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K3 surfaces and equations
for Hilbert modular surfaces

Noam Elkies and Abhinav Kumar

We outline a method to compute rational models for the Hilbert modular surfaces
Y−(D), which are coarse moduli spaces for principally polarized abelian surfaces
with real multiplication by the ring of integers in Q(

√
D), via moduli spaces of

elliptic K3 surfaces with a Shioda–Inose structure. In particular, we compute
equations for all thirty fundamental discriminants D with 1 < D < 100, and
analyze rational points and curves on these Hilbert modular surfaces, producing
examples of genus-2 curves over Q whose Jacobians have real multiplication
over Q.

1. Introduction

Hilbert modular surfaces have been objects of extensive investigation in complex
and algebraic geometry, and more recently in number theory. Since Hilbert modular
varieties are moduli spaces for abelian varieties with real multiplication by an order
in a totally real field, they have intrinsic arithmetic content. Their geometry is
enriched by the presence of modular subvarieties.

In [Hirzebruch 1973; Hirzebruch and van de Ven 1974; Hirzebruch and Zagier
1977] the geometric invariants of many of these surfaces were computed, and they
were placed within the Enriques–Kodaira classification. A chief aim of the present
work is to compute equations for birational models of some of these surfaces over
the field of rational numbers.

More precisely, let D be a positive fundamental discriminant, i.e., the discrimi-
nant of the ring of integers OD of the real quadratic field Q(

√
D). The quotient

PSL2(OD)\(H+ ×H−) (where H+ and H− are the complex upper and lower
half-planes) parametrizes abelian surfaces with an action of OD. It has a natural

Elkies was supported in part by NSF grants DMS-0501029 and DMS-1100511. Kumar was supported
in part by NSF grants DMS-0757765 and DMS-0952486, and by a grant from the Solomon Buchsbaum
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Research. He also thanks Princeton University for its hospitality during Fall 2009.
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compactification Y−(D), obtained by adding finitely many points and desingulariz-
ing these cusps.

These surfaces Y−(D) have models defined over Q, and the main goal of this
paper is to describe a method to compute explicit equations for these models, as well
as to carry out this method for all fundamental discriminants D with 1< D < 100.
This felt like a good place to stop for now, though these calculations may be extended
to some higher D, as well as to non-fundamental discriminants.

We briefly summarize the method, which we describe in more detail in later
sections. The method relies on being able to explicitly parametrize K3 surfaces that
are related by Shioda–Inose structure to abelian surfaces with real multiplication
by some OD . The K3 surface corresponding to such an abelian surface has Néron–
Severi lattice containing L D, a specific indefinite lattice of signature (1, 17) and
discriminant −D. In all our examples, we obtain the moduli space MD of L D-
polarized K3 surfaces as a family of elliptic surfaces with a specific configuration
of reducible fibers and sections.

We then use the 2- and 3-neighbor method to transform to another elliptic
fibration, with two reducible fibers of types II∗ and III∗ respectively. This lets
us read off the map (generically one-to-one) of moduli spaces from MD into the
3-dimensional moduli space A2 of principally polarized abelian surfaces, using
the formulae from [Kumar 2008]. The image of MD is the Humbert surface
corresponding to discriminant D. The Hilbert modular surface Y−(D) itself is a
double cover of the Humbert surface, branched along a union of modular curves.
We use simple lattice arguments to obtain the branch locus, and pin down the exact
twist for the double cover by counting points on reductions of the related abelian
surfaces modulo several primes. In all our examples, the Humbert surface happens
to be a rational surface (i.e., birational to P2 over Q), and we display the equation of
Y−(D) as a double cover of P2 branched over a curve of small degree. We analyze
these equations in some detail, attempting to produce rational or elliptic curves on
them, with the intent of producing several (possibly infinitely many) examples of
genus-2 curves whose Jacobians have real multiplication. When Y−(D) is a K3
surface, it often has very high Picard number (19 or 20), and we attempt to compute
generators for the Picard group. When Y−(D) is an honestly elliptic surface, we
analyze the singular fibers and the Mordell–Weil group, and attempt to compute a
basis for the sections.

To our knowledge, this is the first algebraic description of most of these surfaces
by explicit equations. We outline some related work in the literature. Wilson [1998;
2000] obtained equations for the Hilbert modular surface Y−(5) corresponding to
the smallest fundamental discriminant D > 1. Van der Geer [1988] gives a few
examples of algebraic equations for Hilbert modular surfaces corresponding to a
congruence subgroup of the full modular group (in other words, abelian surfaces
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with some level structure). Humbert surfaces have also been well-studied in the
literature, and Runge [1999] and Gruenewald [2008] have obtained equations for
some of these. However, these equations are quite complicated, and do not shed
as much light on the geometry of Hilbert modular surfaces. While the methods
are simpler, involving theta functions and q-expansions, the result is analogous to
exhibiting the modular polynomial whose zero locus in A1

×A1 is a singular model
of the complement of the cusps in the modular curve X0(N ). The coefficients of
these polynomials can quickly become enormous. We believe that our approach,
giving simpler equations for these surfaces together with their maps to A2, is more
conducive to an investigation of arithmetic properties.

It is our hope that these equations will be of much help in subsequent arithmetic
investigation of these surfaces. For instance, they should provide a testing ground
for many conjectures in Diophantine geometry, because of the abundance of rational
curves and points. Another direction of future investigation is to use these equations
to investigate modularity of the corresponding abelian surfaces. Modularity of
abelian varieties with real multiplication over Q is now proven, by combining
results of Ribet [2004] with the recent proof of Serre’s conjecture by Khare and
Wintenberger [2009a; 2009b]. However, unlike the case of dimension 1, where
one has modular parametrizations and very good control of the moduli spaces, the
situation in dimensions 2 and above is much less clear. For instance, it is not at all
clear how to find a modular form corresponding to a given abelian surface with
real multiplication.1 We hope that the abundance of examples provided by these
equations will help pave the path for a better understanding of the 2-dimensional
case. For example, in [Dembélé and Kumar 2013], our formulas are combined with
efficient computation of Hilbert modular forms to find examples of simple abelian
surfaces over real quadratic fields, with everywhere good reduction. An example of
such an abelian surface is the Jacobian of the genus-2 curve

2y2
= x6
− τ x5

+ 74x4
− 14τ x3

+ 267x2
− 13τ x + 46

=

(
x3
−

1+ τ
2

x2
+ 13x +

3− τ
2

)(
x3
+

1− τ
2

x2
+ 13x −

3+ τ
2

)
,

where τ =
√

193 (the curve and its Jacobian can in fact be defined over Q, but the
Jacobian attains everywhere good reduction and real multiplication by O17 only
over Q(τ )).

1 Suppose A/Q is an abelian surface with Q-endomorphisms by OD , and let ϕ =
∑

n anqn be an
eigenform with every an ∈ OD . If ϕ corresponds to A then counting points over Fp and Fp2 determines
each ap up to Galois conjugation. But conceivably there might be some eigenform ϕ′ =

∑
n a′nqn ,

different from both ϕ and its Galois conjugate, such that each a′p equals either ap or the Galois
conjugate of ap; if that happens, we do not know how to decide which eigenform corresponds to A.
Likewise for abelian varieties of dimension 3 and higher.
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The outline for the rest of the paper is as follows. In Section 2, we describe the
relevant background on K3 surfaces and their moduli spaces, and their connection
to moduli spaces of abelian surfaces via Shioda–Inose structures. In Section 3,
we describe the Hilbert modular surfaces and the corresponding moduli spaces of
K3 surfaces. In Section 4, we precisely describe our methods to compute their
equations. Section 5 describes the 2- and 3-neighbor method in more detail. The
rest of the paper consists of detailed examples of Hilbert modular surfaces for
the discriminants less than 100, as well as an arithmetic investigation of these
surfaces.

An accompanying online supplement contain formulas for the Igusa–Clebsch
invariants, as well as a description of the parametrizations exhibited for the moduli
spaces of K3 surfaces in the paper, and the details of the neighbor steps to transform
to a fibration with II∗ and III∗ fibers. The online supplement can be obtained
from this article’s publication page. The files are also available as part of the
source package for the arXiv version of this article (arXiv 1209.3527). See the file
README.txt for an overview.

2. Moduli spaces of abelian surfaces and lattice polarized K3 surfaces

Throughout this section, we work with K3 surfaces over a field k of characteristic 0.
When convenient, we will suppose k ⊆ C, and use transcendental methods.

2.1. K3 surfaces. A K3 surface X over k is a projective algebraic nonsingular
surface with h1(X,OX )= 0 and K X ∼=OX . For such a surface, H 2(X,Z) is torsion-
free, and when endowed with the cup-product form becomes a 22-dimensional
lattice, abstractly isomorphic with 3 := E8(−1)2 ⊕ U 3. Here E8 is the even
unimodular lattice in eight dimensions, U is the hyperbolic plane with Gram matrix(

0 1
1 0

)
, and for any lattice 3 and real number α, the lattice 3(α) consists of the

same underlying abelian group with the form multiplied by α. The Néron–Severi
group NS(X) of algebraic divisors defined over k modulo algebraic equivalence,
which for a K3 surface is the same as linear or numerical equivalence, is a prim-
itive sublattice of 3 of signature (1, ρ − 1), where ρ ∈ {1, . . . , 20} is the Picard
number of X . The orthogonal complement of NS(X) is the transcendental lattice
TX . There is a Torelli theorem for K3 surfaces, due to Piatetski-Shapiro and
Shafarevich [1971] and Friedman [1984], which describes the moduli space of
K3 surfaces with a fixed polarization. More generally, let L be an even nonde-
generate lattice of signature (1, r − 1), with r ∈ {1, . . . , 20}. Assume that L has
a unique primitive embedding in 3, up to isometries of 3. Then there is a coarse
moduli space FL of L-polarized K3 surfaces (X, j), where j : L → NS(X) is
a primitive lattice embedding such that j (L) contains a pseudo-ample class on
X . The space FL is isomorphic to the quotient of an appropriate fundamental

http://msp.berkeley.edu/ant/2014/8-10/ant-v8-n10-x01-equations.zip
http://msp.berkeley.edu/ant/2014/8-10/ant-v8-n10-x01-equations.zip
http://dx.doi.org/10.2140/ant.2014.8.2297
http://arxiv.org/abs/1209.3527
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domain
�L = P

(
{ω ∈ L⊥⊗C | 〈ω,ω〉 = 0, 〈ω, ω̄〉> 0}

)
by an arithmetic subgroup 0L , which is the image of

0(L)= {σ ∈ O(3) | ∀x ∈ L , σ (x)= x}

in O(3⊥). (Here, we have fixed an embedding i : L → 3, so we may use its
orthogonal complement L⊥.) Therefore FL is a quasiprojective variety.

In fact, there is a fine moduli space KL of marked pseudo-ample L-polarized
K3 surfaces, i.e., (X, φ), where φ : H 2(X,Z)→3 is an isomorphism (a marking)
such that φ−1(L) ⊆ NS(X). There is a period map which associates to such a
marked K3 surface the class of the global algebraic 2-form up to scaling, giving a
point [ω] ∈ P(L⊥⊗C). Furthermore, ω∪ω = 0 and ω∪ω > 0. This domain �L

consists of two copies of a bounded Hermitian domain of type IV20−r . The period
map (X, φ)→ [ωX ] sets up an isomorphism between the moduli space KL and the
period domain �L , using the Torelli theorem and the surjectivity of the period map
[Kulikov 1977; Persson and Pinkham 1981]. The quotient 0L\KL ∼=0L\�L forgets
the marking, and describes a coarse moduli space of L-polarized K3 surfaces. For
details, the reader may consult [Nikulin 1979a; Dolgachev 1996].

2.2. Elliptic K3 surfaces. We shall be especially interested in moduli spaces of
elliptic K3 surfaces. In this paper, an elliptic K3 surface will be a K3 surface X
with a relatively minimal genus-1 fibration π : X→ P1, together with a section. In
other words, we may write a Weierstrass equation of X over P1

t as

y2
+ a1(t)xy+ a3(t)y = x3

+ a2(t)x2
+ a4(t)x + a6(t), (1)

with ai (t) a polynomial in t of degree at most 2i . (More canonically, each ai is a
homogeneous polynomial of degree 2i in the two homogeneous coordinates of P1

t .)
Of course, this Weierstrass equation describes the generic fiber of X ; to understand
the reducible special fibers, one can use Tate’s algorithm [1975] to blow up the
singular points and describe the minimal proper model. (This will also detect when
a Weierstrass equation (1) is equivalent to one with each ai vanishing to order
at least i at some t0, that is, when the equation gives not a K3 elliptic surface
but a rational or constant one.) The singular fibers are classified by Kodaira and
Néron, and the non-identity components of any reducible fiber π−1(v) contribute
an irreducible root lattice (scaled by −1), say Lv , to the Néron–Severi lattice. The
trivial lattice is defined to be

T = ZO ⊕ZF ⊕
(⊕

v

Lv

)
(note that O and F span a copy of the hyperbolic plane U ).
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A theorem of Shioda and Tate [Shioda 1972; 1990; Tate 1966b] shows that as long
as the elliptic fibration is nontrivial (equivalently, it has at least one singular fiber),
the Mordell–Weil group of X over P1 is isomorphic to NS(X)/T . In particular, we
have the Shioda–Tate formula

ρ(X)= 2+ rank MW(X/P1)+
∑
v

rank Lv.

One may also compute the discriminant of the Néron–Severi lattice:

|disc(NS(X))| =
det(H(X/P1)) ·

∏
v disc(Lv)

|MW(X/P1)tors|2
,

where H(X/P1) is the height pairing matrix for a basis of the torsion-free part of
the Mordell–Weil group of X over P1.

If F is the class of the fiber for an elliptic K3 surface X , then F is primitive
and nef, with F2

= 0. Conversely, suppose that F ∈ NS(X) is a nonzero divisor
class which is primitive and nef with F2

= 0. Then a simple application of the
Riemann–Roch theorem shows that F or −F must be effective, and since F is nef,
it must be represented by an effective divisor. Then a theorem of Piatetski-Shapiro
and Shafarevich [1971, p. 559] shows that F defines a genus-1 fibration.

Lemma 1. Let F =
∑

ai Ei be a positive linear combination of smooth rational
curves on a K3 surface X such that F ·Ei = 0 for all i , and such that F is a primitive
class in NS(X). Then F defines a genus-1 fibration.

Proof. We have F2
=
∑

ai (F · Ei )= 0. By the above discussion, it is enough to
show that F is nef. Let E ′ be an irreducible curve on X . If E ′ is distinct from
the Ei , then Ei ·E ′ ≥ 0 for every i , and so F ·E ′ ≥ 0. On the other hand, if E ′= Ei ,
say, then F · E ′ = F · Ei = 0. Therefore F is nef. �

Let us define an elliptic divisor to be a divisor satisfying the conditions of
Lemma 1. We will frequently use this lemma, displaying an elliptic divisor by
finding a subdiagram of the set of roots of NS(X), represented by smooth rational
curves, which is an extended Dynkin diagram for a root lattice. Then the class of
the appropriate linear combination of roots F will define a genus-1 fibration. We
need to know when such a fibration has a section.

Lemma 2. Suppose F is an elliptic divisor defining a genus-1 fibration π : X→P1.
Suppose D ∈ NS(X) satisfies D · F = 1. Then π has a section.

Proof. Consider the divisor D′ = D + m F , for some large integer m. Then
(D′)2 = D2

+ 2m, while K ≡ 0, so the Riemann–Roch theorem implies

h0(D′)− h1(D′)+ h2(D′)=
(D′)2

2
+χ(OX )= D2

+m+ 2.
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Also, h2(D′)= h0(K−D′)= h0(−D′)= 0 by Serre duality, and since (−D′) ·H =
−D · H − m F · H < 0 for any ample divisor H , as long as m is large enough.
Therefore we see that for large m, the divisor class D′ can be represented by an
effective divisor, which we may call D′, by abuse of notation. Note that we still
have D′ · F = 1. Decompose D′ as D′vert+ D′hor, where the first term contains all
the components which lie along fibers of the genus-1 fibration defined by F , and
the second contains the other components. Then D′hor · F = 1. Therefore, D′hor must
be reduced and irreducible, and thus defines a section of the genus-1 fibration. �

Corollary 3. Let F be an elliptic divisor, and let D1 and D2 be two divisor classes
such that D1 · F and D2 · F are coprime. Then the fibration has a section.

Proof. There exist integers a1, a2 such that (a1 D1 + a2 D2) · F = 1. Now take
D = a1 D1+ a2 D2 in Lemma 1. �

Finally, we note a lattice-theoretic result which allows us to deduce that in all of
the cases studied in this paper, the genus-1 fibration defined by an elliptic divisor
F has a section.

Proposition 4. Let D be a fundamental discriminant, and let L = U ⊕ N (−1),
where U is the hyperbolic plane and N a positive definite lattice of rank 16 and
discriminant D. Suppose in addition that N contains a sublattice isomorphic to
E8⊕ E7. If v ∈ L is a primitive vector with v · v = 0, then there exists w ∈ L such
that v ·w = 1.

Proof. Suppose not. Then {v ·w : w ∈ L} = cZ for some integer c > 1. Since v is
primitive, we can take a basis v1 = v, . . . , v16 of L . Then

L ′ = Z(v/c)+Zv2+ · · ·+Zv16

is an integral lattice containing L with index c > 1. Since L ′ ⊃ L ⊃ U , we have
L ′ = U ⊕ N ′(−1) (since U is unimodular), with N ′ a positive definite lattice
containing N with index c. Then N ′ must be generated by E8⊕ E7 and a vector x
whose projection x⊥ to the orthogonal complement of E8⊕ E7 has norm D/(2c2).
The dual lattice of E8⊕E7 has norms congruent to 0 or 3

2 modulo 2, so x⊥ has norm
0 or 1

2 mod 2. Therefore D/c2 must be an integer congruent to 0 or 1 modulo 4.
Since D is a fundamental discriminant, this is impossible. �

For the examples in this paper, we will often draw a Dynkin-type diagram
indicating some of the roots of NS(X) for an elliptic K3 surface X , which will
always be nodal classes (i.e., classes of smooth rational curves on X ). We will
outline an elliptic divisor F by drawing a subdiagram in bold which cuts out an
extended Dynkin diagram of an irreducible root lattice (the multiplicities will be
omitted). Where convenient, we will also indicate the class of a divisor D such that
D · F = 1 (in some cases, there is an obvious node in the Dynkin diagram satisfying
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this property), or the classes of two divisors D1 and D2 such that D1 · F and D2 · F
are coprime. This is not strictly necessary, because Proposition 4 guarantees the
existence of such a divisor D, but having an explicit divisor might be useful for
further calculations. Then F defines another elliptic fibration with section on X ,
and we may proceed as in Section 5 to write down its Weierstrass equation.

2.3. Kummer surfaces, Nikulin involutions and Shioda–Inose structures. Let A
be an abelian surface, and consider the involution ι on A defined by multiplication
by −1 in the group law. The quotient of A by the group {1, ι} is a surface Y ′ with
sixteen singularities, the images of the 2-torsion points of A. In fact, Y ′ may be
realized as a quartic surface in P3 with sixteen ordinary double points (which is
the maximum number of singularities possible for a quartic surface in P3 [Hudson
1990, p. 15]), by considering the linear system on A corresponding to twice the
theta divisor. The corresponding map is two-to-one from A to Y ′.

Taking the minimal desingularization of Y ′ gives a K3 surface Y , the Kummer
surface of A, which contains sixteen disjoint nodal classes coming from the blowups
of the singular points. Note that if A is defined over some number field k, then so
is Y = Km(A). The Néron–Severi lattice of the surface Y contains the saturation
of the lattice spanned by the sixteen special nodal classes; this is a lattice 3Km

of signature (0, 16) and discriminant 26. Conversely, Nikulin showed that a K3
surface whose Néron–Severi lattice contains 3Km must be the Kummer surface
of some complex torus. Of course, since A is an abelian variety, Y is a projective
surface, so NS(Y ) contains an ample divisor as well.

We will be especially concerned with the case when A= J (C) is the Jacobian of
a curve of genus 2. Let x0, . . . , x5 be the Weierstrass points of C . The embedding
η0 : C → A given by x 7→ [x] − [x0] gives a particular theta divisor on A, and
the translates η0(C)+ [xi ] − [x j ] with 0 ≤ i < j ≤ 5 give fifteen more special
divisors. The images of these sixteen divisors (tropes) on the Kummer surface of
A are disjoint rational curves, and each intersects six rational curves coming from
the blowups of the singular points (i.e., the nodes). This classical configuration
of tropes and nodes on the Kummer surface is called the (16, 6) configuration,
and the intersection pairing describes a vertex- and edge-transitive bipartite graph
of degree 6 on 32 vertices, isomorphic with the quotient of the 6-cube by central
reflection.

Next, consider a K3 surface X with a symplectic involution ι, i.e., an involution
ι that multiplies the algebraic 2-forms on X by +1 (such an involution of X is also
known as a Nikulin involution). Then ι has eight fixed points on X , and the minimal
desingularization Y of the quotient X/{1, ι} is again a K3 surface. If in addition Y
is a Kummer surface Km(A) and the quotient map π : X → Y induces a Hodge
isometry π∗ : TX (2) ∼= TY , we say that X and A are related by a Shioda–Inose
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structure. We have a diagram

X

��

A

��

Y

of rational maps of degree 2, and Hodge isometries TX (2) ∼= TY ∼= TA(2), thus
inducing a Hodge isometry TX ∼= TA. (Note: A Hodge isometry is an isometry of
cohomology lattices compatible with the Hodge decomposition.)

Conversely, a theorem of Morrison [1984] shows that any Hodge isometry
between TX and TA for a K3 surface X and an abelian surface A is induced by a
Shioda–Inose structure.

2.4. Elliptic K3 surfaces with II∗ and III∗ fibers, and curves of genus 2. We shall
exploit such a Shioda–Inose correspondence between Jacobians of genus-2 curves
and elliptic K3 surfaces with singular fibers of type II∗ and III∗; equivalently, whose
root lattices Lv are E8 and E7 respectively. Let C be a curve of genus 2 over k, and
let

y2
= f (x)= f6x6

+ · · ·+ f0 = f6
∏
(x −αi )

be a Weierstrass equation for C , with fi ∈ k and αi ∈ k (though in general αi /∈ k).
There exist polynomial functions I2( f ), I4( f ), I6( f ) and I10( f ) = disc( f ) of
degrees 2, 4, 6, 10 in the coefficients of f (the Igusa–Clebsch invariants of f ),
giving a well-defined point (I2 : I4 : I6 : I10) in weighted projective space P3

1,2,3,5
which does not depend on the choice of Weierstrass equation. The complement
of the hyperplane z4 = 0 (where z4 is the last coordinate on P3

1,2,3,5) yields a
coarse moduli space M2 of curves of genus 2 [Igusa 1960]. Note that I10 is the
discriminant of the sextic polynomial f , and therefore it cannot vanish. Also, the
space M2 has a singular point at (0 : 0 : 0 : 1), corresponding to the curve y2

= x5
+1.

Given α1, α2, α3, α5 ∈ k, with α5 6= 0, it is not necessarily the case that one can
construct a genus-2 curve over k with invariants Id = α2d . There is an obstruction in
Br2(k): when it vanishes, the construction of C is made explicit by Mestre [1991].
In any case, C may always be defined over a quadratic extension of k. When k is
a finite field, the Brauer obstruction vanishes, and we may define C over k. Also
note that such a curve C is unique only up to k-isomorphism, since M2 is only a
coarse moduli space.

The main result of [Kumar 2008] is the following.

Theorem 5. The elliptic K3 surface given by the Weierstrass equation

y2
= x3
− t3

(
I4

12
t + 1

)
x + t5

(
I10

4
t2
+

I2 I4− 3I6

108
t +

I2

24

)
,



2306 Noam Elkies and Abhinav Kumar

which has elliptic fibers of type E8 and E7 respectively at t = ∞ and t = 0, is
related by a Shioda–Inose structure to the Jacobian of the genus-2 curve C whose
Igusa–Clebsch invariants are (I2 : I4 : I6 : I10).

Let L be U⊕ E8(−1)⊕ E7(−1). Then the above theorem gives an isomorphism

ψ :M2→ EE8,E7

between the coarse moduli space M2 of genus-2 curves and the moduli space
of elliptic K3 surfaces with an E8 fiber at∞ and an E7 fiber at 0. Furthermore,
this correspondence is Galois-invariant: the Igusa–Clebsch invariants of C and the
Weierstrass coefficients of the K3 surface are defined over the same field. This is
the key fact which leads to number-theoretic applications, such as computation of
models of Shimura curves over Q in [Elkies 2008] or of Hilbert modular surfaces
in this paper. However, note that C may not be itself defined over the ground field,
even though its Igusa–Clebsch invariants are.

Now, let A2 be the moduli space of principally polarized abelian surfaces. Note
that the space M2 is the complement of the divisor in A2 consisting of points
corresponding to the product of two elliptic curves. On the other hand, the moduli
space EE8,E7 is an open subset of the moduli space FL of K3 surfaces polarized by
L =U ⊕ E8(−1)⊕ E7(−1). We may write such a K3 surface in Weierstrass form

y2
= x3
+ t3(at + a′)x + t5(b′′t2

+ bt + b′).

It has an E8 fiber at t =∞ and at least an E7 fiber at t = 0. The discriminant of
the cubic polynomial is

d =−t9(27b′′2t5
+ 54bb′′t4

+ (4a3
+ 27b2

+ 54b′b′′)t3

+(12a2a′+ 54bb′)t2
+ (12aa′2+ 27b′2)t + 4a′3

)
.

By Tate’s algorithm, b′′ 6= 0 (otherwise we would have a rational elliptic surface),
and the fiber at t =∞must be of type E8, while the fiber at t = 0 is of type E7 if and
only if a′ 6= 0, in which case one may set a′ =−1 by scaling (x, y, t) appropriately.
If on the other hand a′ = 0, then the E7 fiber gets promoted to an E8 fiber (and
no further, since b′ cannot vanish, else we would have a rational elliptic surface).
Therefore, the moduli space EE8,E7 is the complement in FL of the hypersurface
a′ = 0 that corresponds to polarization by U ⊕ E8(−1)⊕ E8(−1).

When we do have a′ = 0, it was shown by Inose that the K3 surface

y2
= x3
+ at4x + t5(b′′t2

+ bt + b′)

has a Shioda–Inose structure, making it 2-isogenous with a product of two elliptic
curves [Inose 1978; Shioda 2006; Kuwata and Shioda 2008; Clingher and Doran
2007; Elkies ≥ 2015]. Recall that b′b′′ 6= 0, and it follows from the formulas in
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[Inose 1978; Shioda 2006; Kumar 2008] that the j-invariants j1, j2 of the two
elliptic curves are determined by

j1
1728

j2
1728

=
−a3

27b′b′′
,

(
1−

j1
1728

)(
1−

j2
1728

)
=

b2

4b′b′′
.

Note that again the map is Galois invariant and invertible, since a is only defined
up to a cube root of unity (one may scale x by a cube root of unity), and b is only
defined up to sign (one may scale t by −1).

Putting everything together, we have the following proposition.

Proposition 6. There is a Galois invariant isomorphism φ : FL → A2, which
on the open subset EE8,E7 restricts to the inverse of the explicit isomorphism ψ :

M2→ EE8,E7 given by Theorem 5.

For a Hodge-theoretic approach to this isomorphism of moduli spaces, see
[Gritsenko and Nikulin 1997, pp. 186–188].

3. Humbert surfaces and Hilbert modular surfaces

We next discuss moduli spaces of abelian surfaces with real multiplication. As
above, let D > 0 be a fundamental discriminant, i.e., D = d for d ≡ 1 (mod 4)
or D = 4d for d ≡ 2, 3 (mod 4), where d > 1 is squarefree in both cases. Then
D is the discriminant of the ring of integers OD = Z+Z(D+

√
D)/2 of the real

quadratic field K =Q(
√

D). Let σ1, σ2 be the two embeddings of K into C. Then
SL2(OD)/{±1} acts on H+×H− by(

a b
c d

)
: (z1, z2) 7→

(
σ1(a)z+ σ1(b)
σ1(c)z+ σ1(d)

,
σ2(a)z+ σ2(b)
σ2(c)z+ σ2(d)

)
,

where H+ = {z ∈C | Im z > 0} is the complex upper half-plane and H− =−H+ is
the lower half-plane.

Let

SL2(OD,O
∗

D)=

{(
a b
c d

)
∈ SL2(K )

∣∣∣∣ a, d ∈OD, c ∈O∗D, b ∈ (O∗D)−1
}
.

We claim that this action is equivalent to the action of SL2(OD,O∗D) on H+×H+.
Here O∗D is the dual of OD with respect to the trace form on K (that is, O∗D is the
inverse different of K ). It is an invertible OD-module of rank 1; in fact, it is easily
checked to be (1/

√
D)OD . Assume, without loss of generality, that σ1(

√
D) > 0

and σ2(
√

D) < 0. Then if we let

ψ :H+×H−→H+×H+

be the biholomorphic map (z1, z2) 7→ (z1σ1(
√

D), z2σ2(
√

D)), and
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φ : SL2(OD)→ SL2(OD,O
∗

D)

be the group isomorphism given by(
a b
c d

)
7→

(
a b

√
D

c/
√

D d

)
,

an easy check shows that the following diagram commutes.

SL2(OD)×H+×H− −−−→ H+×H−yφ×ψ yψ
SL2(OD,O∗D)×H+×H+ −−−→ H+×H+

Therefore, ψ induces an isomorphism on the quotients, as desired.
Next, we outline the proof that SL2(OD,O∗D) is the coarse moduli space of

principally polarized abelian surfaces with real multiplication by OD, closely
following [Hirzebruch and van der Geer 1981]. Let M =OD ⊕O∗D , and define an
alternating Z-valued form on M by

EM((α1, β1), (α2, β2))= TrK/Q(α1β2−α2β1).

Now, for z = (z1, z2) ∈H2, consider the embedding

L z : K ⊕ K → V = C2,

(α, β) 7→ αz+β =
(
σ1(α)z+ σ1(β), σ2(α)z+ σ2(β)

)
,

which gives us a lattice L z(M) in V . We use this to transfer EM to L z(M) and
extend the form R-linearly. This gives an alternating form

EM,z : V × V → R,

which can be described in coordinates on C2 as

EM,z((ζ1, ζ2), (η1, η2))=
Im ζ1η1

Im z1
+

Im ζ2η2

Im z2
.

This gives a Riemann form on the resulting complex torus V/L z(M), and since the
form EM on the lattice L z(M) is unimodular, we obtain an abelian variety with
principal polarization. The action of OD is as follows:

ι(α)(ζ1, ζ2) 7→ (σ1(α)ζ1, σ2(α)ζ2).

Conversely, it is not hard to show that any principally polarized abelian surface
with real multiplication by OD can be identified with some V/L z(M). Finally, we
note that the abelian surfaces corresponding to two different z ∈ H+ ×H+ are
isomorphic (with an OD-equivariant isomorphism) exactly when these two points
differ by an element of SL2(OD,O∗D). Therefore, it follows that the moduli space
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of abelian surfaces with real multiplication is SL2(OD,O∗D)\(H+×H+), which
as we have shown above, is biholomorphic with SL2(OD)\(H+×H−).

The construction above yields a map from SL2(OD)\(H+×H−) to the quotient
of S2, the Siegel upper half-space of degree 2, by the arithmetic group Sp4(Z). In
other words, we get a holomorphic map to A2, the moduli space of principally
polarized abelian surfaces. Its image (or its closure in A2) is the Humbert surface
HD for discriminant D. We next show that the map from the Hilbert modular
surface SL2(OD)\(H+ ×H−) to the Humbert surface is generically two-to-one.
We may compute this degree above a very general point on the Humbert surface.
Such a point corresponds to a principally polarized abelian surface A, where one
has forgotten the action of OD by endomorphisms. Generically, there are exactly
two ways to extend the obvious map Z→ End(A)∼=OD to OD , corresponding to
the choice of image of (D+

√
D)/2.

Our approach to computing equations of Hilbert modular surfaces begins as
follows. Fix a discriminant D, which we assume to be a fundamental discriminant.
First, we need to compute a model of the Humbert surface, i.e., the subvariety
of A2 corresponding to abelian surfaces with real multiplication by OD. Via the
inverse of the isomorphism φ :FL→A2 of Section 2.4 above, the Humbert surface
corresponds to a surface inside the 3-dimensional moduli space of L-polarized K3
surfaces.

Define a pairing on OD by (α, β) 7→ tr(αβ∗), where β∗ is the Galois conjugate
of β. This gives OD the structure of an indefinite lattice, which we next identify
with the Néron–Severi lattice of A.

Proposition 7. Let A be a principally polarized abelian surface with End(A)∼=OD .
Then NS(A)∼= End(A). The lattice NS(A) has a basis with Gram matrix(

2 D
D (D2

−D)/2

)
(2)

of signature (1, 1) and discriminant −D.

Proof. For a principally polarized abelian surface A, there is an isomorphism

NS(A)→ (End(A))†

induced naturally by the polarization, where † is the Rosati involution (also arising
from the polarization). Note that for a general polarization one only gets a weaker
isomorphism, between the Q-spans of both sides. For the proof of both assertions,
see Proposition 5.2.1 in [Birkenhake and Lange 2004]. Now, the Rosati involution
is a positive involution of the real quadratic field End(A)⊗Q, and hence cannot be
the nontrivial element of the Galois group. It must therefore be the identity, whence
the subring of End(A) fixed by † is End(A) itself, proving the first statement. The
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isomorphism of groups NS(A)→ End(A) is an isometry, taking the intersection
form on NS(A) to the form (φ, ψ) 7→ tr(φψ∨) on End(A), which becomes (α, β) 7→
tr(αβ∗) on OD . Computing the matrix of this form on the basis (1, (D+

√
D)/2)

of OD , we obtain the claimed Gram matrix (2). �

We henceforth use OD also to denote the lattice with underlying group OD ∼= Z2

and form (α, β) 7→ tr(αβ∗), with Gram matrix (2).

Proposition 8. There is a primitive embedding, unique up to isomorphism, of the
lattice OD into U 3. Let TD be the orthogonal complement of OD in U 3. Then there
is a primitive embedding, unique up to isomorphism, of TD into the K3 lattice 3.

Remark. In the present paper we analyze only fundamental discriminants D, for
which every embedding into an even lattice of OD and TD (and of the lattice L D ,
to be introduced before the next theorem) is automatically primitive. But the
condition of primitivity is necessary to extend our theoretical analysis also to
non-fundamental D.

Proof. Since OD is 2-dimensional, the number of generators `(O∗D/OD) of the
discriminant group is at most 2. In fact, the discriminant group is cyclic of order
D if D is odd, and isomorphic to (Z/2Z)⊕

(
Z/
( D

2 Z
))

if D is even. Therefore,
by [Nikulin 1979b, Theorem 1.14.4], OD has a unique embedding into the even
unimodular lattice U 3. Let the orthogonal complement be TD; it has signature
(2, 2) and the same discriminant group. By another application of [Nikulin 1979b,
Theorem 1.14.4], we see that TD has a unique embedding into 3K3. �

Let qD be the discriminant form of OD , and let L D be the orthogonal comple-
ment of TD in 3. Then L D has signature (1, 17) and discriminant form qD. By
[Nikulin 1979b, Theorem 1.13.2], L D is characterized uniquely by its signature and
discriminant form. Since 3∼=U 3

⊕ E8(−1)2, it is clear that L D ∼= E8(−1)2⊕OD .
Finally, L D has a primitive embedding in 3, which (again by [Nikulin 1979b,
Theorem 1.14.4]) is unique up to isomorphism.

Theorem 9. Let FL D be the moduli space of K3 surfaces that are lattice polarized
by L D. Then the isomorphism φ : FL → A2 of Section 2.4 induces a birational
surjective morphism FL D →HD .

Proof. First, we note that Z ⊂ OD induces an embedding of lattices 〈2〉 ⊂ OD,
and therefore an embedding TD ⊂U 2

⊕〈−2〉 of orthogonal complements. Taking
orthogonal complements once more in 3K3, we deduce L ⊂ L D .

Fix embeddings L ⊂ L D ⊂ 3K3. Then we have L⊥D ↪→ L⊥, which induces a
map �L D ↪→�L of period domains. We also have a map 0L D ⊂ 0L . These induce
a map FL D = 0L D\�L D

βD
→ 0L\�L = FL . We will use the fact that this morphism

has degree 1 onto the image (i.e., it is an embedding on the generic point of FL D ).
We postpone the proof of this fact until the conclusion of the present argument.
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Let φD : FL D

βD
→ FL

φ
→A2 be the composition of the maps above. Now suppose

X is a K3 surface corresponding to a point p in the image of βD. Then we have
NS(X) ⊃ L D ∼= E8(−1)2⊕OD, and therefore TX ⊂ TD. If A (corresponding to
φ(p)) is the abelian surface connected to X through a Shioda–Inose structure, we
have TA ∼= TX ⊂ TD . Therefore, NS(A)⊃OD , the orthogonal complement of TD

in U 3. Therefore End(A)† ⊃OD , and φ(p) must lie on the Humbert surface HD .
This proves that the image of FL D lands in HD .

Conversely, suppose q is a point on HD corresponding to an abelian surface
A with real multiplication by OD. Then End(A) ⊃ OD, and since the Rosati
involution (being positive) can only act as the trivial element of Q(

√
D), we must

have End(A)† ⊃ OD. Retracing the argument in the previous paragraph, we see
p = φ−1(q) must have NS(X) ⊃ L D, and therefore is in the image of βD. This
proves that φ ◦βD is surjective onto HD .

Since φ is an isomorphism and βD has degree 1 onto its image, so does φ◦βD . �

We now prove that fact used above: βD is generically an embedding.

Proposition 10. The map FL D → FL is generically an embedding.

Proof. To see this, we claim that it is enough to show that there is an element
γ0 ∈ O(3) such that γ0 fixes L pointwise, preserves the sublattice L D , and acts by
−1 on L⊥. For suppose we have x = γ y with x, y ∈�L D and γ ∈ 0L , with x and
y very general. Then we would like to show that in fact we already have x = γ ′y
with γ ′ ∈ 0L D . Then 31,1

x := {z ∈ x | 〈z, x〉 = 0} and 31,1
y both equal L D , since x

and y are very general, and therefore γ preserves L D (though it might not fix this
lattice pointwise). If γ acts trivially on L D , we may take γ ′ = γ , and are done. If
not, then γ must act by −1 on L D/L ∼= Z. Then γ ′ = γ0γ will suffice.

To prove the claim, we may consider specific embeddings L ⊂ L D ⊂ 3. If
D ≡ 0 (mod 4), then L D ∼= E7(−1)⊕〈−D/2〉⊕U ⊕ E8(−1). We may embed it
inside (E8(−1)⊕U ⊕U )⊕ (U ⊕ E8(−1)) by embedding E7(−1) inside E8(−1)
as the orthogonal complement of a root δ, and 〈−D/2〉 primitively inside U ⊕U .
Let γ0 be the automorphism of 3 which acts on the first copy of E8(−1) as the
reflection sδ in the hyperplane orthogonal to δ, by −1 on U ⊕U , and as the identity
on the part U ⊕ E8(−1).

If D ≡ 1 (mod 4), consider a system of simple roots in E8(−1) whose intersec-
tions give the standard Dynkin matrix. Let α be the simple root such that if we
remove the corresponding vertex from the Dynkin diagram, we obtain the Dynkin
diagram for E7(−1). The orthogonal complement of this copy of E7(−1) is some
root δ. Let β ∈ U be any element of norm (1−D)/2. It is easy to check that the
copy of E7(−1) and α+β generate a negative definite lattice M of discriminant D,
and that U ⊕M⊕ E8(−1) is isometric to L D (since it is has the right signature and
discriminant). In other words, the diagram of embeddings
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E7(−1) ↪→ M ⊂ E8(−1)⊕U ↪→ E8(−1)⊕U 2

extends on adding a factor of U ⊕ E8(−1) to

L = E7(−1)⊕U⊕E8(−1) ↪→M⊕U⊕E8(−1)= L D ⊂ E8(−1)⊕U 2
⊕E8(−1)

→ E8(−1)⊕U 3
⊕ E8(−1)=3.

Now, consider the automorphism γ0 of 3 ∼= E8(−1)⊕U 3
⊕ E8(−1) given by

(sδ ,−1|U ,−1|U , 1U , 1E8(−1)). By construction, γ0 fixes L pointwise, and acts
by −1 on L⊥. We need to show that γ0 preserves L D, or equivalently, that it
preserves M . We know that M is spanned by E7(−1) (which is fixed by γ0) and
α+β. Now, γ0 takes β to−β, by construction. Also, α+γ0(α)=α+sδ(α)∈ E8(−1)
is invariant by sδ, and is therefore in the orthogonal complement E7(−1) of δ.
Therefore γ0(α) ∈ −α+ E7(−1) and γ0(α+β)≡−(α+β) mod E7(−1). So γ0

preserves the lattice M . �

Next, we want to understand the Hilbert modular surface Y−(D), which is a
double cover of HD. First, we must identify the branch locus. Since the map
Y−(D)→HD is obtained by simply forgetting the action of eD = (D+

√
D)/2

on the abelian surface, the branch locus is the subvariety W of HD corresponding
to abelian surfaces A such that eD = (D +

√
D)/2 and e′D = (D −

√
D)/2 are

conjugate in the endomorphism ring, say by ι ∈ End(A). It follows that ι2 fixes
OD pointwise. Generically this implies ι2 =±1, and ιeD = e′Dι. This shows that
End(A) for such A is generically an order in a quaternion algebra B.

In fact, the branch locus corresponds to the case when we have a split quaternion
algebra, i.e., ι2=1. Then A is isogenous over Q to the square of an elliptic curve. To
see this fact, observe that the map 0\H2

→ Sp4(Z)\S2 (where 0 = SL2(OD,O∗D))
factors through the quotient (0 ∪0σ)\H2, where σ is the involution (z1, z2) 7→

(z2, z1) exchanging the two factors of H2, and the induced map on this quotient
is generically one-to-one [Hirzebruch and van der Geer 1981, p. 158]. Therefore,
to understand the branch locus, we need to understand the 1-dimensional part of
the fixed point set of σ on 0\H2. This (and more) was done by Hausmann [1982,
p. 35]. The result is that the fixed point set consists of a small number of explicit
modular curves Fw for w ∈ {1, 4, D, D/4} (some of these may be empty, and when
they are nonempty, these curves are irreducible). A simple explicit analysis of the
condition relating z1 and z2 on these curves reveals that the generic point on each
of these corresponds to an abelian surface whose ring of endomorphisms contains
zero divisors, and is therefore a split quaternion algebra. For instance, the image
of the diagonal of H2 (given by z1 = z2) in 0\H2 is an obvious component of the
branch locus. For the corresponding abelian surface, as constructed earlier in this
section, the map (ζ1, ζ2) 7→ (ζ2, ζ1) is a holomorphic involution, showing that the
endomorphism algebra is split. For completeness, we prove this next.
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Proposition 11. Let 0 = SL2(OD,O∗D) and let C be one of the curves Fw for
w ∈ {1, D} if D is odd, w ∈ {1, 4, D/4, D} if D is even. The generic point on
C corresponds to an abelian surface whose algebra of endomorphisms is a split
quaternion algebra.

Proof. We use the notation of [van der Geer 1988, Chapter V]. The ideal a=O∗D
has norm A = 1/D. In the reference, it is assumed that a is an integral ideal, but
we may for instance replace O∗D by the integral DO∗D =

√
DOD without loss of

generality in Hausmann’s proof. This would replace A by D2A = D, and would
not affect any of the arguments below, which depend only on the square class of A.
Proposition V.1.5 of [van der Geer 1988] states that a point on FN corresponds
to an abelian surface whose endomorphism algebra is isomorphic to the indefinite
quaternion algebra

QN =

(
D,−N/(AD)

Q

)
,

while Lemma V.1.4 in the book says that FN is nonempty if and only if for each
prime q dividing D and not dividing N , we have χD(q)(N ) = (A, D)q . For an
explanation of the notation, see [van der Geer 1988, pp. 2–3]. In our situation, we
have AD = 1. If N = D, we get the algebra

( D,−D
Q

)
, which is obviously split. This

argument also takes care of N = D/4 when D is even. Next, suppose N = 1. Then
F1 is nonempty if and only if for every prime dividing D, we have (D, D)q = 1. So

1= (D, D)q = (D,−D)q · (D,−1)q = (D,−1)q .

It follows that the quaternion algebra Q1 =
( D,−1

Q

)
is split. The proof for N = 4 is

similar. �

Remark 12. A further analysis of the proof above reveals the number of components
of the branch locus, which is corroborated by the calculations in this paper.

Coming back to our analysis of the endomorphisms of the abelian surfaces
corresponding to points on the branch locus, we note that the Rosati involution must
fix OD and ι, by positivity. Consider the form (x, y) 7→ Tr(x ȳ), where ¯ : B→ B
is the natural involution taking

√
D to its negative and ι to its negative, and Tr is

the reduced trace. The matrix of this form acting on OD +Zι is 2 D 0
D (D2

−D)/2 0
0 0 −2

,
which therefore gives an even lattice of signature (1, 2) and discriminant 2D. We
claim that when D is fundamental, the index, call it c, of OD ⊕Zι as a sublattice
of End(A) is 1 or 2, with c = 2 possible only if 4 | D. Indeed End(A) is an even
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lattice of rank 3 and discriminant 2D/c2. But the discriminant is an even integer
because the rank is odd, and D has no repeated prime factors except possibly 22

or 23. Thus as claimed the index c must be either 1 or 2, with c = 2 ⇒ 4 | D.
Therefore, the only possibilities for the discriminant of the resulting Néron–Severi
group for a point corresponding to the branch locus are 2D and D/2. This is also
the discriminant of the transcendental lattice of the abelian surface, and by the
Shioda–Inose structure, the corresponding K3 surface also has a Néron–Severi
lattice of rank 19 and discriminant 2D or D/2, and contains L D ∼= E8(−1)2⊕OD .

Finally, we mention that a group of involutions acts naturally on the Hilbert
modular surface Y−(D). This group is isomorphic to (Z/2Z)t−1, where t is the
number of distinct primes dividing D. These extra involutions arise from the
Hurwitz–Maass extension of PSL2(OD,O∗D). For more details see [van der Geer
1988, Section I.4].

4. Method of computation

We now outline our method to obtain equations for the Hilbert modular surfaces
Y−(D) for fundamental discriminants D.

Step 1. We compute the unique lattice L D , writing it in the form U ⊕ N (we know
L D contains a copy of U , since L = U ⊕ E8(−1)⊕ E7(−1) does, and L ⊃ L D).
Note that N is not uniquely determined, and it turns out to be useful to choose N
such that its root lattice R has small codimension in N , and such that N/R has
a basis consisting of vectors of small (fractional) norm. One may then attempt
to realize L D as the Néron–Severi lattice of an elliptic K3 surface with reducible
fibers corresponding to the irreducible root lattices in R. The remaining generators
of the Néron–Severi lattice should then arise as sections (of small height) in the
Mordell–Weil group of the elliptic fibration. Of course, we need to make sure that
N contains E8⊕ E7, but this is easily achieved by showing that the dual lattice N ∗

contains a vector of norm 2/D.
For most of the examples in this paper, we were able to describe a family of

elliptic K3 surfaces with Néron–Severi lattice L D and with Mordell–Weil rank 0
or 1. This construction gives us a Zariski-open subset of FL D , with some possible
missing curves corresponding to jumps in the Mordell–Weil ranks or the ranks of
the reducible fibers, or to denominators introduced in the parametrization process.

For all the examples we considered, the moduli space FL D turns out to be rational
(i.e., birational with P2 over Q). This property will fail to hold once D is large
enough, but there is still some hope of writing down usable equations for FL D if it
is not too complicated.

Suppose that we have exhibited a Zariski open subset of FL D as a Zariski open
subset U = P2

r,s\V of the projective plane.
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Step 2. We find a different elliptic fibration on the generic member of the family of
K3 surfaces in Step 1, with reducible fibers of types E8 at t =∞ and E7 at t = 0.
This is accomplished by 2- and 3-neighbor steps, which we shall describe in the
next section.

Once we obtain the alternate elliptic fibration, we may compute the map from
U to A2 by the explicit formulas of Section 2.4. This gives us the Igusa–Clebsch
invariants of the associated genus-2 curve, in terms of the two parameters r and s.

Step 3. Consider the base change diagram

Ỹ−(D)
η̃

−−−→ FL D

φ̃

y yφ
Y−(D)

η
−−−→ HD

Since φ is a birational map, so is φ̃. We want to describe the degree-2 map η̃. In the
current situation, we must have a model for Ỹ−(D) (which is birational to Y−(D))
of the form

z2
= f (r, s),

where f (r, s) = 0 describes the branch locus of η̃. As we have seen, this locus
f (r, s)= 0 must be the union of some irreducible curves, which are either compo-
nents of the excluded locus V above, or belong to the sublocus of U where the Picard
number jumps by 1, the discriminant changing to 2D or D/2. There are finitely many
possibilities for how this may happen. For instance, the elliptic fibration may have
an extra A1 fiber, or a D6 fiber may get promoted to an E7 fiber, or the surface may
have a new section that raises the Mordell–Weil rank. Similarly, in any instance, we
may easily list the allowed changes in the reducible fibers, or the allowed heights and
intersections with components of reducible fibers of a new section of the fibration.
Hence we get a list of polynomials f1(r, s), f2(r, s), . . . , fk(r, s) ∈ Z[r, s] whose
zero loci are the possible components of the branch locus. We may assume that
each fi (r, s) has content 1.

We therefore have the following model for Ỹ−(D) as a double cover of P2
r,s :

z2
= f (r, s)= C fi1(r, s) fi2(r, s) . . . fim (r, s)

for some subset {i1, . . . , im} ⊆ {1, . . . , k} and some squarefree integer C .

Step 4. In the final step, we show how to compute the subset I = {i1, . . . , im}

and the twist C . First, we note that the Hilbert modular surface Y−(D) has good
reduction outside primes dividing D, by [Rapoport 1978; Deligne and Pappas 1994].
Therefore, there are only finitely many choices for C as well. Now we check each
of these choices by computer, using the method described in the next paragraph,
and rule out all but one.
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So suppose we have a putative choice of C and I . We proceed to check whether
this choice of twist is correct by reduction modulo several odd primes p that do not
divide the discriminant D. We specialize r, s to elements of Fp, and by the formulas
of Step 2, obtain Igusa–Clebsch invariants for in weighted projective space over Fp.
Since the Brauer obstruction vanishes for finite fields, we can construct a curve Cr,s

over Fp.
We may use the following lemma to detect whether the Jacobian of Cr,s has real

multiplication defined over Fp or not.

Lemma 13. Let A be an abelian surface over Fp, and let φ be the Frobenius
endomorphism of A relative to Fp. Suppose that the characteristic polynomial P(T )
of φ is irreducible over Q. Let Q be the symmetric characteristic polynomial of
φ+ pφ−1, defined by P(T )= T 2 Q(T + pT−1).

(1) If A has real multiplication by an order in OD defined over Fp, then Q is a
quadratic polynomial of discriminant c2 D for some integer c.

(2) If A has real multiplication by an order in OD , defined over Fp2 , but not over Fp,
then we have Q(X) = X2

− n for some n ∈ Z not of the form c2 D for any
integer c.

(3) If Q(X) is a quadratic polynomial of discriminant D (resp. c2 D for some
positive integer c), then A has real multiplication by OD (resp. an order in OD

of conductor dividing c), defined over Fp .

Note that A might simultaneously have real multiplication ι :O ↪→ End(A) and
ι′ :O′ ↪→End(A) by two orders of OD , if its ring of endomorphisms is a quaternion
algebra. Furthermore, if one of these is defined over Fp and the other only over F2

p ,
then by parts (1) and (2) of the lemma, Q(X) must be of the form X2

− c2 D for
some integer c.

We will give the proof of the lemma below, but first we indicate how to use
it to find the correct twist. We choose a suitable prime p - D, and for some r, s
in Fp, we calculate the number of points mod p and p2 of the resulting curve Cr,s .
This is enough to describe the polynomial Q(X) for the abelian surface A = J (C),
by the Lefschetz–Grothendieck trace formula. Suppose P(T )= T 2 Q(T + pT−1)

is irreducible. Then the first hypothesis of the lemma is satisfied. If in addition
Q(X) = X2

+ aX + b has discriminant D and nonzero linear term a, then A
must have real multiplication defined over Fp, by part (3) of the lemma (and the
comments following it). In fact, most of the time we can even make do with the
weaker assumption that Q(X) has discriminant in the square class of D, since (3)
guarantees that A has real multiplication by an order in Q(

√
D). We can compute

the discriminant of NS(A) by computing that of NS(Y ), where Y is the elliptic
K3 surface related to A by a Shioda–Inose structure. If this discriminant is D, it
follows that A must have real multiplication by the full ring of integers OD .
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Now, by the property of a coarse moduli space, A gives rise to an Fp-point (r, s)
of the Hilbert modular surface Y−(D), i.e., the corresponding point on the Humbert
surface must actually lift to the double cover. Therefore, if C fi1(r, s) . . . fim (r, s) is
not a square, we must have the wrong quadratic twist. We can run this test for many
such (r, s) ∈ Fp× Fp. Note that a single large prime is usually enough to pin down
the correct choice of {i1, . . . , im}, by eliminating all but one possibility. However,
to pin down the correct choice of C , we may need to use several primes, until we
find one for which C/C ′ is not a quadratic residue, where C ′ is the correct twist.
However, in any case, this procedure is guaranteed to terminate, and in practice, it
terminates fairly quickly.

At the end of Step 4 of the algorithm, we have determined a birational model of
Y−(D) over Q. We now give the proof of the lemma above.

Proof of Lemma 13. We will use [Tate 1966a, Theorem 2]. Since P(T ) is irreducible,
it follows that F =Q[φ] is simple, and also that F = E :=EndFp(A)⊗Q is a quartic
number field. First, assume that real multiplication by an order O ⊂OD is defined
over Fp2 but not over Fp. Say O contains f

√
D for some positive integer f . Then

consider the base change of A to Fp2 . The Frobenius over the new field is φ2, and
therefore, φ2 commutes with f

√
D, but φ must anticommute with f

√
D. Therefore

Q(φ2) is a strict subfield of Q(φ), and must be quadratic. Hence φ2 satisfies a
quadratic equation φ4

+ aφ2
+ b = 0, and since this must be the characteristic

polynomial of φ, we must have b = p2. Therefore

φ2
+ p2φ−2

+ a = (φ+ pφ−1)2+ a− 2p = 0,

proving the assertion (1).
Now, assume that A has real multiplication by O ⊂ OD, defined over Fp, and

let f
√

D ⊂ O, as before. Then Q(φ + pφ−1) is a quadratic subfield of Q(φ).
Also, f

√
D ∈ Q(φ), so we have f

√
D = g(φ) for some polynomial g ∈ Q[T ].

Then f
√

D is its own dual isogeny, and so f
√

D = g(pφ−1) as well. Therefore,
f
√

D = 1
2(g(φ)+ g(pφ−1)) can be expressed as h(φ+ pφ−1) for some h ∈Q(T ).

It follows that Q(
√

D)=Q(φ+ pφ−1) and therefore the minimal polynomial Q(T )
of φ+ pφ−1 has discriminant equal to D times a square. This proves (2).

Finally, if Q is a quadratic polynomial of discriminant c2 D, then η=φ+ pφ−1 is
an endomorphism of A satisfying Q(η)= 0. Therefore Z[η] ∼=O := Z+cOD , and
we conclude that A has real multiplication by O defined over Fp, proving (3). �

We conclude this section with a few comments on the models of Hilbert modular
surfaces computed in this paper. We first give formulas for the family of elliptic
K3 surfaces over FL D , and then describe the 2- and 3-neighbor steps necessary to
reach the alternate fibration of Step 2. The details of the parametrization will not
be included in the paper, but they are available in the online supplement. Steps

http://msp.berkeley.edu/ant/2014/8-10/ant-v8-n10-x01-equations.zip
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3 and 4 are relatively easy to automate. We simply write down the result, which
is the equation of Y−(D) as a double cover of the Humbert surface. We give a
table of points of small height for which the Brauer obstruction vanishes, and the
associated curves of genus 2. We also analyze the Hilbert modular surface further
in the cases that we can describe it as a K3 or honestly elliptic surface. In particular,
we determine the (geometric) Picard number and generators for the Mordell-Weil
group of sections in most of the cases. We also analyze the branch locus of Step 3,
identifying it with a union of quotients of classical modular curves in several cases,
with the help of explicit formulas given in [Elkies 1998] or obtained by the methods
of that paper. Finally, for many discriminants, we are able to exhibit curves of low
genus on the surface, possessing infinitely many rational points.

We found the method of [van Luijk 2007] quite useful in determining the ranks
of the Néron–Severi lattices of these surfaces. Briefly, the method is as follows.
Let X be a smooth projective surface over Q. For a prime p of good reduction, let
X p be the reduction of a good model of X at p. By counting points on X p(Fq) for
a small number of prime powers q = pe, we obtain the characteristic polynomial
of the Frobenius φp on some `-adic étale cohomology group H 2(X ×Fp,Ql). The
number of roots ρ0(p) of this polynomial which are p times a root of unity is an
upper bound on the geometric Picard number of X p. Therefore ρ(X) ≤ ρ0(p)
for such primes. If we have ρ0(p1) = ρ0(p2) = ρ0, but the (expected) square
classes of the discriminant of the Néron–Severi groups modulo these primes (as
predicted by the Artin–Tate formula [Tate 1966b]) are distinct, we may even deduce
ρ(X) < ρ0. For if X p does not satisfy the Tate conjecture for some p ∈ {p1, p2},
then ρ(X)≤ρ(X p)<ρ0. On the other hand, if both these reductions satisfy the Tate
conjecture, then they also satisfy the Artin–Tate conjecture [Milne 1975a, 1975b],
and since the size of the Brauer group of X p is a square [Milne 1975a; Liu et al.
2005], the Néron–Severi groups must have discriminants in the same square class.

5. Neighbor method

Finally, we describe how to transform from one elliptic fibration to another, using
2- and 3-neighbor steps. We start with an elliptic K3 surface over a field k, which
we assume has characteristic different from 2 or 3. Let F be the class of the fiber,
and O be the class of the zero section. The surface X is a minimal proper model of
a given Weierstrass equation

y2
= x3
+ a2(t)x2

+ a4(t)x + a6(t).

Here the elliptic fibration is π : X→ P1
t . Now, let F ′ be an elliptic divisor (i.e., F ′

is effective, F ′2 = 0, the components of F ′ are smooth rational curves, and F ′ is
primitive).
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We would like to write down the Weierstrass equation for this new elliptic
fibration on X . The space of global sections H 0(X,OX (F ′)) has dimension 2
over k. The ratio of any two linearly independent sections gives us the new elliptic
parameter u. To compute the space of global sections, we proceed as follows. Any
global section gives a section of the generic fiber E = π−1(η), which is an elliptic
curve over k(t)= k(η). Therefore, if we have a basis of global sections of D= F ′hor,η
over k(t), say {s1, . . . , sr } (where r = h0(OE(D))= deg(D)= F ′hor · F = F ′ · F),
we can assume that any global section of OX (F ′) is of the form

b1(t)s1+ · · ·+ br (t)sr .

We can now use the information from Fver, which gives us conditions about the
zeroes and poles of the functions bi , to find the linear conditions cutting out
H 0(X,OX (F ′)), which will be 2-dimensional.

When F · F ′ = r , we say that going between these elliptic fibrations is an r-
neighbor step. We will explain the reason for this terminology shortly. In this paper
we use only 2- and 3-neighbor steps. First, we describe how to convert to a genus-1
curve in the case when E = Fhor,η = 2O or 3O . These are the most familiar cases
of the 2- and 3-neighbor steps, and the other cases of the 2-neighbor step that are
needed are more exhaustively described in [Kumar 2014].

Suppose D= 2O . Then {1, x} is a basis of global sections of OE(D). Therefore,
on X we obtain two global sections, 1 and c(t)+ d(t)x for some c(t), d(t) ∈ k(t).
The ratio between the two gives the elliptic parameter u. We set x = (u−c(t))/d(t),
and substitute into the Weierstrass equation to obtain an equation

y2
= g(t, u).

Because F ′ is an elliptic divisor, the generic fiber of this surface over P1
u is a curve

of genus 1. Thus, once we absorb square factors into y2 we obtain an equivalent g
that is a polynomial of degree 3 or 4 in t . Then y2

= g(t, u) is standard form of the
equation of a genus-1 curve as a branched double cover of P1.

Suppose D = 3O . Then {1, x, y} is a basis of global sections of OE(D). On X
we obtain two global sections, 1 and c(t)+d(t)x + e(t)y. We set the ratio equal to
u, solve for y, and substitute into the Weierstrass equation to obtain(

u− c(t)+ d(t)x
)2
= e(t)2

(
x3
+ a2(t)x2

+ a4(t)x + a6(t)
)
.

This equation is of degree 3 in x , and after some simple algebra (scaling and
shifting x), we may arrange it to have degree 3 in t as well. We end up with a plane
cubic curve, which is the standard model of a genus-1 curve with a degree-3 line
bundle.

Finally, if we also know that the elliptic fibration corresponding to F ′ has a section
(which follows in each of our examples by Proposition 4), then it is isomorphic
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to the Jacobian of the genus-1 curve we have computed. We may use standard
formulas to write down the Weierstrass equation of the Jacobian (see [An et al.
2001] and the references cited therein), and this is the desired Weierstrass equation
for the elliptic fibration with fiber F ′.

This neighbor step from F to F ′ corresponds to computing an explicit isomor-
phism between two presentations ZO +ZF + T and ZO ′+ZF ′+ T ′ of NS(X).
Note that T ∼= F⊥/ZF , where ⊥ refers to the orthogonal complement in NS(X).
The sublattice (ZF +ZF ′)⊥ projects to an index-r sublattice of both F⊥/ZF and
F ′⊥/ZF ′, where r = F · F ′. Therefore these lattices are r -neighbors.

6. Discriminant 5

6.1. Parametrization. This is the smallest fundamental discriminant for real mul-
tiplication, and it is small enough that we do not need any 2- or 3-neighbor steps:
we can instead just start with a K3 surface with E8 and E7 fibers, and ask for the
extra condition which allows a section of height 5

2 = 4− 3
2 .

Proposition 14. The moduli space of K3 surfaces lattice polarized by L5, the
unique even lattice of signature (1, 17) and discriminant 5 containing

U ⊕ E8(−1)⊕ E7(−1),

is birational to the projective plane P2
g,h . The family of K3 surfaces is given by the

Weierstrass equation

y2
= x3
+

1
4 t3(−3g2t + 4)x − 1

4 t5(4h2t2
+ (4h+ g3)t + (4g+ 1)

)
.

Proof. We start with a family of elliptic K3 surfaces with E8 and E7 fibers:

y2
= x3
+ xt3(a0+ a1t)+ t5(b0+ b1t + b2t2).

To have discriminant −5 for the Picard group, the elliptic K3 surfaces in this
family must have a section of height 5

2 = 4− 3
2 . The x-coordinate for such a section

must have the form t2(x0 + x1t + h2t2). Substituting x into the right-hand side
and completing the square, we may solve for b0, b1, b2 and a1 in terms of a0, h, x0

and x1. We then set x1 = eh and x0 = g+ e2/4 to simplify the expressions. Finally,
we note that scaling x, y, t by λ2, λ3, µ/λ gives a0, e, g, h weights (1, 3), (0, 1),
(0, 2) and (−1, 2) respectively with respect to (λ, µ). Therefore, we may scale
a0 and e to equal 1 independently (at most removing hypersurfaces in the moduli
space), and get the parametrization in the statement of the proposition. We note
that the section P of height 5

2 is given by

x(P)= 1
4 t2((1+ 2ht)2+ 4g), y(P)= 1

8 t3(1+ 2ht)((1+ 2ht)2+ 6g). �
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Corollary 15. The Humbert surface H5 is birational to P2
g,h , with the map to A2

given by the Igusa–Clebsch invariants

(I2 : I4 : I6 : I10)=
(
6(4g+ 1), 9g2, 9(4h+ 9g3

+ 2g2), 4h2).
Proof. This follows immediately from Theorem 9. The Igusa–Clebsch invariants
may be read out directly from the Weierstrass equation above. �

Theorem 16. A birational model over Q of the Hilbert modular surface Y−(5) is
given by the following double cover of P2

g,h :

z2
= 2

(
6250h2

− 4500g2h− 1350gh− 108h− 972g5
− 324g4

− 27g3).
It is a rational surface (i.e., birational to P2).

Proof. We follow the method of Section 4. The possible factors of the branch locus
are g, h, 8h − 9g2 (the zero locus of this polynomial defines a subvariety of the
moduli space for which the corresponding elliptic K3 surfaces acquire an extra
I2 fiber), 64h2

+ 48g2h + 48g5
+ 9g4 (extra II fiber), and 6250h2

− 4500g2h −
1350gh− 108h− 972g5

− 324g4
− 27g3 (extra I2 fiber). By Step 4 of the method,

we deduce that only the last factor occurs, and the correct quadratic twist is by 2. It
was already well-known that the Hilbert modular surface is a rational surface, but
we give an explicit parametrization in the following analysis. �

6.2. Analysis. This is a rational surface: to obtain a parametrization, we complete
the square in h, writing h = k + 9(250g2

+ 75g + 6)/6250. Following this up
with k = 3m(10g + 3)(15g + 2)/6250, and removing square factors by writing
z= 3n(10g+3)(15g+2)/25, we obtain the equation 5n2

−m2
+9+30g= 0, which

we can solve for g. This gives an explicit birational map between Y−(5) and P2
m,n .

The branch locus is the curve obtained by setting z = 0, or alternatively n = 0 in
the above parametrization. It is parametrized by one variable m; we have

(g, h)=
(
(m2
− 9)

30
,
(m− 2)2(m+ 3)3

12500

)
.

6.3. Examples. We list in Table 1 some points of small height and corresponding
genus-2 curves. The second entry in the table is the modular curve X0(67)/〈w〉,
where w is the Atkin–Lehner involution. We find several other modular curves
with real multiplication by O5 (and also a few for discriminants other than 5)
corresponding to points of larger height.

6.4. Brumer’s and Wilson’s families of genus-2 curves. Genus-2 curves whose
Jacobians have real multiplication by O5 have been studied by Brumer [1995] and
Wilson [1998; 2000]. Brumer describes a 3-dimensional family of genus-2 curves
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Rational point (g, h) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)(

−
8
3 ,

47
2

)
−x5
+ x4
− x3
− x2
+ 2x − 1(

−
37
6 , 67

)
x6
+ 2x5

+ x4
− 2x3

+ 2x2
− 4x + 1(

0, 27
50

)
3x5
+ 5x3

+ 1(
−

1
24 ,

1
100

)
4x6
+ 4x5

+ 5x4
− 5x2

− 2x − 2(
−

25
54 ,

59
81

)
−x6
− 2x4

− 6x3
− 5x2

− 6x − 1(
−

2
3 ,−

14
25

)
−7x6

− 7x5
− 5x4

+ 5x2
− x − 1( 47

54 ,
71
81

)
3x6
− 6x5

+ 7x4
− 2x3

− 2x2
− 1(

−
1
6 ,

1
25

)
x6
− 4x5

+ 10x4
− 10x3

+ 5x2
+ 2x − 3(

−
4
3 ,

16
25

)
−x6
− x5
+ 5x2

− 7x − 12(
−

4
3 ,

49
22

)
7x5
+ 5x4

+ 3x3
− 9x2

− 14x − 7(
0,− 54

11

)
2x6
− 6x5

− 6x4
+ 3x3

− 18x2
− 6x − 2( 11

6 ,
53
11

)
9x6
− 14x5

+ 13x4
− 2x3

− 22x2
− 8x − 7(

−
5
24 ,

1
64

)
6x6
− 2x5

− 15x4
− 16x3

− 25x2
− 8x − 4( 11

6 ,−
89
25

)
−x6
+ 2x5

− 5x4
+ 30x3

− 10x2
+ 8x − 1(

−
2
3 ,

68
11

)
−2x6

− 2x5
− 11x4

− 29x3
− 31x2

− 26x − 6(
−

2
3 ,

26
25

)
−2x6

+ 36x5
+ 5x4

+ 35x3
− 10x2

− 21x − 17

Table 1. Some points of height≤100 on the surface of Theorem 16
and the corresponding genus-2 curves.

given by

y2
+
(
1+ x + x3

+ c(x + x2)
)
y

=−bdx4
+ (b− d − 2bd)x3

+ (1− 3b− bd)x2
+ (1+ 3b)x + b.

In the online supplement, we give formulas for the corresponding values of our
parameters g and h.

Wilson describes a family of genus-2 curves by their Igusa–Clebsch invariants.
His moduli space is 2-dimensional, though he uses three coordinates z6, s2 and σ5

of weights 1, 2, 5 respectively, in a weighted projective space. These coordinates
are related to ours via

(g, h)=
(
−

2z2
6+ s2

12z2
6
,
σ5

64z5
6

)
.

7. Discriminant 8

7.1. Parametrization. We start with an elliptic K3 surface with fibers of type D9

and E7. A Weierstrass equation for such a family is given by

y2
= x3
+ t
(
(2r + 1)t + r

)
x2
+ 2rst4(t + 1)x + rs2t7.

http://msp.berkeley.edu/ant/2014/8-10/ant-v8-n10-x01-equations.zip
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We then identify a fiber of type E8, and transform to it by a 2-neighbor step.

The resulting elliptic fibration has E8 and E7 fibers, and we may read out the
Igusa–Clebsch invariants, and then compute the branch locus of the double cover
that defines the Hilbert modular surface. It corresponds to elliptic K3 surfaces with
an extra I2 fiber. We obtain the following result for Y−(8).

Theorem 17. The Humbert surface H8 is birational to P2
r,s , with the explicit map

to A2 given by the Igusa–Clebsch invariants

I2 =−4(3s+ 8r − 2),

I4 = 4(9rs+ 4r2
+ 4r + 1),

I6 =−4(36rs2
+ 94r2s− 35rs+ 4s+ 48r3

+ 40r2
+ 4r − 2),

I10 =−8s2r3.

A birational model over Q for the Hilbert modular surface Y−(8) as a double cover

Rational point (r, s) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)( 2

25 ,
83
50

)
x6
− x5
+ 3x4

+ x3
+ x2
+ 2x + 1(

−
34
9 ,

50
9

)
x6
− 2x5

− 2x4
− 4x3

+ 2x2
+ 4x − 3(

−22, 59
2

)
x6
+ 2x5

− 3x4
+ 5x3

+ x2
− x − 1( 2

49 ,
58
49

)
−x6
− 4x5

− 6x4
+ 2x2

+ 2x − 1(
−52, 83

2

)
−4x6

+ 2x5
+ 5x4

− 7x3
− x + 1( 1

8 ,
59
32

)
−x6
− x5
− 7x2

+ 5x − 4(
−

4
9 ,

23
8

)
−2x6

+ 6x5
− x4
− 7x3

− x2
− 3x(

80, 83
2

)
x6
+ 5x5

+ 8x4
+ 5x3

+ 5x2
− 8x + 4( 19

2 , 22
)

−x6
− 4x5

− 8x4
− 8x3

− 8x2
+ 4x − 4

(94,−54) −x6
+ 6x4

− 8x3
+ 6x2

+ 6x − 9( 13
8 ,−

2
9

)
−x6
+ 6x5

− 9x4
+ 3x2

− 6x − 2( 86
9 ,−

13
2

)
x6
− 7x4

− 7x3
− x2
+ 9x + 9(

−
3
8 ,

9
4

)
−3x6

− 9x5
− 2x4

+ 10x3
+ x2
+ 3x( 1

14 ,
10
7

)
−x6
− 2x5

− 7x4
+ 4x3

− 3x2
+ 10x − 5( 1

18 ,
31
18

)
−3x6

− 10x5
− 7x4

− 5x2
+ 2x − 1( 1

32 ,
19
16

)
4x6
− 7x5

− 3x4
− 2x3

+ 10x2
+ 5x + 1

Table 2. Some points of small height on the surface of Theorem 17
and the corresponding genus-2 curves.
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of P2 is given by the equation

z2
= 2 (16rs2

+ 32r2s− 40rs− s+ 16r3
+ 24r2

+ 12r + 2).

It is also a rational surface.

7.2. Analysis. This Hilbert modular surface is a rational surface. To see this, we
may complete the square in s, setting s = s1 − r + 5/4+ 1/(32r). Then setting
s1 = m(16r − 1)/(32r) and z = n(16r − 1), we remove square factors from the
equation, which becomes linear in r . We find r = (m2

− 1)/(32n2
− 16), thus

obtaining an explicit parametrization of Y−(8) by P2
m,n .

The branch locus is a genus-0 curve; we obtain a parametrization by setting
z = 0:

(r, s)=
(

1− t2

16
,
(t + 3)3

16(t + 1)

)
.

7.3. Examples. Table 2 lists some points of small height and their genus-2 curves.

8. Discriminant 12

8.1. Parametrization. We start with an elliptic K3 surface with fibers of types E8,
D6 and A2. The Weierstrass equation for such a family is given by

y2
= x3
+
(
(1− f 2)(1− t)+ t

)
t x2
+ 2et3(t − 1)x + e2(t − 1)2t5.

We identify a fiber of type E7, and move to the associated elliptic fibration by a
2-neighbor step.

The new elliptic fibration has E8 and E7 fibers, and so we may read out the
Igusa–Clebsch invariants, and determine the branch locus for the Hilbert modular
surface.

Theorem 18. A birational model over Q for the Hilbert modular surface Y−(12)
as a double cover of P2

e, f is given by the equation

z2
= ( f − 1)( f + 1)( f 6

− f 4
− 18e f 2

+ 27e2
+ 16e).

It is a rational surface.

8.2. Analysis. Note the extra involution (e, f ) 7→(e,− f ) arising from the Hurwitz–
Maass extension (as described at the end of Section 3), since 12 is not a prime
power. In fact, there are two independent involutions evident in the diagram above,
but one of them has been used up to fix the Weierstrass scaling of x (namely, the
coefficient of x2 evaluates to 1 at t = 1). The other involution is reflected in the
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Weierstrass equation for the universal family of elliptic K3 surfaces as f 7→ − f . It
preserves the branch locus of the map Y−(12)→H12, and therefore lifts to Y−(12).

The branch locus has three components; the two simple components f = ±1
correspond to the D6 fiber getting promoted to an E7 fiber, while the remaining
component corresponds to having an extra I2 fiber. This last component is a rational
curve; completing the square with respect to e, we find after some easy algebraic
manipulation the parametrization

(e, f )=
(

16(h2
− 1)

(h2+ 3)3
,
−4h

h2+ 3

)
.

This Hilbert modular surface is rational as well. To obtain an explicit parametriza-
tion, note that the right-hand side of the above equation is quadratic in e, and e = 0
makes it a square. Therefore the conic bundle over P1

f has a section. Setting
z = ge+ f 2( f 2

−1), we may solve for e, obtaining a birational parametrization by
P2

f,g.
We will not list the Igusa–Clebsch invariants for this (and higher) discriminants,

as they are complicated expressions. They are available in the online supplement.

8.3. Examples. Table 3 lists some points of small height and their genus-2 curves.

Rational point (e, f ) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)( 34

27 ,
5
3

)
−2x6

− 2x5
+ x4
− 3x2

+ 2x − 1( 34
27 ,−

5
3

)
x5
− x4
+ x3
− 3x2

− x + 5( 51
100 , 2

)
−3x6

+ 6x5
+ 4x4

− 2x3
− 8x2

− 6x − 6(
−

11
3 ,−2

)
−x6
− 8x3

+ 12x − 12(
−

11
3 , 2

)
−x6
+ 12x4

+ 8x3
− 12x2

+ 12x − 4( 4
3 ,−2

)
−8x6

+ 12x4
+ 8x3

− 6x2
− 12x − 3( 4

3 , 2
)

−5x6
+ 12x5

− 6x4
+ 8x3

− 12x2
− 8(

−
14
27 ,

1
3

)
−x5
+ 13x4

− 6x3
− 2x2

+ 3x − 7(
−

29
14 ,−

15
14

)
x6
+ 2x5

+ 13x4
− 16x3

+ 17x2
+ 4x + 8( 80

81 , 2
)

−8x6
− 12x5

+ 15x4
+ 5x3

− 21x2
+ 15x − 5( 51

100 ,−2
)

−x6
− 6x5

− 11x4
− 14x3

− 23x2
+ 6x + 3(

−
5
2 ,−

3
2

)
−5x6

− 10x5
− x4
+ 24x3

− 5x2
− 8x − 20(

−
23
54 ,−

1
2

)
x6
− 6x5

− 3x4
+ 24x3

− 3x2
− 4( 25

18 ,−
3
2

)
4x6
− 24x5

+ 27x4
− 28x3

+ 21x2
− 5(

−
5
54 ,

2
3

)
3x6
− 26x5

+ 31x4
+ 12x3

− 3x2
− 10x − 15( 13

64 ,−
5
4

)
−5x6

+ 3x5
− 12x4

+ 28x3
+ 12x2

− 36x

Table 3. Some points of small height on the surface of Theorem 18
and the corresponding genus-2 curves.

http://msp.berkeley.edu/ant/2014/8-10/ant-v8-n10-x01-equations.zip


2326 Noam Elkies and Abhinav Kumar

We mention a few special curves on the Hilbert modular surface, which one
may recognize by looking at a plot of the rational points. First, specializing f to
some f0 ∈Q gives a conic in z and e, which always has a rational point (since, as
we noted above, e = 0 makes the right-hand side a square). These may be used
to produce many rational points and examples of genus-2 curves when the Brauer
obstruction happens to vanish.

Another noticeable feature of the plot is the parabola e= 4( f 2
−1)/9. We check

that the Brauer obstruction vanishes identically on this locus, giving a family of
genus-2 curves whose Jacobians have real multiplication by O12. Note that this is
a non-modular curve: generically the endomorphism ring is no larger (i.e., not a
quaternion algebra).

9. Discriminant 13

9.1. Parametrization. We start with an elliptic K3 surface with reducible fibers of
types E8, E6 and A1, and with a section of height 13

6 = 4− 4
3 −

1
2 . A Weierstrass

equation for such a family is given by

y2
= x3
+ (4g+ 1)t2x2

− 4g(h− g− 1)(t − 1)t3x + 4g2(t − 1)2t4(h2t + 1).

We identify an E7 fiber below and move to it by a 2-neighbor step.

P

The resulting elliptic fibration has E8 and E7 fibers, so we may read out the
Igusa–Clebsch invariants and work out the branch locus of the double cover defining
the Hilbert modular surface. It corresponds to the elliptic K3 surface having an
extra I2 fiber.

Theorem 19. A birational model over Q for the Hilbert modular surface Y−(13)
as a double cover of P2

g,h is given by the equation

z2
= 108gh3

− (27g2
+ 468g− 4)h2

+ 8(82g2
+ 71g− 2)h− 16(2g− 1)3.

It is a rational surface.

9.2. Analysis. The surface Y−(13) is rational. To show this, we proceed as follows.
The substitutions g = g1−

1
54 and h = h1+

64
27 , followed by h1 = mg1, make the

right-hand side quadratic in g1, up to a square factor. Removing this factor by setting
z = z1g1/18, and then setting g1 = g2/54, we get the conic bundle over Q(m)

z2
1= 3m2(4m−1)g2

2−6(2m3
−301m2

−528m+128)g2−507(m2
−96m−1024).
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Furthermore, g2 = 1 makes the resulting expression a square, giving us a rational
point on the conic over Q(m). Therefore, we may set z1 = 36(m+ 20)+ n(g2− 1)
and solve for g2. This gives us a birational parametrization of Y−(13) by P2

m,n .
We can also deduce that the branch locus is a rational curve, as follows. By

setting z1 = 0, we obtain a quadratic equation in g2 whose discriminant, up to a
square factor, is m2

−44m+16. Setting it equal to n2 and noting that m = 0 makes
the expression a square, we obtain a parametrization of this conic, as

m =−4
2r + 11
r2− 1

.

Working backwards, we obtain a parametrization of the branch locus as

(g, h)=
(
−2(r − 2)2(r + 1)

27(r + 7)
,

2(2r + 5)3

27(r + 1)(r + 7)

)
.

9.3. Examples. Table 4 lists some points of small height and their genus-2 curves.
On a plot of rational points we observe the line h = (g+ 4)/3, along which the

Brauer obstruction vanishes, leading to a family of genus-2 curves whose Jacobians
have “honest” real multiplication by O13.

