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We generalize the linear algebra setting of Tate’s central extension to arbitrary
dimension. In general, one obtains a Lie (n + 1)-cocycle. We compute it to
some extent. The construction is based on a Lie algebra variant of Beilinson’s
adelic multidimensional residue symbol, generalizing Tate’s approach to the local
residue symbol for 1-forms on curves.

Firstly, recall that to every Lie algebra g one can associate its loop Lie algebra
g[t±]. Iterating this construction, we obtain multiloop Lie algebras g[t±1

1 , . . . , t±1
n ].

To begin with, we show that various classes of interesting multiloop Lie algebras
can all be embedded into a large (infinite-dimensional) Lie algebra:

Theorem 1. Let k be a field and n≥ 1. There is a universal Lie algebra G naturally
containing, simultaneously,

(1) the abelian Lie algebra k[t±1
1 , . . . , t±1

n ],

(2) Lie algebras of derivations, e.g., spanned by

t s1
1 · · · t

sn
n ∂ti (acting on k[t±1

1 , . . . , t±1
n ]),

(3) for any finite-dimensional simple Lie algebra g, the multiloop algebra

g[t±1
1 , . . . , t±1

n ].

The universal Lie algebra G has a canonical Lie (n+1)-cocycle φ ∈ H n+1(G, k).
For n = 1 this cocycle determines a central extension

0→ k→ Ĝ→G→ 0

(known as Tate’s central extension) and the pullback of it to one of the above types
of subalgebras yields (respectively)

(1) the Heisenberg algebra,
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(2) the Virasoro algebra,

(3) the affine Lie algebra ĝ associated to g.

This will be stated in more detail and proven in Section 6. It is not at all surprising
that some Lie algebras can be embedded into larger ones. The interesting fact is
that there is such a Lie algebra which carries a canonical cocycle, inducing the ones
defining all these classical central extensions. For n = 1 the above is well-known —
see, for example, [Beilinson et al. 1991, §2.1]. For n = 1, 2, see [Frenkel and Zhu
2012]. In the language of the latter, G is an example of a “master Lie algebra”.

We are interested in the nature of φ for n > 1 — even if such cocycles cannot be
interpreted as a central extension anymore (we get crossed modules, etc.). Indeed,
they are meaningful, as we shall see.

A key point of this text is the actual computation of φ (with a slight limitation):

Theorem 2. The cocycle φ ∈ H n+1(G, k) is given explicitly by

φ( f0 ∧ f1 ∧ · · · ∧ fn)

= tr
∑
π∈Sn

sgnπ
∑

γ1,...,γn∈{±}

(−1)γ1+···+γn (P−γ1
1 ad( fπ(1))P

γ1
1 ) · · · (P

−γn
n ad( fπ(n))Pγn

n ) f0,

whenever f0⊗ f1∧ · · ·∧ fn is already a g-valued Lie cycle. The P+1 , . . . , P+n refer
to certain commuting idempotents (see Section 4 for details).

The proof and details regarding the P±i can be found in Section 6. Effectively,
we compute the composition

Hn(g, g)
I
→ Hn+1(g, k)→ k, (0-1)

with I a natural map to be explained in Section 2. By the universal coefficient
theorem for Lie algebras, H n+1(g, k)∼= Hn+1(g, k)∗, referring to the dual space. As
such, although φ is well-defined, the formula only applies to those cycles admitting
a lift under I (as soon as it exists, the choice does not matter). The formula is rather
complicated. However, the pullback to particular subalgebras of G can be much
nicer; for example for multiloop Lie algebras of simple Lie algebras, we get the
following:

Theorem 3. Suppose g/k is a finite-dimensional centerless Lie algebra (e.g., sim-
ple). For Y0, . . . , Yn ∈ g we call

B(Y0, . . . , Yn) := trEndk(g)(ad(Y0) ad(Y1) · · · ad(Yn))
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the “generalized Killing form”. Then on all Lie cycles admitting a lift under I as
in (0-1), the pullback of φ to g[t±1 , . . . , t±n ] is explicitly given by

φ(Y0tc0,1
1 · · · t

c0,n
n ∧ · · · ∧ Yntcn,1

1 · · · tcn,n
n )

= (−1)n
∑
π∈Sn

sgnπ B(Yπ(1), . . . , Yπ(n), Y0)

n∏
i=1

cπ(i),i

whenever
∑n

p=0 cp,i = 0 for all i ∈ {1, . . . , n}, and vanishes otherwise. Here
ci,p ∈ Z for all i = 0, . . . , n and p = 1, . . . , n.

If g is finite-dimensional simple and n = 1, then the class φ yields the universal
central extension of the loop Lie algebra g[t1, t−1

1 ], the associated affine Lie algebra ĝ
(without extending by a derivation),

0→ k→ ĝ→ g[t1, t−1
1 ] → 0.

In this case B is obviously just the ordinary Killing form of g. The above theorem
will be proven in Section 8.

Additionally, we should say that these computations have an application outside
the theory of Lie algebras. For this we need to return to the roots of the subject.
J. Tate [1968] showed that the residue of a rational 1-form f dg at a closed point x
on an algebraic curve X/k can be expressed as a certain operator-theoretic trace
on an infinite-dimensional space. Arbarello, de Concini and Kac [Arbarello et al.
1989, eq. (2.7)] reformulated this as

resx f dg = tr([π, g] f ). (0-2)

On the right-hand side the functions f, g are to be read as multiplication operators
acting on the local field Frac ÔX,x ' κ(x)((t1)), seen as a κ(x)-vector space, and π
denotes some projector on the nonprincipal part, i.e., “we cut off the principal part
of the Laurent series.” It is natural to ask whether there exists a generalization of
this formula to higher residues. We can give such a formula; it will be proven in
Section 7:

Theorem 4. For a multiple Laurent polynomial ring with residue field k, say

R := k[t±1 , . . . , t±n ],

and f0, . . . , fn ∈ R we have

rest1 . . . restn f0 d f1 . . . d fn

= (−1)n tr
∑
π∈Sn

sgnπ
∑

γ1...γn∈{±}

(−1)γ1+···+γn

×(P−γ1
1 ad( fπ(1))P

γ1
1 ) · · · (P

−γn
n ad( fπ(n))Pγn

n ) f0,



22 Oliver Braunling

where P±1 , . . . , P±n are suitable projectors (explained in Section 7; see (7-3)).

(1) For n = 1 and π := P+1 the formula reduces to the familiar (0-2) (as in
[Arbarello et al. 1989]).

(2) If we have fi = tci,1
1 · · · t

ci,n
n for i = 0, . . . , n, the formula reduces to

res f0 d f1 · · · d fn = det

c1,1 · · · cn,1
...

. . .
...

c1,n · · · cn,n

 if
n∑

p=0

cp,i = 0 for all i

and the residue is zero if the condition on the right-hand side is not satisfied.

(3) For n = 1 and f1 = t1 this reduces by linearity to the classical definition

resαtc1
1 dt1 =

{
α if c1 =−1,
0 if c1 6= −1.

How do we construct the cocycle φ?

There are various ways to approach this construction. Frenkel and Zhu [2012]
use distinguished generators of the cohomology ring of infinite matrix algebras,
based on computations of Feigin and Tsygan [1983]. This is a very natural approach.
However, in this text we use a different approach based on the multidimensional
adelic residue of [Beilinson 1980]. Originally, this approach was only used to
generalize Tate’s approach to the residue symbol to several variables, but it readily
generalizes to the problem we are discussing here. This might be interesting also
since Beilinson does not give an explicit formula — and it is not totally trivial to
extrapolate a formula from the definition.

Theorem 5. The formula in Theorem 4 arises from the construction of Beilinson
(in Lemma 1 of [Beilinson 1980]), i.e., it is the composition

�n
R/k

(−1)n~
−→ H Lie

n+1(G, k)
ρ2
→
∧En+1

0,n+1
(dn+1)

−1

−→
∧En+1

n+1,1
ρ1
→ H Lie

0 (G, N n+1)
tr
→ k, (0-3)

where

• ~ : f0 d f1 ∧ · · · ∧ d fn 7→ f0 ∧ · · · ∧ fn ,

• N n+1 is a certain G-module (see Section 4 for the definition, or T∗N in [Beilin-
son 1980]), and

• ρ1, ρ2 are edge maps and dn+1 a differential on the (n+1)-st page of a certain
spectral sequence ∧E •

•,• (constructed in Lemma 19, or see [Beilinson 1980,
Lemma 1]).

This result is only meaningful to readers familiar with [Beilinson 1980].
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The above theorem actually lies at the heart of our approach. We formulate a
contracting homotopy for a mild variation of the relevant complexes in [Beilinson
1980] and then, in a slightly tedious computation, make the spectral sequence
differential dn+1 explicit on the basis of this.

Finally, for applications in algebraic geometry, e.g., the interpretation as a local
residue, it is unfortunate to interpret “loop Lie algebra” as g[t, t−1

]. It is better to
work with Laurent series, i.e., g((t)), or even local components of adèles. Tate’s
original work uses the language of adèles for example. For this reason, we shall
axiomatize all these variations through the notion of a “cubically decomposed
algebra” (essentially taken from [Beilinson 1980], where it’s not given a name).

What is not here. In the present text I only discuss the “linear algebra setting” of
Tate’s central extension ([Beilinson et al. 1991, §1] for the case n = 1). There is
also a “differential operator setting” [ibid., §2], which I will treat in a future text.
Roughly speaking, G will be replaced by much smaller algebras of differential
operators on a vector bundle.

Moreover, I do not treat the true multiloop analogue of an affine Kac–Moody
algebra in the present text. Already for n = 1 I only consider the “plain” affine Lie
algebras without extending by a derivation. From the perspective of a triangular
decomposition, this is a rather horrible omission: the root spaces are infinite-
dimensional! However, as the reader can probably imagine from the computations
in Sections 7 and 8 the calculation gets a lot more complicated in the presence
of derivations. Thus, this aspect will also be deferred to a future text. The same
applies to the analogue of the plain Virasoro algebra. There should also be a
nonlinear analogue, distinguished cohomology classes for multiloop groups. The
cases n = 1, 2 (along with a higher representation theory in categories) are treated
in detail by Frenkel and Zhu [2012].

One should also mention that there are completely orthogonal generalizations
of Kac–Moody/Virasoro cocycles to multiloop Lie algebras — see, for example,
[Frenkel 1987, §9; Neher 2011].

