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We explicitly bound the Faltings height of a curve over Q polynomially in its
Belyi degree. Similar bounds are proven for three other Arakelov invariants: the
discriminant, Faltings’ delta invariant and the self-intersection of the dualising
sheaf. Our results allow us to explicitly bound these Arakelov invariants for
modular curves, Hurwitz curves and Fermat curves in terms of their genus.
Moreover, as an application, we show that the Couveignes–Edixhoven–Bruin
algorithm to compute coefficients of modular forms for congruence subgroups
of SL2(Z) runs in polynomial time under the Riemann hypothesis for ζ -functions
of number fields. This was known before only for certain congruence subgroups.
Finally, we use our results to prove a conjecture of Edixhoven, de Jong and
Schepers on the Faltings height of a cover of P1

Z with fixed branch locus.

1. Introduction and statement of results

We prove that stable Arakelov invariants of a curve over a number field are polyno-
mial in the Belyi degree. We apply our results to give algorithmic, geometric and
Diophantine applications.

1.1. Bounds for Arakelov invariants of three-point covers. Let Q be an algebraic
closure of the field of rational numbers Q. Let X be a smooth projective connected
curve over Q of genus g. Belyi [1979] proved that there exists a finite morphism
X→ P1

Q
ramified over at most three points. Let degB(X) denote the Belyi degree

of X , i.e., the minimal degree of a finite morphism X → P1
Q

unramified over
P1

Q
\{0, 1,∞}. Since the topological fundamental group of the projective line P1(C)

minus three points is finitely generated, the set of Q-isomorphism classes of curves
with bounded Belyi degree is finite.
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We prove that, if g ≥ 1, the Faltings height hFal(X), the Faltings delta invariant
δFal(X), the discriminant 1(X) and the self-intersection of the dualising sheaf e(X)
are bounded by a polynomial in degB(X); the precise definitions of these Arakelov
invariants of X are given in Section 2.3.

Theorem 1.1.1. For any smooth projective connected curve X over Q of genus
g ≥ 1,

−log(2π)g ≤ hFal(X) ≤ 13 · 106g degB(X)
5,

0≤ e(X) ≤ 3 · 107(g− 1) degB(X)
5,

0≤ 1(X) ≤ 5 · 108g2 degB(X)
5,

−108g2 degB(X)
5
≤ δFal(X) ≤ 2 · 108g degB(X)

5.

The Arakelov invariants in Theorem 1.1.1 all have a different flavour to them. For
example, the Faltings height hFal(X) plays a key role in Faltings’ proof of his finite-
ness theorem on abelian varieties; see [Faltings 1983]. On the other hand, the strict
positivity of e(X) (when g ≥ 2) is related to the Bogomolov conjecture; see [Szpiro
1990b]. The discriminant 1(X) “measures” the bad reduction of the curve X/Q
and appears in the discriminant conjecture of Szpiro [1990a] for semistable elliptic
curves. Finally, as was remarked by Faltings [1984, Introduction], Faltings’ delta
invariant δFal(X) can be viewed as the minus logarithm of a “distance” to the
boundary of the moduli space of compact connected Riemann surfaces of genus g.

We were first led to investigate this problem by work of Edixhoven, de Jong
and Schepers on covers of complex algebraic surfaces with fixed branch locus; see
[Edixhoven et al. 2010]. They conjectured an arithmetic analogue [Edixhoven et al.
2010, Conjecture 5.1] of their main theorem (Theorem 1.1 in [loc. cit.]). We use
our results to prove this conjecture; see Section 6 for a more precise statement.

1.2. Outline of proof. To prove Theorem 1.1.1, we will use Arakelov theory for
curves over a number field K . To apply Arakelov theory in this context, we will
work with arithmetic surfaces associated to such curves, i.e., regular projective
models over the ring of integers OK of K . We refer the reader to Section 2.2 for
precise definitions and basic properties of Arakelov’s intersection pairing on an
arithmetic surface. Then, for any smooth projective connected curve X over Q

of genus g ≥ 1, we define the Faltings height hFal(X), the discriminant 1(X),
Faltings’ delta invariant δFal(X) and the self-intersection of the dualising sheaf e(X)
in Section 2.3. These are the four Arakelov invariants appearing in Theorem 1.1.1.

We introduce two functions on X (Q) in Section 2.3: the canonical Arakelov
height function and the Arakelov norm of the Wronskian differential. We show
that, to prove Theorem 1.1.1, it suffices to bound the canonical height of some
non-Weierstrass point and the Arakelov norm of the Wronskian differential at this
point; see Theorem 2.4.1 for a precise statement.
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We estimate Arakelov–Green functions and Arakelov norms of Wronskian dif-
ferentials on finite étale covers of the modular curve Y (2) in Theorem 3.4.5 and
Proposition 3.5.1, respectively. In our proof, we use an explicit version of a result
of Merkl on the Arakelov–Green function; see Theorem 3.1.2. This version of
Merkl’s theorem was obtained by Peter Bruin in his master’s thesis. The proof of
this version of Merkl’s theorem is reproduced in the Appendix by Peter Bruin.

In Section 4, we prove the existence of a non-Weierstrass point on X of bounded
height; see Theorem 4.5.2. The proof of Theorem 4.5.2 relies on our bounds
for Arakelov–Green functions (Theorem 3.4.5), the existence of a “wild” model
(Theorem 4.3.2) and a generalisation of Dedekind’s discriminant conjecture for
discrete valuation rings of characteristic 0 (Proposition 4.1.1), which we attribute
to Lenstra.

A precise combination of the above results constitutes the proof of Theorem 1.1.1
given in Section 4.6.

1.3. Arakelov invariants of covers of curves with fixed branch locus. We apply
Theorem 1.1.1 to prove explicit bounds for the height of a cover of curves. Let us
be more precise.

For any finite subset B ⊂ P1(Q) and integer d ≥ 1, the set of smooth projective
connected curves X over Q such that there exists a finite morphism X→ P1

Q
étale

over P1
Q
− B of degree d is finite. In particular, the Faltings height of X is bounded

by a real number depending only on B and d. In this section, we give an explicit
version of this statement. To state our result, we need to define the height of B.

The (exponential) height H(α) of an element α in Q is defined as H(α) =(∏
v max(1, ‖α‖v)

)1/[K :Q]. Here K is a number field containing α and the product
runs over the set of normalised valuations v of K . (As in [Khadjavi 2002, Section 2],
we require our normalisation to be such that the product formula holds.) For any
finite set B ⊂ P1(Q), define the height of B as HB =max{H(α) : α ∈ B}.

Theorem 1.3.1. Let U be a nonempty open subscheme in P1
Q

with complement
B ⊂ P1(Q). Let N be the number of elements in the orbit of B under the action of
Gal(Q/Q). Then, for any finite morphism π : Y → P1

Q
étale over U , where Y is a

smooth projective connected curve over Q of genus g ≥ 1,

−log(2π)g ≤ hFal(Y ) ≤ 13 · 106g(4N HB)
45N 32N−2 N !(degπ)5,

0≤ e(Y ) ≤ 3 · 107(g− 1)(4N HB)
45N 32N−2 N !(degπ)5,

0≤ 1(Y ) ≤ 5 · 108g2(4N HB)
45N 32N−2 N !(degπ)5,

−108g2(4N HB)
45N 32N−2 N !(degπ)5

≤ δFal(Y ) ≤ 2 · 108g(4N HB)
45N 32N−2 N !(degπ)5.
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Theorem 1.3.1 is a consequence of Theorem 6.0.4. Note that in Theorem 6.0.4
we consider branched covers of any curve over Q (i.e., not only P1

Q
). We use

Theorem 1.3.1 to prove [Edixhoven et al. 2010, Conjecture 5.1].

1.4. Diophantine application. Explicit bounds for Arakelov invariants of curves
of genus g ≥ 2 over a number field K and with bad reduction outside a finite set S
of finite places of K imply famous conjectures in Diophantine geometry such as the
effective Mordell conjecture and the effective Shafarevich conjecture; see [Rémond
1999] and [Szpiro 1985a]. We note that Theorem 1.1.1 shows that one “could”
replace Arakelov invariants by the Belyi degree to prove these conjectures. We use
this philosophy to deal with cyclic covers of prime degree. In fact, in [Javanpeykar
and von Känel 2013], we utilise Theorem 1.1.1 and the theory of logarithmic forms
to prove the small points conjecture of Szpiro [1985c, p. 284; 1986] for curves that
are cyclic covers of the projective line of prime degree; see [Javanpeykar and von
Känel 2013, Theorem 3.1] for a precise statement. In particular, we prove Szpiro’s
small points conjecture for hyperelliptic curves.

1.5. Modular curves, Fermat curves, Hurwitz curves and Galois Belyi curves.
Let X be a smooth projective connected curve over Q of genus g ≥ 2. We say that
X is a Fermat curve if there exists an integer n ≥ 4 such that X is isomorphic to
the planar curve {xn

+ yn
= zn
}. Moreover, we say that X is a Hurwitz curve if

# Aut(X)= 84(g− 1). Also, we say that X is a Galois Belyi curve if the quotient
X/Aut(X) is isomorphic to P1

Q
and the morphism X→ X/Aut(X) is ramified over

exactly three points; see [Clark and Voight 2011, Proposition 2.4] or [Wolfart 1997].
Note that Fermat curves and Hurwitz curves are Galois Belyi curves. Finally, we
say that X is a modular curve if XC is a classical congruence modular curve with
respect to some (hence any) embedding Q→ C.

If X is a Galois Belyi curve, we have degB(X) ≤ 84(g − 1). Zograf [1991]
proved that, if X is a modular curve, then degB(X)≤ 128(g+1). Combining these
bounds with Theorem 1.1.1 we obtain the following corollary:

Corollary 1.5.1. Let X be a smooth projective connected curve over Q of genus
g ≥ 1. Suppose that X is a modular curve or Galois Belyi curve. Then

max
(
hFal(X), e(X),1(X), |δFal(X)|

)
≤ 2 · 1019g2(g+ 1)5.

Remark 1.5.2. Let 0 ⊂ SL2(Z) be a finite-index subgroup, and let X be the
compactification of 0\H obtained by adding the cusps, where 0 acts on the
complex upper half-plane H via Möbius transformations. Let X (1) denote the
compactification of SL2(Z)\H. The inclusion 0 ⊂ SL2(Z) induces a morphism
X→ X (1). For Q⊂C an embedding, there is a unique finite morphism Y→P1

Q
of

smooth projective connected curves over Q corresponding to X→ X (1). The Belyi
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degree of Y is bounded from above by the index d of 0 in SL2(Z). In particular,

max
(
hFal(Y ), e(Y ),1(Y ), |δFal(Y )|

)
≤ 109d7.

Remark 1.5.3. Nonexplicit versions of Corollary 1.5.1 were previously known
for certain modular curves. Firstly, polynomial bounds for Arakelov invariants of
X0(n) with n squarefree were previously known; see [Ullmo 2000, Théorème 1.1
and Corollaire 1.3; Abbes and Ullmo 1997; Michel and Ullmo 1998, Théorème 1.1;
Jorgenson and Kramer 2009]. The proofs of these results rely on the theory of
modular curves. Also, similar results for Arakelov invariants of X1(n) with n
squarefree were shown in [Edixhoven and de Jong 2011a; Mayer 2012]. Bounds
for the self-intersection of the dualising sheaf of a Fermat curve of prime exponent
are given in [Curilla and Kühn 2009; Kühn 2013].

1.6. The Couveignes–Edixhoven–Bruin algorithm. Corollary 1.5.1 guarantees
that, under the Riemann hypothesis for ζ -functions of number fields, the Couveignes–
Edixhoven–Bruin algorithm to compute coefficients of modular forms runs in
polynomial time; see Theorem 5.0.1 for a more precise statement.

Conventions. By log, we mean the principal value of the natural logarithm. We
define the maximum of the empty set and the product taken over the empty set as 1.

2. Arakelov geometry of curves over number fields

We are going to apply Arakelov theory to smooth projective geometrically connected
curves X over number fields K . Arakelov [1974] defined an intersection theory on
the arithmetic surfaces attached to such curves. Faltings [1984] extended Arakelov’s
work. In this section, we aim at giving the necessary definitions and results for
what we need later (and we need at least to fix our notation).

We start with some preparations concerning Riemann surfaces and arithmetic
surfaces. In Section 2.3, we define the (stable) Arakelov invariants of X appearing
in Theorem 1.1.1. Finally, we prove bounds for Arakelov invariants of X in the
height and the Arakelov norm of the Wronskian differential of a non-Weierstrass
point; see Theorem 2.4.1.

2.1. Arakelov invariants of Riemann surfaces. Let X be a compact connected
Riemann surface of genus g≥ 1. The space of holomorphic differentials H0(X, �1

X )

carries a natural hermitian inner product

(ω, η) 7→
i
2

∫
X
ω∧ η.

For any orthonormal basis (ω1, . . . , ωg) with respect to this inner product, the
Arakelov (1, 1)-form is the smooth positive real-valued (1, 1)-form µ on X given by



94 Ariyan Javanpeykar

µ= (i/2g)
∑g

k=1 ωk ∧ωk . Note that µ is independent of the choice of orthonormal
basis. Moreover,

∫
X µ= 1.

Let grX be the Arakelov–Green function on (X × X) \1, where 1 ⊂ X × X
denotes the diagonal; see [Arakelov 1974], [de Jong 2005a], [Edixhoven and de Jong
2011b] or [Faltings 1984]. The Arakelov–Green functions determine certain metrics
whose curvature forms are multiples of µ, called admissible metrics, on all line
bundles OX (D), where D is a divisor on X , as well as on the holomorphic cotangent
bundle �1

X . Explicitly, for D=
∑

P DP P a divisor on X , the metric ‖ · ‖ on OX (D)
satisfies log ‖1‖(Q) = grX (D, Q) for all Q away from the support of D, where
grX (D, Q) :=

∑
P n P grX (P, Q). Furthermore, for a local coordinate z at a point a

in X , the metric ‖ · ‖Ar on the sheaf �1
X satisfies

−log ‖dz‖Ar(a)= lim
b→a

(grX (a, b)−log |z(a)− z(b)|).

We will work with these metrics on OX (P) and �1
X (as well as on tensor product

combinations of them) and refer to them as Arakelov metrics. A metrised line
bundle L is called admissible if, up to a constant scaling factor, it is isomorphic
to one of the admissible bundles OX (D). The line bundle �1

X endowed with the
above metric is admissible; see [Arakelov 1974].

For any admissible line bundle L, we endow the determinant of cohomology

λ(L)= det H0(X,L)⊗ det H1(X,L)∨

of the underlying line bundle with the Faltings metric; see Theorem 1 of [Faltings
1984]. We normalise this metric so that the metric on λ(�1

X )= det H0(X, �1
X ) is

induced by the hermitian inner product on H0(X, �1
X ) given above.

