S2 into proper `-segments such that X = X |S1 t X |S2 .

• • • •

atomic
• • • •

nonatomic

If (X, α) is a maximal element of the poset of arc diagrams, then X is an atomic
partition. But if X is atomic, (X, α) need not be maximal (regardless of α).

• • • •

maximal
(H⇒atomic)

• • • •

atomic
not maximal

5.2. A second basis for scf(U). We employ the partial order of Section 5.1 to
define a new basis {λX,α} of scf(U(I, `)) by

λX,α =
∑

(X,α)≤(Y,β)

κY,β . (45)

The product of the Hopf monoid scf(U) takes a simple form on the λ-basis.

Proposition 14. Let I = S1 t S2 and `i ∈ L[Si ], i = 1, 2. Then

µS1,S2(λX1,α1 ⊗ λX2,α2)= λX1tX2,α1tα2 (46)

for any arc diagrams (X i , αi ) on (Si , `i ), i = 1, 2.

Proof. We calculate using (42) and (45):

µS1,S2(λX1,α1⊗λX2,α2)=
∑

(X i ,αi )≤(Yi ,βi )

µS1,S2(κY1,β1⊗κY2,β2)=
∑

(X i ,αi )≤(Y |Si ,β|Si )

κY,β .

Now by (38) and (40), we have

(X i , αi )≤ (Y |Si , β|Si ), i = 1, 2 ⇐⇒ (X1 t X2, α1 tα2)≤ (Y, β).
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Therefore,

µS1,S2(λX1,α1 ⊗ λX2,α2)=
∑

(X1tX2,α1tα2)≤(Y,β)

κY,β = λX1tX2,α1tα2 . �

The coproduct of the Hopf monoid scf(U) takes the same form on the λ-basis as
on the κ-basis.

Proposition 15. Let I = S1 t S2 and ` ∈ L[I ]. Then

1S1,S2(λX,α)=

{
λX |S1 ,α|S1

⊗ λX |S2 ,α|S2
if S1 is the union of some blocks of X ,

0 otherwise.
(47)

Proof. Suppose first that S1 is not the union of blocks of X . Then the same is true
for any partition coarser than X , in particular for any partition Y entering in (45).
In view of (43), we then have 1S1,S2(λX,α)= 0.

Otherwise, X = X |S1 t X |S2 and α= α|S1 tα|S2 . Among the arc diagrams (Y, β)
entering in (45), only those for which Y = Y |S1 t Y |S2 contribute to the coproduct,
in view of (43). These arc diagrams are of the form Y = Y1 t Y2 and β = β1 tβ2,
and by (40), we must have

A(X |Si , `|Si )⊆ A(Yi , `|Si ) and βi |A(X |Si ,`|Si )
= α|Si , i = 1, 2.

We then have

1S1,S2(λX,α)=
∑

(X,α)≤(Y,β)

1(κY,β)

=

∑
(X |Si ,α|Si )≤(Yi ,βi )

κY1,β1 ⊗ κY2,β2 = λX |S1 ,α|S1
⊗ λX |S2 ,α|S2

. �

Remark 16. The relationship between the λ- and κ-bases of scf(U) is somewhat
reminiscent of that between the p- and m-bases of 5 [Aguiar and Mahajan 2010,
Equation (12.5)]. However, the latter involves a sum over all partitions coarser than
a given one. For this reason, the morphism φ in (44), which relates the m-basis to
the κ-basis, does not relate the p-basis to the λ-basis in the same manner.

5.3. Freeness of scf(U). Let q be a species such that q[∅]=0. A new species T(q)
is defined by T(q)[∅] = k and, on a finite nonempty set I ,

T(q)[I ] =
⊕

I=I1t···tIk
k≥1, I j 6=∅

q[I1]⊗ · · ·⊗ q[Ik].

The sum is over all decompositions of I into nonempty subsets. The number k of
subsets is therefore bounded above by |I |.
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The species T(q) is a connected monoid with product given by concatenation. To
describe this in detail, let I = StT and choose decompositions S= S1t · · · tSk and
T = T1t· · ·tTl and elements xi ∈ q[Si ], i = 1, . . . , k, and y j ∈ q[T j ], j = 1, . . . , l.
Write

x = x1⊗ · · ·⊗ xi ∈ T(q)[S] and y = y1⊗ · · ·⊗ y j ∈ T(q)[T ].