Rational point (g, h) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)(

−17, 1
3

)
−3x6

− 6x5
+ 4x3

+ 3x2
+ 6x − 5(

−
13
2 ,−

11
2

)
x5
+ 5x4

+ 5x3
− 5x2

+ 6x − 1(
−

17
2 ,

7
2

)
−x5
− 2x4

− 3x3
− 6x2

− 7( 11
5 ,

1
5

)
x6
+ 4x5

+ 2x4
− 8x3

− 5x2
− 5(

−
1
3 ,

11
9

)
−x6
+ 3x4

+ 12x3
+ 6x2

− 11(
−

14
11 ,−

2
11

)
13x6
+ 12x5

+ 6x4
+ 10x3

− 7x2
− 2x + 1(

−
2
17 ,

2
17

)
−x6
− 2x5

− x4
+ 14x3

+ 2x2
− 8x − 9( 1

5 ,
17
15

)
3x6
+ 12x5

+ 6x4
− 4x3

− 15x2
+ 5(

−
10
3 ,−

10
9

)
−x6
+ 18x5

+ 3x4
− 6x3

+ 6x2
− 5

(−10, 6) −x6
− 6x4

− 10x3
− 9x2

− 30x + 11(
−

18
5 ,

14
5

)
−x6
− 2x4

− 10x3
+ 7x2

− 30x − 9(
−

7
13 ,

3
13

)
−31x6

+ 12x5
− 30x4

+ 4x3
− 33x2

− 12x − 1( 10
3 ,

10
3

)
7x6
+ 18x5

− 9x4
− 34x3

+ 18x2
− 5(

−11,− 11
9

)
−5x6

+ 6x5
+ 3x4

− 4x3
+ 18x2

− 36x − 9(
−

7
8 ,

10
3

)
−x6
+ 3x4

− 20x3
+ 30x2

− 36x + 9(
−

13
9 ,

13
9

)
−x6
− 9x4

+ 8x3
− 30x2

+ 36x − 3

Table 4. Some points of small height on the surface of Theorem 19
and the corresponding genus-2 curves.
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10. Discriminant 17

10.1. Parametrization. We start with an elliptic K3 surface with a I17 fiber. A
Weierstrass equation for such a family of surfaces is given by

y2
= x3

+
(
1+2gt+(2h+(g+1)2)t2

+2(gh+g+2g2
+h)t3

+((g+h)2+2g3)t4)x2

−4h2t5(1+gt+(h+2g+1)t2
+(h+2g2

+g)t3)x+4h4t10((2g+1)t2
+1
)
.

We first identify an E7 fiber and go to the associated elliptic fibration via a
2-neighbor step.

The resulting elliptic fibration has E7 and A8 fibers, and a section P of height
17
18 = 4− 3

2 −
14
9 . We next identify a fiber F ′ of type E8 and perform a 3-neighbor

step to move to the associated elliptic fibration.

P

Since P · F ′ = 2, while the remaining component of the A8 fiber intersects F ′

with multiplicity 3, the new elliptic fibration has a section. We may therefore convert
to the Jacobian; this has E8 and E7 fibers, and we may read out the Igusa–Clebsch
invariants.

Theorem 20. A birational model over Q for the Hilbert modular surface Y−(17)
as a double cover of P2 is given by the equation

z2
=−256h3

+ (192g2
+ 464g+ 185)h2

− 2(2g+ 1)(12g3
− 65g2

− 54g− 9)h+ (g+ 1)4(2g+ 1)2.

It is a rational surface.

10.2. Analysis. This is evidently a rational elliptic surface over P1
g. In fact, it is

a rational surface over Q. We exhibit a birational parametrization as follows: set
h =

(
4(2 g+ 1)+m (2 g+ 1) (27 g+ 13)

)
/27 and absorb square factors by setting

z = z1 (2 g+ 1) (27 g+ 13)/243, to get (after scaling g = g1/3) the equation

z2
1 =−9(8m− 1)3g2

1 − 2(16m+ 7)(424m2
− 385m+ 1)g1

− 3(3328m3
− 1923m2

− 3138m− 803)

which is a conic bundle over P1
m . We see that g1 =−

3
2 makes the right hand side a
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square, and so setting z1 = 9(2m+ 11)/2+ n(g1+
3
2) and solving for g1, we get a

birational map from P2
m,n .

The branch locus is a curve of genus 0. To produce a parametrization, we set
z1 = 0 and note that the discriminant of the resulting quadratic equation in g1 is a
square times 64m2

+218m−8. Setting 64m2
+218m−8= (8m+ r)2 and solving

for m, we ultimately obtain:

(g, h)=
(
−(8r3

− 111r2
+ 1212r − 8146)

2(2r − 7)3
,
(r − 17)2(r + 10)4

4(2r − 7)6

)
.

10.3. Examples. Table 5 lists some points of small height and their genus-2 curves.
A plot of the rational points on Y−(17) reveals two special curves on the surface.

First, there is the line h =−g/2. Substituting this into the equation for the Hilbert
modular surface, we obtain a conic, which can be parametrized as

(g, h)=
(
−

m2
− 4

2(m− 6)
,

m2
− 4

4(m− 6)

)
.

The Brauer obstruction vanishes along this locus. However, this curve is modular:
the endomorphism ring is a split quaternion algebra, strictly containing O17. The

Rational point (g, h) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)(

0, 13
32

)
−2x6

− x5
− 6x4

− 5x3
− 4x2

− 4x(
−

5
11 ,

1
88

)
3x6
+ 4x5

+ 4x4
− 6x3

− 5x2
− 4x + 4

(6, 26) −2x6
+ 2x5

+ x4
+ 8x3

+ 7x2
+ 4x( 9

4 ,
77
64

)
−2x6

− x5
+ 8x4

− 5x3
− 4x2

+ 4x − 4( 3
5 ,−

11
50

)
−8x6

+ 8x5
+ 7x4

+ 2x3
− x

(5,−11) 4x5
+ 9x4

+ 2x3
− 8x2

− 2x

(5, 22) 2x6
− 4x5

+ 9x4
− 10x3

+ 4x2
− 4x( 1

5 ,
28
25

)
−10x6

− 10x5
− 2x4

− 7x3
− x(

−
1
4 ,−

11
64

)
4x5
+ 3x4

+ 11x3
− 7x2

+ x( 5
4 ,−

35
64

)
x5
− 7x3

+ 2x2
− 8x + 12(

−
5
2 ,−

13
8

)
4x5
− x4
− 13x3

− 3x2
+ 13x( 1

5 ,−
7
20

)
3x6
+ 7x5

+ 6x4
+ 16x3

+ 14x2
− 8x − 8(

−12,− 23
2

)
−7x6

− 19x5
− 7x4

+ 14x3
− x(

0,− 1
16

)
−4x6

+ 19x5
− 20x4

+ 11x3
+ 15x2

− 8x − 4(
2,− 35

4

)
−4x5

+ 20x4
− 12x3

− 15x2
− 4x(

4, 51
8

)
−4x6

− 12x5
− 27x4

+ 2x3
+ 12x2

+ 18x

Table 5. Some points of small height on the surface of Theorem 20
and the corresponding genus-2 curves.
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second curve is the parabola h=−(6g2
+g−1)/8. The Brauer obstruction vanishes

along this curve too, giving a 1-parameter family of genus-2 curves whose Jacobians
have real multiplication by O17.

11. Discriminant 21

11.1. Parametrization. We start with an elliptic K3 surface with fibers of type E8,
A6 and A2 at t =∞, 0 and 1 respectively.

A Weierstrass equation for such a family is

y2
= x3
+ (a0+ a1t + a2t2)x2

+ 2t2(t − 1)(b0+ b1t)x + t4(t − 1)2(c0+ c1t)

with

a0 = 1, a1 =−r2
+ 2rs− 1, a2 = (r − s)2;

b0 = (r2
− 1)(s− r)2, b1 = (r2

− 1)(s− r)2(rs− 1);

c0 = (r2
− 1)2(s− r)4, c1 = (r2

− 1)3(s− r)4.

We identify a fiber of type E7, and a 3-neighbor step gives us the desired E8 E7

fibration.

We read out the Igusa–Clebsch invariants, and the branch locus of Y−(21) as a
double cover of P2

r,s corresponds to the subvariety of the moduli space where the
elliptic K3 surfaces have an extra I2 fiber.

Theorem 21. A birational model over Q for the Hilbert modular surface Y−(21)
as a double cover of P2

r,s is given by the equation

z2
= 16s4

− 8r(27r2
− 23)s3

+ (621r4
− 954r2

+ 349)s2

− 18(r3
− r)(33r2

− 29)s+ (r2
− 1)(189(r4

− r2)+ 16).

It is a singular K3 surface (i.e., of Picard number 20).

11.2. Analysis. The extra involution (corresponding to 21= 3 · 7) here is given by
(r, s) 7→ (−r,−s).

The branch locus is a rational curve; a parametrization is given by

(r, s)=
(

h4
+ 72h2

− 81
18h(h2+ 3)

,
(h2
− 9)(h4

− 126h2
+ 189)

432h(h2+ 3)

)
.

The equation of Y−(21) above expresses it as a surface fibered by genus-1 curves
over P1

r . In fact, since the coefficient of s4 is a square, this fibration has a section,
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and we may convert it to its Jacobian form, which after some simple Weierstrass
transformations may be written as

z2
= w3

+ (−27r4
+ 43)w2

+ 4(r2
− 1)(8127r4

− 18459r2
+ 9740)w

+ 4(r2
− 1)2w(−186624r6

+ 1320813r4
− 1817964r2

+ 705679).

This is a K3 surface with an elliptic fibration to P1
r . The discriminant of the

cubic polynomial is

(r2
− 1)3(27r2

− 25)2(27r4
+ 342r2

− 289)3,

from which we deduce that we have three I2 fibers (including r =∞) and six I3

fibers, which contribute 15 to the Picard number. We find the following sections.

P0 =
(
6(r2
− 1)(6r2

−7), 4(r − 1)(r +1)(27r4
+342r2

−289)
)
,

P1 =
(
2(324r4

−1503r2
+ 1019)/21, 8(27r2

−25)(27r4
+ 342r2

− 289)/(21µ)
)
,

P2 =
(
(−102+32ν)(r2

− 1), 32νr(r2
− 1)(−27r2

+ 31+22ν)
)
,

P3 =
(
(−102−32ν)(r2

−1),−32νr(r2
− 1)(−27r2

+ 31−22ν)
)
.

Here µ =
√

21 and ν =
√
−1. Note that P0 is a 3-torsion section, whereas the

height matrix for P1, P2, P3 is

1
6

 2 0 0
0 13 1
0 1 13

 .
Therefore, the Picard number of the surface is 20, and the discriminant of the lattice
spanned by these sections and the trivial lattice is 1008= 24327. We showed that
this is the entire Néron–Severi group by checking that the above subgroup of the
Mordell–Weil group is 2- and 3-saturated.

Using P0, we may rewrite the equation in the much simpler form

z2
+ (9r2

− 13)wz+ (r2
− 1)(27r4

+ 342r2
− 289)z = w3.

The quotient of the Hilbert modular surface by the involution

(r, s, z) 7→ (−r,−s,−z)

is the rational elliptic surface

z2
= w3

+ (−27t2
+ 43)w2

+ 4(t − 1)(8127t2
− 18459t + 9740)w

+ 4(t − 1)2(−186624t3
+ 1320813t2

− 1817964t + 705679).



2332 Noam Elkies and Abhinav Kumar

It has three reducible fibers of type I3 and one of type I2, a 3-torsion section, and
Mordell–Weil rank 1, generated by the following section of height 1

6 :

(z, w)=
(
2(324r2

−1503r +1019)/21, 8(27r −25)(27r2
+342r −289)/(21µ)

)
.

11.3. Examples. Table 6 lists some points of small height and their genus-2 curves.
The torsion section P0 on the Jacobian model of Y−(21) pulls back to the curve

s =
45r3
+ 9r2

− 45r − 17
2(27r2+ 6r − 17)

.

The Brauer obstruction always vanishes for this family, and yields a family of
genus-2 curves over Q(r), whose Jacobians have real multiplication by O21.

Another special curve which we observe from a plot of the rational points is the
hyperbola s2

= (3r2
+ 1)/4. It may be parametrized as

(r, s)=
(

4m
4m2− 3

,
3+ 4m2

2(3− 4m2)

)
.

The Brauer obstruction also vanishes for this family.

Rational point (r, s) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)( 3

2 ,
1

44

)
−5x6

− 8x5
+ 20x4

+ 5x3
− 13x( 21

34 ,−
43
68

)
13x6
+ 26x5

+ 33x4
+ 9x3

− 5x2
− 11x(

−
36
13 ,−

49
26

)
7x6
− 42x5

− 44x4
− 12x3

− 11x2
− 14x − 7(

0, 1
2

)
13x6
+ 54x5

+ 32x4
− 28x3

− 25x2
+ 14x − 1(

0,− 1
2

)
−x6
+ 2x5

+ 4x4
+ 36x3

+ 25x2
+ 42x − 59( 45

46 ,−
25
92

)
9x6
+ 16x5

+ 12x4
− 73x3

− 41x2
+ 14x + 77(

−
3
2 ,−

1
44

)
−13x5

+ 39x4
+ 31x3

− 115x2
− 50x − 125(

−
21
34 ,

43
68

)
−13x5

+ 58x4
− 83x3

− 90x2
+ 100x + 125(

−
45
46 ,

25
92

)
5x5
+ 30x4

− 61x3
− 122x2

+ 112x + 161(
3,− 1

28

)
28x6
+ 52x5

− 149x4
− 174x3

+ 235x2
− 60x − 100( 55

63 ,−
4

63

)
8x6
+ 192x5

+ 237x4
+ 238x3

− 15x2
− 60x − 76(

−
1
3 ,−

11
9

)
−56x6

+ 132x5
+ 102x4

+ 195x3
− 240x2

− 204x − 178(
−3, 1

28

)
4x6
− 52x5

+ 133x4
+ 34x3

− 171x2
− 308x − 292( 1

9 ,
11
9

)
−2x6

− 54x5
+ 135x4

+ 120x3
− 135x2

− 324x − 108(
−4,− 7

2

)
−15x6

+ 36x5
+ 5x4

+ 52x3
+ 50x2

+ 156x + 375(
−

35
69 ,

11
69

)
4x6
− 12x5

− 219x4
− 460x3

+ 15x2
− 246x − 230

Table 6. Some points of small height on the surface of Theorem 21
and the corresponding genus-2 curves.
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12. Discriminant 24

12.1. Parametrization. We start with an elliptic K3 surface with fibers of type E6,
E7 and A3 at t =∞, 0 and 1 respectively.

A Weierstrass equation for such a family is given by

y2
= x3
+ t2x2

+a(t−1)t3(2+(d2
−a+1)(t−1)

)
x+a2(t−1)2t5(1+d2(t−1)

)
.

We identify a fiber of type E8, and this leads us by a 3-neighbor step to an E8 E7

fibration.

From the new elliptic fibration we read out the Igusa–Clebsch invariants as usual,
and then obtain the branch locus of Y−(24) as a double cover of P2

a,d , which is a
union of two curves: one corresponding to an extra I2 fiber, and one corresponding
to the locus where the E7 fiber promotes to an E8 fiber.

Theorem 22. A birational model over Q for the Hilbert modular surface Y−(24)
as a double cover of P2

a,d is given by the equation

z2
= (d2

− a− 1)(16ad4
− 8a2d2

− 20ad2
+ d2
+ a3
− 3a2

+ 3a− 1).

It is a singular K3 surface.

12.2. Analysis. Note the extra involution (a, d) 7→ (a,−d).
The branch locus has two components. The first is the zero locus of d2

−a−1, and
is obviously a rational curve (i.e., of genus 0) in the moduli space. It parametrizes
the K3 surfaces in the family for which the E7 fiber gets promoted to an E8 fiber.
The other component parametrizes elliptic K3 surfaces for which there is an extra I2

fiber. It is also a genus-0 curve, though this fact is less obvious. A parametrization
is given by

(a, d)=
(

1− g2

2g2− 1
,

g3

2g2− 1

)
.

The equation of the Hilbert modular surface describes it as a family of curves of
genus 1 fibered over P1

d . In fact, we readily check that (a, z)= (0, d2
− 1) gives a

section. So in fact, we have an elliptic surface, and by using the formula for the
Jacobian, we can write it in Weierstrass form as

y2
= x3
− xd2(144d6

− 324d4
+ 235d2

− 54)/48

− d2(3456d10
− 22032d8

+ 50625d6
− 54866d4

+ 28647d2
− 5832)/1728.
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This is an elliptic K3 surface E , and in fact, it is the base change (by d 7→ d2) of a
rational elliptic surface with reducible fibers of types I2, I3 and I4 (and therefore
with Mordell–Weil rank 2). We can use this to readily compute one section

(x0, y0)=
(
11d4
− 239d2/12+ 9, (d2

− 1)(9d2
− 8)(32d2

− 27)/8
)

of height 1
6 . Translating x by x0 and scaling to get rid of denominators, we get the

following nicer form for E :

y2
= x3
+ (132d4

− 239d2
+ 108)x2

+2(d2
−1)(9d2

−8)(32d2
−27)(10d2

−9)x +
(
(d2
−1)(9d2

−8)(32d2
−27)

)2
.

This has reducible fibers of type I2 at d =∞ and d2
=

8
9 , type I3 at d2

=
27
32 , type

IV at d = 0, and type I4 at d =±1. This gives a root system of type A3
1⊕ A3

2⊕ A2
3,

which has rank 15 and discriminant 1152.
In addition to the section P1 =

(
0, (d2

− 1)(9d2
− 8)(32d2

− 27)
)
, we also find

the sections

P2 =
(
−5(d2

− 1)(9d2
− 8),

√
−1(d2

− 1)2(9d2
− 8)

)
,

P3 =
(
−(32d2

− 27)(9d2
− 8)/6, d(32d2

− 27)(9d2
− 8)/

√
216

)
.

This shows that the elliptic K3 surface Y−(24) has geometric Picard number 20,
i.e., is a singular K3 surface. The discriminant of the span of the algebraic divisors
exhibited is 96. We showed that this is the entire Néron–Severi group by checking
that our subgroup of the Mordell–Weil group is 2-saturated.

As mentioned, the quotient by the involution d 7→−d is a rational elliptic surface

y2
= x3
+ (132t2

− 239t + 108)x2

+ 2(t − 1)(9t − 8)(32t − 27)(10t − 9)x +
(
(t − 1)(9t − 8)(32t − 27)

)2
.

This surface has an I2 fiber at t = 8
9 , an I3 fiber at t = 27

32 and an I4 fiber at t = 1.
The Mordell–Weil group is generated by the sections

P1 =
(
0, (t − 1)(9t − 8)(32t − 27)

)
,

P2 =
(
−5(t − 1)(9t − 8),

√
−1(t − 1)2(9t − 8)

)
,

with height matrix ( 1
12 0
0 1

2

)
.

12.3. Examples. Table 7 lists some points of small height and their genus-2 curves.
For instance, for the genus-2 curves corresponding to

(
1, 3

2

)
and

(
1,−3

2

)
, the

point counts modulo p match the twist by Q(
√

2) of a modular form of level 2592.
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Rational point (a, d) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)( 77

36 ,−
1
6

)
−7x6

− 18x4
− 10x3

+ 3x2
+ 10x + 22( 21

16 ,
1
8

)
−12x5

+ 8x4
+ 24x3

− 16x2
− 21x + 14( 9

4 ,−
1
2

)
3x6
− 12x5

+ 20x4
− 79x3

+ 11x2
− 84x + 60(

−
7

81 ,−
17
18

)
27x6
− 56x5

− 21x4
+ 52x3

+ 57x2
− 84x + 49( 77

36 ,
1
6

)
−32x6

− 80x5
+ 94x4

+ 115x3
− 91x2

− 55x + 33( 9
4 ,−

5
4

)
−24x6

+ 48x5
+ 100x4

+ 120x3
− 50x2

− 72x − 41(
−

3
4 ,−

1
4

)
25x6
+ 70x4

+ 24x3
+ 124x2

+ 48x + 72( 9
4 ,

1
2

)
−72x6

+ 84x5
+ 127x4

− 123x3
− 83x2

+ 51x + 25(
1, 3

2

)
9x6
+ 9x4

− 60x3
− 45x2

+ 132x − 53( 33
50 ,−

1
5

)
50x5
− 50x4

+ 35x3
− 35x2

− 31x + 139(
−

3
4 ,

1
4

)
33x6
− 36x5

+ 110x4
− 120x3

+ 140x2
− 96x + 72( 21

16 ,−
1
8

)
7x5
+ 3x4

+ 78x3
− 2x2

+ 63x + 147(
21,− 5

2

)
−8x6

− 24x5
+ 80x4

− 100x3
+ 170x2

− 84x + 63(
−

4
9 ,

2
3

)
−3x6

+ 14x5
− 63x4

+ 96x3
− 171x2

− 48x − 188(
−

7
81 ,

17
18

)
−7x6

+ 56x5
− 95x4

− 20x3
− 205x2

− 44x − 93(
21, 5

2

)
−24x6

− 24x5
− 280x4

− 260x3
+ 170x2

− 24x + 1

Table 7. Some points of small height on the surface of Theorem 22
and the corresponding genus-2 curves.

We describe a few curves on the Hilbert modular surface, which can be used
to produce rational points. Setting a =− 1

9 gives a rational curve of genus 0, with
infinitely many points. Sections of the fibration will also lead to curves birational
to P1 over Q. For instance, P1 and 2P1 describe the rational curves given by
a = 4(d2

− 1)/5 and a = (4d2
− 5)/13, respectively. The Brauer obstruction does

not vanish identically on any of these.

13. Discriminant 28

13.1. Parametrization. We start with an elliptic K3 surface with fibers of type
E6, D5 and A4 at t =∞, 0 and 1 respectively, and a section of height 28

60 =
7
15 =

4− 6
5 − 1− 4

3 .
A Weierstrass equation for this family is given by

y2
= x3
+ atx2

+ bt2(t − 1)2x + ct3(t − 1)4,
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where
a = 2( f 2

− g2)(t − 1)+ t,

b = ( f 2
− g2)2(1− t)− 2( f 2

− g2)( f + 1)t,

c = ( f + 1)2( f 2
− g2)t.

We identify the class of a D8 fiber and carry out a 2-neighbor step to convert to an
elliptic fibration with D8 and E7 fibers, and a section of height 7

2 = 4+2 ·1−1− 3
2 .

Then we identify the class of an E8 fiber, and carry out a 2-neighbor step to get
the desired E8 E7 fibration.

P

The new elliptic fibration has a section, since P · F ′ = 5, while the remaining
component of the D8 fiber has intersection number 2 with F ′. We now read out the
Igusa–Clebsch invariants.

Theorem 23. A birational model over Q for the Hilbert modular surface Y−(28)
as a double cover of P2

g,h is given by the equation

z2
=−(g− f − 2)(g+ f + 2)

× (8g4
+ 92 f 2g2

+ 180 f g2
+ 71g2

− 100 f 4
− 180 f 3

− 71 f 2
+ 4 f + 4).

It is a singular K3 surface.

13.2. Analysis. It has a second involution ( f, g) 7→ ( f,−g). The branch locus
consists of three components. The factors g ± ( f + 2) correspond to the locus
where the Picard number of the K3 surface jumps to 19, due to the presence of
an I2 fiber, but the discriminant decreases to 14, because the nontrivial section of
height 7

15 becomes divisible by 2. The more complicated factor corresponds to just
the presence of an extra I2 factor, which makes the discriminant 56. This component
of the branch locus is also a genus 0 curve; a parametrization is given by

( f, g)=
(
−

2m4
+17m3

+57m2
+85m+47

2(m+1)(m+2)(m2+6m+11)
,−

(m2
+6m+7)(2m2

+7m+7)
2(m+1)(m+2)(m2+6m+11)

)
.
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Rational point ( f, g) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)(

−
31
16 ,−

9
16

)
9x6
− 15x5

+ 39x4
− 25x3

+ 36x2
+ 11(

−
56
65 ,−

61
65

)
−37x6

+ 42x5
+ 17x4

− 33x3
− 7x2

− 3x − 3(
−

31
16 ,

9
16

)
15x5
− 39x4

− 11x3
+ 45x2

+ 27x(
−

35
24 ,−

31
24

)
−27x6

+ 54x5
− 36x4

+ 30x3
− 24x2

− 6x − 2(
−

12
11 ,−

1
11

)
x6
+ 14x5

+ 61x4
+ 73x3

− 49x2
+ 3x + 1(

−
14
9 ,−

5
9

)
37x6
+ 69x5

+ 75x4
+ 79x3

+ 69x2
+ 12x + 20(

−
2
5 ,−

7
5

)
−4x6

+ 12x5
− x4
+ 87x3

+ 68x2
+ 48x + 3(

−
13
8 ,−

7
8

)
3x6
− 6x5

+ 5x4
− 10x3

+ 41x2
+ 30x + 87(

−
42
41 , 1

)
−92x6

− 76x5
+ 21x4

+ 9x3
+ 9x2

− x − 1(
−

13
8 ,

7
8

)
18x6
+ 78x5

+ 44x4
− 94x3

− 76x2
+ 30x + 25( 5

16 ,−
19
16

)
−48x6

+ 45x5
+ 11x4

+ 87x3
− 97x2

− 63x + 56(
−

30
41 ,−

36
41

)
−27x6

+ 57x5
− 100x4

− 68x3
− 76x2

+ 36x(
−

11
3 ,

7
3

)
16x6
− 24x5

− 111x4
+ 9x3

+ 102x2
− 27x − 33( 26

31 ,−
64
31

)
−9x6

− 6x5
+ 32x4

+ 32x3
− 112x2

− 6x + 99( 13
80 ,−

15
16

)
−9x6

− 15x5
+ 85x3

− 135x + 54( 26
31 ,

64
31

)
−25x6

+ 30x5
− 64x4

+ 72x3
− 136x2

+ 102x − 69

Table 8. Some points of small height on the surface of Theorem 23
and the corresponding genus-2 curves.

Since the double cover is branched along a sextic, the Hilbert modular surface
is itself a K3 surface. Setting f = h− 2 and then using the invertible substitution
h = t (1+ 1/x), g = t (1− 1/x) (and absorbing square factors) converts it to an
elliptic fibration over P1

t , which we can write in Weierstrass form as

y2
= x3
− t (108t3

− 176t2
+ 63t + 4)x2

+32(t − 1)2t3(135t2
− 36t − 106)x − 64(t − 1)4t4(6075t2

− 6075t − 196).

This has fibers of type I2 at t =∞, 4
5 and 28

27 , I∗1 at t = 0, I5 at t = 1, and I3 at
t = (19±7

√
7)/36, giving a contribution of D5⊕A4⊕A3

1⊕A2
2 to the Néron–Severi

lattice. Therefore the Picard number is at least 18. We identify the sections

P1 =
(
12t2(t − 1)(36t − 37), 4t2(t − 1)(27t − 28)(72t2

− 76t + 1)
)
,

P2 =
(
t (1080t3

− 2064t2
+ 953t + 28)/7,

2t2(5t − 4)(27t − 28)(72t2
− 76t + 1)/73/2),

with height matrix ( 7
60 0
0 2

3

)
.
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Therefore the Picard number is 20. An easy lattice-theoretic argument (see the
online supplement) shows that these sections must generate the Mordell–Weil group,
and therefore the Néron–Severi lattice has discriminant 112.

The quotient by the involution g 7→ −g has equation

y2
= x3
− (84 f 2

+ 148 f + 39)x2/4− (96 f 4
+ 364 f 3

+ 615 f 2
+ 500 f + 140)x

− ( f + 2)2(5 f + 2)2(4 f 2
+ 4 f − 1).

This is a rational elliptic surface with an I4 fiber at f = −1, an I3 fiber at
f = − 17

18 , and I2 fibers at t = − 26
27 and t = ∞. The Mordell–Weil group is

generated by the 2-torsion section (−2( f + 2)2, 0) and the non-torsion section(
−2( f 2

+ 3 f + 3), ( f + 1)(18 f + 17)
)

of height 1
12 .

13.3. Examples. Table 8 lists some points of small height and their genus-2 curves.
Next, we describe some special curves on the surface, which may be used to

produce rational points. First, f = − 17
18 gives a rational curve, which can be

parametrized as g =−19(h2
− 2)/(18(h2

+ 2)). The Brauer obstruction vanishes
identically for this family, giving a family of genus-2 curves with real multiplication
by O28. Next, the specialization f =−26

27 gives another rational curve, which can
be parametrized as

g =−2
13h2
+ 729h− 75816

27(h2+ 5832)
.

The Brauer obstruction does not vanish identically for this family. Finally, the
section P1 on the Jacobian of Y−(28) can be described as

( f, g)=
(

4t2
− 8t + 1
4t − 1

,
4t2
− 2t + 1
4t − 1

)
.

The Brauer obstruction vanishes identically on this family as well.
From a plot of the rational points, we observe many rational points on the lines

g = ±(5 f + 2)/3. However, the Brauer obstruction does not vanish identically
along these lines.

14. Discriminant 29

14.1. Parametrization. We start with an elliptic K3 surface with fibers of type E7

and A8, and a section P of height 29
18 = 4− 3

2 −
8
9 . A Weierstrass equation for this

family is given by

y2
= x3
+
(
−(4 f − 1)t2

+ (g− 2)t + 1
)
x2

− 2gt3(2 f 2t2
+ (−g+ 2 f + 1)t − 1

)
x + g2t6((g− 4 f )t + 1

)
.

http://msp.berkeley.edu/ant/2014/8-10/ant-v8-n10-x01-equations.zip
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We identify a fiber F of type E8, and go to the associated elliptic fibration by a
3-neighbor step. Note that P · F = 4, while the remaining component of the A8

fiber intersects F with multiplicity 3. Therefore the new fibration has a section.

P

The new elliptic fibration has E8 and E7 fibers, and we may read out the Igusa–
Clebsch invariants. The branch locus for the double cover of P2

f,g corresponds to
elliptic K3 surfaces having an extra I2 fiber.

Theorem 24. A birational model over Q for the Hilbert modular surface Y−(29)
as a double cover of P2 is given by the equation

z2
=−g4

+ (6 f + 11)g3
− (27 f 4

− 18 f 3
+ 5 f 2

+ 102 f − 1)g2

+ 8 f (36 f 3
− 25 f 2

+ 35 f − 1)g− 16 f 2(4 f − 1)3.

It is a K3 surface of Picard number 19.

14.2. Analysis. The branch locus is a rational curve, and a parametrization is given
by

( f, g)=
(
(m+ 2)2(m2

+ 2m− 4)
m2(m2+ 6m+ 12)

,
4(m+ 2)2(m+ 4)3

m(m2+ 6m+ 12)2

)
.

The substitution g = h f makes the right-hand side of the equation a quartic
in f , after absorbing a factor of f 2 into z2 on the left. Also, f = 0 makes the
right-hand side a square (namely (h− 4)2), giving us a point on the genus-1 curve
over P1

h . We may then replace the genus-1 curve by its Jacobian, which has the
following equation after the change of parameter h = 4− t , and some Weierstrass
transformations:

y2
= x3
− (t4

− 10t3
− t2
− t − 16)x2

− t (20t5
− 140t4

− 3740t3
+ 14234t2

+ 3349t − 1120)x

− t2(3475t6
−46300t5

+180355t4
−10362t3

−849193t2
+276269t−19600).

This is an elliptic K3 surface, with bad fibers of type I4 at t =∞, I3 at t = 0 and
at the roots of the polynomial 15t3

+ 12t2
+ 160t − 64 (which gives the cubic field

of discriminant −87), and I2 at the roots of 2t3
−38t2

+255t−28 (which gives the
cubic field of discriminant −116). The trivial lattice therefore has rank 16, leaving
room for Mordell–Weil rank at most 4. We find the linearly independent sections

P1 =
(
t (125t3

− 700t2
+ 800t − 76)/4,
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t (1375t5
− 11450t4

+ 29240t3
− 23616t2

+ 7296t − 512)/8
)
,

P2 =
(
(30t4

− 306t3
+ 636t2

+ 1833t − 448)/29,
(2t3
− 38t2

+ 255t − 28)(15t3
+ 12t2

+ 160t − 64)/(29b)
)
,

P3 =
(
2(3a− 5)t2

− 3(8a− 23)t,
at
(
−99t3

+ 18(a+ 37)t2
− 144(3a+ 7)t + 416a− 288

)
/3
)
.

Here a =
√
−3 and b =

√
29. Therefore, the Picard number of the Hilbert modular

surface is at least 19. We showed by counting points modulo 11 and 13 that the
Picard number must be exactly 19. This agrees with the calculations in [Oda 1982,
p. 109]. The height matrix of the sections above is

1
6

 20 0 −10
0 3 0

−10 0 14

 .
Therefore, the sublattice of the Néron–Severi lattice spanned by the sections above
together with the trivial lattice has discriminant 24

· 34
· 5= 6480. By checking that

it is 2- and 3-saturated, we showed that it is the entire Néron–Severi lattice, and
therefore the sections P1, P2, P3 generate the Mordell-Weil group.

14.3. Examples. Table 9 lists some points of small height and their genus-2 curves.
The section P1 corresponds to the rational curve given by g = 4

5 u f , with

f =
22u5
− 321u4

+ 1651u3
− 3377u2

+ 1980u+ 50
25u6− 400u5+ 2375u4− 6050u3+ 4813u2+ 2325u+ 225

.

The Brauer obstruction vanishes identically, yielding a 1-parameter family of genus-
2 curves with real multiplication by O29.

15. Discriminant 33

15.1. Parametrization. We start with an elliptic K3 surface with fibers of type A10

and E6 at t =∞ and t = 0 respectively. A Weierstrass equation for such a family
is given by

y2
= x3
+ (c+ 2d + 1)t2x2

+ 2(c+ d)t4x + ct4,

with

c = (s2
− r2)2t2

− (s2
− r2)(s2

− r2
+ 2r)t + s2, d = (s2

− r2)(1− t)+ r.

We identify the class of an E7 fiber below, and perform a 2-neighbor step.
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The new elliptic fibration has fibers of type E6, E7 and A2, as well as a section
P of height 33

18 =
11
6 = 4− 0− 3

2 −
2
3 . We then identify the class of an E8 fiber and

carry out a 3-neighbor step to an E8 E7 elliptic fibration.

P

The new elliptic fibration has a section, since P · F ′ = 5, while the intersection
number of the remaining component of the E6 fiber with F ′ is 3, and these are
coprime.

From the Weierstrass equation of the E8 E7 fibration, we determine the Igusa–
Clebsch invariants, and then the equation of the branch locus.

Theorem 25. A birational model over Q for the Hilbert modular surface Y−(33)
as a double cover of P2 is given by the equation

z2
= 9s6

− (26r2
− 80r + 104)s4

+ (25r4
− 152r3

+ 400r2
− 408r + 432)s2

−(8r6
− 72r5

+ 280r4
− 472r3

+ 336r2
− 64r − 16).

Rational point ( f, g) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)(

−37,− 37
2

)
−98x5

−56x4
−131x3

−114x2
+10x−68( 20

67 ,
16
67

)
264x6

+760x5
+183x4

−630x3
−53x2

−20x−4( 6
7 ,

48
7

)
12x6
−12x5

−409x4
+1062x3

+287x2
−588x−252

(−40, 40) −53x6
+227x5

+374x4
+1191x3

+669x2
+680x+900(

−1,− 29
10

)
1210x5

−110x4
+511x3

−17x2
+53x+1(

−4,− 16
5

)
−200x6

+1360x5
−995x4

+242x3
−191x2

−4x−12(
−

1
7 ,−

37
98

)
−1588x6

+986x5
−122x4

+221x3
−68x2

−2x−8
(−6, 8) 540x6

+2052x5
−1149x4

+1724x3
−39x2

−894x−506( 5
43 ,

19
43

)
−2x6

+80x5
−786x4

+2265x3
+74x2

+80x−2( 8
9 ,

16
9

)
−4x6

+204x5
−837x4

−160x3
+2451x2

+1620x−228(
−

6
13 ,−

16
13

)
236x6

−796x5
+2293x4

−2178x3
+1525x2

+2492x−764(
−

4
9 ,

16
9

)
552x6

−2232x5
+3183x4

+562x3
−4713x2

−1248x−88(
−3, 36

5

)
1024x6

−1920x5
−2252x4

+1065x3
−2288x2

−6195x+66( 18
19 ,

48
19

)
−768x6

−2560x5
+1571x4

+7838x3
−2133x2

−6912x+2376(
−

4
5 ,−

32
25

)
−1412x6

−1372x5
+2149x4

+8226x3
+4889x2

−896x−4096( 2
9 ,

7
9

)
3189x6

+4599x5
−6897x4

−9331x3
+5424x2

+5040x−1968

Table 9. Some points of small height on the surface of Theorem 24
and the corresponding genus-2 curves.
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It is a singular K3 surface.

15.2. Analysis. This is a double cover of the (r, s)-plane branched along a sextic,
and is therefore a K3 surface. The extra involution is given by (r, s) 7→ (r,−s).
The equation of the branch locus may be transformed as follows: setting t = s2, we
have

−8r6
+ 72r5

+ (25t − 280)r4
+ (−152t + 472)r3

+ (−26t2
+ 400t − 336)r2

+(80t2
− 408t + 64)r + (9t3

− 104t2
+ 432t + 16)= 0

which, after resolution of singularities, becomes a genus-0 curve, parametrized by

r =
m3
+ 4m2

+ 4m+ 4
m2(m+ 1)

, t =
8(m3

+ 4m2
+ 4m+ 2)

m4(m+ 1)2
.

Then the branch locus can be written as a double cover

s2
= 8(m3

+ 4m2
+ 4m+ 2)/(m4(m+ 1)2).

After removing square factors and performing a Weierstrass transformation, it is
converted to the elliptic curve y2

+ y = x3
− x2. It is isomorphic to X1(11) ∼=

X0(33)/〈w33〉, where w33 is the Atkin–Lehner involution.
For the equation of the Hilbert modular surface, the transformation s = r + t

makes the right-hand side of the equation a quartic in r , with the coefficient of
r4 being a square. Converting to the Jacobian form, and applying a Weierstrass
transformation as well as scaling t , we get an elliptic fibration

y2
= x3
+ (t4

+ 24t3
+ 58t2

+ 84t + 1)x2

+ (280t5
+ 5488t4

+ 1376t3
+ 2192t2

+ 72t)x

+ 4608t7
+ 95632t6

+ 32576t5
+ 26848t4

+ 14656t3
+ 1296t2.

This has bad fibers of type I5 at t =∞, type II at t = 1, type I3 at t = 0, 1
2 and

(−17± 3
√

33)/2, and type I2 at t =−21
2 ±

11
√

33
6 . These contribute A3

1⊕ A4
2⊕ A4

to the Néron–Severi lattice.
By finding sections modulo a small prime and attempting to lift them to Q or

Q(
√

33), we find the following sections of small height:

P1 =
(
4t (3t2

+ 60t − 13), 4t (t2
+ 17t − 2)(3t2

+ 63t − 2)
)
,

P2 =
(
−4t (3t + 11), 4t (t − 1)(3t2

+ 63t − 2)
)
,

P3 =
(
(4
√

33+ 12)t2
− (2
√

33+ 34)t,

(
√

33+ 3)t (2t − 1)(2t + 3
√

33+ 17)(6t + 63− 11
√

33)/6
)
.
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Rational point (r, s) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)( 11

3 ,
8
3

)
−9x6

− 6x5
− 7x4

+ 7x3
+ 2x2

+ 3x − 2
(1, 3) −4x6

+ 15x4
− x3
− 9x2

+ 12x + 5(
−

13
5 ,

27
5

)
−14x5

+ 20x4
+ 2x3

− 15x2
− 4x( 28

3 ,
23
3

)
−5x6

+ 6x5
− 5x4

+ 27x3
− 11x2

+ 12x − 24( 73
19 ,−

41
19

)
−7x6

+ 15x5
+ x4
− 31x3

− 2x2
+ 12x + 12

(1,−3) −x6
− 3x5

+ 9x4
+ 34x3

− 30x2
− 9x + 8( 41

51 ,
7

51

)
−9x6

− 9x5
− 35x4

+ 11x3
− 8x2

+ 12x( 16
15 ,

1
15

)
2x6
− 3x5

+ 7x4
+ 13x3

− 20x2
+ 36x − 15(

−
13
5 ,−

27
5

)
−5x5

− 3x4
+ 13x3

− 17x2
− 40x( 46

3 ,
41
3

)
−8x6

+ 36x5
− 23x4

− 21x3
− 47x2

− 18x − 9(
−

17
10 ,

27
10

)
−20x5

+ 28x4
− 37x3

+ 60x2
+ 44x( 13

3 ,−
11
3

)
7x6
− 48x5

+ 68x4
− 2x3

− 25x2
+ 24x − 36(

−
38
11 ,

61
11

)
−9x6

− 6x5
+ 69x4

− 19x3
− 39x2

+ 12x − 8(
−

29
3 ,−11

)
−31x5

+ 71x4
− 32x3

+ 23x2
− 40x − 8( 1

33 ,
56
33

)
3x6
+ 24x5

+ 8x4
+ 41x3

+ 32x2
− 72x − 36( 13

3 ,
11
3

)
−12x6

+ 24x5
− 31x4

+ 81x3
− 67x2

+ 39x − 70

Table 10. Some points of small height on the surface of Theorem 25
and the corresponding genus-2 curves.

These are linearly independent in the Mordell–Weil group, and the matrix of Néron–
Tate heights is

1
30

 6 −2 3
−2 19 −1

3 −1 9

 .
It has determinant 11

360 , and so the sublattice of the Néron–Severi group generated by
these sections and the trivial lattice has rank 20 and discriminant − 11

360 · 2
3
· 34
· 5=

−99. We show that this is the full Picard group by checking that our subgroup of
the Mordell–Weil group is 3-saturated. We deduce that Y−(33) is a singular K3
surface with Picard lattice of discriminant −99.

The quotient of the Y−(33) by the involution s 7→ −s has Weierstrass equation

y2
= x3
− 2(13r2

− 40r + 52)x2
+ 9(25r4

− 152r3
+ 400r2

− 408r + 432)x

− 648(r − 1)3(r3
− 6r2

+ 14r + 2).

It is a rational elliptic surface, with reducible fibers of types I5, I3 and I2 at
r =∞, 19 and 23 respectively. The Mordell–Weil group is generated by the section(
3(3t2

− 16t + 112), 12(r − 23)(r − 19)
)

of height 1
30 .
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15.3. Examples. Table 10 on the previous page lists some points of small height
and their genus-2 curves.

We may attempt to match up these examples with eigenforms in the tables of
modular forms. For instance, for the points (1, 3) and (1,−3), the corresponding
genus-2 curves (with isogenous Jacobians)

y2
=−(x3

− 3x − 1)(4x3
− 3x + 5),

y2
=−(x3

− 3x2
+ 1)(x3

+ 6x2
+ 9x − 8)

have the property that their traces match those of a newform of weight 1296= 24
·34

in the modular forms database.
We also see some simple rational curves on the Hilbert modular surface: the spe-

cialization r = 19 gives a rational curve parametrized by s =−(16m2
+ 41)/(3m),

while r = 23 is also a rational curve, parametrized by s = −(16m2
+ 7)/m. The

Brauer obstructions do not identically vanish for points on these curves.
We have slightly better luck with sections of the elliptic fibration: for instance, the

sections P1, 2P1, 3P1 give rise to rational curves with respective parametrizations(
−

3t2
− 112

2(3t + 8)
,

3t2
+ 16t + 112
2(3t + 8)

)
,

(
−

t2
− 12

2(t + 2)
,

t2
+ 4t + 12
2(t + 2)

)
,

(
−

3t2
− 20

6(t + 2)
,

3t2
+ 12t + 20
6(t + 2)

)
.

The Brauer obstruction vanishes identically on each of these.

16. Discriminant 37

16.1. Parametrization. We start with an elliptic K3 surface with fibers of type E6,
D5 and A4 at t =∞, 0 and 1 respectively, and a section of height 37

60 = 4− 4
3−

5
4−

4
5 .

A Weierstrass equation for this family is

y2
= x3
+ atx2

+ bt2(t − 1)2x + ct3(t − 1)4,

with

a = (2g− f + 1)(t − 1)+ g2t/4,

b = ( f − g− 1)
(
( f + g− 1)(t − 1)+ ( f − 2)gt/2

)
,

c = (g− f + 1)2
(

f 2(t − 1)+ ( f − 2)2
)
/4.

We identify the class of an D8 fiber and carry out a 2-neighbor step to convert to
an elliptic fibration with D8 and E6 fibers.
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This new elliptic fibration has Mordell–Weil rank 2. In fact, it is quite easy to
exhibit one non-torsion section P (we do so in the online supplement) of height
2
3 = 4− 4

3 − 2. Then we find an E8 fiber as shown below, and proceed to it by a
2-neighbor step. The section P combined with most of the components of the E6

fiber gives a disjoint E7 configuration, and therefore the new elliptic fibration has
reducible fibers of type E8 and E7. The fact that (−P) intersects the multiplicity-1
component of the E8 fiber shown below implies that the new fibration has a section.

P

We then read out the Igusa–Clebsch invariants and write down the equation of
the Hilbert modular surface.

Theorem 26. A birational model over Q for the Hilbert modular surface Y−(37)
as a double cover of P2 is given by the equation

z2
= f 2g4

+ 2 f (14 f − 1)g3
− (126 f 3

− 142 f 2
+ 44 f − 1)g2

+ ( f − 1)(54 f 3
− 34 f 2

+ 17 f − 10)g− ( f − 1)2(27 f 2
− 8 f + 8).

It is a K3 surface of Picard number 19.

16.2. Analysis. The branch locus corresponds to the locus where the elliptic K3
surface acquires an extra I2 fiber. The transformation

( f, g)=
(

2x2 y+ 4xy+ y+ x4
+ x3
− 3x2

− x
x3(x + 2)

,
2y+ x2

− 2x − 1
x2

)
converts it to the elliptic curve

y2
+ y = x3

− x,

which is 37a in Cremona’s tables. This is an elliptic curve of rank 1, isomorphic to
X0(37)/〈w〉, where w is the Atkin–Lehner involution.

To analyze this Hilbert modular surface, note that we have a genus-1 fibration
over P1

f , which has a section because the coefficient of g4 is a square. Hence Y−(37)
is an elliptic K3 surface. Taking the Jacobian of this genus-1 curve over Q( f ), and

http://msp.berkeley.edu/ant/2014/8-10/ant-v8-n10-x01-equations.zip
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Rational point ( f, g) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)( 3

2 ,
11
7

)
17x6
− 24x5

− 66x4
+ 68x3

+ 81x2
− 54x − 27( 3

4 ,
11
9

)
15x6
− 6x5

− 71x4
+ 35x3

+ 94x2
− 48x − 21( 3

2 ,
1
3

)
11x6
− 54x5

− 125x4
− 52x3

− 32x2
− 42x − 75( 3

2 ,
59
65

)
−135x6

+ 108x5
+ 45x4

− 44x3
+ 130x2

− 12x + 95( 1
4 ,

17
5

)
81x5
− 135x4

+ 13x3
− 9x2

+ 70x − 15(
−

13
3 ,

16
13

)
−13x6

+ 156x5
− 24x4

− 132x3
− 45x2

+ 108x − 27(
−

4
9 ,−

13
6

)
36x6
− 108x5

+ 165x4
− 124x3

+ 21x2
+ 36x − 28( 5

3 ,
13
10

)
−54x6

+ 54x5
− 9x4

− 84x3
+ 141x2

− 180x + 100( 3
16 ,

13
8

)
52x6
+ 156x5

− 39x4
− 180x3

+ 9x2
+ 72x − 16(

−
1
2 ,

15
13

)
−31x6

+ 156x5
− 195x4

− 260x3
+ 210x2

+ 156x + 23(
3, 81

11

)
−18x6

+ 122x5
− 135x4

− 268x3
− 25x2

+ 144x + 176( 1
4 , 3

)
x6
+ 72x5

− 18x4
− 189x3

− 117x2
+ 270x + 45( 31

15 ,
16
31

)
−53x6

+ 6x5
− 21x4

+ 208x3
− 258x2

− 276x + 259( 34
27 ,

14
51

)
−2x6

+ 36x5
− 138x4

+ 105x3
− 33x2

− 153x − 289(
3, 7

2

)
−108x6

− 324x5
− 207x4

− 116x3
+ 105x2

− 12x − 12( 22
3 ,

38
11

)
−22x6

+ 72x5
+ 84x4

− 341x3
− 441x2

+ 417x + 473

Table 11. Some points of small height on the surface of Theorem 26
and the corresponding genus-2 curves.

reparametrizing f = t/(t + 1), we get, after some Weierstrass transformations, the
equation

y2
= x3
− (t + 1)(27t3

+ 21t2
− 19t − 1)x2

− 8t2(t + 1)2(30t2
− 235t − 1)x

− 16t3(t + 1)2(3136t4
+ 5484t3

+ 1024t2
− 2161t − 108).

This surface has reducible fibers of type IV at t =−1, type I2 at t =− 1
28 , and

type I3 at t = 0,∞ and the four roots of (27t4
+45t3

+10t2
+22t+3). This quartic

polynomial describes a quadratic extension of Q(
√

37). The bad fibers contribute
A7

2⊕ A1 to the trivial lattice. We also have a 3-torsion section

P0 =
(
4t (t + 1)(9t2

+ 7t − 3), 4t (t + 1)(27t4
+ 45t3

+ 10t2
+ 22t + 3)

)
and two non-torsion sections

P1 =
(
4t (t + 1)(49t2

+ 28t − 1), 4t (t + 1)(637t4
+ 854t3

+ 276t2
+ 33t + 1)

)
,

P2 =
(
4(252t4

+ 457t3
+ 118t2

− 177t − 9)/37,

4(t + 3)(28t + 1)(27t4
+ 45t3

+ 10t2
+ 22t + 3)/373/2).

These two sections have height 8
3 and 5

6 respectively and are orthogonal with respect
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to the Néron–Tate height pairing. Therefore, the Néron–Severi lattice contains a
sublattice of rank 19 and discriminant 1080. Counting points modulo 11 and 13
shows that the Picard number must be exactly 19. This is again confirmed by Oda’s
tables [1982, p. 109]. We checked that the Mordell–Weil subgroup generated by
P0, P1 and P2 is saturated at 2 and 3, and thus that we have the full Néron–Severi
lattice.

16.3. Examples. Table 11 on the previous page lists some points of small height
and their genus-2 curves.

Next, we describe some curves of small genus on the surface, which may be
used to produce rational points. The specialization f =− 1

27 gives a rational curve,
with parametrization g= 7(h2

−8h+19)/(3(h2
−1)). The Brauer obstruction does

not vanish identically for this rational curve.
The sections P1 and −P1 give rational curves, parametrized by

g =
13 f 2

− 7 f + 3
f (3 f + 2)

and g =
9 f 2
− 2 f + 2

7 f + 1

respectively. The Brauer obstruction vanishes on both these loci, yielding families
of genus-2 curves whose Jacobians have real multiplication by O37.

17. Discriminant 40

17.1. Parametrization. We start with an elliptic K3 surface with fibers of type E7,
D5 and A4 at t =∞, 0 and 1 respectively.

A Weierstrass equation for this family is given by

y2
= x3
+ t
(
e2t + (4d + 1)(1− t)

)
x2

+ 2t2(t − 1)2
(
2det + 2d(d + 1)(1− t)

)
x + 4d2t3(t − 1)4

with
d = ( f − e+ 1) ( f + e− 1)/2.

We first identify the class of a D8 fiber, and perform a 2-neighbor step to an
elliptic fibration with D8 and E7 fibers.

This fibration has a section P of height 5= 4+2−1. Next, we take a 2-neighbor
step to go to a fibration with E8 and E7 fibers. We have P · F ′ = 9, while the
intersection number of the F ′ with the remaining component of the D8 fiber is 2.
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Since these are coprime, the new elliptic fibration has a section.

P

Finally, we read out the Igusa–Clebsch invariants, and compute the branch locus
of the double cover, which is a union of two curves, one corresponding to an extra
I2 fiber, the other to a promotion of the fiber at t =∞ from E7 to E8.

Theorem 27. A birational model over Q for the Hilbert modular surface Y−(40)
as a double cover of P2

e, f is given by the equation

z2
=−( f 2

− e2
+ 1)

(
8 f 4
+ (−17e2

+ 12e− 8) f 2
+ 9e4

− 12e3
+ 7e2

+ 10e+ 2
)
.

It is a K3 surface of Picard number 19.

17.2. Analysis. The extra involution is (e, f ) 7→ (e,− f ). The branch locus is a
union of two curves. The first, f 2

− e2
+ 1= 0, is a rational curve, parametrized

by say (e, f )=
(
(t2
+ 1)/(2t), (t2

− 1)/(2t)
)
. It corresponds to the subfamily of

elliptic K3 surfaces for which the E7 fiber is promoted to an E8 fiber. The other
component is also a rational curve, parametrized by

(e, f )=
(
−

(m2
− 2)2

m(m− 2)(m2− 4m+ 2)
,

2(m2
− 2m+ 2)(m2

−m− 1)
m(m− 2)(m2− 4m+ 2)

)
.

It corresponds to elliptic K3 surfaces with an extra I2 fiber.
The Hilbert modular surface is a double cover of a plane branched along a sextic,

and is therefore a K3 surface. The transformation f = e+ t makes it a quartic in e,
whose leading coefficient is a square. We thus get an elliptic K3 surface whose
Weierstrass equation may be obtained by taking the Jacobian of this genus-1 curve.
After some elementary algebra, we get the elliptic K3 surface

y3
= x3
+ (t4

+ 24t3
+ 98t2

+ 16t + 1)x2

+(128t5
+ 2352t4

+ 1088t3
+ 64t2)x − (512t6

+ 9216t5
+ 704t4).

It has reducible fibers of types I6 at t =∞, I4 at t = 0, I3 at t = −8± 5
√

10
2 , and

I2 at t = 1
3 and t =−9± 4

√
5, giving a contribution of A5⊕ A3⊕ A3

1⊕ A2
2 to the

Néron–Severi lattice. The trivial lattice thus has rank 17 and discriminant 1728.
We also have the two sections

P1 =
(
4t (2t2

+ 36t + 3),−4t (t2
+ 18t + 1)(2t2

+ 32t + 3)
)
,

P2 =
(
−(6t4

+ 124t3
+ 303t2

+ 138t + 9)/10,
√

10(2t + 3)(3t − 1)(t2
+ 18t + 1)(2t2

+ 32t + 3)/100
)
.



K3 surfaces and equations for Hilbert modular surfaces 2349

These have heights 1
12 and 7

6 respectively, and are orthogonal with respect to the
height pairing. Therefore, the Picard number is at least 19. Counting points modulo
7 and 11 proves that the Picard number is 19 (we thank Ronald van Luijk for carrying
out such a calculation), in agreement with Oda’s calculations [1982, p. 109]. The
part of the Néron–Severi lattice spanned by the above sections with the trivial lattice
has rank 19 and discriminant 168. We showed that this lattice is 2-saturated, so it is
the full Néron–Severi lattice.

The quotient of the Hilbert modular surface by the involution f 7→ − f is the
rational elliptic surface

y2
= (x + 8e2

− 8)
(
x2
+ (17e2

− 12e+ 8)x + 8(3e+ 1)2(e2
− 2e+ 2)

)
.

It has reducible fibers of types I6, I3, I2 at e=∞, 8, 9, respectively, and the Mordell–
Weil group is generated by the 6-torsion section(

−4(2e2
+ e− 11), 4(e− 9)(e− 8)

)
;

indeed this is the universal elliptic curve over X1(6).

17.3. Examples. Table 12 lists some points of small height and their genus-2
curves.

Rational point (e, f ) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)( 49

8 ,−
47
8

)
−12x6

− 12x5
− 21x4

+ 14x3
+ 39x2

+ 48x − 64( 31
6 , 5

)
108x6

+ 108x5
− 81x4

+ x3
+ 63x2

− 33x + 9(
−

1
12 ,−

5
6

)
36x5
+ 78x4

− 41x3
− 129x2

+ 45x + 27(
−

13
10 ,−

4
5

)
−72x6

+ 108x5
+ 135x4

− 135x3
− 219x2

+ 135x + 53( 49
8 ,

47
8

)
−72x6

+ 216x5
− 315x4

+ 162x3
+ 21x2

− 72x − 16(
−

23
14 ,−

13
7

)
−8x6

+ 60x5
− 87x4

− 163x3
+ 288x2

+ 324x + 27(
−

29
12 ,−

25
12

)
12x6
+ 132x5

+ 355x4
− 90x3

− 245x2
+ 36x − 44( 87

55 ,
12
55

)
44x5
+ 200x4

− 422x3
+ 180x2

− 81x(
−

75
28 ,

18
7

)
−77x6

+ 147x5
− 45x4

− 335x3
+ 186x2

− 180x − 432( 49
23 ,

43
23

)
46x6
− 24x5

+ 252x4
− 29x3

+ 468x2
+ 24x + 366(

−
37
36 ,

35
36

)
−18x6

− 258x5
− 475x4

+ 220x3
− 325x2

+ 72x − 48( 19
8 ,

13
8

)
432x6

+ 216x5
− 27x4

− 502x3
− 87x2

+ 36x + 116( 55
28 ,−

43
28

)
−496x6

+ 48x5
− 545x4

+ 90x3
− 257x2

+ 120x − 80(
−

1
28 ,

15
28

)
314x6

+ 426x5
+ 555x4

+ 140x3
− 195x2

− 264x − 176(
−

23
15 ,

22
15

)
−586x6

+ 330x5
− 512x4

+ 150x3
− 110x2

− 24x − 1(
−

5
4 ,−

1
4

)
8x6
− 168x5

− 269x4
+ 466x3

+ 451x2
− 624x − 376

Table 12. Some points of small height on the surface of Theorem 27
and the corresponding genus-2 curves.
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The section P1 gives a rational curve

(e, f )=
(
−

2g2
+ 11

4g− 1
,

2g2
− g− 11

4g− 1

)
.

However, the Brauer obstruction does not vanish identically on this locus. The
section 2P1 gives a rational curve

(e, f )=
(
−

2g2
+ 3

4g
,

2g2
− 3

4g

)
on the surface. Here, the Brauer obstruction does vanish identically, yielding a
family of genus-2 curves with real multiplication by O40.

18. Discriminant 41

18.1. Parametrization. We start with an elliptic K3 surface with fibers of type A5

at t = 0 and A10 at t =∞, with a section of height 41
66 = 4− 4·7

11 −
5
6 .

A Weierstrass equation for this family is given by

y2
= x3
+ (t2

+ 2d f t + c f 2)x2
+ 2t2(dt + c f )x + ct4,

with
c = r2s2(16t2

− 8(4rs− 16s− r)t + (4rs− 16s+ r)2
)
,

d = rs(4t − 12rs+ 16s+ r),

f = (t + 4s)/(4rs).

We identify the class of an E8 fiber, and perform a 3-neighbor step to an elliptic
fibration with E8 and A7 fibers.

This fibration has a section P of height 41
8 = 4+2− 7

8 . Next, we take a 2-neighbor
step to go to a fibration with E8 and E7 fibers.

P

The intersection number of the new fiber F ′ with the remaining component of the
A7 fiber is 2 and with the section P is 5. Since these number are coprime, the new
genus-1 fibration defined by F ′ has a section.
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Reading out the map to M2 from the E8 E7 fibration, we obtain the following
result.

Theorem 28. A birational model over Q for the Hilbert modular surface Y−(41)
as a double cover of P2

r,s is given by the equation

z2
= (4s+ 1)4r4

− 16(8s2
+ 42s− 1)(4s+ 1)2r3

+ 32(128s4
+ 4672s3

+ 1976s2
+ 248s+ 3)r2

− 256(2688s3
+ 872s2

+ 82s− 1)r + 256(16s+ 1)3.

It is a K3 surface of Picard number 19.

18.2. Analysis. The branch locus is a rational curve, with a parametrization given
by

(r, s)=
(
−

4(u− 1)(u+ 1)3

(u2− u− 1)2
,−

1
4u2(u− 1)2

)
.

The Hilbert modular surface has a genus-1 fibration to P1
r , which is in fact an

elliptic fibration, since the coefficient of r4 is a perfect square. Converting to the
Jacobian form, we get the Weierstrass equation

y2
= x3
+ (t − 1)(t3

+ 23t2
+ 96t − 32)x2

+ 16(t − 1)(4t4
+ 53t3

− 217t2
+ 112t − 16)x .

This is an elliptic K3 surface, with bad fibers of type I6 at t =∞, I4 at t = 0, III at
t = 1, I3 at t =−15, and I2 at the four roots of q(t)= 4t4

+53t3
−217t2

+112t−16.
This quartic q(t) describes a dihedral Galois extension K of Q, quadratic over
Q(
√

41). Thus we get a trivial lattice of rank 17 and discriminant 2304. We also
have a 2-torsion point (0, 0) and the two non-torsion sections

P1 =
(
−164(t − 1), 4µ(t − 1)(t + 15)(5t − 6)

)
,

P2 =
(
(5+µ)(t − 1)(8t2

+ 53t + 9tµ− 185− 29µ)/16,

(5+µ)(t − 1)(t + 15)(4t − 11+µ)(8t2
+ 53t + 9tµ− 185− 29µ)/64

)
,

where µ=
√

41. The height matrix for P1 and P2 is

1
3

(
4 −2
−2 1

)
.

Therefore the Picard number is at least 19. Counting points modulo 7 and 11 shows
that the Picard number must be 19, in agreement with [Oda 1982]. The sections
above and the trivial lattice therefore generate a lattice of rank 19 and discriminant
512. We showed that it is 2-saturated, and is thus the full Néron–Severi lattice.
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Rational point (r, s) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)( 52

3 ,−
1
5

)
−6x6

+ 3x5
− 4x4

+ 3x3
+ 20x2

− 36x + 20( 7
2 ,

13
12

)
−x6
− 15x5

− 65x4
− 57x3

+ 40x2
+ 6x + 20( 56

9 ,−
43
40

)
−56x6

− 42x5
+ 64x4

− 78x3
− 29x2

+ 36x − 28( 52
7 ,−

2
3

)
−24x6

+ 36x5
− 34x4

− 51x3
+ 86x2

− 87x + 18(
13,− 7

12

)
−15x6

+ 33x5
+ 23x4

+ 73x3
− 72x2

− 54x − 108( 32
5 ,−

47
48

)
−18x6

− 3x5
+ 46x4

− 111x3
+ 22x2

+ 48x − 84( 92
9 ,−

11
14

)
−4x6

+ 24x5
− 17x4

+ 3x3
− 125x2

− 72x − 95( 60
13 , 3

)
−10x6

+ 33x5
+ 40x4

− 111x3
− 152x2

+ 60x + 140( 76
13 ,−

4
3

)
−24x6

− 12x5
− 50x4

+ 111x3
+ 10x2

+ 129x − 153(
28,− 23

24

)
−46x6

+ 69x5
− 14x4

+ 169x3
− 134x2

− 84x − 72( 68
15 ,−

11
4

)
48x6
− 48x5

− 119x4
− 84x3

+ 145x2
+ 180x + 100( 23

6 ,
21
4

)
168x5

+ 85x4
+ 70x3

+ 229x2
+ 24x − 72( 40

3 ,−
55
56

)
−39x6

+ 36x5
− 116x4

+ 186x3
− 107x2

+ 240x − 200( 52
25 ,−

1
24

)
−112x6

− 264x5
+ 25x4

+ 240x3
− 125x2

− 114x + 62( 4
13 ,−

11
96

)
16x6
+ 24x5

− 223x4
+ 274x3

− 7x2
+ 216x − 120( 27

2 ,
11
76

)
12x6
− 132x5

− 219x4
+ 286x3

+ 201x2
− 264x − 56

Table 13. Some points of small height on the surface of Theorem 28
and the corresponding genus-2 curves.

18.3. Examples. Table 13 lists some points of small height and their genus-2
curves.

Next, we describe some curves which are a source of many rational points.
The specialization s = −4 gives a curve of genus 0, with a parametrization r =
−2(m2

+ 343)/(9(m− 13)). The specialization r = 108
25 also gives a rational curve,

parametrized by s =−(4m− 169)(4m+ 169)/(16(108m− 10813)). The Brauer
obstruction vanishes on both these loci, giving families of curves whose Jacobians
have real multiplication by O41.

Finally, sections of the elliptic fibration also give rational curves on the surface.
For instance, the section P0 is parametrized by

r =
4(256s3

− 48s2
− 16s− 1)

(4s+ 1)2(16s− 7)
.

The Brauer obstruction vanishes here as well.

19. Discriminant 44

19.1. Parametrization. We start with an elliptic K3 surface with fibers of type A10

at t = 0 and D6 at t =∞. This has Néron–Severi lattice of discriminant 11 ·4= 44
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and rank 2+ 10+ 6= 18. The Weierstrass equation for this universal family can
be written as

y2
= x3
+ ax2

+ 2bt4x + ct8,

with

a = s(r2s2
− s2
+ 2s+ 2)t3

− s(2r2s− 3s+ 2)t2
+ s(r2

− 3)t + 1,

b = s2((2r2s2
− 2s2

+ 4s+ 1)/2t2
− (r2s− 2s+ 1)t − 1

)
,

c = s4((r2s− s+ 2)t + 1).

We identify the class of an E8 fiber and move to this fibration via a 3-neighbor
step.

The new elliptic fibration has E8, D6 and A1 fibers, and a section P of height
11
2 = 4+2 ·1− 1

2 . We identify an E7 fiber F ′ below. Note that P · F ′ = 5, while the
excluded component of the D6 fiber intersects F ′ in 2. Since 2 and 5 are coprime,
we see that the fibration defined by F ′ has a section. We move to it by a 2-neighbor
step.

P

Calculating the Igusa–Clebsch invariants and following the rest of the algorithm
in Section 4, we obtain the following result.

Theorem 29. A birational model over Q for the Hilbert modular surface Y−(44)
as a double cover of P2

r,s is given by the equation

z2
= (rs+ s− 1)(rs− s+ 1)(r6s2

− r4s2
+ 18r2s− 16s+ 27).

It is an honestly elliptic surface, with arithmetic genus 2 and Picard number 29.

19.2. Analysis. The extra involution is ι : (r, s) 7→ (−r, s). The branch locus has
three components. The two simpler components rs ± (s − 1) = 0 are obviously
rational curves, and a simple calculation shows that they correspond to elliptic K3
surfaces for which the D6 fiber gets promoted to an E7 fiber. The more complicated
component of the branch locus, corresponding to elliptic fibrations with an extra I2

fiber, is also a rational curve; a parametrization is given by

(r, s)=
(

4m
m2+ 3

,−
(m2
+ 3)3

16(m2− 1)

)
.
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The right-hand side of the equation defining the Hilbert modular surface is
quartic in s, whence the surface Y−(44) is elliptically fibered over P1

r . The two
linear factors (or the fact that the coefficient of s4 is a square) imply that there are
sections, so we may convert to the Jacobian form:

y2
= x3
+ 2(r6

− r4
− 9r2

+ 11)x2
+ (r2

− 1)3(r6
+ r4
+ 91r2

− 121)x .

This is an honestly elliptic surface, with χ = 3. It has reducible fibers of type I2

at r = 0, I6 at r =±1, I4 at r =∞, I3 at r =± 2
√

3
, and type I2 at the six roots of

(r3
−3r2

+5r+11) (r3
+3r2

+5r−11) (both factors generate the cubic field k−44

of discriminant−44). The trivial lattice has rank 26, leaving room for Mordell–Weil
rank at most 4. We find the following sections, of which P0 is 2-torsion, while P1,
P2 and P3 are linearly independent non-torsion sections, orthogonal with respect to
the height pairing and of heights 7

6 , 3
2 and 11

6 respectively:

P0 = (0, 0),

P1 =
(
11(r2

− 1), 4
√

11 r(r2
− 1)3(3r2

− 4)
)
,

P2 =
(
−(r + 1)3(r3

− 3r2
+ 5r + 11), 6

√
−3 r(r + 1)3(r3

− 3r2
+ 5r + 11)

)
,

P3=
(
(r−1)(r+1)2(r3

−3r2
+5r+11), 2r3(r−1)(r+1)2(r3

−3r2
+5r+11)

)
.

Therefore, the Picard number is at least 29. Analysis of the associated quotient
elliptic K3 surface and its twist (see below) shows that the Mordell–Weil rank is
exactly 3 and therefore the Picard number is exactly 29. The sections above together
with the trivial lattice generate a lattice of discriminant 133056= 26

· 33
· 7 · 11. We

checked that it is 2- and 3-saturated, and so it is the entire Néron–Severi lattice.
Therefore these sections generate the Mordell–Weil group.

We next analyze the quotient of Y−(44) by the involution ι. Taking t = r2, we
find the equation

z2
= s4t4

− s2(2s2
− 2s+ 1)t3

+ s2(s2
+ 16s+ 1)t2

−s(2s− 3)(17s− 6)t + (s− 1)2(16s− 27).

This has an elliptic fibration over P1
s , and since the coefficient of t4 is a square, we

may convert to the Jacobian, which is

y2
= x3
+ s2(s+ 2)(s+ 8)x2

+ 2s3(6s2
+ 47s+ 9)x + s4(36s2

+ 268s− 27).

This is an elliptic K3 surface, with reducible fibers of type E6 at s = 0, I7 at s =∞,
I3 at s =− 27

4 , and I2 at the roots of 2s3
+ 14s2

− 6s+ 1, which generates the cubic
field k−44. The trivial lattice has rank 19. We find a non-torsion section

P = (1− 4s, 2s3
+ 14s2

− 6s+ 1)
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of height 4− 12
7 −

3
2 =

11
14 . It is easy to show that P generates the Mordell–Weil

group: the configuration of reducible fibers does not allow for either nontrivial
torsion or a section of height 11/14n2 for any integer n > 1. Therefore the K3
surface is singular, with Néron–Severi lattice of discriminant −396=−4 · 9 · 11.

We may also analyze the quotient by considering it as an elliptic surface over P1
t ,

and since the coefficient of s4 is t2(t − 1)2, which is a square, there is a section.
Converting to the Jacobian, we get the elliptic K3 surface

y2
= x3
+ 2(t3

− t2
− 9t + 11)x2

+ (t − 1)3(t3
+ t2
+ 91t − 121)x

which is also obtained by replacing r2 by t in the Weierstrass equation of Y−(44).
This elliptic fibration has bad fibers of type I∗6, I6 and I3 at t=∞, 1 and 4

3 respectively,
and of type I2 at the roots of t3

+ t2
+ 91t − 121, which generates k−44. Therefore,

the root lattice has rank 18. We find the sections

P0 = (0, 0),

P1 =
(
(1− t)(t − 3

√
−3)2, 2(3−

√
−3)(t − 1)(t − 3

√
−3)(9t − 6− 2

√
−3)/3

)
P2 =

(
(1− t)(t + 3

√
−3)2, 2(3+

√
−3)(t − 1)(t + 3

√
−3)(9t − 6+ 2

√
−3)/3

)
,

with P0 being 2-torsion, and P1 and P2 having height pairing matrix( 5
3

1
6

1
6

5
3

)
.

These sections, along with the trivial lattice, generate a lattice of rank 20 and
discriminant −396, which must therefore be the entire Néron–Severi lattice. The
Mordell–Weil rank of this elliptic surface is 2.

Finally, we consider the quadratic twist of the above elliptic K3 surface, which
is the quotient of Y−(44) by the involution ι′ : (r, s, z) 7→ (−r, s,−z). It is given
by the equation

y2
= x3
+ 2t (t3

− t2
− 9t + 11)x2

+ t2(t − 1)3(t3
+ t2
+ 91t − 121)x .

This is an elliptic K3 surface with reducible fibers of type I∗1, I6, I3 and I2 at t = 0,
1, 4

3 and∞ respectively, and I2 at the roots of t3
+ t2
+91t−121. The trivial lattice

has rank 18. We find the sections

P0 = (0, 0),

P1 =
(
11t (t − 1)3, 4

√
11t2(t − 1)3(3t − 4)

)
,

the first being 2-torsion, and the second of height 7
12 . The Picard number is therefore

at least 19. Counting points modulo 5 and 7 shows that it is exactly 19; therefore
the Mordell–Weil rank is exactly 1. These sections and the trivial lattice span
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a sublattice of discriminant 168 of the Néron–Severi lattice. This sublattice is
2-saturated, since the configuration of fibers does not allow for a section of height
7

48 , and we can easily check that the elliptic surface does not have 4-torsion or other
2-torsion sections. Therefore, we have the entire Néron–Severi lattice, and P0 and
P1 generate the Mordell–Weil group.

The calculation of the Mordell–Weil ranks of the quotient elliptic surface and its
quadratic twist allows us to conclude that the Mordell–Weil rank of the original
(honestly) elliptic surface is 1+ 2= 3.

19.3. Examples. Table 14 lists some points of small height and their genus-2
curves.

The specializations r = ±1 give rational curves on the surface, but points on
these correspond to decomposable abelian surfaces, which therefore have an endo-
morphism ring strictly larger than O44. The section P0 is a rational curve, given
by s = (r4

+ 27)/(2(r2
− 1)(r2

− 8)). However, the Brauer obstruction does not
vanish identically on it.

(r, s) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)(

−2,− 7
6

)
101x6

− 60x5
+ 2x4

+ 92x2
+ 48x + 24(

2,− 7
6

)
15x6
− 168x5

+ 170x4
− 112x3

+ 20x2
− 8(

4,− 7
15

)
−24x6

+ 48x5
+ 52x4

+ 144x3
+ 238x2

+ 588x − 161(
−4,− 7

15

)
56x6
+ 196x4

− 320x3
+ 250x2

− 480x + 723(
−5,− 13

12

)
−144x6

+ 120x5
+ 265x4

+ 700x3
− 425x2

− 750x − 1750(
2, 7

12

)
696x6

− 2112x5
+ 7492x4

− 7032x3
+ 10234x2

− 756x + 5103(
5,− 13

12

)
12x6
− 60x5

− 145x4
+ 400x3

− 1225x2
− 1500x + 11500(

2, 13
36

)
−5193x6

− 5124x5
− 16906x4

− 11576x3
− 17212x2

− 6240x − 5304(
−

3
4 ,

36
7

)
−4744x6

− 15552x5
+ 7596x4

+ 42048x3
− 20310x2

− 32112x + 33553(
−2, 13

36

)
−18261x6

+ 13668x5
+ 65210x4

− 41512x3
− 74284x2

+ 18816x + 24696( 3
4 ,

36
7

)
−6504x6

+ 22608x5
+ 28428x4

− 94288x3
− 66510x2

+ 103092x + 73009(
−2, 7

12

)
25389x6

− 97062x5
− 511x4

+ 240860x3
− 5989x2

− 127758x − 83849(
−5,− 9

32

)
−691156x6

+ 20220x5
− 232521x4

+ 19406x3
− 22521x2

+ 2484x − 564(
2,− 61

42

)
−629624x6

+ 272400x5
− 383596x4

− 704000x3
− 60778x2

− 194100x − 32193(
−2,− 61

42

)
−550872x6

+ 1549296x5
− 1810124x4

− 2005984x3

+ 3719134x2
− 1321788x − 4862401(

5,− 9
32

)
1781676x6

− 5240052x5
+ 5462991x4

− 5705734x3

+ 1769571x2
+ 1002576x − 1011776

Table 14. Some rational points (r, s) of small height on the surface
of Theorem 29 and the corresponding genus-2 curves.
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20. Discriminant 53

20.1. Parametrization. We start with an elliptic K3 surface with A8, A6 and A1

fibers, and a section of height 53
126 = 4− 1

2 −
6
7 −

20
9 . A Weierstrass equation for this

family is given by

y2
= x3
+ ax2

+ 2bt (t − h)x + ct2(t − h)2,
with

a = g2t4
+ (4(h+ 1)2− 2g)t3

+ (4h2
+ 4gh+ 6g− 3)t2

+2(8h2
− 4gh+ 8h+ 1)t + (2h+ 1)2,

b =−4(h− g+ 1)
(
g(2h+ 1)t2

+ (6h2
− 2gh+ 6h+ 1)t + (2h+ 1)2

)
,

c = 16(h− g+ 1)2(2h+ 1)2.

To transform to a fibration with E8 and E7 fibers, we first identify an E7 fiber,
and move to the associated elliptic fibration via a 2-neighbor step.

The resulting elliptic fibration has E7 and A8 fibers, and a section P of height
53
18 = 4+2 ·1− 3

2−4 · 5
9 . We identify a fiber F of type E8 and perform a 3-neighbor

step to move to the associated elliptic fibration. Note that P · F = 4, while the
remaining component of the A8 fiber intersects F with multiplicity 3. Therefore
the new elliptic fibration has a section.

P

The new elliptic fibration has the requisite E8 and E7 fibers, and therefore we
may read out the Igusa–Clebsch invariants, and describe the branch locus, which
corresponds to elliptic K3 surfaces having an extra I2 fiber.

Theorem 30. A birational model over Q for the Hilbert modular surface Y−(53)
as a double cover of P2

g,h is given by the equation

z2
=−27h4g4

− 2h3(13h2
+ 9h+ 9)g3

− (11h6
+ 138h5

+ 383h4
+ 506h3

+ 353h2
+ 120h+ 16)g2

−2(h+1)2(52h4
+99h3

+65h2
+19h+2)g−(h+1)4(44h3

+76h2
+40h+7).
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It is an honestly elliptic surface, with arithmetic genus 2 and Picard number 28.

20.2. Analysis. The branch locus is a curve of genus 1, and the change of coordi-
nates

g =−
(x2
− x + 1)(x2

+ 3x + 3)
(x + 1)(2x + 1)y+ x4+ 3x3+ 5x2+ 3

,

h =
(x5
− x4
+ 4x3

− 4x2
+ x + 1)y+ x2(x6

− x5
+ 2x4

+ 2x3
− x + 1)

(x2− x + 1)2
(
(x + 1)(2x + 1)y+ x4+ 3x3+ 5x2+ 3

)
transforms it to the elliptic curve y2

+ xy+ y = x3
− x2 of conductor 53, which is

isomorphic to X0(53)/〈w〉, where w is the Atkin–Lehner involution.
This surface has a genus-1 fibration over P1

h , making it honestly elliptic with
χ = 3. We could find no sections over Q, although there certainly exist sections
over Q, since the coefficient of g4 is a square in Q(

√
−3). The Jacobian of this

fibration has the following equation (after making the linear fractional transformation
h =−t/(t + 1) on the base, and some Weierstrass transformations):

y2
= x3
+ (t6

− 18t5
+ 55t4

+ 106t3
− 179t2

+ 24t − 16)x2

−8(t − 1)t2(37t5
− 471t4

− 140t3
+ 1121t2

− 309t + 248)x

−16(t − 1)2t4(196t5
− 2797t4

+ 2712t3
+ 8606t2

− 3084t + 3115).

This surface has reducible fibers of type I7, I4 and I3 at t =∞, 0, 1 respectively,
type I2 at the roots of 7t3

− 99t2
+ 104t − 32 (which generates the cubic field of

discriminant −22
·53), and I3 at the roots of t5

−11t4
−11t3

+6t2
−3t −9 (which

generates the quintic field of discriminant −32
· 532, and whose roots generate a

dihedral D10 extension unramified over its quadratic subfield Q(
√
−3 · 53)). The

trivial lattice has rank 26, leaving room for Mordell–Weil rank at most 4. We find
the sections

P1 =
(
−4(7t6

− 106t5
+ 189t4

+ 202t3
− 778t2

+ 342t − 216)/53,

4(5t − 3)(7t3
− 99t2

+ 104t − 32)(t5
− 11t4

− 11t3
+ 6t2

− 3t − 9)/(53
√

53)
)

P2 =
(
−4(49t6

− 63t5
+ 99t4

+ 162t3
− 351t2

+ 162t − 108)/27,

(637t8
−378t7

−1485t6
+3186t5

−1755t4
−1782t3

+3942t2
−243t−972)

× 4t/(81
√
−3)

)
of heights 7

6 and 21
4 respectively, orthogonal with respect to the height pairing.

Therefore, the Mordell–Weil rank is least 2. By Oda’s calculations [1982], we
deduce that the Mordell–Weil rank is exactly 2. The sections P1 and P2 and the
trivial lattice span a lattice of discriminant 1000188= 22

· 36
· 73. Checking that it

is saturated at 2, 3 and 7, we deduce that it must be the full Néron–Severi lattice.
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(g, h) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)( 11

152 ,−
16
19
)

−2332x6
− 902x5

− 5060x4
− 17111x3

− 5995x2
− 17545x − 27951( 8

21 ,−
2
3
)

−8788x6
+ 34200x5

− 22425x4
− 11907x3

− 16230x2
− 35604x + 34024( 72

49 ,−
13
7
)

816x6
− 1944x5

− 13459x4
+ 24712x3

+ 37733x2
+ 7596x − 2300( 75

26 ,−
19
4
)

−106605x6
− 62661x5

+ 467345x4
+ 193313x3

− 691816x2

− 149592x + 346546( 12
5 ,−10

)
139968x6

+ 471744x5
− 1301409x4

− 77363x3
+ 671633x2

+ 236496x + 18756(
−

72
31 ,−4

)
−138482x6

+ 1643417x5
+ 2645029x4

− 1507309x3
− 2429567x2

+ 1188320x + 36288( 2
135 ,−

10
11
)

2175200x6
− 2750760x5

+ 2725545x4
+ 7678368x3

− 5205621x2

+ 3781674x + 9014158( 16
63 ,−5

)
3829988x6

+ 11621820x5
− 19617225x4

− 25097450x3
+ 29201451x2

+ 14626080x − 14560512( 18
103 ,−

8
11
)
−4788022x6

− 21151494x5
− 18288935x4

− 20340320x3
− 61042325x2

+ 10128456x − 40124160(
−

39
76 ,−

29
16
)

394632000x6
− 1964113200x5

− 1523778060x4
+ 4757784967x3

+ 148400811x2
− 3811137819x + 540964447( 55

117 ,−
79

144
)
−5511986931x6

+ 20881501795x5
+ 17115817125x4

+ 19864594645x3

+ 1353729618x2
− 16117938900x + 5833685448( 49

135 ,−
61
75
)
−26148549648x6

− 278797809744x5
− 748507062651x4

+ 329438683288x3

+ 1420002530997x2
− 1751808944796x + 1934174962804(

−
50

117 ,−
13
9
)
−159682912000x6

− 1077016472800x5
− 2039981245815x4

− 762577047304x3
+ 6811301171385x2

− 4055008902300x + 449504680500( 81
91 ,−

13
7
)

134236157214x6
+962817170858x5

−12198892111873x4
+23659009829816x3

+ 9649525790385x2
− 12776814846900x − 8264106337500( 59

153 ,−
17
27
)
−687158622928816x6

+ 23483931596064x5
− 14038441316573x4

− 893569395800x3
− 20141231607x2

− 200112822x − 748062

Table 15. Some rational points (g, h) of small height on the surface
of Theorem 30 and the corresponding genus-2 curves.