1. Basic framework

For an associative algebra A we shall write ALie to denote the associated Lie algebra.

Definition 6 [Beilinson 1980]. An (n-fold) cubically decomposed algebra (over a
field k) is the datum (A, (I±i ), τ ):

• an associative unital (not necessarily commutative) k-algebra A;

• two-sided ideals I+i , I−i such that I+i + I−i = A for i = 1, . . . , n;
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• writing I 0
i := I+i ∩ I−i and Itr := I 0

1 ∩ · · · ∩ I 0
n , a k-linear map

τ : Itr,Lie/[Itr,Lie, ALie] → k.

For any finite-dimensional k-vector space V , certain infinite matrix algebras act
naturally on the k-vector space of multiple Laurent polynomials V [t±1

1 , . . . , t±1
n ].

This yields an example of this structure — see Section 1.1. There is also an analogue
for V ((t1)) · · · ((tn)), which we leave to the reader to formulate (this links to higher
local fields, see [Fesenko and Kurihara 2000]). Local components of Parshin–
Beilinson adèles of schemes yield another example, see [Beilinson 1980, §1]. In
loc. cit. the ideals I+i , I−i are called X i , Y i . The latter gives the multidimensional
generalization of the adèle formulation of Tate [1968]. See [Fesenko 2010; Huber
1991; Hübl and Yekutieli 1996; Morrow 2010] for more background on higher-
dimensional adèles and their uses.

1.1. Infinite matrix algebras. Fix a field k. Let R be an associative k-algebra, not
necessarily unital or commutative. Define an algebra of infinite matrices

E(R) := {φ = (φi j )i, j∈Z, φi j ∈ R | ∃Kφ : |i − j |> Kφ⇒ φi j = 0}. (1-1)

Define a product by (φ · φ′)ik :=
∑

j∈Z φi jφ
′

jk , the usual matrix multiplication
formula; this sum only has finitely many nonzero terms and one can choose Kφφ′ :=

Kφ + Kφ′ . Then E(R) becomes an associative k-algebra. If R is unital, E(R) is
also unital. E is a functor from associative algebras to associative algebras; for
a morphism ϕ : R→ S there is an induced morphism E(ϕ) : E(R)→ E(S) by
using ϕ entry-by-entry, i.e., (E(ϕ)φ)i j := ϕ(φi j ). If I ⊆ R is an ideal (which is in
particular a nonunital associative ring), E(I ) ⊆ E(R) is an ideal. Moreover, for
ideals I1, I2 one has E(I1 ∩ I2)= E(I1)∩ E(I2) and E(I1+ I2)= E(I1)+ E(I2),
as a sum of ideals. Next, define

I+(R) := {φ ∈ E(R) | ∃Bφ : i < Bφ⇒ φi j = 0},

I−(R) := {φ ∈ E(R) | ∃Bφ : j > Bφ⇒ φi j = 0}

and one checks easily that I+(R), I−(R) are two-sided ideals in E(R). The fol-
lowing figure attempts to visualize the shape of the matrices in E(R), I+(R) and
I−(R), respectively:
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Define I 0(R) := I+(R)∩ I−(R) and one checks that

I 0(R) := {φ ∈ E(R) | φi j = 0 for all but finitely many (i, j)}.

There is a trace morphism

tr : I 0(R)→ R, trφ :=
∑
i∈Z

φi i ; (1-2)

the sum is obviously finite. One easily verifies that tr[φ, φ′] =
∑

i, j∈Z[φi j , φ
′

j i ] and
thus tr[I 0(R), E(R)] ⊆ [R, R]. More generally, if R′ ⊆ R is a subalgebra,

tr[I 0(R′), E(R)] ⊆ [R′, R].

We note that this trace does not necessarily vanish on commutators. Moreover,
every φ ∈ E(R) can be written as φ = φ++φ− with φ+i j := δi≥0φi j (for this R need
not be unital, use φi j for i ≥ 0 and 0 otherwise) and φ− = φ−φ+. One checks that
φ± ∈ I±(R). It follows that I+(R)+ I−(R)= E(R).

Finally, let M be an R-bimodule (over k, i.e., a left-(A ⊗k Aop)-module; R-
bimodules form an abelian category). Analogously to E(R), define

E(M) := {φ = (φi j )i, j∈Z, φi j ∈ M | ∃Kφ : |i − j |> Kφ⇒ φi j = 0}. (1-3)

Again using the matrix multiplication formula, E(M) is an E(R)-bimodule. If
0→ M ′→ M→ M ′′→ 0 is an exact sequence of R-bimodules, 0→ E(M ′)→
E(M)→ E(M ′′)→ 0 is an exact sequence of E(R)-bimodules. Note that for an
ideal I ⊆ R the object E(I ) is well-defined, regardless of whether we regard I as
an associative ring as in (1-1) or an R-bimodule as in (1-3).

Now let V be a finite-dimensional k-vector space and R0 an arbitrary unital
subalgebra of Endk(V ). Define Ri := E(Ri−1) for i = 1, . . . , n. Note that via
k → R0, α 7→ α · 1Endk(V ), k is embedded into the center of Ri . Then Rn =

(E ◦ · · · ◦ E)(R0) is a unital associative k-algebra. Its elements may be indexed
φ = (φ(in, jn),...,(i1, j1)∈Z2n ∈ R0). By the properties discussed above,

I±i := (En
· · · E

i+1
◦ I±

i
◦ E

i−1
· · · E

1
)(R0) (I± in the i-th place)

is an ideal in Rn (we use centered subscripts only to emphasize the numbering).
Moreover,

I+i + I−i = (E · · · E ◦ I+ ◦ E · · · E)(R0)+ (E · · · E ◦ I− ◦ E · · · E)(R0)

= (E · · · E ◦ E ◦ E · · · E)(R0)= Rn.
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By composing the traces of (1-2) we arrive at a k-linear map τ ,

τ : Itr = I 0
1 ∩ · · · ∩ I 0

n

= (I 0
◦ · · · ◦ I 0)(R0)

tr
→ · · ·

tr
→ I 0(I 0(R0))

tr
→ I 0(R0)

tr
→ R0

Tr
→ k,

where “Tr” (as opposed to “tr”) denotes the ordinary matrix trace of Endk(V )
(⊇ R0). Here we have used that V is finite-dimensional over k. Using inductively
the relation

tr[I 0(R′), E(R)] ⊆ [R′, R]

(valid for subalgebras R′ ⊆ R), one sees that

τ [Itr, Rn] = Tr(tr ◦ · · · ◦ tr ◦ tr)[I 0(I 0( · · · )), E(E( · · · ))]

⊆ Tr(tr ◦ · · · ◦ tr)[I 0( · · · ), E( · · · )] ⊆ Tr[R0, R0] = 0

since the ordinary trace Tr vanishes on commutators. Hence, τ factors to a morphism
τ : Itr,Lie/[Itr,Lie, RLie]→ k. Summarizing, for every n≥ 1, every finite-dimensional
k-vector space V and every unital subalgebra R0 ⊆ Endk(V ), (Rn, (I±i ), τ ) is a
cubically decomposed algebra.

Finally, note that for any associative algebra R, E(R) is a right-R-submodule
of right-R-module endomorphisms EndR(R[t, t−1

]) of R[t, t−1
]. Write elements

as a =
∑

i∈Z ai t i , also denoted a = (ai )i with ai ∈ R, and let φ = (φi j ) act by
(φ · a)i :=

∑
k φikak . Moreover, each a ∈ R[t, t−1

] determines a right-R-module
endomorphism via the multiplication operator x 7→ a · x . We find

R[t, t−1
] ↪→ E(R) ↪→ EndR(R[t, t−1

]).

Multiplication with t i is represented by a matrix with a diagonal . . . , 1, 1, 1, . . . ,
shifted by i off the principal diagonal. Inductively,

R0[t±1
1 , . . . , t±1

n ] ↪→ Rn ↪→ EndR0(R0[t±1
1 , . . . , t±1

n ]). (1-4)

See for example [Jimbo and Miwa 1983, §1; Kac and Raina 1987, Lec. 4] for more
information regarding the case n = 1 and [Frenkel and Zhu 2012, §3] for a similar
procedure when n = 2.

2. Modified Chevalley–Eilenberg complexes

Suppose k is a field and g a Lie algebra over k. We recall that for any g-module the
conventional Chevalley–Eilenberg complex is given by C(M)r := M ⊗

∧rg along
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with the differential

δ := δ[1]+ δ[2] : C(M)r → C(M)r−1, (2-1)

δ[1]( f0⊗ f1 ∧ · · · ∧ fr ) :=

r∑
i=1

(−1)i [ f0, fi ]⊗ f1 ∧ · · · ∧ f̂i ∧ · · · ∧ fr ,

δ[2]( f0⊗ f1 ∧ · · · ∧ fr ) :=
∑

1≤i< j≤r

(−1)i+ j+1 f0⊗[ fi , f j ] ∧ f1 ∧ · · · f̂i · · · f̂ j · · · ∧ fr

for f0 ∈ M and f1, . . . , fr ∈ g. Its homology is (by definition, if one wants) Lie
homology with coefficients in M . There is also a cohomological analogue; for
details see, for example, [Loday 1992, Chapter 10]. We may view k itself as a
g-module with the trivial structure. There is an obvious morphism

I :C(g)r→C(k)r+1, f0⊗ f1∧· · ·∧ fr 7→ (−1)r 1k⊗ f0∧ f1∧· · ·∧ fr , (2-2)

and one checks easily that this commutes with the respective differentials and thus
induces morphisms Hr (g, g)→ Hr+1 (g, k). The linear dual g∗ := Homk(g, k) is
canonically a g-module via ( f ·ϕ) (g) :=ϕ([g, f ]) for ϕ∈g∗ and f, g∈g. The coho-
mological analogue of (2-2) is the morphism I : H r+1 (g, k)→ H r (g, g∗) given by

(Iφ)( f1 ∧ · · · ∧ fr )( f0) := (−1)r φ( f0 ∧ f1 ∧ · · · ∧ fr ).

Remark 7. These maps could be viewed as a Lie-theoretic analogue of map I in
Connes’ periodicity sequence — see [Loday 1992, §2.2]. We may view H∗−1(g, g)

as a partial “noncyclic” counterpart of Lie homology. The true Hochschild analogue
would be Leibniz homology — see [Loday 1992, §10.6]. For the present purposes,
however, we have no use for this analogue.