The product is

µS,T (x ⊗ y)= x1⊗ · · ·⊗ xi ⊗ y1⊗ · · ·⊗ y j

∈ q[S1]⊗ · · ·⊗ q[Sk]⊗ q[T1]⊗ · · ·⊗ q[Tl] ⊆ T(q)[I ].

The monoid T(q) is free on the species q: a map of species q→ m from q to a
monoid m has a unique extension to a morphism of monoids T(q)→ m.

The monoid T(q) may carry several coproducts that turn it into a connected
Hopf monoid. The canonical structure is the one for which the elements of q are
primitive. This means that

1S,T (x)= 0

for every x ∈ q[I ] and every decomposition I = S t T into nonempty subsets.
More details can be found in [Aguiar and Mahajan 2010, Sections 11.2.1–11.2.2].
Let D(I, `) denote the set of arc diagrams (X, α) for which X is an atomic set

partition of the linearly ordered set (I, `). Let d(I, `) be the vector space with
basis D(I, `). Define a species d by

d[I ] =
⊕
`∈L[I ]

d(I, `).

Consider the map of species d→ scf with components

d[I ] → scf(U)[I ], (X, α) 7→ λX,α.

The map sends the summand d(I, `) of d[I ] to the summand scf(U(I, `)) of
scf(U)[I ]. By freeness, it extends to a morphism of monoids

T(d)→ scf(U).

Proposition 17. The map T(d) → scf(U) is an isomorphism of monoids. In
particular, the monoid scf(U) is free.

Proof. Let (X, α) be an arbitrary arc diagram on (I, `). Let I1, . . . , Ik be the
minimal `-segments of I , numbered from left to right, such that each I j is a union
of blocks of X . Let ` j = `|I j , X j = X |I j , and α j = α|I j . Then X j is an atomic
partition of (I j , ` j ),

X1 t · · · t X j = X and α1 t · · · tα j = α.
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By (46),

µI1,...,Ik (λX1,α1 ⊗ · · ·⊗ λXk ,αk )= λX,α.

Thus, the morphism T(d) → scf(U) sends the basis element (X1, α1) ⊗ · · · ⊗

(Xk, αk) of d(I1, `1)⊗· · ·⊗d(Ik, `k) to the basis element λX,α of scf(U(I, `)) and
is therefore an isomorphism. �

We may state Proposition 17 by saying that the superclass functions λX,α freely
generate the monoid scf(U) as (X, α) runs over all arc diagrams for which X is an
atomic set partition.

The generators, however, need not be primitive. For instance,

• • •
� 1{i,k},{ j} // • •

⊗
•

i j k i k j

which is not 0. Nevertheless, Proposition 23 allows us to conclude the following:

Corollary 18. Let k be a field of characteristic 0. There exists an isomorphism of
Hopf monoids scf(U)∼=T(d), where the latter is endowed with its canonical Hopf
structure.

As discussed in the Appendix, an isomorphism may be constructed with the aid
of the first Eulerian idempotent.

Let 5a(I, `) be the vector space with basis the set of atomic partitions on (I, `).
When the field of matrix entries is F2, arc diagrams reduce to atomic set partitions
and d(I, `) identifies with 5a(I, `). Combining Corollaries 12 and 18, we obtain
an isomorphism of Hopf monoids

L×5∼= T(5a), (48)

where
5a[I ] =

⊕
`∈L[I ]

5a(I, `).

5.4. A second basis for G and for f(U). Given two unitriangular matrices U and
V ∈ U(I, `), let us write U ≤ V if

ui j = vi j whenever ui j 6= 0.

In other words, some zero entries in U may be nonzero in V ; the other entries are
the same for both matrices.

We define a new basis {λU } of f(U(I, `)) by

λU =
∑
U≤V

κV .
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Let I = S1 t S2, U ∈U(I, `), and gi ∈U(Si , `i ), i = 1, 2. It is easy to derive the
following formulas from (29) and (30):

µS1,S2(λU1 ⊗ λU2)= λU1⊕U2, (49)

1S1,S2(λU )=

{
λUS1
⊗ λUS2

if U =US1 ⊕US2,

0 otherwise.
(50)

(49) implies that f(U) is a free monoid with generators λU indexed by unitrian-
gular matrices U for which the graph g(U ) is connected.

For completeness, one may define a new basis {pg} of G[I ] by

pg =
∑
g⊆h

mh . (51)

The sum is over all simple graphs h with vertex set I and with the same or more
edges than g. Let I = S1t S2, g ∈G[I ], and gi ∈G[Si ], i = 1, 2. From (9) and (10),
one obtains

µS1,S2(pg1 ⊗ pg2)= pg1tg2, (52)

1S1,S2(pg)=

{
pg|S1
⊗ pg|S2

if no edge of g connects S1 to S2,
0 otherwise.