20.3. Examples. Table 15 lists some points of small height and their genus-2
curves.

We could not find any curves of genus 0 which were not contained in the “bad
locus” where the abelian surfaces have a strictly larger ring of endomorphisms.

21. Discriminant 56

21.1. Parametrization. We start with a K3 elliptic surface with D6, A8 and A1

fibers, and a section P of height 56
72 =

7
9 = 4− 1− 20

9 . The Weierstrass equation of
this family is

y2
= x3
+ ax2

+ 2bt2(λt −µ)x + ct4(λt −µ)2,
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with

λ= (2h− g2
+ 1), µ=−2h,

c =−(g2
− 1)2

(
4(g2
− 1)t − (h+ 2)2

)
,

b = (g2
− 1)

(
2(g2
− 1)t2

− (h2
+ 4h− 4g2

+ 8)t − (h+ 2)2
)
,

a = (g2
− 1)2t3

+ (h+ 2)(h− 2g2
+ 4)t2

+ 2(h2
+ 4h− 2g2

+ 6)t + (h+ 2)2.

To find an E8 E7 fibration on such a K3 surface, we first identify the class of an
E7 fiber below.

P

This converts it to an A8 E7 fibration. Note that this fibration has a section,
because the section P intersects F ′ in 3, whereas (for instance) the non-identity
component of the A1 fiber intersects F ′ in 2, and these two numbers are coprime.

The new fibration has a section of height 56
18 =

28
9 = 4− 8

9 , which intersects the
identity component of the E7 fiber and component 1 of the A8 fiber. We then do a
3-neighbor step to get an E8 E7 fibration.

P ′

The new fiber F ′′ satisfies P ′ · F ′′ = 2, while the excluded component of the A8

fiber intersects F ′′ in 3. Since these are coprime, the fibration defined by F ′′ has a
section.

Now we can read out the Igusa–Clebsch invariants, and describe the branch locus
of Y−(56) as a double over of P2

g,h .

Theorem 31. A birational model over Q for the Hilbert modular surface Y−(56)
as a double cover of P2

g,h is given by the equation

z2
= (2h− g2

+ 1)
(
2h5
+ 27g2h4

− 11h4
+ 72g2h3

− 24h3
− 40g2h2

+104h2
− 160g2h+ 192h+ 64g4

− 144g2
+ 80

)
.

It is a surface of general type.
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21.2. Analysis. The extra involution is g 7→−g. The branch locus has two compo-
nents. Points on the simpler component 2h− g2

+1= 0 (which is clearly a rational
curve) correspond to elliptic K3 surfaces for which the A1 and D6 fibers merge
and get promoted to a D8 fiber. The other component corresponds to elliptic K3
surfaces with an extra I2 fiber. It is also of genus 0, and a parametrization is given
by

(g, h)=
(

s(s4
+ 22s2

− 7)
(3s2+ 1)2

,−
(s2
− 1)(s2

− 5)
2(3s2+ 1)

)
.

The Hilbert modular surface Y−(56) is of general type.
We now analyze the quotient of the Hilbert modular surface by the involution

(g, h, z) 7→ (−g, h, z). Setting f = g2, the right-hand side becomes a cubic in f .
After some elementary Weierstrass transformations, we get the equation

y2
= x3
− (27h4

+ 72h3
− 40h2

+ 96h− 16)x2
+ 512h3(7h2

+ 20h− 4)x .

This is an elliptic K3 surface, with reducible fibers of type I6, I6, I4, I3 at h =
0,∞,−2, 2

9 respectively, and I2 fibers at h= (−10±8
√

2)/7. The trivial lattice has
rank 19 and discriminant 1728. There is an obvious 2-torsion section P0 = (0, 0),
and we find a non-torsion section

P1 = (128h, 128h(h+ 2)2)

of height 2
3 . We checked that the group generated by P0 and P1 is saturated at 2

and 3. Therefore, this is a singular K3 surface, with Néron–Severi lattice of rank
20 and discriminant −288.

Next, we analyze the twist of the elliptic K3 surface above, obtained by sub-
stituting z = wg in the equation of the Hilbert modular surface, and then setting
f = g2 (it is the quotient of Y−(56) by the involution (g, h, z) 7→ (−g, h,−z)).
This twist is an honestly elliptic surface, with χ = 3. After some simple algebra,
the Weierstrass equation can be written as

y2
= x3
+ (58h5

+ 149h4
− 56h3

− 152h2
− 64h+ 16)x2

+8h3(2h+ 5)(h2
− 4h− 4)2(7h2

+ 20h− 4)x .

It has reducible fibers of type I∗0, I6, I4, I3, I2, I2 at h = ∞, 0,−2, 2
9 ,−

1
2 ,−

5
2 re-

spectively, I4 fibers at h = (−10±8
√

2)/7 and I2 fibers at h = 2±2
√

2. The trivial
lattice has rank 26. In addition to the 2-torsion section P0 = (0, 0), we find the
sections

P1 =
(
−56h3(h2

− 4h− 4), 16
√

14h3(2h+ 1)(9h− 2)(h2
− 4h− 4)

)
,

P2 =
(
−8h3(7h2

+ 20h− 4), 64
√
−1h3(2h+ 1)(7h2

+ 20h− 4)
)
,

P3 =
(
4h2(7h2

+ 20h− 4), 4h2(h+ 2)2(2h+ 1)(7h2
+ 20h− 4)

)
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of heights 5
6 , 2 and 7

6 respectively, orthogonal with respect to the height pairing. On
the other hand, counting points on the reductions modulo 11 and 29 shows that the
Picard number is at most 29. Therefore, it is exactly 29. The lattice spanned by
these sections and the trivial lattice has discriminant 35840= 210

·5 ·7. We checked
that it is 2-saturated, and therefore it must equal the entire Néron–Severi lattice.

21.3. Examples. Table 16 lists some points of small height and their genus-2
curves.

Next, we analyze curves of low genus on the Hilbert modular surface. The special-
ization h= 2

9 gives a rational curve, parametrized by g= (m2
−4m−9)/(m2

+9). The
Brauer obstruction vanishes identically for rational points on this curve, giving a 1-
parameter family of genus-2 curves whose Jacobians have real multiplication by O56.

The specializations h=−1
2 and h=−5

2 give genus-1 curves with rational points,
both of whose Jacobians have rank 1. The Brauer obstruction does not vanish
identically on either of these loci.

We also obtain some genus-1 curves by pulling back some sections from the
quotient K3 surface. For instance, the section P0 + P1 gives the genus-1 curve
g2
= −(7h4

+ 20h3
− 4h2

− 32h − 16)/16 which has rational points (such as

(g, h) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)(

−
79
61 ,

28
61

)
−2000x6

+ 2040x5
− 565x4

+ 628x3
− 349x2

− 36x − 68( 23
19 ,

24
95

)
480x6

+ 1200x5
+ 2657x4

+ 1264x3
+ 497x2

− 2220x + 660( 2
13 ,−

6
13

)
−600x6

− 360x5
+ 2660x4

+ 256x3
− 2698x2

− 222x + 639(
−

2
13 ,−

6
13

)
1096x6

− 24x5
− 3388x4

+ 608x3
+ 2750x2

− 930x − 225( 79
61 ,

28
61

)
1350x6

+ 270x5
+ 3375x4

− 3944x3
+ 1669x2

− 5328x + 3392(
−

3
7 ,−

8
7

)
−1340x6

+ 5900x5
− 2227x4

+ 5096x3
+ 2707x2

+ 10x + 1950( 3
7 ,−

8
7

)
1440x6

− 4720x5
− 13227x4

+ 20x3
+ 7389x2

− 1080x − 432(
−

1
7 ,

24
7

)
−12600x6

− 3192x5
− 16975x4

− 4442x3
+ 5717x2

− 516x + 4( 1
91 ,−

40
91

)
3740x6

− 6420x5
− 11789x4

+ 18160x3
+ 7315x2

− 13356x + 2268(
−

11
7 ,

9
7

)
35220x6

+ 10548x5
+ 43345x4

− 10038x3
+ 3313x2

− 228x + 52(
−

23
19 ,

24
95

)
47824x6

+ 45048x5
+ 13973x4

− 11016x3
+ 9341x2

− 2040x + 400( 2
3 ,

2
9

)
−6883x6

+ 10038x5
+ 62514x4

+ 31744x3
− 21780x2

+ 3720x − 200( 37
31 ,

9
31

)
−1548x6

− 7732x5
− 33547x4

− 51202x3
− 71163x2

+ 65988x − 11772(
−

4
17 ,−

3
8

)
−316x6

+ 4764x5
+ 21121x4

− 11666x3
− 75071x2

+ 20364x + 49716( 11
7 ,

9
7

)
25092x6

+ 70500x5
+ 71881x4

− 29834x3
− 80543x2

− 25908x + 38700( 55
13 ,

28
3

)
−94x6

− 114x5
− 2497x4

− 660x3
− 29263x2

− 10920x − 170352

Table 16. Some rational points (g, h) of small height on the surface
of Theorem 31 and the corresponding genus-2 curves.
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(h, g)= (1,±1)), with a Jacobian of conductor 24 211 and Mordell–Weil group∼=Z2.
The section 2P1 gives the genus-1 curve g2

=−(49h4
−112h3

+64h2
−32h−16)/16

which also has rational points (h, g)= (1,±1), with Jacobian of conductor 26 7 ·23
and Mordell–Weil group ∼= (Z/2Z)⊕Z. The Brauer obstruction does not vanish
identically on either of these loci.

22. Discriminant 57

22.1. Parametrization. We start with an elliptic K3 surface with fibers of type E6,
A7 and A2 at t =∞, 0, 1 respectively, and a section of height 57

72 =
19
24 = 4− 4

3−
3·5
8 .

The Weierstrass equation for this family is

y2
= x3
+ ax2

+ 2bt2(t − 1)x + ct4(t − 1)2,

with

a = t (t − 1)
((

g2
−

1
4

)
(h2
− 3)+ 2gh

)
+
((

g2
+

1
4

)
h− g

)2 t2
− t + 1,

b =−
(
g2
−

1
4

)2
(h2
− 1)(

(1− t)−
((

g2
−

1
4

)
(h2
− 2)+ 2gh

)
t (1− t)−

(
g− 1

2 h
)((

g2
+

1
4

)
h− g

)
t2),

c=
(
g2
−

1
4

)4
(h2
−1)2

(
(1− t)+

(
g− 1

2 h
)2t2
+ t (1− t)

((
g− 1

2 h
)2
−
(
gh+ 1

2

)2))
.

We identify an E8 fiber below, and the resulting 3-neighbor step takes us to an
elliptic fibration with E8 and A7 fibers.

P

Since P · F ′ = 2 for the new fiber F ′, while the intersection number of the
remaining component of the E6 fiber with F ′ is 3, we deduce that the new fibration
has a section.

The new fibration has a section of height 57
8 = 4+ 2 · 2− 1·7

8 . Now we can
identify an E7 fiber F ′′ and move to the E8 E7 fibration by a 2-neighbor step. Note
that since Q · F ′′ = 7, while the remaining component of the A7 fiber intersects F ′′

in 2, the new fibration will have a section.

Q



2364 Noam Elkies and Abhinav Kumar

Now we can read out the Igusa–Clebsch invariants and compute the branch locus,
which is the subfamily with an extra I2 fiber.

Theorem 32. A birational model over Q for the Hilbert modular surface Y−(57)
as a double cover of P2

g,h is given by the equation

z2
= (256g6

− 176g4
+ 40g2

− 3)h4
+ (2176g5

− 960g3
+ 104g)h3

+(4320g4
−688g2

−34)h2
+(−3456g5

+576g3
+328g)h−2160g4

−648g2
+361.

It is an honestly elliptic surface, with arithmetic genus 2 and Picard number 29.

22.2. Analysis. The extra involution is (g, h) 7→ (−g,−h). The branch locus has
genus 2; the transformation

(g, h)=
(

y+ x2
+ 1

4x3 ,
x(4y− x4

− 14x2
− 1)

(x2− 1)2

)
converts it to Weierstrass form

y2
= 3x6

+ 11x4
+ x2
+ 1.

It is isomorphic to the quotient of X0(57) by the Atkin–Lehner involution w57.
The Hilbert modular surface Y−(57) is an honestly elliptic surface, with a genus-1

fibration over P1
g, and in fact, setting h = 1 gives a section. Therefore, we may use

the Jacobian form, which has the Weierstrass equation

y2
= x3
+ 4(12g2

− 1)(28g2
− 5)x2

−4(2g−1)3(2g+1)3(12g2
−5)(108g2

−19)x+(2g−1)6(2g+1)6(108g2
−19)2.

It has reducible fibers of type I7 at g=± 1
2 , IV at g=∞, I2 at g=±

√
57

18 , and I3 at
the four roots of 432g4

+216g2
−49 (which generate a dihedral extension containing

Q(
√

57)). The trivial lattice contributes 26 to the rank of the Néron–Severi lattice,
leaving room for Mordell–Weil rank at most 4. We find the sections

P1 =
(
0, (2g− 1)3(2g+ 1)3(108g2

− 19)
)
,

P2 =
(
(2g− 1)2(2g+ 1)2(6g− 1)(6g+ 1),

2g(2g− 1)2(2g+ 1)2(432g4
+ 216g2

− 49)
)
,

P3 =
(
(µ+ 3)(18g−µ)(2g− 1)(2g+ 1)3/3,

(36g2
+ 9− 2µ)(2g+ 6+µ)(18g−µ)(2g− 1)(2g+ 1)3/3

)
(where µ=

√
57), with nondegenerate height pairing matrix

1
42

 38 0 −19
0 20 −10

−19 −10 39

.
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Therefore, the Picard number is at least 29. In fact, counting points modulo 7 and
11 shows that the Picard number must be exactly 29. Alternatively, analysis of the
quotients below gives another proof. The sections above together with the trivial
lattice span a lattice of discriminant 11970= 2 · 32

· 5 · 7 · 19. We checked that it is
3-saturated, and thus it is all of the Néron–Severi lattice. Therefore, these sections
generate the Mordell–Weil group.

Next, we analyze the quotient by the involution (g, h, z) 7→ (−g,−h, z). This
turns out to have a genus-1 fibration with section over the t-line, where t = g2. The
Weierstrass equation may be written (after a linear change of the base parameter
and a Weierstrass transformation)

y2
= x3
+ 4(t + 1)(3t + 2)(7t + 2)x2

− 4t3(t + 1)2(3t − 2)(27t + 8)x + t6(t + 1)3(27t + 8)2.

This is an elliptic K3 surface with fibers of type I7 at t = 0, I∗0 at t = −1, I2 at
t =− 8

27 , II at t =∞, and I3 at t =−2± 2
√

57
9 . Thus the trivial lattice has rank 17,

leaving room for at most three independent sections.
We find the independent sections

P1 =
(
t2(t + 1)(9t + 8), t2(t + 1)2(27t2

+ 108t + 32)
)
,

P2 =
(
(t + 1)(27t + 8)(3t2

− 64t − 64)/57,

(t + 1)2(t + 40)(27t + 8)(27t2
+ 108t + 32)/573/2)

of heights 5
21 and 7

6 respectively, and orthogonal with respect to the height pairing.
Therefore the Picard number is at least 19. Counting points modulo 11 and 13
shows that the Picard number cannot be 20. These sections together with the trivial
lattice generate a lattice of discriminant 140. We check that it is 2-saturated and
must therefore be the full Néron–Severi lattice.

Replacing g2 by t in the Weierstrass equation for Y−(57) gives a quadratic twist
of the above quotient K3 surface, given by the Weierstrass equation

y2
= x3
+ 4(12t − 1)(28t − 5)x2

− 4(4t − 1)3(12t − 5)(108t − 19)x + (4t − 1)6(108t − 19)2.

This is an elliptic K3 surface with fibers of type I7 at t = 1
4 , I2 at t = 19

108 , I3 at
t = − 1

4 ±
√

57
18 and IV∗ at t =∞. The section P = (0, (4t − 1)3(108t − 19)) has

height 19
42 . Therefore, this K3 surface is singular. Together with the trivial lattice, the

section P spans a lattice of discriminant 171= 32
· 19. Since there is no 3-torsion

section, and we cannot have a section of height 19/(32
·42) due to the configuration

of fibers, this must be the full Néron–Severi lattice.
Therefore, the Mordell–Weil rank of the original surface must be 2+ 1= 3.
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(g, h) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)(

−
1
10 ,−

5
3

)
−2x6

+ 15x5
+ 131x4

+ 240x3
− 61x2

− 8( 7
10 ,−

29
3

)
81x6
+ 54x5

− 286x4
− 186x3

+ 323x2
+ 120x − 130( 7

18 , 9
)

−108x6
+ 324x5

− 243x4
+ 186x3

− 279x2
− 80(

−
7
6 ,

21
5

)
−100x6

− 390x5
− 204x4

+ 74x3
− 69x2

− 12x + 8(
−

1
18 ,−3

)
−220x6

+ 420x5
− 111x4

+ 238x3
+ 381x2

+ 168x + 24(
−

1
4 ,−

16
3

)
95x6
− 114x5

+ 325x4
+ 35x3

+ 10x2
− 429x − 234( 5

14 ,
35
3

)
120x6

− 192x5
+ 122x4

+ 286x3
− 448x2

+ 357x − 63( 19
18 ,−

3
5

)
58x6
+ 39x5

− 129x4
+ 132x3

+ 519x2
+ 240x − 40(

−
7
10 ,

29
3

)
−390x6

+ 451x5
− 230x4

− 593x3
+ 682x2

+ 220x − 200( 4
9 , 18

)
−540x6

+ 729x5
− 135x4

+ 255x3
− 225x2

− 36x − 52(
−

5
2 ,−

10
3

)
−60x6

− 156x5
+ 137x4

+ 310x3
− 351x2

+ 108x + 756(
−

17
10 ,−

47
33

)
60x5
+ 839x4

+ 278x3
− 652x2

− 36x − 489( 1
18 , 3

)
−60x6

+ 60x5
− 3x4

+ 184x3
+ 669x2

+ 132x + 868( 5
2 ,

10
3

)
−819x5

− 1042x4
+ 61x3

+ 248x2
− 48x(

−
1
18 ,

9
5

)
−40x6

− 72x5
− 45x4

− 534x3
− 297x2

− 324x − 1188(
−

5
2 ,

5
3

)
−36x6

+ 84x5
+ 491x4

− 750x3
− 337x2

− 912x − 1200

Table 17. Some rational points (g, h) of small height on the surface
of Theorem 32 and the corresponding genus-2 curves.

22.3. Examples. Table 17 lists some points of small height and their genus-2
curves.

The specialization h = 0 gives a genus-1 curve with rational points, whose
Jacobian has rank 1. Of course, there is a large supply of genus-1 curves, simply
by specializing g, since we have an elliptic surface.

The sections P1 and P2 give rational curves h = −16g/(4g2
− 1) and h =

(72g3
− 36g2

+ 78g− 7)/((4g2
− 1)(6g− 7)) respectively. The Brauer obstruction

vanishes on these curves.

23. Discriminant 60

23.1. Parametrization. We start with a K3 elliptic surface with E6, D6, A4 fibers
at∞, 0, 1 respectively. The Weierstrass equation for this family is

y2
= x3
+ atx2

+ 2bt3(t − 1)x + ct5(t − 1)2,
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with
a = (h2

− g2
− 1)2− 4(2h2

− 3g2
+ 6)(t − 1),

b = 4
(
−4(h2

− g2
− 1)2+ 16(h2

− 2g2
+ 1)(t − 1)

)
,

c = 256
(
(h2
− g2
− 1)2+ 4g2(t − 1)

)
.

We identify an E8 fiber below, and move to this elliptic fibration by a 3-neighbor
step.

The new elliptic fibration has fibers of type E8, D6 and A1, and a section P
of height 60

8 =
15
2 = 4+ 2 · 2− 1

2 . We now identify an E7 fiber F ′ and perform a
2-neighbor step to go to the new fibration. Note that it has a section, since P ·F ′= 7,
while the remaining component of the D6 fiber has intersection number 2 with F ′.

P

From the resulting E8 E7 fibration, we can read out the map to A2.

Theorem 33. A birational model over Q for the Hilbert modular surface Y−(60)
as a double cover of P2

g,h is given by the equation

z2
=−(h2

− 2h− g2
+ 5)(h2

+ 2h− g2
+ 5)

×(8h6
− 25g2h4

+ 24h4
+ 26g4h2

− 86g2h2
+ 24h2

− 9g6
+ 66g4

+ 47g2
+ 8).

It is a surface of general type.

23.2. Analysis. The surface Y−(60) has two extra commuting involutions, ι1 :
(g, h) 7→ (−g, h) and ι2 : (g, h) 7→ (g,−h). The two simpler components

h2
± 2h− g2

+ 5= 0

of the branch locus correspond to the subfamily of elliptic K3 surfaces where the
D6 fiber gets promoted to an E7 fiber, while the more complicated component
corresponds to an extra I2 fiber. The simpler components are easily seen to be
rational curves, as they define conics in the (g, h)-plane, with rational points. The
last component is also a rational curve; a parametrization is given by

(g, h)=
(

(t2
+ 1)3

t (t2− 1)(t2− 2t − 1)
,
(t2
+ 2t − 1)(t4

− t3
+ 2t2

+ t + 1)
t (t2− 1)(t2− 2t − 1)

)
.
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This Hilbert modular surface is of general type.
We now analyze some of the quotients of this surface by the involutions. The

quotient under both involutions is given by

z2
=−(h2

− 2gh+ 6h+ g2
− 10g+ 25)

(8h3
− 25gh2

+ 24h2
+ 26g2h− 86gh+ 24h− 9g3

+ 66g2
+ 47g+ 8),

and this is actually a rational surface; the transformation

(g, h)= (h′+ g′2+ 2g′+ 5, h′+ g′2)

converts the above equation into a conic bundle over P1
h′ with a section.

The quotient by the involution ι1 turns out to be an elliptic K3 surface, with
Weierstrass equation given by

y2
= x3
+ 2t2(215t2

+ 356t + 140)x2
− t3(t + 2)3(5t2

+ 874t + 864)x/3

−8t4(t + 2)6(163t2
− 54t − 216)/27.

It has reducible fibers of type E6 at t = 0, I6 at t =−2, I2 at t =−1 and t =− 2
9 ,

and I3 at t = (−7± 5
√

5)/19. The trivial lattice therefore has rank 19. We find a
3-torsion section with x-coordinate 11t2(t + 2)2/3 and a non-torsion section with
x =−t2(t + 2)2/3. Therefore the K3 surface is singular. These sections, together
with the trivial lattice, generate a lattice of rank 20 and discriminant 60. It must be
the full Néron–Severi lattice, since otherwise there would have to be a 6-torsion
section or section of height 5

24 , neither of which is possible with our configuration
of reducible fibers.

The quotient by the involution ι2 is also an elliptic K3 surface, with Weierstrass
equation

y2
= x3
− (11t4

− 20t2
+ 8) x2

+ 16(t − 1)3(t + 1)3(4t2
− 5)x .

This has bad fibers of type I6 at t =±1, I2 at t =±
√

5
2 , and I3 at t =± 2

√
3
. Therefore

the trivial lattice has rank 18, leaving room for at most two independent sections.
We find the following sections, of which the first is 6-torsion.

P0 =
(
2(t2
− 1)(4t2

− 5), 4(t2
− 1)(3t2

− 4)(4t2
− 5)

)
,

P1 =
(
(11− 3µ)t2(t2

− 1)/2, (3+ 5µ)t (t2
− 1)/12(18t2

− 15+µ)
)
,

P2 =
(
(11+ 3µ)t2(t2

− 1)/2, (3− 5µ)t (t2
− 1)/12(18t2

− 15−µ)
)
,

where µ=
√
−15. The height pairing matrix of P1 and P2 is

1
3

(
7 −2
−2 7

)
.
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(g, h) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)( 17

6 ,−
13
6

)
468x6

+ 1332x5
+ 1345x4

− 20x3
+ 1051x2

− 150x + 186(
−

17
6 ,

13
6

)
−12x6

+ 132x5
+ 371x4

+ 1506x3
+ 1391x2

− 528x − 1872( 17
6 ,

13
6

)
−942x6

+ 3150x5
− 869x4

− 4220x3
+ 745x2

+ 2244x + 468(
−

17
6 ,−

7
6

)
48x6
− 360x5

+ 1907x4
− 4000x3

+ 5195x2
+ 828x + 2556(

−
17
6 ,−

13
6

)
−4500x6

− 9300x5
− 5365x4

+ 4106x3
+ 3335x2

− 2112x − 2648(
−

17
6 ,

7
6

)
−4116x6

− 6468x5
+ 8617x4

+ 11086x3
− 12239x2

− 3708x + 4212( 17
6 ,

7
6

)
72x6
− 2136x5

+ 15869x4
− 258x3

− 1759x2
+ 108x − 4( 17

6 ,−
7
6

)
12x6
− 36x5

+ 929x4
− 1458x3

+ 16361x2
− 4452x + 1476( 51

5 ,−
54
5

)
9248x6

− 2312x5
+ 12427x4

− 29852x3
− 21811x2

+ 26690x + 21270( 57
10 ,

43
10

)
2272x6

+ 35064x5
+ 12877x4

− 24234x3
− 37079x2

+ 29700x − 3500(
−

51
5 ,−

54
5

)
−6368x6

− 20760x5
+ 11991x4

+ 29560x3
− 61443x2

+ 39870x − 12150(
−

46
15 ,−

49
15

)
−575x6

− 3075x5
− 12269x4

− 16401x3
− 56024x2

− 21792x − 73242(
−

61
10 ,

49
10

)
−36450x6

− 10530x5
+ 6327x4

+ 78760x3
− 29879x2

− 17700x + 2612( 61
10 ,

49
10

)
8612x6

− 4020x5
− 52381x4

− 4290x3
+ 91787x2

+ 47220x − 11540( 61
10 ,−

49
10

)
−17092x6

+13812x5
−101885x4

+63210x3
−89229x2

+69580x−15092(
−

51
5 ,

54
5

)
−100572x6

−102884x5
−147679x4

−25432x3
+27727x2

+35870x−11890

Table 18. Some rational points (g, h) of small height on the surface
of Theorem 33 and the corresponding genus-2 curves.

Therefore the Picard number of this K3 surface is 20. The discriminant of the
sublattice of NS(X) generated by the trivial lattice and these sections is 180. We
checked that this lattice is 2- and 3-saturated, which proves that it is the entire
Picard group.

23.3. Examples. Table 18 lists some points of small height and their genus-2
curves.

We now describe some curves of genus 1, possessing infinitely many rational
points, on the Hilbert modular surface. These were obtained by pulling back rational
curves on the quotients by ι1 and ι2 obtained as sections of the elliptic fibrations. In
each case we give the curve as a double cover of P1, exhibit a coordinate of a point
on P1 that lifts to a rational point, and give the conductor and Mordell–Weil group.

• v =∞, conductor 24 32 11 · 97, Mordell–Weil group (Z/2Z)⊕Z, equation

g2
=
v4
+ 132v3

+ 11784v2
+ 566280v+ 20175732

36(v+ 9)2
, h =

v2
+ 72v+ 4560

6(v+ 9)
.
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• v = 1, conductor 2 · 3 · 7 · 17 · 19, Mordell–Weil group (Z/2Z)2⊕Z, equation

g2
=

4913v4
+ 1990v2

+ 153
36(v2− 1)2

, h =−
25v2
+ 3

2(v2− 1)
.

• t =−1, conductor 52 11 · 17 · 47, Mordell–Weil group Z2, equation

g2
=

14049t4
−57248t3

+87462t2
−59840t+15657

(t+1)2(9t−11)2
, h=−

2(t−1)(54t−67)
(t+1)(9t−11)

.

• v = 0, conductor 238= 2 · 7 · 17, Mordell–Weil group (Z/2Z)⊕Z, equation

h2
=

833v4
+ 190v2

+ 1
4(v2− 1)2

, g =
27v2
+ 5

2(v2− 1)
.

We can obtain a few more such curves from these, by applying the involution ι2
to the first three curves, and the involution ι1 to the last. If two genus-2 curves are
parametrized by points related by such an involution, then the curves’ Jacobians
are isogenous.

24. Discriminant 61

24.1. Parametrization. Start with an elliptic surface with D7, A6 and A2 fibers
and a section of height 61

84 = 4− 2
3 −

6
7 −

7
4 .

The Weierstrass equation for this family can be written as

y2
= x3
+ ax2

+ 2bt (1− 1)x + ct2(t − 1)2,

where

a = 4h3(h− g)3t3
+ (h− g)2(g2h2

− 4gh2
− 8h2

− 2g2h+ g2
+ 12g+ 12)t2

− 2(g+ 1)(h− g)(g2h+ 4h− g2
− 6g)t + g2(g+ 1)2,

b =−4(g+ 1)(h− g)2
(
(h− g)2(2gh2

+ 4h2
+ g2h− g2

− 6g− 6)t2

+ (g+ 1)(h− g)(g2h+ 2h− 2g2
− 6g)t − g2(g+ 1)2

)
,

c = 16(g+ 1)2(h− g)4
(
(g+ 2)(h− g)t + g(g+ 1)

)2
.

We first perform a 2-neighbor step to move to an elliptic fibration with E7 and
A7 fibers, by locating an E7 fiber, as follows.
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This elliptic fibration has Mordell–Weil rank 2, and we can in fact write down
two generators of the Mordell–Weil group, which intersect the components of
reducible fibers as shown below. Next, we identify the class of an E8 fiber, and use
it to perform 2-neighbor step to an elliptic fibration with E8, A5 and A1 fibers, and
Mordell–Weil rank 2.

We show one of the generators P of the Mordell–Weil lattice, which has height
4− 2 · 4

6 −
1
2 . Next, we go to a fibration with E8 and E6 fibers using the fiber class

F ′ of E6 below. Since P · F ′ = 1, the new elliptic fibration has a section.

P

We can find a section P ′ of this elliptic fibration with E8 and E6 fibers, of height
8
3 = 4− 4

3 . We use it to go to a fibration with E8 and E7 fibers as shown.

P ′

From the resulting E8 E7 fibration we read out the Igusa–Clebsch invariants and
calculate the equation of Y−(61) as a double cover of P2

g,h .

Theorem 34. A birational model over Q for the Hilbert modular surface Y−(61)
as a double cover of P2

g,h is given by the equation

z2
= (h− 1)4g4

− 2(h− 1)h(h3
− 14h2

− 20h− 21)g3

+ h(h5
− 46h4

− 19h3
+ 42h2

+ 39h− 44)g2

+ 2h2(10h4
+ 5h3

− 13h2
− h+ 12)g− h2(8h4

− 13h2
+ 16).

It is an honestly elliptic surface, with arithmetic genus 2 and Picard number 28.
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24.2. Analysis. The branch locus has genus 1. The transformation

g =−
8x3 y−34x2 y+37xy−14y+x6

−10x5
+44x4

−89x3
+98x2

−58x+14
x2(x − 1)3(x − 7)

,

h =
12x2 y− 35xy+ 26y+ 3x4

+ 11x3
− 61x2

+ 74x − 26
x2(9x2− 24x + 13)

converts it to the Weierstrass form

y2
+ xy = x3

− 2x + 1,

an elliptic curve of conductor 61. It is isomorphic to X0(61)/〈w〉, where w is the
Atkin–Lehner involution.

The Hilbert modular surface Y−(61) is an honestly elliptic surface, since we
have an evident genus-1 fibration over P1

h . Since the coefficient of g4 is a square,
we convert to the Jacobian. In Weierstrass form, we obtain

y2
= x3
+ h(h5

+ 14h4
+ 23h3

− 102h2
+ 88)x2

− h2(110h6
+ 908h5

− 2854h4
− 1028h3

+ 4795h2
+ 120h− 2000)x

+ h4(1728h7
+ 16849h6

− 24666h5
− 50145h4

+ 52138h3
+ 50406h2

− 29200h− 20000
)
.

This elliptic surface S has χ(OS)=3, with bad fibers of type I∗0 at h=0, I7 at h=∞,
I2 at h=1 and at the roots of h3

+13h2
+24h+16 (which generates the cubic field of

discriminant−244), and I3 at h=−1 and at the roots of 3h4
+23h3

−64h2
+22h+25

(which generates the quartic field of discriminant −3 · 612, a quadratic extension
of Q(

√
61)). The trivial lattice therefore has rank 26, leaving room for at most 4

independent sections. We find the two sections

P1 =
(
h2(−36h+ 55), 12h2(3h4

+ 23h3
− 64h2

+ 22h+ 25)
)
,

P2 =
(
−(36h6

+ 444h5
+ 472h4

− 1492h3
− 799h2

+ 1048h− 400)/61,

4(15h2
−2h−5)(h3

+13h2
+24h+16)(3h4

+23h3
−64h2

+22h+25)/613/2
)

of heights 13
21 and 11

6 respectively, and orthogonal to each other under the height
pairing. By Oda’s calculations, the Picard number is 28, and therefore the Mordell–
Weil rank is exactly 2. The sublattice of the Picard group generated by the above
sections and the trivial lattice has discriminant 41184= 25

·32
·11 ·13. We checked

that it is 2- and 3-saturated, and therefore it must be the entire Néron–Severi lattice.
Therefore the Mordell–Weil group is generated by P1 and P2.

24.3. Examples. Table 19 lists some points of small height and their genus-2
curves.
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(g, h) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)(

−
3
2 ,

1
2

)
−32x6

− 144x5
− 229x4

− 24x3
− 157x2

− 84x + 92( 47
72 ,−

1
8

)
−10x6

− 42x5
+ 39x4

+ 728x3
+ 489x2

+ 1260x − 1068(
−

47
12 ,−

11
4

)
756x6

− 756x5
+ 1953x4

− 282x3
− 327x2

+ 1404x − 1444(
−

86
9 ,−8

)
−348x6

− 972x5
− 2661x4

− 2326x3
− 2205x2

+ 1260x − 140(
−

17
18 ,−

1
2

)
467x6

+ 1551x5
+ 3906x4

+ 3027x3
− 495x2

− 1800x + 400( 15
4 , 5

)
−325x6

+ 1410x5
+ 1045x4

− 3993x3
− 2636x2

+ 3456x + 2143(
−

69
58 ,−

20
29

)
−128x6

+ 96x5
− 2519x4

+ 4362x3
+ 1321x2

+ 456x + 32( 31
45 ,

14
5

)
−204x6

− 108x5
+ 2553x4

− 946x3
− 4683x2

− 360x + 1200(
1, 4

3

)
−188x6

− 1812x5
− 4707x4

− 130x3
+ 6189x2

− 1620x + 108( 13
18 ,−

1
2

)
−612x6

+ 3708x5
− 6501x4

+ 5656x3
+ 693x2

− 318x − 1126(
−

29
6 ,−

29
8

)
−148x6

+ 2472x5
− 1481x4

+ 5001x3
− 6980x2

+ 1425x − 6625(
−

37
18 ,−

1
2

)
−16x6

− 264x5
+ 477x4

− 2268x3
+ 4029x2

− 6156x + 10372( 23
84 ,−

1
3

)
−4671x6

− 6660x5
− 10362x4

+ 11195x3
+ 1287x2

+ 1590x + 7621( 5
6 ,

5
3

)
821x6

− 1896x5
− 4922x4

+ 8588x3
+ 11341x2

− 7674x − 8247(
−

23
2 ,−10

)
2716x6

+ 84x5
+ 7107x4

+ 10642x3
+ 4803x2

+ 13764x + 10204( 65
18 ,

5
2

)
−3756x6

− 12012x5
+ 9297x4

+ 18116x3
− 10335x2

− 7560x + 3600

Table 19. Some rational points (g, h) of small height on the surface
of Theorem 34 and the corresponding genus-2 curves.

Next, we list some rational curves on the surface. The specialization h=−1 gives
a rational curve, but the curves of genus 2 corresponding to the points on this curve
have Jacobians with endomorphism ring larger than just O61 (they are isogenous
to the symmetric squares of elliptic curves). The section P1 gives the rational
curve g = (3h2

− 7h+ 5)/(3(h− 1)), for which the Brauer obstruction vanishes
identically, yielding a 1-parameter family of genus-2 curves whose Jacobian have
real multiplication by O61.

25. Discriminant 65

25.1. Parametrization. We start with an elliptic surface with E7, A4 and A4 fibers
at t = ∞, 0, 1 respectively, and a section of height 65

50 =
13
10 = 4− 3

2 −
2·3
5 . The

Weierstrass equation of such a family is

y2
= x3
+
(
a0(1− t)+ a1t (1− t)+ t2)x2

+ 2t2(t − 1)e
(
b0(1− t)+ b1t (1− t)+ t2)x + e2t4(t − 1)2(c0(1− t)+ t),

with

a0 = (s2
− 5)2(2rs2

+ s+ 2r)2/4,
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a1 = 4(5s6
− 8s4

− 7s2
− 6)r2

+ 4s(5s4
− 13s2

− 4)r + 5s4
− 18s2

+ 5,

b0 = (s2
− 5)(2rs2

+ s+ 2r)(2rs4
+ s3
+ 4rs2

+ s− 6r)/4,

b1 = 8(s2
− 1)(s2

+ 1)2r2
+ 8s(s4

− 1)r + 2s4
− 2s2

+ 1,

c0 = (2rs4
+ s3
+ 4rs2

+ s− 6r)2/4,

e =−(s− 1)(s+ 1)(2rs2
− 4rs+ s+ 2r − 2)(2rs2

+ 4rs+ s+ 2r + 2).

To describe an elliptic fibration with E8 and E7 fibers, we identify the class of
an E8 fiber and move by a 2-neighbor step to an E8 A4 A2 fibration.

The new elliptic fibration has Mordell–Weil rank 2, and we compute two genera-
tors P and Q, each of height 32

15 = 4− 2
3 −

6
5 , with intersection pairing 7

15 . We draw
P in the figure below, as well as the class of an A7 fiber F ′. Because Q · F ′ = 1,
the new fibration has a section.

P

The new elliptic fibration has A7 and E8 fibers, and a section P ′ of height
65
8 = 4+ 2 · 3− 3 · 5

8 . We now go to E8 E7 via a 2-neighbor step. Note that the
section P ′ intersects the new E7 fiber F ′′ in 7, while the remaining component
of the A7 fiber intersects F ′′ in 2. Since these are coprime, the genus-1 fibration
defined by F ′′ has a section.

P ′

We now read out the Igusa–Clebsch invariants, and compute the equation of
Y−(65) as a double cover of P2

r,s . It is branched over the locus where the K3
surfaces acquire an extra I2 fiber.
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Theorem 35. A birational model over Q for the Hilbert modular surface Y−(65)
as a double cover of P2

r,s is given by the equation

z2
=−16(s4

+ 2s2
+ 13)2(4s6

+ 3s4
− 10s2

− 13)r4

− 32s(4s12
+ 15s10

+ 127s8
− 10s6

− 494s4
− 1253s2

− 949)r3

− 8(12s12
+ 33s10

+ 408s8
− 898s6

− 2672s4
− 2023s2

+ 404)r2

− 8s(4s10
+ 7s8

+ 149s6
− 627s4

− 641s2
+ 148)r

− (4s10
+ 3s8

+ 166s6
− 997s4

+ 328s2
− 80).

It is an honestly elliptic surface, with arithmetic genus 2 and Picard number 28.

25.2. Analysis. This is an honestly elliptic surface, with the extra involution ι :
(r, s, z) 7→ (−r,−s, z) corresponding to the factorization 65= 5 · 13.

The branch locus is a curve of genus 1, isomorphic to the elliptic curve

y2
+ xy = x3

− x

of conductor 65. For lack of space we do not write down the explicit isomorphism
here, relegating the relevant formulae to the online supplement. This elliptic curve
is isomorphic to the quotient of X0(65) by the Atkin–Lehner involution w65.

We were unable to find a section of this genus-1 fibration. However, for purposes
of analyzing the Picard number, we study the Jacobian of this elliptic curve over
Q(s), given by

y2
= x3
+ (8s6

+ 13s4
− 106s2

+ 101)x2

+ (16s12
+ 52s10

− 564s8
+ 1416s6

− 1624s4
+ 900s2

− 196)x .

This has reducible fibers of type I8 at s =±1, I4 at s =∞, I3 at s =±
√

13
3 , and I2

at the four roots of 4s4
+ 29s2

− 49 (a dihedral extension containing
√

65). The
trivial lattice therefore has rank 27, leaving room for Mordell–Weil rank at most 3.
There is the obvious 2-torsion section (0, 0), and we find a non-torsion section of
height 2

3 :

P =
(
(73+ 9µ)/2(s2

− 1)2(s2
+ (29/8− 5/8µ)),

(657+ 81µ)/2s(s2
− 1)2(s2

− 13/9)(s2
+ (29/8− 5/8µ))

)
with µ=

√
65. Analysis of the quotient by ι, and its twist, shows that the Mordell–

Weil rank is exactly 1. Therefore the Picard number of Y−(65) is 28. The discrimi-
nant of the sublattice of the Néron–Severi group generated by the trivial lattice and
these two sections is 6144 = 211

· 3. We checked that it is 2-saturated, and so it
equals the entire Néron–Severi lattice. Therefore the sections above generate the
Mordell–Weil group.

http://msp.berkeley.edu/ant/2014/8-10/ant-v8-n10-x01-equations.zip
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The quotient by the involution ι is given by the equation

w2
=−16t2(t2

+ 2t + 13)2(4t3
+ 3t2

− 10t − 13)r4

− 32t2(4t6
+ 15t5

+ 127t4
− 10t3

− 494t2
− 1253t − 949)r3

− 8t (12t6
+ 33t5

+ 408t4
− 898t3

− 2672t2
− 2023t + 404)r2

− 8t (4t5
+ 7t4

+ 149t3
− 627t2

− 641t + 148)r

− (4t5
+ 3t4

+ 166t3
− 997t2

+ 328t − 80),

where t = s2. Once again we study the Jacobian elliptic fibration: it has the equation

y2
= x3
+ (8t4

+ 13t3
− 106t2

+ 101t)x2

+ (16t8
+ 52t7

− 564t6
+ 1416t5

− 1624t4
+ 900t3

− 196t2)x .

This is an elliptic K3 surface with bad fibers of type I∗0 at t = 0, I8 at t = 1, I3 at
t = 13

9 , and I2 at t =∞ and t = (−29± 5
√

65)/8. Therefore the trivial lattice has
rank 18, and the Mordell–Weil rank can be at most 2. As before we have a 2-torsion

(r, s) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)( 40

41 ,−
1
5

)
−396x6

+ 216x5
+ 281x4

− 889x3
+ 50x2

+ 939x + 315(
−

40
41 ,

1
5

)
−648x5

+ 3015x4
− 422x3

− 4369x2
+ 2216x − 752( 35

136 ,
1
5

)
−72x6

+ 969x5
− 3509x4

+ 847x3
+ 9373x2

+ 816x − 3724(
−

40
143 ,−

2
5

)
−240x6

− 384x5
+ 695x4

+ 2724x3
+ 5543x2

− 10992x − 2736( 2
15 ,−2

)
−16200x5

+ 1125x4
− 8972x3

− 30493x2
+ 14186x − 18974( 40

143 ,
2
5

)
−4368x6

+ 420x5
+ 28144x4

− 13235x3
− 35846x2

+ 10080x + 14112(
−

5
64 ,

7
5

)
800x6

+ 6480x5
+ 19405x4

+ 35306x3
− 39491x2

− 2688x − 48(
−

49
197 ,

1
2

)
5088x6

− 48648x5
+ 85307x4

+ 9352x3
− 59071x2

− 15690x + 730( 49
197 ,−

1
2

)
546x6

+ 9798x5
+ 24115x4

− 25228x3
− 98531x2

+ 58920x + 38880(
−

35
136 ,−

1
5

)
2744x6

− 22344x5
− 45297x4

− 16942x3
+ 100440x2

+ 89910x − 72900( 5
64 ,−

7
5

)
−332100x6

+344220x5
−54545x4

+106126x3
−68117x2

+3528x−16464(
−

2
15 , 2

)
−216000x6

+ 506400x5
− 283195x4

− 70483x3
+ 13883x2

+ 3456x + 300(
−

1
65 ,

1
2

)
−366600x6

− 2197788x5
− 64538x4

+ 11447529x3
+ 133360x2

− 19021554x + 9447840( 1
65 ,−

1
2

)
−412287975x6

− 3236837061x5
+ 5479876697x4

+ 3156545763x3

+ 1177706300x2
− 7413585000x − 1103500000

Table 20. Some rational points (r, s) of small height on the surface
of Theorem 35 and the corresponding genus-2 curves.



K3 surfaces and equations for Hilbert modular surfaces 2377

point P1 = (0, 0). We also find a non-torsion point

P2 =
(
(73− 9µ)t (t − 1)2(8t + 29+ 5µ)/16,

(−73+ 9µ)t2(t − 1)2(9t − 13)(8t + 29+ 5µ)/16
)

of height 1
3 , with µ=

√
65 as before. Therefore, the Picard number is at least 19,

and point counting modulo 11 and 23 shows that the Picard number must be 19. We
verified by checking 2-saturation that the sections P1 and P2 and the trivial lattice
span the Néron–Severi group, which has discriminant 64.

We next analyze the quotient by ι′ : (r, s, z) 7→ (−r,−s,−z), which is the
quadratic twist of the elliptic K3 surface above by

√
t :

y2
= x3
+ (8t3

+ 13t2
− 106t + 101)x2

+ (16t6
+ 52t5

− 564t4
+ 1416t3

− 1624t2
+ 900t − 196)x .

This is also an elliptic K3 surface, with reducible fibers of type I∗2 at t =∞, I8 at
t = 1, I3 at t = 13

9 , and I2 at t = (−29± 5
√

65)/8. The trivial lattice has rank 19.
Again, point counting modulo 11 and 23 shows that the Picard number is 19, and
the Mordell–Weil group therefore has rank 0, with only the 2-torsion section (0, 0).

25.3. Examples. Table 20 on the previous page lists some points of small height
and their genus-2 curves.

26. Discriminant 69

26.1. Parametrization. Start with an elliptic K3 surface with fibers of type E6, A8

and A1 and a section of height 69
54 =

23
18 = 4− 1

2 −
20
9 . We can write down the

Weierstrass equation of this family as

y2
= x3
+ (a0+ a1t + a2t2)x2

+ t3(b0+ b1t + b2t2)x + t6(c0+ c1t + c2t2),

with

a0 =
1
4(σ2−σ1+2)2, a1 =

1
2(σ

2
2−σ2(σ1−4)−2(σ1−1)),

a2 =
1
4(σ

2
2+4σ2−8), b0 =

1
2σ2(σ2−σ1+2)2,

b1 =
1
2(σ

3
2−σ

2
2 (σ1−4)−σ 2

1−σ2σ1+2σ1), b2 =
1
2(σ2(σ1−6)+2(σ1−1)),

c0 =
1
4σ

2
2 (σ2−σ1+2)2, c1 =

1
2σ2(σ1−2)(σ2−σ1), c2 =

1
4(σ

2
1−4σ2),

where

σ1 = r + s, σ2 = rs.
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First we find the class of another E6 fiber below and go to that elliptic fibration
via a 2-neighbor step.

The resulting elliptic fibration has E6, E6 and A3 fibers, and a section of height
23
12 = 4− 4

3 −
3
4 . Now we find the class of an A7 fiber in the diagram below.

The resulting fibration has A7, A5, A2 and A1 fibers, a 2-torsion section, and a
non-torsion section P of height 69

72 =
23
24 = 4− 2

3 −
3·3
6 −

1·7
8 . We next identify the

class F ′ of an E7 fiber, and go to it via a 2-neighbor step. Note that P · F ′ = 1, so
the new fibration has a section.

P

The new elliptic fibration has E7, A7 and A1 fibers, a 2-torsion section Q′, and
a non-torsion section P ′ of height 69

8 = 4+ 2 · 3− 1
2 −

7
8 . We identify a fiber F ′′ of

type E7 below.

P ′

Note that P ′ · F ′′ = 2 · 3+ 3= 9, while the remaining component of the A7 fiber
intersects F ′′ with multiplicity 2. Therefore the new elliptic fibration has a section.
Converting to the Jacobian, we read out the Weierstrass coefficients of the E8 E7

form, which give us the Igusa–Clebsch invariants.
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Theorem 36. A birational model over Q for the Hilbert modular surface Y−(69)
as a double cover of P2

r,s is given by the equation

z2
= (r − 1)2r4s6

− 2(r − 1)r2(r3
+ 13r2

− 37r + 22)s5

+ (r6
+ 100r5

− 439r4
+ 640r3

− 357r2
+ 72r − 16)s4

− 2(59r5
− 320r4

+ 590r3
− 436r2

+ 133r − 32)s3

+ (44r5
− 357r4

+ 872r3
− 830r2

+ 314r − 83)s2

+ 2(36r4
−133r3

+157r2
−65r+19)s − 16r4

+64r3
−83r2

+38r−11.

It is a surface of general type.

26.2. Analysis. This is a surface of general type, with an extra involution (r, s, z) 7→
(s, r, z), corresponding to 69= 3 · 23.

The branch locus is a curve of genus 2; the transformation

r =−
x3 y+ x2 y− y− 3x6

− 4x5
+ x4
+ 6x3

− 2x2
− 2x + 1

2x2(x2+ x − 1)2
,

s =
x3 y+ x2 y− y+ 3x6

+ 4x5
− x4
− 6x3

+ 2x2
+ 2x − 1

2x2(x2+ x − 1)2

converts it into Weierstrass form

y2
= (x3

+ x2
− 1)(5x3

− 7x2
+ 4x − 1).

It is isomorphic to X0(69)/〈w〉, where w is the Atkin–Lehner involution.
The quotient surface is (with m = r + s, n = rs)

z2
=−16m4

+ 4(11n2
+ 18n+ 16)m3

+ (n4
− 118n3

− 357n2
− 202n− 83)m2

− 2(n5
− 50n4

− 254n3
− 328n2

− 61n− 19)m

+ n6
− 26n5

− 203n4
− 466n3

− 330n2
+ 36n− 11.

The substitution m = n + k makes the right-hand side quartic in n, with highest
coefficient a square. Converting to the Jacobian, we get (after some Weierstrass
transformations and change of the parameter on the base) the elliptic K3 surface

y2
= x3
− (88t3

+ 15t2
+ 6t − 1)x2

+ 8t3(250t3
+ 57t2

+ 45t − 8)x

+ 16t5(1125t3
+ 552t2

+ 208t − 36).

This has fibers of type I5 at t = 0, I∗0 at t =∞, I2 at t = (−3± 2
√

3)/4, and I3 at
the roots of 25t3

+ 17t2
+ 2t − 1 (which generates the cubic field of discriminant

−23). The trivial lattice has rank 18, leaving room for at most two independent
sections. We find the non-torsion section

P1 =
(
4t (1− t), 4t (25t3

+ 17t2
+ 2t − 1)

)
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of height 1
5 . Counting points modulo 7 and 13 then shows that the Picard number

must be exactly 19. Therefore, the discriminant of the sublattice spanned by P1 and
the trivial lattice is 432= 24

· 33. Looking at the contributions to the Néron–Tate
height from the fiber configuration, one easily sees that there cannot be any 2- or
3-torsion. Similarly, it is impossible to have a section of height 1

20 or 1
45 . Therefore,

this sublattice must be the entire Néron–Severi lattice, and P1 is a generator of the
Mordell–Weil group.

26.3. Examples. Table 21 lists some points of small height and their genus-2
curves.

(r, s) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)( 5

6 ,
5
2

)
−144x6

− 336x5
+ 491x4

− 274x3
+ 4919x2

− 23076x − 6476( 5
7 ,

10
3

)
−108456x6

+ 89940x5
+ 3518x4

+ 11915x3
+ 29021x2

− 40515x + 2841( 10
3 ,

5
7

)
−7146x6

+ 26076x5
+ 26698x4

− 128487x3
− 87881x2

+ 140967x + 106899( 9
14 , 3

)
−205648x6

− 71112x5
+ 4931x4

− 3219x3
− 1369x2

+ 336x + 64(
3, 9

14

)
−47792x6

+ 212184x5
− 134731x4

− 131082x3
+ 58025x2

+ 39900x + 3500( 5
2 ,

5
6

)
111132x6

+ 308700x5
+ 150199x4

− 166350x3
− 85877x2

+ 37080x + 3208( 5
4 ,−

25
3

)
−203124x6

+ 537156x5
− 1147529x4

− 958036x3

− 185681x2
+ 583356x − 97236( 31

18 , 3
)

−4138876x6
− 12791196x5

− 14043627x4
− 2580588x3

− 2332545x2
− 7239150x − 962750( 97

34 , 3
)

−4774900x6
+ 11612125x5

− 1487685x4
− 13117009x3

+ 29039993x2
+ 24527448x − 2106844(

3,− 13
9

)
−1749188x6

+ 9004404x5
− 5544841x4

− 13022828x3

− 36459313x2
+ 31091676x + 62509084(

3, 31
18

)
1490720x6

+ 34810248x5
+ 203477725x4

− 39952362x3

− 392594159x2
+ 53751372x − 121943204( 31

5 ,
5
6

)
354444x6

+ 2968308x5
− 37732823x4

+ 4713146x3

+ 223323505x2
+ 714572220x − 955946700(

−
25
3 ,

5
4

)
−28660432x6

− 9277032x5
− 367100597x4

+ 64181262x3

− 1142233133x2
+ 827398968x − 146839168( 9

8 ,
29
13

)
953161100x6

− 1709768900x5
+ 57159815x4

− 997590336x3

− 322970431x2
− 72177962x + 2546122( 5

6 ,
31
5

)
6865596x6

− 82041816x5
+ 58608103x4

+ 1250964773x3

+ 921256891x2
− 4495870224x − 3609058132(

−
53
7 ,

71
57

)
−125838448x6

+ 33513120x5
− 1068122125x4

+ 1220630640x3

− 2407159591x2
+ 4627695870x − 2358802782

Table 21. Some rational points (r, s) of small height on the surface
of Theorem 36 and the corresponding genus-2 curves.
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By pulling back some of the low-height sections of the quotient, we produce
curves of low genus on Y−(69). Since r + s = m and rs = n, the appropriate
condition is that m2

− 4n = (r − s)2 be a square (then we can take a square root
and solve for r, s). In other words, (n+ k)2− 4n must be a square. The section P1

is given by n =−(5k2
− 17k+ 15)/(k− 2); it gives rise to a genus-1 curve

y2
= 16k4

− 100k3
+ 237k2

− 254k+ 105,

which has rational points (for instance, at infinity). It is therefore an elliptic curve,
and we calculate that it has conductor 1711 (prime) and Mordell–Weil group Z2.

Similarly, the section −P1 is defined by n =−(25k2
− 92k+ 89)/(10k− 21). It

also gives rise to a genus-1 curve

y2
= 225k4

− 1130k3
+ 1931k2

− 1350k+ 445

with rational points (as at k = ∞). It is an elliptic curve of conductor 50435 =
5 · 7 · 11 · 131, with trivial torsion and rank 1.

27. Discriminant 73

27.1. Parametrization. Start with a K3 elliptic surface with fibers of type A6, A9

and a section of height 73
70 = 4− 21

10 −
6
7 . The Weierstrass equation is

y2
= x3
+ (a0+ a1t + a2t2

+ a3t3
+ a4t4)x2

+ 2µt (b0+ b1t + b2t2
+ b3t3)x +µ2t2(c0+ c1t + c2t2),

with

µ=−2s4(s+ 2r)2, a0 = s2(rs− 2r − 2)2, a4 = 16r2(r + 1)2,

b0 = s(rs− 2r − 2)2, b3 = 4r(r + 1)2(s+ 2r + 2), c0 = (rs− 2r − 2)2,

c2 = (r + 1)2(s+ 2r + 2)2,

a3 = 8r(r + 1)
(
(r + 1)s2

+ 2(4r + 1)s+ 4r(r − 1)
)
,

c1 = − 2(s+ 2r + 2)
(
s2
+ (r + 2)(r − 1)s− 2(r2

− 1)
)
,

b1 = − 3s4
− 2r(r + 5)s3

− 2(r3
+ 4r2

− 2r − 2)s2
− 8(r + 1)s+ 8r(r + 1)2,

a1 = −2s
(
3s4
+r(r+11)s3

+2(5r2
−r−1)s2

+4(r+1)(r2
+1)s−8r(r+1)2

)
,

b2 = (r + 1)2s3
+ 2(r3

+ 7r2
+ 6r + 2)s2

+ 4(4r3
+ 8r2

+ 7r + 1)s+ 8(r − 1)r(r + 1)(r + 2),

a2 = (r + 1)2s4
+ 4(4r2

+ 3r + 1)s3
+ 4(4r3

+ 10r2
+ 10r + 1)s2

+ 16r(r + 1)(r − 2)s+ 16r2(r + 1)2.
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We first identify the class of an E8 fiber, and perform a 3-neighbor step to move
to an elliptic fibration with E8 and A7 fibers.

This fibration has a section of height 73
8 = 4+ 2 · 3− 7

8 . Next, we locate an E7

fiber and compute a 2-neighbor step to go to a fibration with E8 and E7 fibers.

P

The intersection number of the new fiber F ′ with the remaining component of
the A7 fiber is 2 and with the section P is 9. Therefore, the new genus-1 fibration
defined by F ′ has a section since 9 and 2 are coprime.

Theorem 37. A birational model over Q for the Hilbert modular surface Y−(73)
as a double cover of P2

r,s is given by the equation

z2
= 16(s− 2)2r4

+ 8(s− 2)(17s3
− 52s2

+ 36s− 8)r3

+ (s6
+ 56s5

− 384s4
+ 448s3

+ 432s2
− 512s+ 64)r2

+ 2s(s+ 2)(s4
− 34s3

+ 108s2
− 64s+ 16)r + s2(s+ 2)4.

It is an honestly elliptic surface, with arithmetic genus 2 and Picard number 28.

27.2. Analysis. The branch locus is a curve of genus 2; the transformation of
coordinates

r =
3x3 y− 3xy+ y− x6

− 2x5
− 4x4

− 3x2
+ 4x − 1

2x2(x2+ 2x − 1)2
,

s =−2
(2xy− y− x3

− 7x2
+ 3x)

(x + 1)2(x2+ 2x − 1)

converts it to Weierstrass form

y2
= x6
+ 4x5

+ 2x4
− 6x3

+ x2
− 2x + 1.

This is a genus-2 curve, isomorphic to the quotient of X0(73) by the Atkin–Lehner
involution.

The Hilbert modular surface Y−(73) is an elliptic surface. Since the coefficient
of r4 is a square, this genus-1 curve over P1

s has a section. Computing the Jacobian,
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we get the following Weierstrass equation after a change of parameter on the base
and some simple Weierstrass transformations:

y2
= x3
− (83t6

− 316t5
+ 390t4

− 158t3
− 21t2

+ 22t − 1)x2

+ 8(t − 1)4t3(287t5
− 1040t4

+ 960t3
− 73t2

− 217t + 67)x

− 16(t − 1)7t6(1323t5
− 5887t4

+ 7110t3
− 1426t2

− 2201t + 1033).

This is an honestly elliptic surface with χ = 3. It has reducible fibers of type
I7 at t = 1, I6 at t = 0, I5 at t = ∞, I3 at t = (−5±

√
73)/4, and I2 at t = −1

and (13±
√

73)/24. The trivial lattice therefore has rank 24, leaving room for
Mordell–Weil rank at most 6.

We find the following four independent sections.

P1 =
(
4t3(t − 1)2(9t − 7), 4t3(t − 1)2(t + 1)(3t − 2)(2t2

+ 5t − 6)
)
,

P2 =
(
4t3(t − 1)(7t2

− 17t + 8), 4t3(t − 1)(t + 1)(9t2
− 13t + 5)

)
,

P3 =
(
4t2(t − 1)3(19t − 16), 4t2(t − 1)3(7t2

− 12t + 8)(12t2
− 13t + 2)

)
,

P4 =
(
4t3(7t3

− 24t2
− 2µt + 42t − 2µ+ 9),

(−13+µ)t3(t + 1)(−24t + 13+µ)(−17− 16t + 3µ)(−4t − 5+µ)/192
)

(where µ=
√

73), with nondegenerate height pairing matrix
26
21

5
7 −

1
7 −

2
3

5
7

68
35

11
7 −

1
5

−
1
7

11
7

41
21

1
2

−
2
3 −

1
5

1
2

49
30

.
Therefore, the Mordell–Weil rank is at least 4. From Oda’s calculations [1982,
p. 109], the Picard number is 28, so the Mordell–Weil rank is 28− 24 = 4 and
our sections generate a subgroup of finite index in the full Mordell–Weil group.
The sublattice of the Néron–Severi lattice generated by the trivial lattice and these
sections has discriminant 3916 = 22

· 11 · 89. We checked that this sublattice is
2-saturated, and therefore it is the entire Néron–Severi lattice.

27.3. Examples. Table 22 lists some points of small height and their genus-2
curves.

We get many curves of genus 0 on the surface by taking sections of the elliptic
fibration. For instance, the Brauer obstruction vanishes for the two curves defined by
r =−(s−4)(s+2)/(4(s−2)) and r = s(s+2)/((s−2)(3s−2)), yielding families
of genus-2 curves parametrized by s, whose Jacobians have real multiplication
by O73.
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(r, s) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)(

−
10
3 ,

4
3

)
−4x6

− 12x5
− 23x4

+ 4x3
+ 31x2

+ 57x − 18
(−3, 1) 4x6

− 3x4
− 35x3

+ 12x + 76
(5, 3) −4x6

− 24x5
+ 7x4

+ 83x3
+ 25x2

− 75x − 40( 9
4 , 3

)
−15x5

+ 73x4
− 41x3

− 158x2
− 12x + 36(

−5, 3
2

)
−50x6

+ 45x5
− 2x4

− 159x3
+ 70x2

+ 12x − 120( 5
6 ,−2

)
−48x6

+ 168x5
− 149x4

+ 56x3
− 53x2

+ 12x − 4(
−

5
12 ,−1

)
195x6

+ 82x5
− 75x4

− 186x3
− 233x2

− 96x − 87( 5
3 ,

1
2

)
−60x6

− 105x5
+ 55x4

+ 49x3
+ 13x2

+ 252x + 116(
−

2
3 ,−

2
5

)
−36x6

+ 39x5
− 217x4

+ 129x3
− 271x2

− 108x + 84( 5
4 ,−6

)
20x6
+ 84x5

− 15x4
− 162x3

+ 225x2
+ 324x − 180( 9

5 ,−8
)

−204x6
+ 348x5

+ 27x4
+ 34x3

+ 3x2
+ 108x − 36(

−
1
3 ,

4
5

)
−25x6

+ 135x5
+ 139x4

− 383x3
+ 82x2

+ 252x − 162( 9
14 ,−2

)
−48x6

− 72x5
− 219x4

− 319x3
− 159x2

− 432x + 192(
−

14
5 , 12

)
−440x6

+ 90x5
+ 324x4

+ 38x3
− 9x2

− 36x − 8(
−

9
4 , 1

)
−455x6

− 420x5
+ 66x4

− 167x3
− 15x2

− 3x − 6( 6
5 , 4

)
−160x6

+ 450x5
− 114x4

− 474x3
+ 171x2

+ 162x − 27

Table 22. Some rational points (r, s) of small height on the surface
of Theorem 37 and the corresponding genus-2 curves.

28. Discriminant 76

28.1. Parametrization. Start with a K3 elliptic surface with fibers of type A6, A2

and D7, and a section of height 76
84 =

19
21 = 4−1− 2

3 −
10
7 . The Weierstrass equation

of this family is

y2
= x3
+ (a0+ a1t + a2t2

+ a3t3)x2
+ t2(b0+ b1t + b2t2)x + t4(c0+ c1t + c2t2),

with

c0 = (r2
− 1)2s4(2s− r + 1)2(2s+ r + 1)2/16,

b0 = (r2
− 1)s2(2s− r + 1)(2s+ r + 1)/2,

a3 = (r2
− 1)(s+ 1)6,

a1 = r2s2
− 5s2

+ r2s− 7s+ r2
− 3,

c2 = (r2
− 1)2r2s6(s+ 1)6,

a2 = (s+ 1)2(r2s2
+ 3s2

− 3r2s+ 7s− 2r2
+ 3),

a0 = 1,
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b2 = (r2
− 1)s2(s+ 1)4(2r2s2

+ 6s2
− 2r2s+ 6s+ r4

− 2r2
+ 1)/2,

c1 = (r2
− 1)2s4(s+ 1)2(2s− r + 1)(2s+ r + 1)

× (4r2s2
− 12s2

− 8s− r4
+ 2r2

− 1)/16,

b1 =−(r2
− 1)s2((2s2

+ 3s+ 2)r4
− 2(4s4

+ 8s3
+ 10s2

+ 8s+ 3)r2

+ (2s+ 1)(16s3
+ 32s2

+ 21s+ 4)
)
/4.

We identify the class of an E7 fiber:

The resulting 3-neighbor step gives us an elliptic fibration with D8 and E7 fibers,
and also a section P of height 19

2 = 4+ 2 · 4− 3
2 − 1. Next we take a 2-neighbor

step to go from D8 to E8, keeping the E7 fiber intact.

P

The intersection number of F ′ with the remaining component of the D8 fiber
is 2, whereas P · F ′ = 11. Therefore the new fibration has a section.

Now we may read out the Igusa–Clebsch invariants from the Weierstrass equation
of this E8 E7 fibration, and thence compute the equation of Y−(76) as a double
cover of the r, s-plane, following our general method of Section 4.

Theorem 38. A birational model over Q for the Hilbert modular surface Y−(76)
as a double cover of P2 is given by the equation

z2
=−(rs−3s−2)(rs+3s+2)(32s4

+80s3
−13r2s2

+85s2
−4r2s+32s+4r4).

It is a surface of general type.

28.2. Analysis. The branch locus has three components; the more complicated
one is where the elliptic K3 surface has an extra I2 fiber, while the two simpler
components correspond to an extra I2 fiber as well as the section becoming divisible
by 2, giving a section of height 19

84 = 4− 1
2 −

2
3 −

6
7 −

7
4 . The simpler components

are easily seen to be curves of genus 0. The last component is a curve of genus 1;
the transformation

(r, s)=
(

2y+ x + 1
x2+ x + 2

,
−2

x2+ x + 2

)
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converts it to Weierstrass form

y2
+ xy+ y = x3

+ x2
+ 1,

which is an elliptic curve of conductor 38. It is isomorphic to X0(76)/〈w4, w19〉.
The Hilbert modular surface Y−(76) is a surface of general type. The extra

involution is ι : (r, s) 7→ (−r, s). Next, we analyze the quotient of the surface
by ι. This turns out to be an elliptic K3 surface, and after some Weierstrass
transformations and linear shift of parameter on the base, its Weierstrass equation
may be written as

y2
= x3
+ (13t4

− 48t3
− 6t2

+ 8t + 1)x2
+ 64t4(2t − 1)(t3

− 5t2
+ 7t + 1)x .

It has fibers of type I8 at t = 0, I5 at t = 1, I3 at t = −1
7 , and I2 at t = 1

2 and
at the roots of t3

− 5t2
+ 7t + 1 (which generates the cubic field of discriminant

−76). The trivial lattice has rank 19. In addition to the obvious 2-torsion section
P0 = (0, 0), we find a section P1 = (16t3(2t − 1), 16t3(t − 1)(2t − 1)(7t + 1)) of
height 19

120 . Therefore the K3 surface is singular. These sections and the trivial
lattice generate a sublattice of the Néron–Severi lattice of discriminant −76. It must
be the entire Néron–Severi lattice, since otherwise, we would have either another
2-torsion section, a 4-torsion section, or a section of height 19

480 , none of which is
possible with this configuration of reducible fibers.

The quotient of Y−(76) by the involution (r, s, z) 7→ (−r, s,−z) is an honestly
elliptic surface with χ = 3. Its Weierstrass equation may be written as follows:

y2
= x3
+ (t − 1)(64t5

− 160t4
+ 53t3

+ 33t2
− 5t − 1)x2

+ 16(t − 1)t4(2t − 1)(t3
− 5t2

+ 7t + 1)(32t3
− 16t2

+ 21t − 5)x .

It has bad fibers of type I8 at t = 0, I4 at t = ∞ and t = 1
3 , III at t = 1, I3 at

t =−1
7 , and I2 at t = 1

2 , at the roots of t3
−5t2

+7t+1 seen above, and at the roots
of 32t3

− 16t2
+ 21t − 5 (which generates the cubic field of discriminant −152).

Hence the trivial lattice has rank 25, leaving room for Mordell–Weil rank at most 5.
Counting points on the reduction modulo 11 and 23 shows that the Picard number
is at most 29. On the other hand, we find three independent sections in addition to
the 2-torsion section P0 = (0, 0):

P1 =
(
152(t − 1)t4(2t − 1), 8µ(t − 1)t4(2t − 1)(3t − 1)(4t − 3)(7t + 1)

)
,

P2 =
(
4(t3
− 5t2

+ 7t + 1)t3, 4t3(2t − 1)(3t − 1)2(t3
− 5t2

+ 7t + 1)
)
,

P3=
(
−(t−1)3(32t3

−16t2
+21t−5), 2ν(t−1)2(3t−1)2(32t3

−16t2
+21t−5)

)
.

Here µ=
√

19 and ν=
√
−1. These sections have heights 23

12 , 9
8 and 13

8 respectively,
and are orthogonal with respect to the height pairing. Therefore, the Mordell–Weil
rank is either 3 or 4; we have not been able to determine it exactly.
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(r, s) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)(

−
4
11 ,−

8
11

)
−8x6

+ 48x5
− 196x4

+ 324x3
− 340x2

− 330x − 65(
2,−4

)
375x6

+ 300x5
+ 230x4

− 224x3
− 76x2

− 48x + 72( 7
3 ,−

1
3

)
−80x6

− 120x5
− 109x4

− 348x3
− 469x2

− 120x + 80(
−2,−4

)
−225x6

+ 600x5
+ 650x4

+ 400x3
+ 20x2

− 8( 13
23 ,−

19
23

)
−228x6

+ 684x5
− 1029x4

− 432x3
+ 525x2

+ 150x + 10(
−

7
3 ,−

1
3

)
100x6

− 220x5
+ 621x4

− 528x3
+ 1699x2

− 234x + 1478( 19
33 ,−

9
11

)
256x6

− 1056x5
− 2335x4

+ 1480x3
+ 1715x2

− 1386x + 126( 19
11 ,

1
11

)
−2232x6

− 2016x5
+ 2581x4

+ 2802x3
− 983x2

− 660x − 180( 47
37 ,−

43
37

)
3100x6

− 540x5
− 271x4

− 1742x3
+ 161x2

+ 84x + 252( 43
27 ,

29
27

)
−592x6

+ 372x5
+ 1003x4

+ 1328x3
− 1406x2

− 132x − 3709(
−

19
33 ,−

9
11

)
−4404x6

− 540x5
− 1697x4

− 980x3
− 257x2

− 240x − 64( 22
17 ,−

20
17

)
600x6

− 3360x5
+ 3604x4

+ 2256x3
+ 4546x2

+ 1440x + 775(
−

22
13 ,−

20
13

)
−367x6

− 618x5
− 1539x4

+ 316x3
+ 1839x2

+ 4662x + 3507(
−

1
23 ,−

31
46

)
−2245x6

− 137x5
− 5393x4

− 1675x3
− 3618x2

− 1728x − 675( 22
13 ,−

20
13

)
1425x6

− 2610x5
+ 6333x4

− 4948x3
+ 8271x2

− 4242x + 5971(
−

1
23 ,−

17
23

)
24x6
+ 552x5

+ 2075x4
− 1970x3

− 9925x2
+ 9072x + 1216

Table 23. Some rational points (r, s) of small height on the surface
of Theorem 38 and the corresponding genus-2 curves.

28.3. Examples. Table 23 lists some points of small height and their genus-2
curves.

We now describe some curves on Y−(76), which are useful in producing rational
points.

The specialization s =−2
3 gives a genus-1 curve y2

=−81r4
+63r2

+19. It has
rational points, such as (r, y)= (1, 1). It is thus an elliptic curve; we find that it has
conductor 760 and Mordell–Weil group (Z/2Z)⊕Z. The specialization s = −8

7
gives a rational curve, which we can parametrize as r =−5(m2

− 1)/(4(m2
+ 1)).

The sections P1, P1 + P0, 2P1 + P0 and 3P1 + P0 of the K3 quotient give the
following genus-1 curves, which all have rational points.

Equation conductor Mordell–Weil group
r2
=−(8s3

+ 28s2
+ 27s+ 8)/s 2 · 29 Z

r2
=−(s3

− s2
− 11s− 8)/s 24 11 · 191 Z2

r2
=−(8s4

+ 4s3
− 33s2

− 44s− 16)/(s+ 2)2 35 19 Z2

r2
=−(s4

+ s3
− 3s2

− s+ 1) 22 5 · 29 (Z/2Z)⊕Z

The section 2P1 gives a genus-0 curve r2
+s2
+6s+4=0, which we can parametrize

as
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(r, s)=
(
−

m2
+ 4m− 1
m2+ 1

,−
m2
+ 2m+ 5
m2+ 1

)
.

The Brauer obstruction always vanishes on this locus, giving us a 1-parameter
family of genus-2 curves whose Jacobians have real multiplication by O76.

29. Discriminant 77

29.1. Parametrization. We start with a family of K3 surfaces with fibers of type
A1, A3, A5 and D5, a 2-torsion section T , and two orthogonal sections P, Q of
height 11

12 = 4−0− 2·2
4 −

1·5
6 −(1+

1
4) and 7

4 = 4−0− 1·3
4 −

3·3
6 −0. The orthogonality

comes from 0 = 2− 0− 1·2
4 −

1·3
6 − 0− 1, where the last term comes from the

intersection number (P) ·(Q) on the surface. We can write the Weierstrass equation
of this family as

y2
= x3
+
(
(rs− 1)2− (s2

− 1)(rs− 4r2
− 1)t

+ r(s2
− 1)(rs2

+ 8s− 57r)t2/4+ 8r2(s2
− 1)t3)x2

+ r2(s2
− 1)2t3(t − 1)2

(
16r2t + (rs− 1)2− (s− 5r)2

)
x .

We go to E8 E7 form in three steps, via D8 E6 and E8 E6.
First, we identify a D8 fiber F ′ in the figure below (we omit drawing the node

representing Q and the edges connecting it to the rest of the diagram, as it would
clutter up the picture).

P

The section P intersects F ′ once, and so the new fibration has a section. It has
D8 and E6 fibers and rank 2.

Next, we identify the class of an E8 fiber below, and go to an elliptic fibration
with E8 and E6 fibers, by a 2-neighbor step.

The resulting elliptic fibration has Mordell–Weil lattice of rank 2 and discriminant
77
3 . We can relatively easily describe a section P ′′ of height 8

3 , which intersects a
non-identity component of the E6 fiber.
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Now the E7 fiber F ′′′ drawn below defines an elliptic fibration with a section
and with E8 and E7 fibers.

P ′′

We now read out the Igusa–Clebsch invariants and proceed as in Section 4 to
compute the equation of Y−(77) as a double cover of the Humbert surface H77.

Theorem 39. A birational model over Q for the Hilbert modular surface Y−(77)
as a double cover of P2 is given by the equation

z2
= r2(r − 1)2(r + 1)2s6

+ 2r(r − 1)(r + 1)(21r2
− 13)s5

− (14r6
− 433r4

+ 328r2
+ 27)s4

− 4r(281r4
− 522r2

− 79)s3

− (343r6
+ 6268r4

+ 1763r2
− 54)s2

+ 2r(3997r4
+ 2446r2

− 171)s

− (1372r6
+ 4531r4

− 362r2
+ 27).

It is a surface of general type.

29.2. Analysis. It is a surface of general type. It has an extra involution (r, s) 7→
(−r,−s). The branch locus is a curve of genus 2. The change of coordinates

(r, s)=
(

4xy− 5x4
− 22x2

− 21
x(x2+ 7)2

,
−(2x2 y+ 2y− x5

− 6x3
− 9x)

(x2− 1)2

)

(r, s) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)(

−
1
2 ,−

23
5

)
1581x6

− 25965x5
+ 128199x4

− 124655x3
− 282240x2

− 92400x − 9478(
−

3
5 ,−

47
9

)
926711x6

− 351913x5
− 2531791x4

+ 699677x3
+ 2176646x2

− 359536x − 579882( 1
2 ,

23
5

)
2038350x6

+ 1601640x5
− 6288456x4

+ 116705x3
− 5729115x2

− 8845053x − 2931103(
−

13
2 , 6

)
10433826x6

− 16243110x5
+ 25749477x4

− 25899800x3
+ 5297523x2

− 6454140x − 9577876( 13
2 ,−6

)
−749865564x6

+ 4317895148x5
+ 1178682897x4

− 6739621816x3

− 800208729x2
+ 2973824982x + 128797182(

−
33
65 ,−

239
63

)
−5738303278944x6

+ 6551435295576x5

+ 28045528925148x4
− 5100723398753x3

− 23656013198837x2

+ 3333165270637x + 3904336668117

Table 24. Some rational points (r, s) of small height on the surface
of Theorem 39 and the corresponding genus-2 curves.
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converts it to Weierstrass form

y2
= x6
+ 5x4

+ 3x2
+ 7.

It is isomorphic to the quotient of X0(77) by the Atkin–Lehner involution w77.

29.3. Examples. Table 24 on the previous page lists some points of small height
and their genus-2 curves.

30. Discriminant 85

30.1. Parametrization. We start with a K3 elliptic surface with fibers of type
E6, D5 and A4, with a section of height 85

60 =
17
12 = 4− 4

3 −
5
4 .

The Weierstrass equation is

y2
= x3
+ t (a0+ a1t) x2

+ 2t2(t − 1)(b0+ b1t) x + t3(t − 1)4(c0+ c1t),

with

a0 =−4(e2
− 1)(3e f 2

+ 2e2 f + 2 f − 2e2
+ e+ 2),

c0 =−64e2(e2
− 1)3( f 2

− 1)2( f + 2e+ 1)(e f − e+ 2),

a1 = 4(e2
− 1)2 f 2,

b0 = 8e(e2
− 1)2( f 2

− 1)(3e f 2
+ 4e2 f + 4 f − 4e2

+ 5e+ 4),

b1 =−8 f (e2
− 1)2( f 2

− 1)(e4 f + e3 f − e f + f − e4
+ e3
+ e+ 1),

c1 = 16(e2
− 1)2( f 2

− 1)2(e4 f + e3 f − e f + f − e4
+ e3
+ e+ 1)2.

We identify the class of a D8 fiber below, and move to the new elliptic fibration
via a 2-neighbor step.

The new elliptic fibration has reducible fibers of type D8 and E6, and Mordell–
Weil rank 2. Next, we move to an elliptic fibration with E8 and E6 fibers by another
2-neighbor step, using the E8 fiber shown below.

The new elliptic fibration has E8 and E6 fibers. We can find an explicit section
P of the E8 E6 fibration which intersects a non-identity component of the E6 fiber
and does not intersect the zero section.
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Let F be an E7 fiber enclosed by the box in the picture below. We move to it by
a 2-neighbor step, to recover an elliptic fibration with E8 and E7 fibers.

P

We may now read out the Igusa–Clebsch invariants, and work out the equation
of Y−(85) as a double cover of P2

e, f .

Theorem 40. A birational model over Q for the Hilbert modular surface Y−(85)
as a double cover of P2

e, f is given by the equation

z2
=−(e2

− e− 1)2(8e4
+ 11e2

+ 8) f 4

+ 4(e4
− 1)(18e4

− 11e3
+ 27e2

+ 11e+ 18) f 3

− 2(82e8
− 118e7

− 9e6
− 60e5

− 173e4
+ 60e3

− 9e2
+ 118e+ 82) f 2

+ 4(e4
− 1)(4e2

− 5e− 4)(9e2
− 13e− 9) f

− (2e2
− e− 2)2(11e4

− 34e3
+ 5e2

+ 34e+ 11).

It is an honestly elliptic surface, of arithmetic genus 3 and Picard number 37 or 38.

30.2. Analysis. It is an honestly elliptic surface, with extra involution ι : (e, f, z) 7→
(−1/e,− f, z/e4).

The branch locus is a hyperelliptic curve of genus 3. The change of coordinates

(e, f )=
(

y+ x4
+ x3
− x + 1

2x2+ 2x − 1
,
(3x4
+ x3
− 3x2

− x + 3)y− (x2
− 1)(x2

+ 1)3

(x2+ x − 1)2(2x4− x2+ 2)

)
converts it to Weierstrass form:

y2
= x8
+ 2x7

− x6
− 8x5

+ x4
+ 8x3

− x2
− 2x + 1.

It is isomorphic to the quotient of X0(85) by the Atkin–Lehner involution w85.
The equation of Y−(85) describes it as an elliptic surface over P1

e . So far, we are
unable to find a section.