Let Hg be the Siegel upper half-space of complex symmetric g-by-g matrices
with positive-definite imaginary part. Let τ in Hg be the period matrix attached
to a symplectic basis of H1(X,Z), and consider the analytic Jacobian Jτ (X) =
Cg/(Zg

+τZg) attached to τ . On Cg, one has a theta function ϑ(z; τ)=ϑ0,0(z; τ)=∑
n∈Zg exp(π i tnτn+ 2π i tnz), giving rise to a reduced effective divisor 20 and a

line bundle O(20) on Jτ (X). The function ϑ is not well-defined on Jτ (X). Instead,
we consider the function

‖ϑ‖(z; τ)= (det=(τ ))1/4 exp(−π ty(=(τ ))−1 y)|ϑ(z; τ)| (1)

with y = =(z). One can check that ‖ϑ‖ descends to a function on Jτ (X). Now
consider on the other hand the set Picg−1(X) of divisor classes of degree g−1 on X .
It comes with a canonical subset 2 given by the classes of effective divisors and
a canonical bijection Picg−1(X) −→∼ Jτ (X) mapping 2 onto 20. As a result, we
can equip Picg−1(X) with the structure of a compact complex manifold, together
with a divisor 2 and a line bundle O(2). Note that we obtain ‖ϑ‖ as a function
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on Picg−1(X). It can be checked that this function is independent of the choice
of τ . Furthermore, note that ‖ϑ‖ gives a canonical way to put a metric on the line
bundle O(2) on Picg−1(X).

For any line bundle L of degree g− 1, there is a canonical isomorphism from
λ(L) to O(−2)[L], the fibre of O(−2) at the point [L] in Picg−1(X) determined
by L. Faltings [1984, Section 3] proves that, when we give both sides the metrics
discussed above, the norm of this isomorphism is a constant independent of L.
We will write this norm as exp(δFal(X)/8) and refer to δFal(X) as Faltings’ delta
invariant of X .

Let S(X) be the invariant of X defined in [de Jong 2005a, Definition 2.2]. More
explicitly, by [de Jong 2005a, Theorem 2.5],

log S(X)=−
∫

X
log ‖ϑ‖(g P − Q) ·µ(P), (2)

where Q is any point on X . It is related to Faltings’ delta invariant δFal(X). In fact,
let (ω1, . . . , ωg) be an orthonormal basis of H0(X, �1

X ). Let b be a point on X , and
let z be a local coordinate about b. Write ωk = fk dz for k = 1, . . . , g. We have a
holomorphic function

Wz(ω)= det
(

1
(l − 1)!

dl−1 fk

dzl−1

)
1≤k,l≤g

locally about b from which we build the g(g+ 1)/2-fold holomorphic differential
Wz(ω)(dz)⊗g(g+1)/2. It is readily checked that this holomorphic differential is
independent of the choice of local coordinate and orthonormal basis. Thus, the
holomorphic differential Wz(ω)(dz)⊗g(g+1)/2 extends over X to give a nonzero
global section, denoted by Wr, of the line bundle �⊗g(g+1)/2

X . The divisor of the
nonzero global section Wr, denoted by W, is the divisor of Weierstrass points. This
divisor is effective of degree g3

− g. We follow [de Jong 2005a, Definition 5.3] and
denote the constant norm of the canonical isomorphism of (abstract) line bundles

�
g(g+1)/2
X ⊗OX (3

gH0(X, �1
X )⊗C OX )

∨
→ OX (W)

by R(X). Then
log S(X)= 1

8δFal(X)+ log R(X). (3)

Moreover, for any non-Weierstrass point b in X ,

grX (W, b)− log R(X)= log ‖Wr‖Ar(b). (4)

2.2. Arakelov’s intersection pairing on an arithmetic surface. Let K be a number
field with ring of integers OK , and let S= Spec OK . Let p :X→ S be an arithmetic
surface, i.e., an integral regular flat projective S-scheme of relative dimension 1 with
geometrically connected fibres. For the sake of clarity, let us note that p : X→ S is
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a regular projective model of the generic fibre XK → Spec K in the sense of [Liu
2006a, Definition 10.1.1].

In this section, we will assume the genus of the generic fibre XK to be positive. An
Arakelov divisor D on X is a divisor Dfin on X plus a contribution Dinf=

∑
σ ασ Fσ

running over the embeddings σ :K→C of K into the complex numbers. Here the ασ
are real numbers and the Fσ are formally the “fibres at infinity”, corresponding
to the Riemann surfaces Xσ associated to the algebraic curves X×OK ,σ C. We
let D̂iv(X) denote the group of Arakelov divisors on X. To a nonzero rational
function f on X, we associate an Arakelov divisor d̂iv( f ) := ( f )fin+ ( f )inf with
( f )fin the usual divisor associated to f on X and ( f )inf =

∑
σ vσ ( f )Fσ , where

vσ ( f ) := −
∫

Xσ
log | f |σ ·µσ . Here µσ is the Arakelov (1, 1)-form on Xσ . We will

say that two Arakelov divisors on X are linearly equivalent if their difference is of
the form d̂iv( f ) for some nonzero rational function f on X. We let Ĉl(X) denote
the group of Arakelov divisors modulo linear equivalence on X.

Arakelov [1974] showed that there exists a unique symmetric bilinear map
( · , · ) : Ĉl(X)× Ĉl(X)→ R with the following properties:

• If D and E are effective divisors on X without common component, then

(D, E)= (D, E)fin−
∑

σ :K→C

grXσ (Dσ , Eσ ),

where σ runs over the complex embeddings of K . Here (D, E)fin denotes the
usual intersection number of D and E as in [Liu 2006a, Section 9.1]; i.e.,

(D, E)fin =
∑
s∈|S|

is(D, E) log #k(s),

where s runs over the set |S| of closed points of S, is(D, E) is the intersection
multiplicity of D and E at s and k(s) denotes the residue field of s. Note that,
if D or E is vertical, the sum

∑
σ :K→C grXσ (Dσ , Eσ ) is zero.

• If D is a horizontal divisor of generic degree n over S, then (D, Fσ )= n for
every σ : K → C.

• If σ1, σ2 : K → C are complex embeddings, then (Fσ1, Fσ2)= 0.

An admissible line bundle on X is the datum of a line bundle L on X together with
admissible metrics on the restrictions Lσ of L to the Xσ . Let P̂ic(X) denote the
group of isomorphism classes of admissible line bundles on X. To any Arakelov
divisor D = Dfin+ Dinf with Dinf =

∑
σ ασ Fσ , we can associate an admissible line

bundle OX(D). In fact, for the underlying line bundle of OX(D), we take OX(Dfin).
Then, we make this into an admissible line bundle by equipping the pull-back
of OX(Dfin) to each Xσ with its Arakelov metric, multiplied by exp(−ασ ). This
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induces an isomorphism

Ĉl(X)−→∼ P̂ic(X).

In particular, the Arakelov intersection of two admissible line bundles on X is
well-defined.

Recall that a metrised line bundle (L, ‖ · ‖) on Spec OK corresponds to an
invertible OK -module, L , say, with hermitian metrics on the Lσ :=C⊗σ,OK L . The
Arakelov degree of (L, ‖ · ‖) is the real number defined by

d̂eg(L)= d̂eg(L, ‖ · ‖)= log #(L/OK s)−
∑

σ :K→C

log ‖s‖σ ,

where s is any nonzero element of L (independence of the choice of s follows from
the product formula).

Note that the relative dualising sheaf ωX/OK
of p : X→ S is an admissible

line bundle on X if we endow the restrictions �1
Xσ

of ωX/OK
to the Xσ with their

Arakelov metric. Furthermore, for any section P : S→ X, we have

d̂egP∗ωX/OK
= (OX (P), ωX/OK

)=: (P, ωX/OK
),

where we endow the line bundle P∗ωX/OK
on Spec OK with the pull-back metric.

Definition 2.2.1. We say that X is semistable (or nodal) over S if every geometric
fibre of X over S is reduced and has only ordinary double singularities; see [Liu
2006a, Definition 10.3.1]. We say that X is (relatively) minimal if it does not contain
any exceptional divisor; see [Liu 2006a, Definition 9.3.12].

Remark 2.2.2. Suppose that X is semistable over S and minimal. The blowing-
up Y→ X along a smooth closed point on X is semistable over S but no longer
minimal.

2.3. Arakelov invariants of curves. Let X be a smooth projective connected curve
over Q of genus g ≥ 1. Let K be a number field such that X has a semistable
minimal regular model p :X→Spec OK ; see Theorems 10.1.8, 10.3.34.a and 10.4.3
in [Liu 2006a]. (Note that we implicitly chose an embedding K →Q.)

The Faltings delta invariant of X , denoted by δFal(X), is defined as

δFal(X)=
1

[K :Q]

∑
σ :K→C

δFal(Xσ ),

where σ runs over the complex embeddings of K into C. Similarly, we define

‖ϑ‖max(X)=
( ∏
σ :K→C

max
Picg−1(Xσ )

‖ϑ‖

)1/[K :Q]

.
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Moreover, we define

R(X)=
( ∏
σ :K→C

R(Xσ )
)1/[K :Q]

and S(X)=
( ∏
σ :K→C

S(Xσ )
)1/[K :Q]

.

The Faltings height of X is defined by

hFal(X)=
d̂eg det p∗ωX/OK

[K :Q]
=

d̂eg det R· p∗OX

[K :Q]
,

where we endow the determinant of cohomology with the Faltings metric; see
Section 2.1. Note that hFal(X) coincides with the stable Faltings height of the
Jacobian of XK ; see [Szpiro 1985b, Chapter I, Lemma 3.2.1]. Furthermore, we
define the self-intersection of the dualising sheaf of X , denoted by e(X), as

e(X) :=
(ωX/OK

, ωX/OK
)

[K :Q]
,

where we use Arakelov’s intersection pairing on the arithmetic surface X/OK . The
discriminant of X , denoted by 1(X), is defined as

1(X)=

∑
p⊂OK

δp log #k(p)

[K :Q]
,

where p runs through the maximal ideals of OK and δp denotes the number of
singularities in the geometric fibre of p : X→ Spec OK over p. These invariants
of X are well-defined; see [Moret-Bailly 1990, Section 5.4].

To bound the above Arakelov invariants, we introduce two functions on X (Q):
the height and the Arakelov norm of the Wronskian differential. More precisely, let
b ∈ X (Q) and suppose that b induces a section P of X over OK . Then we define
the height of b, denoted by h(b), to be

h(b)=
d̂egP∗ωX/OK

[K :Q]
=
(P, ωX/OK

)

[K :Q]
.

Note that the height of b is the stable canonical height of a point, in the Arakelov-
theoretic sense, with respect to the admissible line bundle ωX/OK

. We define the
Arakelov norm of the Wronskian differential at b as

‖Wr‖Ar(b)=
( ∏
σ :K→C

‖Wr‖Ar(bσ )
)1/[K :Q]

.

These functions on X (Q) are well-defined; see [Moret-Bailly 1990, Section 5.4].
Changing the model for X might change the height of a point. Let us show that the

height of a point does not become smaller if we take another regular model over OK .
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Lemma 2.3.1. Let Y→ Spec OK be an arithmetic surface. Assume that Y is a
model for XK . If Q denotes the section of Y over OK induced by b ∈ X (Q), then

h(b)≤
(Q, ωY/OK )

[K :Q]
.

Proof. By the minimality of X, there is a unique birational morphism φ :Y→ X;
see [Liu 2006a, Corollary 9.3.24]. By the factorisation theorem, this morphism is
made up of a finite sequence

Y= Yn
φn
−→ Yn−1

φn−1
−−−→ · · ·

φ1
−→ Y0 = X

of blowing-ups along closed points; see [Liu 2006a, Theorem 9.2.2]. For i =
1, . . . , n, let Ei ⊂Yi denote the exceptional divisor of φi . Since the line bundles
ωYi/OK and φ∗i ωYi−1/OK agree on Yi − Ei , there is an integer a such that

ωYi/OK = φ
∗

i ωYi−1/OK ⊗OYi
OYi (aEi ).

Applying the adjunction formula, we see that a= 1. Since φi restricts to the identity
morphism on the generic fibre, we have a canonical isomorphism of admissible line
bundles

ωYi/OK = φ
∗

i ωYi−1/OK ⊗OYi
OYi (Ei ).

Let Qi denote the section of Yi over OK induced by b ∈ X (Q). Then

(Qi , ωYi/OK )= (Qi , φ
∗

i ωYi−1/OK )+ (Qi , Ei )

≥ (Qi , φ
∗

i ωYi−1/OK )

= (Qi−1, ωYi−1/OK ),

where we used the projection formula in the last equality. Therefore, we conclude
that

(Q, ωY/OK )= (Qn, ωYn/OK )≥ (Q0, ωY0/OK )= (P, ωX/OK
)= h(b)[K :Q]. �

2.4. Bounding Arakelov invariants in the height of a non-Weierstrass point. In
this section, we prove bounds for Arakelov invariants of curves in the height of a
non-Weierstrass point and the Arakelov norm of the Wronskian differential in this
point.

Theorem 2.4.1. Let X be a smooth projective connected curve over Q of genus
g ≥ 1. Let b ∈ X (Q). Then

e(X)≤ 4g(g− 1)h(b),

δFal(X)≥−90g3
− 4g(2g− 1)(g+ 1)h(b).
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Suppose that b is not a Weierstrass point. Then

hFal(X)≤ 1
2 g(g+ 1)h(b)+ log ‖Wr‖Ar(b),

δFal(X)≤ 6g(g+ 1)h(b)+ 12 log‖Wr‖Ar(b)+ 4g log(2π),

1(X)≤ 2g(g+ 1)(4g+ 1)h(b)+ 12 log ‖Wr‖Ar(b)+ 93g3.

This theorem is essential to the proof of Theorem 1.1.1 given in Section 4.5. We
give a proof of Theorem 2.4.1 at the end of this section.

Lemma 2.4.2. For a smooth projective connected curve X over Q of genus g ≥ 1,

log ‖ϑ‖max(X)≤
g
4

log max(1, hFal(X))+ (4g3
+ 5g+ 1) log 2.

Proof. We kindly thank R. de Jong for sharing this proof with us. We follow the
idea of [Graftieaux 2001, Section 2.3.2]; see also [David 1991, Appendice]. Let Fg

be the Siegel fundamental domain of dimension g in the Siegel upper half-space
Hg, i.e., the space of complex (g × g)-matrices τ in Hg such that the following
properties are satisfied. Firstly, for every element ui j of u=<(τ ), we have |ui j | ≤

1
2 .

Secondly, for every γ in Sp(2g,Z), we have det=(γ · τ) ≤ det=(τ ), and finally,
=(τ ) is Minkowski-reduced; i.e., for all ξ = (ξ1, . . . , ξg) ∈ Zg and for all i such
that ξi , . . . , ξg are nonzero, we have ξ=(τ )tξ ≥ (=(τ ))i i and, for all 1≤ i ≤ g− 1
we have (=(τ ))i,i+1 ≥ 0. One can show that Fg contains a representative of each
Sp(2g,Z)-orbit in Hg.

