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and Hopf Galois structures

Timothy Kohl

Let 0 be a group of order mp where p is prime and p > m. We give a strategy to
enumerate the regular subgroups of Perm(0) normalized by the left representation
λ(0) of 0. These regular subgroups are in one-to-one correspondence with the
Hopf Galois structures on Galois field extensions L/K with 0 = Gal(L/K ). We
prove that every such regular subgroup is contained in the normalizer in Perm(0)
of the p-Sylow subgroup of λ(0). This normalizer has an affine representation
that makes feasible the explicit determination of regular subgroups in many cases.
We illustrate our approach with a number of examples, including the cases of
groups whose order is the product of two distinct primes and groups of order
p(p− 1), where p is a “safe prime”. These cases were previously studied by
N. Byott and L. Childs, respectively.

Introduction

Let L/K be a finite Galois extension of fields with Galois group 0 = Gal(L/K ).
Then the action of the group ring K [0] of the Galois group0makes L/K into a Hopf
Galois extension, in the sense of Chase and Sweedler [1969]. However, the classical
Hopf Galois structure on L/K may not be the only Hopf Galois structure. For many
Galois groups 0, every 0-Galois extension L/K has Hopf Galois structures by
cocommutative K-Hopf algebras other than the classical Hopf Galois structure by
the group ring K [0] of the Galois group. Greither and Pareigis [1987] demonstrated
this lack of uniqueness, by showing that the Hopf Galois structures on L/K are
in direct correspondence with the regular subgroups N ≤ Perm(0) normalized by
λ(0), where λ is the left action of 0 on 0.

Subsequently Byott [2000] showed that nonclassical Hopf Galois structures are
of interest in local Galois module theory settings, involving wildly ramified Galois
extensions of local fields. Byott showed that a nonclassical Hopf Galois structure
can yield freeness of the valuation ring of the extension over the corresponding
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associated order, whereas freeness fails over the associated order for the classical
Galois structure given by the Galois group.

The Greither–Pareigis correspondence is via Galois descent: if H is a cocom-
mutative K-Hopf algebra and L is an H-module algebra via some Galois struc-
ture map H ⊗K L → L , then base changing to L yields a Galois structure map
(L ⊗K H)⊗L (L ⊗K L)→ (L ⊗K L). But then L ⊗K L ∼= HomL(L[0], L) =
L[0]∗ ∼=

∑
γ∈0 Lϕγ and L⊗K H ∼= L[N ], where N is a group that acts on L⊗K L

via acting as a regular group of permutations on the subscripts of the dual basis
{ϕγ : γ ∈ 0} of L[0]∗. Then N is normalized by λ(0). Conversely, given a regular
subgroup N of Perm0, then L[N ] yields a Hopf Galois structure on L[0]∗. If N
is normalized by λ(0), then Galois descent yields a K-Hopf algebra structure by
H = (L[N ])G on L/K .

Thus determining Hopf Galois structures on Galois extensions L/K of fields with
Galois group 0 is translated into the purely group-theoretic problem of determining
regular subgroups of B = Perm(0) normalized by λ(0).

Nearly all of the work since [Greither and Pareigis 1987] on determining the
Hopf Galois structures on a Galois extension L/K of fields with Galois group
0, or on counting or estimating the number of Hopf Galois structures on such
field extensions, has involved a further translation of the problem. The idea of the
translation, as formulated by Byott [1996], is to stratify the problem into a set of
problems, one for each isomorphism type of group of the same cardinality as 0. For
each such group M , one seeks regular embeddings (modulo a certain equivalence)
of 0 into the holomorph Hol(M)⊂ Perm(M) of M , where Hol(M)∼=MoAut(M).
The number of such regular embeddings is equal to the number of Hopf Galois
structures on L/K via K-Hopf algebras H such that L ⊗K H ∼= L[M]: then the
Hopf Galois structure is said to have type M . This translation turns the problem of
classifying Hopf Galois structures into a collection of somewhat easier problems,
easier because it has seemed more tractable to identify regular subgroups in Hol M
than in the usually much larger group Perm0.

On the other hand, once one has a regular embedding β of 0 in Hol M , two
translations are required to actually describe the corresponding Hopf Galois structure
on L/K . It is typically not easy to identify the regular subgroup N of Perm0

isomorphic to M that corresponds to the embedding β and the action of N on
L[G]∗ on which one may apply Galois descent. For this reason, it is of interest
to find groups 0 where regular subgroups of Perm0 normalized by λ(0) may be
determined directly.

The aim of this paper is to do exactly that for a special class of groups. We
consider groups 0 of order mp where p is prime and p > m. Then λ(0) has a
unique p-Sylow subgroup P of order p. Our main result is that every regular
subgroup of Perm0 normalized by 0 is contained in NormB(P), the normalizer in
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B = Perm(0) of P. The group NormB(P) may be identified as the subgroup of the
affine group AGLm(Fp)⊂ GLm+1(Fp) consisting of (m+1)× (m+1) matrices of
the form (

A v

0 1

)
,

where A is a scalar multiple of an m×m permutation matrix and v is in Fm
p . For

m < p, NormB(P) is far smaller and much more amenable than the symmetric
group Perm(0)∼= Smp. (For example, for p = 7 and m = 4, NormB(P) has order
74
· 6 · 4! = 345779, while S28 has order 28! ∼ 3 · 1029.)
The first application of our main result is to determine all regular subgroups of

Perm0 normalized by λ(0) where 0 has order pq , distinct primes. N. Byott [2004]
determined the Hopf Galois structures on a field extension L/K with Galois group
0 of order pq by looking at the holomorph Hol M of M for M a group of order
pq and determining the regular embeddings of 0 whose intersection with Aut M
has a given cardinality. The method of this paper is quite different; the reader may
judge the relative efficiency of the two methods.

For our second application we consider the Hopf Galois structures on a Galois
extension L/K where the Galois group 0 has order mp with m = 2q, q prime,
and p = 2q + 1 prime: thus p is a safe prime and q is a Sophie Germain prime.
L. Childs [2003] determined all of the Hopf Galois structures on a Galois extension
L/K of fields with Galois group 0 ∼= Hol(C p) by determining embeddings of 0
into Hol M for each of the six isomorphism types of groups of order mp. We extend
[Childs 2003] by determining the number of Hopf Galois structures for 0 and M
running through all 36 pairs (0,M). Since the computations are in many cases
similar to those in the pq case, we provide only a few sample cases to illustrate the
variety of approaches needed.

This paper generalizes the results for m = 4 in [Kohl 2007]. Some of the ideas
here are similar to those in that paper, but for the benefit of the reader we have
made this paper independent of [Kohl 2007] and reasonably self-contained.

1. Preliminaries

Groups of order mp. We begin with some observations about abstract groups G
of order mp, where m < p.

First, G has a p-Sylow subgroup P that is unique, and hence a characteristic
subgroup of G. Also, by the Schur–Zassenhaus lemma, there exists a subgroup
Q ≤ G of order m, and G ∼= P oτ Q with τ : Q→Aut(P) induced by conjugation
within G.

Lemma 1.1. Let G have order mp with p prime and p > m, with G ∼= P oτ Q as
above.
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(a) If τ is trivial, that is, G ∼= P × Q, then p does not divide the order of Aut G.

(b) If τ is not-trivial, then Aut G has a unique p-Sylow subgroup, consisting of
inner automorphisms given by conjugation by elements of P.

Proof. Since P ≤ G is unique and thus characteristic, if ψ ∈ Aut(G) then ψ
induces ψ̄ ∈ Aut(G/P). Our claim is that |ψ | cannot be pk for any k > 1. Since
|G/P| = m < p then p - |Aut(G/P)| so if ψ has order pk then ψ̄ = idG/P .
Therefore, for any g ∈ G one has ψ(g P)= g P and so g−1ψ(g) ∈ P and likewise
g−1ψr (g) ∈ P for any power r . If |ψ | = pk for k > 1 then there exists g ∈ G such
that

g, ψ(g), . . . , ψ pk
−1(g)

are distinct elements of G, but then

1, g−1ψ(g), . . . , g−1ψ pk
−1(g)

are pk distinct elements of P , which is impossible since |P| = p. Therefore the p
torsion of Aut G cannot be larger than p. If τ is trivial then G ∼= P × Q for Q of
order m. As such, Aut(G)∼= Aut(P)×Aut(Q) and neither Aut P nor Aut Q can
have elements of order p so p - |Aut(G)|. If τ : Q→Aut(P) is nontrivial then one
can show that |P ∩ Z(G)| = 1, so that if P = 〈x〉 then conjugation by x provides
an element of order p in Aut G which therefore generates the p-Sylow subgroup
of Aut G. �

Regular subgroups.

Definition. Let P≤ λ(0) be the unique p-Sylow subgroup of λ(0).

Definition. A subgroup N ≤ B = Perm(0) is semiregular [Wielandt 1955] if
StabN (γ )= {η ∈ N | η(γ )= γ } is the trivial group for all γ ∈ 0.

A subgroup N ≤ B is regular if N is semiregular and either |N | = |0| or N acts
transitively on 0.

If N is semiregular and η 6= e (the identity) of N , then η acts on 0 without fixed
points. Thus for η in N , if η has order h, then for each γ in 0,

(γ, η(γ ), . . . , ηh−1(γ ))

is the cycle containing γ in the cycle decomposition of η in B = Perm(0). Hence
η is a product of k cycles of length h, where hk = |0|.

Definition. For η in B = Perm(0),

Supp(η)= {γ ∈ 0 | η(γ ) 6= γ }.
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Thus if N is semiregular and η ∈ N is not the identity, then Supp(η)= 0.
Because of the connection to Hopf Galois structures, in this paper we are not

interested in all the regular subgroups of B, but only in those normalized by λ(0),
the image of the left regular representation of 0 in B.

Definition. Let R(0) denote the set of regular subgroups N of B = Perm(0) such
that λ(0)≤ NormB(N ), the normalizer in B of N .

We partition R(0) as follows:

Definition. For M a group of order |0|, let [M] denote the isomorphism type of M ,
and let R(0, [M]) denote the subset of R(0) consisting of the regular subgroups
N in R(0) that are isomorphic to M .

Then R(0) is the disjoint union of the sets R(0, [M]) where [M] runs through
the isomorphism types of groups of order equal to |0|.

To enumerate R(0), we enumerate R(0, [M]) for each isomorphism type [M].
As noted in the introduction, the Hopf Galois structures on a Galois extension
L/K with Galois group 0 = Gal(L/K ) correspond in a one-to-one fashion to the
elements of R(0); if a Hopf Galois structure corresponds to N in R(0, [M]), then
the K-Hopf algebra acting on L has type M (because L ⊗K H ∼= L[M]).

Our goal in this paper is to develop a new method to enumerate R(0) for
|0| = mp.

Cycle structures. Let N be a regular subgroup of B = Perm(0) normalized by
λ(0), and let P(N ) be the unique order-p subgroup of N . Then we can relate the
cycle structure of a generator of P= P(λ(0)) to the cycle structure of a generator
of P(N ):

Proposition 1.2. Let P be the unique subgroup of λ(0) of order p, and let P=〈φ〉,
where φ=π1π2 · · ·πm with π1, . . . , πm disjoint p-cycles in Perm(0)∼= Spm . Let N
be a regular subgroup of Perm0 normalized by λ(0) and let P(N ) be the p-Sylow
subgroup of N . Then P(N ) is generated by θ =πa1

i π
a2
2 · · ·π

am
m where ai ∈Up = F×p

for each i .