The Jacobian of this genus-1 curve over Q(e) can be written (after some Weier-
strass transformations) as

y2
= x3
+ (e8

− 10e7
+ 3e6

+ 84e5
+ 85e4

− 84e3
+ 3e2

+ 10e+ 1)x2

− 8e5(23e6
− 133e5

− 420e4
− 64e3

+ 420e2
− 133e− 23)x

− 16e9(108e6
− 637e5

− 1944e4
− 26e3

+ 1944e2
− 637e− 108).

It has χ =4. There are bad fibers of type I9 at e=0 and e=∞, I3 at e=±1, I2 at the
roots of e= 4±

√
17, and I3 at the roots of 3e6

−16e5
−54e4

+5e3
+54e2

−16e−3
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(which generates the compositum of Q(
√

85) and the cubic field of discriminant−3·
5 ·17). The trivial lattice has rank 36, leaving room for at most four independent sec-
tions. So far, we can only say from the ensuing analysis that the rank is either 1 or 2.

Next, we analyze the quotient of this surface by the involution ι. In terms of
g = e− 1/e and h = f/(e+ 1/e) (which are invariant under ι), its equation is

z2
=−(g− 1)2(g2

+ 4)2(8g2
+ 27)h4

+ 4g(g2
+ 4)2(18g2

− 11g+ 63)h3

− 2(g2
+ 4)(82g4

− 118g3
+ 319g2

− 414g− 27)h2

+ 4g(4g− 5)(9g− 13)(g2
+ 4)h− (2g− 1)2(11g2

− 34g+ 27).

This is also an honestly elliptic surface, this time with χ = 3. Its Jacobian is

y2
= x3
+ (g2

+ 4)(g4
− 10g3

+ 7g2
+ 66g− 27)x2

+8g(g−8)(g2
+4)2(g3

−12g2
−12g+27)x+16g2(g−8)2(g2

+4)3(g2
−14g−27).

It has bad fibers of type I9 at g =∞, I3 at g = 0, I2 at g = 8, I∗0 at g = ±2
√
−1,

and I3 at the roots of 3g3
− 16g2

− 45g− 27 (which generates the cubic field of
discriminant −255). The trivial lattice has rank 27, leaving room for Mordell–Weil
rank at most 3. Counting points modulo 11 and 19 shows that the Picard number is
at most 29. On the other hand, we are able to find the non-torsion section

P1 =
(
−4(g− 8)(g2

+ 4)(9g3
+ 3g2

+ g+ 72)/85,

4(g− 8)(21g− 4)(g2
+ 4)2(3g3

− 16g2
− 45g− 27)/853/2)

of height 3
2 . Therefore, the Mordell–Weil rank is either 1 or 2.

Next, we consider the quadratic twist of the quotient elliptic surface, which is
obtained by simply removing the factors of (g2

+ 4) in the Weierstrass equation
above (recalling that g2

+ 4 = (e+ 1/e)2). We get a K3 surface with a genus-1
fibration, whose Jacobian has Weierstrass equation

y2
= x3
+ (g4

− 10g3
+ 7g2

+ 66g− 27)x2

+ 8g(g− 8)(g3
− 12g2

− 12g+ 27)x + 16g2(g− 8)2(g2
− 14g− 27).

It has reducible fibers of type I9 at g =∞, I2 at g = 8, and I3 at g = 0 and at the
roots of 3g3

− 16g2
− 45g− 27. Therefore the trivial lattice has rank 19, and the

Mordell–Weil rank can be 0 or 1. We find a 3-torsion section

P0 = (8g+ 36, 4(3g3
− 16g2

− 45g− 27)).

Counting points modulo 7 and 19 shows that the Picard number is exactly 19. The
3-torsion section and trivial lattice span a sublattice of discriminant 162= 2 · 34 of
the Néron–Severi lattice of discriminant. It is easy to check that this sublattice is
3-saturated, and therefore must form the entire Néron–Severi lattice.
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(e, f ) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)( 1

2 ,−
29
15

)
576x6

+ 432x5
+ 927x4

+ 81x3
+ 171x2

− 72x − 208( 4
3 ,

1
7

)
−1344x6

− 672x5
− 2233x4

− 3026x3
− 997x2

− 2196x − 548( 7
2 ,

8
17

)
−1566x6

− 7704x5
− 4056x4

− 8581x3
− 5841x2

− 2055x − 2395(
−2, 29

15

)
−3500x6

− 2100x5
+ 11205x4

+ 2422x3
− 11295x2

+ 1080x + 2160(
−2, 23

21

)
−316x6

+ 3048x5
+ 14649x4

+ 10547x3
− 13509x2

− 1296x + 1728(
−

6
7 ,−13

)
−5028x6

− 10620x5
− 2605x4

− 16750x3
+ 5255x2

− 6600x + 2832(
−

1
2 ,−7

)
8964x6

− 3132x5
+ 18927x4

+ 6286x3
+ 6655x2

+ 11300x − 500( 2
5 ,−

7
3

)
21006x6

− 45414x5
+ 16263x4

− 20048x3
− 7227x2

+ 960x − 3200(
−

3
4 ,−

3
5

)
5500x6

+ 30300x5
+ 19835x4

+ 20174x3
− 46885x2

+ 2340x − 380( 5
2 ,

7
3

)
−12852x6

− 15876x5
+ 40383x4

+ 49976x3
− 30231x2

− 43650x + 2250( 11
20 ,−

71
49

)
−66020x6

+ 43980x5
+ 10001x4

+ 1154x3
− 5899x2

− 1464x + 1096(
−

2
5 ,−

7
3

)
−72620x6

+ 37884x5
− 12135x4

+ 29302x3
− 4107x2

+ 1848x − 2672(
−

5
2 ,

7
3

)
20x6
+ 180x5

− 3879x4
− 34668x3

+ 44937x2
+ 62856x − 73296( 7

6 , 13
)

−5442x6
+ 3630x5

− 7079x4
− 93460x3

+ 35059x2
− 420x + 9212(

−4, 11
9

)
−16964x6

− 33804x5
+ 53325x4

+ 100170x3
− 35163x2

− 81540x − 1116( 11
2 ,

9
13

)
−102046x6

+130482x5
+61857x4

+9504x3
−74697x2

−38412x−14036

Table 25. Some rational points (e, f ) of small height on the surface
of Theorem 40 and the corresponding genus-2 curves.

30.3. Examples. Table 25 lists some points of small height and their genus-2
curves.

31. Discriminant 88

31.1. Parametrization. We start with an elliptic K3 surface with fibers of type A9,
D4 and A2, and a section of height 11

15 = 4− 2
3 − 1− 16

10 . The Weierstrass equation
for this family is

y2
= x3
+ (a0+ a1t + a2t2

+ a3t3)x2

+ 2t2(λt −µ)(b0+ b1t + b2t2
+ b3t3)x + t4(λt −µ)2(c0+ c1t)2,

with

a0 = 1, µ= rs+ 2s+ 1, λ= s(r + 2)2(2s+ 1)2,

c0 =−2, b0 = 2, a1 =−8s(rs+ 2r + 1),

c1 = 8(r + 2)s2
+ 8(r + 1)s+ r2,

b3 = 2r(r + 2)s(2s+ 1)(8s+ r2)(8s2
+ r),

b2 = 32r(r+2)s4
+32(3r2

+4r+2)s3
−4(r3

−20r2
−24r−8)s2

+4(r−1)r2s,
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b1 =−16(r + 1)s2
− 8(3r + 2)s− r2,

a3 = 4rs
(
64rs4

+ 16(r3
+ 3r2

+ 12r + 4)s3

+ 2r(r2
+ 4)s2

+ r(r3
+ 12r2

+ 12r + 16)s+ r3),
a2 = 4s

(
4r2s3

+ 8r(2r − 1)s2
− 4(r3

− 4r2
− 4r − 1)s− r2(r + 4)

)
.

First we identify an E7 fiber, and make a 3-neighbor move to it.

This gives us an elliptic fibration with E7, D5 and A3 fibers, and a section of
height 88

32 =
11
4 = 4− 5

4 . Then we can identify a D8 fiber F ′ below, and move to
the associated genus 1 fibration by a 2-neighbor step.

P

To see that the genus-1 fibration defined by this fiber F ′ has a section, note that
P · F ′ = 3, while F ′ intersects the near leaf of the D5 fiber with multiplicity 2.
Therefore we may replace the genus-1 fibration by its Jacobian.

Finally, we go by another 2-neighbor move to a fibration with E8 and E7 fibers.
We identify the class of an E8 fiber F ′′ below. The Mordell–Weil group is generated
by a section P ′ of height 88/(2 ·4)= 11= 4+2 ·4−1, so the section must intersect
the zero section with multiplicity 4, and it must intersect the near leaf of the D8

fiber. Therefore P ′ · F ′′ = 2 · 4+ 3 = 11, whereas the omitted far leaf of the D8

fiber intersects F ′′ with multiplicity 2. So the new fibration has a section.

We may now read out the Igusa–Clebsch invariants and compute the equation of
the branch locus for Y−(88) 7→ P2

r,s .

Theorem 41. A birational model over Q for the Hilbert modular surface Y−(88)
as a double cover of P2

r,s is given by the equation

z2
= (8rs2

+ 16s2
+ 8s+ r2)

(
8r3s4

+ 16r2s4
+ 96r3s3

+ 472r2s3
+ 544rs3

−27r4s2
−120r3s2

+64r2s2
+472rs2

+16s2
−46r3s−120r2s+96rs+8s−27r2).
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It is a surface of general type.

31.2. Analysis. The branch locus has two components. Both correspond to elliptic
K3 surfaces with an extra I2 fiber, and the simpler component to having a 2-torsion
section in addition. The simpler component of the branch locus has genus 1; the
change of coordinates r = 2y/x2, s =−1/(2x) converts it to Weierstrass form

y2
+ y = x3

− x2,

which is an elliptic curve of conductor 11 (isomorphic to X1(11)).
The other component has genus 2. The transformation

(r, s)=
(
−(x − 1)y+ (x + 1)(x3

− 3x2
− 3x − 1)

3x2+ 2x + 1
,

(3x + 1)y− (x + 1)(3x3
+ 3x2

+ 3x + 1)
4x(x2− 2x − 1)

)
converts it to Weierstrass form

y2
= x6
− 2x5

+ 11x4
+ 20x3

+ 15x2
+ 6x + 1.

The Hilbert modular surface Y−(88) is a surface of general type. We now
analyze its quotient by the involution ι : (r, s, z) 7→ (1/s, 1/r, z/(rs)3). Writing
h =−(s+ 1/r),m = (s− 1/r)2, we find the equation

z2
= (h4

− 2h3
− 2mh2

+ 2mh+m2
+ 1)

(
9h6
− 30h5

− 26mh4
+ 16h4

+ 58mh3

+ 30h3
+ 25m2h2

− 8mh2
− 25h2

− 28m2h− 30mh− 8m3
− 8m2

− 2m
)
.

The invertible transformation m = 2+ 1/t + 8/(nt)+ 4/(nt)2, h = −1− 2/(nt)
makes this a quartic in n,

z2
= (4t−n−4)

(
t (2t+1)(6t2

−13t+8)n3
+4t (2t−3)2n2

−4(2t−1)2n+16(t−1)
)
,

with an obvious section n = 4t − 4. Converting to the Jacobian, we get an elliptic
K3 surface with the following equation (after some Weierstrass transformations
and a change of parameter t 7→ 1− t on the base):

y2
= x3
+ (28t4

− 24t3
− 8t2

+ 4t + 1)x2

− 16t3(t − 1)2(t3
− 10t2

+ 4t + 1)x + 64t6(t − 1)4(29t2
− 10t − 3).

This has bad fibers of type I6 at t = 0, I5 at t = 1, I2 at t = 1
2 and t =− 1

6 , and I3 at
t = 1

4 ±
√

33
12 . The trivial lattice has rank 17. We find the independent sections

P1 =
(
−4t (t − 1)(7t2

− 2t − 1), 4t (t − 1)(t + 1)(2t − 1)(6t2
− 3t − 1)

)
,

P2 =
(
4t (t − 1)2(5t + 1), 4t (t − 1)2(6t + 1)(6t2

− 3t − 1)
)
,
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P3 =
(
4t3(6− 13t), 12

√
−3 t4(2t − 1)(6t + 1)

)
,

with height matrix 
8

15
1

10 0
1

10
2

15 0

0 0 3
2

.
Therefore the K3 surface is singular, and an easy argument shows that these sections
and the trivial lattice must span the Néron–Severi lattice, which therefore has rank
20 and discriminant −99.

31.3. Examples. Table 26 lists some points of small height and their genus-2
curves.

We describe some curves on the surface which are a source of rational points
(some more may be produced by applying the involution ι). The specialization

(r, s) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)(

−
2
3 ,−

7
10

)
25x6
+ 120x5

− 291x4
− 1292x3

+ 987x2
+ 588x − 497(

−4, 3
2

)
486x6

− 810x5
+ 1323x4

− 800x3
+ 585x2

− 48x + 64(
−

10
7 ,−

3
2

)
515x6

+ 1314x5
− 3120x4

− 1332x3
+ 2292x2

+ 720x − 200(
−

4
7 ,−

3
10

)
20x6
+ 180x5

− 159x4
− 3276x3

+ 249x2
+ 1980x − 1100( 2

3 ,−
1
4

)
4608x6

+ 6048x5
+ 3771x4

− 1026x3
+ 351x2

− 36x + 4(
−

20
7 ,−

5
6

)
356x6

− 4980x5
+ 6373x4

+ 2580x3
− 4409x2

− 4170x − 790( 8
21 ,−

2
5

)
1664x6

+ 624x5
+ 3747x4

− 5222x3
+ 5511x2

− 1140x + 15020(
−

6
5 ,−

7
20

)
6260x6

− 21060x5
+ 7009x4

− 1254x3
− 239x2

− 540x − 100(
−

10
3 ,−

7
4

)
2x6
+ 54x5

+ 45x4
+ 1080x3

− 2961x2
− 44352(

−
4
3 ,−

13
6

)
−14388x6

− 86076x5
− 115441x4

+ 70272x3
+ 86417x2

− 10794x + 314(
−

22
21 ,−

13
70

)
7865x6

− 9750x5
+ 62049x4

− 2788x3
+ 162759x2

− 4350x + 119375(
−

5
2 ,

21
8

)
363300x6

− 50652x5
+ 128541x4

+ 2266x3
+ 19257x2

+ 1008x + 896( 38
65 ,−

13
40

)
−1106244x6

+ 336780x5
+ 23283x4

+ 248770x3
− 101625x2

− 33072x − 28736(
−

8
39 ,−

1
42

)
−48600x6

+ 483840x5
− 1386285x4

− 264482x3
− 282489x2

+ 883404x − 1658988(
−

70
13 ,−

21
22

)
599697x6

− 445662x5
+ 824913x4

− 838612x3
+ 2057823x2

− 1620774x + 957519(
−

10
7 ,−

13
36

)
−1112220x6

+ 2309556x5
− 397465x4

− 269262x3
− 847153x2

− 265908x + 612

Table 26. Some rational points (r, s) of small height on the surface
of Theorem 41 and the corresponding genus-2 curves.
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s =− 5
6 gives a genus-1 curve

y2
=−(9r2

+ 50r + 40)(243r2
+ 670r − 40).

It has rational points, such as (r, y)= (0, 40). It is thus an elliptic curve; we find
that it has conductor 2 · 3 · 52

· 29 · 53 and Mordell–Weil group (Z/2Z)⊕Z2.
Pulling back sections of the elliptic fibration on the quotient surface gives us

some more curves of genus 1, each with a rational point and rank 1:

Equation point conductor group
h = g2

=

−
4t2
−5t+2

2t (t−1)
(2t−1)(14t3

−25t2
+16t−4)

4t2(t−1)2
t = 1

2 53 Z

−
12t2
−5t+2

2t (3t−2)
252t4

−192t3
+73t2

−20t+4
4t2(3t−2)2

t = 0 2 ·3·4391 Z

−
8t2
−15t+8

2t (t−1)
92t4
−320t3

+433t2
−268t+64

4t2(t−1)2
t = 0 7·977 (Z/2Z)⊕Z

−
3t2
−3t+2

3t (t−1)
18t4
−27t3

+24t2
−15t+4

9t2(t−1)2
t = 0 25327 (Z/2Z)⊕Z

32. Discriminant 89

32.1. Parametrization. We start with an elliptic K3 surface with fibers of type
A8 A7, and a section of height 89

72 = 4− 1·8
9 −

3·5
8 .

The Weierstrass equation for this family is

y2
= x3
+ (a0+ a1t + a2t2

+ a3t3
+ a4t4)x2

+ 2µt2(b0+ b1t + b2t2
+ b3t3)x +µ2t4(c0+ c1t + c2t2),

with

a0 = (rs+ 1)2, b0 =−(rs+ 1)2, c0 = (rs+ 1)2,

µ= 4rs(r + 1)2, b3 = s(s2
− rs− 2s+ 1)2, a4 = s2(s2

− rs− 2s+ 1)2,

c2 = (s2
− rs− 2s+ 1)2,

c1 = 2rs3
− 2(r2

+ 4r + 1)s2
+ 4(r + 1)2s− 2,

b2 = (2r − 1)s4
− (3r2

+ 7r − 2)s3
+ (r3

+ 6r2
+ 7r − 1)s2

− 2r(r + 1)s+ r,

a1 =−2(r2
− r)s3

+ 2(r3
− 6r − 1)s2

+ 2(4r2
+ 6r + 1)s+ 2r,

b1 = r(r − 2)s3
− (r3

− r2
− 10r − 2)s2

− (6r2
+ 10r + 3)s− r + 1,

a3 = 2s
(
(r−1)s4

−(2r2
+3r−3)s3

+(r3
+4r2

+3r−3)s2
−(2r2

+2r−1)s+r
)
,
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a2 = (r2
− 4r + 1)s4

− 2(r3
− 2r2

− 9r)s3

+ (r4
− 16r2

− 22r − 3)s2
− 2(r3

− r − 1)s+ r2.

To obtain an E8 E7 elliptic fibration on these K3 surfaces, we first move by a
2-neighbor step to one with E7 and A8 fibers.

P

The elliptic fibration defined by this new fiber F ′ has a section, since P · F ′ = 1.
Also, the new elliptic fibration must have a section P ′ of height 89

18 =4+2·2− 3
2−

2·7
9 .

Finally, we go to E8 E7 by a 3-neighbor step.

P ′

The new fiber F ′′ satisfies P ′ · F ′′ = 2+ 2 · 3= 8, and the identity component
of the E7 fiber intersects F ′ in 3. Since these have greatest common divisor 1, the
genus-1 fibration defined by F ′ has a section.

Theorem 42. A birational model over Q for the Hilbert modular surface Y−(89)
as a double cover of P2

r,s is given by the equation

z2
= s4r6

− 2s3(2s2
+ 3s+ 2)r5

+ s2(6s4
+ 16s3

− 49s2
− 26s+ 6)r4

− 2s(2s6
+ 6s5

− 50s4
+ 26s3

+ 73s2
− 35s+ 2)r3

+ (s8
− 36s6

+ 26s5
+ 273s4

− 514s3
+ 271s2

− 38s+ 1)r2

+ 2(s− 1)2s(s5
− 4s4

+ 25s3
− 107s2

+ 147s− 44)r + (s− 4)3(s− 1)4s.

It is a surface of general type.

32.2. Analysis. The branch locus has genus 1; one can give an explicit isomorphism
(see the online supplement) to the elliptic curve of conductor 89 given by the
Weierstrass equation

y2
+ xy+ y = x3

+ x2
− x .

It is isomorphic to X0(89)/〈w〉, where w is the Atkin–Lehner involution.
The Hilbert modular surface Y−(89) is a surface of general type. Note that the

change of coordinates r = s+ g simplifies the equation a bit further, making the

http://msp.berkeley.edu/ant/2014/8-10/ant-v8-n10-x01-equations.zip
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(r, s) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)(

−
31
3 ,−

1
6

)
−334084x6

+65892x5
+847841x4

−156012x3
−1036555x2

−453867x−525(
−

49
9 ,−

2
3

)
632x6

− 480x5
+ 43475x4

− 97578x3
− 1030393x2

+ 855708x − 1045044
(−19,−1) 126905x6

+ 2388081x5
− 2600778x4

− 3075787x3
− 5448045x2

− 3683352x − 709200(
−

31
10 ,

5
2

)
−83300x6

+ 168420x5
+ 5079215x4

− 6586832x3
+ 584735x2

+ 70020x − 8100(
−

5
6 ,

11
6

)
2185004x6

− 12346980x5
+ 10798163x4

+ 732660x3
+ 47975267x2

+ 21406020x + 27911916( 13
9 ,−

5
9

)
−14966100x6

− 43598124x5
+ 25890735x4

+ 105396908x3
− 44422995x2

− 65750574x + 34674550(
−

40
7 ,−

1
2

)
2754000x6

+ 86434200x5
+ 150411025x4

− 14830346x3
− 49970411x2

+ 242599308x + 131021492( 16
33 ,

11
3

)
25329267x6

− 96789717x5
+ 223774305x4

− 449560367x3
− 46904988x2

− 772810308x + 413626230

Table 27. Some rational points (r, s) of small height on the surface
of Theorem 42 and the corresponding genus-2 curves.

degree of the right-hand side equal to 6 in each variable. However, it complicates
the original defining Weierstrass equation of the family of K3 surfaces, so we have
chosen the (r, s) coordinate system.

32.3. Examples. Table 27 lists some points of small height and their genus-2
curves.

We find two elliptic curves of positive rank on the surface. The specialization
s = 25

22 gives a curve of genus 1

y2
= 1210000r4

− 19157600r3
− 17065736r2

+ 678600r − 8575

with rational points (as at infinity), conductor 3 · 5 · 11 · 163 · 191 · 881, and rank at
least 2. The locus s = r + 101

50 gives another curve of genus 1,

y2
=−3739190000r4

− 21451957600r3
− 43018833576r2

− 36551728152r − 11227811551,

with rational points (as at (r, y)= (−1,±652)), conductor 24
·5 ·17 ·19 ·463 ·58787,

and rank at least 3. We were not able to determine the exact rank of either curve,
but the global root numbers indicate that the rank should be even for the former
curve and odd for the latter, so one might guess that the lower bounds 2 and 3 on
their ranks are sharp.
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33. Discriminant 92

33.1. Parametrization. We start with an elliptic K3 surface with fibers of type
A8, A1 and D6, and a section of height 92

72 =
23
18 = 4− 1·1

2 −
4·5
9 .

The Weierstrass equation may be written as

y2
= x3
+ (a0+ a1t + a2t2

+ a3t3)x2

+ 2t2(λt −µ)(b0+ b1t + b2t2)x + t4(λt −µ)2(c0+ c1t),

with

λ= (r + s)2, µ= r + 2s,

a3 =−4rs(s+ r2
+ r)(s2

+ rs− r), a0 = (rs− r − 1)2,

b0 =−4rs2(rs− r − 1)2, c0 = 16r2s4(rs− r − 1)2,

a1 =−2r((r + 1)2(s− 1)2+ s2), b1 = 4r2s2(rs+ 2s− r − 1)2,

c1 =−64r3(r + 1)(s− 1)s5,

b2 =−8r2s3((r + 2)s2
+ (2r2

+ 2r − 1)s− 2r(r + 1)
)
,

a2 = r(rs+ 4s− r − 1)(4s2
+ r2s+ 4rs− r2

− r).

As in the case of discriminant 56, we first go to an E7 A8 fibration using the E7

fiber F ′ identified below. Note that F ′ · P = 3, while the component of the D6 fiber
which is not included in F ′ intersects F ′ with multiplicity 2. Since gcd(2, 3)= 1,
the fibration defined by F ′ has a section.

P

The new elliptic fibration has a section P ′ of height 92
2·9 =

46
9 = 4+ 2 · 1− 8

9 ,
which must therefore intersect the zero section, the identity component of the E7

fiber and component 1 of the A8 fiber.
We identify an E8 fiber and compute its Weierstrass equation by a 3-neighbor

move. Note that it intersects P ′ in 7 and the excluded component of the A8 fiber
in 3. Therefore the fibration it defines has a section, and we may convert to the
Jacobian.

P ′
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Now we read out the Igusa–Clebsch invariants and compute the branch locus.

Theorem 43. A birational model over Q for the Hilbert modular surface Y−(92)
as a double cover of P2

r,s is given by the equation

z2
= (s+ r2

+ r)(s2
+ rs− r)

×
(
(s− 1)3r5

+ (s− 1)2(s2
− 15s− 3)r4

− (s− 1)(42s3
− 27s2

− 31s− 3)r3

−(27s5
−30s4

−77s3
+69s2

+17s+1)r2
+s(46s3

−30s2
−42s−1)r−27s3).

It is a surface of general type.

33.2. Analysis. The branch locus has three components. Points of the two simpler
components correspond to elliptic K3 surfaces where the D6 fiber is promoted to
an E7 fiber, while the more complicated component corresponds to an extra I2 fiber.
All the three components are rational (genus 0). This is obvious from inspection
for the simpler components, and for the last we have the parametrization

(r, s)=
(

t (t2
+ 2)(t + 1)2

(t + 2)(t3+ 2t2+ 2t + 2)
,
−t (t + 1)(t3

+ 2t2
+ 4t + 4)

(t + 2)2(t2+ 2)

)
.

The surface Y−(92) is a surface of general type. The extra involution is (r, s, z) 7→
(−1/s,−1/r, z/(rs)4). We now analyze the quotient of the Hilbert modular surface
by this involution. Because the involution fixes r/s, we obtain the quotient by setting
r = st and writing everything in terms of m = s− 1/(ts). We find the equation

y2
=
(
t2(t + 1)m− t3

+ t2
+ 2t + 1

)(
t3(t + 1)m3

− t (3t3
+ 17t2

+ 42t + 27)m2

+ t (3t3
+ 31t2

+ 72t + 30)m− (t4
+ 15t3

+ 30t2
+ 7t + 8)

)
,

which expresses the quotient as a genus-1 curve over Q(t). Since there is an obvious
section (where the first factor vanishes), we may convert to the Jacobian, which
has the Weierstrass equation (after shifting t by 1 and performing some Weierstrass
transformations)

y2
= x3
− (2t + 1)(8t3

+ 8t2
− 6t − 1)x2

− 8(t − 1)t4(t + 1)(10t2
− 32t − 5)x − 16(t − 1)2t8(t + 1)(47t + 7).

This is an elliptic K3 surface. It has reducible fibers of type I8 at t = 0, I3 at 1 and
(−7± 3

√
3)/11, and I2 at the roots of 11t3

− 10t2
+ 5t + 1 (which generates the

cubic field of discriminant −23). Therefore the trivial lattice has rank 18. We easily
identify a non-torsion section P of height 5

8 with x-coordinate 4t3(6t + 1). On the
other hand, counting points modulo 13 and 17 shows that the Picard number cannot
be 20. Therefore the Picard number of this quotient surface is 19. The sublattice
of the Néron–Severi group spanned by P and the trivial lattice has discriminant
360= 23

·32
·5. It is easy to see from height calculations that there cannot be any 2-
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(r, s) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)( 3

10 ,−
39
70

)
5981584x6

− 4016376x5
+ 1699985x4

+ 313485x3
− 168322x2

+ 49665x + 21175( 70
39 ,−

10
3

)
2916x6

+ 591516x5
+ 6670933x4

+ 12740602x3
− 44084051x2

+ 8704740x + 16105100

Table 28. Some rational points (r, s) of small height on the surface
of Theorem 43 and the corresponding genus-2 curves.

or 3-torsion sections, and that P cannot be divisible by 2 or 3 in the Mordell–Weil
group. Hence, this sublattice is the entire Néron–Severi lattice.

33.3. Examples. Table 28 lists some points of small height and their genus-2
curves.

Specializations of r or s, and pullbacks of sections of the quotient, do not seem
to yield any genus 0 or 1 curves on the surface (at any rate, none correspond-
ing to abelian surfaces with “honest” real multiplication by O92 and not a larger
endomorphism ring).

34. Discriminant 93

34.1. Parametrization. Start with an elliptic K3 surface with fibers of type A10,
A3 and A2, with a section of height 31

44 = 4− 3
4 −

28
11 . The extra involution comes

from flipping the A2 fiber.
This family has the Weierstrass equation

y2
= x3
+ (a0+ a1t + a2t2

+ a3t3
+ a4t4)x2

+ 2t (λt −µ)(b0+ b1t + b2t2
+ b3t3)x + t2(λt −µ)2(c0+ c1t + c2t2),

with

λ=−(n2
− 1), µ= (n2

−mn− n−m)(n2
+mn+ n−m),

a0 = (m+ 1)2n8, b0 = m4(m+ 1)2n8,

c0 = m8(m+ 1)2n8, a4 = 1,

c2 = m8n4, b3 = m4n2,

a3 = (m2
+ 2m+ 4)n2

− 3m2, c1 = m8n4((m2
+ 2m+ 2)n2

−m2),

b2 = m4n2((m2
+ 2m+ 3)n2

− 2m2),
a2 = 3(m2

+ 2m+ 2)n4
− 2m2(m2

+ 3m+ 3)n2
+ 3m4,

b1 = m4n2((2m2
+ 4m+ 3)n4

−m2(m+ 1)(m+ 2)n2
+m4),

a1 = (3m2
+ 6m+ 4)n6

− 3m2(m+ 1)2n4
+m4(m+ 1)(m+ 3)n2

−m6.
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We first identify the class of an E8 fiber below, and move to it by a 3-neighbor
step.

This gives us an elliptic fibration with E8, A5 and A2 fibers, and a section P of
height 93

18 =
31
6 = 4+ 2 · 1− 5

6 . We then identify an E7 fiber and move to it by a
2-neighbor step. Since the new fiber intersects the section P in 7 and the excluded
component of the A5 fiber in 3, we see that the new fibration has a section.

P

Theorem 44. A birational model over Q for the Hilbert modular surface Y−(93)
as a double cover of P2

m,n is given by the equation

z2
= 16(n2

− 1)2n2m6
+ 8(n2

− 1)(21n4
+ 22n2

− 27)m5

−(27n8
−684n6

−1246n4
+1620n2

+27)m4

−8n2(27n6
−109n4

−471n2
+41)m3

−8n2(81n6
+135n4

−273n2
−7)m2

−96n4(9n2
−1)(n2

+3)m−16n4(n2
+3)(27n2

+1).

It is a surface of general type.

34.2. Analysis. The extra involution is ι : (m, n) 7→ (m,−n).
The branch locus is a curve of genus 4, isomorphic to X0(93)/〈w93〉, where w93

is the Atkin–Lehner involution. We do not give the explicit isomorphism here, but
the formulas are available in the online supplement. Setting k = n2, we can write it
as a double cover of a genus-2 curve, which can be transformed to the Weierstrass
form

y2
− (9x3

+ 11x − 3)y+ x2(69x3
− 56x2

+ 81x − 22)= 0.

This Hilbert modular surface is a surface of general type. The quotient by this
involution ι has the equation (with k = n2)

z2
=−27(m+2)4 k4

+4(4m6
+42m5

+171m4
+218m3

−270m2
−624m−328)k3

− 2(16m6
− 4m5

− 623m4
− 1884m3

− 1092m2
− 144m+ 24)k2

+ 4m2(4m4
− 98m3

− 405m2
− 82m+ 14) k+ 27m4(8m− 1).

http://msp.berkeley.edu/ant/2014/8-10/ant-v8-n10-x01-equations.zip
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This has a genus-1 fibration over Q(m). The fibration has a section at infinity
defined over Q(

√
−3); we do not know whether there is a section defined over Q.

The Jacobian has the Weierstrass equation

y2
= x3
+ (m6

+ 20m5
+ 118m4

+ 186m3
+ 33m2

+ 18m− 3)x2

+ 8m2(m+ 10)(9m4
+ 39m3

+ 57m2
− 1)x

+ 16m4(m+ 10)2(4m3
+ 13m2

+ 18m− 3).

This is an honestly elliptic surface with χ = 3. It has reducible fibers of type I9 at
m =∞, I4 at m = 0, I2 at m =−10, and I3 at the roots of

m6
+ 11m5

+ 16m4
+ 32m3

+ 17m2
− 9m+ 1

(whose splitting field is a dihedral extension of degree 12 containing
√

93). The
trivial lattice has rank 26, leaving room for Mordell–Weil rank up to 4. Counting
points modulo 13 and 17 shows that the Picard number is at most 29. On the other
hand, we are (so far) able to produce the sections

P0=
(
−16(m3

+m2
+6m−1), 32(m6

+11m5
+16m4

+32m3
+17m2

−9m+1)
)
,

P1 =
(
−16(m+ 10)(m5

+m4
+ 6m3

+ 3m2
+ 18m− 3)/31,

288(m+10)(3m2
+2m+9)(m6

+11m5
+16m4

+32m3
+17m2

−9m+1)/933/2),
of which P0 is 3-torsion, while P1 has height 3

2 . Therefore, the Mordell–Weil rank
is between 1 and 3.

34.3. Examples. Table 29 lists some points of small height and their genus-2
curves.

(m, n) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)(

2, 1
3

)
−2112x6

−5184x5
+5451x4

+2593x3
−4596x2

−2223x−101(
−10, 5

3

)
−7452x6

−4860x5
−24039x4

−4540x3
−17205x2

+4686x−302( 1
5 ,

1
7

)
−24786x6

+25272x5
+90900x4

−73885x3
−107482x2

+54020x+40286
(−10, 5) −31752x5

−48825x4
+52868x3

−175537x2
+91124x−80644(

2,− 1
3

)
−594x6

+10962x5
−154233x4

+391936x3
+265521x2

+330228x−71068
(−10,−5) 43756x6

+110088x5
+463887x4

−609201x3
+208770x2

−6300x−211000(
−10,− 5

3

)
−3008x6

+270048x5
−773739x4

−611989x3
−2150523x2

+631152x−342144( 1
5 ,−

1
7

)
−253800x6

−1186380x5
−1627302x4

+4611739x3
+1795017x2

−2139291x+2480233

Table 29. Some rational points (m, n) of small height on the surface
of Theorem 44 and the corresponding genus-2 curves.
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35. Discriminant 97

35.1. Parametrization. Start with an elliptic K3 surface with fibers of type D5, A4

and A6, with a section of height 97
140 = 4−

(
1+ 1

4

)
−

6
5 −

6
7 .

We can write the Weierstrass equation as

y2
= x3
+ (a0+ a1t + a2t2

+ a3t3)x2
+ 2t2(t − 1)2(b0+ b1t + b2t2)x

+ t4(t − 1)4(c0+ c1t),

with

a0 = (r + 1)2(rs2
+ s2
+ r2s+ r)2,

a1 = 2(r + 1)
(
(r + 1)2s5

+ 2(r + 1)(r2
− r − 1)s4

+ r(r3
− 4r2

− 4r + 2)s3

− r(2r3
+ r2
+ 2r + 5)s2

− r2(r2
+ 3r + 3)s− r2(r + 1)

)
,

a2 = (r + 1)2s6
+ 2(r + 1)(r2

− 4r − 2)s5
+ (r4

− 16r3
− 6r2

+ 18r + 4)s4

− 2r(4r3
− 6r2

− 4r + 11)s3
+ r(6r3

− 6r2
− 3r + 20)s2

+ 2r2(r + 3)(2r + 3)s+ r2(r + 1)2,

a3 =−4r(s− 1)s(s+ r)
(
s3
+ (r − 2)s2

− (r − 2)s− 2r − 3
)
,

b0 = 4r(r + 1)2(s− 1)2s(s+ r)(rs2
+ s2
+ r2s+ r)2,

b1 = 4r(r + 1)(s− 1)2s(s+ r)

×
(
(r + 1)2s5

+ 2(r + 1)(r2
− 2r − 1)s4

+ r(r3
− 8r2

− 6r + 4)s3

− r(4r3
+ r2
+ 2r + 7)s2

− r2(r2
+ 5r + 5)s− r2(r + 1)

)
,

b2 =−8r2(r + 1)(s− 1)2s2(s+ r)2
(
2s3
+ 2(r − 2)s2

− 2(r − 2)s− r − 3
)
,

c0 = 16r2(r + 1)2(s− 1)4s2(s+ r)2(rs2
+ s2
+ r2s+ r)2,

c1 =−64r3(r + 1)2(s− 1)4s3(s+ r)3(s2
+ rs− s+ 1).

First we identify a D8, and move to the associated elliptic fibration (which also
has an A6 fiber) by a 2-neighbor step.

This elliptic fibration has D8 and A6 fibers, and two independent sections P, Q
with height matrix (

8
7 −

5
14

−
5
14

22
7

)
.
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We identify a fiber F ′ of type E8 and move to the associated fibration by a
2-neighbor step. Note that Q · F ′ = 3, while the remaining component of the D8

fiber has intersection 2 with F ′. Therefore the new genus-1 fibration has a section.

P

Q

The new elliptic fibration has bad fibers of types E8 and A7, and a section P ′

of height 97
8 = 2+ 2 · 6− 3 · 5

8 . We identify a fiber F ′′ of type E7, and move to
the associated elliptic fibration by a 2-neighbor step. Note that P ′ · F ′′ = 13, while
the remaining component of the A7 fiber has intersection 2 with F ′′. Therefore the
elliptic fibration associated to F ′′ has a section, and is the of the desired type E8 E7.

We now read out the Igusa–Clebsch invariants and work out the equation of the
branch locus of Y−(97) as a double cover of H97.

Theorem 45. A birational model over Q for the Hilbert modular surface Y−(97)
as a double cover of P2

r,s is given by the equation

z2
= s2(s2

+ 14s+ 1)r6
+ 2s(2s4

+ 27s3
− 13s2

+ 15s+ 1)r5

+ (6s6
+ 80s5

− 75s4
+ 128s3

− 54s2
+ 18s+ 1)r4

+ 2(2s7
+ 28s6

− 32s5
+ 84s4

− 74s3
+ 48s2

− 13s+ 1)r3

+ (s8
+ 18s7

− 11s6
+ 68s5

− 101s4
+ 112s3

− 69s2
+ 22s+ 1)r2

+ 2s2(s6
+ 3s5

− 5s4
+ 7s3

+ 3s2
− 16s+ 12)r + (s− 2)4s4.

It is a surface of general type.

35.2. Analysis. The branch locus is a genus-3 curve, isomorphic to the quotient of
X0(97) by the Atkin–Lehner involution. We omit the formulas for the isomorphism,
but they are available in the online supplement.

The Hilbert modular surface itself is of general type. The substitution r = u− s
simplifies the equation of the double cover somewhat, making it degree-6 in each
variable. However, it complicates the original Weierstrass equation of the K3 family,
so we have chosen the (r, s)-coordinates on the moduli space.

http://msp.berkeley.edu/ant/2014/8-10/ant-v8-n10-x01-equations.zip
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(r, s) Sextic polynomial f6(x) defining the genus-2 curve y2
= f6(x)( 5

2 ,−2
)

−100x6
+ 180x5

+ 3x4
+ 12x3

− 207x2
+ 54x + 54(

−
5
3 ,

2
3

)
115x6

− 120x5
− 692x4

− 42x3
+ 643x2

+ 36x − 156( 8
15 ,−

6
5

)
−418x6

− 99x5
+ 700x4

+ 130x3
− 401x2

− 45x + 81(
−

14
3 , 6

)
528x6

− 792x5
+ 311x4

− 26x3
− 205x2

+ 60x − 20(
−

20
7 ,

5
14

)
−72x6

− 72x5
+ 669x4

+ 706x3
− 1623x2

− 60x + 500( 13
6 ,−

3
2

)
1236x6

− 852x5
− 1919x4

+ 1702x3
+ 1473x2

− 940x − 700( 17
6 ,−

1
3

)
200x6

− 420x5
+ 1918x4

− 1455x3
+ 2968x2

+ 1740x − 1175(
−

13
7 ,

11
21

)
−1872x5

− 3540x4
+ 1021x3

+ 2331x2
− 1185x + 145( 23

35 ,−
5

14

)
370x6

+ 1084x5
− 2510x4

− 683x3
− 32x2

− 752x − 3822(
−

11
30 ,

5
6

)
−1225x6

+ 3570x5
− 3266x4

− 176x3
+ 3463x2

+ 1446x + 5868( 1
2 ,

5
2

)
−1938x6

+ 3132x5
+ 1730x4

− 855x3
+ 609x2

− 9065x + 5145(
−

19
30 ,

3
10

)
4900x6

+ 5320x5
− 11751x4

− 4255x3
+ 2867x2

+ 4515x − 1596(
−

29
18 ,

10
9

)
16048x6

− 7524x5
− 11096x4

+ 16107x3
− 4244x2

− 5652x − 864( 13
4 ,−

1
4

)
−1140x6

+ 4820x5
− 3105x4

+ 3366x3
− 16681x2

− 6468x − 12348(
−

7
2 , 6

)
14076x6

− 20748x5
+ 11899x4

+ 1252x3
− 125x2

+ 2676x + 380( 9
10 ,−

2
5

)
−6688x6

+ 9840x5
− 8271x4

+ 24640x3
− 5373x2

+ 12150x − 7290

Table 30. Some rational points (r, s) of small height on the surface
of Theorem 45 and the corresponding genus-2 curves.

35.3. Examples. Table 30 lists some points of small height and their genus-2
curves.

We find a few curves with infinitely many rational points. For instance, r = 1− s
gives a rational curve, with parametrization

(r, s)=
(
(m+ 1)(m+ 3)

m2+ 7
,
−4(m− 1)

m2+ 7

)
.

The Brauer obstruction vanishes identically along this curve. However, it turns out
to be a modular curve: the corresponding abelian surfaces have endomorphism ring
a (split) quaternion algebra.

Another curve of genus 0 is given by r = −(3s2
+ 8s + 4)/(3s). Again, the

Brauer obstruction vanishes, and this time we get a family of abelian surfaces with
“honest” real multiplication.

The locus r = 1
2 − s gives a genus-1 curve

y2
= (2s+ 1)(2s3

− 39s2
+ 28s+ 36)

with conductor 5862= 2 · 3 · 977 and Mordell–Weil group Z2.
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Intermediate co-t-structures,
two-term silting objects,

τ -tilting modules, and torsion classes
Osamu Iyama, Peter Jørgensen and Dong Yang

If (A,B) and (A′,B′) are co-t-structures of a triangulated category, then (A′,B′)
is called intermediate if A⊆ A′ ⊆6A. Our main results show that intermediate
co-t-structures are in bijection with two-term silting subcategories, and also with
support τ -tilting subcategories under some assumptions. We also show that
support τ -tilting subcategories are in bijection with certain finitely generated
torsion classes. These results generalise work by Adachi, Iyama, and Reiten.

Introduction

The aim of this paper is to discuss the relationship between the following objects:

• Intermediate co-t-structures.

• Two-term silting subcategories.

• Support τ -tilting subcategories.

• Torsion classes.

The motivation is that if T is a triangulated category with suspension functor 6
and (X,Y) is a t-structure of T with heart H = X∩6Y, then there is a bijection
between “intermediate” t-structures (X′,Y′) with 6X⊆ X′ ⊆ X and torsion pairs
of H. This is due to [Beligiannis and Reiten 2007, Theorem 3.1] and [Happel et al.
1996, Proposition 2.1]; see [Woolf 2010, Proposition 2.3].

We will study a co-t-structure analogue of this which also involves silting sub-
categories, that is, full subcategories S ⊆ T with thick closure equal to T which
satisfy HomT(S, 6

iS)= 0 for i ≥ 1. Silting subcategories are a useful generalisation
of tilting subcategories.

The next theorem follows from the bijection between bounded co-t-structures
and silting subcategories in [Mendoza Hernández et al. 2013, Corollary 5.9]. See
[Pauksztello 2008] and [Aihara and Iyama 2012] for background on co-t-structures
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and silting subcategories. Note that the co-heart of a co-t-structure (A,B) is
A ∩6−1B. If F, G are full subcategories of a triangulated category, then F ∗ G

denotes the full subcategory of objects e which permit a distinguished triangle
f → e→ g with f ∈ F, g ∈ G.

Theorem 0.1 (Theorem 2.2). Let T be a triangulated category, (A,B) a bounded co-
t-structure of T with co-heart S. Then we have a bijection between the following sets:

(i) Co-t-structures (A′,B′) of T with A⊆ A′ ⊆6A.

(ii) Silting subcategories of T which are in S ∗6S.

The co-t-structures in (i) are called intermediate. The silting subcategories in
(ii) are called two-term, motivated by the existence of a distinguished triangle
s1 → s0 → s ′ with si ∈ S for each s ′ ∈ S′. The theorem reduces the study of
intermediate co-t-structures to the study of two-term silting subcategories.

Our main results on two-term silting subcategories and τ -tilting theory can be
summed up as follows. We extend the notion of support τ -tilting modules for finite-
dimensional algebras over fields given in [Adachi et al. 2014] to essentially small ad-
ditive categories; see Definitions 1.3 and 1.5. For a commutative ring k, we say that
a k-linear category is Hom-finite if each Hom-set is a finitely generated k-module.

Theorem 0.2 (Theorems 3.4 and 4.6). Let T be a triangulated category with a
silting subcategory S. Assume that each object of S ∗6S can be written as a direct
sum of indecomposable objects unique up to isomorphism. Then there is a bijection
between the following sets:

(i) Silting subcategories of T which are in S ∗6S.

(ii) Support τ -tilting pairs of mod S.

If T is Krull–Schmidt, k-linear and Hom-finite over a commutative ring k, and
S= add s for a silting object s, then there is a bijection between the following sets:

(iii) Basic silting objects of T which are in S ∗6S, modulo isomorphism.

(iv) Basic support τ -tilting modules of mod E , modulo isomorphism, where E =
EndT(s).

Note that in this case, there is a bijection between (i) and (iii) by [Aihara and Iyama
2012, Proposition 2.20, Lemma 2.22(a)].

Note that Theorem 0.2 is a much stronger version of Theorem 3.2 of [Adachi
et al. 2014], where T is assumed to be the homotopy category of bounded complexes
of finitely generated projective modules over a finite-dimensional algebra 3 over a
field, and s is assumed to be 3.
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Moreover, we give the following link between τ -tilting theory and torsion classes.
Our main result shows that support τ -tilting pairs correspond bijectively with certain
finitely generated torsion classes, which is a stronger version of [Adachi et al. 2014,
Theorem 2.7]. Note that FacM is the subcategory of ModC consisting of factor
objects of finite direct sums of objects of M, and P(T) denotes the Ext-projective
objects of T; see Definition 1.7.

Theorem 0.3 (Theorem 5.1). Let k be a commutative noetherian local ring and
C an essentially small, Krull–Schmidt, k-linear Hom-finite category. There is a
bijection M 7→ FacM from the first of the following sets to the second:

(i) Support τ -tilting pairs (M,E) of modC.

(ii) Finitely generated torsion classes T of ModC such that each finitely generated
projective C-module has a left P(T)-approximation.

1. Basic definitions

Let C be an additive category. When we say that U is a subcategory of C, we always
assume U is full and closed under finite direct sums and direct summands. For a
collection U of objects of C, we denote by addU the smallest subcategory of C
containing U.

Let C be an essentially small additive category. We write ModC for the abelian
category of contravariant additive functors from C to the category of abelian groups,
and modC for the full subcategory of finitely presented functors; see [Auslander
1974, pp. 184, 204].

The suspension functor of a triangulated category is denoted by 6.
We first recall the notions of co-t-structures and silting subcategories.

Definition 1.1. Let T be a triangulated category. A co-t-structure on T is a pair
(A,B) of full subcategories of T such that:

(i) 6−1A⊆ A and 6B⊆ B.

(ii) HomT(a, b)= 0 for a ∈ A and b ∈ B.

(iii) For each t ∈ T there is a triangle a→ t→ b→6a in T with a ∈ A and b ∈ B.

The co-heart is defined as the intersection A ∩ 6−1B. See [Pauksztello 2008;
Bondarko 2010].

Definition 1.2. Let T be a triangulated category.

(i) A subcategory U of T is called a presilting subcategory if T(u, 6≥1u′)= 0 for
any u, u′ ∈ U.

(ii) A presilting subcategory S ⊆ T is a silting subcategory if thick(S) = T; see
[Aihara and Iyama 2012, Definition 2.1(a)]. Here thick(S) denotes the smallest
thick subcategory of T containing S.
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(iii) An object u ∈ T is called a presilting object if it satisfies T(u, 6≥1u) = 0,
namely, if add(u) is a presilting subcategory. Similarly an object u ∈ T is
called a silting object if add(u) is a silting subcategory.

Next we introduce the notion of support τ -tilting subcategories.

Definition 1.3. Let C be an essentially small additive category.

(i) Let M be a subcategory of modC. A class
{

P1
πm

−→ P0→ m→ 0 | m ∈M
}

of
projective presentations in modC is said to have property (S) if

HommodC(π
m,m′) : HommodC(P0,m′)→ HommodC(P1,m′)

is surjective for any m,m′ ∈M.

(ii) A subcategory M of modC is said to be τ -rigid if there is a class of projective
presentations {P1→ P0→ m→ 0 | m ∈M} which has property (S).

(iii) A τ -rigid pair of modC is a pair (M,E), where M is a τ -rigid subcategory of
modC and E⊆ C is a subcategory with M(E)= 0, that is, m(e)= 0 for each
m ∈M and e ∈ E.

(iv) A τ -rigid pair (M,E) is support τ -tilting if E = Ker(M) and for each s ∈ C

there exists an exact sequence C(−, s)
f
−→ m0

→ m1
→ 0 with m0,m1

∈M

such that f is a left M-approximation.

It is useful to recall the notion of Krull–Schmidt categories:

Definition 1.4. An additive category C is called Krull–Schmidt if each of its objects
is the direct sum of finitely many objects with local endomorphism rings. It
follows that these finitely many objects are indecomposable and determined up to
isomorphism; see [Bass 1968, Theorem I.3.6]. It also follows that C is idempotent
complete; that is, for an object c of C and an idempotent e ∈ C(c, c), there exist
objects c1 and c2 such that c = c1⊕ c2 and e = idc1 ; see [Keller 2013, 5.1].

(i) An object c ∈ C is basic if it has no repeated indecomposable direct summands.

(ii) For an object c ∈ C, let #C(c) denote the number of pairwise nonisomorphic
indecomposable direct summands of c.

The following is a version of Definition 1.3 for rings:

Definition 1.5. Let E be a ring such that mod E is Krull–Schmidt.

(i) A module U ∈ mod E is called τ -rigid if there is a projective presentation
P1

π
−→ P0→U → 0 in mod E such that HomE(π,U ) is surjective.

(ii) A τ -rigid module U ∈mod E is called support τ -tilting if there is an idempotent
e ∈ E which satisfies Ue = 0 and #mod E(U )= #prj(E/EeE)(E/EeE).
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Remark 1.6. Part (ii) of the definition makes sense because prj(E/EeE) is Krull–
Schmidt. Namely, since mod E is Krull–Schmidt, it follows that prj E is Krull–
Schmidt with additive generator EE . The same is hence true for (prj E)/[add eE]
for each idempotent e ∈ E , and it is not hard to check that the endomorphism ring
of EE in (prj E)/[add eE] is E/EeE , so there is an equivalence of categories

(prj E)/[add eE] −→∼ prj(E/EeE).

Hence prj(E/EeE) is Krull–Schmidt.
If E is a finite-dimensional algebra over a field, then the definition coincides

with the original definition of basic support τ -tilting modules by Adachi, Iyama
and Reiten [Adachi et al. 2014, Definition 0.1(c)].

Finally we introduce the notion of torsion classes:

Definition 1.7. Let C be an essentially small additive category and T a full subcat-
egory of ModC.

(i) We say that T is a torsion class if it is closed under factor modules and
extensions.

(ii) For a subcategory M of ModC, we denote by FacM the subcategory of ModC

consisting of factor objects of objects of M.

(iii) We say that a torsion class T is finitely generated if there exists a full subcate-
gory M of modC such that T= FacM. Clearly the objects in FacM are finitely
generated C-modules, which are not necessarily finitely presented.

(iv) An object t of a torsion class T is Ext-projective if Ext1ModC(t,T) = 0. We
denote by P(T) the full subcategory of T consisting of all Ext-projective
objects of T.

2. Silting subcategories and co-t-structures

In this section, T is an essentially small, idempotent complete triangulated category.
Let (A,B) be a co-t-structure on T. It follows from the definition that

A= {t ∈ T | Hom(t, b)= 0 for all b ∈ B},

B= {t ∈ T | Hom(a, t)= 0 for all a ∈ A}.

In particular, both A and B are idempotent complete and extension closed. Hence
so is the co-heart S= A∩6−1B. Set

S ∗6S= {t ∈ T | there is a triangle s1→ s0→ t→6s1 with s0, s1 ∈ S} ⊆ T.

The following lemma will often be used without further remark:
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Lemma 2.1. There is an equality S∗6S=6A∩6−1B. As a consequence, S∗6S

is idempotent complete and extension closed.

Proof. The inclusion S ∗6S ⊆ 6A∩6−1B is clear, because both S and 6S are
contained in 6A∩6−1B, which is extension closed. Next we show the opposite
inclusion. Let t ∈ 6A ∩ 6−1B. Then by Definition 1.1(iii) there is a triangle
a→ t→ b→6a with a ∈ A and b ∈ B. Since both t and 6a are in 6A, so is b
due to the fact that A is extension closed. Thus b ∈6A∩B=6S. Similarly, one
shows that a ∈ S. Thus we obtain a triangle 6−1b→ a→ t→ b with 6−1b and a
in S, meaning that t ∈ S ∗6S. �

It is easy to see that Hom(s, 6≥1s ′)= 0 for any s, s ′ ∈ S. That is, S is a presilting
subcategory of T. The co-t-structure (A,B) is said to be bounded if⋃

n∈Z

6nB= T=
⋃
n∈Z

6nA.

Theorem 2.2 [Mendoza Hernández et al. 2013, Corollary 5.9]. There is a bijection
(A,B) 7→ A∩6−1B from the first of the following sets to the second:

(i) Bounded co-t-structures on T.

(ii) Silting subcategories of T.

This result has the following consequence:

Theorem 2.3. Let (A,B) be a bounded co-t-structure on T with co-heart S. Then
there is a bijection (A′,B′) 7→ A′ ∩6−1B′ from the first of the following sets to
the second:

(i) Bounded co-t-structures (A′,B′) on T with A⊆ A′ ⊆6A.

(ii) Silting subcategories of T which are in S ∗6S.

Proof. Let (A′,B′) be a bounded co-t-structure on T with A ⊆ A′ ⊆ 6A. Then
B⊇ B′ ⊇6B. It follows that A′∩6−1B′ ⊆6A∩6−1B= S∗6S. The last equality
is by Lemma 2.1.

Let S′ be a silting subcategory of T which is in S ∗6S. Let A′ be the smallest
extension closed subcategory of T containing 6≤0S′ and B′ the smallest extension
closed subcategory of T containing 6≥1S′. Then (A′,B′) is the bounded co-t-
structure corresponding to S′ as in Theorem 2.2; see [Mendoza Hernández et al.
2013, Corollary 5.9]. Since S′ ⊆ S ∗ 6S, it follows that A′ is contained in the
smallest extension closed subcategory of T containing 6≤1S, which is exactly
6A. Similarly, one shows that B′ is contained in B, implying that A′ contains A.
Thus, A⊆ A′ ⊆6A. �
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The co-t-structures in (i) are called intermediate with respect to (A,B). The
silting subcategories in (ii) are called 2-term with respect to S. Clearly, if (A′,B′)
is intermediate with respect to (A,B), then (A,B) is intermediate with respect to
(6−1A′, 6−1B′). The next result is a corollary of Theorems 2.2 and 2.3:

Corollary 2.4. Let S and S′ be two silting subcategories of T. If S′ is 2-term with
respect to S, then S is 2-term with respect to 6−1S′.

3. Two-term silting subcategories and support τ -tilting pairs

In this section, T is an essentially small, idempotent complete triangulated category,
and S⊆ T is a silting subcategory.

Remark 3.1. (i) There is a functor

F : T→Mod S, t 7→ T(−, t)|S,

sometimes known as the restricted Yoneda functor.

(ii) By Yoneda’s lemma, for M ∈Mod S and s ∈ S, there is a natural isomorphism

HomModS(S(−, s),M)−→∼ M(s);

see [Auslander 1974, p. 185].

(iii) By [Iyama and Yoshino 2008, Proposition 6.2(3)], the functor F from (i)
induces an equivalence

(S ∗6S)/[6S] −→∼ mod S. (1)

This follows from that proposition by setting X= S, Y=6S, and observing
that the proof works in the generality of the present paper.

Lemma 3.2. Let U be a full subcategory of S ∗6S. For u ∈ U let

su
1

σ
−−→ su

0 −→ u −→6su
1 (2)

be a distinguished triangle in T with su
0 , su

1 ∈ S. Applying the functor F gives a
projective presentation

PU
1

πu

−−→ PU
0 −→U −→ 0 (3)

in mod S, and

U is a presilting subcategory ⇐⇒ the class {πu
| u ∈ U} has property (S).
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Proof. Clearly, F applied to the distinguished triangle (2) gives the projective
presentation (3).

To get the bi-implication in the last line of the lemma, first note that for u, u′ ∈ U
we have

T(u, 6≥2u′)= 0 (4)
since u, u′ ∈ S ∗6S.

By Remark 3.1(ii), the map HommodS(π, F(u′)) is the same as

T(su
0 , u′)→ T(su

1 , u′). (5)

So the class {πu
| u ∈U} has property (S) if and only if the morphism (5) is surjective

for all u, u′ ∈ U. However, the distinguished triangle (2) induces an exact sequence

T(su
0 , u′)−→ T(su

1 , u′)−→ T(6−1u, u′)−→ T(6−1su
0 , u′),

where the last module is 0 since u′ ∈ S ∗6S. So (5) is surjective if and only if
T(6−1u, u′) ∼= T(u, 6u′) = 0. This happens for all u, u′ ∈ U if and only if U is
presilting, because of (4). �

Theorem 3.3. The functor F : T→Mod S induces a surjection

8 : U 7→ (F(U), S∩6−1U)

from the first of the following sets to the second:

(i) Presilting subcategories of T which are contained in S ∗6S.

(ii) τ -rigid pairs of mod S.

It restricts to a surjection 9 from the first of the following sets to the second:

(iii) Silting subcategories of T which are contained in S ∗6S.

(iv) Support τ -tilting pairs of mod S.

Proof. We need to prove

(a) The map 8 has values in τ -rigid pairs of mod S.

(b) The map 8 is surjective.

(c) The map 9 has values in support τ -tilting pairs of mod S.

(d) The map 9 is surjective.

(a) Let U be a presilting subcategory of T which is contained in S ∗ 6S. For
each u ∈ U, there is a distinguished triangle s1→ s0→ u→ 6s1 with s0, s1 ∈ S.
Lemma 3.2 says that F sends the set of these triangles to a set of projective
presentations (3) which has property (S), because U is presilting. It remains to show
that for u ∈ U and u′ ∈ S∩6−1U we have F(u)(u′)= 0. This is again true because
F(u)(u′)= T(u′, u) and U is presilting.
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(b) Let (M,E) be a τ -rigid pair of mod S. For each m ∈ M take a projective
presentation

P1
πm

−−→ P0 −→ m −→ 0 (6)

such that the class {πm
|m ∈M} has property (S). By Remark 3.1(ii) there is a unique

morphism fm : s1→ s0 in S such that F( fm)= π
m . Moreover, F(cone( fm))∼= m.

Since (6) has property (S), it follows from Lemma 3.2 that the category

U1 := {cone( fm) |m ∈M}

is a presilting subcategory, and the inclusion U1 ⊆ S ∗6S is clear. Let U be the
additive hull of U1 and6E in S∗6S. Now we show that U is a presilting subcategory
of T. Let e ∈ E. Clearly we have T(cone( fm)⊕6e, 62e)= 0. Applying T(e,−)
to a triangle s1

fm
−−→ s0→ cone( fm)→6s1, we have an exact sequence

T(e, s1)
fm
−−→ T(e, s0)−→ T(e, cone( fm))−→ 0,

which is isomorphic to P1(e)
πm

−−→ P0(e)→ m(e)→ 0 by Remark 3.1(ii). The
condition M(E)= 0 implies that T(e, cone( fm))= 0. Thus the assertion follows. It
is clear that 8(U)= (M,E).

(c) Let U be a silting subcategory of T which is contained in S ∗6S.
Let s ∈ S be an object of Ker F(U), i.e., T(s, u)= 0 for each u ∈ U. This implies

that U⊕ add(6s) is also a silting subcategory of T in S ∗6S. It follows from
[Aihara and Iyama 2012, Theorem 2.18] that 6s belongs to U, whence s belongs
to 6−1U and hence to S∩6−1U. This shows the inclusion Ker F(U)⊆ S∩6−1U.
The reverse inclusion was shown in (a), so Ker F(U)= S∩6−1U.

By Corollary 2.4, we have S ⊆ (6−1U) ∗U. In particular, for s ∈ S, there is a
distinguished triangle

s −→ u0
−→ u1

−→6s. (7)

Applying F , we obtain an exact sequence

F(s)
f
−−→ F(u0)−→ F(u1)−→ 0. (8)

For each u ∈ U, we have the commutative diagram

T(u0, u) //

��

T(s, u) //

��

T(u1, 6u)= 0

HommodS(F(u0), F(u))
f ∗
// HommodS(F(s), F(u))
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The right vertical map is induced from the Yoneda embedding, so it is bijective. It
follows that f ∗ is surjective, that is, f is a left F(U)-approximation. Altogether,
we have shown that 8(U) is a support τ -tilting pair of mod S.

(d) Let (M,E) be a support τ -tilting pair of mod S, and let U be the preimage of
(M,E) under the map 8 constructed in (b).

By definition, for each s ∈ S there is an exact sequence F(s)
f
−→ F(u0

s )→

F(u1
s )→ 0 such that u0

s , u1
s ∈ U and f is a left F(U)-approximation. By Yoneda’s

lemma, there is a unique morphism α : s → u0
s such that F(α) = f . Form the

distinguished triangle
s

α
−−→ u0

s −→ ts −→6s. (9)

Let Ũ be the additive closure of U and {ts | s ∈ U}. We claim that Ũ is a silting
subcategory of T contained in S ∗6S such that 8(Ũ)= (M,E).

First, ts ∈ u0
s ∗6s ⊆ S ∗6S. Therefore, Ũ⊆ S ∗6S.

Second, by applying F to the triangle (9), we see that F(ts) and F(u1
s ) are

isomorphic in mod S. For u ∈ U, consider the following commutative diagram.

T(u0
s , u) α∗ //

F(−)
��

T(s, u) //

∼=

��

T(ts, 6u) // T(u0
s , 6u)= 0

HommodS(F(u0
s ), F(u))

f ∗
// HommodS(F(s), F(u))

By Remark 3.1(iii), the map F(−) is surjective. Because f is a left F(U)-approx-
imation, f ∗ is also surjective. So α∗ is surjective too, implying that T(ts, 6u)= 0.
On the other hand, applying T(u,−) to the triangle (9), we obtain an exact sequence

T(u, 6u0
s )−→ T(u, 6ts)−→ T(u, 62s).

The two outer terms are trivial, hence so is the middle term. Moreover, if s ′ ∈ S,
then applying T(ts′,−) to the triangle (9) gives an exact sequence

T(ts′, 6u0
s )−→ T(ts′, 6ts)−→ T(ts′, 62s).

The two outer terms are trivial, hence so is the middle term. It follows that Ũ is
presilting. It is then silting because it generates S.

Thirdly, F(Ũ)= F(U) because F(ts)∼= F(u1
s ).

Finally, S ∩ 6−1Ũ = E. This is because S ∩ 6−1Ũ ⊇ S ∩ 6−1U = E and
S∩6−1Ũ⊆ Ker F(U)= E. �

Theorem 3.4. Assume that each object of S ∗6S can be written as the direct sum
of indecomposable objects which are unique up to isomorphism. Then the maps 8
and 9 defined in Theorem 3.3 are bijective.
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Proof. It suffices to show the injectivity of 8.
By Remark 3.1(iii), when we apply the functor F : S ∗6S→ mod S, we are

in effect forgetting the indecomposable direct summands which are in 6S. So if
F(u)∼= F(u′) for u, u′ ∈ S ∗6S, then there is an isomorphism u⊕6s ∼= u′⊕6s ′

for some s, s ′ ∈ S. By the assumption in the theorem, if we assume that u and u′

do not have direct summands in 6S, then u ∼= u′.
Now let U and U′ be two presilting subcategories of T contained in S ∗6S such

that8(U)=8(U′). Let U1 and U′1 be respectively the full subcategories of U and U′

consisting of objects without direct summands in 6S. Then U = U1⊕ (U∩6S)

and U′ = U′1⊕ (U
′
∩6S). Since 8(U)=8(U′), it follows that F(U1)= F(U′1) and

U∩6S= U′ ∩6S. The first equality, by the above argument, implies that U1 = U′1.
Therefore U= U′, which shows the injectivity of 8. �

4. The Hom-finite Krull–Schmidt silting object case

In this section, k is a commutative ring, T is a triangulated category which is
essentially small, Krull–Schmidt, k-linear and Hom-finite, and s ∈ T is a basic
silting object.

We write E=T(s, s) for the endomorphism ring and S=add(s) for the associated
silting subcategory.

Remark 4.1. (i) We write Mod E for the abelian category of right E-modules,
mod E for the full subcategory of finitely presented modules, and prj E for the
full subcategory of finitely generated projective modules.

(ii) Since s is an additive generator of S, there is an equivalence

G :Mod S−→∼ Mod E, M 7→ M(s),

which restricts to an equivalence

mod S−→∼ mod E, M 7→ M(s).

This permits us to move freely between the “E-picture” and the “S-picture”
which was used in the previous section.

(iii) The restricted Yoneda functor F from the S-picture corresponds to the functor

T→Mod E, t 7→ T(s, t)

in the E-picture.

(iv) By [Auslander 1974, Proposition 2.2(e)] the functor t 7→ T(s, t) from (iii)
restricts to an equivalence

Y : S−→∼ prj E .
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Since S = add(s) is closed under direct sums and summands, it is Krull–
Schmidt, and it follows that so is prj E .

(v) By Remark 3.1(iii) the functor t 7→ T(s, t) from (iii) induces an equivalence

(S ∗6S)/[6S] −→∼ mod E . (10)

Since S∗6S is obviously closed under direct sums, and under direct summands
by Lemma 2.1, it is Krull–Schmidt. Hence so is (S ∗6S)/[6S] and it follows
that so is mod E .

(vi) The additive category prj E is Krull–Schmidt by part (iv) and has additive
generator EE . The same is hence true for (prj E)/[add eE] for each idem-
potent e ∈ E . It is not hard to check that the endomorphism ring of EE in
(prj E)/[add eE] is E/EeE , so there is an equivalence of categories

(prj E)/[add eE] −→∼ prj(E/EeE).

In particular, prj(E/EeE) is Krull–Schmidt.

The following result is essentially already in [Aihara 2013, Proposition 2.16],
[Fei and Derksen 2011, start of Section 5], and [Wei 2013, Proposition 6.1], all of
which give triangulated versions of Bongartz’s classic proof:

Lemma 4.2 (Bongartz completion). Let u ∈ S ∗6S be a presilting object. Then
there exists an object u′ ∈ S ∗6S such that u⊕ u′ is a silting object.

Proof. This has essentially the same proof as classic Bongartz completion: Since T

is Hom-finite over the commutative ring k, there is a right add(u)-approximation
u0 → 6s. This gives a distinguished triangle s → u′ → u0 → 6s, and it is
straightforward to check that u′ has the desired properties. �

The following result is essentially already contained in [Fei and Derksen 2011,
Theorem 5.4]:

Proposition 4.3. Let u ∈ S ∗6S be a basic presilting object. Then

u is a silting object ⇐⇒ #T(u)= #T(s).

Proof. The implication =⇒ is immediate from [Aihara and Iyama 2012, Theorem
2.27], and⇐= is a straightforward consequence of that theorem and Lemma 4.2. �

As a consequence, we have:

Corollary 4.4. Let U be a presilting subcategory of T contained in S ∗6S. Then
there exists u ∈ U such that U= add(u).
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Proof. Suppose on the contrary that U 6= add(u) for each u ∈ U. Then U contains
infinitely many isomorphism classes of indecomposable objects. In particular, there
is a basic presilting object u ∈ U such that #T(u) = #T(s)+ 1. By Lemma 4.2,
there is an object u′ ∈ T such that u⊕ u′ is a basic silting object of T. Therefore,
#T(s)+ 1 = #T(u) ≤ #T(u ⊕ u′) = #T(s), a contradiction. Here the last equality
follows from Proposition 4.3. �

Theorem 3.3 in the current setting combined with Corollary 4.4 immediately
yields the following result. For an object u of S∗6S, let 6u1 be its maximal direct
summand in 6S.

Theorem 4.5. The assignment

u 7→ (add(F(u)), add(u1))

defines a bijection from the first of the following sets to the second:

(i) Basic presilting objects of T which are in S ∗6S, modulo isomorphism.

(ii) τ -rigid pairs of mod S.

It restricts to a bijection from the first of the following sets to the second:

(iii) Basic silting objects of T which are in S ∗6S, modulo isomorphism.

(iv) Support τ -tilting pairs of mod S.

As a consequence, if (M,E) is a τ -rigid pair of mod S, then there is an S-module M
such that M= add(M).

Next we move to the E-picture. Recall from Remark 4.1(ii) and (iv) that there
are equivalences G :Mod S−→∼ Mod E and Y : S−→∼ prj E .

Theorem 4.6. An E-module U is a support τ -tilting module if and only if the pair(
G−1(add(U )), Y−1(add(eE))

)
is a support τ -tilting pair of mod S for some idempotent e ∈ E.

Consequently, the functor T(s,−) : T→Mod E induces a bijection from the first
of the following sets to the second:

(i) Basic silting objects of T which are in S ∗6S, modulo isomorphism.

(ii) Basic support τ -tilting modules of mod E , modulo isomorphism.

Proof. We only prove the first assertion. The proof is divided into three parts. Let
u p ∈ S ∗6S be such that u p has no direct summand in 6S and F(u p)= G−1(U ).

(a) It is clear that U is a τ -rigid E-module if and only if G−1(add(U )) is a τ -rigid
subcategory of mod S.
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(b) Let e be an idempotent of E and let u1 ∈ S be such that Y (u1)= eE . We have

Ue ∼= HomE(eE,U )

= HomModS(S(−, u1), F(u p))

∼= F(u p)(u1) Remark 3.1(ii).

Therefore Ue=0 if and only if M(u′)=0 for each M ∈add(F(u p))=G−1(add(U ))
and each u′ ∈ add(u1)= Y−1(add(eE)).

(c) Suppose that (G−1(add(U )), Y−1(add(eE))) is a τ -rigid pair. Let u be the
corresponding basic presilting object of T as in Theorem 4.5. More precisely, let
u = u p⊕6u1, where u p and u1 are as above. Then(
G−1(add(U )), Y−1(add(eE))

)
is a support τ -tilting pair

⇐⇒ u is a silting object Theorem 4.5

⇐⇒ #T(u)= #T(s) Proposition 4.3

⇐⇒ #S∗6S(u)= #S(s)

⇐⇒ #S∗6S(u)= #prj E(E) Remark 4.1(iv)

⇐⇒ #(S∗6S)/[6S](u)+ #S∗6S(6u1)= #prj E(E)

⇐⇒ #mod E(U )+ #prj E(eE)= #prj E(E) Remark 4.1(iv), (v)

⇐⇒ #mod E(U )= #prj E(E)− #prj E(eE)

⇐⇒ #mod E(U )= #(prj E)/[add eE](E)

⇐⇒ #mod E(U )= #prj(E/EeE)(E/EeE) Remark 4.1(vi)

⇐⇒ U is a support τ -tilting module. �

5. Support τ -tilting pairs and torsion classes

In this section k is a commutative noetherian local ring and C is an essentially small,
Krull–Schmidt, k-linear and Hom-finite category.

The main result in this section is the following:

Theorem 5.1. There is a bijection M 7→ FacM from the first of the following sets
to the second:

(i) Support τ -tilting pairs (M,E) of modC.

(ii) Finitely generated torsion classes T of ModC such that each finitely generated
projective C-module has a left P(T)-approximation.

We start with the following observation:



Intermediate co-t-structures 2427

Lemma 5.2. Let M be a subcategory of modC. The following conditions are
equivalent:

(i) M is τ -rigid.

(ii) Ext1ModC(M, FacM)= 0.

(iii) Each m ∈M has a minimal projective presentation

0−→�2m
d2
−−→ P1

d1
−−→ P0 −→ m −→ 0

such that for each m′ ∈ M and each morphism f : P1 → m′, there exist
morphisms a : P0→ m′ and b : P1→�2m such that f = ad1+ f d2b.

0 // �2m
d2 // P1

d1 //

f
��

b
oo P0 //

a~~

m // 0

m′

Proof. (i)=⇒ (ii): For each m∈M, there exists a projective presentation P1
π
−→ P0→

m→ 0 such that HomModC(π,m′) is surjective for each m′ ∈M. Let n ∈ FacM be
given and pick an epimorphism p :m′→n with m′∈M. To show Ext1ModC(m, n)=0,
it is enough to show that each f ∈ HomModC(P1, n) factors through π . Since p is
an epimorphism and P1 is projective, there exists g : P1→ m′ such that f = pg.
Then there exists h : P0→ m′ such that g = hπ , by the property of π .

P1
π //

f

  
g
��

P0 //

h

~~

m // 0

m′ p
// n

Thus f = phπ , and we have the assertion.

(ii) =⇒ (iii): For each m ∈M, take a minimal projective presentation 0→�2m
d2
−−→

P1
d1
−−→ P0→ m→ 0. Let m′ ∈ M and f : P1→ m′ be given, set n := Im( f d2)

and let 0→ n
ι
−→ m′

π
−→ n′→ 0 be an exact sequence. Then π f : P1→ n′ factors

through P1→ Im d1. Since n′ ∈ FacM and Ext1ModC(m, FacM) = 0, there exists
g : P0→ n′ such that gd1 = π f .

0 // �2m
d2
//

f ′

��

P1 //

f
��

Im d1 //

��

0

0 // n
ι

// m′
π

// n′ // 0

0 // Im d1 //

��

P0 //

g��

m // 0

n′
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Since π is an epimorphism and P0 is projective, there exists a : P0→ m′ such that
g=πa. Since π( f −ad1)= 0, there exists h : P1→ n such that f = ad1+ιh. Since
f ′ is surjective (by definition of n) and P1 is projective, there exists b : P1→�2m
such that h = f ′b.

0 // �2m
d2 //

f ′

��

P1
d1 //

f

��

b
oo

h
��

P0 //

a
��

g

��

m // 0

0 // n
ι
// m′

π
// n′ // 0

Then we have f = ad1+ ι f ′b = ad1+ f d2b.

(iii) =⇒ (i): For each m ∈M, take a minimal projective presentation 0→�2m
d2
−−→

P1
d1
−→ P0 → m → 0 satisfying the assumption in (iii). We need to show that

each f : P1 → m′ with m′ ∈ M factors through d1. By our assumption, there
exist a : P0 → m′ and b : P1 → �2m such that f = ad1 + f d2b. Applying our
assumption to f d2b : P1→ m′, there exist a′ : P0→ m′ and b′ : P1→�2m such
that f d2b= a′d1+ f d2bd2b′. Thus f = (a+a′)d1+ f d2bd2b′. Repeating a similar
argument gives

HomModC(P1,m)= HomModC(P0,m)d1+HomModC(P1,m)(rad EndModC(P1))
n

for each n ≥ 1, since d2 ∈ rad HomModC(�
2m, P1). Since C is Hom-finite over k,

we have (rad EndModC(P1))
`
⊂ EndModC(P1)(rad k) for sufficiently large `. Thus

we have

HomModC(P1,m)=
⋂
n≥0

(
HomModC(P0,m)d1+HomModC(P1,m)(rad k)n

)
.

The right-hand side is equal to HomModC(P0,m)d1 itself by Krull’s intersection
theorem [Matsumura 1989]. �

Proposition 5.3. Let (M,E) be a support τ -tilting pair of modC. Then FacM is a
finitely generated torsion class with P(FacM)=M.

Proof. (i) We show that FacM is a torsion class. Clearly FacM is closed under factor
modules. We show that FacM is closed under extensions. Let 0→ x→ y f

−→ z→ 0
be an exact sequence in ModC such that x, z ∈ FacM. Take an epimorphism
p : m→ z with m ∈M. Since Ext1ModC(m, x)= 0 by Lemma 5.2(ii), we have that
p factors through f . Thus we have an epimorphism x ⊕m→ y, and y ∈ FacM

holds. Hence FacM is a torsion class.
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(ii) Since Ext1ModC(M, FacM) = 0 by Lemma 5.2(ii), each object in M is Ext-
projective in FacM. It remains to show that if n is an Ext-projective object in
FacM, then n ∈M. Let P1

f
−→ P0

e
−→ n→ 0 be a projective presentation. Since

M is support τ -tilting, there exist exact sequences Pi
gi
−−→ mi

hi
−−→ m′i → 0 with

mi ,m′i ∈M and a left M-approximation gi for i = 0, 1.
Let C := C/ annM for the annihilator ideal annM of M and Pi := Pi ⊗C C. Then

we have induced exact sequences 0→ Pi
gi
−−→ mi

hi
−−→ m′i → 0 for i = 0, 1 and

P1
f
−→ P0

e
−→ n→ 0. We have a commutative diagram

0 // P1
g1
//

f
��

m1
h1
//

a

��

m′1 //

b
��

0

0 // P0 g0

// m0
h0

// m′0 // 0

of exact sequences. Taking a mapping cone, we have an exact sequence

0−→ P1

[ g1
f

]
−−−−→ m1⊕ P0

[
h1 0
a −g0

]
−−−−−−→ m′1⊕m0

[ b−h0 ]
−−−−−→ m′0 −→ 0.

Since Ext1ModC(m
′

0, n)= 0 by Lemma 5.2(ii), we have the following commutative
diagram.

0 // P1

[ g1
f

]
// m1⊕ P0

[
h1 0
a −g0

]
//

[ 0 1 ]
��

m′1⊕m0
[ b −h0 ] //

��

m′0 // 0

0 // Ker f // P1 f
// P0 e

// n // 0

Taking a mapping cone, we have an exact sequence

0−→ P1⊕Ker f −→ m1⊕ P0⊕ P1 −→ m′1⊕m0⊕ P0 −→ m′0⊕ n −→ 0.

Cancelling a direct summand of the form P1

[
0
1

]
−−−→ P0⊕ P1

[ 1 0 ]
−−−−→ P0, we have an

exact sequence

0−→ Ker f −→ m1
c
−−→ m′1⊕m0

d
−−→ m′0⊕ n −→ 0.

Since Im c ∈ FacM and m′0⊕n is Ext-projective in FacM, the epimorphism d splits.
Thus n ∈M as desired. �

Now we are ready to prove Theorem 5.1.
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Let M be a support τ -tilting subcategory of modC. By definition, each repre-
sentable C-module has a left M-approximation. Since P(FacM)=M by Proposition
5.3, the map M 7→ FacM is well-defined from the set (i) to the set (ii), and it
is injective.

We show that the map is surjective. For T in the set described in (ii), let
E :=

⋂
m∈T Ker m and M := P(T). We will show that (M,E) is a support τ -tilting

pair of modC. Since Ext1ModC(M,T)= 0 and FacM⊂T, it follows from Lemma 5.2
that M is τ -rigid. For s ∈ C, take a left M-approximation C(−, s) f

−→ m.
It remains to show Coker f ∈ M. Since Coker f ∈ T, we only have to show

Ext1ModC(Coker f,m′) = 0 for each m′ ∈M. Let f = ιπ for π : C(−, s)→ Im f
and ι : Im f →m. Applying HomModC(−,m′) to the exact sequence 0→ Im f ι

−→

m→ Coker f → 0, we have an exact sequence

HomModC(m,m′)
ι∗

−→ HomModC(Im f,m′)

→ Ext1ModC(Coker f,m′)→ Ext1ModC(m,m′)= 0.

Let g : Im f →m′ be a morphism in ModC. Since f is a left M-approximation, there
exists h :m→m′ such that gπ = h f . Then g = hι. Thus ι∗ :HomModC(m,m′)→
HomModC(Im f,m′) is surjective, and we have Ext1ModC(Coker f,m′)= 0. Conse-
quently we have Coker f ∈ P(T)=M. Thus the assertion follows. �
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A p-adic Eisenstein measure for
vector-weight automorphic forms

Ellen Eischen

We construct a p-adic Eisenstein measure with values in the space of vector-
weight p-adic automorphic forms on certain unitary groups. This measure allows
us to p-adically interpolate special values of certain vector-weight C∞ automor-
phic forms, including Eisenstein series, as their weights vary. This completes a
key step toward the construction of certain p-adic L-functions.

We also explain how to extend our methods to the case of Siegel modular
forms and how to recover Nicholas Katz’s p-adic families of Eisenstein series for
Hilbert modular forms.
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1. Introduction

The significance of p-adic families of Eisenstein series as a tool in number theory,
especially for the construction of p-adic L-functions, is well established. For
example, p-adic families of Eisenstein series play a key role in constructions of
p-adic L-functions completed in [Serre 1973; Katz 1978; Deligne and Ribet 1980].
In a completely different direction, p-adic families of Eisenstein series also play a
role in homotopy theory [Hopkins 1995; 2002; Ando et al. 2010].
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Each of the constructions mentioned above concerns only automorphic forms
of scalar weight. Automorphic forms on groups of rank 1 (for example, modular
forms and Hilbert modular forms, which are the forms with which Katz, Deligne,
Ribet, and Serre worked) can only have scalar weights. Automorphic forms on
groups of higher rank, however, need not have scalar weights.