Let j ⊆ g be a Lie ideal. As such, it is a g-module and we may consider
C(j)•. Following [Beilinson 1980] we may work with a “cyclically symmetrized”
counterpart: We write j∧

∧r−1g to denote the g-submodule of g∧
∧r−1g =

∧rg

generated by elements j ∧ f1 ∧ · · · ∧ fr−1 such that j ∈ j and f1, . . . , fr−1 ∈ g.
If ji , i = 1, 2, . . . , are Lie ideals, we denote by

(⊕
i ji
)
∧
∧r−1g the module⊕

i

(
ji ∧

∧r−1g
)
.

Example 8. If k 〈s, t, u〉 and k 〈s〉 denote a 3-dimensional abelian Lie algebra along
with a 1-dimensional Lie ideal, then

∧2k〈s, t, u〉 is 3-dimensional with basis s ∧ t ,
s ∧ u and t ∧ u. Then k 〈s〉 ∧ k 〈s, t, u〉 is 2-dimensional with basis s ∧ t , s ∧ u.

The k-vector spaces CE(j)r := j∧
∧r−1g (for r ≥ 1) and CE(j)0 := k define a

subcomplex of C(k)•. In particular, the differential is given by

δ( f0 ∧ f1 ∧ · · · ∧ fr ) :=
∑

0≤i< j≤r

(−1)i+ j
[ fi , f j ] ∧ f0 ∧ · · · f̂i · · · f̂ j · · · ∧ fr . (2-3)
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It is well-defined since j is a Lie ideal. We get morphisms generalizing I , notably
Hr (g, j)→ Hr+1(CE(j)) via j⊗

∧rg→ j∧
∧rg and analogously H r+1(CE(j))→

H r (g, j∗). We have resisted the temptation to reindex CE(−)• despite the unpleas-
ant (+1)-shift in (2-2) in order to remain compatible with standard usage in the
following sense:

Lemma 9 [Beilinson 1980, Lemma 1(a)]. CE(g)• is a complex of k-vector spaces
and is quasi-isomorphic to k⊗L

Ug k. In particular

Hi (g, k)= Hi (CE(g)•) and H i (g, k)= H i (Homk(CE(g)•, k)).

Proof. As we have explained above, CE(g)• agrees with the standard Chevalley–
Eilenberg complex and the latter is well-known to represent k⊗L

Ug k. �

We easily compute

H0(g, j)
∼=
−→

I
H1(CE(j))∼= j/[g, j], (2-4)

H 1(CE(j))
∼=
−→

I
H 0(g, j∗)∼= (j/[g, j])∗.

In higher degrees the map I ceases to be an isomorphism.
Nonetheless, this computation hints at the principle of computation which we

shall use below. Beilinson [1980] uses CE(−)•, whereas we will only be able to do
manageable computations with C(−)•. The map I will serve to deduce facts about
CE(−)• while working with C(−)•.

3. Cubically decomposed algebras

Let (A, (I±i ), τ ) be an n-fold cubically decomposed algebra (Definition 6) over a
field k; that is, we are given the following data:

• an associative unital (not necessarily commutative) k-algebra A;

• two-sided ideals I+i , I−i such that I+i + I−i = A for i = 1, . . . , n;

• writing I 0
i := I+i ∩ I−i and Itr := I 0

1 ∩ · · · ∩ I 0
n , a k-linear map

τ : Itr,Lie/[Itr,Lie, ALie] → k.

See Section 1 to see how this type of structure arises. As a shorthand, define
g := ALie. For any elements s1, . . . , sn ∈ {+,−, 0} we define the degree of the
n-tuple (s1, . . . , sn) as

deg(s1 . . . sn) := 1+ #{i | si = 0}.

Next, following [Beilinson 1980], we construct complexes of g-modules:
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Definition 10 [Beilinson 1980]. For every 1≤ p ≤ n+ 1 define

∧T p
•
:=

∐
s1...sn∈{±,0}

deg(s1...sn)=p

n⋂
i=1


CE(I+i )• for si =+,

CE(I−i )• for si =−,

CE(I+i )• ∩CE(I−i )• for si = 0,
(3-1)

and ∧T 0
•
:= CE(g)•.

Each CE(I±i )• is a complex and all their differentials are defined by the same
formula, (2-3); hence the intersection of these complexes has a well-defined differ-
ential and is a complex itself. Same for the coproduct. The complex ∧T •

•
is inspired

by a cubical object used by Beilinson [1980].

Example 11. For n = 2 we get complexes

∧T 1
•
=

∐
s1,s2∈{±}

CE(I s1
1 )•∩CE(I s2

2 )•,

∧T 2
•
=

∐
s1∈{±}

CE(I s1
1 )•∩CE(I+2 )•∩CE(I−2 )•⊕

∐
s2∈{±}

CE(I+1 )•∩CE(I−1 )•∩CE(I s2
2 )•,

∧T 3
•
= CE(I+1 )•∩CE(I−1 )•∩CE(I+2 )•∩CE(I−2 )•.

Note that CE(I+1 )•∩CE(I−1 )• 6=CE(I+1 ∩ I−1 )• ; for example, I+1 ∧ I−1 is a subspace
in degree two of the left-hand side, but not of the right-hand side.

Diverging from [Beilinson 1980] we shall primarily use the following slightly
different auxiliary construction (which we will later relate to the above one):

Definition 12. For 1≤ p ≤ n+ 1 let

⊗T p
•
:=

∐
s1...sn∈{±,0}

deg(s1...sn)=p

C(I s1
1 ∩ I s2

2 ∩ · · · ∩ I sn
n )• (3-2)

and ⊗T 0
•
:= C(g)•.

So, instead of the modified Chevalley–Eilenberg complex of Section 2 we just
use the standard complexes for Lie homology with suitable coefficients. Clearly
the morphism I : C(g)r → C(k)r+1 descends to morphisms

C(g)r ⊇ C(I si
i )r → CE(I si

i )r+1 ⊆ C(k)r+1 ,

f0
∈I

si
i

⊗ f1 ∧ · · · ∧ fr 7→ (−1)r f0
∈I

si
i

∧ f1 ∧ · · · ∧ fr .

As we take intersections of Lie ideals on the left C(I s1
1 ∩ · · · )•, as in (3-2), the

image lies in the intersection of the individual images, i.e., CE(I si
1 )• ∩ · · · , as in
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(3-1). As a result, we obtain morphisms

⊗T p
•

I
→
∧T p
•+1 (for all p),

and since they are a restriction of the map I to subcomplexes, this is a morphism
of complexes, and thus induces maps on homology.

4. The cube complex

Next, we shall define maps · · ·→⊗T 2
•
→
⊗T 1
•
→
⊗T 0
•
→ 0, so that (⊗T•)• becomes

an exact superscript-indexed complex (of subscript-indexed complexes); and the
same for ∧T •

•
. We begin by discussing ⊗T •

•
.

We define a g-module N 0
:= g and for p ≥ 1

N p
:=

∐
s1...sn∈{+,−,0}

I s1
1 ∩ I s2

2 ∩ · · · ∩ I sn
n (with deg(s1 . . . sn)= p). (4-1)

We shall denote the components f = ( fs1...sn ) of elements in N p with indices in
terms of s1, . . . , sn ∈ {+,−, 0}. Clearly N p

= 0 for p > n+ 1. We shall treat all
N p as g-modules and observe that

⊗T p
•
= C(N p)•

(by definition!), so by the functoriality and flatness1 of C• it suffices to construct an
exact complex N • out of the N p and then ⊗T p

•
will be an exact complex in p.

Example 13. For n = 1 we have

N 2
= I 0

1 , N 1
= I+1 ⊕ I−1

and elements would be denoted f = ( f0) ∈ N 2 and g = (g+, g−) ∈ N 1. For n = 2
we have

N 3
= I 0

1 ∩ I 0
2 , N 2

=

( ∐
s1∈{+,−}

I s1
1 ∩ I 0

2

)
⊕

( ∐
s2∈{+,−}

I 0
1 ∩ I s2

2

)
N 1
=

∐
s1,s2∈{+,−}

I s1
1 ∩ I s2

2 .

We shall use the shorthand s1 . . .± . . . sn to indicate that in the i-th place we
have si ∈ {+,−}, whatever i may be at the moment. Similarly, s1 . . . 0 . . . sn will

1We just tensor N p with the vector spaces
∧i g. Being over a field, this preserves exact sequences.
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imply that si = 0. Define g-module homomorphisms

(∂i f )s1...±...sn := (−1)#{ j | j>i and s j=0} fs1...0...sn ,

(∂i f )s1...0...sn := 0, (4-2)

∂ :=

n∑
i=1

∂i .

One checks easily that ∂2
i = 0 and ∂i∂ j + ∂ j∂i = 0 for all i, j = 1, . . . , n. As a

consequence, ∂2
= 0. The components are given explicitly by

(∂ f )s1...sn =

n∑
i=1

(∂i f )s1...sn =

∑
{i |si=+,−}

(−1)#{ j | j>i and s j=0} fs1...0...sn . (4-3)

Definition 14. Let (A, (I±i ), τ ) be an n-fold cubically decomposed algebra over a
field k. A system of good idempotents are pairwise commuting elements P+i ∈ A
for i = 1, . . . , n such that for all i :

(1) P+2
i = P+i .

(2) P+i A ⊆ I+i .

(3) P−i A ⊆ I−i (where we define P−i := 1A− P+i ).

We note that the P−i are also pairwise commuting idempotents and P+i +P−i =1A.
Next, for si ∈ {+,−} define k-vector space homomorphisms

(εi f )s1...si ...sn
:= (−1)si Psi

i

∑
γi∈{±}

(−1)γi fs1...γi ...sn ,

(εi f )s1...0...sn
:= 0,

where (−1)± = ±1. By direct calculation one verifies the identities ε2
i = εi and

εiε j = ε jεi for all i, j = 1, . . . , n. Finally, define

(Hi f )s1...0...sn := (−1)#{ j | j>i and s j=0}
∑
γi∈{±}

P−γi
i fs1...γi ...sn ,

(Hi f )s1...±...sn := 0.