(53)

Equation (52) implies that G is the free commutative monoid on the species of
connected graphs. From (44), we deduce that the morphism φ of Proposition 8
takes the following form on these bases:

φ(`⊗ pg)=
∑

U∈U(I,`)
g(U )=g

λU .

6. Applications

We conclude with some applications and remarks regarding past and future work.

6.1. Counting conjugacy classes. Let kn(q) be the number of conjugacy classes
of the group of unitriangular matrices of size n with entries in the field with q
elements. Higman’s conjecture states that, for fixed n, kn is a polynomial function
of q . Much effort has been devoted to the precise determination of these numbers
or their asymptotic behavior [Goodwin 2006; Goodwin and Röhrle 2009; Higman
1960; Robinson 1998; Vera-López and Arregi 2003; Vera-López et al. 2008].

We fix q and let n vary. It turns out that the existence of a Hopf monoid structure
on class functions imposes certain linear conditions on the sequence kn(q), as we
explain next.
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Given a finite-dimensional Hopf monoid h, consider the generating function

Th(x)=
∑
n≥0

dimk(h[n]Sn )x
n. (54)

Here [n] denotes the set {1, 2, . . . , n} and h[n]Sn is the (quotient) space of coinvari-
ants for the action of the symmetric group (afforded by the species structure of h).

For example, since

(L×5)[n]Sn = (L[n]⊗5[n])Sn
∼=5[n],

we have
TL×5(x)=

∑
n≥0

Bnxn, (55)

where Bn is the n-th Bell number, the number of partitions of the set [n].
On the other hand, from (48),

TL×5(x)= TT(5a)(x).

It is a general fact that, for a species q with q[∅] = 0,

TT(q)(x)=
1

1−Tq(x)
.

(This follows from [Bergeron_F et al. 1998, Theorem 2.b, Section 1.4] for instance).
Therefore,

TL×5(x)=
1

1−
∑

n≥1 Anxn , (56)

where An is the number of atomic partitions of the linearly ordered set [n].
From (55) and (56), we deduce that∑

n≥0

Bnxn
=

1
1−

∑
n≥1 Anxn ,

a fact known from [Bergeron and Zabrocki 2009].
Consider now the injections

scf(U) ↪→ cf(U) and L×5 ↪→ scf(U).

Both are morphisms of Hopf monoids (Propositions 10 and 11). Lagrange’s theorem
for Hopf monoids implies in this situation that both quotients

Tcf(U)(x)

Tscf(U)(x)
and

Tscf(U)(x)

TL×5(x)
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belong to N[[x]], that is, have nonnegative (integer) coefficients [Aguiar and Lauve
2012, Corollary 13]. In particular,

Tcf(U)(x)

TL×5(x)
∈ N[[x]]

as well.
We have

cf(U)[n]Sn =

(⊕
`∈L[n]

cf(U([n], `))
)

Sn

∼= cf(U([n])).

Therefore,
Tcf(U)(x)=

∑
n≥0

kn(q)xn.

By combining the above, we deduce(∑
n≥0

kn(q)xn
)(

1−
∑
n≥1

Anxn
)
∈ N[[x]],

whence the following result:

Corollary 19. The following linear inequalities are satisfied for every n ∈ N and
every prime power q:

kn(q)≥
n−1∑
i=0

An−i ki (q). (57)

For instance, for n = 8, the inequality is

k6(q)≥ 92+ 22k1(q)+ 6k2(q)+ 2k3(q)+ k4(q)+ k5(q).

Inequality (57) is stronger than merely stating that there are more conjugacy
classes than superclasses. For instance, for q = 2 and n = 6, the right-hand side of
the inequality is 213 (provided we use the correct values for ki (2) for i ≤ 5) while
there are only B6 = 203 superclasses. The first few values of the sequence kn(2)
appear in [OEIS Foundation 2010] as A007976; in particular, k6(2)= 275.

The numbers kn(q) are known for n ≤ 13 from work of Vera-López and Ar-
regi [1992; 1995; 2003]; see also [Vera-López et al. 2008]. (There is an incorrect
sign in the value given for k7(q) in [Vera-López and Arregi 1995, page 923]: the
lowest term should be −7q.)