By a vector-weight automorphic form, we mean an automorphic form whose
weight is an irreducible representation with highest weight λn ≥ · · · ≥ λ1 is not
required to have λi = λi+1 for all i , i.e., an automorphic form whose weight is not
required to be a one-dimensional representation. In order to complete a construction
of p-adic L-functions for automorphic forms on unitary groups in full generality
as in [Eischen et al. ≥ 2014], one needs a p-adic Eisenstein measure that takes
values in the space of p-adic vector-weight automorphic forms. (By an Eisenstein
measure, we mean a p-adic measure valued in a space of p-adic automorphic forms
and whose values at locally constant functions are Eisenstein series.)

The main result of this paper is the construction in Section 5 of a p-adic measure
that takes values in the space of automorphic forms on unitary groups of signature
(n, n). In particular, Theorem 14 gives a p-adic Eisenstein measure with values
in the space of vector-weight automorphic forms. As explained in Theorem 15, this
measure, together with the results of Section 4, allows us to p-adically interpolate
the values of certain vector-weight C∞ (not necessarily holomorphic) automorphic
forms, including Eisenstein series, as the (highest) weights of these automorphic
forms vary. Note that this is the first ever construction of a p-adic Eisenstein measure
taking values in the space of vector-weight automorphic forms on unitary groups.

We follow the approach of [Katz 1978, Chapters 4 and 5] more closely than
we did in [Eischen 2013]. (There, we constructed a p-adic Eisenstein measure
for scalar-weight automorphic forms on unitary groups of signature (n, n).) As a
consequence, in Section 6, we easily recover Katz’s Eisenstein measure from [1978,
Chapters 4 and 5] as a special case of our results.

We also explain in Section 6 how to generalize the results of Section 5 to the
case of Siegel modular forms, i.e., automorphic forms on symplectic groups. In
that setting, in the case where n = 1, we are in exactly the situation in which
Katz [1978] constructs a p-adic Eisenstein measure for Hilbert modular forms. As
demonstrated in Section 6.1, the setup in the earlier sections of the paper makes the
connection between our Eisenstein measure and the Eisenstein measure in [Katz
1978, Definition (4.2.5) and Equation (5.5.7)] almost transparent.

1.1. Applications and context. The main anticipated application of this paper is
to the construction of p-adic L-functions for unitary groups, most immediately and
crucially to [Eischen et al. ≥ 2014]. In particular, the L-functions in that paper are
obtained through the “doubling method” (an approach described in [Gelbart et al.
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1987, Part A; Cogdell 2006, Section 2]), which expresses values of L-functions in
terms of values of Eisenstein series and values of cusp forms. The p-adic Eisenstein
measure in [Eischen 2013, Section 4] suffices in the case of scalar weights, but if
one does not restrict to scalar weights, one needs the results of the present paper.

The behavior of certain L-functions (for example, for unitary groups) is strongly
tied to the behavior of certain Eisenstein series. For instance, Shimura [2000,
Introduction] uses the algebraicity (up to a well-determined period) of values of
Eisenstein series at CM points to prove the algebraicity (up to a well-determined
period) of certain values of corresponding L-functions (normalized by a period).
Analogously, Katz [1978, Introduction] uses the p-adic interpolation of values
of certain Eisenstein series (normalized by a period) at CM points to p-adically
interpolate certain values of L-functions (normalized by a period). Similarly,
the p-adic families of Eisenstein series in the present paper play a key role in
determining the behavior of the L-functions in [Eischen et al. ≥ 2014].

1.2. Overview and structure of the paper. In Section 2, we introduce the conven-
tions with which we will work, as well as standard background results necessary for
this paper. The conventions and background are similar to those in [Eischen 2012;
2013, Section 2]. The background is quite technical; we have summarized just
what is needed for this paper. For the reader seeking further details, we recommend
[Shimura 1997; 2000] for the theory of C∞ automorphic forms and Eisenstein
series on unitary groups, [Lan 2012; 2013] for the algebraic geometric background
and a discussion of algebraically defined q-expansions, and [Hida 2004; 2005] for
the theory of p-adic automorphic forms.

In Section 3, which relies in part on the results of [Eischen 2013, Section 2], we
define certain scalar-weight Eisenstein series and automorphic forms on unitary
groups of signature (n, n). This set includes the Eisenstein series defined in [Eischen
2013, Section 2] but also includes other automorphic forms. We need this larger
space of automorphic forms in order to construct a p-adic measure with values in the
space of vector-weight automorphic forms in Section 5, whereas in [Eischen 2013]
we only were concerned with p-adic families of scalar-weight automorphic forms.
Like in [Eischen 2013], we work adelically. The formulation of the main result of
the section (Theorem 2) is closer to that of [Katz 1978, Theorem (3.2.3)], though,
so that the reader can see parallels with the analogous construction in [Katz 1978,
Section 3], which is useful in Section 6.1 when we compare our Eisenstein measure
to the measure obtained in [Katz 1978, Definition (4.2.5) and Equation (5.5.7)].

Section 4 discusses differential operators that are necessary for comparing the
values of certain C∞ automorphic forms and certain p-adic automorphic forms.
These differential operators are closely related to the differential operators discussed
in [Eischen 2012, Sections 8 and 9]. Note that because we work with vector-weight



2436 Ellen Eischen

automorphic forms, and not just scalar-weight automorphic forms, we need more
differential operators than we did in [Eischen 2013], which handled only the case
of scalar-weight automorphic forms.

Section 5 contains the main results of the paper, namely the construction of
a p-adic Eisenstein measure and the p-adic interpolation of values of certain
automorphic forms. This is the heart of the paper. The format of Section 5 closely
parallels the construction of a p-adic Eisenstein measure in [Katz 1978, Sections 3.4
and 4.2]. We also explain in Remark 16 precisely how the Eisenstein measure of
[Eischen 2013, Section 4] and the Eisenstein measure given in Theorem 14 are
related. For n ≥ 2, the measure in Theorem 14 is on a larger group than the measure
in [Eischen 2013, Section 4]. In order to construct a measure with values in the
space of vector-weight automorphic forms without fixing a partition of n, this larger
group is necessary. (The approach in [Eischen 2013] relied on a choice of a partition
of n, but it turns out that with this larger group we do not need to fix a partition
of n and can consider a larger class of automorphic forms all at once.) We also
note that the construction of the measures in [Eischen 2014, Section 4] uses this
measure as a starting point.

In Section 6, we comment on how to extend the results of this paper to the
case of Siegel modular forms, i.e., automorphic forms on symplectic groups. The
fact that our presentation in Section 5 closely follows the approach in [Katz 1978,
Sections 3.4 and 4.2] also allows us to recover the Eisenstein measure of [Katz
1978, Definition (4.2.5) and Equation (5.5.7)] with ease in Section 6.1.

2. Conventions and background

In Section 2.1, we introduce the conventions that we will use throughout the paper.
In Section 2.2, we briefly summarize the necessary background on automorphic
forms on unitary groups. (See the start of Section 2.2 for references.)

2.1. Conventions. Once and for all, fix a CM field K with maximal totally real
subfield E . Fix a prime p that is unramified in K and such that each prime of E
dividing p splits completely in K . Fix embeddings

ι∞ :Q ↪→ C,

ιp :Q ↪→ Cp,

and fix an isomorphism
ι : Cp −→

∼ C

satisfying ι◦ ιp = ι∞. From here on, we identify Q with ιp(Q) and ι∞(Q). Let OCp

denote the ring of integers in Cp.
Fix a CM type 6 for K/Q. For each element σ ∈ Hom(E,Q), we also write

σ to denote the unique element of 6 prolonging σ : E ↪→Q (when no confusion
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can arise). For each element x ∈ K , denote by x̄ the image of x under the unique
nontrivial element ε ∈ Gal(K/E), and let σ̄ = σ ◦ ε.

Given an element a of E , we identify it with an element of E ⊗ R via the
embedding

E ↪→ E ⊗R

a 7→ (σ (a))σ∈6.
(1)

We identify a ∈ K with an element of K ⊗ C −→∼ (E ⊗ C)× (E ⊗ C) via the
embedding

K ↪→ K ⊗C

a 7→
(
(σ (a))σ∈6, (σ̄ (a))σ∈6

)
.

(2)

Let d = (dv)v∈6 ∈ Z6 , and let a = (av)v∈6 be an element of C6 or C6p . We
denote by ad the element of C or Cp defined by

ad
:=

∏
v∈6

adv
v .

If e = (ev)v∈6 ∈ Z6 , we denote by d + e the tuple defined by

d + e = (dv + ev)v∈6 ∈ Z6.

If k ∈ Z, we denote by k+ d or d + k the element

k+ d = d + k = (dv + k)v∈6 ∈ Z6.

For any ring R, we denote the ring of n×n matrices with coefficients in R by
Mn×n(R). We denote by 1n the multiplicative identity in Mn×n(R). Also, for
any subring R of K ⊗E Ev, with v a place of E , let Hern(R) denote the space of
Hermitian n×n matrices with entries in R. Given x ∈ Hern(E),

x > 0

if σ(x) is positive definite for every σ ∈6.

2.1.1. Adelic norms. Let | · |E denote the adelic norm on E×\A×E such that, for all
a ∈ A×E ,

|a|E =
∏
v

|a|v,

where the right-hand product is over all places of E and where the absolute values
are normalized so that

|v|v = q−1
v ,

qv = the cardinality of OE v/vOE v
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for all nonarchimedean primes v of the totally real field E . Consequently, for all
a ∈ E , ∏

v-∞

|a|−1
v =

∏
v∈6

σv(a)Sign(σv(a)),

where the product is over all archimedean places v of the totally real field E . We
denote by | · |K the adelic norm on K×\A×K such that, for all a ∈ A×K ,

|a|K = |aā|E .

For a ∈ K and v a place of E , we let

|a|v = |aā|1/2v .

Given an element a ∈ K , we associate a with an element of K⊗R via the embedding

a 7→ (σ (a))σ∈6.

For any field extension L/M , we write NL/M to denote the norm from L to M .
Given an OM -algebra R, the norm map NL/M on L provides a group homomorphism

(OL ⊗ R)×→ R×

in which a⊗ r 7→ NL/M(a)r . When the fields are clear, we shall just write N .

2.1.2. Exponential characters. For each archimedean place v ∈6, denote by ev
the character of Ev (i.e., R) defined by

ev(xv)= e2π i xv

for all xv in Ev. Denote by e∞ the character of E ⊗R defined by

e∞((xv)v∈6)=
∏
v|∞

ev(xv).

Following our convention from (1), we put

e∞(a)= e∞
(
(σ (a))σ∈6

)
= e2π i trE/Q(a)

for all a ∈ E . For each finite place v of E dividing a prime q of Z, denote by ev
the character of Ev defined, for each xv ∈ Ev, by

ev(xv)= e−2π iy,

where y ∈ Q is the fractional part of trEv/Qq (xv) ∈ Qp; that is, if we write
trEv/Qq (xv) =

∑
∞

i=k ai pi for some integer k ≤ 0 and ai ∈ {0, . . . , p − 1}, then
y =

∑0
i=k ai pi . We denote by eAE the character of AE defined by

eAE (x)=
∏
v

ev(xv) for all x = (xv) ∈ AE .
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Remark 1. We identify a ∈ E with the element (σv(a))v ∈AE , where σv : E ↪→ Ev
is the embedding corresponding to v. Following this convention, we put

eAE (a)=
∏
v

ev(σv(a)) (3)

for all a ∈ E .

2.1.3. Spaces of functions. Given topological spaces X and Y , we let

C(X, Y )

denote the space of continuous functions from X to Y .

2.2. Background concerning automorphic forms on unitary groups.

2.2.1. Unitary groups of signature (n, n). We now recall basic information about
unitary groups and automorphic forms on unitary groups. (A more detailed dis-
cussion of unitary groups and automorphic forms on unitary groups appears in
[Shimura 1997; 2000; Hida 2004; Harris et al. 2006; Eischen 2012; Lan 2013]; the
analogous background for the case of Hilbert modular forms is the main subject of
[Katz 1978, Section 1].)

The material in this section is similar to [Eischen 2013, Section 2.1]. Although
we discussed embeddings of nondefinite unitary groups of various signatures into
unitary groups of signature (n, n) there, we are primarily concerned only with
unitary groups of signature (n, n) and definite unitary groups in this paper; in the
sequel [Eischen 2014] we discuss pullbacks to various products of unitary groups
occurring as subgroups.

Let V be a vector space of dimension n over the CM field K , and let 〈 , 〉V denote
a positive definite hermitian pairing on V . Let −V denote the vector space V with
the negative definite hermitian pairing −〈 , 〉V . Let

W = 2V = V ⊕−V

〈(v1, v2), (w1, w2)〉W = 〈v1, w1〉V +〈v2, w2〉−V .

The hermitian pairing 〈 , 〉W defines an involution g 7→ g̃ on EndK (W ) by

〈g(w),w′〉W = 〈w, g̃(w′)〉W

(where w and w′ denote elements of W ). This involution extends to an involution
on EndK⊗E R(W ⊗E R) for any E-algebra R. We denote by U the algebraic group
such that, for any E-algebra R, the R-points of U are given by

U (R)=U (R,W )= {g ∈ GLK⊗E R(W ⊗E R) | gg̃ = 1}.

Similarly, we define U (R, V ) to be the algebraic group associated to 〈 , 〉V and
U (R,−V ) to be the algebraic group associated to 〈 , 〉−V . Note that U (R) is of
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signature (n, n). Also, the canonical embedding

V ⊕ V ↪→W

induces an embedding

U (R, V )×U (R,−V ) ↪→U (R,W )

for all E-algebras R. When the E-algebra R over which we are working is clear from
context or does not matter, we shall write U (W ) for U (R,W ), U (V ) for U (R, V ),
and U (−V ) for U (R,−V ). We also sometimes write just U to denote U (W ).

We also have groups

GU(R)= GU(R,W )= {g ∈ GLK⊗E R(W ⊗E R) | gg̃ ∈ R×}.

We use the notation ω to denote the similitude character

ω : GU(R)→ R×

g 7→ gg̃.

When the E-algebra R over which we are working is clear from context or does
not matter, we shall write GU(W ) for GU(R,W ). We shall also use the notation

G(R)= GU(R,W )

or write simply G or GU when the ring R is clear from context or does not matter.
When R = AE or R = R, we write

G+ := GU+

to denote the subgroup of G = GU consisting of elements such that the similitude
factor at each archimedean place of E is positive.

For the space W = V ⊕−V defined above, U (W ) and GU(W ) have signature
(n, n). So we will sometimes write U (n, n) and GU(n, n), respectively, to refer to
these groups.

We write W =Vd⊕V d , where Vd and V d denote the maximal isotropic subspaces

V d
= {(v, v)|v ∈ V },

Vd = {(v,−v)|v ∈ V }.

Let P be the Siegel parabolic subgroup of U (W ) stabilizing V d in Vd ⊕ V d under
the action of U (W ) on the right. Denote by M the Levi subgroup of P and by N
the unipotent radical of P . Similarly, denote by GP the Siegel parabolic subgroup
of GU(W ) stabilizing V d in Vd ⊕V d under the action of GU(W ) on the right, and
denote by GM the Levi subgroup of GP and by N the unipotent radical of GP. We
also, similarly, denote by GP+ the Siegel parabolic subgroup of GU+ stabilizing
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V d in Vd ⊕V d under the action of GU+ on the right, and denote by GM+ the Levi
subgroup of GP+ and by N the unipotent radical of GP+.

A choice of a basis e1, . . . , en for V over K gives an identification of V with
V d (via ei 7→ (ei , ei )) and with Vd (via ei 7→ (ei ,−ei )). The choice of a basis
for V also identifies GLK (V ) with GLn(K ). With respect to the ordered basis
(e1, e1) . . . , (en, en), (e1,−e1) . . . , (en,−en) for W , M consists of the block diag-
onal matrices of the form

m(h) := ( th̄−1, h)

with h ∈GLn(K ⊗ R), and GM consists of the block diagonal matrices of the form

m(h, λ) := ( th̄−1, λh)

with h ∈ GLn(K ) and λ ∈ E×. Thus, the choice of basis e1, . . . , en for V over K
fixes identifications

M −→∼ GLK (V ),

GM −→∼ GLK (V )× E×.

These isomorphisms extend to isomorphisms

M(R)−→∼ GLK⊗E R(V ⊗E R), (4)

GM(R)−→∼ GLK⊗E R(V ⊗E R)× R× (5)

for each E-algebra R.
We fix a Shimura datum (G, X (W )) and a corresponding Shimura variety

Sh(W )=Sh(U (n, n)) according to the conditions in [Harris et al. 2006, Section 1.2]
and [Eischen 2012, Section 2.2]. The symmetric domain X (W ) is holomorphically
isomorphic to the tube domain consisting of [E :Q] copies of

Hn = {z ∈ Mn×n(C) | i( t z̄− z) > 0}.

When we need to emphasize over which ring R we work, we sometimes write
Sh(R). Let K∞ be the stabilizer in G(R) of the point i · 1n . So

∏
σ∈6 K∞ is the

stabilizer in
∏
σ∈6 G(R) of the point

i = (i · 1n)σ∈6 ∈
∏
σ∈6

Hn. (6)

We can identify G+(R)/K∞ with Hn . Given a compact open subgroup K of G(A f ),
denote by KSh(W ) the Shimura variety whose complex points are given by

G(Q)\X ×G(A f )/K.

This Shimura variety is a moduli space for abelian varieties together with a polar-
ization, an endomorphism, and a level structure (dependent upon the choice of K).
Note that KSh(W ) consists of copies of quotients of spaces isomorphic to Hn .
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When we work with some other group H , we write Sh(H) instead of Sh(W ).

2.2.2. Automorphic forms on unitary groups. Automorphic forms on unitary groups
are typically discussed from any of the following three perspectives (which are
equivalent over C):

(1) Functions on a unitary group that satisfy an automorphy condition.

(2) C∞ (or holomorphic) functions on a hermitian symmetric space (analogue of
the upper half plane) that satisfy an automorphy condition.

(3) Sections of a certain vector bundle over a moduli space (a Shimura variety)
parametrizing abelian varieties together with a polarization, endomorphism,
and level structure.

Which perspective is most natural depends upon context. In this paper, we shall
need all three perspectives. (In [Eischen 2012, Section 2], we provided a detailed
discussion of automorphic forms and the relationships between different approaches
to defining them.)

The relationship between the first two approaches to automorphic forms is
reviewed in [Eischen 2013, p. 9; Shimura 2000, A8]. The relationship between
the second two approaches to automorphic forms is discussed in [Eischen 2012,
Section 2] and is similar to the analogous relationship for modular forms given in
[Katz 1973, A1.1].

An automorphic form f on U (n, n) has a weight, which is a representation ρ of
GLn ×GLn . In the special case where this representation is of the form

ρ(a, b)= det(a)k+ν det(b)−ν,

we shall say f is an automorphic form of weight (k, ν).
As explained in [Lan 2012; 2013], for the unitary groups of signature (n, n) there

is a higher-dimensional analogue of the Tate curve (which we call the “Mumford
object” in [Eischen 2012, Section 4.2; 2013, Section 2.2.11]), and so in analogue
with the case for modular forms evaluated at the Tate curve, one obtains an algebraic
q-expansion by evaluating an automorphic form at the Mumford object. Like in the
case of modular forms, the coefficients of an algebraically defined q-expansion of
a holomorphic automorphic form f of over C agree with the (analytically defined)
Fourier coefficients of f [Lan 2012]. Also, like in the case of modular forms, there
is a q-expansion principle for automorphic forms on unitary groups [Lan 2013,
Proposition 7.1.2.15]; note that the q-expansion principle for automorphic forms
over a Shimura variety requires the evaluation of an automorphic form at one cusp
of each connected component. To apply the q-expansion principle, it is enough
[Hida 2004, Section 8.4] to check the cusps parametrized by points of GM+(AE).
(The author is grateful to thank Kai-Wen Lan for explaining this to her.) We shall
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say “a cusp m ∈ GM+(AE)” to mean “the cusp corresponding to the point m.” The
q-expansion of an automorphic form at a cusp m(h, λ) is a sum of the form∑

β∈Lm(h,λ)

a(β)qβ,

where Lm(h,λ) is a lattice in Hern(E) dependent upon the choice of the cusp m(h, λ)
and a(β) ∈ C for all β (or, more generally, if f is a V -valued automorphic form
for some C-vector space V , a(β) ∈ V for all β). We sometimes also write∑

β∈Hern(E)

a(β)qβ,

when we do not need to make the cusp explicit; in this case, we know that the
coefficients a(β) are zero outside of some lattice in Hern(E) (namely, the lattice
corresponding to the unspecified cusp).

Throughout the paper, all cusps m and corresponding lattices Lm ⊆ Hern(K )
determined by m are chosen so that the elements of Lm have p-integral coefficients.1

3. Eisenstein series on unitary groups

In this section, we introduce certain Eisenstein series on unitary groups of signature
(n, n). These Eisenstein series are related to the ones discussed in [Eischen 2013,
Section 2; Shimura 1997, Section 18; Katz 1978, Section (3.2)].

For k ∈ Z and ν = (ν(σ ))σ∈6 ∈ Z6 , we denote by Nk,ν the function

Nk,ν : K×→ K×

b 7→
∏
σ∈6

σ(b)k+2ν(σ )(σ (b)σ̄ (b))−(ν(σ )).

For all b ∈ O×E ,
Nk,ν(b)= Nk

E/Q(b).

Theorem 2. Let R be an OK -algebra, let ν = (ν(σ )) ∈ Z6 , and let k ≥ n be an
integer. Let

F : (OK ⊗Zp)×Mn×n(OE ⊗Zp)→ R

be a locally constant function supported on (OK ⊗ Zp)
×
× Mn×n(OE ⊗ Zp) that

satisfies
F(ex, NK/E(e−1)y)= Nk,ν(e)F(x, y) (7)

1Even without this choice for m and Lm , which we did not make a priori in [Eischen 2013], we
could force the Fourier coefficients at all the non-p-integral elements of Hern(K ) to be zero, simply
by our choice of a Siegel section at p later in this paper. In fact, in [Eischen 2013, Section 2.2], our
choice of Siegel sections at p forced the Fourier coefficients at all the non-p-integral elements of
Hern(K ) to be zero.
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for all e ∈ O×K , x ∈ OK ⊗Zp, and y ∈ Mn×n(OE ⊗Zp). There is an automorphic
form Gk,ν,F (on U (n, n)) of weight (k, ν) defined over R whose q-expansion at a
cusp m ∈ GM+(AE) is of the form

∑
0<β∈Lm

c(β)qβ (where Lm is the lattice in
Hern(K ) determined by m), with c(β) a finite Z-linear combination of terms of the
form

F(a, NK/E(a)−1β)Nk,ν(a−1 detβ)NE/Q(detβ)−n

(where the linear combination is a sum over a finite set of p-adic units a ∈ K
dependent upon β and the choice of cusp m ∈ GM). When R = C, these are the
Fourier coefficients at s = 1

2 k of the C∞ automorphic form Gk,ν,F (z, s) (which is
holomorphic at s = 1

2 k) that will be defined in Lemma 9.

(Above, the elements of (OE⊗Zp)
× in Mn×n(OE⊗Zp) are viewed as homomor-

phisms, i.e., multiplication by an element of (OE ⊗Zp)
×, so as diagonal matrices

in Mn×n(OE ⊗Zp). Also note that, when detβ = 0, the coefficient of qβ is 0, so
we can restrict the discussion to F with support in (OK ⊗Zp)

×
×GLn(OE ⊗Zp).)

Proof. By an argument similar to Katz’s argument at the beginning of the proof
of [1978, Theorem (3.2.3)], every locally constant R-valued function F supported
on (OK ⊗Zp)

×
×Mn×n(OE ⊗Zp) that satisfies (7) is an R-linear combination of

OK -valued functions F supported on (OK ⊗Zp)
×
×Mn×n(OE⊗Zp) that satisfy (7).

So it is enough to prove the theorem for OK -valued functions F .
Now, if we can construct an automorphic form satisfying the conditions of

the theorem over R = C, then by the q-expansion principle [Lan 2013, Proposi-
tion 7.1.2.15], the case over R will follow for any OK -subalgebra R (in particular,
for R = OK ) of C. By [Lan 2012], it sufficient to show that there is a C-valued C∞

automorphic form Gk,ν,F of weight (k, ν) holomorphic at s = 1
2 k whose Fourier

coefficients (at s = 1
2 k) are as in the statement of the theorem. We will devote

Section 3.1 to the construction of such an automorphic form. �

3.1. Construction of a C∞ automorphic form over C whose Fourier coefficients
meet the conditions of Theorem 2. In this section, we construct the C∞ automor-
phic form Gk,ν,F necessary to complete the proof of Theorem 2.

Let m be an ideal that divides p∞. Let χ be a unitary Hecke character of type A0,

χ : A×K → C×,

of conductor m, i.e.,
χv(a)= 1

for all finite primes v in K and all a ∈ K×v such that

a ∈ 1+mvOK v.
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Let ν(σ ) and k(σ ), σ ∈6, denote integers such that the infinity type of χ is∏
σ∈6

σ−k(σ )−2ν(σ )(σ · σ̄ )
1
2 k(σ )+ν(σ ). (8)

For any s ∈C, we view χ · | · |−s
K ⊗|·|

−ns
E as a character of the parabolic subgroup

GP+(AE)= GM+(AE)N (AE)⊆ G+(AE) via the composition of maps

GP(AE)
mod N (AE )
−−−−−−→ GM(AE)

(5)
−−→ GLAK (V ⊗E AE)×GL1(AE)−→ C×,

where the last one is the map

(h, λ) 7−→ |λ|−ns
E ·χ(det h)|det h|−s

K .

Consider the induced representation

I (χ, s)= IndG+(AE )

GP+(AE )

(
χ · | · |−s

K ⊗ |ω( · )|
−ns/2
K

)
∼=

⊗
v

IndG+(Ev)
GP+(Ev)

(
χv · | · |

−2s
v ⊗ |ω( · )|

−ns
v

)
, (9)

where the product is over all places of E .
Given a section f ∈ I (χ, s), the Siegel Eisenstein series associated to f is the

C-valued function of G defined by

E f (g)=
∑

γ∈GP+(E)\G+(E)

f (γ g).

This function converges for <(s) > 0 and can be continued meromorphically to the
entire complex plane.

Remark 3. As in [Eischen 2013], if we were working with normalized induction,
then the function would converge for <(s)> 1

2 n, but we have absorbed the exponent
1
2 n into the exponent s. (Our choice not to include the modulus character at this
point is equivalent to shifting the plane on which the function converges by 1

2 n.)

All the poles of E f are simple and there are at most finitely many of them.
Details about the poles are given in [Tan 1999].

As we noted in [Eischen 2013, Section 2.2.4], if the Siegel section f factors as
f =

⊗
v fv, then E f has a Fourier expansion such that, for all h ∈ GLn(K ) and

m ∈ Hern(K ),

E f

((
1 m
0 1

)(th̄−1 0
0 h

))
=

∑
β∈Hern(K )

c(β, h; f )eAE (tr(βm))

with c(β, h; f ) a complex number dependent only on the choice of section f , the
hermitian matrix β ∈ Hern(K ), hv for finite places v, and (h · th̄)v for archimedean
places v of E .
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By [Shimura 1997, Sections 18.9, 18.10], the Fourier coefficients of the Siegel
sections f =

⊗
v fv that we will choose below are products of local Fourier coeffi-

cients determined by the local sections fv. More precisely, for each β ∈ Hern(K ),

c(β, h; f )= C(n, K )
∏
v

cv(β, h; f ),

where

cv(β, h; f )=
∫

Hern(K⊗Ev)

fv

((
0 −1
1 0

)(
1 mv

0 1

)(th̄−1
v 0
0 hv

))
ev(− tr(βvmv)) dmv,

(10)

C(n, K )= 2n(n−1)[E :Q]/2
|DE |

−n/2
|DK |

−n(n−1)/4, (11)

DE and DK are the discriminants of K and E , respectively, βv = σv(β) for each
place v of E , and dv denotes the Haar measure on Hern(Kv) such that∫

Hern(OK⊗E Ev)
dvx = 1 for each finite place v of E (12)

and

dvx :=
∣∣∧n

j=1dx j j
∧

j<k(2−1dx jk ∧ dx̄ jk)
∣∣ for each archimedean place v of E .

(Here x denotes the matrix whose i j-th entry is xi j .)
Below, we recall [Eischen 2013, Lemma 19], which explains how the Fourier co-

efficients c(β, h; f ) transform when we change the point h. For each h ∈GLn(AK )

and λ ∈ A×E , let m(h, λ) denote the matrix(th̄−1 0
0 λh

)
.

Generalizing (10), we define

cv(β,m(h, λ); f )

=

∫
Hern(K⊗Ev)

fv

((
0 −1
1 0

)(
1 mv

0 1

)
m(h, λ)

)
ev(− tr(βvmv)) dmv.

We also define c(β,m(h, λ); f )= C(n, K )
∏
v cv(β,m(h, λ); f ).

Lemma 4 [Eischen 2013, Lemma 19]. For each h ∈ GLn(AK ), λ ∈ A×E , and
β ∈ Hern(K ),

c
(
β,

(th̄−1 0
0 λh

)
; f
)

= χ(det(λh)−1)
∣∣det

(
(λh)−1

· (λh)−1)∣∣n−s
E |λ|

−ns
E c(λ−1h−1β th̄−1, 1n; f ). (13)
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Proof. Let η =
( 0

1n

−1n
0

)
. Observe that, for any n×n matrix m,

η ·m(h, λ) · η−1
= m(λ−1 th̄−1, λ)

m(h, λ)−1
·

(
1 m
0 1

)
·m(h, λ)=

(
1 λth̄mh
0 1

)
.

Therefore,

η ·

(
1 m
0 1

)
·m(h, λ)= (η ·m(h, λ) · η−1)η

(
m(h, λ)−1

(
1 m
0 1

)
m(h, λ)

)
= m(λ−1 th̄−1, λ)η

(
1 λth̄mh
0 1

)
.

So, for any place v of E and section fv ∈ IndG+(Ev)
GP(Ev) (χ, s),

fv

(
η

(
1 m
0 1

)
m(hv, λ)

)
= χv(det(λvhv)−1)

∣∣det(λvhv)−1∣∣−2s
v
|λ|−ns

v fv

(
η

(
1 λth̄vmhv
0 1

))
. (14)

The lemma now follows from (14) and the fact that the Haar measure dv satisfies
dv(λhvx th̄v)= |det(λv th̄v · hv)|nvdv(x) for each place v of E . �

So,

c
(
β,

(
λ−1 th̄−1 0

0 h

)
; f
)
= χ(λn)|λ2n

|
n−s
E |λ|

2ns
E

(
β,

( th̄−1 0
0 λh

)
; f
)

= |λ2n2
|Eχ(λ

n)c
(
β,

( th̄−1 0
0 λh

)
; f
)
. (15)

Below, we choose more specific Siegel sections f =
⊗

v fv and compute the
corresponding Fourier coefficients.

3.1.1. The Siegel section at∞. We now define a section f k,ν
∞
= f k,ν
∞
(• ; i ·1n, χ, s)

in
⊗

v|∞ IndG+(Ev)
GP+(Ev)(χv · | · |

−2s
v ⊗ |ω( · )|

−ns
E ).

For each α=
∏
v|∞ αv ∈

∏
v|∞ G(Ev), we write αv in the form

(av
cv

bv
dv

)
with av , bv ,

cv , and dv n×n matrices. Each element α ∈G(Ev) acts on z=
∏
v|∞ zv ∈

∏
v|∞Hn

by

αv(zv)= (avzv + bv)(cvzv + dv)−1,

α(z)=
∏
v|∞

αv(zv).
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Let
λαv (zv)= λ(αv, zv)= cv · t zv + dv,

λα(z)= λ(α, z)=
∏
v|∞

λαv (zv),

µαv (zv)= µ(αv, zv)= cv · zv + dv,

µα(z)= µ(α, z)=
∏
v|∞

µαv (zv).

(These are the canonical automorphy factors. Properties of them are discussed in
[Shimura 2000, Section 3.3], for example.) We write

jαv (zv)= j (αv, zv)= detµαv (zv),

jα(z)= j (α, z)=
∏
v|∞

jαv (zv).

Note that

det(λαv (zv))= det(αv)ω(αv)−n jαv (zv) (16)

= det(αv)−1ω(αv)
n jαv (zv), (17)

so
|det(λαv (zv))| = | jαv (zv)|.

Consistent with the notation in [Shimura 1997, Equation (10.4.3)], we define

j k,ν
α (z) := jα(z)k+ν det(λα(z))−ν .

By (16) and (17), we see that

j k,ν
α (z)= (det(α)ω(α)−n)−ν jα(z)k

= (det(α)−1ω(α)n)−ν jα(z)k .

If β =
∏
v|∞ βv is also an element of

∏
v|∞ G(Ev), then

λ(βvαv, zv)= λ(βv, αvzv)λ(αv, zv), (18)

µ(βvαv, zv)= µ(βv, αvzv)µ(αv, zv). (19)

Consistent with the notation in [Shimura 2000, Section 3], we define functions η
and δ on Hn by

η(z)= i( t z̄− z),

δ(z)= det
( 1

2η(z)
)

for each z ∈Hn . So
η(i · 1n)= 2 · 1n,

δ(i · 1n)= 1.
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We also write η and δ to denote the functions
∏
σ∈6 η and

∏
σ∈6 δ, respectively,

on
∏
σ∈6 Hn . So δ(i)= 1. Also, note that

δ(αz)= ω(α)n| jα(z)|−2δ(z)= ω(α)n| jα(z) det(λα(z))|−1δ(z).

Following [Shimura 2000, Sections 3 and 5], given (k, ν)=
∏
v|∞(kv, νv)∈ (Z×Z)6 ,

we define functions f ‖k,ν and f |k,ν on
∏
σ∈6 Hn by

( f ‖k,ν α)(z)= j k,ν
α (z)−1 f (αz),

f |k,ν α = f ‖k,ν(ω(α)−
1
2α)

for each C-valued function f on Hn , point z ∈Hn , and element α ∈ G. Note that
ω(α)−1/2α ∈U (ηn) and, if ω(αv)= 1 for all v ∈6, then

f |k,να = f ‖k,να.

More generally, for each function f on
∏
σ∈6 Hn with values in some representation

(V, ρ) of
∏
σ∈6 GLn(C)×GLn(C), we define functions f ‖ρ and f |ρ on Hn by

( f ‖ρ α)(z)= ρ(µα(z), λα(z))−1 f (αz),

f |ρ α = f ‖ρ(ω(α)−
1
2α).

We also use the notation f ‖ and f | when we are working with just one copy of Hn ,
rather than [E :Q] copies of Hn at once.

We define

f k,ν
∞
=

⊗
v|∞

f k,ν
v (• ; i · 1n, χ, s) ∈

⊗
v|∞

IndG+(Ev)
GP+(Ev)(χv · | · |

−2s
v ⊗ |ω( · )|

−ns
E )

by

f k,ν
∞
(α; i · 1n, χ, s)

= (δs− 1
2 k
|k,να)(i · 1n)

= j k,ν
ω(α)−1/2α

(i · 1n)
−1∣∣ jω(α)−1/2α(i · 1n)

−2ω(ω(α)−1/2α)n
∣∣s− 1

2 k(σv)

= j k,ν
ω(α)−1/2α

(i · 1n)
−1∣∣ jω(α)−1/2α(i · 1n)

−2∣∣s− 1
2 k
.

Given α ∈ G, we also define a function f k,ν
∞
(α; • , χ, s) on Hn by

f k,ν
∞
(α; z, χ, s)= (δs− 1

2 k
|k,να)(z)

= j k,ν
ω(α)−1/2α

(z)−1∣∣ jω(α)−1/2α(z)
−2∣∣s− 1

2 k
δ(z)s−

1
2 k .

By (18) and (19), we see that if g ∈ G is such that g(i)= z then, for each α ∈ G,

f k,ν
∞
(αg; i · 1n, χ, s)= f k,ν

∞
(α; z, χ, s) f k,ν

∞
(g; i · 1n, χ, s)δ(z)

1
2 k−s .
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For k ∈ Z and ν = (νv)v∈6 ∈ Z6 , f k,ν
∞
(α; • , χ, s) is a holomorphic function

on Hn at s = 1
2 k.

3.1.2. The Fourier coefficients at archimedean places of E. When there is an
integer k such that

s = 1
2 k = 1

2 k(σ ) for all σ ∈6

(i.e., when f k,ν
∞
(α; z, χ, s) is a holomorphic function of z ∈Hn), [Shimura 1983,

Equation (7.12)] describes the archimedean Fourier coefficients precisely:

cv
(
β, 1n; f k,ν

v

(
• ; i1n, χ,

1
2 k
))

= 2(1−n)ni−nk(2π)nk
(
πn(n−1)/2

n−1∏
t=0

0(k− t)
)−1

σv(detβ)k−ne
(
i tr(σv(β))

)
(20)

for each archimedean place v of E . Observe that, when k ≥ n,∏
v|∞

cv
(
β, h; f k,ν

v

(
• ; i1nχ,

1
2 k
))
= 0

unless det(β) 6= 0 and det(h) 6= 0, i.e., unless β is of rank n. Also, note that in our
situation β will be in Hern(K ), so

∏
v∈6 e

(
i tr(σv(β))

)
= e(ib) for some b ∈Q, so∏

v∈6 e
(
i tr(σv(β))

)
= e(ib) is a root of unity.

3.1.3. Siegel sections at p. We work with Siegel sections at p that are similar to the
ones in [Eischen 2013, Section 2.2.8] (we multiply those by |ω(g)|−ns

p to account
for a similitude factor).

Lemma 5 [Eischen 2013, Lemma 10]. Let 0 be a compact and open subset of∏
v∈6 GLn(OE v), and let F̃ be a locally constant Schwartz function

F̃ :
∏
v∈6

(HomKv
(Vv, Vd,v)⊕HomKv

(Vv, V d
v ))→ R

(X1,X2) 7→ F̃(X1, X2)

(with R a subring of C) whose support in the first variable is 0 and such that

F̃(X, tX−1Y )=
∏
v∈6

χv(det(X))F̃(1, Y ) (21)

for all X in 0 and Y in
∏
v∈6 Mn×n(Ev).2 There is a Siegel section f PF̃(−X,Y ) at p

whose Fourier coefficient at β ∈ Mn×n(Ev) is

c(β, 1; f PF̃(−X,Y ))= volume(0) · F̃(1, tβ).

2The version of the right-hand side of (21) appearing in [Eischen 2013, Lemma 10] reads
“χ1χ

−1
2 (det(X))F(1, Y )”. The characters denoted χ1 and χ2 in [Eischen 2013] have the property that

χ1χ
−1
2 (a)=

∏
v∈6 χv(a) for all a ∈

∏
v∈6 OE v . The function denoted by F̃ in the current paper is

denoted by F in [Eischen 2013].
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We use the notation PF, for “partial Fourier transform”, to be consistent with
[Katz 1978, Section 3.1; Eischen 2013, Section 2.2.8], but we do not need to discuss
partial Fourier transforms here.

As a direct consequence of Lemma 5, we obtain the following corollary:

Corollary 6. For any locally constant Schwartz function F̃ satisfying the conditions
of Lemma 5 for some 0 with positive volume, there is a Siegel section f F̃ in⊗

v∈6 IndG(Ev)
P(Ev)(χv · | · |

−2s) whose local (at p) Fourier coefficient at β is F̃(1, tβ).

Furthermore, we can significantly weaken the conditions placed on F̃ :

Corollary 7. Let k be a positive integer. Let F̃ be a locally constant Schwartz
function

F̃ :
∏
v∈6

(Mn×n(OE v)×Mn×n(OE v))→ R

whose support lies in
∏
v∈6(GLn(OE v)×Mn×n(OE v)) and which satisfies

F̃(e, te−1 y)= NE/Q(det e)k F̃(1, y)

for all e ∈ GLn(OE) contained in the support 0 in the first variable of F̃ . Sup-
pose, furthermore, that 0 has positive volume. Then there is a Siegel section
f F̃ ∈

⊗
v∈6 IndG(Ev)

P(Ev)(χv · | · |
−2s) whose local (at p) Fourier coefficient at β is

F̃(1, tβ).

Proof. Let F̃ be a locally constant Schwartz function

F̃ :
∏
v∈6

(Mn×n(OE v)×Mn×n(OE v))→ R

whose support lies in
∏
v∈6(GLn(OE v)×Mn×n(OE v)) and which satisfies

F̃(e, te−1 y)= NE/Q(det e)k F̃(1, y), (22)

for all e ∈ GLn(OE) contained in the support in the first variable of F̃ . Then, since
F̃ is locally constant, has compact support, and satisfies (22), there is a unitary
Hecke character χ whose infinity type is as in (8) and such that the conductor
m= pd for d a sufficiently large positive integer, so that

F̃ = a1 F1+ · · ·+ al Fl

for some positive integer l and a1, . . . , al ∈ R, and functions F1, . . . , Fl meeting the
conditions of Corollary 6 (all for this same character χ but possibly with different
supports 01, . . . , 0l , respectively, in the first variable).

Now, we define
f F̃ := a1 fF1 + · · ·+ al fFl ,

where fF1, . . . , fFl are the Siegel sections obtained in Corollary 6. Then f F̃ is
a linear combination of elements of the module

⊗
v∈6 IndG(Ev)

P(Ev)(χv · | · |
−2s). So,



2452 Ellen Eischen

f F̃ is itself an element of
⊗

v∈6 IndG(Ev)
P(Ev)(χv · | · |

−2s). Now, the Fourier coefficient
of a sum of Siegel sections is the sum of the Fourier coefficients of these Siegel
sections. So, the Fourier coefficient at β of f F̃ is

a1 F1(1, tβ)+ · · ·+ al Fl(1, tβ)= F̃(1, tβ). �

3.1.4. Siegel sections away from p and ∞. We use the same Siegel sections at
places v - p∞ as in [Eischen 2013, Section 2.2.9]. We now recall the key properties
of these Siegel sections, which are described in more detail in [Shimura 1997,
Section 18].

Let b be an ideal in OE prime to p. For each finite place v prime to p, there is a
Siegel section f bv = f bv (• ;χv, s) ∈ IndG(Ev)

P(Ev)(χv, s) with the following property: by
[Shimura 1997, Proposition 19.2], whenever the Fourier coefficient c(β,m(1); f bv )
is nonzero,∏
v-p∞

c(β,m(1); f bv )

= NE/Q(bOE)
−n2

n−1∏
i=0

L p(2s− i, χ−1
E τ i )−1

∏
v-p∞

Pβ,v,b(χE(πv)
−1
|πv|

2s
v ), (23)

where:

(1) the product is over primes of E ;

(2) the Hecke character χE is the restriction of χ to E ;

(3) the function Pβ,v,b is a polynomial that is dependent only on β, v, and b and
has coefficients in Z and constant term 1;

(4) the polynomial Pβ,v,b is identically 1 for all but finitely many v;

(5) τ is the Hecke character of E corresponding to K/E ;

(6) πv is a uniformizer of OE,v, viewed as an element of K× prime to p;

(7) L p(r, χ−1
E τ i )=

∏
v-p∞ cond τ

(
1−χv(πv)−1τ i (πv)|πv|

r
v

)−1
.

3.1.5. Global Fourier coefficients. Recall that, by Lemma 4, the Fourier coeffi-
cients c(β, h; f ) are completely determined by the coefficients c(β, 1n; f ). In
Proposition 8, we combine the results of Sections 3.1.2, 3.1.3, and 3.1.4 in order to
give the global Fourier coefficients of the Eisenstein series E f .

Let χ be a unitary Hecke character as above and, furthermore, suppose the
infinity type of χ is ∏

σ∈6

σ−k−2ν(σ )(σ σ̄ )
1
2 k+ν(σ ) (24)

(i.e., k(σ ) = k ∈ Z for all σ ∈ 6). Let C(n, K ) be the constant dependent only
upon n and K defined in (11).
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Proposition 8. Let k ≥ n, let ν = (ν(σ )) ∈ Z6 , and let

fk,ν,χ,F̃ := fk,ν,χ,b,F̃ :=
⊗
v∈6

f F̃,v ⊗ f k,ν
∞
(• ; i1n, χ, s)⊗ f b ∈ IndG(AE )

P(AE )
(χ · | · |−s

K )

(25)
with χ as in (24),

⊗
v∈6 f F̃,v the section at p from Corollary 6, f k,ν

∞
the section

at∞ defined in Section 3.1.2, and f b the section away from p and∞ defined in
Section 3.1.4.

Then, at s = 1
2 k, all the nonzero Fourier coefficients c(β, 1n; fk,ν,χ,F̃ ) are given

by

D(n,K ,b, p,k)
∏
v-p∞

Pβ,v,b(χE(πv)
−1
|πv|

k
v)F̃(1,

tβ)
∏
v∈6

σv(detβ)k−ne(i trE/Q(β)),

(26)
where

D(n, K , b, p, k)

= C(n, K )N (bOE)
−n2
(

2(1−n)ni−nk(2π)nk
(
πn(n−1)/2

n−1∏
t=0

0(k− t)
)−1)[E :Q]

×

n−1∏
i=0

L p(k− i, χ−1
E τ i )−1.

Proof. This follows directly from (11), Corollary 6, (23), and (20). �

Given F̃ as above, define

F̃χ : (OK ⊗Zp)×Mn×n(OE ⊗Zp)→ R

to be the locally constant function whose support lies in

(OK ⊗Zp)
×
×Mn×n(OE ⊗Zp)

and which is defined on (OK ⊗Zp)
×
×Mn×n(OE ⊗Zp) by

F̃χ (x, y)=
∏
v∈6

χv(x)F̃(1, NK/E(x) t y), (27)

where the product is over the primes in 6 dividing p. Then, for all e ∈ O×K ,

F̃χ (ex, NK/E(e−1)y)= Nk,ν(e)F̃χ (x, y)

for all x ∈OK⊗Zp and y ∈Mn×n(OE⊗Zp). On the other hand, any locally constant
function

F : (OK ⊗Zp)×Mn×n(OE ⊗Zp)→ R

supported on (OK ⊗Zp)
×
×Mn×n(OE ⊗Zp) which satisfies

F(ex, NK/E(e)−1 y)= NE/Q(e)k F(x, y)
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for all e ∈ O×K , x ∈ OK ⊗ Zp, and y ∈ Mn×n(OE ⊗ Zp) can be written as a linear
combination of such functions F̃χ for Hecke characters χ of infinity type (k, ν)
and conductor dividing p∞ and functions F̃ as above.

Now, let
Gk,ν,χ,F̃ = D(n, K , b, p, k)−1 E fk,ν,χ,F̃

.

Applying Proposition 8, we see that the Fourier coefficients of the holomorphic
function Gk,ν,χ,F̃

(
z, 1

2 k
)

on Hn are all finite Z-linear combinations (over a finite
set of p-adic units a ∈ K ) of terms of the form

F̃χ (a, NK/E(a)−1β)Nk,ν(a−1 detβ)NE/Q(detβ)−n (28)

(Although πv from Proposition 8 is a place of E for all v, the element a from (28)
might be in K but not OE , depending on our choice of cusp. The effect of the
change of a cusp m ∈ GM+(AE) on q-expansions is given in Lemma 4.)

Thus, we obtain the following result:

Lemma 9. Let k ∈ Z≥n and ν ∈ Z6 . Let F be a locally constant function

F : (OK ⊗Zp)×Mn×n(OE ⊗Zp)→ R

supported on (OK ⊗Zp)
×
×Mn×n(OE ⊗Zp) which satisfies

F(ex, NK/E(e)−1 y)= Nk,ν(e)F(x, y)

for all e ∈ O×K , x ∈ OK ⊗ Zp, and y ∈ Mn×n(OE ⊗ Zp). Then there is a C∞

automorphic form Gk,ν,F (z, s) (on U (n, n)) of weight (k, ν) that is holomorphic at
s = 1

2 k and whose Fourier expansion at s = 1
2 k at a cusp m ∈ GM+(AE) is of the

form
∑

0<β∈Lm
c(β)qβ (where Lm is the lattice in Hern(K ) determined by m) with

c(β) a finite Z-linear combination of terms of the form given in (28).

(We obtain Gk,ν,F as a linear combination of the automorphic forms Gk,ν,χ,F̃ .)

4. Differential operators

4.1. C∞ differential operators. In this section, we summarize results on C∞ dif-
ferential operators that were studied extensively by Shimura [1984a; 1984b; 1997,
Section 23; 2000, Section 12]. Let T = Mn×n(C); we identify T with the tangent
space of Hn . For each nonnegative integer d , let Sd(T ) denote the vector space of
C-valued homogeneous polynomial functions on T of degree d . (For instance, the
e-th power of the determinant function, dete, is in Sne(T ).) We denote by τ d the
representation of GLn(C)×GLn(C) on Sd(T ) defined by

τ d(a, b)g(z)= g( tazb)

for all a, b ∈ GLn(C), z ∈ T , and g ∈Sd(T ).
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The classification of the irreducible subspaces of polynomial representations of
GLn(C) and of irreducible subspaces of τ r for each r is provided in [Shimura 1984b,
Section 2; 1997, Sections 12.6 and 12.7]. We summarize the key features needed
for our results; further details can be found in those two references. Given a matrix
a ∈ Mn×n(C), let det j (a) denote the determinant of the upper left j× j submatrix
of a. Each polynomial representation of GLn(C) can be composed into a direct
sum of irreducible representations of GLn(C). Each irreducible representation ρ of
GLn(C) contains a unique eigenvector p of highest weight r1 ≥ · · · rn ≥ 0 (for a
unique ordered n-tuple r1 ≥ · · · ≥ rn ≥ 0 of integers dependent on ρ), which is a
common eigenvector of the upper triangular matrices of GLn(C) and satisfies

ρ(a)p =
n∏

j=1

det j (a)e j p,

e j = r j − r j+1, 1≤ j ≤ n− 1, (29)

en = rn (30)

for all a in the subgroup of upper triangular matrices in GLn(C). Also, for each
ordered n-tuple r1 ≥ · · · ≥ rn ≥ 0, there is a unique corresponding irreducible
polynomial representation of GLn(C). If ρ and σ are irreducible representations
of GLn(C) then, by [Shimura 2000, Theorem 12.7], ρ ⊗ σ occurs in τ r if and
only if ρ and σ are representations of the same highest weights r1 ≥ · · · ≥ rn as
each other and r1+ · · ·+ rn = r . In this case, ρ⊗ σ occurs with multiplicity one
in τ r , and the corresponding irreducible subspace of τ r contains the polynomial
p(x)=

∏n
j=1 det j (x)e j (where e j is defined as in (29) and (30)); this polynomial

p(x) is an eigenvector of highest weight with respect to both ρ and σ .
Let (Z , τZ ) be an irreducible subspace of (Sd , τ ) of highest weight r1≥ · · · ≥ rn ,

and let ζ ∈ Z . By [Shimura 1984b; 1997, Section 23; 2000, Section 13], there
are C∞ differential operators Dk(ζ ) that act on C∞ functions on Hn and have the
property that, for all α ∈U (ηn), ζ ∈ Z ⊆Sd(T ), and complex numbers s,

Dk(ζ )(δ
s
‖k,να)= idψZ (−k− s)(δs

‖k,να) · ζ(
tη−1 tλα

tµ−1
α ), (31)

where (as proved in [Shimura 1984b, Theorem 4.1])

ψZ (s)=
n∏

h=1

rh∏
j=1

(s− j + h).

If ρ is the representation of GLn(C)×GLn(C), there is a differential operator DZ
ρ

(defined in [Eischen 2012, p. 222; Shimura 2000, Equation (12.20)]) such that for
all C∞ functions f on Hn , DZ

ρ f is a Hom(Z ,C)-valued C∞ function on Hn with
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the property that

(DZ
ρ f )‖ρ⊗τZα = DZ

ρ ( f ‖ρα) (32)

for all α ∈ G. Furthermore, if ρ is defined by ρ(a, b)= det(b)k then, as the proof
of [Shimura 1997, Lemma 23.4] explains,

Dk(ζ ) f = (DZ
ρ f )(ζ ).

When Z is a 6-tuple (Zv)v∈6 , we also use ψZ to denote
∏
v∈6 ψZv .

So, for example, if d ∈ Z≥0 and ζ = detd , then (31) becomes

Dk(detd)(δs
‖k,να)= indψZ (−k− s)δs

‖k,να · detd( tη−1 tλα ·
tµ−1
α )

=
( 1

2 i
)nd

n∏
h=1

d∏
j=1

(−k− s− j + h)δs−d
‖k+2d,ν−dα.

Consequently, if d = (d(σ ))σ∈6 ∈ Z6
≥0, then( ∏

σ∈6

Dk(detd(σ ))
)(

Gk,ν,F
(
z, 1

2 k
))

=

∏
σ∈6

( 1
2 i
)nd(σ )

n∏
h=1

d(σ )∏
j=1

(−k− j + h)Gk+2d,ν−d,F
(
z, 1

2 k
)

as in [Eischen 2013, Equation (43)].
As noted in [Shimura 1984b, Section 6], Gk,ν,F (z, s) is a special case of the

automorphic form Gk,ν,ζ,F (z, s) that satisfies

Dk(ζ )
(
Gk,ν,F

(
z, 1

2 k
))
=

∏
v∈6

idvψZv (−k)Gk,ν,ζ,F
(
z, 1

2 k
)
,

where

Dk(ζ )=
∏
v∈6

Dk(ζv).

The case where ζ is a highest-weight vector will be of particular interest to us.

4.2. Rational representations. In order to generalize our discussion from the C∞

setting to the p-adic setting, we introduce rational representations, following [Hida
2004, Section 8.1.2] (which, in turn, summarizes relevant results from [Hida 2000;
Jantzen 1987]).

Let A be a ring or a sheaf of rings over a scheme. Let B denote the Borel
subgroup of GLn consisting of upper triangular matrices in GLn . Let N denote the
unipotent radical of B. Let T ∼= B/N denote the torus. Following the notation of
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[Hida 2004, Section 8.1.2], for each character κ of T we define

RA[κ] = IndGLn
B (κ)

=
{

f : GLn/N → A1 ∣∣ f (ht)= κ(t) f (h) for all t ∈ T, h ∈ GLn/N
}
.

The group GLn acts on RA[κ] via

(g · f )(x)= f (g−1x).

As noted in [Hida 2004, p. 332], there is a unique (up to an A-unit multiple)
N -invariant linear form `can in the dual space RA[κ]

∨ that generates (RA[κ]
∨)N

and can be normalized so that, for all f ∈ RA[κ],

`can( f )= f (1n),

where 1n denotes the origin in GLn/N .
Note that, for each C∞ automorphic form f on

∏
v∈6 Hn such that f ‖k,να = f

(for all α in some congruence subgroup) and each highest-weight vector ζ in
an irreducible representation of highest weight κ , we may view Dk(ζ ) f as an
RC[detk+ν ·κ]⊗ RC[det−ν ·κ]-valued function on Hn . We define a corresponding
character κk,ν(t1, . . . , tn, tn+1, . . . , t2n)=

∏n
i=1 tk+ν

i t−νi+n on T (C)× T (C).

4.3. The algebraic geometric setting. As explained in detail in [Eischen 2012,
Section 8.4], which generalizes [Katz 1978, Section 2.3], the C∞ differential
operators discussed by Shimura have a geometric interpretation in terms of the
Gauss–Manin connection. C∞ automorphic forms can [Eischen 2012, Section 2]
be interpreted as sections of a vector bundle on (the complex analytification of) the
moduli spaces Mn,n = Sh(W ). Applying a differential operator (as discussed in
[Eischen 2012, Sections 6–9]) to an automorphic form of weight ρ on Mn,n sends
it to an automorphic form of weight ρ⊗ τ on Mn,n .

We now recall the setting of [Eischen 2013, Section 3], as we will momentarily
be in a similar (but not identical) situation. For any OK -algebra R, the R-valued
points of KSh(R) parametrize tuples A consisting of an abelian variety together
with a polarization, endomorphism, and level structure. (We shall not need further
details of these points here; see [Lan 2013, Chapter 1; Hida 2004, Chapter 7;
Eischen 2012, Section 2] for more details.) Given a point A in KSh(R), we write
ωA/R = ω

+

A/R ⊕ ω
−

A/R for the sheaf of one-forms on A. (As in [Eischen 2012,
Section 2], ω+A/R and ω−A/R are the rank-n submodules determined by the action
of OK .) We identify G(Q)\X ×G(A f )/K (which we identify with copies of Hn)
with the points of KSh(C); we shall write A(z) to mean the point of A identified
with z ∈

∏
v∈6 Hn under this identification. Under this identification, if we fix an

ordered basis of differentials u±1 , . . . , u±n for ω±Auniv/Hn
, then an automorphic form
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f on Hn corresponds to an automorphic form f̃ on KSh(C) via

f (z)= f̃ (A(z), u±1 (z), . . . , u±n (z)),

Any other ordered basis of differentials for ω±A/C is simply obtained by the linear
action of GLn(OK ⊗C)∼= GLn(C)×GLn(C) on ω(z)= ω(z)+⊕ω(z)−, and

f̃
(

A(z), g · (u±1 (z), . . . , u±n (z))
)
= g ·

(
f (A(z), u±1 (z), . . . , u±n (z))

)
4.3.1. A p-adic analogue. In [Eischen 2012, Section 9], we discussed a p-adic
analogue θ Z

ρ of the differential operators DZ
ρ . The differential operators θ Z

ρ act
on sections of certain vector bundles on the Igusa tower T∞,∞ (a formal scheme
over the ordinary locus of KSh(R) for R a mixed characteristic discrete valuation
ring with residue characteristic p); for details on the Igusa tower, see [Hida 2004,
Section 8]. More precisely, θ Z

ρ acts on sections of RT∞,∞[κ] for various weights κ .
By [Hida 2004, map (8.4)],

`can : H 0(T∞,∞, RT∞,∞[κ])→ V N
[κ] (33)

is an injective map into the space V N
[κ] = V N

∞,∞[κ] of p-adic modular forms of
weight κ . Given a highest-weight vector ζ in Z , we define θ(ζ ) := θk := `can ◦ θ

Z
ρ ,

where ρ(a, b) := det(b)k .
In [Eischen 2012, Section 9], we gave a formula for the action of p-adic differ-

ential operators θ Z
ρ on q-expansions. In particular, if the q-expansion of a scalar

weight form f ∈ H 0(T∞,∞, RT∞,∞[κ]) at a cusp m ∈ GM is

f (q)=
∑
β

a(β)qβ,

and ζ is a highest-weight vector, then it follows from the formulas in [Eischen 2012,
Section 9] that

(θ(ζ ) f )(q)=
∑
β

a(β) · ζ(β)qβ . (34)

5. A p-adic Eisenstein measure with values in the space of
vector-weight automorphic forms

5.1. p-adic Eisenstein series. As we explain in Theorem 10, when R is a (profinite)
p-adic ring, we can extend Theorem 2 to the case of continuous (not necessarily
locally constant) functions F . For the remainder of the paper, let N be as in
Section 4.2.

Theorem 10. Let R be a (profinite) p-adic OK -algebra. Fix an integer k ≥ n, and
let ν = (ν(σ ))σ∈6 ∈ Z6 . Let

F : (OK ⊗Zp)×Mn×n(OE ⊗Zp)→ R
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be a continuous function supported on (OK ⊗Zp)
×
×GLn(OE⊗Zp) which satisfies

F(ex, NK/E(e)−1 y)= Nk,ν(e)F(x, y)

for all e ∈ O×K , x ∈ OK ⊗ Zp and y ∈ GLn(OE ⊗ Zp). Then there exists a p-adic
automorphic form Gk,ν,F whose q-expansion at a cusp m ∈ GM is of the form∑

0<β∈Lm
c(β)qβ (where Lm is the lattice in Hern(K ) determined by m), with c(β)

a finite Z-linear combination of terms of the form

F(a, NK/E(a)−1β)Nk,ν(a−1 detβ)NE/Q(detβ)−n

(where the linear combination is the sum over a finite set of p-adic units a ∈ K
dependent upon β and the choice of cusp m ∈ GM).

Proof. The proof is similar to the proof of [Katz 1978, Theorem (3.4.1)]. We remind
the reader of the idea of that result. For each integer j ≥ 1, define

F j : (OK ⊗Zp)×Mn×n(OE ⊗Zp)→ R/p j R

F j (x, y)= F(x, y) mod p j R.

Then F j is a locally constant function satisfying the conditions of Theorem 2. So,
by the q-expansion principle for p-adic forms [Hida 2005, Corollary 10.4; Hida
2004, Section 8.4], there is a p-adic automorphic form Gk,ν,F whose q-expansion
satisfies the conditions in the statement of the theorem. �

Corollary 11. Let R be a (profinite) p-adic OK -algebra, let ν = (ν(σ ))σ∈6 ∈ Z6 ,
and let k ≥ n be an integer. Let

F : (OK ⊗Zp)×Mn×n(OE ⊗Zp)→ R

be a continuous function supported on (OK ⊗Zp)
×
×GLn(OE⊗Zp) which satisfies

F(ex, NK/E(e)−1 yz)= Nk,ν(e)F(x, y)

for all e ∈ O×K , x ∈ OK ⊗Zp, and y ∈ Mn×n(OE ⊗Zp). Then

Gk,ν,F = Gn,0,Nk−n,ν(x−1 NK/E (x)n det y)F(x,y), (35)

where
Nk−n,ν(x−1 NK/E(x)n det y)F(x, y),

denotes the function defined by

(x, y) 7→ Nk−n,ν(x−1 NK/E(x)n det y)F(x, y).

on (OK⊗Zp)
×
×Mn×n(OE⊗Zp) and extended by 0 to (OK⊗Zp)×Mn×n(OE⊗Zp).

Proof. This follows from the q-expansion principle [Hida 2005, Corollary 10.4]. �
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Remark 12. We comment now on the relationship between the weight of Gn,0,F and
the p-adically continuous function F appearing in the subscript. By Corollary 11 and
Theorem 2, we have that, if F is a locally constant function satisfying the conditions
of Corollary 11, then the p-adic automorphic form Gn,0,Nk−n,ν(x−1 NK/E (x)n det y)F(x,y)
is the weight-(k, ν) p-adic automorphic form Gk,ν,F . More generally, by (34),
the p-adic automorphic form Gn,0,Nk−n,ν(x−1 NK/E (x)n det y)F(x,y)ζκ (NK/E (x)y−1) is the
weight-(κ ·κk,ν) p-adic automorphic form θ(ζκ)Gk,ν,F , where ζκ is a highest-weight
vector for the representation of weight κ . In particular, the p-adic automorphic
form Gn,0,Nk−n,ν(x−1 NK/E (x)n det y)F(x,y) det(NK/E (x)y−1)d is the p-adic automorphic form
θ(detd)Gn,0,Nk−n,ν(x−1 NK/E (x)n det y)F(x,y)ζκ (NK/E (x)y−1) of weight (k+ 2d, ν− d).

5.1.1. CM points and pullbacks. In this section, we compare the values of certain
p-adic automorphic forms and C∞ automorphic forms at CM points.3 This material
extends [Eischen 2013, Section 3.0.1] beyond the case of scalar weights. Let R
be an OK -subalgebra of Q∩ ι−1

∞
(OCp) in which p splits completely. Note that the

embeddings ι∞ and ιp restrict to R to give embeddings

ι∞ : R ↪→ C,

ιp : R ↪→ R0 = lim
←−−

m
R/pm R.

Let A be a CM abelian variety with PEL structure over R, i.e., a CM point of the
moduli space K Sh(R) or, equivalently, a point of Sh(U (n)×U (n)) ↪→ Sh(U (n, n)).
By extending scalars we may also view A as an abelian variety over C or R0.

By an argument similar to [Eischen 2013, Section 3.0.1], there are complex and
p-adic periods�= (�+, �−)∈ (C×)n×(C×)n and c= (c+, c−)∈ (O×

Cp
)n×(O×

Cp
)n ,

respectively, attached to each CM abelian variety A over R such that (if F is R-
valued, so Gk,ν,F arises over R)

(κ · κk,ν)
−1(�)

∏
σ∈6

κσ (2π i)ψZ (−k)Gk,ν,ζ,F
(
z; h, χ, µ, 1

2 k
)

= (κ · κk,ν)
−1(c)θ(ζ )Gk,ν,F (A), (36)

where z is a point in
∏
σ∈6 Hn corresponding to the CM abelian variety A viewed

as an abelian variety over C (by extending scalars to C). Here, Z is the irreducible
subrepresentation of

∏
v∈6 GLn(C)×GLn(C) of highest weight κ ∈ (Zn)6 and has

ζ as a highest-weight vector; by κ(a) with a a scalar, we mean κ evaluated at the
n-tuple (a, . . . , a) in the torus. (The periods � and c can be defined uniformly

3The significance of CM points is that they correspond to points of U (n)×U (n)⊆U (n, n), which
are the points used (for instance, by Shimura) to study algebraicity of values of Eisenstein series,
which are used in turn to study algebraicity of values of certain L-functions (through the doubling
method, or “pull back method”, a construction of L-functions described in various sources, including
[Gelbart et al. 1987, Part A; Cogdell 2006, Section 2]). Determining the precise values of these
Eisenstein series at CM points is neither necessary nor generally computationally feasible at this time.
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for all CM points at once [Katz 1978, Section 5.1]. For the present paper, though,
this is not necessary.) Note that when κ = detd (i.e., is the highest weight for a
one-dimensional representation), we recover [Eischen 2013, Equation (45)].

5.2. Eisenstein measures. In analogue with [Katz 1978, Lemma (4.2.0)] (which
handles the case of Hilbert modular forms), we have the following lemma (which
applies to all integers n ≥ 1):

Lemma 13. Let R be a p-adic OK -algebra. Then the inverse constructions

H(x, y)=
1

Nn,0(x NK/E(x)−n det y)
F(x, y−1), (37)

F(x, y)=
1

Nn,0(x−1 NK/E(x)n det y)
H(x, y−1) (38)

give an R-linear bijection between the set of continuous R-valued functions

F : (OK ⊗Zp)
×
×GLn(OE ⊗Zp)→ R

satisfying

F(ex, NK/E(e)−1 y)= Nn,0(e)F(x, y) for all e ∈ O×K

and the set of continuous R-valued functions

H : (OK ⊗Zp)
×
×GLn(OE ⊗Zp)→ R

satisfying
H(ex, NK/E(e)y)= H(x, y) for all e ∈ O×K .

Proof. The proof follows immediately from the properties of F and H . �

Let
Gn = ((OK ⊗Zp)

×
×GLn(OE ⊗Zp))/O

×

K , (39)

where O×K denotes the p-adic closure of O×K embedded diagonally, as (e, NK/E(e)),
in (OK ⊗ Zp)

×
×GLn(OE ⊗ Zp) (and, as before, (OE ⊗ Zp)

× is embedded diag-
onally inside of GLn(OE ⊗Zp)). Then Lemma 13 gives a bijection between the
R-valued continuous functions H on Gn and the R-valued continuous functions F
on (OK ⊗Zp)

×
×GLn(OE ⊗Zp) satisfying F(ex, NK/E(e)−1 y)= Nn,0(e)F(x, y)

for all e ∈ O×K .
For any (profinite) p-adic ring R, an R-valued p-adic measure on a (profinite)

compact, totally disconnected topological space Y is a Zp-linear map

µ : C(Y,Zp)→ R

or, equivalently [Katz 1978, Section 4.0], an R′-linear map

µ : C(Y, R′)→ R
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for any p-adic ring R′ such that R is an R′-algebra. Instead of µ( f ), one typically
writes ∫

Y
f dµ.

In Theorem 14, we specialize to the case where R is the ring Vn,n of p-adic
automorphic forms on U (n, n) and Y is the group Gn defined in (39).

Theorem 14 (a p-adic Eisenstein measure for vector-weight automorphic forms).
Let R be a profinite p-adic ring. There is a Vn,n-valued p-adic measure µ= µb,n

on Gn defined by ∫
Gn

H dµb,n = Gn,0,F

for all continuous R-valued functions H on Gn , with

F(x, y)=
1

Nn,0(x−1 NK/E(x)n det y)
H(x, y−1)

extended by 0 to all of (OK ⊗Zp)×Mn×n(OE ⊗Zp).

Proof. F is the function corresponding to H under the bijection in Lemma 13. The
theorem then follows immediately from Theorem 10, Corollary 11, Lemma 13, and
the q-expansion principle. �

Note that the measure µb,n depends only upon n and b. In Section 6, we relate
the measure µb,n to the Eisenstein measure in [Katz 1978, Definition (4.2.5) and
Equation (5.5.7)] and comment on how µb,n can be modified to the case of Siegel
modular forms (i.e., automorphic forms on symplectic groups).

It follows from the definition of the measure µb,n in Theorem 14 that, for each
highest-weight vector ζκ of highest weight κ ,∫

Gn

H(x, y)ζκ(NK/E(x)y−1) dµb,n = θ(ζκ)Gn,0,F(x,y).

Now, let A be an ordinary CM abelian variety with PEL structure over a subring R
of Q∩OCp , i.e., a CM point of the moduli space K Sh(R), or equivalently, a point
of Sh(U (n)×U (n)) ↪→ Sh(U (n, n)). As discussed above, by extending scalars,
we may also view A as an abelian variety over C or over R0 = lim

←−−m R/pm R. It
follows from (36) and Corollary 11 that, for F(x, y) locally constant, supported on
(OK ⊗Zp)

×
×GLn(OE ⊗Zp) and satisfying

F(ex, NK/E(e)−1 y)= Nk,ν(e)F(x, y)
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for all e ∈ O×K , x ∈ OK ⊗Zp, and y ∈ GLn(OE ⊗Zp),

(κ · κk,ν)
−1(c)

∫
Gn

1
Nk,ν(x NK/E(x)−n det y)

F(x, y−1)ζκ(NK/E(x)y−1) dµb,n(A)

= (κ · κk,ν)
−1(�)

∏
σ∈6

κσ (2π i)ψZ (−k)Gk,ν,ζκ ,F
(
z, 1

2 k
)
, (40)

and, for any d = (dv)v∈6 ∈ Z6
≥0,

(κk+2d,ν−d)
−1(c)

×

∫
Gn

1
Nk,ν(x NK/E(x)−n det y)

F(x, y−1)det(NK/E(x)y−1)d dµb,n(A)

= (κk+2d,ν−d)
−1(�)

∏
σ∈6

(2π i)ndψZ (−k)Gk+2d,ν−d,F(x,y)
(
z, 1

2 k
)
,

where z is a point in
∏
σ∈6 Hn corresponding to the CM abelian variety A viewed

as an abelian variety over C (by extending scalars to C) and � and c are the periods
from (36). Here, Z is the irreducible subrepresentation of

∏
σ∈6 GLn(C)×GLn(C)

of highest weight κ and has ζκ as a highest-weight vector; by κ(a) with a a scalar,
we mean κ evaluated at the n-tuple (a, . . . , a) in the torus.

In other words, the p-adic measure µb,n allows us to p-adically interpolate the
values of the C∞ (not necessarily holomorphic) function Gk,ν,ζκ ,F

(
z, 1

2 k
)

at CM
points z.

Theorem 15. For each ordinary abelian variety A defined over a (profinite) p-adic
OK -algebra R0, there is an R0-valued p-adic measure µ(A) := µb,n(A) defined by∫

Gn

H dµb,n(A)= Gn,0,F (A)

for all continuous R-valued functions H on Gn , with

F(x, y)=
1

Nn,0(x−1 NK/E(x)n det y)
H(x, y−1)

extended by 0 to all of (OK ⊗ Zp)× Mn×n(OE ⊗ Zp). If R0 = lim
←−−m R/pm R with

R ⊆ Q, A is an ordinary CM point defined over R, and F is a locally constant
function supported on (OK ⊗Zp)

×
×GLn(OE ⊗Zp) satisfying

F(ex, NK/E(e)−1 y)= Nk,ν(e)F(x, y)

for all e ∈ O×K , x ∈ OK ⊗Zp, and y ∈ GLn(OE ⊗Zp), then

(κ · κk,ν)
−1(c)

∫
Gn

1
Nk,ν(x NK/E(x)−n det y)

F(x, y−1)ζκ(NK/E(x)y−1) dµb,n(A)

= (κ · κk,ν)
−1(�)

∏
σ∈6

κσ (2π i)ψZ (−k)Gk,ν,ζκ ,F
(
z, 1

2 k
)
,
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with z ∈
∏
v∈6 Hn corresponding to the ordinary CM abelian variety A viewed as

an abelian variety over C.

The pullback of an automorphic form on U (n, n) to U (n)×U (n) is automatically
an automorphic form on the product of definite unitary groups U (n)×U (n). So
Theorem 14 also gives a p-adic measure with values in the space of automorphic
forms on the product of definite unitary groups U (n)×U (n). In [Eischen 2014,
Section 4], we explain how to modify our construction to obtain p-adic measures
with values in the space of automorphic forms on certain nondefinite groups.

Remark 16 (relationship to the Eisenstein measures in [Eischen 2013, Section 4]).
For the curious reader, we briefly explain the relationship between the measure µb,n

defined in Theorem 14 and the measure φ defined in [Eischen 2013, Theorem 20].
For each v ∈6, let rv = r(v)≤ n be a positive integer and let r = (rv)v ∈ Z6 . As
in [Eischen 2013, Equation (33)], let

T (r)=
∏
v∈6

OE
×

v × · · ·×OE
×

v︸ ︷︷ ︸
rv copies

. (41)

Let ρ =
∏
v∈6(ρ1,v, . . . , ρr(v),v) be a p-adic character on T (r) (i.e., ρ((αv)v∈6) :=∏

v∈6

∏r(v)
i=1 ρi,v(αv) for all α = (αv)v∈6 ∈ T (r)), let n = n1,v + · · · + nrv,v be a

partition of n for each v ∈6, and let Fρ be the function on Mn×n(E) defined by

Fρ(x) :=
∏
v∈6

r(v)∏
i=1

ρi,v(detni (x)),

with det j defined as on page 2455. Let χ be a p-adic function supported on
(OK ⊗Zp)

×/O×K and extended by 0 to all of OK ⊗Zp . Let Hρ,χ be the function
corresponding via the bijection in Lemma 13 to the function Fρ,χ supported on Gn

(and extended by 0) defined by

Fρ,χ (x, y)= χ(x)Nn,0(x)Fρ(NK/E(x) t y).

Then ∫
Gn

Hρ,χ dµb,n =

∫
(OK⊗Zp)×/O

×

K×T (r)
(χ, ρ) dφ.

Note that the measure φ is dependent upon the choice of r and the choice of the
partition of n, while the measure µb,n is independent of both of these choices.

6. Remarks about the case of symplectic groups, Siegel modular forms, and
Katz’s Eisenstein measure for Hilbert modular forms

The case of Siegel modular forms is quite similar. We essentially just need to replace
the CM field K with the totally real field E throughout. Once we have replaced
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K by E , Nk,ν becomes Nk
E/Q and NK/E becomes the identity map. Consequently,

(37) and (38) become

H(x, y)=
1

NE/Q(x1−n det y)n
F(x, y−1),

F(x, y)=
1

NE/Q(x−1+n det y)n
H(x, y−1).

To highlight the similarity with [Katz 1978, Section 4.2] we note that, when n = 1,
these equations become

H(x, y)=
1

NE/Q(y)
F(x, y−1),

F(x, y)=
1

NE/Q(y)
H(x, y−1).

This relationship between H and F is similar to the relationship between the similar
functions denoted H and F by Katz [1978, Section 4.2]. (The minor difference is
due to the fact that, throughout the paper, his F(x, y) is our F(y, x).)

The differential operators are developed from the C∞ perspective simultaneously
for both unitary and symplectic groups in [Shimura 2000, Section 12]. As noted
in [Eischen 2012, p. 4; 2012, Section 3.1.1; Panchishkin 2005; Courtieu and
Panchishkin 2004], the algebraic geometric and p-adic formulation of the operators
for Siegel modular forms (i.e., for symplectic groups) is similar. In the case of Siegel
modular forms, the algebraic geometric formulation of the differential operators
is discussed in [Harris 1981, Section 4]. Also, the case of symplectic groups is
handled directly alongside the case of unitary groups in Hida’s discussion [2004,
Chapter 8] of p-adic automorphic forms. So the construction in this paper carries
over with only minor changes (essentially, replacing K by E throughout) to the
case of symplectic groups over a totally real field E and automorphic forms (Siegel
modular forms) on those groups.

6.1. The case n = 1. Continuing with the symplectic case with n = 1, Theorem 2
becomes:

Theorem 17. Let R be an OE -algebra and let k ≥ 1 be an integer. For each locally
constant function

F : (OE ⊗Zp)× (OE ⊗Zp)→ R

supported on (OE ⊗Zp)
×
× (OE ⊗Zp)

× which satisfies

F(ex, e−1 y)= NE/Q(e)k F(x, y) (42)

for all e ∈ O×E , x ∈ OE⊗Zp, and y ∈ OE⊗Zp, there is a Hilbert modular form Gk,F

of weight k defined over R whose q-expansion at a cusp m ∈ GM is of the form
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β>0 c(β)qβ (where Lm is the lattice in E determined by m) with c(β) a finite

Z-linear combination of terms of the form

F(a, (a)−1β)N(a−1β)k NE/Q(β)
−1

(where the linear combination is a sum over a finite set of p-integral a∈ E dependent
upon β and the choice of cusp m ∈ GM).

Still continuing with the symplectic case with n = 1, Theorem 14 becomes:

Theorem 18. There is a measure µ on

G= ((OE ⊗Zp)
×
× (OE ⊗Zp)

×)/O×E

(with values in the space of p-adic Hilbert modular forms), defined by∫
G

H dµ= G1,F

for all continuous R-valued functions H on G, with

F(x, y)=
1

NE/Q(y)
H(x, y−1)

extended by 0 to all of (OE ⊗Zp)× (OE ⊗Zp).

Note that we have essentially recovered the Eisenstein series and measure from
[Katz 1978, Definition (4.2.5)]. (Again, the difference between Katz’s order of
the variables x and y and ours is due to the fact that, throughout the paper, his
F(x, y) is our F(y, x).) The reader might notice the similarities with [Katz 1978,
(5.5.1)–(5.5.7)]. In particular, let χ be a Grössencharacter of the CM field K whose
conductor divides p∞ and whose infinity type is

−k
∑
σ∈6

σ −
∑
σ∈6

d(σ )(σ − σ̄ )

with d(σ ) ≥ 0 for all σ ∈ 6 and k ≥ n. We view χ as an OCp -valued character
on A∞,××

∏
v∈6 Q (by restricting it to this group) and consider its restriction to

the subring consisting of elements ((1v)v-p∞, a, a), with a ∈ OK ⊗Z(p), which is a
subring of

(OK ⊗Zp)
×
−→∼ (OE ⊗Zp)

×
× (OE ⊗Zp)

×.

Then we have

χ(α)= χfinite(α) ·

∏
σ∈6 σ(α)

d(σ )∏
σ∈6 σ(α)

k+d(σ ) ,

χ(x, y)= χfinite(x, y) ·
∏
σ∈6 σ(x)

d(σ )∏
σ∈6 σ(y)k+d(σ ) ,
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with χfinite a locally constant function. If

F(x, y)=
1

N(y)
χ

(
x,

1
y

)
= χfinite

(
x,

1
y

)
· N(y)k−1

∏
σ∈6

σ(xy)d(σ ), (43)

then ∫
G
χ(x, y) dµb,1 = G1,F (44)

= G1,χfinite(x,1/y)N(y)k−1
∏
σ∈6 σ(xy)d(σ ) (45)

= Gk,χfinite(x,1/y)
∏
σ∈6 σ(xy)d(σ ) (46)

=

( ∏
σ∈6

θ(σ )d(σ )
)
(Gk,χfinite(x,1/y)), (47)

where θ(σ ) denotes the (σ component of the) differential operator θ(det) acting on
automorphic forms in the one-dimensional, symplectic case. Note the similarity of
(43) through (47) with [Katz 1978, Equations (5.5.6)–(5.5.7)].
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Explicit points on the Legendre curve III
Douglas Ulmer

We continue our study of the Legendre elliptic curve y2
= x(x + 1)(x + t) over

function fields Kd=Fp(µd , t1/d). When d= p f
+1, we have previously exhibited

explicit points generating a subgroup Vd ⊂ E(Kd) of rank d − 2 and of finite,
p-power index. We also proved the finiteness of X(E/Kd) and a class number
formula: [E(Kd) : Vd ]

2
= |X(E/Kd)|. In this paper, we compute E(Kd)/Vd

and X(E/Kd) explicitly as modules over Zp[Gal(Kd/Fp(t))].

An errata was posted on 31 May 2017 in an online supplement.

1. Introduction

Let p be an odd prime number, Fp the field of p elements, and K = Fp(t) the
rational function field over Fp. Let E be the elliptic curve over K defined by
y2
= x(x + 1)(x + t). In [Ulmer 2014b], we studied the arithmetic of E over the

extension fields Kd = Fp(µd , t1/d) for integers d not divisible by p. In particular,
when d= p f

+1, we exhibited explicit points generating a subgroup Vd ⊂ E(Kd) of
rank d−2 and finite p-power index. Moreover, we showed that the Tate–Shafarevich
group X(E/Kd) is finite and its order satisfies |X(E/Kd)|= [E(Kd) :Vd ]

2. Some
of these results were generalized to other values of d in [Conceição et al. 2014].

Our goal in this paper is to study the quotient group E(Kd)/Vd and the Tate–
Shafarevich group X(E/Kd) as modules over the group ring Zp[Gal(Kd/K )].
In fact, we will completely determine both modules in terms of combinatorial
data coming from the action of the cyclic group 〈p〉 ⊂ (Z/dZ)× on the set Z/dZ.
Stating the most precise results requires some preliminaries that are given in the
next section, so in this introduction, we state only the main qualitative results.