The expression P−γi
i means P−i for γi =+ and P+i for γi =−. One checks that

H 2
i = 0 and Hi H j + H j Hi = 0,

∂iε j = ε j∂i and Hiε j = ε j Hi

for all i, j = 1, . . . , n. Moreover, ∂i H j + H j∂i = 0 whenever i 6= j . In the special
case i = j one finds instead that

∂i Hi + Hi∂i = 1− εi .
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Define H := H1+ ε1 H2+ · · · + ε1ε2 · · · εn−1 Hn . Using the identities established
above, one finds very easily

H 2
= 0 and ∂H + H∂ = 1− ε1 · · · εn. (4-4)

The fact H 2
= 0 was observed by the anonymous referee; it explains a certain

cancellation in the proof of Proposition 24, which had been rather mysterious in an
earlier version of this text.

Lemma 15. An explicit formula for H is given by

(H f )s1...sn = (−1)deg(s1...sn)(−1)s1+···+sb Ps1
1 · · · P

sb
i

×

∑
γ1...γb+1∈{±}

(−1)γ1+···+γb P−γb+1
b+1 fγ1...γb+1sb+2...sn , (4-5)

where b denotes the largest index such that s1, . . . , sb ∈ {±} or b = 0 if none (and
so sb+1 = 0 if b < n; b+ 1 is the index of the leftmost zero).

Proof. One shows that

(ε1 · · · εi f )s1...sn =
(−1)s1+···+si Ps1

1 · · · P
si
i

×
∑

γ1...γi∈{±}
(−1)γ1+···+γi fγ1...γi si+1...sn for s1, . . . , si ∈ {±},

0 if 0 ∈ {s1, . . . , si }

(4-6)

by evaluating (ε j · · · εi f ) inductively along j = i, i − 1, . . . , 1. Plug in Hi+1 f for
f to obtain

(ε1 · · · εi Hi+1 f )s1...sn
= (−1)#{ j | j>i+1 and s j=0} (−1)s1+···+si Ps1

1 · · · P
si
i

×

∑
γ1...γi+1∈{±}

(−1)γ1+···+γi P−γi+1
i+1 fγ1...γiγi+1si+2...sn

for s1, . . . , si ∈ {±} and si+1 = 0. Otherwise, (that is, for 0 ∈ {s1, . . . , si } or
si+1 ∈ {±}), the respective component is zero. Thus,

Hs1...sn =

n∑
i=1

(ε1 · · · εi Hi+1 f )s1...sn .

The summands with i > b vanish since for them 0 ∈ {s1, . . . , si }. The summands
with i < b vanish since for them si+1 ∈ {±}. Thus,

Hs1...sn = (ε1 · · · εb Hb+1 f )s1...sn

and we use the above explicit formula. Note that #{ j | j > b+ 1 and s j = 0} is
just one below the total number of slots with value 0 since s1, . . . , sb ∈ {±} and
sb+1 = 0. Thus, (−1)#{ j | j>i+1 and s j=0}

= (−1)deg(s1...sn). �
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The above maps are defined for N p in degrees ≥ 1. We extend them to degree
zero by defining the maps

∂̂ : N 1
→ N 0 and Ĥ : N 0

→ N 1

as follows:
∂̂ f :=

∑
s1...sn∈{+,−}

(−1)s1+···+sn fs1...sn ,

(Ĥ f )s1...sn := (−1)s1+···+sn Ps1
1 · · · P

sn
n f. (4-7)

Along with these, we obtain the following crucial fact:

Lemma 16. Equipped with these morphisms,

N • =
[

N n+1
∂

�
H

N n
∂

�
H
· · ·

∂

�
H

N 1
∂̂

�
Ĥ

N 0
]

n+1,0
(4-8)

is a complex of g-modules with differentials ∂• (resp. ∂̂) and contracting homotopies
H• (resp. Ĥ ) in the category of k-vector spaces.

Proof. The identities ∂2
= 0 and ∂̂ ◦ ∂ = 0 : N 2

→ N 0 are easy to check. Next, we
confirm the contracting homotopy. We find ∂H+H∂ = 1−ε1 · · · εn by a telescope
cancellation. For f ∈ N i with i ≥ 2 for each component fs1...sn there must be at
least one i with si = 0 and thus ε1 · · · εn |N i= 0 for i ≥ 2. It remains to treat i = 0, 1.
For i = 1 we compute

Ĥ ∂̂ f = (−1)s1+···+sn Ps1
1 · · · P

sn
n

∑
s1...sn∈{+,−}

(−1)s1+···+sn fs1...sn = ε1 · · · εn f

(as in (4-6)). Thus, ∂H+Ĥ ∂̂=1 on N 1. Finally, for i=0 we compute ∂̂ Ĥ f = f . �

Corollary 17. 0→ ⊗T n+1
•
→
⊗T n
•
→ · · · →

⊗T 0
•
→ 0 with differential (and a

contracting homotopy) induced by ∂ ⊗ id∧•g (and H ⊗ id∧•g) is an exact complex
(of complexes of k-vector spaces).

For the corollary, just use that tensoring with
∧rg is exact.

5. The cube complex, II

Next, it would be nice to give a discussion of the ∧T •
•

parallel to the one for ⊗T •
•

in
the previous section. We can only do this to a limited extent, however.

Lemma 18. The definition

(∂ f )s1...sn =

∑
{i |si=+,−}

(−1)#{ j | j>i and s j=0} fs1...0...sn (5-1)

turns ∧T •
•

into a complex (of complexes of k-vector spaces) with respect to the
superscript index. The morphisms I : ⊗T p

•
→
∧T p
•+1 yield a morphism of complexes.
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Proof. Easy. Just check that the map ∂ is well-defined and satisfies ∂2
= 0; in fact,

exactly the same computation as in (4-2) applies. For the second claim, we just
need to show that the map I commutes with the differential of either complex, but
this is clear since the differentials are given by the same formula — compare (4-3)
with (5-1). �

The complex ∧T •
•

is the central object in Beilinson’s construction [1980]. We will
use its analogue ⊗T •

•
as an auxiliary computational device. Firstly, let us explain

Beilinson’s construction. We need the following entirely homological tool:

Lemma 19. Suppose we are given an exact sequence

S• = [Sn+1
→ Sn

→ · · · → S0
]n+1,0

with entries in Ch+Modk ; that is, each Si
= Si

•
is a bounded-below complex of

k-vector spaces.2

(1) There is a second-quadrant homological spectral sequence (Er
p,q , dr ) converg-

ing to zero such that

E1
p,q = Hq(S p

•
) (dr : Er

p,q → Er
p−r,q+r−1).

(2) There is a first-quadrant cohomological spectral sequence (E p,q
r , dr ) converg-

ing to zero such that

E p,q
1 = Hq(Homk(S p

•
, k)) (dr

: E p,q
r → E p+r,q−r+1

r ).

(3) The following differentials are isomorphisms:

dn+1 : En+1
n+1,1→ En+1

0,n+1 and dn+1
: E0,n+1

n+1 → En+1,1
n+1 .

(4) Suppose Hp : S p
→ S p+1 is a contracting homotopy for S•. Then

(dn+1)
−1
= Hnδ1 Hn−1 · · · δn−1 H1δn H0 = Hn

∏
i=1,...,n

(δi Hn−i )

(where the last product depends on the ordering and refers to composition), and

(dn+1)−1
= H∗0 δ

∗

n H∗1 · · · δ
∗

1 H∗n = H∗0
∏

i=n,...,1

(δ∗i H∗n+1−i ),

where we write f ∗ = Homk( f, k) as a shorthand.

The construction is functorial in S•; that is, if S•→ S′• is a morphism of complexes
as in our assumptions, then there are induced morphisms between their spectral
sequences.

2One may alternatively view this as a bicomplex supported horizontally in degrees [0, n + 1],
bounded from below, and whose rows are exact.
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Proof. Parts (1)–(3) are [Beilinson 1980, Lemma 1(a)]. More precisely, for (1) use
the bicomplex spectral sequence for

E0
p,q = S p

q and E p,q
0 = Homk(S p

q , k).

If we take differentials “→” for forming the E0-page, the E1-page vanishes since
S• is exact (as a complex of complexes) and so the individual sequences of k-vector
spaces Si

•
for constant i are exact, so E∞= E1

= 0. Then use the bicomplex spectral
sequences with differential “↓” on the E0-page for our claim. It also converges
to zero then; (2) is analogous. For (3), the bicomplex is horizontally supported in
[0, n+ 1]. For (4), diagram chase. �

We combine Lemma 18 with Lemma 19: Apply the latter to S p
q :=

∧T p
q ; we

denote the resulting spectral sequence by ∧E •
•,•. The fact that the (bi)complex of

Lemma 19 is supported horizontally in [n+1, 0] homologically (i.e., for ∧E •
•,•) and

in [0, n+ 1] cohomologically (i.e., for ∧E •,•
•

) implies that we have edge morphisms

ρ1 :
∧En+1

n+1,1→
∧E1

n+1,1 and ρ2 :
∧E1

0,n+1→
∧En+1

0,n+1,

℘1 :
∧E0,n+1

n+1 →
∧E0,n+1

1 and ℘2 :
∧En+1,1

1 →
∧En+1,1

n+1 .

Next, we identify the objects involved: Using Lemma 9 we compute

∧E1
0,n+1 = Hn+1(

∧T 0
•
)= Hn+1(CE(g)•)∼= Hn+1(g, k),

∧E1
n+1,1 = H1(

∧T n+1
•

)= H1

( ⋂
i=1,...,n

⋂
si∈{±}

CE(I si
i )•

)
= Itr/[Itr, g],

∧En+1,1
1 = Homk(Itr/[Itr, g], k) and ∧E0,n+1

1 = H n+1(g, k).

Definition 20 [Beilinson 1980]. Let (A, (I±i ), τ ) be an n-fold cubically decom-
posed algebra over a field k and g := ALie its Lie algebra. Define

res∗ : Hn+1(g, k)→ k res∗ := τ ◦ ρ1 ◦ (dn+1)
−1
◦ ρ2

and
res∗ : k→ H n+1(g, k) res∗(1) := (℘1 ◦ (dn+1)−1

◦℘2)τ,

where for res∗ we read τ as an element of En+1,1
1 . We will call φ := res∗(1) the

Tate extension class.

In the case n = 1 it would also be justified to name this cohomology class after
[Kac and Peterson 1981]; it also appears in the works of the Japanese school, e.g.,
[Jimbo and Miwa 1983].