Let K be a number field such that X has a model X K over K . For any embedding
σ : K → C, let τσ be an element of Fg such that Jac(X K ,σ )∼= Cg/(τσZg

+Zg) as
principally polarised abelian varieties, the matrix of the Riemann form induced by
the polarisation of Jac(X K ,σ ) being =(τσ )−1 on the canonical basis of Cg. By a
result of Bost (see [Graftieaux 2001, Lemme 2.12] or [Pazuki 2012]), we have

1
[K :Q]

∑
σ :K→C

log det(=(τσ ))≤ g log max(1, hFal(X))+ (2g3
+ 2) log(2). (5)

Here we used that the Faltings height of X equals the Faltings height of its Jacobian.
Now, let ϑ(z; τ) be the Riemann theta function as in Section 2.1, where τ is in Fg

and z = x + iy is in Cg with x, y ∈ Rg. Combining (5) with the upper bound

exp(−π t y(=(τ ))−1 y)|ϑ(z; τ)| ≤ 23g3
+5g (6)

implies the result. Let us prove (6). Note that, if we write y = =(z) = (=(τ )) · b
for b in Rg,

exp(−π t g(=(τ ))−1 y)|ϑ(z; τ)| ≤
∑
n∈Zg

exp(−π t(n+ b)(=(τ ))(n+ b)).
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Since =(τ ) is Minkowski reduced, we have tm=(τ )m ≥ c(g)
∑g

i=1 m2
i (=(τ ))i i for

all m in Rg. Here c(g) = (4/g3)g−1
(3

4

)g(g−1)/2. Also, (=(τ ))i i ≥
√

3/2 for all
i = 1, . . . , g (see [Igusa 1972, Chapter V.4] for these facts). We deduce that∑
n∈Zg

exp(−π t(n+ b)(=(τ ))(n+ b))

≤

∑
n∈Zg

exp
(
−

g∑
i=1

πc(g)(ni + bi )
2(=(τ ))i i

)

≤

g∏
i=1

∑
ni∈Z

exp(−πc(g)(ni + bi )
2(=(τ ))i i )

≤

g∏
i=1

2
1− exp(−πc(g)(=(τ ))i i )

≤ 2g
(

1+
2

π
√

3c(g)

)g

.

This proves (6). �

Lemma 2.4.3. Let a ∈ R>0 and b ∈ R≤1. Then, for all real numbers x ≥ b,

x−a log max(1, x)= 1
2 x+ 1

2(x−2a log max(1, x))≥ 1
2 x+min

( 1
2 b, a−a log(2a)

)
.

Proof. It suffices to prove that x − 2a log max(1, x)≥min(b, 2a− 2a log(2a)) for
all x ≥ b. To prove this, let x ≥ b. Then, if 2a ≤ 1, we have x−2a log max(1, x)≥
b ≥ min(b, 2a − 2a log(2a)). (To prove that x − 2a log max(1, x) ≥ b, we may
assume that x ≥ 1. It is easy to show that x − 2a log x is a nondecreasing function
for x ≥ 1. Therefore, for all x ≥ 1, we conclude that x − 2a log x ≥ 1 ≥ b.) If
2a > 1, the function x − 2a log(x) attains its minimum value at x = 2a on the
interval [1,∞). �

Lemma 2.4.4 (Bost). Let X be a smooth projective connected curve over Q of
genus g ≥ 1. Then

hFal(X)≥−log(2π)g.

Proof. See [Gaudron and Rémond 2011, Corollaire 8.4]. (Note that the Faltings
height h(X) utilised by Bost, Gaudron and Rémond is bigger than hFal(X) due to
a difference in normalisation. In fact, we have h(X) = hFal(X)+ g log(

√
π). In

particular, the slightly stronger lower bound hFal(X)≥−log(
√

2π)g holds.) �

Lemma 2.4.5. Let X be a smooth projective connected curve over Q of genus g≥ 1.
Then

log S(X)+ hFal(X)

≥
1
2 hFal(X)− (4g3

+ 5g+ 1) log 2+min
(
−

g
2

log(2π),
g
4
−

g
4

log
(g

2

))
.
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Proof. By the explicit formula (2) for S(X) in Section 2.1 and our bounds on theta
functions (Lemma 2.4.2),

log S(X)+ hFal(X)≥−
g
4

log max(1, hFal(X))− (4g3
+ 5g+ 1) log 2+ hFal(X).

Since hFal(X)≥−g log(2π), the statement follows from Lemma 2.4.3 (with x =
hFal(X), a = g/4 and b =−g log(2π)). �

Lemma 2.4.6. Let X be a smooth projective connected curve of genus g≥ 2 over Q.
Then

(2g− 1)(g+ 1)
8(g− 1)

e(X)+ 1
8δFal(X)≥ log S(X)+ hFal(X).

Proof. By [de Jong 2005a, Proposition 5.6],

e(X)≥
8(g− 1)

(g+ 1)(2g− 1)
(log R(X)+ hFal(X)).

Note that log R(X) = log S(X)− δFal(X)/8; see (3) in Section 2.1. This implies
the inequality. �

Lemma 2.4.7 (Noether formula). Let X be a smooth projective connected curve
over Q of genus g ≥ 1. Then

12hFal(X)= e(X)+1(X)+ δFal(X)− 4g log(2π).

Proof. This is well-known; see [Faltings 1984, Theorem 6; Moret-Bailly 1989,
Théorème 2.2]. �

Proposition 2.4.8. Let X be a smooth projective connected curve of genus g ≥ 2
over Q. Then

hFal(X)≤
(2g− 1)(g+ 1)

4(g− 1)
e(X)+ 1

4δFal(X)+ 20g3,

−g log(2π)≤
(2g− 1)(g+ 1)

4(g− 1)
e(X)+ 1

4δFal(X)+ 20g3,

1(X)≤
3(2g− 1)(g+ 1)

g− 1
e(X)+ 2δFal(X)+ 248g3.

Proof. Firstly, by Lemma 2.4.6,

(2g− 1)(g+ 1)
8(g− 1)

e(X)+ 1
8δFal(X)≥ log S(X)+ hFal(X).

To obtain the upper bound for hFal(X), we proceed as follows. By Lemma 2.4.5,

log S(X)+ hFal(X)

≥
1
2 hFal(X)− (4g3

+ 5g+ 1) log 2+min
(
−

g
2

log(2π),
g
4
−

g
4

log
(g

2

))
.
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From these two inequalities, we deduce that

1
2 hFal(X)≤

(2g− 1)(g+ 1)
8(g− 1)

e(X)+ 1
8δFal(X)+ (4g3

+ 5g+ 1) log 2

+max
(g

2
log(2π),

g
4

log
(g

2

)
−

g
4

)
.

Finally, it is straightforward to verify the inequality

(4g3
+ 5g+ 1) log 2+max

(g
2

log(2π),
g
4

log
(g

2

)
−

g
4

)
≤ 10g3.

This concludes the proof of the upper bound for hFal(X).
The second inequality follows from the first inequality of the proposition and

the lower bound hFal(X)≥−g log(2π) of Bost (Lemma 2.4.4).
Finally, to obtain the upper bound of the proposition for the discriminant of X , we

eliminate the Faltings height of X in the first inequality using the Noether formula
and obtain

1(X)+e(X)+δFal(X)−4g log(2π)≤
3(2g− 1)(g+ 1)

(g− 1)
e(X)+3δFal(X)+240g3.

Faltings [1984, Theorem 5] showed that e(X)≥ 0. Therefore, we conclude that

1(X)+ δFal(X)− 4g log(2π)≤
3(2g− 1)(g+ 1)

(g− 1)
e(X)+ 3δFal(X)+ 240g3. �

We are now ready to prove Theorem 2.4.1.

Proof of Theorem 2.4.1. The proof is straightforward. The upper bound e(X) ≤
4g(g− 1)h(b) is well-known; see [Faltings 1984, Theorem 5].

Let us prove the lower bound for δFal(X). If g ≥ 2, the lower bound for δFal(X)
can be deduced from the second inequality of Proposition 2.4.8 and the upper bound
e(X)≤ 4g(g− 1)h(b). When g = 1, this follows from a result of Szpiro [de Jong
2005b, Proposition 7.2] and the nonnegativity of h(b).

From now on, we suppose that b is a non-Weierstrass point. The upper bound
hFal(X)≤ 1

2 g(g+ 1)h(b)+ log ‖Wr‖Ar(b) follows from Theorem 5.9 in [de Jong
2005a] and (4) in Section 2.1.

We deduce the upper bound δFal(X) ≤ 6g(g + 1)h(b) + 12 log‖Wr‖Ar(b) +
4g log(2π) as follows. Since e(X)≥ 0 and 1(X)≥ 0, the Noether formula implies
that

δFal(X)≤ 12hFal(X)+ 4g log(2π).

Thus, the upper bound for δFal(X) follows from the upper bound for hFal(X).
The upper bound 1(X) ≤ 2g(g + 1)(4g + 1)h(b)+ 12 log ‖Wr‖Ar(b)+ 93g3

follows from the inequality 1(X) ≤ 12hFal(X)− δFal(X)+ 4g log(2π) and the
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preceding bounds. (One could also use the last inequality of Proposition 2.4.8 to
obtain a similar result.) �

3. Bounds for Arakelov–Green functions of Belyi covers

Our aim is to give explicit bounds for the Arakelov–Green function on a Belyi cover
of X (2). Such bounds have been obtained for certain Belyi covers using spectral
methods in [Jorgenson and Kramer 2006]. The results in [loc. cit.] do not apply to
our situation since the smallest positive eigenvalue of the Laplacian can go to zero
in a tower of Belyi covers; see [Long 2008, Theorem 4].

Instead, we use a theorem of Merkl to prove explicit bounds for the Arakelov–
Green function on a Belyi cover in Theorem 3.4.5. More precisely, we construct a
“Merkl atlas” for an arbitrary Belyi cover. Our construction uses an explicit version
of [Jorgenson and Kramer 2004] on the Arakelov (1, 1)-form due to Bruin.

We use our results to estimate the Arakelov norm of the Wronskian differential
in Proposition 3.5.1.

Merkl’s theorem [2011, Theorem 10.1] was used to prove bounds for Arakelov–
Green functions of the modular curve X1(5p) in [Edixhoven and de Jong 2011a].

3.1. Merkl’s theorem. Let X be a compact connected Riemann surface of positive
genus, and recall that µ denotes the Arakelov (1, 1)-form on X .

Definition 3.1.1. A Merkl atlas for X is a quadruple(
{(U j , z j )}

n
j=1, r1,M, c1

)
,

where {(U j , z j )}
n
j=1 is a finite atlas for X and 1

2 < r1 < 1, M ≥ 1 and c1 > 0 are
real numbers such that the following properties are satisfied:

(1) Each z jU j is the open unit disc.

(2) The open sets U r1
j := {x ∈U j : |z j (x)|< r1} with 1≤ j ≤ n cover X .

(3) For all 1 ≤ j, j ′ ≤ n, the function |dz j/dz j ′ | on U j ∩U j ′ is bounded from
above by M .

(4) For 1≤ j ≤ n, write µAr = i F j dz j ∧ dz j on U j . Then 0≤ F j (x)≤ c1 for all
x ∈U j .

Given a Merkl atlas ({(U j , z j )}
n
j=1, r1,M, c1) for X , the following result pro-

vides explicit bounds for Arakelov–Green functions in n, r1, M and c1:

Theorem 3.1.2 (Merkl). Let ({(U j , z j )}
n
j=1, r1,M, c1) be a Merkl atlas for X.

Then

sup
(X×X)\1

grX ≤
330n

(1− r1)3/2
log

1
1− r1

+ 13.2nc1+ (n− 1) log M.
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Furthermore, for every index j and all x 6= y ∈U r1
j , we have∣∣grX (x, y)−log |z j (x)−z j (y)|

∣∣≤ 330n
(1− r1)3/2

log
1

1− r1
+13.2nc1+(n−1) log M.

Proof. Merkl [2011] proved this theorem without explicit constants and without the
dependence on r1. A proof of the theorem in a more explicit form was given by
P. Bruin in his master’s thesis. This proof is reproduced, with minor modifications,
in the Appendix. �

3.2. An atlas for a Belyi cover of X(2). Let H denote the complex upper half-
plane. Recall that SL2(R) acts on H via Möbius transformations. Let 0(2) denote
the subgroup of SL2(Z) defined as

0(2)=
{(a

c
b
d

)
∈ SL2(Z) : a ≡ d ≡ 1 mod 2 and b ≡ c ≡ 0 mod 2

}
.

The Riemann surface Y (2)= 0(2)\H is not compact. Let X (2) be the compactifi-
cation of the Riemann surface Y (2)= 0(2)\H obtained by adding the cusps 0, 1
and∞. Note that X (2) is known as the compact modular curve associated to the
congruence subgroup 0(2) of SL2(Z). The modular lambda function λ : H→ C

induces an analytic isomorphism λ : X (2)→ P1(C); see Section 4.4 for details. In
particular, the genus of X (2) is zero. For a cusp κ ∈ {0, 1,∞}, we fix an element γκ
in SL2(Z) such that γκ(κ)=∞.

We construct an atlas for the compact connected Riemann surface X (2). Let Ḃ∞
be the open subset given by the image of the strip

Ṡ∞ :=
{

x + iy : −1≤ x < 1, y > 1
2

}
⊂ H

in Y (2) under the quotient map H→ 0(2)\H defined by τ 7→ 0(2)τ . The quotient
map H→0(2)\H induces a bijection from this strip to Ḃ∞. More precisely, suppose
that τ and τ ′ in Ṡ∞ lie in the same orbit under the action of 0(2). Then, there exists
an element

γ =
(a

c
b
d

)
∈ 0(2)

such that γ τ = τ ′. If c 6= 0, by definition, c is a nonzero integral multiple of 2.
Thus, c2

≥ 4. Therefore,

1
2
< =τ ′ =

=τ

|cτ + d|2
≤

1
4=τ

<
1
2
.

This is clearly impossible. Thus, c = 0 and τ ′ = τ ± b. By definition, b = 2k for
some integer k. Since τ and τ ′ lie in the above strip, we conclude that b = 0. Thus,
τ = τ ′.

Consider the morphism z∞ :H→C given by τ 7→ exp(π iτ+π/2). The image of
the strip Ṡ∞ under z∞ in C is the punctured open unit disc Ḃ(0, 1). Now, for any τ
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and τ ′ in the strip Ṡ∞, the equality z∞(τ )= z∞(τ ′) holds if and only if τ ′ = τ ±2k
for some integer k. But then k = 0 and τ = τ ′. We conclude that z∞ factors
injectively through Ḃ∞. Let z∞ : B∞→ B(0, 1) denote, by abuse of notation, the
induced chart at∞, where B∞ := Ḃ∞∪{∞} and B(0, 1) is the open unit disc in C.
We translate our neighbourhood B∞ at∞ to a neighbourhood for κ , where κ is a
cusp of X (2). More precisely, for any τ in H, define zκ(τ )= exp(π iγ−1

k τ +π/2).
Let Ḃκ be the image of Ṡ∞ under the map H→ Y (2) given by τ 7→ 0(2)γκτ . We
define Bκ = Ḃκ ∪{κ}. We let zκ : Bκ→ B(0, 1) denote the induced chart (by abuse
of notation).

