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Large self-injective rings and the
generating hypothesis
Leigh Shepperson and Neil Strickland

We construct a number of different examples of non-Noetherian graded rings
that are injective as modules over themselves (or have some related but weaker
properties). We discuss how these are related to the theory of triangulated
categories, and to Freyd’s generating hypothesis in stable homotopy theory.

1. Introduction

In this paper we study graded commutative rings R that are large in various senses
(in particular, not Noetherian) and self-injective (meaning that R is injective as an
R-module). We use graded rings because they are relevant for our applications, but
ungraded rings are covered as well because they can be regarded as graded rings
concentrated in degree zero. The graded setting is assumed everywhere, so “element”
means “homogeneous element” and “ideal” means “homogeneous ideal” and so on.
Our rings will be commutative in the graded sense, so that ba = (−1)|a||b|ab.

It is not hard to prove that any Noetherian self-injective ring is Artinian. In
particular, if R is a finitely generated algebra over a field K that is self-injective then
we must have dimK (R) <∞ and it turns out that R ' Hom(R, K ) as R-modules.
Examples of this situation include R = K [x1, . . . , xn]/(r1, . . . , rn) for any regular
sequence r1, . . . , rn , or the cohomology ring R = H∗(M; K ) for any closed ori-
entable manifold M . These are the most familiar examples of self-injective rings,
and they are all very small. We will be looking for examples that are much larger.

Our motivation comes from a question in stable homotopy theory, which we
briefly recall. In stable homotopy theory we study a certain triangulated category F,
the Spanier–Whitehead category of finite spectra. The objects can be taken to
be pairs X = (n, A), where n ∈ Z and A is a finite simplicial complex. The
morphism set HomF((n, A), (m, B)) is the set of homotopy classes of maps from
(RN+n

× A) ∪ {∞} to (RN+m
× B) ∪ {∞}, which is essentially independent of

N when N is sufficiently large. More details are given in [Ravenel 1992], for
example. For any X, Y ∈ F the set HomF(X, Y ) is a finitely generated abelian
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group. It turns out that most methods for studying HomF(X, Y ) treat the p-primary
parts separately for different primes p. We will thus fix a prime p and define
[X, Y ] = Zp ⊗HomF(X, Y ), where Zp is the ring of p-adic integers. These are
the morphism sets in a new triangulated category which we call Fp. This has a
canonical tensor structure, with the tensor product of X and Y written as X ∧ Y .
The unit for this structure is called S, so S ∧ X ' X . As part of the triangulated
structure we have a suspension functor 6 : Fp→ Fp, and we write Sn for 6n S.
We put Rn = [Sn, S]. These sets form a graded commutative ring, whose structure
is extremely intricate. A great deal of partial information is known, but it seems
clear that there will never be a usable complete description. Some highlights are as
follows.

• Rn = 0 for n < 0, and R0 = Zp, and Rn is a finite abelian p-group for n > 0.

• Both the ranks and the exponents of the groups Rn can be arbitrarily large.

• All elements in Rn with n > 0 are nilpotent. Thus, the reduced quotient is
R/
√

0= Zp.

• Various results are available describing most or all of the structure of Rn for
n < f (p), where f (x) is a polynomial of degree at most three. The simplest
of these says that Rn = 0 for 0< n < 2p− 3, and R2p−3 = Z/p.

Now consider an arbitrary object X ∈ Fp. We define πn(X) = [Sn, X ] for all
n ∈ Z. This defines a graded abelian group π∗(X), which has a natural structure as
an R-module.

Conjecture 1.1 (Freyd’s generating hypothesis). The functor π∗ : Fp→ModR is
faithful.

This is actually a technical modification of Freyd’s conjecture [1966], because
Freyd did not tensor with the p-adics. This causes various troubles in the devel-
opment of the theory, which Freyd avoided in ad hoc ways. Much later, Hovey
[2007] redeveloped the theory in the p-adic setting, which involves only minor
modifications to Freyd’s arguments but works much more smoothly.

Nearly half a century after Freyd made his conjecture, there is still no hint of a
proof or a counterexample. However, there has been a certain amount of indirect
progress; for example, various authors have settled the analogous questions in other
triangulated categories where computations are easier [Carlson et al. 2009; Hovey
et al. 2007; Benson et al. 2007; Lockridge 2007].

On the other hand, it is known that the generating hypothesis would have some
very strong and surprising consequences, as we now explain.

Definition 1.2. (a) A graded ring R is coherent if every finitely generated ideal is
finitely presented.
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(b) A graded ring R is totally incoherent if the only finitely presented ideals are 0
and R.

Theorem 1.3 [Freyd 1966; Hovey 2007]. Suppose that the generating hypothesis
is true.

(a) The functor π∗ : Fp→ModR is automatically full as well as being faithful, so
it is an embedding of categories.

(b) For every object X ∈ Fp, the image π∗(X) is an injective R-module. In
particular (by taking X = S) the ring R is self-injective.

(c) The ring R is totally incoherent.

Note in particular that (a) gives a full subcategory of ModR that has a natural
triangulation. This is very unusual; in almost all known triangulated categories,
the morphisms are equivalence classes of homomorphisms under some nontrivial
equivalence relation, and this equivalence structure is tightly connected to the
definition of the triangulation.

Our aim in this paper is to shed light on the generating hypothesis by finding ex-
amples of self-injective rings that share some of the known or conjectured properties
of the stable homotopy ring R.

Our main results are as follows. Firstly, one cannot disprove self-injectivity by
looking only in a finite range of degrees:

Theorem 1.4. Let R be a graded-commutative ring such that

(a) Rk = 0 for k < 0,

(b) R0 = Z/2,

(c) Rk is finite for all k ≥ 0.

Suppose given N > 0. Then there is an injective map φ : R→ R′ of graded rings
such that

(1) R′ also has properties (a)–(c),

(2) φ : Rk→ R′k is an isomorphism for k < N ,

(3) R′ is self-injective.

This result was a great surprise to the authors at least, although the proof is not
too hard. We will restate and prove it as Theorem 6.6. We conjecture that the
theorem remains true if we allow R0 to be Zp, but we have not proved this.

Most of our remaining results relate to specific examples. We have aimed to give
a wide spread of examples, rather than formulating each example with maximum
possible generality. We will write F for Z/2.
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One of the simplest examples of a finite-dimensional self-injective ring is the
exterior algebra

F[x0, . . . , xn]/(x2
0 , . . . , x2

n).

Our first infinite-dimensional example is just an obvious generalisation of this.

Proposition 1.5. Let E be the exterior algebra over F with a generator xi ∈ E2i for
all i ∈N. Then E is self-injective and coherent. The reduced quotient is E/

√
0= F.

Self-injectivity is proved by combining Corollary 3.7 and Proposition 4.6, as will
be explained in Example 4.7. The same ingredients cover many other examples, but
we will not give the relevant definitions in this introduction. Coherence is proved in
Proposition 5.4, and the reduced quotient is clear. We have chosen the degrees of
the generators for compatibility with our other examples, but in fact the statement
would remain valid if we merely assumed that |xi | →∞ as i→∞.

Our next example arose by applying Theorem 1.4 to the ring F[x, y]/xy and
studying the result in low dimensions. The result is very complicated and irregular,
but after studying various recurring patterns and key features we were led to the
definition below.

Theorem 1.6. Consider the ring

C = F[y0, y1, . . . ]/(y3
i + yi yi+1 | i ≥ 0),

with the grading given by |yi | = 2i . Then C is self-injective and coherent. The
reduced quotient is

C/
√

0= F[x0, x1, . . . ]/(xi x j | i 6= j)= F⊕
⊕
n>0

xnF[xn],

where xn =
∑n

i=0 y2i

n−i .

This will be proved as Propositions 7.18, 7.25 and 7.26. The statement can be
generalised by adjusting the degrees and the relations slightly, but this just leads
to additional bookkeeping without much extra insight, so we have omitted it. It is
probably also possible to generalise in more conceptual ways, but that would be a
substantial project, so we leave it for future work.

For the next example, we give an axiomatic statement and then explain a special
case that is relevant in chromatic homotopy theory.

Definition 1.7. For any prime p, we recall that

Z[1/p]/Z'Q/Z(p) 'Qp/Zp ' lim
n→∞

Z/pn.

For any module M over Zp, we write M∨ = HomZp(M,Qp/Zp), and call this the
Pontrjagin dual of M . One can check that Zp

∨
' Qp/Zp and (Qp/Zp)

∨
' Zp

and (Z/pn)∨ ' Z/pn . Now consider a graded Zp-algebra R with a specified
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isomorphism ζ : Rd → Qp/Zp for some d. This gives maps ζ #
: Rd−k → R∨k by

ζ #(a)(b) = ζ(ab). We say that R is Pontrjagin self-dual if all these maps are
isomorphisms.

Proposition 1.8. If R is Pontrjagin self-dual, then it is self-injective.

This will be proved as Proposition 8.2.
Now fix a prime p, and assume that p > 2 for simplicity. Recall that F de-

notes the Spanier–Whitehead category of finite spectra. One can construct another
triangulated category F′, called the Bousfield localisation of F with respect to
p-local K -theory. Roughly speaking this is the closest possible approximation
to F that can be analysed using topological K -theory, and it is computationally
much more tractable than F itself. Ravenel’s paper [1984] is a good introduction
to both the conceptual framework and specific calculations, with references to
original sources. Devinatz [1990] has shown that the most obvious analogue of the
generating hypothesis for F′ is false (his Remark 1.7), but that a related statement
is true (his Theorem 1). The analogue of the stable homotopy ring for F′ is the
ring J described below.

Definition 1.9. Let p be an odd prime, and define a graded ring J as follows. We
put J0 = Z(p) and J−2 =Qp/Zp; for notational convenience we use the symbol η
for the identity map Z(p)→ J0, and ζ for the identity map J−2→Qp/Zp. Next,
for each nonzero integer k there is a generator αk ∈ J2(p−1)k−1 generating a cyclic
group of order pvp(k)+1, where vp(k) is the p-adic valuation of k. For the product
structure, we have:

• η(a)η(b)= η(ab) and η(a)ζ−1(b)= ζ−1(ab) and η(a)αk = a αk .

• ζ−1(a)ζ−1(b)= 0 and ζ−1(a)αk = 0 for all k.

• If k > 0 we have

αkα−k =−α−kαk = ζ
−1(p−1−vp(k)+Z(p)).

• α jαk = 0 whenever j + k 6= 0.

Theorem 1.10. The ring Ĵ = Zp ⊗ J is Pontrjagin self-dual and therefore self-
injective. It is also totally incoherent, and the reduced quotient is Ĵ/

√
0= Zp.

Self-duality is proved as Lemma 8.3, and incoherence as Proposition 8.7. The
reduced quotient is clear.

Remark 1.11. Tensoring with Zp here just has the effect of replacing Z(p) in degree
zero with Zp. Note that this is not the same as the p-completion of J , because
(Qp/Zp)p = 0. Moreover, a derived version of p-completion would replace Qp/Zp

by a copy of Zp shifted by one degree, which is different again. The ring J itself is
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not self-injective. However, this does not account for Devinatz’s example showing
the failure of the generating hypothesis in F′; that has a deeper topological origin.

We now note that the ring F[x]/x N is another easy example of a finite-dimensional
self-injective ring. Our next example arose by trying to generalise this. An ob-
vious possibility is to consider the ring

⋃
n>0 F[x1/n

] modulo the ideal generated
by x . Any element of this ring can be expressed as

∑
q a(q)xq , for some function

a : Q∩ [0, 1)→ F with finite support. However, this ring needs to be adjusted to
make it self-injective. Firstly, it turns out to be better not to kill x itself, but just the
powers xq with q > 1. Next, self-injectivity forces certain modules to be isomorphic
to their double duals and thus to have strong completeness properties. To handle
this, we must allow some infinite sums, or equivalently weaken the condition that
a has finite support. It is also convenient (but not strictly necessary) to include
powers xq where q is irrational. This leads us to the following definition.

Definition 1.12. Let K be a field. For any map a : [0, 1] → K we put

supp(a)= {q ∈ [0, 1] | a(q) 6= 0}.

We say that a is an infinite root series if every nonempty subset of supp(a) has a
smallest element (so supp(a) is well-ordered). We let P denote the set of infinite
root series, and call this the infinite root algebra.

Theorem 1.13. The formula

(ab)(q)=
∑

0≤r≤q

a(r) b(q − r)

gives a well-defined ring structure on P. With this structure, P is self-injective and
totally incoherent. The reduced quotient is P/

√
0= K .

This will be proved in Propositions 9.20 and 9.21, and Corollary 9.13.
We will also discuss two rings that are not self-injective, but have a related

property that we now explain.

Definition 1.14. Let R be a graded commutative ring, and let J be an ideal
in R. We put annR(J ) = {a ∈ R | a J = 0}. It is tautological that the ideal
ann2

R(J ) = annR(annR(J )) contains J . We say that R satisfies the double an-
nihilator condition if ann2

R(J )= J for all finitely generated ideals J .

Proposition 1.15. If R is self-injective then it satisfies the double annihilator con-
dition. Conversely, if R is Noetherian and satisfies the double annihilator condition,
then it is self-injective.

This is proved in Remark 2.4 and Theorem 4.1.
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Definition 1.16. For any integer n we let B(n) be the set of exponents i such that
2i occurs in the binary expansion of n, so B(n) is the unique finite subset of N such
that n =

∑
i∈B(n) 2i .

The Rado graph has vertex set N, with an edge from i to j if (i ∈ B( j) or
j ∈ B(i)). The Rado ideal in the exterior algebra E has a generator xi x j for each
pair (i, j) such that there is no edge from i to j in the Rado graph. The Rado
algebra Q is the quotient of E by the Rado ideal.

Remark 1.17. See [Rado 1964; Cameron 2001] for discussion of the Rado graph.
Although the definition looks very specialised, the appearance is deceptive. Roughly
speaking, any countable random graph is isomorphic to the Rado graph with
probability one. The proof of this uses a kind of injectivity property of the Rado
graph, which is what suggested it to us as being potentially relevant for the present
project.

Theorem 1.18. The Rado algebra is totally incoherent (and in particular, not
Noetherian). It satisfies the double annihilator condition, but is not self-injective.
The reduced quotient is Q/

√
0= F.

This will be proved as Propositions 10.5, 10.6 and 10.8 (apart from the fact that
Q/
√

0= F, which is clear).
One major difference between the Rado algebra and the stable homotopy ring is

that the former has Krull dimension zero (because all elements in the maximal ideal
square to zero) whereas the latter is Z2 in degree 0 and so has Krull dimension one.
Our final example aims to do something similar to the Rado construction but without
making all the generators nilpotent. To do this we must work in base ω rather than
base 2; this involves some theory of ordinals, which we briefly recall (the book
[Johnstone 1987] is an admirably concise reference). There is an exponentiation
operation for ordinals (different from the usual one for cardinals). There is a
countable ordinal called ε0 such that ε0 = ω

ε0 , and no ordinal α < ε0 satisfies
α = ωα. Any ordinal α < ε0 has a unique Cantor normal form

α = ωβ1n1+ · · ·+ω
βr nr ,

where the ni are positive integers and α > β1 > · · ·> βr .

Definition 1.19. We write µ0(α, β) for the coefficient of ωβ in the Cantor normal
form of α. We then put

µ(α, β)=max(µ0(α, β), µ0(β, α)),

and
A = F[xα |α < ε0]/(xαx1+µ(α,β)

β |α, β < ε0, α 6= β).

We call A the ε0-algebra.
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Given any function δ : ε0→N, we can give A a grading such that |xα| = δ(α). In
Section 11 we will describe a particular function δ with the property that δ(α) > 0
for all α, and all the sets δ−1

{n} are finite. This will ensure that the homogeneous
pieces Ad are finite for all d.

Theorem 1.20. If J is any ideal in A that is generated by a finite set of monomials,
then J = ann2

A(J ). However, there are nonmonomial ideals J with J 6= ann2
A(J ),

so A does not satisfy the double annihilator condition, and is not self-injective.
Moreover, A is totally incoherent, and the reduced quotient is

A/
√

0= F[xα |α < ε0]/(xαxβ |α 6= β).

This will be proved as Propositions 11.17, 11.21 and 11.22, and Corollary 11.19.

2. General theory of self-injective rings

Let R be a graded commutative ring, and ModR the category of graded R-modules.
Suppose that R is self-injective. For M ∈ ModR we put DM = HomR(M, R)
(regarded as a graded R-module in the usual way). This construction defines a
functor D : ModR→Modop

R , which is exact because R is self-injective. It follows
that D2 gives an exact covariant functor from ModR to itself. There is a natural
map κ : M→ D2 M given by κ(m)(u)= u(m). Properties of D2 are studied under
different technical hypotheses in [Bruns and Herzog 1993, Theorem 3.2.13], for
example.

Definition 2.1. We let U=UR denote the full subcategory of ModR consisting of
the modules M for which κ : M −→ D2 M is an isomorphism.

Proposition 2.2. The category U is closed under finite direct sums, suspensions
and desuspensions, kernels, cokernels, images and extensions. It also contains R
itself.

Proof. This is clear from the exactness of the functor D2 and the five lemma. �

Corollary 2.3. If J ≤ R is a finitely generated ideal, then J and R/J lie in U.

Proof. They are the image and cokernel of some map
⊕n

i=16
di R −→ R. �

Remark 2.4. If J is an ideal in R then

D(R/J )' {a ∈ R | a J = 0} = annR(J ).

By dualising the sequence J −→ R −→ R/J , we see that D(J ) = R/ annR(J ). It
follows that D2(J )= annR(annR(J ))= ann2

R(J ). Thus, we have J ∈U if and only
if J = ann2

R(J ). In particular, if J is finitely generated then J = ann2
R(J ).

Lemma 2.5. For any a ∈ Rd there is an isomorphism D(Ra)'6−d Ra.
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Proof. Given u ∈ D(Ra)e we put α(u) = u(a) ∈ Rd+e. This defines a map
α : D(Ra)→ 6−d R, which is clearly injective. Note that if b ∈ annR(a) then
α(a)b = α(ab)= α(0)= 0. This proves that α(a) ∈ ann2

R(Ra)d+e = (Ra)d+e. In
the opposite direction, if c ∈ (Ra)d+e then we have c = ma for some m ∈ Re, and
the rule µm(x) = mx defines an element µm ∈ D(Ra)e with α(µm) = c. This
proves that the image of α is 6−d Ra, as required. �

Proposition 2.6. If R is self-injective and a ∈ R then R/ ann(a) is also self-
injective.

Proof. Put Q = R/ ann(a), and let i : Q −→ R be induced by x 7→ xa, so i is
injective, with image Ra. For M ∈ModQ we write

DQ(M)= HomQ(M, Q)= HomR(M, Q) and DR(M)= HomR(M, R).

We are given that DR is exact, and we must show that DQ is exact. The map
i : Q −→ R gives a natural monomorphism i : DQ(M) → DR(M), and it will
suffice to show that this is also an epimorphism. For any φ : M −→ R we see
that ann(a).φ(M) = φ(ann(a)M) = φ(0) = 0, so φ(M) ≤ ann2

R(a) = Ra, and
i : Q −→ Ra is an isomorphism, so φ = i(ψ) for some ψ ∈ DQ(M), as required. �

Proposition 2.7. If R is self-injective and I and J are ideals in R, then

annR(I + J )= annR(I )∩ annR(J ) and annR(I ∩ J )= annR(I )+ annR(J ).

Proof. There is a short exact sequence

R/(I ∩ J )

[
1
1

]
−→ R/I ⊕ R/J

[1 −1]
−−−→ R/(I + J ).

By applying the exact functor D, we get a short exact sequence

annR(I ∩ J )
[1 1]
←−− annR(I )⊕ annR(J )

[
1
−1

]
←−− annR(I + J ).

The claim follows. �

Corollary 2.8. If R is local and self-injective and I and J are nontrivial ideals,
then I ∩ J is also nontrivial.

Proof. Let m be the maximal ideal. As I and J are nontrivial we have ann(I ) < R
and ann(J ) < R, so ann(I )≤m and ann(J )≤m, so

ann(I ∩ J )= ann(I )+ ann(J )≤m< R,

so I ∩ J is nontrivial. �
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3. Criteria for self-injectivity

We first record a graded version of the standard Baer criterion for injectivity.

Definition 3.1. Let R be a graded ring, and let I be a graded R-module. We say
that I satisfies the Baer condition if for every graded ideal J ≤ R, every integer d
and every R-module homomorphism φ : 6d J → I , there exists m ∈ Id such that
φ(a)= am for all a ∈ I . We say that I satisfies the finite Baer condition if the same
condition holds for all finitely generated graded ideals J .

Proposition 3.2. In the above context, the module I is injective if and only if it
satisfies the Baer condition.

Proof. This was originally done in the ungraded context in [Baer 1940], as an
application of Zorn’s lemma. The proof is also given in many textbooks, such
as [Lam 1999, page 63]. It can be modified in an obvious way to keep track of
gradings, which gives our statement above. �

Proposition 3.3. Suppose that Id is finite for all d, and that I satisfies the finite
Baer condition. Then I also satisfies the full Baer condition and so is injective.

Proof. Consider a graded ideal J ≤ R and a homomorphism φ : 6d J → I . For
each finitely generated ideal K ⊆ J we put

M(K )= {m ∈ Id |φ(a)= am for all a ∈ K }.

The finite Baer condition means that this is a nonempty subset of the finite set Id .
Choose K such that |M(K )| is as small as possible, and choose m ∈ M(K ). For
a ∈ J it is clear that M(K + Ra)⊆ M(K ), so by the minimality property we must
have M(K + Ra) = M(K ), so m ∈ M(K + Ra), so φ(a) = am. This proves the
full Baer condition. �

Definition 3.4. Let R be a graded ring, and let I be an R-module. A test pair of
length r and degree d is a pair (u, v) where u ∈ Rr and v ∈ I r such that the entries
ui and vi are homogeneous with |vi | = |ui |+d for all i . A block for such a pair is a
vector b ∈ Rr such that b.u = 0 but b.v 6= 0 (where b.x =

∑
i bi xi ). A transporter

is an element m ∈ Id such that vi = mui for all i .

Remark 3.5. We implicitly formulate the theory of graded groups in such a way
that the zero elements in different degrees are distinct. Thus, the notation |u| is
meaningful even if u = 0.

Proposition 3.6. The module I satisfies the finite Baer condition if and only if every
test pair has either a block or a transporter.

Proof. Suppose that every test pair has either a block or a transporter. Consider
a finitely generated graded ideal J ≤ R, and a homomorphism φ : 6d J → R.



Large self-injective rings and the generating hypothesis 267

Choose a list u = (u1, . . . , ur ) of homogeneous elements that generates J , and put
vi = φ(ui ) ∈ I . Note that if b ∈ Rr with b.u = 0 then we can apply φ to see that
b.v = 0. It follows that the pair (u, v) has no block, so it must have a transporter.
This means that there is an element m ∈ Id with φ(ui )= ui m for all i , and it follows
easily that φ(a)= am for all a ∈ J , as required.

Conversely, suppose that I satisfies the finite Baer condition. Consider a test pair
(u, v) of degree d with no block, and let J be the ideal generated by the entries ui .
Define φ : 6d J → I by φ

(∑
i bi ui

)
=
∑

i bivi (the absence of a block means that
this is well-defined). The finite Baer condition means that there is an element m ∈ Id

with φ(a)= am for all a ∈ J , and this m is clearly a transporter for (u, v). �

Corollary 3.7. Let R be a graded commutative ring such that Rk is finite for all k.
Suppose also that there are subrings

R(0)≤ R(1)≤ R(2)≤ · · · ≤ R

such that each R(n) is self-injective and R =
⋃

n R(n). Then R is self-injective.

Proof. Any test pair (u, v) ∈ Rr
× Rr can be regarded as a test pair over R(n) for

sufficiently large n. As R(n) is self-injective, there must be a block in R(n)r or a
transporter in R(n). It is clear from the definitions that such a block or transporter
still qualifies as a block or transporter over R, so we see that R satisfies the finite Baer
condition. As we have assumed that Rk is finite for all k, we can use Proposition 3.3
to see that R is injective as an R-module. �

Theorem 3.8. Let R be a graded commutative ring such that Rk is finite for all k.
The following conditions are equivalent:

(a) R is self-injective.

(b) For all finitely generated ideals J, K ≤ R we have ann2
R(J )= J and

annR(J ∩ K )= annR(J )+ annR(K ).

(c) For all elements a ∈ R and every finitely generated ideal J ≤ R we have
ann2

R(a)= Ra and

annR(J ∩ Ra)= annR(J )+ annR(a).

Proof. It follows from Remark 2.4 and Proposition 2.7 that (a) implies (b). If (b)
holds, then (c) follows immediately. Now suppose (c) holds. As we have assumed
that Rk is finite for all k, we may use the theory of blocks and transporters. We
proceed by induction on the length of a test pair to show that every test pair over
the ring R has either a block or a transporter. Let (u; v) be a test pair of length 1
and degree d. Suppose this test pair has neither block nor transporter. Then
annR(u) ≤ annR(v) and by assumption we have Rv = ann2

R(v) ≤ ann2
R(u) = Ru,
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that is, v = um for some m ∈ Rd . Since m is a transporter for this test pair, we have
a contradiction.

Now suppose each test pair of length ≤ k and arbitrary degree has either
a block or a transporter. A test pair of length k + 1 and degree d takes the
form (u, uk+1; v, vk+1), where (u; v) is a test pair of length k and degree d and
(uk+1, vk+1) is a test pair of length 1 and degree d. By the inductive hypothesis,
both the test pairs (u; v) and (uk+1, vk+1) have either a block or a transporter.
If (u; v) has block r , then (r, 0) is a block for the test pair (u, uk+1; v, vk+1).
Similarly, if (uk+1, vk+1) has block rk+1, then (0, . . . , 0, rk+1) is a block for the
test pair (u, uk+1; v, vk+1). Otherwise, (u; v) must have transporter m ∈ Rd and
(uk+1, vk+1) must have transporter n ∈ Rd . In this situation, suppose the test
pair (u, uk+1; v, vk+1) has neither block nor transporter and let J be the ideal
generated by the entries of u. The absence of a block implies that there is a well
defined map φ : 6d(J + Ruk+1) → R defined by φ

(∑k+1
i=1 bi ui

)
=
∑k+1

i=1 bivi .
Now let s be an element in the intersection J ∩ Ruk+1. Then we must have
s =

∑k
i=1 si ui = sk+1uk+1 for elements si ∈ R for each i . Applying the map φ to

the zero element
(∑k

i=1 si ui
)
− sk+1uk+1 gives

0=
( k∑

i=1

sivi

)
− sk+1vk+1 =

( k∑
i=1

si ui m
)
− sk+1uk+1n = s(m− n).

Thus it follows that the element m− n is in the annihilator ideal annR(J ∩ Ruk+1).
By assumption, we have annR(J ∩ Ruk+1) = annR(J ) + annR(uk+1). Now let
m−n= x− y, where x ∈ annR(J ) and y ∈ annR(uk+1), and put z =m− x = n− y.
Since ui z = ui (m − x) = ui m = vi for each i ≤ k and uk+1z = uk+1(n − y) =
uk+1n = vk+1 it follows that z is a transporter for the test pair (u, uk+1; v, vk+1).
As this gives a contradiction, it follows that every test pair of length k + 1 and
arbitrary degree must have either a block or transporter. We deduce that every test
pair in the ring R must have either a block or transporter, and since Rk is finite for
each k, we can use Proposition 3.6 to show that R is injective as an R-module. �

4. The Noetherian case

Theorem 4.1. Let R be a Noetherian graded commutative ring. Then the following
are equivalent:

(a) R is self-injective.

(b) For every ideal J ≤ R we have ann2
R(J )= J .

(c) R is Artinian (and thus is a finite product of Artinian local rings), and each of
the local factors has one-dimensional socle.
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Statements similar to this are certainly well-known (see, for example, [Bruns
and Herzog 1993, Exercise 3.2.15]), but we do not know a reference for this precise
formulation. For completeness we will give a self-contained proof after some
lemmas.

Lemma 4.2. Let R be an Artinian local graded ring, with maximal ideal m, and put
K = R/m. Suppose that the socle soc(R) = annR(m) has dimension one over K .
Then every nonzero ideal in R contains soc(R).

Proof. Let I be a nonzero ideal. By the Artinian condition, we can choose an
ideal J that is minimal among nonzero ideals contained in I . Recall that every
Artinian ring is Noetherian (see, for example, [Matsumura 1980, Theorem 3.2]), so
we can use Nakayama’s lemma to see that mJ < J and thus (by minimality) that
mJ = 0. This means that J is a nontrivial K -subspace of soc(R), but soc(R) has
dimension one, so J = soc(R), so soc(R)≤ I . �

Lemma 4.3. Suppose that R is as in Lemma 4.2. Then for all ideals J ≤ R we have
ann2

R(J )= J .

Proof. First, it is standard that we can fit together a composition series for J with a
composition series for R/J to get a chain

0= I0 < I1 < · · ·< Ir = R

with Ii/Ii−1 ' K for all i , and J = It for some t . Now let A j be the annihilator of
I j , so we have

R = A0 ≥ A1 ≥ · · · ≥ Ar = 0.

Now mAi Ii+1 = Ai (mIi+1) ≤ Ai Ii = 0, so Ai Ii+1 ≤ soc(R). On the other hand,
we have Ai Ii = 0 and Ai+1 Ii+1 = 0. We therefore have a natural map

ξi : Ai/Ai+1→ HomK (Ii+1/Ii , soc(R))

given by ξi (a + Ai+1)(b + Ii ) = ab. It is clear from the definitions that this is
injective, and the codomain is isomorphic to K , so Ai/Ai+1 is either 0 or K . It is
standard that any two composition series have the same length, so we must have
Ai/Ai+1 ' K for all i , so Ai has length r − i . After applying the same logic
to the composition series {Ar−i }

r
i=0 we see that the ideal ann(Ai )= ann2(Ii ) has

length i . We also know that Ii ≤ ann2(Ii ) and that Ii also has length i ; it follows
that Ii = ann2(Ii ), as required. �

Corollary 4.4. Suppose that R is as in Lemma 4.3. Then R is self-injective.

Proof. Consider an ideal I ≤ R and an R-module map f : I → R. Choose a
composition series 0= J0 < J1 < · · ·< Jr = I . We have Ji/Ji−1 ' K so we can
find ai ∈ Ji \ Ji−1 such that Ji = Ji−1+ Rai with mai ≤ Ji−1.
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We will construct elements x0, . . . , xr ∈ R such that f (a)= axi for all a ∈ Ji .
We start with x0 = 0. Now suppose we have found xi−1. Put ui = f (ai )− xi−1ai .
Using the fact that mai ≤ Ii−1 we find that mui = 0, so ui ∈ soc(R). Next, we have
ai 6∈ Ii−1 = ann2(Ii−1), so ann(Ii−1)ai 6= 0. As every nontrivial ideal contains the
socle, we see that ui ∈ ann(Ii−1)ai , so we can write ui = yi ai for some yi with
yi Ii−1 = 0. We now put xi = xi−1 + yi . By construction we have f (a) = axi

for a ∈ Ii−1 or for a = ai , and it follows that this equation holds for all a ∈ Ii as
required. At the end of the induction we have an element xr which fulfils Baer’s
criterion. �

Proof of Theorem 4.1. It follows from Remark 2.4 that (a) implies (b). Now
suppose that (b) holds. Consider a descending chain of ideals I0 ≥ I1 ≥ I2 ≥ · · ·

in R. The ideals ann(Ik) then form an ascending chain, which must eventually
stabilise because R is Noetherian. We can thus take annihilators again to see that
the original chain also stabilises. This shows that R is Artinian. It follows in a
standard way that there are only finitely many maximal ideals, and that R is the
product of its maximal localisations. We thus have a splitting R =

∏n
i=1 Ri say,

where each factor Ri an Artinian local ring. It follows that the lattice of ideals in R
is the product of the corresponding lattices for the factors Ri , and thus that each
Ri satisfies condition (b). We can thus reduce to the case where R is local, with
maximal ideal m say. Recall that the socle is soc(R)={a ∈ R | am= 0}= annR(m),
which is naturally a vector space over the field K = R/m. If soc(R) were zero we
would have m= ann2(m)= ann(soc(R))= ann(0)= R, which is a contradiction.
We can therefore choose a nonzero element u ∈ soc(R). We find that K u = Ru is
a nonzero ideal in R, so ann(K u) is a proper ideal containing ann(soc(R)) = m,
so ann(K u) = m by maximality. We can now take annihilators again to see that
K u = ann(m)= soc(R), so soc(R) is one-dimensional. This proves (c).

Finally, we will assume (c) and prove (a). It is again easy to reduce to the case
where R is local, and the local case is covered by Corollary 4.4. �

Definition 4.5. Let K be a field. A Poincaré duality algebra over K is a graded
commutative K -algebra R equipped with a K -linear map θ : Rd → K for some
d ≥ 0 such that:

• For i < 0 or i > d we have Ri = 0.

• R0 = K .

• For 0≤ i ≤ d we have dimK (Ri ) <∞, and the map (a, b) 7→ θ(ab) defines a
perfect pairing between Ri and Rd−i .

Proposition 4.6. Every Poincaré duality algebra is self-injective.

Proof. Let R be a Poincaré duality algebra of top dimension d , and put m=
⊕

i>0 Ri .
It is clear that R/m= K and md+1

= 0, and it follows that m is the unique maximal
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ideal. As R has finite total dimension over K it is clearly Artinian. The perfect
pairing condition implies that soc(R) = Rd and that this has dimension one. It
follows by Theorem 4.1 that R is self-injective.

Alternatively, for any R-module M we can define a natural map

τ : HomR(M, R)→ HomK (Md , K )

by τ(φ) = θ ◦ φd . Using the perfectness of the pairing we see that this is an
isomorphism. As K is a field, the functor M 7→ HomK (Md , K ) is exact, and it
follows that the functor M 7→ HomR(R, R) is also exact, or in other words that R
is injective as an R-module. �

Example 4.7. Put
E = F[x0, x1, x2, . . . ]/(x2

i | i ≥ 0),

with |xi | = 2i . For any finite set I ⊂N we put x I =
∏

i∈I xi , so |x I | =
∑

i∈I 2i and
the elements x I form a basis for E over F. It follows that Ek ' F for all k ≥ 0, and
Ek = 0 for k < 0. Let E(n) be the subalgebra of E generated by x0, . . . , xn−1. This
is a Poincaré duality algebra, with socle generated by the element

∏
i<n xi , and it

is clear that E =
⋃

n E(n). Corollary 3.7 therefore tells us that E is self-injective.

5. Coherence

We now briefly recall some standard ideas about finite presentation.

Definition 5.1. Let R be a graded commutative ring, and let M be a graded
R-module. Then we see from [Lam 1999, Section 4D] the following are equivalent:

(a) There exists an exact sequence

P1
f
→ P0

g
→ M→ 0,

where P0 and P1 are finitely generated free modules.

(b) M is finitely generated, and for every epimorphism g : P0→ M (with P0 a
finitely generated free module) the module ker(g) is also finitely generated.

If these conditions hold, we say that M is finitely presented.

Remark 5.2. By finitely generated free module, we mean one of the form
r⊕

i=1
6di R;

we do not assume that the degree shift di is zero.

Corollary 5.3. If R is Noetherian, then every finitely generated ideal is finitely
presented.

Proof. Condition (b) is clearly satisfied. �
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As we stated in Definition 1.2, a graded ring R is said to be coherent if every
finitely generated ideal is finitely presented, and totally incoherent if the only finitely
presented ideals are 0 and R. It is clear that every Noetherian ring is coherent. We
mention as background that if R is coherent, then the category of finitely generated
modules is closed under images, kernels, cokernels and extensions, so it is an
abelian category. The following example is standard:

Proposition 5.4. The infinite exterior algebra E (as in Example 4.7) is coherent.

Proof. Let E(n) be the subalgebra generated by x0, . . . , xn−1, and let E ′(n) be
generated by the remaining variables, so E = E(n)⊗F E ′(n). Any finitely generated
ideal is the image of some E-linear map g : Er

→ E , which will have the form
g(u)= u.v for some vector v ∈ Er . We must show that the module K = ker(g) is
finitely generated. Choose n large enough that vi ∈ E(n) for all i . Now v gives a
map g′ : E(n)r → E(n) of E(n)-modules, and E(n) is Noetherian, so the module
K ′ = ker(g′) is finitely generated over E(n). We can identify g with g′⊗ 1 with
respect to the splitting E = E(n)⊗ E ′(n), and it follows that K = K ′⊗ E(n)′, and
thus that any finite generating set for K ′ over E(n) also generates K over E . �

The following result will be our main tool for proving incoherence results.

Lemma 5.5. Let A be a local graded ring, with maximal ideal m, and let I be a
finitely presented ideal in A. Then for each u ∈ I \mI , the image of annA(u) in
m/m2 has finite dimension over A/m.

Note here that as u 6∈mI we have u 6= 0, so annA(u)≤m and it is meaningful
to talk about the image in m/m2.

Proof. As I is finitely generated over A, we see that I/mI is a finite-dimensional
vector space over A/m. We can choose a basis for this space containing the image
of u, and then choose elements of I lifting these basis elements. This gives a list
v1, . . . , vn ∈ I with v1 = u such that the corresponding map g : An

→ I induces
an isomorphism ḡ : (A/m)n→ I/mI . Now cok(g) is a finitely generated module
with m. cok(g) = cok(g), so cok(g) = 0 by Nakayama’s lemma, and so g is an
epimorphism. As I is assumed to be finitely presented, we see that ker(g) is
also finitely generated over A. Moreover, as ḡ is an isomorphism we see that
ker(g)≤mn . It follows that the image of ker(g) in (m/m2)n is finite-dimensional.
The intersection of ker(g) with the first copy of A in An is just the annihilator of u,
so we see that the image of annA(u) in m/m2 is finite-dimensional. �

Corollary 5.6. Let A be a local graded ring, with maximal ideal m. Suppose that
all u ∈ A satisfy one of the following conditions: u = 0; the image of annA(u) in
m/m2 has infinite dimension; or u is invertible.

Then A is totally incoherent.
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Proof. Let I be a finitely presented ideal. If mI = I then I = 0 by Nakayama’s
lemma. Otherwise, we can choose u ∈ I \mI . As u 6∈mI we have u 6= 0. By the
lemma, the image of annA(u) in m/m2 must have finite dimension. Thus, the first
two possibilities are excluded, and u must be invertible. As u ∈ I we conclude that
I = A. �

Next we record a graded version of Chase’s theorem for coherent rings.

Theorem 5.7. Let R be a graded commutative ring. The following conditions are
equivalent:

(a) R is coherent.

(b) For all elements a ∈ R and for every finitely generated ideal J ≤ R, the
conductor ideal

(J : a)= {r ∈ R | ra ∈ J }

is finitely generated.

(c) For all elements a ∈ R, the annihilator ideal annR(a) is finitely generated, and
for all finitely generated ideals J, K ≤ R, the intersection J ∩ K is finitely
generated.

Proof. The ungraded version of the proof is given in many textbooks such as [Lam
1999, page 142]. It can be modified in an obvious way to keep track of gradings,
which gives our statement above. �

Theorem 5.8. Let R be a graded commutative ring such that Rk is finite for all k.
The following conditions are equivalent:

(a) R is coherent and self-injective.

(b) R is coherent and for all finitely generated ideals J ≤ R we have ann2
R(J )= J .

(c) For every finitely generated ideal J ≤ R, the ideal annR(J ) is finitely generated
and ann2

R(J )= J .

(d) R is self injective and for all finitely generated ideals J ≤ R, the ideal annR(J )
is finitely generated.

Proof. It follows from Remark 2.4 that (a) implies (b). To show that (b) implies (c)
we need to show that the ideal annR(J ) is finitely generated for each finitely
generated ideal J ≤ R. If we let (r1, . . . , rn) be generators for the ideal J , then we
can take the annihilator of J to give annR(J )=

⋂
i annR(ri ). Since R is assumed

to be coherent, it follows from part (c) of Theorem 5.7 that annR(ri ) is finitely
generated for each i and that a finite intersection of finitely generated ideals is also
finitely generated. Thus annR(J ) is finitely generated as claimed. Now suppose
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that part (c) holds. To prove that (c) implies (d), we need to show that R is injective
as an R-module. For all ideals J, K ≤ R we have

annR(annR(J )+ annR(K ))= ann2
R(J )∩ ann2

R(K )= J ∩ K .

By assumption, the ideal sum annR(J )+annR(K ) must be finitely generated. Thus
we can take double annihilators to give

annR(J )+ annR(K )= annR(J ∩ K ).

Since Rk is finite for each k, we can use part (b) of Theorem 3.8 to complete the
claim. We now conclude by showing that (d) implies (a). By assumption, the
annihilator ideal annR(a) is finitely generated for all elements a ∈ R. Then for
all ideals J, K ≤ R we know that the ideal sum annR(J )+ annR(K ) is finitely
generated by assumption. By taking annihilators we then have

annR(annR(J )+ annR(K ))= ann2
R(J )∩ ann2

R(K )= J ∩ K ,

where the double annihilator condition holds by Remark 2.4. However, by as-
sumption, the annihilator of a finitely generated ideal is also finitely generated.
Thus the intersection J ∩ K must be finitely generated. It follows from part (c) of
Theorem 5.7 that the ring R is coherent as claimed. �

6. Self-injective adjustment

Definition 6.1. We write R for the category of commutative graded F-algebras
such that:

(a) Rk = 0 for all k < 0.

(b) R0 = F.

(c) Rk is finite for all k > 0.

Proposition 6.2. Let R be a ring in R, and let P be a finite set of test pairs in R
that have no transporters. Let m be a positive integer. Then there is an extension
R′ ≥ R of graded rings such that:

(a) R′ is also in R.

(b) R′k = Rk for all k < m.

(c) Each test pair in P has a block in R′.

Proof. List the elements of P as (u0, v0), . . . , (u p−1, vp−1) say. Suppose that
(ut , vt) has length rt , and let dt be the maximum of the degrees of the entries ut, j

for 0≤ j < rt . Let P be the polynomial ring obtained from R by adjoining variables
bt, j for 0 ≤ t < p and 0 ≤ j < rt , with |bt, j | = m + dt − |ut, j | ≥ m > 0. Put
wt =

∑rt−1
j=0 bt, j ut, j ∈ P and R′= P/(w0, . . . , wp−1). There is an evident ring map
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η : R→ R′, and also a ring map π : R′→ R given by π(bt, j )= 0 for all t and j . It
is clear that πη= 1, so η is injective, and we can use it to regard R′ as an extension
of R. As |bt, j | ≥ m > 0, it is easy to see that R′ ∈R and that the map Rk→ R′k is
surjective (and therefore bijective) for k < m. By construction we have bt .ut = 0
in R′. We claim that bt .vt 6= 0 in R′, or equivalently that bt .vt cannot be written
as
∑

s csws in P . To see this, let c∗ denote the constant term in the polynomial ct .
By examining the coefficient of bt, j in the equation bt .vt =

∑
s csws we obtain

vt, j = c∗ut, j for all j , which means that c∗ is a transporter for (ut , vt), contrary to
assumption. Thus, bt is a block for (ut , vt) in R′, as required. �

Definition 6.3. Let R be a ring in R, and let (u, v) be a test pair for R. We say
that (u, v) is good if it has either a block or a transporter, and bad otherwise. We
say that (u, v) is nondegenerate if ui 6= 0 for all i . For any homogeneous element
x ∈ R we put |x |+ =max(0, |x |). The weight of (u, v) is

∑
i (1+ |ui |++ |vi |+).

Lemma 6.4. Let R be a ring in R, and suppose that all nondegenerate test pairs
are good. Then R is self-injective.

Proof. Consider an arbitrary test pair (u, v) ∈ Rr
× Rr . If there exists i such that

ui = 0 but vi 6= 0, then the basis vector ei ∈ Rr is a block for (u, v). Otherwise, let
(u′, v′) be the test pair obtained by removing all zeros from u and the corresponding
zeros from v. This is nondegenerate, so it has a block or a transporter. If b′ is a
block for (u′, v′), then we can construct a block for (u, v) by inserting some zeros.
If m′ is a transporter for (u′, v′), then it is also a transporter for (u, v). We therefore
see that all test pairs for R are good, so R is self-injective. �

Lemma 6.5. There are only finitely many nondegenerate bad test pairs of any given
weight.

Proof. Consider an integer N ≥ 0. Any nondegenerate bad test pair (u, v) of
weight N must have length at most N . Moreover, as (u, v) is nondegenerate we
must have ui 6= 0 for all i , and as R ∈ R this means that |ui | ≥ 0. We also have∑

i |ui | ≤ weight(u, v) = N . It is clear from this (and the finiteness of Rk) that
there are only finitely many possibilities for u. Next, let d be the degree of (u, v),
so |vi | = |ui | + d. From this it is clear that d ≤ N . If d is sufficiently negative
then we will have vi = 0 for all i , so 0 is a transporter for (u, v), contradicting
the assumption that (u, v) is bad. We therefore see that there are only finitely
many possibilities for d . Given u and d , it is clear that there are only finitely many
possibilities for v. �

Theorem 6.6. Suppose that R ∈ R, and that m ≥ 0. Then there is an extension
R′ ≥ R such that:

(a) R′ is also in R.

(b) R′k = Rk for all k < m.
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(c) R′ is self-injective.

Proof. We define rings R′(0) ≤ R′(1) ≤ · · · as follows. We start with R′(0)= R.
For each k ≥ 0, we let R′(k+ 1) be an extension of R′(k) that agrees with R′(k) in
degrees less than k+m, such that every nondegenerate bad test pair of weight at
most k in R′(k) has a block in R′(k+1). This can be constructed by Proposition 6.2
and Lemma 6.5. Now take R′ to be the colimit of the rings R′(k). By construction
we have R′i = R′(k)i for sufficiently large k, and using this it is clear that R′ ∈R.
Consider a nondegenerate test pair (u, v) ∈ R′. For sufficiently large k we can
assume that k ≥ weight(u, v) and that ui , vi ∈ R′(k) for all i . If (u, v) is good in
R′(k) then it is good in R′. If it is bad in R′(k) then by construction it becomes
good in R′(k+ 1) and therefore in R′. �

7. The cube algebra

Recall that in the statement of Theorem 1.6 we introduced the ring

C = F[y0, y1, . . . ]/(y3
i + yi yi+1 | i ≥ 0),

with the grading given by |yi | = 2i . We now investigate the structure of this ring
(which we call the cube algebra).

Definition 7.1. We also put

C[n,∞] = F[yn, yn+1, . . . ]/(y3
i + yi yi+1|n ≤ i <∞),

C[n,m] = F[yn, . . . , ym]/(y3
i + yi yi+1|n ≤ i < m),

C[n,m] = C[n,m]/ym .

Lemma 7.2. The evident maps

C[n+ 1,m] //

��

C[n+ 1,m+ 1] //

��

C[n+ 1,∞]

��
C[n,m] //

��

C[n,m+ 1] //

��

C[n,∞]

��
C[0,m] // C[0,m+ 1] // C[0,∞] = C

are all split injective, so all the rings mentioned can be considered as subrings of C.

Proof. There is a graded ring map τ0 : F[y0, y1, . . . ] → C[n,m] given by

τ0(yi )=


0 if i < n,

yi if n ≤ i ≤ m,

y2i−m

m if m ≤ i.
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It is straightforward to check that τ0(y3
i + yi yi+1)= 0 for all i ≥ 0, so there is an

induced map τ : C→ C[n,m]. Clearly the composite C[n,m] → C
τ
−→ C[n,m] is

the identity, so the map C[n,m]→ C is injective for all m and n. The other claims
follow from this. �

Definition 7.3. We write P for the polynomial ring F[y0, y1, . . . ], so that C is a
quotient of P . A multiindex is a sequence α= (α0, α1, . . . ) of natural numbers with
αi =0 for i�0. We write MP for the set of all multiindices. Given α∈MP we write
yα =

∏
i yαi

i and |α| = |yα| =
∑

i αi 2i . It is clear that the set BP = {yα |α ∈ MP}
is a basis for P over F.

Definition 7.4. We put

M ′C[n,m] = {α ∈ MP |αi = 0 for i < n or i > m and αi < 3 for n ≤ i < m},

MC[n,m] = {α ∈ MP |αi = 0 for i < n or i ≥ m},

B ′C[n,m] = {yα |α ∈ M ′C[n,m]},

BC[n,m] = {yα |α ∈ MC[n,m]}.

Note that in the definition of M ′C[n,m] the constraint αi < 3 does not apply
when i = m, so in particular M ′C[n,m] is infinite.

Proposition 7.5. B ′C[n,m] is a basis for C[n,m], and BC[n,m] is a basis for
C[n,m]. Moreover, C[n,m] is a Poincaré duality algebra over F.

The proof depends on the following result:

Lemma 7.6. Let A be a commutative algebra over F, let f (t) ∈ A[t] be a monic
polynomial of degree d, and put B = A[x]/ f (x). Then {1, x, . . . , xd−1

} is a basis
for B over A. Moreover, if A is finite-dimensional over F and has Poincaré duality,
then the same is true of B.

Proof. We first claim that any polynomial g(x)∈ A[x] can be expressed uniquely in
the form g(x)= q(x) f (x)+r(x) with deg(r(x)) < d . This can easily be proved by
induction on the degree of g(x), and it follows directly that {1, . . . , xd−1

} is a basis
for B over A. Now suppose that A has Poincaré duality, so there is a linear map
θ : A→ F such that the bilinear form (u, v) 7→ θ(u, v) is perfect. This means that
there exist bases {u0, . . . , un−1} and {v0, . . . , vn−1} for A such that θ(uiv j )= δi j .
Now define φ : B→F by φ

(∑d−1
i=0 ai x i

)
=θ(ad−1). We define bases {s0, . . . , snd−1}

and {t0, . . . , tnd−1} for B by sni+ j = x i u j and tni+ j = xd−1−iv j for 0≤ i < d and
0 ≤ j < n. It is clear that φ(sk tk) = 1. Suppose we have 0 ≤ k < k ′ < nd. Write
k = ni + j and k ′ = ni ′+ j ′ as before; we must have either i < i ′, or (i = i ′ and
j < j ′). In either case, we find that φ(si t j )= 0. Thus, the matrix of φ with respect
to our bases is triangular, with ones on the diagonal, proving that φ gives a perfect
pairing on B. �
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Proof of Proposition 7.5. From the definitions we have C[m,m] = F[yn] and
B ′C[m,m] = {yαn

n |αn ∈N} so clearly B ′C[m,m] is a basis for C[m,m]. Similarly,
it is clear that the set C[m,m]={1} is a basis for the ring C[m,m]=C[m,m]/ym=F,
and that this has Poincaré duality.

Next, C[n,m] can be described as

C[n+ 1,m][yn]/ f (yn),

where f (t)= t3
+ yn+1t is a monic polynomial of degree three with coefficients in

C[n+ 1,m]. It also follows that C[n,m] = C[n+ 1,m][yn]/ f (yn). All claims in
the proposition now follow by downwards induction on n using Lemma 7.6. �

Remark 7.7. Note that the algebra

C[n,m] =
F[yn, yn+1, . . . , ym−1]

(y3
n + yn yn+1, . . . , y3

m−1)

has the same number of relations as generators, and has finite dimension over F. It
is known that in this situation the sequence of relations is necessarily regular, and
that the algebra automatically has Poincaré duality. (This can be extracted from
[Matsumura 1980, Section 17], for example.) This would give another approach to
Proposition 7.5.

Definition 7.8. Let α be a multiindex. We say that

(a) α is flat if αi < 3 for all i ;

(b) α is n-truncated if αi = 0 for all i < n;

(c) α is m-solid if it is flat and whenever m ≤ p ≤ q and αq > 0 we also have
αp > 0.

We consider all flat multiindices to be∞-solid. For 0≤ n ≤ m ≤∞ we put

MC[n,m] = {α ∈ MP |α is n-truncated and m-solid},

and BC[n,m] = {yα |α ∈ MC[n,m]}. We also write MC for the set MC[0,∞]
of all flat multiindices.

Proposition 7.9. BC[n,∞] is a basis for C[n,∞].

Proof. We must show that for each degree d ∈ N, the set BC[n,∞]d is a basis for
C[n,∞]d . Choose m>n such that 2m >d . Then clearly BC[n,∞]d = B ′C[n,m]d
and C[n,∞]d = C[n,m]d so the claim follows from Proposition 7.5. �

It is also true that BC[n,m] is a basis for C[n,m] when m < ∞, but it is
convenient to leave the proof until later.

Proposition 7.10. For any multiindex α ∈ MP , there is a multiindex β ∈ MC such
that yα = yβ .
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Proof. If α 6∈ MC , we let k denote the smallest index such that αk > 2, and define
α′ ∈ MP by

α′i =


αi if i < k,
αk − 2 if i = k,
αk+1+ 1 if i = k+ 1,
αi if i > k+ 1.

Because y3
k = yk yk+1 we have yα = yα

′

. Moreover, α′ has the same degree as α,
and is lexicographically lower than α. There are only finitely many monomials of
any given degree, so the claim follows by induction over the lexicographic order. �

Definition 7.11. (a) We put x0 = y0, and xn = yn + y2
n−1 for all n > 0.

(b) For n ≥ m ≥ 0 we put x[m,n] =
∏m

i=n xi and y[m,n] =
∏m

i=n yi .

Proposition 7.12. For all n ≥ 0 we have yn =
∑n

i=0 x2i

n−i and ynxn+1 = 0. Thus,
the ring C can also be presented as

C = F[x0, x1, x2, . . . ]
/(

xn+1

n∑
i=0

x2i

n−i

∣∣∣ n ≥ 0
)
.

Proof. Once we recall that (a+b)2= a2
+b2 (mod 2), the equation yn =

∑n
i=0 x2i

n−i
is easily checked by induction. Note that this already holds in the polynomial ring P .
As the elements xi can be expressed in terms of the y j and vice versa, we see that
P = F[x0, x1, . . . ]. The defining relations y3

n + yn yn+1 = 0 for C can clearly be
rewritten as ynxn+1 = 0 and thus as xn+1

∑n
i=0 x2i

n−i = 0. �

Lemma 7.13. Whenever m ≤ n we have ym y2
[m,n] = y[m,n+1].

Proof. The inductive step is

ym y2
[m,n+1] = ym y2

[m,n]y
2
n+1 = y[m,n+1]y2

n+1

= y[m,n]y3
n+1 = y[m,n]yn+1 yn+2 = y[m,n+2]. �

Corollary 7.14. For k ≥ 0 we have y2k
−1

m = y[m,m+k−1].

Proof. The induction step is

y2k+1
−1

m = ym(y2k
−1

m )2 = ym y2
[m,m+k−1] = y[m,m+k]. �

Lemma 7.15. Fix m ∈ N, and put

U = {α ∈ MC |α is m-solid and αi = 0 for i < m}.

Then there is a bijection N→ U written as k 7→ θ [m, k] such that yθ [m,k] = yk
m

in C.
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Proof. First, if α ∈ U it is clear that |α| is divisible by 2m , so we can define
δ : U → N by δ(α)= |α|/2m .

Now consider k ∈ N. There is a unique r ∈ N such that 2r
− 1≤ k < 2r+1

− 1.
This means that 0≤ k− (2r

−1) < 2r , so there is a unique set J ⊆ {0, 1, . . . , r−1}
with k− (2r

− 1)=
∑

j∈J 2 j . We put

θ [m, k]i =


0 if i < m,
1 if m ≤ i < m+ r and i −m 6∈ J,
2 if m ≤ i < m+ r and i −m ∈ J,
0 if m+ r ≤ i.

This is clearly in U . Next, we claim that yθ [m,k] = yk
m . To see this, put z = y2r

−1
m ,

which is the same as y[m,m+r−1] by Corollary 7.14. We have

yθ[m,k] = y[m,m+r−1]
∏
j∈J

ym+ j = z
∏
j∈J

ym+ j ,

yk
m = y

2r
−1+

∑
j∈J 2 j

m = z
∏
j∈J

y2 j

m .

Now, for 0≤ j < r we have ym+ j (y2
m+ j + ym+ j+1)= 0 and z is divisible by ym+ j

so z(y2
m+ j + ym+ j+1)= 0, and so ym+ j+1 = y2

m+ j modulo ann(z). It follows induc-
tively that ym+ j = y2 j

m (mod ann(z)), so
∏

j∈J ym+ j =
∏

j∈J y2 j

m (mod ann(z)), so
yθ [m,k]= yk

m as claimed. It also follows that δ(θ [m, k])=|yθ [m,k]|/2m
=|yk

m |/2
m
=k.

Now let α be an arbitrary element of U . By the definition of solidity, there is an
integer s ≥ 0 such that when m ≤ i < m+ s we have αi ∈ {1, 2} and for i ≥ m+ s
we have αi = 0. It is then clear that∑

m≤i<m+s

2i
≤ |α| ≤ 2

∑
m≤i<m+s

2i ,

or in other words 2s
− 1≤ δ(α) < 2s+1

− 1. It follows easily that α = θ [m, δ(α)],
so we have a bijection as claimed. �

Proposition 7.16. For 0≤ n ≤ m ≤∞, the set BC[n,m] is a basis for C[n,m].

Proof. The case m = ∞ was covered by Proposition 7.9, so we may assume
that m <∞, so B ′C[n,m] is a basis for C[n,m] by Proposition 7.5. However,
Lemma 7.15 implies that B ′C[n,m], considered as a system of elements in C[n,m],
is just the same as BC[n,m]. �

Proposition 7.17. Suppose that 0≤ n < k ≤ m ≤∞ and k <∞. Then

annC[n,m](xk)= C[n,m]yk−1.
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Proof. The m =∞ case will follow from the m <∞ case, as C[n,m]d =C[n,∞]d
when m is large relative to d . We will thus assume that m <∞.

We have already observed that xk yk−1 = 0, so annC[n,m](xk)≥C[n,m]yk−1, and
multiplying by xk gives a well-defined map f : C[n,m]/(C[n,m]yk−1)→C[n,m].
It will suffice to show that f is injective.

For this, we put

N = {α ∈ MC[n,m] |αk−1 = 0},

A = {yα |α ∈ N } ⊆ C[n,m],

Z = span(A)≤ C[n,m].

By inspecting the generators and relations on both sides, we see that

C[n,m]/(C[n,m]yk−1)= C[n, k− 1]⊗C[k,m].

Propositions 7.5 and 7.9 show that A also gives a basis for C[n,m]/(C[n,m]yk−1),
so C[n,m] = Z ⊕ (C[n,m]yk−1). Now let g denote the composite

Z
'
−→ C[n,m]/(C[n,m]yk−1)

f
−→ C[n,m]

proj
−−→ C[n,m]/Z .

It will certainly be enough to show that g is injective. It is not hard to see that
yk Z ≤ Z , and xk = y2

k−1+ yk , so g(z)= xkz+ Z = y2
k−1z+ Z , and so g gives an

injective map from A to BC[n,m] \ A. These sets are bases for the domain and
codomain of g, so g is injective as required. �

Proposition 7.18. C is self-injective.

Proof. As C is finite in each degree, it will suffice (by Propositions 3.3 and 3.6)
to show that every test pair (u, v) in C has either a block or a transporter. Let d
be the degree of (u, v), so |vi | = |ui | + d. Note that some of the entries ui and vi

may be zero, in which case |ui | or |vi | can be negative. Choose m such that 2m > d
and also 2m > |ui | and 2m > |vi | for all i . Now (u, v) can be regarded as a test
pair in C[n,m]. Let π be the projection C[n,m] → C[n,m] = C[n,m]/ym . As
C[n,m] has Poincaré duality, it is self-injective, so the test pair (π(u), π(v)) has
either a block or a transporter. First, suppose that there is a transporter π(t), so
π(vi )= π(tui ) for all i . This is an equation between elements of degree |vi |< 2m ,
and π : C[n,m] → C[n,m] is an isomorphism in this degree, so vi = tui , so we
have a transporter for the original pair (u, v).

Suppose instead that there is a block for (π(u), π(v)), say π(b). This means
that π(b.u)= 0 but π(b.v) 6= 0, so b.u ∈ C[n,m]ym but b.v 6∈ C[n,m]ym . Using
our bases for the various rings under consideration, we see that C[n,m]ym =

(Cym)∩C[n,m], and thus that b.v 6∈ Cym . It now follows from Proposition 7.17
that (xm+1b).u = 0 and (xm+1b).v 6= 0, so xm+1b is a block for the original pair
(u, v). �
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We now wish to prove that C is coherent, which turns out to involve substantial
work. It will be convenient to regard the set BC[n,m] = {yα |α ∈ MC[n,m]} as a
subset of C[n,m] rather than a subset of C[n,m]. We write C̃[n,m] for the span
of this set, so the projection C[n,m] → C[n,m] restricts to give an isomorphism
C̃[n,m] → C[n,m].

Lemma 7.19. For p ≥ 3 we have

y2
[0,p−3]y

2
[0,p−1]y1 yp−1 yp = y2

[0,p]

(and in particular, this is nonzero modulo yp+1).

Proof. Put A = C[0, p]/ ann(y[0,p]). We claim that in A we have

y2
[0,p−3]y[0,p−1]y1 yp−1 = y[0,p].

Assuming this, we can just multiply by y[0,p] to recover the statement in the lemma.
For 0≤ i < p we have yi (y2

i +yi+1)= 0 so y[0,p](y2
i +yi+1)= 0 and so yi+1= y2

i

in A. We thus have yk = y2k

0 in A for 0≤ k ≤ p, and so A= F[y0]. It is thus enough
to show that the two sides of the claimed equation have the same degree, which is a
straightforward calculation. �

Lemma 7.20. For any p ≥ 3 we have

BC[0, p− 2] BC[0, p] ⊆
3∐

i=0

BC[0, p− 1]yi
p−1.

Proof. Consider α ∈ MC[0, p− 2] and β ∈ MC[0, p]. We note that

yα, yβ ∈ C[0, p− 1]

so we can rewrite yα+β as an element of the basis B ′C[0, p− 1], which means
yα+β = yγ for some γ ∈ M ′C[0, p− 1]. It will be enough to show that γp−1 ≤ 3.

Note that yα divides y2
[0,p−3] and yβ divides y2

[0,p−1] so yγ divides y2
[0,p−3]y

2
[0,p−1].

It follows using Lemma 7.19 that yγ yp−1 yp 6= 0 (mod yp+1). However,

y4
p−1 yp−1 yp = y5

p−1 yp = y3
p−1 y2

p = yp−1 y3
p = yp−1 yp yp+1 = 0 (mod yp+1),

so yγ cannot be divisible by y4
p−1, as required. �

Definition 7.21. For any vector u ∈ Cn and p ≥ 0, we put

K (u, p)= {v ∈ C[0, p]n | u.v = 0},

K (u, p)= {v̄ ∈ C[0, p]n |π(u).v̄ = 0}.
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More precisely, K (u, p) is the graded group where

K (u, p)d =
{
v ∈ C[0, p]n

∣∣∣ |vi | = d − |ui | for all i and
∑

i
uivi = 0

}
,

and K (u, p) is graded in a similar way.

Lemma 7.22. If ui ∈ C̃[0, p− 2] for all i , then the map

π : K (u, p+ 1)→ K (u, p+ 1)

is surjective.

Proof. Consider an element v̄ ∈ K (u, p+ 1). This can be written as π(v) for a
unique element v ∈ C̃[0, p+ 1]n , which must satisfy u.v = 0 (mod yp+1). We can
write v as

∑2
k=0 vk yk

p with vk ∈ C̃[0, p]n . Using Lemma 7.20 we see that u.vk

can be written as
∑3

j=0w jk y j
p−1 for some elements w jk ∈ C̃[0, p− 1]. This gives

u.v=
∑3

j=0
∑2

k=0w jk y j
p−1 yk

p. After reducing the terms y j
p−1 yk

p using the defining
relations for C , we obtain

u.v=w00+w01 yp+w02 y2
p+w10 yp−1+(w11+w30)yp−1 yp+(w12+w31)yp−1 y2

p

+w20 y2
p−1+w21 y2

p−1 yp +w22 y2
p−1 y2

p +w32 yp−1 yp yp+1.