Proof. N is normalized by λ(0) and P(N ) is characteristic in N . Hence λ(0), and
therefore also P, normalizes P(N ). But gcd(|Aut(P(N ))|, p)= 1, so P centralizes
P(N ), hence P(N ) centralizes P.

Let θ be a generator of P(N ). Then

π1π2 · · ·πm = φ = θφθ
−1
= θ(π1π2 · · ·πm)θ

−1
= π1π2 · · ·πm,

and so θ permutes the cycles π1, . . . , πm . But conjugation by θ has order dividing
p, and Perm({π1, . . . , πm}) has order m! coprime to p, so for all i , θπiθ

−1
= πi .
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For each i and for any c in Suppπi , πi is the cycle

πi = (c, πi (c), π2
i (c), . . . , π

p−1
i (c)),

and θπiθ
−1 is the cycle

θπiθ
−1
= (θ(c), θπi (c), θπ2

i (c), . . . , θπ
p−1

i (c)).

If θ(c)= πa
i (c), then comparing the two cycles, we see that θπr

i (c)= π
a+r
i (c) for

all r . Thus for each i , on Suppπi , θ = πa
i . Hence θ = πa1

i π
a2
2 · · ·π

am
m in B. No ai

can equal 0 modulo p; if it did, ci would be fixed under θ , and θ is an element of
the semiregular subgroup P(N ) of B. �

Let N be a regular subgroup of B=Perm(0), let P(N ) be the p-Sylow subgroup
of N , and let N = P(N )Q(N ), where Q(N ) is a complementary subgroup of order
m to P(N ) in N . Then Q(N ) normalizes P(N ) = 〈πa1

1 · · ·π
am
m 〉. Let Q(N ) =

{q1 = e, q2, . . . , qm}. Since N is a regular subgroup of Perm0,

0 = Ne0 =
m⋃

i=1

P(N )qi e0,

and P(N )= 〈θ〉 acts on P(N )qi e0 via the left regular representation. After renum-
bering the elements of Q(N ) as needed, we have 5i = Supp(πi )= P(N )qi e0.

Proposition 1.3. Q(N ) is a regular group of permutations of {51, . . . ,5m}.

Proof. For q in Q(N ),

q5i = q P(N )qi e0 = q P(N )q−1qi e0 = P(N )qqi e0,

since P(N ) is a normal subgroup of N . So the action of Q(N ) on {51, . . . ,5m}

is the same as the left regular representation λ(Q(N )) on Q(N ).
The partition {51, . . . ,5m} arising from P(N ) is the same as that from P. So

we conclude that each regular subgroup N of Perm0 normalized by λ(0) has the
form P(N )Q(N ) where P(N )= 〈πa1

1 · · ·π
am
m 〉 and Q(N ) is a regular subgroup of

Perm({51, . . . ,5m}) with 5i = Supp(πi ). �

2. Characters and generators of P(N)

In this section we determine the semiregular order-p subgroups of B = Perm(0)
normalized by λ(0).

Recall that λ(0)= PQ where P is the unique p-Sylow subgroup of λ(0) and Q

is a complement of P in λ(0). Then P = 〈φ〉 where φ = π1 · · ·πm , a product of
p-cycles,5i = Supp(πi ) for i = 1, . . . ,m, and Q is a regular group of permutations
of {51, . . . ,5m}, hence may be viewed as a regular subgroup of Sm . From the
last result of the previous section, every semiregular order-p subgroup P of B
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normalized by λ(0) has the form P = 〈πa1
1 · · ·π

am
m 〉 for a1, . . . , am in F×p . Here we

describe the possible P more precisely.
There is an isomorphism from V = 〈π1, . . . , πm〉 to Fm

p by

π
i1
1 · · ·π

im
m 7→ (i1, . . . , im).

Denote π i1
1 · · ·π

im
m by [i1, . . . , im]. Then v̂i = (0, . . . , 1, . . . , 0) in Fm

p corresponds
to πi . By abuse of notation, we will identify v̂i in Fm

p with πi in V .
Let χ : Q→ F×p be a homomorphism, that is, a degree-one representation or

linear character of Q in Fp [Isaacs 1976].
Let p̂χ =

∑
γ∈Q χ(γ )v̂γ (1). As with v̂i , we will identify p̂χ with the correspond-

ing element of V , as in the statement of the following result:

Theorem 2.1. For each linear character χ : Q → F×p , p̂χ is a generator of a
semiregular order-p subgroup of V normalized by λ(0). Conversely, let P be an
order-p semiregular subgroup of V that is normalized by λ(0). Then P = 〈 p̂χ 〉 for
some linear character χ : Q→ F×p .

Proof. For the first part, we begin by observing that Q normalizes P= 〈π〉, so for
all µ in Q, µ(π)= µπµ−1

= π τ(µ) for some τ(µ) in F×p . Now

p̂χ =
∑
γ∈Q

χ(γ )v̂γ (1) =
∑
γ∈Q

χ(µγ )v̂µγ (1) = χ(µ)
∑
γ∈Q

χ(γ )v̂µγ (1),

and so
µ p̂χµ−1

=

∑
γ∈Q

χ(γ )(µv̂γ (1)µ
−1)=

∑
γ∈Q

χ(γ )τ(µ)v̂µγ (1)

= τ(µ)
∑
γ∈Q

χ(γ )v̂µγ (1) = τ(µ)χ(µ)
−1 p̂χ .

Hence 〈 p̂χ 〉 is normalized by Q. Since 〈 p̂χ 〉 is a subgroup of V , 〈 p̂χ 〉 is centralized
by P, hence 〈 p̂χ 〉 is normalized by λ(0).

Now we show the converse.
Let [a1, . . . , am] be in V with all ai 6= 0 in Fp, such that 〈[a1, . . . , am]〉 is

normalized by λ(0). Then for γ in Q,

γ [a1, . . . , am]γ
−1
= [a1, . . . , am]

dγ = [dγ a1, . . . , dγ am].

The map from Q to F×p given by γ 7→ dγ is a homomorphism, hence a linear
character. Also, for every γ in Q,

γπiγ
−1
= π

cγ
γ (i),

where Q acts as a regular subgroup of Perm(1, . . . ,m) as noted above, and cγ is in
F×p . Then cγ ′γ = cγ ′cγ , so the map γ 7→ cγ is a linear character from Q to F×p .
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Since all ai 6= 0, in the subgroup 〈[a1, . . . , am]〉 we may replace the generator
by a suitable power so that a1 = 1, so we assume henceforth that a1 = 1. Now for
γ in Q,

γ [a1, . . . , am]γ
−1
= [cγ aγ−1(1), . . . , cγ aγ−1(m)],

and so
cγ aγ−1(i) = dγ ai ,

for every i . Setting i = γ ( j), this becomes

cγ a j = dγ aγ ( j),

or
aγ ( j) =

cγ
dγ

a j .

In particular,

aγ (1) =
cγ
dγ

a1 =
cγ
dγ
.

Since Q acts as a regular subgroup of permutations of 1, . . . ,m, this last formula
determines ai for all i = 1, . . . ,m.

The mapping χ : Q→ F×p defined by χ(γ )= cγ /dγ is a homomorphism, hence
a linear character of Q in F×p , and we have:

[a1, . . . , am] =
∏
γ∈Q

π
aγ (1)
γ (1) =

∏
γ∈Q

π
χ(γ )

γ (1) =
∑
γ∈Q

χ(γ )v̂γ (1) = p̂χ . �

Example 2.1. In [Kohl 2007] we examined groups of order 4p. There were two
cases. If Q = C p ×C p = 〈x, y〉, then there are four linear characters, defined by
the following table:

1 x y xy

χ1 1 1 1 1
χ2 1 1 −1 −1
χ3 1 −1 1 −1
χ4 1 −1 −1 1

For Q= C4 = 〈x〉, we have two or four linear characters:

1 x x2 x3

ψ1 1 1 1 1
ψ2 1 −1 1 −1
ψ3 1 ζ −1 ζ 3

ψ4 1 ζ 3
−1 ζ
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with the last two characters occurring only when p ≡ 1 (mod 4). These linear
characters corresponded to the possible groups P1, . . . , P6 found in [Kohl 2007] by
other methods.

The following lemma is critical for the results in the next section. Let ι : Q→ F×p
be the trivial linear character, ι(γ ) = 1 for all γ in Q. Then p̂ι = [1, . . . , 1] = π ,
the generator of P.

Lemma 2.2. Let χ1 and χ2 be distinct nontrivial linear characters of Q. Then
〈 p̂χ1, p̂χ2〉 cannot contain p̂ι.

Proof. If p̂ι = r p̂χ1 + s p̂χ2 , then for all γ in Q we have

1= rχ1(γ )+ sχ2(γ ).

Hence

m = r
∑
γ∈Q

χ1(γ )+ s
∑
γ∈Q

χ2(γ ). (1)

But for i = 1, 2, if Ti = χi (Q)⊂ F×p , then∑
γ∈Q

χi (γ )

is [F×p : Ti ] times the sum of the elements of Ti . Since F×p is a cyclic group, Ti is a
cyclic subgroup of F×p , hence elements of Ti sum to 0 (mod p). So (1) becomes
m = 0 (mod p). Thus it is impossible for p̂ι = r p̂χ1 + s p̂χ2 . �

3. The main theorem

Let N be a regular subgroup of B = Perm(0). Let λ(0) = P · Q where P is the
p-Sylow subgroup of λ(0). Our main theorem, Theorem 3.5, is

N is a subgroup of NormB(P).

As we’ll see in Theorem 3.7, NormB(P) can be viewed as a subgroup of the affine
group of Fm

p generated by scalar matrices, permutation matrices, and Fm
p . So this

result reduces the question of determining regular subgroups of Perm(0)∼= Smp to
a question about subgroups of a much smaller group, a semidirect product of Sm

with a metabelian group.
We begin by studying NormB(N ), for N a regular subgroup of B = Perm(0).
Recall that the normalizer NormB(λ(0)) in Perm0 of λ(0) is denoted by Hol0

and is the group Hol(0) = ρ(0)o Aut(0) ∼= 0 o Aut(0), where ρ is the right
regular representation of 0 in Perm0 and Aut0 is embedded inside Perm0 in the
natural way. Since Perm(0)∼= Perm(N ) if N is a regular subgroup of Perm0, we
have:
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Proposition 3.1. Let N be a regular subgroup of B = Perm(0). Then

NormB(N )∼= Hol(N ).

Proof. Since N is regular in Perm0, the map b : N → 0 by b(η) = η(1) is a
bijection. So C(b−1) : Perm(0)→ Perm(N ), given by C(b−1)(π)= b−1πb, is an
isomorphism. Under this map, η in N ⊂ Perm(0) maps to b−1ηb, where for µ
in N ,

b−1ηb(µ)= b−1η(µ(1))= b−1(ηµ(1))= ηµ.

Thus inside Perm N , the image C(b−1)(N )= λ(N ), and so

C(b−1)(NormB(N ))= NormPerm(N )(λ(N ))∼= N oAut(N ).

Since C(b−1) is an isomorphism from Perm0 to Perm N , C(b−1) is an isomorphism
from NormB(N ) to Hol(N )∼= N oAut(N ). �

In order to obtain Theorem 3.5, we need to introduce the opposite group, N opp
=

CentB(N ), the centralizer of N in B = Perm(0). We denote by 1 the identity
element of the set 0 on which B acts. The following is a recapitulation of [Greither
and Pareigis 1987, Lemma 2.4.2].