Since the open subsets Bκ cover X (2), we have constructed an atlas {(Bκ , zκ)}κ
for X (2), where κ runs through the cusps 0, 1 and∞.

Definition 3.2.1. A Belyi cover of X (2) is a morphism of compact connected
Riemann surfaces Y → X (2) that is unramified over Y (2). The points of Y not
lying over Y (2) are called cusps.

Lemma 3.2.2. Let π : Y → X (2) be a Belyi cover with Y of genus g. Then,
g ≤ degπ .

Proof. This is trivial for g ≤ 1. For g ≥ 2, the statement follows from the Riemann–
Hurwitz formula. �

Let π : Y → X (2) be a Belyi cover. We are going to “lift” the atlas {(Bκ , zκ)}
for X (2) to an atlas for Y .

Let κ be a cusp of X (2). The branched cover π−1(Bκ)→ Bκ restricts to a finite
degree topological cover π−1(Ḃκ)→ Ḃκ . In particular, the composed morphism

π−1 Ḃκ→ Ḃκ
∼
−−−→
zκ |Ḃκ

Ḃ(0, 1)

is a finite degree topological cover of Ḃ(0, 1).
Recall that the fundamental group of Ḃ(0, 1) is isomorphic to Z. More precisely,

for any connected topological cover of V→ Ḃ(0, 1) of finite degree, there is a unique
integer e ≥ 1 such that V → Ḃ(0, 1) is isomorphic to the cover Ḃ(0, 1)→ Ḃ(0, 1)
given by x 7→ xe.

For every cusp y of Y lying over κ , let V̇y be the unique connected component of
π−1 Ḃκ whose closure Vy in π−1(Bκ) contains y. Then, for any cusp y, there is a
positive integer ey and an isomorphismwy : V̇y−→

∼ Ḃ(0, 1) such thatwey
y = zκ ◦π |V̇y

.
The isomorphism wy : V̇y→ Ḃ(0, 1) extends to an isomorphism wy : Vy→ B(0, 1)
such that wey

y = zκ ◦π |Vy . This shows that ey is the ramification index of y over κ .
Note that we have constructed an atlas {(Vy, wy)} for Y , where y runs over the
cusps of Y .
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3.3. The Arakelov (1, 1)-form and the hyperbolic metric. Let

µhyp(τ )=
i
2

1
=(τ )2

dτ dτ

be the hyperbolic metric on H. A Fuchsian group is a discrete subgroup of SL2(R).
For any Fuchsian group 0, the quotient space 0\H is a connected Hausdorff
topological space and can be made into a Riemann surface in a natural way. The
hyperbolic metric µhyp on H induces a measure on 0\H, given by a smooth positive
real-valued (1, 1)-form outside the set of fixed points of elliptic elements of 0.
If the volume of 0\H with respect to this measure is finite, we call 0 a cofinite
Fuchsian group.

Let 0 be a cofinite Fuchsian group, and let X be the compactification of 0\H
obtained by adding the cusps. We assume that 0 has no elliptic elements and that
the genus g of X is positive. There is a unique smooth function F0 : X→ [0,∞)
that vanishes at the cusps of 0 such that

µ=
1
g

F0µhyp. (7)

A detailed description of F0 is not necessary for our purposes.

Definition 3.3.1. Let π : Y → X (2) be a Belyi cover. Then we define the cofinite
Fuchsian group 0Y (or simply 0) associated to π : Y → X (2) as follows. Since the
topological fundamental group of Y (2) equals 0(2)/{±1}, we have π−1(Y (2))=
0′\H for some subgroup 0′ ⊂ 0(2)/{±1} of finite index. We define 0 ⊂ 0(2) to
be the inverse image of 0′ under the quotient map 0(2)→ 0(2)/{±1}. Note that
0 is a cofinite Fuchsian group without elliptic elements.

Theorem 3.3.2 (Jorgenson and Kramer). For any Belyi cover π : Y → X (2), where
Y has positive genus,

sup
τ∈Y

F0 ≤ 64 max
y∈Y

(ey)
2
≤ 64(degπ)2.

Proof. This is shown in [Bruin 2013]. More precisely, in the notation of [loc. cit.],
Bruin shows that, with a = 1.44, we have NSL2(Z)(z, 2a2

− 1)≤ 58. In particular,
supz∈Y N0(z, z, 2a2

− 1)≤ 58; see Section 8.2 in [loc. cit.]. Now, we apply Propo-
sition 6.1 and Lemma 6.2 (with ε = 2 degπ) in [loc. cit.] to deduce the sought
inequality. �

Remark 3.3.3. Jorgenson and Kramer [2004] prove a stronger (albeit nonexplicit)
version of Theorem 3.3.2.

3.4. A Merkl atlas for a Belyi cover of X (2). In this section, we prove bounds for
Arakelov–Green functions of Belyi covers.
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Recall that we constructed an atlas {(Bκ , zκ)}κ for X (2). For a cusp κ of X (2), let

yκ : H→ (0,∞)

be defined by τ 7→=(γ−1
κ τ)=

1
2
−

log |zκ(τ )|
π

. This induces a function Ḃκ→ (0,∞),
also denoted by yκ .

Lemma 3.4.1. For any two cusps κ and κ ′ of X (2), we have∣∣∣∣ dzκ
dzκ ′

∣∣∣∣≤ 4 exp(3π/2)

on Bκ ∩ Bκ ′ .

Proof. We work on the complex upper half-plane H. We may and do assume that
κ 6=κ ′. By applying γ−1

κ ′ , we may and do assume that κ ′=∞. On Bκ∩B∞, we have

dzκ(τ )=π i exp(π iγ−1
κ τ+π/2)d(γ−1

κ τ) and dz∞(τ )=π i exp(π iτ+π/2)d(τ ).

Therefore,
dzκ
dz∞

(τ )= exp(π i(γ−1
κ τ − τ))

d(γ−1
κ τ)

d(τ )
.

It follows from a simple calculation that, for γ−1
κ =

(a
c

b
d

)
with c 6= 0,∣∣∣∣ dzκ

dz∞

∣∣∣∣(τ )= 1
|cτ + d|2

exp(π(y∞(τ )− yκ(τ ))).

For τ and γ−1
κ τ in B∞, one has y∞(τ ) > 1

2 and yκ(τ ) > 1
2 . From |cτ + d| ≥

y∞(τ )= =(τ ), it follows that

yκ(τ )= =(γ−1
κ (τ ))= γ∞

(aτ + b
cτ + d

)
=

=τ

|cτ + d|2
≤
=τ

(=τ)2
≤ 2,

and similarly, y∞(τ )≤ 2. The statement follows. �

Let π : Y → X (2) be a Belyi cover, and let V = π−1(Y (2)) be the complement
of the set of cusps in Y . Recall that we constructed an atlas {(Vy, wy)} for Y . We
assume that the genus g of Y is positive, and as usual, we let µ denote the Arakelov
(1, 1)-form on Y .

Lemma 3.4.2. Let y be a cusp of π : Y → X (2) with κ = π(y). Then

i dwy dwy =
2π2 y2

κ |wy|
2

e2
y

µhyp on V̇y .

Proof. Let κ = π(y) in X (2). We work on the complex upper half-plane. By the
chain rule, we have

d(zκ)= d(wey
y )= eyw

ey−1
y dwy .
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Therefore,
e2

y|wy|
2ey−2 dwy dwy = dzκ dzκ .

Note that dzκ =π i zκ d(γ−1
κ ), where we view γ−1

κ :H→C as a function. Therefore,

e2
y|wy|

2ey−2 dwy dwy = π
2
|zκ |2 d(γ−1

κ ) d(γ−1
κ ).

Since |wey
y | = |zκ |, we have

i dwy dwy =
iπ2
|wy|

2

e2
y

d(γ−1
κ ) d(γ−1

κ )

=
2π2 y2

κ |wy|
2

e2
y

i d(γ−1
κ ) d(γ−1

κ )

2y2
κ

=
2π2 y2

κ |wy|
2

e2
y

(µhyp ◦ γ
−1
κ ).

Since µhyp is invariant under the action of SL2(Z), this concludes the proof. �

Proposition 3.4.3. Let y be a cusp of π : Y → X (2). Write µ = i Fy dwy dwy

on Vy . Then Fy is a subharmonic function on Vy and

0≤ Fy ≤
128 exp(3π)(degπ)4

π2g
.

Proof. The first statement follows from [Jorgenson and Kramer 2004, p. 8]; see
also [Bruin 2010, p. 58]. The lower bound for Fy is clear from the definition. Let
us prove the upper bound for Fy .

For a cusp κ of X (2), let Ḃκ(2)⊂ Ḃκ be the image of the strip {x+iy :−1≤ x<1,
y > 2} in Y (2) under the map H→ Y (2) given by τ 7→ 0(2)γκτ . For a cusp y
of Y lying over κ , define V̇y(2)= π−1(Ḃκ(2)) and Vy(2)= V̇y(2)∪ {y}. Since the
boundary ∂Vy(2) of Vy(2) is contained in Vy − Vy(2), by the maximum principle
for subharmonic functions,

sup
Vy

Fy =max
(

sup
Vy(2)

Fy, sup
Vy−Vy(2)

Fy

)
=max

(
sup
∂Vy(2)

Fy, sup
Vy−Vy(2)

Fy

)
= sup

Vy−Vy(2)
Fy .

By Lemma 3.4.2, Definition 3.3.1 and (7) in Section 3.3,

Fy = F0
e2

y

2gπ2 y2
κ |wy|

2 . (8)

Note that y−2
κ < 4 on Vy . Furthermore,

sup
Vy−Vy(2)

|wy|
−2
≤ sup

Bκ−Bκ (2)
|zκ |−2

= exp(−π) sup
Bκ−Bκ (2)

exp(2πyκ)≤ exp(3π).

Thus, the proposition follows from Jorgenson–Kramer’s upper bound for F0
(Theorem 3.3.2). �
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Definition 3.4.4. Define s1 =
√

1/2. Note that 1
2 < s1 < 1. For any cusp κ of X (2),

let Bs1
κ be the open subset of Bκ whose image under zκ is {x ∈ C : |x | < s1}.

Moreover, define the positive real number r1 by the equation rdegπ
1 = s1. Note

that 1
2 < r1 < 1. For all cusps y of π : Y → X (2), define the subset V r1

y ⊂ Vy by
V r1

y = {x ∈ Vy : |wy(x)|< r1}.

Theorem 3.4.5. Let π : Y → X (2) be a Belyi cover such that Y is of genus g ≥ 1.
Then

sup
(Y×Y )\1

grY ≤ 6378027
(degπ)5

g
.

Moreover, for every cusp y and all x 6= x ′ in V r1
y ,

∣∣grY (x, x ′)−log |wy(x)−wy(x ′)|
∣∣≤ 6378027

(degπ)5

g
.

Proof. Write d = degπ . Let s1 and r1 be as in Definition 3.4.4. We define real
numbers

n := #(Y − V ), M := 4d exp(3π) and c1 :=
128 exp(3π)d4

π2g
.

Since n is the number of cusps of Y , we have n ≤ 3d . Moreover,

1
1−r1

≤
d

1−s1
.

Note that

330n
(1− r1)3/2

log
1

1− r1
+ 13.2nc1+ (n− 1) log M ≤ 6378027d5

g
.

Therefore, by Theorem 3.1.2, it suffices to show that

({(Vy, wy)}y, r1,M, c1),

where y runs over the cusps of π : Y → X (2), constitutes a Merkl atlas for Y .
The first condition of Merkl’s theorem is satisfied. That is, wy Vy is the open unit

disc in C.
To verify the second condition of Merkl’s theorem, we have to show that the

open sets V r1
y cover Y . For any x ∈ Vy , we have x ∈ V r1

y if π(x) ∈ Bs1
κ . In fact, for

any x in Vy , we have |wy(x)|< r1 if and only if

|zκ(π(x))| = |wy(x)|ey < r ey
1 .

Since r1 < 1, we see that s1 = rd
1 ≤ r ey

1 . Therefore, if π(x) lies in Bs1
κ , we see that

x lies in V r1
y . Now, since s1 <

√
3/2, we have X (2) =

⋃
κ∈{0,1,∞}

Bs1
κ . We conclude

that Y =
⋃
y

V r1
y , where y runs through the cusps.
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Since we have already verified the fourth condition of Merkl’s theorem in
Proposition 3.4.3, it suffices to verify the third condition to finish the proof. Let κ
and κ ′ be cusps of X (2). We may and do assume that κ 6= κ ′. Now, as usual, we
work on the complex upper half-plane. By the chain rule,∣∣∣∣ dwy

dwy′

∣∣∣∣≤ d
|wy|

ey−1 sup
Bκ∩Bκ′

∣∣∣∣ dzκ
dzκ ′

∣∣∣∣
on Vy ∩Vy′ . Note that |wy(τ )|

ey−1
≥ |wy(τ )|

ey = |zκ(τ )| for any τ in H. Therefore,∣∣∣∣ dwy

dwy′

∣∣∣∣≤ d
|zκ |

sup
Bκ∩Bκ′

∣∣∣∣ dzκ
dzκ ′

∣∣∣∣≤ M,

where we used Lemma 3.4.1 and the inequality |zκ |> exp(−3π/2) on Bκ ∩ Bκ ′ . �

3.5. The Arakelov norm of the Wronskian differential.

Proposition 3.5.1. Let π : Y → X (2) be a Belyi cover with Y of genus g ≥ 1. Then

sup
Y−Supp W

log ‖Wr‖Ar ≤ 6378028g(degπ)5.

Proof. Let b be a non-Weierstrass point on Y , and let y be a cusp of Y such that b
lies in V r1

y . Let ω = (ω1, . . . , ωg) be an orthonormal basis of H0(Y, �1
Y ). Then, as

in Section 2.1,

log ‖Wr‖Ar(b)= log |Wwy (ω)(b)| +
g(g+ 1)

2
log ‖dwy‖Ar(b).

By Theorem 3.4.5,

g(g+ 1)
2

log ‖dwy‖Ar(b)≤ 6378027g(degπ)5.

Let us show that log |Wwy (ω)(b)| ≤ g(degπ)5. Write ωk = fk dwy on Vy . Note
that ωk ∧ωk = | fk |

2 dwy ∧ dwy . Therefore,

µ=
i

2g

g∑
k=1

ωk ∧ωk =
i

2g

g∑
k=1

| fk |
2 dwy ∧ dwy .