By hypothesis, this maps to zero in C[0, p + 1] = C[0, p + 1]/yp+1. However,
C[0, p+1] splits as the direct sum of subgroups C̃[0, p−1]yi

p−1 y j
p for 0≤ i, j < 3,

so we must have

w00 = w01 = w02 = w10 = w20 = w21 = w22 = 0

and w11 = w30 and w12 = w31, so u.v = w32 yp−1 yp yp+1.
Now put d = |u.v|, so |w jk | = d − j2p−1

− k2p. In particular, we have

|w32| = d − 2p−1
− 2p
− 2p+1.

If d < 2p−1
+ 2p

+ 2p+1 then |w32| < 0 so w32 = 0, and so u.v = 0. This
means that v ∈ K (u, p + 1) with π(v) = v̄, as required. Suppose instead that
d ≥ 2p−1

+ 2p
+ 2p+1. We have

|w11| = |w30| = d − 2p−1
− 2p
≥ 2p+1,

|w12| = |w31| = d − 2p−1
− 2p+1

≥ 2p.

However, the elements w jk lie in C̃[0, p− 1], which is zero in degrees larger than
2p
−2. We therefore have w11 =w12 =w30 =w31 = 0, which means that u.v0 = 0

and u.v1 = 0 and u.v2 = w32 y3
p−1 = w32 yp−1 yp. Put

v′ = v0+ v1 yp + v2(y2
p + yp+1),
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so π(v′)= π(v)= v̄ and

u.v′ = u.v0+ u.v1 yp + u.v2(y2
p + yp+1)= w32 yp−1 yp(y2

p + yp+1)= 0.

Thus, v′ is the required lift of v̄ in K (u, p+ 1). �

Lemma 7.23. For all p ≥ 0 we have a splitting

C[0, p+ 1] = C[0, p]⊕
⊕
k>0

C[0, p]xk
p+1.

Proof. By definition, we have C[0, p + 1] = C[0, p][yp+1]/(x p+1 yp), where
x p+1 = yp+1+ y2

p as usual. From this it is clear that

C[0, p][yp+1] = C[0, p][x p+1] = C[0, p]⊕
⊕
k>0

C[0, p]xk
p+1.

The ideal generated by ypx p+1 in this ring clearly has a compatible splitting

C[0, p][yp+1].ypx p+1 =
⊕
k>0

C[0, p]ypxk
p+1.

We can thus pass to the quotient to get

C[0, p+ 1] = C[0, p]⊕
⊕
k>0

C[0, p]
C[0, p]yp

xk
p+1 = C[0, p]⊕

⊕
k>0

C[0, p]xk
p+1

as claimed. �

Corollary 7.24. If ui ∈ C̃[0, p− 2] for i = 0, . . . , n− 1, then

K (u, p+ 1)= C[0, p+ 1].K (u, p).

Proof. It is clear that C[0, p+1].K (u, p)≤ K (u, p+1). For the converse, consider
an element v ∈ K (u, p+ 1)≤ C[0, p+ 1]n . Using Lemma 7.23, we can write v as
v0+

∑
k>0 v̄k xk

p+1, with v0 ∈ C[0, p]n and v̄k ∈ C[0, p]n (with v̄k = 0 for k� 0).
It follows that u.v0 ∈ C[0, p] and u.v̄k ∈ C[0, p] and

u.v0+
∑
k>0

(u.v̄k)xk
p+1 = u.v = 0.

As the sum in Lemma 7.23 is direct, we must have u.v0 = 0 and u.v̄k = 0, so
v0 ∈ K (u, p) and v̄k ∈ K (u, p). By Lemma 7.22, we can choose vk ∈ K (u, p) for
k > 0 lifting v̄k . If v̄k = 0 we choose vk = 0; this ensures that vk = 0 for k� 0. We
now have v =

∑
k≥0 vk xk

p+1 ∈ C[0, p+ 1].K (u, p), as required. �

Proposition 7.25. The ring C is coherent.
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Proof. Let I ≤ C be a finitely generated ideal. Choose elements u0, . . . , un−1

generating I . These give an epimorphism g :
⊕

i 6
|ui |C → I , with ker(g) =

K (u,∞), so it will suffice to show that K (u,∞) is finitely generated as a C-module.
Now choose p large enough that ui ∈ C̃[0, p−2] for all i . As C[0, p] is Noetherian,
we can choose a finite subset T ⊆ C[0, p]n that generates K (u, p) as a C[0, p]-
module. Corollary 7.24 tells us that T also generates K (u, p+ 1) as a C[0, p+ 1]-
module. In fact, we can apply the same corollary inductively to see that T generates
K (u, q) as a C[0, q]-module for all q ≥ p. As C =

⋃
q C[0, q] we conclude that

T generates K (u,∞) as required. �

Proposition 7.26. The reduced quotient of C is

C/
√

0= F[xi | i ≥ 0]/(xi x j | i 6= j).

Proof. Put C ′ = C/
√

0. We first claim that for all p, q with 0 ≤ p < q we
have x pxq = 0 in C ′. We may assume inductively that xi x j = 0 in C ′ whenever
0≤ i< j<q . By a nested downward induction over p, we may assume that xk xq=0
in C ′ whenever p < k < q. As in Proposition 7.12, we have xq

∑q−1
k=0 x2q−1−k

k = 0.
We can multiply this by x p and use the inner and outer inductive assumptions to
see that x pxq x2q−1−p

p = 0, or in other words xm
p xq = 0 for some m > 0. This gives

(x pxq)
m
= 0 in C ′, but C ′ is reduced by construction so x pxq = 0 in C ′ as claimed.

Now put

C ′′ = C/(xi x j | i, j, i < j)= F[xi | i ≥ 0]/(xi x j | i, j ≥ 0, i < j).

We now see that C ′′ is a quotient of C by nilpotent elements, so C ′ can also be
described as C ′′/

√
0. However, there is an obvious splitting

C ′′ = F⊕
⊕
i≥0

xi F[xi ],

and using this we see that C ′′ is reduced. It follows that C ′ = C ′′ as claimed. �

8. Pontrjagin self-dual rings

Let R be a Pontrjagin self-dual ring, as in Definition 1.7. Thus, R is a graded
Zp-algebra R equipped with an isomorphism ζ : Rd →Qp/Zp (for some d) such
that the resulting maps

ζ #
: Rd−k→ R∨k = HomZp(Rk,Qp/Zp)

are isomorphisms.

Lemma 8.1. For graded R-modules M there is a natural isomorphism

HomR(M, R)' HomZp(Md ,Qp/Zp)= M∨d .
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Proof. Given φ ∈ HomR(M, R), we put

τ(φ)= ζ ◦φd : Md →Qp/Zp.

This defines a map τ : HomR(M, R)→ M∨d .
Now suppose we have a map ψ : Md →Qp/Zp. For any k ∈ Z we have a map

φ′k : Mk→ HomZp(Rd−k,Qp/Zp)

given by φ′k(m)(a)= (−1)k(d−k)ψ(am). As R is assumed to be Pontrjagin self-dual,
there is a unique element φk(m) ∈ Rk such that

φ′k(m)(a)= ζ(φk(m)a)

for all a ∈ Rd−k . We leave it to the reader to check that this gives a map φ : M→ R
of R-modules, and that this is the unique such map with τ(φ)= ψ . �

Proposition 8.2. Any Pontrjagin self-dual ring is self-injective.

Proof. We need to show that the functor M 7→ HomR(M, R) is exact, but it is
isomorphic to the functor M 7→ HomZp(Md ,Qp/Zp), which is exact because
Qp/Zp is divisible and therefore injective as a Zp-module. �

We now study the graded ring J described by Definition 1.9, and the tensor
product Ĵ = Zp⊗ J . It is standard that Zp⊗Z/pr

= Z/pr . Moreover, the group
Qp/Zp can be written as the colimit of the evident sequence

Z/p −→ Z/p2
−→ Z/p3

−→ · · · ,

and we can tensor with Zp to get Zp⊗(Qp/Zp)=Qp/Zp. Thus, the only difference
between J and Ĵ is that J0 = Z(p) whereas Ĵ0 = Zp.

Lemma 8.3. The ring Ĵ is Pontrjagin self-dual, so Ĵ−2−k ' Ĵ ∨k .

Proof. For k 6= −2 this is a straightforward calculation. For k = −2 we use the
description Qp/Zp = lim

−→ j
Z/p j to get

Hom(Qp/Zp,Qp/Zp)= lim
←−

j

Hom(Z/p j ,Qp/Zp)= lim
←−

j

Z/p j
= Zp,

as required. �

Corollary 8.4. The ring Ĵ is self-injective. �

Remark 8.5. The ring J itself is not self-injective. To see this, note that J−2 is
an ideal in J and is a module over Zp. Choose any element a ∈ Zp \ Z(p) and
define u : J−2 → J by u(x) = ax . This cannot be extended to give a J -linear
endomorphism of J .
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Lemma 8.6. The ring Ĵ is local (in the graded sense). The unique maximal graded
ideal is given by m0 = pZp and mk = Ĵk for all k 6= 0. Moreover, the elements αk

together with the element p give a basis for m/m2 over Z/p.

Proof. It is straightforward to check that the graded group m described above is an
ideal in Ĵ , and the quotient Ĵ/m is the field Z/p, so it is a maximal ideal. Let m′ be
an arbitrary maximal graded ideal. Put a=

⊕
k 6=0 Ĵk . Every homogeneous element

a ∈ a satisfies a2
= 0, and it follows that a ≤m′ This means that m′ corresponds

to a maximal ideal in the quotient Ĵ/a ' Zp, and the only such ideal is pZp. It
follows that m′ = m as claimed. The description of m/m2 is a straightforward
calculation. �

Proposition 8.7. The ring Ĵ is totally incoherent.

Proof. Put V = {αk | k 6= 0 (mod p)} ⊂ J , so V is infinite, pV vanishes and V
remains linearly independent in m/m2. By inspecting the multiplication rules, we
see that every noninvertible element of Ĵ annihilates all elements of V with at most
one exception. It follows using Corollary 5.6 that Ĵ is totally incoherent. �

9. The infinite root algebra

In this section we fix a field K and study the infinite root algebra P over K , which
was introduced in Definition 1.12. We first recall the details.

Definition 9.1. We say that a subset U ⊆ [0, 1] is well-ordered if the usual order
inherited from R is a well-ordering, so every nonempty subset of U has a smallest
element. It is equivalent to say that every infinite nonincreasing sequence in U is
eventually constant, or that there are no infinite, strictly decreasing sequences.

An infinite root series is a function a : [0, 1] → K such that the set supp(a)=
{q | a(q) 6= 0} is well-ordered. The infinite root algebra is the set P of all infinite
root series. We regard this as an ungraded object, or equivalently as a graded object
concentrated in degree zero.

Remark 9.2. It is clear that any subset of a well-ordered set is well-ordered, and
that the union of any two well-ordered sets is well-ordered. Now if a, b ∈ P we
have supp(a+ b)⊆ supp(a)∪ supp(b), so P is closed under addition. It is clearly
also closed under multiplication by elements of K .

Lemma 9.3. Any well-ordered subset of [0, 1] is countable. Moreover, for any
countable ordinal α, there is a well-ordered subset U ⊆ [0, 1] that is order-
isomorphic to α.

Proof. Firstly, we can regard rational numbers in [0, 1] as coprime pairs of integers
and this gives a lexicographic ordering on Q∩ [0, 1], which is a well-ordering.
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Next, let U be a well-ordered subset of [0, 1]. We define f : U →Q as follows.
If u is maximal in U , we put f (u) = 1. Otherwise, the set {v ∈ U | v > u} has
a smallest element v0, and we define f (u) to be the lexicographically smallest
element of Q∩ [u, v0). It is clear that f is injective, so U is countable.

Let α be any countable ordinal; we claim that there is an order-embedding
g : α→ [0, 1]. To see this, choose an injective map p : α→ N and then put

g(β)=
∑
γ<β

2−p(γ )−1.

It is clear that this has the required properties. �

Lemma 9.4. If U, V ⊆ [0, 1] are well-ordered and w ∈ [0, 1], then

{(u, v) ∈U × V | u+ v = w}

is finite.

Proof. Put U ′ = {u ∈U |w− u ∈ V }. This is well-ordered (because it is a subset
of U ) and it will suffice to show that it is finite. If not, we can define an infinite
sequence u0< u1< u2< · · · in U ′ as follows: we take u0 to be the smallest element
in U ′, then take u1 to be the smallest element in U ′ \ {u0}, and so on. We then note
that w− u0, w− u1, w− u2, . . . is an infinite strictly decreasing sequence in V ,
contradicting the assumption that V is well-ordered. �

Lemma 9.5. Let U be a well-ordered subset of [0, 1], and let (un) be a sequence
in U. Then there exists an infinite nondecreasing subsequence.

Proof. Put v0 =min{u j | j ≥ 0} (which is meaningful because U is well-ordered)
and then n0 =min{ j | u j = v0}. For i > 0, we define recursively

vi =min{u j | j > ni−1} and ni =min{ j > ni−1 | u j = vi }.

We find that n0 < n1 < n2 < · · · and v0 ≤ v1 ≤ v2 ≤ · · · , or equivalently that
un0 ≤ un1 ≤ un2 ≤ · · · as required. �

Lemma 9.6. Let U and V be well-ordered subsets of [0, 1], and put

U ∗ V = {u+ v | u ∈U and v ∈ V }.

Then U ∗ V is also well-ordered.

Proof. Suppose not. We can then find an infinite strictly descending chain in U ∗V ,
so we can choose a sequence (un, vn) in U × V with ui + vi > ui+1 + vi+1 for
all i . Lemma 9.5 tells us that after passing to a subsequence, we may assume that
u j ≤ u j+1 for all j . After passing again to a sparser subsequence, we may also
assume that vk ≤ vk+1 for all k. This is clearly impossible. �



Large self-injective rings and the generating hypothesis 289

Proposition 9.7. We can make P into a commutative ring by the rule

ab(w)=
∑

w=u+v

a(u)b(v).

Proof. Lemma 9.4 shows that the sum is essentially finite, so there is no problem
with convergence. It is clear that supp(ab) ⊆ supp(a) ∗ supp(b), and Lemma 9.6
shows that supp(a) ∗ supp(b) is well-ordered, so ab ∈ P . It is straightforward to
check that the multiplication operation is commutative, associative and bilinear.
Moreover, if we define e(0)= 1 and e(q)= 0 for q 6= 0, then e is a multiplicative
identity element for P . �

Definition 9.8. For a ∈ P\{0}, we put δ(a)=min(supp(a)). We also put δ(0)=∞.

Remark 9.9. If δ(a)+ δ(b)≤ 1 we have

(ab)(δ(a)+ δ(b))= a(δ(a)) b(δ(b)) 6= 0,

so ab 6= 0 and δ(ab) = δ(a)+ δ(b). On the other hand, if δ(a)+ δ(b) > 1 then
ab = 0.

Definition 9.10. For q ∈ R∪ {∞} with q ≥ 0, we define xq
∈ P by

xq(u)=
{

1 if u = q,
0 otherwise.

Remark 9.11. (a) x0 is the multiplicative identity element e.

(b) If q > 1 then xq
= 0.

(c) If 0≤ q ≤ 1 then δ(xq)= q.

(d) For all q, r ≥ 0 we have xq xr
= xq+r .

Lemma 9.12. Consider an element a ∈ P \ {0}. If a(0) = 0 (or equivalently,
δ(a) > 0) then a is nilpotent, but if δ(a)= 0 then a is invertible.

Proof. If δ(a) > 0 then we can find a positive integer n with δ(a) > 1/n, and using
Remark 9.9 we see that an

= 0. Suppose instead that δ(a)= 0. We can then write
a = ue+ b = u(e+ b/u), where u ∈ K \ 0 and e = x0 is the multiplicative identity
of P and δ(b) > 0, so bn

= 0 for some n. Now a has inverse
∑n−1

i=0 u−1(−b/u)i . �

Corollary 9.13. The map a 7→ a(0) induces an isomorphism P/
√

0→ K .

Proof. Clear. �

Definition 9.14. For a ∈ P with δ(a)≥ t , we define λt(a) ∈ P by

λt(a)(r)=
{

a(r + t) if 0≤ r ≤ 1− t,
0 if 1− t < r ≤ 1.
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Corollary 9.15. If δ(a)≥ t then a = x t λt(a) and δ(λt(a))= δ(a)− t . Moreover,
if δ(a)= t then λt(a) is invertible, so Pa = Px t .

Proof. The first two claims are clear from the definitions, and the third then follows
using Lemma 9.12. �

Definition 9.16. For t ∈ [0, 1] we put

Jt = {a ∈ P | δ(a) > t},

J t = {a ∈ P | δ(a)≥ t} = Px t .

Proposition 9.17. Every ideal in P has the form Jt or J t .

Proof. Let I be an ideal in P . If I = 0 then I = J1. Otherwise, we put
t = inf{δ(a) | a ∈ I }. If t = δ(a) for some a ∈ I then Corollary 9.15 shows
that x t

∈ I , and it follows easily that I = J t . Suppose instead that there is no
element a ∈ I with δ(a)= t . It is then clear that I ≤ Jt . Moreover, if b ∈ Jt then
δ(b) > t , so (by the infimum condition) there exists a ∈ I with δ(b) > δ(a) > t .
After applying Corollary 9.15 to a and b, we see that b is a multiple of a, and so
b ∈ I . We now see that I = Jt , as required. �

Proposition 9.18. For all t ∈ [0, 1] we have annP(Jt)= J 1−t and annP(J t)= J1−t .

Proof. This follows easily from the fact that ab= 0 if and only if δ(a)+δ(b)> 1. �

Corollary 9.19. For any ideal I ≤ P we have ann2
P(I )= I .

Proof. Immediate from the last two propositions. �

Proposition 9.20. P is self-injective.

Proof. As we have classified all ideals in P , we can use Baer’s criterion. Consider
a number t ∈ [0, 1] and a P-module map f : J t = (x t)→ P . If f (x t)= a then we
must have J1−t a = f (J1−t x t)= f (0)= 0, so a ∈ ann(J1−t)= J t , so a = x tλt(a).
We can now define f ′ : P→ P extending f by f ′(p)= p λt(a), so Baer’s criterion
is satisfied in this case.

Now consider instead a P-module map f : Jt → P . If t = 1 then Jt = 0 and the
zero map P→ P extends f . We suppose instead that t < 1. For s ∈ (t, 1] we put
as = λs( f (x s)), so the first case shows that f (p)= pas for all p ∈ J s < Jt . Now
suppose that t<r ≤ s≤1. As x s

∈ J s≤ J r we have x s(ar−as)= f (x s)− f (x s)=0,
so ar (q)= as(q) for all q ≤ 1− s. Moreover, from the definition of the λ operation
we have as(q)= 0 for q > 1− s, and thus certainly for q ≥ 1− t . We now see that
there is a unique map a : [0, 1] → K with a = as on [0, 1− s] (for all s ∈ (t, 1])
and a = 0 on [1− t, 1]. It follows easily from these properties that supp(a) is
well-ordered, so a ∈ P . We also see from the first property that f agrees with
multiplication by a on J s for all s ∈ (t, 1]. It follows that the same is true on⋃

s∈(t,1] J s = Jt , as required. �
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Proposition 9.21. P is totally incoherent.

Proof. Let I be a finitely generated ideal, say I = (a1, . . . , ar ), where we can assume
that the generators ai are nonzero. If r=0 then I =0, and this is finitely presented. If
r > 0 we can use Corollary 9.15 to see that I = J t , where t =min(δ(a1), . . . , δ(ar )).

Now suppose that I is nonzero and finitely presented. We must have I = J t for
some t , so we have an epimorphism g : P→ I given by g(a)= ax t . Definition 5.1
tells us that ker(g)must also be finitely generated, but ker(g)=annP(x t)= J1−t , and
this is only finitely generated when t = 0 and so ker(g)= J1= 0 and I = J 0= P . �

Remark 9.22. Put P ′ = {a ∈ P | supp(a) ⊆ Q}. This is a subring of P , and one
can adapt the above arguments to show that it is again self-injective and totally
incoherent. Every ideal in P ′ has the form Jt ∩P ′ or J t ∩P ′ for some t ∈ [0, 1], and
these are all distinct except for the fact that Jt ∩ P ′ = J t ∩ P ′ when t is irrational.

10. The Rado algebra

In this section we study the Rado algebra Q, which was defined in Definition 1.16.
We will write 0 for the Rado graph.

We first clarify the kinds of graphs that we will consider.

Definition 10.1. A graph is a pair (V, E), where V is a set and E is a subset of
V × V such that:

(a) For all v ∈ V we have (v, v) 6∈ E .

(b) For all v,w ∈ V we have ((v,w) ∈ E if and only if (w, v) ∈ E).

Definition 10.2. Let G = (V, E) and G ′= (V ′, E ′) be graphs. A full embedding of
G in G ′ is an injective map f : V → V ′ such that E = ( f × f )−1(E ′) (so vertices
v0, v1 ∈ V are linked by an edge in G if and only if the images f (v0) and f (v1)

are linked by an edge in G ′). Similarly, a full subgraph of G ′ is a graph of the form
G = G ′|V = (V, E ′ ∩ V 2) for some subset V ⊆ V ′, so the inclusion map gives a
full embedding G→ G ′.

Lemma 10.3. Suppose we have a finite graph G ′, a full subgraph G, and a full
embedding f : G→ 0. Then there is a full embedding f ′ : G ′→ 0 extending f .

Proof. It is easy to reduce to the case where G ′ has only one more vertex than G,
say V ′ = V q{x}. Put A = {v ∈ V | (v, x) ∈ E ′} and N =max{ f (v) | v ∈ V }+ 1,
then let f ′ : V ′→ N be the map extending f with f ′(x)= 2N

+
∑

v∈A 2 f (v). It is
straightforward to check that this has the required properties. �

Remark 10.4. As we mentioned in Example 4.7, each group Ek (for k ≥ 0) is
isomorphic to F. The generator is the element yk = xB(k) =

∏
i∈B(k) xi . We say that

a finite subset I ⊆N is 0-complete if the full subgraph 0|I is a complete graph (so
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every two distinct points are linked by an edge). We say that a natural number n is
B0-complete if B(n) is 0-complete. It is clear that the set

{yn | n is not B0-complete}

is a basis for the Rado ideal, and thus that the set

{yn | n is B0-complete}

gives a basis for Q.

Proposition 10.5. For any finitely generated ideal I ≤ Q, we have ann2(I ) = I .
(In other words, Q satisfies the double annihilator condition.)

Proof. Let I ≤ Q be a finitely generated ideal. Because of Remark 10.4, the ideal I
must be generated by a finite list of monomials, say I = (xA1, . . . , xAr ), where
each Ai is a finite 0-complete subset of N. Similarly, ann2(I ) is generated by the
monomials that it contains.

Let T be another 0-complete subset of N. If T contains Ai for some i , it is
clear that xT ∈ I . Suppose instead that T does not contain any of the Ai . Let N be
strictly larger than any of the elements of T ∪

⋃
i Ai , and put n = 2N

+
∑

t∈T 2t ,
so B(n)= {N } ∪ T . It is clear that n 6∈ T and T ∪ {n} is 0-complete so xnxT 6= 0.
However, we claim that xnxAi = 0 for all i . Indeed, as T 6⊇ Ai we can choose
k ∈ Ai \T . As N is so large we cannot have n ∈ B(k), and also k 6∈ {N }∪T = B(n),
so xnxk = 0, and so xnxAi = 0 as claimed. We now see that xn ∈ ann(I ), but
xnxT 6= 0, so xT 6∈ ann2(I ). It follows that ann2(I )= I as claimed. �

Proposition 10.6. Q is not self-injective.

Proof. Take any pair p, q ∈ N with p 6= q and x pxq = 0 (say p = 0 and q = 2).
Put u = (x p, xq) and v = (0, xq), and consider the test pair (u, v). Any transporter
would have to be an element t ∈ Q0 = {0, 1} with t x p = 0 and t xq = xq . It is
clear from this that there is no transporter. A block would be a pair (a, b) with
bxq 6= 0 but ax p+bxq = 0 (so ax p = bxq 6= 0). This means that a and b are nonzero
homogeneous elements, say a = xA and b= xB for some 0-complete sets A and B.
As ax p 6= 0 we see that p 6∈ A, and that A ∪ {p} is again 0-complete. Similarly,
we have q 6∈ B and B ∪ {q} is 0-complete. The equation ax p = bxq means that
A∪{p} = B ∪{q}, so we have A= C ∪{q} and B = C ∪{p} for some set C . This
now gives bxq = xC x pxq , but x pxq = 0 so bxq = 0, contrary to assumption. This
shows that we have neither a block nor a transporter, so Q is not self-injective. �

Remark 10.7. We could give Q a different grading such that there are some pairs
(i, j) with i 6= j but |xi | = |x j |, so xi + x j becomes homogeneous. One can check
that if xi x j = 0 then ann2(xi + x j )= (xi , x j ) 6= (xi + x j ), so the double annihilator
condition no longer holds. We will discuss a similar situation with more details in
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Lemma 11.18. We believe that the self-injectivity condition is similarly sensitive to
the choice of grading, but we do not have an example to prove this.

Proposition 10.8. Q is totally incoherent.

Proof. First, it is clear that Q is local, with maximal ideal m = (xi | i ∈ N) =⊕
k>0 Qk . The generators xi form a basis for m/m2. Note that if A ⊂ N is

nonempty and 0-complete, then infinitely many of the variables xi will satisfy
xi xA = 0, so the image of ann(xA) in m/m2 will have infinite dimension. The claim
therefore follows by Corollary 5.6. �

11. The ε0-algebra

The ε0-algebra A was introduced in Definition 1.19. We now explain the definition
in more detail, and prove some properties.

Definition 11.1. Suppose we have a sequence β = (β1>β2> · · ·>βr ) of ordinals,
and a sequence n = (n1, . . . , nr ) of positive integers. We write

C(β, n)= ωβ1n1+ · · ·+ω
βr nr .

Note that this uses ordinal exponentiation, defined in the usual recursive way by
αβ+1

= ααβ and αλ =
⋃
β<λ α

β when λ is a limit ordinal.

The following fact is standard (and not hard to prove by transfinite induction).

Proposition 11.2. For any ordinal α, there is a unique pair (β, n) such that
α = C(β, n). (This is the Cantor normal form for α.)

Proof. See [Johnstone 1987, Exercise 6.10], for example. �

Definition 11.3. We put π0=ω and define πn recursively by πn+1=ω
πn , and then

put ε0 =
⋃

n πn .

One can check that ε0=ω
ε0 , and that ε0 is the smallest ordinal with this property.

Note that the expression ε0 = ω
ε0 is the Cantor normal form of ε0. For α < ε0 we

find that the exponents βt in the Cantor normal form of α are strictly less than α,
so in this case one can do induction or recursion based on the Cantor normal form.

Definition 11.4. We define δ : ε0 → N recursively by δ(0) = 1, and δ(α) =(∑
t(δ(βt)+ 2)nt

)
− 1 if α = ωβ1n1+ · · ·+ω

βr nr .

We will give enough examples to show that δ is not injective, which will be
needed later.
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Example 11.5.

δ(1)= δ(ω0)= (δ(0)+ 2)− 1= 2,

δ(2)= δ(ω0 2)= (δ(0)+ 2)2− 1= 5,

δ(ω)= δ(ω1)= (δ(1)+ 2)− 1= 3,

δ(ω+ 1)= δ(ω1
+ω0)= (δ(1)+ 2)+ (δ(0)+ 2)− 1= 6,

δ(ω2)= (δ(2)+ 2)− 1= 6.

In order to analyse δ, it is helpful to modify the Cantor normal form slightly.

Lemma 11.6. If α < ε0 then there is a unique way to write

α = ωβ1 +ωβ2 + · · ·+ωβm

with α > β1 ≥ β2 ≥ · · · ≥ βm . (This is the expanded Cantor normal form.)

Proof. Just take the ordinary Cantor normal form and replace ωβt nt by nt copies
of ωβt . �

Lemma 11.7. For any d ∈ N there are only finitely many ordinals α ∈ ε0 with
δ(α)= d.

Proof. Let A denote the alphabet {0, π,+}. For each α < ε0 we define a word φ(α)
in A as follows. We start with φ(0)= 0. If θ > 0 has expanded Cantor normal form
θ = ωβ1 + · · ·+ωβm we put

φ(θ)= φ(β1)πφ(β2)π · · ·φ(βm)π+ · · ·+

(with m− 1 plusses at the end). For example we have

φ(3)= φ(ω0
+ω0

+ω0)= 0π0π0π++,

φ(ωω+ω)= 0πππ0ππ+.

It is clear from the definitions that δ(θ) is the length of φ(θ), and there are only 3d

words in A of length d , so it will suffice to show that φ is injective. If we interpret
π as the operator x 7→ ωx then φ(θ) is a reverse Polish expression that evaluates
to θ , and this implies injectivity. �

Corollary 11.8. ε0 is countable. �

Definition 11.9. Let Ã be the graded polynomial algebra over F generated by
elements xα for each ordinal α < ε0, with |xα| = δ(α).

Using Lemma 11.7 we see that Ãd is finite for all d .
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Definition 11.10. For ordinals α, β < ε0 with α 6= β we define µ0(α, β) to be the
coefficient ofωβ in α. More explicitly, if the Cantor normal form of α involves a term
ωβn, then µ0(α, β)= n; if there is no such term then µ0(α, β)= 0. One can check
that if µ0(α, β)> 0 then µ0(β, α)= 0. We put µ(α, β)=max(µ0(α, β), µ0(β, α)).

Proposition 11.11. For any finite set J ⊂ ε0 and map ν : J → N there exists
α ∈ ε0 \ J such that µ(α, β)= ν(β) for all β ∈ J . (We will call this the extension
property.)

Proof. Write J in order as J = {β1 > β2 > · · ·> βr } and then take

α = ωβ1+1
+ωβ1 .ν(β1)+ · · ·+ω

βr .ν(βr ).

It is visible that µ0(α, βt)= ν(βt) for all t . Also, because of the initial term ωβ1+1

we have ωα >α>βt for all t and so µ0(βt , α)= 0. It follows that µ(α, βt)= ν(βt)

for all t , as required. �

From now on we will only need the fact that our index set ε0 is countable and
that the extension property holds. It will therefore be notationally convenient to
write I = ε0 and ignore the fact that the elements of I are ordinals, and to write i
instead of α for a typical element of I . We also put I2 = {(i, j) ∈ I 2

| i 6= j}.

Definition 11.12. For each (i, j) ∈ I2 we put ρ(i, j)= xi x
µ(i, j)+1
j . We then let A

be the quotient of Ã by all such elements ρ(i, j). We call this the ε0-algebra.

Definition 11.13. Given a map α : I → N, we write supp(α)= {i |α(i) > 0}. Let
M Ã be the set of all such maps α for which supp(α) is finite. For α ∈ M Ã we put
xα =

∏
i xα(i)i ∈ Ã. We write B Ã for the set of all such monomials xα , so B Ã is a

basis for Ã. Next, put

M A = {α ∈ M Ã | ∀i 6= j α(i) > 0⇒ α( j)≤ µ(i, j)}

and B A = {xα |α ∈ M A}. One can check that B A gives a basis for A.

Definition 11.14. A monomial ideal is just an ideal in A that is generated by some
subset of B A.

Remark 11.15. Let P be a monomial ideal, generated by {xα |α ∈ U } for some
subset U ⊆ M A. Put

U+ = {α ∈ M A |α ≥ β for some β ∈U }.

It is easy to see that {xα |α ∈ U+} is then a basis for P over F. It follows easily
that sums, products, intersections and annihilators of monomial ideals are again
monomial ideals.
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Lemma 11.16. If P is a monomial ideal then it is finitely generated if and only if
there is a finite list of monomials that generate it.

Proof. Suppose that P is generated by a1, . . . , am , where the elements at need not
be monomials. We can write at =

∑
α∈Ut

at,αxα , for some finite set Ut ⊂ M A and
some nonzero coefficients at,α . Using Remark 11.15 we see that the terms xα (for
α ∈Ut ) lie in P . Put U =

⋃
t Ut (which is finite) and put P ′ = (xα |α ∈U ) ≤ P .

Clearly at ∈ (xα |α ∈Ut)≤ P ′ and the elements at generate P so P ≤ P ′ and so
P = P ′. Thus, P is generated by a finite list of monomials. �

Proposition 11.17. Let P ≤ A be a finitely generated monomial ideal. Then
ann2(P)= P.

Proof. It is automatic that P ≤ ann2(P), so it will suffice to prove the opposite
inclusion. Note that both P and ann2(P) are monomial ideals, so it will suffice to
show that they contain the same monomials. Suppose that xβ is a nonzero monomial
that does not lie in P; we must find y ∈ ann(P) such that xβ y 6= 0.

We can choose a finite list α1, . . . , αr ∈ M such that P = (xα1, . . . , xαr ). Put
J = supp(β)∪

⋃
i supp(αi ), which is a finite subset of I . Put N =max{β( j) | j ∈ J }.

Next, for each t we note that xβ cannot be divisible by xαt , so we can choose
it ∈ J such that αt(it) > β(it). Using the extension property we can recursively
define distinct elements k1, . . . , kr ∈ I \ J such that

(a) µ(kt , it)= αt(it)− 1,

(b) µ(kt , j)= N for j ∈ J \ {it },

(c) µ(kt , ks)= 1 for s < t .

Put y =
∏

t xkt . This is nonzero by property (c). Property (a) tells us that x jt x
αt = 0

for all t , which implies that y ∈ ann(A). On the other hand:

• Clause (a) above tells us that yxβ is not divisible by any relator ρ(kt , it).

• Clause (b) tells us that yxβ is not divisible by any relator ρ(kt , j) with j ∈
J \ {it }.

• Clause (c) tells us that yxβ is not divisible by any relator ρ(kt , ks).

• Our original assumption xβ 6= 0 implies that yxβ is not divisible by any relator
ρ( j, j ′) with j, j ′ ∈ J .

This shows that yxβ 6= 0, but y ∈ ann(P), so xβ 6∈ ann2(P), as claimed. �

Lemma 11.18. Let i and j be any two distinct indices in I with |xi | = |x j | and
µ(i, j)= 0. Then ann2(xi + x j )= (xi , x j ) > (xi + x j ).

Proof. Asµ(i, j)=0 we have xi x j =0 and so (using monomial bases) (xi )∩(x j )=0.
If u(xi + x j )= 0 then we have uxi =−ux j , with the left hand side in (xi ) and the
right hand side in (x j ). As (xi )∩ (x j )= 0 this gives uxi = ux j = 0. It now follows
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that ann(xi+x j )= ann(xi , x j ), and so ann2(xi+x j )= ann2(xi , x j ). As (xi , x j ) is a
monomial ideal we also have ann2(xi , x j )= (xi , x j ), so ann2(xi + x j )= (xi , x j ) >

(xi + x j ) as claimed. �

Corollary 11.19. Example 11.5 shows that the lemma applies to the pair (ω2, ω+1),
so A does not satisfy the double annihilator condition. Thus, Remark 2.4 shows that
A cannot be self-injective. �

Remark 11.20. We could choose a different grading such that all the generators
had different degrees, which would eliminate any examples as in Lemma 11.18.
However, we cannot ensure that Ad has dimension at most one for all d, because
when i 6= j the elements x |x j |

i and x |xi |
j have the same degree and are linearly

independent. Thus, there will always be ideals that are not monomial ideals. We
suspect that there is no grading for which A satisfies the full double annihilator
condition, but we have not proved this.

Proposition 11.21. A is totally incoherent.

Proof. Put m0 = 0 and mk = Ak for all k > 0, so A/m= F. It is clear that m is an
ideal, and that the (homogeneous) elements of m are precisely the elements of A
that are not invertible. Given this, it follows that m is the unique maximal ideal
in A, so A is local. From the form of the relations in A we see that {xi | i ∈ I } is a
basis for m/m2.

Now consider an element a ∈ Ad for some d > 0. Put

U = {i ∈ I | δ(i)≤ d},

V = {ωi
| i ∈ I \U }.

We find that xi x j = 0 for all i ∈U and j ∈ V . Moreover, we have a ∈ (xi | i ∈U ),
so ax j = 0 for all j ∈ V , so the image of ann(a) in m/m2 has infinite dimension.

Now let P be a finitely presented ideal in A. If P = mP then P = 0 by
Nakayama’s lemma. Otherwise, we can choose a ∈ P \mP , and Lemma 5.5 tells
us that ann(a) has finite image in m/m2. The above remarks show that we must
have |a| = 0, and a 6∈mP so a 6= 0. Thus a is invertible, so P = A. �

Proposition 11.22. The reduced quotient is

A/
√

0= F[xi | i ∈ I ]/(xi x j | i 6= j).

Proof. In A we have xi x
µ(i, j)+1
j = 0, so (xi x j )

µ(i, j)+1
= 0, and so xi x j is nilpotent.

If we put
A′ = A/(xi x j | i 6= j)= F[xi | i ∈ I ]/(xi x j | i 6= j),

we deduce that A/
√

0 = A′/
√

0. However, it is easy to see that A′ is already
reduced, so A/

√
0= A′ as claimed. �
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12. Triangulation

Recall that a triangulated category is a triple (C, 6,1), where C is an additive
category, and 6 : C→ C is an equivalence, and 1 is a class of diagrams of shape

X→ Y → Z→6X

(called distinguished triangles), subject to certain axioms that we will not list here.

Definition 12.1. Let R be a self-injective graded ring, let ModR be the category of
R-modules, and let 6 : ModR →ModR be the usual suspension functor so that
(6M)i = Mi−1. Let InjModR be the full subcategory of injective modules. A
triangulation structure for R is a pair (N,1), where:

(a) N is a full subcategory of InjModR containing R.

(b) N is closed under finite direct sums, retracts, suspensions and desuspensions.

(c) 1 is a class of distinguished triangles making (N, 6,1) into a triangulated
category.

We can also make a similar definition for ungraded rings.

Definition 12.2. Let R be a self-injective ungraded ring. An ungraded triangulation
structure for R is a pair (N,1), where:

(a) N is a full subcategory of InjModR containing R.

(b) N is closed under finite direct sums, retracts, suspensions and desuspensions.

(c) 1 is a class of distinguished triangles making (N, 1,1) into a triangulated
category.

In [Muro et al. 2007] we constructed ungraded triangulation structures for Z/4
and for K [ε]/ε2 (where K is any field of characteristic two). If Freyd’s generating
hypothesis is true, then the image of the functor π∗ gives a graded triangulation
structure for the ring π∗(S)∧p . We have not succeeded in constructing any examples
of graded triangulation structures by pure algebra. Here we offer only some rather
limited and negative results.

Lemma 12.3. If (N,1) is a triangulation structure (in the graded or ungraded
context) then all distinguished triangles in 1 are exact sequences.

Proof. The general theory of triangulated categories tells us that all functors of the
form N(X,−) send distinguished triangles to long exact sequences. By assumption
we have R ∈ N, and we can take X = R to prove the claim. �

Lemma 12.4. If (N,1) is a triangulation structure then all surjective maps in N

are split.
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Proof. Let M
f
−→ N be a surjective map in N. This must fit into a distinguished

triangle L
e
−→ M

f
−→ N

g
−→ 6L . Here g f = 0, but f is surjective so g = 0. It is

standard that the functor N(N ,−) converts our distinguished triangle to an exact
sequence, so f∗ : N(N ,M)→N(N , N ) is surjective. We can thus find h : N→ M
with f h = 1, so h splits f . �

Corollary 12.5. If (N,1) is a triangulation structure then all finitely generated
modules in N are projective. Thus, if R is local then all such modules are free.

Proof. Let N be a finitely generated module in N. This means that there is a
surjective homomorphism f : F→ N for some finitely generated free module F .
As N is standard we see that F ∈ N, so the lemma tells us that N is a retract of F ,
so it is projective. It is well-known that finitely generated projective modules over
local rings are free. �

Proposition 12.6. Suppose that R is a local graded ring with Ri = 0 for i < 0, and
suppose that R admits a triangulation structure. Then R is totally incoherent.

Proof. Let m be the unique maximal ideal, and let (N,1) be a triangulation structure.
It is not hard to see that m0 is the unique maximal ideal in R0, so R0 is a local ring
in the ungraded sense.

Let J be any finitely generated ideal. We can then find a finitely generated
free module Q and an epimorphism Q → J such that Q/mQ → J/mJ is an
isomorphism. We will write g for the composite map Q → J → R, so that
J = image(g). If J is finitely presented then ker(g) is again finitely generated,
so we can find a finitely generated free module P and a map f : P → Q with
image( f ) = ker(g) and P/mP

'
−→ ker(g)/m ker(g). With these minimal choices

for P and Q, it is clear that Pi = Qi = 0 when i < 0. Next, we can fit g into
a distinguished triangle 6−1 R

d
−→ K

i
−→ Q

g
−→ R. As g f = 0, we can find a lift

f̃ : P→K with i f̃ = f . We can combine this with d to give a map P⊕6−1 R→K ,
and a diagram chase shows that this is surjective. Using Lemma 12.4 we deduce
that this map is split epi and that K is a finitely generated free module. It follows
that Ki = 0 for i <−1 and that K−1 is a retract of R0. As R0 is local we must have
either K−1 = 0 or K−1 = R0. If K−1 = 0 then d : 6−1 R→ K must be zero, which
implies that g : Q→ R is split epi, which means that J = R. If K−1 6= 0 then we
find that d must induce a monomorphism 6−1 R/m→ K , and as R is local this
implies that d is a split monomorphism, and thus that g = 0 and so J = 0. �

Remark 12.7. As mentioned previously, there is an ungraded triangulation structure
for the ring Z/4. The ideal (2) < Z/4 is finitely presented and is neither 0 nor Z/4.
It follows that our grading assumptions are playing an essential role in the proof of
the above proposition.
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Corollary 12.8. Neither the infinite exterior algebra (as in Example 4.7) nor the
cube algebra (as in Section 7) admits a triangulation structure.

Proof. Both rings are coherent, by Propositions 5.4 and 7.25. �

References

[Baer 1940] R. Baer, “Abelian groups that are direct summands of every containing abelian group”,
Bull. Amer. Math. Soc. 46 (1940), 800–806. MR 2,126i Zbl 0024.14902

[Benson et al. 2007] D. J. Benson, S. K. Chebolu, J. D. Christensen, and J. Mináč, “The generat-
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On lower ramification subgroups and
canonical subgroups

Shin Hattori

Let p be a rational prime, k be a perfect field of characteristic p and K be a finite
totally ramified extension of the fraction field of the Witt ring of k. Let G be a
finite flat commutative group scheme over OK killed by some p-power. In this
paper, we prove a description of ramification subgroups of G via the Breuil–Kisin
classification, generalizing the author’s previous result on the case where G is
killed by p ≥ 3. As an application, we also prove that the higher canonical
subgroup of a level n truncated Barsotti–Tate group G over OK coincides with
lower ramification subgroups of G if the Hodge height of G is less than (p−1)/pn ,
and the existence of a family of higher canonical subgroups improving a previous
result of the author.

1. Introduction

Let p be a rational prime, k be a perfect field of characteristic p and W = W (k)
be the Witt ring of k. The natural Frobenius endomorphism of the ring W lifting
the p-th power Frobenius of k is denoted by ϕ. Let K be a finite extension of
K0 = Frac(W ) with integer ring OK , uniformizer π and absolute ramification
index e. We fix an algebraic closure K̄ of K and extend the valuation vp of K
satisfying vp(p) = 1 to K̄ . Let ÔK̄ be the completion of the integer ring OK̄ .
We also fix a system {πn}n≥0 of p-power roots of π in K̄ satisfying π0 = π and
π

p
n+1 = πn and put K∞ =

⋃
n K (πn). The absolute Galois groups of K and K∞

are denoted by G K and G K∞ , respectively. For any positive rational number i ,
put m>i

K = {x ∈ OK | vp(x) ≥ i} and OK ,i = OK /m>i
K . For any valuation ring

V of height one, we define m>i
V and Vi similarly. We also put Si = Spec(OK ,i ),

SL ,i = Spec(OL ,i ) for any finite extension L/K , and S̄i = Spec(OK̄ ,i ).
Breuil conjectured a classification of finite flat (commutative) group schemes

over OK killed by some p-power via ϕ-modules over the formal power series ring
S=W [[u]] and obtained such a classification for the case where groups are killed

MSC2010: primary 11S23; secondary 14L05, 14L15.
Keywords: finite flat group scheme, Breuil–Kisin module, canonical subgroup.
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by p ≥ 3 [Breuil 2002]. It is often referred to as the Breuil–Kisin classification,
since Kisin showed the conjecture for p ≥ 3 [Kisin 2006] and for the case where
p = 2 and groups are connected [Kisin 2009]. The conjecture was proved for any
p independently in [Kim 2012; Lau 2010; Liu 2013]. In particular, we have an
exact category Mod1,ϕ

/S∞
of such ϕ-modules over S killed by some p-power (for

the definition, see Section 2) and an anti-equivalence of exact categories M∗(−)
from the category of finite flat group schemes over OK killed by some p-power to
the category Mod1,ϕ

/S∞
. Moreover, we can recover the G K∞-module G(OK̄ ) via this

classification: Let R be the valuation ring defined as the projective limit of p-th
power maps

R = lim
←−
(OK̄ ,1← OK̄ ,1← · · · )

and π be the element of the ring R defined by π = (π0, π1, . . .). We normalize the
valuation vR by vR(π)= 1/e and define Ri similarly to OK ,i , using vR in place of
vp. For any positive integer n, let Wn(R) be the Witt ring of length n of R, which is
considered as an S-algebra by the map u 7→ [π ]. The ring Wn(R) admits a natural
G K -action. Then, by the Breuil–Kisin classification, we also have an isomorphism
of G K∞-modules

εG : G(OK̄ )→ T ∗S(M
∗(G))= HomS,ϕ

(
M∗(G),Wn(R)

)
.

On the other hand, for any positive rational number i , we have a finite flat closed
subgroup scheme Gi of G over OK , the i-th lower ramification subgroup of G, whose
index is adapted to the valuation vp. Namely, it is defined as the unique finite flat
closed subgroup scheme of G over OK satisfying

Gi (OK̄ )= Ker
(
G(OK̄ )→ G(OK̄ ,i )

)
.

The lower ramification subgroups, which are named as such because of their
similarity to the lower numbering ramification groups in algebraic number theory,
have similar properties to the upper ramification subgroups [Abbes and Mokrane
2004, §2.3] such as the functoriality and the compatibility with base extension.
While this upper variant is used to construct canonical subgroups of abelian varieties
[Abbes and Mokrane 2004], the lower ramification subgroups have been also studied
and used to construct canonical subgroups [Hattori 2013; 2014; Rabinoff 2012], as
explained later.

If G is killed by p ≥ 3, then [Hattori 2012, Theorem 1.1] shows that the isomor-
phism εG induces an isomorphism

Gi (OK̄ )' Ker
(
T ∗S(M

∗(G))→ HomS,ϕ(M
∗(G), Ri )

)
for any i . This description of the lower ramification subgroups of G via the
Breuil–Kisin classification is used in [Hattori 2013] to deduce various properties
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of canonical subgroups. In this paper, we prove the following theorem, which
generalizes this description.

Theorem 1.1. Let i be a positive rational number satisfying i ≤ 1 and W DP
n (R)i be

the divided power envelope of the natural surjection

Wn(R)→ OK̄ ,i , (r0, . . . , rn−1) 7→ pr0(r0) mod m>i
K̄
.

Let In,i be the kernel of the map Wn(R)
ϕ
→W DP

n (R)i induced by the Frobenius map

ϕ : (r0, . . . , rn−1) 7→ (r p
0 , . . . , r

p
n−1).

Let G be a finite flat group scheme over OK killed by pn and M =M∗(G) be the
corresponding object of the category Mod1,ϕ

/S∞
. Then the natural isomorphism

εG : G(OK̄ )→ T ∗S(M)= HomS,ϕ(M,Wn(R))

induces an isomorphism

Gi (OK̄ )' HomS,ϕ(M, In,i ).

For the case of n= 1, Theorem 1.1 can be interpreted as a correspondence of both
upper and lower ramification between G and a finite flat group scheme H(M∗(G))

over k[[u]] (Corollary 3.3), generalizing [Hattori 2012, Theorem 1.1]. Indeed, by a
theorem of Tian and Fargues, Theorem 3.3 of [Hattori 2012], and the compatibility
of the Breuil–Kisin classification with Cartier duality, Theorem 1.1 for n = 1 also
implies the assertion of the corollary on upper ramification subgroups. However,
the author does not know if a description of upper ramification subgroups via the
Breuil–Kisin classification for n > 1 can be obtained from Theorem 1.1, since we
do not have a comparison result between upper and lower ramification subgroups
similar to the theorem of Tian and Fargues for n > 1.

In [Hattori 2012], the proof of Theorem 1.1 for the case where G is killed by
p ≥ 3 is reduced to showing a congruence of the defining equations of G and
H(M∗(G)) with respect to the identification k[[u]]/(ue)'OK ,1 sending u to π . This
congruence is a consequence of an explicit description of the affine algebra of G in
terms of M∗(G) due to Breuil [2000, Proposition 3.1.2], which is known only for
the case where G is killed by p ≥ 3. Here, instead, we study a relationship between
the groups

G(OK̄ ,i ) and HomS,ϕ(M
∗(G),Wn(R)/In,i )

by using the faithfulness of the crystalline Dieudonné functor [de Jong and Messing
1999], from which Theorem 1.1 follows easily.

As an application of Theorem 1.1 and an explicit description of the ideal In,i

(Lemma 4.3), we also prove the coincidence with canonical subgroups with lower
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ramification subgroups, and the existence of a family of canonical subgroups
improving Corollary 1.2 of [Hattori 2014]. Before stating the results, we briefly
explain a background of this application.

Let K/Qp be an extension of complete discrete valuation fields, X be an admissi-
ble formal scheme over Spf(OK ) and G be a truncated Barsotti–Tate group of level
n over X. Consider their Raynaud generic fibers X and G. For any point x ∈ X ,
the fiber Gx is a truncated Barsotti–Tate group of level n over the ring of integers
of a finite extension of K . If Gx is ordinary, then the unit component G0

x satisfies
G0

x(OK̄ )' (Z/pnZ)dimGx and its special fiber is equal to the Frobenius kernel of
the special fiber of Gx . We refer to a finite flat closed subgroup scheme of Gx as a
canonical subgroup if it has these properties. What we want to construct here is
a family of canonical subgroups for G: namely, an admissible open subgroup C
of G over a strict neighborhood U of the ordinary locus Xord

⊆ X for G such that
for any x ∈U , the fiber Cx is the generic fiber of a canonical subgroup of Gx . The
existence of a family of canonical subgroups is one of the key ingredients in the
theory of p-adic Siegel modular forms, and for such arithmetic applications, we
also need a precise understanding of Cx . This leads us to construct such a family
by first constructing and studying a canonical subgroup of Gx fiberwise, and then
patching them into a family.

For each fiber Gx , the method of lifting the conjugate Hodge filtration to the
Breuil–Kisin module [Hattori 2013; 2014] gives a sharp result on the existence of a
canonical subgroup of Gx , which is stronger than other methods such as the one
using the Hodge–Tate map. Namely, it shows that a canonical subgroup Cn of Gx

exists if the Hodge height of Gx is less than 1/(pn−2(p+ 1)) and Cn has various
properties needed for arithmetic applications.

To obtain a family of canonical subgroups (from any of such fiberwise construc-
tions), we typically need to show the coincidence of canonical subgroups with a
specific series of subgroups of Gx which can be patched into a family when varying
x , and this step often requires us to restrict to a smaller admissible open subset
than the locus of x such that a canonical subgroup of Gx exists. We have at least
three series of such subgroups: Harder–Narasimhan filtrations, upper ramification
subgroups and lower ramification subgroups, where the former two were mainly
used in preceding works; see [Abbes and Mokrane 2004, Fargues 2011, Hattori
2013; 2014, Tian 2010; 2012].

For n = 1, the canonical subgroup C1 constructed in [Hattori 2013; 2014] was
shown to coincide with both upper and lower ramification subgroups, and this again
gives a sharp result, namely the existence of a family of canonical subgroups over
the locus of Hodge height less than p/(p+1). For n ≥ 2, it was also shown that Cn

coincides with upper ramification subgroups under a condition on the Hodge height,
and this yields a family over the locus of Hodge height less than 1/(2pn−1) [Hattori
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2013; 2014] A weaker result can be obtained also by the Harder–Narasimhan
method [Fargues 2011].

In this paper, to obtain a stronger existence theorem of a family of canonical
subgroups, we also prove the coincidence of the canonical subgroup constructed in
[Hattori 2013; 2014] with lower ramification subgroups, as follows.

Theorem 1.2. Let K/Qp be an extension of complete discrete valuation fields. Let
G be a truncated Barsotti–Tate group of level n, height h and dimension d over
OK with 0< d < h and Hodge height w < (p− 1)/pn . Then the level n canonical
subgroup Cn of G [Hattori 2014, Theorem 1.1] satisfies Cn = Gin = Gi ′n for

in =
1

pn−1(p− 1)
−

w

p− 1
, i ′n =

1
pn(p− 1)

.

Note that by our assumption and [Hattori 2014, Theorem 1.1], we have an
isomorphism of groups

Cn(OK̄ )' (Z/pnZ)d .

The fact that the lower ramification subgroup Gin (OK̄ ) is isomorphic to (Z/pnZ)d

for w < (p − 1)/pn was proved by Rabinoff [2012, Theorem 1.9] for the case
where K/Qp is an extension of (not necessarily discrete) complete valuation fields
of height one, by a different method. Theorem 1.2 reproves this result of Rabinoff
for the case where the base field K is a complete discrete valuation field, and also
shows that the subgroup considered by Rabinoff coincides with Cn . In particular,
we show that his subgroup has standard properties as a canonical subgroup as in
[Hattori 2014, Theorem 1.1], such as the coincidence with a lift of the Frobenius
kernel.

Using Theorem 1.2, we also prove the following theorem on a family construction
of canonical subgroups, which is stronger than [Hattori 2014, Corollary 1.2] for
n ≥ 2.

Theorem 1.3. Let K/Qp be an extension of complete discrete valuation fields. Let
X be an admissible formal scheme over Spf(OK ) and G be a truncated Barsotti–Tate
group of level n over X of constant height h and dimension d with 0< d < h. We
let X and G denote the Raynaud generic fibers of the formal schemes X and G,
respectively. Put rn = (p− 1)/pn and let X (rn) be the admissible open subset of X
defined by

X (rn)(K̄ )= {x ∈ X (K̄ ) | Hdg(Gx) < rn}.

Then there exists an admissible open subgroup Cn of G|X (rn) over X (rn) such that,
etale locally on X (rn), the rigid-analytic group Cn is isomorphic to the constant
group (Z/pnZ)d and, for any finite extension L/K and x ∈ X (L), the fiber (Cn)x

coincides with the generic fiber of the level n canonical subgroup of Gx .
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2. The Breuil–Kisin classification

In this section, we briefly recall the classification of finite flat group schemes and
Barsotti–Tate groups over OK due to Kisin ([2006] for p ≥ 3 and [2009] for p = 2
and connected group schemes) and to Kim [2012], Lau [2010] and Liu [2013] for
p = 2. We basically follow the presentation of [Kim 2012].

We let the continuous ϕ-semilinear endomorphism of S defined by u 7→ u p be
denoted also by ϕ. Put Sn =S/pnS. Let E(u) ∈W [u] be the (monic) Eisenstein
polynomial of the uniformizer π . Then a Kisin module (of E-height ≤ 1) is an
S-module endowed with a ϕ-semilinear map ϕM :M→M, which we also write
abusively as ϕ, such that the cokernel of the map

1⊗ϕ : ϕ∗M=S⊗ϕ,SM→M

is killed by E(u). The Kisin modules form an exact category in an obvious manner,
and its full subcategory consisting of M such that M is free of finite rank over
S (resp. free of finite rank over S1, resp. finitely generated, p-power torsion and
u-torsion free) is denoted by Mod1,ϕ

/S (resp. Mod1,ϕ
/S1

, resp. Mod1,ϕ
/S∞

).
We also have categories of Breuil modules Mod1,ϕ

/S , Mod1,ϕ
/S1

and Mod1,ϕ
/S∞ defined

as follows (for more precise definitions, see for example [Hattori 2012, §2.1],
where the definitions are valid also for p = 2). Let S be the p-adic completion
of the divided power envelope of W [u] with respect to the ideal (E(u)) and put
Sn = S/pn S. The ring S has a natural divided power ideal Fil1S, a continuous
ϕ-semilinear endomorphism defined by u 7→ u p which is also denoted by ϕ and
a differential operator N : S→ S defined by N (u) = −u. We can also define a
ϕ-semilinear map ϕ1 = p−1ϕ : Fil1S→ S. Then a Breuil module (of Hodge–Tate
weights in [0, 1]) is an S-module endowed with an S-submodule Fil1M containing
(Fil1S)M and a ϕ-semilinear map ϕ1,M : Fil1M→ M satisfying some conditions.
We also define ϕM : M→ M by ϕM(x) = ϕ1(E(u))−1ϕ1,M(E(u)x). We drop the
subscript M if there is no risk of confusion. The Breuil modules also form an
exact category. Its full subcategory Mod1,ϕ

/S (resp. Mod1,ϕ
/S1

) is defined to be the one
consisting of M such that M is free of finite rank over S and M/Fil1M is p-torsion
free (resp. M is free of finite rank over S1). The category Mod1,ϕ

/S∞ is defined as the
smallest full subcategory containing Mod1,ϕ

/S1
and closed under extensions. Then the

functor M 7→ S⊗ϕ,SM induces exact functors

Mod1,ϕ
/S →Mod1,ϕ

/S , Mod1,ϕ
/S1
→Mod1,ϕ

/S1
, Mod1,ϕ

/S∞
→Mod1,ϕ

/S∞

which are all denoted by MS(−), by putting

Fil1MS(M)= Ker(S⊗ϕ,SM
1⊗ϕ
→ S/Fil1S⊗SM).
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Put π = (π0, π1, . . .) ∈ R as before and consider the Witt ring W (R) as an
S-algebra by the map u 7→ [π ]. The p-adic period ring Acrys is defined as the
p-adic completion of the divided power envelope of W (R) with respect to the ideal
E(u)W (R) and the ring Acrys[1/p] is denoted by B+crys. For any r = (r0, r1, . . .) ∈

R with rl ∈ OK̄ ,1, choose a lift r̂l of rl in OK̄ and put r (m) = liml→∞ r̂ pl

l+m ∈

ÔK̄ . Consider the surjection θn : Wn(R) → OK̄ ,n sending (r0, r1, . . . , rn−1) to∑n−1
l=0 plr (l)l . Then the quotient Acrys/pn Acrys can be identified with the divided

power envelope W DP
n (R) of the surjection θn compatible with the canonical divided

power structure on the ideal pWn(R). For any objects M∈Mod1,ϕ
/S and M∈Mod1,ϕ

/S ,
we have the associated G K∞-modules

T ∗S(M)= HomS,ϕ(M,W (R)), T ∗crys(M)= HomS,ϕ,Fil1(M, Acrys),

which are related by the injection

T ∗S(M)→ T ∗crys(MS(M))

defined by f 7→ 1⊗ (ϕ ◦ f ). Similarly, for any object M ∈Mod1,ϕ
/S∞

, we have the
associated G K∞-module

T ∗S(M)= HomS,ϕ(M,Qp/Zp⊗Zp W (R)).

Let D be an admissible filtered ϕ-module over K such that gri DK = 0 unless
i = 0, 1. Put SK0 = S⊗W K0 and D= SK0 ⊗K0 D. The SK0-module D is endowed
with a natural Frobenius map ϕD : D → D induced by the Frobenius of D, a
derivation ND= N⊗1 :D→D and an SK0-submodule Fil1D defined as the inverse
image of Fil1 DK by the map D→ D/(Fil1S)D = DK . Then a strongly divisible
lattice in D is an S-submodule M of D which satisfies the following:

• M is a free S-module of finite rank and D=M[1/p].

• M is stable under ϕD and ND.

• ϕD(Fil1M)⊆ pM, where Fil1M=M∩Fil1D.

We put V ∗crys(D)= HomSK0 ,ϕ,Fil1(D, B+crys). If M is a strongly divisible lattice in D,
then the natural G K∞-actions on T ∗crys(M) and V ∗crys(D)= T ∗crys(M)[1/p] extend to
G K -actions and we have a natural isomorphism of G K -modules

V ∗crys(D)→ V ∗crys(D)= HomK0,ϕ,Fil(D, B+crys)

[Breuil 2002, Proposition 2.2.5] and [Liu 2008, Lemma 5.2.1].
Let (BT/OK ) (resp. (p-Gr/OK )) be the exact category of Barsotti–Tate groups

(resp. finite flat group schemes killed by some p-power) over OK . For any Barsotti–
Tate group 0 over OK , we let Tp(0) denote its p-adic Tate module, Vp(0) =

Qp⊗Zp Tp(0) and D∗(0) be the filtered ϕ-module over K associated to Vp(0). We
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also let D∗(−) denote the contravariant crystalline Dieudonné functor [Berthelot
et al. 1982] and consider its module of sections

D∗(0)(S→ OK )= lim
←−

n
D∗(0)(Sn→ OK ,n)

on the divided power thickening S→OK defined by u 7→π . Note that the S-module
D∗(0)(S→ OK ) can be considered as an object of the category Mod1,ϕ

/S and also as
a strongly divisible lattice in D∗(0)= SK0 ⊗K0 D∗(0) [Faltings 1999, §6]. For any
finite flat group scheme G over OK killed by some p-power, we define an object
D∗(G)(S→ OK ) of the category Mod1,ϕ

/S∞ similarly. Then we have the following
classification theorem, whose first assertion (which is Theorem 2.2.7 of [Kisin
2006] for p ≥ 3, and Theorem 4.1 and Proposition 4.2 of [Kim 2012] for p = 2)
implies the second one (Theorem 2.3.5 of [Kisin 2006] for p ≥ 3, and Corollary
4.3 of [Kim 2012] for p = 2) by an argument of taking a resolution.

Theorem 2.1 (Kisin). (1) There exists an anti-equivalence of exact categories

M∗(−) : (BT/OK )→Mod1,ϕ
/S

with a natural isomorphism of G K∞-modules

ε0 : Tp(0)→ T ∗S(M
∗(0)).

Moreover, the S-module MS(M
∗(0)) can be considered as a strongly divisible

lattice in D∗(0) and we also have a natural isomorphism of strongly divisible
lattices in D∗(0)

µ0 :MS(M
∗(0))→ D∗(0)(S→ OK ).

(2) There exists an anti-equivalence of exact categories

M∗(−) : (p-Gr/OK )→Mod1,ϕ
/S∞

with a natural isomorphism of G K∞-modules

εG : G(OK̄ )→ T ∗S(M
∗(G)).

Moreover, we also have a natural isomorphism of the category Mod1,ϕ
/S∞

µG :MS(M
∗(G))→ D∗(G)(S→ OK ).