Lemma 3.2. For N a regular subgroup of B = Perm(0), let φ be in CentB(N ).
Then φ(γ ) = ηγφ(1), where ηγ is the unique element η of N such that η(1) = γ .
Conversely, if φ is in B and φ(γ )= ηγφ(1) for all γ , then φ is in CentB(N ).

Proof. For φ in CentB(N ), φ(γ ) = φ(ηγ (1)) = ηγφ(1). Let φ(1) = σ(1) for
unique σ in N . Then φ is uniquely determined by σ : denote that φ by φσ . Thus
φσ (γ )= ηγ σ(1).

Conversely, suppose φ is in B and there is some σ in N such that φ(γ )= ηγ σ(1)
for all γ , so that φ = φσ . Then φσ is in CentB(N ). Indeed,

φσηε(γ )= φσηηε (γ )= ηηε (γ )σ (1),

while
ηεφσ (γ )= ηεηγ σ(1).

We claim that ηηε(γ ) = ηεηγ . Since elements η of N bijectively correspond with
their images η(1) in 0, it suffices to observe that

ηηε(γ )(1)= ηε(γ )= ηε(ηγ (1))= (ηεηγ )(1).

Thus CentB(N )= {φσ : σ ∈ N }. �

Corollary 3.3. Let N be a regular subgroup of Perm0. Then:

(a) N opp is also a regular subgroup of Perm0.

(b) N ∩ N opp
= Z(N ), the center of N .
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(c) If N is abelian, then N = N opp.

(d) (N opp)opp
= N.

Proof. (a) Observe that for σ in N , φσ (1)= η1σ(1). But η1 is the unique element of
N that maps 1 to 1 in 0, hence η1 is the identity element of N . Thus φσ (1)= σ(1).
Thus if N is regular, then so is N opp.

(b), and hence (c), are clear since N opp
= CentB(N ).

(d) Clearly N is contained in the centralizer of CentB(N ), so is in (N opp)opp. But
by (a), this last group is regular; hence it has the same cardinality as N . So
N = (N opp)opp. �

Proposition 3.4. NormB(N )= NormB(N opp). Hence N is normalized by λ(0) if
and only if N opp is normalized by λ(0).

Proof. We show that N opp
= CentB(N ) is a normal subgroup of NormB(N ). Let

α be in CentB(N ), δ in NormB(N ). We show δαδ−1 is in CentB(N ). Since every
element η of N has the form δσδ−1 for some σ in N and ασ = σα, we have

δαδ−1η = δαδ−1(δσδ−1)= δασδ−1

= δσαδ−1
= δσδ−1δαδ−1

= ηδαδ−1.

Thus δαδ−1 is in CentB(N ), and so N opp is a normal subgroup of NormB(N ).
Hence

NormB(N )⊂ NormB(N opp).

The same is true replacing N by N opp. Equality then follows by part (d) of
Corollary 3.3. The last sentence follows easily from the equality NormB(N ) =
NormB(N opp). �

Now we can prove the main theorem.

Theorem 3.5. Let N be a regular subgroup of B = Perm(0) normalized by λ(0)=
P ·Q, with P the p-Sylow subgroup of λ(0). Then N is a subgroup of NormB(P).

Proof. Since λ(0) is contained in NormB(N ), we have P inside NormB(N ) =
NormB(N opp).

Since NormB(N )∼= Hol(N )= N oAut(N ), we know by Proposition 1.2 what
the p-Sylow subgroup of NormB(N ) is:

• If N = P(N )×Q(N ), then the p-Sylow subgroup of NormB(N ) is P(N ), which
is unique and has order p. Hence P= P(N )= P(N opp).

• If N = P(N ) oτ Q(N ) where τ is nontrivial, then NormB(N ) ∼= Hol(N ) ∼=
N oAut(N ) has a p-Sylow subgroup isomorphic to C p×C p, where one copy of
C p is P(N ) and the other copy is the group C(P(N )) of inner automorphisms of N
obtained by conjugation by the elements of P(N ) (see Lemma 1.1). We check that
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the subgroup P(N ) ·C(P(N )) is normal in Hol(N )= N oAut(N ). Take σ, τ ∈ P ,
h ∈ G, α ∈ Aut G. Then

(α(h)−1α)(hα−1)= 1,

so conjugating an element σC(τ ) of P(N ) ·C(P(N )) by (hα−1)−1 yields:

(α(h)−1α)(σC(τ ))(hα−1)= α(h)−1α(σ)α(τhτ−1) ·αC(τ )α−1

= α(h)−1α(σ)α(τ)α(h)α(τ−1) ·C(α(τ))

= C(α(h)−1)(α(στ))α(τ−1) ·C(α(τ)).

Since P is a characteristic subgroup of G, C(α(h)−1)(α(στ)) is in P , as are α(τ−1)

and α(τ). Hence P(N ) ·C(P(N )) is a normal subgroup of Hol N , hence is the
unique p-Sylow subgroup of Hol N .

Since N in this case is nonabelian, Z(N ) has no p-torsion, and so since N ∩
N opp
= Z(N ), P(N )∩ P(N opp)= (1). Since P(N ) and P(N opp) centralize each

other, P(N ) · P(N opp) ∼= C p × C p, and hence P(N ) · P(N opp) is the p-Sylow
subgroup of Hol(N )= NormB(N ).

Now we identify P, the p-Sylow subgroup of λ(0), inside NormB(N ). Clearly,
P⊂ P(N ) · P(N opp). The groups P, P(N ), and P(N opp) are order-p semiregular
subgroups of Perm0 normalized by λ(0); hence they have generators p̂ι, p̂χ1 , and
p̂χ2 that correspond to linear characters ι, χ1, and χ2 from Q = Q(λ(0)) to F×p ,
where ι, corresponding to P, is the trivial character. Since P(N ) and P(N opp)

are distinct subgroups, χ1 and χ2 are distinct characters. Since P is contained in
P(N ) · P(N opp), we have

ι= rχ1+ sχ2,

for some integers r and s. But by Lemma 2.2, this can only occur if χ1 or χ2 is the
trivial character, that is, P= P(N ) or P= P(N opp).

If P= P(N opp), then N centralizes P, so N is contained in NormB(P).

If P= P(N ), then N normalizes P(N )= P, so N is contained in NormB(P). �

Definition. For groups 0 and M of order mp and P an order-p semiregular sub-
group of NormB(P) that is normalized by NormB(P) (see Theorem 2.1), let R(0,
[M]; P) be the set of regular subgroups N of NormB(P) isomorphic to M and
normalized by λ(0) such that P(N )= P .

Then R(G, [M]) is the disjoint union of R(0, [M]; P) for P running through
all order-p semiregular subgroups of NormB(P).

To count R(G, [M]), we combine Proposition 3.4 with the proof of Theorem 3.5:

Corollary 3.6. With 0 and M as above, let P= P(λ(0)), the p-Sylow subgroup
of λ(0).
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If M = P(N )× Q(N ), then R(0, [M])= R(0, [M];P).
If M is a nontrivial semidirect product of P(N ) and Q(N ), then

|R(G, [M])| = 2|R(G, [M];P)|.

Proof. Lemma 1.1 showed that if N is the direct product of P(N ) and Q(N ), then
P is the unique order-p subgroup of NormB(P), hence P(N )= P for all regular
subgroups of NormB(P) normalized by λ(0). Otherwise, N and N opp are regular
subgroups of Perm0 normalized by λ(0) such that P(N ) and P(N opp) are distinct
subgroups of NormB(P), and as observed at the end of the proof of Theorem 3.5,
exactly one of P(N ) and P(N opp) is equal to P. Thus when M is a nontrivial
semidirect product, counting R(0, [M];P) counts half of the set R(0, [M]). �

Now we identify NormB(P) as a semidirect product and as a subgroup of the
affine group of Fm

p . The first description makes computing regular subgroups of
NormB(P) feasible in many cases.

Theorem 3.7. Let λ(0) = PQ, where P = 〈π〉, π = π1π2 · · ·πm , a product of
disjoint p-cycles in B = Perm(0). Let V = 〈π1, . . . , πm〉 ∼= Fm

p , as before. Then
NormB(P)∼= Fm

p o (F×p · Sm) and embeds in

AGLm(Fp)=

{(
A v̂

0 1

)
: A ∈ GLm(Fp), v̂ ∈ Fm

p

}
,

the affine group of Fm
p .

Proof. We first show that NormB(P)∼= Fm
p o (F×p · Sm).

Given an element τ of NormB(P), τπτ−1
= π c(τ ), and so τ induces a permuta-

tion, denoted by tτ , of the set {1, 2, . . . ,m} by

τπ jτ
−1
= π

c(τ )
tτ (i).

This defines homomorphisms c : NormB(P) → F×p , t : NormB(P) → Sm , and
φ : NormB(P)→ F×p · Sm by φ(τ)= (c(τ ), t (τ )). The kernel kerφ of φ is the set
of elements τ in NormB(P) such that τπ jτ

−1
= π j for all j , that is, the centralizer

of V . We show that kerφ = V .
For i = 1, . . . ,m, choose γi in 5i = Supp(πi ). Then πi is the p-cycle

π = (γi , π(γi ), . . . , π
p−1(γi )),

hence
0 = {π k

i (γi ) | i = 1, . . . ,m, k = 0, . . . , p− 1}.

If τ in Perm0 centralizes πi , then since

τπiτ
−1
=
(
τ(γi ), τ (π(γi )), . . . , τ (π

p−1(γi ))
)
= πi ,
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τ conjugates Supp(πi )=5i to itself, and hence yields a permutation of the set 5i .
But the only permutations in Sp = Perm(5i ) that centralize the p-cycle πi are the
powers of πi . Thus τ commutes with πi for all i = 1, . . . ,m if and only if τ is in
V . Therefore V = kerφ and we have a short exact sequence:

1→ V → NormB(P)→ F×p · Sm→ 1.

The sequence splits. For inside NormB(P) are the permutations σc for c in F×p
induced by the c-th power map π 7→ π c, for (c, p)= 1, that take π k

i (γi ) to π ck
i (γi )

for all i = 1, . . . ,m and k = 0, . . . , p − 1. The σc generate a subgroup U of
NormB(P) isomorphic to F×p . Also, a permutation ᾱ of Sm defines a permutation α
of Perm0 by

α(π k
i (γi ))= π

k
ᾱ(i)(γᾱ(i)).

Then {α ∈ Perm(0) : ᾱ ∈ Sm} is a subgroup S of NormB(P) isomorphic to Sm .
Clearly S and U centralize each other, so the group SU⊂NormB(P) is a preimage
of F×p · Sm under φ. So φ splits, and NormB(P)= V · (US)∼= Fm

p o (F×p · Sm).
A convenient way to view Fm

p o (F×p · Sm) is as the subgroup of AGLm(Fp)

consisting of matrices (
A v

0 1

)
,

where v ∈ V = Fm
p , and A in GLm(Fp) is a nonzero scalar multiple of a permuta-

tion matrix. In other words, we view Sm as m ×m permutation matrices of the
components of Fm

p and F×p as nonzero scalar multiples (in Fp) of the m×m identity
matrix. Such matrices are examples of monomial matrices, whose properties in
general are explored by various authors such as Ore [1942]. �

In the sequel we will need to understand NormB(P) as a subgroup of B =
Perm(0). Writing the elements of NormB(P)= V · (US) as (â, ur , α), the explicit
action of elements of NormB(P) on 0 = {π k

i (γi ) | i = 1, . . . ,m, k = 0, . . . , p− 1}
is given by

(â, ur , α)(π k
i (γi ))= π

a1
1 · · ·π

am
m (π kur

α(i)(γα(i)))= π
kur
+aα(i)

α(i) (γα(i)).