We may derive additional information on these numbers from the injective
morphism of Hopf monoids (Proposition 6)

cf(U) ↪→ f(U).
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Define a sequence of integers cn(q), n ≥ 1, by means of∑
n≥0

kn(q)xn
=

1
1−

∑
n≥1 cn(q)xn . (58)

Arguing as above, we obtain the following result:

Corollary 20. The following linear inequalities are satisfied for every n ∈ N and
every prime power q:

q(
n
2) ≥

n∑
i=1

q(
n−i

2 )ci (q). (59)

Through (58), these inequalities impose further constraints on the numbers kn(q).
The first few values of the sequence cn(q) are as follows with t = q − 1:

c1(q)= 1,

c2(q)= t,

c3(q)= t2
+ t,

c4(q)= 2t3
+ 4t2

+ t,

c5(q)= 5t4
+ 14t3

+ 9t2
+ t,

c6(q)= t6
+ 18t5

+ 55t4
+ 54t3

+ 16t2
+ t.

Conjecture 21. There exist polynomials pn(t) ∈N[t] such that cn(q)= pn(q − 1)
for every prime power q and every n ≥ 1.

Using the formulas given by Vera-López et al. [2008, Corollaries 10–11] for
computing kn(q), we have verified the conjecture for n ≤ 13.

Polynomiality of kn(q) is equivalent to that of cn(q). On the other hand, the
nonnegativity of cn as a polynomial of t implies that of kn but not conversely. Thus,
Conjecture 21 is a strong form of Higman’s.

It is possible to show, using the methods of [Aguiar and Mahajan 2012], that the
monoid cf(U) is free. This implies that the integers cn(q) are nonnegative for every
n ≥ 1 and prime power q .

6.2. From Hopf monoids to Hopf algebras. It is possible to associate a number
of graded Hopf algebras to a given Hopf monoid h. This is the subject of [Aguiar
and Mahajan 2010, Part III]. In particular, there are two graded Hopf algebras K(h)
and K(h) related by a canonical surjective morphism

K(h)� K(h).
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The underlying spaces of these Hopf algebras are

K(h)=
⊕
n≥0

h[n] and K(h)=
⊕
n≥0

h[n]Sn ,

where h[n]Sn is as in (54). The product and coproduct of these Hopf algebras is
built from those of the Hopf monoid h together with certain canonical transfor-
mations. The latter involve certain combinatorial procedures known as shifting
and standardization. For more details, we refer to [Aguiar and Mahajan 2010,
Chapter 15].

For example, one has that
K(L)= k[x]

is the polynomial algebra on one primitive generator while K(L) is the Hopf algebra
introduced by Patras and Reutenauer [2004].

According to [Aguiar and Mahajan 2010, Section 17.4], K(5) is the ubiquitous
Hopf algebra of symmetric functions while K(5) is the Hopf algebra of symmetric
functions in noncommuting variables, an object studied in various references in-
cluding [Aguiar and Mahajan 2006, Section 6.2; Bergeron et al. 2006; Bergeron
and Zabrocki 2009; Rosas and Sagan 2006].

For any Hopf monoid h, one has [Aguiar and Mahajan 2010, Theorem 15.13]

K(L× h)∼= K(h).

Combining with Corollary 12, we obtain that, when the field of coefficients is F2,

K(scf(U))∼= K(L×5)∼= K(5).

In other words, the Hopf algebra constructed from superclass functions on unitri-
angular matrices (with entries in F2) via the functor K is isomorphic to the Hopf
algebra of symmetric functions in noncommuting variables. This is the main result
of [Aguiar et al. 2012].

The freeness of the Hopf algebra K(5), a fact known from [Harčenko 1978;
Wolf 1936], is a consequence of Proposition 17.

We mention that one may arrive at Corollary 19 by employing the Hopf algebra
K(cf(U)) (rather than the Hopf monoid cf(U)) and appealing to Lagrange’s theorem
for graded connected Hopf algebras.

6.3. Supercharacters and beyond. The notion of superclass on a unitriangular
group comes with a companion notion of supercharacter and a full-fledged theory
relating them. This is due to the pioneering work of André [1995a; 1995b] and later
Yan [2001]. Much of this theory extends to algebra groups [André 1999; Diaconis
and Isaacs 2008; Diaconis and Thiem 2009]. More recently, a connection with
classical work on Schur rings has been understood [Hendrickson 2010].
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In regards to the object of present interest, the Hopf monoid scf(U), this implies
the existence of a second canonical linear basis consisting of supercharacters. The
work of André and Yan provides a character formula, which yields the change of
basis between superclass functions and supercharacters. We plan to study the Hopf
monoid structure of scf(U) on the supercharacter basis in future work.