On the other hand, for any object M of the category Mod1,ϕ
/S or Mod1,ϕ

/S∞
, we can

define a dual object M∨ which is compatible with Cartier duality of Barsotti–Tate
groups or finite flat group schemes. In particular, for any object M of the category
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Mod1,ϕ
/S∞

killed by pn , we have a commutative diagram of G K∞-modules

G(OK̄ )×G∨(OK̄ )
//

oεG

��
oδG

��

Z/pnZ(1)

��
T ∗S(M

∗(G))× T ∗S(M
∗(G)∨) // Wn(R)

where the upper horizontal arrow is the pairing of Cartier duality, the lower horizontal
arrow is a natural perfect pairing, δG is the composite

G∨(OK̄ )
εG∨

' T ∗S(M
∗(G∨))' T ∗S(M

∗(G)∨)

and the right vertical arrow is an injection (see [Kim 2012, §5.1], and also [Hattori
2012, Proposition 4.4]).

Let 0 be a Barsotti–Tate group over OK . We consider any element g of Tp(0)

as a homomorphism g :Qp/Zp→ 0×Spec(ÔK̄ ). By evaluating the map

D∗(g) : D∗(0×Spec(ÔK̄ ))→ D∗(Qp/Zp)

on the natural divided power thickening Acrys→ ÔK̄ , we obtain a homomorphism
of G K∞-modules

Tp(0)→ HomS,ϕ,Fil
(
D∗(0)(Acrys→ ÔK̄ ),D∗(Qp/Zp)(Acrys→ ÔK̄ )

)
= T ∗crys(D

∗(0)(S→ OK )).

This map is an injection, and an isomorphism after inverting p [Faltings 1999,
Theorem 7]. Then we have the following compatibility of this map with the Breuil–
Kisin classification.

Lemma 2.2. Let 0 be a Barsotti–Tate group over OK . Then the following diagram
is commutative:

Tp(0)
∼

ε0
//

� _

��

TS(M∗(0))� _

��
T ∗crys(D

∗(0)(S→ OK ))
∼

T ∗crys(µ0)

// T ∗crys(MS(M
∗(0)))

Proof. Put D = D∗(0) and M=M∗(0). Consider the diagram

Tp(0) //

((

T ∗crys(D
∗(0)(S→ OK ))

∼ //

��

T ∗crys(MS(M))

uu

T ∗S(M)oo

ss
V ∗crys(D)

where the left and middle triangles are commutative by [Kim 2012, Theorem 5.6.2]
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and Theorem 2.1 (1), respectively. The commutativity of the right one is remarked
in [Kim 2012, footnote 11]. We briefly reproduce a proof of this remark for the
convenience of the reader. We follow the notation of [Kisin 2006]. In particular,
let O = O[0,1) be the ring of rigid-analytic functions on the open unit disc over
K0 and M = O⊗S M be the associated ϕ-module over the ring O. We also put
D0 = (O[lu]⊗K0 D)N=0

= O⊗K0 D. Then the map T ∗S(M)→ V ∗crys(D) is defined
as the composite

HomS,ϕ(M,W (R))→ HomO,ϕ(M, B+crys)
(1⊗ϕ)∗
−→ HomO,ϕ(ϕ

∗M, B+crys)

(1⊗ξ)∗
−→ HomO,ϕ,Fil(D0, B+crys)→ HomK0,ϕ,Fil(D, B+crys).

Here the map ξ : D→ M is the unique ϕ-compatible section and the map 1⊗ ξ :
D0 = O⊗K0 D→ M factors through the injection

1⊗ϕ : ϕ∗M = O⊗ϕ,O M→ M

[Kisin 2006, Lemma 1.2.6]. Put DS(M) = MS(M)[1/p] = SK0 ⊗O ϕ
∗M . Then

we have K0⊗SK0
DS(M)= K0⊗ϕ,K0 D and the composite

s0 : K0⊗ϕ,K0 D
1⊗ϕ
−→ D

ξ
→ ϕ∗M→ DS(M)

is the unique ϕ-compatible section. Using this, we can check that K0⊗ϕ,K0 D
1⊗ϕ
−→ D

is an isomorphism of filtered ϕ-modules, where we consider on the left-hand side
the induced filtration by the isomorphism

DS(M)/(Fil1S)DS(M)→ K ⊗ϕ,K0 D,

and hence we can also check the above remark easily. Since the map ε0 is defined
by identifying the images of Tp(0) and T ∗S(M) in V ∗crys(D), the lemma follows. �

3. Lower ramification subgroups

In this section, we prove Theorem 1.1. We begin with the following lemma, which
gives upper bounds of the lower ramification of finite flat group schemes. For any
valuation ring V of height one with valuation v and any N -tuple x = (x1, . . . , xN )

in V , we put v(x)=minl=1,...,N v(xl).

Lemma 3.1. (1) Let K/Qp be an extension of complete discrete valuation fields
and G be a finite flat group scheme over OK killed by some p-power. Then we
have Gi = 0 for any i > 1/(p− 1).

(2) Let K be an extension of complete discrete valuation fields over Qp or k((u))
with valuation v and G be a finite flat generically etale group scheme over OK

killed by some p-power. Then we have the following.
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(a) Gi = (G
0)i for any i > 0.

(b) Gi = 0 for any i > deg(G)/(p− 1).

Here Gi and deg(G) are defined using v. Namely, we extend v to a separable
closure Ksep of K, write as ωG '

⊕
l OK/(al) and put

Gi (OKsep)= Ker
(
G(OKsep)→ G(OKsep,i )

)
, deg(G)=

∑
l

v(al).

Proof. For the assertion (1), we may replace K by its finite extension and assume
G∨(OK̄) = G∨(OK) for an algebraic closure K̄ of K. By Cartier duality, there
exists a generic isomorphism G→ G′ =⊕lµpnl for some nl . Then G′i = 0 for any
i > 1/(p− 1) and the assertion follows from the commutative diagram

G(OK̄) ∼
//

��

G′(OK̄)

��
G(OK̄,i )

// G′(OK̄,i )

Let us consider the assertion (2). For any i > 0, we have a commutative diagram

0 // G0(OKsep) // G(OKsep) //

��

Get(OKsep) //

��

0

G(OKsep,i ) // Get(OKsep,i )

where the upper row is the connected-etale sequence. Then the right vertical arrow
is an isomorphism and the part (a) follows.

For the part (b), suppose i > deg(G)/(p−1). By part (a), we may assume that G

is connected. By [Tian 2012, Proposition 1.5], we have a presentation of the affine
algebra OG of G

OG ' OK[[X1, . . . , Xd ]]/( f1, . . . , fd),

( f1, . . . , fd)≡ (X1, . . . , Xd)U mod deg p

with some U ∈ Md(OK) satisfying the equality v(det(U ))= deg(G), where X1 =

· · · = Xd = 0 gives the zero section. Let Û be the matrix satisfying UÛ = det(U )Id ,
where Id is the identity matrix. For any element x = (x1, . . . , xd) of G(OKsep),
multiplying by Û implies the inequality

v(x)+ v(det(U ))≥ pv(x).

Thus we obtain the inequality v(x)≤ deg(G)/(p−1) unless x = 0 and the assertion
follows. �
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For any positive rational number i ≤ 1, we let W DP
n (R)i denote the divided power

envelope of the composite

θn,i :Wn(R)
θn
→ OK̄ ,n→ OK̄ ,i , (r0, . . . , rn−1) 7→ pr0(r0) mod m>i

K̄

compatible with the canonical divided power structure on the ideal pWn(R). Note
that, by fixing a generator pi of the principal ideal m>i

R , we have an isomorphism
of R-algebras

Wn(R)[Y1, Y2, . . .]/([pi
]

p
− pY1, Y p

1 − pY2, Y p
2 − pY3, . . .)→W DP

n (R)i (1)

sending Yl to δl([pi
]), where we put δ(x) = (p− 1)!γp(x) with the p-th divided

power γp. The surjection θn,i defines a divided power thickening W DP
n (R)i → OK̄ ,i

over the thickening S→ OK , which is denoted by An,i . Put

In,i = Ker(Wn(R)
ϕ
→W DP

n (R)i ).

From the definition, we see the inclusion In,i ⊆ In,i ′ for any i > i ′.
We show Theorem 1.1 by relating both sides of the isomorphism in its statement

via Breuil modules using the lemma below.

Lemma 3.2. Let i ≤ 1 be a positive rational number and G be a finite flat group
scheme over OK ,i killed by pn . Then the map

G(OK̄ ,i )= HomOK̄ ,i
(Z/pnZ,G× S̄i )→ Hom(D∗(G)(An,i ),D∗(Z/pnZ)(An,i ))

= Hom(D∗(G)(An,i ),W DP
n (R)i )

defined by g 7→ D∗(g)(An,i ) is an injection.

Proof. Suppose that a homomorphism g :Z/pnZ→G×S̄i satisfies D∗(g)(An,i )=0.
We can take a finite extension L/K such that the map g is defined over Spec(OL ,i ).
Then we have the commutative diagram

HomOL ,i (Z/pnZ,G×SL ,i ) //

��

Hom(D∗(G×SL ,i )(An,i ),D∗(Z/pnZ)(An,i ))

o

��
HomOK̄ ,i

(Z/pnZ,G× S̄i ) // Hom(D∗(G× S̄i )(An,i ),D∗(Z/pnZ)(An,i ))

and thus we may assume L = K .
Put6=Spec(Zp) and6n =Spec(Z/pnZ). Consider the big fppf crystalline site

CRYS(Si/6) and its topos (Si/6)CRYS [Berthelot et al. 1982]. Note that the local
ring OK ,i is a Noetherian complete intersection ring and, for any finite extension
L/K , the ring OL ,i is faithfully flat and of relative complete intersection over OK ,i .
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Thus, by [de Jong and Messing 1999, Proposition 1.2 and Lemma 4.1], we see that
the composite

HomOK ,i (Z/pnZ,G)→ Hom(Si/6)CRYS(D
∗(G),D∗(Z/pnZ))

→ Hom(S̄i/6)CRYS
(D∗(G),D∗(Z/pnZ))

is an injection.
Consider the natural morphism of topoi

inCRYS : (S̄i/6n)CRYS→ (S̄i/6)CRYS.

Since the crystal D∗(Z/pnZ) is isomorphic to the quotient OS̄i/6
/pnOS̄i/6

of the
structure sheaf OS̄i/6

[Berthelot et al. 1982, Exemples 4.2.16] and this is equal to
inCRYS∗(OS̄i/6n

) [Berthelot et al. 1982, (4.2.17.4)], the natural map

i∗nCRYS : Hom(S̄i/6)CRYS
(D∗(G),D∗(Z/pnZ))

→ Hom(S̄i/6n)CRYS
(i∗nCRYS(D

∗(G)), i∗nCRYS(D
∗(Z/pnZ)))

is an isomorphism.
Finally, we claim that the thickening An,i defines the final object of the big crys-

talline site CRYS(S̄i/6n). This follows as the proof of [Fontaine 1994, Théorème
1.2.1]. Indeed, it suffices to show that for any OK̄ ,i -algebra OU , any Z/pnZ-algebra
OT and any surjection OT → OU defined by a divided power ideal JT , the composite

Wn(R)
θn,i
→ OK̄ ,i → OU

uniquely factors through OT . For this, we define the map f : Wn(R)→ OT as
follows: For any element r = (r0, . . . , rn−1) of the ring Wn(R), choose a lift p̂rn(rl)

in OT of the element prn(rl) for any l = 0, . . . , n− 1 and put

f (r)=
n−1∑
l=0

pl(p̂rn(rl))
pn−l
.

This is independent of the choice of lifts and gives a ring homomorphism satisfying
the condition. Conversely, suppose that a homomorphism f ′ :Wn(R)→OT satisfies
the condition. Then, for any element r = (r0, . . . , rn−1) of the ring Wn(R), we
have f ′(r)=

∑n−1
l=0 pl f ′([rl]

1/pn
)pn−l

and f ′([rl]
1/pn

) mod JT = prn(rl). Thus the
uniqueness follows. Hence the evaluation map on the thickening An,i

Hom(S̄i/6n)CRYS
(i∗nCRYS(D

∗(G)), i∗nCRYS(D
∗(Z/pnZ)))

→ Hom(D∗(G)(An,i ),W DP
n (R)i )

is an injection. This concludes the proof of the lemma. �
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Proof of Theorem 1.1. Take a resolution of G by Barsotti–Tate groups over OK

0→ G→ 01→ 02→ 0

and consider the associated exact sequence of Kisin modules

0→N2→N1→M→ 0.

Put M=MS(M) and Nl =MS(Nl) for l = 1, 2. By Lemma 2.2 and the definition
of the anti-equivalence M∗(−), we have a diagram

Tp(01)

ε01

,,� � //

��

T ∗crys(N1)

��

T ∗S(N1)? _oo

��
Tp(02)

ε02

,,� � //

πG

��

T ∗crys(N2)

πM

��

T ∗S(N2)? _oo

πM

��
G(OK̄ )

εG

,,//

��

HomS,ϕ(M,W DP
n (R))

��

T ∗S(M)oo

��
G(OK̄ ,i )

� � // HomS,ϕ(M,W DP
n (R)i ) HomS,ϕ(M,Wn(R)/In,i )? _oo

where the left horizontal arrows are induced by g 7→D∗(g) and the right horizontal
arrows are the maps sending f to 1⊗ (ϕ ◦ f ). The middle left vertical arrow
πG : Tp(02)→ G(OK̄ ) is defined as follows: For g ∈ Tp(02), the element png is
contained in the image of Tp(01) = lim

←−l
01[pl

](OK̄ ) and put png = h = (hn)n>0.
Then the element hn ∈01[pn

](OK̄ ) is contained in the subgroup G(OK̄ ) and the map
πG is defined by g 7→hn . We define the map πM :T ∗crys(N2)→HomS,ϕ(M,W DP

n (R))
similarly: For any map f : N2→ Acrys, the map pn f induces a map N1→ Acrys.
Its composite with the natural map Acrys→W DP

n (R) factors through M and defines
the map πM( f ) :M→ W DP

n (R). The map πM is defined in the same way. From
these definitions, we see that the diagram is commutative. Note that the bottom left
horizontal arrow is an injection by Lemma 3.2, and that the bottom right horizontal
arrow is also an injection by the definition of the ideal In,i .

Thus, for any element g ∈ G(OK̄ ), its image in G(OK̄ ,i ) is zero if and only if the
image of εG(g) ∈ T ∗S(M) in HomS,ϕ(M,Wn(R)/In,i ) is zero. Hence the theorem
follows. �

The special case of n = 1 of Theorem 1.1 can be interpreted as a correspondence
of ramification for finite flat group schemes over OK and k[[u]] generalizing [Hattori
2012, Theorem 1.1], as follows. Recall that we have an anti-equivalence H(−)

from the category Mod1,ϕ
/S1

to an exact category of finite flat generically etale group
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schemes over k[[u]] whose Verschiebung is zero [Gabriel 1965, Théorème 7.4]. This
gives the equality T ∗S(M)=H(M)(R) for any object M of the category Mod1,ϕ

/S1
.

We normalize the indices of the upper and the lower ramification subgroups of finite
flat generically etale group schemes G over OK and H over k[[u]] to be adapted to vp

and vR , respectively. In particular, we define the i-th lower ramification subgroup
of H by

Hi (R)= Ker(H(R)→H(Ri )).

Note that the field Frac(R) can be identified with the completion of an algebraic
closure of k((u)).

Corollary 3.3. Let p be a rational prime and K/Qp be an extension of complete
discrete valuation fields with perfect residue field k. Let G be a finite flat group
scheme over OK killed by p and consider the associated object M∗(G) of the cate-
gory Mod1,ϕ

/S1
. Then the map εG :G(OK̄ )'H(M∗(G))(R) induces the isomorphisms

of G K∞-modules

Gi (OK̄ )'H(M∗(G))i (R), G j (OK̄ )'H(M∗(G)) j (R)

for any positive rational numbers i and j .

Proof. By Cartier duality, a theorem of Tian and Fargues [Tian 2010, Theorem 1.6;
Fargues 2011, Proposition 6] and Theorem 3.3 of [Hattori 2012], it is enough to
show the assertion of Corollary 3.3 on lower ramification subgroups. Moreover,
since the i-th lower ramification subgroups of G and H(M∗(G)) vanish for any
i > 1/(p− 1) [Hattori 2012, Corollary 3.5 and Remark 3.6], we may assume i ≤ 1.
Then the equality I1,i = m>i

R and Theorem 1.1 imply Corollary 3.3. �

4. Description of the ideal In,i

In this section, we give an explicit description of the ideal In,i . We identify the
rings of both sides of the isomorphism (1).

Proposition 4.1. Let n1, . . . , nl be integers satisfying 0≤ n j ≤ p−1 for any j and
r be an element of Wn(R). If the element rY n1

1 · · · Y
nl
l is zero in the ring W DP

n (R)i ,
then [pi

]
p
| r in the ring Wn(R). In particular, we have the inclusion In,i ⊆ ([pi

]).

Proof. By substituting Y j = 0 for j > l, we reduce ourselves to showing that the
equality in the ring Wn(R)[Y1, . . . , Yl]

rY n1
1 · · · Y

nl
l = ([p

i
]

p
−pY1) f0+(Y

p
1 −pY2) f1+· · ·+(Y

p
l−1−pYl) fl−1+Y p

l fl (2)

with f0, . . . , fl in this ring implies [pi
]

p
| r . By replacing f j ’s, we may assume the

inequality
deg j ′( f j ) < p ( j ′ = j + 1, . . . , l), (3)
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where deg j ′ means the degree with respect to Y j ′ .
For any l-tuple m = (m1, . . . ,ml), write Y m

= Y m1
1 · · · Y

ml
l and let c j,m be the

coefficient of Y m in f j . Put n = (n1, . . . , nl) and e j = (0, . . . , 0, 1, 0, . . . , 0) with
1 on the j-th entry. We consider a lexicographic order on the module Zl : we say
m < m′ if there exists j with 1≤ j ≤ l such that m j < m′j and m j ′ = m′j ′ for any
j < j ′ ≤ l. Taking the terms of scalar multiples of the monomial Y n in (2), we have
the equality

rY n
= [pi

]
pc0,nY n

+

l−1∑
j=0

(−pY j+1)c j,n−e j+1Y n−e j+1 .

Now we claim that

c j,n−e j+1 = 0 ( j = 0, . . . , l − 1). (4)

Suppose the contrary. Choose j such that 0≤ j ≤ l−1 and c j,n−e j+1 6= 0. Consider
the term c j,n−e j+1Y n−e j+1 in f j . The right-hand side of the equality (2) contains the
term c j,n−e j+1Y n+pe j−e j+1 for j ≥ 1 and [pi

]
pc0,n−e1Y n−e1 for j = 0. Note that, for

j ′≤ j−2, the j -th entry of the l-tuple n+ pe j−e j+1−e j ′+1 is equal to n j+ p and
thus f j ′ does not contain any scalar multiple of Y n+pe j−e j+1−e j ′+1 by assumption (3).
Since n+ pe j − e j+1 < n and n− e1 < n, it follows from (2) that

c j,n−e j+1Y n+pe j−e j+1 =−

l−1∑
j ′= j−1

(−pY j ′+1)c j ′,n+pe j−e j+1−e j ′+1
Y n+pe j−e j+1−e j ′+1

for j ≥ 1 and

[pi
]

pc0,n−e1Y n−e1 =−

l−1∑
j ′=0

(−pY j ′+1)c j ′,n−e1−e j ′+1
Y n−e1−e j ′+1

for j = 0.
We let Eq(1) denote this equation. Put m(1) = n + pe j − e j+1 for j ≥ 1 and

m(1)= n−e1 for j = 0. Repeating this by arbitrarily choosing a term with nonzero
coefficient c j ′,m′ on the right-hand side of the equation Eq(s), we obtain a series
of equations Eq(1),Eq(2), . . . and a sequence of l-tuples of non-negative integers
m(1),m(2), . . . such that Eq(s) is an equation of monomials of degree m(s) for
any s ≥ 1. Note that if there is no such term on the right-hand side of the equation
Eq(s), the procedure stops. On the other hand, if the equation Eq(s) is either of the
types

cY m(s)
=

{
− · · ·− (Y p

j )c j,m(s)−pe j Y
m(s)−pe j − · · · (1≤ j ≤ l − 1),

−[pi
]

pc0,m(s)Y m(s)
− · · · ( j = 0),
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with some c∈Wn(R) such that the indicated term is chosen and that c j,m(s)−pe j (resp.
c0,m(s)) is contained in the ideal pn−1Wn(R), then the equation Eq(s+ 1) is empty
and the procedure also stops. In the latter case, we put m(s+1)=m(s)− pe j+e j+1

for 1≤ j ≤ l − 1 and m(s+ 1)= m(s)+ e1 for j = 0.

Lemma 4.2. The sequence m(s) is strictly decreasing with respect to the lexico-
graphic order on Zl defined as above.

Proof. Note the inequalities n > m(1) > m(2). Suppose that we have m(1) >
m(2) > · · ·> m(t)≤ m(t + 1) for some t ≥ 2. Then the term Y p

l fl in (2) does not
affect Eq(s) for 1 ≤ s ≤ t . Thus, by the construction, one of the following four
cases holds for each 1≤ s ≤ t :

(C j ) m(s+ 1)= m(s)+ pe j − e j+1 for some 1≤ j ≤ l − 1,

(C ′j ) m(s+ 1)= m(s)− pe j + e j+1 for some 1≤ j ≤ l − 1,

(C0) m(s+ 1)= m(s)− e1,

(C ′0) m(s+ 1)= m(s)+ e1.

Moreover, (C j ) and (C ′j ) do not occur consecutively for any j satisfying 0≤ j≤ l−1.
Note that m(s) > m(s+ 1) for (C j ) and m(s) < m(s+ 1) for (C ′j ).

First we claim that (C ′0) does not hold for s = t . Suppose the contrary. Then
(C j ) holds for s = t−1 with some j satisfying 1≤ j ≤ l−1. Hence the j -th entry
m(t) j of the l-tuple m(t) is no less than p. The equation Eq(t)

c j,m(t−1)−e j+1Y m(t)
=−[pi

]
pc0,m(t)Y m(t)

− · · ·

implies deg j ( f0)≥ p. This contradicts (3).
Hence (C ′j ) holds for s = t with some 1 ≤ j ≤ l − 1. From this we see that

m(t) j ≥ p. Since n j < p, there exists an integer t ′ with 1 ≤ t ′ ≤ t − 2 such that
(C j ) holds for s = t ′ and that it does not hold for any s satisfying t ′ < s ≤ t .

Next we claim that m(s) j = m(t ′) j + p for any s satisfying t ′ < s ≤ t . Suppose
the contrary and take the smallest integer t ′′ with t ′ < t ′′ < t such that (C j−1) holds
for s= t ′′. Then m(s) j =m(t ′) j+ p for t ′< s ≤ t ′′ and m(t ′′+1) j =m(t ′) j+ p−1.
By assumption, we also have m(t ′′ + 1) j ≥ m(t) j ≥ p. On the other hand, the
equation Eq(t ′′) is

cY m(t ′′)
=− · · ·− (−pY j )c j−1,m(t ′′)−e j Y

m(t ′′)−e j − · · ·

with some c ∈Wn(R). Hence we obtain

deg j ( f j−1)≥ m(t ′′) j − 1= m(t ′) j + p− 1≥ p,

which contradicts (3).
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Now let j0 be the non-negative integer such that (C j0) holds for s = t − 1. Then
j0 6= j, j − 1 by the constancy of m(s) j which we have just proved. The equation
Eq(t − 1) is

cY m(t−1)
=− · · ·− (−pY j0+1)c j0,m(t−1)−e j0+1Y m(t−1)−e j0+1 − · · ·

with some c ∈ Wn(R) and thus deg j ( f j0) ≥ m(t − 1) j = m(t ′) j + p ≥ p. By
assumption (3), we obtain j0 > j . In particular, we have j0 ≥ 1 and m(t) =
m(t − 1)+ pe j0 − e j0+1. Therefore the equation Eq(t) is

c′Y m(t)
=− · · ·− (Y p

j )c j,m(t)−pe j Y
m(t)−pe j − · · ·

with some c′ ∈ Wn(R) and deg j0( f j ) ≥ m(t) j0 ≥ p. This contradicts (3), and the
lemma follows. �

By Lemma 4.2, the case (C ′j ) does not occur in the procedure for any non-
negative integer j . In particular, if there is no term with non-zero c j ′,m′ on the
right-hand side of Eq(s) for some s, then the equation is

[pi
]

pεc j ′′,m′′Y m(s)
= 0,

where c j ′′,m′′Y m′′ is the chosen term on the right-hand side of Eq(s−1) and ε ∈{0, 1}.
Note that this occurs for s satisfying m(s) = (0, . . . , 0), since in this case (C0)

holds for s − 1. Therefore, Lemma 4.2 implies that, for any choice of terms as
above, we end up with an equation of this type for a sufficiently large s. Since the
element [pi

]
p is a non-zero divisor in the ring Wn(R), we see that c j ′′,m′′ = 0. This

contradicts the choice of terms, and (4) follows.
Hence we obtain the equality

rY n
= [pi

]
pc0,nY n

and thus [pi
]

p
| r . This concludes the proof of Proposition 4.1. �

Lemma 4.3. Put n(s)= vp((ps)!) for any non-negative integer s. Then an element
r = (r0, . . . , rn−1) of the ring Wn(R) is contained in the ideal In,i if and only if the
condition

[pi
]
s
| (r0, . . . , rn−1−n(s−1), 0, . . . , 0) (5)

holds for any s ≥ 1.

Proof. Let r be an element of the ideal In,i and show the condition (5) for r by
induction on s. The case of s = 1 follows from Proposition 4.1. Suppose that the
condition (5) holds for some s ≥ 1. Let r ′ = (r ′0, . . . , r

′

n−1−n(s−1), 0, . . . , 0) be the
element of Wn(R) such that

(r0, . . . , rn−1−n(s−1), 0, . . . , 0)= [pi
]
sr ′.
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We write the p-adic expansion of the integer s as

s = n1+ pn2+ · · ·+ pl−1nl

with 0≤ n j ≤ p− 1. Then in the ring W DP
n (R)i we have

ϕ(r)= pn(s)ϕ(r ′)Y n1
1 · · · Y

nl
l ,

and Proposition 4.1 implies that [pi
] divides pn(s)r ′. Hence the element [pi

] divides
(r ′0, . . . , r

′

n−1−n(s), 0, . . . , 0) and thus

[pi
]
s+1
| (r0, . . . , rn−1−n(s), 0, . . . , 0).

Conversely, suppose that an element r of the ring Wn(R) satisfies the condition (5)
for any s≥ 1. Since we have n(s)≥n for some s, a similar argument as above shows
that ϕ(r)= 0 in the ring W DP

n (R)i . This concludes the proof of the lemma. �

Remark 4.4. Lemma 4.3 enables us to compute the ideal In,i . For example, I2,i =

(m>2i
R ,m>pi

R )⊆W2(R) and

I3,i =

{
(m>2i

R ,m>4i
R ,m>4i

R ) (p = 2),

(m>3i
R ,m>2pi

R ,m>p2i
R ) (p ≥ 3).

Finally we prove a relationship between the ideals In−1,pi and In,i , which will
be used in Section 5.

Lemma 4.5. For any r = (r0, . . . , rn−2) ∈ In−1,pi and rn−1 ∈ R, we have

r̂ = (r0, . . . , rn−2, pi pn−1
rn−1) ∈ In,i .

Proof. By Lemma 4.3, we have

[p pi
]
s
| (r0, . . . , rn−2−n(s−1), 0, . . . , 0)

in the ring Wn−1(R) for any s ≥ 1 satisfying n(s−1) < n−1. Let us show that the
element r̂ = (r̂0, . . . , r̂n−1) satisfies the condition

[pi
]
s
| (r̂0, . . . , r̂n−1−n(s−1), 0, . . . , 0)

in the ring Wn(R) for any s ≥ 1 satisfying n(s− 1) < n. The case of s = 1 follows
from the definition of r̂ . Suppose s ≥ 2. Since n(s − 2)+ 1 ≤ n(s − 1), we have
n − 1− n(s − 1) ≤ n − 2− n(s − 2) and [p pi

]
s−1 divides (r̂0, . . . , r̂n−1−n(s−1)).

Then the inequality p(s−1)≥ s implies the condition. This concludes the proof of
the lemma. �
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5. Application to canonical subgroups

In this section, we prove Theorem 1.2 and Theorem 1.3. First we consider
Theorem 1.2. Let K/Qp be an extension of complete discrete valuation fields.
Let G be a truncated Barsotti–Tate group of level n, height h and dimension d
over OK with 0< d < h and Hodge height w < (p− 1)/pn . Let Cn be the level n
canonical subgroup of G as in Theorem 1.1 of [Hattori 2014]. By a base change
argument and the uniqueness of Cn (see Proposition 3.8 of the same reference),
we may assume that the residue field k is perfect. Recall that we normalized the
valuation vR on the ring R as vR(π)= 1/e in Section 1.

Let M =M∗(G) be the corresponding object of the category Mod1,ϕ
/S∞

. Then,
by Remark 3.4 of [Hattori 2014], we can show as in the proof of [Hattori 2013,
Lemma 3.3] that the object M/pM has a basis ē1, . . . , ēh such that

ϕ(ē1, . . . , ēh)= (ē1, . . . , ēh)

(
P1 P2

ue P3 ue P4

)
,

where the matrices Pi have entries in the ring k[[u]] with

P1 ∈ Mh−d(k[[u]]), vR(det(P1))= w,

(
P1 P2

P3 P4

)
∈ GLh(k[[u]]).

Let P̂1 be the element of Mh−d(k[[u]]) such that P1 P̂1 = uew Ih−d . Let B be the
unique solution in Md,h−d(k[[u]]) of the equation

B = P3 P̂1− uep(1−w)−ewB P2ϕ(B)P̂1+ uep(1−w)P4ϕ(B)P̂1

and put D = P1+ uep(1−w)P2ϕ(B), which also satisfies vR(det(D))= w (see the
proof just cited). Moreover, put

(ē′1, . . . , ē′h−d)= (ē1, . . . , ēh)

(
Ih−d

ue(1−w)B

)
.

The elements ē′1, . . . , ē′h−d , ēh−d+1, . . . , ēh form a basis of the S1-module M/pM
satisfying

ϕ(ē′1, . . . , ē
′

h−d , ēh−d+1, . . . , ēh)= (ē′1, . . . , ē
′

h−d , ēh−d+1, . . . , ēh)

(
D P2

0 ue(1−w)P ′4

)
for some matrix P ′4 ∈ Md(k[[u]]). Then we have the following description of the
level one canonical subgroup C1 of G[p].

Lemma 5.1. Let f be an element of the module HomS,ϕ(M/pM, R) defined by

(ē1, . . . , ēh) 7→ (x, y)
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with an (h− d)-tuple x and a d-tuple y in R. Then f corresponds to an element of
C1(OK̄ ) by the isomorphism

εG[p] : G[p](OK̄ )' HomS,ϕ(M/pM, R)

if and only if vR(x + ue(1−w)y B) > w/(p− 1).

Proof. Let L be the S1-submodule of M/pM generated by ē′1, . . . , ē′h−d . Then
L defines a subobject of M/pM in the category Mod1,ϕ

/S1
. Put N = (M/pM)/L.

Lemma 3.2 of [Hattori 2014] also holds for our G[p] and its subgroup scheme
corresponding to N, by Remark 3.4 of the same reference. By Lemma 3.2 and
Theorem 3.5(1) of that reference, the level one canonical subgroup C1 is the closed
subgroup scheme of G[p] corresponding to the object N. We have the commutative
diagram

0 // C1(OK̄ )
//

εC1o

��

G[p](OK̄ )
//

εG[p]o

��

(G[p]/C1)(OK̄ )
//

εG[p]/C1o

��

0

0 // HomS,ϕ(N, R) // HomS,ϕ(M/pM, R)
ι∗
// HomS,ϕ(L, R) // 0

where the rows are exact and the vertical arrows are isomorphisms. The element f
corresponds to an element of C1(OK̄ ) if and only if ι∗( f )=0. The map ι∗( f ) :L→ R
is defined by

(ē′1, . . . , ē′h−d) 7→ x + ue(1−w)y B,

which we consider as an element of H(L)(R). Since deg(H(L))= w, the lemma
follows from [Hattori 2013, Lemma 2.4]. �

Recall that we put

in = 1/(pn−1(p− 1))−w/(p− 1), i ′n = 1/(pn(p− 1)).

Lemma 5.2. If w < (p − 1)/pn , then we have C1 = G[p]im = G[p]i ′m for any
integer m satisfying 1≤ m ≤ n.

Proof. By [Hattori 2014, Theorem 1.1(c)], the equality C1 = G[p]i1 holds. From
the inequalities

i ′n < in ≤ i ′n−1 < · · ·< i2 ≤ i ′1 < i1,

we have the inclusions

C1 ⊆ G[p]i ′1 ⊆ G[p]i2 ⊆ · · · ⊆ G[p]in ⊆ G[p]i ′n .

Let us show the reverse inclusion. Let N be the quotient of M/pM in the category
Mod1,ϕ

/S1
corresponding to the closed subgroup scheme C1 ⊆ G. By Corollary 3.3, it

is enough to show that
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HomS,ϕ(M/pM,m>i ′n
R )⊆ HomS,ϕ(N, R).

Consider a ϕ-compatible homomorphism of S-modules M/pM→ R defined by

(ē1, . . . , ēh) 7→ (x, y)= pi ′n (a, b)

with an (h− d)-tuple a and a d-tuple b in R. Then we have

p pi ′n (a p, bp)= pi ′n (a, b)
(

Ih−d 0
0 ue Id

)(
P1 P2

P3 P4

)
,

where a p
= (a p

1 , . . . , a p
h−d) and similarly for bp. Multiplying this by

(P1 P2
P3 P4

)−1
∈

GLh(k[[u]]), we obtain the equality

(a, ueb)= p1/pn
(a p, bp)

(
P1 P2

P3 P4

)−1

,

and we can write a = p1/pn
a′. The (h− d)-tuple a′ satisfies

a′ = p1/pn−1
−w(a′)p P̂1− p(p

n
−1)/pn

−wbP3 P̂1.

Hence vR(a′)≥min{1/pn−1, (pn
− 1)/pn

}−w and

vR(x)≥min{1/(pn−2(p− 1))−w, 1+ 1/(pn(p− 1))−w}>w/(p− 1).

Since 1−w >w/(p− 1), we obtain

vR(x + ue(1−w)y B) > w/(p− 1).

Then Lemma 5.1 implies the reverse inclusion, and the lemma follows. �

To show Theorem 1.2, we proceed by induction on n. The case of n = 1 follows
from Lemma 5.2. Put n ≥ 2 and suppose that the theorem holds for any truncated
Barsotti–Tate groups of level n− 1 over OK . Consider a truncated Barsotti–Tate
group G of level n over OK with Hodge height w < (p− 1)/pn , as in Theorem 1.2.
In particular, we have Cn−1 = G[pn−1

]in−1 = G[pn−1
]i ′n−1

, and thus the inclusions
Cn−1 ⊆ Gin ⊆ Gi ′n also hold.

Lemma 5.3. For any positive rational number i satisfying i ≤ 1/(p− 1), multipli-
cation by p induces the map Gi (OK̄ )→ G[pn−1

]pi (OK̄ ).

Proof. By Lemma 3.1(2), we may assume that G is connected. By [Illusie 1985,
Théorème 4.4(e)], there exists a p-divisible formal Lie group 0 over OK such that
G is isomorphic to 0[pn

]. By [Rabinoff 2012, Lemma 11.3], we can choose formal
parameters X1, . . . , Xd of the formal Lie group 0 such that the multiplication-by-p
map of 0 is written as

[p](X)≡ pX+ (X p
1 , . . . , X p

d )U + p f (X) mod deg p2,
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where X = (X1, . . . , Xd), f (X)= ( f1(X), . . . , fd(X)) such that every fl contains
no monomial of degree less than p and U ∈ Md(OK ). Let x = (x1, . . . , xd) be a
d-tuple in OK̄ satisfying [pn

](x) = 0 and vp(x) ≥ i . Since 1+ i ≥ pi , we have
1+vp(x)≥ pi and pvp(x)≥ pi . Hence vp([p](x))≥ pi and the lemma follows. �

Lemma 5.4. We have the inclusion Gi ′n ⊆ Cn .

Proof. By Lemma 5.2 and Lemma 5.3, multiplication by pn−1 induces a homomor-
phism Gi ′n (OK̄ )→ G[p]i ′1(OK̄ )= C1(OK̄ ). Hence we have the inclusion

Gi ′n ⊆ p−(n−1)C1.

Consider the natural map G→G/C1. By [Hattori 2014, Theorem 1.1], the subgroup
scheme C1×S1−w coincides with the kernel of the Frobenius of G×S1−w. Put
Ḡ = G×S1−w and similarly for G/C1. Note that pi ′n = i ′n−1 < 1−w. Then we
have a commutative diagram

G(OK̄ )
//

��

(G/C1)(OK̄ )

��
Ḡ(OK̄ ,1−w)

// G/C1(OK̄ ,1−w)
� � //

��

Ḡ(p)(OK̄ ,1−w)

��
G/C1(OK̄ ,pi ′n

)
� � // Ḡ(p)(OK̄ ,pi ′n

)

where the composite of the middle row is the Frobenius map and the right horizontal
arrows are injections. From this diagram, we see that the map G→ G/C1 induces a
map

Gi ′n (OK̄ )→ (G/C1)i ′n−1
(OK̄ ).

This implies the inclusion Gi ′n/C1 ⊆ (p−(n−1)C1/C1)i ′n−1
. Note that the group

scheme p−(n−1)C1/C1 is a truncated Barsotti–Tate group of level n− 1, height h
and dimension d with Hodge height pw and that the subgroup scheme Cn/C1 is its
level n− 1 canonical subgroup (see the proof of [Hattori 2013, Theorem 1.1] and
[Hattori 2014, Theorem 1.1]). From the induction hypothesis, we see that

(p−(n−1)C1/C1)i ′n−1
= Cn/C1.

This implies the inclusion Gi ′n ⊆ Cn , and the lemma follows. �

Proposition 5.5. The image of the map Gin (OK̄ )→ G[pn−1
]pin (OK̄ ) induced by the

multiplication by p contains the subgroup G[pn−1
]in−1(OK̄ ).
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Proof. By Theorem 1.1 and Lemma 5.3, we have a commutative diagram

Gin (OK̄ ) ∼
//

×p
��

HomS,ϕ(M, In,in )

pr

��
G[pn−1

]pin (OK̄ ) ∼
// HomS,ϕ(M, In−1,pin )

G[pn−1
]in−1(OK̄ )
?�

OO

∼
// HomS,ϕ(M, In−1,in−1),

?�

OO

where the horizontal arrows are isomorphisms and the map pr is induced by the
natural projection Wn(R)→ Wn−1(R). It suffices to show that the image of the
map pr contains the subgroup HomS,ϕ(M, In−1,in−1).

Let e1, . . . , eh be a basis of the Sn-module M lifting ē1, . . . , ēh and e′1, . . . , e′h−d
be lifts of ē′1, . . . , ē′h−d in M, respectively. Then e′1, . . . , e′h−d , eh−d+1, . . . , eh also
form a basis of the Sn-module M. Take a ϕ-compatible homomorphism of S-
modules M→ In−1,in−1 defined by

(e′1, . . . , e′h−d , eh−d+1, . . . , eh) 7→ (x, y),

where x = (x1, . . . , xh−d) and y are an (h − d)-tuple and a d-tuple in the ideal
In−1,in−1 , respectively. Put x̂l = (xl, 0) ∈Wn(R), x̂ = (x̂1, . . . , x̂h−d) and similarly
for ŷ. Let A be the matrix in Mh(Sn) satisfying

ϕ(e′1, . . . , e′h−d , eh−d+1, . . . , eh)= (e′1, . . . , e′h−d , eh−d+1, . . . , eh)A.

Define an (h− d)-tuple ξ = (ξ1, . . . , ξh−d) and a d-tuple η in R by

pn−1([ξ ], [η])= ϕ(x̂, ŷ)− (x̂, ŷ)A,

where we put [ξ ] = ([ξ1], . . . , [ξh−d ]) and similarly for [η]. By Proposition 4.1, the
elements x̂ and ŷ are divisible by [pin−1] and thus we can write

(ξ , η)= pin−1(ξ ′, η′).

Since in−1 = pin +w ≥ pin , Lemma 4.5 implies that, for any h-tuple z in R, the
element (x̂, ŷ)+ pn−1

[pin z] is contained in the ideal In,in . It is enough to show that
there exists an h-tuple z in R satisfying

ϕ((x̂, ŷ)+ pn−1
[pin z])= ((x̂, ŷ)+ pn−1

[pin z])A.

Put z = (ζ , ω) with an (h− d)-tuple ζ and a d-tuple ω. Then this is equivalent to
the equation

(ξ , η)+ p pin (ζ p, ωp)= pin (ζ , ω)

(
D P2

0 ue(1−w)P ′4

)
.
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We claim that the equation

ξ + p pinζ p
= pinζD

for the first entry has a solution ζ = p(p−1)inζ ′ with an (h − d)-tuple ζ ′ in R.
Indeed, let D̂ ∈ Mh−d(k[[u]]) be the matrix satisfying DD̂ = uew Ih−d . Then this is
equivalent to the equation

ζ ′ = ξ ′ D̂+ p p(p−1)in−w(ζ ′)p D̂.

Since p(p− 1)in >w, we can find a solution ζ ′ of the equation by recursion.
For the second entry, we have the equation

p pin+wη′+ p pinωp
= pin (ζ P2+ p1−wωP ′4).

This is equivalent to the equation

ωp
= p1−w−(p−1)inωP ′4+ ζ

′P2− pwη′.

Note that 1−w ≥ (p− 1)in . Write this equation as

(ω
p
1 , . . . , ω

p
d )+ (ω1, . . . , ωd)C + (c′1, . . . , c′d)= 0

with some C = (ci, j ) ∈ Md(R) and c′i ∈ R. Then the R-algebra

R[ω1, . . . , ωd ]/

(
ω

p
1 +

d∑
j=1

c j,1ω j + c′1, . . . , ω
p
d +

d∑
j=1

c j,dω j + c′d

)
is free of rank pd over R. Since Frac(R) is algebraically closed and R is integrally
closed, this R-algebra admits at least one R-valued point. Hence we can find at
least one solution ω of the equation. This concludes the proof of the proposition. �

Consider the exact sequence

0→ G[p]in (OK̄ )→ Gin (OK̄ )
×p
−→ G[pn−1

]pin (OK̄ ).

Proposition 5.5 implies that the image of the rightmost arrow contains the subgroup

G[pn−1
]in−1(OK̄ )⊆ G[pn−1

]pin (OK̄ ),

which coincides with Cn−1(OK̄ ) by induction hypothesis and thus is of order p(n−1)d .
By Lemma 5.2, the subgroup G[p]in (OK̄ ) also coincides with C1(OK̄ ) and this is of
order pd . Hence the group Gin (OK̄ ) is of order no less than pnd . Since Lemma 5.4
implies the inclusions

Gin (OK̄ )⊆ Gi ′n (OK̄ )⊆ Cn(OK̄ ),

Theorem 1.2 follows by comparing orders. �
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To prove Theorem 1.3, we need the following lemma, which is a “lower” variant
of [Hattori 2013, Lemma 4.5].

Lemma 5.6. Let K/Qp be an extension of complete discrete valuation fields and i
be a positive rational number. Let X be an admissible formal scheme over Spf(OK )

and X be its Raynaud generic fiber. Let G be a finite locally free formal group
scheme over X with Raynaud generic fiber G. Then there exists an admissible open
subgroup Gi of G over X such that the open immersion Gi → G is quasicompact
and that for any finite extension L/K and x ∈ X (L), the fiber (Gi )x coincides with
the lower ramification subgroup (Gx)i × Spec(L) of the finite flat group scheme
Gx =G×X,x Spf(OL) over OL .

Proof. Let I be the augmentation ideal sheaf of the formal group scheme G.
Write i = m/n with positive integers m, n and put J= pmOG+In . Let B be the
admissible blow-up of G along the ideal J and Gm,n be the formal open subscheme
of B where pm generates the ideal JOB. Since the Raynaud generic fiber of Gm,n

is the admissible open subset of G whose set of K̄ -valued points is given by

{x ∈ G(K̄ ) | vp(I(x))≥ i},

it is independent of the choice of m, n, and we write it as Gi . Using the universality
of dilatations as in the proof of [Abbes and Mokrane 2004, Proposition 8.2.2], we
can show that Gi is an admissible open subgroup of the rigid-analytic group G. For
any affinoid open subset U = Sp(A) of G, put I = 0(U,I). Then the intersection
U ∩ Gi is the affinoid Sp(A〈I n/pm

〉) and thus the open immersion Gi → G is
quasicompact. This concludes the proof of the lemma. �

Proof of Theorem 1.3. Set Cn to be the admissible open subgroup Gi ′n of G as
in Lemma 5.6 with i ′n = 1/(pn(p− 1)). Then, by this lemma and Theorem 1.2,
each fiber (Cn)x coincides with the generic fiber of the level n canonical subgroup
of Gx , and its group of K̄ -valued points is isomorphic to the group (Z/pnZ)d .
Moreover, Cn is etale, quasicompact and separated over X (rn). Thus [Conrad 2006,
Theorem A.1.2] implies that Cn is finite over X (rn), and the theorem follows by a
similar argument to the proof of [Hattori 2013, Corollary 1.2]. �
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Wild models of curves
Dino Lorenzini

Let K be a complete discrete valuation field with ring of integers OK and alge-
braically closed residue field k of characteristic p > 0. Let X/K be a smooth
proper geometrically connected curve of genus g > 0 with X (K ) 6=∅ if g = 1.
Assume that X/K does not have good reduction and that it obtains good reduction
over a Galois extension L/K of degree p. Let Y/OL be the smooth model of
X L/L . Let H := Gal(L/K ).

In this article, we provide information on the regular model of X/K obtained
by desingularizing the wild quotient singularities of the quotient Y/H . The most
precise information on the resolution of these quotient singularities is obtained
when the special fiber Yk/k is ordinary. As a corollary, we are able to produce for
each odd prime p an infinite class of wild quotient singularities having pairwise
distinct resolution graphs. The information on the regular model of X/K also
allows us to gather insight into the p-part of the component group of the Néron
model of the Jacobian of X .

1. Introduction

Let K be a complete discrete valuation field with valuation v, ring of integers OK

and residue field k of characteristic p > 0, assumed to be algebraically closed.
Let X/K be a smooth proper geometrically connected curve of genus g > 0 with
X (K ) 6=∅ if g = 1.

Assume that X/K does not have good reduction and that it obtains good reduction
over a Galois extension L/K . Let Y/OL be the smooth model of X L/L . Let
H :=Gal(L/K ), and let Z/OK denote the quotient Y/H . A regular model for X/K
can be obtained by resolving the singularities of the scheme Z . Our goal is to obtain
information on this regular model when p divides [L : K ]. Since the presence of
wild ramification renders the subject quite challenging, we will restrict our attention
in this article to the case where [L : K ] = p.

Lorenzini was supported by NSF Grant 0902161.
MSC2010: primary 14G20; secondary 14G17, 14K15, 14J17.
Keywords: model of a curve, ordinary curve, cyclic quotient singularity, wild ramification,

arithmetical tree, resolution graph, component group, Néron model.
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Beyond our interest in models of curves per se, our motivation for understanding
these regular models is twofold. First, since X is obtained by desingularizing
certain quotient singularities, we hope to gain more insight in the general theory
of resolutions of wild quotient singularities by producing interesting classes of
examples where the singularities can be resolved explicitly. Second, since from
a regular model of the curve one can compute much of the Néron model of its
Jacobian, we hope to bring new insight into the structure of the rather mysterious
p-part of the component group of the Néron model of a general abelian variety
from an increased understanding of the special case of Jacobians of curves.

Let us introduce some notation needed to state our theorems. Let σ denote a
generator of H :=Gal(L/K ). Denote also by σ the automorphism of Yk induced by
the action of H on Y . The scheme Z is singular exactly at the images Q1, . . . , Qd

of the ramification points P1, . . . , Pd of the map Yk → Yk/〈σ 〉 (5.2). Consider
the regular model X → Z obtained from Z by a minimal desingularization. Let
X ′→ X denote the regular model of X/K minimal with the property that X ′k has
smooth components and normal crossings. Let f denote the composition X ′→ Z .
Let C0/k denote the strict transform in X ′ of the irreducible closed subscheme
Z red

k of Z . Let D1, . . . , Dd denote the irreducible components of X ′k that meet C0.
Let ri denote the multiplicity of Di , i = 1, . . . , d , in X ′k .

Recall that to any connected curve
⋃n
`=1 C` on a regular model X we associate

a graph G as follows: the vertices are the irreducible components C`, and in G, the
vertices Ci and C j (i 6= j ) are linked by exactly (Ci ·C j )X edges, where (Ci ·C j )X
denotes the intersection number of Ci and C j on the regular scheme X . Recall
that the degree of a vertex v of a graph is the number of edges attached to v. A
node on a graph is a vertex of degree at least 3. A vertex of degree 1 is a terminal
vertex. A chain is a subgraph of G with vertices C0,C1, . . . ,Cn , n ≥ 1, such that
Ci is linked to Ci+1 by exactly one edge in G when i = 0, . . . , n−1 and the degree
of Ci is 2 when i = 1, . . . , n− 1. If the chain contains a terminal vertex (which
can only be C0 or Cn), the chain is called a terminal chain.

Let G denote the graph associated with X ′k . We assume d ≥ 1. For each
i = 1, . . . , d, let G Qi denote the graph associated with the curve f −1(Qi ). In
particular, Di corresponds to a vertex of G Qi . We have the following configuration
on the graph G (where a positive integer next to a vertex denotes the multiplicity
of the corresponding irreducible component in X ′):

C0 p

D1 r1 Dd
rd
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Theorem 5.3. Let X/K be a curve with potentially good reduction after a wildly
ramified extension L/K of degree p, as above. Keep the above notation. Then, for
all i = 1, . . . , d , the graph G Qi contains a node of G and p divides ri .

In contrast, when H is of prime order q 6= p, then it is known that q > ri and that
the graph G Qi does not contain a node of G. In particular, when L/K is tame and
d ≥ 3, the graph G has only a single node, the component C0 (see, e.g., [Lorenzini
1990a, Theorem 2.1]).

We propose in 6.1 a combinatorial measure γQi gQi of the complexity of the
graph G Qi , which we conjecturally relate in 6.2 to the higher ramification data of
the morphism Yk→ Yk/〈σ 〉. This conjectural relationship expresses the fact that
the graph G Qi is “complicated” only if the higher ramification above Qi is “large”.
We prove this conjecture in the ordinary case (Theorem 6.4).

Recall that a smooth proper curve Y/k of genus g is called ordinary if its Jacobian
J/k is an ordinary abelian variety (that is, J (k) has exactly pg points of order
dividing p). When Yk is ordinary, the morphism Yk → Yk/〈σ 〉 has the smallest
possible ramification data at each Qi (2.2), and in this case, we can use Theorem 5.3
to describe the graph G Qi explicitly, as in the following theorem, whose statement is
slightly strengthened in the version given in Section 6. In the graph below, a bullet •
represents an irreducible component of the desingularization of Qi . A negative
number next to a vertex is the self-intersection of the component. A positive number
next to a vertex is the multiplicity of the corresponding component in X ′k .

Theorem (see Theorem 6.8). Let X/K be a curve with potentially good reduction
after a Galois extension L/K of degree p, as above. Assume that Yk ordinary. Then,
for all i = 1, . . . , d, we have ri = p and G Qi is a graph with a single node Ci of
degree 3:

p p p p p

�2 �2 �2 �2

Di Ci

p � r1.i/

r1.i/

1

1C0

The intersection matrix N (p, αi , r1(i)) of the resolution of Qi is uniquely deter-
mined as in 4.7 by the two integers αi and r1(i) with 1≤ r1(i) < p. The integer αi

denotes the number of vertices of self-intersection −2 (including the node Ci ) on
the chain in G Qi connecting the node C0 to the single node Ci of G Qi , and the
integer αi is divisible by p.

To further determine the regular model, one would need to determine explicitly
the integers αi and r1(i). We address this issue in [Lorenzini 2013b]. In all cases
where we have been able to compute αi and r1(i), we found them to be related
to the valuation of the different of L/K . More precisely, let (sL/K + 1)(p − 1)
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denote the valuation of the different of L/K . In [Lorenzini 2013b, Theorem 1.1],
we present some instances where αi = psL/K and r1(i) ≡ −s−1

L/K modulo p. We
also show in [Lorenzini 2013b, Theorem 4.1] that the singularities Qi are rational.

Remark 1.1. The same type of intersection matrix, N (p, αi , r1(i)), also occurs
in the resolution of the singularities of the model Z when X/K has genus p− 1
and Jac(X)/K has purely toric reduction after an extension of degree p [Lorenzini
2010, Theorem 2.2].

Remark 1.2. The special fiber of the model X /OK of X/K in Theorem 6.8 has
thus a graph with a central vertex to which d branches are attached, of the form
described below, where we picture the case d = 4.

1

1

1

1

1

1

1

1

C0p p p

p

ppp p p p

p p p

Fix any d > 1. We establish in Theorem 6.8 and Example 6.13 the existence of
some field K of residue characteristic p> 0 and of some smooth proper curve X/K
with a regular model whose special fiber has a graph of the above type. This is
clearly a weak existence result, but our understanding of models in the presence of
wild ramification is so limited that even this weak existence result does not follow
from the general existence results of Viehweg [1977] and Winters [1974].

An immediate but surprising corollary to Theorem 6.8 is as follows.

Corollary (see Corollary 6.10). Let X/K be a curve of genus g> 1 with potentially
good reduction after a Galois extension L/K of degree p, as above. Assume that
Yk is ordinary. Then X (K ) 6=∅.

The information on the regular model of X/K obtained in Theorem 6.8, while
incomplete to fully describe the special fiber of the model, suffices to compute
several invariants of arithmetical interest. For instance, the set of components of
multiplicity 1 on the special fiber of the model is determined, and this information
is one of the ingredients needed to apply the Chabauty–Coleman method to bound
the number of Q-rational points on a curve X/Q using the reduction at a small
prime p, as in [Lorenzini and Tucker 2002, Theorem 1.1]. Let A/K denote the
Jacobian of A/K with Néron model A/OK and component group 8A/K . The
information obtained in Theorem 6.8 suffices to compute8A/K and a new canonical
subgroup 80

A/K of 8A/K that we now define.
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1.3. Let A/K be an abelian variety with Néron model A/OK . Let L/K be any
finite extension, and let A′/OL denote the Néron model of AL/L . Denote by

η :A×OK OL →A′

the canonical map induced by the functoriality property of Néron models. The spe-
cial fiber Ak is an extension of a finite group 8A/K , called the group of components,
by the connected component of zero A0

k of Ak :

0→A0
k→Ak→8A/K → 0.

Assume that AL/L has semistable reduction, and consider the natural map
8A/K →A′k/η(A

0
k). We let

80
A/K := Ker(8A/K →A′k/η(A0

k)).

The subgroup80
A/K does not depend on the choice of such an extension L/K and is

functorial in A. Our interest in this subgroup stems from the following conjectures.
When A/K has potentially good reduction and, more generally, when the toric

rank of A0
k is trivial, we conjecture that the order of the group 8A/K is bounded by

a constant depending only on the dimension g of A/K [Lorenzini 1990b, p. 146].
This statement is true when A/K is a Jacobian [Lorenzini 1990b, Theorem 2.4] and
for the prime-to-p part of 8A/K [Lorenzini 1993, Theorem 2.15]. Since [L : K ]2

kills the group 8A/K when the toric rank of A is trivial [Liu and Lorenzini 2001,
Proposition 1.8], we find that, to prove the conjecture that 8A/K is bounded by
a constant depending only on g, it suffices to prove that the minimal number of
generators of 8A/K can be bounded by a constant depending on g only. We guess,
under the above hypotheses, that 8A/K can be generated by 2g elements.

Assume now that A/K has potentially good reduction. The p-torsion in A′k can
always be generated by at most g elements. Thus, the above conjecture is proved if
the p-part of the kernel 80

A/K can be generated by a number of elements bounded
by a constant depending on g only (possibly 2g). In the ordinary case, where the
p-torsion in A′k is minimally generated by g elements, one may wonder if80

A/K can
also be generated by g elements. Our next corollary gives some evidence that this
latter question may have a positive answer for all abelian varieties with potentially
good ordinary reduction.

Let A/K be the Jacobian of a curve X/K with X (K ) 6= ∅. We denote by
〈 · , · 〉 : 8A/K ×8A/K → Q/Z Grothendieck’s pairing, which is nondegenerate
[Bosch and Lorenzini 2002, Theorem 4.6]. We denote by (80

A/K )
⊥ the orthogonal

of 80
A/K under Grothendieck’s pairing.

Corollary (see Corollary 6.12). Let A/K be the Jacobian of a curve X/K of genus
g > 1 having potentially good ordinary reduction after a Galois extension L/K of
degree p, as above. Then 8A/K is a Z/pZ-vector space of dimension 2d − 2, and
80

A/K is a subspace of dimension d − 1. Moreover, 80
A/K = (8

0
A/K )

⊥.
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It is natural in view of Corollary 6.12 to wonder whether the same result holds
for all principally polarized abelian varieties A/K having potentially good ordinary
reduction after a Galois extension L/K of degree p. We may also wonder, for any
principally polarized abelian variety A/K with potentially good reduction, whether
the order of 80

A/K ∩ (8
0
A/K )

⊥ can be bounded by a constant depending only on the
p-rank of A′k . We hope to return to these questions in the future.

1.4. Our explicit computation of a regular model of a curve having potentially good
ordinary reduction also has an application to quotient singularities. Our current
understanding of wild Z/pZ-quotient singularities of surfaces is quite limited, and
few explicit examples are known (see, e.g., [Artin 1975], [Katsura 1978] for p = 2
and [Peskin 1983] for p = 3). In contrast to the case of a tame cyclic quotient
singularity, where the number of possible resolution graphs is finite once the order
of the group is fixed, we show below that, for any fixed odd prime p, there are
infinitely many graphs that can occur as the resolution graphs of a wild Z/pZ-
quotient singularity in both mixed characteristic and in the equicharacteristic case.
The analogous result when p = 2 is discussed in [Lorenzini 2013a, Theorem 4.1].

Corollary 6.14. Fix any odd prime p. For each integer m > 0, there exist a 2-
dimensional regular local ring B of equicharacteristic p endowed with an action of
H :=Z/pZ and a 2-dimensional regular local ring B ′ of mixed characteristic (0, p)
endowed with an action of Z/pZ such that Spec B H and Spec(B ′)H are singular
exactly at their closed point and the graphs associated with a minimal resolution
of Spec B H and Spec(B ′)H have one node and more than m vertices.

This article is organized as follows. The proof of Theorem 5.3, in Section 5, is
of a global nature and includes in particular a study of the natural map 8A/K →

A′k/η(A
0
k). The proof uses two auxiliary results of independent interest. The first

result, Proposition 2.5, is discussed in Section 2 and is a relation between torsion
points in a quotient of two Jacobians. This proposition is one place in our arguments
where the tame and wild cases can be seen to differ in an explicit way. The second
result, Proposition 3.5, is the main result of Section 3 and is a general relation
between elements in the component group 8M of an arithmetical tree.

Section 4 presents further results of a combinatorial nature on arithmetical trees
that are needed in the proof of Theorem 6.8. Section 6 contains the proof of
Theorem 6.8 and of its applications.

2. Cyclic morphisms and torsion

Let k be an algebraically closed field of characteristic p. Let f : D → C be a
ramified Galois morphism of smooth connected projective curves over k. Our main
result in this section is Proposition 2.5, which will be applied to the case of the
quotient morphism Yk→ Yk/〈σ 〉 in the course of the proof of Theorem 5.3.
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2.1. Assume that the Galois group H of f is cyclic of degree qs with q prime.
Let P1, . . . , Pd in D(k) be the ramification points. Assume that, at each Pi , the
morphism is totally ramified, and let Qi := f (Pi ), i = 1, . . . , d, be the branch
points.

When q 6= p, the Riemann–Hurwitz formula is

2g(D)− 2= qs(2g(C)− 2)+ d(qs
− 1). (2.1.1)

Moreover, d ≥ 2. When g(C)= 0, this follows immediately from the formula; the
general case requires a separate proof.

Assume now that q = p. For P ∈ D(k), let H0(P) ⊇ H1(P) ⊇ · · · denote
the sequence of higher ramification groups. If P is a ramification point, then
|H0(P)| = |H1(P)| = ps . Set

δ(P) :=
∑

i

(|Hi (P)| − 1).

Then the Riemann–Hurwitz formula is

2g(D)− 2= ps(2g(C)− 2)+
∑

P∈D(k)

δ(P), (2.1.2)

and it may happen that d = 1.

2.2. Let γ (D) denote the p-rank of D (i.e., the p-rank of Jac(D)). The Deuring–
Shafarevich formula relates the p-ranks of C and D:

γ (D)− 1= ps(γ (C)− 1)+ d(ps
− 1). (2.2.1)

The curve D is ordinary when γ (D) = g(D). When D is ordinary, we find,
comparing the formulas (2.1.2) and (2.2.1), that |H2(P)| = 1 for all P and that C is
also ordinary. Moreover, when g(D)> 0, Equation (2.2.1) shows that p≤ g(D)+1.

When a ramification point P of a Galois morphism f : D → C is such that
H2(P)= (0), we will say that the morphism is weakly ramified at P .

2.3. We record here the following well-known fact (see [Hasse 1934, p. 42], or
[Singh 1974, Lemma 1.3], when K = k(x)). Let K be a field with char(K ) = p.
Let (A,M) be a discrete valuation ring with field of fractions K , valuation vK and
uniformizer πK . Assume that the residue field k of A is algebraically closed. Let
L/K be a cyclic ramified Galois extension of degree p with Galois group H . Let
(B,N ) denote the integral closure of A in L . Let H = H0 ⊇ H1 ⊇ · · · denote the
sequence of ramification groups. Then

∑
∞

i=0(|Hi | − 1)= (m+ 1)(p− 1) for some
integer m prime to p.
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2.4. Examples of curves with an automorphism of degree p in characteristic p can
be given in Artin–Schreier form. Consider the curve y p

− y =
∏d

i=1(x − ai )
−ni ,

where a1, . . . , as ∈ k are distinct and the ni are positive integers coprime to p.
The automorphism y 7→ y+ 1 has order p. The genus g of the smooth complete
curve defined by the above equation is given by the Riemann–Hurwitz formula
2g− 2=−2p+ (p− 1)

(∑d
i=1(ni + 1)

)
(see [Subrao 1975, p. 8]).

The following simple proposition exhibits a key difference between the tame
and wild cases:

Proposition 2.5. Let q be a prime. Let f : D→ C be a ramified cyclic morphism
of degree qs between smooth connected projective curves over k. Let P1, . . . , Pd ,
d ≥ 2, denote the ramification points, assumed to be totally ramified. For i 6= j , the
image ωi j of Pi − Pj in Jac(D)/ f ∗(Jac(C)) is of finite order qs . Let T denote the
finite subgroup Jac(D)/ f ∗(Jac(C)) generated by {ωid | i = 1, . . . , d − 1}.

(a) If q = p, then T is isomorphic to (Z/psZ)d−1 and is generated by the set
{ωid | i = 1, . . . , d − 1}.

(b) If q 6= p, then T is isomorphic to (Z/qsZ)d−2 and is generated by the set
{ωid | i = 1, . . . , d − 2}.

Proof. Let S denote the subgroup of Div0(D) with support on the set {P1, . . . , Pd}.
It is clear that {Pi − Pd | i = 1, . . . , d − 1} is a Z-basis for S. Let S→ T denote
the natural surjective map. This map factors through S/qs S since qs

(∑
i bi Pi

)
=

f ∗
(∑

i bi Qi
)

with
∑

i bi Qi ∈ Div0(C).
Let σ be a generator of Aut(D/C). Suppose that σ(divD(g)) = divD(g) for

some g ∈ k(D)∗. Then gσ = cg for some c ∈ k∗. Since σ has finite order qs , we
find that cqs

= 1.
Consider first the case where q = p. Then c = 1. Thus, gσ = g and g ∈ k(C)∗.

