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We continue our study of the Legendre elliptic curve y2
= x(x + 1)(x + t) over

function fields Kd=Fp(µd , t1/d). When d= p f
+1, we have previously exhibited

explicit points generating a subgroup Vd ⊂ E(Kd) of rank d − 2 and of finite,
p-power index. We also proved the finiteness of X(E/Kd) and a class number
formula: [E(Kd) : Vd ]

2
= |X(E/Kd)|. In this paper, we compute E(Kd)/Vd

and X(E/Kd) explicitly as modules over Zp[Gal(Kd/Fp(t))].

An errata was posted on 31 May 2017 in an online supplement.

1. Introduction

Let p be an odd prime number, Fp the field of p elements, and K = Fp(t) the
rational function field over Fp. Let E be the elliptic curve over K defined by
y2
= x(x + 1)(x + t). In [Ulmer 2014b], we studied the arithmetic of E over the

extension fields Kd = Fp(µd , t1/d) for integers d not divisible by p. In particular,
when d= p f

+1, we exhibited explicit points generating a subgroup Vd ⊂ E(Kd) of
rank d−2 and finite p-power index. Moreover, we showed that the Tate–Shafarevich
group X(E/Kd) is finite and its order satisfies |X(E/Kd)|= [E(Kd) :Vd ]

2. Some
of these results were generalized to other values of d in [Conceição et al. 2014].

Our goal in this paper is to study the quotient group E(Kd)/Vd and the Tate–
Shafarevich group X(E/Kd) as modules over the group ring Zp[Gal(Kd/K )].
In fact, we will completely determine both modules in terms of combinatorial
data coming from the action of the cyclic group 〈p〉 ⊂ (Z/dZ)× on the set Z/dZ.
Stating the most precise results requires some preliminaries that are given in the
next section, so in this introduction, we state only the main qualitative results.

Theorem 1.1. Let p be an odd prime number, and let d = p f
+ 1. Let K = Fp(t),

Kd = Fp(µd , u) where ud
= t , and G = Gal(Kd/K ). Let E be the elliptic curve

over K defined by y2
= x(x+1)(x+ t). Let Vd be the subgroup of E(Kd) generated

by the point P = (u, u(u+ 1)d/2) and its conjugates by G. Let X(E/Kd) be the
Tate–Shafarevich group of E over Kd . Then E(Kd)/Vd and X(E/Kd) are finite
abelian p-groups with the following properties:
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(1) E(Kd)/Vd and X(E/Kd) are trivial if and only if f ≤ 2.

(2) The exponent of the group E(Kd)/Vd is pb( f−1)/2c. The exponent of the group
X(E/Kd) is pb f/3c. Here bxc is the greatest integer ≤ x.

(3) (E(Kd)/Vd)
2 and X(E/Kd) are isomorphic as Zp[G]-modules if and only if

f ≤ 4. If f > 4, they are not isomorphic as abelian groups.

(4) The Jordan–Hölder factors of X(E/Kd) as Zp[G]-modules are the same as
those of E(Kd)/Vd with multiplicities doubled.

(5) There is a polynomial F f (T ) ∈ Z[1/2][T ] depending on f but independent
of p such that

|X(E/Kd)| = pF f (p)

for all p > 2.

Part (4) of the theorem may be viewed as an analogue of the Gras conjecture;
see [Gras 1977; Mazur and Wiles 1984].

To my knowledge, the phenomenon of “interpolation in p” in part (5) has not
been observed before. In fact, even more is true, namely that all of the invariants
of X(E/Kd) and E(Kd)/Vd as abelian p-groups (i.e., the order of their pa-torsion
subgroups for all a) are described by polynomials independent of p.

Results on the exact structure of E(Kd)/Vd and X(E/Kd) as Zp[G]-modules
will be stated in Section 3 after some preliminaries in Section 2.

In fact, we will prove results on the discriminant of the “new part” of E(Kd) with
its height pairing and on the Zp[G]-module structure of the “new part” of X(E/Kd)

for any d such that p is balanced modulo d in the sense of [Conceição et al. 2014,
Definition 2.1]. (This is the situation in which there are points on E(Kd) not coming
from E(Ke) for e a proper divisor of d.) In cases where we have explicit points
(namely for d = p f

+ 1 as in [Ulmer 2014b] or d = 2(p f
− 1) as in [Conceição

et al. 2014]), we obtain good control on E(Kd)/Vd as well. Some of our results
apply to other curves and their Jacobians and for p = 2. See Theorems 3.1.1, 3.2.1,
and 3.3.1 for the main refined results.

The two key ideas that afford such strong control on Mordell–Weil and Tate–
Shafarevich groups are (i) that the Néron model of E over P1

/Fp(µd )
is dominated

by a product of curves, and (ii) ideas of Shioda and Dummigan that allow us to
use crystalline cohomology to compute Tate cycles and Brauer groups for products
of curves. Similar ideas were used by Dummigan [1995; 1999] to compute the
discriminant of the Mordell–Weil lattice and the structure of the Tate–Shafarevich
group for a constant supersingular elliptic curve over the function field of a Hermitian
curve. In our case, the group of symmetries (essentially G above) is much smaller,
the representation theory is much simpler, and as a result, we are able to boil the
combinatorics down to very explicit statements.
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Here is an outline of the rest of the paper. In Section 2, we consider the orbits
of 〈p〉 ⊂ (Z/dZ)× acting on Z/dZ. These orbits index certain Zp[G]-modules that
we use to decompose and describe E(Kd) and X(E/Kd). In Section 3, we state the
more precise results on E(Kd) and X(E/Kd) alluded to above. In Section 4, we
work out the geometry relating the Néron model of E to a product of curves (which
in fact are Fermat quotient curves) and the relations between the Mordell–Weil
and Tate–Shafarevich groups of E and the Néron–Severi and Brauer groups of
the product of curves. In Section 5, we work out the Néron–Severi group and the
p-part of the Brauer group of a general product of curves in terms of crystalline
cohomology. That this is possible (in the context of supersingular surfaces) was
noted by Shioda [1991] and developed more fully by Dummigan [1995]. We use
a somewhat different method than Dummigan did, yielding more general results,
although his results would suffice for our application to the Legendre curve. In
Section 6, we collect results on the cohomology of the curves appearing in the
product mentioned above. These results give the raw material for Section 7, where
we carry out the p-adic exercises needed to compute E(Kd) and X(E/Kd). In
Section 8, we put all the pieces together and prove the main results. Finally,
Section 9 contains various generalizations and complements.

2. Orbits, invariants, and representations

Throughout this section, p is an arbitrary prime number and d is a positive integer
not divisible by p. We write (Z/dZ)× for the multiplicative group modulo d and
〈p〉 for the cyclic subgroup generated by p.

2.1. Orbits. Consider the action of (Z/dZ)× on the set Z/dZ by multiplication.
By restriction, the subgroup 〈p〉 acts on Z/dZ. We write Õ = Õd,p for the set of
orbits. Thus, if o ∈ Õ and i ∈ o⊂ Z/dZ, then o= {i, pi, p2i, . . . }.

Clearly the orbit through 0 ∈ Z/dZ is a singleton {0}. If d is even (and therefore
p is odd), then the orbit through d/2 is also a singleton because p(d/2)= (d/2)
in Z/dZ. For reasons that will become apparent later, we will usually exclude these
two orbits, and we define

O = Od,p =

{
Õ \ {{0}} if d is odd,
Õ \ {{0}, {d/2}} if d is even.

Note that if o∈ Õ , then gcd(i, d) is the same for all i ∈ o, and we write gcd(o, d)
for this common value. It will sometimes be convenient to consider only orbits
with gcd(o, d)= 1 (which one might call “new” orbits), so we define

O ′ = O ′d,p = {o ∈ O | gcd(o, d)= 1}.
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Note that O ′d,p is just the set of cosets of 〈p〉 in (Z/dZ)×. Note also that the set of
orbits o ∈ O with gcd(o, d)= e for a fixed e < d/2 is in bijection with O ′d/e,p.

2.2. Balanced orbits. From here through the end of Section 2.7, we assume that
d > 2 so that Od,p is not empty.

As in [Conceição et al. 2014], we divide (Z/dZ)× into two subsets A and B where
A and B consist of those classes with least positive residue in the intervals (0, d/2)
and (d/2, d), respectively.

We say that an orbit o is balanced if we have |o∩ A| = |o∩ B|, and we say d is
balanced modulo p if every orbit o∈ O ′d,p is balanced. For example, by [Conceição
et al. 2014, §5.4, §5.5], d is balanced modulo p if d divides p f

+ 1 or if d divides
2(p f

− 1) and the ratio 2(p f
− 1)/d is odd.

2.3. Invariants of orbits. Associated to each orbit o, we form a word on the two-
letter alphabet {u, l} (u for upper and l for lower) as follows. Choose a base point i
so that the orbit o= {i, pi, p2i, . . . , p|o|−1i}. The associated word w = w1 · · ·w|o|

is defined by

w j =

{
l if −p j−1i ∈ A,
u if −p j−1i ∈ B.

(The reason for the minus signs is explained in Remark 6.4.1.) Thus, for example,
if p= 3 and d = 28, the word associated to the orbit {6, 18, 26, 22, 10, 2} with base
point 6 is ullluu.

Note that w depends on the choice of i ∈ o. Changing the choice of i changes w
by a cyclic permutation of the letters.

Given a word w=w1 · · ·w|o|, we define a sequence of integers a j by a0 = 0 and

a j = a j−1+

{
1 if w j = u,
−1 if w j = l.

(So the word w is viewed as a sequence of instructions to go up or down.)
If o is balanced, then the word w associated to o has as many u’s as l’s and

a|o| = 0.

Definition 2.3.1. We say the base point i is good if a j ≥ 0 for 0 ≤ j ≤ |o|. It is
easy to see that every o has a good base point. The standard base point for an
orbit o is the good base point with smallest least positive residue.

So for example, if p = 3, d = 364, and o is the orbit {7, 21, 63, 189, 203, 245},
then there is a unique good base point, namely 7, with associated word uuulll. On
the other hand, if o is the orbit {37, 111, 333, 271, 85, 255}, then the good base
points are 37 (with word uullul) and 85 (with word uluull), and the standard base
point is 37. From now on, given an orbit, we choose the standard base point and
form the word associated to that base point. This yields a well-defined function from
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orbits to words. (It will be essential below to choose a good base point, but which
good base point is chosen is of no import. We introduce the notion of standard base
point simply for convenience.)

Now suppose that w is the word associated to a balanced orbit o. Then the first
letter of w must be u and the last must be l, so we can write w in exponential form

w = ue1le2 · · · le2k

where each e j > 0.

2.4. The complementary case. Suppose that d>2 and d divides p f
+1 for some f

so that −1 ∈ 〈p〉. If i ∈ A, then p f i ∈ B and conversely. It follows that if o ∈ Od,p

and w is the associated word, then the second half of w is the “complement” of the
first half, i.e., each u is replaced with an l and each l is replaced with a u. More
formally, if w = w1w2 · · ·w|o|, then {w j , w|o|/2+ j } = {u, l} for all 1≤ j ≤ |o|/2.

A similar discussion applies when d divides 2(p f
− 1) with an odd quotient

and o is an orbit with gcd(o, d) odd. Indeed, in this case, p f
≡ 1+ d/2 (mod d)

and p f is an element of order 2 in (Z/dZ)× that exchanges A and B. Thus, if o is
an orbit with gcd(o, d) odd, then the associated word has second half equal to the
complement of the first half.

These examples motivate the following definition:

Definition 2.4.1. We say an orbit o is complementary if it is balanced and the
associated word w = w1 · · ·w|o| satisfies {w j , w|o|/2+ j } = {u, l} for 1≤ j ≤ |o|/2.

If o is complementary and we write the associated word in exponential form
w = ue1le2 · · · le2k , then ek+ j = e j . Since the last letter must be l, the last letter of
the first half must be u and so k must be odd.

2.5. Comparison with Dummigan’s string diagrams. Dummigan [1995] intro-
duces certain words on the alphabet {X, O} that he calls string diagrams. He
works entirely in the context where d = p f

+ 1 (so all orbits are complementary),
and his diagrams are invariants of orbits closely related to our words w(o). Indeed,
given an orbit o with base point i and word w(o), the associated string diagram is
s = s1 · · · s f where

s j =

{
O if w j = w j+1,

X if w j 6= w j+1.

He also defines circle diagrams by taking into account the rotations induced by a
change of base point. It is easy to see that the map from words to string diagrams
is 2-to-1 and that we could phrase our arguments in terms of Dummigan’s string
and circle diagrams. However, for most of our purposes, words as we have defined
them are more convenient.
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2.6. More invariants. We continue to assume that d > 2. Let o be a balanced
orbit with associated word w written in exponential form as w = ue1 · · · le2k . The
exponents e1, . . . , e2k give one invariant of the orbit o.

A second invariant of the orbit o is its height, defined as

ht(o)=max{e1, e1− e2+ e3, . . . , e1− e2+ e3− · · ·+ e2k−1}.

We may also describe the height as the maximum value of the function i 7→ai defined
above. Note that in the complementary case, we have ht(o)= e1− e2+ · · ·+ ek .

We will define a third invariant in terms of invariant factors of certain bidiagonal
matrices. To that end, consider the integer, k× k, bidiagonal matrix

B = B(e1, . . . , e2k−1) :=


pe1 −pe2 0 · · · · · ·

0 pe3 −pe4 · · · · · ·

0 0 pe5 · · · · · ·

...
...

...
. . .

...
...

... pe2k−1


and define d1 ≤ d2 ≤ · · · ≤ dk as the exponents of the invariant factors of B so that
B can be transformed into

A =


pd1 0 0 · · · · · ·

0 pd2 0 · · · · · ·

0 0 pd3 · · · · · ·

...
...

...
. . .

...
...

... pdk


by a series of integer row and column operations. We will discuss how to compute
these invariants in the next subsection.

2.7. Computing invariant factors. We continue with the assumptions of the preced-
ing subsection (so o is a balanced orbit), and we give two algorithms for computing
the invariants d1, . . . , dk attached to o. This subsection is not needed for the
statements of the main results in Section 3, so it may be skipped on a first reading.

Roughly speaking, the first algorithm picks out d1 and continues inductively
while the second picks out dk and continues inductively. The second is more
complicated than the first, but it gives valuable information in the complementary
case; see Lemma 2.7.3 and Remark 2.7.4 below. Both algorithms are based on the
well-known fact that the i-th invariant factor of a matrix B is

gcd(i × i minors of B)/ gcd((i − 1)× (i − 1) minors of B).
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To describe the results, we introduce the following notation: for 1≤ i ≤ j ≤2k−1,
let ei j = ei − ei+1+ ei+2− · · ·± e j . Also, we say that two matrices are equivalent
(denoted by ∼) if one can be transformed to the other by a series of integer row
and column operations.