Then we have the following easily verified formulas:

(â, ur , α)k =

( k−1∑
i=0

uirαr (â), urk, αk
)
. (2)

The inverse of (b̂, us, β) is (−u−sβ−1(b̂), u−s, β−1), so

(b̂, us, β)(â, ur , α)(b̂, us, β)−1
= (b̂+ usβ(â)− ur (βαβ−1)(b̂), ur , βαβ−1).
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In particular, elements of NormB(P) act on P by:

(b̂, us, β)( p̂ι, 1, I )(b̂, us, β)−1
= (us p̂ι, 1, I ).

Let N be a regular subgroup of Perm0 normalized by λ(0) and recall that
N = P(N )Q(N ) where P(N ) is the p-Sylow subgroup of N and Q(N ) is a group
of order m. We know that N ⊂ NormB(P) and that P(N )= 〈( p̂χ , 1, I )〉 for some
linear character from Q= Q(λ(0)) to F×p . We need to examine Q(N ).

Now N is a regular subgroup of Perm0, so Q(N ) acts fixed-point-freely on 0.
We need to identify fixed-point-free elements of NormB(P).

Proposition 3.8. If the order of (â, ur , α) 6= 1 in NormB(P) is coprime to p, then
(â, ur , α) is fixed-point free on 0 if and only if α is fixed-point free in Sm .

Proof. Suppose α is fixed-point free in Sm . Then for all i , 1≤ i ≤ m, α(i) 6= i , so
(â, ur , α)(π k

i (γi )) is in 5α(i) 6=5i . So (â, ur , α) is fixed-point free.
Suppose α(i)= i for some i . Then

(â, ur , α)(π k
i (γi ))= π

ur k+ai
i = π k

i ,

for k satisfying (1−ur )k≡ ai (mod p). If ur
6= 1, then such a k exists, so (â, ur , α)

has a fixed point whenever α has a fixed point and ur
6= 1.

If α(i)= i and ur
= 1, then

(â, 1, α)s(π k
i (γi ))= π

k+ai s
i (γi ),

for all s. If s is the order of (â, 1, α), then π k+ai s
i (γi )=π

k
i (γi ), so ai s≡ 0 (mod p).

If s and p are coprime, then ai = 0. But then π k
i (γi ) is a fixed point for (â, 1, α). �

Let t : NormB(P)→ Sm be the map sending (â, ur , α) to ᾱ in Sm defined by
α(π k

i (γi ))= π
k
ᾱ(i)(γᾱ(i)). Proposition 3.8 implies immediately:

Corollary 3.9. Let Q be a subgroup of NormB(P) of order m, and suppose t :
NormB(P)→ Sm is one-to-one on Q. Then Q is fixed-point free on 0, hence a
semiregular subgroup of NormB(P), if and only if t (Q) is a regular subgroup
of Sm .

Corollary 3.10. If N is a regular subgroup of NormB(P), then t (Q(N opp)) =

(t (Q(N )))opp, where the right-hand group is viewed within S∼= Sm .

Proof. For (â, ur , α) in Q(N ) and (ĉ, us, δ) in Q(N opp), we have αδ = δα, so
t (â, ur , α)= ᾱ and t (ĉ, us, δ)= δ̄ commute in Sm . So t (Q(N opp))⊂ (t (Q(N )))opp.
But because Q(N ) is regular in Sm , both sides have cardinality m. Hence the two
groups are equal. �

It is interesting to observe that CentB(P) consists precisely of those elements
of the form (b̂, 1, β), which is consistent with the classical fact (due to Burnside
[1911, §170]) that CentB(P) is isomorphic to the wreath product C p o Sm . This
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wreath product is isomorphic to the semidirect product (C p × · · · × C p) o Sm

where the action of Sm on the m-fold product of the C p’s is given by the natural
action on the coordinates. The group NormB(P) is also not unknown. It is an
example of a twisted wreath product whose precise definition (which may be found
in [Neumann 1963]) is not so important here since we have the semidirect product
description given above. The appearance of wreath products, by the way, is a natural
consequence of the action of NormB(P) (as well as any other subgroups thereof,
such as CentB(P)) on the blocks {51, . . . ,5m}. We may, in fact, frame part of
Theorem 3.5 in terms of one of the important consequences of the so-called universal
embedding theorem of Krasner and Kaloujnine [1951]. Specifically, if one has an
exact sequence 1→ P→ N → Q→ 1, expressing N as an extension of P by Q,
then P o Q contains a subgroup isomorphic to N . In the setting of this work, where
|N | = |P| · |Q| = pm our group Q may, of course, be embedded as a subgroup of
Sm . As such we have an embedding of N into P o Sm . This dovetails with the above
observation that CentB(P)∼= C p o Sm since, for a given N ∈ R(0, [M]), either N
or N opp centralizes P and N ∼= N opp so that indeed CentB(P) contains a subgroup
isomorphic to N . One of the upshots of Corollary 3.6, in fact, is that either all
N ∈ R(0, [M]) are subgroups of CentB(P) (when P(N ) is a direct factor) or (when
P(N ) is not a direct factor) exactly half of the elements centralize P, indeed all
those for which P(N ) 6= P. As such, one could enumerate only those N that lie in
CentB(P) and then apply Corollary 3.6 in order to determine |R(0, [M])|.

What the affine representation above yields for us is a very concrete way of
performing the enumeration of these subgroups of NormB(P).

In order to apply Theorem 3.5 to deal with all possible 0 and all possible N of
a given order mp, it is convenient to apply the following (in the author’s opinion
quite important) observation:

Proposition 3.11 [Dixon 1971, Lemma 1]. If N and N ′ are regular subgroups of
Sn that are isomorphic as abstract groups, they are conjugate as subgroups of Sn .

Proof. Identify Sn=Perm(Z/nZ)=Perm(Cn). Let φ : N→ N ′ be an isomorphism.
Then the conjugation map C(φ) : Perm(N )→ Perm(N ′) is an isomorphism, under
which λ(N ) maps to λ(N ′), as is easily verified. If b : N → Cn and c : N ′→ Cn

are bijections, then C(b−1) : Perm(Cn)→ Perm(N ) maps N in Perm Cn to λ(N )
in Perm N , and C(c−1) : Perm(Cn)→ Perm(N ′) maps N ′ in Perm Cn to λ(N ′).
The composition C(c−1)C(φ)C(b)= C(c−1

◦φ ◦ b) maps N in Perm Cn to N ′ in
Perm Cn . �

This result allows us to determine R(0, [M]), for all pairings of groups of order
mp, while working entirely within the single group B = Smp.

Here is an outline of the strategy.

Let B = Smp.
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Suppose that P= 〈π〉 is a cyclic semiregular subgroup of B of order p and that
π = π1 ·π2 · · · · ·πm , where π1, . . . , πm are disjoint p-cycles. We may choose P at
our convenience.

Let Q1, . . . ,Qs be subgroups of NormB(P) that act regularly on the set {51, . . . ,

5m}, where 5i = Supp(πi ), and represent all isomorphism classes of groups of
order m.

For each Qi , find the Fp-linear characters χi j of Qi . Then 〈 p̂χi j 〉 is normalized by
Qi , so, as we shall show below, 〈 p̂χi j 〉Qi is a regular subgroup of Smp and is contained
in NormB(P). If 〈 p̂χi j 〉Qi is a direct product or χi j is not the trivial character, we
find (〈 p̂χi j 〉Qi )

opp in Smp. Then (〈 p̂χi j 〉Qi )
opp is contained in NormB(P) and its

p-Sylow subgroup is P. We represent the isomorphism types of groups 0 by
suitable groups (〈 p̂χi j 〉Qi )

opp.
Having done so, we then seek to construct regular subgroups N normalized by

0 by looking for fixed-point-free elements in NormB(P) of suitable orders that are
normalized by 0.

In the next sections we demonstrate this program.

4. Groups of order pq

N. Byott [2004] determined the number of Hopf Galois structures on a Galois
extension of fields L/K with Galois group 0 of order pq where p and q are primes
and p ≡ 1 (mod q). As Byott notes, the case where p 6≡ 1 (mod q) is of little
interest because then pq and φ(pq) are coprime, in which case Byott [1996] shows
that the only Hopf Galois structure on L K is the classical structure given by the
Galois group 0.

Let G1 and G2 be the two isomorphism types of groups of order pq. By-
ott’s [2004] approach for counting Hopf Galois structures is to apply the strategy,
suggested in [Childs 1989] and codified in [Byott 1996], of looking for regular
subgroups isomorphic to Gi inside Hol(G j )∼=G j oAut(G j ) for i, j = 1, 2. Equiv-
alence classes of such regular subgroups correspond to Hopf Galois structures on
field extensions with Galois group Gi whose Hopf algebra has type G j .

In this section we count the number of Hopf Galois structures on L/K with Galois
group Gi whose Hopf algebra has type G j by looking for regular subgroups G j

inside NormPerm(Gi )(P)⊂ Perm(Gi ). Thus we obtain Byott’s count by a refinement
of the direct Greither–Pareigis approach. As may be observed, the two methods are
rather different.

Let F×p = 〈u〉. The two groups of order pq are the cyclic group C pq ∼= Fp×〈ud
〉

and the group C p oτ Cq = Fp o 〈ud
〉, where in C p oτ Cq we have (0, ud)(x, 1)=

(ud x, 1)(0, ud) and qd = p− 1; hence ud is an element of F×p of order q.
The result is:
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Theorem 4.1. Let R(0, [G]) be the regular subgroups of Perm0 isomorphic to G
and normalized by λ(0). Then

|R(C pq , [C pq ])| = 1,

|R(C pq , [C p oτ Cq ])| = 2(q − 1),

|R(C p oτ Cq , [C pq ])| = p,

|R(C p oτ Cq , [C p oτ Cq ])| = 2(1+ p(q − 2)).

By [Greither and Pareigis 1987], in each case the right-hand side equals the
number of Hopf Galois structures on a Galois extension of fields with Galois
group 0 with Hopf algebra of type [M].

Before doing the particular cases, we obtain some preliminary information
that applies in all four cases. Also, some notational conventions will be used
throughout the rest of the paper. In Fm

p we shall denote the vectors [0, 0, . . . , 0]
and [1, 1, . . . , 1] = p̂ι = 〈π〉 (both of which are fixed by any α ∈ Sm) by 0̂ and
1̂, respectively, and any scalar multiple [c, c, . . . , c] of 1̂ shall be expressed as c1̂.
Also, an arbitrary â ∈ Fm

p has the form [a1, a2, . . . , am] for ai ∈ Fp.

Lemma 4.2. Suppose

G = 〈(1̂, 1, I ), (â, ur , σ )〉 ⊂ NormB(P),

where x = (1̂, 1, I ) and y = (â, ur , σ ) satisfy x p
= yq

= 1 and yx = xud
y and σ is

a nontrivial permutation of Sq . Then σ is a q-cycle in Sq and ur
= ud .