Suppose that the divisor
(∑

i bi Pi
)

has trivial image in T . Then it is possible to
write

(∑
i bi Pi

)
= f ∗

(∑
j R j

)
+divD(h) for some R j ∈C(k) and h ∈ k(D)∗. Then

we have σ(divD(h)) = divD(h), and we conclude that h ∈ k(C)∗. Therefore, we
have an equality of divisors of the form

(∑
i bi Pi

)
= f ∗(E) for some E ∈Div0(C).

It follows that E =
∑

i ci Qi for some ci . Hence, the map S/ps S → T is an
isomorphism, proving Part (a).

Suppose now that q 6= p. Fix a primitive qs-th root ξ of 1. Then k(D)/k(C)
is a Kummer extension, generated by the root α of yqs

− a ∈ k(C)[y] such that
ασ = ξα. It is easy to check that, for each i = 0, . . . , qs

− 1,

{β ∈ k(D) | βσ = ξ iβ} = k(C)αi .

The equality ασ = ξα implies that divD(α) can be written as( d∑
i=1

ai Pi

)
+

∑
j

c j

( qs
−1∑

i=0

σ i (S j )

)
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for some integers ai and c j , and some S j ∈ D(k) \ {P1, . . . , Pd}. It follows that qs

divides
∑d

i=1 ai since deg(divD(α))= 0. This means that the divisor∑
j

c j

( qs
−1∑

i=0
σ i (S j )

)
+

( d∑
i=1

ai

)
Pd

defines an element in f ∗(Jac(C)). Hence, the image ν of
(∑

i ai Pi
)
−
(∑

i ai
)
Pd

in T is trivial. We thus have a map

ϕ : S
/ 〈

qs S,
(∑

i
ai Pi

)
−

(∑
i

ai

)
Pd

〉
→ T .

Let us note that
(∑

i ai Pi
)
−
(∑

i ai
)
Pd /∈ qs S because, otherwise, the morphism f

given by the Kummer equation yqs
−a would not be totally ramified at P1, . . . , Pd .

Suppose that the divisor
(∑

i bi Pi
)

has trivial image in T . Then it is possible
to write

(∑
i bi Pi

)
= f ∗

(∑
j R j

)
+ divD(h) for some R j ∈ C(k) and h ∈ k(D)∗.

Thus, we have σ(divD(h))= divD(h), and we conclude that hσ = ξ j h for some j ∈
{0, . . . , qs

−1}. Therefore, there exists b∈ k(C)∗ such that h=bα j . Hence, we have
an equality of divisors of the form

(∑
i bi Pi

)
= f ∗(E)+ j

[(∑
i ai Pi

)
−
(∑

i ai
)
Pd
]

for some E ∈Div0(C). It follows that E =
∑

i ci Qi for some ci . Hence, the map ϕ
is an isomorphism, proving Part (b). �

Corollary 2.6. Assume that p 6= 2. Let D/k be a smooth projective connected
hyperelliptic curve of genus g. Denote by τ the hyperelliptic involution. Let σ be an
automorphism of order p. Then either σ has a single fixed point, fixed by τ , or it
has exactly two fixed points, permuted by τ .

Proof. The hyperelliptic involution commutes with σ , and hence, it permutes the
fixed points {P1, . . . , Pd}. If d ≥ 2 and two fixed points P1 and P2 of σ are fixed
by τ , then the divisor class P1− P2 is fixed by τ . Proposition 2.5 shows that the
class of P1 − P2 is not trivial and, since p > 2, this divisor class is not equal to
the class of −(P1− P2). This is a contradiction since τ acts as the [−1]-map on
Jac(D). Thus, τ fixes at most one point Pi .

If d ≥ 3, then we may assume that either τ(P1) = P2 and P3 is fixed or that
τ(P1)= P2 and τ(P3)= P4. In the first case, we find that τ(P1−P3)= (P2−P3)=

−(P1− P2)+ (P1− P3). Using the fact that τ acts as the [−1]-map on Jac(D), we
find the relation −(P1− P3)=−(P1− P2)+ (P1− P3) in Jac(D). Looking at this
relation in T contradicts Proposition 2.5. The other case is similar and is left to the
reader. �

Example 2.7. Assume that p 6= 2. Consider a smooth hyperelliptic curve C/k
given by an affine equation y2

= f (x), and let D be its Galois cover given by the
equation z p

− z= x . The automorphism σ : D→ D with σ(z)= z+1 has one fixed
point P with δ(P)= 3(p− 1) when deg( f ) is odd, and it has two fixed points P1

and P2 with δ(P1)= δ(P2)= 2(p− 1) when deg( f ) is even.
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3. Arithmetical trees

Our main result in this section is Proposition 3.5, which will be needed in the proof
of Theorem 5.3. This proposition pertains to arithmetical graphs, and we now recall
how one associates such an object to any regular model of a curve.

Let X/K be any smooth, proper, geometrically connected curve of genus g.
Let X /OK be a regular model of X/K . Let Xk :=

∑v
i=1 ri Ci denote the special

fiber of X , where Ci is an irreducible component and ri is its multiplicity. Let
M := ((Ci · C j ))1≤i, j≤v be the associated intersection matrix. Denote by G the
associated graph. Let tR := (r1, . . . , rv) so that M R = 0. We call the triple
(G,M, R) an arithmetical graph (in [Lorenzini 1989], the additional condition that
gcd(r1, . . . , rv)= 1 is assumed, and it is (G,−M, R) that is called an arithmetical
graph). For the purpose of simplifying the statements of some definitions, we
sometimes think of G as a metric space with the natural topology where each edge
of G with its two endpoints is homeomorphic to the closed unit interval [0, 1].

Let (G,M, R) be any arithmetical graph on v vertices. Let M : Zv→ Zv and
tR : Zv→ Z be the linear maps associated to the matrices M and R. The group of
components of (G,M, R) is defined as

8M := Ker(tR)/ Im(M)= (Zv/ Im(M))tors.

Motivated by the case of degenerations of curves, we shall denote by (C, r(C)) a
vertex of G, where r(C) is the coefficient of R corresponding to C . The integer r(C),
also denoted simply by r , is called the multiplicity of C . The matrix M is written
as M := ((Ci ·C j ))1≤i, j≤v, and we write |Ci ·Ci | := |(Ci ·Ci )|.

3.1. Denote by 〈 · , · 〉 : 8M ×8M → Q/Z the perfect pairing 〈 · , · 〉M attached
in [Bosch and Lorenzini 2002, Lemma 1.1] to the symmetric matrix M . Explicit
values of this pairing are computed as follows. Let (C, r) and (C ′, r ′) be two
distinct vertices of G. Define

E(C,C ′) :=
t(

0, . . . , 0,
r ′

gcd(r, r ′)
, 0, . . . , 0,

−r
gcd(r, r ′)

, 0, . . . , 0
)
∈ Zv,

where the first nonzero coefficient of E(C,C ′) is in the column corresponding
to the vertex C and, similarly, the second nonzero coefficient is in the column
corresponding to the vertex C ′. We say that the pair (C,C ′) is uniquely connected
if there exists a path P in G between C and C ′ such that, for each edge e on P , the
graph G \{e} is disconnected. Note that, when a pair (C,C ′) is uniquely connected,
then the path P is the unique shortest path between C and C ′. A graph is a tree if
and only if every pair of vertices of G is uniquely connected.

Let (C, r) and (C ′, r ′) be a uniquely connected pair with associated pathP . While
walking on P \ {C,C ′} from C to C ′, label each encountered vertex consecutively
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by (C1, r1), (C2, r2), . . . , (Cn, rn). Let Gi denote the connected component of Ci

in G\{edges of P}. The graph Gi is reduced to a single vertex if and only if Ci is not
a node of G. For convenience, we write (C, r)= (C0, r0) and (C ′, r ′)= (Cn+1, rn+1)

and define G0 and Gn+1 accordingly.

3.2. The following facts are proved in [Bosch and Lorenzini 2002, Proposition 5.1].
Let (G,M, R) be any arithmetical graph. Let C and C ′ be two vertices such that
(C,C ′) is a uniquely connected pair of G. Let γ denote the image of E(C,C ′)
in 8M . For (D, s) and (D′, s ′) any two distinct vertices on G, let δ denote the
image of E(D, D′) in8M . Writing P for the oriented shortest path from C to C ′ as
above, let Cα denote the vertex of P closest to D in G, and let Cβ denote the vertex
of P closest to D′. In other words, D ∈Gα and D′ ∈Gβ . Assume that α≤β. (Note
that we may have α = β, and we may have D = Cα or D′ = Cβ .) Then if α < β,

〈γ, δ〉 = − lcm(r, r ′) lcm(s, s ′)
( 1

rαrα+1
+

1
rα+1rα+2

+ · · ·+
1

rβ−1rβ

)
mod Z, (3.2.1)

and if Cα = Cβ , then 〈γ, δ〉 = 0. Moreover,

〈γ, γ 〉 = − lcm(r, r ′)2
( 1

rr1
+

1
r1r2
+ · · ·+

1
rnr ′

)
mod Z. (3.2.2)

Note that the negative signs in the expressions (3.2.1) and (3.2.2) are missing
in [Bosch and Lorenzini 2002, Proposition 5.1]. Thus, all expressions for 〈γ, δ〉
computed in Section 5 of [Bosch and Lorenzini 2002] using Proposition 5.1 are
correct only after having been multiplied by −1. Similar sign mistakes occurred
in [Lorenzini 2000]. The proof of [Bosch and Lorenzini 2002, Proposition 5.1] is
correct except that its last line produces the opposite of the stated values for 〈γ, δ〉
since we assume α ≤ β.

3.3. Let (C, r) be a vertex of G of degree d ≥ 2. Let (Di , ri ), i = 1, . . . , d , denote
the neighbors of C , that is, the vertices of G linked to C . Let τi denote the image
of E(Di , Dd) in 8M for i ∈ {1, . . . , d − 1}. We will use repeatedly the following
expressions computed using (3.2.1) and (3.2.2):

〈τi , τi 〉 = − lcm(ri , rd)
2 ri + rd

rirdr
mod Z

and, when i 6= j ,

〈τi , τ j 〉 = − lcm(ri , rd) lcm(r j , rd)
1

rdr
mod Z.

These formulas allow us to easily show that τi may not always be trivial. For
example, let p be a prime dividing r . When p - rird(ri+rd), we find that 〈τi , τi 〉 6= 0
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and, thus, τi 6= 0. Similarly, when for three distinct indices i , j and d we have
p - rir jrd , we find that 〈τi , τ j 〉 6= 0, showing that both τi and τ j are not trivial.

We claim that r kills τi . Indeed, we find, using [Lorenzini 2000, Lemma 2.2], that
the images in 8M of E(Di ,C) and E(C, Dd) have order dividing gcd(ri , r) and
gcd(r, rd), respectively. Consider the following easy relation between vectors in Zv

[Lorenzini 2000, Remark 3.5]: given any three vertices (A, a), (B, b) and (C, c),

bE(A,C)=
c

gcd(a, c)
gcd(a, b)E(A, B)+

a
gcd(a, c)

gcd(b, c)E(B,C). (3.3.1)

Using this relation, we find that rτi = 0.

Lemma 3.4. Let (G,M, R) be an arithmetical graph. Consider any two distinct
vertices (A, a) and (A′, a′), and let αA,A′ denote the image of E(A, A′) in 8M .
Then the set {αAA′ | A 6= A′} is a set of generators for 8M .

Proof. Let us note first that the statement is proved for (G,M, R) as soon as it
is proved for (G,M, R/ gcd(r1, . . . , rv)). We will thus assume now that gcd(r1,

. . . , rv)= 1. Fix a vertex A, and consider the subgroup (8M)A of 8M generated
by {αAA′ | all A′ 6= A}. We claim that a8M ⊆ (8M)A. Indeed, an element φ ∈8M

is represented by the class of a vector ( fD | D ∈ G) such that
∑

fDr(D)= 0. It
follows that aφ =−

∑
gcd(a, r(D)) fDαAD . Since gcd(r1, . . . , rv)= 1, φ can be

expressed in terms of elements of the form αAA′ . �

The following is a key relation between the τi ’s:

Proposition 3.5. Let (G,M, R) be an arithmetical tree. Let (C, r) be a vertex of
degree d ≥ 2. Keep the notation introduced in 3.3. Then

∑d−1
i=1 gcd(ri , rd)τi = 0.

Proof. Consider any two distinct vertices (A, a) and (A′, a′), and let α denote
the image of E(A, A′) in 8M . The previous lemma shows that the group 8M is
generated by such elements α.

Let τ :=
∑d−1

i=1 gcd(ri , rd)τi . We claim that 〈τ, α〉 = 0 for all such elements α.
This claim, proved below, implies immediately that τ = 0. Indeed, recall that, 〈 · , · 〉
being perfect, the element τ is trivial if and only if 〈τ, φ〉 = 0 for all φ ∈8M .

Let us now prove our claim. Assume first that the path Q between A and A′

contains the vertices Di and Dd with i 6=d . We use (3.2.1) to compute modulo Z that

〈τ, α〉 = ± lcm(a, a′)

×

(
gcd(ri , rd) lcm(ri , rd)

( 1
rir
+

1
rrd

)
+

∑
j 6=i,d

gcd(r j , rd) lcm(r j , rd)
( 1

rrd

))
,

which simplifies to

〈τ, α〉 = ± lcm(a, a′)
( d∑

j=1

r j

)
1
r
.
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Since
∑d

j=1 r j = |C ·C |r , we find that 〈τ, α〉 = 0. When Q contains Di and D j

with i, j 6= d and i 6= j , we find that modulo Z

〈τ, α〉 = ± lcm(a, a′)
(

gcd(ri , rd) lcm(ri , rd)
1

rir
− gcd(r j , rd) lcm(r j , rd)

1
r jr

)
=± lcm(a, a′)

(rd
r
−

rd
r

)
= 0.

It is clear that if the path Q contains no vertices Di , or if it contains exactly one
vertex Di and does not contain the vertex C , then 〈τ, α〉 = 0. It remains to consider
the case where the path Q contains exactly one vertex Di and the vertex C . Then
C is an endpoint of Q, and thus, r divides lcm(a, a′). When i 6= d, we find that

〈τ, α〉 = ± lcm(a, a′) lcm(ri , rd) gcd(ri , rd)
1

rir

is 0 modulo Z, and when i = d, we find that

〈τ, α〉 = ± lcm(a, a′)
(d−1∑

i=1

lcm(ri , rd) gcd(ri , rd)
1

rir

)
is also 0 modulo Z. �

4. Some combinatorics

Let (G,M, R) be an arithmetical graph. We introduce below a measure γDgD
of how “complicated” certain subgraphs GD of G are, and we describe GD in
Proposition 4.3 when γDgD is as small as possible. This result is needed in the proof
of Theorem 6.8. A geometric motivation for the introduction of the quantity γDgD
is found in the genus formula (6.1.1).

4.1. Let (G,M, R) be an arithmetical graph. Fix a vertex (C0, r(C0)) of G. Assume
that C0 is linked to a vertex (D, r(D)) by a single edge e and that, when the edge e
is removed from G, then D and C0 are not in the same connected component of the
resulting graph. Let GD denote the connected component of G \{e} that contains D.
Consider the minor ND of M corresponding to the vertices in GD . Let

γD := gcd(r(A) | A a vertex of GD).

Then γD divides r(C0). Indeed, γD divides the multiplicity of D and of all vertices
linked to D except possibly that of C0. But the relation M R = 0 implies then that
γD divides the multiplicity of C0. Let RD denote the vector R restricted to the
vertices of GD . By definition, we find that RD/γD is an integer vector.
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Let β(G) denote the first Betti number of the graph G. Letting dG(A) denote
the degree of a vertex A in the graph G, we have

2β(G)− 2=
∑

vertices A of G

(dG(A)− 2).

Associated with any arithmetical graph (G,M, R) is the following integer invariant
g0(G)≥ β(G) [Lorenzini 1989, Theorem 4.10], defined by the formula

2g0(G)= 2β(G)+
∑

vertices A of G

(r(A)− 1)(dG(A)− 2). (4.1.1)

Let C0 and D be as above. We now associate to the pair (ND, RD) an integer gD ,
defined so that the formula below holds:

γDgD = r(C0)+ r(D)+
∑

vertices A of GD

r(A)(dGD (A)− 2).

Since γD divides r(C0), the invariant gD is indeed an integer. We can rewrite this
formula as

γDgD = 2β(GD)+ (r(C0)− 1)+ (r(D)− 1)

+

∑
vertices A of GD

(r(A)− 1)(dGD (A)− 2), (4.1.2)

and we find that

gD = 2β(GD)+

(
r(C0)

γD
− 1

)
+

(
r(D)
γD
− 1

)
+

∑
vertices A of GD

(
r(A)
γD
− 1

)
(dGD (A)− 2). (4.1.3)

4.2. We will make use below of the following facts. Suppose that, on G, the
vertices D0, D1, . . . , Dn are consecutive vertices on a terminal chain and Dn is the
terminal vertex on this chain (in other words, Di is linked by one edge to Di+1

for i = 0, . . . , n − 1, dG(Di ) = 2 for i = 1, . . . , n − 1 and dG(Dn) = 1). Then
gcd(r(D0), r(D1))= r(Dn), and if |Di · Di |> 1 for all i = 1, . . . , n, then

r(D0) > r(D1) > · · ·> r(Dn).

Indeed, the equality |Dn ·Dn|r(Dn)= r(Dn−1) obtained from the relation M R = 0
shows that r(Dn) divides r(Dn−1) and r(Dn) < r(Dn−1) if |Dn · Dn| > 1. Sup-
pose that, for some i , we have r(Di ) > r(Di+1). Then r(Di−1) > r(Di ) because
|Di · Di |r(Di )=r(Di−1)+r(Di+1) and |Di ·Di |≥2. The equality |Di · Di |r(Di )=

r(Di−1)+ r(Di+1) implies that gcd(r(Di−1), r(Di ))= gcd(r(Di ), r(Di+1)).
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Proposition 4.3. Let (G,M, R) be an arithmetical tree containing a vertex C0

of prime multiplicity p. Assume that a vertex D linked to C0 by an edge e has
multiplicity divisible by p. Let GD denote the connected component of G \ {e} that
contains D. Assume in addition that GD does not contain any vertex A of degree 1
or 2 in G with |A · A| = 1. Then

γDgD ≥ 2(p− 1).

If γDgD = 2(p− 1), then γD = 1 and GD is a graph of the shape depicted below,
containing one node C of G only, of multiplicity p and degree 3 in G. The two
terminal vertices of G that belong to GD have multiplicity 1.

p p p p p

�2 �2 �2 �2
C

p � r.C1/

r.C1/

C1

1

1C0

Let α denote the number of vertices of GD on the chain linking C0 to the node C
of GD (including the node C). Let C1 and C ′1 denote the vertices linked to C on the
two terminal chains. Then 1≤ r(C1) < p, and the minor of M corresponding to the
vertices of GD is completely determined by p, α and r(C1).

The proof of Proposition 4.3 is given in 4.6. We start with a preliminary lemma.

4.4. Let (G,M, R) be an arithmetical tree. For each node (C, r(C)) of degree
d(C)≥ 3 in G, we define an invariant µ(C) as follows. Let ρ(C) denote the number
of terminal chains attached to C , and let D1(C), . . . , Dρ(C)(C) be the vertices of G
linked to C that belong each to one terminal chain attached to C . Let ri (C) denote
the multiplicity of Di (C). The multiplicity of the terminal vertex on the chain
containing Di (C) is gcd(r(C), ri (C)). If no vertex A on the terminal chain has
|A · A| = 1, then ri (C) < r(C) (see 4.2). When a chain attached to C is not terminal,
we will call it a connecting chain. As in [Lorenzini 1989, Theorem 4.7], we let,
when ρ(C) > 0,

µ(C) := (d(C)− 2)(r(C)− 1)−
ρ(C)∑
j=1

(gcd(r(C), r j (C))− 1).

When ρ(C)= 0, we let µ(C) := (d(C)−2)(r(C)−1). It is clear that, if r(C)= 1,
then µ(C)= 0.

Lemma 4.5. Assume that the terminal chains attached to C do not contain a
vertex A with |A · A| = 1. Then µ(C) ≥ 0, and µ(C) = 0 if and only if r(C) = 1
and ρ(C)= 0.
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Proof. It is clear that, if a node C has ρ(C) = 0, then µ(C) ≥ 0, and µ(C) = 0
only when r(C) = 1. Assume now that ρ(C) > 0. Our hypothesis implies that
r(C) > gcd(r(C), ri (C)) for each vertex Di (C), i = 1, . . . , ρ(C). In particular,
r(C) > 1, and we need to prove that µ(C) > 0. Let

s := gcd(r(C), r1(C), . . . , rd(C)).

Assume first that ρ(C) = d(C) so that G has a single node. It is proven in
[Lorenzini 1989, Proposition 4.1] that, if ρ(C)= d(C) and s = 1, then µ(C)≥ 0.
When s > 1, define

µs(C) := (d(C)− 2)
(

r(C)
s
− 1

)
−

ρ(C)∑
j=1

(
gcd(r(C), r j (C))

s
− 1

)
.

The integer µs(C) is nothing but the µ-invariant of the node on the arithmetical
graph obtained from G by dividing all its multiplicities by s. Thus, µs(C) is even
[Lorenzini 1989, Definition 3.6] and µs(C)≥ 0. Since

µ(C)=−2(s− 1)+ sµs(C),

we find that µ(C) > 0 if µs(C) > 0. We claim that, under our hypotheses, µ(C) > 0
when s = 1. Indeed, our hypotheses imply that r(C) > gcd(r(C), ri (C)) for each
vertex Di (C), i = 1, . . . , ρ(C). Dropping the reference to C , we can write

µ(C) := (d − 2)(r − 1)−
d∑

j=1

(gcd(r, ri )− 1)

≥ (d − 2)(r − 1)− d(r/2− 1)= (d − 4)r/2+ 2.

Thus, µ(C) > 0 if d ≥ 4. Assume now that d = 3. Then cr = r1 + r2 + r3 for
some c. Let hi = gcd(r, ri ), and assume that h1 ≥ h2 ≥ h3. Then (h1, h2, h3) =

(r/2, r/2, r/2), (r/2, r/2, r/3), (r/2, r/3, r/3), (r/2, r/3, r/4) cannot occur due
to the divisibility r | (r1+ r2+ r3). Since the cases (h1, h2, h3)= (r/3, r/3, r/3),
(r/2, r/4, r/4), (r/2, r/3, r/6) haveµ(C)>0, we need only consider (h1,h2,h3)=

(r/2, r/3, r/5). In this case, r1 = r/2, r2 = r/3 or 2r/3 and r3 = ar/5 with
a = 1, . . . , 4. The reader will check that cr = r1+ r2+ r3 is impossible to achieve
with these values, and our claim is proved.

Let us assume now that 0< ρ(C) < d(C). Then

µ(C) := (d − 2)(r − 1)−
ρ∑

j=1

(gcd(r, ri )− 1)

≥ (d − 2)(r − 1)− (d − 1)(r/2− 1)= (d − 3)r/2+ 1> 0. �

4.6. Proof of Proposition 4.3. We claim that GD contains a node of G. (This node is
also a node of GD unless it is D itself and dG(D)= 3.) Indeed, the hypotheses that
r(C0)≤ r(D) and |D · D|> 1 imply that dG(D) > 1 because the relation M R = 0
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provides otherwise for the equality |D · D|r(D)= r(C0), which is a contradiction.
Suppose then that D is connected in GD to D1. If dG(D)= 2, then we find from the
relation |D ·D|r(D)= r(C0)+r(D1) that r(D)≤ r(D1). Repeating this discussion
with D and D1 instead of C0 and D, we find that the graph GD has a chain of
increasing multiplicities r(D) ≤ r(D1) ≤ · · · , which eventually leads to a node
of GD (and of G).

In G, C0 and D are adjacent vertices. Consider the connected component G
of G \ {D} that contains C0. Two cases can occur: either (a) G contains a node
of G, or (b) G does not contain a node of G, in which case we will call G a terminal
chain of G. In the latter case, the terminal vertex on this chain has multiplicity
gcd(r(C0), r(D)) (see 4.2), which equals r(C0) by hypothesis. The definition of
γDgD in (4.1.2), along with the fact that we assume that G is a tree, allow us to write

γDgD = (r(C0)− 1)+
∑

vertices A of GD

(r(A)− 1)(dG(A)− 2).

In case (a), C0 is not on a terminal chain of G so that, by definition of µ(C) in 4.4,
we can write

γDgD = (r(C0)− 1)+
∑

nodes C of G in GD

µ(C) (4.6.1)

(where µ(C) is computed viewing C as a node of G and not of GD). In case (b)
where C0 is on a terminal chain of G whose terminal vertex has multiplicity r(C0),
we have

γDgD = 2(r(C0)− 1)+
∑

nodes C of G in GD

µ(C).

We prove below case (a). The arguments to prove (b) are similar and are left to the
reader. Case (b) will not be used in the remainder of this article.

Assume that we are in case (a). We can apply Lemma 4.5, and we obtain that each
term µ(C) in the above sum is nonnegative. In view of (4.6.1), since r(C0)= p by
hypothesis, we need to show that

∑
nodes C µ(C)≥ p− 1, and we need to describe

the graphs for which
∑

nodes C µ(C)= (p− 1).
Denote by C the node of G closest to C0 in GD . (This node could be D.) The mul-

tiplicity of C is divisible by p since p divides the consecutive multiplicities r(C0)

and r(D) (similar argument as in 4.2). Let np denote the multiplicity of C .
Suppose that C (of degree d in G) has only one connecting chain. If n = 1, then

all terminal multiplicities at C equal 1 and µ(C)= (d− 2)(p− 1). The case d = 3
leads to the case described in the statement of Proposition 4.3 with µ(C)= (p−1),
γDgD = 2(p− 1) and γD = 1. When d > 3, we have µ(C) > p− 1, as desired.
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When n > 1, the inequality

µ(C)≥ (d − 2)(np− 1)− (d − 1)(np/2− 1)

= (d − 2)np/2− np/2+ 1

shows that we have µ(C) > p− 1 unless d = 3. When n > 1 and d = 3, every
vertex on the chain linking C to C0 has multiplicity divisible by p. Thus, either
(i) both terminal multiplicities of C are coprime to p (call them n1 and n2), or
(ii) both are divisible by p (call them m1 p and m2 p).

In case (i), µ(C) = np − n1 − n2 + 1 with n1 and n2 dividing n. It follows
that µ(C) ≥ n(p − 2)+ 1. Clearly, µ(C) > p − 1 unless p = 2. Assume that
p = 2. If (n1, n2) 6= (n, n), we find that µ(C)= n(p− 1)+ 1> (p− 1). The case
(n1, n2) = (n, n) cannot happen because, in that case, n divides the multiplicity
of all the components linked to C , which implies then that n = 2. But a node of
multiplicity 4 cannot have exactly three vertices of multiplicity 2 attached to it.

In case (ii), µ(C)= (n−m1−m2)p+1 with m1 and m2 dividing n. The equality
(n−m1−m2)= 0 is not possible. Indeed, it is only possible if m1=m2= n/2. But
since gcd(m1,m2)= 1, this case can happen only if n = 2. But then |C ·C | would
equal 3/2, a contradiction. It follows that µ(C)= (n−m1−m2)p+ 1> p− 1.

Suppose now that C, of multiplicity np, has at least two connecting chains. If
n > 1, then

µ(C)≥ (d − 2)(np− 1)− (d − 2)(np/2− 1)= (d − 2)np/2> p− 1,

as desired. If n = 1, then µ(C) = (d − 2)(p− 1). Thus, µ(C) > p− 1 if d > 3.
Suppose now that d = 3. Since GD is a tree with a node C of degree 3, GD must
have at least three terminal vertices. Thus, there must exist at least one additional
node C ′ on the graph GD that has a terminal chain. It follows that µ(C ′) ≥ 1
(Lemma 4.5) and, therefore, µ(C)+µ(C ′) > p− 1, as desired.

4.7. To conclude the proof of Proposition 4.3, we now specify the intersection
matrix in the case where γDgD = 2(p− 1). Let (G,M, R) be as in Proposition 4.3,
and assume that the vertex D is such that γDgD = 2(p− 1). Let ND denote the
matrix M restricted to the vertices of GD. Let α denote the number of vertices
of GD on the chain linking C0 to the node C of GD (including the node C). Each of
these vertices except C is of degree 2. The multiplicity of C is p. Since we assume
that no vertex of degree 2 has self-intersection −1, we find that the multiplicity
of each of these vertices must be p. It follows that each of these vertices except
possibly C must have self-intersection −2.

Let C1 and C ′1 denote the vertices linked to C on the two terminal chains.
Since they have degree 1 or 2 and cannot have self-intersection −1, we find that
1 ≤ r(C1) < r(C) = p and r(C ′1) < r(C). Moreover, from M R = 0, we find
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that p + r(C1) + r(C ′1) = p|C · C |. It follows that |C · C | = 2, and r(C ′1) =
p− r(C1). We claim that ND depends only on p, α and r(C1), and we write it
as ND = N (p, α, r(C1)). Indeed, the pair (p, r(C1)) completely determines all
multiplicities and all self-intersections on the terminal chain containing C1: use
(r, s)= (p, r(C1)) in 4.8 below to determine the self-intersections and multiplicities
of the terminal chain. Similarly, the pair (p, r(C ′1)) completely determines all
multiplicities and all self-intersections on the terminal chain containing C ′1. This
conclude the proof of Proposition 4.3. The matrix ND is an intersection matrix also
introduced in [Lorenzini 2013a, Example 3.18]. �

4.8. Recall the following standard construction. Given an ordered pair of positive
integers r > s with gcd(r, s) = 1, we construct an associated intersection matrix
N = N (r, s) with vector R = R(r, s) and N R =−re1 as follows (where e1 denotes
the first standard basis vector of Zn). Using the division algorithm, we can find
positive integers b1, . . . , bm and s1 = s > s2 > · · ·> sm = 1 such that r = b1s− s2,
s1= b2s2−s3 and so on until we get sm−1= bmsm . These equations are best written
in matrix form: 

−b1 1 . . . 0

1 −b2
. . .

. . .
. . . 1

0 . . . 1 −bm




s1
...
...

sm

=

−r
0
...

0

 .

We let N (r, s) denote the above square matrix and R(r, s) be the column matrix on
the left of the “equals” sign. It is well-known that det(N (r, s))=±r (see [Lorenzini
2000, Lemma 2.6]). We recall also for use in Corollary 6.12 that

1
rs
+

1
ss2
+ · · ·+

1
sm−1sm

=
c
r
, (4.8.1)

where 0< c< r is such that r | cs− 1 (see [Lorenzini 2000, Lemmas 2.8 and 2.6]).

Remark 4.9. In Proposition 4.3, the hypothesis that γDgD = 2(p− 1) allowed us
to completely describe the graph GD. For a fixed γDgD > 2(p− 1), the situation
is much more complicated and several possible types of graphs GD may occur. It
would follow from our guess in 6.2 that, for applications to models of curves, it
suffices to classify the cases where γDgD is a multiple of p− 1. We give below
several possible types of graphs GD with γDgD = 3(p− 1) when p is odd.

(a) GD is a graph with one node of G only, of multiplicity p and degree 4 in G.
The three terminal vertices of G that belong to GD have multiplicity 1.
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1
p p p p p

�2 �2 �2

1

1
C0

To completely determine the intersection matrix ND and the vector RD , one
needs to also provide the multiplicities r1, r2 and r3, of the first vertices on
each of the three terminal chains, with the conditions 1 ≤ r1, r2, r3 < p and
r1 + r2 + r3 divisible by p. Such data can only be provided when p is odd.
The self-intersection of the node is then −(p+ r1+ r2+ r3)/p =−2 or −3.

(b) GD is a graph with one node of G only, of multiplicity 2p and degree 3 in G.
The two terminal vertices of G that belong to GD have multiplicity 1 and 2,
respectively.

p p p p 2p

�2 �2 �3

2

1
C0

(c) GD is a graph with 2 nodes C and C ′ of G. Let C be the node closest to C0

in GD . It has multiplicity p and degree 3 in G, and it has a single terminal chain
with terminal multiplicity 1. The node C ′ is connected to C by a connecting
chain that contains a vertex of multiplicity coprime to p.

(i)
p p p

1

p

C 0

1

1
C0

(ii)
p p p

1

2p

C 0

2

p
C0

We conclude this section with some general remarks concerning the invariant gD
introduced in (4.1.2).

Remark 4.10. Let (G,M, R) be an arithmetical graph. As at the beginning of
this section, fix a vertex (C0, r(C0)) of G. Assume that C0 is linked to a vertex
(D, r(D)) by a single edge e and that, when the edge e is removed from G, then
D and C0 are not in the same connected component of the resulting graph. Let GD

denote the connected component of G \ {e} that contains D. Consider the minor
N = ND of M corresponding to the vertices in GD. Let n denote the number of
vertices of GD .



Wild models of curves 351

(a) The integer gD depends only on the matrix ND and the vertex D on the graph GD .
To prove this statement, we show that the vector RD/γD is completely determined
by ND and the vertex D. Indeed, let us number the vertices of GD such that D is
the first vertex numbered. Then RD/γD is a vector with positive coefficients such
that ND(RD/γD)=

t(−r(C0)/γD, 0, . . . , 0) (where the superscript t indicates the
transpose vector). The existence of such a relation insures that ND is negative-
definite (see [Lorenzini 2013a, §3.3]), and the vector RD/γD is a rational multiple
of the first column of the unique matrix N ∗ such that N N ∗ = N ∗N = det(N ) Idn

[Lorenzini 2013a, Definition 3.4]. The integer r(C0)/γD is the order in Zn/ Im(N )
of the class of the first basis vector e1 [Lorenzini 2013a, Lemma 3.5].

(b) The integer gD is nonnegative. More precisely,

gD − 2β(GD)≥

(
r(C0)

γD

)
+ gcd

(
r(D)
γD

,
r(C0)

γD

)
− 2≥ 0. (4.10.1)

To prove the first inequality, complete the pair (N , RD/γD) into an arithmetical
graph (G ′,M ′, R′) by adding a chain attached to D, as in [Lorenzini 2013a, §3.15].
Clearly, β(G ′) = β(GD). The graphs G ′ and GD differ in only two vertices of
degree not equal to 2: the terminal vertex on the new terminal chain on G ′ has
terminal multiplicity gcd(r(D)/γD, r(C0)/γD), and dG ′(D)= dGD (D)+ 1. Using
(4.1.1) and (4.1.3), it is easy to show that

2g0(G ′,M ′, R′)− 2β(G ′)

= gD − 2β(GD)−

(
r(C0)

γD
− 1

)
−

(
gcd

(
r(D)
γD

,
r(C0)

γD

)
− 1

)
. (4.10.2)

The integer g0(G ′)−β(G ′) is always nonnegative [Lorenzini 1989, Theorem 4.10],
and the statement follows.

(c) In analogy with the arithmetic genus of curves on surfaces, we define, given
Z ∈ Zn , a (possibly negative) integer pa(Z) as follows. If Z =Ci is a vertex of GD ,
we let pa(Z) = 0. We let pa(rCi ) be defined by the formula 2pa(rCi ) − 2 =
r2C2

i + r(|C2
i | − 2) (where we have abbreviated Ci · Ci by C2

i ). Since r2
− r is

always even, pa(rCi ) is an integer. In general, when Z =
∑n

i=1 ri Ci , we let

Z2
:=

∑
1≤i, j≤n

rir j (Ci ·C j )

and set

2pa(Z)− 2 := Z2
+

n∑
i=1

ri (|C2
i | − 2).

We leave it to the reader to check that

gD = 2pa(RD/γD)− 2+
r(D)
γD

(
r(C0)

γD
+ 1

)
.
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(d) The integer gD is even when either r(C0) is odd or r(D) is even. This can be
seen from the formula for gD in (c) or from (4.10.2).

(e) Assume that GD is a tree. Then the order |det(N )| of the group8N :=Zn/N (Zn)

can be computed completely in terms of the vector RD/γD and of the graph GD

(see [Lorenzini 2013a, Theorem 3.14]), and we find that

|det(N )| =
r(D)
γD

r(C0)

γD

∏
vertices A of GD

(
r(A)
γD

)dGD (A)−2

,

where dGD (A) is the degree of the vertex A in the graph GD . Recall now the formula
(4.1.3):

gD =

(
r(D)
γD
− 1

)
+

(
r(C0)

γD
− 1

)
+

∑
vertices A of GD

(
r(A)
γD
− 1

)
(dGD (A)− 2).

This last expression is surprisingly similar to the expression for |det(N )|. This
motivates the following result.

Let x > 0 be any integer, and define the function `(x) :=
∑

q prime
ordq(x)(q−1). Then

`(|det(N )|)≤ gD. (4.10.3)

This result is not used in the remainder of this paper, and we will provide here
only a sketch of proof.

Sketch of proof. We complete the pair (N , RD/γD) into an arithmetical graph
(G ′,M ′, R′) by adding a chain attached to D, as in [Lorenzini 2013a, §3.15]. The
order of the component group8(M ′) is given in [Lorenzini 1989, Corollary 2.5], and
the relation between det(N ) and |8(M ′)| is discussed in the proof of Theorem 3.14
in [Lorenzini 2013a]. We can then bound |8(M ′)| in terms of g0(G ′,M ′, R′) using
[Lorenzini 1989, Corollary 4.8], which states that `(|8(M ′)|)≤ 2g0(G ′,M ′, R′).
The inequality `(|det(N )|)≤ gD follows then from (4.10.2). �

5. The quotient construction

Let K be a complete discrete valuation field with valuation v, ring of integers OK ,
uniformizer πK and residue field k of characteristic p > 0, assumed to be alge-
braically closed. Let X/K be a smooth proper geometrically connected curve of
genus g > 0. When g = 1, assume in addition that X (K ) 6=∅. Assume that X/K
does not have semistable reduction over OK and that it achieves good reduction
after a cyclic extension L/K of prime degree q .

Let H denote the Galois group of L/K . Let Y/OL be the smooth model of X L/L .
Let σ denote a generator of H . By minimality of the model Y , σ defines an
automorphism of Y also denoted by σ (but note that σ : Y→ Y is not a morphism
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of OL -schemes). We also denote by σ the automorphism of Yk induced by the
action of σ on Y . Let Z/OK denote the quotient Y/H , and let α : Y → Z
denote the quotient map. The scheme Z is normal. The map α induces a natural
map Yk→ Z red

k that factors as follows:

Yk
ρ
−→ Yk/〈σ 〉 → Z red

k .

5.1. We claim that the first map is Galois of order |H | and that the second map is
the normalization map of Z red

k . Indeed, let Spec(B) denote a dense open set of Y
invariant under the action of H . Then Spec(B H ) is a dense open set of Z . Let
A := B H . Let PB = (πL) denote the prime ideal of B corresponding to Yk , and let
PA := PB ∩ A. We have the natural maps

B H/PA ↪→ (B/PB)
H ↪→ B/PB .

The extension of discrete valuation rings (B H )PA → BPB induces an extension of
residue fields (B H )PA/PA(B H )PA → BPB/PB BPB . We claim that this extension
has degree |H |. Indeed, our assumption is that the curve X/K does not have good
reduction over OK . If the residue extension is trivial, the normalization of the
curve Z red

k is isomorphic to Yk and, thus, is of genus g. In addition, we find that
PA BPB = (PB BPB )

|H | so that πK APA = (PA APA). The special fiber of Z is then
reduced, and the curve X/K has good reduction over OK , a contradiction. It follows
then that PA BP B = PB BP B so that πK APA = (PA APA)

|H |. Hence, the multiplicity
in Z of the irreducible component Z red

k equals |H |.
It is easy to check that, for any x ∈ (B/PB)

H , |H |x and x |H | belong to A/PA.
Thus, when |H | 6= p, A/PA and (B/PB)

H have the same field of fractions. When
|H | = p, it could happen that A/PA and (B/PB)

H do not have the same field of
fractions, and then the extension of fields of fractions is purely inseparable of degree
p with (B/PB)

H
= B/PB . It follows that the special fiber of Z also has genus g.

When g > 1, this is not possible since the multiplicity of Zk is p. When g = 1, it
could happen that Z is the minimal model of X/K with a multiple special fiber. This
case cannot happen in our situation because we assumed X (K ) 6=∅: a K -rational
point always reduces to a smooth point in the special fiber. Thus, the automorphism
σ : Yk→ Yk is not trivial. We find that A/PA and (B/PB)

H have the same fields
of fractions so that the Dedekind domain (B/PB)

H is the integral closure of A/PA.

5.2. Let P1, . . . , Pd be the ramification points of the map Yk → Yk/〈σ 〉. Let
Q1, . . . , Qd be their images in Z . The normal scheme Z is singular exactly at
Q1, . . . , Qd . Indeed, the morphism Y→Z is unramified outside these points. If the
point Qi were regular, the morphism would be flat above Qi [Altman and Kleiman
1970, Corollary V.3.6] and the branch locus would then be pure of codimension 1
[Altman and Kleiman 1970, Theorem VI.6.8], a contradiction.
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Consider the regular model X → Z obtained from Z by a minimal desingular-
ization. After finitely many blow-ups X ′→ X , we can assume that the model X ′
is such that X ′k has smooth components and normal crossings and is minimal with
this property. Let f denote the composition X ′→ Z . Let C0/k denote the strict
transform in X ′ of the irreducible closed subscheme Z red

k of Z . The curve C0 has
multiplicity |H | in X ′. Let D1, . . . , Dd denote the irreducible components of X ′k
that meet C0. Let ri denote the multiplicity of Di , i = 1, . . . , d . We assume d ≥ 1.
Our main theorem in this section is this:

Theorem 5.3. Let X/K be a smooth proper geometrically connected curve of
genus g > 0 with X (K ) 6=∅ if g = 1. Assume that X/K does not have semistable
reduction over OK and that it achieves good reduction after a cyclic extension L/K
with Galois group H of prime degree p. Keep the above notation, and let Qi be a
singular point of the quotient Z :=Y/H. Let G Qi denote the graph associated with
the curve f −1(Qi ). Let G denote the graph associated with the special fiber X ′k .
Then, for all i = 1, . . . , d, the graph G Qi contains a node of G and p divides ri .

Proof. When d = 1, the theorem is immediate: the component C0 of multiplicity p
is a terminal vertex of the graph of X ′, and thus, p|C0 ·C0| = r1. Assume that G Q1

does not contain a node of G. Then since d=1, G does not contain a node. Since the
resolution is minimal with normal crossings, none of the components of X ′k can have
self-intersection−1 except possibly for C0. It is clear that the graph G is not reduced
to a single vertex since the model Z is singular. Thus, the graph G has a second
terminal vertex C ′ in addition to C0. But then, walking on G from C ′ towards C0,
we find that the multiplicities can only be strictly increasing. This is a contradiction
since all multiplicities on G are divisible by p (because two consecutive ones are),
and G must contain a node. We assume from now on that d > 1.

Let A := Jac(X/K ). Let AK /OK denote the Néron model of A/K . Let AL/OL

denote the Néron model of AL/L , and denote by η : AK ×OK OL → AL the
canonical map induced by the functoriality property of Néron models. The special
fiber (AK )k is an extension of a finite group 8A/K , called the group of components,
by the connected component of zero (AK )

0
k of (AK )k :

0→ (AK )
0
k→ (AK )k→8A/K → 0.

Assume by contradiction that p is coprime to one of the ri ’s. Without loss of
generality, we may assume that p - rd . For each i = 1, . . . , d , choose a point xi ∈ Di

such that xi is a regular point of (X ′k)red. Since K is complete, we can find a closed
point Ri of X of degree ri over K and such that the closure of Ri in X ′ meets the
special fiber Xk exactly in xi (see, e.g., [Gabber et al. 2013, Proposition 8.4(3)]).
For each i = 1, . . . , d − 1, consider the following divisor of degree 0 on X :
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Si :=
rd

gcd(ri , rd)
Ri −

ri

gcd(ri , rd)
Rd .

We also denote by Si its image in Jac(X)/K . We recall below Raynaud’s description
of the Néron model of a Jacobian in order to be able to describe explicitly the
image of Si under both the reduction map Jac(X)(K )→8A/K and the reduction
map Jac(X)(L)→ (AL)k(k). We will be able to contradict the hypothesis that p - rd

by considering the reductions of
∑d−1

i=1 gcd(ri , rd)Si .
Raynaud [1970] exhibited an explicit separated quotient QK /OK of the open

subfunctor of PicX ′/OK consisting of line bundles of total degree 0, and he showed
that, when the residue field k is algebraically closed, QK /OK is isomorphic to
the Néron model of A/K [Bosch et al. 1990, Theorem 9.5.4(a)]. The canonical
map QK (K )→ 8QK is described as follows [Bosch et al. 1990, Lemma 9.5.9,
Theorem 9.6.1]. Represent an element of QK (K ) by a line bundle L on X of
degree 0. Let L denote an extension of L to X ′. Number the irreducible components
of X ′k as C1, . . . ,Cv . Consider the map

⊕
i ZCi→Hom

(⊕
i ZCi ,Z

)
that sends Ci

to the map δCi with δCi (C j ) := (Ci ·C j ). The group8M is isomorphic to the torsion
subgroup of the cokernel of this map. The group of components 8QK is isomorphic
to 8M , and under this isomorphism, the image of L under QK (K )→ 8QK is
the map δL with δL(Ci ) := (Ci ·L). It follows immediately from these facts that
the image in 8QK of Si ∈ Jac(X)(K ) can be identified with the image τi of the
vector E(Di , Dd) in 8M (notation as in 3.1 and 3.3).

Consider now the reduction map QL(L) → (QL)k(k). The closure of any
point in the preimage under X L → X of the closed point Ri meets the special
fiber of the smooth model Y of X L only at the point Pi . The line bundle L
corresponding to the divisor Si pulls back to a line bundle LL on X L . We find that
the reduction of LL ∈ Jac(X L)(L) is the point of Jac(Yk)(k) corresponding to the
divisor lcm(ri , rd)(Pi − Pd).

We may now find a contradiction to the assertion that p - rd when the quo-
tient of Yk by the action of H has genus 0. As we indicated above, the ele-
ment

∑d−1
i=1 gcd(ri , rd)Si in Jac(X)(K ) reduces to the element

∑d−1
i=1 gcd(ri , rd)τi

in 8M . Proposition 3.5 shows that the latter element is zero in 8M . Thus,∑d−1
i=1 gcd(ri , rd)Si reduces in the connected component (QK )

0
k . Our additional

hypothesis implies that this connected component is unipotent. This follows
from [Bosch et al. 1990, Theorem 9.5.4] if the greatest common divisor of the
multiplicities of the components of X ′k is 1 and from [Liu et al. 2004, Propo-
sition 7.1] in general. It follows that the image of (QK )

0
k under the canonical

map η :AK ×OK OL →AL is trivial.
Consider now the element

∑d−1
i=1 gcd(ri , rd)Si in Jac(X L)(L). Our discussion

above shows that it reduces to the element rd
(∑d−1

i=1 ri (Pi − Pd)
)

in Jac(Yk)(k).
We have thus proved that rd

(∑d−1
i=1 ri (Pi − Pd)

)
= 0 in Jac(Yk)(k). Our hypothesis
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on the quotient of Yk by H implies that each Pi − Pd has order p (Proposition 2.5).
Since rd

(∑d−1
i=1 ri (Pi − Pd)

)
= 0 and we assume that p does not divide rd , we can

conclude that
∑d−1

i=1 ri (Pi − Pd)= 0. Then Proposition 2.5 implies that p divides
ri for all i = 1, . . . , d−1. Since |C0 ·C0|p= r1+· · ·+rd , it follows that p divides
rd , which contradicts our assumption.

When the quotient of Yk by the action of H has positive genus, the image of
(QK )

0
k under the canonical map η : AK ×OK OL → AL is not trivial, and the

following additional considerations must be discussed. Let Norm(X ′) denote the
normalization of X ′ in the field of fractions of Y . Since Y is integral over Z , we
have a natural map Norm(X ′)→ Y . All components of X ′ are rational except
possibly the component C0 [Lorenzini 2013a, Lemma 2.10].

By construction, we have a natural map Norm(X ′)→ X ′×OK OL . Let N →
Norm(X ′) denote a resolution of the singularities of Norm(X ′). Consider the
commutative diagram of OL -morphisms

N −−−→ Norm(X ′) −−−→ Yy y
X ′×OK OL −−−→ Z ×OK OL

The maps N → Norm(X ′)→ X ′×OK OL induce maps of the associated Picard
functors

PicX ′/OK ×OK OL ∼= PicX ′×OK OL/OL → PicNorm(X ′)/OL → PicN /OL ,

whose composition induces the canonical map of Néron models

η : QK ×OK OL → QL .

Considering the special fibers over k, we obtain a commutative diagram

Pic0
Nk/k −−−→ (QL)

0
kx x

Pic0
X ′k/k −−−→ (QK )

0
k

Since we do not have additional information on the special fiber X ′k , we cannot
conclude that the bottom horizontal map is an isomorphism. It is however faithfully
flat [Raynaud 1970, Corollaire 4.1.2]. Since the special fiber of Y is reduced, we find
that the top horizontal map is an isomorphism [Bosch et al. 1990, Theorem 9.5.4].

Let D denote the irreducible component of Nk lying above Yk . The composition
D ↪→Nk→ Yk is an isomorphism. The image of D in (X ′)red

k is the curve C0, and
we will identify the map D→C0 with the quotient map ρ :Yk→Yk/〈σ 〉. Consider
the following diagram, whose top right horizontal morphism is an isomorphism:
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Pic0
D(k) ←−−− Pic0

Nk
(k)

∼
−−−→ (QL)

0
k(k)

ρ∗

x x x
Pic0

C0
(k) ←−−− Pic0

X ′k
(k) −−−→ (QK )

0
k(k)

We may now conclude the proof of Theorem 5.3 using the same method as in the case
where the reduction of Jac(X)/K is purely unipotent. Consider again the element∑d−1

i=1 gcd(ri , rd)Si in Jac(X)(K ), which reduces to the element
∑d−1

i=1 gcd(ri , rd)τi

in 8M . Proposition 3.5 shows that the latter element is zero in 8M . Thus,∑d−1
i=1 gcd(ri , rd)Si reduces in the connected component (QK )

0
k . Consider now

the element
∑d−1

i=1 gcd(ri , rd)Si in Jac(X L)(L). Our discussion above shows that
it reduces to the element rd

(∑d−1
i=1 ri (Pi − Pd)

)
in Jac(Yk)(k).

Since Pic0
X ′k/k→(QK )

0
k is a faithfully flat morphism and each of the above squares

commutes, the element
∑d−1

i=1 gcd(ri , rd)Si , which reduces to rd
(∑d−1

i=1 ri (Pi−Pd)
)

in Pic0
Yk/k(k), in fact reduces to an element in ρ∗(Jac(Yk/〈σ 〉)). Thus, the image

of rd
(∑d−1

i=1 ri (Pi − Pd)
)

in Jac(Yk)/ρ
∗(Jac(Yk/〈σ 〉)) is trivial. Each Pi − Pd

defines an element of order p in Jac(Yk)/ρ
∗(Jac(Yk/〈σ 〉)) (Proposition 2.5). Since

rd
(∑d−1

i=1 ri (Pi−Pd)
)
=0, we conclude that

∑d−1
i=1 ri (Pi−Pd)=0. Then Proposition

2.5 implies that p divides ri for all i=1, . . . , d−1, and since |C0·C0|p=r1+· · ·+rd ,
we find that p divides rd , which contradicts our assumption.

Now that we know that p divides ri , we see that the multiplicities on the chain
of G that leaves C0 starting with Di can only be increasing or constant because this
chain of vertices of degree 2 contains no vertex of self-intersection −1. If Di is not
a node of G, we continue along this chain and find either a terminal vertex or a node
of G. We cannot find a terminal vertex because the multiplicity of a terminal vertex
can only be at most the multiplicity of its unique neighbor with equality only if the
self-intersection of the terminal vertex is −1. Thus, G Qi contains a node of G. �

Remark 5.4. Let Ni denote the intersection matrix of the exceptional divisor, with
smooth components and normal crossings, of a resolution of the Z/pZ-quotient
singularity Qi . We recall here some properties of Ni :

(a) It is negative definite (attributed to Du Val in [Lipman 1969, Lemma 14.1]).

(b) The graph G(Ni ) associated with Ni is a tree, and all components of the
exceptional divisor are rational [Lorenzini 2013a, Theorem 2.8].

(c) Let ni denote the number of irreducible components in the exceptional divi-
sor. The Smith group 8Ni := Zni / Im(Ni ) is killed by p [Lorenzini 2013a,
Theorem 2.6].

(d) The fundamental cycle Z of Ni is such that |Z2
|≤ p [Lorenzini 2013a, Theorem

2.3, Remark 2.4].



358 Dino Lorenzini

6. The weakly ramified case

We present in this section some applications of Theorem 5.3. Let us recall our
notation. Let K be a complete discrete valuation field with valuation v, ring of
integers OK , uniformizer πK and residue field k of characteristic p > 0, assumed
to be algebraically closed. Let X/K be a smooth proper geometrically connected
curve of genus g > 0. When g = 1, we assume in addition that X (K ) 6=∅.

Assume that X/K does not have semistable reduction over OK and that it
achieves good reduction after a cyclic extension L/K of prime degree p. Let
H = 〈σ 〉 denote the Galois group of L/K . Let Y/OL be the smooth model of
X L/L . Let Z/OK denote the quotient Y/H with singular points Q1, . . . , Qd and
d ≥ 1. Recall the regular model f : X ′→ Z introduced in 5.2.

6.1. The resolution of a singularity Q of Z is a local process and depends only on
the local ring OZ,Q . It seems therefore natural to try to relate the “complexity” of
the resolution graph to some local invariants of OZ,Q . In this respect, we propose
the following.

Consider the Galois morphism ρ : Yk → Yk/〈σ 〉. Associated with any point
Q ∈ Yk/〈σ 〉 is the following measure of the ramification of ρ over Q:

ν(Q) := δ(P)=
∞∑
j=0

(|H j (P)| − 1),

where P is the preimage of Q in Yk and H j (P) denotes the j-th higher rami-
fication group at P . (For more general morphisms, we would define ν(Q) :=∑

P∈ρ−1(Q) δ(P).) Recall from 2.2 that the morphism is weakly ramified at P
if δ(P)= 2(p− 1). Our guess is that ν(Q) should also be an important measure of
how complicated the exceptional divisor of the resolution of Q is. To formulate this
guess more precisely, we compare the expressions of the genus g in the Riemann–
Hurwitz formula and in the adjunction formula. The Riemann–Hurwitz formula for
the morphism ρ can be rephrased as

2g = 2g(Yk)= 2|H |g(C0)− 2(|H | − 1)+
d∑

i=1

ν(Qi ).

Consider now the model X ′. By hypothesis, it is minimal with the property
that the special fiber has smooth components and normal crossings. Thus, none
of the vertices A in the graph G := G(X ′) with degree 1 or 2 can have self-
intersection −1 (we use here also the fact that only the curve C0 can have positive
genus [Lorenzini 2013a, Lemma 2.10]). Moreover, since the curve X/K has
potentially good reduction, the graph G(X ′) is a tree [Lorenzini 2013a, Lemma 2.10].
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The adjunction formula

2g− 2= X ′k ·X ′k +X ′k ·�,

with � a relative canonical divisor of X ′/OK , can be rewritten as

2g = 2|H |g(C0)+
∑

vertex A of G

(r(A)−1)(dG(A)−2)

= 2|H |g(C0)−2(|H |−1)+
d∑

i=1

(
|H |−1 +

∑
vertex A of G Qi

(r(A)−1)(dG(A)−2)
)

= 2|H |g(C0)−2(|H |−1)+
d∑

i=1

γDi gDi ,

(6.1.1)
where D1, . . . , Dd are the vertices attached to C0 in the tree G(X ′) and the integers
γDi and gDi are defined as in 4.1 and (4.1.2). Since the graph G Di is nothing
but the graph G Qi of the desingularization of Qi , we define our measure of the
desingularization of Qi to be γQi gQi := γDi gDi for each i = 1, . . . , d . The integer
gQi := gDi depends only on the intersection matrix of the desingularization and the
marked vertex Di on its graph. Since r(C0)= p and is divisible by γQi , we find
that γQi = 1 or p.

6.2. Our guess regarding the resolution X ′→ Z of the singularities of Z is that

γQi gQi = ν(Qi ) holds for all i = 1, . . . , d.

This equality would have interesting implications. For instance, since H = Z/pZ,
we always have ν(Q) divisible by p − 1 so that p − 1 divides γQi gQi when
γQi gQi = ν(Qi ). Since γQi = 1 or p, we find that

p− 1 divides gQi when γQi gQi = ν(Qi ).

Examples where gQi = 2(p− 1) and 3(p− 1) are given in 4.7 and Remark 4.9.
It immediately follows from the Riemann–Hurwitz formula and the adjunction
formula that:

Lemma 6.3. With the above notation and hypotheses,

d∑
i=1

ν(Qi )=

d∑
i=1

γQi gQi . (6.3.1)

We now prove the equality γQi gQi = ν(Qi )= 2(p− 1) for all i = 1, . . . , d in
the weakly ramified case, using Theorem 5.3.
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Theorem 6.4. Let X/K be a curve with potentially good reduction after a ram-
ified extension L/K of prime degree p. Keep the above notation. Then for all
i = 1, . . . , d:

(a) We have γQi gQi ≥ 2(p− 1) and ν(Qi )≥ 2(p− 1).

(b) If the ramification points of Yk→Yk/〈σ 〉 are all weakly ramified (in particular,
if Yk is ordinary), then γQi gQi = ν(Qi )= 2(p− 1).

Proof. (a) The fact that ν(Qi )≥ 2(p− 1) follows immediately from the properties
of a wildly ramified extension: the higher ramification groups H0 and H1 must be
nontrivial. To prove that γQi gQi ≥ 2(p− 1), we note first that Theorem 5.3 shows
that p | ri . The inequality follows then from Proposition 4.3.

(b) When the ramification points of Yk→ Yk/〈σ 〉 are all weakly ramified, we have
ν(Qi ) = 2(p− 1) (2.2). It follows from (6.3.1) and from the fact that γQi gQi ≥

2(p− 1) proven in (a) that γQi gQi = 2(p− 1). �

Remark 6.5. Without the use of Theorem 5.3, we could only argue that γQi gQi ≥

p− 1. Indeed, if r(C0) does not divide r(Di ), then γDi = 1. Then we can use the
fact that gQi ≥ r(C0)− 1 established in Remark 4.10.

Using the notation γQi introduced in this section, we may now state a corollary
to Theorem 5.3.

Corollary 6.6. Let X/K be a curve with potentially good reduction after a wildly
ramified Galois extension L/K of degree p as in Theorem 5.3. Let Ni denote the
intersection matrix associated with the resolution of Qi . Assume that γQi = 1. Then
p2 divides det(Ni ).

Proof. The graph associated with the matrix Ni is G Qi with a marked vertex Di on
it. Let RDi denote the vector of multiplicities of the components of the resolution
of Qi . Then the determinant of Ni can be computed in terms of the coefficients
of RDi /γDi (see [Lorenzini 2013a, Theorem 3.14]). In particular, it is known that
(r(C0)/γDi ) gcd(r(C0)/γDi , r(Di )/γDi ) divides det(Ni ). Under our hypotheses,
r(C0)= p, p divides r(Di ) (Theorem 5.3) and γDi = 1. �

Remark 6.7. Let X/K be a curve with potentially good reduction after a wildly
ramified extension L/K of degree p as in Theorem 5.3. Let Ni denote the intersec-
tion matrix associated with the resolution of Qi . Then p kills the Smith group 8Ni

[Lorenzini 2013a, Theorem 2.6], and thus, |det(Ni )| is a power of p. It follows
from (4.10.3) that ordp(|det(Ni )|)(p− 1)≤ gDi .

In the examples of graphs and matrices Ni given in Remark 4.9 with gDi =

3(p−1), we find that both |det(Ni )| = p2 and |det(Ni )| = p3 can occur: the former
in (b) and (c)(ii), and the latter in (a) and (c)(i).
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Theorem 6.8. Let X/K be a curve with potentially good reduction after a wildly
ramified Galois extension L/K of degree p. Assume that all ramification points
of Yk→ Yk/〈σ 〉 are weakly ramified (this is the case if Yk is ordinary). Keep the
above notation. Then, for all i = 1, . . . , d, we have ri = p, and G Qi is a graph1

with a single node Ci of degree 3:

p p p p p

�2 �2 �2 �2

Ci

p � r1.i/

r1.i/

1

1C0

Di

The intersection matrix N (p, αi , r1(i)) of the resolution of Qi is uniquely deter-
mined as in 4.7 by the two integers αi and r1(i) with 1≤ r1(i) < p. The integer αi is
the number of vertices of self-intersection −2 (including the node Ci ) on the chain
in G Qi connecting the node C0 to the single node Ci of G Qi , and this integer αi is
divisible by p.

Proof. Theorem 6.4(b) shows that γQi gQi =2(p−1) for all i=1, . . . , d . Proposition
4.3 classifies the graphs with γQi gQi = 2(p− 1), and the statement on the shape of
the graph follows.

The Smith group of the intersection matrix N (p, αi , r1(i)) is computed in [Loren-
zini 2013a, §3.19, Lemma 3.21] and is found to be of order p2 and killed by p
if and only if p divides αi . Theorem 2.6(c) of [Lorenzini 2013a] shows that this
Smith group must be killed by p. The divisibility p | αi follows. �

Remark 6.9. It is natural to wonder whether the statements of Theorems 6.4(b)
and 6.8 hold for the resolution of Qi when Pi is a weakly ramified ramification
point of Yk→ Yk〈σ 〉 without also assuming as we do in Theorems 6.4(b) and 6.8
that all ramification points are weakly ramified.

Corollary 6.10. Let X/K be a curve with potentially good reduction after a wildly
ramified Galois extension L/K of degree p as in Theorem 6.8. Suppose that g > 1
and that all ramification points of Yk→ Yk/〈σ 〉 are weakly ramified. Then:

(a) X (K ) 6=∅.

(b) Let A/K denote the Jacobian of X/K . Let A/OK be its Néron model. Then
the unipotent part U/k of the connected component of the identity in Ak/k is
a product of additive groups Ga,k .

(c) The group of components8A,K of the Néron model is isomorphic to (Z/pZ)2d−2.

1A bullet • represents an irreducible component of the desingularization of Qi . A positive number
next to a vertex is the multiplicity of the corresponding component while a negative number next to a
vertex is the self-intersection of the component.
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Proof. Part (a) is immediate since it follows from Theorem 6.8 that a regular model
of X/K contains a component of multiplicity 1. It follows from [Penniston 2000,
Theorem 2.4] that p kills U since the maximal multiplicity in the regular model
X ′/OK is equal to p. That U is now split follows from [Serre 1959, Proposition
VII.11.11]. This proves (b).

The order of 8A,K can be computed using the intersection matrix of the regular
model X ′. Since the associated graph is a tree, we find using [Lorenzini 1989,
Corollary 2.5] that |8A,K | = p2d−2. Part (c) follows since8A,K is killed by [L : K ]
because A/K has potentially good reduction [Edixhoven et al. 1996]. �

Note that in general the special fiber Ak/k need not be killed by p even when its
subgroup U and quotient 8A,K are both killed by p (see [Liu and Lorenzini 2001]
for a general discussion of such phenomena).