Remark 21. It follows from the construction of res∗ and res∗ that

res∗(α)(X0 ∧ · · · ∧ Xn)= α res∗ X0 ∧ · · · ∧ Xn. (5-2)
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Now we would like to compute these maps explicitly. Clearly, the most elusive
map in the construction is the differential dn+1 (resp. dn+1). We can render it
explicit using Lemma 19(4) as soon as we have an explicit contracting homotopy
available. However, it seems to be quite difficult to construct such a homotopy for
the complex ∧T •. On the other hand, we do have such a contracting homotopy for
⊗T • by Lemma 16 and its corollary. Luckily for us, these complexes are closely
connected. We may apply Lemma 19 also to S p

q :=
⊗T p

q−1; this time denote the
resulting spectral sequence by ⊗E •

•,•. We easily compute

⊗E1
0,n+1 = Hn+1(

⊗T 0
•−1)= Hn(C(g)•)∼= Hn(g, g),

⊗E1
n+1,1 = H1(

⊗T n+1
•−1 )= H0

(
C
( ⋂

i=1,...,n

⋂
si∈{±}

I si
i

)
•

)
= Itr/[Itr, g],

⊗En+1,1
1 = Homk(Itr/[Itr, g], k) and ⊗E0,n+1

1 = H n(g, g∗).

We note that some groups even agree with their ∧T p
q -counterpart, as we had already

observed in (2-4).

Definition 22. Write ⊗res∗ : Hn(g, g)→ k and ⊗res∗(1) ∈ H n(g, g∗) for the coun-
terparts of res∗, res∗ in Definition 20 using ⊗E instead of ∧E .

Lemma 23 (Compatibility). The morphism of bicomplexes ⊗T •
•

I
→
∧T •
•+1 induces

a commutative diagram

Hn(g, g)

��

//

comes with contracting homotopy

))
⊗En+1

0,n+1

��

⊗En+1
n+1,1

��

dn+1

∼=oo // H0(g, g)

∼=

��
Hn+1(g, k) //

Beilinson’s residue

55
∧En+1

0,n+1
∧En+1

n+1,1
dn+1

∼=

oo // H1(g, k)

Proof. We had already observed in Lemma 18 that the morphisms I induce a
morphism of bicomplexes. The spectral sequences ⊗E •

•,• and ∧E •
•,• both arise from

Lemma 19, so by the functoriality of the construction we get an induced morphism
of spectral sequences. In particular, all squares

⊗Er
p,q

dr //

��

⊗Er
p−r,q+r−1

��
∧Er

p,q dr

// ∧Er
p−r,q+r−1
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commute, giving the middle square in our claim. The same applies to the edge
maps, giving the outer squares. �

Absolutely analogously we obtain a cohomological counterpart

H 1(g, k) //

∼=

��

H n+1(g, k)

��
H 0(g, g∗) // H n(g, g∗),

where we have a contracting homotopy for the lower row. We leave the details of
this formulation to the reader.

6. Concrete formalism

Let (A, (I±i ), τ ) be an n-fold cubically decomposed algebra over a field k. In
Section 5 we have constructed a canonical morphism

res∗ : Hn+1(g, k) → k
↑

Hn(g, g),

where g := ALie is the Lie algebra associated to A. By Lemma 23, its values on the
image of Hn(g, g)→ Hn+1(g, k) can be computed via ⊗res∗. In this section we
will obtain an explicit formula for the latter morphism.

Given the definition of ⊗res∗, Lemma 19(4) tells us that it can be given explicitly
in terms of differentials of the ordinary Chevalley–Eilenberg complexes C(−)• (see
Section 2) and contracting homotopies of the cube complex N • (see Lemma 16 and
its corollary), namely

⊗res∗ = τ ◦ ρ1 ◦ (
⊗dn+1)

−1
◦ ρ2 = τ ◦ ρ1 H

∏
i=1,...,n

(δi H)ρ2 (6-1)

via the spectral sequence ⊗E •
•,•. The contracting homotopy H depends on the choice

of a good system of idempotents; see Definition 14. Different choices will yield
formulas that may look different, but as ⊗res∗ (just like res∗ itself) was defined
entirely independently of the choice of any idempotents, all such formulas actually
must agree.

Suppose a representative θ := f0⊗ f1 ∧ · · · ∧ fn with f0, . . . , fn ∈ N 0 is given
(note that N 0 equals g as a left-Ug-module by definition, so it is valid to treat
all fi on equal footing). We shall compute ⊗res∗ θ in several steps, starting with
θ0,n := ρ2θ , then following
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0
|

θ1,n
H
←− θ0,n n

...
...

θn,1
H
←− θn−1,1 1

↓

θn+1,0
H
←− θn,0 0

n+ 1 n n− 1 · · · 0

q
↑

p ← +
(6-2)

as prescribed by (6-1). This graphical arrangement elucidates the position of
the term of each step in the computation in the spectral sequence from which
(6-1) originates — see Lemma 19. However, for us each θ∗,∗ will be an E0-page
representative of the respective E∗-page term. Finally ⊗res∗ θ = τρ1θn+1,0. We
note that ρ1, ρ2 are just edge maps, that is, an inclusion of a subobject and a quotient
surjection. Hence, as we work with explicit representatives anyway, the operation
of these maps is essentially invisible (e.g., in the quotient case it just means that
our representative generates a larger equivalence class).

We will need a convenient notation for elements of this complex.

Notation A. We will write θw1...wp
p,q−p|s1...sn

∈ N p for the summands in any expression
of the shape

θp,q−p =
∑
w1...wp
∈{1,...,n}

∑
s1...sn

θ
w1...wp
p,q−p|s1...sn

⊗ f1 ∧ · · · ∧ f̂w1 ∧ · · · ∧ f̂wp ∧ · · · ∧ fn, (6-3)

where

• (p, q − p) denotes the location of the element in the bicomplex as in (6-2),

• s1, . . . , sn ∈ {0,+,−} denotes the component (= direct summand) of N p as in
(4-1), f1, . . . , fn ∈ g,

• the additional superscripts w1, . . . , wp ∈ {1, . . . , n} are used to indicate the
omission of wedge factors.

Note that the values θw1...wp
p,q|s1...sn

are not necessarily uniquely determined since the
individual wedge tails need not be linearly independent.

Notation B. We also need a shorthand for the summands in any expression of the
shape

θp,q−p−1 =
∑

w1...wp,wa,wb
∈{1,...,n}

∑
s1...sn

θ
w1...wp‖wa,wb
p,q|s1...sn

⊗[ fwa , fwb ] ∧ f1 ∧ · · · f̂w1 · · · f̂wa · · · f̂wb · · · f̂wp · · · ∧ fn. (6-4)
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Again s1, . . . , sn denotes the component in N p, w1, . . . , wp omitted wedge factors.
Moreover, wa and wb denote two additional omitted wedge factors and simulta-
neously indicate that [ fwa , fwb ] appears as an additional wedge factor. As for the
previous notation, the elements θw1...wp‖wa,wb

p,q|s1...sn
∈ N p are not uniquely determined.

We will explain how these expressions arise soon.

Combinatorial preparation: We define for arbitrary 1≤ p ≤ n and w1, . . . , wp ∈

{1, . . . , n} a sign function (generalizing the sign of a permutation):

ρ(w1, . . . , wp) := (−1)
∑p

k=1
∑

j<k δw j<wk . (6-5)

By abuse of language we do not carry the value p in the notation for ρ as it will
always be clear from the number of arguments which variant is used. It is easy to
see that ρ(w1)=+1 and ρ(w1, w2)= (−1)δw1<w2 . For p = n we have

ρ(w1, . . . , wn)= sgn
(

1 · · · n
w1 · · · wn

)
. (6-6)

We shall need the inductive formula (which is easy to check by induction)

(−1)#{wi |1≤i≤p s.t. wi<wp+1}ρ(w1, . . . , wp)= ρ(w1, . . . , wp+1). (6-7)

Proposition 24. Suppose θ := f0⊗ f1∧· · ·∧ fn with fi ∈N0=g. Moreover, suppose
P+1 , . . . , P+n is a good system of idempotents as in Definition 14. Then for every
p ≥ 0 the element θp+1,q is of the shape as in (6-3) and for γ1 . . . γn−p ∈ {+,−} we
have

θ
w1...wp
p+1,q|γ1...γn−p 0...0︸︷︷︸

p

= (−1)
∑p−1

u=1 (u+1)(−1)w1+···+wpρ(w1, . . . , wp)(−1)γ1+···+γn−p Pγ1
1 · · · P

γn−p
n−p ×∑

γ ∗n−p+1...γ
∗
n ∈{±}

(−1)γ
∗

n−p+1+···+γ
∗
n
(
P
(−γ ∗n−p+1)

n−p+1 ad( fwp)P
γ ∗n−p+1
n−p+1

)
· · · (P (−γ

∗
n )

n ad( fw1)P
γ ∗n
n )f0.

Here ρ(w1, . . . , wp) is the sign function defined in (6-5). For p = 0 the expression
ρ(w1, . . . , wp) and the whole sum

(∑
{±}
(· · ·)

)
in
(∑
{±}
(· · ·)

)
f0 should be read

as +1 (giving the right-hand side of (6-8) below).

• Note that no terms of the shape as in (6-4) appear. This is not entirely obvious
in view of the definition of δ[2]— see (2-1).

• The formula does not compute θw1...wp
p+1,q|s1...sn

for arbitrary s1 . . . sn of degree
p+1. This is due to the fact that we only have further use for the ones treated.