Proof. If (â, ur , σ )q = (1̂, 1, I ), then σ q
= 1. Since σ is nontrivial, it must have

order q, hence be a q-cycle since q is prime. From the defining relation

(â, ur , σ )(1̂, 1, I )= (1̂, 1, I )u
d
(â, ur , σ ),

we have â+ ur 1̂= ud 1̂+ â, hence ur
= ud . �

Lemma 4.3. Suppose G is as in Lemma 4.2 and

H = 〈(1̂, 1, I ), (b̂, us, α)〉 ⊂ NormB(P),

with α a q-cycle. If H is normalized by G, then α = σ t for some t ∈ F×p .

Proof. Since G normalizes H , G must conjugate the generator of H of order q to
an element of H . Thus

(â, ur , σ )(b̂, us, α)(â, ur , σ )−1
= (1̂, 1, I ) f (b̂, us, α)e,

for some f ∈ Fp and e ∈ F×p . Looking at the rightmost components, we have

σασ−1
= αe.
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Since conjugation by the order-q element σ is an automorphism of the cyclic q
group 〈α〉, whose automorphism group has order q − 1, conjugation by σ must be
trivial on 〈α〉. Hence ασ = σα. Now α is the q-cycle

α = (1, α(1), . . . , αr (1), . . . ).

So
α = σασ−1

= (σ (1), σα(1), . . . , σαr (1), . . . ).

If σ(1)= αk(1) for k 6= 0, then for all s > 0,

σ(αs(1))= αsσ(1)= αsαk(1)= αk(αs(1)).

Hence σ = αk . �

We outline the strategy of the proof of Theorem 4.1.
Given that

0 = 〈(1̂, 1, I ), (0̂, ur , σ )〉, N = 〈(1̂, 1, I ), (â, us, σ t)〉,

we know that N ⊂ NormB(P). The constraints on N arise from the requirements
that, first, 0 normalizes N , and, second, (â, us, σ t) has order q . Regarding the first
constraint, conjugating (â, ss, σ t) by (1̂, 1, I ) poses no constraint on N since

(1̂, 1, I )(â, us, σ t)= ((1− us)1̂, 1, I )(â, us, σ t) ∈ N .

But the condition

(0̂, ur , σ )(â, us, σ t)(0̂, ur , σ ) is in N (3)

typically yields conditions on â.
Now we do each case in turn.

|R(C pq, [C pq])| = 1. We identify 0 = C p×Cq inside NormB(P) as

0 = 〈(1̂, 1, I ), (0, 1, σ )〉,

where σ is a fixed q-cycle in Sq . Then, since N ∼= C p×Cq , N must have the form

N = 〈(1̂, 1, I ), (â, 1, σ t)〉,

for some integer t modulo p− 1 by Lemmas 4.2 and 4.3.
Since Q(N ) is characteristic in N , condition (3) becomes the condition that

(0, 1, σ ) conjugates the generator (â, 1, α) of Q(N ) to a power of itself:

(0̂, 1, σ )(â, 1, σ t)(0̂, 1, σ−1)= (â, 1, σ )e,

for some integer e. Looking at the rightmost components shows that e = 1. Thus

N = 〈(1̂, 1, I ), (â, 1, σ t)〉,
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and looking at the leftmost components yields that σ(â)= â, hence â = k1̂. Then

(k1̂, 1, σ t)= (1̂, 1, I )k(0̂, 1, σ )t

is in 0. Hence N = 0.

|R(C pq, [C poτCq])|=2(q−1). Since C poτCq is a nontrivial semidirect product,
to count the regular subgroups N , by Corollary 3.6 we may restrict to those N such
that P(N ) = P, hence P(N ) = 〈(1̂, 1, I )〉. Again, 0 = 〈(1̂, 1, I ), (0, 1, σ )〉. By
Lemmas 4.2 and 4.3,

N = 〈(1̂, 1, I ), (â, ud , σ t)〉,

where (t, q)= 1. We claim that â = 0̂.
We first observe that we may replace the generator (â, ud , σ t) by (â, ud , σ t)(l1̂,

1, I ) for any l, and choose l so that a1 = 0, where a1 is the first component of
â ∈ F

q
p. The normalization condition (3) becomes

(0̂, 1, σ )(â, ud , σ t)(0̂, 1, σ−1)= ( f 1̂, 1, I )(â, ud , σ t),

for some f . Looking at the leftmost components yields

σ(â)= â+ f 1̂. (4)

This equation implies that

aσ−1(k) = ak + f,

for all k. In particular, since a1 = 0, we have

aσ−n(1) = n f,

for all n.
Now we consider the condition that (â, ud , σ t) have order q. Looking at the

leftmost components in (0̂, 1, I )= (â, ud , σ t)q yields

0̂=
q−1∑
j=1

ud jσ t j (â). (5)

Since σ is a q-cycle, we may write

â = [a1, aσ(1), . . . , aσ r (1), . . . , aσ q−1(1)]. (6)

Now σ cyclically permutes the components of â, so

σ(â)= [aσ−1(1), a1, . . . , aσ r−1(1), . . . , aσ q−2(1)]. (7)



Regular permutation groups of order mp and Hopf Galois structures 2223

Thus looking at the first components of (5), we obtain

0=
q−1∑
j=1

ud j aσ−t j (1) =

q−1∑
j=1

ud j t j f = t f
q−1∑
j=1

jud j . (8)

Now for any indeterminate x , we have

q−1∑
j=0

j x j
= x d

dx
(1+ x + · · ·+ xq)= x d

dx

( xq
−1

x−1

)
= x

(
qxq−1

x − 1
−

xq
− 1

(x − 1)2

)
.

Setting x = ud , the second term is (udq
− 1)/(ud

− 1)2 = 0, and so (8) becomes

0= t f ud qud(q−1)

ud − 1
. (9)

Since ud
6= 1 is a unit modulo p and 0 < t < q, this equation only holds when

f = 0. Hence â = 0̂ and

N = 〈(1̂, 1, I ), (0̂, ud , σ t)〉.

We have a distinct group N for each t coprime to q . Hence there are q − 1 regular
subgroups of NormB(P) normalized by 0 such that P(N )= P. By Corollary 3.6,
R(C pq , [C p oτ Cq ])= 2(q − 1).

|R(C p oτ Cq, [C pq])| = p. Let

0 = C p oτ Cq = 〈(1̂, 0, I ), (0̂, ud , σ )〉

and assume P(N )= P. Then

N = 〈(1̂, 1, I ), (â, 1, σ t)〉,

for some â and some t coprime to q . Now 0 normalizes N , and Q(N ) is character-
istic in N , so the normalization equation (3) becomes

(0̂, ud , σ )(â, 1, σ t)(0̂, u−d , σ−1)= (â, 1, σ t).

Looking at the leftmost components gives

σ(â)= u−d â.

Then
σ k(â)= u−dk â,

hence
aσ−k(1) = u−dka1,

for all k.
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Thus â is uniquely determined by a1, and, in fact, â = a1 p̂ψd . So

N = 〈(1̂, 1, I ), (a1 p̂ψd , 1, σ t)〉.

Now σ( p̂ψd ) = u−d p̂ψd (see Lemma 5.2). So if st ≡ 1 (mod q), then we may
replace the generator (a1 p̂ψd , 1, σ t) by its s-th power:

(a1 p̂ψd , 1, σ t)s =

(
a1

(
u−dst

− 1
u−dt − 1

)
p̂ψd , 1, σ

)
.

Since d and t are coprime to q, ((u−dst
− 1)/(u−dt

− 1)) is a unit modulo q. The
constraint that (b1 p̂ψd , 1, σ )q = (1̂, 1, I ) poses no further constraint, for the first
component of (b1 p̂ψd , 1, σ )q is

q−1∑
i=0

σ i (b1 p̂ψd )= b1

( q−1∑
i=0

u−di
)

p̂ψd = b1

(
u−dq
− 1

ud − 1

)
p̂ψd = 0̂.

Thus we may choose a generator of Q(N ) to be (b1 p̂ψd , 1, σ ) for any b1 modulo p,
and the p choices for b1 yield different N . Thus R(C p oτ Cq , [C pq ])= p.

|R(C p oτ Cq, [C p oτ Cq])| = 2(1+ p(q− 2)). Let

0 = C p oτ Cq = 〈(1̂, 0, I ), (0̂, ud , σ )〉

and assume P(N )= P. Then we may assume that

N = 〈(1̂, 1, I ), (â, ud , σ t)〉,

with (t, q)= 1. Constraint (3) is that conjugation by (0̂, ud , σ ) sends (â, ud , α) to
an element of order q in N :

(0̂, ud , σ )(â, ud , σ t)(0̂, u−d , σ−1)= (â, ud , σ t)e( f 1̂, i, I ), (10)

for some e and f , where e is necessarily equal to 1 since σ commutes with σ t .
Looking at the left components of (10), we obtain udσ(â) = â + ud f 1̂, since
σ(1̂)= 1̂. Thus

σ(â)= u−d â+ f 1̂.

Recalling (6) and (7), the action

σ(â)= u−d â+ f 1̂

translates at the component level to

aσ r−1(1) = u−daσ r (1)+ f,

for all r . This implies that â is determined by a1 and f , and so N is determined by
(a1, f, t).
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From aσ r−1(1) = u−daσ r (1)+ f , we obtain

aσ−r (1) = u−rda1+ (1+ u−d
+ · · ·+ u−(r−1)d)) f,

for all r . Letting u−d
= w, we have

aσ−r (1) = w
r a1+

(
wr
−1

w−1

)
f,

for all r , where wq
≡ 1 (mod p).

The condition that (â, ud , σ t)q = 1 places potential constraints on (a1, f, t). We
have

(â, ud , σ t)q = (â+ udσ t â+ · · ·+ ud(q−1)σ t (q−1)â, udq , σ tq),

which equals (0̂, 1, I ) provided that

â+ udσ t â+ · · ·+ ud(q−1)σ t (q−1)â = 0̂.

Looking at the leftmost component of this last equation gives

a1+ udaσ−t (1)+ u2daσ−2t (1)+ · · ·+ u(q−1)daσ−(q−1)t (1) = 0.

Setting u−d
= w, this is

0=
q−1∑
r=0

w−r aσ−r t (1) =

q−1∑
r=0

w−r
(
wr t a1+

wr t
−1

w−1
f
)

=

q−1∑
r=0

wr(t−1)a1+
f

w− 1

q−1∑
r=0

(wr(t−1)
−w−r ).

If t 6= 1, then this is equal to

a1

(
w(t−1)q

− 1
wt−1− 1

)
+

f
w− 1

(
w(t−1)q

− 1
wt−1− 1

−
w−q
− 1

w−1− 1

)
.

Since wq
≡ 1 (mod p), this is congruent to 0 (mod p).

If t = 1, then this yields

f = (1−w)a1 = (1− u−d)a1. (11)

For t 6= 1, every pair (a, f ) yields a group N . But if we vary the generator
(â, ud , σ t) of N of order q by multiplying it by (k1̂, 1, I ), we obtain a new generator

(k1̂, 1, I )(â, ud , σ t)= (â+ k1̂, ud , σ t)= (b̂, ud , σ t),

where b̂ = â+ k1̂. Then, since σ(â)= u−d â+ f 1̂, we have

σ(b̂)= σ(â)+ k1̂= (u−d â+ f 1̂)+ k1̂= u−d b̂+ ( f + (1− u−d)k)1̂.
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So changing the generator of order q changes (a1, f, t) to (a1+k, f +(1−u−d)k, t).
Since 1−u−d is a unit modulo p, the p2 pairs (a, f ) for each t 6= 1 yield p different
groups N . Thus there are (q − 2)p different regular subgroups N isomorphic to
C p oτ Cq with t 6= 1.