6.11. Let A/K be the Jacobian of a smooth proper and geometrically connected
curve X/K having a K -rational point. For use in our next corollary, we recall
below the main result of [Bosch and Lorenzini 2002, Theorem 4.6]. Identify A/K
with its dual A′/K via the map −ϕ[2] : A→ A′ as in [Bosch and Lorenzini 2002]
just before Theorem 4.6. Let X /OK denote a regular model of X/K . Let M be
the intersection matrix of Xk . Identify, as recalled in [Bosch and Lorenzini 2002,
Theorem 2.3], the component group 8A/K with the group of components 8M of M
(8M is the torsion subgroup of Zv/ Im(M)). Then Grothendieck’s pairing

〈 · , · 〉K :8A/K ×8A/K →Q/Z

coincides with the pairing 〈 · , · 〉M :8A/K ×8A/K →Q/Z considered in 3.1. In
particular, this pairing is nondegenerate. Recall also the definition of the functorial
subgroup 80

A/K of 8A/K in 1.3. We denote by (80
A/K )

⊥ the orthogonal of 80
A/K

under Grothendieck’s pairing.

Corollary 6.12. Let A/K be the Jacobian of a curve X/K of genus g > 1 hav-
ing potentially good reduction after a Galois extension L/K of degree p as in
Theorem 6.8. Assume that all ramification points of Yk → Yk/〈σ 〉 are weakly
ramified. Then 8A/K is a Z/pZ-vector space of dimension 2d − 2, and 80

A/K is a
subspace of dimension d − 1. Moreover, 80

A/K = (8
0
A/K )

⊥.

Proof. It follows from Corollary 6.10 that X (K ) 6=∅. We can thus use the results of
[Bosch and Lorenzini 2002] recalled above. We produce below explicit generators
for the groups 8A/K and 80

A/K . For each singular point Qi on the model Z/OK ,
denote by Ai and Bi the terminal components of multiplicity 1 in the exceptional
divisor of the resolution of Qi in X ′. Let αi denote the image in 8A/K of the
vector E(Ai , Bi ), i = 1, . . . , d − 1 (notation as in 3.1). Let βi denote the image
in 8A/K of the vector E(Ai , Ad), i = 1, . . . , d−1. We have seen in Corollary 6.10
that 8A/K is a Z/pZ-vector space of dimension 2(d − 1).
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We claim that

{α1, . . . ,αd−1,β1, . . . ,βd−1}

is a basis for 8A/K and that {α1, . . . ,αd−1} is a basis for 80
A/K . To prove our

claim, consider the matrix V := (〈αi ,β j 〉)1≤i, j≤d−1 with coefficients in Q/Z. We
can use the computation (4.8.1) to show that V is the diagonal matrix

diag
(
c1/p (mod Z), . . . , cd−1/p (mod Z)

)
,

where, for each i = 1, . . . , d−1, 0< ci < p and p divides cir1(i)−1. In particular,
ci/p 6= 0 in Q/Z. It follows that the set {α1, . . . ,αd−1,β1, . . . ,βd−1} is linearly
independent in (Z/pZ)2d−2. Hence, it is a basis.

It follows from the explicit computations in [Lorenzini 2000, Proposition 3.7(a)],
that 〈αi ,α j 〉 = 0 for all 1 ≤ i, j ≤ d − 1. Since the pairing 〈 · , · 〉 is perfect on
(Z/pZ)2d−2, we find that {α1, . . . ,αd−1} generates a maximal isotropic subspace.

It remains to show that α1, . . . ,αd−1 belong to 80
A/K and that neither β1, . . . ,

βd−1 nor any nontrivial linear combination of β1, . . . ,βd−1 belong to 80
A/K . For

this, since K is complete, we can pick for each i = 1, . . . , d − 1 two K -rational
points ai and bi of X whose closure in X ′ intersects X ′k in a smooth point of Ai

and Bi , respectively (see, e.g., [Bosch et al. 1990, Corollary 9.1.9]). Then ai − bi

and ai −ad are divisors of degree 0 on X , which we identify with K -rational points
in the Jacobian A/K of X/K . These rational points reduce in the component
group 8A/K of the Néron model of A/K to the points αi and βi , respectively.
Since A(K )⊂ A(L), we can reduce ai − bi in the special fiber of the Néron model
A′/OL . This special fiber is isomorphic to the Jacobian of the special fiber Yk of
the smooth model Y/OL of X L/L . It is clear that, by construction, the reduction
of ai − bi is trivial so that αi ∈8

0
A/K for i = 1, . . . , d − 1. On the other hand, the

reduction of ai−ad is the divisor Pi−Pd , which is a nontrivial p-torsion point when
viewed in the quotient A′k/η(Ak). This shows that βi /∈8

0
A/K for i = 1, . . . , d − 1.

Moreover, any nontrivial linear combination of the images of the divisors Pi − Pd

is not zero in A′k/η(Ak) (Proposition 2.5), so no nontrivial linear combination of
β1, . . . ,βd−1 belongs to 80

A/K . �

Example 6.13. Examples of curves having good reduction after an extension of
degree p can be obtained as twists as follows. Choose a smooth proper curve C/k
having an automorphism σk of order p. Over an appropriate ring OK with residue
field k, there exists a smooth scheme Y0/OK with an OK -automorphism σ such
that C is k-isomorphic to Y0

k and σ restricted to Y0
k induces the given automorphism

σk . It is shown in [Sekiguchi et al. 1989, §IV, Theorem 2.2] that one can take OK

to be the Witt ring W (k)(ζp) with ζp a primitive p-th root of unity. If one wants a
lift in equicharacteristic p, one can trivially take OK = k[[t]].
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Choose any cyclic (ramified) extension L/K of degree p. The twist of Y0
K /K

by L/K and σ is a curve X/K that achieves good reduction over L . Starting with
an ordinary curve C/k produces a curve X/K having potentially good ordinary
reduction over L .

Corollary 6.14. Fix any odd prime p. For each integer m > 0, there exist a regular
local ring B of equicharacteristic p endowed with an action of H := Z/pZ and a
regular local ring B ′ of mixed characteristic (0, p) endowed with an action of Z/pZ

such that Spec B H and Spec(B ′)H are singular exactly at their closed point, and
the graphs associated with a minimal resolution of Spec B H and Spec(B ′)H have
one node and more than m vertices.

Proof. As we noted in Example 6.13, there exist a field K of either mixed characteris-
tic (0, p) or of equicharacteristic p and a curve X/K without good reduction over K
and with good ordinary reduction over a Galois extension L/K of degree p. Let
H :=Gal(L/K ). Let Y/OL denote the smooth model of X L/L . Let Z/OK denote
the quotient Y/H . Let P denote a ramification point of the morphism Yk→Yk/H ,
and let B :=OY,P . Theorem 6.8 shows that the resolution of singularity of Spec B H

has an intersection matrix of type N (p, α, r1) for some α ≥ 1 and 0< r1 < p.
Immediately after the statement of Theorem 6.8 given in the introduction, we

briefly alluded to the fact that the integer α is likely to be related to the valuation of
the different of L/K . Thus, in principle, by choosing K and L/K appropriately,
the above method will produce examples with α as large, as desired. Since at this
time we do not know how to prove in general that α is related to the valuation
of the different of L/K (except when p = 2 and g = 1; see [Lorenzini 2013a,
Theorem 4.1]), we proceed below with a different argument to prove the existence
of resolutions with α as large, as desired.

Consider a quadratic extension K ′/K . Since p is odd by hypothesis, the extension
K ′/K is tame, and one knows how to compute a regular model of X K ′/K ′ from
the model X /OK of X/K obtained in Theorem 6.8: simply normalize the base
change X ×OK OK ′ and resolve its singularities. A singularity on the normalization
can only be the preimage of a closed point of Xk that belongs to two irreducible
components of Xk and such that both components have odd multiplicity. This
singular point is resolved by a single smooth rational curve.

Let L ′ := L K ′ with [L ′ : K ′] = p. The curve X K ′/K ′ achieves good ordinary
reduction over L ′. The model Y ′/OL ′ :=Y×OL OL ′ is smooth, and we let P ′ denote
the preimage of P under the natural map Y ′→ Y . Let B ′ :=OY ′,P ′ . We leave it to
the reader to check, using [Halle 2010, Proposition 4.3] and the desingularization of
the normalization of X×OK OK ′ , that the resolution of the singularity of Spec(B ′)H

has an intersection matrix of type N (p, 2α, r ′1), where r ′1 := r1/2 if r1 is even and
r ′1 := (r1+ p)/2 if r1 is odd.
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Since we can make an infinite chain of quadratic extensions K ⊂ K ′ ⊂ K ′′ ⊂ · · ·
and since the graph associated with N (p, β, r1) has at least β irreducible compo-
nents, the corollary is proved. �

Remark 6.15. Consider an intersection matrix N , and assume that, for some
prime p, it satisfies all the conditions listed in Remark 5.4, conditions that would
have to be satisfied if this intersection matrix was associated with the resolution of
a Z/pZ-singularity: its graph G(N ) is a tree, |det(N )| is a power of p, the Smith
group 8N is killed by p and the fundamental cycle Z has |Z2

| ≤ p. If det(N )= 1
and G(N ) is a tree, then the above conditions are satisfied for every prime at least
equal to |Z2

|. In particular, when det(N ) = 1, the matrix N could potentially be
associated with the resolution of a Z/pZ-singularity for infinitely many primes p.

An interesting consequence of our guess in 6.2 that γQi gQi = ν(Qi ) holds for
all i = 1, . . . , d is that a matrix N as above can be associated with the resolution
of a (Z/pZ)-quotient singularity X ′→ Z occurring in models of curves as at the
beginning of this section only for finitely many primes p. Indeed, the choice of
a vertex D on N lets us define the integer gD associated with N and D. If N is
the intersection matrix of the resolution of a singularity Qi of Z with the marked
vertex D linked to C0, we noted in 6.2 that p− 1 must then divide gD when the
equality γQi gQi = ν(Qi ) holds. Since there are only finitely many vertices D, the
set of integers gD is finite, and hence, any prime p larger than the maximum of the
integers gD cannot have the property that p− 1 divides some gD .

Remark 6.16. Let X/K be a curve with potentially good reduction over an exten-
sion L/K of degree p as at the beginning of this section. Let Qi be a singular
point of the quotient Z , and consider the graph G Qi associated with the resolution
of Qi in X ′→ Z . One may wonder whether a node of G in G Qi could have its
multiplicity in X ′k divisible by p2. Similar considerations are found in [Lorenzini
2010, Question 1.4].
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Geometry of Wachspress surfaces
Corey Irving and Hal Schenck

Let Pd be a convex polygon with d vertices. The associated Wachspress surface
Wd is a fundamental object in approximation theory, defined as the image of the
rational map

P2 wd
−→ Pd−1,

determined by the Wachspress barycentric coordinates for Pd . We show wd is
a regular map on a blowup Xd of P2 and, if d > 4, is given by a very ample
divisor on Xd so has a smooth image Wd . We determine generators for the ideal
of Wd and prove that, in graded lex order, the initial ideal of IWd is given by a
Stanley–Reisner ideal. As a consequence, we show that the associated surface is
arithmetically Cohen–Macaulay and of Castelnuovo–Mumford regularity 2 and
determine all the graded Betti numbers of IWd .

1. Introduction

Introduced by Möbius [1827], barycentric coordinates for triangles appear in a host
of applications. Recent work in approximation theory has shown that it is also
useful to define barycentric coordinates for a convex polygon Pd with d ≥ 4 vertices
(a d-gon). The idea is as follows. To deform a planar shape, first place the shape
inside a control polygon. Then move the vertices of the control polygon, and use
barycentric coordinates to extend this motion to the entire shape.

For a d-gon with d ≥ 4, barycentric coordinates were defined by Wachspress
[1975] in his work on finite elements; these coordinates are rational functions
depending on the vertices ν(Pd) of Pd . Warren [2003] shows that Wachspress’
coordinates are the unique rational barycentric coordinates of minimal degree.
The Wachspress coordinates define a rational map wd on P2, whose value at a
point p ∈ Pd is the d-tuple of barycentric coordinates of p. The closure of the image
of wd is the Wachspress surface Wd , first defined and studied by Garcia-Puente and
Sottile [2010] in their work on linear precision.

Irving is supported by Texas Advanced Research Program 010366-0054-2007. Schenck is supported
by NSF 1068754 and NSA H98230-11-1-0170.
MSC2010: primary 13D02; secondary 52C35, 14J26, 14C20.
Keywords: barycentric coordinates, Wachspress variety, rational surface.
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In Definition 1.3, we fix linear forms `i that are positive inside Pd and vanish on
an edge. Let A= `1 · · · `d , Z be the

(d
2

)
singular points of V(A), and Y = Z \ν(Pd).

We call Y the external vertices of Pd and show that wd has basepoints only at Y .
Let Xd be the blowup of P2 at Y . In Section 2, we prove that Wd is the image
of Xd , embedded by a certain divisor Dd−2 on Xd . The global sections of Dd−2

have a simple interpretation in terms of the edges V(`i ) of Pd : we prove that

H 0(OXd (Dd−2)) has basis {`3 · · · `d , `1`4 · · · `d , . . . , `2 · · · `d−1}.

We show that Dd−2 is very ample if d > 4; hence, Wd ⊆ Pd−1 is a smooth surface.

1A. Statement of main results. For a d-gon Pd with d ≥ 4:

(1) We give explicit generators for IWd ⊆ S = K[x1, . . . , xd ].

(2) We determine in≺(IWd ), where ≺ is graded lex order.

(3) We prove in≺(IWd ) is the Stanley–Reisner ideal of a graph 0.

(4) We prove that S/IWd is Cohen–Macaulay, and reg(S/IWd )= 2.

(5) We determine the graded Betti numbers of S/IWd .

In Section 1B, we give some quick background on geometric modeling, and in
Section 1C, we do the same for algebraic geometry (in particular, we define all the
terms above). Our strategy runs as follows. In Section 2, we study IWd by blowing
up P2 at the external vertices. Define a divisor

Dd−2 = (d − 2)E0−
∑
p∈Y

E p

on Xd , where E0 is the pullback of a line and E p is the exceptional fiber over p.
We show that Dd−2 is very ample and that IWd is the ideal of the image of

Xd → P(H 0(Dd−2)).

Riemann–Roch then yields the Hilbert polynomial of S/IWd .
In Sections 3 and 4, we find distinguished sets of quadrics and cubics vanishing

on Wd and use them to generate a subideal I (d)⊆ IWd . In Section 5, we tie every-
thing together, showing that, in graded lex order, I0(d)⊆ in≺ I (d), where I0(d) is
the Stanley–Reisner ideal of a certain graph. Using results on flat deformations and
an analysis of associated primes, we prove

I0(d)= in≺(I (d)).

The description in terms of the Stanley–Reisner ring yields the Hilbert series
for S/I0(d). We prove that S/I0(d) is Cohen–Macaulay and has Castelnuovo–
Mumford regularity 2, and it follows from uppersemicontinuity that the same is
true for S/I (d). The differentials on the quadratic generators of I0(d) turn out to
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be easy to describe, and combining this with the regularity bound and knowledge
of the Hilbert series yields the graded Betti numbers for in≺(I (d)).

Finally, we show that I (d) has no linear syzygies on its quadratic generators,
which allows us to prune the resolution of in≺(I (d)) to obtain the graded Betti
numbers of I (d). Comparing Hilbert polynomials shows that up to saturation

S/I (d)= S/IWd .

Since IWd is prime, it is saturated, and a short-exact-sequence argument shows that
S/I (d) is also saturated, concluding the proof.

1B. Geometric modeling background. Let Pd be a d-gon with vertices v1, . . . , vd

and indices taken modulo d .

Definition 1.1. Functions {βi : Pd → R | 1≤ i ≤ d} are barycentric coordinates if,
for all p ∈ Pd ,

βi (p)≥ 0, p =
d∑

i=1

βi (p)vi ,

d∑
i=1

βi (p)= 1.

Wachspress coordinates have a geometric description in terms of areas of subtri-
angles of the polygon. Let A(a, b, c) denote the area of the triangle with vertices a,
b, and c. For 1≤ j ≤ d, set αj := A(vj−1, vj , vj+1) and Aj := A(p, vj , vj+1).

Definition 1.2. For 1≤ i ≤ d , the functions

βi =
bi∑d

j=1 bj
, where bi = αi

∏
j 6=i−1,i

Aj

are Wachspress barycentric coordinates for the d-gon Pd ; see Figure 1.

We embed Pd in the plane z = 1⊆R3 and form the cone with 0 ∈R3. Explicitly,
to each vertex vi ∈ ν(Pd), we associate the ray vi := (vi , 1) ∈ R3. Let Pd denote
the cone generated by the rays vi , and ν(Pd) := {vi | vi ∈ ν(Pd)}. The cone over

vi

vj

vj+1

Aj

p

αi

Figure 1. Wachspress coordinates for a polygon.
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the edge [vi , vi+1] corresponds to a facet of Pd with normal vector ni := vi × vi+1.
We redefine αj and Aj to be the determinants |vj−1vjvj+1| and |vjvj+1 p|, where
p= (x, y, z). This scales the bi by a factor of 2 so leaves the βi unchanged, save
for homogenizing the Aj with respect to z, and allows us to define Wachspress
coordinates for nonconvex polygons, although Property 1 of barycentric coordinates
fails when Pd is nonconvex.

Definition 1.3. `j := Aj = nj · p= |vjvj+1 p|.

The `j are homogeneous linear forms in (x, y, z) and vanish on the cone over
the edge [vj , vj+1]. We use Theorem 1.6 below, but Warren’s proof does not require
convexity. Our results hold over an arbitrary field K as long as no three of the lines
V(`i )⊆ P2 meet at a point. For the first condition of Definition 1.1 to make sense,
K should be an ordered field.

Definition 1.4. The dual cone to Pd is the cone spanned by the normals n1, . . . , nd

and is denoted P∗d .

Triangulating Pd yields a triangulation of Pd , and the volume of the parallelepiped
S spanned by vertices {vi , vj , vk, 0} is aS = |vivjvk |.

Definition 1.5. Let C be a cone defined by a polygon Pd and T (C) a triangulation
of C obtained from a triangulation of Pd as above. The adjoint of C is

AT (C)( p)=
∑

S∈T (C)

aS

∏
v∈ν(Pd )\ν(S)

(v · p) ∈ K[x, y, z]d−3.

Theorem 1.6 [Warren 1996]. AT (C)( p) is independent of the triangulation T (C).

1C. Algebraic geometry background. Next, we review some background in alge-
braic geometry, referring to [Eisenbud 1995; Hartshorne 1977; Schenck 2003] for
more detail. Homogenizing the numerators of Wachspress coordinates yields our
main object of study:

Definition 1.7. The Wachspress map defined by a polygon Pd is the rational map
P2 wd
99KPd−1 given on the open set Uz 6=0⊆P2 by (x, y) 7→ (b1(x, y), . . . , bd(x, y)).

The Wachspress variety Wd is the closure of the image of wd .

The polynomial ring S = K[x1, . . . , xd ] is a graded ring: it has a direct-sum
decomposition into homogeneous pieces. A finitely generated graded S-module N
admits a similar decomposition; if s ∈ Sp and n ∈ Nq , then s ·n ∈ Np+q . In particular,
each Nq is a (S0 = K)-vector space.

Definition 1.8. For a finitely generated graded S-module N , the Hilbert series
HS(N , t)=

∑
dimK Nq tq .
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Definition 1.9. A free resolution for an S-module N is an exact sequence

F : · · · → Fi
di
−→ Fi−1→ · · · → F0→ N → 0,

where the Fi are free S-modules.

If N is graded, then the Fi are also graded, so letting S(−m) denote a rank-1 free
module generated in degree m, we may write Fi =

⊕
j S(− j)ai, j . By the Hilbert

syzygy theorem [Eisenbud 1995], a finitely generated, graded S-module N has a
free resolution of length at most d with all the Fi of finite rank.

Definition 1.10. For a finitely generated graded S-module N , a free resolution
is minimal if, for each i , Im(di ) ⊆ mFi−1, where m = 〈x1, . . . , xd〉. The graded
Betti numbers of N are the ai, j that appear in a minimal free resolution, and the
Castelnuovo–Mumford regularity of N is maxi, j {ai, j − i}.

While the differentials di that appear in a minimal free resolution of N are not
unique, the ranks and degrees of the free modules that appear are unique. The
graded Betti numbers are displayed in a Betti table. Reading this table right and
down, starting at (0, 0), the entry bi j := ai,i+ j , and the regularity of N is the index
of the bottommost nonzero row in the Betti table for N .

Example 1.11. In Examples 2.9 and 3.11 of [Garcia-Puente and Sottile 2010],
it is shown that IW6 is generated by three quadrics and one cubic. The variety
V(`1 · · · `6) of the edges of P6 has

(6
2

)
= 15 singular points, of which six are

vertices of P6, and S/IW6 has Betti table

total 1 4 6 3
0 1 – – –
1 – 3 – –
2 – 1 6 3

For example, b1,2 = a1,3 = 1 reflects that IW6 has a cubic generator, and S/IW6 has
regularity 2. The Hilbert series can be read off the Betti table:

HS(S/IW6, t)=
1− 3t2

− t3
+ 6t4

− 3t5

(1− t)6
=

1+ 3t + 3t2

(1− t)3
.

Theorem 5.11 gives a complete description of the Betti table of S/IWd .

2. H0(Dd−2) and the Wachspress surface

2A. Background on blowups of P2. Fix points p1, . . . , pk ∈ P2, and let

X
π
−→ P2 (1)

be the blowup of P2 at these points. Then Pic(X) is generated by the exceptional
curves Ei over the points pi and the proper transform E0 of a line in P2. A classical
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geometric problem asks for a relationship between numerical properties of a divisor
Dm = m E0−

∑
ai Ei on X and the geometry of

X
φ
−→ P(H 0(Dm)

∨).

First, we discuss some basics. Let m and ai be nonnegative, let Ipi denote the ideal
of a point pi , and define

J =
k⋂

i=1

I ai
pi
⊆ K[x, y, z] = R. (2)

Then H 0(Dm) is isomorphic to the m-th graded piece Jm of J (see [Harbourne
2002]). Davis and Geramita [1988] show that, if γ (J ) denotes the smallest degree t
such that Jt defines J scheme theoretically, then Dm is very ample if m>γ (J ), and
if m = γ (J ), then Dm is very ample if and only if J does not contain m collinear
points, counted with multiplicity. Note that γ (J )≤ reg(J ).

2B. Wachspress surfaces. For a polygon Pd , fix defining linear forms `i as in
Definition 1.3 and let A := `1 · · · `d ; the edges of Pd are defined by the V(`i ). Let
Z denote the

(d
2

)
singular points of V(A) and Y = Z \ ν(Pd). Finally, Xd will be

the blowup of P2 at Y . We study the divisor

Dd−2 = (d − 2)E0−
∑
p∈Y

E p

on Xd . First, we present some preliminaries.

Definition 2.1. Let L be the ideal in R = K[x, y, z] given by

L = 〈`3 · · · `d , `1`4 · · · `d , . . . , `2 · · · `d−1〉 = 〈A/`1`2, A/`2`3, . . . , A/`d`1〉,

where A =
∏d

i=1 `i .

For any variety V , we use IV to denote the ideal of polynomials vanishing on V .

Lemma 2.2. The ideals L and IY are equal up to saturation at 〈x, y, z〉.

Proof. Being equal up to saturation at 〈x, y, z〉 means that the localizations at any
associated prime except 〈x, y, z〉 are equal. The ideal Ip of a point p is a prime
ideal. Recall that the localization of a ring T at a prime ideal p is a new ring Tp
whose elements are of the form f/g with f, g ∈ T and g /∈ p. Localize R at Ip,
where p ∈ Y . Then in RIp , `i is a unit if p /∈ V(`i ). Without loss of generality,
suppose forms `1 and `2 vanish on p (note that all points of Y are intersections of
exactly two lines) and the remaining forms do not. Thus, L Ip =〈`1, `2〉= (IY )Ip . �

The ideal L is not saturated.

Lemma 2.3. IY is generated by one form F of degree d − 3 and d − 3 forms of
degree d−2. Hence, a basis for Ld−2 consists of F ·x , F ·y, F ·z, and the d−3 forms.
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Proof. First, note that IY cannot contain any form of degree d − 4 since Y contains
d sets of d − 3 collinear points. So the smallest degree of a minimal generator
for IY is d− 3. Since Y consists of

(d−1
2

)
− 1 distinct points and the space of forms

of degree d − 3 has dimension
(d−1

2

)
, there is at least one form F of degree d − 3

in IY . We claim that it is unique. To see this, first note that no `i can divide F : by
symmetry, if one `i divides F , they all must, which is impossible for degree reasons.
Now suppose G is a second form of degree d − 3 in IY . Let p ∈ ν(Pd) and V(`i )

be a line corresponding to an edge containing p. F(p) must be nonzero since if not
V(F) would contain d−2 collinear points of V(`i ), forcing V(F) to contain V(`i ),
a contradiction. This also holds for G. But in this case, F(p)G − G(p)F is a
polynomial of degree d−3 vanishing at d−2 collinear points, again a contradiction.
So F is unique (up to scaling), which shows that the Hilbert function satisfies

HF(R/L , d − 3)= |Y |,

so HF(R/L , t)= |Y | for all t ≥ d − 3 (see [Schenck 2003]). As the polynomials
A/`i`i+1 are linearly independent and there are the correct number, Ld−2 must be
the degree-(d − 2) component of IY . �

Theorem 2.4. The minimal free resolution of R/L is

0→ R(−d)
d3
−→ R(−d+1)d

d2
−→ R(−d+2)d

[ A
`1`2

A
`2`3
· · ·

A
`d`1

]
−−−−−−−−−−−−−−→ R→ R/L→ 0,

where d2 =



`1 0 · · · · · · 0 0 m1

−`3 `2 0 · · ·
...

... m2

0 −`4
. . .

. . .
...

...
...

... 0
. . .

. . . `d−2 0
...

...
...

. . .
. . . −`d `d−1

...

0 · · · · · · 0 0 −`1 md


and the mi are linear forms.

Proof. By Lemma 2.3, the generators of IY are known. Since IY is saturated, the
Hilbert–Burch theorem implies that the free resolution of R/IY has the form

0→ R(−d + 1)d−3
→ R(−d + 3)⊕ R(−d + 2)d−3

→ R→ R/IY → 0.

Writing IY as 〈 f1, . . . , fd−3, F〉 and L as 〈 f1, . . . , fd−3, x F, yF, zF〉, the task is
to understand the syzygies on L given the description above of the syzygies on IY .
From the Hilbert–Burch resolution, any minimal syzygy on IY is of the form∑

gi fi + q F = 0,
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where gi are linear and q is a quadric (or zero). Since

q F = g1x F + g2 yF + g3zF with gi linear,

all d − 3 syzygies on IY lift to give linear syzygies on L . Furthermore, we obtain
three linear syzygies on {x F, yF, zF} from the three Koszul syzygies on {x, y, z}.
It is clear from the construction that these d linear syzygies are linearly independent.
Since HF(R/L , d − 1) = |Y |, this means we have determined all the linear first
syzygies. Furthermore, the three Koszul first syzygies on {x F, yF, zF} generate a
linear second syzygy, so the complex given above is a subcomplex of the minimal
free resolution. A check shows that the Buchsbaum–Eisenbud criterion [1973]
holds, so the complex above is actually exact and hence a free resolution. The
differential d2 above involves the canonical generators A/`i`i+1 rather than a set
involving {x F, yF, zF}. Since the d−1 linear syzygies appearing in the first d−1
columns of d2 are linearly independent, they agree up to a change of basis; the last
column of d2 is a vector of linear forms determined by the change of basis. �

Theorem 2.5.

(i) H 0(Dd−2)' SpanK{A/`1`2, A/`2`3, . . . }.

(ii) H 1(Dd−2)= 0= H 2(Dd−2).

Proof. The remark following Equation (2) shows that H 0(Dd−2) ' Ld−2. Since
K =−3E0+

∑
p∈Y E p (see [Hartshorne 1977]), by Serre duality,

H 2(Dd−2)' H 0
(
(−d − 1)E0+

∑
p∈Y

E p

)
,

which is clearly zero. Using that Xd is rational, it follows from Riemann–Roch that

h0(Dd−2)− h1(Dd−2)=
D2

d−2− Dd−2 · K

2
+ 1.

The intersection pairing on Xd is given by E2
i = 1 if i = 0 and −1 if i 6= 0, and

Ei · E j = 0 if i 6= j .

Thus,

D2
d−2 = (d − 2)2− |Y | and − Dd−2K = 3(d − 2)− |Y |, (3)

yielding

h0(Dd−2)− h1(Dd−2)=
d2
− d − 2− 2|Y |

2
+ 1= d. (4)

Thus, h0(Dd−2)−h1(Dd−2)= d . Now apply the remark following Equation (2). �

Corollary 2.6. If d > 4, Dd−2 is very ample, so the image of Xd in Pd−1 is smooth.
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Proof. By Theorem 2.4, the ideal L is d−2 regular. Furthermore, the set Y contains
d sets of d − 3 collinear points but no set of d − 2 collinear points if d > 4. The
result follows from the Davis–Geramita criterion. �

Theorem 2.7. W4 ' P1
× P1, and X4 → W4 is an isomorphism away from the

(−1) curve E0− E1− E2, which is contracted to a smooth point.

Proof. The surface X4 is P2 blown up at two points, which is toric, and isomorphic
to P1

× P1 blown up at a point. By Proposition 6.12 of [Cox et al. 2011], D2

is basepoint free. Since D2
2 = 2, W4 is an irreducible quadric surface in P3. As

D2 · (E0− E1− E2)= 0, the result follows. �

Replacing Dd−2 with t Dd−2, a computation as in Equations (3) and (4) and Serre
vanishing shows that the Hilbert polynomial HP(S/IWd , t) is equal to

((d−2)2−|Y |)t2
+(3(d−2)−|Y |)t
2

+1=
d2
−5d+8

4
t2
−

d2
−9d+12

4
t+1. (5)

3. The Wachspress quadrics

In this section, we construct a set of quadrics that vanish on Wd . These quadrics
are polynomials that are expressed as a scalar product with a fixed vector τ . The
vector τ defines a linear projection Pd−1 99K P2, also denoted by τ , given by

x 7→
d∑

i=1

xivi ,

where x = [x1 : · · · : xd ] ∈Pd−1. By the second property of barycentric coordinates,
the composition τ ◦wd : P

2 99K P2 is the identity map on P2. Since vi ∈ K3, the
vector τ is a triple of linear forms (τ1, τ2, τ3) ∈ S3. The linear subspace C of Pd−1

where the projection is undefined is the center of projection, and IC = 〈τ1, τ2, τ3〉.

3A. Diagonal monomials. A diagonal monomial is a monomial xi x j ∈ S2 such
that j /∈ {i−1, i, i+1}. We write D for the subspace of S2 spanned by the diagonal
monomials; identifying xi with the vertex vi , a diagonal monomial is a diagonal
in Pd ; see Figure 2.

xi

x j

Figure 2. A diagonal monomial.
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Lemma 3.1. Any quadric that vanishes on Wd is a linear combination of elements
of D.

Proof. Let Q be a polynomial in (IWd )2. Then Q(wd) = Q(b1, . . . , bd) = 0. On
the edge [vk, vk+1], all the bi vanish except bk and bk+1. Thus, on this edge, the
expression Q(wd)= 0 is

c1b2
k + c2bkbk+1+ c3b2

k+1 = 0 (6)

for some constants c1, c2, and c3 in K. Recall that bi (vj )= 0 if i 6= j and bi (vi ) 6= 0
for each i . Evaluating (6) at vk and vk+1, we conclude c1 = c3 = 0. At an interior
point of edge [vk, vk+1], neither bk nor bk+1 vanishes. This implies that c2 = 0. A
similar calculation on each edge shows that all coefficients of nondiagonal terms in
Q are zero. �

3B. The map to (IC)2. We define a surjective map onto (IC)2 and use the map
to calculate the dimension of the vector space of polynomials in (IC)2 that are
supported on diagonal monomials. Let S3

1 denote the space of triples of linear forms
on Pd−1. Define the map9 : S3

1→ (IC)2 by F 7→ F ·τ , where · is the scalar product.

Lemma 3.2. The kernel of 9 is three-dimensional.

Proof. Since IC is a complete intersection, the kernel is generated by the three
Koszul syzygies on the τi . �

Next we determine conditions on F so that9(F)∈D. If ui ∈K3 for i =1, . . . , d ,
then

F =
d∑

i=1

xi ui

is an element of S3
1 . Viewing the projection τ as an element of S3

1 , we have

9(F)= F · τ =
( d∑

i=1

xi ui

)
·

( d∑
i=1

xivi

)
=

d∑
i, j=1

(ui · vj + uj · vi )xi x j . (7)

If 9(F) ∈ D, then the coefficients of nondiagonal monomials must vanish:

ui · vi = 0 and ui · vi+1+ ui+1 · vi = 0 for all i . (8)

Lemma 3.3. The dimension of the vector space D∩ (IC)2 is d − 3.

Proof. We show the conditions in (8) give 2d independent conditions on the
3d-dimensional vector space S3

1 , and the solution space is 9−1(D∩ (IC)2); thus,
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dim(9−1(D∩ (IC)2))= d. The conditions are represented by the matrix equation



v1 · u1
...

vd · ud

v1 · u2+ v2 · u1
...

vd · u1+ v1 · ud


=

M︷ ︸︸ ︷

vT
1 0 · · · 0

0 vT
2

...
...

. . . 0
0 · · · 0 vT

d
vT

2 vT
1 0

0
. . .

vT
d vT

1





u1

u2
...
...
...
...

ud


=



0
0
...
...
...

0


,

where the vi and ui are column vectors and the superscript T indicates trans-
pose. The matrix M in the middle is a 2d × 3d matrix, and the proof will be
complete if the rows are shown to be independent. Denote the rows of M by
r1, . . . , rd , rd+1, . . . , r2d , and let c1r1+ · · · + cdrd + cd+1rd+1+ · · · + c2dr2d be a
dependence relation among them. The first three columns of M give the dependence
relation c1v1 + cd+1v2 + c2dvd = 0. Since vd , v1, and v2 define adjacent rays of
a polyhedral cone, they must be independent, so c1, cd+1, and c2d must be zero.
Repeating the process at each triple vi−1, vi , and vi+1 shows the rest of the ci ’s
vanish. Since the restriction 9 :9−1(D∩ (IC)2)→ D∩ (IC)2 remains surjective,
we find dim(D∩ (IC)2)= dim(9−1(D∩ (IC)2))− dim(ker(9))= d − 3. �

3C. Wachspress quadrics. We now compute the dimension and a generating set
for (IWd )2.

Definition 3.4. Let γ (i) denote the set {1, . . . , d}\{i−1, i}, γ (i, j)= γ (i)∩γ ( j),
and γ (i, j, k)= γ (i)∩ γ ( j)∩ γ (k).

The image of a diagonal monomial xi x j under the pullback map w∗d : S→ R is

bi bj = αiαj

∏
k∈γ (i)

`k

∏
m∈γ ( j)

`m = αiαj

d∏
k=1

`k

∏
m∈γ (i, j)

`m,

and each diagonal monomial has a common factor A =
∏d

k=1 `k . To find the
quadratic relations among Wachspress coordinates, it suffices to find linear relations
among products

∏
m∈γ (i, j) `m ∈ Rd−4 for diagonal pairs i and j . Define the map

φ :D→ Rd−4 by xi x j 7→ bi bj/A, and extend by linearity; this is w∗d restricted to D

and divided by A. By Lemma 3.1, it follows that (IWd )2 = ker(φ)⊆ D.

Lemma 3.5. The dimension of (IWd )2 is d − 3.

Proof. We will show φ : D→ Rd−4 is surjective with dim(kerφ)= d − 3. To see
this, note that there are d−3 diagonal monomials that have x1 as a factor. We show
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x2,4 · · · x2,d x3,5 · · · x3,d · · · xd−3,d−1 xd−3,d xd−2,d

p1,3 ∗

...
. . .

p1,d−1 ∗

p2,4 ∗ ∗

...
. . .

p2,d−1 ∗ ∗

...
. . .

p(d−4)(d−2) ∗

p(d−4)(d−1) ∗ ∗

p(d−3)(d−1) ∗ ∗ ∗

Table 1. Values of images of diagonal monomials at external vertices.

that the images of the remaining

d(d − 3)/2− (d − 3)= (d − 3)(d − 2)/2= dim(Rd−4)

diagonal monomials are independent. Let ps,t = `s∩`t and x p,q = x pxq . In Table 1,
a star, ∗, represents a nonzero number and a blank space is zero. The (i, j) entry in
the table represents the value of the image of the diagonal monomial in column j
at the external vertex in row i . The external vertices not lying on `d are arranged
down the rows with their indices in lexicographic order.

Since Table 1 is lower triangular, the images are independent. We have found
dim(Rd−4) independent images, and hence, φ is surjective. This is a map from a
vector space of dimension d(d−3)/2 to one of dimension (d−2)(d−3)/2. The map
is surjective, so the kernel has dimension d(d−3)/2−(d−2)(d−3)/2= d−3. �

There is a generating set for (IWd )2 where each generator is a scalar product with
the vector τ . The other vectors in these scalar products are

3k =
xk+1

αk+1
nk+1−

xk

αk
nk−1 ∈ S3

1 .

Lemma 3.6. The vectors {31, . . . , 3d} form a basis for the space 9−1(D∩ (IC)2).

Proof. Suppose that
∑d

k=1 ck3k = 0 is a linear dependence relation among the 3k .
The coefficient of a variable xk is

1
αk
(ck−1nk − cknk−1).

By the dependence relation, this must be zero, which implies that nk−1 and nk are
scalar multiples. This is impossible since they are normal vectors of adjacent facets
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of a polyhedral cone. Hence, ck−1 = ck = 0 for all k, which shows that the 3k are
independent.

In the proof of Lemma 3.3, we showed that dim(9−1(D∩ (IC)2))= d, and we
have just shown dim(〈3k | k = 1, . . . , d〉) = d. To prove the result, it suffices to
show 〈3k | k = 1, . . . , d〉 ⊆9−1(D∩ (IC)2). The conditions of (8) are required for
3k ∈ S3

1 to lie in 9−1(D∩ (IC)2). We show these conditions are satisfied for each
3k .

Let ui = 0 if i 6= k, k + 1, uk = −nk−1/αk , and uk+1 = nk+1/αk+1 for each
fixed k. Then

3k =
xk+1

αk+1
nk+1−

xk

αk
nk−1 =

d∑
i=1

ui xi .

Since nk−1 · vk = 0, nk+1 · vk+1 = 0, and ui = 0 for i 6= k, k + 1, we have that
ui · vi = 0 for each i = 1, . . . d. The expression ui · vi+1+ ui+1 · vi is zero for all
i 6= k− 1, k, k+ 1 simply because ui = 0 for i 6= k, k+ 1. We have

uk · vk+1+ uk+1 · vk =−
nk−1

αk
· vk+1+

nk+1

αk+1
· vk

=−
vk−1× vk · vk+1

αk
+

vk+1× vk+2 · vk

αk+1

=−
|vk−1vkvk+1|

αk
+
|vk+1vk+2vk |

αk+1
= 0

as αj =|vj−1vjvj+1|. It is easy to show that the expression ui ·vi+1+ui+1 ·vi is zero
for i = k±1. Thus, the ui satisfy the conditions in (8), so 3k ∈9

−1(D∩(IC)2). �

Theorem 3.7 (Wachspress quadrics). The Wachspress quadrics (IWd )2 are those
elements of S2 that are diagonally supported and vanish on C. The quadrics
Qk =3k · τ for k = 1, . . . , d span (IWd )2.

Proof. Let p be the vector (x, y, z). By definition of Wachspress coordinates,

τ(wd( p))=
d∑

i=1

bi ( p)vi = p
d∑

i=1

bi ( p).

We have

3k(wd( p))=
bk+1( p)
αk+1

nk+1−
bk( p)
αk

nk−1

=

( ∏
j 6=k,k+1

`j

)
nk+1−

( ∏
j 6=k−1,k

`j

)
nk−1

=

( ∏
j 6=k−1,k,k+1

`j

)
(`k−1nk+1− `k+1nk−1)

= H [nk+1(nk−1 · p)− nk−1(nk+1 · p)],
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where H =
∏

j 6=k−1,k,k+1 `j . Set H := H
∑d

i=1 bi ( p). Then we have

Qk(wd( p))= τ(wd( p)) ·3k(wd( p))

= H p · [nk+1(nk−1 · p)− nk−1(nk+1 · p)]

= H [(nk+1 · p)(nk−1 · p)− (nk−1 · p)(nk+1 · p)] = 0.

We have just shown that Qk ∈ (IWd )2. By Lemma 3.6, 9−1(D ∩ (IC)2) is
spanned by the 3k . Observe that 〈Q1, . . . , Qd〉 = 9(〈3k〉) = D ∩ (IC)2. Thus,
dim(〈Q1, . . . , Qd〉)= d − 3, and by Lemma 3.5, dim((IWd )2)= d − 3. Therefore,
since 〈Q1, . . . , Qd〉 ⊆ (IWd )2, we have 〈Q1, . . . , Qd〉 = (IWd )2 = D∩ (IC)2. �

Corollary 3.8. The quadrics {32 · τ, . . . , 3d−2 · τ } are a basis for the quadrics
in IWd , and in graded lex order, {x1x3, . . . , x1xd−1} is a basis for in≺(IWd )2.

Proof. Expanding the expression for 3i · τ yields

3i · τ = x1xi+1

(v1 · ni+1

αi+1

)
− x1xi

(v1 · ni−1

αi

)
+ ζi ,

where ζi ∈ K[x2, . . . , xd ]. Since ni = vi × vi+1,

32 · τ = x1x3

(v1 · n3

α3

)
+ ζ2.

Since no three of the lines V(li ) are concurrent, vi ·nj is nonzero unless j ∈ {i, i+1},
so we may use the lead term of 32 · τ to reduce 33 · τ to x1x4 + f (x2, . . . , xd).
Repeating the process proves that

{x1x3, . . . , x1xd−1} ⊆ in≺(IWd )2.

By Lemma 3.5, (IWd )2 has dimension d − 3, which concludes the proof. �

Corollary 3.9. There are no linear first syzygies on (IWd )2.

Proof. By Corollary 3.8, we may assume that a basis for (IWd )2 has the form

x1x3+ ζ3(x2, . . . , xd),

x1x4+ ζ4(x2, . . . , xd),

x1x5+ ζ5(x2, . . . , xd),

...

x1xd−1+ ζd−1(x2, . . . , xd).

Since the ζi do not involve x1, this implies that any linear first syzygy on (IWd )2

must be a linear combination of the Koszul syzygies on {x3, . . . , xd−1}. Now change
the term order to graded lex with xi > xi+1 > · · ·> xd > x1 > x2 > · · ·> xi−1. In
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this order, arguing as in the proof of Corollary 3.8 shows that we may assume a
basis for (IWd )2 has the form

xi xi+2+ ζi+2(x1, . . . , x̂i , . . . , xd),

xi xi+3+ ζi+3(x1, . . . , x̂i , . . . , xd),

xi xi+4+ ζi+4(x1, . . . , x̂i , . . . , xd),

...

xi xi−2+ ζi−2(x1, . . . , x̂i , . . . , xd).

Hence, any linear first syzygy on (IWd )2 must be a combination of Koszul syzygies
on xi+2, xi+3, . . . , xi−2. Iterating this process for the term orders above shows there
can be no linear first syzygies on (IWd )2. �

3D. Decomposition of V(〈(IWd )2〉). We now prove that V(〈(IWd )2〉) = C ∪Wd .
The results in Sections 4 and 5 are independent of this fact.

Lemma 3.10. For any i , j , and k, we have

|ni nj nk | = |vjvkvk+1| · |vivi+1vj+1| − |vj+1vkvk+1| · |vivi+1vj |.

Proof. Apply the formulas a× (b× c)= b(a · c)− c(a · b) and |abc| = a× b · c:

|ni nj nk | = ni × nj · nk = (ni × (vj × vj+1)) · nk

= [vj (ni · vj+1)− vj+1(ni · vj )] · nk

= (vj · nk)(ni · vj+1)− (vj+1 · nk)(ni · vj )

= |vjvkvk+1| · |vivi+1vj+1| − |vj+1vkvk+1| · |vivi+1vj |. �

Corollary 3.11. We have |ni nj nj+1| = αj+1|vivi+1vj+1|.

Proof. This follows from Lemma 3.10 and the definition of αj+1. �

Corollary 3.12. We have |ni−1ni ni+1| = αiαi+1.

Proof. This follows from Lemma 3.10 and the definition of αi and αi+1. �

Lemma 3.13. Let x = [x1 : · · · : xd ] ∈ V(〈(IWd )2〉) \ C. If τ(x) is a base point
pi j = ni × nj , then x lies on the exceptional line p̂i j over pi j .

Proof. Since indices are cyclic, we assume that i = 1. Thus, τ(x)= p1, j = n1×nj

for some j /∈ {d, 1, 2}. The relation Q1(x)=31 · τ(x)=31 · (n1×nj )= 0 yields

L(1) := x2n2 · p1, j − x1nd · p1, j = 0. (9)

The relation Q j (x)= 0 implies

L( j) := x j+1|nj+1n1nj | − x j |n2n1nj | = 0. (10)
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Also,

Q2(x)= (x3n3− x2n1) · n1× nj = x3|n3n1nj | = 0,

implying x3 = 0 since |n3n1nj | 6= 0 if j 6= 3. Assume xk = 0 for 3 ≤ k < j − 1.
Note that

Qk(x)= (xk+1nk+1− xknk−1) · n1× nj = xk+1|nk+1n1nj | = 0;

hence, xk+1 = 0 since |nk+1n1nj | 6= 0 and by induction xk = 0 for 3≤ k ≤ j − 1.
An analogous argument shows that xk = 0 for j + 2≤ k ≤ d . Hence, x lies on the
line V(L(1), L( j), xk | k /∈ {1, 2, j, j + 1}), which is the exceptional line p̂1, j . �

Theorem 3.14. The subset V(〈(IWd )2〉) \C is contained in Wd . It follows that the
variety V(〈(IWd )2〉) has irreducible decomposition Wd ∪C.

Proof. Let x = [x1 : · · · : xd ] ∈ V(〈(IWd )2〉) \C. The Wachspress quadrics give the
relations

xr+1nr+1 · τ = xr nr−1 · τ (11)

for each r = 1, . . . , d . By Theorem 1.6, the adjoint is independent of triangulation,

nk−2nk−1

nk

Figure 3. Triangulation used for adjoint.

so we use A to denote the adjoint, specifying the triangulation if necessary. We now
show, for each k ∈ {1, . . . , d}, bk(τ (x))=A(τ (x))xk , where the triangulation above
is used for the adjoint A. It follows from the uniqueness of Wachspress coordinates
that the denominator

∑d
i=1 bi of βi is the adjoint of P∗d , so it follows that

wd(τ (x))=A(τ (x))x. (12)

Provided A(τ (x)) 6= 0, the result follows since wd(τ (x))∈Pd−1 is a nonzero scalar
multiple of x; hence, x is in the image of the Wachspress map and thus lies on Wd . If
x∈V(〈(IWd )2〉)\C and A(τ (x))=0, then by (12)wd(τ (x))=0, and hence, τ(x) is a
basepoint ofwd . Thus, τ(x)=ni×nj for some diagonal pair (i, j). By Lemma 3.13,
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x lies on an exceptional line and hence lies on Wd . To prove the claim, note that
since all indices are cyclic it suffices to assume k = 3. Let |ni nj nk | = |ni jk | and

ni1,...,im · τ :=

m∏
j=1

(ni j · τ).

This is the product of m linear forms in S, and with this notation,

b3(τ )= n1,4,5,...,d · τ.

For each r ∈ {3, . . . , d}, define

σr := (n4,...,r ·τ)n1·

[ r∑
i=3

vi (nr+1,...,d ·τ)xi+

d∑
i=r+1

vi (nr−1,...,i−2·τ)(ni+1,...,d ·τ)xr

]
,

where we set ni,..., j · τ = 1 if j < i . We show x3A(τ (x)) = σ3 = σd = b3(τ (x)).
First, we show σ3 = x3A(τ ): to see this, note that

x3A(τ )= |n123|(n4,...,d · τ)x3+

d∑
i=4

|n1,i−1,i |(n2,...,i−2 · τ)(ni+1,...,d · τ)x3, (13)

where we express the adjoint A using the triangulation in Figure 3. Applying the
scalar triple product to |n123| and |n1,i−1,i | in the expression (13) yields

n1 ·(n2×n3)(n4,...,d ·τ)x3+

d∑
i=4

n1 ·(ni−1×ni )(n2,...,i−2 ·τ)(ni+1,...,d ·τ)x3. (14)

Factoring an n1 and noting that ni × ni+1 = vi+1, (14) becomes

n1 ·

[
v3(n4,...,d · τ)x3+

d∑
i=4

vi (n2,...,i−2 · τ)(ni+1,...,d · τ)x3

]
= σ3.

Now we show σd = b3(τ ). Since nd+1,...,d · τ = 1,

σd = (n4,...,d · τ)n1 ·

( d∑
i+3

vi (nd+1,...,d · τ)xi

)
= (n4,...,d · τ)n1 ·

( d∑
i+3

vi xi

)
. (15)

Observing that n1 ·
∑2

i=1 xivi = 0, we see that (15) is

(n4,...,d · τ)(n1 · τ)= n1,4,...,d · τ = b3(τ ).
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We now claim that for r ∈ {3, . . . , d − 1} we have σr = σr+1. Indeed,

σr = (n4,...,r · τ)n1 ·

[ r∑
i=3

vi (nr+1,...,d · τ)xi

+

d∑
i=r+1

vi (nr,...,i−2 · τ)(ni+1,...,d · τ)(nr−1 · τ)xr

]
= (n4,...,r · τ)n1 ·

[ r∑
i=3

vi (nr+1,...,d · τ)xi

+

d∑
i=r+1

vi (nr,...,i−2 · τ)(ni+1,...,d · τ)(nr+1 · τ)xr+1

]
,

where we have applied (11) to the last term. Factoring out nr+1 · τ yields

(n4,...,r+1 · τ)n1 ·

[ r∑
i=3

vi (nr+2,...,d · τ)xi +

d∑
i=r+1

vi (nr,...,i−2 · τ)(ni+1,...,d · τ)xr+1

]
.

Lastly, since the expressions in both summations agree at the index i = r + 1, we
can shift the indices of summation,

(n4,...,r+1 · τ)n1 ·

[r+1∑
i=3

vi (nr+2,...,d · τ)xi +

d∑
i=r+2

vi (nr,...,i−2 · τ)(ni+1,...,d · τ)xr+1

]
,

which is precisely σr+1, proving the claim. The claim shows that σ3 = σd ; hence,
(12) holds, and so x lies in Wd if A(τ (x)) 6= 0. �

4. The Wachspress cubics

Theorem 3.14 shows that the Wachspress quadrics do not suffice to cut out the
Wachspress variety Wd . We now construct cubics, the Wachspress cubics, that lie
in IWd and do not arise from the Wachspress quadrics. These cubics are determinants
of 3× 3 matrices of linear forms. The key to showing that they are in IWd is to
write them as a difference of adjoints AT1(C)−AT2(C), where T1(C) and T2(C) are
two different triangulations of a subcone C of the dual cone P∗d . By Theorem 1.6,
the difference is zero, so the cubic is in IWd .

4A. Construction of Wachspress cubics. As in Lemma 3.6, let

3r =
xr+1

αr+1
nr+1−

xr

αr
nr−1.

Theorem 4.1. If i 6= j 6= k 6= i , then wi, j,k := |3i ,3j ,3k | ∈ IWd .

Proof. We break the proof into two parts. First, suppose no pair of (i, j, k)
corresponds to an edge of Pd . We call such an (i, j, k) a T -triple. A direct
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calculation shows that, if (i, j, k) is a T -triple, then evaluating the monomial xi x j xk

at Wachspress coordinates yields

xi x j xk(wd)= bi bj bk = A2
∏

m∈γ (i, j,k)

`m, (16)

where γ (i, j, k) is as in Definition 3.4. Since there are no T -triples if d < 6, we
may assume d ≥ 6. Changing variables by replacing xi with xi/αi , we may ignore
the constants αi . Using the definition of the 3’s, observe that

wi, j,k = |ni+1nj+1nk+1|xi+1x j+1xk+1− |ni+1nj+1nk−1|xi+1x j+1xk

− |ni+1nj−1nk+1|xi+1x j xk+1+ |ni+1nj−1nk−1|xi+1x j xk

− |ni−1nj+1nk+1|xi x j+1xk+1+ |ni−1nj+1nk−1|xi x j+1xk

+ |ni−1nj−1nk+1|xi x j xk+1− |ni−1nj−1nk−1|xi x j xk . (17)

There are several situations to consider, depending on various possibilities for
interactions among the indices. Interactions may occur if i+1= j−1 or j+1= k−1
or k+ 1= i − 1, so there are four cases:

1. All three hold. 2. Two hold. 3. One holds. 4. None hold.

Case 1. The indices (i, j, k) satisfy Case 1 if and only if d = 6. For d = 6, there
are only two T -triples: (1, 3, 5) and (2, 4, 6). We show that w1,3,5 vanishes on
Wachspress coordinates; the case ofw2,4,6 is similar. All but two of the determinants
in Equation (17) vanish, leaving

w1,3,5 = |31,33,35| = |n2n4n6|x2x4x6− |n6n2n4|x1x3x5. (18)

Notice that the coefficients are equal, and we conclude by showing that

x1x3x5− x2x4x6

vanishes on Wachspress coordinates. The monomials x1x3x5 and x2x4x6 evaluated
at Wachspress coordinates are b1b3b5 and b2b4b6, respectively. Both of these are
equal to A2, so x1x3x5− x2x4x6 vanishes on Wachspress coordinates.

Case 2. We can assume without loss of generality i + 1 6= j − 1, j + 1 = k − 1,
and k+ 1= i − 1. Four coefficients vanish in (17), yielding

wi, j,k = |ni+1nj+1ni−1|xi+1x j+1xi−1

− |ni+1nj−1ni−1|xi+1x j xi−1

+ |ni+1nj−1nj+1|xi+1x j xi−2

− |ni−1nj−1nj+1|xi x j xi−2.
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Evaluating this at Wachspress coordinates yields

wi, j,k ◦wd = |ni+1nj+1ni−1|
∏

m∈γ (i+1, j+1,i−1)

`m+|ni+1nj−1ni−1|
∏

m∈γ (i+1, j,i−1)

`m

− |ni+1nj−1nj+1|
∏

m∈γ (i+1, j,i−1)

`m − |ni−1nj−1nj+1|
∏

m∈γ (i, j,i−1)

`m

= A2
( ∏

m∈γ (i−1,i+1, j+1, j)

`m

)(
|ni+1nj+1ni−1|`j−1− |ni+1nj−1ni−1|`j+1

+ |ni+1nj−1nj+1|`i−1− |ni−1nj−1nj+1|`i+1
)

= A2
( ∏

m∈γ (i−1,i+1, j+1, j)

`m

)[
(|ni+1nj+1ni−1|`j−1+ |ni−1nj+1nj−1|`i+1)

− (|ni+1nj−1ni−1|`j+1+ |ni+1nj+1nj−1|`i−1)
]
,

where

A =
d∏

i=1

`i .

The last factor is the difference of two adjoints with respect to the triangulations
of the quadrilateral in Figure 4. The vanishing can be seen directly: write n1, . . . , n4

for ni−1, ni+1, nj−1, and nj+1. Then the last factor is

|n2n3n4|`1− |n1n3n4|`2+ |n1n2n4|`3− |n1n2n3|`4.

Applying d
dx

to this shows the x coefficient is

|n2n3n4|n11− |n1n3n4|n21+ |n1n2n4|n31− |n1n2n3|n41.

This is the determinant of the matrix of the ni with a repeat row for the x coordinates
ni1, so it vanishes. Reason similarly for the y and z coefficients.

ni+1 nj+1

nj−1ni−1

ni+1 nj+1

nj−1ni−1

Figure 4. Case 2 triangulation.
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ni−1

nj−1

ni+1nk−1

nj+1

ni−1

nj−1

ni+1nk−1

nj+1

Figure 5. Case 3 triangulation.

Case 3. Assume without loss of generality i + 1 6= j − 1, j + 1 6= k − 1, and
k+ 1= i − 1. In this case, two coefficients vanish in (17), and after evaluating at
Wachspress coordinates, we obtain

wi, j,k ◦wd

= |ni+1nj+1ni−1|
∏

m∈γ (i+1, j+1,k+1)

`m − |ni+1nj+1nk−1|
∏

m∈γ (i+1, j+1,k)

`m

− |ni+1nj−1ni−1|
∏

m∈γ (i+1, j,k+1)

`m + |ni+1nj−1nk−1|
∏

m∈γ (i+1, j,k)

`m

+ |ni−1nj+1nk−1|
∏

m∈γ (i, j+1,k)

`m − |ni−1nj−1nk−1|
∏

m∈γ (i, j,k)

`m

= A2
( ∏

m∈γ (i, j,k,
i+1, j+1,k+1)

`m

)(
|ni+1nj+1ni−1|`j−1`k−1− |ni+1nj+1nk−1|`i−1`j−1

− |ni+1nj−1ni−1|`j+1`k−1+ |ni+1nj−1nk−1|`j+1`i−1

+ |ni−1nj+1nk−1|`i+1`j−1− |ni−1nj−1nk−1|`i+1`j+1
)
.

The last factor is the difference of adjoints with respect to the triangulations of the
pentagon in Figure 5.

Case 4. In this case, evaluation at Wachspress coordinates yields

wi, j,k◦wd=|ni+1nj+1nk+1|
∏

m∈γ (i+1, j+1,k+1)

`m−|ni+1nj+1nk−1|
∏

m∈γ (i+1, j+1,k)

`m

− |ni+1nj−1nk+1|
∏

m∈γ (i+1, j,k+1)

`m + |ni+1nj−1nk−1|
∏

m∈γ (i+1, j,k)

`m

− |ni−1nj+1nk+1|
∏

m∈γ (i, j+1,k+1)

`m + |ni−1nj+1nk−1|
∏

m∈γ (i, j+1,k)

`m

+ |ni−1nj−1nk+1|
∏

m∈γ (i, j,k+1)

`m − |ni−1nj−1nk−1|
∏

m∈γ (i, j,k)

`m
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ni−1

nj−1

ni+1

nk+1

nj+1

nk−1

ni−1

nj−1

ni+1

nk+1

nj+1

nk−1

Figure 6. Case 4 triangulation.

= A2
( ∏

m∈γ (i, j,k,
i+1, j+1,k+1)

`m

)

×
(
|ni+1nj+1nk+1|`i−1`j−1`k−1− |ni+1nj+1nk−1|`i−1`j−1`k+1

− |ni+1nj−1nk+1|`i−1`j+1`k−1+ |ni+1nj−1nk−1|`i−1`j+1`k+1

− |ni−1nj+1nk+1|`i+1`j−1`k−1+ |ni−1nj+1nk−1|`j+1`i−1`k+1

+ |ni−1nj−1nk+1|`i+1`j+1`k−1− |ni−1nj−1nk−1|`i+1`j+1`k+1
)
.

The last factor is the difference of adjoints expressed using the triangulations of the
hexagon in Figure 6. This completes the analysis when (i, j, k) is a T -triple.

Next, we consider the situation when (i, j, k) contains a pair of consecutive
indices. Suppose first that there are exactly two consecutive vertices; without loss
of generality, we assume the indices are (2, 3, i) with i > 4. We have

w2,3,i := |32333i | = |n2n4ni+1|x3x4xi+1− |n3n4ni−1|x3x4xi

− |n3n2ni+1|x3x3xi+1+ |n3n2ni−1|x3x3xi

− |n1n4ni+1|x2x4xi+1+ |n1n4ni−1|x2x4xi

+ |n1n2ni+1|x2x3xi+1− |n1n2ni−1|x2x3xi .

We show that w2,3,i ◦wd is a multiple of the difference between two expressions
of the adjoint polynomial of a polygon with respect to two different triangulations.
After evaluation at wd , each monomial has a common factor of A

∏
j 6=2,3

`j . Thus, we
can express

w2,3,i (wd)

A
∏

j 6=2,3
`j
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n1

ni+1

n3

n4

ni−1

n2

n1

ni+1

n3

n4

ni−1

n2

Figure 7. Triangulations for the non-T -triples.

as
w2,3,i (wd)

A
∏

j 6=2,3
`j
= |n2n4ni+1|

∏
j 6=3,4,i+1

`j − |n3n4ni−1|
∏

j 6=3,4,i−1

`j

− |n3n2ni+1|
∏

j 6=2,3,i+1

`j + |n3n2ni−1|
∏

j 6=2,3,i−1

`j

− |n1n4ni+1|
∏

j 6=1,4,i+1

`j + |n1n4ni−1|
∏

j 6=1,4,i−1

`j

+ |n1n2ni+1|
∏

j 6=1,2,i+1

`j − |n1n2ni−1|
∏

j 6=1,2,i−1

`j

=

( ∏
j∈γ (2,4,i,i+1)

`j

)(
|n2n4ni+1|`1`3`i−1− |n3n4ni−1|`1`2`i+1

− |n3n2ni+1|`1`4`i−1+ |n3n2ni−1|`1`4`i+1

− |n1n4ni+1|`2`3`i−1+ |n1n4ni−1|`2`3`i+1

+ |n1n2ni+1|`3`4`i−1− |n1n2ni−1|`3`4`i+1
)
.

The factor in parentheses is the difference of the adjoints computed with respect to
the triangulations of the polygon in Figure 7.

Finally, for the case where the three vertices are consecutive, assume without
loss of generality the triple is (2, 3, 4), and proceed as above. In this case, the
triangulations that arise are those that appear in Figure 5. �

Definition 4.2. I (d) is the ideal generated by the Wachspress quadrics appearing
in Corollary 3.8 and the Wachspress cubics appearing in Theorem 4.1.

5. Gröbner basis, Stanley–Reisner ring, and free resolution

In this section, we determine the initial ideal of I (d) in graded lex order and prove
I (d)= IWd . First, we present some preliminaries.
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5A. Simplicial complexes and combinatorial commutative algebra. An abstract
n-simplex is a set consisting of all subsets of an (n+1)-element ground set. Typically
a simplex is viewed as a geometric object; for example, a 2-simplex on the set
{a, b, c} can be visualized as a triangle with the subset {a, b, c} corresponding to
the whole triangle, {a, b} an edge, and {a} a vertex. For this reason, elements of
the ground set are called the vertices.

Definition 5.1 [Ziegler 1995]. A simplicial complex 1 on a vertex set V is a
collection of subsets σ of V such that, if σ ∈ 1 and τ ⊂ σ , then τ ∈ 1. If
|σ | = i + 1, then σ is called an i-face. Let fi (1) denote the number of i-faces
of 1, and define dim(1) = max{i | fi (1) 6= 0}. If dim(1) = n − 1, we define
f1(t) =

∑n
i=0 fi−1tn−i . The ordered list of coefficients of f1(t) is the f -vector

of 1, and the coefficients of h1(t) := f1(t − 1) are the h-vector of 1.

Example 5.2. Consider the 1-skeleton of a tetrahedron with vertices x1, x2, x3, x4,
as in the figure.
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x4

x3

x2x1

The corresponding simplicial complex 1 consists of all vertices and edges,
so 1 = {∅, {xi }, {xi , x j } | 1≤ i ≤ 4 and i < j ≤ 4}. Thus, f (1) = (1, 4, 6) and
h(1)= (1, 2, 3); the empty face gives f−1(1)= 1.

A simplicial complex 1 can be used to define a commutative ring, known as
the Stanley–Reisner ring. This construction allows us to use tools of commutative
algebra to prove results about the topology or combinatorics of 1.