We deduce that
∑g

k=1| fk |
2
= 2gFy , where Fy is the unique function on Vy such

that µ= i Fy dwy ∧ dwy . By our upper bound for Fy (Proposition 3.4.3), for any
j = 1, . . . , g,

sup
Vy

| f j |
2
≤ sup

Vy

g∑
k=1

| fk |
2
= 2gFy ≤

256 exp(3π)(degπ)4

π2 .
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By Hadamard’s inequality,

log |Wwy (ω)(b)| ≤
g−1∑
l=0

log
( g∑

k=1

∣∣∣∣ dl fk

dwl
y

∣∣∣∣2(b))1/2

.

Let r1 < r < 1 be some real number. By Cauchy’s integral formula, for any
0≤ l ≤ g− 1, ∣∣∣∣dl fk

dwl
y

∣∣∣∣(b)= ∣∣∣∣ l!
2π i

∫
|wy |=r

fk

(wy −wy(b))l+1 dwy

∣∣∣∣
≤

l!
(r − r1)l+1 sup

Vy

| fk | ≤
g!

(1− r1)g
sup
Vy

| fk |.

By the preceding estimations, since g! ≤ gg and 1/(1− r1)≤ degπ/(1− s1), we
obtain that

log |Wwy (ω)(b)|

≤

g−1∑
l=0

log
(

g!
(1− r1)g

( g∑
k=1

sup
Vy

| fk |
2
)1/2)

≤

g−1∑
l=0

log
(

g!
(1− r1)g

( g∑
k=1

256 exp(3π)(degπ)4

π2

)1/2)
= g log(g!)+ g2 log

( 1
1− r1

)
+

g
2

log
(256g exp(3π)

π2

)
+ 2g log(degπ)

≤

(
4.5+ log

( 1
1− s1

)
+

1
2 log

(256 exp(3π)
π2

))
g2 log(degπ)

≤ 13g(degπ)2.

Since g ≥ 1 and π : Y → X (2) is a Belyi cover, the inequality degπ ≥ 3 holds.
Thus,

13g(degπ)2 ≤
13g(degπ)5

27
≤ g(degπ)5. �

4. Points of bounded height

4.1. Lenstra’s generalisation of Dedekind’s discriminant bound. Let A be a dis-
crete valuation ring of characteristic 0 with fraction field K . Let ordA denote the
valuation on A. Let L/K be a finite field extension of degree n, and let B be the
integral closure of A in L . Note that L/K is separable, and B/A is finite; see [Serre
1979, Proposition I.4.8].

The inverse different D−1
B/A of B over A is the fractional ideal

{x ∈ L : Tr(x B)⊂ A},
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where Tr is the trace of L over K . The inverse of the inverse different, denoted by
DB/A, is the different of B over A. Note that DB/A is actually an integral ideal of L .

The following proposition (which we would like to attribute to H. W. Lenstra, Jr.)
is a generalisation of Dedekind’s discriminant bound; see [Serre 1979, Proposition
III.6.13].

Proposition 4.1.1 (H. W. Lenstra, Jr.). Suppose that B is a discrete valuation ring
of ramification index e over A. Then, the valuation r of the different ideal DB/A

on B satisfies the inequality

r ≤ e− 1+ e · ordA(n).

Proof. Let x be a uniformiser of A. Since A is of characteristic 0, we may define
y := 1/nx ; note that y is an element of K . The trace of y (as an element of L) is 1/x .
Since 1/x is not in A, this implies that the inverse different D−1

B/A is strictly contained
in the fractional ideal y B. (If not, since A and B are discrete valuation rings, we
would have that y B is strictly contained in the inverse different.) In particular, the
different DB/A strictly contains the fractional ideal (nx). Therefore, the valuation
ordB(DB/A) on B of DB/A is strictly less than the valuation of nx . Thus,

ordB(DB/A) < ordB(nx)= e · ordA(nx)= e(ordA(n)+ 1)= e · ordA(n)+ e.

This concludes the proof of the inequality. �

Remark 4.1.2. If the extension of residue fields of B/A is separable, Proposition
4.1.1 follows from the remark following Proposition III.6.13 in [Serre 1979]. (The
result in that proposition was conjectured by Dedekind and proved by Hensel when
A = Z.) The reader will see that, in the proof of Proposition 4.2.4, we have to deal
with imperfect residue fields.

Proposition 4.1.3. Suppose that the residue characteristic p of A is positive. Let
m be the biggest integer such that pm

≤ n. Then, for β ⊂ B a maximal ideal of B
with ramification index eβ over A, the valuation rβ of the different ideal DB/A at β
satisfies the inequality

rβ ≤ eβ − 1+ eβ · ordA(pm).

Proof. To compute rβ , we localise B at β and then take the completions Â and B̂β
of A and Bβ , respectively. Let d be the degree of B̂β over Â. Then, by Lenstra’s
result (Proposition 4.1.1), the inequality

rβ ≤ eβ − 1+ eβ · ord Â(d)

holds. By definition, ord Â(d)= ordA(d)≤ ordA(pm). This concludes the proof. �

4.2. Covers of arithmetic surfaces with fixed branch locus. Let K be a number
field with ring of integers OK , and let S = Spec OK . Let D be a reduced effective
divisor on X = P1

S , and let U denote the complement of the support of D in X.
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Let Y→ S be an integral normal two-dimensional flat projective S-scheme with
geometrically connected fibres, and let π : Y→ X be a finite surjective morphism
of S-schemes that is étale over U . Let ψ : Y′ → Y be the minimal resolution
of singularities [Liu 2006a, Proposition 9.3.32]. Note that we have the following
diagram of morphisms:

Y′
ψ
−→ Y

π
−→ X→ S.

Consider the prime decomposition D =
∑

i∈I Di , where I is a finite-index set. Let
Di j be an irreducible component of π−1(D) mapping onto Di , where j is in the
index set Ji . We define ri j to be the valuation of the different ideal of OY,Di j /OX,Di .
We define the ramification divisor R to be

∑
i∈I
∑

j∈Ji
ri j Di j . We define B :=π∗R.

We apply [Liu 2006a, 6.4.26] to obtain that there exists a dualising sheaf ωY/S

for Y→ S and a dualising sheaf ωπ for π :Y→X such that the adjunction formula

ωY/S = π
∗ωX/S ⊗ωπ

holds. Since the local ring at the generic point of a divisor on X is of characteristic 0,
basic properties of the different ideal imply that ωπ is canonically isomorphic to
the line bundle OY(R). We deduce the Riemann–Hurwitz formula

ωY/S = π
∗ωX/S ⊗OY(R).

Let KX =−2 · [∞] be the divisor defined by the tautological section of ωX/OK
.

Let KY′ denote the Cartier divisor on Y′ defined by the rational section d(π ◦ψ)
of ωY′/S . We define the Cartier divisor KY on Y analogously; i.e., KY is the Cartier
divisor on Y defined by dπ . Note that KY = ψ∗KY′ . Also, the Riemann–Hurwitz
formula implies the following equality of Cartier divisors:

KY = π
∗KX+ R.

Let E1, . . . , Es be the exceptional components of ψ : Y′→ Y. Note that the
pull-back of the Cartier divisor ψ∗KY coincides with KY′ on

Y′−

s⋃
i=1

Ei .

Therefore, there exist integers ci such that

KY′ = ψ
∗KY+

s∑
i=1

ci Ei ,

where this is an equality of Cartier divisors (not only modulo linear equivalence).
Note that (ψ∗KY, Ei )= 0 for all i . In fact, KY is linearly equivalent to a Cartier
divisor with support disjoint from the singular locus of Y.
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Lemma 4.2.1. For all i = 1, . . . , s, we have ci ≤ 0.

Proof. We have the following local statement. Let y be a singular point of Y, and
let E1, . . . , Er be the exceptional components of ψ lying over y. We define

V+ =
r∑

i=1
ci>0

ci Ei

as the sum on the ci > 0. To prove the lemma, it suffices to show that V+= 0. Since
the intersection form on the exceptional locus of Y′→ Y is negative-definite [Liu
2006a, Proposition 9.1.27], to prove V+ = 0, it suffices to show that (V+, V+)≥ 0.
Clearly, to prove the latter inequality, it suffices to show that, for all i such that
ci > 0, we have (V+, Ei ) ≥ 0. To do this, fix i ∈ {1, . . . , r} with ci > 0. Since
Y′ → Y is minimal, we have that Ei is not a (−1)-curve. In particular, by the
adjunction formula, the inequality (KY′, Ei )≥ 0 holds. We conclude that

(V+, Ei )= (KY′, Ei )−

r∑
j=1

c j<0

c j (E j , Ei )≥ 0,

where, in the last inequality, we used that, for all j such that c j < 0, we have that
E j 6= Ei . �

Proposition 4.2.2. Let P ′ : S→Y′ be a section, and let Q : S→ X be the induced
section. If the image of P ′ is not contained in the support of KY′ , then

(KY′, P ′)fin ≤ (B, Q)fin.

Proof. By the Riemann–Hurwitz formula, we have KY = π
∗KX+ R. Therefore, by

Lemma 4.2.1, we get that

(KY′, P ′)fin = (ψ
∗KY+

∑
ci Ei , P ′)fin

=

(
ψ∗π∗KX+ψ

∗R+
s∑

i=1

ci Ei , P ′
)

fin

≤ (ψ∗π∗KX, P ′)fin+ (ψ
∗R, P ′)fin.

Since the image of P ′ is not contained in the support of KY′ , we can apply the
projection formula for the composed morphism π ◦ψ :Y′→X to (ψ∗π∗KX, P ′)fin

and (ψ∗R, P ′)fin; see [Liu 2006a, Section 9.2]. This gives

(KY′, P ′)fin ≤ (ψ
∗π∗KX, P ′)fin+ (ψ

∗R, P ′)fin = (KX, Q)fin+ (π∗R, Q)fin.

Since KX =−2 · [∞], the inequality (KX, Q)fin ≤ 0 holds. By definition, B = π∗R.
This concludes the proof. �
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We introduce some notation. For i in I and j in Ji , let ei j and fi j be the
ramification index and residue degree of π at the generic point of Di j , respectively.
Moreover, let pi ⊂ OK be the maximal ideal corresponding to the image of Di

in Spec OK . Then, note that ei j is the multiplicity of Di j in the fibre of Y over pi .
Now, let epi and fpi be the ramification index and residue degree of pi over Z,
respectively. Finally, let pi be the residue characteristic of the local ring at the
generic point of Di and, if pi >0, let mi be the biggest integer such that pmi

i ≤degπ ,
i.e., mi = blog(degπ)/ log(pi )c.

Lemma 4.2.3. Let i be in I such that 0< pi ≤ degπ . Then, for all j in Ji ,

ri j ≤ 2ei j mi epi .

Proof. Let ordDi be the valuation on the local ring at the generic point of Di . Then,
by Proposition 4.1.3, the inequality

ri j ≤ ei j − 1+ ei j · ordDi (p
mi
i )

holds. Note that ordDi (p
mi
i ) = mi epi . Since pi ≤ degπ , we have that mi ≥ 1.

Therefore,

ri j ≤ ei j − 1+ ei j mi epi ≤ 2ei j mi epi . �

Let us introduce a bit more notation. Let I1 be the set of i in I such that Di is
horizontal (i.e., pi = 0) or pi > degπ . Let D1=

∑
i∈I1

Di . We are now finally ready
to combine our results to bound the “nonarchimedean” part of the height of a point.

Proposition 4.2.4. Let P ′ : S→Y′ be a section, and let Q : S→ X be the induced
section. If the image of P ′ is not contained in the support of KY′ , then

(KY′, P ′)fin ≤ degπ(D1, Q)fin+ 2(degπ)2 log(degπ)[K :Q].

Proof. Note that

B =
∑
i∈I

(∑
j∈Ji

ri j fi j

)
Di .

Let I2 be the complement of I1 in I . Let D2=
∑

i∈I2
Di , and note that D= D1+D2.

In particular,

(B, Q)fin =
∑
i∈I

∑
j∈Ji

ri j fi j (Di , Q)fin

=

∑
i∈I1

∑
j∈Ji

ri j fi j (Di , Q)fin+
∑
i∈I2

∑
j∈Ji

ri j fi j (Di , Q)fin.
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Note that, for all i in I1 and j in Ji , the ramification of Di j over Di is tame; i.e., the
equality ri j = ei j − 1 holds. Note that, for all i in I , we have

∑
j∈Ji

ei j fi j = degπ .
Thus,∑

i∈I1

∑
j∈Ji

ri j fi j (Di , Q)fin ≤
∑
i∈I1

∑
j∈Ji

ei j fi j (Di , Q)fin = degπ(D1, Q)fin.

We claim that∑
i∈I2

∑
j∈Ji

ri j fi j (Di , Q)fin ≤ 2(degπ)2 log(degπ)[K :Q].

In fact, since, for all i in I2 and j in Ji , by Lemma 4.2.3, the inequality

ri j ≤ 2ei j mi epi

holds, we have that∑
i∈I2

∑
j∈Ji

ri j fi j (Di , Q)fin ≤ 2
∑
i∈I2

mi epi (Di , Q)fin

(∑
j∈Ji

ei j fi j

)
= 2(degπ)

∑
i∈I2

mi epi (Di , Q)fin.

Note that (Di , Q)= log(#k(pi ))= fpi log pi . We conclude that∑
i∈I2

mi epi (Di , Q)fin =
∑

p prime

( ∑
i∈I2, pi=p

epi fpi

)⌊
log(degπ)

log p

⌋
log(p)

= [K :Q]
∑

Xp∩|D2|6=∅

⌊
log(degπ)

log p

⌋
log(p),

where the last sum runs over all prime numbers p such that the fibre Xp contains
an irreducible component of the support of D2. Thus,

(B, Q)fin ≤ (degπ)(D1, Q)fin+ 2(degπ)[K :Q]
∑

Xp∩D2 6=∅

⌊
log(degπ)

log p

⌋
log(p).

Note that∑
Xp∩D2 6=∅

⌊
log(degπ)

log p

⌋
log(p)≤

∑
Xp∩D2 6=∅

log(degπ)≤ degπ log(degπ),

where we used that Xp ∩ D2 6=∅ implies that p ≤ degπ . In particular,

(B, Q)fin ≤ (degπ)(D1, Q)fin+ 2(degπ)2 log(degπ)[K :Q].



118 Ariyan Javanpeykar

By Proposition 4.2.2, we conclude that

(KY′, P ′)fin ≤ (degπ)(D1, Q)fin+ 2(degπ)2 log(degπ)[K :Q]. �

4.3. Models of covers of curves. In this section, we give a general construction
for a model of a cover of the projective line. Let K be a number field with ring of
integers OK , and let S = Spec OK .

Proposition 4.3.1. Let Y→ Spec OK be a flat projective morphism with geomet-
rically connected fibres of dimension 1, where Y is an integral normal scheme.
Then, there exists a finite field extension L/K such that the minimal resolution of
singularities of the normalisation of Y×OK OL is semistable over OL .

Proof. This follows from [Liu 2006b, Corollary 2.8]. �

The main result of this section reads as follows.