For t = 1,
N = 〈(1̂, 1, I ), (â, ud , σ )〉

and for the second generator to have order q, we must have (11):

(1− u−d)a1 = f,

where σ(â) = u−d â + f 1̂. Replacing (â, ud , σ ) by (k1̂, 1, I )(â, ud , σ ) gives an
order-q generator (b̂, ud , σ ) for N where

b̂ = â+ k1̂.

Then
σ(b̂)= σ(â)+ k1̂= (u−d â+ f 1̂)+ k1̂

= u−d(b̂− k1̂)+ ( f + k)1̂= u−db+ f ′1̂,

where
f ′ = f + k(1− u−d).

By choosing k so that f ′ = 0, then σ(b̂)= u−d b̂, and the condition on the order-q
generator becomes

(1− u−d)b1 = 0.

Hence b1 = 0 and since
bσ−r (1) = u−rdb1,

we have b̂ = 0̂ and N = 0. Thus we obtain 1 + (q − 1)p regular subgroups
N of NormB(P) isomorphic to C p oτ Cq with P(N ) = P that are normalized
by 0 ∼= C p oτ Cq . By Corollary 3.6, we conclude R(C p oτ Cq , [C p oτ Cq ]) =

2(1+ (q − 1)p).
That completes the proof of Theorem 4.1.

5. Groups of order (2q+ 1)2q

In this section we consider R(0) for groups of order mp where p= 2q+1 with q an
odd prime and m = 2q = φ(p); p is then a safe prime. Such groups were explored
in some detail in [Childs 2003] (and in [Moody 1994, Example 8.7, p. 133 ff.]
for q = 3). There are six isomorphism classes of groups of order p(p− 1) where
p− 1= 2q with q prime:
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Cmp = C p×Cm = 〈x, y | x p
= ym

= 1〉,

F ×C2 = (C p oCq)×C2

= 〈x, y | x p
= ym

= 1; yxy−1
= xu2

〉,

C p× Dq = C p× (Cq oCq)

= 〈x, a, b | x p
= aq

= b2
= 1; bx = xb; ax = xa, bab−1

= a−1
〉,

Dpq = C p o (Cq oC2)

= 〈x, a, b | x p
− aq
= b2
= 1; bab−1

= x−1
; ax = xa; bab−1

= a−1
〉,

Dp×Cq = (C p oCm = 〈x, y | x p
= ym

= 1; yxy−1
= x−1

〉,

Hol(C p)= C p oCm = 〈x, y | x p
= ym

= 1; yxy−1
= xu
〉.

Here u is a primitive root modulo p: 〈u〉 = F×p =Up = Aut(C p).
The main result in this section is:

Theorem 5.1. Let R(0, [M]) be the set of regular subgroups N isomorphic to M
in Perm0i that are normalized by λ(0). Then the cardinality of R(0, [M]) is given
by the following table:

0↓ M→ Cmp C p×Dq F×C2 Cq×Dp Dpq Hol C p

Cmp 1 2 2(q−1) 2 4 2(q−1)
C p×Dq q 2 0 2q 4 0
F×C2 p 2p 2(p(q−2)+1) 2p 4p 2p(q−1)
Cq×Dp p 2p 2p(q−1) 2 4 2p(q−1)
Dpq qp 2p 0 2q 4 0
Hol C p p 2p 2p(q−1) 2p 4p 2(p(q−2)+1)

For each pair (0,M), the table shows |R(0, [M])|, the number of Hopf Galois
structures of type M on a Galois extension L/K with Galois group 0. Thus the
row sum for that 0 is the number of Hopf Galois structures on L/K . Observe
that whenever M is not a direct product of the p-Sylow subgroup of M with a
group of order m, the entries in the M-column are even: that is a consequence of
Corollary 3.6.

We now construct subgroups PQ of Smp isomorphic to 0 for each isomor-
phism type of groups 0 of order mp. We will work within B = Smp and set
P= 〈π1π2 · · ·πm〉, where πi is the p-cycle

πi =
(
(i−1)p+1 (i−1)p+2 . . . i p

)
.

Then NormB(P) is isomorphic to the group of 3-tuples (â, us, α), where â =
[a1, . . . , am] with ai in Fp, 〈u〉 =Up, and α ∈ Sm . We set

5i = Supp(πi )= {(i − 1)p+ 1, (i − 1)p+ 2, . . . , i p}.
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Then we choose regular subgroups Q1 and Q2 of Perm({51, . . . ,5m})∼= Sm repre-
senting the isomorphism types of groups of order m = 2q, namely Q1 ∼= Cm and
Q2 ∼= Dq , and embed them in NormB(P) by

α ∈ Q 7→ (0̂, 1, α) ∈ NormB(P).

By slight abuse of notation, we denote the image of Qi in NormB(P) also by Qi .
We choose Q1 and Q2 as follows: let Q1 = 〈σ 〉 ∼= Cm and Q2 = 〈σ

2, δ〉 ∼= Dq ,
where

σ = (1, 4, 5, 8, 9, . . . , 2q − 1, 2, 3, 6, . . . , 2q),

σ 2
= (1, 5, 9, . . . , 2q − 3)(2, 6, 10, . . . , 2q − 2), which we denote by σLσR,

δ = (1, 2)(3, 2q)(4, 2q − 1)(5, 2q − 2) · · · (q, q + 3)(q + 1, q + 2).

Then Q1 and Q2 are regular subgroups of Sm . We observe that (Q1)
opp
= Q1 (since

Q1 is abelian), and that Q
opp
2 = 〈σLσ

−1
r , σ q

〉, where

σ q
= (1, 2)(3, 4) · · · (2q − 1, 2q).

To find the possible order-p subgroups of N ∈ R(0), we follow Theorem 2.1
and consider linear characters ψi : Cm→ F×p ,

ψi (σ )= ui , for i = 0, . . . ,m− 1,

and χi : Dq → F×p ,

χi (σ
2)= 1, χi (δ)= uqi

= (−1)i , for i = 0, 1.

Since Q1 and Q2 centralize 〈 p̂ι〉 = P (since the elements of Q1 and Q2 act as
permutations of {π1, . . . , πm}), the proof of Theorem 2.1 shows that Qi normalizes
〈 p̂χ 〉 for each linear character χ of Qi . In fact, from Theorem 2.1, if Q is a regular
subgroup of Perm(π1, . . . , πm) and χ is a character of Q, then for all µ in Q,
µπµ−1

= π , so
µ p̂χµ−1

= χ(µ)−1 p̂χ .

Hence p̂χ is an eigenvector under the action of Q.
More precisely, we have

Lemma 5.2. For σ the generator of Q1 ∼= Cm and σ 2 and δ the generators of
Q2 ∼= Dq , we have:

σ( p̂χ0)= δ( p̂χ0)= p̂χ0, σ ( p̂ψi )= u−1 p̂ψi , σ 2( p̂χ1)= p̂χ1,

δ( p̂χ1)= uq p̂χ1, δ( p̂ψi )= p̂ψ−i .

Proof. All of these follow from

µ p̂χµ−1
= µ( p̂χ )= χ(µ)−1 p̂χ
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except the last, in which ψi is not a character of Q2. For the last, we have

p̂ψi =

∑
γ∈Q1

ψi (γ )v̂γ (1) =

m−1∑
j=0

ψi (σ
j )v̂σ j (1).

Now δ(σ )= σ−1, so

δ( p̂ψi )=

m−1∑
j=0

ψi (σ
j )v̂δ(σ j )(1) =

m−1∑
j=0

ψi (σ
j )v̂σ− j (1) =

m−1∑
j=0

ui j v̂σ− j (1)

=

m−1∑
j=0

u−i j v̂σ j (1) =

m−1∑
j=0

ψ−i (σ
j )v̂σ j (1) = p̂ψ−i . �

We set Pi = 〈 p̂ψi 〉 for i = 0, . . . ,m − 1. In particular, P0 = 〈 p̂χ0〉 = 〈 p̂ψ0〉 =

〈[1, 1, . . . , 1]〉 = 〈1̂〉 = P. We also have that

p̂χ1 =

∑
γ∈Q2

χ1(γ )v̂γ (1) =

m−1∑
i=0

(−1)i v̂δiσ 2i (1)

while

p̂ψq =

∑
γ∈Q1

ψq(γ )v̂γ (1) =

m−1∑
i=0

(−1)i v̂σ(1).

Both are equal to 〈[1,−1, 1,−1, . . . , 1,−1]〉.
We thus have subgroups of NormB(P) of the form Pi Q j for certain pairs (i, j).

We identify their isomorphism types as follows:

Proposition 5.3. With Pi and Q j as defined above, we have

P0Q1 ∼= C p×Cm,

Pi Q1 ∼= F ×C2 for i even, i 6= 0,

Pi Q1 ∼= Hol(C p) for i odd, i 6= q,

PqQ1 ∼= Dp×Cq ,

P0Q2 ∼= Dq ×C p,

PqQ2 ∼= Dpq .

Proof. This follows from Lemma 5.2 and the definitions for the Pi . �

Each group Pi Q j above centralizes P = P0 = 〈[1, 1, . . . , 1]〉 = 〈1̂〉, so each
opposite group (Pi Q j )

opp will contain P. We will use those opposite groups for
the groups 0 in the computations.

We need to observe:

Proposition 5.4. Each group Pi Q j is a regular subgroup of NormB(P).
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Proof. Each Pi Q j is a subgroup of order mp by Proposition 5.3. To show regularity
we show that each nonidentity element of Pi Q j acts fixed-point-freely. Now each
element of Pi Q j has the form (â, 1, α) for â in Fn

p and α in Sm . Since Q j is a regular
subgroup of Sm acting on {51, . . . ,5m}, (â, 1, α) is fixed-point free for α 6= 1 by
Proposition 3.8. If an element (â, 1, I ) is not the identity, then â = [a1, a2, . . . , am]

with all ai 6= 0 (since â is a power of p̂χ for some linear character with values in F×p ).
Hence for t in 5i , (â, 1, I )(t)= ai + t 6= t ; hence (â, 1, I ) has no fixed points. �

For each isomorphism type of 0, we have the following (recall that P(0) =
P0 = P= 〈[1, 1, . . . , 1]〉 = 〈1̂〉):

0 = C p×Cm = (P0Q1)
opp
= P0Q1

= P0〈(0̂, 1, σ )〉,

0 = C p× Dq = (P0Q2)
opp

= P0〈(0̂, 1, σ q)(0̂, 1, σLσ
−1
R )〉,

0 = Dp×Cq = (PqQ1)
opp

= P0〈(0̂, uq , σ )〉,

0 = Dpq = (PqQ2)
opp

= P0〈(0̂, uq , σ q)〉,

0 = F ×C2 = (P2Q1)
opp

= P0〈(0̂, u2, σ )〉,

0 = Hol(C p)= (P1Q1)
opp

= P0〈(0̂, u, σ )〉.

There is a certain arbitrariness concerning these last two choices.
Recall from Proposition 3.8 that if (â, 1, α) in NormB(P) has order coprime to

p, then (â, 1, α) is fixed-point free in NormB(P) if and only if α is fixed-point free
in Sm .