Lemma 2.7.1. Assume that k > 1, let e1, . . . , e2k−1 be positive integers, and let
d1, . . . , dk be the integers attached as above to B(e1, . . . , e2k−1). We have d1 =

min{e1, . . . , e2k−1}. Choose i such that d1 = ei , and define

B ′ =


B(e3, . . . , e2k−1) if i = 1,
B(e1, . . . , ei−2, ei−1,i+1, ei+2, . . . , e2k−1) if 1< i < 2k− 1,
B(e1, . . . , e2k−3) if i = 2k− 1.

Then B(e1, . . . , e2k−1) is equivalent to (pd1)⊕ B ′.

Note that we make no assumptions on the ei other than positivity. The result
can thus be applied inductively to B ′ and thus gives an algorithm for computing all
of the d j . For example, if (e1, . . . , e2k)= (4, 1, 3, 5, 4, 3, 5, 4, 2, 1, 2, 6), then the
algorithm proceeds as follows:

B(4, 1, 3, 5, 4, 3, 5, 4, 2, 1, 2) ∼
(i=2)

(p1)⊕ B(6, 5, 4, 3, 5, 4, 2, 1, 2),

B(6, 5, 4, 3, 5, 4, 2, 1, 2) ∼
(i=7)

(p1)⊕ B(6, 5, 4, 3, 5, 4, 3),

B(6, 5, 4, 3, 5, 4, 3) ∼
(i=4)

(p3)⊕ B(6, 5, 6, 4, 3),

B(6, 5, 6, 4, 3) ∼
(i=5)

(p3)⊕ B(6, 5, 6),

B(6, 5, 6) ∼
(i=2)

(p5)⊕ B(7),

so the invariants d j are 1, 1, 3, 3, 5, and 7.

Proof of Lemma 2.7.1. That d1=min{e1, . . . , e2k−1} is evident from the description
of d1 as gcd{pe1, . . . , pe2k−1}.

Write B for B(e1, . . . , e2k−1). If i = 1, then pe1 divides −pe2 , and a single
column operation transforms B into (pe1)⊕ B(e3, . . . , e2k−1). This is the desired
result.

Similarly, if i = 2k− 1, then pe2k−1 divides −pe2k−2 , and a single row operation
transforms B into B(e1, . . . , e2k−3)⊕ (pe2k−1). This is the desired result.

Now consider the case where 1< i < 2k− 1, and assume that i is odd. Then a
row operation followed by a column operation transforms the submatrix(

−pei−1 0
pei −pei+1

)
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of B into (
0 −pei−1,i+1

pei 0

)
and leaves the rest of B unchanged. Permuting rows and columns yields

(pei )⊕ B(e1, . . . , ei−2, ei−1,i+1, ei+2, . . . , e2k−1).

The case where 1< i < 2k− 1 and i is even is similar. We first transform the
submatrix (

pei−1 −pei

0 pei+1

)
of B into (

0 −pei

pei−1,i+1 0

)
and then permute rows and columns and multiply row 1 (containing −pei ) by −1
to arrive at

(pei )⊕ B(e1, . . . , ei−2, ei−1,i+1, ei+2, . . . , e2k−1). �

Lemma 2.7.2. Assume that k > 1, let e1, . . . , e2k−1 be positive integers, and let
d1, . . . , dk be the integers attached as above to B(e1, . . . , e2k−1). We have

dk =max{ei j | 1≤ i ≤ j ≤ 2k− 1, i and j odd}.

Choose i ≤ j odd such that dk = ei j . Define a subset T ⊂ {1, 2, 3} and matrices Bα
for α ∈ S as follows:

• 1 ∈ T if and only if i > 1. If i > 1, let B1 = B(e1, . . . , ei−2).

• 2∈ T if and only if i < j . If i < j , let B2= B(ei+1, . . . , e j−1)
t (t = transpose).

• 3 ∈ T if and only if j < 2k− 1. If j < 2k− 1, let B3 = B(e j+2, . . . , e2k−1).

Let B ′ =
⊕

α∈T Bα. Then B(e1, . . . , e2k−1) is equivalent to (pdk )⊕ B ′.

Since we always choose a good base point for an orbit, if B(e1, . . . , e2k−1) is
the matrix attached to a balanced orbit o, then the invariant dk is equal to the height
of o. We have not emphasized this in the statement of the lemma because the top
invariant factor of a general bidiagonal matrix (e.g., the matrices Bα with α ∈ T )
need not be of the form e1 j .

This lemma applies equally well to lower-triangular bidiagonal matrices, so it
gives another inductive algorithm for computing all of the d j . For example, if

(e1, . . . , e2k−1)= (4, 1, 3, 5, 4, 3, 5, 4, 2, 1, 2),
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then (ignoring transposes) the algorithm proceeds as follows:

B(4, 1, 3, 5, 4, 3, 5, 4, 2, 1, 2) ∼
(i, j)=(1,7)

(p7)⊕ B(1, 3, 5, 4, 3)⊕ B(2, 1, 2),

B(1, 3, 5, 4, 3) ∼
(i, j)=(3,3)

(p5)⊕ B(1)⊕ B(3),

B(2, 1, 2) ∼
(i, j)=(1,3)

(p3)⊕ B(1),

so the invariants d j are 1, 1, 3, 3, 5, and 7.

Proof of Lemma 2.7.2. We write B for B(e1, . . . , e2k−1). The value of dk can be
seen from the description of the invariant factors of B in terms of minors. Indeed,
note that

det B = pe1+e3+···+e2k−1 .

On the other hand, the nonzero (k − 1)× (k − 1) minors of B are of two types.
Those obtained by deleting row and column i are of the form ± det B/pe2i−1 , and
those obtained by deleting row i and column j with j < i are of the form

±pe1+e3+···+e2 j−3 pe2 j+e2 j+2+···+e2i−2 pe2i+1+···+e2k−1 .

It follows that dk is the maximum of ei j , where i ≤ j and i and j are odd. This is
the first claim in the statement of the lemma.

To obtain the asserted equivalence, choose i ≤ j odd such that dk = ei j . If i > 1,
then the definition of ei j implies the inequalities

ei−2, j ≤ ei j =⇒ ei−2,i−1 ≤ 0,

ei−4, j ≤ ei j =⇒ ei−4,i−1 ≤ 0,
...

e1, j ≤ ei j =⇒ e1,i−1 ≤ 0.

It follows that we may eliminate the entry −pei−1 from B by a series of column
operations. More precisely, B is equivalent to B(e1, . . . , ei−2)⊕ B(ei , . . . , e2k−1).

Similarly, if j < 2k − 1, we have a series of inequalities ei j ≥ ei j+2, . . . ,
ei j ≥ ei,2k−1 and these imply that by a series of row operations we may eliminate
−pe j+1 , i.e., B is equivalent to B(e1, . . . , e j )⊕ B(e j+2, . . . , e2k−1).

If i > 1 and j < 2k− 1, then we may perform both of the procedures above, so

B ∼ B(e1, . . . , ei−2)⊕ B(ei , . . . , e j )⊕ B(e j+2, . . . , e2k−1).

If i = j , then B(ei )= (pdk ) and we are done.
It remains to prove that if i < j , then B(ei , . . . , e j ) is equivalent to (pdk )⊕

B(ei+1, . . . , e j−1)
t . To see this, we note that the definition of ei j implies that ei`≥ 0
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and e`j ≤ 0 for all even ` with i < ` < j . Using these inequalities, we transform
B(ei , . . . , e j ) by column operations into

0 −pei+1 0 · · · · · ·

0 pei+2 −pei+3 · · · · · ·

...
...

...
. . .

pdk 0 0 · · · pe j

 ,
then by transposing rows into

pdk 0 0 · · · pe j

0 −pei+1 0 · · · · · ·

0 pei+2 −pei+3 · · · · · ·

...
...

...
. . .

0 0 · · · pe j−2 −pe j−1

 ,

and finally by row operations and sign changes into (pdk )⊕ B(ei+1, . . . , e j−1)
t . �

Lemma 2.7.3. If o is complementary (so that k is odd and ek+i = ei for 1≤ i ≤ k),
then we have dk = e1k , the other d j come in pairs (i.e., d1 = d2, d3 = d4, . . . ), and

dk−1 = dk−2 =max{ei j | 2≤ i ≤ j ≤ k− 1, i and j even}.

Proof. It is easy to see that i = 1 and j = k achieves the maximum ei j , so we have
dk = e1k = ht(o). One application of Lemma 2.7.2 shows that B(e1, . . . , e2k−1) is
equivalent to

pdk ⊕ B(e2, . . . , ek−1)
t
⊕ B(e2, . . . , ek−1).

Thus, the invariant factors d1, . . . , dk−1 come in pairs. Applying the recipe of
Lemma 2.7.2 for the top invariant factor to B(e2, . . . , ek−1) gives the assertion
on dk−1 and dk−2. �

Remark 2.7.4. Suppose that e1, . . . , e2k are the exponents of a word coming from
a good base point (so e1, j ≥ 0 for all j), and suppose that e1,2 j+1 is maximum
among e1,`. Then the following four matrices and their transposes all have the same
invariant factors: B(e1, . . . , e2k−1), B(e2, . . . , e2k), B(e2 j+2, . . . , e2k, e1, . . . , e2 j ),
and B(e2 j+3, . . . , e2k, e1, . . . , e2 j+1). Indeed (ignoring transposes), the first step
of the second algorithm above shows that each of these matrices is equivalent to

(pe1,2 j+1)⊕ B(e2, . . . , e2 j )⊕ B(e2 j+3, . . . , e2k−1).

2.8. Representations of G. Fix an algebraic closure Fp of Fp, and view µd as
a subgroup of F×p . Let W (Fp) be the Witt vectors with coefficients in Fp, and
let χ : µd → W (Fp) be the Teichmüller character so that χ(ζ ) ≡ ζ (mod p) for
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all ζ ∈µd . Identifying W (Fp) with a subring of Qp, the Qp-valued character group
µ̂d of µd can be identified with Z/dZ by associating χ i with i .

The group 〈p〉 ⊂ (Z/dZ)× acts on µd via exponentiation. This yields an action
on µ̂d ∼= Z/dZ under which p acts by multiplication by p. It is thus natural to
consider the set Õ of orbits of 〈p〉 on Z/dZ. If i ∈ Z/dZ and o is the orbit of
〈p〉 through i , then the values of χ i lie in the Witt vectors W (Fp|o|) and the values
of
∑

i∈o χ
i lie in Zp =W (Fp).

Now fix a finite extension Fq of Fp(µd) in Fp, and let G1 = Gal(Fq/Fp). The
action of G1 on µd factors through the homomorphism G1→ 〈p〉 that sends Frp,
the p-power Frobenius, to p.

Let G be the semidirect product µd oG1. There is a canonical identification

G ∼= Gal(Fq Kd/K )= Gal(Fq(u)/Fp(t)).

To avoid confusion between number rings and group rings, we write H for µd .
Let Zp[H ] and Zp[G] be the group rings of H and G with coefficients in Zp. We
also write 0 = Zp[H ], which we view as a Zp[H ]-module in the obvious way.
Letting G1 act on 0 through its action on H makes 0 into a Zp[G]-module.

Proposition 2.8.1. (1) There is a canonical isomorphism of Zp[H ]-modules

0 =
⊕
o∈Õ

0o,

where 0o is a free Zp-module of rank |o| on which H acts with character∑
i∈o χ

i .

(2) For every orbit o, 0o ⊂ 0 is stable under Zp[G] and 0o⊗Qp is an absolutely
irreducible Qp[G]-module.

(3) 0o⊗Zp Fp is an absolutely irreducible Fp[G] module.

(4) If o 6= o′, then 0o ⊗Zp Qp 6∼= 0o′ ⊗Zp Qp and 0o ⊗Zp Fp 6∼= 0o′ ⊗Zp Fp as
G-modules.

(5) Suppose that Fq is a finite extension of Fp|o| . Fix i ∈ Z/dZ, and let o be the
orbit of 〈p〉 through i . Make the Witt vectors W (Fq) into a Zp[G]-module by
letting ζ ∈µd = H act by multiplication by ζ i and letting Frp ∈G1⊂G act by
the Witt-vector Frobenius. Then we have an isomorphism of Zp[G]-modules

W (Fq)∼= 0o⊗Zp Zp[Gal(Fq/Fp|o|)].

Proof. For (1), since
∑

i∈o χ
i takes values in Zp, setting

πo = (1/d)
∑
h∈H

(∑
i∈o

χ−i (h)
)

h,
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we have πo ∈ Zp[H ]. Orthogonality of characters implies that the elements πo

form a system of orthogonal idempotents: we have 1=
∑

o∈Õ πo and πoπo′ = 0 if
o 6= o′. We define 0o = πo0. This gives a direct-sum decomposition 0=

⊕
o∈Õ 0o.

It follows from the definition that 0o is a free Zp-module. We may compute its
rank by noting that 0⊗Zp Qp decomposes under H into lines where H acts by the
characters χ i with i ∈ Z/dZ, and the subspace 0o⊗Zp Qp is the direct sum of the
lines where H acts by χ i with i ∈ o, so 0o has Zp-rank |o|.

For (2), since gπo = πog for all g ∈ 〈p〉, it follows that 0o is stable under G. As
an H -module, 0o⊗Zp Qp decomposes into lines where H acts via χ i with i ∈ o, and
〈p〉 permutes these lines transitively, so 0o is absolutely irreducible as G-module.

Part (3) follows from a similar argument, using that d is relatively prime to p,
so the χ i are distinct modulo p.

Part (4) follows immediately from a consideration of characters.
For (5), first consider the case where Fq = Fp|o| . Now W (Fp|o|) is a cyclic Zp[G]-

module generated by 1 and with annihilator the left ideal generated by [p|o|]−1 and∏
i∈o([h]−χ

i (h)), where h is a generator of H . Using this, it is easy to check that
1 7→ πo defines an isomorphism of Zp[G]-modules W (Fp|o|)→ 0o. The general
case follows from this and the normal basis theorem for Fq over Fp|o| (which yields
an integral normal basis statement for the corresponding extension of Witt rings). �

Remark 2.8.2. If M is a Zp[G]-module, we write Mo for πo M . By definition, H
acts on Mo by characters χ i with i ∈ o. Note, however, that it is not clear a priori
what the action of G1 is on Mo. Indeed, the action of G1 does not enter into the
definition of πo, and so we will have to determine the full action of G on M by
other means. The reason for not using G1 in the definition of πo is that p may
divide the order of G1, and we prefer to avoid the resulting complications in the
representation theory of G.

Remark 2.8.3. We showed in [Ulmer 2014b, Corollary 4.3] that the group Vd

appearing in Theorem 1.1 is a cyclic module over Z[G] with relations 2
∑

i Pi =

2
∑

i (−1)i Pi = 0. It follows easily that Vd ⊗Zp is isomorphic to

⊕
o∈Od,p

0o.

Since E(Kd) is a G-invariant superlattice of Vd , the absolute irreducibility of 0o

noted above implies that we also have an isomorphism of Zp[G]-modules

E(Kd)⊗Zp ∼=
⊕

o∈Od,p

0o.
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3. Refined results

In this section, we state results on Mordell–Weil and Tate–Shafarevich groups
decomposed for the action of Galois. These imply the results stated in Theorem 1.1,
and they also give information in many other contexts. The proofs will be given in
Section 8.