Theorem 4.3.2. Let K be a number field, and let Y be a smooth projective geomet-
rically connected curve over K . Then, for any finite morphism πK : Y → P1

K , there
exists a number field L/K such that

• the normalisation π : Y→ P1
OL

of P1
OL

in the function field of YL is finite flat
surjective,

• the minimal resolution of singularities ψ : Y′→ Y is semistable over OL and

• each irreducible component of the vertical part of the branch locus of the finite
flat morphism π : Y→ P1

OL
is of characteristic less than or equal to degπ .

(The characteristic of a prime divisor D on P1
OL

is the residue characteristic
of the local ring at the generic point of D.)

Proof. By Proposition 4.3.1, there exists a finite field extension L/K such that
the minimal resolution of singularities ψ : Y′→ Y of the normalisation of P1

OL

in the function field of YL is semistable over OL . Note that the finite morphism
π : Y → P1

OL
is flat. (The source is normal of dimension 2, and the target is

regular.) Moreover, since the fibres of Y′→ Spec OL are reduced, the fibres of
Y over OL are reduced. Let p⊂ OL be a maximal ideal of residue characteristic
strictly bigger than degπ , and note that the ramification of π :Y→P1

OL
over (each

prime divisor of P1
OL

lying over) p is tame. Since the fibres of Y→ Spec OL are
reduced, we see that the finite morphism π is unramified over p. In fact, since
P1

OL
→ Spec OL has reduced (even smooth) fibres, the valuation of the different

ideal DOD/Oπ(D) on OD of an irreducible component D of Yp lying over π(D) in X

is precisely the multiplicity of D in Yp. (Here we let OD denote the local ring at
the generic point of D and Oπ(D) the local ring at the generic point of π(D).) Thus,
each irreducible component of the vertical part of the branch locus of π :Y→P1

OL

is of characteristic less or equal to degπ . �
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4.4. The modular lambda function. The modular function λ :H→C is defined as

λ(τ)=
℘
( 1

2 +
τ
2

)
−℘

(
τ
2

)
℘
(
τ
2

)
−℘

( 1
2

) ,

where ℘ denotes the Weierstrass elliptic function for the lattice Z+ τZ in C. The
function λ is 0(2)-invariant. More precisely, λ factors through the 0(2)-quotient
map H→ Y (2) and an analytic isomorphism Y (2)−→∼ C\{0, 1}. Thus, the modular
function λ induces an analytic isomorphism X (2) → P1(C). Let us note that
λ(i∞)= 0, λ(1)=∞ and λ(0)= 1.

The restriction of λ to the imaginary axis {iy : y > 0} in H induces a homeomor-
phism, also denoted by λ, from {iy : y > 0} to the open interval (0, 1) in R. In fact,
for α in the open interval (0, 1),

λ−1(α)= i
M(1,

√
α)

M(1,
√

1−α)
,

where M denotes the arithmetic-geometric mean.

Lemma 4.4.1. For τ in H, let q(τ )= exp(π iτ) and let λ(τ)=
∞∑

n=1
anqn(τ ) be the

q-expansion of λ on H. Then, for any real number 4
5 ≤ y ≤ 1,

−log
∣∣∣∣ ∞∑

n=1

nanqn(iy)
∣∣∣∣≤ 2.

Proof. Note that
∞∑

n=1

nanqn
= q

dλ
dq
.

It suffices to show that |qdλ/dq| ≥ 3
20 . We will use the product formula for λ.

Namely,

λ(q)= 16q
∞∏

n=1

fn(q) and fn(q) :=
1+ q2n

1+ q2n−1 .

Write f ′n(q)= d fn(q)/dq . Then,

q
dλ
dq
= λ

(
1+ q

∞∑
n=1

f ′n(q)
fn(q)

)
= λ

(
1+ q

∞∑
n=1

d
dq

log fn(q)
)
.

Note that, for any positive integer n and 4
5 ≤ y ≤ 1,( d

dq
log fn(q)

)
(iy)≤ 0.
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Moreover, since λ(i) = 1
2 and λ(0) = 1, the inequality λ(iy) ≥ 1

2 holds for all
0≤ y ≤ 1. Also, for 4

5 ≤ y ≤ 1,(
−q

∞∑
n=1

d
dq

log fn(q)
)
(iy)≤ 7

10
.

In fact,
∞∑

n=1

d
dq

log fn(q)=
∞∑

n=1

2nq2n−1

1+ q2n −

∞∑
n=1

(2n− 1)q2n−2

1+ q2n−1 .

It is straightforward to verify that, for all 4
5 ≤ y ≤ 1, the inequality

∞∑
n=1

2nq2n−1(iy)
1+ q2n(iy)

−

∞∑
n=1

(2n− 1)q2n−2(iy)
1+ q2n−1(iy)

≥
100
109

∞∑
n=1

2nq2n−1(iy)−
∞∑

n=1

(2n− 1)q2n−2(iy)

holds. Finally, utilising classical formulas for geometric series, for all 4
5 ≤ y ≤ 1,

q(iy)
∞∑

n=1

d
dq
(log fn(q))(iy)≥ q(iy)

( 200q(iy)
109(1− q2(iy))2

−
1+ q2(iy)
(1− q2(iy))2

)
≥

7
10 .

We conclude that ∣∣∣∣q dλ
dq

∣∣∣∣≥ 1
2

(
1− 7

10

)
=

3
20 . �

4.5. A non-Weierstrass point with bounded height. The logarithmic height of a
nonzero rational number a = p/q is given by

hnaive(a)= log max(|p|, |q|),

where p and q are coprime integers and q > 0.

Theorem 4.5.1. Let πQ : Y→P1
Q

be a finite morphism of degree d , where Y/Q is a
smooth projective connected curve of positive genus g≥1. Assume that πQ :Y→P1

Q

is unramified over P1
Q
\{0, 1,∞}. Then, for any rational number 0< a ≤ 2

3 and any
b ∈ Y (Q) lying over a,

h(b)≤ 3hnaive(a)d2
+ 6378031d5

g
.

Proof. By Theorem 4.3.2, there exist a number field K and a model

πK : Y → P1
K
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for πQ : Y → P1
Q

with the following three properties: the minimal resolution
of singularities ψ : Y′ → Y of the normalisation π : Y→ P1

OK
of P1

OK
in Y is

semistable over OK , each irreducible component of the vertical part of the branch
locus of π : Y→ P1

OK
is of characteristic less than or equal to degπ and every

point in the fibre of πK over a is K -rational. Also, the morphism π : Y→ P1
OK

is
finite flat surjective.

Let b ∈ Y (K ) lie over a. Let P ′ be the closure of b in Y′. By Lemma 2.3.1, the
height of b is “minimal” on the minimal regular model. That is,

h(b)≤
(P ′, ωY′/OK )

[K :Q]
.

Recall the following notation from Section 4.2. Let X= P1
OK

. Let KX =−2 · [∞]
be the divisor defined by the tautological section. Let KY′ be the divisor on Y′

defined by d(πK ) viewed as a rational section of ωY′/OK . Since the support of KY′

on the generic fibre is contained in π−1
K ({0, 1,∞}), the section P ′ is not contained

in the support of KY′ . Therefore, we get that

h(b)[K :Q] ≤ (P ′, ωY′/OK )= (P
′, KY′)fin+

∑
σ :K→C

(−log ‖dπK‖σ )(σ (b)).

Let D be the branch locus of π : Y→ X endowed with the reduced closed
subscheme structure. Write D = 0+ 1+∞+ Dver, where Dver is the vertical part
of D. Note that, in the notation of Section 4.2, we have that D1 = 0+1+∞. Thus,
if Q denotes the closure of a in X, by Proposition 4.2.4, we get

(P ′, KY′)fin ≤ (degπ)(0+ 1+∞, Q)fin+ 2(degπ)2 log(degπ)[K :Q].

Write a = p/q , where p and q are coprime positive integers with q > p. Note that

(0+ 1+∞, Q)fin = [K :Q] log(pq(q − p))

≤ 3 log(q)[K :Q]

= 3hnaive(a)[K :Q].

We conclude that

(P ′, KY′)fin

[K :Q]
≤ 3hnaive(a)(degπ)2+ 2(degπ)3.

It remains to estimate
∑

σ :K→C(−log ‖dπK‖σ )(σ (b)). We will use our bounds
for Arakelov–Green functions.

Let σ : K → C be an embedding. The composition

Yσ
πσ
−−→ P1(C)

λ−1

−−→ X (2)
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is a Belyi cover (Definition 3.2.1). By abuse of notation, let π denote the composed
morphism Yσ → X (2). Note that λ−1(2

3) ≈ 0.85i . In particular, =(λ−1(a)) ≥
=
(
λ−1

( 2
3

))
> s1. (Recall that s1 =

√
1/2.) Therefore, the element λ−1(a) lies in

Ḃs1
∞. Since V r1

y ⊃ Vy∩π
−1 Bs1

∞, there is a unique cusp y of Yσ→ X (2) lying over∞
such that σ(b) lies in V r1

y .
Note that q = z∞ exp(−π/2). Therefore, since λ=

∞∑
j=1

a j q j on H,

λ ◦π =

∞∑
j=1

a j exp(− jπ/2)(z∞ ◦π) j
=

∞∑
j=1

a j exp(− jπ/2)wey j
y

on Vy . Thus, by the chain rule,

d(λ ◦π)= ey

∞∑
j=1

ja j exp(− jπ/2)wey j−1
y d(wy).

By the trivial inequality ey ≥ 1, the inequality |wy| ≤ 1 and Lemma 4.4.1,

−log ‖d(λ ◦π)‖Ar(σ (b))

=−log ‖dwy‖Ar(σ (b))−log
∣∣∣∣ey

∞∑
j=1

ja j exp(− jπ/2)wey j−1
y (σ (b))

∣∣∣∣
≤− log‖dwy‖Ar(σ (b))−log

∣∣∣∣ ∞∑
j=1

ja j exp(− jπ/2)wey j
y (σ (b))

∣∣∣∣
≤− log‖dwy‖Ar(σ (b))+ 2.

Thus, by Theorem 3.4.5, we conclude that∑
σ :K→C(−log ‖dπK‖σ )(σ (b))

[K :Q]
≤ 6378027

(degπ)5

g
+ 2. �

Theorem 4.5.2. Let Y be a smooth projective connected curve over Q of genus
g ≥ 1. For any finite morphism π : Y →P1

Q
ramified over exactly three points, there

exists a non-Weierstrass point b on Y such that

h(b)≤ 6378033
(degπ)5

g
.

Proof. Define the sequence (an)
∞

n=1 of rational numbers by a1 =
1
2 and an =

n/(2n− 1) for n ≥ 2. Note that 1
2 ≤ an ≤

2
3 and that hnaive(an)≤ log(2n). We may

and do assume that π :Y→P1
Q

is unramified over P1
Q
\{0, 1,∞}. By Theorem 4.5.1,

for all x ∈ π−1({an}),

h(x)≤ 3 log(2n)(degπ)2+ 6378031
(degπ)5

g
. (9)
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Since the number of Weierstrass points on Y is at most g3
− g, there exists an

integer 1 ≤ i ≤ (degπ)2 such that the fibre π−1(ai ) contains a non-Weierstrass
point, say b. Applying (9) to b, we conclude that

h(b)≤ 3 log(2(degπ)2)(degπ)2+ 6378031
(degπ)5

g

≤ 2
(degπ)5

g
+ 6378031

(degπ)5

g
. �

4.6. For a smooth projective connected curve X over Q, we let degB(X) denote
the Belyi degree of X .

Proof of Theorem 1.1.1. The inequality1(X)≥0 is trivial, the lower bound e(X)≥0
is due to Faltings [1984, Theorem 5] and the lower bound hFal(X)≥−g log(2π) is
due to Bost (Lemma 2.4.4).

For the remaining bounds, we proceed as follows. By Theorem 4.5.2, there exists
a non-Weierstrass point b in X (Q) such that

h(b)≤ 6378033
degB(X)

5

g
.

By our bound on the Arakelov norm of the Wronskian differential in Proposition
3.5.1, we have log ‖Wr‖Ar(b) ≤ 6378028g degB(X)

5. To obtain the theorem, we
combine these bounds with Theorem 2.4.1. �

5. Computing coefficients of modular forms

Let 0 ⊂ SL2(Z) be a congruence subgroup, and let k be a positive integer. A
modular form f of weight k for the group 0 is determined by k and its q-expansion
coefficients am( f ) for 0≤ m ≤ k · [SL2(Z) : {±1}0]/12. In this section, we follow
[Bruin 2011] and give an algorithmic application of the main result of this paper.
More precisely, the goal of this section is to complete the proof of the following
theorem. The proof is given at the end of this section.

Theorem 5.0.1 (Couveignes, Edixhoven, Bruin). Assume the Riemann hypothesis
for ζ -functions of number fields. There exists a probabilistic algorithm that, given

• a positive integer k,

• a number field K ,

• a congruence subgroup 0 ⊂ SL2(Z),

• a modular form f of weight k for 0 over K , and

• a positive integer m in factored form,

computes am( f ) and whose expected running time is bounded by a polynomial in
the length of the input.
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Remark 5.0.2. We should make precise how the number field K , the congruence
subgroup 0 and the modular form f should be given to the algorithm and how the
algorithm returns the coefficient am( f ). We should also explain what “probabilistic”
means in this context. For the sake of brevity, we refer the reader to [Bruin 2011,
p. 20] for the precise definitions. Following the definitions there, the above theorem
becomes a precise statement.

Remark 5.0.3. The algorithm in Theorem 5.0.1 is due to Bruin, Couveignes and
Edixhoven. Assuming the Riemann hypothesis for ζ -functions of number fields,
it was shown that the algorithm runs in polynomial time for certain congruence
subgroups; see [Bruin 2011, Theorem 1.1]. Bruin did not have enough information
about the semistable bad reduction of the modular curve X1(n) at primes p such
that p2 divides n to show that the algorithm runs in polynomial time. Nevertheless,
our bounds on the discriminant of a curve can be used to show that the algorithm
runs in polynomial time for all congruence subgroups.

Proof of Theorem 5.0.1. We follow Bruin’s strategy [2010, Chapter V.1, p. 165]. He
notes that, to assure that the algorithm runs in polynomial time for all congruence
subgroups, it suffices to show that, for all positive integers n, the discriminant
1(X1(n)) is polynomial in n (or equivalently the genus of X1(n)). The latter
follows from Corollary 1.5.1. In fact, the Belyi degree of X1(n) is at most the index
of 01(n) in SL2(Z). Since

[SL2(Z) : 01(n)] = n2
∏
p|n

(1− 1/p2)≤ n2,

we conclude that 1(X1(n))≤ 5 · 108n14. �

6. Bounds for heights of covers of curves

Let X be a smooth projective connected curve over Q. We prove that Arakelov
invariants of (possibly ramified) covers of X are polynomial in the degree. Let us
be more precise.

Theorem 6.0.4. Let X be a smooth projective connected curve over Q, let U be a
nonempty open subscheme of X , let B f ⊂ P1(Q) be a finite set and let f : X→ P1

Q

be a finite morphism unramified over P1
Q
− B f . Define

B := f (X \U )∪ B f .