Definition 5.3. Let1 be a simplicial complex on vertices {x1, . . . , xn}. The Stanley–
Reisner ideal I1 is

I1 = 〈xi1 · · · xi j | {xi1, . . . , xi j } is not a face of 1〉 ⊆ K[x1, . . . , xn],

and the Stanley–Reisner ring is K[x1, . . . , xk]/I1.

In Example 5.2, since 1 has no 2-faces,

I1 = 〈x1x2x3, x1x2x4, x1x3x4, x2x3x4〉 =
⋂

1≤i< j≤4

〈xi , x j 〉.

Definition 5.4. A prime ideal P is associated to a graded S-module N if P is the
annihilator of some n ∈ N , and Ass(N ) is the set of all associated primes of N .
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Definition 5.5. Let codim(N ) = min{codim(P) | P ∈ Ass(N )} for a finitely gen-
erated graded S-module N . The projective dimension pdim(N ) is the length of
a minimal free resolution of N ; N is Cohen–Macaulay if codim(N ) = pdim(N ).
S/I is arithmetically Cohen–Macaulay if it is Cohen–Macaulay as an S-module.

5B. Application to Wachspress surfaces.

Definition 5.6. Define I0(d)⊆ K[x1, . . . , xd ] as

I0(d)= 〈x1x3, . . . , x1xd−1〉+ K2,d−1,

where K2,d−1 consists of all square-free cubic monomials in x2, . . . , xd−1.

Theorem 5.7. The quotient S/I0(d) is arithmetically Cohen–Macaulay, of Castel-
nuovo–Mumford regularity two, and has Hilbert series

HS(S/I0(d), t)=
1+ (d − 3)t +

(d−3
2

)
t2

(1− t)3
.

Proof. The ideal I0(d) is the Stanley–Reisner ideal of a one-dimensional simplicial
complex 0 consisting of a complete graph on vertices {x2, . . . , xd−1} with a single
additional edge x1x2 attached. All connected graphs are shellable, so since shellable
implies Cohen–Macaulay (see [Miller and Sturmfels 2005]), S/I0(d) is Cohen–
Macaulay. Since I0(d) contains no terms involving xd , if S′=K[x1, . . . , xd−1], then

S/I0(d)' S′/I0(d)⊗K[xd ].

The Hilbert series of a Stanley–Reisner ring has numerator equal to the h-vector of
the associated simplicial complex (see [Schenck 2003]), which in this case is a graph
on d − 1 vertices with

(d−2
2

)
+ 1 edges. Converting f (0) = (1, d − 1,

(d−2
2

)
+ 1)

to h(0) yields the Hilbert series of S′/I0(d). The Hilbert series of a graph has
denominator (1− t)2, and tensoring with K[xd ] contributes a factor of 1/(1− t),
yielding the result. �

Theorem 5.8. In graded lex order, in≺ I (d)= I0(d).

Proof. First, note that
I0(d)⊆ in≺ I (d),

which follows from Corollary 3.8 and Theorem 4.1, combined with the observation
that, in graded lex order, in(|3i3j3k |) = xi x j xk if i < j < k as long as k 6= d.
Since I (d)⊆ IWd , there is a surjection

S/I (d)� S/IWd ;

hence, HP(S/I (d), t)≥ HP(S/IWd , t). Since

HP(S/I (d), t)= HP(S/ in≺ I (d), t)
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and
I0(d)⊆ in≺ I (d),

we have

HP(S/I0(d), t)≥ HP(S/ in≺ I (d), t)= HP(S/I (d), t)≥ HP(S/IWd , t).

The Hilbert polynomial HP(S/IWd , t) is given by Equation (5). The Hilbert series of
S/I0(d) is given by Theorem 5.7, from which we can extract the Hilbert polynomial:

HP(S/I0(d), t)=
(d−3

2

)( t
2

)
+ (d − 3)

( t+1
2

)
+

( t+2
2

)
,

and a check shows this agrees with Equation (5). Since I0(d)⊆ in≺ I (d), equality
of the Hilbert polynomials implies that in high degree (i.e., up to saturation)

I0(d)= in≺ I (d) and I (d)= IWd .

Consider the short exact sequence

0→ in≺ I (d)/I0(d)→ S/I0(d)→ S/ in≺ I (d)→ 0.

By Lemma 3.6 of [Eisenbud 1995],

Ass(in≺ I (d)/I0(d))⊆ Ass(S/I0(d)). (19)

Since HP(S/I0(d), t)= HP(S/ in≺ I (d), t), the module in≺ I (d)/I0(d) must van-
ish in high degree so is supported at m, which is of codimension d . But I0(d) is a
radical ideal supported in codimension d − 3, so it follows from Equation (19) that
in≺ I (d)/I0(d) must vanish. �

Corollary 5.9. The ideal I (d) is the ideal of the image of

Xd → P(H 0(Dd−2)).

In particular, I (d)= IWd , and S/I (d) is arithmetically Cohen–Macaulay.

Proof. By the results of Sections 2 and 3, I (d)⊆ IWd , and the proof of Theorem 5.8
showed that they are equal up to saturation. Hence, IWd/I (d) is supported at m.
Consider the short exact sequence

0→ IWd/I (d)→ S/I (d)→ S/(IWd )→ 0.

Since S/I0(d) = S/ in≺ I (d) is arithmetically Cohen–Macaulay of codimension
d − 3, by uppersemicontinuity [Herzog 2005], so is S/I (d), so IWd/I (d)= 0. �

Corollary 5.10. The quotient S/IWd has regularity 2.

Proof. Since S/I (d) is Cohen–Macaulay, reducing modulo a linear regular sequence
of length 3 yields an Artinian ring with the same regularity, which is equal to the
socle degree [Eisenbud 2005]. By Theorems 5.7 and 5.8, this is 2, so the regularity
of S/IWd is 2. �
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Theorem 5.11. The nonzero graded Betti numbers of the minimal free resolution
of S/I (d) are given by b12 = d − 3 and for i ≥ 3 by

bi−2,i =

(d−3
i

)
− (d − 3)

(d−3
i−1

)
+

(d−3
2

)(d−3
i−2

)
.

Proof. By Corollary 5.10, there are only two rows in the Betti table of S/I (d). By
Corollary 3.9, the top row is empty, save for the quadratic generators at the first
step. Thus, the entire Betti diagram may be obtained from the Hilbert series, which
is given in Theorem 5.7, and the result follows. �

We are at work on generalizing the results here to higher dimensions.
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Groups with exactly one irreducible
character of degree divisible by p
Daniel Goldstein, Robert M. Guralnick, Mark L. Lewis,

Alexander Moretó, Gabriel Navarro and Pham Huu Tiep

Let p be a prime. We characterize those finite groups which have precisely one
irreducible character of degree divisible by p.

Minimal situations constitute a classical theme in group theory. Not only do they
arise naturally, but they also provide valuable hints in searching for general patterns.
In this paper, we are concerned with character degrees. One of the key results on
character degrees is the Itô–Michler theorem, which asserts that a prime p does not
divide the degree of any complex irreducible character of a finite group G if and
only if G has a normal, abelian Sylow p-subgroup. In [Isaacs et al. 2009], Isaacs
together with the fourth, fifth, and sixth authors of this paper studied the finite
groups that have only one character degree divisible by p. They proved, among
other things, that the Sylow p-subgroups of those groups were metabelian. This
suggested that the derived length of the Sylow p-subgroups might be related with
the number of different character degrees divisible by p. However, nothing could be
said in [Isaacs et al. 2009] on how large p-Sylow normalizers were inside G. (As
a trivial example, the dihedral group of order 2n for n odd has a unique character
degree divisible by 2, and a self-normalizing Sylow 2-subgroup of order 2.)

In this paper, we go further and completely classify the finite groups with exactly
one irreducible character of degree divisible by p. Our focus now therefore is not
only on the set of character degrees but also on the multiplicity of the number
of irreducible characters of each degree. In Section 1, we define the terms semi-
extraspecial, ultraspecial, and doubly transitive Frobenius groups of Dickson type.
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Main theorem. Let p be a prime, and let G be a finite group. Then G has exactly
one irreducible character of degree divisible by p if and only if one of the following
statements holds:

(i) p = 2 and G is an extraspecial 2-group.

(ii) p = 2 and G = S4.

(iii) p = 3 and G is the semidirect product of SL2(3) acting on its natural module
(F3)

2.

(iv) G is a doubly transitive Frobenius group whose Frobenius complement has a
nontrivial cyclic normal Sylow p-subgroup.

(v) p is odd and G= HnK , where K = F(G) is an ultraspecial q-group for some
prime q 6= p, H has a normal cyclic Sylow p-subgroup P , P acts trivially on
K ′ and G/K ′ is a doubly transitive Frobenius group of Dickson type.

(vi) G = HP , where P is a normal semi-extraspecial Sylow p-subgroup and H is
a group of order |P ′| − 1 so that HP ′ is a doubly transitive Frobenius group.

(vii) Either G is PSL2(q) or SL2(q) or there exists a minimal normal elementary
abelian p-subgroup V of order q2 in G so that G/V = SL2(q) and V can be
viewed as a 2-dimensional irreducible module of G/V over EndG/V (V )∼= Fq2 ,
where q = pa

≥ 4 is a power of p.

(viii) p = 3 and G = S5.

(ix) p = 3 and G = M11.

Inspecting the groups listed in the main theorem, we see that either these groups
have normal Sylow p-subgroups or their Sylow normalizers are maximal subgroups.
Thus, as a corollary of the main theorem, we obtain:

Corollary. Suppose that G is a finite group with exactly one irreducible character
of degree divisible by p. Let P ∈ Sylp(G). If P is not normal in G, then NG(P) is
maximal in G.

This corollary suggests that, perhaps, the number of irreducible characters of G
of degree divisible by p is bounded by the length of any saturated chain of subgroups
between NG(P) and G.

We now mention a connection of this problem with block theory and Brauer’s
height zero conjecture. We suppose that G is a group and that G has only one
irreducible character whose degree is divisible by p. If G has more than one block,
then there must exist at least one block where all the characters have height zero
and this block will have maximal defect; in particular, take any of the blocks not
containing the character whose degree is divisible by p. Since such a block has
maximal defect, its defect group will be a Sylow p-subgroup of G, and then Brauer’s
height zero conjecture, if true, would imply that the Sylow p-subgroup must be



Groups with exactly one irreducible character of degree divisible by p 399

abelian. Thus, in light of Brauer’s height zero conjecture, we would expect that
either our group would have abelian Sylow p-subgroups or that the principal block
is the only p-block.

By the Gluck–Wolf theorem (Theorem 12.10 of [Manz and Wolf 1993]), we
know that Brauer’s height zero conjecture is true for p-solvable groups. Thus, it is
possible that the Gluck–Wolf theorem might give a different approach to proving
our result for p-solvable groups (but probably not shorter). In particular, if G
does not have a single p-block, then we know that G must have abelian Sylow
p-subgroups. If G does have a single p-block, then Op′(G)= 1, and so Op(G) > 1.
In particular, if Op(G) is not abelian, then all the nonlinear irreducible characters
in Irr(Op(G)) must be conjugate in G. On the other hand, by Theorem A of
[Isaacs et al. 2009], we know that a p-solvable group G having only one irreducible
character degree divisible by p and Op(G) nonabelian must have that Op(G) is
a Sylow p-subgroup. Thus, our theorem could be viewed as classifying those
groups G having a normal Sylow p-subgroup P where all the nonlinear irreducible
characters of P are G-conjugate.

This suggests that it might be worth studying the following problem which looks
to us to be difficult: classify the pairs (G, N ) with N normal in G such that all the
characters of N with degree divisible by p are conjugate in G. A closely related
problem would be to classify the groups G where all the irreducible characters
of G with degree divisible by p are Galois conjugate. While we hesitate to predict
what such a classification would look like, we observe that an extraspecial p-group
for any prime p will be an example. We expect that the p-solvable examples
that are not nilpotent will involve Frobenius groups and a careful analysis of the
conjugacy of elements of order p as in our examples. For the non-p-solvable
groups, one would begin by looking at the simple groups having the property that
all irreducible characters whose degrees are divisible by p are conjugate (under
outer automorphisms or under Galois automorphisms). Using the classification of
finite simple groups, one can show that the only nonabelian simple groups with this
property are PSL2(q), J1, and M11 (see Corollary 7.5 of [Isaacs et al. 2009]). In
fact, [Isaacs et al. 2009] studied a somewhat more general condition. The stronger
condition that all nonlinear irreducible characters of the same degree are Galois
conjugate was treated in the recent paper [Dolfi et al. 2013].

Our paper is structured as follows: in Section 1, we classify the p-solvable groups
with exactly one irreducible character of degree divisible by p. The classification
is first proved under the additional hypothesis that the group is solvable. We then
produce examples of solvable groups that satisfy conclusion (vi) of the classification.
The classification is then proved under the hypothesis that the group is p-solvable,
but not solvable. This case is split depending on whether the Sylow p-subgroup is
abelian or nonabelian. We also find some additional constraints when the group
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is not solvable, but it is p-solvable and has a nonabelian Sylow p-subgroup. We
construct p-solvable groups that are not solvable and satisfy conclusion (vi) of
the classification. Finally, in Section 2 we take care of the classification of the
non-p-solvable groups.

1. p-solvable groups

In this section we state the classification for p-solvable groups. In Section 2 of
[Dolfi et al. 2009], the reader can find definitions of the relevant terms below.
Recall that P is a semi-extraspecial p-group if P/N is an extraspecial p-group
for every subgroup N in Z(P) with |Z(P) : N | = p. It is known that if P is
a semi-extraspecial p-group, then P ′ = Z(P) = 8(P) and Z(P) is elementary
abelian. Also, |P ′|2 ≤ |P : P ′|. For details, see [Fernández-Alcober and Moretó
2001], for instance. A group P is ultraspecial if P is a semi-extraspecial p-group
that satisfies |P ′|2 = |P : P ′|. In this section, we prove the following result, which
is the p-solvable portion of the main theorem.

Theorem 1.1. Fix a prime number p, and let G be a finite p-solvable group. Then
G has exactly one irreducible character of degree divisible by p if and only if one
of the following holds:

(i) p = 2 and G is an extraspecial 2-group.

(ii) p = 2 and G = S4.

(iii) p = 3 and G is the semidirect product of SL2(3) acting on its natural module.

(iv) G is a doubly transitive Frobenius group whose Frobenius complement has a
nontrivial cyclic normal Sylow p-subgroup.

(v) p is odd and G = H nK where K = F(G) is an ultraspecial q-group for some
prime q 6= p, H has a normal cyclic Sylow p-subgroup P , P acts trivially on
K ′ and G/K ′ is a doubly transitive Frobenius group of Dickson type.

(vi) G = HP , where P is a normal semi-extraspecial Sylow p-subgroup and H is
a group of order |P ′| − 1 so that HP ′ is a doubly transitive Frobenius group.

Clearly, the groups in conclusions (i), (ii), and (iii) exist and are solvable. Doubly
transitive Frobenius groups have been studied in a number of different places. As
mentioned in [Dolfi et al. 2009], the doubly transitive Frobenius groups are in
bijection with the finite near-rings. Most near-rings are obtained by Galois twists of
finite fields and these are said to be of Dickson type. There are also seven near-rings
that are said to be of exceptional type. The doubly transitive Frobenius groups
of Dickson type are solvable. Four of the doubly transitive Frobenius groups of
exceptional type are solvable and the other three are nonsolvable. As mentioned in
[Dolfi et al. 2009], one of the solvable and two of the nonsolvable doubly transitive
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groups of exceptional type have a nontrivial cyclic normal Sylow p-subgroup. Thus,
there are two nonsolvable groups that satisfy conclusion (iv).

In conclusion (v), since G/K ′ is doubly transitive of Dickson type and K is
a q-group for some prime, we see that G must be solvable. We will see that the
groups in (v) have exactly one conjugacy class whose size is divisible by p. In
Section 5 of [Dolfi et al. 2009], they construct groups that satisfy conclusion (v),
and they give conditions on when such groups can be constructed.

Groups that satisfy conclusion (vi) can be found on page 383 of [Gagola 1983].
Using this construction, one can find an example with |P ′| = pa for every prime p
and integer a ≥ 1. We will use a variation on this construction to find groups
that satisfy conclusion (vi) where HP ′ is any doubly transitive Frobenius group of
Dickson type. We will also present a variation on this construction to produce an
example where P is not ultraspecial.

We will also show that we can find groups that satisfy conclusion (vi) where
HP ′ is any of the exceptional doubly transitive Frobenius groups. We will also
find additional restrictions on the groups arising in this case. (See Theorem 1.20,
where we essentially classify such groups. It is perhaps remarkable how large the
exponent of |P/P ′| needs to be in any of these groups.)

We claim that it is easy to see that if G is one of the groups in (i)–(vi), then it
has exactly one irreducible character of degree divisible by p. Thus, we will work
to prove that if G is p-solvable and has exactly one irreducible character of degree
divisible by p, then G is one of the groups in (i)–(vi).

Preliminaries. In this section, we present several results from other sources.

Lemma 1.2 [Lewis 2001, Lemma 1]. Suppose a solvable group G acts faithfully
on a group V , and let p be a prime divisor of |G|. Assume for each nonidentity
element v ∈ V that CG(v) contains a unique Sylow p-subgroup of G. Then G is
a subgroup of the semilinear group on V or p = 3, |V | = 9 and G is one of the
groups SL2(3) or GL2(3).

This next result was proved by Noritzsch. We write cd(G)= {χ(1) | χ ∈ Irr(G)}
for the set of irreducible character degrees of G.

Lemma 1.3 [Noritzsch 1995, Lemma 1.10]. Let V <N <G be normal subgroups of
a finite group G such that G/N and N/V are cyclic of order a and b, respectively.
Moreover, let V be elementary abelian and suppose that both G/V and N are
Frobenius groups with kernel N/V and V , respectively. Then

cd(G)∪ {ab} = {1, a} ∪ {ib | i divides a}.

For nilpotent groups, the result is immediate. (This is essentially proved in [Seitz
1968], but we have decided to include our own short proof.)
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Lemma 1.4. Let G be a nilpotent group, and let p be a prime. Then G has exactly
one irreducible character of degree divisible by p if and only if G is an extraspecial
2-group.

Proof. Obviously G must be a nonabelian p-group. Let Z = Z(G)∩G ′, and note
that Z > 1. If α and β are distinct nontrivial characters of Z , then any irreducible
constituent of αG or βG has degree a nontrivial power of p and clearly αG and βG

have no common constituents. Thus, Z has only one nontrivial character, whence
|Z | = 2 and so G is a 2-group. We see that G/Z has no irreducible characters
of degree bigger than 1, and hence, Z = G ′. Thus, G has |G|/2 distinct linear
characters and so the nonlinear irreducible character has degree [G : Z ]1/2, whence
Z = Z(G). Thus, G is an extraspecial 2-group. �

Groups with exactly one conjugacy class with size divisible by a prime p have
been classified in [Dolfi et al. 2009]. Next is the classification.

Lemma 1.5 [Dolfi et al. 2009, Theorem A]. Let G be a finite group and p a prime.
Then G has exactly one conjugacy class of size divisible by p if and only if G is one
of the following groups:

(i) G is a Frobenius group with Frobenius complement of order 2 and Frobenius
kernel of order divisible by p.

(ii) G is a doubly transitive Frobenius group whose Frobenius complement has a
nontrivial central Sylow p-subgroup.

(iii) p is odd, G = K H , where K = F(G) is an ultraspecial q-group, q prime,
H = CG(P) for a Sylow p-subgroup P of G, K ∩ H = Z(K ) and G/Z(K ) is
a doubly transitive Frobenius group of Dickson type.

Given an element g ∈ G, we write clG(g) for the conjugacy class of g in G.

Lemma 1.6. Let p be a prime number. Assume that G has a normal p-complement
and that G is not nilpotent. If G has exactly one irreducible character of degree
divisible by p, then it has exactly one conjugacy class of size divisible by p.

Proof. Write G = AN , where A is a Sylow p-subgroup of G and N is a normal p-
complement. Assume first that A is not abelian. By Lemma 1.4, A is an extraspecial
2-group. Furthermore, by hypothesis every irreducible character of N is A-invariant.
We deduce that N = 1. This contradiction implies that A is abelian.

By hypothesis, there exists a unique A-orbit of irreducible characters of N that
are not A-invariant. Let θ ∈ Irr(N ) be a character that is not A-invariant. Since θ
extends to its inertia subgroup in G and our hypothesis implies that there exists a
unique irreducible character of G lying over θ , we have that Gθ = N . In other words,
the action of A on Irr(N ) has exactly one regular orbit, and all other orbits have size
one. Since the actions on characters and classes are permutation isomorphic, the
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same happens for the action of A on the set of conjugacy classes of N . We deduce
that there exists a unique G-conjugacy class contained in N of size a multiple of p.

Now, consider an element g ∈ G \ N . We must prove that p does not divide
|clG(g)|. Since N is a normal Hall p′-subgroup, p divides o(g). If o(g) is a power
of p, then g belongs to some Sylow p-subgroup of G. Since the Sylow p-subgroups
of G are abelian, it follows that |clG(g)| is a p′-number, as desired. Hence, we may
assume that the order of g is not a prime power, and we can write g = gpgp′ as
the product of its p-part and its p′-part, where gp 6= 1 and gp′ 6= 1. Observe that
gp′ belongs to N and commutes with the nontrivial p-element gp. By the previous
paragraph, gp′ commutes with a Sylow p-subgroup T that contains gp. It follows
that g commutes with T , and hence, |clG(g)| is a p′-number, as desired. �

Looking at the conclusion of Lemma 1.5, it is not difficult to see that only the
groups in conclusions (ii) and (iii) have exactly one irreducible character whose
degree is divisible by p, and that these groups satisfy conclusions (iv) and (v) of
Theorem 1.1. Thus, combining Lemma 1.6 with Lemma 1.5 yields the following
corollary.

Corollary 1.7. Let p be a prime number. Assume G has a normal p-complement
and G is not nilpotent. If G has exactly one irreducible character of degree divisible
by p, then G is one of the groups in (iv) or (v) of Theorem 1.1.

Let K be a normal subgroup of G. We use Irr(G | K ) to denote the characters in
Irr(G) that do not contain K in their kernels.

Lemma 1.8. Let p be a prime number. Assume that G has a normal Sylow p-
subgroup but that G is not a p-group. If G has exactly one irreducible character of
degree divisible by p, then G is one of the groups in (vi) of Theorem 1.1.

Proof. Take P to be the Sylow p-subgroup of G, and let H be a Hall p-complement
for G. Observe that p divides the degree of every character in Irr(G | P ′). This
implies that Irr(G | P ′) contains a unique character χ . It is not difficult to see that
χ vanishes on G \ P ′. Also, G has a unique orbit on the nonprincipal characters of
Irr(P ′). By Theorem 6.32 of [Isaacs 1976], this implies that P ′ contains only one
nonidentity conjugacy class of G. This implies χ is one of the characters studied
by Gagola [1983]. From Lemma 2.1 of [Gagola 1983], we see that P ′H is a doubly
transitive Frobenius group. We deduce that P ′ is a minimal normal in G, and P ′

is central in P . In the language of [Chillag and Macdonald 1984], (G, P ′) is a
Camina pair, and using Lemma 4.2 from that paper and the fact that P ′ is central
in P , one sees that P is semi-extraspecial. �

The solvable case. We now prove Theorem 1.1 under the addition hypothesis that
G is solvable.
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Theorem 1.9. Let p be a prime, and let G be a group having exactly one irre-
ducible character whose degree is divisible by p. If G is solvable, then G satisfies
conclusions (i)–(vi) of Theorem 1.1.

Proof. Assume that G has exactly one irreducible character of degree divisible
by p. We want to prove that G is one of the groups in (i)–(vi). Let G be a minimal
counterexample.

Step 1: If Op(G) > 1, then Op(G) is a Sylow subgroup of G.
Write V = Op(G), and assume that V is not a Sylow p-subgroup of G. Now,

G/V has a nontrivial, nonnormal Sylow p-subgroup, so p must divide the degree
of some character in Irr(G/V ) by Itô’s theorem (Theorem 12.33 of [Isaacs 1976]).
Hence, G/V will have exactly one irreducible character of degree divisible by p,
and thus, G/V is not a counterexample. Since G/V does not have a nontrivial
normal p-subgroup, G/V is one of the groups in (iv) or (v) of Theorem 1.1.

Substep 1a: V is a minimal normal subgroup of G.
Let K be a normal subgroup of G such that V/K is a chief factor of G. Assume

that K > 1. Since G/K is not a counterexample, G/K = S4 and p = 2 or G/K is
the group in (vi) and p = 3. In both cases, a Sylow p-subgroup is not abelian, so
we may apply Theorem 12.9 of [Manz and Wolf 1993] to see that Irr(G | K ) must
contain a character of degree divisible by p. Since Irr(G/K ) already contains a
character of degree divisible by p, this is a contradiction. Therefore, we must have
K = 1, and V is a minimal normal subgroup of G.

Substep 1b: V = F(G).
Assume that V < F = F(G). Let E/V = F(G/V ). Suppose first that F = E .

Since G/V satisfies conclusion (iv) or (v), we know that F = V ×W , where W is a
q-group for some prime q 6= p, and G/V W ′ is a doubly transitive Frobenius group.
This implies that W/W ′ is an elementary abelian q-group and (1V×λ)

G
∈ Irr(G) for

any character 1W 6= λ∈ Irr(W/W ′). It is not difficult to show that (α×λ)G ∈ Irr(G)
for every character α ∈ Irr(V ). Since 1V × λ will be in a different G-orbit than
α× λ when α 6= 1V , we deduce that G has more than one irreducible character of
degree divisible by p, a contradiction. Thus, we may assume that F < E .

Recall that G/V satisfies either conclusion (iv) or conclusion (v). In both cases,
we know that G/E ′V is a doubly transitive Frobenius group, so E/E ′V is a chief
factor for G. If G/V satisfies conclusion (iv), then E/V is abelian, so E/V is a
chief factor, and we cannot have F < V < E . Thus, the claim is proved in this case,
and we may assume that G/V satisfies conclusion (v).

We know that E/V is a semi-extraspecial group, so every normal subgroup
of E/V either contains E ′V/V or is contained in E ′V/V (by Corollary 8.3 of
[Fernández-Alcober and Moretó 2001]). Since E/E ′V is a chief factor and F < E ,
this implies that F ≤ E ′V . As V < F , we still have F = V ×W where W > 1 is a
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normal q-group in G. Also, because G/E ′V is a doubly transitive Frobenius group,
we know that G/E ′V does not have a normal Sylow p-subgroup. Hence, G/W does
not have a normal Sylow p-subgroup. By Itô’s theorem, this implies that p divides
the degree of some character in Irr(G/W ). Now, G/W is not a counterexample to
the theorem and it has a nontrivial normal p-subgroup, and a Sylow p-subgroup
that is not normal. It follows that G/W satisfies either conclusion (ii) or conclusion
(vi), and both of these have a nonabelian Sylow p-subgroup. Thus, we may apply
Theorem 12.9 of [Manz and Wolf 1993] to see that Irr(G |W ) has a character with
degree divisible by p, a contradiction. This completes the proof of the claim that
V = F(G).

Substep 1c: Proof of step 1.
Now, G/V acts faithfully on V , and CG(v) contains a unique Sylow p-subgroup

of G for any nonidentity v ∈ V . We can apply Lemma 1.2, and deduce that
either p = 3, G/V = SL2(3) and |V | = 9 or G/V is a subgroup of the semilinear
group on V . In the first case, we obtain that G is the group of type (vi). This
is a contradiction. In the second case, we have that G/V is a metacyclic doubly
transitive Frobenius group with kernel, say, K/V and that the action of K/V on V
is Frobenius. By Lemma 1.3, we deduce that |G/K | = p. But since |K/V | = p+1
is prime, we deduce that p = 2 and G/V = S3. We claim that |V | = 4. For every
nonprincipal irreducible character λ of V , the inertia subgroup of λ in G is a Sylow
2-subgroup of G. Since G has 3 Sylow 2-subgroups {P1, P2, P3}, we deduce that

Irr(F(G)) \ {1F(G)} =

3⋃
i=1

CIrr(F(G))(Pi ),

and this union is disjoint. In particular, |V |−1= 3 ·2a for some integer a. Since V
is a 2-group and |V | = 3 · 2a

+ 1, we deduce that a = 0 and |V | = 4. This implies
that G = S4, again a contradiction. This means that if V > 1, then V is a Sylow
p-subgroup, proving step 1.

Let H be a Hall p-complement of G.

Step 2: Op(G)= 1.
Suppose Op(G) > 1. By step 1, G has a normal Sylow p-subgroup. By

Lemma 1.8, G satisfies conclusion (vi) and this contradicts the choice of G as a
counterexample.

Step 3: G has a normal p-complement.
Assume that G does not have a normal p-complement. By Theorem A of

[Isaacs et al. 2009], G has a cyclic Sylow p-subgroup. Write X = Op′(G) and
Y/X = Op(G/X). The group Y/X is isomorphic to a Sylow p-subgroup of G
and G/Y is isomorphic to a p′-subgroup of Aut(Y/X). Hence, G/Y is a cyclic
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group whose order is a divisor of p − 1. Write Y = P X , where P is a Sylow
p-subgroup of G. Since we are assuming that G/Y > Y/Y , it follows that p > 2.
Set V = [P, X ], and let V/W be a chief factor of G. Let r be the prime so that
V/W is an elementary abelian r -group.

Substep 3a: If W > 1, then W is nilpotent, W = V ′, and all nonlinear irreducible
characters of V are P-invariant.

By the minimality of G as a counterexample to the theorem, G/W is one of the
groups described in (i)–(vi). We know that p > 2, so G/W is one of the groups in
(iii)–(vi). The Sylow p-subgroups of G/W are cyclic, so it is not one of the groups
of type (iii) or (vi) either. The Sylow p-subgroups of G/W do not act trivially on
the minimal normal subgroup V/W , so G/W cannot be of type (v). It follows
that G/W is a doubly transitive Frobenius group whose complement has a cyclic
normal Sylow p-subgroup. In particular, K = F(G) ≤ V . Since G has a unique
irreducible character of degree divisible by p, it is easy to see that V ′ =W . Also,
since p will not divide the degrees of any of the characters in Irr(G | V ′), all the
nonlinear characters of V are fixed by P . By Theorem A of [Isaacs 1989], W is
nilpotent.

Substep 3b: If W > 1, then V is an r -group.
Assume that this is not true. Then there exists a normal subgroup J of G so

that W/J is a chief factor of G which is a t-group, for some prime t 6= r . For
any character τ ∈ Irr(W/J ), we see that the stabilizer Gτ contains a full Sylow
p-subgroup of G. Also, τ extends to PVτ . Since the action of P on V/W is
Frobenius, it follows from our hypothesis that Vτ =W . Hence, the action of V/W
on W/J is Frobenius, so V/W is cyclic of order r and G/V is cyclic. It follows
that G has a normal p-complement, a contradiction. This proves the claim that W
is an r -group. As a consequence, V is an r -group.

Substep 3c: W = 1.
Suppose W > 1. Fix a character θ ∈ Irr(V |W )= Irr(V | V ′), so θ is nonlinear.

We have seen that θ must be P-invariant. So there exists a character µ ∈ Irr(W )

that is a constituent of θW and is P-invariant. By Problem 13.10 of [Isaacs 1976],
there exists a unique irreducible constituent of µV that is P-invariant. But all the
members of Irr(V |W ) are P-invariant. It follows that µV

= eθ for some integer e.
In particular, θ vanishes on the set V \W . By Lemma 3.1 of [Lewis et al. 2005], we
see that V is a semi-extraspecial r-group. One can easily see that P acts trivially
on W , so G is one of the groups in (v). This contradiction implies that W = 1.

Let C = CG(V ).

Substep 3d: G/C acts transitively on V \ {1}.
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Observe that PV/V is a Sylow p-subgroup of G/V . Since Op(G) = 1, we
know that P acts faithfully on V . Also, V = CV (P)×[V, P] by Fitting’s lemma.
We have that CV (P) is normal in G (since PV is normal in G), and V is a minimal
normal subgroup of G. It follows that CV (P) = 1, so the action of P on V is
Frobenius (by Theorem A of [Isaacs et al. 2009]). It follows that the degree of any
of the members of Irr(G | V ) is a multiple of p. By hypothesis, |Irr(G | V )| = 1.
This implies that the action of G/C on V \ {1} is transitive.

Now, we can apply Theorem 6.8 of [Manz and Wolf 1993] to determine the
structure of G/C .

Substep 3e: C ≤ X .
On the other hand, consider any character θ ∈ Irr(X |V ). Since P acts Frobeniusly

on V , we know that the stabilizer of any nonprincipal irreducible character of V will
be contained in X , and so, all the characters in Irr(X | V ) induce irreducibly to Y .
In particular, θY

∈ Irr(Y ). But G/Y is cyclic, and (θY )G has a unique irreducible
constituent. Clifford theory implies that θG

∈ Irr(G). In other words, any member
of Irr(X | V ) induces irreducibly to the same character of G. Also, the action of P
on V is Frobenius, so C is a p′-group. This implies that C ≤ X .

Substep 3f: G/C must be one the “exceptional groups” in the conclusion of
Theorem 6.8 of [Manz and Wolf 1993].

Suppose first that G/C is isomorphic to a subgroup of the semilinear group of V .
This implies that G/C is metacyclic. Write F/C = F(G/C), and note that G/F is
cyclic. Put U = F ∩ X E G. Arguing as in the previous paragraph, any member of
Irr(U | V ) induces irreducibly to the same character of G. This fact and Clifford’s
correspondence imply for every character λ ∈ Irr(V ) \ {1V } that |Irr(Uλ | λ)| = 1.
Hence, λ is fully ramified with respect to Uλ/V . We deduce that Uλ is a q-group
for some prime q. Since the Sylow q-subgroups of 0(V ) are cyclic, it follows
that Uλ/C is cyclic and is contained in the cyclic group Oq(G/C). In particular,
Uλ E G. Since G is transitive on V \ {1}, we deduce that Uλ = C . Because C/V is
fully ramified, we obtain Z(C)≤ V . But V is minimal normal in G, so Z(C)= V .

We claim that C = V . Assume that this is not true. Thus, C ′∩V > 1, so V ≤C ′.
But we know that P acts trivially on C/C ′. Hence, it acts trivially on C and this is
a contradiction. This implies that C = V , and the action of G/V on V is Frobenius.

This proves that G is a double transitive Frobenius group whose complement has
a cyclic normal Sylow p-subgroup; that is, G is of type (iv). This is a contradiction.
By Theorem 6.8 of [Manz and Wolf 1993], G/C is one of the exceptional groups
in that theorem.

Substep 3g: Proof of step 3.
The group G/C cannot be one of the groups in conclusion (a) of Theorem 6.8 of

[Manz and Wolf 1993] because F(G/C) is not a nonabelian group of prime power



408 D. Goldstein, R. Guralnick, M. Lewis, A. Moretó, G. Navarro and P. H. Tiep

order. Also, it cannot be one of the groups in conclusion (b) because F(G/C)
contains a noncentral cyclic Sylow p-subgroup. Therefore, G has a normal p-
complement.

Step 4: Final contradiction.
By Corollary 1.7, G is one of the groups of type (iv) or (v). This is the final

contradiction. �

Solvable examples. We now construct solvable groups that appear in conclusion
(vi) of Theorem 1.1. In particular, for every two-transitive Frobenius group of
Dickson type D, we find a group G satisfying conclusion (vi) of Theorem 1.1 so
that Z(P)H ∼= D. We will also present an example that satisfies conclusion (vi) of
Theorem 1.1 where P is not ultraspecial.

We start with examples that appeared in [Gagola 1983] and in [Isaacs 2011]. Let
p be a prime and let n be a positive integer. Write F for the finite field of order pn .
Take K to be the matrix group

1 a b
0 1 c
0 0 d

 : a, b, c ∈ F; d ∈ F∗

 .
Set

P =


1 a b

0 1 c
0 0 1

 : a, b, c ∈ F

 .
It is shown in [Gagola 1983] that P is a normal Sylow p-subgroup of K . It is well
known that P is an ultraspecial group of order p3n . Set

L =


1 0 0

0 1 0
0 0 d

 : d ∈ F∗

 .
Observe that L is a Hall p-complement of K . Also, L is cyclic. It is not hard to
see that L acts Frobeniusly on

Z(P)=


1 0 b

0 1 0
0 0 1

 : b ∈ F

 ,
but that L does not act Frobeniusly on P . We should note that in fact K satisfies
conclusion (vi) of Theorem 1.1. However, we need to produce more complicated
examples. To do this, let G be the Galois group for F over Z p. We can define an
action G on K as follows: if σ ∈ G, then σ acts on a typical element of K by acting
on each of the entries of K . Notice that P and L are invariant under the action
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of G. Also, note that the semidirect product of G acting on L is isomorphic to the
affine group on F . (See page 38 of [Manz and Wolf 1993].) We take 0 to be the
semidirect product of G acting on K . (We note that Z(P)LG is isomorphic to the
affine semilinear group on F which is also defined on page 38 of [Manz and Wolf
1993].)

Suppose D = N H∗ is a two-transitive Frobenius group of Dickson type of order
pn(pn

− 1), where N is the Frobenius kernel and H∗ is the Frobenius complement.
It is well known that H∗ can be embedded in the affine group of F and that N H∗

is isomorphic to a subgroup of the semilinear affine group of F . Thus, H∗ is
isomorphic to H ⊆ LG and N H is isomorphic to Z(P)H . We set G = P H , and it
is not difficult to see that G is the desired group.

To find an example of a group satisfying conclusion (vi) of Theorem 1.1 where
P is not ultraspecial, we take 0 as above, but specialize p = 2 and n = 3. This
implies that |P| = 29 and |G| = 3. We define G∗ = PG. Observe that G centralizes
a subgroup Z of Z(P) having order 2. (The fixed field under the Galois group
has order 2.) It follows that Z is in the center of G∗. Let G = G∗/Z . Since
P/Z is a nonabelian quotient of a semi-extraspecial group, it is semi-extraspecial.
Since |P : Z(P)| = 26 and |Z(P) : Z | = 22, it is not ultraspecial. Observe that G

acts Frobeniusly on Z(P)/Z , so Z(P)G/Z is a doubly transitive Frobenius group.
It follows from Lemma 2.2 of [Chillag and Macdonald 1984] that G satisfies
conclusion (vi) of Theorem 1.1, and this yields our example with the normal Sylow
subgroup not being ultraspecial.

We will construct examples where D ∼= Z(P)H when D is a two-transitive
solvable Frobenius of exceptional group later. The technique for constructing groups
that satisfy conclusion (vi) of Theorem 1.1 when Z(P)H is exceptional is the same
for solvable and nonsolvable groups. Thus, we hold off on that construction until
after we handle the proof of Theorem 1.1 in the case where the group is p-solvable,
but not solvable.

Abelian Sylow p-subgroup. We now prove Theorem 1.1 in the case that G is
p-solvable but not solvable and the Sylow p-subgroup of G is abelian.

The following result is the only one in this section that uses the classification of
finite simple groups.

Lemma 1.10. Let p be prime. Let S be a finite nonabelian almost-simple group not
divisible by p and A a nontrivial p-group of automorphisms of S. Then A is cyclic.
Moreover, A has at least two nontrivial orbits on the irreducible characters of S.

Proof. It follows by the classification of finite simple groups and their automorphism
groups that F∗(S) is a finite group of Lie type and A is a cyclic group of field
automorphisms. By Brauer’s lemma, it suffices to prove the same statement for
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conjugacy classes. We can appeal to [Dolfi et al. 2009, Lemma 3.1] to complete
the proof. �

We apply the previous lemma to obtain the following.

Lemma 1.11. Let G be a finite group with a minimal normal subgroup N that
is a direct product of t copies of a nonabelian finite simple group. Assume that
CG(N )= 1 and that either t > 1 or that there is a prime p dividing |G| that does
not divide |N |. Then G has at least 2 nontrivial orbits on conjugacy classes of N of
size a multiple of p and on irreducible characters of N of degree divisible by p.

Proof. If p divides |N | and t > 1, the result is clear (indeed, there will be at least t
such orbits).

If t = 1 and p does not divide |N |, then Lemma 1.10 applies. �

We now prove Theorem 1.1 under the hypothesis that G is p-solvable but not
solvable and that G has an abelian Sylow p-subgroup.

Theorem 1.12. Let p be a prime, and let G be a group having exactly one irre-
ducible character whose degree is divisible by p. Suppose G is p-solvable, but
not solvable. If G has an abelian Sylow p-subgroup, then G is a doubly transitive
Frobenius group whose Frobenius kernel R is an elementary abelian r-group of
order r2 where either (p, r) = (7, 29) or (29, 59), and a Frobenius complement
H ∼= SL2(5)×Z/p. In particular, G satisfies conclusion (iv) of Theorem 1.1.

Proof. Let P be a Sylow p-subgroup of G. By the Itô–Michler theorem, P is not
normal. Since P is not normal in G, we have that P does not centralize F∗(G).

First assume that R is a nilpotent normal p′-subgroup of G with [P, R] 6= 1.
So P does not commute with R/8(R). If γ is a nontrivial linear character of R
vanishing on 8(R) not fixed by P , then every constituent of γ G

R has dimension
divisible by p, whence G acts transitively on the nontrivial linear characters of
R/8(R) not fixed by P . This implies that on a simple G-quotient M of R/8(R),
we have G acting transitively on the nontrivial elements, whence [Liebeck 1987,
Appendix 1] and the fact that G is p-solvable implies that the action of G on M
is SL2(5)×C , where C is a cyclic group of order divisible by p, |M | = r2 with
(p, r)= (7, 29) or (29, 59). Write M = R/R0. If P does not centralize R0, then
we can induce a nontrivial linear character of R0 and obtain a different irreducible
character of degree divisible by p (it will have a different kernel), a contradiction.
Thus, P commutes with R0. So P acts as nontrivial scalars on M and so M does
not commute with [R, R0] unless it is trivial. So R0 = 1 and |R| = r2.

Suppose P does not commute with F(G). We claim that this implies that F∗(G)
has order r2 as above. If E(G) 6= 1, then clearly there is a character of F∗(G)
nontrivial on E(G) that is not fixed by P (if P centralizes E(G), then just take
some character of F∗(G) that is nontrivial on Or (G) and E(G); if P does not
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centralize E(G), just take a character of E(G) not fixed by P) and inducing this
up gives a contradiction.

So F∗(G) of order r2 implies that F∗(G) is its own centralizer and we already
saw that G/F∗(G)∼= SL2(5)×Z/p, whence the result.

So we may assume that P commutes with F(G). Then since P is not normal in
G, P does not commute with E(G). If F∗(G) 6= E(G), then as above there will
be at least two G-orbits of characters of G of degree divisible by p with distinct
kernels. So F∗(G)= E(G). We show that this cannot happen. There is no harm in
passing to G/Z(E(G)), and so we may assume that E(G) is a direct product of
nonabelian simple groups. The result now follows by Lemma 1.11. �

Nonabelian Sylow p-subgroup. In this subsection, we complete the proof of
Theorem 1.1 by proving it under the hypothesis that G is p-solvable but not
solvable and has a nonabelian Sylow p-subgroup. We will show that G has to
satisfy conclusion (vi) of Theorem 1.1. We also obtain further restrictions on the
structure of G in this situation.

Lemma 1.13. Let p be a prime, and let G be a group having exactly one irreducible
character whose degree is divisible by p. Suppose that G is p-solvable, but not
solvable. Let P be a Sylow p-subgroup of G. If P is nonabelian, then P is normal
in G.

Proof. Suppose not. Suppose that Op(G) 6= 1 and let Q be a minimal normal
p-subgroup of G. If P/Q is nonabelian, then by induction P/Q is normal in G/Q,
whence P is normal.

So P/Q is abelian, and recall that P is not normal in G. By the Itô–Michler
theorem, G/Q has a character of degree divisible by p, and by hypothesis this
character is unique. Since G/Q is p-solvable and not solvable, we may apply
Theorem 1.12, and G/Q is as given there (in particular, p = 7 or 29). Also, there
is a normal subgroup Q R where R has order r2 (with r = 29 or 59 depending
upon p).

If R does not centralize Q, then as the element of order p in G/Q acts centrally
on R (that is, as scalars), we see that on Q, the dimension of the fixed space of
a Sylow p-subgroup of G on Q is (1/p) dim Q (Q is a free module for P/Q) —
see Theorem 15.16 of [Isaacs 1976]. The number of Sylow p-subgroups in G is
|R| = r2 (since G = NG(P)R). Thus, the total number of points fixed by a Sylow
p-subgroup of G on Q is less than r2 pd/p, where |Q| = pd .

Easily, we see that for both choices of r and p that r2 pd/p < pd , and so there
exists an element of Q (and similarly Q∗) that is fixed by no p-element outside Q.
Thus, there is a linear character χ of Q whose G-orbit has size a multiple of p,
whence any irreducible constituent of χG has dimension a multiple of p and so
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there are at least two irreducible characters of degree a multiple of p (one with Q
in the kernel, one with Q not in the kernel).

Suppose that R centralizes Q. Then P is central in G/RQ and since Q is an
irreducible G/RQ-module, P must act trivially on Q, whence Q ≤ Z(P). Since
P/Q is cyclic, this implies that P is abelian, a contradiction.

So we may assume that Op(G)= 1. Let N be a minimal normal subgroup. So
N is a p′-group. Let χ be any character of N . If P is not contained in the inertia
group of χ , then every irreducible constituent of χG

N has dimension divisible by p.
Since some irreducible character of G/N has dimension divisible by p, we have a
contradiction. Indeed, the argument shows that P centralizes Op′(G). Thus, F∗(G)
cannot be a p′-group, whence Op(G) 6= 1. This completes the proof. �

We now come to the proof of Theorem 1.1 under the additional hypothesis that
G is p-solvable but not solvable and that G has a nonabelian Sylow p-subgroup.
Combining Theorems 1.9, 1.12, and 1.14, we have a proof of Theorem 1.1.

Theorem 1.14. Let p be a prime, and let G be a group having exactly one irre-
ducible character whose degree is divisible by p. Suppose that G is p-solvable,
but not solvable. If G has a nonabelian Sylow p-subgroup, then G satisfies con-
clusion (vi) of Theorem 1.1. Furthermore, p = 11, 29, or 59; |P ′| = p2; and
G/P ∼= SL2(5)×Z/c(p), where c(11)= 1, c(29)= 7, and c(59)= 29.

Proof. By Lemma 1.13, P is normal. Applying Lemma 1.8, G satisfies conclusion
(vi) of Theorem 1.1. Let P be the Sylow p-subgroup, and let H be a p-complement
in G. We know that P ′H is a doubly transitive Frobenius group. It follows that H
is a Frobenius complement. Since H is nonsolvable, it follows by [Passman 1968,
20.2] that |Z(P)| = p2 with p = 11, 29, or 59 and H = SL2(5)×C , where C is
cyclic of order c(p). �

Examples with exceptional doubly transitive Frobenius groups. In this subsec-
tion, we consider groups G that have the form of a coprime semidirect product of
a group H acting on a semi-extraspecial p-group P where |Z(P)| = p2 and H is
acting faithfully and irreducibly on Z(P). We find the possible values for |P : P ′|
when H is either SL2(3) or SL2(5), and we find examples showing that each of the
possible values occur. This will yield examples where G is a group that satisfies
conclusion (vi) of Theorem 1.1 where HP ′ is any of the exceptional two-transitive
Frobenius groups. In particular, this gives examples of groups G where G is a
p-solvable group that is not solvable with a nonabelian Sylow subgroup P and
exactly one irreducible character whose degree is divisible by p.

The key to this solution is trying to find Fp H -modules V so that
∧2
(V ) con-

tains a 2-dimensional H -submodule W such that W # consists of nondegenerate
alternating forms on V . There is also is an intriguing connection with the McKay
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correspondence and the Dynkin diagram of affine extended E8 when H = SL2(5)
and of affine extended E6 when H = SL2(3). (For more details on the McKay
correspondence and Dynkin diagrams, see [McKay 1980] or [Steinberg 1985].)
This was used in our initial approach to the problem but it is not needed in the
solution.

In this section we address a slightly more general problem than is addressed
in the remainder of the paper. We assume we have a group H with Z(H) ≤ H ′

and |Z(H)| = 2 that is acting faithfully on a p-group P that satisfies the following
conditions. In the examples needed for this paper, we will have H = SL2(3) or
H = SL2(5).

Our hypotheses are as follows:

(i) p is a prime that is coprime to |H |.

(ii) P is a semi-extraspecial p-group with |P : P ′| = pa and Z = Z(P)= P ′ has
order p2.

(iii) H acts on P with Z a faithful irreducible H -module (and we fix the isomor-
phism type).

Notice that H acting faithfully on Z implies that H is isomorphic to a subgroup
of SL2(p). For H = SL2(3), this does not imply any further restrictions on p, but
when H = SL2(5), this implies that p ≡ ±1 mod 5. Set V = P/Z , and we view
V as a module for H . We will determine the set of all positive integers a so that
|V | = pa when H = SL2(3) and H = SL2(5). The particular values that occur
depend on the residue class of p modulo 12 when H = SL2(3) and modulo 60 when
H = SL2(5). In the next section, we will construct enough examples to show that
there exists an example for each of the possible dimensions. The same techniques
would essentially allow us to classify all the possible groups, but we do not pursue
this here. Let V1 and V−1 denote the eigenspaces of the action of Z(H) on V . Let
P1 and P−1 denote the inverse images of V1 and V−1 in P .

Lemma 1.15. Assume P and H satisfy the given hypotheses and P1 and P−1 are de-
fined as above. Then P1 and P−1 are abelian, a=2b is even, and |P1|=|P−1|=pb+2.

Proof. Note that Z(H) acts trivially on [Pε, Pε] for ε = 1 or ε =−1. Since Z(H)
does not active trivially on Z , we must have [Pε, Pε] ∩ Z = 1. Thus, P1 and P−1

are abelian. Since P/Z1 is extraspecial, this implies that |P±1 : Z | ≤ pa/2. Since
pa
= |V1||V−1|, we have that a = 2b for some integer b and |P±1 : Z | = pb. The

conclusion now follows. �

Given a subgroup 1< Z1< Z , we obtain an element of (
∧2V )∗=Hom

(∧2V, Fp
)

(namely the homomorphism aZ ∧ bZ 7→ [a, b]Z1). The condition that P/Z1

is extraspecial is equivalent to saying that this element is nondegenerate. The
subspace of

(∧2V
)∗ generated by these elements yields a 2-dimensional irreducible
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H -invariant subspace of
(∧2V

)∗ such that each nonzero element is nondegenerate.
In the next section, we will use the fact that if such a 2-dimensional space exists,
then we can construct P satisfying the above conditions.

The existence of a group P such that H acts as above implies that an H -invariant
subspace W of

(∧2V
)∗ exists such that W is two dimensional and every nonzero

element of W is nondegenerate. We choose a basis for V consisting of bases for V1

and V−1. Representing the elements in W as matrices in terms of this basis for V ,
we obtain matrices of the form

f (D) :=
(

0 D
−DT 0

)
,

where D is some element of Mn(Fp). The fact that the nonzero elements of W are
nondegenerate is equivalent to saying that D is nonsingular for all the matrices D
such that f (D) ∈W .

We can conjugate and find a basis for W of the form { f (I ), f (A)} for some
matrix A. Let W̃ be the Fp-span of {I, A}. Observe that f is an isomorphism
of the vector spaces W and W̃ . Moreover, the condition that all of the nonzero
matrices in W̃ are nonsingular is precisely equivalent to the condition that A has
no eigenvalues in Fp.

Let τ denote the inverse transpose map. We may write the action of H on W as
diag(ρ1(h), ρ2(h)τ ), where ρ1 is the representation of H afforded by V1 and ρ2 is
the representation of H afforded by V2. It follows that ρ1 has a kernel containing
Z(H) and that ρ2 is a faithful representation of H . The fact that W is H -invariant
is precisely equivalent to saying that

ρ1(h)Wρ2(h)−1
=W

for every element h ∈ H . Since we are taking { f (I ), f (A)} as the basis for W ,
we see that ρ1(h)ρ2(h)−1

= ρ1(h)Iρ2(h)−1
∈ W̃ and ρ1(h)Aρ2(h)−1

∈ W̃ for all
h ∈ H . Because ρ1(h)Iρ2(h)−1

∈ W̃ , there is a map φ from H to W̃ define by
φ(h) = ρ1(h)Iρ2(h)−1. This satisfies ρ1(h)I = φ(h)ρ2(h) for all h ∈ H , and
substituting, we obtain ρ1(h)Aρ2(h)−1

= φ(h)ρ2(h)Aρ2(h)−1. Since φ(h) ∈ W̃ ,
this implies that ρ2(h)Aρ2(h)−1

∈ W̃ . It follows that conjugation by ρ2(h) pre-
serves the algebra R = Fp[A], and this conjugation action is therefore an algebra
automorphism of R. We define ρ : H → W̃ by ρ(h)= ρ1(h)Aρ2(h)−1, and note
that ρ(h)= φ(h)ρ2(h)Aρ2(h)−1. Since the nonzero elements of W̃ are nonsingular
(i.e., invertible), it follows that φ(h) ∈ R∗ for all h ∈ H , and this implies that the
image of H under ρ is contained in R∗Aut(R), where R∗ is the set of units in R.

Note that ρ(H) acts by permutations on the primitive idempotents of R. Thus, we
can decompose R = R1×· · ·× Rm , where each Ri is a subspace of R generated by
an orbit of ρ(H) on the primitive idempotents of R. We have dim R=

∑m
i=1 dim Ri .
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We now work with R1. We know that ρ(H) acts transitively on the primitive
idempotents of R1. We have R1= K [t1]/te

1×· · ·×K [ts]/te
s , where K is a nontrivial

extension field of Fp. The fact that K is a nontrivial extension comes from the fact
that the eigenvalues of A do not lie in Fp. Since Z(H) acts like −1, it stabilizes
the subspaces generated by each of the ti ’s.

Let H1 denote the stabilizer of the subspace generated by t1 which we call L1,
and note that s = |H : H1|. Then ρ2(H1) acts on L1 := K [t1]/te

1 , and again, the
element of order 2 in Z(H) ≤ H1 acts as −1. Thus, H1 acts faithfully on L1.
Moreover, the action of H1 on L1 embeds in L∗1 Aut(L1). Because H1 has order
prime to p, we see that in fact H1 embeds in K ∗Aut(K ), and this implies that H1

is either cyclic or metacyclic. If |H1| = 2, then since K is a nontrivial extension of
Fp, we see that H1 does not act irreducibly on L , and so we conclude that |H1| 6= 2.

Suppose H1 is cyclic of order 2q, where q is an odd prime. If q divides p− 1,
then H1 will not act irreducibly on L1, so q does not divide p− 1. Recall that H1

is isomorphic to a subgroup of SL2(p). Thus, it must be that q divides p+ 1. This
implies that [K : Fp] is even and p ≡−1 mod q .

Now, suppose H1 is cyclic of order 4. If 4 does not divide p− 1, then it is not
difficult to see that [K : Fp] must be even. Suppose 4 does divide p− 1. For H1 to
be acting irreducibly on L1, it must be that a generator of H1 is the product of a
nontrivial element of L∗1 with a nontrivial element of Aut(L1). In particular, this
implies that 2 divides [K : Fp].

If H1 is nonabelian, then since H1 is metacyclic and contained in SL2(p), we
conclude that H ′1 is cyclic and has index 2. This implies that 2 divides [K : Fp]. If
H1 contains a subgroup isomorphic to the quaternions, then p ≡−1 mod 4 since
K ∗Aut(K ) does not contain any subgroups isomorphic to the quaternions when
p ≡ 1 mod 4. We now assume that H1 does not contain any subgroups isomorphic
to the quaternions. Since H1 is a subgroup of SL2(p), this implies that the Sylow
2-subgroups of H1 are abelian, and so |H1| is divisible by some odd prime q . Since
H1 is acting irreducibly, we see that H1/Z(H) is contained in a dihedral group of
order 2(p+ 1). This implies H ′1 contains no elements of odd order whose order
divides p− 1. In particular, we must have q divides p+ 1 so p ≡−1 mod q .

Theorem 1.16. Let P be an semi-extraspecial p-group with |Z(P)|= p2 and p> 5
is a prime. Let a be the even integer so that |P : Z(P)| = pa . Suppose H = SL2(5)
acts via automorphisms on P such that H is acting faithfully and irreducibly on
Z(H). Then p ≡±1 mod 5 and the following holds:

(i) If p ≡ 1 mod 60, then a = 120x , where x is a positive integer.

(ii) If p≡ 11 mod 60, then a= 40x+60y, where x and y are nonnegative integers
whose sum is positive.
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(iii) If p≡ 19 mod 60, then a= 24x+60y, where x and y are nonnegative integers
whose sum is positive.

(iv) If p≡ 29 mod 60, then a= 24x+40y, where x and y are nonnegative integers
whose sum is positive.

(v) If p ≡ 31 mod 60, then a = 60x , where x is a positive integer.

(vi) If p ≡ 41 mod 60, then a = 40x , where x is a positive integer.

(vii) If p ≡ 49 mod 60, then a = 24x , where x is a positive integer.

(viii) If p≡59 mod 60, then a=24x+40y+60z, where x , y, and z are nonnegative
integers whose sum is positive.

Proof. We consider the possibility for a subgroup H1 of SL2(5) within the context of
the previous argument. Since H1 is cyclic or metacyclic and Z(H)≤ H1, we see that
s is the index of a proper subgroup of A5 and s 6= 5, whence s= 6, 10, 12, 15, 20, 30,
or 60. Since |H1| 6= 2, we conclude that s 6= 60. We see that one of the following
holds:

(i) s = 6, H1 = 5.4, [K : Fp] is even, p ≡−1 mod 5, and dim R1 is a multiple of
12.

(ii) s = 10, H1 = 3.4, [K : Fp] is even, p ≡−1 mod 3, and dim R1 is a multiple
of 20.

(iii) s = 12, H1 is cyclic of order 10, [K : Fp] is even, p ≡−1 mod 5, and dim R1

is a multiple of 24.

(iv) s = 15, H1 = Q8, [K : Fp] is even, p ≡−1 mod 4, and dim R1 is a multiple
of 30.

(v) s = 20, H1 is cyclic of order 6, [K : Fp] is even, p ≡−1 mod 3 and dim R1 is
a multiple of 40.

(vi) s = 30, H1 is cyclic of order 4, [K : Fp] is even, and dim R1 is a multiple of
60.

Since dim V1 =
∑

dim Ri , this gives possible dimensions for V1 depending upon
the congruences of p modulo 30. Note that a = dim V = 2 dim V1. This gives the
stated conclusion. �

We saw in Theorem 1.14 the primes p that arise in our case are p = 11, 29, or
59, and for these primes we obtain the following possibilities.

Corollary 1.17. Assume the hypotheses of Theorem 1.16.

(i) If p = 11, then a = 40x + 60y for some nonnegative integers x and y.

(ii) If p = 29, then a = 24x + 40y for some nonnegative integers x and y.

(iii) If p= 59, then a = 24x+40y+60z for some nonnegative integers x, y, and z.
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In the solvable examples, we have the group SL2(3) acting on P . Thus, we have
the following.

Theorem 1.18. Let P be an semi-extraspecial p-group with |Z(P)|= p2 and p> 3
is a prime. Let a be the even integer so that |P : Z(P)| = pa . Suppose H = SL2(3)
acts via automorphisms on P such that H is acting faithfully and irreducibly on
Z(H). Then the following holds:

(i) If p ≡ 1 mod 12, then a = 24x , where x is a positive integer.

(ii) If p ≡ 5 mod 12, then a = 16x + 24y, where x and y are nonnegative integers
whose sum is positive.

(iii) If p ≡ 7 mod 12, then a = 12x , where x is a positive integer.

(iv) If p≡ 11 mod 12, then a= 12x+16y, where x and y are nonnegative integers
whose sum is positive.

Proof. We consider the possibility for a subgroup H1 of SL2(3) within the context
of the previous argument. Since H1 is cyclic or metacyclic and Z(H)≤ H1, we see
that s is the index of a proper subgroup of A4, whence s = 3, 4, 6, or 12. Since
|H1| 6= 2, we conclude that s 6= 12. We see that one of the following holds:

(i) s = 3, H1 = Q8, [K : Fp] is even, p ≡ −1 mod 4, and dim R1 is a multiple
of 6.

(ii) s = 4, H1 is cyclic of order 6, [K : Fp] is even, p ≡−1 mod 3, and dim R1 is
a multiple of 8.

(iii) s = 6, H1 is cyclic of order 4, [K : Fp] is even, and dim R1 is a multiple of 12.

Since dim V1 =
∑

dim Ri , this gives possible dimensions for V1 depending upon
the congruences of p modulo 30. Note that a = dim V = 2 dim V1. This gives the
stated conclusion. �

We will also construct examples for the solvable exceptional 2-transitive Frobe-
nius groups. (For a list of the exceptional 2-transitive Frobenius groups, see Remark
XII.9.5 in [Huppert and Blackburn 1982]. We note that matrix generators for these
groups seem to be correct, even though the descriptions in (b) and (d) are not. In
particular, in (b) H ∼= G̃L2(3), which is isoclinic to but not isomorphic to GL2(3),
and in (d) H ∼= G̃L2(3)× Z/11. The matrix groups are also listed in [Huppert
1957].) The primes p that arise are p = 5, 7, 11, and 23. For these primes, we
obtain the following.

Corollary 1.19. Assume the hypotheses of Theorem 1.18.

(i) If p = 5, then a = 16x + 24y, where x and y are nonnegative integers whose
sum is positive.

(ii) If p = 7, then a = 12x , where x is a positive integer.
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p H a a

5 SL2(3) 16x + 24y 16w,w ≥ 2

7 G̃L2(3) 12x 12w,w ≥ 1
11 SL2(3)×Z/5 12x + 16y 4w,w 6= 1, 2, 5
11 SL2(5) 40x + 60y 20w,w ≥ 2

23 G̃L2(3)×Z/11 12x + 16y 4w,w 6= 1, 2, 5
29 SL2(5)×Z/7 24x + 40y 8w,w ≥ 3, w 6= 4, 7

59 SL2(5)×Z/29 24x + 40y+ 60z
4w,w ≥ 6,

w 6= 7, 8, 9, 11, 13, 14, 17, 19, 23, 29

Table 1. Values in Theorem 1.20.

(iii) If p = 11, then a = 12x + 16y, where x and y are nonnegative integers whose
sum is positive.

(iv) If p = 23, then a = 12x + 16y, where x and y are nonnegative integers whose
sum is positive.

We will now construct examples showing that there are groups satisfying our
hypotheses.

Theorem 1.20. For each prime p, group H , and value a in Table 1, there exist
groups P and G so that P is a semi-extraspecial p-group with |P ′| = p2 and
|P : P ′| = pa such that H acts faithfully by automorphisms on P and G is the
resulting semidirect product. In addition, Irr(G) has a unique character with degree
divisible by p and P ′H is a two-transitive Frobenius group.

Proof. Suppose first that P and Q are semi-extraspecial p-groups with |Z(P)| =
|Z(Q)|= p2, and dim P/Z(P)= a1 and dim Q/Z(Q)= a2. Suppose that the group
H acts via automorphisms on P and Q so that the action of H on Z(P) is isomorphic
to its action on Z(Q) and this action is faithful and irreducible. Let R be the central
product of P Q (that is, identifying Z(Q) and Z(P)). Then |Z(R)|= p2 and R/Z1 is
extraspecial for any proper nontrivial subgroup Z1 of Z(R) since R/Z1 is the central
product of the two extraspecial groups P/Z1 and Q/Z1. It follows that R is semi-
extraspecial and dim R/Z(R)= a1+ a2. Note that H will act via automorphisms
on R and that the action of H on Z(R) is faithful and irreducible. This shows that
the set of dimensions that can occur is closed under sums. In particular, the entries
in the first column for values for a are linear combinations, and it suffices to show
that there exist examples for the generators of these linear combinations.