Throughout, we fix a positive integer d prime to p and a finite extension Fq

of Fp(µd), and we set G = Gal(Fq(u)/Fp(t)). For the results on discriminants and
indices, the choice of Fq is not material, so we work over Kd = Fp(µd , u). On the
other hand, our results on the Tate–Shafarevich group depend significantly on the
choice of Fq .

3.1. Discriminants. We have seen in [Conceição et al. 2014] that the “new” part
of E(Kd) (i.e., the part not coming from E(Ke) with e a proper divisor of d) is
trivial if p is not balanced modulo d and has rank φ(d) if p is balanced modulo d .
In this subsection, we refine this result by breaking up E(Kd) for the action of G
and by computing the p-part of the discriminant of the height pairing.

Recall that E(Kd) carries a canonical real-valued height pairing that is nondegen-
erate modulo torsion. (See, e.g., [Ulmer 2014a, §4.3].) There is a rational-valued
pairing 〈 · , · 〉 such that the canonical height pairing is 〈 · , · 〉 log(|Fp(µd)|). For
convenience, we work with the rational-valued pairing. The group E(Kd)⊗ Zp

inherits a Qp-valued pairing, and the direct-sum decomposition

E(Kd)⊗Zp ∼=
⊕
o∈O

(E(Kd)⊗Zp)
o

is an orthogonal decomposition for this pairing. We write Disc(E(Kd)⊗Zp)
o for

the discriminant restricted to one of the factors. This is well-defined up to the
square of a unit in Zp, but we will compute it only up to units.

Recall the sequence a0, . . . , a|o| associated to o in Section 2.3 and the represen-
tation 0o defined in Section 2.8.

Theorem 3.1.1. (1) We have an isomorphism of Zp[G]-modules

(E(Kd)⊗Zp)
o∼=

{
0o if gcd(o, d) < d/2 and p is balanced modulo d/ gcd(o, d),
0 otherwise.

(2) If gcd(o, d) < d/2 and p is balanced modulo d/ gcd(o, d), then up to a unit
in Zp we have

Disc(E(Kd)⊗Zp)
o
= pa

where a = 2
∑|o|

j=1 a j .
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3.2. Indices. Now we suppose that

(a) d = p f
+ 1 and o ∈ Od,p is any orbit, or

(b) d = 2(p f
− 1) and o ∈ Od,p is such that gcd(o, d) is odd.

In these cases, the orbit o is complementary, and the word w associated to each o
may be written in exponential form

w = ue1le2 · · · uek le1ue2 · · · lek ,

where each e j > 0 and k is odd. In this case, ht(o)= e1− e2+ · · ·+ ek .
Let Vd ⊂ E(Kd) be the subgroup generated by the explicit points as in [Ulmer

2014b, Remark 8.3] (d = p f
+ 1) or [Conceição et al. 2014, Theorem 6.1] (d =

2(p f
− 1)).

Theorem 3.2.1. Under the hypotheses (a) or (b) above, we have an isomorphism
of Zp[G]-modules

(E(Kd)/Vd)
o ∼= 0o/pe,

where e = ( f − ht(o))/2. When gcd(o, d)= 1, e =
∑(k−1)/2

j=1 e2 j .

Under the assumptions of the theorem, it follows that (E(Kd)/Vd)
o
= 0 if and

only if the word corresponding to o has height f , and that occurs only for words
equivalent up to rotation to u f l f .

3.3. Tate–Shafarevich groups. Recall the integers d1, . . . , dk attached to an orbit o
in Section 2.6.

Theorem 3.3.1. For any d > 2 prime to p and any o ∈ Od,p, if gcd(o, d) < d/2
and p is balanced modulo d/ gcd(o, d), then:

(1) There is an isomorphism of Zp[G]-modules

X(E/Fq(u))o ∼=

∏k
j=1 Wd j (Fq)

Wdk (Fp|o|)
.

(2) In particular, if Fq = Fp(µd) so that Fq(u)= Kd and gcd(o, d)= 1, then

X(E/Kd)
o ∼=

k−1∏
j=1

Wd j (Fp|o|)
∼=

k−1∏
j=1

0o/pd j .

Under the assumptions of the theorem, it follows that X(E/Fq(u))o is trivial
only when Fq = Fp(µd) and k = 1, and k = 1 occurs if and only if the word
associated to o is u f l f .
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4. Domination by a product of curves

In this section, we relate the arithmetic of E/Fq(u) to that of a suitable product of
curves over Fq .

4.1. Basic data. Fix an integer d relatively prime to p, let Fq be a finite extension
of Fp(µd), and let G1 = Gal(Fq/Fp).

Let C be the smooth, projective curve over Fp with affine model zd
= x2
− 1.

We write P± for the rational points x =±1 and z = 0 on C. Extending scalars, the
group µ2×µd acts on C×Fp Fq by multiplying the x and z coordinates by roots of
unity. There is also an action of G1 on C×Fp Fq via the factor Fq . Altogether we
get an action of (µ2×µd)oG1 on C×Fp Fq . To simplify notation, for the rest of
this section, we let C denote the curve over Fq .

Let D be the curve associated to wd
= y2
− 1 so that D is isomorphic to C. It

has rational points Q± and an action of (µ2 ×µd)o G1 defined analogously to
those of C.

Let S = C×Fq D be the product surface. We let the group 1 := µ2 ×µd act
on S “antidiagonally”, i.e., with

(ζ2, ζd)(x, y, z, w)= (ζ2x, ζ−1
2 y, ζd z, ζ−1

d w).

Write NS(S) for the Néron–Severi group of S and NS′(S) for the orthogonal com-
plement in NS(S) of the subgroup generated by the classes of the divisors C×{Q+}
and {P+}×D. (We could also describe NS′(S) as DivCorr((C, P+), (D, Q+)), the
group of divisorial correspondences between the two pointed curves; see [Ulmer
2011, §0.5.1, §2.8.4].) The intersection form on NS(S) restricts to a nondegenerate
form on NS′(S). The action of 1 on S induces an action on NS′(S).

Let G=µdoG1. We let G act on S via its action on C; this yields an action of G
on NS′(S). We let G act on E(Fq(u)) via the identification G ∼=Gal(Fq(u)/Fp(t)).

The main result of this section relates the arithmetic of the Legendre curve
E/Fq(u) to that of S.

Theorem 4.2. With notation as above:

(1) There is a canonical isomorphism

E(Fq(u))⊗Z[1/2d] −→∼ (NS′(S)⊗Z[1/2d])1,

where the superscript 1 denotes the subgroup of invariants. This isomorphism
is compatible with the G-actions, and under it, the height pairing on E(K )
corresponds to the intersection pairing on NS′(S).

(2) There is a canonical isomorphism

X(E/Fq(u))[p∞] −→∼ Br(S)[p∞]1.
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Here Br(S) is the (cohomological) Brauer group of S and [p∞] means the
p-torsion subgroup. This isomorphism is compatible with the G-actions.

The rest of this section is devoted to a proof of the theorem and the discussion
of a mild generalization. Note that the theorem for odd values of d follows from
the case of even d (by taking invariants by a suitable subgroup of G), so for the
rest of this section, we assume that d is even.

4.3. The basic geometric result. The main step in the proof of Theorem 4.2 is to
relate the Néron model of E/Fq(u) to a suitable quotient of S. To that end, recall
the Weierstrass fibration W→P1

u (whose fibers are the plane cubic reductions of E
at places of Fq(u)) and the Néron model E→ P1

u , which is obtained from W by
blowing up singular points in the fibers over u = 0, u ∈ µd , and u =∞. All this is
discussed in detail in [Ulmer 2014b, §7].

Note that since we are assuming that d is even, C has two points at infinity that
we denote P ′

±
, where the sign corresponds to the limiting value of x/zd/2. Similarly,

D has two points at infinity, denoted Q′
±

.
Let S̃= C̃×D be the blow-up of S at the eight points (P±, Q′

±
) and (P ′

±
, Q±).

These points have stabilizers of order d/2 under the action of 1, and they fall into
two orbits, namely {(P±, Q′

±
)} and {(P ′

±
, Q±)}, under the 1 action. The action of

the stabilizer on the projectivized tangent space at each of these points is trivial, so
the action of 1 lifts canonically to S̃ and the exceptional fibers are fixed pointwise
by the stabilizer of the corresponding point. The action of 1 on S̃ has other isolated
fixed points, but we do not need to make them explicit.

We let S̃/1 denote the quotient of S̃ by the action of 1. This is a normal,
projective surface with isolated cyclic quotient singularities. (They are in fact
rational double points, but we will not need this fact.)

Now we define a rational map S 99KW by requiring that

(x, y, z, w) 7→ ([X, Y, Z ], u)= ([zd , xyzd , 1], zw),

where ([X, Y, Z ], u) are the coordinates on a dense open subset of W as in [Ulmer
2014b, §7]. This induces a rational map φ : S̃ 99KW that is obviously equivariant
for the 1 action, where 1 acts trivially on W. Thus, φ descends to a map on the
quotient that we denote ψ : S̃/1 99KW.

The following diagram shows the surfaces under consideration and various
morphisms between them:

C×D= S S̃
ρ

oo

π

��

φ

!!

S̃/1
ψ
// W E

σ
oo
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The quotient map π is finite, and we will see just below that the horizontal maps
are birational morphisms.

Proposition 4.3.1. (1) The rational map φ is in fact a morphism. Therefore, ψ is
also a morphism and a birational isomorphism.

(2) φ contracts the strict transforms of P±×D and C×Q′
±

and is finite elsewhere.

(3) For generic P ∈ C, φ sends P ×D to a bisection of W→ P1, where the two
points in each fiber are inverse to one another. Similarly, for generic Q ∈D,
φ sends C× Q to a bisection of W→ P1, where the two points in each fiber
are inverse to one another.

(4) The exceptional divisors over P±×Q′
±

map via φ to the torsion section [0, 0, 1]
of W, and the exceptional divisors over P ′

±
×Q± map via φ to the zero section

[0, 1, 0] of W.

In part (3), “P generic” means P with trivial stabilizer or, more explicitly,
P 6= P±, P ′

±
and x(P) 6= 0. “Q generic” is similarly defined.

Proof. It is easy to see that φ has generic degree 2d and it factors through quotient
S̃→ S̃/1, which is finite of degree 2d . This proves that ψ is birational.

That φ is everywhere defined and has the stated geometric properties is a straight-
forward but tedious exercise in coordinates that we omit. Since φ is a morphism, it
follows that ψ is also a morphism. �

4.4. Proof of Theorem 4.2(1). We prove part (1) of the theorem by using the
geometry of the displayed diagram with the key input being Proposition 4.3.1. For
typographical convenience, if A is a finitely generated abelian group, we write
A[1/2d] for A⊗Z[1/2d].

By the Shioda–Tate isomorphism (e.g., [Ulmer 2014a, Chapter 4]), we have a
direct-sum decomposition

NS(E)[1/2d] ∼= E(Fq(u))[1/2d]⊕ T [1/2d],

where T is the subgroup of NS(E) generated by the zero section and the irreducible
components of the fibers. Since W is obtained from E by contracting all components
of fibers not meeting the zero section, we have

NS(W)[1/2d] ∼= E(Fq(u))[1/2d]⊕ 〈O, F〉[1/2d],

where O and F are the classes of the zero section and a fiber of W→P1, respectively.
These decompositions are orthogonal for the intersection pairings. The fibration
W→ P1

u is the base change of a fibration W→ P1
t , so G acts on W and NS(W).

This action is trivial on 〈O, F〉, and the last displayed isomorphism is compatible
with the G actions.
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Since S̃ is obtained from S by blowing up eight points, we have an orthogonal
decomposition

NS(S̃)∼= Z8
⊕NS(S)∼= Z10

⊕NS′(S).

The Néron–Severi group of the quotient S̃/1 is obtained by taking invariants, at
least after inverting 2d = |1|. Noting that 1 permutes the exceptional divisors
of S̃→ S in two orbits and that it fixes the classes of P ×D and C× Q, we have

NS(S̃/1)[1/2d] ∼= (NS(S̃)[1/2d])1 ∼= Z[1/2d]4⊕ (NS′(S)[1/2d])1.

The action of G on C induces an action on S̃ that descends to S̃/1.
Now we consider the morphism ψ : S̃/1→W, and use the information provided

by Proposition 4.3.1. It is clear from the coordinate expression for S 99KW that ψ is
equivariant for the G actions. Part (2) tells us that the kernel of NS(S̃/1)→NS(W)

has rank 2. Parts (3) and (4) allow us to determine it explicitly.
To that end, let f1 and f2 be the classes in NS(S̃) of the curves P×D and C×Q,

respectively. Also, let e1 and e2 denote the classes in NS(S̃) of the exceptional
divisors over P+× Q′

+
and P ′

+
× Q+, respectively. Set Fi = π∗ fi and Ei = π∗ei

for i = 1, 2. Then E1, E2, F1, and F2 form a basis for the “trivial part” Z[1/2d]4

of NS(S̃/1)[1/2d].
By part (3), ψ∗F1 = ψ∗F2 = φ∗ f1 = φ∗ f2 = the class of a bisection of W→ P1

with inverse points in each fiber. This class is easily seen to be 2O+d F . Similarly,
part (4) tells us that ψ∗E1 = φ∗e1 = O + (d/2)F (here we use that we have
inverted 2), and ψ∗E2 = φ∗e2 = O . The kernel of

NS(S̃/1)[1/2d] → NS(W)[1/2d]

is thus spanned by F1− F2 and F1− 2E1. Moreover, we have that ψ∗ induces an
isomorphism

(NS′(S)[1/2d])1 ∼=
NS(S̃/1)[1/2d]
〈F1, F2, E1, E2〉

∼=
NS(W)[1/2d]
〈O, F〉

.

It follows that
(NS′(S)[1/2d])1 ∼= E(Fq(u))[1/2d]

and that this isomorphism is compatible with the height and intersection pairings
and the G actions.

This completes the proof of part (1) of the theorem.

4.5. Proof of Theorem 4.2(2). Two fundamental results of Grothendieck [1968b]
(see also [Ulmer 2014a, §5.3]) say that the Tate–Shafarevich group of E/Fq(u)
and the Brauer group of E are canonically isomorphic and that the Brauer group
of a surface is a birational invariant. Applying this to the diagram just before
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Proposition 4.3.1 shows that X(E/Fq(u)) ∼= Br(S̃/1). Since the order of 1 is
prime to p, we have

Br(S̃/1)[p∞] ∼= Br(S̃)[p∞]1 ∼= Br(S)[p∞]1.

This yields the isomorphism stated in part (2) of the theorem, and this isomorphism
is compatible with the G actions because the maps in the diagram above are G-
equivariant.

4.6. A higher-genus generalization. The results in this section generalize readily
to a higher-genus example. Specifically, fix an integer r > 1 prime to p, and let X
be the smooth, proper curve over Fp(t) defined by

yr
= xr−1(x + 1)(x + t).