Let N be the number of elements in the orbit of B under the action of Gal(Q/Q),
and let HB be the height of B as defined in Section 1.3. Define

cB := (4N HB)
45N 32N−2 N !.
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Then, for any finite morphism π : Y → X étale over U , where Y is a smooth
projective connected curve over Q of genus g ≥ 1,

−log(2π)g ≤ hFal(Y ) ≤ 13 · 106gcB(deg f )5(degπ)5,

0≤ e(Y ) ≤ 3 · 107(g− 1)cB(deg f )5(degπ)5,

0≤ 1(Y ) ≤ 5 · 108g2cB(deg f )5(degπ)5,

−108g2cB(deg f )5(degπ)5 ≤ δFal(Y ) ≤ 2 · 108gcB(deg f )5(degπ)5.

Proof. We apply Khadjavi’s effective version of Belyi’s theorem. More precisely, by
[Khadjavi 2002, Theorem 1.1.c], there exists a finite morphism R : P1

Q
→ P1

Q
étale

over P1
Q
\ {0, 1,∞} such that deg R ≤ (4N HB)

9N 32N−2 N ! and R(B) ⊂ {0, 1,∞}.
Note that the composed morphism

R ◦ f ◦π : Y
π
−→ X

f
−→ P1

Q

R
−→ P1

Q

is unramified over P1
Q
\ {0, 1,∞}. We conclude by applying Theorem 1.1.1 to the

composition R ◦ f ◦π . �

Note that Theorem 6.0.4 implies Theorem 1.3.1 (with X = P1
Q
, B f the empty

set and f : X→ P1
Q

the identity morphism).
In the proof of Theorem 6.0.4, we used Khadjavi’s effective version of Belyi’s

theorem. Khadjavi’s bounds are not optimal; see [Lit,canu 2004, Lemme 4.1] and
[Khadjavi 2002, Theorem 1.1.b] for better bounds when B is contained in P1(Q).
Actually, the use of Belyi’s theorem makes the dependence on the branch locus
enormous in Theorem 6.0.4. It should be possible to avoid the use of Belyi’s
theorem and improve the dependence on the branch locus in Theorem 6.0.4. This
is not necessary for our present purposes.

Remark 6.0.5. Let us mention the quantitative Riemann existence theorem due
to Bilu and Strambi [2010]. Bilu and Strambi give explicit bounds for the naive
logarithmic height of a cover of P1

Q
with fixed branch locus. Although their bound

on the naive height is exponential in the degree, the dependence on the height of
the branch locus in their result is logarithmic.

Let us show that Theorem 1.3.1 implies the following:

Theorem 6.0.6 [Edixhoven et al. 2010, Conjecture 5.1]. Let U ⊂P1
Z be a nonempty

open subscheme. Then there are integers a and b with the following property. For
any prime number ` and for any connected finite étale cover π : V →UZ[1/`], the
Faltings height of the normalisation of P1

Q
in the function field of V is bounded by

(degπ)a`b.

Proof. We claim that this conjecture holds with b=0 and an integer a depending only
on the generic fibre UQ of U . In fact, let π :Y→P1

Q
denote the normalisation of P1

Q
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in the function field of V . Note that π is étale over UQ. Let B =P1
Q
−UQ⊂P1(Q),

and let N be the number of elements in the orbit of B under the action of Gal(Q/Q).
By Theorem 1.3.1,

hFal(Y ) :=
∑

X⊂YQ

hFal(X)≤ (degπ)a,

where the sum runs over all connected components X of YQ := Y ×Q Q, and

a = 6+ log
(
13 · 106 N (4N HB)

45N 32N−2 N !).
Here we used that g ≤ N degπ and

13 · 106g(4N HB)
45N 32N−2 N !

≤ (degπ)1+log(13·106 N (4N HB)
45N32N−2 N !).

This concludes the proof. �

Let us briefly mention the context in which these results will hopefully be
applied. Let S be a smooth projective geometrically connected surface over Q.
As is explained in Section 5 of [Edixhoven et al. 2010], it seems reasonable to
suspect that there exists an algorithm that, on input of a prime `, computes the étale
cohomology groups Hi (SQ,ét, F`) with their Gal(Q/Q)-action in time polynomial
in ` for all i = 0, . . . , 4.

Appendix: Merkl’s method of bounding Green functions
by Peter Bruin

The goal of this appendix is to prove Theorem 3.1.2. Let X be a compact connected
Riemann surface, and let µ be a smooth nonnegative (1, 1)-form on X such that∫

X µ= 1. Let ∗ denote the star operator on 1-forms on X , given with respect to a
holomorphic coordinate z = x + iy by

∗dx = dy and ∗dy =−dx,

or equivalently

∗dz =−i dz and ∗dz = i dz.

The Green function for µ is the unique smooth function

grµ : (X × X) \1→ R,

with a logarithmic singularity along the diagonal 1, such that for fixed w ∈ X we
have, in a distributional sense,

1
2π

d ∗d grµ(z, w)= δw(z)−µ(z) and
∫

z∈X\{w}
grµ(z, w)µ(z)= 0.
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For all a, b ∈ X , we write ga,b for the unique smooth function on X \ {a, b}
satisfying

d ∗dga,b = δa − δb and
∫

X\{a,b}
ga,bµ= 0. (1)

Then for all a ∈ X , we consider the function ga,µ on X \ {a} defined by

ga,µ(x)=
∫

b∈X\{x}
ga,b(x)µ(b). (2)

A straightforward computation using Fubini’s theorem shows that this function
satisfies

d ∗dga,µ = δa −µ and
∫

X\{a}
ga,µµ= 0.

This implies that 2πga,µ(b) = grµ(a, b), where grµ is the Green function for µ
defined above.

We begin by restricting our attention to one of the charts of our atlas, say (U, z).
By assumption, z is an isomorphism from U to the open unit disc in C. Let r2

and r4 be real numbers with

r1 < r2 < r4 < 1,

and write
r3 = (r2+ r4)/2.

We choose a smooth function

χ̃ : R≥0→ [0, 1]

such that χ̃(r) = 1 for r ≤ r2 and χ̃(r) = 0 for r ≥ r4. We also define a smooth
function χ on X by putting

χ(x)= χ̃(|z(x)|) for x ∈U

and extending by 0 outside U . Furthermore, we put

χ c
= 1−χ.

For 0< r < 1, we write

U r
= {x ∈U : |z(x)|< r}.

For all a, b ∈U r1 , the function

fa,b =
1

2π
log

∣∣∣∣(z− z(a))(z(a)z− r2
4 )

(z− z(b))(z(b)z− r2
4 )

∣∣∣∣
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is defined on U \{a, b}. Moreover, fa,b is harmonic on U \{a, b} since the logarithm
of the modulus of a holomorphic function is harmonic. We extend χ c fa,b to a
smooth function on U by defining it to be zero in a and b.

We consider the open annulus

A =U r4 \U r2 .

Let (ρ, φ) be polar coordinates on A such that z = ρ exp(iφ). A straightforward
calculation shows that in these coordinates the star operator is given by

∗dρ = ρ dφ and ∗dφ =−
dρ
ρ
.

We consider the inner product

〈α, β〉A =

∫
A
α∧∗β

on the R-vector space of square-integrable real-valued 1-forms on A. Furthermore,
we write

‖α‖2A = 〈α, α〉A.

Lemma A.1. For every real harmonic function g on A such that ‖dg‖A exists,

max
|z|=r3

g− min
|z|=r3

g ≤
2
√
π

r4− r2
‖dg‖A.

Proof. By the formula for the star operator in polar coordinates,

dg∧∗dg = (∂ρg dρ+ ∂φg dφ)∧ (ρ∂ρg dφ− ρ−1∂φg dρ)

= ((∂ρg)2+ (ρ−1∂φg)2)ρ dρ dφ.

Using the mean value theorem, we can bound the left-hand side of the inequality
we need to prove by

max
|z|=r3

g− min
|z|=r3

g ≤ π max
|z|=r3
|∂φg|

= π |∂φg|(x) for some x with |z(x)| = r3.

We write R = (r4− r2)/2, and we consider the open disc

D = {z ∈U : |z− z(x)|< R}

of radius R around x ; this lies in A because r3 = (r4+ r2)/2. Let (σ, ψ) be polar
coordinates on D such that z − z(x) = σ exp(iψ). Because g is harmonic, so is
∂φg, and Gauss’s mean value theorem implies that

∂φg(x)=
1
πR2

∫
D
∂φg σ dσ dψ.
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On the space of real continuous functions on D, we have the inner product

(h1, h2) 7→

∫
D

h1h2 σ dσ dψ.

Applying the Cauchy–Schwarz inequality with h1 = ρ
−1∂φg and h2 = ρ gives∣∣∣∣∫

D
∂φg σ dσ dψ

∣∣∣∣≤ [∫
D
(ρ−1∂φg)2σ dσ dψ

]1/2

·

[∫
D
ρ2σ dσ dψ

]1/2

≤

[∫
A
(ρ−1∂φg)2ρ dρ dφ

]1/2

·

[∫
D
σ dσ dψ

]1/2

≤

[∫
A

dg∧∗dg
]1/2

[πR2
]
1/2

=
√
π R‖dg‖A.

Combining the above results finishes the proof. �

Lemma A.2. For all a, b ∈U r1 , there exists a smooth function g̃a,b on X such that

d ∗dg̃a,b =

{
d ∗d(χ c fa,b) on U ,
0 on X \U .

It is unique up to an additive constant and fulfils

‖dg̃a,b‖A ≤ ‖d(χ c fa,b)‖A.

Proof. First we note that the expression on the right-hand side of the equality defines
a smooth 2-form on X because d ∗d(χ c fa,b)(z) vanishes for |z|> r4; this follows
from the choice of χ and the fact that fa,b is harmonic for |z|> r1. Since moreover
χ c fa,b = 0 on U r2 , we see that the support of this 2-form is contained in the closed
annulus A. By Stokes’s theorem,∫

A
d ∗d(χ c fa,b)=

∫
∂A
∗d(χ c fa,b).

Notice that fa,b is invariant under the substitution z 7→ r2
4/z; this implies that

∂ρ fa,b(z)= 0 for |z| = r4. Furthermore, χ c(z)= 1 and dχ c(z)= 0 for |z| = r4, so
we see that

d(χ c fa,b)(z)= χ c(z) d fa,b(z)= (∂φ fa,b dφ)(z) if |z| = r4.

Likewise, since χ c
= 0 and dχ c(z)= 0 for |z| = r2,

d(χ c fa,b)(z)= χ c(z)d fa,b(z)= 0 if |z| = r2.
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This means that, for z on the boundary of A,

∗d(χ c fa,b)(z)=
{
−(∂φ fa,b dρ)(z) if |z| = r4,
0 if |z| = r2.

In particular, ∗d(χ c fa,b) vanishes when restricted to the submanifold ∂A of X .
From this, we conclude that∫

A
d ∗d(χ c fa,b)=

∫
∂A
∗d(χ c fa,b)= 0.

This implies that a function g̃a,b with the required property exists.
To prove the inequality ‖dg̃a,b‖A ≤ ‖d(χ c fa,b)‖A, we note that

‖d(χ c fa,b)‖
2
A = ‖dg̃a,b+ d(χ c fa,b− g̃a,b)‖

2
A

= ‖dg̃a,b‖
2
A+ 2〈dg̃a,b, d(χ c fa,b− g̃a,b)〉A+‖d(χ c fa,b− g̃a,b)‖

2
A.

The last term is clearly nonnegative. Furthermore, integration by parts using Stokes’s
theorem gives

〈dg̃a,b, d(χ c fa,b− g̃a,b)〉A =

∫
A

dg̃a,b ∧∗d(χ c fa,b− g̃a,b)

=

∫
∂A

g̃a,b ∗d(χ c fa,b− g̃a,b)−

∫
A

g̃a,b d ∗d(χ c fa,b− g̃a,b).

The second term vanishes because d ∗dg̃a,b = d ∗d(χ c fa,b) on A. From our earlier
expression for ∗d(χ c fa,b)(z) on the boundary of A, we see that∫

∂A
g̃a,b ∗d(χ c fa,b)= 0.

Finally, because ∂A is also the (negatively oriented) boundary of X \ A and because
d ∗dg̃a,b = 0 on X \ A,

−

∫
∂A

g̃a,b ∗dg̃a,b =

∫
X\A

dg̃a,b ∧∗dg̃a,b ≥ 0.

Thus, we have
〈dg̃a,b, d(χ c fa,b− g̃a,b)〉A ≥ 0,

which proves the inequality. �

Lemma A.3. Let λ= max
r2≤r≤r4

|χ̃ ′(r)|. Then

max
X

g̃a,b−min
X

g̃a,b ≤ c3(r1, r2, r4, λ),

where
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c3(r1, r2, r4, λ)=

4
√

r4+r2

r4−r2

(
λ

2
log

(r1+r4)
2

(r2−r1)(r4−r1)
+

1
r2−r1

+
r1

r4(r4−r1)

)
+

2
π

log
(r1+r4)

2

(r2−r1)(r4−r1)
.

Proof. First, we note that

max
X

g̃a,b =max
{

sup
U r3

g̃a,b, sup
X\U r3

g̃a,b

}
, min

X
g̃a,b =min

{
inf
U r3

g̃a,b, inf
X\U r3

g̃a,b

}
.

Furthermore,

sup
U r3

g̃a,b ≤ sup
U r3
(g̃a,b−χ

c fa,b)+ sup
U r3

χ c fa,b = max
|z|=r3

(g̃a,b−χ
c fa,b)+ max

r2≤|z|≤r3
χ c fa,b

because of the maximum principle (g̃a,b−χ
c fa,b is harmonic on U ) and because

χ c(z)= 0 for |z|< r2. In the same way, we find

inf
U r3

g̃a,b ≥ min
|z|=r3

(g̃a,b−χ
c fa,b)+ min

r2≤|z|≤r3
χ c fa,b.

We extend χ fa,b to a smooth function on X \ {a, b} by putting (χ fa,b)(x)= 0 for
x 6∈U . Then g̃a,b+χ fa,b is harmonic on X \ {a, b}, and the same method as above
gives us

sup
X\U r3

g̃a,b ≤ max
|z|=r3

(g̃a,b+χ fa,b)− min
r3≤|z|≤r4

χ fa,b

≤ max
|z|=r3

(g̃a,b−χ
c fa,b)+ max

|z|=r3
fa,b− min

r3≤|z|≤r4
χ fa,b

and
inf

X\U r3
g̃a,b ≥ min

|z|=r3
(g̃a,b−χ

c fa,b)+ min
|z|=r3

fa,b− max
r3≤|z|≤r4

χ fa,b.

These bounds imply that

max
X

g̃a,b ≤ max
|z|=r3

(g̃a,b−χ
c fa,b)+ 2 sup

A
| fa,b|,

min
X

g̃a,b ≥ min
|z|=r3

(g̃a,b−χ
c fa,b)− 2 sup

A
| fa,b|

and hence

max
X

g̃a,b−min
X

g̃a,b ≤ max
|z|=r3

(g̃a,b−χ
c fa,b)− min

|z|=r3
(g̃a,b−χ

c fa,b)+ 4 sup
A
| fa,b|.