Appendix: On free Hopf algebras and Hopf monoids

A free algebra may carry several Hopf algebra structures. It always carries a
canonical one in which the generators are primitive. It turns out that under certain
conditions, any Hopf structure on a free algebra is isomorphic to the canonical one.
We provide such a result below. An analogous result holds for Hopf monoids in
vector species. This is applied in the paper in Section 5.

We assume that the base field k is of characteristic 0.
We employ the first Eulerian idempotent [Gerstenhaber and Schack 1991; Loday

1998, Section 4.5.2; Reutenauer 1993, Section 8.4]. For any connected Hopf
algebra H , the identity map id : H → H is locally unipotent with respect to the
convolution product of End(H). Therefore,

e := log(id)=
∑
k≥1

(−1)k+1

k
(id− ιε)∗k (60)

is a well-defined linear endomorphism of H . Here

ι : k→ H and ε : H → k

denote the unit and counit maps of H , respectively, and the powers are with
respect to the convolution product. It is an important fact that if H is in addition
cocommutative, then e(x) is a primitive element of H for any x ∈ H . In fact, the
operator e is in this case a projection onto the space of primitive elements [Patras
1994; Schmitt 1994, pages 314–318].

Let T (V ) denote the free algebra on a vector space V :

T (V )=
⊕
n≥0

V⊗n.

The product is concatenation of tensors. We say in this case that V freely generates.
The unique morphisms of algebras

1 : T (V )→ T (V )⊗ T (V ) and ε : T (V )→ k

given for all v ∈ V by

1(v)= 1⊗ v+ v⊗ 1 and ε(v)= 0
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turn T (V ) into a connected, cocommutative Hopf algebra. This is the canonical
Hopf structure on T (V ).

Proposition 22. Let k be a field of characteristic 0. Let H be a connected cocom-
mutative Hopf algebra over k. Suppose H ∼= T (W ) as algebras in such a way that
the image of W lies in the kernel of the ε. Then there exists a (possibly different)
isomorphism of Hopf algebras H ∼= T (W ), where the latter is endowed with its
canonical Hopf structure.

Proof. We may assume H=T (W ) as algebras for some subspace W of ker(ε). Since
H is connected and k is of characteristic 0, the Eulerian idempotent e is defined.
Let V = e(W ). We show below that V ∼=W and that V freely generates H . Since
H is cocommutative, V consists of primitive elements, and therefore, H ∼= T (V )
as Hopf algebras. This completes the proof.

Let
H+ =

⊕
n≥1

W⊗n.

Since ε is a morphism of algebras, H+ ⊆ ker(ε), and since both spaces are of
codimension 1, they must agree: H+ = ker(ε).

Define 1+ : H+→ H+⊗ H+ by

1+(x)=1(x)− 1⊗ x − x ⊗ 1.

By counitality,
(ε⊗ id)1+ = 0= (id⊗ ε)1+.

Therefore, 1+(H+)⊆ ker(ε)⊗ ker(ε)= H+⊗ H+, and hence,

1
(k−1)
+ (H+)⊆ H⊗k

+

for all k ≥ 1. In addition, since H = T (W ) as algebras,

µ(k−1)(H⊗k
+
)⊆

∑
n≥2

W⊗n

for all k ≥ 2.
Take w ∈W . Then

e(w)=
∑
k≥1

(−1)k+1

k
(id− ιε)∗k(w)= w+

∑
k≥2

(−1)k+1

k
µ(k−1)1

(k−1)
+ (w)

≡ w+
∑
n≥2

W⊗n.

By triangularity, e :W → V is invertible, and hence, V generates H .
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Now take w1, w2 ∈W . It follows from the above that

e(w1)e(w2)≡ w1w2+
∑
n≥3

W⊗n,

and a similar triangular relation holds for higher products. Hence, V generates H
freely. �

The Eulerian idempotent is defined for connected Hopf monoids in species
by the same formula as (60). Let p be a species such that p[∅] = 0. The free
monoid T( p) and its canonical Hopf structure is discussed in [Aguiar and Mahajan
2010, Section 11.2]. The arguments in Proposition 22 may easily be adapted to this
setting to yield the following result:

Proposition 23. Let k be a field of characteristic 0. Let h be a connected cocommu-
tative Hopf monoid in vector species over k. Suppose h∼=T( p) as monoids for some
species p such that p[∅] = 0. Then there exists a (possibly different) isomorphism
of Hopf monoids h ∼= T( p), where the latter is endowed with its canonical Hopf
structure.
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