The genus of X is r − 1. We consider X and its Jacobian J = JX over extensions
Fq(u) where ud

= t , d is prime to p, and Fq is a finite extension of Fp(µd , µr ).
When d = p f

+ 1 and r divides d, there are explicit divisors on X yielding a
subgroup of J (Fq(u)) of rank (r − 1)(d − 2) and finite index. This situation is
studied in detail in [Berger et al. ≥ 2015].

Let X→ P1
u be the minimal regular model of X over the projective line whose

function field is Fq(u). Let C=D be the smooth, proper curve over Fq with equation

zd
= xr
− 1.

Then C and D carry actions of µr×µd , and we let1=µr×µd act on S=C×Fq D

“antidiagonally”. Arguments parallel to those in the proof of Proposition 4.3.1
show that X is birationally isomorphic to S/1. Using this, the arguments proving
Theorem 4.2 generalize readily to give isomorphisms

J (Fq(u))[1/rd] ∼= NS′(S)[1/rd]1

and
X(J/Fq(u))[p∞] ∼= Br(S)[p∞]1.

5. Arithmetic of a product of curves

In this section, k is a finite field of characteristic p, and C and D are smooth,
projective curves over k. Our goal is to give a crystalline description of NS′(C×D)

and Br(C×D). The former is due to Tate, and the latter was done under somewhat
restrictive hypotheses by Dummigan [1999, p. 114] (by a method he says was
inspired by a letter of the author). We use a variant of the method to give the result
in general.

5.1. Flat and crystalline cohomology. For the rest of this section, we write W for
the Witt-vectors W (k) and σ for the Witt-vector Frobenius (lifting the p-power
Frobenius of k).
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Given a smooth projective variety X over k, we consider the crystalline coho-
mology groups of X and use the simplified notation

H i (X) := H i
crys(X/W )

for typographical convenience. These groups are W -modules with a σ -semilinear
action of the absolute Frobenius, denoted F . When X is a curve, we also define
a σ−1-semilinear action of Verschiebung, denoted V , on H 1(X) by requiring that
FV = V F = p. We write A for the noncommutative ring W {F, V } generated
over W by F and V with relations Fa= σ(a)F , aV = Vσ(a), and FV = V F = p.

We will also consider cohomology of sheaves in the flat topology, say the fppf
(faithfully flat, finitely presented) topology to fix ideas. Recall that H 1(X,Gm)∼=

Pic(X) and that we define the Brauer group of X by

Br(X) := H 2(X,Gm).

If X is smooth and dim X≤ 2, it is known [Grothendieck 1968a] that this definition
agrees with that via Azumaya algebras.

A well-known theorem of Weil asserts that C and D have k-rational divisors
of degree 1. If P and Q are such, then the classes in NS(C×k D) of P ×D and
C× Q are independent of the choices of P and Q. We define NS′(C×k D) as the
orthogonal complement in NS(C×k D) of these classes.

The goal of this section is to establish the following crystalline calculations of
the Néron–Severi and Brauer groups of a product of curves.

Theorem 5.2. (1) There is a functorial isomorphism

NS′(C×k D)⊗Zp −→
∼ (H 1(C)⊗W H 1(D))F=p.

(2) There is a functorial exact sequence

0→ ((H 1(C)⊗W H 1(D))F=p)/pn
→ (H 1(C)/pn

⊗W H 1(D)/pn)F=V=p

→ Br(C×k D)pn → 0.

Here the exponents mean the subgroups where F and V act as indicated, and
“functorial” means that the displayed maps are equivariant for the action of Aut(C)×
Aut(D).

Proof. We write X for C×k D. Part (1) is essentially the crystalline Tate conjecture.
More precisely, by a theorem of Tate [Waterhouse and Milne 1971], we have an
isomorphism

NS(X)⊗Zp ∼= H 2(X)F=p.

Decomposing NS(X) as Z2
⊕NS′(X) and H 2(X) via the Künneth formula leads to

the statement in part (1).
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For part (2), we may assume that C and D have rational points. Indeed, the
theorem of Weil alluded to above shows that there is an extension k ′/k of degree
prime to p such that C and D have k ′-rational points. Using the Hochschild–Serre
spectral sequences in crystalline and flat cohomologies and the fact that taking
invariants under Gal(k ′/k) is an exact functor on groups of p-power order shows
that the theorem over k ′ implies the theorem over k. We thus assume that C and D

have k-rational points.
Now consider the Kummer sequence

0→ µpn → Gm→ Gm→ 0

for the flat topology on X. Taking flat cohomology yields

0→ Pic(X)/pn
→ H 2(X, µpn )→ Br(X)pn → 0.

Let T =Pic(C)/pn
⊕Pic(D)/pn . The natural map T→Pic(X)/pn is an injection

with cokernel NS′(X)/pn . Thus, we have a commutative diagram with exact rows
and columns:

0

��

0

��

T

��

T

��

0 // Pic(X)/pn //

��

H 2(X, µpn ) //

��

Br(X)pn // 0

0 // NS′(X)/pn //

��

H 2(X, µpn )/T //

��

Br(X)pn // 0

0 0

Using part (1), we have

NS′(X)/pn ∼= ((H 1(C)⊗W (k) H 1(D))F=p)/pn,

so to complete the proof, we must show that

H 2(X, µpn )/T ∼= (H 1(C)/pn
⊗ H 1(D)/pn)F=V=p.

Let π : C×D→ D be the projection on the second factor. We will compute
H 2(X, µpn ) via the Leray spectral sequence for π . By a theorem of Artin proven
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in [Grothendieck 1968b],

Riπ∗Gm =


Gm if i = 0,
PicX/D = PicC/k ×kD if i = 1,
0 if i > 1.

It follows that

Riπ∗µpn =


µpn if i = 0,
PicX/D[p

n
] = JC[pn

] if i = 1,
PicX/D /pn

= Z/pnZ if i = 2,
0 if i > 2.

(Here we abuse notation slightly — the k-group schemes on the right represent
sheaves on k and so by restriction sheaves on D.) Because C has a rational point,
π has a section, so the Leray spectral sequence degenerates at E2 and we have that
H 2(X, µpn ) is an extension of

H 0(D,Z/pnZ), H 1(D, JC[pn
]), and H 2(D, µpn ).

The Kummer sequence on D shows that

H 2(D, µpn )∼= Pic(D)/pn,

which is an extension of Z/pnZ by JD(k)/pn . Obviously, H 0(D,Z/pnZ)∼=Z/pnZ.
To finish the proof, we must compute H 1(D, JC[pn

]) in crystalline terms. First
we make our notation a bit more precise. Let N be the sheaf on the flat site
of Spec k represented by the finite flat group scheme JC[pn

] = PicC/k[pn
]. Let σ

be the structure map D→ Spec k (which has a section because D has a rational
point). Then H 1(D, JC[pn

]) means H 1(D, σ ∗N ). Clearly, σ∗σ ∗N = N . By [Milne
1980, Proposition III.4.16] applied to σ , if N ′ is the Cartier dual of N , we have

R1σ∗σ
∗N ∼= Homk(N

′,PicD/k)
∼= Homk(N ,PicD/k).

Here Homk means the sheaf of homomorphisms of sheaves on the flat site of k, and
we have used that PicC/k[pn

] is self-dual.
Now we consider the Leray spectral sequence for σ , which degenerates because

σ has a section. The sequence of low-degree terms is

0→ H 1(k, N )→ H 1(D, σ ∗N )→ H 0(k,Homk(N ,PicD/k))→ 0.

Using

0→ N → JC
pn

−→ JC→ 0,

the equality of flat and étale cohomology for smooth group schemes, and Lang’s
theorem (namely that H 1(k, JC)= 0), we find that H 1(k, N )= JC(k)/pn .
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Noting that the argument above applies with the roles of C and D reversed, we
see that Pic(C)/pn and Pic(D)/pn are direct factors of H 2(X, µpn ) and find that

H 2(X, µpn )/T ∼= H 0(k,Homk(N ,PicD/k))
∼= Homk(JC[pn

], JD[pn
]).

We now turn to a crystalline description of the right-hand group. Letting D(C)

and D(D) be the (contravariant) Dieudonné modules of the p-divisible groups
of JC and JD, respectively, the main theorem of Dieudonné theory (equivalence of
categories) gives

Hom(JC[pn
], JD[pn

])= HomA(D(D)/pn,D(C)/pn).

Here HomA means homomorphisms commuting with the action of A =W {F, V },
i.e., with the actions of F and V .

To finish, we use the result of Mazur and Messing [1974] that D(C)∼= H 1(C)

and D(D)∼= H 1(D), and the duality D(D)∗ ∼= D(D)(−1) (Tate twist), so that

HomA(D(D)/pn,D(C)/pn)∼= (H 1(C)/pn
⊗ H 1(D)/pn)F=V=p. �

Remark 5.2.1. By [Illusie 1979, Theorem 5.14], for a smooth projective surface X

over an algebraically closed field k, we have

H 2(X,Zp(1))∼= H 2(X/W (k))F=p.

The proof of Theorem 5.2(2) can be adapted to show that (when X is a product
of curves), this continues to hold at finite level: H 2(X, µpn )∼= H 2(X/Wn(k))F=p.
Conversely, a proof of this statement would yield a simple proof of part (2) of the
theorem (over an algebraically closed field).

On the other hand, the proof above shows that H 2(X, µpn ) may be strictly bigger
than H 2(X/Wn(k))F=p over a finite ground field. The point is that when k is
algebraically closed, Pic(C)/pn is Z/pnZ (because Pic0(C) is divisible), but it may
be bigger when k is finite.

6. Cohomology of C

In this section, we collect results on the crystalline cohomology of the curve C

needed in the sequel. Some of them may already be available in the literature on
Fermat curves, but for the convenience of the reader, we sketch arguments from
first principles.

6.1. Lifting. From here until Section 6.5, C will denote the smooth projective
model of the affine curve over Fp defined by zd

= x2
− 1. (E.g., if d is even, C is

the result of gluing Spec Fp[x, z]/(zd
− x2
+ 1) and Spec Fp[x ′, z′]/(z′d − x ′2+ 1)

via (x ′, z′)= (x/zd/2, 1/z). The case d odd is similar.) The projective curve has a
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natural lifting to W (Fp)= Zp defined by the same equations. We write C/Zp for
this lift. It is smooth and projective over Zp with special fiber C.

6.2. Actions. There is a canonical isomorphism H 1
crys(C/Zp)∼=H 1

dR(C/Zp), where
the left-hand side is the crystalline cohomology of C and the right-hand side is the
algebraic de Rham cohomology of C/Zp. We will use this isomorphism to make
the crystalline cohomology explicit, endow it with a Hodge filtration, and describe
the actions of Frobenius, Verschiebung, µd , and µ2 on it.

Let q be a power of p congruent to 1 modulo d so that Fq contains Fp(µd). Then
C/W (Fq)= C/Zp ×Zp W (Fq) admits an action of the d-th roots of unity (acting
on the coordinate z) and µ2 =±1 (acting on the coordinate x).

Recall that the absolute Frobenius of C defines a Zp-linear homomorphism

F : H 1
crys(C/Zp)→ H 1

crys(C/Zp),

which induces a semilinear homomorphism

F : H 1
crys(C/W (Fq))∼= H 1

crys(C/Zp)⊗Zp W (Fq)→ H 1
crys(C/W (Fq))

(semilinear with respect to the Witt-vector Frobenius σ ). We also have a σ−1-
semilinear endomorphism

V : H 1
crys(C/W )→ H 1

crys(C/W ),

which is characterized by the formulas FV = V F = p.
Letting Frp ∈ Gal(Fq/Fp) act on C/Fq = C×Fp Fq via the second factor, we

get a semilinear endomorphism of H 1(C/W ) that fixes H 1(C/Zp). Combining
the actions of µd and Frp gives a Zp-linear action of G = µd o Gal(Fq/Fp)

on H 1
crys(C/W ).

6.3. A basis. By [Grothendieck 1961, 0III, Corollaire 12.4.7], we may define el-
ements of H 1

dR(C/Zp) by giving hypercocycles for an affine cover. We do so as
follows. For i = 1, . . . , b(d−1)/2c, let ei be the class defined by the regular 1-form

zi−1 dz
2x

.

Let U1 be the affine curve defined by zd
= x2

− 1 considered as a Zariski open
subset of C/Zp. Let U2 be the complement of the closed set where z = 0 in C/Zp.
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Thus, U1 and U2 define an open cover of C/Zp. For i = 1, . . . , b(d−1)/2c, the data

f i
12 =

x
zi ∈ OC/Zp(U1 ∩U2),

ωi
1 =

(
1−

2i
d

)
dx
zi ∈�

1
C/Zp

(U1),

ωi
2 =

i x dz
zi+1 −

2i
d

dx
zi ∈�

1
C/Zp

(U2)

satisfies d f i
12 = ω

i
1−ω

i
2 and so defines a class in H 1

dR(C/Zp) that we denote ed−i .

Proposition 6.4. The classes ei (0< i < d , i 6= d/2) form a Zp-basis of H 1
dR(C/Zp)

and have the following properties:

(1) The cup product H 1
dR(C/Zp)× H 1

dR(C/Zp)→ Zp satisfies (and is determined
by) the fact that for 0< i < d and 0< j < d ,

ei ∪ e j =


1 if i < d/2 and j = d − i,
−1 if i > d/2 and j = d − i,

0 otherwise.
(2) The classes ei with 1 ≤ i ≤ b(d − 1)/2c form a Zp-basis of the submodule

H 0(C/Zp, �
1
C/Zp

) of H 1
dR(C/Zp), and the classes ei with b(d + 1)/2c ≤ i ≤

d − 1 project to a basis of the quotient module H 1(C/Zp,OC/Zp).

(3) The action of µd on H 1
crys(C/W (Fq))∼= H 1

dR(C/Zp)⊗Zp W (Fq) is given by

[ζ ]ei = ζ
i ei .

Also, −1 ∈ µ2 acts on H 1
crys(C/W (Fq)) as multiplication by −1.

(4) For 0< i < d, we have F(ei )= ci epi , where ci ∈ Zp satisfies

ord(ci )=

{
0 if i > d/2,
1 if i < d/2.

(In epi , we read the subscript modulo d.)

(5) If o ∈ Od,p, d/ gcd(d, o) > 2, and p is balanced modulo d/ gcd(d, o) (in
the sense of Section 2.2), then

∏
i∈o ci = ±p|o|/2. Equivalently, for all i ∈ o,

F |o|ei =±p|o|/2ei .

Proof. Once we know that the ei form a basis, the formula in (1) determines the cup
product. To check the formula, one computes in the standard way: the cup product
ei ∪ ed− j is given by the sum over points in U1 of the residue of the meromorphic
differential zi− j dz/(2z), and this sum is 1 or 0 depending on whether j = i .