• For p ≤ 1 read
∑p−1

u=1 (u+ 1) as zero.
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Proof. We prove this by induction. For p = 0 the claim reads

θ1,q|γ1...γn = (−1)γ1+···+γn Pγ1
1 · · · P

γn
n f0 (6-8)

and in view of (4-7) this proves the claim in this case. Now we proceed by induction.
Assume the case p is settled, that is, in the notation of (6-3),

θ
w1...wp
p+1,q|γ1...γn−p 0...0︸︷︷︸

p

is exactly as in our claim. Next, we need to apply the differential δq = δ
[1]
q + δ

[2]
q of

the Chevalley–Eilenberg resolution — see (2-1). The contribution of δ[1]q will be
relevant, but for δ[2]q we shall see that (after applying the next contracting homotopy)
the contribution vanishes. We treat each δ[i], i = 1, 2 separately:

(1) Consider δ[1]q in (2-1). The sum 6i loc. cit. maps components indexed by
w1, . . . , wp to components of δ[1]θp,q , indexed by w1, . . . , wp and an additional
wp+1 ∈ {1, . . . , n} \ {w1, . . . , wp}— they correspond to the summands of δ[1]θp,q

and to the additional omitted wedge factor, respectively. Moreover, the formula
imposes signs (−1)i+1, but here i depends on the numbering of the wedges
(· · · ∧ · · · ∧ · · · ). In the notation of (6-3) the subscript j of f j does not necessarily
indicate the f j sits in the j -th wedge, due to the possible omission of wedge factors
fw1, . . . , fwp on the left-hand side of it. To compensate for that in the following
computation the term (−1)#{wi |1≤i≤p s.t. wi<wp+1} appears, sign-counting the omis-
sion on the left of the new-to-be-omitted wp+1 in the component of δ[1]θp+1,q . As
p remains constant, the indexing γ1 . . . γn−p0 . . . 0 remains unaffected. We get the
expression

(δ[1]θp+1,q)
w1...wpwp+1
p+1,q−1|γ1...γn−p 0...0︸︷︷︸

p

= (−1)
∑p−1

u=1 (u+1)(−1)wp+1+1(−1)#{wi |1≤i≤p s.t. wi<wp+1} ad( fwp+1)

× (−1)w1+···+wpρ(w1, . . . , wp)(−1)γ1+···+γn−p Pγ1
1 · · · P

γn−p
n−p

×

∑
γ ∗n−p+1...γ

∗
n ∈{±}

(−1)γ
∗

n−p+1+···+γ
∗
n
(
P
(−γ ∗n−p+1)

n−p+1 ad fwp P
γ ∗n−p+1
n−p+1

)
· · · (P (−γ

∗
n )

n ad fw1 Pγ
∗
n

n ) f0.

Next, we need to apply the contracting homotopy H : N p+1
→ N p+2. We have

p + 1 ≥ 1, so (4-5) applies. Note that for an index γ †
1 . . . γ

†
n−p−10 . . . 0 with

γ
†
1 . . . γ

†
n−p−1 ∈ {±} and p+1 zeros (i.e., an index of degree p+2; compare (4-1)),

the corresponding index with one fewer 0 has degree p+ 1. Indices of the latter
type have been dealt with above. We obtain
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(Hδ[1]θp+1,q)
w1...wpwp+1

p+2,q−1|γ †
1 ...γ

†
n−p−1 0...0︸︷︷︸

p+1

= (−1)p(−1)γ
†
1+···+γ

†
n−p−1 P

γ
†
1

1 · · · P
γ

†
n−p−1

n−p−1

×

∑
γ1,...,γ(n−p−1)+1∈{±}

(−1)γ1+···+γn−p−1 P−γ(n−p−1)+1
(n−p−1)+1 (δθp+1,q)

w1...wp+1
p+1,q−1|γ1...γn−p 0...0︸︷︷︸

p

.

In principle the first factor is (−1)deg( ··· )
= (−1)p+2, but switching to p preserves

the correct sign. Next, we expand this using our previous computation and obtain
(by noting that many signs are squares and thus +1)

= (−1)
∑p−1

u=1 (u+1)(−1)p+1(−1)γ
†
1+···+γ

†
n−p−1(−1)#{wi |1≤i≤p s.t. wi<wp+1}

× (−1)w1+···+wp+1ρ(w1, . . . , wp)P
γ

†
1

1 · · · P
γ

†
n−p−1

n−p−1

×

∑
γn−p∈{±}

(−1)γn−p

( ∑
γ1...γn−p−1∈{±}

Pγ1
1 · · · P

γn−p−1
n−p−1

)
P−γn−p

n−p ad( fwp+1)P
γn−p
n−p

×

∑
γ ∗n−p+1...γ

∗
n ∈{±}

(−1)γ
∗

n−p+1+···+γ
∗
n

×
(
P
(−γ ∗n−p+1)

n−p+1 ad( fwp)P
γ ∗n−p+1
n−p+1

)
· · ·
(
P (−γ

∗
n )

n ad( fw1)P
γ ∗n
n
)
f0.

The sum in parentheses is the identity since for all i we have P+i + P−i = 1 by
Definition 14. Up to the naming of the indices, and after using (6-7), this is exactly
our claim in the case p + 1 (and this is true despite the fact that we have only
considered δ[1] so far, because we shall next show that the contribution from H ◦δ[2]

vanishes).

(2) Consider δ[2]q in (2-1). Using the notation of (6-3) we may write

θp+1,q =
⊕

deg(s1...sn)=p+1

∑
w1...wp
∈{1,...,n},
pairw. diff.

θ
w1...wp
p+1,q|s1...sn

⊗ f1∧ f̂w1 · · · f̂wp∧ fn.

Therefore

δ[2]θp+1,q

=

⊕
deg(s1...sn)=p+1

∑
w1...wp
∈{1,...,n},
pairw. diff.

∑
wp+1<wp+2

∈{1,...,n}\{w1...wp}

(−1)wp+1+wp+2

× (−1)#{wi |1≤i≤p s.t. wi<wp+1}(−1)#{wi |1≤i≤p s.t. wi<wp+2}

× θ
w1...wp
p+1,q|s1...sn

⊗[ fwp+1, fwp+2] ∧ f1 ∧ f̂w1 · · · f̂wp+1 · · · f̂wp+2 · · · f̂wp ∧ fn.
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The two powers of −1 on the middle line of the right-hand side appear since the
original summand in δ[2] carries the sign (−1)i+ j , so we need to compute the number
of the wedge slot correctly, respecting the omitted wedge factors; compare with
the discussion in the first part of this proof. We observe that the first wedge factor
remains unchanged under δ[2]. Hence, when we apply the contracting homotopy
H in this induction step and in the next again, the summand will vanish thanks to
H 2
= 0; see (4-4). It will not do harm to verify this explicitly: We use the notation

of (6-4) and write the above in terms of

(δ[2]θp+1,q)
w1...wp‖wp+1,wp+2
p+1,q−1|s1...sn

= (−1)wp+1+wp+2(−1)#{wi |1≤i≤p s.t. wi<wp+1}(−1)#{wi |1≤i≤p s.t. wi<wp+2}θ
w1...wp
p+1,q|s1...sn

.

Next, we apply the map H : N p+1
→ N p+2 of (4-5). Then for indices s1 . . . sn =

γ
†
1 . . . γ

†
n−p−10 . . . 0 and γ †

1 . . . γ
†
n−p−1 ∈ {±} (which is of degree p+ 2) we obtain

the expression

(Hδ[2]θp+1,q)
w1...wp‖wp+1,wp+2

p+2,q−1|γ †
1 ...γ

†
n−p−1 0...0︸︷︷︸

p+1

= P
γ

†
1

1 · · · P
γ

†
n−p−1

n−p−1

∑
γ1...γn−p∈{±}

(−1)( ··· )P−γn−p
n−p θ

w1...wp
p+1,q|γ1...γn−p 0...0︸︷︷︸

p

,

where we have plugged in our previous computation and started to disregard the
precise sign. We know the last term of this expression by our induction hypothesis
and therefore obtain

= P
γ

†
1

1 · · · P
γ

†
n−p−1

n−p−1

∑
γ1...γn−p∈{±}

∑
γ ∗n−p+1...γ

∗
n ∈{±}

(−1)(...)P−γn−p
n−p Pγ1

1 · · · P
γn−p
n−p

×
(
P
(−γ ∗n−p+1)

n−p+1 ad( fwp)P
γ ∗n−p+1
n−p+1

)
· · ·
(
P (−γ

∗
n )

n ad( fw1)P
γ ∗n
n
)

f0.

As the P+1 , . . . , P+n commute pairwise, the same holds for all P±1 , . . . , P±n (by
Definition 14). Thus, the underlined expression can be rearranged to

P−γn−p
n−p Pγn−p

n−p · · · .

But
P+i P−i = P+i (1− P+i )= 0

because P+i is an idempotent. The same holds for P−i P+i . Hence, in all the indices
s1, . . . , sn relevant for our claim Hδ[2]θp+1,q is zero. �

This readily implies the following key computation:
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Theorem 25 (main theorem). Let (A, (I±i ), τ ) be an n-fold cubically decomposed
algebra over a field k. Then

⊗res∗( f0⊗ f1 ∧ · · · ∧ fn)

=−(−1)
(n−1)n

2 τ
∑
π∈Sn

sgn(π)

×

∑
γ1...γn∈{±}

(−1)γ1+···+γn (P−γ1
1 ad fπ(1)P

γ1
1 ) · · · (P

−γn
n ad fπ(n)Pγn

n ) f0,

where P+1 , . . . , P+n is any system of pairwise commuting good idempotents in the
sense of Definition 14 (the value does not depend on the choice of the latter).
Analogously,

(⊗res∗ ϕ)( f1 ∧ · · · ∧ fn)( f0) := ϕ ·
⊗res∗( f0⊗ f1 ∧ · · · ∧ fn)

for every ϕ ∈ k.

We remark that one can also write the above formula as

⊗res∗( f0⊗ f1 ∧ · · · ∧ fn)=

−(−1)
(n−1)n

2 τ
∑
π∈Sn

sgn(π)
∑

γ1...γn∈{±}

(−1)γ1+···+γn (P−γ1
1 fπ(1)P

γ1
1 ) · · · (P

−γn
n fπ(n)Pγn

n ) f0

since for any expression g we have

P−γi
i ad( fw)P

γi
i g = P−γi

i [ fw, Pγi
i g] = P−γi

i fwPγi
i g− P−γi

i Pγi
i g fw

= P−γi
i fwPγi

i g (6-9)

since P−γi
i Pγi

i = (1− Pγi
i )P

γi
i = 0 and Pγi

i is an idempotent.

Proof. Use Proposition 24 with p=n. Plugging these components into the shorthand
notation of (6-3) we unwind for ⊗res∗( f0⊗ f1 ∧ · · · ∧ fn) the formula

=−τ (−1)
n2
+n
2

∑
w1...wn
={1,...,n}

ρ(w1, . . . , wn)(−1)w1+···+wn

×

∑
γ1...γn∈{±}

(−1)γ1+···+γn (P−γ1
1 ad( fwn )P

γ1
1 ) · · · (P

−γn
n ad( fw1)P

γn
n ) f0.