Lemma 5.5. Let α = [a1, . . . , am] ∈ Fm
p and α ∈ Sm .

If the element (â, 1, α) has order 2, then α = x1 · · · xq , a product of q disjoint
2-cycles such that for each xi = (r, s), ar + as = 0.

If the element (â, 1, α) has order q, then α = x1x2, disjoint q-cycles, and∑
i∈Supp(x j )

ai = 0 for i = 1, 2.
If the element (â, 1, α) has order m = 2q , then α is an m-cycle and

∑m−1
i=0 ai = 0.

Proof. Let d = |(â, 1, α)|. If d is coprime to p, then |α| = d; for otherwise
|α| = e< d , in which case (â, 1, α)e = (b̂, 1, I ), with b̂ 6= 0. But then (b̂, 1, I ) has
order p, and so p divides |(â, 1, α)|, a contradiction.

So if d is coprime to p, then α has order d . Since α is fixed-point free, if d = 2,
then α is a product of q disjoint 2-cycles; if d = q then α is a product of two disjoint
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q-cycles, and if α has order m = 2q then α is an m-cycle. Now

(â, 1, α)n =
( n−1∑

k=0

αk(â), 1, αn
)
.

If n is the order of (â, 1, α), hence also the order of α, then by what was just
observed,

n−1∑
k=0

αk(â)= 0̂,

and hence for each ai ,
n−1∑
k=0

aα−k(i) =

n−1∑
k=0

aαk(i) = 0.

The conclusions of the lemma follow. �

Using that

(â, ur , α)n =

( n−1∑
k=0

urkαk(â), urn, αn
)
,

the same argument gives:

Lemma 5.6. Let â = [a1, . . . , am] ∈ Fm
p , r 6= 0 in F×p , and α ∈ Sm .

If the element (â, ur , α) has order 2, then r = q and ur
= uq

= −1, and
α = (x1, . . . , xq), a product of q disjoint 2-cycles such that for each xi = (r, α(r)),
ar − aα(r) = 0.

If the element (â, ur , α) has order q , then α = x1x2, where x1 and x2 are disjoint
q-cycles, and for ti in Supp xi ,

q−1∑
k=0

ukr aα−k(ti ) = 0,

for i = 1, 2.
If the element (â, ur , α) has order m = 2q , then α is an m-cycle and

m−1∑
i=0

uriα−i (a1)= 0.

Enumeration of the R(0, [M]) for each of the 36 pairs (0,M) in Theorem 5.1
breaks up into subcases. Recall that R(0, [M]; Pi ) is the set of regular subgroups
N of NormB(P) ⊂ Smp such that the p-Sylow subgroup of N is P(N ) = Pi . By
Corollary 3.6, if M ∼= Cmp or C p× Dq , R(0, [M])= R(0, [M]; P0). For other M ,
Corollary 3.6 shows that to count R(0, [M]) we need only count R(0, [M]; P0)

(where P0 = P). But given that regular subgroups N yield Hopf Galois structures
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on Galois extensions of fields with Galois group 0, it is useful to explicitly consider
R(0, [M]; Pi ) for i 6= 0.

Thus, rather than just the 36 cases described in Theorem 5.1, a more complete
story would involve 57 cases: 36 of the form R(0, [M]; P0), and 21 of the form
R(0, [M]; Pi ) with i 6= 0 where for each [M], the possible Pi with i 6= 0, where
P(N )= Pi and N ∼= M , are as listed in Proposition 5.3. The counts in those cases
are as follows.

For N ∼= M = Dp ×Cq or Dpq , we have P(N ) = P0 or Pq and Corollary 3.6
shows that |R(0, [M]; Pq)| = |R(0, [M]; P0)|.

For N ∼=M = F×C2 or Hol C p, there are φ(2q) possible i , and |R(0, [M]; Pi )|

= |R(0, [M]; Pj )| for all possible i 6= j and i, j 6= 0, except when 0 ∼= M .
For 0 = M = F ×C2 we have

|R(F ×C2, [F ×C2]; P2)| = 1,

|R(F ×C2, [F ×C2]; Pi )| = p for i = 4, 6, . . . , 2q − 2.

The case 0 = M = Hol(C p) is similar and will be described below.
Since most of the computations are very similar in outline and details to those in

Section 4, we will limit ourselves to just three cases. Before we begin, we pause to
give the reader some perspective, with a view toward dealing with other classes of
groups of order mp, beyond those considered here. There are some common themes
that arise in the enumeration of N ∈ R(0, [M]), in particular in the determination
of the 3-tuples (â, v, α) that generate Q(N ), some of which have been seen already
in the work in Section 4.

• The given generator of Q(N ) must, of course, normalize (and possibly even
centralize) P(N ).

• Any Q(N ) is semiregular so any generator of Q(N ) must act without fixed
points, which imposes restrictions on its components as seen above. And if one
is dealing with several generators of Q(N ), the products of these generators
also cannot have fixed points.

• The order of a given generator of Q(N ) imposes restrictions on its components.

• Any N is normalized by 0, so when a given generator of Q(N ) is conjugated
by an element of 0 it is mapped to another element of N and the form of this
conjugate is determined by whether Q(N ) is a direct factor of N or not.

• The restrictions imposed by order, semiregularity, and being normalized by 0
will frequently imply that â is the solution to a particular set of linear equations
and so linear algebra techniques may be applied.

• The number of free variables that determine the solution sets for the afore-
mentioned linear systems determines whether or not the resulting generators
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(â, v, α) lie in Q(N ) for a single N or, in fact, multiple N . As such, the
count of |R(0, [M])| may vary linearly with p (as when we showed that
|R(C p oτ Cq , [C pq ])| = p earlier) or be “combinatorially” determined, that is,
in terms of some intrinsic property of regular subgroups of Sm , as will be seen
at the end of the determination of |R(Cmp, [C p× Dq ])| later on.

R(C p× Dq, [F×C2]).

Proposition 5.7. With p > q primes, |R(C p× Dq , [F ×C2])| = 0.

Proof. We have
0 = P〈(0̂, 1, σ 2), (0̂, q, δ)〉.

Since N ∼= F ×C2 ∼= (C p oCq)×C2, it has the form

N = 〈(0̂, 1, I ), (â, ur , α)〉,

where (â, ur , α) has order m = 2q, and therefore α is an m-cycle in Sm . Now
(â, ur , α) conjugates the order-p generator of N to its u2 power

(â, ur , α)(1̂, 1, I )(â, ur , α)−1
= (u21̂, 1, I ),

so r = 2.
Also α has order m = 2q , and being fixed-point free, must be an m-cycle.
If0 normalizes N , then conjugation by (0̂, 1, σ 2) and (0̂, 1, δ) are automorphisms

of N . Every automorphism of F ×C2 sends the order-m element y to xy for some
element x of order p. Thus conjugating the order-m generator (â, u2, α) of N by
(0̂, 1, σ 2) and (0̂, 1, δ), and looking at the rightmost Sm components of the result,
we have that σ 2ασ−2

= α and δαδ−1
= α. Thus σ 2 and δ commute with α. But

since α is an m-cycle in Sm , the centralizer in Sm of α is 〈α〉. So σ 2 and δ are
powers of α in Sm , and hence commute. But that’s impossible. Thus no α exists,
and hence there is no N isomorphic to F ×C2 that is normalized by 0 ∼= C p× Dq .

By Corollary 3.6, R(C p× Dq , [F ×C2]; P0)= 0. �

Essentially the same argument shows that |R(C p× Dq), [Hol(C p)])|, |R(Dpq ,

[F ×C2])|, and |R(Dpq , [Hol(C p)])| are all zero.

R(Cmp, [C p× Dq])= R(Cmp, [C p× Dq]; P0). We will need the following tech-
nical information.

Lemma 5.8. If x = (a1, a2, . . . , aq) and y = (b1, b2, . . . , bq) are elements with
disjoint support in S2q =Perm({1, . . . , 2q}) then NormS2q (〈xy〉) contains 2q(q−1)
elements z of order 2q with no fixed points (which are therefore 2q-cycles), half of
which centralize xy and are such that 〈z2

〉=〈(xy)2〉 and the other half invert xy and
satisfy 〈z2

〉 = 〈(xy−1)2〉. Also, NormS2q (〈xy〉) contains two subgroups isomorphic
to Dq , which are opposites of each other, one of which is contained in CentS2q (xy).
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Proof. First we observe that NormS2q (〈xy〉) is isomorphic to F2
q o (〈u〉× S2) where

〈u〉 = F×q . As such, one may readily count how many elements have order 2q. In
particular, since a typical element is a 3-tuple (v̂, ur , α) with v̂ = (v1, v2) ∈ F2

q ,
〈u〉 = F∗q , and α ∈ S2, then, using (2), one may show that |(v̂, ur , α)| = 2q provided
that α = (1, 2), and either v1 6= v2 and ur

= −1 or v1 6= −v2 and ur
= 1. This

yields precisely 2(q2
− q) = 2q(q − 1) elements as claimed. We can exhibit the

particular elements of order 2q (as elements in S2q ) as follows. First, let

t0 = (a1, b1)(a2, b2) · · · (aq , bq),

t1 = (a1, b2)(a2, b3) · · · (aq , b1),

...

tq−1 = (a1, bq)(a2, b1) · · · (aq , bq−1),

τ0 = (a1, b1)(a2, bq) · · · (aq , b2),

τ1 = (a1, b2)(a2, b1) · · · (aq , b3),

...

τq−1 = (a1, bq)(a2, bq−1) · · · (aq , b1),

and consider the elements xyti and xy−1τi . One may verify that each ti interchanges
x and y, so that xyti centralizes xy and that τi xτ−1

i = y−1 and τi yτ−1
i = x−1;

therefore xy−1τi inverts xy. Each of the elements xyti and xy−1τi are 2q-cycles
and each generates a distinct subgroup. Moreover (xyti )2 = (xy)2 ∈ 〈xy〉 while
(xy−1τi )

2
= (xy−1)2 ∈ 〈xy−1

〉. The conclusion we get is that if a 2q-cycle z inverts
or centralizes xy then z2

∈ 〈xy−1
〉 or 〈xy〉. The groups 〈xy−1, ti 〉 for each i are

all equal and isomorphic to Dq (and are contained in CentS2q (xy)), and the groups
〈xy, τi 〉 are all equal and isomorphic to Dq but are not subgroups of CentS2q (xy).
Moreover 〈xy−1, ti 〉opp

= 〈xy, τi 〉 since each clearly centralizes the other. One may
also observe that each of the 2q-cycles above clearly normalize each of these two
copies of Dq . �

If C is a cyclic regular subgroup of S2q and 〈xy〉 = Q(C), then C must be gener-
ated by one of the 2q-cycles given in Lemma 5.8. If N ∼= Dq ⊂ S2q is normalized
by C , then Q(N )= 〈xy〉, and so N = 〈xy, τi 〉. Thus |R(C2q , [Dq ]; P0)| = 1. This
is in agreement with Theorem 4.1 (if in Theorem 4.1 we set p = 2 and exchange
the roles of p and q).

Proposition 5.9. |R(Cmp, [C p× Dq ])| = 2.

Proof. Here P(N )= P, since Q(N ) is a direct factor of N . In this case Q(N ) is
generated by (â, 1, α) of order q and (b̂, 1, β) of order 2. Note that both Q(N ) and
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〈(â, 1, α)〉 are characteristic subgroups of N . So

(0̂, 1, σ )(â, 1, α)(0̂, 1, σ−1)= (σ (â), 1, σα, σ−1)

must equal (â, 1, α)k for some k. By Lemma 5.8, σ must either centralize or invert
α, so k = 1 or −1.