By Lemmas A.1 and A.2,

max
|z|=r3

(g̃a,b−χ
c fa,b)− min

|z|=r3
(g̃a,b−χ

c fa,b)≤
2
√
π

r4− r2
‖dg̃a,b− d(χ c fa,b)‖A

≤
2
√
π

r4− r2
(‖dg̃a,b‖A+‖d(χ c fa,b)‖A)

≤
4
√
π

r4− r2
‖d(χ c fa,b)‖A.
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We have
‖d(χ c fa,b)‖A ≤ ‖d(χ c) fa,b‖A+‖χ

cd fa,b‖A

≤ ‖χ̃ ′(ρ) fa,b dρ‖A+‖d fa,b‖A

≤ λ‖dρ‖A sup
A
| fa,b| + ‖d fa,b‖A.

Now

‖dρ‖2A =
∫

A
dρ ∧∗dρ =

∫
A
ρ dρ ∧ dφ = π(r2

4 − r2
2 ).

Furthermore, for all a, b ∈U r1 , we have

| fa,b(z)| =
1

2π

∣∣log |z− z(a)| + log |z(a)z− r2
4 | −log |z− z(b)| −log |z(b)z− r2

4 |
∣∣.

For all a ∈U r1 and all z ∈ A, the triangle inequality gives

r2− r1 < |z− z(a)|< r4+ r1 and r4(r4− r1) < |z(a)z− r2
4 |< r4(r4+ r1).

From this, we deduce that, for all a, b ∈U r1 ,

sup
A
| fa,b| ≤

1
2π

log
(r1+ r4)

2

(r2− r1)(r4− r1)
.

Finally, we bound the quantity ‖d fa,b‖A. Because fa,b is a real function, we have
d fa,b = ∂z fa,b dz+ ∂z fa,b dz. Therefore,

‖d fa,b‖
2
A =

∫
A

d fa,b ∧∗d fa,b = 2i
∫

A
|∂z fa,b|

2 dz ∧ dz

= 4
∫ 2π

0

∫ 1

r2

|∂z fa,b|
2 ρ dρ dφ ≤ 4π(1− r2

2 ) sup
A
|∂z fa,b|

2.

A straightforward computation gives

∂z fa,b =
1

4π

(
1

z− z(a)
+

z(a)

z(a)z− r2
4

−
1

z− z(b)
−

z(b)

z(b)z− r2
4

)
.

Our previous bounds for |z− z(a)| and |z(a)z− 1| yield

sup
A
|∂z fa,b| ≤

1
2π

(
1

r2− r1
+

r1

r4(r4− r1)

)
.

From this, we obtain

‖d fa,b‖A ≤

√
r2

4 − r2
2

π

(
1

r2− r1
+

r1

r4(r4− r1)

)
.

Combining the bounds for supA| fa,b| and ‖d fa,b‖A yields the lemma. �
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From now on, we impose the normalisation condition∫
X

g̃a,bµ= 0

on g̃a,b for all a, b ∈U r1 ; this can be attained by adding a suitable constant to g̃a,b.
Then for all a, b ∈U r1 , the function ga,b defined earlier is equal to

ga,b = g̃a,b+χ fa,b−

∫
X
χ fa,bµ. (3)

Indeed, by the definition of g̃a,b, the right-hand side satisfies (1). Furthermore, for
all a ∈U r1 , we define a smooth function la on X \ {a} by

la =

{
(χ/2π) log |z− z(a)| on U ,
0 on X \U ;

this is bounded from above by (1/2π) log(r4+ r1).

Lemma A.4. For all a, b ∈U r1 , we have

max
X
|ga,b− la + lb|< c4(r1, r2, r4, λ, c1),

where

c4(r1, r2, r4, λ, c1)= c3(r1, r2, r4, λ)+
1

2π
log

r4+ r1

r4− r1
+
( 8

3 log 2− 1
4

)c1

r2
4
.

Proof. By (3) and the definitions of fa,b and la , we get

ga,b− la + lb = g̃a,b−

∫
X
χ fa,bµ+

χ

2π
log

∣∣∣∣ z(a)z− r2
4

z(b)z− r2
4

∣∣∣∣,
where the last term is extended to zero outside U . We bound each of the terms on
the right-hand side. From

∫
X g̃a,bµ= 0 and the nonnegativity of µ, it follows that

max
X

g̃a,b ≥ 0≥min
X

g̃a,b.

Together with the bound for maxX g̃a,b−minX g̃a,b from Lemma A.3, this implies

max
X
|g̃a,b| ≤ c3(r1, r2, r4, λ, c1).

Because the support of χ is contained in U r4 , the hypothesis (4) of Definition 3.1.1
together with the definition of fa,b gives∫

X
χ fa,bµ

=

∫
U r4

χ

2π

(
log

∣∣∣∣ z− z(a)
r4

∣∣∣∣+ log
∣∣∣∣ z(a)zr2

4
−1

∣∣∣∣−log
∣∣∣∣ z− z(b)

r4

∣∣∣∣−log
∣∣∣∣ z(b)zr2

4
−1

∣∣∣∣)µ.
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Writing w = z/r4 and t = z(a)/r4, we have∫
U r4

χ

2π
log

∣∣∣∣ z− z(a)
r4

∣∣∣∣µ≤ c1

2πr2
4

∫
|w|<1
|w−t |>1

log |w− t | i dw∧ dw.

We note that t satisfies |t |< r1/r4; for simplicity, we relax this to |t | ≤ 1. Then it is
easy to see that the above expression attains its maximum for |t | = 1; by rotational
symmetry, we can take t = 1. We now have to integrate over the crescent-shaped
domain {w ∈ C : |w|< 1 and |w− 1|> 1}, which is contained in {1+ r exp(iφ) :
1< r < 2, 2π/3< φ < 4π/3}. We get∫

U r4

χ

2π
log

∣∣∣∣ z− z(a)
r4

∣∣∣∣µ < c1

π

∫ 4π/3

2π/3

∫ 2

1
log(r) r dr dφ

=
( 4

3 log 2− 1
2

)
c1.

In a similar way, we obtain∫
U r4

χ

2π
log

∣∣∣∣ z− z(a)
r4

∣∣∣∣µ≥− c1

2r2
4
,∫

U r4

χ

2π
log

∣∣∣∣ z(a)zr2
4
− 1

∣∣∣∣µ < ( 4
3 log 2− 1

2

)c1

r2
4
,∫

U r4

χ

2π
log

∣∣∣∣ z(a)zr2
4
− 1

∣∣∣∣µ≥− c1

4r2
4
.

The same bounds hold for b. Combining everything, we get∣∣∣∣∫
X
χ fa,bµ

∣∣∣∣≤ ( 8
3 log 2− 1

4

)c1

r2
4
.

Finally, we have

max
X

χ

2π
log

∣∣∣∣ z(a)z− r2
4

z(b)z− r2
4

∣∣∣∣≤ 1
2π

sup
U r4

log
∣∣∣∣r4− z(a)z/r4

r4− z(b)z/r4

∣∣∣∣
≤

1
2π

log
r4+ r1

r4− r1
,

which finishes the proof. �

We will now apply Lemma A.4, which holds for any chart (U, z) satisfying
the hypotheses (1) and (4) of Definition 3.1.1, to our atlas {(U j , z j ) : 1 ≤ j ≤ n}.
Besides including the index j in the notation for the coordinates, we denote by l( j)

a

and χ ( j) the functions la and χ defined for the coordinate (U j , z j ). We obtain the
following generalisation of Lemma A.4 to the situation where a and b are arbitrary
points of X :
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Lemma A.5. For all a, b ∈ X and all j and k such that a ∈U r1
j and b ∈U r1

k ,

sup
X

∣∣ga,b− l( j)
a + l(k)b

∣∣≤ c5(r1, r2, r4, λ, n, c1,M),

where

c5(r1, r2, r4, λ, c1, n,M)= nc4(r1, r2, r4, λ, c1)+
n− 1
2π

log
(

M
r4+ r1

r2− r1

)
.

Proof. We first show that for any two coordinate indices j and k and for all
a ∈U r1

k ∩U r1
j ,

sup
X

∣∣l(k)a − l( j)
a

∣∣≤ 1
2π

log
(

M
r4+ r1

r2− r1

)
. (4)

To prove this, let y ∈ X . We distinguish three cases to prove that l(k)a (y)− l( j)
a (y) is

bounded from above by the right-hand side of (4); the inequality then follows by
interchanging j and k.

Case 1. Suppose y ∈U j with |z j (y)− z j (a)|< (r2− r1)/M . In this case, we have

|z j (y)|< |z j (a)| +
r2− r1

M
< r2;

hence, a, y ∈ U r2
j . Let [a, y] j denote the line segment between a and y in the

z j -coordinate, i.e., the curve in U r2
j whose z j -coordinate is parametrised by

ẑ j (t)= (1− t)z j (a)+ t z j (y) for 0≤ t ≤ 1.

We claim that this line segment also lies inside U r2
k . Suppose this is not the case;

then, because the “starting point” z−1
j (ẑ j (0)) = a does lie in U r2

k , there exists a
smallest t ∈ (0, 1) for which the point

y′ = z−1
j (ẑ j (t)) ∈U r2

j

lies on the boundary of U r2
k . It follows from hypothesis (3) of Definition 3.1.1 that

|zk(y′)− zk(a)| ≤ M |z j (y′)− z j (a)|.

On the other hand,

|z j (y′)− z j (a)| = t |z j (y)− z j (a)|

< (r2− r1)/M

by assumption, and

|zk(y′)− zk(a)|> r2− r1

by the triangle inequality. This implies

|zk(y′)− zk(a)|> M |z j (y′)− z j (a)|,
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a contradiction. Therefore, the line segment [a, y] j lies inside U r2
j ∩ U r2

k . By
hypothesis (3) of Definition 3.1.1, we have

|zk(y)− zk(a)| ≤ M |z j (y)− z j (a)|.

Because χ ( j)(y)= χ (k)(y)= 1, we find

l(k)a (y)− l( j)
a (y)=

1
2π

log
∣∣∣∣ zk(y)− zk(a)
z j (y)− z j (a)

∣∣∣∣≤ 1
2π

log M,

which is bounded by the right-hand side of (4).

Case 2. Suppose y 6∈U j . Then l( j)
a (y)= 0, and thus,

l(k)a (y)− l( j)
a (y)= l(k)a (y)≤

log(r4+ r1)

2π
.

Case 3. Suppose y ∈U j and |z j (y)− z j (a)| ≥ (r2− r1)/M . Then

l(k)a (y)− l( j)
a (y)≤

log(r4+ r1)

2π
−
χ ( j)(y)

2π
log

r2− r1

M
,

which is also bounded by the right-hand side in (4).
By hypothesis (2) of Definition 3.1.1, the open sets U r1

j cover X . Furthermore,
X is connected. For arbitrary a, b ∈ X and indices j and k such that a ∈U r1

j and
b ∈U r1

k , we can therefore choose a finite sequence of indices j = j1, j2, . . . , jm = k
with m ≤ n and points a = a0, a1, . . . , am = b such that ai ∈ U r1

ji ∩ U r1
ji+1

for
1≤ i ≤ m− 1. Using ga,b =

∑m
i=1 gai−1,ai , we get

sup
X

∣∣ga,b− l( j)
a + l(k)b

∣∣= sup
X

∣∣∣∣ m∑
i=1

(
gai−1,ai − l( ji )

ai−1
+ l( ji )

ai

)
+

m−1∑
i=1

(
l( ji+1)
ai
− l( ji )

ai

)∣∣∣∣
≤

m∑
i=1

sup
X

∣∣gai−1,ai − l( ji )
ai−1
+ l( ji )

ai

∣∣+ m−1∑
i=1

sup
X

∣∣l( ji+1)
ai
− l( ji )

ai

∣∣.
The lemma now follows from Lemma A.4 and the inequality (4). �

Proof of Theorem 3.1.2. We choose a continuous partition of unity {φ j
}

n
j=1 subordi-

nate to the covering {U r1
j }

n
j=1. Let a ∈ X , and let j be an index such that a ∈U r1

j .
By the definition of ga,µ, we have

ga,µ(x)− l( j)
a (x)=

∫
b∈X

ga,b(x)µ(b)− l( j)
a (x)

=

n∑
k=1

∫
b∈U

r1
k

φk(b)
(
ga,b(x)− l( j)

a (x)
)
µ(b)
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=

n∑
k=1

∫
b∈U

r1
k

φk(b)
(
ga,b(x)− l( j)

a (x)+ l(k)b (x)
)
µ(b)−

n∑
k=1

∫
b∈U

r1
k

φk(b)l(k)b (x)µ(b).

In a similar way to in the proof of Lemma A.4, one can check that, for every index k
and all x ∈ X , we have

−
c1

2
≤

∫
b∈U

r1
k

φk(b)l(k)b (x)µ(b)≤
( 4

3 log 2− 1
2

)
c1

so that

sup
x∈X

∣∣∣∣∫
b∈U

r1
k

φk(b)l(k)b (x)µ(b)
∣∣∣∣≤ c1

2
.

Together with Lemma A.5, this gives the inequality

sup
X

∣∣ga,µ− l( j)
a

∣∣≤ c5(r1, r2, r4, λ, c1, n,M)
n∑

j=1

∫
b∈U

r1
j

φ j (b)µ(b)+
n∑

j=1

c1

2

= c5(r1, r2, r4, λ, c1, n,M)+
nc1

2
.

We also have

sup
X

ga,µ ≤ sup
X

(
ga,µ− l( j)

a
)
+ sup

X
l( j)
a ≤ sup

X

(
ga,µ− l( j)

a
)
+

log(r4+ r1)

2π
.

By varying the choice of r4 and χ̃ , we can let r4 tend to 1 and λ to 1
1−r2

. This

leads to

c3

(
r1, r2, 1, 1

1−r2

)
=4

√
1+r2

1−r2

(
1

2(1−r2)
log

(r1+1)2

(r2−r1)(1−r1)
+

1
r2−r1

+
r1

1−r1

)
+

2
π

log
(r1+1)2

(r2−r1)(1−r1)
,

which implies successively

c4

(
r1, r2,1,

1
1−r2

, c1

)
= c3

(
r1, r2,1,

1
1−r2

)
+

1
2π

log
1+ r1

1− r1
+
( 8

3 log 2− 1
4

)
c1,

c5 = nc4

(
r1, r2, r4,

1
1−r2

, c1

)
+

n− 1
2π

log
(

M
1+ r1

r2− r1

)
.

We take r2 = 0.39+ 0.61r1. Then, for r1 >
1
2 , one can check numerically that

c5 ≤ 52.4
n

(1− r1)3/2
log

1
1− r1

+ 1.60nc1+
n− 1
2π

log M.

From this, the theorem follows. �
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