The formula in (1) implies that the classes ei with 0 < i < d and i 6= d/2 are
linearly independent in H 1

dR(C/Fp) and so they form an Fp-basis since the genus
of C is (d − gcd(d, 2))/2. It follows that the ei form a Zp-basis of H 1

dR(C/Zp).
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It is clear from the definition that the ei with 0< i < d/2 are in the submodule
H 0(C/Zp, �

1
C/Zp

), and so they form a basis by a dimension count. Part (1) and Serre
duality imply that the ei with d/2< i < d project to a basis of H 1(C/Zp,OC/Zp).
This proves part (2).

Part (3) follows immediately from the definition of the ei .
It follows from part (3) that F(ei )= ci epi for some ci ∈ Zp. Indeed, Frobenius

must send the subspace of H 1(C/W (k)) where [ζ ] acts by ζ i to the subspace where
it acts by ζ pi . By (3), these subspaces are spanned by ei and epi , respectively, so
F(ei )= ci epi , and ci must lie in Zp since F acts on H 1

crys(C/Zp). The assertion on
the valuation of ci follows from [Mazur 1972, Lemma, p. 665; 1973, top of p. 65].
This proves part (4).

For part (5), a standard calculation [Ireland and Rosen 1990, Chapter 11] gives
the eigenvalues of F |o| in terms of Jacobi sums. Using the notation of [Conceição
et al. 2014], F |o|ei = λ(−1)J (λ, χ i )ei , where λ is a character of k= Fp|o| of order 2
and χ is a character of order d. By [Conceição et al. 2014, Proposition 4.1], the
Jacobi sum is ±p|o|/2. �

Remark 6.4.1. Part (4) of the proposition is the reason for the minus signs in the
definition of the word attached to an orbit in Section 2.3. Indeed, if i < d/2, so
that ei is in H 0(C/Zp, �

1
C/Zp

), then F(ei ) is divisible by p (i.e., its “valuation” has
gone up) whereas, if i > d/2, then F(ei ) is not divisible by p (i.e., its “valuation”
is still low).

6.5. Generalization to r > 2. Most of the above extends to the curve Cr defined
by zd

= xr
− 1 for any r that is > 1 and relatively prime to p. We give the main

statements; their proofs are entirely parallel to those in the case r = 2.
The curve Cr has an obvious lift to Zp that we denote Cr/Zp. This yields an

identification H 1
crys(Cr/Zp)∼= H 1

dR(Cr/Zp).
For i ∈Z/dZ, we write 〈i/d〉 for the fractional part of i/d (for any representative

of the class of i). We similarly define 〈 j/r〉 for j ∈ Z/rZ. Let A be the subset
of Z/dZ×Z/rZ consisting of (i, j) where i 6= 0, j 6= 0, and 〈i/d〉 + 〈 j/r〉 > 1.
Let B be the subset where i 6= 0, j 6= 0, and 〈i/d〉+ 〈 j/r〉< 1. Let S = A∪ B.

There is a Zp-basis of H 1
dR(Cr/Zp) consisting of classes ei, j with (i, j) ∈ S with

the following properties:

(1) ei, j ∪ ei ′, j ′ =±δi i ′δ j j ′ ,

where the sign is + if (i, j) ∈ A and − if (i, j) ∈ B.

(2) The ei, j with (i, j) ∈ A form a basis of H 0(Cr/Zp, �
1
Cr/Zp

), and the ei, j with
(i, j) ∈ B project to a basis of H 1(Cr/Zp,OCr/Zp).
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(3) If q is such that Fq contains Fp(µd , µr ), then the action of µd × µr on
H 1(Cr/W (Fq)) is given by

[ζd , ζr ]ei, j = ζ
i
dζ

j
r ei, j .

(4) F(ei, j )= ci, j epi,pj , where ci, j ∈ Zp satisfies

ordp(ci, j )=

{
0 if (i, j) ∈ B,
1 if (i, j) ∈ A.

There is also a notion of balanced that we now explain. Let H=(Z/ lcm(d, r)Z)×,
and let H act on S by multiplication in both coordinates. Let 〈p〉 be the cyclic
subgroup of H generated by p. If (i, j)∈ S, we say the ray through (i, j) is balanced
if, for all t ∈ H , the orbit 〈p〉t (i, j) is evenly divided between A and B, i.e.,

|〈p〉t (i, j)∩ A| = |〈p〉t (i, j)∩ B|.

The final property of Cr we mention is:

(5) For (i, j) ∈ S, let o= 〈p〉(i, j) and set

Jo =
∏

(i ′, j ′)∈o

ci ′, j ′ .

Then Jo is a root of unity times p|o|/2 if and only if the ray through (i, j) is
balanced.

To prove this, we note that the displayed product is an eigenvalue of F |o|

on H 1
crys(Cr/Zp). This eigenvalue may be identified with a Jacobi sum, and

arguments parallel to those in [Conceição et al. 2014, Proposition 4.1] using
Stickelberger’s theorem show that the Jacobi sum is a root of unity times p|o|

if and only if the ray through (i, j) is balanced. In [Conceição et al. 2014], these
roots of unity were always ±1. If r divides d and d divides p f

+ 1, then again
these root of unity are ±1. In the more general context, all we can say is that they
are roots of unity of order at most gcd(lcm(r, d), p− 1).

To close this section, we note that the apparatus of orbits, words, and the associ-
ated invariants (as in Section 2) applies as well to the cohomology of Cr as soon as
we replace “i > d/2” and “i < d/2” with “(i, j)∈ A” and “(i, j)∈ B”, respectively.

7. p-adic exercises

Fix as usual an odd prime number p, a positive integer d relatively prime to p, and
an extension Fq of Fp(µd), and consider E over Fq(u) where ud

= t .
Using Theorems 4.2 and 5.2 reduces the problem of computing E(Fq(u))

and X(E/Fq(u)) to exercises in semilinear algebra with raw data supplied by
Proposition 6.4.
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In this section, we carry out these p-adic exercises.

7.1. Setup. We write W for the Witt vectors W (Fq), Wn for Wn(Fq), H 1(C) for
H 1

crys(C/W ), and H 1(D) for H 1
crys(D/W ), where C = D is the curve over Fq

studied in Section 6. The product C×Fq D carries an action of 1= µ2×µd acting
“antidiagonally” as well as an action of G=µd oGal(Fq/Fp) acting on the factor C.

Our goal is to compute

H := (H 1(C)⊗W H 1(D))1,F=V=p

and

Hn := (H 1(C/Wn)⊗W H 1(D/Wn))
1,F=V=p.

For an orbit o ∈ Od,p, we write H o and H o
n for the o parts of the corresponding

groups, i.e., for the images of the projector πo on H or Hn .
Since H 1(C) and H 1(D) free W -modules and the order of 1 is prime to p,

(H 1(C/Wn)⊗W H 1(D/Wn))
1
= ((H 1(C)⊗W H 1(D))/pn)1,

= ((H 1(C)⊗W H 1(D))1)/pn,

so the first step in both cases is to compute M = (H 1(C)⊗W H 1(D))1.

7.2. A basis for M. By Proposition 6.4(3), µ2 acts as −1 on H 1(C) and µd acts
on ei by χ i . Thus, µ2 acts trivially on H 1(C)⊗W H 1(D) and µd acts on ei ⊗ e j

by χ i− j . Therefore, we have

M ∼=
⊕

i∈Z/dZ\{0,d/2}

W (ei ⊗ ei ).

We decompose M =
⊕

o∈O Mo, where

Mo
=

⊕
i∈o

W (ei ⊗ ei ).

For the rest of this section, we fix an orbit o and we assume that gcd(o, d) < d/2
and p is balanced modulo d/ gcd(o, d). By Theorem 3.1.1, this is the situation in
which E(Fq(u)⊗Zp)

o
6= 0, and it turns out to be the situation in which we can say

something nontrivial about X(E/Fq(u))o.
As a first step, we make a change of basis that is perhaps unnatural but has the

virtue of simplifying the notation considerably. Namely, let i ∈ o be the standard
base point (see Definition 2.3.1), and let

di p j =

{
ci p j if w j = l,
ci p j /p if w j = u,
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where the p-adic integers ci p j are defined in Proposition 6.4(4). That proposition
implies that the di p j are units. Set fi = ei ⊗ ei , and for j = 1, . . . , |o| − 1, set

fi p j =

( j∏
`=1

d2
pi`

)
ei p j ⊗ ei p j .

Then { f j | j ∈ o} forms a W -basis of Mo, and it follows from Proposition 6.4
parts (4) and (5) that for all j ∈ o we have

F( f j )=

{
p2 f pj if j < d/2,
f pi if j > d/2.

(Here as usual, we read the subscripts modulo d .)
Similarly, we have

V ( f j )=

{
f p−1 j if p−1 j < d/2,
p2 f p−1 j if p−1 j > d/2,

where “p−1 j < d/2” means that the least positive residue of p−1 j is < d/2.
We have a remaining action of G = µd o Gal(Fq/Fp) on M via its action on

the first factor in H 1(C)⊗W H 1(D). Under this action, ζ ∈ µd acts W -linearly
as [ζ ] f j = ζ

j f j and Frp ∈ Gal(Fq/Fp) acts semilinearly as Frp(α f j )= σ(α) f j .

7.3. Modulo p case with d = p f + 1 and Fq = F p(µd). As a very easy first case,
we assume d = p f

+ 1 and Fq = Fp(µd), and we compute H1, which is just the
subspace of M/p killed by F and by V . We saw just above that F( fi ) is zero if
and only if i < d/2, i.e., if and only if the first letter in the word associated to i
is u. Similarly, V ( fi ) = 0 if and only if the last letter of the word of i is l. This
yields the first part of the following statement:

Proposition 7.3.1. If d = p f
+ 1 and Fq = Fp(µd), then

H1 := (H 1(C/Fq)⊗W H 1(D/Fq))
1,F=V=0

is spanned over Fq by the classes fi where the word of i has the form u · · · l. If
the first half of the word of o has the form ue1le2 · · · uek with each ei > 0, then the
Fq -dimension of H o

1 is k. We have

dimFq H1 =

(
p− 1

2

)(
p f−1
+ 1

2

)
.

The dimension counts in the proposition will be proven at the end of Section 8.1
after we have proven Lemma 8.1.1.
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7.4. The basic equations. We now make first reductions toward computing H o

and H o
n in general. Focus on one orbit o ∈ O with its standard base point i and

associated word w = w1 · · ·w|o|.
Consider a typical element c ∈ Mo (or in Mo

n ):

c =
|o|−1∑
j=0

α j fi p j ,

where α j ∈W (or in Wn) and where we read the index j modulo |o|.
Then the class c satisfies (F − p)(c)= 0 if and only if

pα j+1 =

{
σ(α j ) if w j = l,
p2σ(α j ) if w j = u

for j = 0, . . . , |o| − 1. Similarly, the class c satisfies (V − p)(c)= 0 if and only if

pα j =

{
p2σ−1(α j+1) if w j = l,
σ−1(α j+1) if w j = u

for j = 0, . . . , |o| − 1.
Note that when w j = l, the equation coming from V − p = 0 follows from

that coming from F − p = 0, and when w j = u, then the equation coming from
F− p= 0 follows from that coming from V − p= 0. Thus, c satisfies (F− p)(c)=
(V − p)(c)= 0 if and only if{

α j = σ
−1 pα j+1 if w j = l,

σ pα j = α j+1 if w j = u
(7.4.1)

for j = 0, . . . , |o| − 1.
Note that α j+1 determines α j whenw j = l, and α j determines α j+1 whenw j =u.

Thus, we may eliminate many of the variables α j . More precisely, write the word
w in exponential form: w = ue1le2 · · · le2k . Setting β0 = α0 and

β j = αe1+e2+···+e2 j

for 1≤ j ≤ k (so that βk = β0), the class c is entirely determined by the β’s. Indeed,
for

∑2 j
i=1 ei ≤ `≤

∑2 j+1
i=1 ei , we have

α` = (σ p)`−
∑2 j

i=1 eiβ j ,

and for
∑2 j+1

i=1 ei ≤ `≤
∑2 j+2

i=1 ei , we have

α` = (σ
−1 p)

∑2 j+2
i=1 ei−`β j+1.
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The conditions on the α’s translated to the β’s become

(σ p)e1β0 = (σ
−1 p)e2β1,

(σ p)e3β1 = (σ
−1 p)e4β2,

...

(σ p)e2k−1βk−1 = (σ
−1 p)e2kβk .

(7.4.2)

We refer to these as the basic equations.
The upshot is that the coordinates β define an embedding H o ↪→W k (respectively,

H o
n ↪→ W k

n ) with c 7→ (β j ) j=1,...,k whose image is characterized by the basic
equations.

In the rest of this section, we will make this image more explicit in the “adic
case” H o ↪→W k and the “modulo pn case” H o

n ↪→W k
n .

7.5. adic case. In this case, the β j lie in W , which is torsion free, so the basic
equations allow us to eliminate all β j with 0 < j < k in favor of β0. Indeed, the
basic equations imply that

β1 = σ
e1+e2 pe1,2β0,

β2 = σ
e3+e4 pe3−e4β1 = σ

e1+···+e4 pe1,4β0,

...

βk = σ
e1+···+e2k pe1,2kβ0 = σ

|o| pe1,2kβ0 = σ
|o|β0,

(7.5.1)

where, as usual, ei j denotes the alternating sum

ei j = ei − ei+1+ · · ·± e j .

Note that βk = β0, so the last equation is satisfied if and only if β0 ∈ W (Fp|o|).
Note also that since i is a good base point, the e1 j are ≥ 0 for 1≤ j ≤ 2k, so the
exponents of p on the far right-hand sides of the equations above are nonnegative.
Therefore, for any choice of β0 ∈W (Fp|o|), the equations give well-defined elements
β j ∈W (Fp|o|)⊂W solving the basic equations.

The upshot is that the map sending c 7→ β0 = α0 gives an isomorphism H o ∼=

W (Fp|o|)= 0o. The inverse of this map is

α0 7→

|o|−1∑
j=0

σ j pa jα0 fi p j ,

where a j is the function defined in Section 2.3. It is easy to see that this map is
equivariant for the action of G =µd oGal(Fq/Fp), where G acts on W (Fp|o|)

∼= 0o

as in Proposition 2.8.1.
In summary:
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Proposition 7.5.1. Suppose that o ∈ Od,p is an orbit with gcd(d, o) < d/2 and p is
balanced modulo p. Then the map above induces an isomorphism of Zp[G]-modules

H o ∼= 0o.

7.6. Modulo pn case. To compute H o
n , we should solve the basic equations (7.4.2)

with the β j ∈Wn . We will do this for all sufficiently large n (to be made precise just
below). We write β(ν)j for the Witt-vector components of β j , and by convention,
we set β(ν)j = 0 if ν ≤ 0.

Recall that the height of an orbit with word ue1le2 · · · le2k is

ht(o)=max{e1, e13, . . . , e1,2k−1}.

In other words, ht(o) is the maximum value of the sequence a j associated to o in
Section 2.6. For the rest of this section, we assume that n ≥ ht(o).