Theorem 1.1. Let p be an odd prime number, and let d = p f
+ 1. Let K = Fp(t),

Kd = Fp(µd , u) where ud
= t , and G = Gal(Kd/K ). Let E be the elliptic curve

over K defined by y2
= x(x+1)(x+ t). Let Vd be the subgroup of E(Kd) generated

by the point P = (u, u(u+ 1)d/2) and its conjugates by G. Let X(E/Kd) be the
Tate–Shafarevich group of E over Kd . Then E(Kd)/Vd and X(E/Kd) are finite
abelian p-groups with the following properties:

MSC2010: primary 11G05, 14G05; secondary 11G40, 14K15.
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(1) E(Kd)/Vd and X(E/Kd) are trivial if and only if f ≤ 2.

(2) The exponent of the group E(Kd)/Vd is pb( f−1)/2c. The exponent of the group
X(E/Kd) is pb f/3c. Here bxc is the greatest integer ≤ x.

(3) (E(Kd)/Vd)
2 and X(E/Kd) are isomorphic as Zp[G]-modules if and only if

f ≤ 4. If f > 4, they are not isomorphic as abelian groups.

(4) The Jordan–Hölder factors of X(E/Kd) as Zp[G]-modules are the same as
those of E(Kd)/Vd with multiplicities doubled.

(5) There is a polynomial F f (T ) ∈ Z[1/2][T ] depending on f but independent
of p such that

|X(E/Kd)| = pF f (p)

for all p > 2.

Part (4) of the theorem may be viewed as an analogue of the Gras conjecture;
see [Gras 1977; Mazur and Wiles 1984].

To my knowledge, the phenomenon of “interpolation in p” in part (5) has not
been observed before. In fact, even more is true, namely that all of the invariants
of X(E/Kd) and E(Kd)/Vd as abelian p-groups (i.e., the order of their pa-torsion
subgroups for all a) are described by polynomials independent of p.

Results on the exact structure of E(Kd)/Vd and X(E/Kd) as Zp[G]-modules
will be stated in Section 3 after some preliminaries in Section 2.

In fact, we will prove results on the discriminant of the “new part” of E(Kd) with
its height pairing and on the Zp[G]-module structure of the “new part” of X(E/Kd)

for any d such that p is balanced modulo d in the sense of [Conceição et al. 2014,
Definition 2.1]. (This is the situation in which there are points on E(Kd) not coming
from E(Ke) for e a proper divisor of d.) In cases where we have explicit points
(namely for d = p f

+ 1 as in [Ulmer 2014b] or d = 2(p f
− 1) as in [Conceição

et al. 2014]), we obtain good control on E(Kd)/Vd as well. Some of our results
apply to other curves and their Jacobians and for p = 2. See Theorems 3.1.1, 3.2.1,
and 3.3.1 for the main refined results.

The two key ideas that afford such strong control on Mordell–Weil and Tate–
Shafarevich groups are (i) that the Néron model of E over P1

/Fp(µd )
is dominated

by a product of curves, and (ii) ideas of Shioda and Dummigan that allow us to
use crystalline cohomology to compute Tate cycles and Brauer groups for products
of curves. Similar ideas were used by Dummigan [1995; 1999] to compute the
discriminant of the Mordell–Weil lattice and the structure of the Tate–Shafarevich
group for a constant supersingular elliptic curve over the function field of a Hermitian
curve. In our case, the group of symmetries (essentially G above) is much smaller,
the representation theory is much simpler, and as a result, we are able to boil the
combinatorics down to very explicit statements.
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Here is an outline of the rest of the paper. In Section 2, we consider the orbits
of 〈p〉 ⊂ (Z/dZ)× acting on Z/dZ. These orbits index certain Zp[G]-modules that
we use to decompose and describe E(Kd) and X(E/Kd). In Section 3, we state the
more precise results on E(Kd) and X(E/Kd) alluded to above. In Section 4, we
work out the geometry relating the Néron model of E to a product of curves (which
in fact are Fermat quotient curves) and the relations between the Mordell–Weil
and Tate–Shafarevich groups of E and the Néron–Severi and Brauer groups of
the product of curves. In Section 5, we work out the Néron–Severi group and the
p-part of the Brauer group of a general product of curves in terms of crystalline
cohomology. That this is possible (in the context of supersingular surfaces) was
noted by Shioda [1991] and developed more fully by Dummigan [1995]. We use
a somewhat different method than Dummigan did, yielding more general results,
although his results would suffice for our application to the Legendre curve. In
Section 6, we collect results on the cohomology of the curves appearing in the
product mentioned above. These results give the raw material for Section 7, where
we carry out the p-adic exercises needed to compute E(Kd) and X(E/Kd). In
Section 8, we put all the pieces together and prove the main results. Finally,
Section 9 contains various generalizations and complements.

2. Orbits, invariants, and representations

Throughout this section, p is an arbitrary prime number and d is a positive integer
not divisible by p. We write (Z/dZ)× for the multiplicative group modulo d and
〈p〉 for the cyclic subgroup generated by p.

2.1. Orbits. Consider the action of (Z/dZ)× on the set Z/dZ by multiplication.
By restriction, the subgroup 〈p〉 acts on Z/dZ. We write Õ = Õd,p for the set of
orbits. Thus, if o ∈ Õ and i ∈ o⊂ Z/dZ, then o= {i, pi, p2i, . . . }.

Clearly the orbit through 0 ∈ Z/dZ is a singleton {0}. If d is even (and therefore
p is odd), then the orbit through d/2 is also a singleton because p(d/2)= (d/2)
in Z/dZ. For reasons that will become apparent later, we will usually exclude these
two orbits, and we define

O = Od,p =

{
Õ \ {{0}} if d is odd,
Õ \ {{0}, {d/2}} if d is even.

Note that if o∈ Õ , then gcd(i, d) is the same for all i ∈ o, and we write gcd(o, d)
for this common value. It will sometimes be convenient to consider only orbits
with gcd(o, d)= 1 (which one might call “new” orbits), so we define

O ′ = O ′d,p = {o ∈ O | gcd(o, d)= 1}.
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Note that O ′d,p is just the set of cosets of 〈p〉 in (Z/dZ)×. Note also that the set of
orbits o ∈ O with gcd(o, d)= e for a fixed e < d/2 is in bijection with O ′d/e,p.

2.2. Balanced orbits. From here through the end of Section 2.7, we assume that
d > 2 so that Od,p is not empty.

As in [Conceição et al. 2014], we divide (Z/dZ)× into two subsets A and B where
A and B consist of those classes with least positive residue in the intervals (0, d/2)
and (d/2, d), respectively.

We say that an orbit o is balanced if we have |o∩ A| = |o∩ B|, and we say d is
balanced modulo p if every orbit o∈ O ′d,p is balanced. For example, by [Conceição
et al. 2014, §5.4, §5.5], d is balanced modulo p if d divides p f

+ 1 or if d divides
2(p f

− 1) and the ratio 2(p f
− 1)/d is odd.

2.3. Invariants of orbits. Associated to each orbit o, we form a word on the two-
letter alphabet {u, l} (u for upper and l for lower) as follows. Choose a base point i
so that the orbit o= {i, pi, p2i, . . . , p|o|−1i}. The associated word w = w1 · · ·w|o|

is defined by

w j =

{
l if −p j−1i ∈ A,
u if −p j−1i ∈ B.

(The reason for the minus signs is explained in Remark 6.4.1.) Thus, for example,
if p= 3 and d = 28, the word associated to the orbit {6, 18, 26, 22, 10, 2} with base
point 6 is ullluu.

Note that w depends on the choice of i ∈ o. Changing the choice of i changes w
by a cyclic permutation of the letters.

Given a word w=w1 · · ·w|o|, we define a sequence of integers a j by a0 = 0 and

a j = a j−1+

{
1 if w j = u,
−1 if w j = l.

(So the word w is viewed as a sequence of instructions to go up or down.)
If o is balanced, then the word w associated to o has as many u’s as l’s and

a|o| = 0.

Definition 2.3.1. We say the base point i is good if a j ≥ 0 for 0 ≤ j ≤ |o|. It is
easy to see that every o has a good base point. The standard base point for an
orbit o is the good base point with smallest least positive residue.

So for example, if p = 3, d = 364, and o is the orbit {7, 21, 63, 189, 203, 245},
then there is a unique good base point, namely 7, with associated word uuulll. On
the other hand, if o is the orbit {37, 111, 333, 271, 85, 255}, then the good base
points are 37 (with word uullul) and 85 (with word uluull), and the standard base
point is 37. From now on, given an orbit, we choose the standard base point and
form the word associated to that base point. This yields a well-defined function from
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orbits to words. (It will be essential below to choose a good base point, but which
good base point is chosen is of no import. We introduce the notion of standard base
point simply for convenience.)

Now suppose that w is the word associated to a balanced orbit o. Then the first
letter of w must be u and the last must be l, so we can write w in exponential form

w = ue1le2 · · · le2k

where each e j > 0.

2.4. The complementary case. Suppose that d>2 and d divides p f
+1 for some f

so that −1 ∈ 〈p〉. If i ∈ A, then p f i ∈ B and conversely. It follows that if o ∈ Od,p

and w is the associated word, then the second half of w is the “complement” of the
first half, i.e., each u is replaced with an l and each l is replaced with a u. More
formally, if w = w1w2 · · ·w|o|, then {w j , w|o|/2+ j } = {u, l} for all 1≤ j ≤ |o|/2.

A similar discussion applies when d divides 2(p f
− 1) with an odd quotient

and o is an orbit with gcd(o, d) odd. Indeed, in this case, p f
≡ 1+ d/2 (mod d)

and p f is an element of order 2 in (Z/dZ)× that exchanges A and B. Thus, if o is
an orbit with gcd(o, d) odd, then the associated word has second half equal to the
complement of the first half.

These examples motivate the following definition:

Definition 2.4.1. We say an orbit o is complementary if it is balanced and the
associated word w = w1 · · ·w|o| satisfies {w j , w|o|/2+ j } = {u, l} for 1≤ j ≤ |o|/2.

If o is complementary and we write the associated word in exponential form
w = ue1le2 · · · le2k , then ek+ j = e j . Since the last letter must be l, the last letter of
the first half must be u and so k must be odd.

2.5. Comparison with Dummigan’s string diagrams. Dummigan [1995] intro-
duces certain words on the alphabet {X, O} that he calls string diagrams. He
works entirely in the context where d = p f

+ 1 (so all orbits are complementary),
and his diagrams are invariants of orbits closely related to our words w(o). Indeed,
given an orbit o with base point i and word w(o), the associated string diagram is
s = s1 · · · s f where

s j =

{
O if w j = w j+1,

X if w j 6= w j+1.

He also defines circle diagrams by taking into account the rotations induced by a
change of base point. It is easy to see that the map from words to string diagrams
is 2-to-1 and that we could phrase our arguments in terms of Dummigan’s string
and circle diagrams. However, for most of our purposes, words as we have defined
them are more convenient.
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2.6. More invariants. We continue to assume that d > 2. Let o be a balanced
orbit with associated word w written in exponential form as w = ue1 · · · le2k . The
exponents e1, . . . , e2k give one invariant of the orbit o.

A second invariant of the orbit o is its height, defined as

ht(o)=max{e1, e1− e2+ e3, . . . , e1− e2+ e3− · · ·+ e2k−1}.

We may also describe the height as the maximum value of the function i 7→ai defined
above. Note that in the complementary case, we have ht(o)= e1− e2+ · · ·+ ek .

We will define a third invariant in terms of invariant factors of certain bidiagonal
matrices. To that end, consider the integer, k× k, bidiagonal matrix

B = B(e1, . . . , e2k−1) :=


pe1 −pe2 0 · · · · · ·

0 pe3 −pe4 · · · · · ·

0 0 pe5 · · · · · ·

...
...

...
. . .

...
...

... pe2k−1


and define d1 ≤ d2 ≤ · · · ≤ dk as the exponents of the invariant factors of B so that
B can be transformed into

A =


pd1 0 0 · · · · · ·

0 pd2 0 · · · · · ·

0 0 pd3 · · · · · ·

...
...

...
. . .

...
...

... pdk


by a series of integer row and column operations. We will discuss how to compute
these invariants in the next subsection.

2.7. Computing invariant factors. We continue with the assumptions of the preced-
ing subsection (so o is a balanced orbit), and we give two algorithms for computing
the invariants d1, . . . , dk attached to o. This subsection is not needed for the
statements of the main results in Section 3, so it may be skipped on a first reading.

Roughly speaking, the first algorithm picks out d1 and continues inductively
while the second picks out dk and continues inductively. The second is more
complicated than the first, but it gives valuable information in the complementary
case; see Lemma 2.7.3 and Remark 2.7.4 below. Both algorithms are based on the
well-known fact that the i-th invariant factor of a matrix B is

gcd(i × i minors of B)/ gcd((i − 1)× (i − 1) minors of B).
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To describe the results, we introduce the following notation: for 1≤ i ≤ j ≤2k−1,
let ei j = ei − ei+1+ ei+2− · · ·± e j . Also, we say that two matrices are equivalent
(denoted by ∼) if one can be transformed to the other by a series of integer row
and column operations.

Lemma 2.7.1. Assume that k > 1, let e1, . . . , e2k−1 be positive integers, and let
d1, . . . , dk be the integers attached as above to B(e1, . . . , e2k−1). We have d1 =

min{e1, . . . , e2k−1}. Choose i such that d1 = ei , and define

B ′ =


B(e3, . . . , e2k−1) if i = 1,
B(e1, . . . , ei−2, ei−1,i+1, ei+2, . . . , e2k−1) if 1< i < 2k− 1,
B(e1, . . . , e2k−3) if i = 2k− 1.

Then B(e1, . . . , e2k−1) is equivalent to (pd1)⊕ B ′.

Note that we make no assumptions on the ei other than positivity. The result
can thus be applied inductively to B ′ and thus gives an algorithm for computing all
of the d j . For example, if (e1, . . . , e2k)= (4, 1, 3, 5, 4, 3, 5, 4, 2, 1, 2, 6), then the
algorithm proceeds as follows:

B(4, 1, 3, 5, 4, 3, 5, 4, 2, 1, 2) ∼
(i=2)

(p1)⊕ B(6, 5, 4, 3, 5, 4, 2, 1, 2),

B(6, 5, 4, 3, 5, 4, 2, 1, 2) ∼
(i=7)

(p1)⊕ B(6, 5, 4, 3, 5, 4, 3),

B(6, 5, 4, 3, 5, 4, 3) ∼
(i=4)

(p3)⊕ B(6, 5, 6, 4, 3),

B(6, 5, 6, 4, 3) ∼
(i=5)

(p3)⊕ B(6, 5, 6),

B(6, 5, 6) ∼
(i=2)

(p5)⊕ B(7),

so the invariants d j are 1, 1, 3, 3, 5, and 7.

Proof of Lemma 2.7.1. That d1=min{e1, . . . , e2k−1} is evident from the description
of d1 as gcd{pe1, . . . , pe2k−1}.

Write B for B(e1, . . . , e2k−1). If i = 1, then pe1 divides −pe2 , and a single
column operation transforms B into (pe1)⊕ B(e3, . . . , e2k−1). This is the desired
result.

Similarly, if i = 2k− 1, then pe2k−1 divides −pe2k−2 , and a single row operation
transforms B into B(e1, . . . , e2k−3)⊕ (pe2k−1). This is the desired result.

Now consider the case where 1< i < 2k− 1, and assume that i is odd. Then a
row operation followed by a column operation transforms the submatrix(

−pei−1 0
pei −pei+1

)
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of B into (
0 −pei−1,i+1

pei 0

)
and leaves the rest of B unchanged. Permuting rows and columns yields

(pei )⊕ B(e1, . . . , ei−2, ei−1,i+1, ei+2, . . . , e2k−1).

The case where 1< i < 2k− 1 and i is even is similar. We first transform the
submatrix (

pei−1 −pei

0 pei+1

)
of B into (

0 −pei

pei−1,i+1 0

)
and then permute rows and columns and multiply row 1 (containing −pei ) by −1
to arrive at

(pei )⊕ B(e1, . . . , ei−2, ei−1,i+1, ei+2, . . . , e2k−1). �

Lemma 2.7.2. Assume that k > 1, let e1, . . . , e2k−1 be positive integers, and let
d1, . . . , dk be the integers attached as above to B(e1, . . . , e2k−1). We have

dk =max{ei j | 1≤ i ≤ j ≤ 2k− 1, i and j odd}.

Choose i ≤ j odd such that dk = ei j . Define a subset T ⊂ {1, 2, 3} and matrices Bα
for α ∈ S as follows:

• 1 ∈ T if and only if i > 1. If i > 1, let B1 = B(e1, . . . , ei−2).

• 2∈ T if and only if i < j . If i < j , let B2= B(ei+1, . . . , e j−1)
t (t = transpose).

• 3 ∈ T if and only if j < 2k− 1. If j < 2k− 1, let B3 = B(e j+2, . . . , e2k−1).

Let B ′ =
⊕

α∈T Bα. Then B(e1, . . . , e2k−1) is equivalent to (pdk )⊕ B ′.

Since we always choose a good base point for an orbit, if B(e1, . . . , e2k−1) is
the matrix attached to a balanced orbit o, then the invariant dk is equal to the height
of o. We have not emphasized this in the statement of the lemma because the top
invariant factor of a general bidiagonal matrix (e.g., the matrices Bα with α ∈ T )
need not be of the form e1 j .

This lemma applies equally well to lower-triangular bidiagonal matrices, so it
gives another inductive algorithm for computing all of the d j . For example, if

(e1, . . . , e2k−1)= (4, 1, 3, 5, 4, 3, 5, 4, 2, 1, 2),
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then (ignoring transposes) the algorithm proceeds as follows:

B(4, 1, 3, 5, 4, 3, 5, 4, 2, 1, 2) ∼
(i, j)=(1,7)

(p7)⊕ B(1, 3, 5, 4, 3)⊕ B(2, 1, 2),

B(1, 3, 5, 4, 3) ∼
(i, j)=(3,3)

(p5)⊕ B(1)⊕ B(3),

B(2, 1, 2) ∼
(i, j)=(1,3)

(p3)⊕ B(1),

so the invariants d j are 1, 1, 3, 3, 5, and 7.

Proof of Lemma 2.7.2. We write B for B(e1, . . . , e2k−1). The value of dk can be
seen from the description of the invariant factors of B in terms of minors. Indeed,
note that

det B = pe1+e3+···+e2k−1 .

On the other hand, the nonzero (k − 1)× (k − 1) minors of B are of two types.
Those obtained by deleting row and column i are of the form ± det B/pe2i−1 , and
those obtained by deleting row i and column j with j < i are of the form

±pe1+e3+···+e2 j−3 pe2 j+e2 j+2+···+e2i−2 pe2i+1+···+e2k−1 .

It follows that dk is the maximum of ei j , where i ≤ j and i and j are odd. This is
the first claim in the statement of the lemma.

To obtain the asserted equivalence, choose i ≤ j odd such that dk = ei j . If i > 1,
then the definition of ei j implies the inequalities

ei−2, j ≤ ei j =⇒ ei−2,i−1 ≤ 0,

ei−4, j ≤ ei j =⇒ ei−4,i−1 ≤ 0,
...

e1, j ≤ ei j =⇒ e1,i−1 ≤ 0.

It follows that we may eliminate the entry −pei−1 from B by a series of column
operations. More precisely, B is equivalent to B(e1, . . . , ei−2)⊕ B(ei , . . . , e2k−1).

Similarly, if j < 2k − 1, we have a series of inequalities ei j ≥ ei j+2, . . . ,
ei j ≥ ei,2k−1 and these imply that by a series of row operations we may eliminate
−pe j+1 , i.e., B is equivalent to B(e1, . . . , e j )⊕ B(e j+2, . . . , e2k−1).

If i > 1 and j < 2k− 1, then we may perform both of the procedures above, so

B ∼ B(e1, . . . , ei−2)⊕ B(ei , . . . , e j )⊕ B(e j+2, . . . , e2k−1).

If i = j , then B(ei )= (pdk ) and we are done.
It remains to prove that if i < j , then B(ei , . . . , e j ) is equivalent to (pdk )⊕

B(ei+1, . . . , e j−1)
t . To see this, we note that the definition of ei j implies that ei`≥ 0
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and e`j ≤ 0 for all even ` with i < ` < j . Using these inequalities, we transform
B(ei , . . . , e j ) by column operations into

0 −pei+1 0 · · · · · ·

0 pei+2 −pei+3 · · · · · ·

...
...

...
. . .

pdk 0 0 · · · pe j

 ,
then by transposing rows into

pdk 0 0 · · · pe j

0 −pei+1 0 · · · · · ·

0 pei+2 −pei+3 · · · · · ·

...
...

...
. . .

0 0 · · · pe j−2 −pe j−1

 ,

and finally by row operations and sign changes into (pdk )⊕ B(ei+1, . . . , e j−1)
t . �

Lemma 2.7.3. If o is complementary (so that k is odd and ek+i = ei for 1≤ i ≤ k),
then we have dk = e1k , the other d j come in pairs (i.e., d1 = d2, d3 = d4, . . . ), and

dk−1 = dk−2 =max{ei j | 2≤ i ≤ j ≤ k− 1, i and j even}.

Proof. It is easy to see that i = 1 and j = k achieves the maximum ei j , so we have
dk = e1k = ht(o). One application of Lemma 2.7.2 shows that B(e1, . . . , e2k−1) is
equivalent to

pdk ⊕ B(e2, . . . , ek−1)
t
⊕ B(e2, . . . , ek−1).

Thus, the invariant factors d1, . . . , dk−1 come in pairs. Applying the recipe of
Lemma 2.7.2 for the top invariant factor to B(e2, . . . , ek−1) gives the assertion
on dk−1 and dk−2. �

Remark 2.7.4. Suppose that e1, . . . , e2k are the exponents of a word coming from
a good base point (so e1, j ≥ 0 for all j), and suppose that e1,2 j+1 is maximum
among e1,`. Then the following four matrices and their transposes all have the same
invariant factors: B(e1, . . . , e2k−1), B(e2, . . . , e2k), B(e2 j+2, . . . , e2k, e1, . . . , e2 j ),
and B(e2 j+3, . . . , e2k, e1, . . . , e2 j+1). Indeed (ignoring transposes), the first step
of the second algorithm above shows that each of these matrices is equivalent to

(pe1,2 j+1)⊕ B(e2, . . . , e2 j )⊕ B(e2 j+3, . . . , e2k−1).

2.8. Representations of G. Fix an algebraic closure Fp of Fp, and view µd as
a subgroup of F×p . Let W (Fp) be the Witt vectors with coefficients in Fp, and
let χ : µd → W (Fp) be the Teichmüller character so that χ(ζ ) ≡ ζ (mod p) for
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all ζ ∈µd . Identifying W (Fp) with a subring of Qp, the Qp-valued character group
µ̂d of µd can be identified with Z/dZ by associating χ i with i .

The group 〈p〉 ⊂ (Z/dZ)× acts on µd via exponentiation. This yields an action
on µ̂d ∼= Z/dZ under which p acts by multiplication by p. It is thus natural to
consider the set Õ of orbits of 〈p〉 on Z/dZ. If i ∈ Z/dZ and o is the orbit of
〈p〉 through i , then the values of χ i lie in the Witt vectors W (Fp|o|) and the values
of
∑

i∈o χ
i lie in Zp =W (Fp).

Now fix a finite extension Fq of Fp(µd) in Fp, and let G1 = Gal(Fq/Fp). The
action of G1 on µd factors through the homomorphism G1→ 〈p〉 that sends Frp,
the p-power Frobenius, to p.

Let G be the semidirect product µd oG1. There is a canonical identification

G ∼= Gal(Fq Kd/K )= Gal(Fq(u)/Fp(t)).

To avoid confusion between number rings and group rings, we write H for µd .
Let Zp[H ] and Zp[G] be the group rings of H and G with coefficients in Zp. We
also write 0 = Zp[H ], which we view as a Zp[H ]-module in the obvious way.
Letting G1 act on 0 through its action on H makes 0 into a Zp[G]-module.

Proposition 2.8.1. (1) There is a canonical isomorphism of Zp[H ]-modules

0 =
⊕
o∈Õ

0o,

where 0o is a free Zp-module of rank |o| on which H acts with character∑
i∈o χ

i .

(2) For every orbit o, 0o ⊂ 0 is stable under Zp[G] and 0o⊗Qp is an absolutely
irreducible Qp[G]-module.

(3) 0o⊗Zp Fp is an absolutely irreducible Fp[G] module.

(4) If o 6= o′, then 0o ⊗Zp Qp 6∼= 0o′ ⊗Zp Qp and 0o ⊗Zp Fp 6∼= 0o′ ⊗Zp Fp as
G-modules.

(5) Suppose that Fq is a finite extension of Fp|o| . Fix i ∈ Z/dZ, and let o be the
orbit of 〈p〉 through i . Make the Witt vectors W (Fq) into a Zp[G]-module by
letting ζ ∈µd = H act by multiplication by ζ i and letting Frp ∈G1⊂G act by
the Witt-vector Frobenius. Then we have an isomorphism of Zp[G]-modules

W (Fq)∼= 0o⊗Zp Zp[Gal(Fq/Fp|o|)].

Proof. For (1), since
∑

i∈o χ
i takes values in Zp, setting

πo = (1/d)
∑
h∈H

(∑
i∈o

χ−i (h)
)

h,
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we have πo ∈ Zp[H ]. Orthogonality of characters implies that the elements πo

form a system of orthogonal idempotents: we have 1=
∑

o∈Õ πo and πoπo′ = 0 if
o 6= o′. We define 0o = πo0. This gives a direct-sum decomposition 0=

⊕
o∈Õ 0o.

It follows from the definition that 0o is a free Zp-module. We may compute its
rank by noting that 0⊗Zp Qp decomposes under H into lines where H acts by the
characters χ i with i ∈ Z/dZ, and the subspace 0o⊗Zp Qp is the direct sum of the
lines where H acts by χ i with i ∈ o, so 0o has Zp-rank |o|.

For (2), since gπo = πog for all g ∈ 〈p〉, it follows that 0o is stable under G. As
an H -module, 0o⊗Zp Qp decomposes into lines where H acts via χ i with i ∈ o, and
〈p〉 permutes these lines transitively, so 0o is absolutely irreducible as G-module.

Part (3) follows from a similar argument, using that d is relatively prime to p,
so the χ i are distinct modulo p.

Part (4) follows immediately from a consideration of characters.
For (5), first consider the case where Fq = Fp|o| . Now W (Fp|o|) is a cyclic Zp[G]-

module generated by 1 and with annihilator the left ideal generated by [p|o|]−1 and∏
i∈o([h]−χ

i (h)), where h is a generator of H . Using this, it is easy to check that
1 7→ πo defines an isomorphism of Zp[G]-modules W (Fp|o|)→ 0o. The general
case follows from this and the normal basis theorem for Fq over Fp|o| (which yields
an integral normal basis statement for the corresponding extension of Witt rings). �

Remark 2.8.2. If M is a Zp[G]-module, we write Mo for πo M . By definition, H
acts on Mo by characters χ i with i ∈ o. Note, however, that it is not clear a priori
what the action of G1 is on Mo. Indeed, the action of G1 does not enter into the
definition of πo, and so we will have to determine the full action of G on M by
other means. The reason for not using G1 in the definition of πo is that p may
divide the order of G1, and we prefer to avoid the resulting complications in the
representation theory of G.

Remark 2.8.3. We showed in [Ulmer 2014b, Corollary 4.3] that the group Vd

appearing in Theorem 1.1 is a cyclic module over Z[G] with relations 2
∑

i Pi =

2
∑

i (−1)i Pi = 0. It follows easily that Vd ⊗Zp is isomorphic to

⊕
o∈Od,p

0o.

Since E(Kd) is a G-invariant superlattice of Vd , the absolute irreducibility of 0o

noted above implies that we also have an isomorphism of Zp[G]-modules

E(Kd)⊗Zp ∼=
⊕

o∈Od,p

0o.
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3. Refined results

In this section, we state results on Mordell–Weil and Tate–Shafarevich groups
decomposed for the action of Galois. These imply the results stated in Theorem 1.1,
and they also give information in many other contexts. The proofs will be given in
Section 8.

Throughout, we fix a positive integer d prime to p and a finite extension Fq

of Fp(µd), and we set G = Gal(Fq(u)/Fp(t)). For the results on discriminants and
indices, the choice of Fq is not material, so we work over Kd = Fp(µd , u). On the
other hand, our results on the Tate–Shafarevich group depend significantly on the
choice of Fq .

3.1. Discriminants. We have seen in [Conceição et al. 2014] that the “new” part
of E(Kd) (i.e., the part not coming from E(Ke) with e a proper divisor of d) is
trivial if p is not balanced modulo d and has rank φ(d) if p is balanced modulo d .
In this subsection, we refine this result by breaking up E(Kd) for the action of G
and by computing the p-part of the discriminant of the height pairing.

Recall that E(Kd) carries a canonical real-valued height pairing that is nondegen-
erate modulo torsion. (See, e.g., [Ulmer 2014a, §4.3].) There is a rational-valued
pairing 〈 · , · 〉 such that the canonical height pairing is 〈 · , · 〉 log(|Fp(µd)|). For
convenience, we work with the rational-valued pairing. The group E(Kd)⊗ Zp

inherits a Qp-valued pairing, and the direct-sum decomposition

E(Kd)⊗Zp ∼=
⊕
o∈O

(E(Kd)⊗Zp)
o

is an orthogonal decomposition for this pairing. We write Disc(E(Kd)⊗Zp)
o for

the discriminant restricted to one of the factors. This is well-defined up to the
square of a unit in Zp, but we will compute it only up to units.

Recall the sequence a0, . . . , a|o| associated to o in Section 2.3 and the represen-
tation 0o defined in Section 2.8.

Theorem 3.1.1. (1) We have an isomorphism of Zp[G]-modules

(E(Kd)⊗Zp)
o∼=

{
0o if gcd(o, d) < d/2 and p is balanced modulo d/ gcd(o, d),
0 otherwise.

(2) If gcd(o, d) < d/2 and p is balanced modulo d/ gcd(o, d), then up to a unit
in Zp we have

Disc(E(Kd)⊗Zp)
o
= pa

where a = 2
∑|o|

j=1 a j .
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3.2. Indices. Now we suppose that

(a) d = p f
+ 1 and o ∈ Od,p is any orbit, or

(b) d = 2(p f
− 1) and o ∈ Od,p is such that gcd(o, d) is odd.

In these cases, the orbit o is complementary, and the word w associated to each o
may be written in exponential form

w = ue1le2 · · · uek le1ue2 · · · lek ,

where each e j > 0 and k is odd. In this case, ht(o)= e1− e2+ · · ·+ ek .
Let Vd ⊂ E(Kd) be the subgroup generated by the explicit points as in [Ulmer

2014b, Remark 8.3] (d = p f
+ 1) or [Conceição et al. 2014, Theorem 6.1] (d =

2(p f
− 1)).

Theorem 3.2.1. Under the hypotheses (a) or (b) above, we have an isomorphism
of Zp[G]-modules

(E(Kd)/Vd)
o ∼= 0o/pe,

where e = ( f − ht(o))/2. When gcd(o, d)= 1, e =
∑(k−1)/2

j=1 e2 j .

Under the assumptions of the theorem, it follows that (E(Kd)/Vd)
o
= 0 if and

only if the word corresponding to o has height f , and that occurs only for words
equivalent up to rotation to u f l f .

3.3. Tate–Shafarevich groups. Recall the integers d1, . . . , dk attached to an orbit o
in Section 2.6.

Theorem 3.3.1. For any d > 2 prime to p and any o ∈ Od,p, if gcd(o, d) < d/2
and p is balanced modulo d/ gcd(o, d), then:

(1) There is an isomorphism of Zp[G]-modules

X(E/Fq(u))o ∼=

∏k
j=1 Wd j (Fq)

Wdk (Fp|o|)
.

(2) In particular, if Fq = Fp(µd) so that Fq(u)= Kd and gcd(o, d)= 1, then

X(E/Kd)
o ∼=

k−1∏
j=1

Wd j (Fp|o|)
∼=

k−1∏
j=1

0o/pd j .

Under the assumptions of the theorem, it follows that X(E/Fq(u))o is trivial
only when Fq = Fp(µd) and k = 1, and k = 1 occurs if and only if the word
associated to o is u f l f .
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4. Domination by a product of curves

In this section, we relate the arithmetic of E/Fq(u) to that of a suitable product of
curves over Fq .

4.1. Basic data. Fix an integer d relatively prime to p, let Fq be a finite extension
of Fp(µd), and let G1 = Gal(Fq/Fp).

Let C be the smooth, projective curve over Fp with affine model zd
= x2
− 1.

We write P± for the rational points x =±1 and z = 0 on C. Extending scalars, the
group µ2×µd acts on C×Fp Fq by multiplying the x and z coordinates by roots of
unity. There is also an action of G1 on C×Fp Fq via the factor Fq . Altogether we
get an action of (µ2×µd)oG1 on C×Fp Fq . To simplify notation, for the rest of
this section, we let C denote the curve over Fq .

Let D be the curve associated to wd
= y2
− 1 so that D is isomorphic to C. It

has rational points Q± and an action of (µ2 ×µd)o G1 defined analogously to
those of C.

Let S = C×Fq D be the product surface. We let the group 1 := µ2 ×µd act
on S “antidiagonally”, i.e., with

(ζ2, ζd)(x, y, z, w)= (ζ2x, ζ−1
2 y, ζd z, ζ−1

d w).

Write NS(S) for the Néron–Severi group of S and NS′(S) for the orthogonal com-
plement in NS(S) of the subgroup generated by the classes of the divisors C×{Q+}
and {P+}×D. (We could also describe NS′(S) as DivCorr((C, P+), (D, Q+)), the
group of divisorial correspondences between the two pointed curves; see [Ulmer
2011, §0.5.1, §2.8.4].) The intersection form on NS(S) restricts to a nondegenerate
form on NS′(S). The action of 1 on S induces an action on NS′(S).

Let G=µdoG1. We let G act on S via its action on C; this yields an action of G
on NS′(S). We let G act on E(Fq(u)) via the identification G ∼=Gal(Fq(u)/Fp(t)).

The main result of this section relates the arithmetic of the Legendre curve
E/Fq(u) to that of S.

Theorem 4.2. With notation as above:

(1) There is a canonical isomorphism

E(Fq(u))⊗Z[1/2d] −→∼ (NS′(S)⊗Z[1/2d])1,

where the superscript 1 denotes the subgroup of invariants. This isomorphism
is compatible with the G-actions, and under it, the height pairing on E(K )
corresponds to the intersection pairing on NS′(S).

(2) There is a canonical isomorphism

X(E/Fq(u))[p∞] −→∼ Br(S)[p∞]1.
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Here Br(S) is the (cohomological) Brauer group of S and [p∞] means the
p-torsion subgroup. This isomorphism is compatible with the G-actions.

The rest of this section is devoted to a proof of the theorem and the discussion
of a mild generalization. Note that the theorem for odd values of d follows from
the case of even d (by taking invariants by a suitable subgroup of G), so for the
rest of this section, we assume that d is even.

4.3. The basic geometric result. The main step in the proof of Theorem 4.2 is to
relate the Néron model of E/Fq(u) to a suitable quotient of S. To that end, recall
the Weierstrass fibration W→P1

u (whose fibers are the plane cubic reductions of E
at places of Fq(u)) and the Néron model E→ P1

u , which is obtained from W by
blowing up singular points in the fibers over u = 0, u ∈ µd , and u =∞. All this is
discussed in detail in [Ulmer 2014b, §7].

Note that since we are assuming that d is even, C has two points at infinity that
we denote P ′

±
, where the sign corresponds to the limiting value of x/zd/2. Similarly,

D has two points at infinity, denoted Q′
±

.
Let S̃= C̃×D be the blow-up of S at the eight points (P±, Q′

±
) and (P ′

±
, Q±).

These points have stabilizers of order d/2 under the action of 1, and they fall into
two orbits, namely {(P±, Q′

±
)} and {(P ′

±
, Q±)}, under the 1 action. The action of

the stabilizer on the projectivized tangent space at each of these points is trivial, so
the action of 1 lifts canonically to S̃ and the exceptional fibers are fixed pointwise
by the stabilizer of the corresponding point. The action of 1 on S̃ has other isolated
fixed points, but we do not need to make them explicit.

We let S̃/1 denote the quotient of S̃ by the action of 1. This is a normal,
projective surface with isolated cyclic quotient singularities. (They are in fact
rational double points, but we will not need this fact.)

Now we define a rational map S 99KW by requiring that

(x, y, z, w) 7→ ([X, Y, Z ], u)= ([zd , xyzd , 1], zw),

where ([X, Y, Z ], u) are the coordinates on a dense open subset of W as in [Ulmer
2014b, §7]. This induces a rational map φ : S̃ 99KW that is obviously equivariant
for the 1 action, where 1 acts trivially on W. Thus, φ descends to a map on the
quotient that we denote ψ : S̃/1 99KW.

The following diagram shows the surfaces under consideration and various
morphisms between them:

C×D= S S̃
ρ

oo

π

��

φ

!!

S̃/1
ψ
// W E

σ
oo
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The quotient map π is finite, and we will see just below that the horizontal maps
are birational morphisms.

Proposition 4.3.1. (1) The rational map φ is in fact a morphism. Therefore, ψ is
also a morphism and a birational isomorphism.

(2) φ contracts the strict transforms of P±×D and C×Q′
±

and is finite elsewhere.

(3) For generic P ∈ C, φ sends P ×D to a bisection of W→ P1, where the two
points in each fiber are inverse to one another. Similarly, for generic Q ∈D,
φ sends C× Q to a bisection of W→ P1, where the two points in each fiber
are inverse to one another.

(4) The exceptional divisors over P±×Q′
±

map via φ to the torsion section [0, 0, 1]
of W, and the exceptional divisors over P ′

±
×Q± map via φ to the zero section

[0, 1, 0] of W.

In part (3), “P generic” means P with trivial stabilizer or, more explicitly,
P 6= P±, P ′

±
and x(P) 6= 0. “Q generic” is similarly defined.

Proof. It is easy to see that φ has generic degree 2d and it factors through quotient
S̃→ S̃/1, which is finite of degree 2d . This proves that ψ is birational.

That φ is everywhere defined and has the stated geometric properties is a straight-
forward but tedious exercise in coordinates that we omit. Since φ is a morphism, it
follows that ψ is also a morphism. �

4.4. Proof of Theorem 4.2(1). We prove part (1) of the theorem by using the
geometry of the displayed diagram with the key input being Proposition 4.3.1. For
typographical convenience, if A is a finitely generated abelian group, we write
A[1/2d] for A⊗Z[1/2d].

By the Shioda–Tate isomorphism (e.g., [Ulmer 2014a, Chapter 4]), we have a
direct-sum decomposition

NS(E)[1/2d] ∼= E(Fq(u))[1/2d]⊕ T [1/2d],

where T is the subgroup of NS(E) generated by the zero section and the irreducible
components of the fibers. Since W is obtained from E by contracting all components
of fibers not meeting the zero section, we have

NS(W)[1/2d] ∼= E(Fq(u))[1/2d]⊕ 〈O, F〉[1/2d],

where O and F are the classes of the zero section and a fiber of W→P1, respectively.
These decompositions are orthogonal for the intersection pairings. The fibration
W→ P1

u is the base change of a fibration W→ P1
t , so G acts on W and NS(W).

This action is trivial on 〈O, F〉, and the last displayed isomorphism is compatible
with the G actions.



2488 Douglas Ulmer

Since S̃ is obtained from S by blowing up eight points, we have an orthogonal
decomposition

NS(S̃)∼= Z8
⊕NS(S)∼= Z10

⊕NS′(S).

The Néron–Severi group of the quotient S̃/1 is obtained by taking invariants, at
least after inverting 2d = |1|. Noting that 1 permutes the exceptional divisors
of S̃→ S in two orbits and that it fixes the classes of P ×D and C× Q, we have

NS(S̃/1)[1/2d] ∼= (NS(S̃)[1/2d])1 ∼= Z[1/2d]4⊕ (NS′(S)[1/2d])1.

The action of G on C induces an action on S̃ that descends to S̃/1.
Now we consider the morphism ψ : S̃/1→W, and use the information provided

by Proposition 4.3.1. It is clear from the coordinate expression for S 99KW that ψ is
equivariant for the G actions. Part (2) tells us that the kernel of NS(S̃/1)→NS(W)

has rank 2. Parts (3) and (4) allow us to determine it explicitly.
To that end, let f1 and f2 be the classes in NS(S̃) of the curves P×D and C×Q,

respectively. Also, let e1 and e2 denote the classes in NS(S̃) of the exceptional
divisors over P+× Q′

+
and P ′

+
× Q+, respectively. Set Fi = π∗ fi and Ei = π∗ei

for i = 1, 2. Then E1, E2, F1, and F2 form a basis for the “trivial part” Z[1/2d]4

of NS(S̃/1)[1/2d].
By part (3), ψ∗F1 = ψ∗F2 = φ∗ f1 = φ∗ f2 = the class of a bisection of W→ P1

with inverse points in each fiber. This class is easily seen to be 2O+d F . Similarly,
part (4) tells us that ψ∗E1 = φ∗e1 = O + (d/2)F (here we use that we have
inverted 2), and ψ∗E2 = φ∗e2 = O . The kernel of

NS(S̃/1)[1/2d] → NS(W)[1/2d]

is thus spanned by F1− F2 and F1− 2E1. Moreover, we have that ψ∗ induces an
isomorphism

(NS′(S)[1/2d])1 ∼=
NS(S̃/1)[1/2d]
〈F1, F2, E1, E2〉

∼=
NS(W)[1/2d]
〈O, F〉

.

It follows that
(NS′(S)[1/2d])1 ∼= E(Fq(u))[1/2d]

and that this isomorphism is compatible with the height and intersection pairings
and the G actions.

This completes the proof of part (1) of the theorem.

4.5. Proof of Theorem 4.2(2). Two fundamental results of Grothendieck [1968b]
(see also [Ulmer 2014a, §5.3]) say that the Tate–Shafarevich group of E/Fq(u)
and the Brauer group of E are canonically isomorphic and that the Brauer group
of a surface is a birational invariant. Applying this to the diagram just before
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Proposition 4.3.1 shows that X(E/Fq(u)) ∼= Br(S̃/1). Since the order of 1 is
prime to p, we have

Br(S̃/1)[p∞] ∼= Br(S̃)[p∞]1 ∼= Br(S)[p∞]1.

This yields the isomorphism stated in part (2) of the theorem, and this isomorphism
is compatible with the G actions because the maps in the diagram above are G-
equivariant.

4.6. A higher-genus generalization. The results in this section generalize readily
to a higher-genus example. Specifically, fix an integer r > 1 prime to p, and let X
be the smooth, proper curve over Fp(t) defined by

yr
= xr−1(x + 1)(x + t).

The genus of X is r − 1. We consider X and its Jacobian J = JX over extensions
Fq(u) where ud

= t , d is prime to p, and Fq is a finite extension of Fp(µd , µr ).
When d = p f

+ 1 and r divides d, there are explicit divisors on X yielding a
subgroup of J (Fq(u)) of rank (r − 1)(d − 2) and finite index. This situation is
studied in detail in [Berger et al. ≥ 2015].

Let X→ P1
u be the minimal regular model of X over the projective line whose

function field is Fq(u). Let C=D be the smooth, proper curve over Fq with equation

zd
= xr
− 1.

Then C and D carry actions of µr×µd , and we let1=µr×µd act on S=C×Fq D

“antidiagonally”. Arguments parallel to those in the proof of Proposition 4.3.1
show that X is birationally isomorphic to S/1. Using this, the arguments proving
Theorem 4.2 generalize readily to give isomorphisms

J (Fq(u))[1/rd] ∼= NS′(S)[1/rd]1

and
X(J/Fq(u))[p∞] ∼= Br(S)[p∞]1.

5. Arithmetic of a product of curves

In this section, k is a finite field of characteristic p, and C and D are smooth,
projective curves over k. Our goal is to give a crystalline description of NS′(C×D)

and Br(C×D). The former is due to Tate, and the latter was done under somewhat
restrictive hypotheses by Dummigan [1999, p. 114] (by a method he says was
inspired by a letter of the author). We use a variant of the method to give the result
in general.

5.1. Flat and crystalline cohomology. For the rest of this section, we write W for
the Witt-vectors W (k) and σ for the Witt-vector Frobenius (lifting the p-power
Frobenius of k).
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Given a smooth projective variety X over k, we consider the crystalline coho-
mology groups of X and use the simplified notation

H i (X) := H i
crys(X/W )

for typographical convenience. These groups are W -modules with a σ -semilinear
action of the absolute Frobenius, denoted F . When X is a curve, we also define
a σ−1-semilinear action of Verschiebung, denoted V , on H 1(X) by requiring that
FV = V F = p. We write A for the noncommutative ring W {F, V } generated
over W by F and V with relations Fa= σ(a)F , aV = Vσ(a), and FV = V F = p.

We will also consider cohomology of sheaves in the flat topology, say the fppf
(faithfully flat, finitely presented) topology to fix ideas. Recall that H 1(X,Gm)∼=

Pic(X) and that we define the Brauer group of X by

Br(X) := H 2(X,Gm).

If X is smooth and dim X≤ 2, it is known [Grothendieck 1968a] that this definition
agrees with that via Azumaya algebras.

A well-known theorem of Weil asserts that C and D have k-rational divisors
of degree 1. If P and Q are such, then the classes in NS(C×k D) of P ×D and
C× Q are independent of the choices of P and Q. We define NS′(C×k D) as the
orthogonal complement in NS(C×k D) of these classes.

The goal of this section is to establish the following crystalline calculations of
the Néron–Severi and Brauer groups of a product of curves.

Theorem 5.2. (1) There is a functorial isomorphism

NS′(C×k D)⊗Zp −→
∼ (H 1(C)⊗W H 1(D))F=p.

(2) There is a functorial exact sequence

0→ ((H 1(C)⊗W H 1(D))F=p)/pn
→ (H 1(C)/pn

⊗W H 1(D)/pn)F=V=p

→ Br(C×k D)pn → 0.

Here the exponents mean the subgroups where F and V act as indicated, and
“functorial” means that the displayed maps are equivariant for the action of Aut(C)×
Aut(D).

Proof. We write X for C×k D. Part (1) is essentially the crystalline Tate conjecture.
More precisely, by a theorem of Tate [Waterhouse and Milne 1971], we have an
isomorphism

NS(X)⊗Zp ∼= H 2(X)F=p.

Decomposing NS(X) as Z2
⊕NS′(X) and H 2(X) via the Künneth formula leads to

the statement in part (1).
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For part (2), we may assume that C and D have rational points. Indeed, the
theorem of Weil alluded to above shows that there is an extension k ′/k of degree
prime to p such that C and D have k ′-rational points. Using the Hochschild–Serre
spectral sequences in crystalline and flat cohomologies and the fact that taking
invariants under Gal(k ′/k) is an exact functor on groups of p-power order shows
that the theorem over k ′ implies the theorem over k. We thus assume that C and D

have k-rational points.
Now consider the Kummer sequence

0→ µpn → Gm→ Gm→ 0

for the flat topology on X. Taking flat cohomology yields

0→ Pic(X)/pn
→ H 2(X, µpn )→ Br(X)pn → 0.

Let T =Pic(C)/pn
⊕Pic(D)/pn . The natural map T→Pic(X)/pn is an injection

with cokernel NS′(X)/pn . Thus, we have a commutative diagram with exact rows
and columns:

0

��

0

��

T

��

T

��

0 // Pic(X)/pn //

��

H 2(X, µpn ) //

��

Br(X)pn // 0

0 // NS′(X)/pn //

��

H 2(X, µpn )/T //

��

Br(X)pn // 0

0 0

Using part (1), we have

NS′(X)/pn ∼= ((H 1(C)⊗W (k) H 1(D))F=p)/pn,

so to complete the proof, we must show that

H 2(X, µpn )/T ∼= (H 1(C)/pn
⊗ H 1(D)/pn)F=V=p.

Let π : C×D→ D be the projection on the second factor. We will compute
H 2(X, µpn ) via the Leray spectral sequence for π . By a theorem of Artin proven



2492 Douglas Ulmer

in [Grothendieck 1968b],

Riπ∗Gm =


Gm if i = 0,
PicX/D = PicC/k ×kD if i = 1,
0 if i > 1.

It follows that

Riπ∗µpn =


µpn if i = 0,
PicX/D[p

n
] = JC[pn

] if i = 1,
PicX/D /pn

= Z/pnZ if i = 2,
0 if i > 2.

(Here we abuse notation slightly — the k-group schemes on the right represent
sheaves on k and so by restriction sheaves on D.) Because C has a rational point,
π has a section, so the Leray spectral sequence degenerates at E2 and we have that
H 2(X, µpn ) is an extension of

H 0(D,Z/pnZ), H 1(D, JC[pn
]), and H 2(D, µpn ).

The Kummer sequence on D shows that

H 2(D, µpn )∼= Pic(D)/pn,

which is an extension of Z/pnZ by JD(k)/pn . Obviously, H 0(D,Z/pnZ)∼=Z/pnZ.
To finish the proof, we must compute H 1(D, JC[pn

]) in crystalline terms. First
we make our notation a bit more precise. Let N be the sheaf on the flat site
of Spec k represented by the finite flat group scheme JC[pn

] = PicC/k[pn
]. Let σ

be the structure map D→ Spec k (which has a section because D has a rational
point). Then H 1(D, JC[pn

]) means H 1(D, σ ∗N ). Clearly, σ∗σ ∗N = N . By [Milne
1980, Proposition III.4.16] applied to σ , if N ′ is the Cartier dual of N , we have

R1σ∗σ
∗N ∼= Homk(N

′,PicD/k)
∼= Homk(N ,PicD/k).

Here Homk means the sheaf of homomorphisms of sheaves on the flat site of k, and
we have used that PicC/k[pn

] is self-dual.
Now we consider the Leray spectral sequence for σ , which degenerates because

σ has a section. The sequence of low-degree terms is

0→ H 1(k, N )→ H 1(D, σ ∗N )→ H 0(k,Homk(N ,PicD/k))→ 0.

Using

0→ N → JC
pn

−→ JC→ 0,

the equality of flat and étale cohomology for smooth group schemes, and Lang’s
theorem (namely that H 1(k, JC)= 0), we find that H 1(k, N )= JC(k)/pn .
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Noting that the argument above applies with the roles of C and D reversed, we
see that Pic(C)/pn and Pic(D)/pn are direct factors of H 2(X, µpn ) and find that

H 2(X, µpn )/T ∼= H 0(k,Homk(N ,PicD/k))
∼= Homk(JC[pn

], JD[pn
]).

We now turn to a crystalline description of the right-hand group. Letting D(C)

and D(D) be the (contravariant) Dieudonné modules of the p-divisible groups
of JC and JD, respectively, the main theorem of Dieudonné theory (equivalence of
categories) gives

Hom(JC[pn
], JD[pn

])= HomA(D(D)/pn,D(C)/pn).

Here HomA means homomorphisms commuting with the action of A =W {F, V },
i.e., with the actions of F and V .

To finish, we use the result of Mazur and Messing [1974] that D(C)∼= H 1(C)

and D(D)∼= H 1(D), and the duality D(D)∗ ∼= D(D)(−1) (Tate twist), so that

HomA(D(D)/pn,D(C)/pn)∼= (H 1(C)/pn
⊗ H 1(D)/pn)F=V=p. �

Remark 5.2.1. By [Illusie 1979, Theorem 5.14], for a smooth projective surface X

over an algebraically closed field k, we have

H 2(X,Zp(1))∼= H 2(X/W (k))F=p.

The proof of Theorem 5.2(2) can be adapted to show that (when X is a product
of curves), this continues to hold at finite level: H 2(X, µpn )∼= H 2(X/Wn(k))F=p.
Conversely, a proof of this statement would yield a simple proof of part (2) of the
theorem (over an algebraically closed field).

On the other hand, the proof above shows that H 2(X, µpn ) may be strictly bigger
than H 2(X/Wn(k))F=p over a finite ground field. The point is that when k is
algebraically closed, Pic(C)/pn is Z/pnZ (because Pic0(C) is divisible), but it may
be bigger when k is finite.

6. Cohomology of C

In this section, we collect results on the crystalline cohomology of the curve C

needed in the sequel. Some of them may already be available in the literature on
Fermat curves, but for the convenience of the reader, we sketch arguments from
first principles.

6.1. Lifting. From here until Section 6.5, C will denote the smooth projective
model of the affine curve over Fp defined by zd

= x2
− 1. (E.g., if d is even, C is

the result of gluing Spec Fp[x, z]/(zd
− x2
+ 1) and Spec Fp[x ′, z′]/(z′d − x ′2+ 1)

via (x ′, z′)= (x/zd/2, 1/z). The case d odd is similar.) The projective curve has a
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natural lifting to W (Fp)= Zp defined by the same equations. We write C/Zp for
this lift. It is smooth and projective over Zp with special fiber C.

6.2. Actions. There is a canonical isomorphism H 1
crys(C/Zp)∼=H 1

dR(C/Zp), where
the left-hand side is the crystalline cohomology of C and the right-hand side is the
algebraic de Rham cohomology of C/Zp. We will use this isomorphism to make
the crystalline cohomology explicit, endow it with a Hodge filtration, and describe
the actions of Frobenius, Verschiebung, µd , and µ2 on it.

Let q be a power of p congruent to 1 modulo d so that Fq contains Fp(µd). Then
C/W (Fq)= C/Zp ×Zp W (Fq) admits an action of the d-th roots of unity (acting
on the coordinate z) and µ2 =±1 (acting on the coordinate x).

Recall that the absolute Frobenius of C defines a Zp-linear homomorphism

F : H 1
crys(C/Zp)→ H 1

crys(C/Zp),

which induces a semilinear homomorphism

F : H 1
crys(C/W (Fq))∼= H 1

crys(C/Zp)⊗Zp W (Fq)→ H 1
crys(C/W (Fq))

(semilinear with respect to the Witt-vector Frobenius σ ). We also have a σ−1-
semilinear endomorphism

V : H 1
crys(C/W )→ H 1

crys(C/W ),

which is characterized by the formulas FV = V F = p.
Letting Frp ∈ Gal(Fq/Fp) act on C/Fq = C×Fp Fq via the second factor, we

get a semilinear endomorphism of H 1(C/W ) that fixes H 1(C/Zp). Combining
the actions of µd and Frp gives a Zp-linear action of G = µd o Gal(Fq/Fp)

on H 1
crys(C/W ).

6.3. A basis. By [Grothendieck 1961, 0III, Corollaire 12.4.7], we may define el-
ements of H 1

dR(C/Zp) by giving hypercocycles for an affine cover. We do so as
follows. For i = 1, . . . , b(d−1)/2c, let ei be the class defined by the regular 1-form

zi−1 dz
2x

.

Let U1 be the affine curve defined by zd
= x2

− 1 considered as a Zariski open
subset of C/Zp. Let U2 be the complement of the closed set where z = 0 in C/Zp.
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Thus, U1 and U2 define an open cover of C/Zp. For i = 1, . . . , b(d−1)/2c, the data

f i
12 =

x
zi ∈ OC/Zp(U1 ∩U2),

ωi
1 =

(
1−

2i
d

)
dx
zi ∈�

1
C/Zp

(U1),

ωi
2 =

i x dz
zi+1 −

2i
d

dx
zi ∈�

1
C/Zp

(U2)

satisfies d f i
12 = ω

i
1−ω

i
2 and so defines a class in H 1

dR(C/Zp) that we denote ed−i .

Proposition 6.4. The classes ei (0< i < d , i 6= d/2) form a Zp-basis of H 1
dR(C/Zp)

and have the following properties:

(1) The cup product H 1
dR(C/Zp)× H 1

dR(C/Zp)→ Zp satisfies (and is determined
by) the fact that for 0< i < d and 0< j < d ,

ei ∪ e j =


1 if i < d/2 and j = d − i,
−1 if i > d/2 and j = d − i,

0 otherwise.
(2) The classes ei with 1 ≤ i ≤ b(d − 1)/2c form a Zp-basis of the submodule

H 0(C/Zp, �
1
C/Zp

) of H 1
dR(C/Zp), and the classes ei with b(d + 1)/2c ≤ i ≤

d − 1 project to a basis of the quotient module H 1(C/Zp,OC/Zp).

(3) The action of µd on H 1
crys(C/W (Fq))∼= H 1

dR(C/Zp)⊗Zp W (Fq) is given by

[ζ ]ei = ζ
i ei .

Also, −1 ∈ µ2 acts on H 1
crys(C/W (Fq)) as multiplication by −1.

(4) For 0< i < d, we have F(ei )= ci epi , where ci ∈ Zp satisfies

ord(ci )=

{
0 if i > d/2,
1 if i < d/2.

(In epi , we read the subscript modulo d.)

(5) If o ∈ Od,p, d/ gcd(d, o) > 2, and p is balanced modulo d/ gcd(d, o) (in
the sense of Section 2.2), then

∏
i∈o ci = ±p|o|/2. Equivalently, for all i ∈ o,

F |o|ei =±p|o|/2ei .

Proof. Once we know that the ei form a basis, the formula in (1) determines the cup
product. To check the formula, one computes in the standard way: the cup product
ei ∪ ed− j is given by the sum over points in U1 of the residue of the meromorphic
differential zi− j dz/(2z), and this sum is 1 or 0 depending on whether j = i .

The formula in (1) implies that the classes ei with 0 < i < d and i 6= d/2 are
linearly independent in H 1

dR(C/Fp) and so they form an Fp-basis since the genus
of C is (d − gcd(d, 2))/2. It follows that the ei form a Zp-basis of H 1

dR(C/Zp).
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It is clear from the definition that the ei with 0< i < d/2 are in the submodule
H 0(C/Zp, �

1
C/Zp

), and so they form a basis by a dimension count. Part (1) and Serre
duality imply that the ei with d/2< i < d project to a basis of H 1(C/Zp,OC/Zp).
This proves part (2).

Part (3) follows immediately from the definition of the ei .
It follows from part (3) that F(ei )= ci epi for some ci ∈ Zp. Indeed, Frobenius

must send the subspace of H 1(C/W (k)) where [ζ ] acts by ζ i to the subspace where
it acts by ζ pi . By (3), these subspaces are spanned by ei and epi , respectively, so
F(ei )= ci epi , and ci must lie in Zp since F acts on H 1

crys(C/Zp). The assertion on
the valuation of ci follows from [Mazur 1972, Lemma, p. 665; 1973, top of p. 65].
This proves part (4).

For part (5), a standard calculation [Ireland and Rosen 1990, Chapter 11] gives
the eigenvalues of F |o| in terms of Jacobi sums. Using the notation of [Conceição
et al. 2014], F |o|ei = λ(−1)J (λ, χ i )ei , where λ is a character of k= Fp|o| of order 2
and χ is a character of order d. By [Conceição et al. 2014, Proposition 4.1], the
Jacobi sum is ±p|o|/2. �

Remark 6.4.1. Part (4) of the proposition is the reason for the minus signs in the
definition of the word attached to an orbit in Section 2.3. Indeed, if i < d/2, so
that ei is in H 0(C/Zp, �

1
C/Zp

), then F(ei ) is divisible by p (i.e., its “valuation” has
gone up) whereas, if i > d/2, then F(ei ) is not divisible by p (i.e., its “valuation”
is still low).

6.5. Generalization to r > 2. Most of the above extends to the curve Cr defined
by zd

= xr
− 1 for any r that is > 1 and relatively prime to p. We give the main

statements; their proofs are entirely parallel to those in the case r = 2.
The curve Cr has an obvious lift to Zp that we denote Cr/Zp. This yields an

identification H 1
crys(Cr/Zp)∼= H 1

dR(Cr/Zp).
For i ∈Z/dZ, we write 〈i/d〉 for the fractional part of i/d (for any representative

of the class of i). We similarly define 〈 j/r〉 for j ∈ Z/rZ. Let A be the subset
of Z/dZ×Z/rZ consisting of (i, j) where i 6= 0, j 6= 0, and 〈i/d〉 + 〈 j/r〉 > 1.
Let B be the subset where i 6= 0, j 6= 0, and 〈i/d〉+ 〈 j/r〉< 1. Let S = A∪ B.

There is a Zp-basis of H 1
dR(Cr/Zp) consisting of classes ei, j with (i, j) ∈ S with

the following properties:

(1) ei, j ∪ ei ′, j ′ =±δi i ′δ j j ′ ,

where the sign is + if (i, j) ∈ A and − if (i, j) ∈ B.

(2) The ei, j with (i, j) ∈ A form a basis of H 0(Cr/Zp, �
1
Cr/Zp

), and the ei, j with
(i, j) ∈ B project to a basis of H 1(Cr/Zp,OCr/Zp).
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(3) If q is such that Fq contains Fp(µd , µr ), then the action of µd × µr on
H 1(Cr/W (Fq)) is given by

[ζd , ζr ]ei, j = ζ
i
dζ

j
r ei, j .

(4) F(ei, j )= ci, j epi,pj , where ci, j ∈ Zp satisfies

ordp(ci, j )=

{
0 if (i, j) ∈ B,
1 if (i, j) ∈ A.

There is also a notion of balanced that we now explain. Let H=(Z/ lcm(d, r)Z)×,
and let H act on S by multiplication in both coordinates. Let 〈p〉 be the cyclic
subgroup of H generated by p. If (i, j)∈ S, we say the ray through (i, j) is balanced
if, for all t ∈ H , the orbit 〈p〉t (i, j) is evenly divided between A and B, i.e.,

|〈p〉t (i, j)∩ A| = |〈p〉t (i, j)∩ B|.

The final property of Cr we mention is:

(5) For (i, j) ∈ S, let o= 〈p〉(i, j) and set

Jo =
∏

(i ′, j ′)∈o

ci ′, j ′ .

Then Jo is a root of unity times p|o|/2 if and only if the ray through (i, j) is
balanced.

To prove this, we note that the displayed product is an eigenvalue of F |o|

on H 1
crys(Cr/Zp). This eigenvalue may be identified with a Jacobi sum, and

arguments parallel to those in [Conceição et al. 2014, Proposition 4.1] using
Stickelberger’s theorem show that the Jacobi sum is a root of unity times p|o|

if and only if the ray through (i, j) is balanced. In [Conceição et al. 2014], these
roots of unity were always ±1. If r divides d and d divides p f

+ 1, then again
these root of unity are ±1. In the more general context, all we can say is that they
are roots of unity of order at most gcd(lcm(r, d), p− 1).

To close this section, we note that the apparatus of orbits, words, and the associ-
ated invariants (as in Section 2) applies as well to the cohomology of Cr as soon as
we replace “i > d/2” and “i < d/2” with “(i, j)∈ A” and “(i, j)∈ B”, respectively.

7. p-adic exercises

Fix as usual an odd prime number p, a positive integer d relatively prime to p, and
an extension Fq of Fp(µd), and consider E over Fq(u) where ud

= t .
Using Theorems 4.2 and 5.2 reduces the problem of computing E(Fq(u))

and X(E/Fq(u)) to exercises in semilinear algebra with raw data supplied by
Proposition 6.4.
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In this section, we carry out these p-adic exercises.

7.1. Setup. We write W for the Witt vectors W (Fq), Wn for Wn(Fq), H 1(C) for
H 1

crys(C/W ), and H 1(D) for H 1
crys(D/W ), where C = D is the curve over Fq

studied in Section 6. The product C×Fq D carries an action of 1= µ2×µd acting
“antidiagonally” as well as an action of G=µd oGal(Fq/Fp) acting on the factor C.

Our goal is to compute

H := (H 1(C)⊗W H 1(D))1,F=V=p

and

Hn := (H 1(C/Wn)⊗W H 1(D/Wn))
1,F=V=p.

For an orbit o ∈ Od,p, we write H o and H o
n for the o parts of the corresponding

groups, i.e., for the images of the projector πo on H or Hn .
Since H 1(C) and H 1(D) free W -modules and the order of 1 is prime to p,

(H 1(C/Wn)⊗W H 1(D/Wn))
1
= ((H 1(C)⊗W H 1(D))/pn)1,

= ((H 1(C)⊗W H 1(D))1)/pn,

so the first step in both cases is to compute M = (H 1(C)⊗W H 1(D))1.

7.2. A basis for M. By Proposition 6.4(3), µ2 acts as −1 on H 1(C) and µd acts
on ei by χ i . Thus, µ2 acts trivially on H 1(C)⊗W H 1(D) and µd acts on ei ⊗ e j

by χ i− j . Therefore, we have

M ∼=
⊕

i∈Z/dZ\{0,d/2}

W (ei ⊗ ei ).

We decompose M =
⊕

o∈O Mo, where

Mo
=

⊕
i∈o

W (ei ⊗ ei ).

For the rest of this section, we fix an orbit o and we assume that gcd(o, d) < d/2
and p is balanced modulo d/ gcd(o, d). By Theorem 3.1.1, this is the situation in
which E(Fq(u)⊗Zp)

o
6= 0, and it turns out to be the situation in which we can say

something nontrivial about X(E/Fq(u))o.
As a first step, we make a change of basis that is perhaps unnatural but has the

virtue of simplifying the notation considerably. Namely, let i ∈ o be the standard
base point (see Definition 2.3.1), and let

di p j =

{
ci p j if w j = l,
ci p j /p if w j = u,
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where the p-adic integers ci p j are defined in Proposition 6.4(4). That proposition
implies that the di p j are units. Set fi = ei ⊗ ei , and for j = 1, . . . , |o| − 1, set

fi p j =

( j∏
`=1

d2
pi`

)
ei p j ⊗ ei p j .

Then { f j | j ∈ o} forms a W -basis of Mo, and it follows from Proposition 6.4
parts (4) and (5) that for all j ∈ o we have

F( f j )=

{
p2 f pj if j < d/2,
f pi if j > d/2.

(Here as usual, we read the subscripts modulo d .)
Similarly, we have

V ( f j )=

{
f p−1 j if p−1 j < d/2,
p2 f p−1 j if p−1 j > d/2,

where “p−1 j < d/2” means that the least positive residue of p−1 j is < d/2.
We have a remaining action of G = µd o Gal(Fq/Fp) on M via its action on

the first factor in H 1(C)⊗W H 1(D). Under this action, ζ ∈ µd acts W -linearly
as [ζ ] f j = ζ

j f j and Frp ∈ Gal(Fq/Fp) acts semilinearly as Frp(α f j )= σ(α) f j .

7.3. Modulo p case with d = p f + 1 and Fq = F p(µd). As a very easy first case,
we assume d = p f

+ 1 and Fq = Fp(µd), and we compute H1, which is just the
subspace of M/p killed by F and by V . We saw just above that F( fi ) is zero if
and only if i < d/2, i.e., if and only if the first letter in the word associated to i
is u. Similarly, V ( fi ) = 0 if and only if the last letter of the word of i is l. This
yields the first part of the following statement:

Proposition 7.3.1. If d = p f
+ 1 and Fq = Fp(µd), then

H1 := (H 1(C/Fq)⊗W H 1(D/Fq))
1,F=V=0

is spanned over Fq by the classes fi where the word of i has the form u · · · l. If
the first half of the word of o has the form ue1le2 · · · uek with each ei > 0, then the
Fq -dimension of H o

1 is k. We have

dimFq H1 =

(
p− 1

2

)(
p f−1
+ 1

2

)
.

The dimension counts in the proposition will be proven at the end of Section 8.1
after we have proven Lemma 8.1.1.
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7.4. The basic equations. We now make first reductions toward computing H o

and H o
n in general. Focus on one orbit o ∈ O with its standard base point i and

associated word w = w1 · · ·w|o|.
Consider a typical element c ∈ Mo (or in Mo

n ):

c =
|o|−1∑
j=0

α j fi p j ,

where α j ∈W (or in Wn) and where we read the index j modulo |o|.
Then the class c satisfies (F − p)(c)= 0 if and only if

pα j+1 =

{
σ(α j ) if w j = l,
p2σ(α j ) if w j = u

for j = 0, . . . , |o| − 1. Similarly, the class c satisfies (V − p)(c)= 0 if and only if

pα j =

{
p2σ−1(α j+1) if w j = l,
σ−1(α j+1) if w j = u

for j = 0, . . . , |o| − 1.
Note that when w j = l, the equation coming from V − p = 0 follows from

that coming from F − p = 0, and when w j = u, then the equation coming from
F− p= 0 follows from that coming from V − p= 0. Thus, c satisfies (F− p)(c)=
(V − p)(c)= 0 if and only if{

α j = σ
−1 pα j+1 if w j = l,

σ pα j = α j+1 if w j = u
(7.4.1)

for j = 0, . . . , |o| − 1.
Note that α j+1 determines α j whenw j = l, and α j determines α j+1 whenw j =u.

Thus, we may eliminate many of the variables α j . More precisely, write the word
w in exponential form: w = ue1le2 · · · le2k . Setting β0 = α0 and

β j = αe1+e2+···+e2 j

for 1≤ j ≤ k (so that βk = β0), the class c is entirely determined by the β’s. Indeed,
for

∑2 j
i=1 ei ≤ `≤

∑2 j+1
i=1 ei , we have

α` = (σ p)`−
∑2 j

i=1 eiβ j ,

and for
∑2 j+1

i=1 ei ≤ `≤
∑2 j+2

i=1 ei , we have

α` = (σ
−1 p)

∑2 j+2
i=1 ei−`β j+1.
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The conditions on the α’s translated to the β’s become

(σ p)e1β0 = (σ
−1 p)e2β1,

(σ p)e3β1 = (σ
−1 p)e4β2,

...

(σ p)e2k−1βk−1 = (σ
−1 p)e2kβk .

(7.4.2)

We refer to these as the basic equations.
The upshot is that the coordinates β define an embedding H o ↪→W k (respectively,

H o
n ↪→ W k

n ) with c 7→ (β j ) j=1,...,k whose image is characterized by the basic
equations.

In the rest of this section, we will make this image more explicit in the “adic
case” H o ↪→W k and the “modulo pn case” H o

n ↪→W k
n .

7.5. adic case. In this case, the β j lie in W , which is torsion free, so the basic
equations allow us to eliminate all β j with 0 < j < k in favor of β0. Indeed, the
basic equations imply that

β1 = σ
e1+e2 pe1,2β0,

β2 = σ
e3+e4 pe3−e4β1 = σ

e1+···+e4 pe1,4β0,

...

βk = σ
e1+···+e2k pe1,2kβ0 = σ

|o| pe1,2kβ0 = σ
|o|β0,

(7.5.1)

where, as usual, ei j denotes the alternating sum

ei j = ei − ei+1+ · · ·± e j .

Note that βk = β0, so the last equation is satisfied if and only if β0 ∈ W (Fp|o|).
Note also that since i is a good base point, the e1 j are ≥ 0 for 1≤ j ≤ 2k, so the
exponents of p on the far right-hand sides of the equations above are nonnegative.
Therefore, for any choice of β0 ∈W (Fp|o|), the equations give well-defined elements
β j ∈W (Fp|o|)⊂W solving the basic equations.

The upshot is that the map sending c 7→ β0 = α0 gives an isomorphism H o ∼=

W (Fp|o|)= 0o. The inverse of this map is

α0 7→

|o|−1∑
j=0

σ j pa jα0 fi p j ,

where a j is the function defined in Section 2.3. It is easy to see that this map is
equivariant for the action of G =µd oGal(Fq/Fp), where G acts on W (Fp|o|)

∼= 0o

as in Proposition 2.8.1.
In summary:
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Proposition 7.5.1. Suppose that o ∈ Od,p is an orbit with gcd(d, o) < d/2 and p is
balanced modulo p. Then the map above induces an isomorphism of Zp[G]-modules

H o ∼= 0o.

7.6. Modulo pn case. To compute H o
n , we should solve the basic equations (7.4.2)

with the β j ∈Wn . We will do this for all sufficiently large n (to be made precise just
below). We write β(ν)j for the Witt-vector components of β j , and by convention,
we set β(ν)j = 0 if ν ≤ 0.

Recall that the height of an orbit with word ue1le2 · · · le2k is

ht(o)=max{e1, e13, . . . , e1,2k−1}.

In other words, ht(o) is the maximum value of the sequence a j associated to o in
Section 2.6. For the rest of this section, we assume that n ≥ ht(o).

Taking the ν-th Witt component in the basic equations (7.4.2) yields the following
system of equations in Fq :

σ 2e1β
(ν−e1)
0 = β

(ν−e2)
1 ,

σ 2e3β
(ν−e3)
1 = β

(ν−e4)
2 ,

...

σ 2e2k−1β
(ν−e2k−1)

k−1 = β
(ν−e2k)
k .

(7.6.1)

Now suppose that ν ≤ n− ht(o) so that ν+ e1 ≤ n, ν+ e13 ≤ n, etc. Considering
the ν+ e1 component of the first equation in (7.6.1), the ν+ e13 component of the
second equation, etc., leads to the chain of equalities

β
(ν)
0 = σ

−2e1β
(ν−e12)
1 = σ−2(e1+e3)β

(ν−e14)
2

= · · · = σ−2(e1+e3+···+e2k−1)β
(ν−e1,2k)

0 = σ−|o|β
(ν)
0 .

It follows that for ν ≤ n− ht(o), β(ν)0 lies in Fp|o| .
Conversely, given Witt components β(ν)0 ∈ Fp|o| for ν ≤ n− ht(o), there exists

a solution (β0, . . . , βk−1) ∈W k
n of the basic equations with the given components.

Indeed, we may complete β0 to an element of W , use the equations (7.5.1) to define
the other β j , and then reduce modulo pn .

Thus, the map (β0, . . . , βk−1) 7→ β0 (mod pn−ht(o)) defines a surjective homo-
morphism

H o
n →Wn−ht(o)(Fp|o|) (7.6.2)

whose kernel is easily seen to be pn−ht(o)H o
n . Note that if n2 ≥ n1 ≥ ht(o), we have

an isomorphism
pn1−ht(o)H o

n1
∼= pn2−ht(o)H o

n2
,
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which sends (β j ) to pn2−n1(β j ). In this sense, the kernel of the surjection (7.6.2) is
independent of n (as long as n ≥ ht(o)). Thus, to compute it, we may assume that
n = ht(o) and compute H o

ht(o).
Next we note that if (β j ) ∈ H o

ht(o) and if ` is such that ht(o)= e1,2`+1 = e2`+2,2k ,
then

0= pht(o)βk = pe2`+2,2kβk

= pe2`+2,2k−2βk−1

...

= pe2`+2β`+1.

Thus, after reordering, we may write the basic equations as a triangular system:

(σ p)e2`+3β`+1 = (σ
−1 p)e2`+4β`+2,

...

(σ p)e2k−1βk−1 = (σ
−1 p)e2kβk,

(σ p)e1βk = (σ
−1 p)e2β1,

...

(σ p)e2`−1β`−1 = (σ
−1 p)e2`β`,

(σ p)e2`+1β` = 0.

Now introduce new variables γ j indexed by j ∈ Z/kZ and related to the β j by

γ j−` =

{
σ−e1−e2−···−e2 jβ j if 1≤ j ≤ `,
σ e2 j+1+e2 j+2+···+e2kβ j if `+ 1≤ j ≤ k.

In these variables, the basic equations become

pe2`+3γ1 = pe2`+4γ2,

...

pe2k−1γk−`−1 = pe2kγk−`,

pe1γk−` = pe2γk+1−`,

...

pe2`−1γk−1 = pe2`γk,

pe2`+1γk = 0
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or, in matrix form,

B(e2`+3, . . . , e2k, e1, . . . , e2`+1)


γ1

γ2
...

γk

= 0.

The upshot is that we have identified H o
ht(o) with the kernel of B(e2`+3, . . . , e2`+1)

on W k
ht(o). By Remark 2.7.4, this is the same as the kernel of B(e1, . . . , e2k+1), and

this kernel is described by the invariant factors d j analyzed in Section 2.7.
To finish the discussion, we will unwind the action of G = µd o Gal(Fq/Fp)

under the isomorphisms above. The action of Frp on a class c ∈ H o
n goes over to

the action of σ on the coordinates α j and also on the coordinates β j and γ j . The
action of ζ ∈ µd on c goes over to multiplication by ζ i p j

on α j so to multiplication
by ζ i pe1+e2+···+e2 j on β j and finally to multiplication by ζ i on the γ j .

The following statement summarizes the results of this subsection:

Proposition 7.6.1. Suppose that o ∈ Od,p is an orbit with gcd(d, o) < d/2 and
p is balanced modulo p. Suppose that the word of o is ue1 · · · le2k , and recall the
invariants d1, . . . , dk attached to o in Section 2.6.

(1) For all n ≥ ht(o), we have an exact sequence of Zp[G]-modules

0→
k⊕

j=1

Wd j (Fq)→ H o
n →Wn−ht(o)(Fp|o|)→ 0.

Here G acts on the Witt vectors as described in Proposition 2.8.1(5).

(2) The cokernel of H o/pn
→ H o

n is isomorphic to

⊕k
j=1 Wd j (Fq)

Wdk (Fp|o|)
.

The first part was proven earlier in this subsection. The second follows from
the fact that the composed map H o/pn

→ H o
n → Wn−ht(o)(Fp|o|) (see (7.6.2)) is

obviously surjective with kernel pn−ht(o)H o/pn H o and dk = ht(o).

Remark 7.6.2. The “dévissage” implicit in this subsection is captured by the middle
column of the following diagram with exact rows and columns:
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0

��

0

��

0 //
pn−ht(o)H o

pn H o
//

��

pn−ht(o)H o
n

//

��

Bro
[pn
] // 0

0 //
H o

pn H o
//

��

H o
n

//

��

Bro
[pn
] // 0

H o

pn−ht(o)H o

��

∼=
//

H o
n

pn−ht(o)H 0
n

��

0 0

Here Bro
[pn
] is the pn-torsion in Br(C×Fq D)1,o and the middle row is the o part of

the exact sequence in Theorem 5.2(2). The middle column is the o part of the exact
sequence of [Artin 1974] on page 553 just after (3.2) and [Milne 1975, p. 521, line 6];
i.e., U 2(p∞)=U 2(pht(o))= pn−ht(o)H o

n and D2(pn−ht(o))= H o
n /pn−ht(o)H o

n . Note
also that the top row above shows that S 7→ Br(X×k S) is not represented by an
algebraic group, even as a functor on finite fields.

8. Proofs of the main results

In this section, we prove an easy lemma on counting words and then assemble the
results from Sections 4, 5, and 7 to prove the theorems stated in Sections 1 and 3.

8.1. Counting patterns. Let f be a positive integer, let d = p f
+ 1, and let S =

Z/dZ\{0, d/2}. Let 〈p〉 ⊂ (Z/dZ)× be the cyclic subgroup generated by p. Given
i ∈ S, we define a string w of length f in the alphabet {u, l}, called the pattern
associated to i , as w = w1 · · ·w f , where

w j =

{
l if −p j−1i ∈ A,
u if −p j−1i ∈ B.

If the orbit o of 〈p〉 through i has full size (i.e., size 2 f ), then the pattern of i is the
same thing as the first half of the word associated to i . If the orbit is smaller, then
the pattern is a repetition of the b f/|o|c copies of the word followed by the first
half of the word. (Note that f/|o| always has denominator 2 because the second
half of the word is the complement of the first.) For example, if p = f = 3 and
i = 7, then o= {7, 21}, the associated word is ul, and the pattern is ulu. Patterns
turn out to be more convenient than words for counting.
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Let T be the set of tuples

T = {(i1, . . . , i f ) | i j ∈ {0, . . . , p− 1}, not all i j = (p− 1)/2}.

There is a bijection T → S that sends

(i1, . . . , i f ) 7→

(
1+

f∑
j=1

i j p j−1
)
.

If i corresponds to (i1, . . . , i f ), then pi corresponds to (p− 1− i f , i1, . . . , i f−1).
The first letter of the pattern of i is u if and only if the first element of the

sequence i f , i f−1, . . . that is not equal to (p− 1)/2 is in fact < (p− 1)/2. More
generally, if we have a word w = ue1le2 · · · uek where k is odd, each e j > 0, and∑

e j = f , then i ∈ S has pattern w if and only the following inequalities are
satisfied:

i f ≤ (p− 1)/2, i f−1 ≤ (p− 1)/2,

. . . , i f−e1+2 ≤ (p− 1)/2, i f−e1+1 < (p− 1)/2,

i f−e1 ≥ (p− 1)/2, i f−e1−1 ≥ (p− 1)/2,

. . . , i f−e1−e2+2 ≥ (p− 1)/2, i f−e1−e2+1 > (p− 1)/2,
...

i f−e1−···−ek−1 ≤ (p− 1)/2, i f−e1−···−ek−1−1 ≤ (p− 1)/2,

. . . , i f−e1−···−ek+2 ≤ (p− 1)/2, i f−e1−···−ek+1 < (p− 1)/2.

This leads to the following counts:

Lemma 8.1.1. (1) Suppose k > 0 is odd and e1, . . . , ek are positive integers with∑
e j = f . Then the number of elements i ∈ S with pattern w= ue1le2 · · · uek is(

p− 1
2

)k( p+ 1
2

) f−k

.