First, we look at the case where σ centralizes α. Then

(σ (â), 1, σα, σ−1)= (â, 1, α),

so σ(â)= â, and therefore â= a1̂ for some a in Fp. Consequently, α(â)= â. Since
(â, 1, α) has order q, we have that qâ = qa1̂= 0̂, and so a = 0 and â = 0̂.

Now, since (b̂, 1, β) normalizes 〈(â, 1, α)〉 then

(b̂, 1, β)(â, 1, α)(−β−1(b̂), 1, β−1)= (b̂, 1, β)(0̂, 1, α)(−β−1(b̂), 1, β−1)

= (b̂− (βαβ−1)(b̂), 1, βαβ−1),

which must equal
(0̂, 1, α)−1

= (0̂, 1, α−1).

As βαβ−1
= α−1 we have b̂−α−1(b̂)= 0̂, so that α(b̂)= b̂. Now, we must have

that (0̂, 1, σ ) conjugates (b̂, 1, β) to another order-2 element of Q(N ), ergo

(0̂, 1, σ )(b̂, 1, β)(0̂, 1, σ−1)= (0̂, 1, α)k(b̂, 1, β)

= (αk(b̂), 1, αkβ)

= (b̂, 1, αkβ), since α(b̂)= b̂.

So we must have σ(b̂)= b̂, which means b̂=b1̂ for some b in Fp. But β(b̂)=−b̂
since (b̂, 1, β) has order 2. Thus b = 0. We conclude that

Q(N )= 〈(0̂, 1, α), (0̂, 1, β)〉,

where 〈α, β〉 ∼= Dq and is centralized by σ .
Letting α = xy in Lemma 5.8, σ is an element of NormS2q (〈α〉) of order 2q that

centralizes α, hence by Lemma 5.8 σ 2
∈ 〈α〉, hence 〈σ 2

〉 = 〈α〉. Now NormS2q (〈α〉)

contains a unique copy of Dq that does not centralize α. That copy must be 〈α, β〉,
since clearly 〈α, β〉 does not centralize α,

We show that Q2 is also in NormS2q (〈α〉) and does not centralize α. Recall (from
Lemma 5.2) that Q2 = 〈σ

2, δ〉 ∼= Dq , hence δσ 2
= σ−2δ. Since 〈σ 2

〉 = 〈α〉, δ
normalizes but does not centralize 〈α〉. Hence Q2 is contained in NormS2q (〈α〉) and
does not centralize α. By the uniqueness, Q2 = 〈α, β〉. We conclude that the group
N above is the unique regular subgroup of NormB(P) such that Q(N ) maps to Q2

in S2m .
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Now assume that σ inverts α. We show that Q2 is in NormS2q (〈α〉). We have
that σ is in NormS2q (〈α〉) and σ 2 is in 〈xy−1

〉. So σ 2 centralizes α by the proof of
Lemma 5.8. Now δ inverts σ 2, hence inverts xy−1. Since δ(xy−1)δ−1

= x−1 y, either
δxδ−1

= x−1 or δxδ−1
= y. But δ is a fixed-point-free product of transpositions in

S2m . If δxδ−1
= x−1 then δ restricts to a fixed-point-free product of transpositions

of Supp x , a set with an odd number of elements. That is not possible. So δxδ−1
= y

and δyδ−1
= x , so δ centralizes α = xy. Thus Q2 = 〈σ

2, δ〉 ∈ NormS2q (〈α〉) and
centralizes α. Since 〈α, β〉 ∈ NormS2q (〈α〉) and does not centralize α, therefore
〈α, β〉 = Q

opp
2 by Lemma 5.8.

Now
Q(N )= 〈(â, 1, α), (b̂, 1, β)〉.

Since (0̂, 1, σ ) normalizes 〈(â, 1, α)〉, which is characteristic in N , and σασ =α−1,
we have

(0̂, 1, σ )(â, 1, α)(0̂, 1, σ−1)= (â, 1, α)−1,

hence σ(â)=−α(â), and so
ασ(â)=−â.

Since σ inverts α, σ has order 2q, and α has order q, one sees easily that ασ has
order 2q . Hence

â = [a1, aασ(1), . . . , a(ασ)2q−1(1)],

while
ασ(â)= [a(ασ)−1(1), a1, aασ(1), . . . , a(ασ)2q−2(1)].

We have ασ(â)=−â, while (ασ)2(â)= â. Thus

a(ασ)r (1) =
{

a1 if r is even,
−a1 if r is odd.

Now (â, 1, α) has order q, so
q−1∑
i=0

αi (â)= 0̂;

hence
q−1∑
i=0

aα−i (1) = 0.

But the sum of an odd number of elements of Fp from a set consisting of copies of
a and −a can equal 0 only when a = 0.

Thus â = 0̂. Since (b̂, 1, β) normalizes (0̂, 1, α), the same argument as in the
first case of this proof shows that b̂ = 0̂. Thus

N = P · 〈(0̂, 1, α), (0̂, 1, β)〉,
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where 〈α, β〉 = Q
opp
2 , hence N is the unique regular subgroup of NormB(P) with

Q(N ) mapping to Q
opp
2 in S2q . �

R(Hol(C p), [Hol(C p)]).

Proposition 5.10. |R(Hol(C p), [Hol(C p)])| = 2(1+ p(q − 2)).

Proof. Hol C p is not a direct product of a group of order p and a group of order
m = 2q, so it suffices to show that |R(Hol(C p), [Hol(C p)]; P0)| = 1+ p(q − 2).
This case is essentially similar to the computation for R(C p oτ Cq , [C p oτ Cq ]) in
Section 5, and yields the same cardinality. So instead, we focus here on the case
where P(N ) 6= P0.

Let 0=〈(1̂, 1, I ), (0̂, u, σ )〉 and let N=〈( p̂ψi , 1, I ), (b̂, us, β)〉, where (b̂, us, β)

has order m. Since N is regular, β is fixed-point free of order m = 2q , so must be
an m-cycle, and by the argument of Lemma 4.3 using that (b̂, us, β) is normalized
by 0, we find that β = σ t for some t coprime to m.

Since N ∼= Hol(C p), the two generators of N , x of order p and y of order m,
must satisfy the defining relation yx = xu y, so we must have

(b̂, us, σ t)( p̂ψi , 1, I )(b̂, us, σ t)−1
= (u p̂ψi , 1, I ),

and hence usσ t p̂ψi = u p̂ψi . Since σ( p̂ψi )= u−i p̂ψi , this becomes

us−i t p̂ψi = u p̂ψi ,

hence
s− i t ≡ 1 (mod m). (12)

Also, 0 normalizes N . Thus we require that

(1̂, 1, I )(b̂, us, σ t)(−1̂, 1, I ) ∈ N ,

hence
b̂+ (1− us)1̂= f p̂ψi + b̂.

Thus (1−us)1̂= f p̂ψi , which for i 6= 0 can only occur when both sides equal zero.
Thus s = 0 and f = 0. From (12) we obtain

−i t ≡ 1 (mod m), (13)

hence t is odd and coprime to m.
Since 0 normalizes N , conjugation by (0̂, u, σ t) is an automorphism of N . Every

automorphism of N must take the generator y of order m to xk y for some power
xk of the generator of order p. Thus (noting that us

= 1),

(0̂, u, σ )(b̂, 1, σ t)(0̂, u−1, σ−1)= (k p̂ψi , 1, I )(b̂, 1, σ t),
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for some k, so
uσ(b̂)= b̂+ kσ t( p̂ψi )= b̂+ ku−i t p̂ψi ,

which, in view of (13), yields

σ(b̂)= u−1b̂+ k p̂ψi .

Setting u−1
= w, we have

σ(b̂)= wb̂+ k p̂ψi .

For (b̂, 1, σ t)m = (0̂, 1, I ), we need that

b̂+ σ t(b̂)+ · · ·+ σ (m−1)t(b̂)= 0.

This holds if the first elements of the terms on the left side sum to 0:

b1+ bσ−t (1)+ · · ·+ bσ−t j (1)+ · · ·+ bσ−t (m−1)(1) = 0. (14)

First assume i 6= 1. Then for all r , we have

σ r (b̂)= wr b̂+
wr
−wri

w−wi k p̂ψi .

Thus, since ( p̂ψi )1 = 1, the first component of σ r (b̂) is

bσ−r (1) = (σ
r (b̂))1 = wr b1+

wr
−wri

w−wi k.

Thus (14) is
m−1∑
l=0

bσ−tl (1) =

m−1∑
l=0

(
wtlb1+ k

(
wtl
−wtli

w−wi

))

= b1

(
wtm
− 1

wt − 1

)
+ k

m−1∑
l=0

(
wtl
−wtli

w−wi

)
.

Since wm
= 1, the first sum is 0; so this becomes

=
k

w−wi

m−1∑
l=0

wtl
−

m−1∑
l=0

wtli

=
k

w−wi

wtm
− 1

wt − 1
−
wtim
− 1

wti − 1
.

Now ti ≡−1 (mod m), so wti
=w−1 and so both terms in this last equation equal

zero. Thus (14) holds if i 6= 1.
If i = 1, then t =−1 and σ r (b̂)=wr b̂+rwr−1k p̂ψi for all r . Thus (14) becomes

m−1∑
l=0

bσ−tl (1) =

m−1∑
l=0

wtlb1+ k
m−1∑
l=0

(tlwtl
− 1).
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The first sum on the right is equal to zero. By the same observation as with
(9), the second sum on the right equals zero if and only if k = 0. Thus when
i = 1 and t = −1, the generator (b̂, 1, σ t) has order m if and only if σ(b̂) =
u−1b̂. In that case, b̂ = b1 p̂ψ1 , and so replacing the generator (b̂, 1, σ−1) of N by
(−b1 p̂ψ1, 1, I )(b̂, 1, σ−1)= (0, 1, σ−1) yields

N = 〈( p̂ψ1, 1, I ), (0̂, 1, σ−1)〉.

Thus there is a unique regular subgroup N when t = −1. For t 6= −1, each b1

yields a different N , hence we have a total of 1+ (q − 2)p regular subgroups N
with P(N ) 6= P. By Corollary 3.6, this implies that |R(Hol(C p), [Hol(C p)])| =

2(1+ (q − 2)p). �

The enumeration of R(Hol(C p), [Hol(C p)]) is in agreement with that in [Childs
2003].

6. Conclusion

The program developed here to enumerate R(0, [M]) may be readily applied to any
class of groups of order mp with p > m. The primary requirement is to start with
the groups of order m and for the particular p determine the set of linear characters
for each group of order m. One may find that, depending on congruence conditions
between m and p the number of possible characters may vary greatly. Nonetheless,
one is presented with a very interesting set of calculations, wherein one may apply
many different techniques. What is most interesting is the interplay between the
linear and combinatorial information in the different cases. For small m and p these
computations may be readily implemented in a computer algebra system such as
GAP [2002]. This was done by the author in the development of this work, especially
in gathering empirical information about some specific cases, for example, with
mp = 42. Lastly, and this is mildly conjectural, it seems that the theory developed
here applies to certain cases where actually p<m. Specifically, one might consider
those cases where p - m and the order-p subgroup is automatically characteristic
due to basic Sylow theory, for example, p = 5 and m = 8.
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