Taking the ν-th Witt component in the basic equations (7.4.2) yields the following
system of equations in Fq :

σ 2e1β
(ν−e1)
0 = β

(ν−e2)
1 ,

σ 2e3β
(ν−e3)
1 = β

(ν−e4)
2 ,

...

σ 2e2k−1β
(ν−e2k−1)

k−1 = β
(ν−e2k)
k .

(7.6.1)

Now suppose that ν ≤ n− ht(o) so that ν+ e1 ≤ n, ν+ e13 ≤ n, etc. Considering
the ν+ e1 component of the first equation in (7.6.1), the ν+ e13 component of the
second equation, etc., leads to the chain of equalities

β
(ν)
0 = σ

−2e1β
(ν−e12)
1 = σ−2(e1+e3)β

(ν−e14)
2

= · · · = σ−2(e1+e3+···+e2k−1)β
(ν−e1,2k)

0 = σ−|o|β
(ν)
0 .

It follows that for ν ≤ n− ht(o), β(ν)0 lies in Fp|o| .
Conversely, given Witt components β(ν)0 ∈ Fp|o| for ν ≤ n− ht(o), there exists

a solution (β0, . . . , βk−1) ∈W k
n of the basic equations with the given components.

Indeed, we may complete β0 to an element of W , use the equations (7.5.1) to define
the other β j , and then reduce modulo pn .

Thus, the map (β0, . . . , βk−1) 7→ β0 (mod pn−ht(o)) defines a surjective homo-
morphism

H o
n →Wn−ht(o)(Fp|o|) (7.6.2)

whose kernel is easily seen to be pn−ht(o)H o
n . Note that if n2 ≥ n1 ≥ ht(o), we have

an isomorphism
pn1−ht(o)H o

n1
∼= pn2−ht(o)H o

n2
,
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which sends (β j ) to pn2−n1(β j ). In this sense, the kernel of the surjection (7.6.2) is
independent of n (as long as n ≥ ht(o)). Thus, to compute it, we may assume that
n = ht(o) and compute H o

ht(o).
Next we note that if (β j ) ∈ H o

ht(o) and if ` is such that ht(o)= e1,2`+1 = e2`+2,2k ,
then

0= pht(o)βk = pe2`+2,2kβk

= pe2`+2,2k−2βk−1

...

= pe2`+2β`+1.

Thus, after reordering, we may write the basic equations as a triangular system:

(σ p)e2`+3β`+1 = (σ
−1 p)e2`+4β`+2,

...

(σ p)e2k−1βk−1 = (σ
−1 p)e2kβk,

(σ p)e1βk = (σ
−1 p)e2β1,

...

(σ p)e2`−1β`−1 = (σ
−1 p)e2`β`,

(σ p)e2`+1β` = 0.

Now introduce new variables γ j indexed by j ∈ Z/kZ and related to the β j by

γ j−` =

{
σ−e1−e2−···−e2 jβ j if 1≤ j ≤ `,
σ e2 j+1+e2 j+2+···+e2kβ j if `+ 1≤ j ≤ k.

In these variables, the basic equations become

pe2`+3γ1 = pe2`+4γ2,

...

pe2k−1γk−`−1 = pe2kγk−`,

pe1γk−` = pe2γk+1−`,

...

pe2`−1γk−1 = pe2`γk,

pe2`+1γk = 0
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or, in matrix form,

B(e2`+3, . . . , e2k, e1, . . . , e2`+1)


γ1

γ2
...

γk

= 0.

The upshot is that we have identified H o
ht(o) with the kernel of B(e2`+3, . . . , e2`+1)

on W k
ht(o). By Remark 2.7.4, this is the same as the kernel of B(e1, . . . , e2k+1), and

this kernel is described by the invariant factors d j analyzed in Section 2.7.
To finish the discussion, we will unwind the action of G = µd o Gal(Fq/Fp)

under the isomorphisms above. The action of Frp on a class c ∈ H o
n goes over to

the action of σ on the coordinates α j and also on the coordinates β j and γ j . The
action of ζ ∈ µd on c goes over to multiplication by ζ i p j

on α j so to multiplication
by ζ i pe1+e2+···+e2 j on β j and finally to multiplication by ζ i on the γ j .

The following statement summarizes the results of this subsection:

Proposition 7.6.1. Suppose that o ∈ Od,p is an orbit with gcd(d, o) < d/2 and
p is balanced modulo p. Suppose that the word of o is ue1 · · · le2k , and recall the
invariants d1, . . . , dk attached to o in Section 2.6.

(1) For all n ≥ ht(o), we have an exact sequence of Zp[G]-modules

0→
k⊕

j=1

Wd j (Fq)→ H o
n →Wn−ht(o)(Fp|o|)→ 0.

Here G acts on the Witt vectors as described in Proposition 2.8.1(5).

(2) The cokernel of H o/pn
→ H o

n is isomorphic to

⊕k
j=1 Wd j (Fq)

Wdk (Fp|o|)
.

The first part was proven earlier in this subsection. The second follows from
the fact that the composed map H o/pn

→ H o
n → Wn−ht(o)(Fp|o|) (see (7.6.2)) is

obviously surjective with kernel pn−ht(o)H o/pn H o and dk = ht(o).

Remark 7.6.2. The “dévissage” implicit in this subsection is captured by the middle
column of the following diagram with exact rows and columns:
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0

��

0

��

0 //
pn−ht(o)H o

pn H o
//

��

pn−ht(o)H o
n

//

��

Bro
[pn
] // 0

0 //
H o

pn H o
//

��

H o
n

//

��

Bro
[pn
] // 0

H o

pn−ht(o)H o

��

∼=
//

H o
n

pn−ht(o)H 0
n

��

0 0

Here Bro
[pn
] is the pn-torsion in Br(C×Fq D)1,o and the middle row is the o part of

the exact sequence in Theorem 5.2(2). The middle column is the o part of the exact
sequence of [Artin 1974] on page 553 just after (3.2) and [Milne 1975, p. 521, line 6];
i.e., U 2(p∞)=U 2(pht(o))= pn−ht(o)H o

n and D2(pn−ht(o))= H o
n /pn−ht(o)H o

n . Note
also that the top row above shows that S 7→ Br(X×k S) is not represented by an
algebraic group, even as a functor on finite fields.

8. Proofs of the main results

In this section, we prove an easy lemma on counting words and then assemble the
results from Sections 4, 5, and 7 to prove the theorems stated in Sections 1 and 3.

8.1. Counting patterns. Let f be a positive integer, let d = p f
+ 1, and let S =

Z/dZ\{0, d/2}. Let 〈p〉 ⊂ (Z/dZ)× be the cyclic subgroup generated by p. Given
i ∈ S, we define a string w of length f in the alphabet {u, l}, called the pattern
associated to i , as w = w1 · · ·w f , where

w j =

{
l if −p j−1i ∈ A,
u if −p j−1i ∈ B.

If the orbit o of 〈p〉 through i has full size (i.e., size 2 f ), then the pattern of i is the
same thing as the first half of the word associated to i . If the orbit is smaller, then
the pattern is a repetition of the b f/|o|c copies of the word followed by the first
half of the word. (Note that f/|o| always has denominator 2 because the second
half of the word is the complement of the first.) For example, if p = f = 3 and
i = 7, then o= {7, 21}, the associated word is ul, and the pattern is ulu. Patterns
turn out to be more convenient than words for counting.
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Let T be the set of tuples

T = {(i1, . . . , i f ) | i j ∈ {0, . . . , p− 1}, not all i j = (p− 1)/2}.

There is a bijection T → S that sends

(i1, . . . , i f ) 7→

(
1+

f∑
j=1

i j p j−1
)
.

If i corresponds to (i1, . . . , i f ), then pi corresponds to (p− 1− i f , i1, . . . , i f−1).
The first letter of the pattern of i is u if and only if the first element of the

sequence i f , i f−1, . . . that is not equal to (p− 1)/2 is in fact < (p− 1)/2. More
generally, if we have a word w = ue1le2 · · · uek where k is odd, each e j > 0, and∑

e j = f , then i ∈ S has pattern w if and only the following inequalities are
satisfied:

i f ≤ (p− 1)/2, i f−1 ≤ (p− 1)/2,

. . . , i f−e1+2 ≤ (p− 1)/2, i f−e1+1 < (p− 1)/2,

i f−e1 ≥ (p− 1)/2, i f−e1−1 ≥ (p− 1)/2,

. . . , i f−e1−e2+2 ≥ (p− 1)/2, i f−e1−e2+1 > (p− 1)/2,
...

i f−e1−···−ek−1 ≤ (p− 1)/2, i f−e1−···−ek−1−1 ≤ (p− 1)/2,

. . . , i f−e1−···−ek+2 ≤ (p− 1)/2, i f−e1−···−ek+1 < (p− 1)/2.

This leads to the following counts:

Lemma 8.1.1. (1) Suppose k > 0 is odd and e1, . . . , ek are positive integers with∑
e j = f . Then the number of elements i ∈ S with pattern w= ue1le2 · · · uek is(

p− 1
2

)k( p+ 1
2

) f−k

.

(2) The number of i ∈ S whose pattern starts lu · · · is(
p− 1

2

)(
p f−1
+ 1

2

)
,

and the number of i ∈ S whose pattern starts ll · · · is(
p+ 1

2

)(
p f−1
− 1

2

)
.
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Proof. Part (1) follows immediately from the inequalities just before the lemma.
Part (2) is similar: the pattern of i starts lu · · · if and only if i f > (p− 1)/2 and

i f−1 < (p− 1)/2,

or i f−1 = (p− 1)/2 and i f−2 < (p− 1)/2,

or i f−1 = i f−2 = (p− 1)/2 and i f−3 < (p− 1)/2,
...

The number of such i is(
p− 1

2

)(
p− 1

2
p f−2
+ · · ·+

p− 1
2
+ 1

)
=

(
p− 1

2

)(
p f−1
+ 1

2

)
.

Since the number of i whose pattern starts with l is clearly (p f
− 1)/2, the result

for ll follows by subtracting. �

End of the proof of Proposition 7.3.1. We saw above that the Fq -dimension of H o
1

is the number i ∈ o whose word has the form u · · · l, i.e., begins with u and ends
with l. If the word associated to the standard base point in o is ue1le2 · · · le2k with
ei+k = ei , then there are exactly k elements i ∈ o whose word has the form u · · · l;
if i is the standard base point, they are

i, pe1+e2 i, . . . , pe1+···+e2k−2 i.

To compute the Fq -dimension of H1, we need only note that the number of i ∈ S
whose word has the form u · · · l is the same as the number of i whose pattern
starts lu · · · . Thus, part (2) of Lemma 8.1.1 finishes the proof. �

8.2. Proof of Theorems 3.1.1 and 3.2.1. We now give the proofs of our results on
the o-part of the Mordell–Weil group E(Kd). We proved in [Conceição et al. 2014]
that (E(Kd)⊗Zp)

o
= 0 unless o is an orbit with gcd(o, d) < d/2 and p is balanced

modulo d/ gcd(d, o), so we make those hypotheses for the rest of the subsection.
The first step is to note that Theorem 4.2(1) and Theorem 5.2(1) imply that

(E(Kd)⊗Zp)
o ∼= (H 1(C)⊗W H 1(D))1,o,F=p.

This last group is denoted H o in Section 7, where we proved an isomorphism
H o ∼= 0o.

In order to prove the theorems, we need to consider H o as a submodule of

Mo
:= (H 1(C)⊗W H 1(D))1,o.

This is a free W -module on which the cup product induces a perfect pairing. The
restriction of that pairing to H o corresponds to the height pairing on E(Kd), so
to compute the discriminant of the latter, it suffices to know the index of the
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W -submodule of Mo generated by H o. More precisely, the discriminant is p2a ,
where

a = LenW (Mo/W H o).

We saw above that fi , f pi , . . . , f p|o|−1i is a W -basis of Mo. Let η1, η2, . . . , η|o|

be a Zp-basis of W . Then the classes

c` =
|o|−1∑
j=0

pa jσ j (η`) fi p j , `= 1, . . . , |o|,

form a Zp-basis of H o. Here j 7→ a j is the function associated to o in Section 2.3.
In matrix form, we have c1
...

c|o|

=

σ 0(η1) σ 1(η1) · · · σ |o|−1(η1)

σ 0(η2) σ 1(η2) · · · σ |o|−1(η2)
...

...
. . .

...

σ 0(η|o|) σ
1(η|o|) · · · σ

|o|−1(η|o|)




pa1 0 · · · 0
0 pa2 · · · 0
...

...
. . .

...

0 0 · · · pa|o|




fi

f pi
...

f p|o|−1i

 .
Since W is unramified over Zp, the determinant of the first matrix on the right is a
unit. The determinant of the second matrix on the right is clearly pa1+···+a|o| , and
this is the length of the quotient of Mo by the W -span of H o. This proves that

Disc(E(Kd)⊗Zp)
o
= p2(a1+···+a|o|),

and this is the assertion of Theorem 3.1.1.
To prove Theorem 3.2.1, note that we have containments

V o
d ⊂ E(Kd)

o ∼= H o
⊂ Mo

and we can compute the lengths of Mo/W H o and Mo/W V o
d via discriminants.

We just saw that

LenW
Mo

W H o = a1+ · · ·+ a|o|.

Let us simplify the sum using that we are in the complementary case so that k is
odd and ek+ j = e j . We have

|o|∑
j=1

a j =

2k∑
j=1

(−1) j+1
(e j+1

2

)
+ e j e1, j−1

=

k∑
j=1

(−1) j+1
(e j+1

2

)
+ e j e1, j−1+

k∑
j=1

(−1)k+ j+1
(e j+1

2

)
+ e j e1,k+ j−1

=

k∑
j=1

e j (e1, j−1+ e1,k+ j−1),
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where the second equality uses that ek+ j = e j and the last equality uses that k is
odd. Noting that e1, j−1+ e1,k+ j−1 = e1,k = ht(o), we find that

|o|∑
j=1

a j =
|o|
2

ht(o).

On the other hand, it follows from [Ulmer 2014b, Theorem 8.2] (when d= p f
+1)

and [Conceição et al. 2014, Proposition 7.1] (when d = 2(p f
− 1)) that

LenW
Mo

W V o
d
=
|o| f

2
.

Thus, we have

logp[E(Kd)
o
: V o

d ] = LenW
W H o

W V o
d
=
|o|
2
( f − ht(o)).

Since V o
d
∼= 0o and 0o has a unique G-invariant superlattice of index p|o|e, namely

p−e0o, we must have

E(Kd)
o

V o
d

∼= p−( f−ht(o))/20o/0o ∼= 0o/p( f−ht(o))/20o.

Note also that when gcd(o, d) = 1, we have f =
∑k

j=1 e j and ht(o) = e1− e2+

· · · + ek , so ( f − ht(o))/2 =
∑(k−1)/2

j=1 e2 j . These are exactly the assertions of
Theorem 3.2.1, so this completes the proof.