(2) The number of i ∈ S whose pattern starts lu · · · is(
p− 1

2

)(
p f−1
+ 1

2

)
,

and the number of i ∈ S whose pattern starts ll · · · is(
p+ 1

2

)(
p f−1
− 1

2

)
.
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Proof. Part (1) follows immediately from the inequalities just before the lemma.
Part (2) is similar: the pattern of i starts lu · · · if and only if i f > (p− 1)/2 and

i f−1 < (p− 1)/2,

or i f−1 = (p− 1)/2 and i f−2 < (p− 1)/2,

or i f−1 = i f−2 = (p− 1)/2 and i f−3 < (p− 1)/2,
...

The number of such i is(
p− 1

2

)(
p− 1

2
p f−2
+ · · ·+

p− 1
2
+ 1

)
=

(
p− 1

2

)(
p f−1
+ 1

2

)
.

Since the number of i whose pattern starts with l is clearly (p f
− 1)/2, the result

for ll follows by subtracting. �

End of the proof of Proposition 7.3.1. We saw above that the Fq -dimension of H o
1

is the number i ∈ o whose word has the form u · · · l, i.e., begins with u and ends
with l. If the word associated to the standard base point in o is ue1le2 · · · le2k with
ei+k = ei , then there are exactly k elements i ∈ o whose word has the form u · · · l;
if i is the standard base point, they are

i, pe1+e2 i, . . . , pe1+···+e2k−2 i.

To compute the Fq -dimension of H1, we need only note that the number of i ∈ S
whose word has the form u · · · l is the same as the number of i whose pattern
starts lu · · · . Thus, part (2) of Lemma 8.1.1 finishes the proof. �

8.2. Proof of Theorems 3.1.1 and 3.2.1. We now give the proofs of our results on
the o-part of the Mordell–Weil group E(Kd). We proved in [Conceição et al. 2014]
that (E(Kd)⊗Zp)

o
= 0 unless o is an orbit with gcd(o, d) < d/2 and p is balanced

modulo d/ gcd(d, o), so we make those hypotheses for the rest of the subsection.
The first step is to note that Theorem 4.2(1) and Theorem 5.2(1) imply that

(E(Kd)⊗Zp)
o ∼= (H 1(C)⊗W H 1(D))1,o,F=p.

This last group is denoted H o in Section 7, where we proved an isomorphism
H o ∼= 0o.

In order to prove the theorems, we need to consider H o as a submodule of

Mo
:= (H 1(C)⊗W H 1(D))1,o.

This is a free W -module on which the cup product induces a perfect pairing. The
restriction of that pairing to H o corresponds to the height pairing on E(Kd), so
to compute the discriminant of the latter, it suffices to know the index of the
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W -submodule of Mo generated by H o. More precisely, the discriminant is p2a ,
where

a = LenW (Mo/W H o).

We saw above that fi , f pi , . . . , f p|o|−1i is a W -basis of Mo. Let η1, η2, . . . , η|o|

be a Zp-basis of W . Then the classes

c` =
|o|−1∑
j=0

pa jσ j (η`) fi p j , `= 1, . . . , |o|,

form a Zp-basis of H o. Here j 7→ a j is the function associated to o in Section 2.3.
In matrix form, we have c1
...

c|o|

=

σ 0(η1) σ 1(η1) · · · σ |o|−1(η1)

σ 0(η2) σ 1(η2) · · · σ |o|−1(η2)
...

...
. . .

...

σ 0(η|o|) σ
1(η|o|) · · · σ

|o|−1(η|o|)




pa1 0 · · · 0
0 pa2 · · · 0
...

...
. . .

...

0 0 · · · pa|o|




fi

f pi
...

f p|o|−1i

 .
Since W is unramified over Zp, the determinant of the first matrix on the right is a
unit. The determinant of the second matrix on the right is clearly pa1+···+a|o| , and
this is the length of the quotient of Mo by the W -span of H o. This proves that

Disc(E(Kd)⊗Zp)
o
= p2(a1+···+a|o|),

and this is the assertion of Theorem 3.1.1.
To prove Theorem 3.2.1, note that we have containments

V o
d ⊂ E(Kd)

o ∼= H o
⊂ Mo

and we can compute the lengths of Mo/W H o and Mo/W V o
d via discriminants.

We just saw that

LenW
Mo

W H o = a1+ · · ·+ a|o|.

Let us simplify the sum using that we are in the complementary case so that k is
odd and ek+ j = e j . We have

|o|∑
j=1

a j =

2k∑
j=1

(−1) j+1
(e j+1

2

)
+ e j e1, j−1

=

k∑
j=1

(−1) j+1
(e j+1

2

)
+ e j e1, j−1+

k∑
j=1

(−1)k+ j+1
(e j+1

2

)
+ e j e1,k+ j−1

=

k∑
j=1

e j (e1, j−1+ e1,k+ j−1),
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where the second equality uses that ek+ j = e j and the last equality uses that k is
odd. Noting that e1, j−1+ e1,k+ j−1 = e1,k = ht(o), we find that

|o|∑
j=1

a j =
|o|
2

ht(o).

On the other hand, it follows from [Ulmer 2014b, Theorem 8.2] (when d= p f
+1)

and [Conceição et al. 2014, Proposition 7.1] (when d = 2(p f
− 1)) that

LenW
Mo

W V o
d
=
|o| f

2
.

Thus, we have

logp[E(Kd)
o
: V o

d ] = LenW
W H o

W V o
d
=
|o|
2
( f − ht(o)).

Since V o
d
∼= 0o and 0o has a unique G-invariant superlattice of index p|o|e, namely

p−e0o, we must have

E(Kd)
o

V o
d

∼= p−( f−ht(o))/20o/0o ∼= 0o/p( f−ht(o))/20o.

Note also that when gcd(o, d) = 1, we have f =
∑k

j=1 e j and ht(o) = e1− e2+

· · · + ek , so ( f − ht(o))/2 =
∑(k−1)/2

j=1 e2 j . These are exactly the assertions of
Theorem 3.2.1, so this completes the proof.

8.3. Proof of Theorem 3.3.1. Let Fq be an extension of Fp(µd), and consider E
over Fq(u) with ud

= t .
The first step in the proof is to note that Theorem 4.2(2) and Theorem 5.2(2) give

an isomorphism of Zp[G]-modules between X(E/Fq(u))[pn
]
o and the cokernel

of the map

((H 1(C)⊗w H 1(D))1,o,F=p)/pn
→ (H 1(C)/pn

⊗W H 1(D)/pn)1,o,F=V=p.

In the notation of Section 7, this is the cokernel of

H o/pn
→ H o

n ,

and in Proposition 7.6.1(2), we showed that for all n ≥ ht(o) this cokernel is⊕k
j=1 Wd j (Fq)

Wdk (Fp|o|)
,

where the d j are the invariants associated to o in Section 2.6. This is precisely part (1)
of the theorem. Part (2) follows immediately once we note that if gcd(o, d) = 1,
then Fp|o| = Fp2 f = Fp(µd).
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8.4. Exponents. We prove parts (1) and (2) of Theorem 1.1. Clearly part (2)
implies part (1).

By Theorem 3.2.1, the exponent of (E(Kd)/Vd)
o is p( f−ht(o))/2. This is maxi-

mized when ht(o) is minimized. If f is odd, there is an i ∈Z/dZ with pattern (ul) f

and the corresponding word has height 1. If f is even, the minimum value of ht(o)
is 2, which is achieved by an orbit with pattern (and word) (ul) f−1uu(lu) f−1ll. By
Lemma 8.1.1, any such word actually does arise as the word of some i ∈ S. Thus,
the exponent of E(Kd)/Vd is pb( f−1)/2c.

By Theorem 3.3.1, the exponent of X(E/Kd)
o is pdk−1 . By Lemma 2.7.3,

dk−1 =max{ei j | 2≤ i ≤ j ≤ k− 1, i and j even}.

Clearly the alternating sum ei − ei+1+ · · · is maximized when it is a single term,
and dk−1 is maximized by a word whose first half has the form ue1le2ue3 . In order
for this to be the word associated to a good base point, we must have e1 ≥ e2 and
e2 ≤ e3. Again, by Lemma 8.1.1, any such word actually does arise as the word of
some i ∈ S. Thus, for a given f , the maximum value of dk−1 = e2 is b f/3c and the
exponent of X(E/Kd) is pb f/3c

8.5. Comparison of E/V and X. Now we prove parts (3) and (4) of Theorem 1.1.
For part (3), note that when f = 1 or 2, up to rotation all words have the

form u f l f and by Theorems 3.2.1 and 3.3.1 the groups under discussion are trivial
in these cases. If f = 3, up to rotation, every word is u3l3 or (ul)3. In the latter
case, both ((E(Kd)/Vd)

o)2 and X(E/Kd)
o are isomorphic to (0o/p)2. When

f = 4, up to rotation, the possible words are u4l4 and u2lul2ul. In the former case,
both ((E(Kd)/Vd)

o)2 and X(E/Kd)
o are trivial, and in the latter, they are both

isomorphic to (0o/p)2.
For part (4), we note that by Proposition 2.8.1 0o/p is an absolutely irre-

ducible Zp[G]-module. Thus, all Jordan–Hölder factors of (E(Kd)/Vd)
o and

X(E/Kd)
o are 0o/p, and to prove part (4), it suffices to count the multiplici-

ties. By Theorem 3.2.1, the multiplicity for (E(Kd)/Vd)
o is ( f − ht(o))/2. By

Theorem 3.3.1, that for X(E/Kd)
o is d1+ · · ·+ dk−1. But from the definition,

k∑
j=1

d j =

k∑
j=1

e2 j−1 =

k∑
j=1

e j = f.

(Here we use that we are in the complementary case, so k is odd and e j+k = e j .)
As noted just after Lemma 2.7.2, dk = ht(o), so the total multiplicity of 0o/p
in X(E/Kd)

o is f − ht(o). This completes the proof of part (4).

8.6. Polynomial interpolation of orders. Now we prove Theorem 1.1(5). Write
inv(o) for |o|( f − ht(o)) so that |X(E/Kd)

o
| = pinv(o). Then |X(E/Kd)| = p I ,
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where

I =
∑

o∈Od,p

inv(o).

Recall that a word is “good” if it associated to a good base point of an orbit.
Let |Aut(w)| be the number of automorphisms of w, i.e., the number of rotations
leaving w invariant. Then since inv(o) only depends on the word associated to o,

I =
∑

good w

|{i | the orbit through i is w}|
|Aut(w)|

inv(w).

Now inv(w)/|Aut(w)| is the same for a word w as for the concatenation of several
copies of w, so we may take the sum only over full-length words and consider i’s
whose pattern is w, where pattern is defined as in Section 8.1. Then

I =
∑

full length, good w

inv(w)
|Aut(w)|

|{i | the pattern of i is w}|.

To finish, we note that by Lemma 8.1.1, |{i | the pattern of i is w}| is a polynomial
in p. This shows that there is a polynomial F f depending only on f with coefficients
in Z[1/2] such that I = F f (p). It also shows that when I is not zero, (i.e., when
there are words with nonzero invariant, i.e., when f ≥ 3), the degree of F f is f .

Here is an example. If f = 3, the good words are u3l3, ululul, and ul. We have
inv(u3l3)= 0, inv(ululul)= 12, and inv(ul)= 4. Using Lemma 8.1.1, we find that

I =
12
3

(
p− 1

2

)3

=
(p− 1)3

2
.

It looks like an interesting and perhaps difficult problem to give a closed expression
for F f in general.

9. Complements

In the last section of the paper, we give four complementary results. Two of them
recover much of the main theorem (specifically, the p-torsion in X(E/Kd) and
(E(Kd)/Vd)) using flat rather than crystalline cohomology. This gives a reassuring
check on the combinatorial aspects of the main results. The third gives an extension
of many of the results of the paper to characteristic p = 2. In the fourth, we briefly
touch upon a generalization to higher-genus curves.

9.1. p-torsion in X(E/Kd) via flat cohomology. It is possible to compute the
p-Selmer group of E/Kd (and therefore the p-torsion in the Tate–Shafarevich
group) using flat cohomology and the methods of [Ulmer 1991]. This yields a
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second proof that X(E/Kd) is trivial if and only if f ≤ 2, and it provides a check
on the crystalline calculation described in the main part of the paper.

We refer to [Ulmer 1991, §1] for the definition of the Selmer group denoted
Sel(Kd , pE). It sits in an exact sequence

0→ E(Kd)/pE(Kd)→ Sel(Kd , pE)→X(E/Kd)[p] → 0.

Proposition 9.1.1. With p, f , d = p f
+ 1, and E as in the rest of the paper,

(1) Sel(Kd , pE) is an Fp-vector space of dimension (p− 1)(p f−1
+ 1) f/2, and

(2) X(E/Kd)= 0 if and only if f ≤ 2.

The proof of the proposition will occupy the rest of this section. Note that part (2)
follows easily from part (1) since we know that E(Kd)/pE(Kd) is an Fp-vector
space of dimension p f

− 1.
Let A= A(E, dx/2y) be the Hasse invariant of E . By a simple calculation (see,

e.g., [Husemöller 2004, §13, Proposition 3.5]), this is

A =
(p−1)/2∑

i=0

(
(p−1)/2

i

)2
t i .

Let α be a (p− 1)-th root of A in K , and let Fd,p be the field Kd(α). Then Fd,p is
a Galois extension of Kd with group F×p . We let Id,p→ P1

u be the corresponding
cover of smooth projective curves over Fq = Fp(µd). (Here I is for “Igusa”.) Then
the argument leading to [Ulmer 1991, Theorem 7.12b] yields an isomorphism

Sel(Kd , pE)∼= H 0(Id,p, �
1
Id,p
)ψ
−1,C=0,

where C= 0 indicates the kernel of the Cartier operator (i.e., the subspace of exact
differentials) and ψ−1 denotes the subspace where Gal(Fd,p/Kd)= F×p acts via the
character ψ−1 where ψ : F×p → k× is the natural inclusion.

(Some of the results of [Ulmer 1991] used just above are stated for p> 3, but this
is assumed only to guarantee that at places of potentially multiplicative reduction,
E obtains multiplicative reduction over an extension of degree prime to p. This is
true for the Legendre curve even when p = 3.)

Using the covering Id,p→ P1
u (which is ramified exactly where α has zeroes),

we find that

H 0(Id,p, �
1
Id,p
)ψ
−1
=

{
f (u) du
α p−2

∣∣∣∣ deg( f )≤ N
}
,

where f is a polynomial of degree at most N=(p−2)(p f
+1)/2−2 when d= p f

+1.
(For d = 1, there is also ramification at infinity and we have N = (p− 5)/2.) The
crux of the proof is to compute the subspace killed by the Cartier operator.
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To that end, we first make some calculations at level d = 1, i.e., on the curve I1,p.
Write

dt
α p−2 = ( f p

0 + t f p
1 + · · ·+ t p−1 f p

p−1) dt,

where the fi ∈ F1,p = Fp(t, α). Since (1/α)= (A/α p), the fi are all polynomials
in t times 1/α p−2. Note that C(t i dt/α p−2)= f p−1−i dt for i = 0, . . . , p− 1.

The key step in the proof of the proposition is the following calculation of
dimensions of certain spaces spanned by the fi . In it, we use angle brackets to
denote the Fq -span of the terms within.

Lemma 9.1.2. (1) dimFq 〈 f p−1, f p−2, . . . , f(p+3)/2〉 = (p− 3)/2.

(2) We have equalities and containments

〈 f p−1, . . . , f(p+3)/2〉 = 〈 f p−2, . . . , f(p+1)/2〉 = · · · = 〈 f(p−1)/2, . . . , f2〉

( 〈 f(p−1)/2, . . . , f1〉 = 〈 f(p−3)/2, . . . , f0〉

and

〈 f(p−3)/2, . . . , f0〉 = 〈 f(p−5)/2, . . . , f0, t f p−1〉 = · · · = 〈 f0, t f p−1, . . . , t f(p+3)/2〉.

Proof. Recall that K = K1 = Fp(t). First, we note that E(K )/pE(K ) = 0 by
[Ulmer 2014b, Propositions 5.2 and 6.1], and using the BSD formula as in [Ulmer
2014b, §10] shows that X(E/K )= 0. Thus, Sel(K , pE)= 0.

On the other hand, as we noted above, Sel(K , pE) is isomorphic to the kernel of
the Cartier operator on {

f (t) dt
α p−2

∣∣∣∣ deg( f )≤ (p− 5)/2
}
.

Since this kernel is trivial, we find that f p−1, . . . , f(p+3)/2 are linearly independent,
and this is the first claim of the lemma.

Now set g0 = −A′ = −d A/dt and gi = i A − t A′, and compute that A′dt =
−α p−2 dα so that dα = g0 dt/α p−2 and d(t iα)= t i−1gi dt/α p−2 for i ≥ 0. These
exact differentials provide relations among the fi . More precisely, note that g0 has
degree (p− 3)/2 and nonzero constant term, so C(g0dt/α p−2)= 0 implies that a
linear combination of f p−1, . . . , f(p+1)/2 is zero, and f p−1 and f(p+1)/2 appear in
this relation with nonzero coefficients. This implies that

〈 f p−1, . . . , f(p+3)/2〉 = 〈 f p−2, . . . , f(p+1)/2〉,

which is the first equality displayed in part (2) of the lemma.
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To obtain the rest of the equalities in that display, we set h0 = g0 and

hi =

(
(p−1)/2

i

)2
t i−1gi + hi−1

=

i∑
`=1

(
(p−1)/2

`

)2
t`−1g`+ g0

for i =1, . . . , (p−3)/2. One checks inductively that hi has degree (p−3)/2+i and
its nonzero term of lowest degree is −(i + 1)

(
(p−1)/2

i+1

)2t i . Thus, C(hi dt/α p−2)= 0
gives a relation among f p−1−i , . . . , f(p+1)/2−i , where the coefficients of f p−1−i and
f(p+1)/2−i are nonzero. These relations give the desired equalities between spans.

The proper containment in the second line of the first display in part (2) of the
lemma is equivalent to saying that f1 and 〈 f(p−1)/2, . . . , f2〉 are linearly independent.
One way to see this is to note that the α p−2 fi are polynomials in t and since the
degree of Ap−2 is congruent to 1 modulo p, α p−2 f1 has degree strictly greater than
α p−2 fi for i = 2, . . . , p−1. Thus, f1 and 〈 f p−1, . . . , f2〉 are linearly independent.

To obtain the remaining equalities of part (2), we consider the exact differentials
t i−1gi dt/α p−2 for i = (p + 1)/2, . . . , p − 1. In this range, t i−1gi has degree
(p− 3)/2+ i and lowest term of degree i − 1. For i = (p+ 1)/2, we get a relation
among f(p−1)/2, . . . , f0 with f(p−1)/2 and f0 appearing, yielding the last equality
in the first display of part (2). For i = (p+3)/2, . . . , p−1, we get relations among
f p−i , . . . , t f(3p+1)/2−i with f p−i and t f(3p+1)/2−i appearing, and these relations
give the equalities in the second display of part (2). �

We may now compute the rank of the Cartier operator on H 0(Id,p, �
1
Id,p
)ψ
−1

; in
other words,

R := dimFq C

({
f (u) du
α p−2

∣∣∣∣ deg( f )≤ (p− 2)(p f
+ 1)/2− 2

})
.

Noting that u = t/u p f
and du = u−p f

dt , we find that

C(ui+pj du/α p−2)= u j−(i+1)p f−1
fi du

for 0≤ i ≤ p− 1 and

0≤ j ≤

{
1
2(p− 3)p f−1

+
1
2(p

f−1
− 1) if i ≤ p− 3,

1
2(p− 3)p f−1

+
1
2(p

f−1
− 3) if i = p− 2, p− 1.

This implies that the image of C will be spanned by spaces of the form ue
〈 fa, . . . , fb〉.

To compute the dimension, we observe that if e1, . . . , e` are integers pairwise
noncongruent modulo d and if V1, . . . V` are Fq -vector spaces spanned by subsets
of {t j fi | 0≤ i ≤ p− 1, j ∈ Z}, then the subspaces uei Vi of Fd,p are linearly inde-
pendent over Fq . This plus the information in Lemma 9.1.2 suffices to compute R.
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An elaborate and somewhat unpleasant exercise in bookkeeping that we omit
leads to

R =
(p− 3)

2
(p− 1)

2
p f−1
+
(p− 3)

2
(p f
+ 3)
2

+
p− 1

2
(p f−1

− 1),

which in turn implies that

dimFq ker(C)= N + 1− R =
(p− 1)

2
(p f−1

+ 1)
2

.

Since [Fq : Fp] = 2 f , this completes the proof of Proposition 9.1.1.
The analysis above yields quite a bit more information about Sel(K , pE):

Corollary 9.1.3. The differentials

ωi, j = u pj−i p f
hi (t) du/α p−2

= ui+pj t−i hi (t) du/α p−2

for 0 ≤ i ≤ (p− 3)/2 and 0 ≤ j ≤ (p f−1
− 1)/2 are regular and exact, and they

give an Fq -basis for

Sel(K , pE)∼= H 0(Ip,d , �
1
Ip,d
)ψ
−1,C=0.

Proof. The proof of Proposition 9.1.1 shows that the displayed differentials are
exact and lie in the ψ−1 eigenspace. They are obviously linearly independent, and
since the number of them is the dimension of Sel(K , pE) over Fq , they form an
Fq -basis. �

We can also deduce results on the structure of Sel(K , pE) as a module over Fp[G]:

Corollary 9.1.4. If o ∈ O is an orbit whose pattern is ue1le2 · · · uek , then the multi-
plicity of 0o/p in Sel(K , pE) is k, and its multiplicity in X(E/Kd) is k− 1.

Proof. The previous corollary shows that as an Fp[G]-module, Sel(Kd , pE) is the
direct sum ⊕

0≤i≤(p−3)/2
0≤ j≤(p f−1

−1)/2

Fqui+pj .

If ` ∈ o, then by Proposition 2.8.1(5), Fqu` ∼= (0o/p)2 f/|o|.
Now an orbit o appears in the discussion above as many times as there are ` ∈ o

that can be written `= 1+ i+ pj with 0≤ i ≤ (p−3)/2 and 0≤ j ≤ (p f−1
−1)/2.

Writing `=
∑ f

k=1 ik pk−1 as in Section 8.1, we see that ` can be written `=1+i+pj
with i and j “small” in the sense above if and only if the word associated to `
begins and ends with the letter u. Thus, if the word of o is ue1 · · · uek′ le1 · · · lek′ ,
then the number of times o arises is k ′.

To finish, we note that the pattern of the standard base point of o is the first half of
w(o)2 f/|o|, and written in exponential form, this has k=k ′(2 f/|o|) runs of u’s. Thus,
0o/p appears k times in Sel(Kd , pE). This proves our claim about Sel(Kd , pE).
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The claim about X(E/Kd) follows from the fact that as an Fp[G]-module,
E(Kd)/p is the direct sum of all 0o/p with o ∈ O each taken with multiplicity 1.
(This follows immediately from Remark 2.8.3.) �

We need one more result from [Ulmer 1991]. To state it, recall that the Selmer
group for the isogeny Fr : E→ E (p) over Fp,d is naturally a subgroup of

F×p,d/F×p
p,d
∼=�

1
log(Fp,d),

where the latter is the space of meromorphic, logarithmic differentials on Ip,d . In
[Ulmer 1991, §5], we defined a logarithmic differential dq/q attached to E/Fp,d

that depends only on the choice of a (p− 1)-th root α of A (or, what amounts to
the same thing, a nontrivial point of order p in E (p)(Fp,d)).

Lemma 9.1.5. We have an equality

dq
q
=

α2 du
u(t − 1)

=
α2 du

u(ud − 1)

of meromorphic differentials on Ip,d and a calculation of Selmer groups:

Sel(Fp,d ,FrE)= Fp
dq
q
.

Proof. The same argument as in [Ulmer 1991, Theorem 7.6] shows that the
Selmer group Sel(Fp,d ,FrE) is isomorphic to the group of logarithmic differentials
with simple poles at places where E has multiplicative reduction and zeros of
order p at places where E has supersingular reduction. An easy exercise using
the covering Ip,d → P1

u shows that the only such differentials are the Fp-multiples
of α2du/u(t − 1). Since dq/q lies in this Selmer group (as the image of the chosen
point of order p on E (p)(Fp,d)), it is a nonzero multiple of α2du/u(t − 1). Which
multiple it is will not be material for what follows, so we omit the check that dq/q
is α2du/u(t − 1) on the nose. �

9.2. p-torsion in E(Kd)/Vd via flat cohomology. The results of [Ulmer 1991;
Broumas 1997] also afford good control on the p-torsion in E(Kd)/Vd . We continue
with the notation of the previous subsection. In particular, we assume that d= p f

+1.
We state our result in terms of the decomposition of E(Kd)/Vd as a module

over Zp[G] (in fact over Fp[G] since we are concerned only with the p-torsion).

Proposition 9.2.1. We have

ker(p : E(Kd)/Vd → E(Kd)/Vd)
o
=

{
0o/p if the word of o is not u f l f ,

0 if the word of o is u f l f .

Proof. First, we note that an easy application of the snake lemma shows that

ker(p : E(Kd)/Vd → E(Kd)/Vd)∼= ker(Vd/p→ E(Kd)/p).
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Moreover, we have an injection

E(Kd)/p ↪→ Sel(Kd , pE), (9.2.1)

so it will suffice to compute the kernel of the composed map Vd/p→ Sel(Kd , pE).
We will do this by using Broumas’ wonderful formula for (9.2.1) and the explicit
calculation of Sel(Kd , pE) in the preceding subsection.

Recall that Vd/p is isomorphic as an Fp[G]-module to
⊕

o∈O 0o/p and that this
Fp[G]-module is cyclic, generated by the point P(u)= (u, u(u+ 1)d/2) defined in
[Ulmer 2014b, §3].

As noted in the previous section, we have

Sel(Kd , pE)∼= H 0(Ip,d , �
1
i p,d
)C=0, ψ−1

.

Using [Ulmer 1991, Proposition 5.3], the space of exact differentials above can be
identified with a subgroup of the additive group of Kd via the mapω 7→α pω/(dq/q),
where dq/q is the differential computed in Lemma 9.1.5 and α is a root of α p−1

= A.
The main theorem of [Broumas 1997] gives an explicit formula for the composition

µ : E(Kd)→ Sel(Kd , pE)→ Kd .

To state the result, write

(x(x + 1)(x + t))(p−1)/2
= x p M(x)+ Ax p−1

+ lower-order terms

and let ℘A(z) = z p
− Az. Then (after a considerable amount of boiling down),

Broumas’ formula says

µ(P(u))= u(u+ 1)(p
f
+1)/2 M(u)−℘A(u(u+ 1)(p

f
−1)/2).

(We note that there is a typo in [Broumas 1997] in the case p= 3; Namely, in (36) on
page 140, “2Da2/a2+Da6/a6” should be replaced with “(2Da2/a2+Da6/a6)x”.)

The last displayed quantity is an element of the polynomial ring Fq [u], and we
are going to compute it modulo the ideal generated by t = ud .

To see that this will suffice for our purposes, recall from Corollary 9.1.3 the exact
differentials ωi, j giving an Fq -basis for the Selmer group. Using Lemma 9.1.5, we
find that

fi, j := α
pωi, j/(dq/q)= u1+i+pj t−i hi (t)(t − 1)

for 0≤ i ≤ (p− 3)/2 and 0≤ j ≤ (p f−1
− 1)/2. Thus, in order to write µ(P(u))

in terms of the fi, j , it suffices to know µ(P(u)) modulo t .
Straightforward computation from the definition shows that

M(u)≡
(u+ 1)(p−1)/2

− 1
u

and A ≡ 1 (mod tFq [u]).
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Thus,

µ(P(u))≡ (u+1)(p
f
+p)/2
−(u+1)(p

f
+1)/2
−u p(u p

+1)(p
f
−1)/2
+u(u+1)(p

f
−1)/2

= (u+1)(p
f
−p)/2((u+1)p

−(u+1)(p+1)/2

−u p(u p
+1)(p

f
−p f−1)/2

+u(u+1)(p−1)/2)
≡ (u+1)(p

f
−p)/2(1−(u+1)(p−1)/2)

=−u
( (p−3)/2∑

j=0

(
(p−1)/2

i+1

)
ui
)
(1+u p)(p−1)/2

· · · (1+u p f−1
)(p−1)/2.

(To pass from the second line to the third, note that the sum of the first and third
terms inside the large parentheses is congruent to 1 modulo t .)

The last expression makes it clear that µ(P(u)) (mod tFq [u]) is the sum of
terms cu` where u` appears with nonzero coefficient if and only if `= 1+

∑
ik pk−1

with i1 ≤ (p− 3)/2 and ik ≤ (p− 1)/2 for 2≤ k ≤ f . It follows that µ(P(u)) is a
linear combination (with nonvanishing coefficients) of the fi, j where `= 1+ i+ pj
satisfies the same condition.

Now by Proposition 2.8.1(5), the Fp[G]-modules Fqu` with ` satisfying the
conditions just above are pairwise nonisomorphic. Thus, the Fp[G]-submodule of
the Selmer group generated by µ(P(u)) is the direct sum of the corresponding 0o/p.
The orbits in question are precisely those with word u f l f , and this shows that the
image of Vd/p→ E(Kd)/p is isomorphic to⊕

o∈O
w(o)=u f l f

0o/p.

The kernel is thus the sum of the 0o/p, where o runs through orbits with words not
equal to u f l f . �

The proposition allows us to recover large parts of Theorem 1.1: it shows that
(E(Kd)/Vd is nontrivial if and only if f > 2, and together with Corollary 9.1.4,
it shows that X(E/Kd) is not isomorphic to (E(Kd)/Vd)

2 as an abelian group
if f > 4.

9.3. An extension to p = 2. In this subsection, we explain how the main results
of the paper can be extended to the case where p = 2.

To that end, let p be an arbitrary prime number and let E ′ be the elliptic curve
over K ′ = Fp(t ′) defined by

y2
+ xy+ t ′y = x3

+ t ′x2.

As explained in [Ulmer 2014b, §11; Conceição et al. 2014, §11], if p > 2 and we
identify K ′ and K by sending t ′ to t/16, then E and E ′ are 2-isogenous. Moreover,
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for d= p f
+1, the fields K ′d =Fp(µd , t ′1/d) and Kd =Fp(µd , t1/d) can be identified

as extensions of K . Having done so, one finds that the subgroup V ′d⊂E ′(K ′d) defined
in [Ulmer 2013, Remark 8.10(3)] is carried over to Vd ⊂ E(Kd). It follows that
Theorem 1.1 and its refinements in Section 3 hold for E ′(K ′d)/V ′d and X(E ′/K ′d).

Now the equation above also defines an elliptic curve when p = 2. Moreover,
the Néron model of E ′/K ′d is dominated by a product of curves (two copies of the
curve C′ over Fp(µd) defined by zd

= x(1−x)); see [Conceição et al. 2014, Theorem
11.2(5)]. Thus, the methods of this paper may be used to compute E ′(K ′d)/V ′d
and X(E ′/K ′d) as modules over Zp[Gal(K ′d/K )]. Most of the results have the
same form, and the proofs are mostly parallel, so we will briefly discuss some of
the differences and then state the results.

The analogue of the geometric analysis leading to Theorem 4.2 gives an isomor-
phism

(E ′(K ′d)/tor)⊗Z[1/d] −→∼ (NS′(C×C)⊗Z[1/d])µd ,

where the µd in the exponent is acting antidiagonally. (In fact, the most natural way
to state this would be with the arrow going the other way and with the target being
the subgroup of E ′(K ′d) generated by the point in [Ulmer 2013, Theorem 8.1(2)]
and its Galois conjugates. This subgroup is free of rank d − 1 and is a complement
to the torsion subgroup.) The analogue of the isomorphism of Tate–Shafarevich
and Brauer groups in Theorem 4.2(2) goes through for E ′ without change.

The analysis of the arithmetic of a product in Section 5 was done there also
for p = 2, and the description of the cohomology of C in Section 6 works for C′

as well with very minor changes. The p-adic exercises in Section 7 also work
essentially unchanged.

Altogether, one finds that the obvious analogues of Theorem 1.1 parts (1)
through (4) hold for E ′/K ′d . Similar analogues hold for the refined Theorems 3.2.1
and 3.3.1.

There are a few differences to report as well. For example, part (5) of Theorem 1.1
does not extend to p = 2. Indeed, the polynomial appearing there does not even
take integral values at p = 2. The correct statement can be deduced from the proof
in Section 8.6 by noting that the number of elements in Z/dZ \ {0} with a given
pattern is 1 (rather than (p− 1)a(p+ 1)b/2 f as in Lemma 8.1.1).

The results of Sections 9.1 and 9.2 also extend to E ′. One finds that the order
of Sel(K ′d , pE ′) is 2 f−1 f +1. The refined results of Corollary 9.1.4 and Proposition
9.2.1 hold as stated. However, the details of the 2-descent have a different flavor
because E ′ has a 2-torsion point over K ′ so the kernel of p is the direct sum of the
kernels of Frobenius and Verschiebung and the differential dq/q is zero. We leave
the details as an exercise for the interested reader.
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9.4. Higher genus. Let p be a prime number and r and d integers relatively prime
to p, and consider the curve X defined by

yr
= xr−1(x + 1)(x + t)

over Fp(t) and its extensions Fq(u) with ud
= t . The genus of X is r − 1, and its

Jacobian J has interesting arithmetic over Fq(u) for many values of d .
For simplicity, we will only discuss the case where r divides d, d = p f

+ 1,
and Fq =Fp(µd). We write Kd for Fq(u). In [Berger et al.≥ 2015], explicit divisors
are given on X whose classes in J (Kd) generate subgroup Vd of rank (r−1)(d−2)
and finite, p-power index. Moreover, it is shown there that we have a class-number
formula

|X(J/Kd)| = [J (Kd) : Vd ]
2.

Most of the results of this paper extend to this situation and give an explicit
calculation of X(J/Kd) and J (Kd)/Vd as modules over the group ring Zp[G],
where G = µd oGal(Fq/Fp).

Indeed, we saw in Section 4.6 that the minimal regular model X → P1
u of

X/Kd is birational to the quotient of a product of curves by a finite group. The
product is S = C× C, where C is the smooth proper curve over Fq defined by
zd
= xr

− 1. We deduce from this a connection between the Mordell–Weil and
Tate–Shafarevich groups of J and the Néron–Severi and Brauer groups of S as at
the end of Section 4.6. These groups are described in crystalline terms in Section 5.

As we saw in Section 6.5, the crystalline cohomology of C breaks up into lines
indexed by the set

S = {(i, j) ∈ (Z/dZ)× (Z/rZ) | i 6= 0, j 6= 0, 〈i/d〉+ 〈 j/r〉 6= 1}.

The subspace H 0(C/Zp, �
1
C/Zp

) is generated by the lines indexed by (i, j) with
〈i/d〉 + 〈 j/r〉 < 1. Calling this subset A and letting B = S \ A, we may use A
and B to define words associated to orbits of 〈p〉 acting diagonally on S and to
define a notion of balanced as discussed at the end of Section 6.5.

The p-adic exercises of Section 7 go through essentially unchanged, and inter-
preting “balanced” as above, we find that Theorem 1.1 parts (1) through (4) and the
refined results in Theorems 3.1.1, 3.2.1, and 3.3.1 hold as stated. An interpolation
result, as in part (5) of Theorem 1.1, also holds with a polynomial F that depends
on r and f but not on p.

Exploring the arithmetic of J for other values of r and d looks like an interesting
project. In particular, one may ask about other systematic sources of nontorsion
points on J as in [Conceição et al. 2014] and about the relative abundance or
scarcity of balanced rays for fixed p and varying r and d as in [Pomerance and
Ulmer 2013].
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Explicit Gross–Zagier and
Waldspurger formulae

Li Cai, Jie Shu and Ye Tian

We give an explicit Gross–Zagier formula which relates the height of an explicitly
constructed Heegner point to the derivative central value of a Rankin L-series.
An explicit form of the Waldspurger formula is also given.
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1. Main results

1A. Introduction. The Gross–Zagier formula and the Waldspurger formula are
probably the two most important analytic tools known at present for studying the
still largely unproven conjecture of Birch and Swinnerton-Dyer. Much work has
already been done on both formulae. In particular, the recent book by Yuan, Zhang
and Zhang [Yuan et al. 2013] establishes what is probably the most general case
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of the Gross–Zagier formula. Nevertheless, when it comes to actual applications
to the arithmetic of elliptic curves or abelian varieties, one very often needs a more
explicit form of the Gross–Zagier formula than that given in [Yuan et al. 2013],
and similarly a more explicit form of the Waldspurger formula than one finds in the
existing literature. This is clearly illustrated, for example, by the papers [Bertolini
and Darmon 1997; Tian 2014; Tian et al. 2013; Coates et al. 2014]. Our aim here is
to establish what we believe are the most general explicit versions of both formulae,
namely Theorems 1.5 and 1.6 for the Gross–Zagier formula, and Theorems 1.8
and 1.9 for the Waldspurger formula. Our methods have been directly inspired by
[Yuan et al. 2013], and also the ideas of [Gross 1988] and [Gross and Prasad 1991].

In the remainder of this introduction, we would like to explain in detail our explicit
formulae in the simplest and most important case of modular forms over Q. Let φ
be a newform of weight 2, level 00(N ), with Fourier expansion φ =

∑
∞

n=1 anqn

normalized so that a1 = 1. Let K be an imaginary quadratic field of discriminant D
and χ a primitive ring class character over K of conductor c, i.e., a character of
Pic(Oc), where Oc is the order Z+ cOK of K . Assume the Heegner conditions (first
introduced by Birch in a special case):

(1) (c, N )=1, no prime divisor p of N is inert in K , and p must split in K if p2
|N .

(2) χ([p]) 6= ap for any prime p|(N , D), where p is the unique prime ideal of OK

above p and [p] is its class in Pic(Oc).

Let L(s, φ, χ) be the Rankin L-series of φ and the theta series φχ associated to χ
(without the local Euler factor at infinity). It follows from the Heegner conditions
that the sign in the functional equation of L(s, φ, χ) is −1. Let (φ, φ)00(N ) denote
the Petersson norm of φ:

(φ, φ)00(N ) =

∫∫
00(N )\H

|φ(z)|2 dx dy, z = x + iy.

Let X0(N ) be the modular curve over Q whose C-points parametrize isogenies
E1→ E2 between elliptic curves over C whose kernels are cyclic of order N . By
the Heegner conditions, there exists a proper ideal N of Oc such that Oc/N∼=Z/NZ.
For any proper ideal a of Oc, let Pa ∈ X0(N ) be the point representing the isogeny
C/a→C/aN−1, which is defined over the ring class field Hc over K of conductor c
and only depends on the class of a in Pic(Oc). Let J0(N ) be the Jacobian of X0(N ).
Writing∞ for the cusp at infinity on X0(N ), we have the morphism from X0(N )
to J0(N ) over Q given by P 7→ [P −∞]. Let Pχ be the point

Pχ =
∑

[a]∈Pic(Oc)

[Pa−∞]⊗χ([a]) ∈ J0(N )(Hc)⊗Z C

and write Pφχ for the φ-isotypical component of Pχ .
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The following theorem was proved in the case c = 1 in the celebrated work by
Gross and Zagier [1986], and follows immediately from the general explicit Gross–
Zagier formula in Theorem 1.5 (see Special case 2, and the Example following).

Theorem 1.1. Let φ, χ be as above satisfying the Heegner conditions (1) and (2).
Then

L ′(1, φ, χ)= 2−µ(N ,D) ·
8π2(φ, φ)00(N )

u2
√
|Dc2|

· ĥK (Pφχ ),

where µ(N , D) is the number of prime factors of the greatest common divisor of
N and D, u = [O×c : Z

×
] is half of the number of roots of unity in Oc, and ĥK is the

Néron–Tate height on J0(N ) over K . In particular, if φ is associated to an elliptic
curve E over Q via Eichler–Shimura theory and f : X0(N )→ E is a modular
parametrization mapping the cusp ∞ to the identity O ∈ E , then the Heegner
divisor P0

χ ( f ) :=
∑
[a]∈Pic(Oc)

f (Pa)⊗χ([a]) ∈ E(Hc)C satisfies

L ′(1, E, χ)= 2−µ(N ,D) ·
8π2(φ, φ)00(N )

u2
√
|Dc2|

·
ĥK (P0

χ ( f ))

deg f
,

where ĥK is the Néron–Tate height on E over K and deg f is the degree of the
morphism f .

Comparing the above Gross–Zagier formula with the conjecture of Birch and
Swinnerton-Dyer for L(E/K , s), we immediately are led to:

Conjecture. Let E be an elliptic curve defined over Q of conductor N and let K be
an imaginary quadratic field of discriminant D such that for any prime ` dividing N ,
either ` splits in K , or ` is ramified in K and E has nonsplit semistable reduction at
`. Let f : X0(N )→ E be a modular parametrization mapping∞ to O. Let N⊂ OK

be any ideal with OK /N∼=Z/NZ, let P ∈ X0(N )(HK ) be the point representing the
isogeny (C/OK → C/N−1), and write PK ( f ) := TrHK /K f (P) ∈ E(K ). Assume
PK ( f ) is not torsion. Then√

#X(E/K )= 2−µ(N ,D) ·
[E(K ) : ZPK ( f )]

C · [O×K : Z×] ·
∏
`|N/(N ,D) m`

,

where m` = [E(Q`) : E0(Q`)] and C is the positive integer such that if ω0 is a
Néron differential on E then f ∗ω0 =±C · 2π iφ(z) dz.

We next state our explicit Waldspurger formula over Q. Let φ =
∑
∞

n=1 anqn

in S2(00(N )) be a newform of weight 2 and level 00(N ). Let K be an imaginary
quadratic field and χ : Gal(Hc/K )→ C× a character of conductor c. Assume the
conditions:

(i) (c, N )= 1 and, if p|(N , D), then p2 - N .
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(ii) Let S be the set of places p|N∞ nonsplit in K such that, for a finite prime p,
ordp(N ) is odd if p is inert in K , and χ([p]) = ap if p is ramified in K .
Then S has even cardinality.

It follows that the sign of the functional equation of the Rankin L-series L(s, φ, χ)
is +1. Let B be the quaternion algebra over Q ramified exactly at places in S. Note
that condition (ii) implies that there exists an embedding of K into B, which we fix
once and for all. Let R⊂ B be an order of discriminant N with R∩K =Oc. Such an
order exists and is unique up to conjugation by K̂×. Here, for an abelian group M ,
we define M̂ = M ⊗Z Ẑ, where Ẑ=

∏
p Zp with p running over all primes. By the

reduction theory of definite quadratic forms, the coset X := B×\B̂×/R̂× is finite,
say of order n. Let g1, . . . , gn in B̂× represent the distinct classes [g1], . . . , [gn].
For each i = 1, . . . , n, let 0i = (B× ∩ gi R̂×g−1

i )/{±1}. Then 0i is a finite group,
and we denote its order by wi . Let Z[X ] denote the free Z-module of formal sums∑n

i=1 ai [gi ] with ai ∈ Z, and define a height pairing on Z[X ] by〈∑
ai [gi ],

∑
bi [gi ]

〉
=

n∑
i=1

ai biwi ,

which is positive definite on R[X ] := Z[X ] ⊗Z R and has a natural Hermitian
extension to C[X ] := Z[X ] ⊗Z C. Define the degree of a vector

∑
ai [gi ] ∈ Z[X ]

to be
∑

ai and let Z[X ]0 denote the degree-0 submodule of Z[X ]. Then Z[X ] and
Z[X ]0 are endowed with actions of Hecke operators Tp, Sp, p - N , which are linear
and defined as follows: For any prime p - N , B×p /R×p ∼= GL2(Qp)/GL2(Zp) can
be identified with the set of Zp-lattices in a 2-dimensional vector space over Qp.
Then, for any g = (gv) ∈ B̂×,

Sp([g])= [g(p)sp(gp)] and Tp([g])=
∑
h p

[g(p)h p],

where g(p) is the p-off part of g, namely g(p) = (g(p)v ) with g(p)v = gv for all v 6= p
and g(p)p =1; if gp corresponds to lattice3, then sp(gp) is the coset corresponding to
the homothetic lattice p3; and h p runs over p+1 lattices3′⊂3 with [3 :3′] = p.
There is a unique line Vφ ⊂ C[X ]0 where Tp acts as ap and Sp acts trivially for all
p - N . Recall that the fixed embedding of K into B induces a map

Pic(Oc)= K×\K̂×/̂O×c −→ X = B×\B̂×/R̂×, t 7−→ xt ,

using which we define an element in C[X ],

Pχ :=
∑

χ−1(t)xt ,

and let Pφχ be its projection to the line Vφ . The following explicit height formula
for Pφχ , which was proved by Gross [1987] in some cases, is a special case of the
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explicit Waldspurger formulas in Theorems 1.8 and 1.10 (with Proposition 3.8).

Theorem 1.2. Let (φ, χ) be as above satisfying the conditions (i) and (ii). Then we
have

L(1, φ, χ)= 2−µ(N ,D) ·
8π2(φ, φ)00(N )

u2
√
|Dc2|

· 〈Pφχ , Pφχ 〉,

where µ(N , D) and u are as in Theorem 1.1. Let f =
∑

i f (gi )w
−1
i [gi ] be any

nonzero vector on the line Vφ , and let P0
χ ( f )=

∑
t∈Pic(Oc)

f (t)χ(t). Then the above
formula can be rewritten as

L(1, φ, χ)= 2−µ(N ,D) ·
8π2(φ, φ)00(N )

u2
√
|Dc2|

·
|P0
χ ( f )|2

〈 f, f 〉
.

Notation for first two sections. We denote by F the base number field of degree
d=[F :Q] over Q and O=OF its ring of integers with different δ. Let A= FA be the
adèle ring of F and A f its finite part. For any Z-module M , we let M̂ =M⊗Z Ẑ and
Ẑ=

∏
p Zp. For example, F̂ =A f . Let | · |A :A×→R×+ denote the standard adelic

absolute value, so that d(ab) = |a|A db for any Haar measure db on A. Let | · |v
denote the absolute value on F×v for each place v of F , with |x |A =

∏
v |xv|v for

any x = (xv) ∈ A×. For any nonzero fractional ideal b of F , let ‖b‖ denote the
norm of b. For any x ∈ A×f , we also write ‖x‖ for ‖bx‖, where bx is the ideal
corresponding to x , so that ‖x‖ = |x |−1

A ; and for any nonzero fractional ideal b we
also write |b|A for |xb|A for any xb ∈ A×f whose corresponding ideal is b, so that
|b|A =‖b‖−1. For a finite place v, sometimes we also denote by v its corresponding
prime ideal and write qv = #O/v. For a fractional ideal b of F , we write |b|v = |xb|v

for xb ∈ Fv with xbOv = bOv, denote by ordv(b) the additive valuation of b at v
such that ordv(v) = 1, and write v‖b if ordv(b) = 1. We denote by∞ the set of
infinite places of F . Denote by L(s, 1F ) the complete L-series for the trivial Hecke
character 1F on A×, so that L(s, 1F )= 0R(s)r10C(s)r2ζF (s), where r1 and r2 are
the number of real and complex places of F , ζF (s) is the usual Dedekind zeta
function of F , 0R(s)= π−s/20(s/2), and 0C(s)= 2(2π)−s0(s). For each place v
of F , let L(s, 1v) denote the local Euler factor of L(s, 1F ) at v. Let DF denote the
absolute discriminant of F , and δ ⊂ O the different of F , so that ‖δ‖ = |DF |.

In the first two sections, we let K be a quadratic extension over F , D= DK/F ⊂O

be the relative discriminant of K over F , and DK be the absolute discriminant of K .
Let K ab be the maximal abelian extension over K and σ : K×A /K×→Gal(K ab/K )
be the Artin reciprocity map in class field theory. For any nonzero ideal b of O,
let Ob = O+ bOK be the unique O-order of K satisfying [OK : Ob] = #O/b, and we
call b its conductor. For any finite place v of F , Ob,v = Ob⊗O Ov only depends on
ordv b. Thus, for a fractional ideal b and a finite place v of F , Ob,v makes sense if
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ordv b ≥ 0. Let PicK/F (Ob)= K̂×/K× F̂×Ô×b . Then there is an exact sequence

Pic(OF )−→ Pic(Ob)−→ PicK/F (Ob)−→ 0.

Let κb be the kernel of the first map, which has order 1 or 2 if F is totally real
and K is a totally imaginary quadratic extension over F (see [Washington 1997,
Theorem 10.3]).

For any algebraic group G over F , let GA = G(A) be the group of adelic points
on G. For a finite set S of places of F , let GS =

∏
v∈S G(Fv) (resp. G(S)

A =G(A)(S))
be the S-part of GA (resp. the S-off part of GA) viewed as a subgroup of GA naturally
so that the S-off components (resp. S-components) are constant 1. More generally,
for a subgroup U of GA of the form U =UT U T for some set T of places disjoint
with S, where UT ⊂

∏
v∈T G(Fv) and U T

=
∏
v /∈T Uv with Uv a subgroup of G(Fv),

we may define U (S), US , and view them as subgroups of U similarly. For any ideal
b of O, we also write U (b) for U (Sb) and Ub for USb , where Sb is the set of places
dividing b. Let U0(N ) and U1(N ) denote subgroups of GL2(̂O) defined by

U0(N )=
{(

a b
c d

)
∈ GL2(̂O)

∣∣∣∣ c ∈ N Ô

}
,

U1(N )=
{(

a b
c d

)
∈U0(N )

∣∣∣∣ d ≡ 1 mod N Ô

}
.

When F is a totally real field and σ is an automorphic cuspidal representation of
level N such that σv is a discrete series for all v|∞, for an automorphic form φ

of level U1(N ) we let (φ, φ)U0(N ) denote the Petersson norm defined using the
invariant measure dx dy/y2 on the upper half-plane.

1B. The explicit Gross–Zagier formula. Let F be a totally real number field of
degree d , A=AF the adèle ring of F , and A f its finite part. Let B be an incoherent
quaternion algebra over A, totally definite at infinity. For each open compact
subgroup U of B×f = (B⊗A A f )

×, let XU be the Shimura curve over F associated
to U and ξU ∈ Pic(XU )Q the normalized Hodge class on XU , that is, the unique
line bundle which has degree one on each geometrically connected component and
is parallel to

ωXU /F +
∑

x∈XU (F)

(1− e−1
x )x .

Here ωXU /F is the canonical bundle of XU and ex is the ramification index of x in
the complex uniformization of XU , i.e., for a cusp x , ex =∞, so that 1− e−1

x = 1;
for a noncusp x , ex is the ramification index of any preimage of x in the map
XU ′ → XU for any sufficiently small open compact subgroup U ′ of U such that
each geometrically connected component of XU ′ is a free quotient of H under the
complex uniformization. For any two open compact subgroups U1 ⊂ U2 of B×f ,
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there is a natural surjective morphism XU1→ XU2 . Let X be the projective limit of
the system (XU )U , which is endowed with the Hecke action of B× where B×

∞
acts

trivially. Note that each XU is the quotient of X by the action of U .
Let A be a simple abelian variety over F parametrized by X in the sense that there

is a nonconstant morphism XU→ A over F for some U . Then, by Eichler–Shimura
theory, A is of strict GL(2)-type in the sense that M := End0(A)= End(A)⊗Z Q

is a field and Lie(A) is a free module of rank one over M ⊗Q F by the induced
action. Let

πA = Hom0
ξ (X, A) := lim

−−→
U

Hom0
ξU
(XU , A),

where Hom0
ξU
(XU , A) denotes the morphisms in Hom(XU , A) ⊗Z Q using ξU

as a base point: if ξU is represented by a divisor
∑

i ai xi on XU,F , then for
f ∈ HomF (XU , A)⊗Z Q,

f ∈ πA⇐⇒
∑

i

ai f (xi )= 0 in A(F)Q := A(F)⊗Z Q.

For each open compact subgroup U of B×f , let JU denote the Jacobian of XU . Then

πA = Hom0(J, A) := lim
−−→
U

Hom0(JU , A),

where Hom0(JU , A) = HomF (JU , A)⊗Z Q. The action of B× on X induces a
natural B×-module structure on πA so that EndB×(πA)=M and there is a decompo-
sition πA =

⊗
M πA,v , where πA,v are absolutely irreducible representations of B×v

over M . Using the Jacquet–Langlands correspondence, one can define the complete
L-series of πA,

L(s, πA)=
∏
v

L(s, πA,v) ∈ M ⊗Q C,

as an entire function of s ∈ C. Let L(s, A,M) denote the L-series of the `-adic
Galois representation with coefficients in M ⊗Q Q` associated to A (without local
Euler factors at infinity); then Lv(s, A,M) = L

(
s − 1

2 , πv
)

for all finite places v
of F . Let A∨ denote the dual abelian variety of A. There is a perfect B×-invariant
pairing

πA×πA∨ −→ M

given by

( f1, f2)=Vol(XU )
−1( f1,U ◦ f ∨2,U ), f1,U ∈Hom(JU , A), f2,U ∈Hom(JU , A∨),

where f ∨2,U : A→ JU is the dual of f2,U composed with the canonical isomorphism
J∨U ' JU . Here Vol(XU ) is defined by a fixed invariant measure on the upper
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half-plane. It follows that πA∨ is dual to πA as representations of B× over M . For
any fixed open compact subgroup U of B×f , define the U -pairing on πA×πA∨ by

( f1, f2)U = Vol(XU )( f1, f2), f1 ∈ πA, f2 ∈ πA∨,

which is independent of the choice of measure defining Vol(XU ). If A is an elliptic
curve and we identify A∨ with A canonically then, for any morphism f : XU → A,
we have ( f, f )U = deg f , the degree of the finite morphism f .

Let K be a totally imaginary quadratic extension over F with associated quadratic
character η on A×. Let L be a finite extension of M and χ : K×\K×A → L× an
L-valued Hecke character of finite order. Let L(s, A, χ) be the L-series (without
Euler factors at infinity) of the `-adic Galois representations associated to A tensored
with the induced representation of χ from Gal(K/K ) to Gal(Q/Q). Assume that

ωA ·χ |A× = 1,

where ωA is the central character of πA on A×f and that, for each finite place v of F ,

ε(πA,v, χv)= χvηv(−1)ε(Bv),

where ε(Bv)= 1 if Bv is split and is−1 otherwise, and ε(πA,v, χv)= ε
( 1

2 , πA,v, χv
)

is the local root number of L(s, πA, χ). It follows that the global root number of
the L-series L(s, πA, χ) is −1 and there is an embedding of KA into B over A. We
fix such an embedding once for all and then view K×A as a subgroup of B×.

Let N be the conductor of π JL, D the relative discriminant of K over F , and
c ⊂ O the ideal that is maximal such that χ is trivial on

∏
v-c O×Kv

∏
v|c(1+ cOK ,v).

Define the set of places v of F dividing N ,

61 := {v|N nonsplit in K | ordv(c) < ordv(N )}.

Let c1 =
∏

p|c,p/∈61
pordp c be the 61-off part of c, N1 the 61-off part of N , and

N2 = N/N1.
Let v be a place of F and $v a uniformizer of Fv . Then there exists an Ov-order

Rv of Bv with discriminant NOv such that Rv ∩ Kv = Oc1,v. Such an order Rv is
called admissible for (πv.χv) if it also satisfies the conditions (1) and (2) that follow.
Note that up to K×v -conjugate there is a unique such order when v - (c1, N ), and
that B must be split at places v|(c1, N ) by Lemma 3.1.

(1) If v|(c1, N ), then Rv is the intersection of two maximal orders R′v, R′′v of Bv

such that R′v ∩ Kv = Oc,v and

R′′v ∩ Kv =

{
Oc/N ,v if ordv(c/N )≥ 0,
OK ,v otherwise.

Note that, for v|(c1, N ), there is a unique order up to K×v -conjugate satisfying
condition (1), unless ordv(c1) < ordv(N ). In the case 0 < ordv(c1) < ordv(N ),
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v must split in K by the definition of 61 and there are exactly two K×v -conjugacy
classes of orders satisfying condition (1), which are conjugate to each other by a
normalizer of K×v in B×v . Fix an Fv-algebra isomorphism Kv

∼= F2
v and identify Bv

with EndFv (Kv). Then the two classes contain, respectively, orders Ri,v= R′i,v∩R′′i,v ,
i = 1, 2 as in (1) such that R′i,v = EndO(Oc), i = 1, 2, R′′1,v = EndOv (($

n−c
v , 1)OKv

)

and R′′2,v = EndOv ((1,$
n−c
v )OKv

).

(2) If 0 < ordv(c1) < ordv(N ), then Rv is K×v -conjugate to some Ri,v such that
χi has conductor ordv(c), where χi , i = 1, 2, is defined by χ1(a)= χv(a, 1)
and χ2(b)= χv(1, b).

Definition 1.3. An Ô-order R of B f is called admissible for (π, χ) if, for every
finite place v of F , Rv :=R⊗ÔOv is admissible for (πv, χv). Note that an admissible
order R for (π, χ) is of discriminant N Ô such that R∩ K̂ = Ôc1 .

Let R be an Ô-order of B f with discriminant N such that R∩KA f = Ôc1 and that
Rv :=R⊗Ô Ov is admissible for (πv, χv) at all places v. Note that Rv is unique up
to K×v -conjugate for any v - (c1, N ).

Let U =R× and U (N2) :=R× ∩B×(N2)
f . For any finite place v|N1, Bv must be

split (by Lemma 3.1(5)). Let Z ∼= A×f denote the center of B×f . The group U (N2)

has a decomposition U (N2) = U ′ · (Z ∩U (N2)), where U ′ =
∏
v-N2∞

U ′v is so that,
for any finite place v - N2, U ′v =Uv if v - N and U ′v ∼=U1(N )v otherwise. View ω

as a character on Z . We may define a character on U (N2) that is ω on Z ∩U (N2)

and trivial on U ′. This character is also denoted by ω.

Definition 1.4. Let V (π, χ) denote the space of forms f ∈ πA ⊗M L which are
ω-eigenforms under U (N2) and χ−1

v -eigenforms under K×v for all places v ∈ 61.
The space V (π, χ) is actually a one-dimensional L-space (see Proposition 3.7).

Consider the Hecke action of K×A ⊂B× on X . Let X K× be the F-subscheme of X
of fixed points of X under K×. The theory of complex multiplication asserts that
every point in X K×(F) is defined over K ab and that the Galois action is given by the
Hecke action under the reciprocity law. Fix a point P ∈ X K× and let f ∈ V (π, χ)
be a nonzero vector. Define a Heegner cycle associated to (π, χ) by

P0
χ ( f ) :=

∑
t∈PicK/F (Oc1 )

f (P)σtχ(t) ∈ A(K ab)Q⊗M L ,

where PicK/F (Oc1) = K̂×/K× F̂×Ô×c1
and t 7→ σt is the reciprocity law map in

class field theory. The Néron–Tate height pairing over K gives a Q-linear map
〈 , 〉K : A(K )Q⊗M A∨(K )Q→ R. Let 〈 , 〉K ,M : A(K )Q⊗M A∨(K )Q→ M ⊗Q R

be the unique M-bilinear pairing such that 〈 , 〉K = trM⊗R/R〈 , 〉K ,M . The pairing
〈 , 〉K ,M induces an L-linear Néron–Tate pairing over K ,

〈 , 〉K ,L : (A(K )Q⊗M L)⊗L (A∨(K )Q⊗M L)−→ L ⊗Q R.
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The B×-invariant M-linear pairing ( , )U : πA×πA∨→ M induces a B×-invariant
L-linear pairing

( , )U : (πA⊗M L)× (πA∨ ⊗M L)−→ L .

The Hilbert newform φ in the Jacquet–Langlands correspondence σ of πA on
GL2(A) is the form satisfying these conditions:

• φ is of level U1(N ).

• For each v|∞, the action of SO2(R) ⊂ GL2(Fv) on φ is given by σ(kθ )φ =
e4π iθφ, where kθ =

( cos θ
− sin θ

sin θ
cos θ

)
∈ SO2(R).

• Let d×a be the Tamagawa measure so that Ress=1
∫
|a|≤1,a∈F×\A× |a|

s−1 d×a=
Ress=1 L(s, 1F ); then

L(s, π)= 2d
· |δ|

s−1/2
A · Z(s, φ) with Z(s, φ)=

∫
F×\A×

φ
(a

1

)
|a|s−1/2

A d×a,

where δ is the different of F .

Note that φ(g)φ(g) is a function on

GL2(F)+\GL2(F∞)+×GL2(A f )/Z(A) · (U1,∞×U0(N ))
∼= GL2(F)+\H

d
×GL2(A f )/U0(N )A×f .

We define the Petersson norm (φ, φ)U0(N ) by the integration of φφ with measure
dx dy/y2 on each upper half-plane. One main result of this paper is the following:

Theorem 1.5 (explicit Gross–Zagier formula). Let F be a totally real field of
degree d. Let A be an abelian variety over F parametrized by a Shimura curve X
over F and φ the Hilbert holomorphic newform of parallel weight 2 on GL2(A)

associated to A. Let K be a totally imaginary quadratic extension over F with
relative discriminant D and discriminant DK . Let χ : K×A /K×→ L× be a finite
Hecke character of conductor c over some finite extension L of M := End0(A).
Assume that:

(1) ωA ·χ |A× = 1, where ωA is the central character of πA;

(2) for any place v of F , ε(πA,v, χv)= χvηv(−1)ε(Bv).

For any nonzero forms f1 ∈ V (πA, χ) and f2 ∈ V (πA∨, χ
−1), we have an equality

in L ⊗Q C,

L ′ (6)(1, A, χ)= 2−#6D ·
(8π2)d · (φ, φ)U0(N )

u2
1

√
|DK |‖c2

1‖
·

〈P0
χ ( f1), P0

χ−1( f2)〉K ,L

( f1, f2)R×
,
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where
6:= {v|(N , Dc) | if v‖N then ordv(c/N )≥ 0},

6D:= {v|(N , D) | ordv(c) < ordv(N )},

the ideal c1|c is the 61-off part of c as before, u1 = #κc1 · [O
×
c1
: O×] and κc1 is

the kernel of the morphism from Pic(O) to Pic(Oc1), which has order 1 or 2, and
(φ, φ)U0(N ) is the Petersson norm with respect to the measure dx dy/y2 on the
upper half-plane.

Remark. The assumption ωA|A× · χ = 1 implies L(s, A, χ) = L(s, A∨, χ−1).
Let φ∨ be the Hilbert newform associated to A∨. Then (φ∨, φ∨)U0(N )= (φ, φ)U0(N ).

We may state the above theorem in simpler way under some assumptions. First
assume that ωA is unramified and, if v ∈61, then v - c.

Given this, c1= c. Fix an infinite place τ of F and let B be the nearby quaternion
algebra whose ramification set is obtained from that of B by removing τ . Then
there is an F-embedding of K into B which we fix once and for all and view K×

as an F-subtorus of B×. Let R be an admissible O-order of B for (π, χ), by which
we mean that R̂ is an admissible Ô-order of B f = B̂ for (π, χ). Note that R is of
discriminant N and that R∩K = Oc. Let U = R̂×⊂ B̂× and let XU be the Shimura
curve of level U , so that it has complex uniformization

XU,τ (C)= B×
+
\H× B̂×/U ∪ {cusps},

where B×+ is the subgroup of elements x ∈ B× with totally positive norms. Let
u = #κc · [O

×
c : O

×
]. By Proposition 3.8, we have that V (πA, χ)⊂ (πA⊗M L)R̂× .

Special case 1. Further assume that (N , Dc) = 1. Then there is a nonconstant
morphism f : XU → A mapping a Hodge class on XU to the torsion of A and, for
any two such morphisms f1, f2 : XU → A, n1 f1 = n2 f2 for some nonzero integers
n1, n2. Let h0 be the unique fixed point of K× and let P = [h0, 1] ∈ XU . Replace
χ by χ−1; there is a nonconstant morphism XU → A∨ with similar uniqueness.
For any such f1 : XU → A and f2 : XU → A∨, let ( f1, f2) = f1 ◦ f ∨2 . Then we
have an equality in L ⊗Q C,

L ′(1, A, χ)=
(8π2)d(φ, φ)U0(N )

u2 ·
√
|DK |‖c2‖

·

〈P0
χ ( f1), P0

χ−1( f2)〉K ,L

( f1, f2)U
.

Special case 2. Further assume that ωA is trivial — or, more generally, that ωA($v)

is in Aut(A)2 ⊂ M×2 for all places v dividing (N , D) but not c, where $v is a
uniformizer of Fv. For each place v that divides (N , D) but not c, K×v normal-
izes R×v (see Lemma 3.4) and a uniformizer $Kv

of Kv induces an automorphism
T$Kv

: XU → XU over F . Note that χv($Kv
) ∈ Aut(A) ⊂ M×. There exists a

nonconstant morphism f : XU → A mapping a Hodge class to the torsion point
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such that T$Kv
f = χ−1($Kv

) f for each place v dividing (N , D) but not c. Such
an f has the same uniqueness property as in special case 1. Then, for any such
f1 : XU → A and f2 : XU → A∨, we have an equality in L ⊗Q C,

L ′ (6)(1, A, χ)= 2−#6D ·
(8π2)d(φ, φ)U0(N )

u2 ·
√
|DK |‖c2‖

·

〈P0
χ ( f1), P0

χ−1( f2)〉K ,L

( f1, f2)U
,

where 6 is now the set of places v|(cD, N ) of F such that, if v‖N , then v - D.

Example. Let φ ∈ S2(00(N )) be a newform. Let K be an imaginary quadratic
field of discriminant D and χ a primitive character of Pic(Oc). Assume that (φ, χ)
satisfies the Heegner conditions (1)–(2) in Theorem 1.1; then, by Lemma 3.1(1)
and (3), ε(φ, χ) = −1 and B = M2(Q). The Heegner conditions also imply that
there exist a, b∈Z with (N , a, b)= 1 such that a2

−4Nb= Dc2. Fix an embedding
of K into B by

(Dc2
+

√
Dc2)/2 7−→

(
(Dc2

+ a)/2 −1
Nb (Dc2

− a)/2

)
.

Then R :=
{(a

c
b
d

)
∈ M2(Z)

∣∣ N |c
}

is an order of B such that R̂∩ K = Oc. Let A be
an abelian variety associated to φ via Eichler–Shimura theory and f : X0(N )→ A
any nonconstant morphism mapping cusp∞ to O ∈ A. Then f ∈ V (πA, χ). Let
z ∈ H be the point fixed by K×; then Nbz2

− az + 1 = 0, Oc = Z+ Zz−1, and
n−1
=Z+ZN−1z−1, so that Oc/n∼=Z/NZ. The point on X0(N ) corresponding to z

via complex uniformization represents the isogeny C/(Z+Zz)→C/(N−1Z+Zz),
or C/Oc→ C/n−1. Thus Theorem 1.1 now follows from Theorem 1.5.

For various arithmetic applications, we may need explicit formulas for different
test vectors, which we now give. Let v be a finite place of F , fix 〈 , 〉v a B×v -invariant
pairing on πA,v ×πA∨,v and a Haar measure dtv on F×v \K

×
v . For any f ′1,v ∈ πA,v,

f ′2,v ∈ πA∨,v with 〈 f ′1,v, f ′2,v〉v 6= 0, let

β0( f ′1,v, f ′2,v)= β
0( f ′1,v, f ′2,v, dtv)=

∫
F×v \K×v

〈πA,v(tv) f ′1,v, f ′2,v〉v
〈 f ′1,v, f ′2,v〉v

χv(tv) dtv.

For any two nonzero pure tensor forms f ′ =
⊗

v f ′v , f ′′ =
⊗

v f ′′v ∈ π , we say that
f ′ and f ′′ differ at a place v if f ′v and f ′′v are not parallel, and that they coincide
otherwise. This is independent of the decompositions. In particular, if two nonzero
pure tensor forms coincide locally everywhere then they are the same up to a scalar.

Theorem 1.6 (variation of the Gross–Zagier formula). Let (A, χ), f1 ∈ V (πA, χ)

and f2 ∈ V (πA∨, χ
−1) be as in Theorem 1.5. Let S be a finite set of finite places

of F , f ′1 ∈ πA, f ′2 ∈ πA∨ be vectors such that f ′i and fi coincide for any v /∈ S,
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i = 1, 2, and 〈 f ′1,v, f ′2,v〉v 6= 0 and β0( f ′1,v, f ′2,v) 6= 0 for any v ∈ S. Define

P0
χ ( f ′1)=

# Pic(Oc1)

Vol(K× F̂×\K̂×, dt)
·

∫
K× F̂×\K̂×

f ′1(P)
σtχ(t) dt,

and define P0
χ−1( f ′2) similarly. Then, with notations as in Theorem 1.5, we have

L ′ (6)(1, A, χ)

= 2−#6D ·
(8π2)d · (φ, φ)U0(N )

u2
1

√
|DK |‖c2

1‖
·

〈P0
χ ( f ′1), P0

χ−1( f ′2)〉K ,L

( f ′1, f ′2)
×

R

·

∏
v∈S

β0( f1,v, f2,v)

β0( f ′1,v, f ′2,v)
,

which is independent of the choice of Haar measure dtv for v ∈ S.

Example. Let A be the elliptic curve X0(36) with the cusp∞ as the identity point
and let K =Q(

√
−3). Let p ≡ 2 mod 9 be a prime; then the field L ′ = K ( 3

√
p ) is

contained in H3p. Let χ :Gal(L ′/K )→K× be the character mapping σ to ( 3
√

p )σ−1.
Fix the embedding K → M2(Q) mapping w := (−1+

√
−3)/2 to

(
−1
6/p
−p/6

0

)
.

For f ′ = id : X0(36) → A, let P ∈ X0(36) be the point corresponding to
−pw/6 ∈H. The Heegner divisor P0

χ ( f ′) is

P0
χ ( f ′)= 1

9

∑
t∈Pic(O6p)

f ′(P)σtχ(t).

One can show that P0
χ ( f ′) is nontrivial (see [Satgé 1987; Dasgupta and Voight

2009; Cai et al. 2014]) and then it follows that the prime p is the sum of two rational
cubes. By the variation formula, one can easily obtain the height formula of P0

χ ( f ′):
let φ ∈ S2(00(36)) be the newform associated to A, and note that #6D = 1, u1 = 1
and c1 = p in the variation

L ′(1, A, χ)= 9 ·
8π2
· (φ, φ)00(36)√

3p2
· 〈P0

χ ( f ′), P0
χ−1( f ′)〉K ,K .

In fact, U =R× in Theorem 1.5 is given by

R=

{(
a b/6
6c d

)
∈ M2(Q̂)

∣∣∣∣ a, b, c, d ∈ Ẑ, p−1b+ pc, a+ pc− d ∈ 6Ẑ

}
and f ∈ V (πA, χ) is a χ−1

v -eigenform for v = 2, 3. Then

( f ′, f ′)=
Vol(XU )

Vol(X0(36))
=

2
9
.

The ratio β0( fv, fv)/β0( f ′v, f ′v) equals 1 at v = 2, and 4 at v = 3.
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1C. The explicit Waldspurger formula. Let F be a general base number field.
Let B be a quaternion algebra over F and π a cuspidal automorphic representation
of B×A with central character ω. Let K be a quadratic field extension of F and η the
quadratic Hecke character on F×\A× associated to the quadratic extension. Let χ be
a Hecke character on K×A . Write L(s, π, χ) for the Rankin L-series L(s, π JL

×πχ ),
where π JL is the Jacquet–Langlands correspondence of π on GL2(A) and πχ is the
automorphic representation of GL2(A) corresponding to the theta series of χ , so
that L(s, πχ )= L(s, χ). Assume that

ω ·χ |A× = 1.

Then, for any place v of F , the local root number ε
( 1

2 , πv, χv
)

of the Rankin
L-series is independent of the choice of additive character. We also assume that,
for all places v of F ,

ε
( 1

2 , πv, χv
)
= χvηv(−1)ε(Bv),

where ε(Bv) = −1 if Bv is division and +1 otherwise. It follows that the global
root number ε

( 1
2 , π, χ

)
equals +1 and there exists an F-embedding of K into B.

We fix such an embedding once and for all and view K× as an F-subtorus of B×.
Let N be the conductor of π JL, D the relative discriminant of K over F , c ⊂ O

the ideal maximal such that χ is trivial on
∏
v-c O×Kv

∏
v|c(1+ cOK ,v). Define the

following set of places v of F dividing N :

61 := {v|N nonsplit in K | ordv(c) < ordv(N )},

Let c1 =
∏

p|c,p/∈61
pordp c be the 61-off part of c, N1 the 61-off part of N , and

N2 = N/N1 the 61-part of N .
Let R be an admissible O-order of B for (π, χ) in the sense that Rv is admissible

for (πv, χv) for every finite place v of F . It follows that R is an O-order with
discriminant N such that R ∩ K = Oc1 .

Let U =
∏
v Uv ⊂ B×A be a compact subgroup such that, for any finite place v,

Uv = R×v , and that, for any infinite place v of F , Uv is a maximal compact subgroup
of B×v such that Uv ∩ K×v is the maximal compact subgroup of K×v . For any finite
place v|N1, Bv must be split. Let Z ∼= A×f denote the center of B̂×. The group
U (N2∞) has a decomposition U (N2∞) =U ′ · (Z ∩U (N2∞)), where U ′ =

∏
v-N2∞

U ′v
is such that, for any finite place v - N2, U ′v =Uv if v - N and U ′v ∼=U1(N )v otherwise.
View ω as a character on Z and we may define a character on U (c2∞) that is ω on
Z ∩U (c2∞) and trivial on U ′; we also denote this character by ω.

Definition 1.7. Let V (π, χ) denote the space of forms f =
⊗

v fv ∈ π such that f
is an ω-eigenform under U (N2∞); for all places v ∈61, f is a χ−1

v -eigenform under
K×v ; and, for any infinite place v, f is a χ−1

v -eigenform under Uv∩K×v with weight
minimal. The space V (π, χ) is actually one-dimensional (see Proposition 3.7).
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Let r , s, t be integers such that B⊗Q R= Hr
×M2(R)

s
×M2(C)

t , and let XU

denote the U -level real manifold

XU = B×
+
\(Hs

2×Ht
3)× B̂×/U,

which has finitely many connected components, where H2,H3 are the usual hyper-
bolic spaces of dimension two and three, respectively. Define the volume of XU ,
denoted by Vol(XU ), as follows:

• If s+ t > 0, then XU is the disjoint union of manifolds of dimension 2s+ 3t ,

XU = B×
+
\(Hs

2×Ht
3)× B̂×/U =

⊔
i

0i\(H
s
2×Ht

3),

for some discrete subgroup 0i ⊂ B×+ ∩
∏
v|∞, Bv not division(Bv)

×, then define
the volume of XU with the measure dx dy/(4πy2) on H2 and the measure
dx dy dv/π2v3 on H3. Here the notation H3 is the same as in [Vignéras 1980].

• If s+t=0, then F is totally real and B is totally definite. For any open compact
subgroup U of B̂×, the double coset B×\B̂×/U is finite; let g1, . . . , gn ∈ B̂×

be a complete set of representatives for the coset. Let µZ = F̂× ∩U ; then, for
any g ∈ B̂×, B× ∩ gUg−1/µZ is a finite set. Define the volume of XU to be
the mass of U :

Vol(XU )=Mass(U )=
n∑

i=1

1

#(B× ∩ giUg−1
i )/µZ

.

For any automorphic forms f1 ∈ π and f2 ∈ π̃ , 〈 f1, f2〉Pet is the Petersson pairing
of f1, f2, defined by

〈 f1, f2〉Pet =

∫
B×A×\B×A

f1(g) f2(g) dg,

where dg is the Tamagawa measure on F×\B×, so that B×A×\B×A has total
volume 2. For any f1 ∈ V (π, χ) and f2 ∈ V (π̃, χ−1), one may define the U -level
pairing as

〈 f1, f2〉U =
1
2〈 f1, f2〉Pet ·Vol(XU ).

For any f ∈ V (π, χ), define the c1-level period of f ∈ V (π, χ) as follows: let
K×∞/F×∞ be the closure of K×

∞
/F×
∞

in the compact group K×A /A
×K× and endow

K×∞/F×∞ with the Haar measure dh of total volume one; then, let

P0
χ ( f )=

∑
t∈PicK/F (Oc1 )

f 0(t)χ(t), f 0(t)=
∫

K×∞/F×∞
f (th)χ(h) dh.

The function f 0(t)χ(t) on K×A is constant on K×61
, so can be viewed as a function

on PicK/F (Oc1)= K̂×/K× F̂×Ô×c1
. Note that, when F is totally real and all infinite

places v of F are inert in K , f 0
= f .
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Notations. Let b be an integral ideal of F ; we define the relative regulator Rb to
be the quotient of the regulator of O×b by the regulator of O× and wb = #O×b,tor/#O×tor.
Denote by κb the kernel of the natural homomorphism from Pic(O) to Pic(Ob).
Define νb = 2−rK/F R−1

b · #κb ·wb, where rK/F = rank O×K − rank O×. For example,
if F is a totally real field of degree d and K is a totally imaginary quadratic field
extension over F , then νb = 21−d

· #κb · [O
×

b : O
×
], where κb ⊂ κ1 and #κ1 = 1 or 2

[Washington 1997, Theorem 10.3].
For an infinite place v of F , let Uv denote the maximal compact subgroup

of GL2(Fv), which is O2 if v is real and U2 if v is complex, and let U1,v ⊂ Uv

denote its subgroup of diagonal matrices
(a

1

)
for a ∈ F×v with |a|v = 1. For

a generic (gv,Uv)-module σv and a nontrivial additive character ψv of Fv, let
W(σv, ψv) be the ψv-Whittaker model of σv . There is an invariant bilinear pairing
on W(σv, ψv)×W(̃σv, ψ

−1),

〈W1,W2〉v :=

∫
F×v

W1

[(
a

1

)]
W2

[(
a

1

)]
d×a,

with the measure d×a = L(1, 1v) da/|a|v , where da equals [Fv :R] times the usual
Lebesgue measure on Fv. Let W0 ∈W(σv, ψv) be the vector invariant under U1,v

with minimal weight such that

L(s, πv)= Z(s,W0), where Z(s,W0) :=

∫
F×v

Wσv

[(
a

1

)]
|a|s−1/2

v d×a

with d×a the Tamagawa measure. Similarly, define W̃0 for σ̃v . Then�σv :=〈W0,W̃0〉v

is an invariant of σv which is independent of the choice ofψv (see an explicit formula
for �σv before Lemma 3.14 ). We associate to (σv, χv) a constant by

C(σv, χv) :=
{

2−1π ·�−1
σv

if Kv is nonsplit,
�σv⊗χ1,v ·�

−1
σv

if Kv is split,
(1-1)

where for split Kv
∼= F2

v , embedded into M2(Fv) diagonally, the character χ1 is
given by χ1,v(a) := χv

[(a
1

)]
. If v is a real place of F and σv is a discrete series

of weight k, then C(σv, χv)= 4k−1π k+10(k)−1 when Kv
∼= C, and C(σv, χv)= 1

when Kv
∼= R2.

Let σ be the Jacquet–Langlands correspondence of π to GL2(A); the normalized
new vector φ0

=
⊗

v φv ∈ σ is the one fixed by U1(N ) and φv is fixed by U1,v with
weight minimal for all v|∞ such that

L(s, σ )= |δ|s−1/2
A Z(s, φ0), where Z(s, φ0) :=

∫
F×\A×

φ0
(

a
1

)
|a|s−1/2

A d×a

with the Tamagawa measure on A×, so that

Ress=1

∫
|a|≤1,a∈F×\A×

|a|s−1 d×a = Ress=1 L(s, 1F ).
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When F is a totally real field and σ a cuspidal automorphic representation such
that σv is a discrete series for any infinite place v, the normalized new vector φ0 is
not parallel to the Hilbert newform φ: they are different at infinity. If σ is unitary
and φ0 is the normalized new vector of σ , then σ ∼= σ̃ and φ0 is the normalized
new vector of σ . We will see that (φ, φ)U0(N ) = (2π)

d
〈φ0, φ0〉U0(N ).

Theorem 1.8 (explicit Waldspurger formula). Let F be a number field. Let B be a
quaternion algebra over F and π an irreducible cuspidal automorphic represen-
tation of B×A with central character ω. Let K be a quadratic field extension of F
and χ a Hecke character of K×A . Assume that:

(1) ω ·χ |A× = 1;

(2) ε
( 1

2 , πv, χv
)
= χvηv(−1)ε(Bv) for all places v of F.

Then, for any nonzero forms f1 ∈ V (π, χ) and f2 ∈ V (π̃, χ−1), we have

L(6)
( 1

2 , π, χ
)
= 2−#6D+2

·C∞ ·
〈φ0

1, φ
0
2〉U0(N )

ν2
c1

√
|DK |‖c1‖2

·

P0
χ ( f1)P0

χ−1( f2)

〈 f1, f2〉R̂×
,

where φ0
1 ∈ π

JL and φ0
2 ∈ π̃

JL are normalized new vectors, 6 is the set of places
v|(cD, N )∞ of F such that if v‖N then ordv(c/N )≥ 0, and if v|∞ then Kv

∼= C.
The constant C∞ =

∏
v|∞ Cv, c1|c and 6D are the same as in Theorem 1.5, and

Cv = C(π JL
v , χv) is given in (1-1).

For many applications, we need an explicit form of the Waldspurger formula for
different test vectors. The following variation of the formula is useful. For each place
v of F , fix a B×v -invariant pairing 〈 , 〉v on πv× π̃v . Here, if v|∞, we mean it is the
restriction of a B×v -invariant pairing on the corresponding smooth representations.
For any f ′1,v ∈ πv, f ′2,v ∈ π̃v with 〈 f ′1,v, f ′2,v〉v 6= 0, define β0( f ′1,v, f ′2,v) as in
Theorem 1.6.