Let p and H be entries for the first two columns of some row in Table 1, and let
a be one of the generators of the third column. Observe that H is isomorphic to a
subgroup of GL2(p), so it has a faithful 2-dimensional module Z over Fp. Let H2

be a subgroup of H containing Z(H) whose index is a/4. We have H2 = H1×C .
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We take C = Z/c, where c = 1 when p is 5 or 7, or p = 11 and H is not solvable.
Otherwise, c= 5 when p= 11 and H is solvable, c= 11 when p= 23, c= 7 when
p= 29, and c= 29 when p= 59. When H is not solvable, then H1 will have order
4r , where r = 2, 3, or 5, and we note that p satisfies p ≡−1 mod 2r . When H is
solvable, we have |H1| = 4 or 6 when p = 5, |H1| = 16 when p = 7, |H1| = 6 or
8 when p = 11, and |H1| = 12 or 16 when p = 23.

Let X be the 2-dimensional Fp H2-module where the image of H1 is generated
by an involution of determinant −1 and the module for C is the restriction of Z .
Let Y be the 2-dimensional Fp H2-module which is the restriction of Z to H2. We
can view H1 as being contained in a subgroup of order 2(p+1) in GL2(p). Notice
also that C will be isomorphic to a subgroup of the center of GL2(p), and thus
H2 = H1×C can be thought of as normalizing a given nonsplit torus in GL2(p). It
follows that Hom(X, Y ) contains a 2-dimensional invariant H2-submodule U ∼= Y
with U consisting of invertible elements (namely the algebra generated by the
nonsplit torus which is a quadratic extension of Fp).

It is straightforward to compute (by Frobenius reciprocity) that U H contains
a unique submodule W isomorphic to Z . Note that U H

≤ Hom(X, Y )H
H2
≤

Hom(X H , Y H ). Since U consists of invertible elements, it is straightforward to
see that W does as well. We take V = X H

H2
+ Y H

H2
. We identify Hom

(
X H

H2
, Y H

H2

)
with a submodule of

(∧2V
)∗ as follows. Let {e1, . . . , en} be a basis for X H and

{ f1, . . . , fn} be a basis for yH . Given an element φ ∈ Hom(X H , yH ), we define
the matrix D = Dφ whose (i, j)-entry is φ(ei , f j ). This defines an element(

0 D
−DT 0

)
∈
(∧2V

)∗
.

This yields W embedded as a submodule of
(∧2V

)∗, and as we mentioned earlier,
this allows us to construct a semi-extraspecial p-group P so that P/Z(P)∼= V and
Z(P)∼=W ∼= Z (as H -modules) with the desired properties. �

This shows that all possible dimensions given in the previous section do occur
and completes the proof of the main theorem.

2. Non- p-solvable groups

The goal of this section is to prove the following theorem. Notice that this includes
the non-p-solvable portion of the main theorem. We do get somewhat more infor-
mation. In particular, we determine precisely the degree of the one character whose
degree is divisible by p.

Theorem 2.1. Let p be a prime and let G be a finite non-p-solvable group. Then
G has exactly one complex irreducible character of degree (say D) divisible by p if
and only if one of the following holds.
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(i) D = q = pa
≥ 4, a power of p. Furthermore, G = PSL2(q), SL2(q), or

G/V = SL2(q), where V is a minimal normal elementary abelian p-subgroup
of G having order q2 and can be viewed as a 2-dimensional irreducible module
of G/V over EndG/V (V )∼= Fq2 .

(ii) (G, p, D)= (S5, 3, 6), (M11, 3, 45).

For brevity, we will call G an NP1-group (for a fixed prime p) if G is a finite
non-p-solvable group with a unique irreducible character χ of degree divisible
by p, in which case we let D := χ(1).

We make use of results regarding character degree graphs. The graph 1(G)
is the graph with vertex set ρ(G), which is the set of primes dividing degrees in
{χ(1) | χ ∈ Irr(G)}. There is an edge between distinct primes p and q if pq divides
χ(1) for some χ ∈ Irr(G). We will make use of the results regarding nonsolvable
groups G where 1(G) is disconnected in [Lewis and White 2003] and [Manz et al.
1988]. We prove the following statement combining the results on disconnected
graphs with some results of [Isaacs et al. 2009]:

Proposition 2.2. Let G be an NP1-group. Then one of the following holds.

(i) D = q = pa
≥ 4 is a power of p, and G/K = PSL2(q). Furthermore,

G = PSL2(q), SL2(q), or G/V = SL2(q), where V is a minimal normal
elementary abelian p-subgroup G of order q2 and can be viewed as a 2-
dimensional irreducible module of G/V over EndG/V (V )∼= Fq2 .

(ii) Let U =Op(G) and K/U =Op′(G/U ). Then K is the p-solvable radical of
G and U is abelian. If N ≤ K is a normal subgroup of G and 1N 6= λ∈ Irr(N ),
then the inertia group IG(λ) of λ has index coprime to p in G. Finally,
(G/K , p, D) is either (S5, 3, 6) or (M11, 3, 45).

Proof. By Theorems A and C of [Isaacs et al. 2009], we know that if U =Op(G)
and K/U = Op′(G/U ), then K is the p-solvable radical of G and U is abelian.
We also obtain from there the fact that if N ≤ K is a normal subgroup of G and
1N 6= λ ∈ Irr(N ), then the inertia group IG(λ) of λ has index coprime to p in G.
Finally, that result also asserts that soc(G/K )= S/K =: S is a nonabelian simple
group of order divisible by p, and p is coprime to |G/S|. By the Itô–Michler
theorem, we may assume that the unique irreducible character χ of degree divisible
by p of G is actually a character of G/K . In particular, every irreducible character
of K has degree coprime to p, whence the (unique) Sylow p-subgroup U of K
must be abelian again by the Itô–Michler theorem. Next, let N ≤ K be normal
in G and 1N 6= λ ∈ Irr(N ). Consider any ρ ∈ Irr(G|λ). Since ρN contains λ 6= 1N ,
Ker(ρ) cannot contain N , and so does not contain K . Thus ρ 6=χ and so has degree
coprime to p. It follows that [G : IG(λ)] is coprime to p.
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Next, by Corollary 7.5 of [Isaacs et al. 2009] applied to G/K , one of the following
possibilities occurs:

(a) S ∼= PSL2(q) with p|q , and D = q.

(b) S ∼= PSL2(q), q = r f for some prime r 6= p, 2< p|(q − ε) for some ε =±1,
and D|(q − ε) f .

(c) (G/K , p, D) ∈ {(M11, 3, 45), (J1, 3, 120), (J1, 5, 120)}.

Note that J1 has 3 irreducible characters of degree 120. Hence, in the case of (c)
we arrive at conclusion (ii).

Suppose now that we are in the case of (a). Consider the Steinberg character St
of S/K = PSL2(q), of degree q. By the main result of [Feit 1993], St extends to
G/K . Hence D = q , and since p divides the degree of no other character in Irr(G),
this implies that p is an isolated vertex in 1(G), and so 1(G) is disconnected. In
[Manz et al. 1988], it is shown that 1(G) has at most three connected components.
In Theorems 4.1 and 6.4 of [Lewis and White 2003], it is shown that if G is
nonsolvable and 1(G) has two or three connected components, then G has a
normal subgroup N so that G/N is abelian and N is either PSL2(q), SL2(q), or
there is a normal subgroup V so that N/V ∼= SL2(q) and V is elementary abelian
of order q2 and N/V acts transitively on the nonidentity elements of V . As before,
the Steinberg character of N will extend to G, and, by Gallagher’s theorem, G has
at least |G/N | irreducible characters of degree divisible by q. Since G is an NP1-
group, it follows that |G/N | = 1, whence G = N and we arrive at conclusion (i).

From now on, we may assume that (b) holds. Since p is coprime to |G/S|, all
irreducible constituents αi of χS have degree divisible by p. On the other hand,
if β ∈ Irr(S) has degree divisible by p, then any γ ∈ Irr(G/K |β) also has degree
divisible by p, and so γ = χ as G is an NP1-group. Thus β must be one of the αi .
We have shown that G/S, and so Aut(S) as well, acts transitively on the set of
irreducible characters of S of degree divisible by p. Also recall that 2< p|(q − ε).
Now we distinguish the following subcases.

(b1) q ≡ −ε (mod 4). In this case, p divides (q − ε)/2, which is odd, and S has
two irreducible (Weil) characters of degree (q−ε)/2. Now if q ≥ 7, then S also has
irreducible characters of degree (q − ε) which are obviously not Aut(S)-conjugate
to the ones of degree (q − ε)/2. Hence q = 5, ε = −1, p = 3, S ∼= A5, and
A5 ≤ G/K ≤ S5. Since A5 has two irreducible characters of degree 3, we conclude
that (G/K , p, D)= (S5, 3, 6), as stated in (ii).

(b2) q ≡ ε (mod 4). In this case, 4p ≥ 12 divides q − ε, so q ≥ 11. Then S has
(q − 2+ ε)/4 irreducible characters of degree q − ε, and each of them extends to
PGL2(q). Notice that Aut(S)= PGL2(q) : C f , so the Aut(S)-orbit of any such θ



422 D. Goldstein, R. Guralnick, M. Lewis, A. Moretó, G. Navarro and P. H. Tiep

has length at most f . Since q = r f
≥ 11, we have that (q − 2+ ε)/4> f , and so

Aut(S) cannot act transitively on the characters of S of degree divisible by p.

(b3) q = 2 f with f ≥ 3. Then S has (q − 1+ ε)/2 irreducible characters of degree
q− ε. Notice that Aut(S)= S : C f , so the Aut(S)-orbit of any such θ has length at
most f . The transitivity of Aut(S) on the set of characters of S of degree divisible
by p now implies that f = 3, ε = −1, p = 3, and S = SL2(8) ≤ G/K ≤ S : C3.
But SL2(8) has 3 irreducible characters of degree 9, and Aut(SL2(8))= S : C3 has
irreducible characters of both degrees 21 and 27. This contradiction completes the
proof of the proposition. �

We now show that the groups satisfying conclusion (i) of Theorem 2.1 have only
one irreducible character whose degree is divisible by p.

Proposition 2.3. Let D = q = p f
≥ 4 and assume that the finite group G satisfies

conclusion (i) of Theorem 2.1. Then G has exactly one irreducible character θ of
degree divisible by p. Furthermore, θ(1)= D.

Proof. (1) The statement is clear if G = PSL2(q) or SL2(q). So we consider the
third possibility, with S := G/V ∼= SL2(q) and |V | = q2. Note that S has a unique
irreducible character of degree divisible by p, namely the Steinberg character of S,
of degree q . So it suffices to show that any χ ∈ Irr(G | V ) has degree q2

− 1.
Fix a nontrivial character λ∈ Irr(V ). Since S acts transitively on the nonzero vec-

tors of V and V ∗, the stabilizer of λ in G is a subgroup I of order |G|/(q2
−1)= q3;

in particular, P := I/V ∈Sylp(S). Also we have that χ =µG for some µ∈ Irr(I |λ).
Thus the map µ 7→ µG yields a bijection between Irr(I |λ) and Irr(G | V ).

(2) It suffices to show that there is at least one χ ∈ Irr(G | V ) of degree q2
− 1.

Indeed, if this is the case then there exists ν ∈ Irr(I ) such that ν|V = λ. Now by
Gallagher’s theorem, Irr(P|λ)={νγ |γ ∈ Irr(I/V )} consists of exactly q characters,
all of degree 1 as P is elementary abelian of order q . It follows that all characters
in Irr(G | V ) have degree q2

− 1.

(3) Assume that the extension G = V S is split. Then I splits over V and so
I/Ker(λ) is a split extension of V/Ker(λ)∼= C p by P . Since P fixes λ, P central-
izes V/Ker(λ), whence I/Ker(λ) is abelian. Hence all irreducible characters of
I/Ker(λ) are of degree 1 and so are all characters in Irr(I |λ), whence we are done
as in (2).

Suppose now that the extension G=V S is nonsplit. It follows that H 2(S, V ) 6= 0.
By a result of McLaughlin (see [Sah 1977, Proposition 4.4]), this can happen only
when p = 2 and f ≥ 3. In the exceptional case, H 2(S, V )= Fq , and so there is a
unique (up to isomorphism) such nonsplit extension. By [Kostrikin and Tiep 1994,
Theorem 1.3.7], this nonsplit extension can be realized as the commutator subgroup
of the group of all automorphisms of the standard orthogonal decomposition of the
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complex simple Lie algebra L of type Aq−1. Now the action of G on L gives rise
to a faithful irreducible representation of degree dim(L)= q2

− 1, and so we are
done by (2). �

In what follows we will keep the notation from conclusion (ii) of Proposition 2.2.

Lemma 2.4. Let p=3 and suppose that G is an NP1-group with a normal subgroup
N ∼= S5 or M11. Then G = N.

Proof. Certainly N ′CG and N ′ has an irreducible real-valued character α of odd
degree α(1)= 3 or 45. Since N ′ is perfect, o(α)= 1. By [Navarro and Tiep 2008,
Theorem 2.3], α extends to I := IG(α). Hence, by Gallagher’s theorem, there is
a bijection between Irr(I |α) and Irr(I/N ′). On the other hand, Irr(G|α) lies in a
bijective correspondence with Irr(I |α), and every χ ∈ Irr(G|α) has degree divisible
by 3. It follows that |Irr(I/N ′)| = 1, and so I = N ′ ≤ N . In particular, I = IN (α).
Now observe that N , and so G, acts transitively on the set X of irreducible characters
of N ′ of degree equal to α(1). It follows that [G : I ] = |X | = [N : I ], whence
G = N . �

In the situation of Proposition 2.2(ii), we set G1 = G if G/K = M11, and let G1

be the unique subgroup of index 2 containing K if G/K = S5 (so that G1/K = A5).

Lemma 2.5. Let G be an NP1-group satisfying conclusion (ii) of Proposition 2.2.
Let RCG be such that G/R is 3-solvable. Then R ≥ G1.

Proof. Note that G/K R is a 3-solvable quotient of G/K = S5 or M11, hence
K R ≥ G1. Assume first that K R = G. Then G/(K ∩ R) contains the normal
subgroup R/(K ∩ R) ∼= G/K , and G/(K ∩ R) is certainly an NP1-group. By
Lemma 2.4, R/(K ∩ R)= G/(K ∩ R) and so R = G.

We may now assume that G/K =S5 and K R=G1. Again H :=G/(K∩R) is an
NP1-group with the normal subgroup M := R/(K ∩ R)∼=A5. Then H has a unique
irreducible character ρ of degree divisible by 3. It follows that H acts transitively on
the set {α, β} of irreducible characters of degree 3 of M ; in particular, I := IH (α)

has index 2 in H . As in the proof of Lemma 2.4, we see that the real character α
extends to I , and there is a bijection between Irr(H |α) and Irr(I/M). Since H is
an NP1-group, it follows that I = M , and so [G : R] = [H : M] = [H : I ] = 2.
Recall that G1 = K R ≥ R and [G :G1] = 2. Hence, we must have that R =G1. �

Lemma 2.6. Let G be an NP1-group satisfying conclusion (ii) of Proposition 2.2.
Then K is solvable.

Proof. Assume the contrary: L/M is a nonabelian chief factor of G in K/U .
Certainly G/M is also an NP1-group. So, modding out by M we may assume
that M = 1 and that L = T1× · · · × Tn is a minimal normal subgroup of G, with
Ti ∼= T , a nonabelian simple 3′-group. Now G acts on the set {T1, . . . , Tn} inducing
a transitive subgroup X of Sn .
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First suppose that p divides |X |. By [Casolo and Dolfi 2009, Lemma 8] we can
relabel the factors Ti and find 1≤ k ≤ k+ l ≤ n such that

StabX ({1, 2, . . . , k}, {k+ 1, k+ 2, . . . , k+ l})

has index divisible by p in X . It follows that

N := NG(T1× T2× · · ·× Tk, Tk+1× Tk+2× · · ·× Tk+l)

has index divisible by p in G. Also, since T is simple nonabelian, we can find
α, β ∈ Irr(T ) of distinct degrees larger than 1. Consider the irreducible character

γ := (α× · · ·×α︸ ︷︷ ︸
k

)× (β × · · ·×β︸ ︷︷ ︸
l

)× (1T × · · ·× 1T︸ ︷︷ ︸
n−k−l

)

of L . Then IG(γ ) ≤ N and so has index divisible by p in G, contradicting
Proposition 2.2.

We have X is a p′-group. Thus X = G/Y is a 3′-group, if Y denotes the kernel
of the action of G on {T1, . . . , Tn}. By Lemma 2.5, Y ≥ G1; in particular, |X | ≤ 2
and so n ≤ 2. Recall that T is a simple nonabelian p′-group. Hence the condition
n ≤ 2 now implies that Aut(L)≤Aut(T ) oS2 is 3-solvable, whence G/CG(L), as a
subgroup of Aut(T ), is also 3-solvable. Again by Lemma 2.5, CG(L)≥ G1. Since
[G : G1] ≤ 2, CG(L) contains L and so L is abelian, a contradiction. �

Lemma 2.7. Let S = M11, p = 3, and let r be a prime. Let G be an NP1-group
with a minimal normal r-subgroup V such that G/V = S. Then V = 1.

Proof. Assume the contrary: V 6= 1. Identify Irr(V ) with the dual module V ∗.
By Proposition 2.2, every nonzero v ∈ V ∗ is fixed by a Sylow 3-subgroup of S.
We will view V as an absolutely irreducible ES-module of dimension n, where
E := EndS(V )= Ft for some power t of r . If n = 1, then V ≤ Z(G), V = C p, and
G ∼= V × S (as S has trivial Schur multiplier), contradicting Lemma 2.4. So we will
assume n ≥ 2 and estimate the number N of nonzero elements of V ∗ that are fixed
by a Sylow 3-subgroup P of S. Let g ∈ S have order 3. As mentioned in [Guralnick
and Saxl 2003], S is generated by three conjugates of g. Hence by [Guralnick and
Tiep 2005, Lemma 3.2], g can fix at most tb2n/3c elements of V ∗. It follows that
N ≤ tb2n/3c

− 1. Also note that S has 55 Sylow 3-subgroups.
Consider the case r 6= 3. Then n ≥ 9 if r = 11 and n ≥ 10 otherwise (see [Jansen

et al. 1995]). Since 55N ≥ tn
−1= |V ∗ \ {0}|, we must have that r = 2 and n ≤ 21.

In the remaining cases, using Brauer characters as given in [Jansen et al. 1995], we
see that g can fix at most 24 elements of V ∗. Thus N ≤ 24

− 1< (210
− 1)/55≤

(tn
− 1)/55, again a contradiction.

Now suppose r = 3; in particular, n ≥ 5. If t ≥ 9, or if t = 3 but n ≥ 10, then
again 55N < tn

− 1, again a contradiction. Thus t = 3 and n = 5. Note that M11
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has two irreducible 5-dimensional modules over F3, which are dual to each other.
Moreover, the S-orbits on them are of lengths 1, 22, and 220, resp. 1, 110, and 132
(see [Liebeck 1987, Table 14]). So V ∗ must be isomorphic to the former module.
Direct calculations using [GAP 2004] done by T. Breuer show that in this case the
point stabilizer for the vectors in the orbit of length 22 are isomorphic to A6 (and
isomorphic to S3×S3 for the orbit of length 220). Consider a vector v from the first
orbit and view it as λ ∈ Irr(V ), with stabilizer I in G. Then I/Ker(λ) ' C3 ·A6,
which may be split or nonsplit. In either case, there is µ ∈ Irr(I |λ) of degree 9.
Now µG

∈ Irr(G|λ) has degree 9 · 22= 198, a contradiction (since G/V = S has
an irreducible character of degree 45). �

Lemma 2.8. Let S = A5, p = 3, and let r be a prime. Let H be a finite group with
a minimal normal r-subgroup V such that H/V = S. Assume that the kernel of
every irreducible character of degree divisible by 3 of H contains V . Then V = 1.

Proof. Assume the contrary: V 6= 1. The condition on H implies by Clifford’s
theorem that the inertia group of every nontrivial λ ∈ Irr(V ) has 3′-index in H .
Identifying Irr(V ) with V ∗, we see that every nonzero v ∈ V ∗ is fixed by a Sylow
3-subgroup of S. View V as an absolutely irreducible ES-module of dimension n,
where E := EndS(V )= Ft for some power t of r . If n = 1, then V ≤Z(G), V =C3,
and so G ∼= V × S (as the Schur multiplier of S equals C2). In this case, G has
irreducible characters of degree 3 which are nontrivial at V , a contradiction. So we
will assume n ≥ 2. By [Guralnick and Saxl 2003, Lemma 3.1], S is generated by
two conjugates of a Sylow 3-subgroup P of S. It follows by [Guralnick and Tiep
2005, Lemma 3.2] that P can fix at most tbn/2c elements of V ∗. Since S has 10
Sylow 3-subgroups, we must have

10(tbn/2c− 1)≥ |V ∗ \ {0}| = tn
− 1;

in particular, tn
≤ 81.

Now if r ≥ 5, then n ≥ 3, a contradiction. Suppose r = 3. Then n = 3 or 4. In
the former case, t ≥ 9 (see [Jansen et al. 1995]), a contradiction. So n = 4 and
t = 3. We can now realize V ∗ as the deleted permutation module

F4
3 =

{ 5∑
i=1

ai ei
∣∣ ai ∈ F3,

5∑
i=1

ai = 0
}

for A5. But in this case the A5-orbit of v := e1+ e2− e3− e4 ∈ V ∗ has length 30, a
contradiction.

Suppose now r = 2. If n = 2, then P has no nonzero fixed points on V ∗, a
contradiction. Thus n= 4, t = 2. In this case, either H ∼= V ×A5 or H is perfect. In
the former case, H has irreducible characters of degree 3 which are nontrivial at V ,
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a contradiction. In the latter case, using [GAP 2004] one can check that H has irre-
ducible characters of degree 15 which are nontrivial at V , again a contradiction. �

Proposition 2.9. Let G be an NP1-group satisfying conclusion (ii) of Proposition 2.2.
Then G satisfies conclusion (ii) of Theorem 2.1. Conversely, if G = S5 or M11, then
G is an NP1-group.

Proof. Suppose G satisfies Proposition 2.2(ii). By Proposition 2.2 and Lemma 2.6,
K is solvable. Let G be a minimal counterexample, so that K 6= 1. By minimality,
K is a minimal normal r -subgroup for some prime r . By Lemma 2.7, G/K = S5.
Since G/K already has an irreducible character of degree 6, every irreducible
character of G of degree divisible by 3 must be nontrivial at K . The same is true
for the normal subgroup G1 of G (recall G1/K ∼= A5). Modding out by a suitable
normal subgroup inside K , we may assume that K is a minimal normal subgroup
of G1. Now we can apply Lemma 2.8 to get a contradiction. The converse statement
is obvious. �

We have completed the proof of Theorem 2.1 and of the main theorem.
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The homotopy category of injectives
Amnon Neeman

Krause studied the homotopy category K(Inj A) of complexes of injectives in
a locally noetherian Grothendieck abelian category A. Because A is assumed
locally noetherian, we know that arbitrary direct sums of injectives are injective,
and hence, the category K(Inj A) has coproducts. It turns out that K(Inj A) is
compactly generated, and Krause studies the relation between the compact objects
in K(Inj A), the derived category D(A), and the category Kac(Inj A) of acyclic
objects in K(Inj A).

We wish to understand what happens in the nonnoetherian case, and this paper
begins the study. We prove that, for an arbitrary Grothendieck abelian category A,
the category K(Inj A) has coproducts and is µ-compactly generated for some
sufficiently large µ.

The existence of coproducts follows easily from a result of Krause: the point
is that the natural inclusion of K(Inj A) into K(A) has a left adjoint and the
existence of coproducts is a formal corollary. But in order to prove anything
about these coproducts, for example the µ-compact generation, we need to have
a handle on this adjoint.

Also interesting is the counterexample at the end of the article: we produce a
locally noetherian Grothendieck abelian category in which products of acyclic
complexes need not be acyclic. It follows that D(A) is not compactly generated.
I believe this is the first known example of such a thing.
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Introduction

The starting point of this investigation is the article by Krause [2005], in which
he studied the homotopy category K(Inj A) of complexes of injectives in a locally
noetherian Grothendieck abelian category A. It turns out that K(Inj A) is compactly
generated, the compact objects being injective resolutions of bounded complexes of
noetherian objects. In symbols, we have an equivalence K(Inj A)c ∼= Db(noeth A).
We can consider the sequence of functors

Kac(Inj A)
J
−→ K(Inj A)

Q
−→ D(A),

which expresses D(A) as the quotient of K(Inj A) by the subcategory of acyclics
Kac(Inj A)⊂ K(Inj A). It is not hard to prove that this is a localization sequence:
the functors J and Q have right adjoints, denoted Jρ and Qρ , respectively. Not so
formal is that, as long as D(A) is compactly generated, the functors J and Q also
have left adjoints Jλ and Qλ turning this into a recollement. If we restrict Jλ and
Qλ to the subcategories of compact objects, then we have functors

D(A)c
Qλ
−−→ K(Inj A)c

Jλ
−→ Kac(Inj A)c,

which allow us to identify Kac(Inj A)c as the idempotent completion of the Verdier
quotient K(Inj A)c/D(A)c.

In the generality above, where A is an arbitrary locally noetherian Grothendieck
category, we understand the compact objects only in K(Inj A), where we have
K(Inj A)c = Db(noeth A). But in examples, we sometimes also know D(A)c;
for instance, if X is a noetherian, separated scheme and A is the category of
quasicoherent sheaves on X , we know that D(A)c = Dperf(coh X), the category
of perfect complexes. In this special case, K(Inj A)c = Db(noeth A) comes down
to Db(coh X), the bounded derived category of the coherent sheaves on X . The
general theory gives us the sequence of functors

Dperf(coh X)
Qλ
−−→ Db(coh X)

Jλ
−→ Kac(Inj A)c,

and furthermore, it informs us that this sequence identifies the category Kac(Inj A)c

of compact objects in Kac(Inj A) with the idempotent completion of

Db(coh X)/Dperf(coh X)= Dsing(X),

the singularity category of X .
Jørgensen [2005] studied the analogue where injectives are replaced by projec-

tives. Of course, Grothendieck abelian categories do not in general have enough pro-
jectives, so he restricted himself to the case where A is the category of modules over
some ring. Under suitable noetherian hypotheses, he proved an analogue of Krause’s
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theorem: the homotopy category K(R-Proj) is compactly generated, but strangely
enough, the subcategory K(R-Proj)c of compact objects in K(R-Proj) is naturally
isomorphic to Db(Rop-mod)op, the opposite category of the bounded derived cate-
gory of finitely presented Rop-modules. Krause’s theorem, in the special case where
A is the category of R-modules, tells us that the subcategory K(R-Inj)c of compact
objects in K(R-Inj) is naturally identified with Db(R-mod). If R is a noetherian
commutative ring, then both K(R-Proj) and K(R-Inj) are compactly generated, but
the subcategories of compact objects are naturally the opposite of each other.

Iyengar and Krause [2006] studied this further and proved, among other things,
that in the presence of a dualizing complex the categories K(R-Proj) and K(R-Inj)
are equivalent. More precisely, tensoring with the dualizing complex induces an
equivalence. Of course, it must also induce an equivalence on the subcategories of
compact objects; that is, it must induce an equivalence

Db(Rop-mod)op
→ Db(R-mod).

This equivalence turns out to be the usual one of Grothendieck duality.
The results raise the obvious question: what is the right generality in which the

results hold? Since Grothendieck abelian categories rarely have enough projectives,
Jørgensen’s results all assumed that he was working over a ring; in other words,
they were restricted to the affine case of Grothendieck duality. In [Neeman 2008;
2010], I studied this problem and proved several improvements of Jørgensen’s
results, and Murfet [2007] carried the project further in his PhD thesis. One striking
feature of my results was that much of what Jørgensen proved for K(R-Proj) was
true without the noetherian hypothesis, which raises the question: to what extent
is the noetherian hypothesis necessary in Krause’s results? On the face of it, the
situation looks hopeless unless we assume that the category A is locally noetherian
because without the noetherian hypothesis direct sums of injectives need not be
injective. Hence, K(R-Inj) does not obviously have coproducts in general, and
without coproducts, one doesn’t have a good notion of compact objects.

The first result of the current article, also found as Example 5 in [Krause 2012,
pp. 778–779], addresses this:

Theorem 2.13 and Corollary 2.14. Let A be any Grothendieck abelian category
not necessarily locally noetherian. Then the inclusion of K(Inj A) into K(A) has a
left adjoint I : K(A)→ K(Inj A). It formally follows that K(Inj A) has coproducts.

Remark. Krause’s proof is based on the work of Bican, El Bashir, and Enochs
[Bican et al. 2001], which means that it works far more generally than the argument
we give here, but unfortunately, the adjoint is not very explicit. For the proof of the
next theorem, we need to have a handle on this adjoint; hence, we give a different
proof.
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While I do not understand the situation well enough to say when K(Inj A) is
compactly generated, I do have the following result:

Theorem 3.13. There is a regular cardinal µ for which the category K(Inj A) is
µ-compactly generated (in the sense of [Neeman 2001, Definition 8.1.6] or [Krause
2001]).

In the algebrogeometric situation, it may well be that the categories K(Inj X) and
Km(Proj X) can be equivalent even when X is not noetherian. Here Km(Proj X)
is Murfet’s mock homotopy category of projectives; for nonaffine schemes, this
is the right generalization. Both K(Inj X) and Km(Proj X) have coproducts and
are µ-compactly generated for µ sufficiently large. In the noetherian case, they
are equivalent whenever X has a dualizing complex, and part of the interest of the
results is that they might lead to a nonnoetherian generalization.

Recall that, if A is locally noetherian and D(A) is compactly generated, then the
natural functors

Kac(Inj A)
J
−→ K(Inj A)

Q
−→ D(A)

have right and left adjoints giving a recollement. It turns out that the right adjoints Jρ
and Qρ exist much more generally for any Grothendieck abelian category. But the
left adjoints don’t: we will produce an example of a locally noetherian Grothendieck
abelian category A such that the functor J does not respect products and hence
cannot have a left adjoint. It will then follow, from [Krause 2005], that the category
D(A) is not compactly generated.

The article is organized as follows. In Section 1, we recall that any Grothendieck
abelian category is locally presentable, meaning there is a generator g and a regular
cardinal α so that Hom(g,−) commutes with α-filtered colimits. We discuss this in
some detail because we also want to prove that Ext1(g,−) commutes with α-filtered
colimits.

In Section 2, we prove Theorem 2.13 and Corollary 2.14; for a given X ∈ K(A),
we give an explicit construction of I (X)∈K(Inj A) as a certain colimit. In Section 3,
we prove Theorem 3.13, showing the µ-compact generation of K(Inj A). The
essence of the proof is to study the construction of I (X) more carefully and see
what it does to subobjects of X .

Finally, Section 4 contains the counterexample, the locally noetherian Groth-
endieck abelian category in which products of acyclic complexes of injectives need
not be acyclic.

1. Cardinality estimates in Grothendieck abelian categories

Throughout the section, we will assume that A is a Grothendieck abelian category
and g ∈A is a fixed generator.
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Lemma 1.1. Let Y be an object of A. If the cardinality of HomA(g, Y ) is ≤ α, then
Y has no more than 2α subobjects.

Proof. We have a map

{subobjects of Y }
8
−→ {subsets of Hom(g, Y )},

which takes a subobject X ⊂ Y to the subset 8(X) = Hom(g, X) ⊂ Hom(g, Y ).
The map 8 is injective because we can recover X from 8(X): the fact that g is a
generator allows us to choose an epimorphism

∐
3 g→ X . Then the factorization∐

3

g→
∐

Hom(g,X)

g→ X

tells us that X is the image in Y of the natural map
∐

Hom(g,X) g→ Y . �

Construction 1.2. We construct the smallest full subcategory C⊂A satisfying:

(i) The generator g belongs to C.

(ii) If X is an object of C, then so are all the subquotients of g# Hom(g,X). Here
# Hom(g, X) stands for the cardinality of Hom(g, X), and for a cardinal α,
we let gα be the coproduct of α copies of g.

Lemma 1.3. There is only a set of isomorphism classes of objects of C.

Proof. We build up C in countably many steps: we start with C0 = {g} and then
construct Cn+1 out of Cn by throwing in all the subquotients of g# Hom(g,X) for all
X ∈ Cn . We let C be the union of the Cn . �

Definition 1.4. We let α > ℵ0 be a regular cardinal such that (i) 2# Hom(g,Y ) <α for
all Y ∈ C, and (ii) there are < α isomorphism classes of objects in C.

Lemma 1.5. Let Z be an object of C and f : Z ′ → Z an epimorphism in A.
Then there is an object Y ∈ C and a morphism g : Y → Z ′ so that the composite
Y → Z ′→ Z is epi.

Proof. We may choose an epimorphism
∐
3 g→ Z ′ and consider the composite

epimorphism ∐
3

g→ Z ′→ Z .

Let M be the image of 3 in Hom(g, Z); we may choose a splitting to the surjection
3→ M . The composite ∐

M

g→
∐
3

g→ Z ′→ Z

is an epimorphism from a subquotient of g# Hom(g,Z) to Z and factors through Z ′. �
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Lemma 1.6. Let I be a β-filtered category for some regular cardinal β, let F :
I→A be a functor, and let ϕ : F→ Z be a natural transformation from F to the
constant functor that takes every i ∈ I to the object Z ∈A and every morphism to
the identity. Assume that the map colim

−−−→
F→ Z is epi and that Z has fewer than β

subobjects. Then there exists some object i ∈ I with Fi→ Z epi.

Proof. Consider the set S of subobjects of Z that are images of Fi→ Z for some
i ∈I. For each X ∈ S, choose an object ρ(X)∈I so that the image of F(ρ(X))→ Z
is X . There are fewer than β such ρ(X), and hence, we may choose an object j ∈I

and, for each X , a morphism ρ(X)→ j . Then Im(F j → Z) belongs to S and
contains all the other elements of S as subobjects. The epimorphism colim

−−−→
Fi→ Z

factors through Im(F j→ Z), and hence, F j→ Z is epi. �

Lemma 1.7. Every object of C is α-presentable in A.

Proof. Let Z be an object of C; we need to show that Hom(Z ,−) commutes with
α-filtered colimits in A. Let I be an α-filtered small category, and let F : I→A

be a functor. We need to show that the natural map

8 : colim
−−−→i∈I

Hom(Z , Fi)→ Hom
(
Z , colim
−−−→i∈I

Fi
)

is an isomorphism. We will prove that 8 is surjective and injective.
Let us prove the injectivity of 8 first. An element in the kernel of 8 may be

represented by a morphism θ : Z→ Fi so that the composite

Z→ Fi→ colim
−−−→i∈I

Fi

vanishes. We need to show that for some ρ : i→ j the composite Z→ Fi
Fρ
−−→ F j

vanishes. Let i/I be the category whose objects are maps ρ : i→ j in I and whose
morphisms are commutative triangles

j

��
i

44

)) j ′

We have an exact sequence of functors on i/I that takes each object ρ : i→ j to

0→ Ker(Z→ F j)→ Z→ F j.

The category i/I is filtered, and hence, the colimit in the Grothendieck category A

is the exact sequence

0→ colim
−−−→i/I

Ker(Z→ F j)→ Z→ colim
−−−→I

F j.

The fact that the map Z→ colim
−−−→I

F j vanishes means that Z must be the colimit
of its subobjects Ker(Z→ F j) over the α-filtered category i/I. But the cardinal α
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was chosen to be larger than 2# Hom(g,Z), and Lemma 1.1 tells us that Z ∈ C has
fewer than α subobjects. By Lemma 1.6, there is some object ρ : i → j in I

with Ker(Z→ F j)= Z .
Next we prove the surjectivity of 8. Let L = colim

−−−→i∈I
Fi ; suppose we take an

element of Hom(Z , L), that is, a map ϕ : Z→ L . For each i , we form the pullback
square

Gi //

��

Z

ϕ

��

Fi // L

Then the Gi extend to a functor G : I→ A. Taking the colimit over the filtered
category I, we obtain a pullback square

colim
−−−→

Gi //

��

Z

ϕ

��

L // L

from which we conclude that the map colim
−−−→

Gi→ Z is epi (actually, it’s even an
isomorphism). But I is α-filtered, and Lemma 1.1 tells us that Z ∈ C has fewer
than α subobjects. By Lemma 1.6, there is an object i ∈ I so that Gi→ Z is epi.

By Lemma 1.5, we may choose an object Y ∈C and a morphism Y→Gi so that
the composite Y→Gi→ Z is epi. Let X be the kernel of the epimorphism Y→ Z ;
because X is a subobject of Y ∈ C, it lies in C and the composite X → Fi → L
vanishes. By the injectivity of 8, there must be some ρ : i → j in I so that the
composite X→ Fi

F(ρ)
−−−→ F j vanishes. But the vanishing of X→ Y → Fi→ F j

means that the map Y → F j factors through Y → Z → F j . We have found a
Z→ F j that maps under 8 to ϕ : Z→ L = colim

−−−→i∈I
Fi . �

Lemma 1.8. Let X be an object of C and Z an object of A. For every element
z ∈ ExtnA(X, Z), there exists an object Y ∈ C, a morphism Y → Z , and an element
y ∈ ExtnC(X, Y ) so that y maps to z under the natural map.

Proof. The case n = 0 is trivial; we may take y to be the identity. Suppose therefore
n > 0; then z is represented by an extension

0→ Z→ · · · →W → X→ 0.

By Lemma 1.5, we may choose an object W ′ ∈C and a morphism W ′→W so that
the composite W ′→W→ X is epi. If X ′ is the kernel of W ′→ X , then X ′ is a subob-
ject of the object W ′ ∈C and hence belongs to C. And the extension z ∈ExtnA(X, Z)
is equivalent to the concatenation of 0→ X ′→W ′→ X→ 0 in Ext1C(X, X ′) with
an extension z′ ∈ Extn−1

A (X ′, Z). Induction on n now gives the result. �
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Corollary 1.9. The category C⊂A is closed under extensions.

Proof. Let 0→ Z→ Y → X→ 0 be an extension with X, Z ∈ C and Y ∈A. By
Lemma 1.8, there is an extension 0→ A→ B→ X→ 0 in C and a map A→ Z
connecting the extensions. Thus, Y must be the pushout in the diagram

A //

��

B

��

Z // Y

and hence, Y is a quotient of B⊕ Z ∈ C and must belong to C. �

Lemma 1.10. For every object X ∈ C and every n ≥ 0, the functor Extn(X,−)
commutes with α-filtered colimits.

Proof. The case n= 0 was proved in Lemma 1.7, and we will now prove the general
case. Let I be an α-filtered category, and let F : I→A be a functor. We need to
show that the natural map

8 : colim
−−−→i∈I

Extn(X, Fi)→ Extn
(
X, colim
−−−→i∈I

Fi
)

is an isomorphism. We will prove that 8 is surjective and injective.
We prove surjectivity first. Given an element

z ∈Extn(X, colim
−−−→i∈I

Fi),

there is by Lemma 1.8 an object Y ∈C, an extension y∈Extn(X, Y ), and a morphism
Y→colim
−−−→i∈I

Fi taking y to z. By Lemma 1.7, the map from Y ∈C to the α-filtered
colimit factors through some Fi , and the surjectivity of 8 follows.

Next we prove injectivity by induction on n. Let

L = colim
−−−→i∈I

Fi,

and suppose we are given a θ ∈ Extn(X, Fi) that maps to zero in Extn(X, L). In
the proof of Lemma 1.8, we produced objects W ′, X ′ ∈ C, an exact sequence
0→ X ′→ W ′→ X → 0 in C, and an element θ ′ ∈ Extn−1(X ′, Fi) mapping to
θ ∈Extn(X, Fi). In the commutative diagram with exact rows

colim
−−−→

Extn−1(W ′, F j) //

8W ′

��

colim
−−−→

Extn−1(X ′, F j) π
//

8X ′

��

colim
−−−→

Extn(X, F j)

8X

��

Extn−1(W ′, L) // Extn−1(X ′, L) // Extn(X, L)

we have θ ∈ colim
−−−→

Extn(X, F j) and θ ′ ∈ colim
−−−→

Extn−1(X ′, F j) satisfying π(θ ′)= θ
and 8X (θ) = 0. By induction on n, we know that the maps 8X ′ and 8W ′ are
isomorphisms. A short diagram chase establishes that θ vanishes as an element of
colim
−−−→

Extn(X, F j). �
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Definition 1.11. Choose a regular cardinal µ so that:

(i) For each object X ∈ C and for each quotient Y of gα, where α is as in
Definition 1.4, we have # Hom(X, Y ) < µ.

(ii) The object gα has < µ quotients.

(iii) The product of ≤ α cardinals, all less than µ, is less than µ.

Remark 1.12. If we let β be any cardinal ≥ α satisfying parts (i) and (ii) of
Definition 1.11, then the successor of 2β satisfies all three hypotheses on µ. The
product of ≤ α cardinals, all less than µ, is the product of ≤ α cardinals all ≤ 2β

and is bounded above by (2β)α = 2β×α = 2β .

Definition 1.13. Let µ be as in Definition 1.11. We define B ⊂ A to be the full
subcategory of A consisting of the objects Y with # Hom(g, Y ) < µ.

Lemma 1.14. An object Y belongs to B if and only if it is the quotient to gλ for
some λ < µ. And if Y belongs to B, then # Hom(X, Y ) < µ for all X ∈ C.

Proof. Every Y is the quotient of g# Hom(g,Y ). If Y happens to belong to B, then
λ=# Hom(g, Y )<µ, so Y is a quotient as specified. We need to prove the converse:
any quotient of gλ, λ < µ, belongs to B. Let Y be such a quotient; to show that Y
belongs to B, it suffices to prove that # Hom(g, Y ) < µ, but we actually want the
refinement that # Hom(X, Y ) < µ for every X ∈ C.

Choose an epimorphism gλ→ Y and X ∈ C. We note that Y is the α-filtered
colimit of the subobjects Fi , i ∈ I, where Fi is the image in Y of the map from
a summand gβi ⊂ gλ with βi < α. By Lemma 1.7, every map X → Y factors
as X → Fi → Y for some i ∈ I. But # Hom(X, Fi) < µ by Definition 1.11(i),
and there are fewer than λα < µ different inclusions gβi ⊂ gλ. Therefore, there are
fewer than µ factorizations X→ Fi→ Y . �

Proposition 1.15. The category B satisfies the following properties:

(i) The coproduct of < µ objects in B lies in B.

(ii) Any subquotient of an object in B belongs to B.

(iii) Any extension of objects in B lies in B.

(iv) C is contained in B.

(v) For all X ∈ C, all Z ∈B, and all integers n ≥ 0, we have # Extn(X, Z) < µ.

Proof. (i) Let {Yi | i ∈ I} be a set of < µ objects in B. Each Yi is the quotient of
g# Hom(g,Yi ), and hence, the coproduct of the Yi is a quotient of g

∑
i # Hom(g,Yi ). And∑

i # Hom(g, Yi ) is the sum of fewer than µ cardinals, each <µ, and hence is <µ.

(ii) If Y belongs to B, it is a quotient of gλ, λ < µ, and hence, so is any of its
quotients. Also # Hom(g, Y )<µ, and for any subobject X , we have # Hom(g, X)≤
# Hom(g, Y ) < µ.
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(iii) Given an extension 0 → X → Y → Z → 0, we have an exact sequence
0→ Hom(g, X)→ Hom(g, Y )→ Hom(g, Z). If X and Z belong to B, then
# Hom(g, X) < µ and # Hom(g, Z) < µ, and # Hom(g, Y ) is the sum of fewer
than µ cardinals all smaller than µ.

(iv) Suppose Y ∈ C. By the definition of α, we have # Hom(g, Y ) < α, and µ was
chosen larger than α.

(v) There are fewer than α objects in C, and for any pair of objects X, Y ∈C, we have
that # Hom(X, Y ) < µ. Hence, there are fewer than µ sequences in C of length n

0→ Y →W1→ · · · →Wn→ X→ 0.

Some of these sequences will be exact, and up to equivalence, they define fewer
than µ elements in groups ExtnC(X, Y ). By Lemma 1.8, we have that any element of
Extn(X, Z) is the image under some map in Hom(Y, Z) of an element in ExtnC(X, Y ).
But # Hom(Y, Z)<µ by Lemma 1.14; hence, there are fewer thanµways of picking
a triple

Y ∈ C, y ∈ ExtnC(X, Y ), and f ∈ Hom(Y, Z). �

Remark 1.16. If F : I→B is a functor and I has fewer than µ objects, then the
colimit of F belongs to B. This is because the colimit is a quotient of the coproduct
of Fi over all objects i ∈ I. The coproduct belongs to B by Proposition 1.15(ii)
and its quotient the colimit by Proposition 1.15(iii).

Remark 1.17. Let q be the coproduct of all the quotients of the generator g. Then
for every n ≥ 0 and any object Z ∈B, we have # Extn(q, Z) < µ. The reason is the
following. Write q =

∐
M xm to express q as the coproduct of all the quotients xm

of g. Then
Extn(q, Z)=

∏
M

Extn(xm, Z)

with each xm ∈C and Z ∈B. By Proposition 1.15(v), we have that # Extn(xm, Z)<µ
for each xm , and there are fewer than α objects xm ∈ C. Definition 1.11(iii)
guarantees that # Extn(q, Z) < µ.

Proposition 1.18. The category B is precisely the full subcategory of µ-presentable
objects of A.

Proof. Let Y be a µ-presentable object in A, and let gγ → Y be an epimorphism.
Then Y is the µ-filtered colimit of all the subobjects {Fi | i ∈ I}, where Fi is the
image in Y of some summand gλi ⊂ gγ with λi < µ. The identity map Y → Y
is a map from the µ-presentable object Y to the µ-filtered colimit Y = colim

−−−→
Fi

and hence must factor through some Fi . But then the map gλi → Fi→ Y is the
composite of two epimorphisms and is epi, and λi < µ. Thus, Y ∈B.
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Next we must prove that every Y ∈B is µ-presentable. Choose an epimorphism
gλ→ Y with λ < µ; its kernel K is a subobject of a coproduct of fewer than µ
copies of g ∈B and hence belongs to B. Thus, we may choose an epimorphism
gν→ K with ν < µ. We therefore have a presentation of Y

gν→ gλ→ Y → 0

with λ, ν < µ. But g is α-presentable by Lemma 1.7 and hence also µ-presentable
for our choice of µ>α. The µ-presentability of Y follows from the presentation. �

An immediate corollary is:

Corollary 1.19. Any Grothendieck abelian category is locally presentable (in the
sense of [Gabriel and Ulmer 1971]).

Definition 1.20. Let ν be an infinite cardinal. We define Aν
⊂ A to be the full

subcategory of all ν-presentable objects.

Remark 1.21. In Definition 1.11, we chose a regular cardinal µ, and in Proposition
1.18, we saw that Aµ

=B with B as in Definition 1.13. As it happens, we chose
µ sufficiently large so that Aµ satisfies all the nice properties of Lemma 1.14,
Proposition 1.15, and Remark 1.16.

2. An adjoint to the inclusion K(Inj A) ↪→ K(A)

Let A be a Grothendieck abelian category, let K(A) be the homotopy category of
chain complexes in A, and let K(Inj A) be the full subcategory whose objects are
the chain complexes of injectives. There is an obvious inclusion K(Inj A) ↪→ K(A),
and in this section, we will study its left adjoint.

We begin with some preliminaries.

Lemma 2.1. Every bounded-below, acyclic complex lies in ⊥K(Inj A). We remind
the reader: this means that any chain map A→ E from a bounded-below, acyclic
complex to a complex of injectives is null-homotopic.

Proof. If A vanishes in degrees < n, then the map A→ E factors through the brutal
truncation β≥n E ; the factorization is the obvious

· · · // 0 //

��

0 //

��

An //

��

An+1 //

��

· · ·

· · · // 0 //

��

0 //

��

En //

��

En+1 //

��

· · ·

· · · // En−2 // En−1 // En // En+1 // · · ·

The map A→ β≥n E is a chain map from an acyclic complex to a bounded-below
complex of injectives and hence null-homotopic. �
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The converse is not true: objects of ⊥K(Inj A) do not have to be bounded below.
But they do have to be acyclic.

Lemma 2.2. Every object of ⊥K(Inj A) is acyclic.

Proof. Let E be an injective cogenerator of the abelian category A. Then Hom(X,
6−n E)= 0 if and only if H n(X)= 0. �

Lemma 2.3. Let f : X→ Y be quasi-isomorphism of chain complexes, and assume
f i
: X i
→ Y i is an isomorphism for all i � 0. Then, for any chain complex of

injectives E , the natural map

HomK(A)(Y, E)
Hom( f,E)
−−−−−−→ HomK(A)(X, E)

is an isomorphism.

Proof. In the triangle A→ X
f
−→ Y →6A, we have that f is a quasi-isomorphism

and hence A is acyclic. Furthermore, the fact that f i
: X i
→ Y i is an isomorphism

for i � 0 means that A is homotopy-equivalent to a bounded-below complex,
and Lemma 2.1 tells us that A ∈ ⊥K(Inj A). The result now follows by applying
Hom(−, E) to the triangle. �

Remark 2.4. In Lemma 2.3, we saw that any chain map X → E factors up to
homotopy through X→ Y . We wish to consider the factorizations not only up to
homotopy, and hence, we will work in C(A), the category of chain complexes in A

where the morphisms are genuine chain maps, not homotopy equivalence classes.

Lemma 2.5. Let f : X → Y be a morphism in C(A) whose mapping cone lies
in ⊥K(Inj A). Suppose further that in each degree i the map f i

: X i
→ Y i is

a monomorphism. Let E be a complex of injectives; then the map Hom( f, E) :
HomC(A)(Y, E) → HomC(A)(X, E) is surjective. In other words, every chain
map X → E factors through f : X → Y , not only up to homotopy but in the
category C(A).

Proof. Suppose we are given a chain map h : X→ E . By Lemma 2.3, it factors up
to homotopy through f : X → Y , meaning there exists a g : Y → E so that h is
homotopic to g f . Let 2 : X ⇒ E be a homotopy that works; then for every i ∈ Z,
we have a map 2i

: X i
→ E i−1 with

h− g f =2∂ + ∂2.

But now 2i
: X i
→ E i−1 is a morphism in A from X i to the injective object E i−1,

and we may therefore factor it through the monomorphism f i
: X i
→ Y i . Thus,

we construct maps 8i
: Y i
→ E i−1 with 8i f i

=2i . If we let

g′ = g+8∂ + ∂8,

then h = g′ f . �
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In Lemma 2.5, we showed the existence of a factorization h = g f . Next we
worry about uniqueness.

Lemma 2.6. Suppose f : X → Y and h : X → E are as in Lemma 2.5. Assume
g, g′ :→ E are two morphisms with g f and g′ f homotopic to h, and let2 : X⇒ E
be a homotopy with

g f − g′ f =2∂ + ∂2.

Then there exists a homotopy 8 : Y ⇒ E with 8 f =2 and so that

g− g′ =8∂ + ∂8.

Proof. Note that Lemma 2.3 guarantees that g is homotopic to g′; the content of
what we are about to prove is that the homotopy connecting them may be chosen to
lift any given homotopy of g f with g′ f .

Let us therefore choose any homotopy 8′ connecting g with g′. Then 8′ f is
a homotopy connecting g f with g′ f as is 2; it follows that 2−8′ f is a chain
map X→6E . By Lemma 2.5, it has a factorization2−8′ f =ρ f with ρ :Y→6E
a chain map. But then 8=8′+ ρ is a homotopy of g with g′, and 2=8 f . �

Definition 2.7. Let λ be an ordinal and K a category. A sequence of length λ in K

is the following data:

(i) for every ordinal i ≤ λ an object X i ∈ K and

(ii) for every pair of ordinals i and j with i < j ≤ λ a morphism fi j : X i → X j .

(iii) If i < j < k ≤ λ, then the composite X i
fi j
−−→ X j

f jk
−−→ Xk agrees with fik :

X i → Xk .

Lemma 2.8. Suppose X is a sequence of length λ in C(A), and assume that for
every limit ordinal j we have

X j = colim
−−−→i< j

X i .

Suppose further that the mapping cone on every X i → X i+1 belongs to ⊥K(Inj A)

and that each of the maps X i → X i+1 is a degreewise monomorphism. Then the
mapping cones of all fi j : X i → X j belong to ⊥K(Inj A).

Proof. We prove, by induction on k ≤ λ, that the statement is true for all fi j with
i ≤ j ≤ k. If k = 0, there is nothing to prove.

Suppose the statement is true for k; we wish to prove it for k + 1. Choose
any i < j ≤ k + 1. If i < j ≤ k, then the mapping cone on fi j lies in ⊥K(Inj A)

by the inductive hypothesis. If j = k + 1, then i ≤ k and fi j can be written as
the composite fk,k+1 fik . Since the mapping cones on fik and on fk,k+1 both lie
in ⊥K(Inj A), so does the mapping cone on the composite fi j = fk,k+1 fik .
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Next suppose k is a limit ordinal and the mapping cone on fi j lies in ⊥K(Inj A)

for all i < j < k. We need to show that the mapping cone on fik lies in ⊥K(Inj A)

for every i < k. Equivalently, we must prove that the induced map

Hom( f, E) : HomK(A)(Xk, E)→ HomK(A)(X i , E)

is an isomorphism for every E ∈ K(Inj A). Let us first prove the surjectivity.
Suppose we are given a chain map hi : X i→ E . By induction on j , we will factor

hi in C(A) as X i
fi j
−−→X j

h j
−→E . If we have produced the factorization through h j ,

then Lemma 2.5 permits us to factor h j : X j → E as X j
f j, j+1
−−−→ X j+1

h j+1
−−−→ E . For

limit ordinals ν, we use the fact that Xν = colim
−−−→i<ν

X i to extend the factorization.
This finishes the induction, and we have a factorization of hi as X i

fik
−−→ Xk

hk
−→ E .

This factorization is in the category C(A), which is more than we need. It certainly
reduces to a factorization in K(A).

Now we prove injectivity. Suppose we are given a chain map hi : X i → E ; we
wish to prove that the factorization through fik : X i→ Xk is unique in K(A). Choose
an hk : Xk→ E where the identity hk fik = hi holds in C(A); the existence of such
an hk has just been proved. Now take any h : Xk→ E with h fik∼=hi , that is, with h fik

homotopic to hi =hk fik ; we need to prove that h is homotopic to hk . The proof is by
choosing a homotopy 2i connecting h fik with hk fik and then by induction on j lift-
ing it to a homotopy connecting h f jk with hk f jk with i ≤ j ≤ k using Lemma 2.6. �

We will construct sequences to which we will apply Lemma 2.8. The maps
X i → X i+1 from which these sequences are built up will be obtained as follows.

Construction 2.9. Given an object X ∈ C(A), an integer n, and a monomorphism
Xn
→ A in A, we form a map of chain complexes f : X→ Y = B(X, n, Xn

→ A)
as follows:

(i) f i
: X i
→ Y i is the identity map 1 : X i

→ X i for all i 6= n, n+ 1.

(ii) In degrees n and n+ 1, the commutative square

Xn //

��

Y n

��

Xn+1 // Y n+1

is just the pushout square

Xn //

��

A

��

Xn+1 // Y n+1

We could specify A, up to noncanonical isomorphism, by giving its class as an
extension in Ext1(A/Xn, Xn). In our applications, A/Xn will be a large coproduct
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A/Xn
= qβ of β copies of the object q of Remark 1.17, and hence, it will suffice

to give a subset 3⊂ Ext1(q, Xn) of cardinality β. We will let B(X,3) denote the
corresponding complex Y .

Remark 2.10. Suppose we are given an integer n and an object y ∈A. The trivial
complex T (y) is just the complex

· · · → 0→ 0→ y
1
−→ y→ 0→ 0→ · · ·

with the nonzero terms in degrees n and n+ 1. Assume now that we are given an
object X ∈C(A) and a monomorphism Xn

→ A in A. The morphism f : X→ Y =
B(X, n, Xn

→ A) of Construction 2.9 fits in a short exact sequence of complexes

0→ X
f
−→ Y → T (A/Xn)→ 0,

and it immediately follows that f is a monomorphism and a quasi-isomorphism.
But the mapping cone in K(A) on the map f is homotopic to a bounded complex
and belongs to ⊥K(Inj A) by Lemma 2.1. Thus, f is a suitable building block for
constructing chains of complexes as in Lemma 2.8.

Construction 2.11. Let X ∈ C(A) be an object. Let g be our chosen generator for
the abelian category A, and let M be the set of all the quotients of g. In Remark 1.17,
we defined q to be the coproduct of them all.

For each subset 3 ⊂ Ext1(q, Xn), we consider the map X → B(X,3) of
Construction 2.9. In the special case where 3 = Ext1(q, Xn) is maximal, we
denote the map as X→ B(X, n). In this case, we know that the functor Ext1(x,−)
annihilates the map Xn

→ B(X, n)n whenever x is a direct summand of q, in
particular for all quotients x of g.

Given X ∈ C(A), we inductively define a sequence of length ω in C(A). At each
step, we let the map X i → X i+1 be X i → B(X i , n) for some suitable n depending
on i . The precise recipe is:

(i) X0 = X , and X0→ X1 is the map X→ B(X, 0).

(ii) For an integer i > 0, we define X2i−1→ X2i to be X2i−1→ B(X2i−1, i) while
X2i → X2i+1 is set to be X2i → B(X2i ,−i).

(iii) Xω = colim
−−−→

Xn .

Lemma 2.12. Define the map fX : X → J (X) to be the morphism X → Xω of
Construction 2.11. Then fX is a degreewise monomorphism and is annihilated
degreewise by Ext1(x,−) whenever x is a quotient of g. Furthermore, the mapping
cone of fX lies in ⊥K(Inj A).
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Proof. By construction, fX is the colimit of degreewise monomorphisms and hence
a degreewise monomorphism. The fact that fX is annihilated by Ext1(x,−) in every
degree n is true because, depending on whether n is positive or negative, either
the map X2|n|−1→ X2|n| or the map X2|n|→ X2|n|+1 will induce zero in degree
n under the functors Ext1(x,−). That the mapping cone lies in ⊥K(Inj A) comes
from Lemma 2.8. �

Theorem 2.13. The natural inclusion K(Inj A)→ K(A) has a left adjoint I .

Proof. Let X be an arbitrary object of C(A). By transfinite induction, we define a
chain of complexes J λ(X) for every ordinal λ. The rule is:

(i) J 0(X)= X .

(ii) If J λ(X) has been defined, then the map J λ(X)→ J λ+1(X) is just J λ(X)→
J (J λ(X)).

(iii) If λ is a limit ordinal, then J λ(X)= colim
−−−→i<λ

J i (X).

Let α be the regular cardinal of Definition 1.4. Now consider the triangle

A(X)→ X→ Jα(X)→6A(X).

Lemma 2.8 tells us that A(X) belongs to ⊥K(Inj A). I assert that Jα(X) belongs to
K(Inj A); from the triangle and [Neeman 2001, Theorem 9.1.13], we deduce the
existence of the adjoint and note that the adjoint takes X to I (X)= Jα(X).

It remains to prove the assertion: we must show that in each degree n the object
Jα(X)n ∈ A is injective. Since α is an α-filtered colimit of the ordinals λ < α,
Lemma 1.10 tells us that, for each quotient x of the generator g of A,

Ext1(x, Jα(X)n)= colim
−−−→λ<α

Ext1(x, J λ(X)n).

By construction, we know that the map

Ext1(x, J λ(X)n)→ Ext1(x, J λ+1(X)n)

is zero, and hence, the colimit vanishes. Thus, Ext1(x, Jα(X)n)= 0 whenever x is
a quotient of the generator g, and hence, Jα(X)n must be injective. �

Corollary 2.14. The homotopy category K(Inj A) satisfies TR5, meaning it has
coproducts.

Proof. Given a collection of objects {Xλ | λ ∈3} in the category K(Inj A), we can
certainly form the coproduct in K(A); applying the functor I to this coproduct gives
the coproduct in K(Inj A). �

Remark 2.15. The construction of I (X) out of X was broken up into two steps.
In the proof of Theorem 2.13, we constructed a sequence by letting J i+1(X) =
J (J i (X)) for each ordinal i and by taking colimits at limit ordinals. But this hides
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the fact that J (Y ) is constructed out of Y as the colimit of a countable sequence
where Yi+1 = B(Yi , n) for some suitable n depending on i ; see Construction 2.9.
If we assemble it all into one long sequence, then we define a sequence where
X i+1= B(X i , n) for every ordinal i but where the integer n depends on the distance
of the ordinal i from its predecessor limit ordinal. And we recover the sequence
{J i (X)} by restricting attention to X i for limit ordinals i .

3. The µ-compact generation of K(Inj A)

In Section 2, we proved Theorem 2.13: the inclusion K(Inj A)→ K(A) has a left
adjoint I . In the construction, we made many choices: even though we constructed
a morphism X → I (X) = Jα(X) in the category C(A), the construction is not
functorial in C(A). The map sending X to I (X) becomes a well defined functor only
in the homotopy category K(A), and X→ I (X) is a natural transformation only at
the homotopy level. Still X can be expressed as the colimit of all its µ-presentable
subobjects with µ as in Definition 1.11, and we would like to express I (X) as
a µ-filtered colimit.

Construction 3.1. Recall that B⊂A was the category Aµ of µ-presentable objects
in A; see Proposition 1.18 and Definition 1.20. Let X be an object in C(A), and let
I be a full subcategory of subobjects Y ⊂ X with Y ∈ C(B)⊂ C(A). Assume I is
µ-filtered and its colimit is X . Construct the category J(I, n) whose objects are
subobjects Y of B(X, n) with the following properties:

(i) Y ∩ X belongs to I.

(ii) The map Y ∩ X→ Y is an isomorphism in degrees i 6= n, n+ 1.

(iii) In degree n, we have a monomorphism Y n/Y n
∩Xn
→ B(X, n)n/Xn , and from

the construction of B(X, n), we know that B(X, n)n/Xn is the coproduct qβ =∐
Ext1(q,Xn) q with q as in Remark 1.17. We require that the monomorphism

Y n/Y n
∩ Xn

→ B(X, n)n/Xn is the inclusion of a subcoproduct.

(iv) The square
Y n
∩ Xn //

��

Y n

��

Y n+1
∩ Xn+1 // Y n+1

is a pushout.

Remark 3.2. Let us untangle what this means. In Construction 2.11, B(X, n) was
defined so that there is a short exact sequence in C(A)

0→ X→ B(X, n)→ T (q)# Ext(q,Xn)
→ 0

where T (q) is the trivial complex · · · → 0→ q
1
−→ q→ 0→ · · · concentrated in
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degrees n and n + 1. The conditions on the subobject Y ⊂ B(X, n) that it must
satisfy to belong to J(I, n) come down to asking that Y ∩ X belongs to I and that
in the map of short exact sequences

0 // Y ∩ X //

��

Y //

��

Y/(Y ∩ X) //

h
��

0

0 // X // B(X, n) // T (q)# Ext(q,Xn) // 0

the monomorphism h : Y/(Y ∩ X)→ T (q)# Ext(q,Xn) should be the inclusion of a
subcoproduct. In degree n, we have a diagram

0 // Y n
∩ Xn //

��

Y n //

��

q#3′ //

h
��

0

0 // Xn // B(X, n)n // q# Ext(q,Xn) // 0

The top row of this diagram defines a map ϕ :3′→ Ext1(q, Y n
∩ Xn) giving the

extension, and the fact that h is an inclusion means that the composite

3′
ϕ
−→ Ext1(q, Y n

∩ Xn)→ Ext1(q, Xn)

must be injective. Therefore, ϕ must be injective; 3′ is a subset of Ext1(q, Y n
∩Xn).