8.3. Proof of Theorem 3.3.1. Let Fq be an extension of Fp(µd), and consider E
over Fq(u) with ud

= t .
The first step in the proof is to note that Theorem 4.2(2) and Theorem 5.2(2) give

an isomorphism of Zp[G]-modules between X(E/Fq(u))[pn
]
o and the cokernel

of the map

((H 1(C)⊗w H 1(D))1,o,F=p)/pn
→ (H 1(C)/pn

⊗W H 1(D)/pn)1,o,F=V=p.

In the notation of Section 7, this is the cokernel of

H o/pn
→ H o

n ,

and in Proposition 7.6.1(2), we showed that for all n ≥ ht(o) this cokernel is⊕k
j=1 Wd j (Fq)

Wdk (Fp|o|)
,

where the d j are the invariants associated to o in Section 2.6. This is precisely part (1)
of the theorem. Part (2) follows immediately once we note that if gcd(o, d) = 1,
then Fp|o| = Fp2 f = Fp(µd).
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8.4. Exponents. We prove parts (1) and (2) of Theorem 1.1. Clearly part (2)
implies part (1).

By Theorem 3.2.1, the exponent of (E(Kd)/Vd)
o is p( f−ht(o))/2. This is maxi-

mized when ht(o) is minimized. If f is odd, there is an i ∈Z/dZ with pattern (ul) f

and the corresponding word has height 1. If f is even, the minimum value of ht(o)
is 2, which is achieved by an orbit with pattern (and word) (ul) f−1uu(lu) f−1ll. By
Lemma 8.1.1, any such word actually does arise as the word of some i ∈ S. Thus,
the exponent of E(Kd)/Vd is pb( f−1)/2c.

By Theorem 3.3.1, the exponent of X(E/Kd)
o is pdk−1 . By Lemma 2.7.3,

dk−1 =max{ei j | 2≤ i ≤ j ≤ k− 1, i and j even}.

Clearly the alternating sum ei − ei+1+ · · · is maximized when it is a single term,
and dk−1 is maximized by a word whose first half has the form ue1le2ue3 . In order
for this to be the word associated to a good base point, we must have e1 ≥ e2 and
e2 ≤ e3. Again, by Lemma 8.1.1, any such word actually does arise as the word of
some i ∈ S. Thus, for a given f , the maximum value of dk−1 = e2 is b f/3c and the
exponent of X(E/Kd) is pb f/3c

8.5. Comparison of E/V and X. Now we prove parts (3) and (4) of Theorem 1.1.
For part (3), note that when f = 1 or 2, up to rotation all words have the

form u f l f and by Theorems 3.2.1 and 3.3.1 the groups under discussion are trivial
in these cases. If f = 3, up to rotation, every word is u3l3 or (ul)3. In the latter
case, both ((E(Kd)/Vd)

o)2 and X(E/Kd)
o are isomorphic to (0o/p)2. When

f = 4, up to rotation, the possible words are u4l4 and u2lul2ul. In the former case,
both ((E(Kd)/Vd)

o)2 and X(E/Kd)
o are trivial, and in the latter, they are both

isomorphic to (0o/p)2.
For part (4), we note that by Proposition 2.8.1 0o/p is an absolutely irre-

ducible Zp[G]-module. Thus, all Jordan–Hölder factors of (E(Kd)/Vd)
o and

X(E/Kd)
o are 0o/p, and to prove part (4), it suffices to count the multiplici-

ties. By Theorem 3.2.1, the multiplicity for (E(Kd)/Vd)
o is ( f − ht(o))/2. By

Theorem 3.3.1, that for X(E/Kd)
o is d1+ · · ·+ dk−1. But from the definition,

k∑
j=1

d j =

k∑
j=1

e2 j−1 =

k∑
j=1

e j = f.

(Here we use that we are in the complementary case, so k is odd and e j+k = e j .)
As noted just after Lemma 2.7.2, dk = ht(o), so the total multiplicity of 0o/p
in X(E/Kd)

o is f − ht(o). This completes the proof of part (4).

8.6. Polynomial interpolation of orders. Now we prove Theorem 1.1(5). Write
inv(o) for |o|( f − ht(o)) so that |X(E/Kd)

o
| = pinv(o). Then |X(E/Kd)| = p I ,
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where

I =
∑

o∈Od,p

inv(o).

Recall that a word is “good” if it associated to a good base point of an orbit.
Let |Aut(w)| be the number of automorphisms of w, i.e., the number of rotations
leaving w invariant. Then since inv(o) only depends on the word associated to o,

I =
∑

good w

|{i | the orbit through i is w}|
|Aut(w)|

inv(w).

Now inv(w)/|Aut(w)| is the same for a word w as for the concatenation of several
copies of w, so we may take the sum only over full-length words and consider i’s
whose pattern is w, where pattern is defined as in Section 8.1. Then

I =
∑

full length, good w

inv(w)
|Aut(w)|

|{i | the pattern of i is w}|.

To finish, we note that by Lemma 8.1.1, |{i | the pattern of i is w}| is a polynomial
in p. This shows that there is a polynomial F f depending only on f with coefficients
in Z[1/2] such that I = F f (p). It also shows that when I is not zero, (i.e., when
there are words with nonzero invariant, i.e., when f ≥ 3), the degree of F f is f .

Here is an example. If f = 3, the good words are u3l3, ululul, and ul. We have
inv(u3l3)= 0, inv(ululul)= 12, and inv(ul)= 4. Using Lemma 8.1.1, we find that

I =
12
3

(
p− 1

2

)3

=
(p− 1)3

2
.

It looks like an interesting and perhaps difficult problem to give a closed expression
for F f in general.

9. Complements

In the last section of the paper, we give four complementary results. Two of them
recover much of the main theorem (specifically, the p-torsion in X(E/Kd) and
(E(Kd)/Vd)) using flat rather than crystalline cohomology. This gives a reassuring
check on the combinatorial aspects of the main results. The third gives an extension
of many of the results of the paper to characteristic p = 2. In the fourth, we briefly
touch upon a generalization to higher-genus curves.

9.1. p-torsion in X(E/Kd) via flat cohomology. It is possible to compute the
p-Selmer group of E/Kd (and therefore the p-torsion in the Tate–Shafarevich
group) using flat cohomology and the methods of [Ulmer 1991]. This yields a
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second proof that X(E/Kd) is trivial if and only if f ≤ 2, and it provides a check
on the crystalline calculation described in the main part of the paper.

We refer to [Ulmer 1991, §1] for the definition of the Selmer group denoted
Sel(Kd , pE). It sits in an exact sequence

0→ E(Kd)/pE(Kd)→ Sel(Kd , pE)→X(E/Kd)[p] → 0.

Proposition 9.1.1. With p, f , d = p f
+ 1, and E as in the rest of the paper,

(1) Sel(Kd , pE) is an Fp-vector space of dimension (p− 1)(p f−1
+ 1) f/2, and

(2) X(E/Kd)= 0 if and only if f ≤ 2.

The proof of the proposition will occupy the rest of this section. Note that part (2)
follows easily from part (1) since we know that E(Kd)/pE(Kd) is an Fp-vector
space of dimension p f

− 1.
Let A= A(E, dx/2y) be the Hasse invariant of E . By a simple calculation (see,

e.g., [Husemöller 2004, §13, Proposition 3.5]), this is

A =
(p−1)/2∑

i=0

(
(p−1)/2

i

)2
t i .

Let α be a (p− 1)-th root of A in K , and let Fd,p be the field Kd(α). Then Fd,p is
a Galois extension of Kd with group F×p . We let Id,p→ P1

u be the corresponding
cover of smooth projective curves over Fq = Fp(µd). (Here I is for “Igusa”.) Then
the argument leading to [Ulmer 1991, Theorem 7.12b] yields an isomorphism

Sel(Kd , pE)∼= H 0(Id,p, �
1
Id,p
)ψ
−1,C=0,

where C= 0 indicates the kernel of the Cartier operator (i.e., the subspace of exact
differentials) and ψ−1 denotes the subspace where Gal(Fd,p/Kd)= F×p acts via the
character ψ−1 where ψ : F×p → k× is the natural inclusion.

(Some of the results of [Ulmer 1991] used just above are stated for p> 3, but this
is assumed only to guarantee that at places of potentially multiplicative reduction,
E obtains multiplicative reduction over an extension of degree prime to p. This is
true for the Legendre curve even when p = 3.)

Using the covering Id,p→ P1
u (which is ramified exactly where α has zeroes),

we find that

H 0(Id,p, �
1
Id,p
)ψ
−1
=

{
f (u) du
α p−2

∣∣∣∣ deg( f )≤ N
}
,

where f is a polynomial of degree at most N=(p−2)(p f
+1)/2−2 when d= p f

+1.
(For d = 1, there is also ramification at infinity and we have N = (p− 5)/2.) The
crux of the proof is to compute the subspace killed by the Cartier operator.
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To that end, we first make some calculations at level d = 1, i.e., on the curve I1,p.
Write

dt
α p−2 = ( f p

0 + t f p
1 + · · ·+ t p−1 f p

p−1) dt,

where the fi ∈ F1,p = Fp(t, α). Since (1/α)= (A/α p), the fi are all polynomials
in t times 1/α p−2. Note that C(t i dt/α p−2)= f p−1−i dt for i = 0, . . . , p− 1.

The key step in the proof of the proposition is the following calculation of
dimensions of certain spaces spanned by the fi . In it, we use angle brackets to
denote the Fq -span of the terms within.

Lemma 9.1.2. (1) dimFq 〈 f p−1, f p−2, . . . , f(p+3)/2〉 = (p− 3)/2.

(2) We have equalities and containments

〈 f p−1, . . . , f(p+3)/2〉 = 〈 f p−2, . . . , f(p+1)/2〉 = · · · = 〈 f(p−1)/2, . . . , f2〉

( 〈 f(p−1)/2, . . . , f1〉 = 〈 f(p−3)/2, . . . , f0〉

and

〈 f(p−3)/2, . . . , f0〉 = 〈 f(p−5)/2, . . . , f0, t f p−1〉 = · · · = 〈 f0, t f p−1, . . . , t f(p+3)/2〉.

Proof. Recall that K = K1 = Fp(t). First, we note that E(K )/pE(K ) = 0 by
[Ulmer 2014b, Propositions 5.2 and 6.1], and using the BSD formula as in [Ulmer
2014b, §10] shows that X(E/K )= 0. Thus, Sel(K , pE)= 0.

On the other hand, as we noted above, Sel(K , pE) is isomorphic to the kernel of
the Cartier operator on {

f (t) dt
α p−2

∣∣∣∣ deg( f )≤ (p− 5)/2
}
.

Since this kernel is trivial, we find that f p−1, . . . , f(p+3)/2 are linearly independent,
and this is the first claim of the lemma.

Now set g0 = −A′ = −d A/dt and gi = i A − t A′, and compute that A′dt =
−α p−2 dα so that dα = g0 dt/α p−2 and d(t iα)= t i−1gi dt/α p−2 for i ≥ 0. These
exact differentials provide relations among the fi . More precisely, note that g0 has
degree (p− 3)/2 and nonzero constant term, so C(g0dt/α p−2)= 0 implies that a
linear combination of f p−1, . . . , f(p+1)/2 is zero, and f p−1 and f(p+1)/2 appear in
this relation with nonzero coefficients. This implies that

〈 f p−1, . . . , f(p+3)/2〉 = 〈 f p−2, . . . , f(p+1)/2〉,

which is the first equality displayed in part (2) of the lemma.
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To obtain the rest of the equalities in that display, we set h0 = g0 and

hi =

(
(p−1)/2

i

)2
t i−1gi + hi−1

=

i∑
`=1

(
(p−1)/2

`

)2
t`−1g`+ g0

for i =1, . . . , (p−3)/2. One checks inductively that hi has degree (p−3)/2+i and
its nonzero term of lowest degree is −(i + 1)

(
(p−1)/2

i+1

)2t i . Thus, C(hi dt/α p−2)= 0
gives a relation among f p−1−i , . . . , f(p+1)/2−i , where the coefficients of f p−1−i and
f(p+1)/2−i are nonzero. These relations give the desired equalities between spans.

The proper containment in the second line of the first display in part (2) of the
lemma is equivalent to saying that f1 and 〈 f(p−1)/2, . . . , f2〉 are linearly independent.
One way to see this is to note that the α p−2 fi are polynomials in t and since the
degree of Ap−2 is congruent to 1 modulo p, α p−2 f1 has degree strictly greater than
α p−2 fi for i = 2, . . . , p−1. Thus, f1 and 〈 f p−1, . . . , f2〉 are linearly independent.

To obtain the remaining equalities of part (2), we consider the exact differentials
t i−1gi dt/α p−2 for i = (p + 1)/2, . . . , p − 1. In this range, t i−1gi has degree
(p− 3)/2+ i and lowest term of degree i − 1. For i = (p+ 1)/2, we get a relation
among f(p−1)/2, . . . , f0 with f(p−1)/2 and f0 appearing, yielding the last equality
in the first display of part (2). For i = (p+3)/2, . . . , p−1, we get relations among
f p−i , . . . , t f(3p+1)/2−i with f p−i and t f(3p+1)/2−i appearing, and these relations
give the equalities in the second display of part (2). �

We may now compute the rank of the Cartier operator on H 0(Id,p, �
1
Id,p
)ψ
−1

; in
other words,

R := dimFq C

({
f (u) du
α p−2

∣∣∣∣ deg( f )≤ (p− 2)(p f
+ 1)/2− 2

})
.

Noting that u = t/u p f
and du = u−p f

dt , we find that

C(ui+pj du/α p−2)= u j−(i+1)p f−1
fi du

for 0≤ i ≤ p− 1 and

0≤ j ≤

{
1
2(p− 3)p f−1

+
1
2(p

f−1
− 1) if i ≤ p− 3,

1
2(p− 3)p f−1

+
1
2(p

f−1
− 3) if i = p− 2, p− 1.

This implies that the image of C will be spanned by spaces of the form ue
〈 fa, . . . , fb〉.

To compute the dimension, we observe that if e1, . . . , e` are integers pairwise
noncongruent modulo d and if V1, . . . V` are Fq -vector spaces spanned by subsets
of {t j fi | 0≤ i ≤ p− 1, j ∈ Z}, then the subspaces uei Vi of Fd,p are linearly inde-
pendent over Fq . This plus the information in Lemma 9.1.2 suffices to compute R.
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An elaborate and somewhat unpleasant exercise in bookkeeping that we omit
leads to

R =
(p− 3)

2
(p− 1)

2
p f−1
+
(p− 3)

2
(p f
+ 3)
2

+
p− 1

2
(p f−1

− 1),

which in turn implies that

dimFq ker(C)= N + 1− R =
(p− 1)

2
(p f−1

+ 1)
2

.

Since [Fq : Fp] = 2 f , this completes the proof of Proposition 9.1.1.
The analysis above yields quite a bit more information about Sel(K , pE):

Corollary 9.1.3. The differentials

ωi, j = u pj−i p f
hi (t) du/α p−2

= ui+pj t−i hi (t) du/α p−2

for 0 ≤ i ≤ (p− 3)/2 and 0 ≤ j ≤ (p f−1
− 1)/2 are regular and exact, and they

give an Fq -basis for

Sel(K , pE)∼= H 0(Ip,d , �
1
Ip,d
)ψ
−1,C=0.