We can clearly replace w1, . . . , wn by a sum over all permutations of {1, . . . , n}. In
order to obtain a nice formula (in the above formula the Pi appear in ascending order,
while the wi appear in descending order), we prefer to compose each permutation
with the order-reversing permutation wi := π(n− i + 1); hence,
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⊗res∗( f0⊗ f1 ∧ · · · ∧ fn)

=−τ(−1)
n2
+n
2
∑
π∈Sn

ρ(π(n), . . . , π(1))(−1)1+···+n

×

∑
γ1...γn∈{±}

(−1)γ1+···+γn (P−γ1
1 ad( fπ(1))P

γ1
1 ) · · · (P

−γn
n ad( fπ(n))Pγn

n ) f0.

To conclude, use (6-6) and the (easy) fact that the order-reversing permutation has
sign (−1)(n−1)n/2, giving the sign of our claim. �

Proof of Theorems 1 and 2. We define G := En(k), where E is the functor defined
in Section 1.1. As already discussed in Section 1.1 this contains k[t±1 , . . . , t±n ] as
a Lie subalgebra, acting as multiplication operators x 7→ f · x . It is also easily
checked that the differential operators t s1

1 · · · t
sn
n ∂ti can be written as infinite matrices.

If g is a finite-dimensional Lie algebra, observe that G= En(k) and En(Endk(g))

are actually isomorphic. If g is simple, it is centerless, so the adjoint representation
gives an embedding g ↪→ Endk(g), and thus

g[t±1 , . . . , t±n ] ↪→ En(Endk(g))' En(k)=G.

This shows that all Lie algebras in the claim are subalgebras of G. As shown in
Section 1.1, G is a cubically decomposed algebra, so we define φ as in Definition 20,
φ := res∗(1) . Since we work with field coefficients, the universal coefficient theorem
for Lie algebras tells us that

H n+1(g, k)∼= Hn+1(g, k)∗,

that is, knowing the values of a cocycle only on Lie cycles (instead of all of
∧
•g)

determines the cocycle uniquely, res∗(1)(α) = res∗ α. However, by Lemma 23
we may evaluate the cocycle on the image of I by using ⊗res∗ instead. Using
Theorem 25 we get an explicit formula for ⊗res∗(1), proving Theorem 2. Using
the explicit formula, it is a direct computation to check that for n = 1 the cocycle
agrees with the ones mentioned in the claim of Theorem 1. �

7. Application to the multidimensional residue

In this section we will show that the Lie cohomology class of Definition 20 naturally
gives the multidimensional (Parshin) residue.

We work in the framework of multivariate Laurent polynomial rings over a
field k; see Section 1.1. In other words, as our cubically decomposed algebra we
take an infinite matrix algebra A = En(k) and g = ALie. Via (1-4) it acts on the
k-vector space k[t±1 , . . . , t±n ]. The latter, now interpreted as a ring, also embeds
as a commutative subalgebra into A. In order to distinguish very clearly between
the subalgebra of A and the vector space it acts on, we shall from now on write
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k[t±1 , . . . , t±n ] for the k-vector space. Thus, when we write ti we always refer to
the associated multiplication operator x 7→ ti · x in A, e.g., tm

i · t
l
i = tm+l

i .
Following [Beilinson 1980, Lemma 1(b)] we may introduce a (not quite well-

defined3) “map”

~ :�n
k[t±1 ,...,t

±
n ]/k→ Hn+1(g, k), f0 d f1 ∧ · · · ∧ d fn 7→ f0 ∧ f1 ∧ · · · ∧ fn. (7-1)

As k[t±1 , . . . , t±n ] is commutative, the fi commute pairwise and thus f0 ∧ · · · ∧ fn

is indeed a Lie homology cycle.

Theorem 26. The morphism

res∗ ◦~ :�n
k[t±1 ,...,t

±
n ]/k→ k

(with ~ as in (7-1) and res∗ as in Definition 20) for ci, j ∈ Z is explicitly given by

tc0,1
1 · · · t

c0,n
n d(tc1,1

1 · · · t
c1,n
n )∧· · ·∧d(tcn,1

1 · · · t
cn,n
n ) 7→−(−1)

n2
+n
2 det

c1,1 · · · cn,1
...

. . .
...

c1,n · · · cn,n


whenever

∑n
p=0 cp,i = 0 and is zero otherwise. In particular −(−1)

n2
+n
2 (res∗ ◦ ~)

is the conventional multidimensional (Parshin) residue.

The complicated sign−(−1)
n2
+n
2 should not concern us too much; it is an artifact

of homological algebra. Just by changing our sign conventions for bicomplexes,
we could easily switch to an overall opposite sign. Letting ci, j = δi= j for i, j ∈
{1, . . . , n} gives the familiar

−(−1)
n2
+n
2 res∗(atc0,1

1 · · · t
c0,n
n ∧ t1 ∧ · · · ∧ tn)= δc0,1=−1 · · · δc0,n=−1a

for a ∈ k. In particular this assures us that the map res∗ gives the correct notion of
residue: it is the (−1, . . . ,−1)-coefficient of the Laurent expansion.

Proof. After unwinding ~ it remains to evaluate res∗( f0 ∧ f1 ∧ · · · ∧ fn) for
fi := tci,1

1 · · · t
ci,n
n (i = 0, . . . , n). Clearly f0⊗ f1 ∧ · · · ∧ fn is a cycle in Hn(g, g),

and so by Lemma 23 we may use ⊗res∗ instead of res∗. Then Theorem 25 reduces
this to the matrix trace

res∗( f0 ∧ f1 ∧ · · · ∧ fn)=−(−1)
(n−1)n

2
∑
π∈Sn

sgn(π)τMπ , (7-2)

3It does not respect the relation d(ab) = b da + a db; this artifact already occurs in [Beilinson
1980]. However, this ambiguity dissolves after composing with the residue (as in the theorem) and it
is very convenient to treat this as some sort of a map for the moment.
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where

Mπ :=

∑
γ1...γn∈{±}

(−1)γ1+···+γn (P−γ1
1 fπ(1)P

γ1
1 ) · · · (P

−γn
n fπ(n)Pγn

n ) f0.

For the evaluation of τMπ fix a permutation π and pick the (pairwise commuting)
system of idempotents given by

P+j tλ1
1 · · · t

λn
n = δλ j≥0 tλ1

1 · · · t
λn
n (with λ1, . . . , λn ∈ Z). (7-3)

Next, observe that the Laurent polynomial ring W := k[t±1 , . . . , t±n ] is stable (i.e.,
φW ⊆ W ) under the endomorphisms f0, . . . , fn and the idempotents P±i , and
therefore under Mπ . Hence, it follows that it suffices to evaluate the trace of Mπ

on the k-vector subspace k[t±1 , . . . , t±n ]. We compute successively

fk P+j tλ1
1 · · · t

λn
n = δλ j≥0 tλ1+ck,1

1 · · · tλn+ck,n
n ,

P−j fk P+j tλ1
1 · · · t

λn
n = δ0≤λ j<−ck, j t

λ1+ck,1
1 · · · tλn+ck,n

n ,

and analogously for P+j fk P−j . We find∑
γ j∈{±}

(−1)γ j (P−γ j
j fk Pγ j

j )t
λ1
1 · · · t

λn
n

= (δ0≤λ j<−ck, j − δ−ck, j≤λ j<0)t
λ1+ck,1
1 · · · tλn+ck,n

n . (7-4)

Subclaim. Writing wi := π(i) we have

Mπ tλ1
1 · · · t

λn
n =

n∏
i=1

(δ0≤λi+c0,i+
∑n

p=i+1 cwp ,i<−cwi ,i
−δ−cwi ,i≤λi+c0,i+

∑n
p=i+1 cwp ,i<0)

× t
λ1+c0,1+

∑n
p=1 cwp ,1

1 · · · t
λn+c0,n+

∑n
p=1 cwp ,n

n . (7-5)

(Proof of subclaim. Define for i = 1, . . . , n+ 1 the truncated sum

M (i)
π :=

[ ∑
γi ...γn∈{±}

(−1)γi+···+γn (P−γi
i fwi Pγi

i ) · · · (P
−γn
n fwn Pγn

n )

]
f0

so that M (1)
π = Mπ and M (n+1)

π = f0. We claim that

M (i)
π tλ1

1 · · · t
λn
n = α t

λ1+c0,1+
∑n

p=i cwp ,1

1 · · · t
λn+c0,n+

∑n
p=i cwp ,n

n (7-6)

for some factor α ∈ {±1, 0}. For i = n+ 1 this is clear since f0 = tc0,1
1 · · · t

c0,n
n , in

particular α = 1. Assuming this holds for i + 1, for i we get by using (7-4) (with



Adèle residue symbol and Tate’s central extension for multiloop Lie algebras 47

the appropriate values plugged in: j := i and k := wi , and λi as in (7-6))

M (i)
π tλ1

1 · · · t
λn
n =

∑
γi∈{±}

(−1)γi (P−γi
i fwi Pγi

i )M
(i+1)
π tλ1

1 · · · t
λn
n

= (δ0≤λi+c0,i+
∑n

p=i+1 cwp ,i<−cwi ,i
− δ−cwi ,i≤λi+c0,i+

∑n
p=i+1 cwp ,i<0)

×α t
λ1+c0,1+

∑n
p=i+1 cwp ,1+cwi ,1

1 · · · t
λn+c0,n+

∑n
p=i+1 cwp ,n+cwi ,n

n . (7-7)

This proves our claim for all i by induction. We observe that the prefactor α in
each step just gets multiplied with the expression in (7-7), giving the product in our
claim.)

Next, we need to evaluate the trace of Mπ as given in (7-5). The endomorphism
is nilpotent unless

c0,1+

n∑
p=1

cwp,i = 0 for all i. (7-8)

We remark that w1, . . . , wn is just a permutation of {1, . . . , n}, so these conditions
can be rewritten as

∑n
p=0 cp,i = 0. In the nilpotent case the trace is clearly zero.