Theorem 1.9 (variation of the Waldspurger formula). Let (π, χ) and f1 ∈ V (π, χ),
f2 ∈ V (π̃, χ−1) be as in Theorem 1.8. Let S be a finite set of places of F , f ′1 ∈ π ,
f ′2 ∈ π̃ be pure vectors which coincide with f1, f2 respectively outside S such that
〈 f ′1,v, f ′2,v〉v 6= 0 and β0( f ′1,v, f ′2,v) 6= 0 for all v ∈ S. Here β0 is similarly defined
as in Theorem 1.6. Define

P0
χ ( f ′1)=

# PicK/F (Oc1)

Vol(K×A×\K×A , dt)
·

∫
K×A×\K×A

f ′(t)χ(t) dt,

and define P0
χ−1( f ′2) similarly. Then, in the notation of Theorem 1.8, we have

L(6)
( 1

2 , π, χ
)
=2−#6D+2

·C∞·
〈φ0

1, φ
0
2〉U0(N )

ν2
c1

√
|DK |‖c2

1‖
·

P0
χ ( f ′1)P

0
χ−1( f ′2)

〈 f ′1, f ′2〉R̂×
·

∏
v∈S

β0( f1,v, f2,v)

β0( f ′1,v, f ′2,v)
,
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Example. Let φ =
∑

anqn
∈ S2(00(N )) be a newform of weight 2 and p a good

ordinary prime of φ, K an imaginary quadratic field of discriminant D and χ a char-
acter of Gal(Hc/K ) of conductor c that is prime to p. Assume that the conditions
(i)–(ii) in Theorem 1.2 are satisfied. Let B be the quaternion algebra, π the cuspidal
automorphic representation on B×A , and identify π̃ with π . Let f ∈ π R̂×

= V (π, χ)
be a nonzero test vector as in Theorem 1.8. Define the p-stabilization of f by

f †
= f −α−1π

(
1

p

)
f,

where α is the unit root of X2
−ap X+p and β= p/α is another root. By the variation

of the Waldspurger formula and Theorem 1.2, one may easily obtain a formula for
P0
χ ( f †), which is used to give the interpolation property of anticyclotomic p-adic

L-functions:

L(1, φ, χ)= 2−µ(N ,D) ·
8π2(φ, φ)00(N )

[O×c : Z×]2
√
|Dc2|

·
|P0
χ ( f †)|2

( f †, f †)R̂×
· ep,

where

ep =
β0(W,W )

β0(W †,W †)
=

L(2, 1p)

L(1, πp, ad)
· (1−α−1χ1(p))−1(1−β−1χ−1

1 (p))−1.

Here W is a new vector of the Whittaker model W(πp, ψp) with ψp(x)= e−2π i ι(x),
where ι :Qp/Zp→Q/Z is the natural embedding and W †

:=W −α−1πp
(1

p

)
W

is its stabilization, where K×p ∼= Q×2
p is embedded into GL2(Qp) as a diagonal

subgroup and χ1(a)= χ
(a

1

)
.

Now we consider the situation that:

(1) F is a totally real field and K is a totally imaginary quadratic extension over F ,

(2) for any place v|∞ of F , π JL
v is a unitary discrete series of weight 2,

(3) (c, N )= 1.

Let φ be the Hilbert newform as in Theorem 1.5 (which is different from the
one we chose in Theorem 1.8). We are going to give an explicit form of the
Waldspurger formula following [Gross 1988], which is quoted in many references.
Let X = B×\B̂×/R̂× and let g1, . . . , gn ∈ B̂× be a complete set of representa-
tives of X . Write [g] ∈ X for the class of an element g ∈ B̂×. For each gi , let
0i = (B×∩ gi R̂×g−1

i )/O×, which is finite, and denote by wi its order. Let Z[X ] be
the free Z-module (of rank #X ) of formal sums

∑
i ai [gi ]. There is a height pairing

on Z[X ]×Z[X ] defined by〈∑
ai [gi ],

∑
bi [gi ]

〉
=

∑
i

ai biwi .

By Eichler’s norm theorem, the norm map

N : X −→ C+, where X := B×\B̂×/R̂×, C+ := F×
+
\F̂×/̂O×,
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is surjective. For each c ∈ C+, let Xc ⊂ X be the preimage of c and Z[Xc] be the
submodule of Z[X ] supported on Xc. Then Z[X ] =

⊕
c∈C+ Z[Xc]. Let Z[Xc]

0

be the submodule of classes
∑

ai [gi ] ∈ Z[Xc] with degree
∑

i ai = 0, and let
Z[X ]0 =

⊕
c∈C+ Z[Xc]

0 and C[X ]0 = Z[X ]0⊗Z C. Note that V (π, χ) ⊂ π R̂× by
Proposition 3.8, and then there is an injection

V (π, χ)−→ C[X ]0, f 7→
∑

f ([gi ])w
−1
i [gi ],

so we can view V (π, χ) as a line on C[X ]0. It follows that 〈 f, f 〉 = 〈 f, f 〉R̂× . The
fixed embedding K → B induces a map

Pic(Oc)−→ X, t 7−→ xt ,

using which we define an element in C[X ],

Pχ :=
∑

t∈Pic(Oc)

χ−1(t)xt ,

and let Pπχ be its projection to the line V (π, χ). Then the explicit formula in
Theorem 1.8 implies:

Theorem 1.10. Let (π, χ) be as above with conditions (1)–(3). The height of Pπχ
is given by the formula

L(6)
(1

2 , π, χ
)
= 2−#6D ·

(8π2)d · (φ, φ)U0(N )

u2
√
|DK |‖c‖2

· 〈Pπχ , Pπχ 〉,

where

6 := {v|(N , D)∞|if v‖N then v - D}, 6D := {v|(N , D)},

u = #κc · [O
×
c : O

×
], and φ ∈ π JL is the Hilbert newform as in Theorem 1.5. For any

nonzero vector f ∈ V (π, χ), let P0
χ ( f )=

∑
t∈Pic(Oc)

f (t)χ(t); then we have

L(6)
(1

2 , π, χ
)
= 2−#6D ·

(8π2)d · (φ, φ)U0(N )

u2
√
|DK |‖c‖2

·
|P0
χ ( f )|2

〈 f, f 〉
.

Remark. When c and N have a common factor, one can still formulate an explicit
formula in the spirit of Gross by defining a system of height pairings 〈 , 〉U in the
same way as Theorem 1.8.

As a byproduct, we obtain the following result about the relation between the
Petersson norm of a newform and a special value of the adjoint L-function:

Proposition 1.11. Let F be a totally real field and σ a cuspidal unitary automorphic
representation of GL2(A) of conductor N such that, for any v|∞, σv is a discrete
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series of weight kv. Let φ be the Hilbert newform in σ as in Theorem 1.5. Then

L(S)(1, σ, ad)
(φ, φ)U0(N )

= 2d−1+
∑
v|∞ kv · ‖Nδ−2

‖
−1
· h−1

F ,

where S is the set of finite places v of F with ordv(N )≥ 2 and ordv(N ) > ordv(C),
C is the conductor of the central character of σ , hF is the ideal class number of F ,
and

(φ, φ)U0(N ) =

∫∫
XU0(N )

|φ|2
(∧
v|∞

ykv−2
v dxv dyv

)
, zv = xv + yvi.

Or, equivalently,

L(S∞)(1, σ, ad)
(φ, φ)U0(N )

=
1
2 · ‖Nδ

−2
‖
−1
· h−1

F ·
∏
v|∞

4kvπ kv+1

0(kv)
.

Proof. This follows from Proposition 2.1, Lemma 2.2, and Proposition 3.11. Here
[Tunnell 1978, Proposition 3.4] is also used. �

Example. Assume that F =Q and σ is the cuspidal automorphic representation
associated to a cuspidal newform φ ∈ Sk(SL2(Z)). Then we have that

L(1, σ, ad)= 2k
· (φ, φ)SL2(Z), L(∞)(1, σ, ad)=

22k−1π k+1

0(k)
· (φ, φ)SL2(Z).

2. Reduction to local theory

We now explain how to obtain the explicit formulas in Theorems 1.5 and 1.8 from
the original Waldspurger formula and the general Gross–Zagier formula proved in
[Yuan et al. 2013]. We first consider the Waldspurger formula. Let B be a quaternion
algebra over a number field F and π a cuspidal automorphic representation on B×A
with central character ω. Let K be a quadratic field extension over F and χ be a
Hecke character on K×A . Assume that: (1) ω · χ |A× = 1; and (2) for any place v
of F , ε

(1
2 , πv, χv

)
= χvηv(−1)ε(Bv). Define the Petersson pairing on π ⊗ π̃ by

〈 f1, f2〉Pet =

∫
B×A×\B×A

f1(g) f2(g) dg

with the Tamagawa measure, so that the volume of B×A×\B×A is 2. Let Pχ denote
the period functional on π

Pχ ( f )=
∫

K×A×\K×A

f (t)χ(t) dt for all f ∈ π.

Then Waldspurger’s period formula [Waldspurger 1985; Yuan et al. 2013, The-
orem 1.4] says that, for any pure tensors f1 ∈ π , f2 ∈ π̃ with 〈 f1, f2〉Pet 6= 0,
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Pχ ( f1)Pχ−1( f2)

〈 f1, f2〉Pet
=

L
( 1

2 , π, χ
)

2L(1, π, ad)L(2, 1F )−1 ·
∏
v

β( f1,v, f2,v), (2-1)

where L(1, π, ad) is defined using the Jacquet–Langlands lifting of π . Here, for
any place v of F , let 〈 , 〉v : πv × π̃v→ C be a nontrivial invariant pairing; then

β( f1,v, f2,v)=
L(1, ηv)L(1, πv, ad)

L
( 1

2 , πv, χv
)
L(2, 1Fv )

∫
K×v /F×v

〈π(tv) f1,v, f2,v〉v

〈 f1,v, f2,v〉v
χ(tv) dtv,

where local Haar measures dtv are chosen so that
⊗

v dtv = dt is the Haar measure
on K×A /A

× in the definitions of Pχ and Pχ−1 , and the volume of K×\K×A /A
× with

respect to dt is 2L(1, η). Note that the Haar measure dt is different from the one
used in [Yuan et al. 2013, Theorem 1.4]. To obtain the explicit formula, we first
relate Pχ ( f ), L(1, π, ad), and 〈 f1, f2〉Pet to the corresponding objects with levels
in Theorem 1.8, and reduce to local computation.

For our purpose, it is more convenient to normalize local additive characters
and local Haar measures as follows. Take the additive character ψ =

⊗
v ψv on A

given by

ψv(a)=


e2π ia if Fv = R,

e4π iRe(a) if Fv = C,

ψp(trF/Qp(a)) if Fv is a finite extension of Qp for some prime p,

where ψp(b) = e−2π i ι(b) and ι : Qp/Zp → Q/Z is the natural embedding. It
turns out that ψ is a character on F\A. For any place v of F , let dav denote
the Haar measure on Fv self-dual to ψv and let d×av denote the Haar measure
on F×v defined by d×av = L(1, 1v) dav/|av|v. Let L be a separable quadratic
extension of Fv or a quaternion algebra over Fv, and q the reduced norm on L;
then (L , q) is a quadratic space over Fv. Fix the Haar measure dx on L to be the
one self-dual with respect to ψv and q, in the sense that ̂̂8(x) = 8(−x) for any
8 ∈ S(L), where 8̂(y) :=

∫
L 8(x)ψv(〈x, y〉) dx is the Fourier transform of 8 and

〈x, y〉 = q(x + y)− q(x)− q(y) is the bilinear form on L associated to q . Fix the
Haar measure d×x on L× to be the one defined by

d×x =



L(1, 1v)2
dx
|q(x)|v

if L = F2
v ,

L(1, 1L)
dx
|q(x)|v

if L is a quadratic field extension over Fv,

L(1, 1v)
dx
|q(x)|2v

if L is a quaternion algebra.

Endow L×/F×v with the quotient Haar measure. Let K be a quadratic field extension
of F and B a quaternion algebra over F . For local Haar measures on K×v /F×v and
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B×v /F×v , their product Haar measures on K×A /A
× and B×A /A

× satisfy

Vol(K×\K×A /A
×)= 2L(1, η) and Vol(B×\B×A /A

×)= 2.

Thus, these measures can be taken as the ones used in the above statement of
Waldspurger’s formula. From now on, we always use these measures and the
additive character ψ on A.

2A. Petersson pairing formula. Let σ be a cuspidal automorphic representation of
GL2(A) and σ̃ its contragredient; let N be the unipotent subgroup N=

{( 1 x
1

)∣∣x ∈F
}

of GL2. View ψ as a character on N (F)\N (A) and the Haar measure da on A

as the one on N (A). For any φ ∈ σ , let Wφ ∈W(σ, ψ) be the Whittaker function
associated to φ,

Wφ(g) :=
∫

N (F)\N (A)
φ(ng)ψ(n) dn.

Recall there is a GL2(Fv)-pairing on Wσv,ψv ×Wσ̃v,ψ
−1
v

: for any local Whittaker
functions W1,v ∈W(σv, ψv), W2,v ∈W(̃σv, ψ

−1
v ),

〈W1,v,W2,v〉v =

∫
F×v

W1,v

(
a

1

)
W2,v

(
a

1

)
d×a.

Define the Petersson pairing on σ × σ̃ by

〈φ1, φ2〉Pet :=

∫
Z(A)GL2(F)\GL2(A)

φ1(g)φ2(g) dg, φ1 ∈ σ, φ2 ∈ σ̃ ,

where Z ∼= F× is the center of GL2.

Proposition 2.1. For any pure tensors φ1 ∈σ , φ2 ∈ σ̃ , with Wφi =
⊗

v Wi,v , i =1, 2,

〈φ1, φ2〉Pet = 2L(1, σ, ad)L(2, 1F )
−1
∏
v

α(W1,v,W2,v), (2-2)

where, for any place v of F ,

α(W1,v,W2,v)=
1

L(1, σv, ad)L(1, 1v)L(2, 1v)−1 · 〈W1,v,W2,v〉.

Proof. We may assume that the cuspidal automorphic representation σ is also
unitary and identify σ̃ with σ . Let G = GL2 over F , P the parabolic subgroup of
upper triangular matrices in G, and let U =

∏
v Uv be a maximal compact subgroup

of G(A). For any place v of F , with respect to the Iwasawa decomposition of G(Fv),

g = a
(

1 x
1

)(
1

b

)
k ∈ G(Fv), a, b ∈ F×v , x ∈ Fv, k ∈Uv.

Choose the measure dk on Uv such that dg = |b| dx d×a d×b dk is the fixed local
Haar measure on G(Fv). For v nonarchimedean, Uv has volume L(2, 1v)−1

|δv|
1/2
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with respect to dk and has volume L(2, 1v)−1
|δv|

2 with respect to the fixed measure
on G(Fv); for v archimedean, Uv has volume L(2, 1v)−1 with respect to dk.

By [Jacquet and Chen 2001, Lemma 2.3], for any Bruhat–Schwartz function
8v ∈ S(F2

v ) we have∫
F×v ×Uv

8([0, b]k)|b|2 d×b dk = 8̂v(0),

where 8̂v is the Fourier transformation of 8v and 8̂v(0) is independent of the
choice of the additive character ψv. For any 8 ∈ S(A2), let

F(s, g,8)= |det g|s
∫

A×
8([0, b]g)|b|2s d×b,

and define the Eisenstein series

E(s, g,8) :=
∑

γ∈P(F)\G(F)

F(s, γ g,8), Re(s)� 0.

By the Poisson summation formula,

E(s, g,8)= |det g|s
∫

F×\A×

( ∑
ξ∈F2\{0}

8(aξg)
)
|a|2s d×a

= |det g|s
∫
|a|≥1

( ∑
ξ∈F2\{0}

8(aξg)
)
|a|2s d×a

+ |det g|s−1
∫
|a|≥1

( ∑
ξ∈F2\{0}

8̂(g−1ξ t a)
)
|a|2−2s d×a

+ |det g|s−18̂(0)
∫
|a|≤1
|a|2s−2 d×a− |det g|s8(0)

∫
|a|≤1
|a|2s d×a.

It follows that E(s, g,8) has meromorphic continuation to the whole s-plane, has
possible poles only at s = 0 and 1, and its residue at s = 1 is equal to

Ress=1 E(s, g,8)= 8̂(0) lim
s→1

(s− 1)
∫
|a|≤1
|a|2s−2 d×a = 1

28̂(0)Ress=1 L(s, 1F ),

which is independent of g. By unfolding the Eisenstein series and Fourier expansions
of φi ,

Z(s, φ1, φ2,8) :=
∫
[Z\G]

φ1(g)φ2(g)E(s, g,8) dg

=

∫
N (A)\G(A)

|det g|s Wφ1(g)Wφ2(g)8([0, 1]g) dg



2546 Li Cai, Jie Shu and Ye Tian

has an Euler product if 8 ∈ S(A2) is a pure tensor. For each place v of F and
8v ∈ S(F2

v ), denote

Z(s,W1,v,W2,v,8v)=

∫
N (Fv)\G(Fv)

|det g|s W1,v(g)W2,v(g)8v([0, 1]g) dg,

which has meromorphic continuation to the whole s-plane; and moreover, for v -∞,
the fractional ideal of C[qs

v, q−s
v ] of all Z(s,W1,v,W2,v,8v)with W1,v ∈W(σv, ψv),

W2,v ∈W(̃σv, ψ
−1
v ) and8v ∈S(F2

v ) is generated by L(s, σv× σ̃v). It is also known
([Jacquet and Chen 2001, p. 51]) that, for each v,

Z(1,W1,v,W2,v,8v)

=

∫
F×v

W1,v

(
a

1

)
W2,v

(
a

1

)
d×a ·

∫∫
F×v ×Uv

8v([0, b]k)|b|2 d×b dk,

with the Haar measures chosen above. Let 8=
⊗

v 8v ∈ S(A2) be a pure tensor
such that 8̂(0) 6= 0 and take residue at s = 1 on the two sides of

Z(s, φ1, φ2,8)=
∏
v

Z(s,W1,v,W2,v,8v).

We have

〈φ1, φ2〉Pet Ress=1 E(s, g,8)= Ress=1 L(s, σ × σ̃ )8̂(0)
∏
v

〈W1,v,W2,v〉v

L(1, σv × σ̃v)
,

or
L(1, σ, ad)
〈φ1, φ2〉Pet

=
1
2

∏
v

L(1, σv, ad)L(1, 1Fv )

〈W1,v,W2,v〉v
.

The formula in the proposition follows. �

2B. U-level pairing.

Lemma 2.2. Let B be a quaternion algebra over a number field F and denote by
r , s, t integers such that B⊗Q R∼= Hr

×M2(R)
s
×M2(C)

t . For U ⊂ B̂× an open
compact subgroup, the volume of XU , defined after Definition 1.7, is given by

Vol(XU )= 2(4π2)−d#(A×f /F×UZ ) ·
Vol(UZ )

Vol U
,

where UZ = U ∩ F̂× and the volumes Vol(UZ ) and Vol U are with respect to
Tamagawa measure, so that

Vol(GL2(Ov))= L(2, 1v)−1 Vol(Ov)4,

Vol(B×v )= L(2, 1v)−1 Vol(Ov)4(qv − 1)−1 for Bv division.

In particular, if U contains Ô× then — where hF is the class number of F —

Vol(XU )= 2(4π2)−d
|DF |

−1/2
· hF ·Vol(U )−1.
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Proof (see also [Yuan et al. 2013] for the case s= 1 and t = 0). Let q be the reduced
norm on B, and B1

:= {b ∈ B× | q(b) = 1}. For each place v of F , we have the
exact sequence

1−→ B1
v −→ B×v −→ q(B×v )−→ 1,

and define the Haar measure dhv on B1
v so that the Haar measure on q(B×v )—

obtained by the restriction of the Haar measure on F×v — equals the quotient of
the Haar measure on B×v by dhv. The product of these local measures give the
Tamagawa measure on B1

A, so that Vol(B1
\B1

A) = 1. This follows from the fact
that the Tamagawa numbers of B1 and B× are 1 and 2, respectively. Assume that
B⊗Q R= Hr

×M2(R)
s
×M2(C)

t . We assume that s+ t > 0 first and let 6 ⊂∞
be the subset of infinite places of F where B splits. By the strong approximation
theorem, B1

A = B1 B1
∞

U 1, where U 1
= U ∩ B1

A f
is an open compact subgroup

of B1
A f

. It follows that

B1
\B1

A = B1
\B1 B1

∞
U 1
= (0\B1

6)B
1,6
∞

U 1,

where 0 = B1
∩U 1, and we identify 0\B1

6 with the fundamental domain of this
quotient.

For a real place v of F , B1
v
∼= SL2(R). By the Iwasawa decomposition, any

element is uniquely of the form(
1 x

1

)(
y1/2

y−1/2

)(
cos θ sin θ
− sin θ cos θ

)
, x ∈ R, y ∈ R+, θ ∈ [0, 2π).

The measure on B1
v is dx dy dθ/2y2 with dx dy the usual Lebesgue measure, and θ

has volume 2π . For a complex place v of F , B1
v
∼= SL2(C). By the Iwasawa

decomposition, any element in SL2(C) is uniquely of form(
1 z

1

)(
v1/2

v−1/2

)
u, z ∈ C, v ∈ R+, u ∈ SU2,

The measure on B1
v is dx dy dv du/v3 with z = x + yi , dx , dy, dv the usual

Lebesgue measure, and du has volume 8π2 (see [Vignéras 1980]). It follows that

Vol(0\B1
6)= 2−t(4π2)s+2tw−1

U ·Vol
(
0\(Hs

2×Ht
3),

dx dy
4πy2 ∧

dx dy dv
π2v3

)
,

where wU = #{±1} ∩U . But also, for any infinite place v /∈ 6, Vol(B1
v ) = 4π2.

Thus,

w−1
U · 2

−t(4π2)d ·Vol
(
0\(Hs

2×Ht
3),

dx dy
4πy2 ∧

dx dy dv
π2v3

)
·Vol(U 1)= 1,
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where d = [F :Q]. Let B×+ ⊂ B× be the subgroup of elements whose norms are
positive at all real places. Now consider the natural map

(B1
∩U 1)\(Hs

2×Ht
3)−→ (B×

+
∩U )\(Hs

2×Ht
3),

whose degree is just

[(B×
+
∩U ) : (B1

∩ u1)µU ] = [det(B×
+
∩U ) : µ2

U ] = [µ
′

U : µ
2
U ].

Here µU = F× ∩U and µ′U = F×+ ∩ det U , subgroups of O×F with finite index. It
follows that

Vol(XU )= Vol((B×
+
∩U )\(Hs

2×Ht
3)) · #(F

×

+
\F̂×/ det U )

=
2twU

(4π2)d ·Vol(U 1) · [µ′U : µ
2
U ]
· #(F×

+
\F̂×/ det U ).

Note that

#(F̂×/F×+ det U )
#(F̂×\F×UZ )

= [F×UZ : F×+ det U ] = [F× : F×
+
]

Vol(UZ )

Vol(det U )
[µ′U : µU ].

Since [F× : F×+ ]=2r+s , [µU :µ
2
U ]=2r+s+t−1wU , and Vol U =Vol(U 1)Vol(det U ),

we have

Vol(XU )= 2(4π2)−d#(F̂×/F×UZ ) ·
Vol(UZ )

Vol(U )
.

Now assume s = t = 0. The Tamagawa number of B× is 2, Vol(B×v /F×v )= 4π2

for any v|∞, and the decomposition

B×A×\B×A = F×
∞
\B×
∞
× B× F̂×\B̂×.

It follows that Vol(B× F̂×\B̂×)= 2(4π2)−d . Let γ1, . . . , γh be a complete set of
representatives in B̂× of the coset B×\B̂×/U . Consider the natural map

B×\B×γiU −→ B× F̂×\B× F̂×γiU,

whose degree is #F̂×/F×UZ . Now

Vol(B× F̂×\B× F̂×γiU )= Vol
(

γi (U/UZ )γ
−1
i

(B× ∩ γiUγ−1
i )/µZ

)
=

Vol(U )/Vol(UZ )

#(B× ∩ γiUγ−1
i )/µZ

.

Thus,

2(4π2)−d
= Vol(B× F̂×\B̂×)

= (#F̂×/F×UZ )
−1
·

Vol(U )
Vol(UZ )

·

h∑
i=1

1

#(B× ∩ γiUγ−1
i )/µZ

. �
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2C. c1-level periods. Now take f1 ∈ V (π, χ), f2 ∈ V (π̃, χ−1) to be nonzero test
vectors as defined before. Let σ = π JL and take φ1 ∈ σ and φ2 ∈ σ̃ to be normalized
new vectors. The c1-level periods P0

χ ( f1), P0
χ−1( f2) are related to the periods in

Waldspurger’s formula by the following lemma:

Lemma 2.3. Let b⊂O be a nonzero ideal of F and denote by PicK/F (Ob) the group
K̂×/K× F̂×Ô×b . Then there is a relative class number formula,

L(b)(1, η) · ‖DK/F b2δ‖1/2 · 2−rK/F =
# PicK/F (Ob) · Rb

#κb ·wb
,

where rK/F = rank O×K − rank O×, wb = [O
×

b,tor : O×tor], Rb is the quotient of the
regulator of O×b by that of O×, and κb is the kernel of the natural morphism from
Pic(O) to Pic(Ob). Define a constant νb := 2−rK/F R−1

b · #κbwb. Then

Pχ ( f )= 2Lc1(1, η)‖Dc2
1δ‖
−1/2ν−1

c1
· P0

χ ( f ).

Proof. There are exact sequences

1−→ κb −→ F̂×/F×Ô×F −→ K̂×/K×Ô×b −→ K̂×/K× F̂×Ô×b −→ 1

and

1−→ O×K /O
×

b −→ Ô×K /̂O
×

b −→ K̂×/K×Ô×b −→ K̂×/K×Ô×K −→ 1.

It follows that

# PicK/F (Ob)= #K̂×/K× F̂×Ô×b =
hK

hF
· [̂O×K : Ô

×

b ] · [O
×

K : O
×

b ]
−1
· #κb,

where hK = #K̂×/K×Ô×K is the ideal class number of K and similarly for hF . By
the class number formula for F and K ,

Ress=1 L(s, 1F )= 2rF+1 RF hF

wF
√
|DF |

, Ress=1 L(s, 1K )= 2rK+1 RK hK

wK
√
|DK |

,

where rF = rank O×F , DF is the discriminant of F , RF is the regulator of O×, hF the
ideal class number of F , wF = #O×tor, and similar for rK , DK , RK , hF and wK .
Noting that |DK |/|DF | = |DK/Fδ|

−1
A and [̂O×K : Ô

×

b ]
−1
= Lb(1, η)|b|, we have that

L(1, η)=
hK

hF
·2rK/F

RKw
−1
K

RFw
−1
F

·‖DK/Fδ‖
−1/2

= # PicK/F (Ob)·Lb(1, η)·2rK/F ·[O×K : O
×

b ]
RKw

−1
K

RFw
−1
F

(#κb)
−1
·‖DK/F b2δ‖−1/2.

The relative class number formula then follows. �
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Let N be the conductor of σ = π JL, let U ⊂ B̂× be an open compact subgroup,
and recall

〈 f1, f2〉U =
1
2〈 f1, f2〉Pet Vol(XU ), 〈φ1, φ2〉U0(N ) =

1
2〈φ1, φ2〉Pet Vol(XU0(N )).

Applying Proposition 2.1, Lemma 2.2, and Lemma 2.3, Waldspurger’s formula
(2-1) implies the following:

Proposition 2.4. Let U =
∏
v Uv ⊂ B̂× be an open compact subgroup with Ô×⊂U.

Let γv = Vol(U0(N )v)−1 Vol(Uv) for all finite places v and γv = 1 for v|∞. Let
φ1 ∈ π

JL, φ2 ∈ π̃
JL be any forms with 〈φ1, φ2〉U0(N ) 6= 0 and let α(W1,v,W2,v) be

the corresponding local constants defined in Proposition 2.1. Let f1 ∈ π , f2 ∈ π̃ be
any pure tensors with ( f1, f2)Pet 6= 0 and β( f1,v, f2,v) the corresponding constants
defined in (2-1). Then we have

(2Lc1(1, η)|Dc2
1δ|

1/2
A ν−1

c1
)2 ·

P0
χ ( f1)P0

χ−1( f2)

〈 f1, f2〉U

=
L
( 1

2 , π, χ
)

〈φ1, φ2〉U0(N )
·

∏
v

α(W1,v,W2,v)β( f1,v, f2,v)γv, (2-3)

where νc1 is defined as in Lemma 2.3.

It is now clear that the explicit Waldspurger formula will follow from the com-
putation of these local factors. In the next section, we will choose φ1, φ2 to be
normalized new vectors in π JL and π̃ JL, respectively, choose nonzero f1 ∈ V (π, χ),
f2 ∈ V (π̃, χ), and compute the related local factors in (2-3).

We obtain the explicit Gross–Zagier formula from the Yuan–Zhang–Zhang
formula in a similar way. Let F be a totally real field and X a Shimura curve over F
associated to an incoherent quaternion algebra B. Let A be an abelian variety
over F parametrized by X and let πA=Hom0

ξ (X, A) be the associated automorphic
representation of B× over the field M := End0(A) and ω its central character.
Let K be a totally imaginary quadratic extension over F and χ : K×A → L× a finite-
order Hecke character over a finite extension L of M such that ω ·χ |A× = 1 and,
for all places v of F , ε

( 1
2 , πA, χ

)
= χvηv(−1)ε(Bv). Fix an embedding KA→ B

with K×A → B×, let P ∈ X K×(K ab), and define

Pχ ( f )=
∫

K×A /K×A×
f (P)σt ⊗M χ(t) dt ∈ A(K ab)Q⊗M L ,

where we use the Haar measure so that the total volume of K×A /K×A× is 2L(1, η),
and η is the quadratic Hecke character on A× associated to the extension K/F . We
further assume for all nonarchimedean places v that the compact subgroup O×Kv

/O×v
has a volume in Q×, and fix a local invariant pairing ( , )v on πA,v × πA∨,v with
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values in M . Define β( f1,v, f2,v) ∈ L for ( f1,v, f2,v)v 6= 0 by

β( f1,v, f2,v)=
L(1, ηv)L(1, πv, ad)

L
( 1

2 , πv, χv
)
L(2, 1Fv )

∫
K×v /F×v

(π(tv) f1,v, f2,v)v

( f1,v, f2,v)v
χ(tv) dtv ∈ L ,

where we take an embedding of L into C, and the above integral lies in L and does
not depend on the embedding.

Then, for any pure tensors f1 ∈ πA, f2 ∈ πA∨ with ( f1, f2) 6= 0, Yuan et al.
[2013] obtained the following celebrated formula as an identity in L ⊗Q C:

〈Pχ ( f1), Pχ−1( f2)〉K ,L

Vol(XU )−1( f1, f2)U
=

L ′
( 1

2 , πA, χ
)

L(1, πA, ad)L(2, 1F )−1

∏
v

β( f1,v, f2,v). (2-4)

Note that we use height over K whereas that used in [Yuan et al. 2013] is over F ,
the Haar measure to define Pχ ( f ) is different from theirs by 2L(1, η), and the
measure to define Vol(XU ) is different from theirs by 2. Similar to Proposition 2.4,
we have:

Proposition 2.5. Let U =
∏
v Uv ⊂ B̂× be a pure product open compact subgroup

such that Ô× ⊂ U. Let γv = Vol(U0(N )v)Vol(Uv)
−1 for all finite places v and

γv = 1 for v|∞. Let φ ∈ π JL
A be any nonzero form and let α(Wv,Wv) be the

corresponding local constants defined in Proposition 2.1. Let f1 ∈ πA, f2 ∈ πA∨ be
any pure tensors with ( f1, f2) 6= 0 and β( f1,v, f2,v) the corresponding constants
defined in (2-4). Then we have

(2Lc1(1, η)|Dc2
1δ|

1/2
A ν−1

c1
)2 ·
〈P0
χ ( f1), P0

χ−1( f2)〉K ,L

( f1, f2)U

=
L ′
(1

2 , πA, χ
)

〈φ, φ〉U0(N )

∏
v

αv(W1,v,W2,v)βv( f1,v, f2,v)γv. (2-5)

We will study the local factors appearing in formulas in Propositions 2.4 and 2.5
in the next section.

2D. Proofs of main results. In this subsection, we prove Theorems 1.5, 1.6, 1.8,
1.9 and 1.10, assuming local results proved in Section 3.

Proof of Theorem 1.8. We first give a proof of the explicit Waldspurger formula.
In (2-3), take nonzero f1 ∈ V (π, χ), f2 ∈ V (π̃, χ−1), and φ0

1 (resp. φ0
2) the

normalized new vector of π JL (resp. π̃ JL). Let Wφ0
i
:= Wi =

⊗
v Wi,v be the

corresponding Whittaker functions of φ0
i , i = 1, 2. Let R ⊂ B be the order, as

defined in Theorem 1.8, and U = R̂×. Denote

α := α(W1,v,W2,v) · |δ|
1/2
v , β := β( f1,v, f2,v) · |Dδ|−1/2

v .
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Then (2-3) becomes

4|Dc2
1δ

2
|
1/2
A ν−2

c1

P0
χ ( f1)P0

χ−1( f2)

〈 f1, f2〉U

=
L(6)

( 1
2 , π, χ

)
〈φ0

1, φ
0
2〉U0(N )

L6
( 1

2 , π, χ
)
Lc1(1, η)

−2
|c1|
−1
A

∏
v

αvβvγv .

Let 6 be the set in Theorem 1.8, 6∞ = 6 ∩∞ and 6 f = 6 \6∞. Comparing
with the formula (2-3), the proof of the explicit formula in Theorem 1.8 is reduced
to showing that

L6 f

( 1
2 , π, χ

)
Lc1(1, η)

−2
|c1|
−1
A

∏
v-∞

αvβvγv = 2#6D

and
L6∞

( 1
2 , π, χ

)∏
v|∞

αvβvγv = C−1
∞
,

which are given by Lemma 3.13 and Lemma 3.14. �

Proof of Theorem 1.10. Given the hypotheses of Theorem 1.10, identify π̃ with π ;
by Theorem 1.8,

L(6)
( 1

2 , π, χ
)
= 2−#6D+2(4π3)d

〈φ0, φ0〉U0(N )

ν2
c1

√
|DK |‖c2

1‖

|P0
χ ( f )|2

〈 f1, f2〉U
.

The formula in Theorem 1.10 follows by noting these facts:

(i) νc1 = 21−du1.

(ii) 〈φ0, φ0〉U0(N ) = (2π)
−d(φ, φ)U0(N ), where φ is the Hilbert newform of π JL

A .
This is obtained by applying the formula in Proposition 2.1 to φ and φ0, and
the comparison of local Whittaker pairings at infinity; see the discussion before
Proposition 3.12.

(iii) Let g1, . . . , gn ∈ B̂× be a complete set of representatives of X = B×\B̂×/R̂×

and letwi = #(B×∩gi R̂×g−1
i /O×); then, as in the proof of Lemma 2.2, for U = R̂×,

〈 f, f̄ 〉U = 2−1 Vol(XU )〈 f, f̄ 〉Pet =

n∑
i=1

| f (gi )|
2w−1

i

=

〈∑
f (gi )w

−1
i [gi ],

∑
f (gi )w

−1
i [gi ]

〉
= 〈 f, f 〉,

where we identify f with its image under the map V (π, χ)→ C[X ] and 〈 , 〉 is the
height pairing on C[X ]. �
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Proof of Theorem 1.5. To show the explicit Gross–Zagier formula in Theorem 1.5,
similarly to above, we apply the formula (2-5) in Proposition 2.5 to nonzero forms
f1 ∈ V (πA, χ), f2 ∈ V (πA∨, χ

−1), φ0 the normalized new vector of π JL
A , and

U =R× as in Theorem 1.5. By Lemma 3.13 and Lemma 3.14, we have

L ′ (6)
( 1

2 , π, χ
)
= 2−#6D+2(4π3)d

〈φ0, φ0〉U0(N )

ν2
c1

√
|DK |‖c2

1‖

〈P0
χ ( f1), P0

χ−1( f2)〉K ,L

( f1, f2)U
.

Then the explicit Gross–Zagier formula follows again by noting facts (i) and (ii)
above. �

Proof of Theorems 1.9 and 1.6. We now show that the variations of the explicit
Waldspurger formula in Theorem 1.9 follow from the Waldspurger formula (2-1)
and its explicit form in Theorem 1.8, and similarly for the variation of the explicit
Gross–Zagier formula in Theorem 1.6.

Let f ′1 =
⊗

v f ′1,v ∈ π , f ′2 =
⊗

v f ′2,v ∈ π̃ be forms different from the test vectors
f1=

⊗
v f1,v ∈ V (π, χ), f2=

⊗
v f2,v ∈ V (π̃, χ−1) at a finite set S of places of F ,

respectively, such that 〈 f ′1,v, f ′2,v〉v 6= 0 and β( f ′1,v, f ′2,v) 6= 0 for any v ∈ S. By the
Waldspurger formula (2-1), we have the formulas

P0
χ ( f1) · P0

χ−1( f2)

〈 f1, f2〉U
= L(π, χ)

∏
v

β( f1,v, f2,v),

P0
χ ( f ′1) · P

0
χ−1( f ′2)

〈 f ′1, f ′2〉U
= L(π, χ)

∏
v

β( f ′1,v, f ′2,v),

where

L(π, χ)=

(
# PicK/F (Oc1)

2L(1, η)

)2

·
2

Vol(XU )
·

L
(1

2 , π, χ
)

2L(1, π, ad)L(2, 1F )−1 .

It follows that

P0
χ ( f1) · P0

χ−1( f2)

〈 f1, f2〉U
=

P0
χ ( f ′1) · P

0
χ−1( f ′2)

〈 f ′1, f ′2〉U
·

∏
v∈S

β( f1,v, f2,v)

β( f ′1,v, f ′2,v)
.

The variation formula follows immediately. �

3. Local theory

Notations. In this section, we denote by F a local field of characteristic zero, i.e.,
a finite field extension of Qv for some place v of Q. Denote by | · | the absolute
value of F such that d(ax)= |a| dx for a Haar measure dx on F . Take an element
δ ∈ F× such that δO is the different of F over Qv for v finite and δ= 1 for v infinite.
For F nonarchimedean, denote by O the ring of integers in F , $ a uniformizer, p its
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maximal ideal, and q the cardinality of its residue field. Let v : F→Z∪{∞} be the
additive valuation on F such that v($)= 1. For µ a (continuous) character on F×,
denote by n(µ) the conductor of µ, that is, the minimal nonnegative integer n such
that µ is trivial on (1+$ nO)∩O×. We will always use the additive character ψ
on F and the Haar measure da on F as in Section 2, so that da is self-dual to ψ .

Denote by K a separable quadratic extension of F and, for any t ∈ K , write
t 7→ t̄ for the nontrivial automorphism of K over F . We use similar notations as
those for F with a subscript K . If F is nonarchimedean and K is nonsplit, denote
by e the ramification index of K/F . Denote by trK/F and NK/F the trace and
norm maps from K to F , and let D ∈ O be an element such that DO is the relative
discriminant of K over F . For an integer c ≥ 0, denote by Oc the order O+$ cOK

in K . Let η : F×→ {±1} be the character associated to the extension K over F .
Let B be a quaternion algebra over F . Let ε(B)=+1 and δ(B)= 0 if B∼=M2(F) is
split, and ε(B)=−1 and δ(B)= 1 if B is division. Denote by G the algebraic group
B× over F , and we also write G for G(F). We take the Haar measure on F×, K×

and K×/F× as in Section 2. In particular, Vol(O×, d×a)=Vol(O, da)= |δ|1/2 and

Vol(K×/F×)=


2 if F = R and K = C,

|δ|1/2 if K is the unramified extension field of F,
2|Dδ|1/2 if K/F is ramified.

For F nonarchimedean and n a nonnegative integer, define the following subgroups
of GL2(O):

U0(n) :=
{(

a b
c d

)
∈GL2(O)

∣∣∣∣c∈pn
}
, U1(n)=

{(
a b
c d

)
∈U0(n)

∣∣∣∣d ∈1+$ nO

}
.

Let π be an irreducible admissible representation of G, which is always assumed
to be generic if G ∼= GL2. Denote by ω the central character of π and by σ = π JL

the Jacquet–Langlands correspondence of π to GL2(F). Let χ be a character on
K× such that

χ |F× ·ω = 1.

For F nonarchimedean, let n be the conductor of σ , i.e., the minimal nonnegative
integer such that the invariant subspace σU1(n) is nonzero, and let c be the minimal
nonnegative integer such that χ is trivial on (1+$ cOK )∩O×K .

Denote by

L(s, π, χ) := L(s, σ ×πχ ) and ε(s, π, χ) := ε(s, σ ×πχ , ψ)

the Rankin–Selberg L-factor and ε-factor of σ ×πχ , where πχ is the representation
on GL2(F) constructed from χ via Weil representation. Denote by πK the base
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change lifting of σ to GL2(K ); then we have

L(s, π, χ)= L(s, πK ⊗χ), ε(s, π, χ)= η(−1)ε(s, πK ⊗χ,ψK )

Note that ε(π, χ) := ε
( 1

2 , π, χ
)

equals ±1 and is independent of the choice of ψ .
In the following, we denote by L(s, π, ad) := L(s, σ, ad) the adjoint L-factor of σ .

3A. Local toric integrals. Let P(π, χ) denote the functional space

P(π, χ) := HomK×(π, χ
−1).

By a theorem of Tunnell [1983] and Saito [1993], the space P(π, χ) has dimension
at most one, and equals one if and only if

ε(π, χ)= χη(−1)ε(B).

Lemma 3.1. Let the pair (π, χ) be as above with ε(π, χ)= χη(−1)ε(B).

(1) If K is split or π is a principal series, then B is split.

(2) If K/F =C/R, σ is the discrete series of weight k, and χ(z)=|z|s
C
(z/
√
|z|C)m

with s ∈ C and m ≡ k (mod 2), then B is split if and only if m ≥ k.

Furthermore, assume F is nonarchimedean. Then:

(3) If K/F is nonsplit and σ is the special representation sp(2)⊗ µ with µ a
character of F×, then B is division if and only ifµKχ =1 withµK :=µ◦NK/F .

(4) If K/F is inert and c = 0, then B is split if and only if n is even.

(5) If K is nonsplit with c ≥ n, then B is split.

Proof. See [Tunnell 1983, Propositions 1.6, 1.7] for (1), (3), and [Gross 1988,
Propositions 6.5, 6.3(2)] for (2), (4). We now give a proof of (5). If π is a principal
series then, by (1), B is split. If σ is a supercuspidal representation then, by
[Tunnell 1983, Lemma 3.1], B is split if n(χ)≥ ne/2+ (2− e). It is then easy to
check that, if c ≥ n, this condition always holds. Finally, assume σ = sp(2)⊗µ
with µ a character of F×. By (2), B is division if and only if µKχ = 1. If
µ is unramified, then n = 1 and χ is ramified, which implies that B must be
split. Assume µ is ramified; then n = 2n(µ) and, by [Tunnell 1983, Lemma 1.8],
f n(µK )= n(µ)+n(µη)−n(η), where f is the residue degree of K/F . If K/F is
unramified and µKχ = 1, then c = n(µK )= n(µ)= n/2, a contradiction. If K/F
is ramified and µKχ = 1, then 2c−1≤ n(µK ) < 2n(µ)= n, a contradiction again.
Hence, if c ≥ n, B is always split. �

Assume that the pair (π, χ) is essentially unitary, in the sense that there exists a
character µ= | · |s on F× with s ∈C such that both π⊗µ and χ⊗µ−1

K are unitary.
In particular, if π is a local component of some global cuspidal representation,
then (π, χ) is essentially unitary. Under such an assumption, we study the space
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P(π, χ) via the toric integral∫
F×\K×

〈π(t) f1, f2〉χ(t) dt,

where f1 ∈ π , f2 ∈ π̃ , and 〈 · , · 〉 is any invariant pairing on π × π̃ . The following
basic properties for this toric integral are established in [Waldspurger 1985]:

• It is absolutely convergent for any f1 ∈ π and f2 ∈ π̃ .

• P(π, χ) 6= 0 if and only if P(π, χ)⊗P(π̃, χ−1) 6= 0, and in this case the
above integral defines a generator of P(π, χ)⊗P(π̃, χ−1).

• For f1 ∈ π , f2 ∈ π̃ such that 〈 f1, f2〉 6= 0, define the toric integral

β( f1, f2) :=
L(1, η)L(1, π, ad)

L(2, 1F )L
(1

2 , π, χ
) ∫

F×\K×

〈π(t) f1, f2〉

〈 f1, f2〉
χ(t) dt.

Then β( f1, f2)= 1 in the case that B = M2(F), K is an unramified extension
of F , both π and χ are unramified, dt is normalized such that Vol(O×K /O

×)= 1,
and f1, f2 are spherical.

For any pair (π, χ), β is invariant if we replace (π, χ) by (π ⊗µ, χ ⊗µ−1
K ) for

any character µ of F×. Therefore, we may assume π and χ are both unitary from
now on and identify (π̃, χ−1) with (π, χ). Let ( , ) : π ×π→ C be the Hermitian
pairing defined by ( f1, f2)= 〈 f1, f2〉.

Let β( f ) := β( f, f̄ ). Then the functional space P(π, χ) is nontrivial if and only
if β is nontrivial. Assume P(π, χ) is nonzero in the following. A nonzero vector
f of π is called a test vector for P(π, χ) if `( f ) 6= 0 for some (thus any) nonzero
` ∈ P(π, χ) or, equivalently, if β( f ) is nonvanishing.

The notion of new vectors in an irreducible smooth admissible representation
of GL2(F) (see [Casselman 1973a] for F nonarchimedean and [Popa 2008] for
F archimedean) can be viewed as a special case of test vectors. Let π be an
irreducible admissible representation of GL2(F). Recall the definition of new
vector line in π , as follows. Denote by T = K× the diagonal torus in GL2(F).
Write T = Z T1 with T1 =

{(
∗

1

)}
.

• If F is nonarchimedean, then the new vector line is the invariant subspace πU1(n).

• If F is archimedean, take U to be O2(R) if F = R and U2 if F = C. The new
vector line consists of vectors f ∈ π which are invariant under T1 ∩U with
weight minimal.

It is known that new vectors satisfy the following properties:

(1) For any s ∈ C, denote by ωs the character on T such that ωs |Z = ω and
ωs |T1 = | · |

s−1/2. Then any nonzero f in the new vector line is a test vector
for P(π, ω−1

s ).
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(2) If W(π, ψ) is the Whittaker model of π with respect to ψ , then there is a
vector W0 in the new vector line, called the normalized new vector of π , such
that the local zeta integral |δ|s−1/2 Z(s,W0) equals L(s, π).

3B. Local orders of quaternions. Assume F is nonarchimedean in this subsection.
First, in the case that the quaternion algebra B is split, given nonnegative integers

m and k we want to classify all the K× conjugacy classes of Eichler orders R in B
with discriminant m such that R ∩ K = Ok . For this, identify B with the F-algebra
EndF (K ) which contains K as an F-subalgebra by multiplication. Recall that an
Eichler order in B is the intersection of two maximal orders in B. Then, any Eichler
order must be of the form R(L1, L2) := R(L1)∩ R(L2), where L i , i = 1, 2, are
two O-lattices in K and R(L i ) := EndO(L i ). Denote by d(L1, L2) the discriminant
of R(L1, L2). For any maximal order R(L), there exists a unique integer j ≥ 0
such that L = tO j for some t ∈ K×. In fact, O j = {x ∈ K | x L ⊂ L}. Thus, any
K×-conjugacy class of Eichler order contains an order of the form R(O j , tO j ′) with
0≤ j ′ ≤ j and t ∈ K× and the conjugacy class is exactly determined by the integers
j ′ ≤ j and the class of t ∈ K× modulo F×O×j ′ . The question is reduced to solving
the equation with variables k ′ and [t],

d(Ok, tOk′)= m, 0≤ k ′ ≤ k, [t] ∈ K×/F×O×k′ .

If (k ′, [t]) is a solution, then so is
(
k ′,
[
t̄
])

. A complete representative system (k ′, t)
with t ∈ K× of solutions to the above equation corresponds to a complete system
R(Ok, tOk′) for K×-conjugacy classes of Eichler orders R with discriminant m and
R ∩ K = Ok .

Lemma 3.2. Let m, k be nonnegative integers. Let τ ∈ K× be such that OK = O[τ ],
if K is split then τ 2

− τ = 0, and if K is nonsplit then v(τ) = (e − 1)/2. Let
d := k+ k ′−m. Then a complete representative system of (k ′, t) is the following:

• For 0≤ m ≤ 2k, k ′ ∈ [|m− k|, k] with d even, so d ∈ 2 · [0, k ′], and

t = 1+$ d/2τu, u ∈ (O/$ k′−d/2O)×.

In the case k ′ = k−m ≥ 0, the unique class of t is also represented by 1.

• For split K ∼= F2 and k+1≤m, k ′ ∈ [0,min(m−k−1, k)], so d ∈ [k−m, 0),
and

t = ($±du, 1), u ∈ (O/$ k′O)×.

• For nonsplit K and k+1≤m ≤ 2k+ e−1, k ′ =m− k− e+1, i.e., d = 1− e,
and

t =$ x + τ, x ∈ O/$ k′+e−2O.



2558 Li Cai, Jie Shu and Ye Tian

Proof. The discriminant d(L1, L2) of the Eichler order R(L1, L2) can be computed
as follows. Let ei , e′i be an O-basis of L i , i = 1, 2, and let A = (ai j ) ∈ GL2(F) so
that A

( e1
e′1

)
=
( e2

e′2

)
. Let v : F→ Z∪ {∞} be the additive valuation on F such that

v($) = 1. Let α = mini, j v(ai j ) and β = v(det A). Then d(L1, L2) = |2α − β|.
Now solve the equation

d(Ok, tOk′)= m, k ′ ∈ [0, k], t ∈ K×/F×O×k′ . �

Define

c1 =

{
0 if K is nonsplit and c < n,
c otherwise.

Lemma 3.3. There exists an order R of discriminant n and R ∩ K = Oc1 satisfying
the condition that, if nc1 6= 0, then R is the intersection of two maximal orders R′

and R′′ of B such that R′∩K = Oc1 , R′′∩K = Omax{0,c1−n}. Such an order is unique
up to K×-conjugacy unless 0< c1 < n. In the case 0< c1 < n, there are exactly two
K×-conjugacy classes which are conjugate to each other by a normalizer of K×.

Proof. If nc1= 0, this is proved in [Gross 1988, Propositions 3.2, 3.4]. Now assume
that nc1 6= 0; then B is split and one can apply Lemma 3.2. �

Let R be an O-order of B of discriminant n such that R∩K = Oc1 . Such an order
R is called admissible for (π, χ) if the following conditions are satisfied:

(1) If nc1 6= 0 (thus B is split), then R is the intersection of two maximal orders
R′ and R′′ of B such that R′ ∩ K = Oc1 and R′′ ∩ K = Omax{0,c1−n}.

(2) If 0 < c1 < n, fix an F-algebra isomorphism K ∼= F2 and identify B with
EndF (K ). The two K×-conjugacy classes of O-orders in B satisfying the
above condition (1) contain, respectively, the orders Ri = R′i∩R′′i , i = 1, 2 with
R′1= R′2=EndO(Oc), R′′1=EndO(($

n−c, 1)OK ) and R′′2=EndO((1,$ n−c)OK ).
Let χ1(a)= χ(a, 1) and χ2(b)= χ(1, b). Then R is K×-conjugate to some
Ri such that the conductor of χi is c1.

Lemma 3.4. If K is nonsplit, n > 0 and c = 0, then there is a unique admissible
order R for (π, χ).

Proof. Let OB be a maximal order containing OK ; then, by [Gross 1988, (3.3)],
any admissible order for (π, χ) is K×-conjugate to R := OK + I OB , where I is a
nonzero ideal of OK such that n = δ(B)+ lengthO(OK /I ). If B is nonsplit, then
OB is invariant under B×-conjugations and R is unique. Assume B is split. As
O×K ⊂O×B , OB is invariant under F×O×K -conjugations. In particular, if K is unramified,
then K× = F×O×K and R is unique. Consider the case that K is ramified. Then
K× = F×O×K ∪$K F×O×K and it suffices to show that $K normalizes R. For this,
embed K into B = M2(F) by $K 7→

( tr$K
−N$K

1
0

)
and take OB = M2(O). Then

R = OK +$
n
K M2(O). Note that R0(1)= OK +$K M2(O) with R0(1)=

(O
p

O
O

)
the
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Iwahori order in M2(F). Denote by m the maximal integer such that 2m ≤ n. Then
R = OK +$

m−1$K R0(1) if n is even, and R = OK +$
m R0(1) if n is odd. As

$K normalizes R0(1), it also normalizes R and R is unique. �

In the following, take an admissible O-order R of B. Let U = R× and define

γ :=
Vol(U )

Vol(U0(n))
,

where the Haar measure is taken, so that Vol(GL2(O)) = L(2, 1F )
−1
|δ|2 and

Vol(O×B )= L(2, 1F )
−1(q − 1)−1

|δ|2 if B is division.

Lemma 3.5. If either R is not maximal or B is nonsplit, then

γ = L(1, 1F )(1− e(R)q−1)

where e(R) is the Eichler symbol of R, defined as follows: Let κ(R) = R/rad(R)
with rad(R) the Jacobson radical of R and let κ be the residue field of F. Then

e(R)=


1 if κ(R)= κ2,
−1 if κ(R) is a quadratic field extension of κ,

0 if κ(R)= κ.

Proof. Let R0 be a maximal order of B containing R. Then we have the formula
(for example, see [Yu 2013])

[R×0 : R
×
]

[R0 : R]
=
|κ(R0)

×
|/|κ(R×)|

|κ(R0)|/κ(R)|
.

If B is split and R is not maximal, then

[R0 : R] = qn,
|κ(R0)

×
|

|κ(R0)|
= (1− q−2)(1− q−1),

|κ(R)|
|κ(R)×|

= (1− q−1)−1(1− e(R)q)−1,

while, if B is division, then

[R0 : R] = qn−1,
|κ(R0)

×
|

|κ(R0)|
= 1−q−2,

|κ(R)|
|κ(R)×|

= (1−q−1)−1(1−e(R)q)−1.

Summing up,

[R×0 : R
×
] = (q − 1)−δ(B)qn(1− q−2)(1− e(R)q−1)−1,

where δ(B) equals 0 if B is split and 1 if B is ramified. Thus
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γ−1
=

Vol(U0(n))
Vol(U )

=
Vol(GL2(O))

Vol(R×0 )
[R×0 :U ]

[GL2(O) :U0(n)]

=
L(2, 1)−1

(q − 1)−δ(B)L(2, 1)−1

(q − 1)−δ(B)qn(1− q−2)(1− e(R)q−1)−1

qn(1− q−2)(1− q−1)−1

= L(1, 1F )
−1(1− e(R)q−1)−1. �

3C. Test vector spaces.

Definition 3.6. Define V (π, χ)⊂ π to be the subspace of vectors f satisfying the
following conditions:

• For nonarchimedean F , K split or c ≥ n, let U ⊂ G be the compact subgroup
defined before Lemma 3.5, then f is an ω-eigenform under U . Here, write
U = (U ∩ Z)U ′ so that U ′ =U if cn = 0 and U ′ ∼=U1(n) otherwise, and view
ω as a character on U ∩ Z that extends to U by making it trivial on U ′.

• For nonarchimedean F , K nonsplit and c < n, f is a χ−1-eigenform under
the action of K×.

• For archimedean F , let U be a maximal compact subgroup of G such that
U ∩ K× is the maximal compact subgroup of K×; then f is a χ−1-eigenform
under U ∩ K× with weight minimal.

Proposition 3.7. The dimension of V (π, χ) is one, and any nonzero vector in
V (π, χ) is a test vector for P(π, χ).

Proof. If F is nonarchimedean, the claim that dim V (π, χ) = 1 follows from
local newform theory [Casselman 1973a]. Assume F is archimedean. If K is
nonsplit, then V (π, χ) is the χ−1-eigenline of K×. If K is split, then without loss
of generality embed K× into G ∼=GL2(F) as the diagonal matrices and decompose
K×= F×K 1 so that the image of K 1 in G is

(
∗

1

)
. Then V (π, χ) is the new vector

line for π ⊗χ1 with χ1 := χ |K 1 .
We shall prove any nonzero vector in V (π, χ) is a test vector in the next subsec-

tion by computing the toric integral β. �

Proposition 3.8. Assume K/F is a quadratic extension of nonarchimedean fields
with n > 0 and c = 0. Then V (π, χ) ⊆ π R× and dimπ R×

= dimπO×K ≤ 2. The
dimension of π R× is one precisely when K/F is inert or K/F is ramified and
ε(π, χ1) 6= ε(π, χ2), where χi , i = 1, 2, are unramified characters of K× with
χi |F× ·ω = 1.

The proof of this proposition is in [Gross 1988; Gross and Prasad 1991] except
for the case that π is a supercuspidal representation on G = GL2(F). For this
case, the proof in [Gross 1988, §7] is based on a character formula for odd residue
characteristic. We next prove this case with arbitrary residue characteristic.
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Let R0 = M2(O) if e= 1 and the Iwahori order
(O
p

O
O

)
if e= 2. Fix an embedding

of K into M2(F) such that R0 ∩ K = OK . Consider the filtration of open compact
subgroups of G and K×

K(r) := (1+$ r R0)∩GL2(O), E(r) := K(r)∩ K×, r ≥ 0.

Denote by m the minimal integer such that 2m+ 1≥ n. The proof is based on:

Proposition 3.9. For any integer r ≥ m, πK(r)
= πE(r).

Proof. Firstly, note that it is enough to prove Proposition 3.9 for the case π is
minimal, that is, π has minimal conductor among its twists. In fact, assume that
π is not minimal. Denote by n0 the minimal conductor of π . Take a character µ
so that π0 := π ⊗µ has conductor n0. Then, by [Tunnell 1978, Proposition 3.4],
n0 ≤ max(n, 2n(µ)) with equality if π is minimal or n 6= 2n(µ). In particular,
n = 2m with n(µ) = m. Hence, for any r ≥ m, πK(r)

= π
K(r)
0 and πE(r)

= π
E(r)
0 .

Since r ≥ n0/2, one can apply the proposition to the minimal representation π0.
Assume π is minimal in the following. Since K(r) ⊃ E(r), πK(r)

⊂ πE(r).
It remains to prove that πK(r) and πE(r) have the same dimension. Denote by πD

the representation on D×, where D is the division quaternion algebra over F , so
that the Jacquet–Langlands lifting of πD to G is π . Then πD has conductor n,
that is, π1+$ n−1

D OD
D = πD and π1+$ n−2

D OD
D = 0, where $D is a uniformizer of D.

Moreover, by [Carayol 1984, Proposition 6.5],

dimπD =

{
2qm−1 if n is even,
qm
+ qm−1 if n is odd.

For any r ≥ m, E(r) ⊂ (1 +$ n−1
D OD) ∩ O×K . Therefore, by the Tunnell–Saito

theorem, if we denote by X(r) the set of all the characters µ on K× such that
µ|F×ω = 1 and µ|E(r) = 1, then

dimπE(r)
+dimπD =

∑
µ∈X(r)

dimπµ+
∑
µ

dimπ
µ
D =

∑
µ∈X(r)

(dimπµ+dimπ
µ
D)=#X(r)

and, on the other hand, the lemma below implies that

dimπK(r)
+ dimπD = #X(r),

and then the equality dimπE(r)
= dimπK(r) holds. �

Lemma 3.10. Let π be minimal. For any integer r ≥ m, we have the dimension
formula

dimπK(r)
=


qr
+ qr−1

− 2qm−1 if n is even and e = 1,
qr
+ qr−1

− (qm−1
+ qm−2) if n is odd and e = 1,

2qr
− (qm

+ qm−1) if n is odd and e = 2,
2qr
− 2qm−1 if n is even and e = 2.
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Proof. For r = m and e = 1, this formula occurs in [Casselman 1973b, Theorem 3].
We now use the method in [Casselman 1973b] to prove the dimension formula for
the case n is even and e = 1, while the other cases are similar. Firstly, recall some
basics about the Kirillov model. Let ψ be an unramified additive character of F .
Associated to ψ , we can realize π on the space C∞c (F

×) of Schwartz functions on
the multiplicative group. For any f ∈ C∞c (F

×) and any character µ of O×, define

fk(µ)=

∫
O×

f (u$ k)µ(u) du,

where we choose the Haar measure on O× so that the total measure is 1. Define
further the formal power series

f̂ (µ, t)=
∑
k∈Z

fk(µ)tk,

which is actually a Laurent polynomial in t as f has compact support on F×.
Because f is locally constant, this vanishes identically for all but a finite number
of µ. By Fourier duality for F×, knowing f (µ, t) for all µ is equivalent to
knowing f . For each µ, there is a formal power series C(µ, t) such that, for all
f ∈ C∞c (F

×),

(π(w) f )ˆ(µ, t)= C(µ, t) f̂ (µ−1ω−1
0 , t−1z−1

0 ),

C(µ, t)= C0(µ)tnµ, w =

(
0 1
−1 0

)
,

where ω0 = ω|O× , z0 = ω($) and nµ is an integer, nµ ≤−2. Moreover, if µ= 1,
then −n1 = n. For any character µ of O×,

−nµ =
{

n if n(µ)≤ m,
2n(µ) if n(µ) > m.

In fact, if we take any character� on F× such that�|O× =µ, denote π ′=π⊗� and
C ′( · , · ) the monomial that occurs in the above functional equation, then for any char-
acter ν on O×, C ′(ν, t)=C(νµ,�($)t). Therefore,−nµ=n(π ′)=max(n, 2n(µ)).

On the other hand, by [Casselman 1973b, Corollary to Lemma 2], for any r ≥m,
the subspace πK(r) is isomorphic to the space of all functions f̂ (µ, t) such that

(1) f̂ (µ, t)= 0 unless n(µ)≤ r ;

(2) for each µ, fk(µ)= 0 unless −r ≤ k ≤ nµ+ r .

Summing up, for a given µ with conductor n(µ)≤ r , the dimension of the space
consisting of those f̂ (µ, t) with f ∈ πK(r) is{

2(r −m)+ 1 if n(µ)≤ m,
2(r − n(µ))+ 1 if n(µ) > m.
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Therefore,

dimπK(r)
= (qm

−qm−1)(2(r−m)+1)+
∑

m<k≤r

(qk
−2qk−1

+qk−2)(2(r−k)+1)

= qr
+qr−1

−2qm−1. �

Proof of Proposition 3.8. Note that R×= O×K K(m) unless K is ramified with n even
and, once this equation holds, Proposition 3.8 follows directly from Proposition 3.9.
So consider the case K is ramified with n even. Here, R× = O×K K′(m) with
K′(m)=1+$ 2m−1

K R0. We want to show πK′(m)
=πE′(m) with E′(m)=K′(m)∩K×,

and Proposition 3.8 then holds. By [Tunnell 1983, Proposition 3.5], π is not minimal.
Take a character µ such that π0=π⊗µ has minimal conductor n0. Then n(µ)=m.
Apply Proposition 3.9:

πK′(m)
= π

K′(m)
0 ⊃ π

K(m−1)
0 = π

E(m−1)
0 .

We claim that πE(m−1)
0 = π

E′(m)
0 . If so, πE(m−1)

0 = πE′(m) and then πK′(m)
= πE′(m).

To prove this, note that E′(m)⊂E(m−1)⊂ 1+$ n0−1
D OD . Using the Tunnell–Saito

theorem,

dimπ
E(m−1)
0 + dimπ0,D = #X(m− 1), dimπ

E′(m)
0 + dimπ0,D = #X′(m),

where the set X(m − 1) consists of characters � of K× such that �|F× ·ωπ0 = 1
with �|E(m−1) = 1, and the set X′(m) is defined similarly. As they are nonempty,

#X(m− 1)= #K×/F×E(m− 1)= #K×/F×E′(m)= #X′(m).

Thus, πE(m−1)
0 = π

E′(m)
0 and the proof is complete. �

3D. Local computations. Let W(σ, ψ) be the Whittaker model of σ with respect
to ψ and recall that we have an invariant Hermitian form on W(σ, ψ) defined by

(W1,W2) :=

∫
F×

W1

[(
a

1

)]
W2

[(
a

1

)]
d×a.

For any W ∈ σ , denote

α(W )=
(W,W )

L(1, σ, ad)L(1, 1F )L(2, 1F )−1 .

Proposition 3.11. Denote by W0 the normalized new vector of σ . If F is non-
archimedean, then

α(W0)|δ|
1/2
=

{
1 if σ is unramified,
L(2, 1F )L(1, 1F )

−1L(1, σ, ad)−δσ otherwise,
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where δσ ∈ {0, 1} and equals 0 precisely when σ is a subrepresentation of the
induced representation Ind(µ1, µ2) with at least one µi unramified. If F = R and
σ is the discrete series Dµ(k), then α(W0)= 2−k .

The proposition follows from the explicit form of W0. If F is nonarchimedean,
W0 is the one in the new vector line such that

W0

[(
δ−1

1

)]
= |δ|−1/2

and we have the following list (see [Schmidt 2002, p. 23]):

(1) If σ = π(µ1, µ2) is a principal series, then

W0

[(
y

1

)]
=


|y|1/2

∑
k+l=v(yδ)

k,l≥0

µ1($)
kµ2($)

l1O(δy) if n(µ1)= n(µ2)= 0,

|y|1/2µ1(δy)1O(δy) if n(µ1)= 0, n(µ2) > 0,
|δ|−1/21O×(δy) if n(µ1) > 0, n(µ2) > 0.

(2) If σ = sp(2)⊗µ is a special representation, then

W0

[(
y

1

)]
=

{
|δ|−1/2µ(δy)|δy|1O(δy) if n(µ)= 0,
|δ|−1/21O×(δy) if n(µ) > 0.

(3) If σ is supercuspidal, then

W0

[(
y

1

)]
= |δ|−1/21O×(δy).

If F = R and σ is the discrete series Dµ(k), then

W0

[(
y

1

)]
= |y|k/2e−2π |y|

and, in general, for archimedean cases it is expressed by the Bessel function [Popa
2008]. For F = R and σ a unitary discrete series of weight k, let W ∈W(σ, ψ) be
the vector satisfying

W
[(

y
1

)]
= |y|k/2e−2π |y|1R×+

(y).

Then W can be realized as a local component of a Hilbert newform and

(W0,W0)= 2(W,W ), Z(s,W )= 1
2 L(s, σ ).
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Proposition 3.12. If F is nonarchimedean, let f be a nonzero vector in the one-
dimensional space V (π, χ); then β( f )|Dδ|−1/2 equals:

1 if n = c = 0,
L(1, η)2|$ c

| if n = 0 and c > 0,
L(1, 1F )

L(2, 1F )
L(1, π, ad)δπ if n > 0, c = 0 and K is split,

L(1, 1F )

L(2, 1F )
L(1, η)2|$ c

|
L(1, π, ad)δπ

L
( 1

2 , π, χ
) if nc > 0, either K is split or c ≥ n,

e(1− q−e)
L(1, π, ad)

L
( 1

2 , π, χ
) if n > c and K is nonsplit,

which is independent of the choice of f ∈ V (π, χ).

The proof of Proposition 3.12 is reduced to computing the integral

β0
=

∫
F×\K×

(π(t) f, f )
( f, f )

χ(t) dt,

where f is any nonzero vector in V (π, χ).
In the case that n > c and K is nonsplit, f is a χ−1-eigenform and it is easy to

see that β0
= Vol(F×\K×).

From now on assume n ≤ c or K is split. Then B = M2(F) by Lemma 3.1(5).
Recall that the space V (π, χ) depends on a choice of an admissible order R
for (π, χ). Let f be a test vector in V (π, χ) defined by R. For any t ∈ K×,
f ′ :=π(t) f is a test vector defined by the admissible order R′= t Rt−1. It is easy to
check that β( f ′)= β( f ). Thus, for a K×-conjugacy class of admissible orders, we
can pick a particular order to compute β0. There is a unique K×-conjugacy class of
admissible orders except for the exceptional case 0< c1 < n and n(χ1)= n(χ2)= c.
In this case, there are exactly two K×-conjugacy classes of admissible orders, which
are conjugate to each other by a normalizer of K× in B×.

Any admissible order (in the case n ≤ c or K is split) is an Eichler order of
discriminant n, i.e., conjugate to R0(n) :=

( O
pn

O
O

)
. Choose an embedding of K into

M2(F) as follows, so that R0(n) is an admissible order for (π, χ):

(1) If K is split, fix an F-algebra isomorphism K ∼= F2. If c ≥ n or n(χ1) = c,
embed K into M2(F) by

ι1 : (a, b) 7−→ γ−1
c

(
a

b

)
γc, γc =

(
1 $−c

1

)
.

If n(χ1) < c < n, embed K into M2(F) by

ι2 : (a, b) 7−→ γ−1
c

(
b

a

)
γc.
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Note that, for any t ∈ K×, ι1(t)= j ι2(t) j−1 with j = γ−1
c wγc and w =

( 0
1

1
0

)
.

(2) If K is a field, take τ ∈ OK such that OK = O[τ ] and, if K/F is ramified, then
τ is a uniformizer. Embed K into M2(F) by

a+ bτ 7−→ γ−1
c

(
a+ b tr τ bNτ
−b a

)
γc, where γc =

(
$ c Nτ

1

)
.

Assume K ∼= F2. If n(χ1) < c < n,

β0
=

∫
F×\K×

(π(ι2(t))W0,W0)

(W0,W0)
χ(t) dt =

∫
F×\K×

(π(ι1(t))W0,W0)

(W0,W0)
χ(t) dt,

where χ1 = χ2, χ2 = χ1 and n(χ1)= n(χ2)= c. We reduce to the case c ≥ n or
n(χ1)= c. For the exceptional case, if we take π( j)W0 as a test vector, then

β0
=

∫
F×\K×

(π(ι1(t) j)W0, π( j)W0)

(W0,W0)
χ(t) dt =

∫
F×\K×

(π(ι1(t))W0,W0)

(W0,W0)
χ(t̄) dt

with n(χ1) = n(χ2) = c. Thus, even for the exceptional case, we only need to
consider W0 as a test vector. Thus,

β0
= (W0,W0)

−1
∫∫

(F×)2
π(γc)W0

[(
ab

1

)]
π(γc)W0

[(
b

1

)]
χ1(a) d×b d×a

= (W0,W0)
−1∣∣Z( 1

2 , π(γc)W0, χ1
)∣∣2.

If c= 0, Z
( 1

2 ,W0, χ1
)
=χ1(δ)

−1L
( 1

2 , π⊗χ1
)

and so β0
= (W0,W0)

−1L
( 1

2 , π, χ
)
.

If c > 0, then

Z
( 1

2 , π(γc)W0, χ1
)
=

∫
F×

W0

[(
a

1

)]
ψ(a$−c)χ1(a) d×a

=

∑
k∈Z

W0

[(
$ k

1

)]∫
$ k O×

ψ(a$−c)χ1(a) d×a.

Assume n(χ1) = c; then the integral
∫
$ k O× ψ(a$

−c)χ1(a) d×a vanishes unless
k =−v(δ), while∣∣∣∣∫

δ−1O×
ψ(a$−c)χ1(a) d×a

∣∣∣∣= L(1, 1F )|δ|
1/2q−c/2.

Thus,
β0
= (W0,W0)

−1L(1, 1F )
2q−c.

Assume c ≥ n and n(χ1) < c. Let j be a normalizer of K× with j t = t̄ j for
any t ∈ K×. As c≥ n, there exists some t0 ∈ K× such that t0U0(n)t−1

0 = jU0(n) j−1
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and π(t0)W0, π( j)W0 are in the same line. Thus,

β0
=

∫
F×\K×

(π(t)W0,W0)

(W0,W0)
χ(t) dt = (W0,W0)

−1L(1, 1F )
2q−c

as n(χ1)= n(χ2)= c.

Remark. Assume n(χ1) < c < n and R is the intersection of two maximal orders
R′ and R′′ with R′ ∩ K = Oc and R′′ ∩ K = OK . If R is not admissible, then the
toric integral for ω-eigenforms f under R× must vanish if c > 1. In the case c = 1,
so that n(χ1)= 0,∫

F×\K×

(π(ι1(t))W0,W0)

(W0,W0)
χ(t) dt = (W0,W0)

−1L(1, 1F )
2q−2.

It remains to consider the case K is a field and c≥ n. Let 9(g) denote the matrix
coefficient:

9(g) :=
(π(g)W0,W0)

(W0,W0)
, g ∈ GL2(F).

Then

β0
=

Vol(K×/F×)
#K×/F×O×c

∑
t∈K×/F×O×c

9(t)χ(t).

In the case c = 0, π is unramified. Furthermore, if K/F is unramified, then
β0
=Vol(K×/F×)= |δ|1/2 and, if K/F is ramified, β0

= |Dδ|1/2(1+9(τ)χ(τ)),
where9(τ) is expressed by the MacDonald polynomial and one has β( f )=|Dδ|1/2.
It remains to consider the case c > 0. Denote

Si = {1+ bτ | b ∈ O/pc, v(b)= i}, 0≤ i ≤ c− 1,
and

S′ =
{
{a+ τ | a ∈ p/pc

} if e = 1,
{a$ + τ | a ∈ O/pc

} if e = 2.

Then a complete representatives of K×/F×O×c can be taken as

{1} t
⊔

i

Si t S′.

Note that 9 is a function on U1(n)\G/U1(n). The following observation is key to
our computation: the images of Si , 0≤ i ≤ c− 1, and S′ under the natural map

pr : K×→U1(n)\G/U1(n)
are constant. Precisely,

pr(Si )=

[(
1 $ i−c

1

)]
, pr(S′)=

[(
$−c

−$ c+e−1

)]
.

From this, it follows that
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∑
t∈K×/F×O×c

9(t)χ(t)= 1+
c−1∑
i=0

9i

∑
t∈Si

χ(t)+9 ′
∑
t∈S′

χ(t),

where 9i (resp. 9 ′) are the valuations of 9(t) on Si (resp. S′).
Assume the central character ω is unramified; then we may take ω = 1. If

e = c = 1, we have∑
t∈S0

χ(t)=−χ(τ)− 1 and
∑
t∈S′

χ(t)= χ(τ).

Otherwise,∑
t∈Si

χ(t)=
{

0 if c > 1 and 0≤ i ≤ c− 2,
−1 if i = c− 1,

and
∑
t∈S′

χ(t)= 0.

Therefore,∑
t∈K×/F×O×c

9(t)χ(t)=
{

1+ (−χ(τ)− 1)90+χ(τ)9
′ if e = c = 1,

1−9c−1 otherwise.

Note that, if e = 1, then
(
−$ c

$−c )
equals

( 1 $−c

1

)
in ZU1(n)\G/U1(n) and,

since ω = 1, 9 ′ =90. We obtain∑
t∈K×/F×O×c

9(t)χ(t)= 1−9c−1

and reduce to the evaluation of 9c−1. If n = 0, the matrix coefficient 9c−1 is
expressed by the MacDonald polynomial. In particular, if the Satake parameter of
π is (α, α−1), then

1−9c−1 =
(1−α2q−1)(1−α−2q−1)

1+ q−1 .

If n = 1, then π = sp(2)⊗µ with µ an unramified quadratic character on F×. By
definition,

9c−1 = |δ|
1/2L(1, π, ad)−1

∫
F×

W0

[(
a

1

)(
1 $−1

1

)]
W0

[(
a

1

)]
d×a

= |δ|3/2L(1, π, ad)−1
∫
$−n(ψ)O

ψ(a$−1)|a|2 d×a

= |δ|3/2L(1, π, ad)−1(−q−1)L(1, π, ad)|δ|−3/2
=−q−1.

If n ≥ 2, then

9c−1 = |δ|
−1/2

∫
$−1−n(ψ)O×

ψ(x) d×x =−q−1L(1, 1F ).
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With these results, we obtain

β0
=

Vol(K×/F×)
#K×/F×O×c

×


L(1, 1F )

L(1, π, ad)(1+ q−1)
if n = 0,

1+ q−1 if n = 1,
L(1, 1F ) if n ≥ 2.

Finally, we deal with the case that ω is ramified. As above, it is routine to check
that 9i for i < c− 1 and 9 ′ are vanishing. Moreover, 9c−1 = 0 if and only if
δπ = 0 and, for δπ = 1,

9c−1 =−q−1L(1, 1F ).

By the definition of δπ , if δπ = 1 then c ≥ 2 and n(ω) < n ≤ c. Thus, for δπ = 1,

0=
∑

t∈1+$ c−1OK /1+$ cOK

χ(t)

=

∑
t∈1+$ c−1OK /(1+$ c−1O)(1+$ cOK )

χ(t)
∑

a∈1+$ c−1O/1+$ cO

ω−1(a)

= q
∑

b∈pc−1/pc

χ(1+ bτ).

Therefore, if δπ = 1, then
∑

t∈Sc−1
χ(t)=−1 and

β0
=

Vol(K×/F×)
#K×/F×O×c

×

{
1 if δπ = 0,
L(1, 1F ) if δπ = 1.

The proof of Proposition 3.12 is now complete. �

We finish our discussions of α(W0), β( f ) and γ with Lemmas 3.13 and 3.14.

Lemma 3.13. Let F be nonarchimedean and f a nonzero element in V (π, χ); then

α(W0)β( f )γ |D|−1/2
= 2δ(6D)L

(1
2 , π, χ

)−δ(6)L(1, η)2δ(c1)q−c1,

where these δ ∈ {0, 1} are given by:

• δ(6D)= 1 if and only if K is ramified, n > 0 and c < n;

• δ(6)= 1 if and only if n > 0, K is either ramified or c > 0 and, if n = 1, then
c ≥ n;

• δ(c1)= 1 if and only if c1 6= 0.

Proof. We have computed α(W0) in Proposition 3.11 and β( f ) in Proposition 3.12.
When n > 0, by Lemma 3.5, γ = L(1, 1F )(1−e(R)q−1) and it suffices to compute
e(R):

(i) e(R)= 1 and γ = 1 if K is split, or if K is ramified, n = 1 and B is split, or
if K is nonsplit and c ≥ n;
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(ii) e(R) = −1 and γ = L(1, 1F )(1+ q−1) if K is inert and c < n, or if K is
ramified, n = 1, B is division and c = 0;

(iii) e(R)= 0 and γ = L(1, 1F ) if K is ramified, n ≥ 2 and c < n. �

For archimedean places, using Barnes’ lemma we have the following list for
(W0,W0) (see [Tadić 2009] for the classification of unitary dual of GL2(F)):

(1) Assume F = R, σ is the infinite-dimensional subquotient of the induced
representation Ind(µ1, µ2), where µi (a) = |a|si sgn(a)mi with si ∈ C and
mi ∈ {0, 1}. Let k = s1− s2+ 1, µ= s1+ s2.

(a) If σ = Dµ(k) is the discrete series with k ≥ 2, then (W0,W0) equals

2(4π)−k0(k).

(b) If σ = π(µ1, µ2) is a principal series, then (W0,W0) equals

π−1−m1−m20
( 1

2(1+2m1)
)
0
( 1

2(1+2m2)
)
B
( 1

2(k+m1+m2),
1
2(2−k+m1+m2)

)
,

where B(x, y) := 0(x)0(y)0(x + y)−1 is the beta function.

(2) Assume F=C, σ =π(µ1, µ2) is a principal series withµi (z)=|z|si

( z
√
|z|C

)mi

and si ∈ C and mi ∈ Z; then (W0,W0) equals

8(2π)−1−|m1|−|m2|0(1+ |m1|)0(1+ |m2|)

× B
(
1+ s1− s2+

1
2(|m1| + |m2|), 1− s1+ s2+

1
2(|m1| + |m2|)

)
.

For a pair (π, χ), define

C(π, χ)=
{

2−1π(W0,W0)
−1 if K/F = C/R,

(W ′0,W ′0)(W0,W0)
−1 if K = F2.

In the split case, W ′0 is the new vector of π⊗χ1, where K is embedded into M2(F)
diagonally and χ1(a)= χ

((a
1

))
.

Lemma 3.14. For F archimedean, let f be a nonzero vector in V (π, χ); then

α(W0)β( f )= C(π, χ)−1
{

L
( 1

2 , π, χ
)−1 if K/F = C/R,

1 if K = F2.

In particular, if σ = Dµ(k) is a discrete series with weight k, then

C(π, χ)=
{

4k−1π k+10(k)−1 if K = C,

1 if K = R2.

Proof. By definition,

α(W0)β( f )=
L(1, η)

L(1, 1F )
L
(1

2 , π, χ
)−1
(W0,W0)β

0
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with
β0
=

∫
F×\K×

(π(t) f, f )
( f, f )

χ(t) dt, f ∈ V (π, χ).

If K/F = C/R, then β0
= Vol(K×/F×) = 2. If K is split, taking f = W ′0, then

β0
= L

( 1
2 , π, χ

)
(W ′0,W ′0)

−1. If σ =Dµ(k), the value for (W0,W0) is given in (1a)
in the above list and we note that, if K = R2, then (W ′0,W ′0) = (W0,W0) as, for
any χ1, π ⊗χ1 and π have the same weight. �
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