Proof. The proof of Proposition 9.1.1 shows that the displayed differentials are
exact and lie in the ψ−1 eigenspace. They are obviously linearly independent, and
since the number of them is the dimension of Sel(K , pE) over Fq , they form an
Fq -basis. �

We can also deduce results on the structure of Sel(K , pE) as a module over Fp[G]:

Corollary 9.1.4. If o ∈ O is an orbit whose pattern is ue1le2 · · · uek , then the multi-
plicity of 0o/p in Sel(K , pE) is k, and its multiplicity in X(E/Kd) is k− 1.

Proof. The previous corollary shows that as an Fp[G]-module, Sel(Kd , pE) is the
direct sum ⊕

0≤i≤(p−3)/2
0≤ j≤(p f−1

−1)/2

Fqui+pj .

If ` ∈ o, then by Proposition 2.8.1(5), Fqu` ∼= (0o/p)2 f/|o|.
Now an orbit o appears in the discussion above as many times as there are ` ∈ o

that can be written `= 1+ i+ pj with 0≤ i ≤ (p−3)/2 and 0≤ j ≤ (p f−1
−1)/2.

Writing `=
∑ f

k=1 ik pk−1 as in Section 8.1, we see that ` can be written `=1+i+pj
with i and j “small” in the sense above if and only if the word associated to `
begins and ends with the letter u. Thus, if the word of o is ue1 · · · uek′ le1 · · · lek′ ,
then the number of times o arises is k ′.

To finish, we note that the pattern of the standard base point of o is the first half of
w(o)2 f/|o|, and written in exponential form, this has k=k ′(2 f/|o|) runs of u’s. Thus,
0o/p appears k times in Sel(Kd , pE). This proves our claim about Sel(Kd , pE).
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The claim about X(E/Kd) follows from the fact that as an Fp[G]-module,
E(Kd)/p is the direct sum of all 0o/p with o ∈ O each taken with multiplicity 1.
(This follows immediately from Remark 2.8.3.) �

We need one more result from [Ulmer 1991]. To state it, recall that the Selmer
group for the isogeny Fr : E→ E (p) over Fp,d is naturally a subgroup of

F×p,d/F×p
p,d
∼=�

1
log(Fp,d),

where the latter is the space of meromorphic, logarithmic differentials on Ip,d . In
[Ulmer 1991, §5], we defined a logarithmic differential dq/q attached to E/Fp,d

that depends only on the choice of a (p− 1)-th root α of A (or, what amounts to
the same thing, a nontrivial point of order p in E (p)(Fp,d)).

Lemma 9.1.5. We have an equality

dq
q
=

α2 du
u(t − 1)

=
α2 du

u(ud − 1)

of meromorphic differentials on Ip,d and a calculation of Selmer groups:

Sel(Fp,d ,FrE)= Fp
dq
q
.

Proof. The same argument as in [Ulmer 1991, Theorem 7.6] shows that the
Selmer group Sel(Fp,d ,FrE) is isomorphic to the group of logarithmic differentials
with simple poles at places where E has multiplicative reduction and zeros of
order p at places where E has supersingular reduction. An easy exercise using
the covering Ip,d → P1

u shows that the only such differentials are the Fp-multiples
of α2du/u(t − 1). Since dq/q lies in this Selmer group (as the image of the chosen
point of order p on E (p)(Fp,d)), it is a nonzero multiple of α2du/u(t − 1). Which
multiple it is will not be material for what follows, so we omit the check that dq/q
is α2du/u(t − 1) on the nose. �

9.2. p-torsion in E(Kd)/Vd via flat cohomology. The results of [Ulmer 1991;
Broumas 1997] also afford good control on the p-torsion in E(Kd)/Vd . We continue
with the notation of the previous subsection. In particular, we assume that d= p f

+1.
We state our result in terms of the decomposition of E(Kd)/Vd as a module

over Zp[G] (in fact over Fp[G] since we are concerned only with the p-torsion).

Proposition 9.2.1. We have

ker(p : E(Kd)/Vd → E(Kd)/Vd)
o
=

{
0o/p if the word of o is not u f l f ,

0 if the word of o is u f l f .

Proof. First, we note that an easy application of the snake lemma shows that

ker(p : E(Kd)/Vd → E(Kd)/Vd)∼= ker(Vd/p→ E(Kd)/p).
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Moreover, we have an injection

E(Kd)/p ↪→ Sel(Kd , pE), (9.2.1)

so it will suffice to compute the kernel of the composed map Vd/p→ Sel(Kd , pE).
We will do this by using Broumas’ wonderful formula for (9.2.1) and the explicit
calculation of Sel(Kd , pE) in the preceding subsection.

Recall that Vd/p is isomorphic as an Fp[G]-module to
⊕

o∈O 0o/p and that this
Fp[G]-module is cyclic, generated by the point P(u)= (u, u(u+ 1)d/2) defined in
[Ulmer 2014b, §3].

As noted in the previous section, we have

Sel(Kd , pE)∼= H 0(Ip,d , �
1
i p,d
)C=0, ψ−1

.

Using [Ulmer 1991, Proposition 5.3], the space of exact differentials above can be
identified with a subgroup of the additive group of Kd via the mapω 7→α pω/(dq/q),
where dq/q is the differential computed in Lemma 9.1.5 and α is a root of α p−1

= A.
The main theorem of [Broumas 1997] gives an explicit formula for the composition

µ : E(Kd)→ Sel(Kd , pE)→ Kd .

To state the result, write

(x(x + 1)(x + t))(p−1)/2
= x p M(x)+ Ax p−1

+ lower-order terms

and let ℘A(z) = z p
− Az. Then (after a considerable amount of boiling down),

Broumas’ formula says

µ(P(u))= u(u+ 1)(p
f
+1)/2 M(u)−℘A(u(u+ 1)(p

f
−1)/2).

(We note that there is a typo in [Broumas 1997] in the case p= 3; Namely, in (36) on
page 140, “2Da2/a2+Da6/a6” should be replaced with “(2Da2/a2+Da6/a6)x”.)

The last displayed quantity is an element of the polynomial ring Fq [u], and we
are going to compute it modulo the ideal generated by t = ud .

To see that this will suffice for our purposes, recall from Corollary 9.1.3 the exact
differentials ωi, j giving an Fq -basis for the Selmer group. Using Lemma 9.1.5, we
find that

fi, j := α
pωi, j/(dq/q)= u1+i+pj t−i hi (t)(t − 1)

for 0≤ i ≤ (p− 3)/2 and 0≤ j ≤ (p f−1
− 1)/2. Thus, in order to write µ(P(u))

in terms of the fi, j , it suffices to know µ(P(u)) modulo t .
Straightforward computation from the definition shows that

M(u)≡
(u+ 1)(p−1)/2

− 1
u

and A ≡ 1 (mod tFq [u]).
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Thus,

µ(P(u))≡ (u+1)(p
f
+p)/2
−(u+1)(p

f
+1)/2
−u p(u p

+1)(p
f
−1)/2
+u(u+1)(p

f
−1)/2

= (u+1)(p
f
−p)/2((u+1)p

−(u+1)(p+1)/2

−u p(u p
+1)(p

f
−p f−1)/2

+u(u+1)(p−1)/2)
≡ (u+1)(p

f
−p)/2(1−(u+1)(p−1)/2)

=−u
( (p−3)/2∑

j=0

(
(p−1)/2

i+1

)
ui
)
(1+u p)(p−1)/2

· · · (1+u p f−1
)(p−1)/2.

(To pass from the second line to the third, note that the sum of the first and third
terms inside the large parentheses is congruent to 1 modulo t .)

The last expression makes it clear that µ(P(u)) (mod tFq [u]) is the sum of
terms cu` where u` appears with nonzero coefficient if and only if `= 1+

∑
ik pk−1

with i1 ≤ (p− 3)/2 and ik ≤ (p− 1)/2 for 2≤ k ≤ f . It follows that µ(P(u)) is a
linear combination (with nonvanishing coefficients) of the fi, j where `= 1+ i+ pj
satisfies the same condition.

Now by Proposition 2.8.1(5), the Fp[G]-modules Fqu` with ` satisfying the
conditions just above are pairwise nonisomorphic. Thus, the Fp[G]-submodule of
the Selmer group generated by µ(P(u)) is the direct sum of the corresponding 0o/p.
The orbits in question are precisely those with word u f l f , and this shows that the
image of Vd/p→ E(Kd)/p is isomorphic to⊕

o∈O
w(o)=u f l f

0o/p.

The kernel is thus the sum of the 0o/p, where o runs through orbits with words not
equal to u f l f . �

The proposition allows us to recover large parts of Theorem 1.1: it shows that
(E(Kd)/Vd is nontrivial if and only if f > 2, and together with Corollary 9.1.4,
it shows that X(E/Kd) is not isomorphic to (E(Kd)/Vd)

2 as an abelian group
if f > 4.

9.3. An extension to p = 2. In this subsection, we explain how the main results
of the paper can be extended to the case where p = 2.

To that end, let p be an arbitrary prime number and let E ′ be the elliptic curve
over K ′ = Fp(t ′) defined by

y2
+ xy+ t ′y = x3

+ t ′x2.

As explained in [Ulmer 2014b, §11; Conceição et al. 2014, §11], if p > 2 and we
identify K ′ and K by sending t ′ to t/16, then E and E ′ are 2-isogenous. Moreover,
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for d= p f
+1, the fields K ′d =Fp(µd , t ′1/d) and Kd =Fp(µd , t1/d) can be identified

as extensions of K . Having done so, one finds that the subgroup V ′d⊂E ′(K ′d) defined
in [Ulmer 2013, Remark 8.10(3)] is carried over to Vd ⊂ E(Kd). It follows that
Theorem 1.1 and its refinements in Section 3 hold for E ′(K ′d)/V ′d and X(E ′/K ′d).

Now the equation above also defines an elliptic curve when p = 2. Moreover,
the Néron model of E ′/K ′d is dominated by a product of curves (two copies of the
curve C′ over Fp(µd) defined by zd

= x(1−x)); see [Conceição et al. 2014, Theorem
11.2(5)]. Thus, the methods of this paper may be used to compute E ′(K ′d)/V ′d
and X(E ′/K ′d) as modules over Zp[Gal(K ′d/K )]. Most of the results have the
same form, and the proofs are mostly parallel, so we will briefly discuss some of
the differences and then state the results.

The analogue of the geometric analysis leading to Theorem 4.2 gives an isomor-
phism

(E ′(K ′d)/tor)⊗Z[1/d] −→∼ (NS′(C×C)⊗Z[1/d])µd ,

where the µd in the exponent is acting antidiagonally. (In fact, the most natural way
to state this would be with the arrow going the other way and with the target being
the subgroup of E ′(K ′d) generated by the point in [Ulmer 2013, Theorem 8.1(2)]
and its Galois conjugates. This subgroup is free of rank d − 1 and is a complement
to the torsion subgroup.) The analogue of the isomorphism of Tate–Shafarevich
and Brauer groups in Theorem 4.2(2) goes through for E ′ without change.

The analysis of the arithmetic of a product in Section 5 was done there also
for p = 2, and the description of the cohomology of C in Section 6 works for C′

as well with very minor changes. The p-adic exercises in Section 7 also work
essentially unchanged.

Altogether, one finds that the obvious analogues of Theorem 1.1 parts (1)
through (4) hold for E ′/K ′d . Similar analogues hold for the refined Theorems 3.2.1
and 3.3.1.

There are a few differences to report as well. For example, part (5) of Theorem 1.1
does not extend to p = 2. Indeed, the polynomial appearing there does not even
take integral values at p = 2. The correct statement can be deduced from the proof
in Section 8.6 by noting that the number of elements in Z/dZ \ {0} with a given
pattern is 1 (rather than (p− 1)a(p+ 1)b/2 f as in Lemma 8.1.1).

The results of Sections 9.1 and 9.2 also extend to E ′. One finds that the order
of Sel(K ′d , pE ′) is 2 f−1 f +1. The refined results of Corollary 9.1.4 and Proposition
9.2.1 hold as stated. However, the details of the 2-descent have a different flavor
because E ′ has a 2-torsion point over K ′ so the kernel of p is the direct sum of the
kernels of Frobenius and Verschiebung and the differential dq/q is zero. We leave
the details as an exercise for the interested reader.
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9.4. Higher genus. Let p be a prime number and r and d integers relatively prime
to p, and consider the curve X defined by

yr
= xr−1(x + 1)(x + t)

over Fp(t) and its extensions Fq(u) with ud
= t . The genus of X is r − 1, and its

Jacobian J has interesting arithmetic over Fq(u) for many values of d .
For simplicity, we will only discuss the case where r divides d, d = p f

+ 1,
and Fq =Fp(µd). We write Kd for Fq(u). In [Berger et al.≥ 2015], explicit divisors
are given on X whose classes in J (Kd) generate subgroup Vd of rank (r−1)(d−2)
and finite, p-power index. Moreover, it is shown there that we have a class-number
formula

|X(J/Kd)| = [J (Kd) : Vd ]
2.

Most of the results of this paper extend to this situation and give an explicit
calculation of X(J/Kd) and J (Kd)/Vd as modules over the group ring Zp[G],
where G = µd oGal(Fq/Fp).

Indeed, we saw in Section 4.6 that the minimal regular model X → P1
u of

X/Kd is birational to the quotient of a product of curves by a finite group. The
product is S = C× C, where C is the smooth proper curve over Fq defined by
zd
= xr

− 1. We deduce from this a connection between the Mordell–Weil and
Tate–Shafarevich groups of J and the Néron–Severi and Brauer groups of S as at
the end of Section 4.6. These groups are described in crystalline terms in Section 5.

As we saw in Section 6.5, the crystalline cohomology of C breaks up into lines
indexed by the set

S = {(i, j) ∈ (Z/dZ)× (Z/rZ) | i 6= 0, j 6= 0, 〈i/d〉+ 〈 j/r〉 6= 1}.

The subspace H 0(C/Zp, �
1
C/Zp

) is generated by the lines indexed by (i, j) with
〈i/d〉 + 〈 j/r〉 < 1. Calling this subset A and letting B = S \ A, we may use A
and B to define words associated to orbits of 〈p〉 acting diagonally on S and to
define a notion of balanced as discussed at the end of Section 6.5.

The p-adic exercises of Section 7 go through essentially unchanged, and inter-
preting “balanced” as above, we find that Theorem 1.1 parts (1) through (4) and the
refined results in Theorems 3.1.1, 3.2.1, and 3.3.1 hold as stated. An interpolation
result, as in part (5) of Theorem 1.1, also holds with a polynomial F that depends
on r and f but not on p.

Exploring the arithmetic of J for other values of r and d looks like an interesting
project. In particular, one may ask about other systematic sources of nontorsion
points on J as in [Conceição et al. 2014] and about the relative abundance or
scarcity of balanced rays for fixed p and varying r and d as in [Pomerance and
Ulmer 2013].
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