Hence, we may assume we are in the case where (7-8) holds. Using these equations
and the useful convention wn+1 := 0, our expression for Mπ simplifies to

Mπ tλ1
1 · · · t

λn
n

=

n∏
i=1

(δ0≤λi+
∑n+1

p=i+1 cwp ,i<−cwi ,i
− δ0≤λi+cwi ,i+

∑n+1
p=i+1 cwp ,i<cwi ,i

)tλ1
1 · · · t

λn
n . (7-9)

The endomorphism Mπ is visibly diagonal of finite rank and we may reduce the
computation of the trace to a (finite-dimensional) stable vector subspace. A finite
subset of the tλ1

1 · · · t
λn
n (λ1, . . . , λn ∈ Z) provides a basis. We see in (7-9) that

Mπ acts diagonally on these basis vectors with eigenvalues ±1 or 0. Moreover,
for each i we either have cwi ,i ≥ 0 or cwi ,i < 0, which shows that each bracket
of the shape (δ0≤λ<−c − δ−c≤λ<0) in (7-9) either attains only values in {+1, 0}
when we run through all λ1, . . . , λn ∈ Z, or only values in {−1, 0}. This shows that
we only need to count (with appropriate sign) the nonzero eigenvalues of Mπ in
order to evaluate the trace. Note that our finite subset of tλ1

1 · · · t
λn
n (λ1, . . . , λn ∈ Z)

indexes a basis, so we need to count the number of such basis vectors with nonzero
eigenvalue. We introduce the nonstandard shorthand bxc :=min(0, x). Inspecting
(7-9) shows that when running through λi we have

• b−cwi ,ic times the eigenvalue +1,

• b+cwi ,ic times the eigenvalue −1.
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The value of a fixed bracket (δ0≤λ<−c− δ−c≤λ<0)— when nonzero — is always
either +1, or always −1. Thus, the number of nonzero eigenvalues is simply the
number of elements within the hypercube such that each λi lies within the range of
length b±cwi ,ic counted above, and therefore

τMπ =

n∏
i=1

(b−cwi ,ic− b+cwi ,ic)=

n∏
i=1

(−cwi ,i )= (−1)n
n∏

i=1

cπ(i),i

(because b−ac− bac = −a for all a ∈ Z). We plug this into (7-2) and recognize
the usual formula for the determinant. This finishes the proof. �

We are now ready to prove the remaining theorems from the introduction:

Proof of Theorems 4 and 5. We use Theorem 26 to obtain Theorem 4(2). Then
Theorem 4(3) follows as a special case. For Theorem 4(1) use the shorthands
π = P+1 = P+ (following both the notation of Arbarello, de Concini and Kac and
ours). On the one hand we compute

[π, f1] f0 = [P, f1] f0 = P f1 f0− f1 P f0 = [P f0, f1]

= (P++ P−)[P+ f0, f1]

= P−[P+ f0, f1] + P+[P+ f0, f1]

= P−[P+ f0, f1] − P+[P− f0, f1].

where for the last equality we used that [P+ f0, f1] + [P− f0, f1] = [ f0, f1] = 0.
On the other hand, we unwind

res f0 d f1 = (−1)1 tr
∑
γ1∈{±}

(−1)γ1(P−γ1
1 ad( fπ(1))P

γ1
1 ) f0

=−P−[ f1, P+1 f0] + P+[ f1, P−1 f0]

and these expressions clearly coincide. Finally Theorem 5 is true since we use
the cocycle defined in Definition 20, which is constructed exactly as stated in
Theorem 5. �

8. Application to multiloop Lie algebras

Suppose k is a field and g/k is a finite-dimensional centerless Lie algebra (e.g.,
g finite-dimensional, semisimple). Then the adjoint representation ad : g ↪→Endk(g)

is injective. Thus, we obtain a Lie algebra inclusion

i : g[t±1 , . . . , t±n ] ↪→ En(Endk(g))Lie,

where E is the functor described in Section 1.1 (the right-hand side is equipped
with the Lie bracket [a, b] = ab− ba based on the associative algebra structure).
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Thus, we have the pullback

i∗ : H n+1(En(EndR(g))Lie, k)→ H n+1(g[t±1 , . . . , t±n ], k),

which we may apply to the class res∗(1)— see Definition 20.

Theorem 27. Suppose k is a field and g/k is a finite-dimensional centerless Lie
algebra. For Y0, . . . , Yn ∈ g we call

B(Y0, . . . , Yn) := trEndk(g)(ad(Y0) ad(Y1) · · · ad(Yn)) (8-1)

the “generalized Killing form”. For n= 1 and if g is semisimple, this is the classical
Killing form of g.

(1) Then on all Lie cycles admitting a lift under I as in (0-1), the pullback
i∗ res∗(1) ∈ H n+1(g[t±1 , . . . , t±n ], k) is explicitly given by

(i∗φ)(Y0 tc0,1
1 · · · t

c0,n
n ∧ · · · ∧ Yn tcn,1

1 · · · tcn,n
n )

=−(−1)
n2
+n
2
∑
π∈Sn

sgn(π)B(Yπ(1), . . . , Yπ(n), Y0)

n∏
i=1

cπ(i),i

whenever
∑n

p=0 cp,i = 0 for all i ∈ {1, . . . , n}, and it vanishes otherwise.

(2) If g is finite-dimensional and semisimple and n=1, then i∗res∗(1)∈H 2(g[t±1 ],k)
is the universal central extension of the loop Lie algebra g[t1, t−1

1 ] giving the
associated affine Lie algebra ĝ (without extending by a derivation),

0→ k 〈c〉 → ĝ→ g[t1, t−1
1 ] → 0.

Proof. (1) By Lemma 23, Theorem 25 and (5-2) the cocycle is explicitly given by

res∗(1)( f0 ∧ · · · ∧ fn)=
⊗res∗(1)( f0⊗ f1 ∧ · · · ∧ fn)= τ

∑
π∈Sn

sgn(π)Mπ ,

where

Mπ =

∑
γ1...γn∈{±}

(−1)γ1+···+γn (P−γ1
1 fπ(1)P

γ1
1 ) · · · (P

−γn
n fπ(n)Pγn

n ) f0.

Note that Mπ ∈ En(Endk(g)). As we consider the pullback of the cohomology
class along i : g[t±1 , . . . , t±n ] ↪→ En(Endk(g))Lie, it suffices to treat elements
fi :=Yi t

ci,1
1 · · · t

ci,n
n with ci,1, . . . , ci,n ∈Z (for i = 0, . . . , n) and Yi ∈ g. Note that by

our embedding i an element fi is mapped to the endomorphism ad(Yi )t
ci,1
1 · · · t

ci,n
n

in En(Endk(g)). Let π ∈ Sn be a fixed permutation. In order to compute the
trace, it suffices to study the action of Mπ on the basis elements X tλ1

1 · · · t
λn
n of

g[t±1 , . . . , t±n ], where λ1, . . . , λn ∈ Z and X ∈ g runs through a basis of g. We
denote them with bold letters ti instead of ti to distinguish clearly between a basis
element and ti as an endomorphism ti : x 7→ ti · x in En(Endk(g)). As in the proof
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of Theorem 26 we compute

P−j fk P+j X tλ1
1 · · · t

λn
n = δ0≤λ j<−ck, j ad(Yk)X tλ1+ck,1

1 · · · tλn+ck,n
n ,

and as a consequence we find∑
γ j∈{±}

(−1)γ j (P−γ j
j fk Pγ j

j )X tλ1
1 · · · t

λn
n

= (δ0≤λ j<−ck, j − δ−ck, j≤λ j<0) ad(Yk)X tλ1+ck,1
1 · · · tλn+ck,n

n .

With an inductive computation entirely analogous to (7-5) we find

Mπ X tλ1
1 · · · t

λn
n =

n∏
i=1

(δ0≤λi+c0,i+
∑n

p=i+1 cwp ,i<−cwi ,i
− δ−cwi ,i≤λi+c0,i+

∑n
p=i+1 cwp ,i<0)

× ad(Yw1) · · · ad(Ywn ) ad(Y0)X t
λ1+

∑n
p=0 cp,1

1 · · · t
λn+

∑n
p=0 cp,n

n ,

where wi := π(i). Unless ∀i :
∑n

p=0 cp,i = 0 holds, Mπ is clearly nilpotent and
thus has trace τMπ = 0. This condition is clearly independent of π , showing that
(i∗ res∗(1))( f0∧· · ·∧ fn)= 0 in this case. From now on assume ∀i :

∑n
p=0 cp,i = 0.

Then Mπ respects the decomposition

g[t±1 , . . . , t±n ] =
∐

λ1...λn∈Zn

gtλ1
1 · · · t

λn
n

and therefore (as τ is essentially a trace) τMπ =
∑

λ1,...,λn
τMπ |gtλ1

1 ···t
λn
n

. For each
summand of the latter we obtain

τMπ |gtλ1
1 ···t

λn
n
=

n∏
i=1

(δ0≤λi+c0,i+
∑n

p=i+1 cwp ,i<−cwi ,i
− δ−cwi ,i≤λi+c0,i+

∑n
p=i+1 cwp ,i<0)

× tr(ad(Yw1) · · · ad(Ywn ) ad(Y0)).

The trace term is independent of λ1, . . . , λn (and in the shape of (8-1)), so we may
rewrite τMπ as

τMπ = B(Yw1, . . . , Ywn , Y0)

×

∑
λ1,...,λn

n∏
i=1

(δ0≤λi+c0,i+
∑n

p=i+1 cwp ,i<−cwi ,i
− δ−cwi ,i≤λi+c0,i+

∑n
p=i+1 cwp ,i<0).

For the evaluation of the sum
∑

λ1,...,λn
we can apply the same eigenvalue count as

in the proof of Theorem 26. This time instead of counting eigenvalues, we count
nonzero summands. This yields

τMπ = (−1)n B(Yw1, . . . , Ywn , Y0)

n∏
i=1

cwi ,i

and thus our claim.
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(2) For n = 1 we obtain

(i∗ res∗(1))(Y0 tc0,1
1 ∧ Y1 tc1,1

1 )=−c1,1δc0,1+c1,1=0 B(Y1, Y0).

This is well-known to be the defining cocycle of the affine Lie algebra ĝ (usually
with a positive sign, but the class is only well-defined up to nonzero scalar multiple
anyway). �

The natural further cases of the Virasoro algebra as well as affine Kac–Moody
algebras (i.e., ĝ extended by derivations) will be discussed elsewhere. The compu-
tations become more involved, but no further ideas are needed.
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