Lemma 3.3. The objects of the category J(I, n) all belong to C(Aµ)= C(B).

Proof. We know that Y ∩ X belongs to I⊂ C(B) and hence all the objects Y i
∩ X i

belong to B. For i 6= n, n+ 1, we have that Y i
= Y i
∩ X i
∈B. We need to show

that Y n, Y n+1
∈B. From the pushout square

Y n
∩ Xn //

��

Y n

��

Y n+1
∩ Xn+1 // Y n+1

it follows that Y n+1 is a quotient of Y n
⊕ (Y n+1

∩ Xn+1); by Proposition 1.15(ii),
Y n+1 will belong to B if Y n does.

In Remark 3.2, we saw that Y n is an extension of q#3′ by Y n
∩Xn
∈B, where3′

can be thought of as a subset3′⊂Ext1(q, Y n
∩Xn). By Remark 1.17, we know that

#3′ ≤ # Ext1(q, Y n
∩ Xn) < µ. But q is the coproduct of the <α quotients x of the

generator g, all of which belong to C⊂B; hence, q#3′ is a coproduct of<µ objects
in B and belongs to B. By Proposition 1.15(iii), B is closed under extensions, and
therefore, Y n also belongs to B. �



The homotopy category of injectives 447

Lemma 3.4. The category J(I, n) is µ-filtered.

Proof. Since J(I, n) is equivalent to a partially ordered set, we need only show
that every collection of fewer than µ objects in J(I, n) is dominated by an object
of J(I, n). Suppose therefore that we are given a set {Y j | j ∈ J } of < µ objects
of J(I, n). The objects Y j ∩ X all belong to the µ-filtered category I, and we may
therefore choose a Z ∈ I dominating them.

Take k ∈ Ker(Ext1(q, Zn)→ Ext1(q, Xn)). Now Xn
= colim
−−−→ X i∈I Xn

i , the cate-
gory I is µ-filtered, and Ext1(q,−) commutes with µ-filtered colimits. Hence

Ext1(q, Xn) = colim
−−−→X i∈I

Ext1(q, Xn
i ),

and the fact that k ∈ Ext1(q, Zn) maps to zero in colim
−−−→ X i∈I Ext1(q, Xn

i ) means
that we may choose some morphism Z → Zk in I so that k is annihilated by
Ext1(q, Zn) → Ext1(q, Zn

k ). We can choose such a Z → Zk for every k ∈
Ker(Ext1(q, Zn)→ Ext1(q, Xn)). But # Ext1(q, Zn) < µ, and hence, there are
< µ possible k. Since I is µ-filtered, the Zk are all dominated by some object
Z ′∈I. Thus, the map Z→ Z ′ annihilates all the k; on the image Im(Ext1(q, Zn)→

Ext1(q, (Z ′)n)), the map to Ext1(q, Xn) is injective.
For each Y j , we have that Y n

j is an extension of q#3 j by Y n
j ∩ Xn , where 3 j is a

subset of Ext1(q, Y n
j ∩ Xn) that maps injectively to Ext1(q, Xn). We may take the

image of 3 j under the composite Y n
j ∩ X j

→ Zn
→ (Z ′)n or more precisely under

the composite

Ext1(q, Y n
j ∩ Xn)→ Ext1(q, Zn)→ Ext1(q, (Z ′)n).

The image of each3 j is contained in Im(Ext1(q, Zn)→Ext1(q, (Z ′)n)); hence, so
is the union of the images 3′=

⋃
Im(3 j ). But Im(Ext1(q, Zn)→ Ext1(q, (Z ′)n))

maps injectively to Ext1(q,Xn); and hence, so does its subset3′. Let Y ′= B(Z ′,3′).
As in Remark 2.10, for each y ∈A, let T (y) be the trivial complex

· · · → 0→ 0→ y→ y→ 0→ 0→ · · ·

where the nonzero terms are in degrees n and n + 1. The objects Y j , Y ′, and
B(X, n) ∈ C(A) fit into extension sequences

0 // Y j ∩ X // Y j // T (q)#3 j // 0,

0 // Z ′ // Y ′ // T (q)#3
′

// 0,

0 // X // B(X, n) // T (q)# Ext1(x,Xn) // 0,

and the extension classes are all compatible. We may choose maps of extensions
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0 // Y j ∩ X //

��

Y j
δ j

//

f j

��

T (q)#3 j //

��

0

0 // Z ′ //

��

Y ′ //

g

��

T (q)#3
′

//

��

0

0 // X // B(X, n) // T (q)# Ext1(x,Xn) // 0

Now the monomorphisms Y j ∩ X→ Z ′, Z ′→ X , 3 j→3′ and 3′→ Ext1(x, Xn)

are all given to us explicitly. The fact that the extension classes are compatible
means we may choose maps f j and g as above, but they are not unique. Let us
make the choices.

Now each Y j is a subobject of B(X, n); it comes with a given monomorphism
h j : Y j → B(X, n) making commutative the diagram

0 // Y j ∩ X //

��

Y j //

h j

��

T (q)#3 j //

��

0

0 // X // B(X, n) // T (q)# Ext1(x,Xn) // 0

There is no reason to expect that h j should equal g f j . The difference h j − g f j

must however factor through a map T (q)#3 j → X , and maps in C(A) of the form
T (y)→ W are in bijection with maps y → W n . Thus, h j − g f j is determined
by a map in A of the form q#3 j → Xn . But Hom(q#3 j ,−) commutes with µ-
filtered colimits, and Xn is the µ-filtered colimit of Xn

i , X i ∈ I. For each j ,
we may therefore choose a map Z ′→ Z j in I so that h j − g f j factors through
T (q)#3 j → Z j ⊂ X . Since there are fewer than µ objects Z j ∈ I, we may find an
object Z ′′ ∈ I dominating them. Let W = B(Z ′′,3′); that is, form the extension
0→ Z ′′→W → T (q)#3

′

→ 0 corresponding to the image of 3′ ⊂ Ext1(q, (Z ′)n)
under the map Ext1(q, (Z ′)n)→ Ext1(q, (Z ′′)n).

Because the extension classes are compatible, we may construct maps of exten-
sions

0 // Z ′ //

��

Y ′
η

//

ρ

��

T (q)#3
′

//

1
��

0

0 // Z ′′ τ
//

��

W
η′

//

σ

��

T (q)#3
′

//

��

0

0 // X
ζ
// B(X, n) // T (q)# Ext1(x,Xn) // 0
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There is no reason to expect g to be equal to σρ, but the difference factors through
some ϕ : T (q)#3

′

→ X . Changing σ to σ + ζϕη′, we achieve that g = σρ. But
now we have monomorphisms Y j

f j
−→ Y ′

ρ
−→W

σ
−→ B(X, n), and we have that

h j − g f j = h j − σρ f j factors through a map T (q)#3 j
θ j
−→ Z ′′→ X . Replacing ρ f j

by f ′j =ρ f j+τθ jδ j , we have that σ f ′j = h j for all j ∈ J . Thus, the monomorphisms
h j : Y j→ B(X, n) all factor through σ :W→ B(X, n), and the subobject σ :W→
B(X, n) belongs to J(I, n). �

Lemma 3.5. B(X, n) is the colimit of its subobjects Y ∈ J(I, n).

Proof. Let Y be an object of J(I, n). Then we have a monomorphism of short
exact sequences

0 // Y ∩ X //

fY

��

Y //

gY

��

T (q#3′) //

hY
��

0

0 // X // B(X, n) // T (q# Ext1(q,Xn)) // 0

with hY being the inclusion of a subcoproduct. Since the category J(I, n) is
filtered, the colimit over J(I, n) of the top row is exact; we wish to show that
the colimit of gY is an isomorphism, and the five lemma tells us that it suffices
to prove that the colimits of fY and hY are isomorphisms. Also, since fY and hY

are monomorphisms, so are their colimits. It therefore suffices to prove that the
colimits of fY and hY are epi.

For fY , note that the category I embeds in the category J(I, n); we can
view a subobject Y ⊂ X as a subobject of B(X, n), where the corresponding
3′ ⊂ Ext1(q, Y n) is empty. But the colimit of I maps epimorphically to X , and
this epimorphism will factor through the colimit of fY . Hence, the colimit of fY

must be epi.
We need to show that the colimit of hY is epi. Take any λ∈Ext1(q, Xn); because

Ext1(q,−) commutes with µ-filtered colimits and Xn is the µ-filtered colimit of Xn
i ,

X i ∈ I, we may choose a Z ∈ I and an element eλ ∈ Ext1(q, Zn) mapping to λ.
Form the extension 0→ Z→ Y → T (q)→ 0 corresponding to eλ. From the fact
that eλ maps to λ, we have a map of extensions

0 // Z //

fY

��

Y //

gY

��

T (q) //

hY
��

0

0 // X // B(X, n) // T (q# Ext1(q,Xn)) // 0

where hY is the inclusion of the subcoproduct over the singleton {λ}. Thus, the
image of the colimit of the hY must contain the coproduct over every singleton
in Ext1(q, Xn), and hence, it must be epi. �
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Lemma 3.6. If filtered colimits of<µ objects in I belong to I, then filtered colimits
of < µ objects in J(I, n) belong to J(I, n).

Proof. An object Y belongs to J(I, n) if it comes with a monomorphism of short
exact sequences

0 // Y ∩ X //

fY

��

Y //

gY

��

T (q#3′) //

hY
��

0

0 // X // B(X, n) // T (q# Ext1(q,Xn)) // 0

where hY is the inclusion of a subcoproduct and Y ∩ X ∈ I. A filtered colimit of
objects Yλ ∩ X , λ ∈3, will belong to I as long as #3< µ and each Yλ ∩ X ∈ I.
Filtered colimits are exact, and hence, the filtered colimit of < µ monomorphisms
of short exact sequences as above is such a monomorphism. �

Construction 3.7. Recall Remark 2.15: the object I (X) = Jα(X) can be con-
structed using a single sequence. Let us now remember this sequence:

(i) X0 = X .

(ii) X i+1 = B(X i , n) for some n depending on i . The precise relation is that if
i = `+m, where ` is a limit ordinal and m is an integer, then n =−m/2 if m
is even and n = (m+ 1)/2 if m is odd.

(iii) For limit ordinals j we have X j = colim
−−−→i< j

X i .

Suppose we are given an α-filtered category I of subobjects of X , whose colimit
is X . For every ordinal i , we will now form a subcategory Ii of subobjects of X i .
The rules are:

(i) I0 = I.

(ii) If n is the integer for which X i+1 = B(X i , n), then Ii+1 = J(Ii , n).

(iii) Let j be a limit ordinal. A subobject Y ⊂ X j belongs to I j if and only if Y ∩X i

belongs to Ii for all i < j .

Lemma 3.8. Suppose Y ⊂ X j lies in I j in the notation of Construction 3.7. Then
in the triangle Y ∩ X→ Y → A→, we have that A belongs to ⊥K(Inj A).

Proof. Consider the sequence Yi = Y ∩ X i . By hypothesis, Yi+1 ∈ J(Ii , n), and
in Remark 3.2, we saw that Yi+1 = B(Yi+1 ∩ X,3′)= B(Yi ,3

′) for some subset
3′ ⊂ Ext1(q, Y n

i ) mapping injectively to Ext1(q, Xn). And for limit ordinals `, we
have Y` = Y ∩ X` = colim

−−−→ i<`(Y ∩ X i ) = colim
−−−→ i<`Yi . The lemma now follows

from Lemma 2.8 and Remark 2.10. �
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Lemma 3.9. Let X be an object of C(A), and let I ⊂ C(B) = C(Aµ) be a full
subcategory of the subobjects of X. Assume I is µ-filtered with colimit X , and
assume that filtered colimits of < µ objects in I belong to I.

Then for every ordinal i ≤ α, we have that Ii has the same properties: it is
contained in C(B), is µ-filtered with colimit X i , and is closed under filtered colimits
of < µ objects.

Proof. For i = 0, we have I0 = I and there is nothing to prove. Suppose the result
is true for i . By Lemma 3.3, we have Ii+1 ⊂ C(B); by Lemma 3.4, it is µ-filtered;
by Lemma 3.5, the colimit is X i+1; and by Lemma 3.6, it is closed under filtered
colimits of < µ objects.

For the remainder of the proof, assume j is a limit ordinal and the assertions of
the lemma are true for all i < j . Let Y be an object of I j . By definition, Y ∩X i ∈Ii

for every i < j , and by induction, Y ∩ X i ∈ C(B). But Y = colim
−−−→ i< j (Y ∩ X i ) is

the colimit of ≤ α < µ objects of C(B); by Remark 1.16, Y ∈ C(B).
Let Y = colim

−−−→ r∈RYr with Yr ∈ I j and R be a filtered category with <µ objects.
For i < j , we have that Y ∩X i = colim

−−−→ r∈R(Yr ∩ X i ) belongs to Ii by the induction
hypothesis, and hence, Y ∈ I j by definition.

Let {Yr | r ∈ R} be a set of <µ objects of I j . By induction on i < j , we choose

(i) an object Z0 ∈ I0 containing all the Yr ∩ X0 and

(ii) an object Zi+1 ∈ Ii+1 containing Zi and all the objects Yr ∩ X i+1.

(iii) For limit ordinals `, define Z` = colim
−−−→i<`

Zi . Then Z` belongs to I` since
Z` ∩ Xk = colim

−−−→i<`
Zi ∩ Xk belongs to Ik for all k < `≤ j .

But now Z j ∈ I j contains all the Yr . Thus, I j is µ-filtered.
The category I j is a filtered category of subobjects of X j , and the colimit is

some subobject of X j . But it contains the colimits of Ii ⊂ I j for all i < j ; that is,
it contains all the X i with i < j . Because X j = colim

−−−→i< j
X i , we conclude that the

colimit of I j is all of X j . �

Lemma 3.10. Let X and I be as in Lemma 3.9. The full subcategory of Iα whose
objects are in C(Inj A) is cofinal.

Proof. Let Y be an arbitrary object of Iα; we need to produce a morphism Y → Z
in Iα with Z ∈ K(Inj A). We inductively define a sequence {Zi } of objects in Ii ,
and Z will be the colimit; the recipe is:

(i) Put Z0 = Y ∩ X .

(ii) Assume n is the integer for which Ii+1 = J(Ii , n), and suppose we have
defined Zi ∈Ii . Choose an object Wi ∈Ii containing Zi and Y ∩X i . There is a
morphism Wi→Vi in Ii annihilating the kernel of Ext1(q,W n

i )→Ext1(q, Xn
i );

we saw its existence in the proof of Lemma 3.4. Let 3′ ⊂ Ext1(q, V n
i ) be the
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image of the map Ext1(q,W n
i )→ Ext1(q, V n

i ); then 3′ maps injectively to
Ext1(q, Xn

i ), and we can define Zi+1 ∈ Ii+1 to be B(Vi ,3
′). That is, Zi+1 is

given by a map of extensions

0 // Vi //

f

��

Zi+1 //

g

��

T (q#3′) //

h
��

0

0 // X // B(X, n) // T (q# Ext1(q,Xn)) // 0

Note that the monomorphisms f and h are given, and we make a choice of a
compatible g.

(iii) For limit ordinals `, define Z` = colim
−−−→i<`

Zi .

We have a map Zi→ Zi+1 that factors as Zi→Wi→ Vi→ Zi+1. By construction,
the map Wi→ Vi kills the kernel of the map ϕ : Ext1(q,W n

i )→ Ext1(q, Xn
i ) while

the morphism Vi → Zi+1 kills the image of ϕ. It follows that the composite Zn
i →

Zn
i+1 is annihilated by Ext1(q,−) for the choice of n for which X i+1 = B(X i , n).
The n are chosen so that, for any limit ordinal i , every integer n occurs between i

and i + ω. If we restrict to limit ordinals, we have that Ext1(q,−) annihilates
Zn

i → Zn
j for any integer n and any pair i < j of limit ordinals. But Zα is

the α-filtered colimit of the limit ordinals < α, and for each quotient x of the
generator g, we have that Ext1(x,−) commutes with α-filtered colimits. It follows
that Ext1(x, Zn

α)= 0 for all x and all n, and hence, Zα is a complex of injectives.
And by construction, Y = colim

−−−→
(Y ∩ X i ) maps in Iα to Z = colim

−−−→
Zi . �

Corollary 3.11. Let Y ∈ Iα be in the cofinal subcategory of objects that lie in
K(Inj A). Then Y = I (Y ∩ X).

Proof. By Lemma 3.8, the triangle Y ∩ X→ Y → A→ has A ∈ ⊥K(Inj A). Since
Y belongs to K(Inj A), the triangle identifies Y with I (Y ∩ X). �

Lemma 3.12. Let I : C(A)→ C(Inj A) be the functor of Theorem 2.13. Then the
objects {I (s) | s ∈ C(B)} generate the triangulated category K(Inj A).

Proof. For every nonzero object X ∈ K(Inj A), we need to produce a nonzero
map I (s)→ X in K(Inj A) or equivalently (by the fact that I is left-adjoint to
the inclusion) a nonzero map s→ X in K(A). The proof is as in [Krause 2001,
Lemma 2.2].

If X is not acyclic, there is a nontrivial cohomology group; without loss, we may
assume H 0(X) 6= 0. Let K ⊂ X0 be the kernel of ∂ : X0

→ X1; we may choose
a map g → K that does not factor through the image of X−1

→ X0. But then
g→ K → X0 extends to a chain map g→ X that is nonzero in homology, and g
is µ-presentable; that is, g ∈ C(B).
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It remains to handle the case where X is acyclic. If X is nonzero in K(Inj A), then
it is not a contractible complex, so there must be an n for which Im(Xn

→ Xn+1)

is not an injective object of A. Suppose without loss that M = Im(X−2
→ X−1) is

not injective. Then there is a quotient x of the generator g and a nonzero element
of Ext1(x,M). But elements of Ext1(x,M) are in bijection with morphisms x→ X
in K(A), so we have produced a nonzero map x → X where x is µ-presentable,
that is, x ∈ C(B). �

Theorem 3.13. Let B ⊂ A be as in Definition 1.13; by Proposition 1.18, it is
precisely the category B = Aµ of µ-presentable objects in A. Then the objects
{I (s) | s ∈ C(B)} form a µ-compact generating set in the category K(Inj A). There-
fore, K(Inj A) is well generated.

Proof. The fact that these objects generate was proved in Lemma 3.12; what remains
is to show that they form a µ-compact generating set, meaning that they form a
µ-perfect set of µ-small objects; see [Neeman 2001, §3.3, §4.1, and §4.2]. Suppose
we are given a set {Xλ | λ ∈3} of objects of K(Inj A). Then the coproduct of these
objects in K(Inj A) is formed by applying the functor I of Theorem 2.13 to the
ordinary coproduct in K(A) or C(A). But now, in the category C(A), each Xλ is
the µ-filtered colimit of its subobjects {s→ Xλ | s ∈ C(B)}, and the coproduct of
the Xλ satisfies ∐

λ∈3

Xλ = colim
−−−→ 3′⊂3

#3′<µ

∐
λ∈3′

colim
−−−→ sλ→Xλ

sλ∈C(B)
sλ.

Thus, we wish to apply our lemmas to the object X =
∐

Xλ and to the category I

consisting of subobjects
∐
λ∈3′ sλ, where 3′ ⊂3 is a set with #3′ < µ and each

sλ ∈ C(B) is a subobject of Xλ.
We have proved that I (X)= Xα is the colimit in C(A) of the µ-filtered category

Iα, and hence, any map from the µ-presentable s ∈ C(B) to I (X) must factor
through some object Y ∈Iα . By Lemma 3.8, Y fits in a triangle Y ∩X→Y→ A→
with A ∈ ⊥K(Inj A); if we apply the functor I , then it takes Y ∩ X → Y to an
isomorphism. Thus, the map s → I (X) factors as s → I (Y ∩ X)→ I (X), and
Y ∩ X is an object of I, meaning a coproduct

∐
λ∈3′ sλ, where 3′ ⊂3 is a set with

#3′ < µ and each sλ ∈ C(B) is a subobject of Xλ. In the category K(Inj A), we
have factored the map as

I (s)→ I
(∐
λ∈3′

sλ

)
→ I

(∐
λ∈3

Xλ

)
.

Now suppose that we are given in K(Inj A) a vanishing composite

I (s)
θ
−→ I

(∐
λ∈3′

sλ

)
σ
−→ I

(∐
λ∈3

Xλ

)
,
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that is, we are given a map θ so that σθ is null-homotopic. Let us write this a little
more compactly: we are given a morphism θ : I (s)→ I (W ) so that the composite
I (s)

θ
−→ I (W )

σ
−→ I (X) is null-homotopic with W =

∐
λ∈3′ sλ belonging to I=I0.

Of course, we are free to replace W by a larger subobject in I before proceeding
any further, and Lemma 3.10 tells us that in the category Iα the objects that belong
to C(Inj A) are cofinal. We may therefore produce in Iα a map W → Y with Y in
the subcategory. We have a morphism s→ I (s)→ I (Y )= Y in K(Inj A); choose
a representative, that is, a chain map s→ Y in C(A). We know that the composite
s→ Y → I (X) is null-homotopic.

But I (X) is the µ-filtered colimit of Iα, and s is µ-presentable. There is a
map Y → Z in Iα so that the composite s→ Y → Z is already null-homotopic.
Now recalling that the maps I (Y ∩ X) → I (Y ) = Y and I (Z ∩ X) → I (Z)
are isomorphisms in K(Inj A), we have proved that for some Z ∈ Iα the map
s → I (Y ∩ X) → I (Z ∩ X) is zero in K(Inj A), that is, we have proved the
vanishing of some

I (s)
θ
−→ I

(∐
λ∈3′

sλ

)
→ I

(∐
λ∈3′′

tλ

)
. �

4. The failure of recollement

In the generality where A is any Grothendieck abelian category, we have natural
functors

Kac(Inj A)
J
−→ K(Inj A)

Q
−→ D(A)

that compose to zero. But the functor Q has a right adjoint Qρ , namely the functor
taking X ∈ D(A) to its K -injective injective resolution. Since Qρ is fully faithful,
the map Q must be a Verdier quotient, but J is precisely the inclusion of the kernel
of Q. It therefore follows that J also has a right adjoint Jρ .

Krause [2005] proves that, provided the category A is locally noetherian and
D(A) is compactly generated, then J and Q have left adjoints as well. In particular,
J takes products to products: products of acyclic complexes of injectives are acyclic.
What we will now produce is:

Example 4.1. There is a locally noetherian abelian category A for which K(Inj A)

is not closed under products. The category A will be (a special case of) the category
A of [Neeman 2011, Construction 1.1]; the counterexample works in the generality
of the A of [Neeman 2011, Construction 1.1], but for simplicity, we will specialize
to a particular case. And the chain complex of injectives will be a minor modification
of the chain complex of [Neeman 2011, proof of Theorem 1.1, pp. 830–831].

Let k be a field, and let R1= R be the ring k[x]/(x2) of dual numbers over k. The
ring Rn is R⊗k R⊗k · · ·⊗k R, the tensor product of n copies of R. The inclusions
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Rn→ Rn+1 are the inclusions into the first n factors. And S is the colimit of Rn . If
we write S as

S =
k[x1, x2, x3, . . . ]

(x2
1 , x2

2 , x2
3 , . . . )

,

then A is the category of all S-modules M , where each element m ∈M is annihilated
by all but finitely many of the xi .

Let B be an injective resolution of 6k over the ring R; for definiteness, let us
choose B to be the complex starting in degree −1

· · · → 0→ 0→ R
x
−→ R

x
−→ · · · .

Let Cn be the complex B⊗n , that is, the tensor product of n copies of B. Then Cn is
an injective resolution of6nk over the ring Rn= k[x1, x2, . . . , xn]/(x

2
1 , x2

2 , . . . , x2
n).

Consider the chain map k→ B, which takes 1 ∈ k to x ∈ R = B0, that is, the chain
map

· · · // 0 //

��

0 //

��

0 //

��

k //

x
��

0 //

x
��

· · ·

· · · // 0 // 0 // R x
// R x

// R x
// · · ·

· · · // B−3 // B−2 // B−1 // B0 // B1 // · · ·

We have an induced inclusion Cn = Cn ⊗k k→ Cn ⊗k B = Cn+1, and we define C
to be the colimit of the Cn . Then C is an acyclic complex of injective objects in A.

Now let cn ∈C0 be the cycle x⊗x⊗x⊗· · · , which we view as x1⊗x2⊗x3⊗· · · ;
the only question is which degree each xi = x ∈ R lives in. The rule is: for 1≤ i ≤ n,
we have xi ∈ B−1

= R; for n+1≤ i ≤ 2n, we have xi ∈ B1
= R; and for 2n< i , we

put xi ∈ B0
= R. Note that x1⊗ x2⊗ · · ·⊗ xn ∈ C−n

n is not a boundary; it defines
the unique nonvanishing cohomology class of Cn ∼= 6

nk. Of course, cn ∈ C is a
cycle in the acyclic complex C and hence a boundary, but it must be a boundary
of some chain in C−1 that nontrivially involves the terms in the tensor product
with i > n; in other words, if cn is the boundary of a chain bn ∈C , then there exists
an i > n so that xi bn 6= 0. The product

∏
∞

n=1 cn is a product of cycles in C0 and
hence is a cycle in the complex

∏
∞

n=0 C . But it cannot be a boundary; if it were the
boundary of

∏
∞

n=1 bn , we would have infinitely many i and infinitely many ni for
which xi bni 6= 0, meaning

∏
∞

n=1 bn cannot belong to the category A.

Remark 4.2. Since the category A is locally noetherian, it follows that its derived
category D(A) cannot possibly be compactly generated. After all, Krause [2005]
proved that when D(A) is compactly generated then K(Inj A) is closed under
products.
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Essential dimension
of spinor and Clifford groups
Vladimir Chernousov and Alexander Merkurjev

We conclude the computation of the essential dimension of split spinor groups,
and an application to algebraic theory of quadratic forms is given. We also
compute essential dimension of the split even Clifford group or, equivalently, of
the class of quadratic forms with trivial discriminant and Clifford invariant.

1. Introduction

We recall briefly the definition of the essential dimension.
Let F be a field, and let F : Fields/F → Sets be a functor from the category

of field extensions over F to the category of sets. Let E ∈ Fields/F and K ⊂ E
a subfield over F . We say that K is a field of definition of an element α ∈ F(E)
if α belongs to the image of the map F(K )→ F(E). The essential dimension
of α, denoted edF(α), is the least transcendence degree tr.degF (K ) over all fields
of definition K of α. The essential dimension of the functor F is

ed(F)= sup{edF(α)},

where the supremum is taken over all fields E ∈ Fields/F and all α ∈ F(E) (see
[Berhuy and Favi 2003, Definition 1.2] or [Merkurjev 2009, §1]). Informally, the
essential dimension of F is the smallest number of algebraically independent param-
eters required to define F and may be thought of as a measure of complexity of F.

Let p be a prime integer. The essential p-dimension of α ∈ F(E), denoted
edF

p (α), is defined as the minimum of edF(αE ′), where E ′ ranges over all finite
field extensions of E of degree prime to p and αE ′ is the image of α under the map
F(E)→ F(E ′). The essential p-dimension of F is

edp(F)= sup{edF
p (α)},
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where the supremum ranges over all fields E ∈ Fields/F and all α ∈ F(E). By
definition, ed(F)≥ edp(F) for all p.

For convenience, we write ed0(F)= ed(F), so edp(F) is defined for p = 0 and
all prime p.

Let G be an algebraic group scheme over F . Write FG for the functor taking
a field extension E/F to the set H 1

ét(E,G) of isomorphism classes of principal
homogeneous G-spaces (G-torsors) over E . The essential (p-)dimension of FG is
called the essential (p-)dimension of G and is denoted by ed(G) and edp(G) (see
[Reichstein 2000; Reichstein and Youssin 2000]). Thus, the essential dimension
of G measures complexity of the class of principal homogeneous G-spaces.

In this paper, we conclude the computation of the essential dimension of the
split spinor groups Spinn originated in [Brosnan et al. 2010; Garibaldi 2009] and
continued in [Merkurjev 2009] (Theorem 2.2). In the missing case n = 4m ≥ 16,
we prove that

ed2(Spinn)= ed(Spinn)= 2(n−2)/2
+ 2m

−
n(n− 1)

2
,

where 2m is the largest power of 2 dividing n. The value of ed(Spinn) is surprisingly
large. Recall a striking consequence of this (see [Brosnan et al. 2010, Theorem 1-1]):
the Pfister number Pf(3, n) is at least exponential in n.

In Theorem 4.2, we give an application in algebraic theory of quadratic forms.
Precisely, we determine all pairs (n, b) of natural numbers (with two possible
exceptions) such that, for every field F , any quadratic form in I 3(F) of dimension n
contains a subform of trivial discriminant of dimension b. This result, stated entirely
in terms of algebraic theory of quadratic forms, is proved using the tools of the
essential dimension!

Theorem 4.2 is applied later in the paper for the computation of the essential
dimension of split even Clifford group 0+n or, equivalently, of the functor given
by n-dimensional quadratic forms with trivial discriminant and Clifford invariant
(Theorem 7.1).

We use heavily the work [Popov 1987], where the base field is assumed to be of
characteristic zero. This explains the characteristic restriction in most of our results.

2. Essential dimension of Spinn

Let G be an algebraic group over F , and let C ⊂ G be a normal subgroup over F .
For a torsor E → Spec(F) of the group H := G/C , consider the stack [E/G]
(see [Vistoli 2005]). Recall that an object of the category [E/G](K ) for a field
extension K/F is a pair (E ′, ϕ), where E ′ is a G-torsor over K and ϕ : E ′/C ∼

→ EK

is an isomorphism of H -torsors over K . The essential dimension ed[E/G] of the
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stack [E/G] is the essential dimension of the functor K 7→ set of isomorphism
classes of objects in [E/G](K ).

The following was proven independently by R. Lötscher [2013, Example 3.4]:

Proposition 2.1. Let C be a normal subgroup of an algebraic group G over F and
H = G/C. Then

ed(G)≤ ed(H)+max ed[E/G],

where the maximum is taken over all field extensions L/F and all H-torsors E
over L.

Proof. Let I ′ be a G-torsor over a field extension K/F . Then I := I ′/C is
an H -torsor over K . There is a subextension K0/F of K/F and an H -torsor
E over K0 such that there is an isomorphism ϕ : I ∼

→ EK of H -torsors and
tr.deg(K0/F)≤ ed(H).

Consider the stack [E/G] over K0. The pair (I ′, ϕ) is an object of [E/G](K ).
There is a subextension K1/K0 of K/K0 such that (I ′, ϕ) is defined over K1 and
tr.deg(K1/K0)≤ ed[E/G]. It follows that I ′ is defined over the field K1 with

tr.deg(K1/F)= tr.deg(K0/F)+ tr.deg(K1/K0)≤ ed(H)+ ed[E/G]. �

The following theorem concludes computation of the essential dimension of the
spinor groups initiated in [Brosnan et al. 2010; Garibaldi 2009] and continued in
[Merkurjev 2009]. We write Spinn for the split spinor group of a nondegenerate
quadratic form of dimension n and maximal Witt index.

If char(F) 6= 2, then the essential dimension of Spinn has the following values
for n ≤ 14 (see [Garibaldi 2009, §23]):

n ≤ 6 7 8 9 10 11 12 13 14
ed2(Spinn)= ed(Spinn) 0 4 5 5 4 5 6 6 7

In the following theorem, we give the values of edp(Spinn) for n ≥ 15 and p= 0
and 2. Note that edp(Spinn) = 0 if p 6= 0, 2 as every Spinn-torsor over a field is
split over an extension of degree a power of 2.

Theorem 2.2. Let F be a field of characteristic zero. For every integer n ≥ 15, we
have

ed2(Spinn)= ed(Spinn)=


2(n−1)/2

− n(n− 1)/2 if n is odd,
2(n−2)/2

− n(n− 1)/2 if n ≡ 2 (mod 4),
2(n−2)/2

+ 2m
− n(n− 1)/2 if n ≡ 0 (mod 4),

where 2m is the largest power of 2 dividing n.

Proof. The case n ≥ 15 and n not divisible by 4 has been considered in [Brosnan
et al. 2010, Theorem 3-3].
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Now assume that n> 15 and n is divisible by 4. The inequality “≥” was obtained
in [Merkurjev 2009, Theorem 4.9], so we just need to prove the inequality “≤”.
The case n = 16 was considered in [Merkurjev 2009, Corollary 4.10]. Assume that
n ≥ 20 and n is divisible by 4.

Consider the following diagram with exact rows:

1 // µ2 // Spinn

��

// Spin+n

��

// 1

1 // µ2 // O+n // PGO+n // 1

where Spin+n is the semispinor group, O+n is the split special orthogonal group and
PGO+n is the split special projective orthogonal group. We see from the diagram
that the image of the connecting map

δK : H 1
ét(K , Spin+n )→ H 2

ét(K ,µ2)⊂ Br(K )

is contained in the image of the other connecting map

H 1
ét(K ,PGO+n )→ H 2

ét(K ,µ2)⊂ Br(K )

for every field extension K/F . The image of the last map consists of the classes [A]
of all central simple K -algebras A of degree n admitting orthogonal involutions
(see [Knus et al. 1998, §31]). As ind(A) is a power of 2 dividing n, we have
ind(A)≤ 2m , where 2m is the largest power of 2 dividing n.

Let E be a Spin+n -torsor over K . We have shown that, if δK ([E]) = [A] for a
central simple K -algebra A, then ind(A)≤ 2m . It follows from [Brosnan et al. 2011,
Theorem 4.1] that ed[E/Spinn] = ind(A)≤ 2m .

It is shown in [Brosnan et al. 2010, Remark 3-10] that

ed(Spin+n )= 2(n−2)/2
−

n(n− 1)
2

for every integer n ≥ 20 divisible by 4. Finally, by Proposition 2.1,

ed(Spinn)≤ ed(Spin+n )+ 2m
= 2(n−2)/2

+ 2m
−

n(n− 1)
2

. �

3. The functors I k
n

We use the following notation. Let F be a field of characteristic different from 2
and K/F a field extension. We define

I 1
n (K )=

Set of isomorphism classes of nondegenerate
quadratic forms over K of dimension n
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and recall from [Knus et al. 1998, §29.E] the existence of a natural bijection
I 1
n (K )' H 1

ét(K ,On).
Recall that the discriminant disc(q) of a form q ∈ I 1

n (K ) is equal to

(−1)n(n−1)/2 det(q) ∈ K×/K×2.

Set

I 2
n (K )= {q ∈ I 1

n (K ) : disc(q)= 1}.

We have a natural bijection I 2
n (K )' H 1

ét(K ,O+n ) (see [Knus et al. 1998, §29.E]).
The Clifford invariant c(q) of a form q ∈ I 2

n (K ) is the class in the Brauer
group Br(K ) of the Clifford algebra of q if n is even and the class of the even
Clifford algebra if n is odd [Knus et al. 1998, §8.B]. Define

I 3
n (K )= {q ∈ I 2

n (K ) : c(q)= 0}.

Remark 3.1. Our notation of the functors I k
n for k = 1, 2, 3 is explained by the

following property: I k
n (K ) consists of all classes of quadratic forms q ∈W (K ) of

dimension n such that q ∈ I (K )k if n is even and q ⊥ 〈−1〉 ∈ I (K )k if n is odd,
where I (K ) is the fundamental ideal in the Witt ring W (K ) of K .

The functor I 3
n is related to Spinn-torsors as follows. The short exact sequence

1→ µ2→ Spinn→ O+n → 1

yields an exact sequence

H 1
ét(K ,µ2)→ H 1

ét(K , Spinn)→ H 1
ét(K ,O+n )

c
−→ H 2

ét(K ,µ2), (1)

where c is the Clifford invariant. Thus, Ker(c)= I 3
n (K ).

The essential dimensions of I 1
n and I 2

n were computed in [Reichstein 2000,
Theorems 10.3 and 10.4]: we have ed(I 1

n )= n and ed(I 2
n )= n−1. In Section 7, we

compute ed(I 3
n ). We will need the following lemma, which was proven in [Brosnan

et al. 2010, Lemma 5-1]:

Lemma 3.2. We have edp(I 3
n )≤ edp(Spinn)≤ edp(I 3

n )+ 1 for every p ≥ 0.

Proof. Let K/F be a field extension. The group H 1
ét(K ,µ2) = K×/K×2 acts

transitively on the fibers of the second map in the sequence (1). It follows that the
natural map Spinn-Torsors→ I 3

n is a surjection with Gm acting surjectively on the
fibers. The statement follows from [Berhuy and Favi 2003, Proposition 1.13]. �

Let 0+n be the split even Clifford group (see [Knus et al. 1998, §23]). The
commutative diagram with exact rows and columns
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1

��

1

��

1 // µ2

��

// Spinn

��

// O+n // 1

1 // Gm

2
��

// 0+n

spinor norm
��

// O+n // 1

Gm

��

Gm

��

1 1

yields a bijection H 1
ét(K ,0

+
n ) ' I 3

n (K ) for any field extension K/F (see [Knus
et al. 1998, §28]). In particular, edp(0

+
n )= edp(I 3

n ).

4. Subforms of forms in I3
n

In this section, we study the following problem in quadratic form theory, which
will be used in Section 7 in order to compute the essential dimension of I 3

n . Note
that the problem is stated entirely in terms of quadratic forms while in the solution
we use the essential dimension. We don’t know how to solve the problem by means
of quadratic form theory.

Problem 4.1. Given a field F , determine all integers n such that every form
in I 3

n (K ) contains a nontrivial subform in I 2(K ) for any field extension K/F.

All forms in I 3
n (K ) for n ≤ 14 are classified (see [Garibaldi 2009, Example 17.8,

Theorems 17.13 and 21.3]). Inspection shows that for such n the problem has
positive solution.

In the following theorem, we show that in the range n ≥ 15 the problem has
negative solution (with possibly two exceptions):

Theorem 4.2. Let F be a field of characteristic zero, let n≥ 15 and let b be an even
integer with 0< b < n. Then there is a field extension K/F and a form in I 3

n (K )
that does not contain a subform in I 2

b (K ) (with possible exceptions (n, b)= (15, 8)
or (16, 8)).

Let a := n− b. Write Ha,b for the image of the natural homomorphism

Spina × Spinb→ Spinn. (2)

Note that the kernel of (2) is contained in

µ2×µ2 = Ker(Spina × Spinb→ O+a ×O+b )
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and therefore is the cyclic group of order 2 generated by (−1,−1). Hence, we have
an exact sequence

1→ µ2→ Ha,b→ O+a ×O+b → 1

and therefore a map

H 1
ét(R, Ha,b)→ H 1

ét(R,O+a ×O+b )= H 1
ét(R,O+a )× H 1

ét(R,O+b )

for a commutative F-algebra R.
We write q(η) := (qa, qb) for the image of an element η ∈ H 1

ét(R, Ha,b) under
this map, where qa ∈ H 1

ét(R,O+a ) and qb ∈ H 1
ét(R,O+b ).

Consider the commutative diagram with the exact rows

1 // µ2 // Ha,b

��

// O+a ×O+b

τ

��

// 1

1 // µ2 // Spinn
// O+n // 1

The image of an element ξ ∈ H 1
ét(R, Spinn) in H 1

ét(R,O+n ) will be denoted by q(ξ).
If ξ ∈ H 1

ét(R, Spinn) is the image of an element η ∈ H 1
ét(R, Ha,b), then q(ξ)=

qa ⊥ qb, the image of (qa, qb)= q(η) under the map induced by τ . We can reverse
this statement as follows.

Lemma 4.3. Let ξ ∈ H 1
ét(R, Spinn) with q(ξ) = qa ⊥ qb, where qa ∈ H 1

ét(R,O+a )
and qb ∈ H 1

ét(R,O+b ). Then ξ is the image of an element η under the map
H 1

ét(R, Ha,b)→ H 1
ét(R, Spinn) such that q(η)= (qa, qb).

Proof. The diagram above yields a commutative diagram with the exact rows

H 1
ét(R, Ha,b)

��

// H 1
ét(R,O+a )× H 1

ét(R,O+b )

��

c′
// H 2

ét(R,µ2)

H 1
ét(R, Spinn)

// H 1
ét(R,O+n )

c
// H 2

ét(R,µ2)

Moreover, the group H 1
ét(R,µ2) acts transitively on the fibers of the left maps in

the two rows. The result follows. �

For nonnegative integers a, b and a field extension K/F , set

I 3
a,b(K ) := {(qa, qb) ∈ I 2

a (K )× I 2
b (K ) : qa ⊥ qb ∈ I 3

n (K )}.
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Corollary 4.4. For any η∈H 1
ét(K , Ha,b), we have q(η)∈ I 3

a,b(K ). The morphism of
functors q : Ha,b-Torsors→ I 3

a,b is surjective. In particular, edp(I 3
a,b)≤ edp(Ha,b)

for every p ≥ 0.

Proof. Note that the map c′ in the proof of Lemma 4.3 when R = K takes a
pair (qa, qb) to the Clifford invariant of qa ⊥ qb in Br(K ). The pair (qa, qb) ∈

I 2
a (K )× I 2

b (K ) comes from H 1
ét(K , Ha,b) if and only if the Clifford invariant of

qa ⊥ qb is split, i.e., qa ⊥ qb ∈ I 3
n (K ). �

Lemma 4.5. For an even a and any b,

edp(I 3
a,b)≤ edp(I 3

a−1,b)+ 1

for every p ≥ 0.

Proof. Consider the morphism of functors

α : Gm × I 3
a−1,b→ I 3

a,b, (λ; f, g) 7→ (λ( f ⊥ 〈−1〉), g).

Every form h in I 2
a (K ) can be written in the form h = λ( f ⊥ 〈−1〉) for a value λ

of h and a form f ∈ I 2
a−1(K ); i.e., α is a surjection, whence the result. �

Write Vn and Wn for the (semi)spinor and regular representations, respectively,
of the group Spinn . We have

dim(Vn)=

{
2(n−1)/2 if n is odd,
2(n−2)/2 if n is even

and dim(Wn)= n. We consider the tensor product Va,b := Va ⊗ Vb as the represen-
tation of the group Ha,b. We also view Wa and Wb as Ha,b-representations via the
natural homomorphisms Ha,b→ O+a and Ha,b→ O+b , respectively.

A representation V of an algebraic group H is generically free if the stabilizer
of a generic vector in V is trivial. In this case, by [Reichstein and Youssin 2000],

ed(H)≤ dim(V )− dim(H).

Lemma 4.6. Let a be odd and b even. Suppose that Va,b is a generically free
representation of the image of the homomorphism Ha,b→GL(Va,b). Then Va,b⊕Wb

is a generically free representation of Ha,b. In particular,

ed(Ha,b)≤ dim(Va,b)+ dim(Wb)− dim(Ha,b).

Proof. Write Cn for the kernel of Spinn→ PGO+n and C ′n for the kernel of Spinn→

O+n , so C ′n = {±1} ⊂ Cn . By assumption, the generic stabilizer H of the action of
Spina × Spinb on Va,b is contained in the center Ca ×Cb. Since Cb/C ′b = µ2 acts
on Wb by multiplication by −1, we have H ⊂Ca×C ′b 'µ2×µ2. Note that µ2×1
and 1×µ2 act by multiplication by −1 on Va,b; hence, H is generated by (−1,−1).
It follows that Ha,b = (Spina × Spinb)/H acts generically freely on Va,b⊕Wb. �
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Proposition 4.7. Let char(F) = 0. If n = a + b ≥ 15 with a ≤ b, then Va,b is
a generically free representation of the image of Ha,b → GL(Va,b) if and only if
(a, b) 6= (3, 12), (4, 11), (4, 12), (6, 10) and (8, 8).

Proof. All the cases of infinite generic stabilizers H are listed in [Èlašvili 1972, §3,
Row 7 of Table 6]: H is infinite if and only if (a, b)= (3, 12) and (4, 12).

If H is finite, by [Popov 1987, Theorem 1, Rows 1, 12 and 13 of Table 1], H is
nontrivial if and only if (a, b)= (4, 11), (6, 10) and (8, 8). �

Proof of Theorem 4.2. Note that the case (n, b)with n even implies the case (n−1, b).
Indeed, suppose that every form in I 3

n−1 for an even n contains a subform from I 2
b .

Take any form q ∈ I 3
n (K ) for a field extension K/F , and write q = λ( f ⊥ 〈−1〉) for

a λ∈ K× and f ∈ I 3
n−1(K ). If f contains a subform h ∈ I 2

b (K ), then q contains λh.
We need to show that the natural morphism of functors I 3

a,b→ I 3
n is not surjective.

It suffices to prove that ed(I 3
a,b) < ed(I 3

n ). We may assume that n (and hence also a)
is even. Moreover, we may assume that a ≤ b.

Suppose that n ≥ 18. By Proposition 4.7, Lemmas 4.5 and 4.6 and Corollary 4.4,

ed(I 3
a,b)≤ ed(I 3

a−1,b)+ 1

≤ ed(Ha−1,b)+ 1

≤ dim(Va−1,b)+ dim(Wb)− dim(Ha−1,b)+ 1

= 2n/2−2
+ b− (a− 1)(a− 2)/2− b(b− 1)/2+ 1

= 2n/2−2
− (a2

+ b2
− 3a− 3b)/2

≤ 2n/2−2
− (n2

− 6n)/4

as a2
+ b2
≥ n2/2. The last integer is strictly less than

2n/2−1
− n(n− 1)/2− 1≤ ed(Spinn)− 1≤ ed(I 3

n )

by Theorem 2.2 and Lemma 3.2.
It remains to consider the case n= 16. Note that, by Theorem 2.2 and Lemma 3.2,

ed(I 3
16)≥ ed(Spin16)− 1= 23. (3)

We shall prove that ed(I 3
a,b) < 23. All possible values of b are 8, 10, 12 and 14.

Case (n, b)= (16, 10). Consider the representation V :=W6⊕V6,10⊕W10 of H6,10.
We claim that V is generically free. The stabilizer in Spin6 of a point in general
position in W6 is Spin5. Hence, the stabilizer in H6,10 of a point in general position
in W6 is H5,10. Note that the restriction of V6,10 to H5,10 is isomorphic to V5,10.
Finally, the H5,10-representation V5,10⊕W10 is generically free by Proposition 4.7.
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It follows from (3) and Corollary 4.4 that

ed(I 3
6,10)≤ ed(H6,10)≤ dim(V )− dim(H6,10)= 80− 60= 20.

Case (n, b)= (16, 12). Consider the representation V :=W3⊕W3⊕ V3,12⊕W12

of H3,12. We claim that V is generically free as the representation of H3,12. Indeed,
the stabilizer in H3,12 of a generic vector in W12 is H3,11. We are reduced to showing
that W3⊕W3⊕V3,11 is a generically free representation of H3,11. By [Popov 1987,
§5, p. 246], the generic stabilizer S of H3,11 in V3,11 is finite (isomorphic to µ2×µ2),
and the restriction to S of the natural projection H3,11→O+3 is injective. It remains
to notice that the representation W3⊕W3 of O+3 = PGL2 is generically free.

It follows from Lemmas 4.5 and 4.6 and Corollary 4.4 that

ed(I 3
4,12)≤ ed(I 3

3,12)+ 1≤ ed(H3,12)+ 1

≤ dim(V )− dim(H3,12)+ 1= 82− 69+ 1= 14.

Case (n, b)= (16, 14). As every form in I 3
2 is hyperbolic, we have I 3

2,14 = I 3
14 and

ed(I 3
14)= 7 by Theorem 2.2. �

5. Unramified principal homogeneous spaces

Let G be an algebraic group over F , and let K/F be a field extension with a discrete
valuation v trivial on F . Write O for the valuation ring of v. It is a local F-algebra.
We say that a class ξ ∈ H 1

ét(K ,G) is unramified (with respect to v) if ξ belongs to
the image of the map H 1

ét(O,G)→ H 1
ét(K ,G).

Let K be the residue field of v. The ring homomorphism O→ K yields a map
H 1

ét(O,G)→ H 1
ét(K ,G). This map is a bijection if K is complete (see [SGA 3

1970, Exposé XXIV, Proposition 8.1]). Hence, we have the map

H 1
ét(K ,G) ∼→ H 1

ét(O,G)→ H 1
ét(K ,G). (4)

Example 5.1. Let char(F) 6= 2 and G = On . Then H 1
ét(K ,G) is the set of iso-

morphism classes of nondegenerate quadratic forms of dimension n over K . A
quadratic form q over a field K with a discrete valuation is unramified if and only
if q ' 〈a1, a2, . . . , an〉, where ai are units in the valuation ring O in K . In general,
every q can be written q = q1 ⊥ πq2 ⊥ h, where π is a prime element, q1 and q2

are unramified anisotropic quadratic forms and h is a hyperbolic form. The form q
is unramified if and only if q2 = 0. It follows that, if two forms q and πq are
both unramified, then q is hyperbolic. If K is complete, then the map (4) takes
f = 〈a1, a2, . . . , an〉 over K , where ai are units in O , to fK := 〈a1, a2, . . . , an〉.
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6. Essential dimension of PI3
n

Two quadratic forms f and g over a field K are called similar if f = λg for some
λ ∈ K×. If n is even, we write P I 3

n (K ) for the set of similarity classes of forms
in I 3

n (K ). The group K× acts transitively on the fibers of the natural surjective
map I 3

n (K )→ PI 3
n (K ). Hence,

edp(PI 3
n )≤ edp(I 3

n )≤ edp(PI 3
n )+ 1

for any p ≥ 0 by [Berhuy and Favi 2003, Proposition 1.13].

Proposition 6.1. Let char(F) 6= 2. For an even n ≥ 8, and p = 0 or 2, we have

edp(PI 3
n )= edp(I 3

n )− 1.

Proof. Let K/F be a field extension, and let q ∈ I 3
n (K ) be a nonhyperbolic form.

Consider the form tq over the field K ((t)). It suffices to show that

edI 3
n

p (tq)≥ edPI 3
n

p (q)+ 1.

Let M/K ((t)) be a finite field extension of degree prime to p (i.e., M = K ((t)) if
p = 0 and [M : K ((t))] is odd if p = 2), let L/F be a subextension of M/F and
let f ∈ I 3

n (L) be such that tr.deg(L/F)= edI 3
n

p (tq) and tqM ' fM .
Let v be the (unique) extension on M of the discrete valuation of K ((t)), and

let w be the restriction of v on L . The residue field M is a finite extension of K
of degree prime to p. As the form q is not hyperbolic, qM is not hyperbolic, and
therefore, the form tqM ' fM is ramified by Example 5.1. It follows that w is
nontrivial, i.e., w is a discrete valuation on L .

Let L̂ be the completion of L . Note that, as M is complete, we can identify L̂
with a subfield of M . Write f L̂ ' ( f1)L̂ ⊥ π( f2)L̂ , where f1 and f2 are quadratic
forms over the residue field L and π ∈ L is a prime element (see Example 5.1).
Note that f1, f2 ∈ I 2(L) by [Elman et al. 2008, Lemma 19.4]. If the ramification
index e of M/L is even, then π is a unit in the valuation ring O of M modulo
squares in M×; hence, fM is unramified, a contradiction. It follows that e is odd.
Writing π = ute with a unit u ∈ O×, we have

tqM ' fM ' ( f1)M ⊥ π( f2)M ' ( f1)M ⊥ ut ( f2)M ;

hence, ( f1)M = 0 and qM = u( f2)M in W (M). It follows that ( f1)M = 0 and
qM = u( f2)M in W (M), and therefore,

qM = u( f2)M = ugM , (5)

where g := f1 ⊥ f2 is the form over L of dimension n. Note that f L̂ − gL̂ =

〈π,−1〉( f2)L̂ ∈ I 3(L̂); hence, gL̂ ∈ I 3(L̂) and g ∈ I 3(L).
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It follows from (5) that qM is similar to gM , i.e., the form q is p-defined over L
for the functor PI 3

n (see [Merkurjev 2009, §1.1]), and therefore,

edI 3
n

p (tq)= tr.deg(L/F)≥ tr.deg(L/F)+ 1≥ edP I 3
n

p (q)+ 1. �

7. Essential dimension of 0+n

In this section, we compute the essential dimension of 0+n and I 3
n .

Theorem 7.1. Let F be a field of characteristic zero. Then for every integer n ≥ 15
and p = 0 or 2, we have

edp(0
+

n )= edp(I 3
n )=


2(n−1)/2

− 1− n(n− 1)/2 if n is odd,
2(n−2)/2

− n(n− 1)/2 if n ≡ 2 (mod 4),
2(n−2)/2

+ 2m
− 1− n(n− 1)/2 if n ≡ 0 (mod 4),

where 2m is the largest power of 2 dividing n.
If char(F) 6= 2, then the essential dimension of I 3

n has the following values for
n ≤ 14:

n ≤ 6 7 8 9 10 11 12 13 14

ed2(I 3
n )= ed(I 3

n ) 0 3 4 4 4 5 6 6 7

Proof. We will prove the theorem case by case.

Case n≡ 2 (mod 4) and n ≥ 10. The exact sequence

1→ µ4→ Spinn→ PGO+n → 1

yields a surjective map Spinn-Torsors(K )→ PI 3
n (K ) for any K/F , with the group

K× acting transitively on the fibers of this map. It follows from Theorem 2.2,
Proposition 6.1 and Lemma 3.2 that

ed2(I 3
n )= ed2(PI 3

n )+ 1≥ ed2(Spinn)= ed(Spinn)≥ ed(I 3
n )≥ ed2(I 3

n ).

Hence, ed2(I 3
n )= ed(I 3

n )= ed(Spinn). The latter value is known by Theorem 2.2.

Case n 6≡ 2 (mod 4) and n ≥ 15. Let n = a + b with even b 6= 2. Let Z be the
trivial group if b= 0 and the image of the center Cb of Spinb in Ha,b if b≥ 4. Then
Z is central in Ha,b; hence, the group H 1

ét(K , Z) acts on H 1
ét(K , Ha,b).

Lemma 7.2. Let ξ, η ∈ H 1
ét(K , Ha,b) with even b 6= 2. Suppose that q(ξ)= qa ⊥ qb

and q(η)= qa ⊥ λqb with the forms qa ∈ I 2
a (K ) and qb ∈ I 2

b (K ) and λ ∈ K×. Then
η = αξ for some α ∈ H 1

ét(K , Z).

Proof. The statement is trivial if b = 0, so assume that b ≥ 4. The restriction
of the natural homomorphism Ha,b→ O+b to the subgroup Z yields a surjection
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ϕ : Z → µ2 = Center(O+b ). The kernel of ϕ coincides with the kernel C of the
canonical homomorphism Ha,b→ O+a ×O+b .

As Z is isomorphic to µ2 ×µ2 or µ4, the homomorphism ϕ∗ : H 1
ét(K , Z)→

H 1
ét(K ,µ2) = K×/K×2 is surjective. Let γ ∈ H 1

ét(K , Z) be such that ϕ∗(γ ) =
λK×2. Then q(γ ξ) = qa ⊥ λqb = q(η). Then there is β ∈ H 1

ét(K ,C) such that
η = β(γ ξ). Hence, η = αξ , where α = β ′γ with β ′ the image of β under the map
H 1

ét(K ,C)→ H 1
ét(K , Z) induced by the inclusion of C into Z . �

Let ξ ∈ H 1
ét(K , Spinn) be such that the form q = q(ξ) ∈ I 3

n(K ) is generic for
the functor I3

n (see [Merkurjev 2009, §2.2]). In particular, edI 3
n (q)= ed(I 3

n ). Note
that q is anisotropic.

Identifyingµ2 with the kernel of Spinn→O+n , we have an action of H 1
ét(E,µ2)=

E×/E×2 on H 1
ét(E, Spinn), where E = K ((t)). Consider the element tξE ∈ H 1

ét(E,
Spinn) over E . We claim that tξE is ramified. Suppose not, i.e., tξE comes from an
element ρ ∈ H 1

ét(O, Spinn), where O = K [[t]]. Let q ′ ∈ H 1
ét(O,O+n ) be the image

of ρ viewed as a quadratic form over O . We have

q ′E = q(tξE)= q(ξE)= qE ;

hence, q ′ = qO . Then ρ and ξO belong to the same fiber of the map

H 1
ét(O, Spinn)→ H 1

ét(O,O+n ).

As the group H 1
ét(O,µ2)= O×/O×2 acts transitively on the fiber, there is a unit

u ∈ O× satisfying tξE = uξE . It follows from [Knus et al. 1998, Proposition 28.11]
that tu−1 is in the image spinor norm map

O+(qE)→ H 1
ét(E,µ2)= E×/E×2

for the form qE ; hence, q is isotropic by [Elman et al. 2008, Theorem 18.3], a
contradiction. The claim is proven.

Let L/F be a subextension of E/F , and let η ∈ H 1
ét(L , Spinn) be such that

tr.deg(L/F)= edSpinn (tξ) and ηE ' tξE . We have q(η)E = q(tξ)= q(ξE)= qE ;
hence, the form q(η)E is anisotropic.

Let v be the restriction on L of the discrete valuation of E . As tξ is ramified, v
is nontrivial; hence, v is a discrete valuation. Let π ∈ L be a prime element.

Consider the completion L̂ of L . As E is complete, we can view L̂ as a subfield
of E . Write q(ηL̂) = (qa)L̂ ⊥ π(qb)L̂ , where qa and qb are anisotropic quadratic
forms over the residue field L of dimension a and b, respectively. As q(η) ∈ I 3(L̂),
we have qb ∈ I 2(L), and therefore, b is even and b 6= 2. By Lemma 4.3, there is
η′ ∈ H 1

ét(L̂, Ha,b) that maps to η with q(η′)= ((qa)L̂ , π(qb)L̂).
We claim that the ramification index e of the extension E/L̂ is odd. Suppose e

is even. Note that qa ⊥ qb ∈ I 3
n (L). Lemma 4.3 allows us to choose an unramified
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element ν ∈ H 1
ét(L̂, Ha,b) with q(ν) = ((qa)L̂ , (qb)L̂). By Lemma 7.2, there is

α ∈ H 1
ét(L̂, Z) such that η′ = αν. If b is divisible by 4, we have Z ' µ2×µ2. As

e is even, α is unramified over E ; hence, η′E is unramified. It follows that ηE ' tξ
is also unramified, a contradiction.

Suppose that b ≡ 2 (mod 4). Note that 0 < b < n since n 6≡ 2 (mod 4). Write
π = utk with a unit u ∈ O× and even k. Then

(qa ⊥ uqb)E ' (qa ⊥ πqb)E ' q(ηE)' q(tξE)= q(ξE)= qE .

It follows that q ' (qa)K ⊥ (uqb)K , i.e., q contains the subform (uqb)K in I 2(K )
of dimension b. This contradicts Theorem 4.2. The claim is proven.

Thus, e is odd. We have

(qa ⊥ utqb)E ' (qa ⊥ πqb)E ' q(ηE)' q(tξE)= q(ξE)= qE .

It follows that (qb)K is hyperbolic and hence (qa ⊥ qb)K = (qa)K = q in W (K ),
i.e., (qa ⊥ qb)K ' q .

Note that (qa)L̂ = (qa)L̂ + π(qb)L̂ = q(ηL̂) ∈ I 3(L̂); hence, qa ∈ I 3(L) and
qa ⊥ qb ∈ I 3

n (L). Therefore, q is defined over L for the functor I 3
n ; hence,

edSpinn (tξ)= tr.deg(L/F)≥ tr.deg(L/F)+ 1≥ edI 3
n (q)+ 1= ed(I 3

n )+ 1.

It follows that ed(Spinn)≥ ed(I 3
n )+1; hence, ed(I 3

n )= ed(Spinn)−1 by Lemma 3.2.
The value of ed(Spinn) is given in Theorem 2.2.

In what follows, we use the following observation (see [Berhuy and Favi 2003]):
if a functor F admits a nontrivial cohomological invariant of degree d with values
in Z/2Z, then ed2(F)≥ d .

Case n = 7. Every form q in I 3
7 (K ) is the pure subform of a 3-fold Pfister

form 〈〈a, b, c〉〉; hence, ed(I 3
7 ) ≤ 3. On the other hand, the Arason invariant

e3(q ⊥ 〈−1〉)= (a)∪ (b)∪ (c) ∈ H 3(K ,Z/2Z) is nontrivial (see [Garibaldi 2009,
§18.6]); hence, ed2(I 3

7 )≥ 3.

Case n = 8. Every form q in I 3
8 (K ) is a multiple e〈〈a, b, c〉〉 of a 3-fold Pfister

form; hence, ed(I 3
8 )≤ 4. The invariant a4(q)= (e)∪(a)∪(b)∪(c)∈ H 4(K ,Z/2Z)

is nontrivial; hence, ed2(I 3
8 )≥ 4.

Case n = 9 and 10. Every form q in I 3
9 (K ) or I 3

10(K ) is equal to f ⊥ 〈1〉 or
f ⊥ 〈1,−1〉, respectively, where f is a multiple of a 3-fold Pfister form over K ,
by [Lam 2005, XII.2.8]. Hence, I 3

8 ' I 3
9 ' I 3

10.

Case n= 11. The degree-5 cohomological invariant a5 of Spin11 defined in [Gari-
baldi 2009, §20.8] factors through a nontrivial invariant of I 3

11; hence ed2(I 3
11)≥ 5.

On the other hand, ed(I 3
11)≤ ed(Spin11)= 5.
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Case n= 12. The degree-6 cohomological invariant a6 of Spin12 defined in [Gari-
baldi 2009, §20.13] factors through a nontrivial invariant of I 3

12, so ed2(I 3
12) ≥ 6.

On the other hand, ed(I 3
12)≤ ed(Spin12)= 6.

Case n= 13 and 14. We know from the beginning of the proof (case n≡ 2 (mod 4)
and n ≥ 10) and from Theorem 2.2 that ed2(I 3

14) = ed(I 3
14) = ed(Spin14) = 7.

By Lemma 4.5, ed2(I 3
13) = ed2(I 3

13,0) ≥ ed2(I 3
14,0)− 1 = 6. On the other hand,

ed(I 3
13)≤ ed(Spin13)= 6. �
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On Deligne’s category Repab(Sd)

Jonathan Comes and Victor Ostrik

Dedicated to the memory of Andrei Zelevinsky

We prove a universal property of Deligne’s category Repab(Sd). Along the way,
we classify tensor ideals in the category Rep(Sd).

1. Introduction

1A. Let F be a field of characteristic zero and let I be a finite set. Let SI be
the symmetric group of the permutations of I and let Rep(SI ) be the category of
finite-dimensional F-linear representations of SI considered as a symmetric tensor
category. Let X I ∈Rep(SI ) be the space of F-valued functions on I with an obvious
action of SI . The object X I with pointwise operations has a natural structure of
associative commutative algebra with unit 1X I in the category Rep(SI ). We have
a morphism Tr : X I → F defined as a trace of the operator of left multiplication;
clearly the map X I ⊗ X I → F given by x⊗ y 7→ Tr(xy) is a nondegenerate pairing.
Finally, Tr(1X I )= dim(X I )= |I | where |I | ≥ 0 is the cardinality of I .

Now let G be a finite group acting on d-dimensional associative commutative
unital algebra T over F such that the pairing Tr(xy) is nondegenerate. It is easy
to see1 that there exists a finite set I with |I | = d and an essentially unique
tensor functor F : Rep(SI ) → Rep(G) such that F(X I ) ' T (isomorphism of
G-algebras); in this sense the category Rep(SI ) is a universal category (in the realm
of representation categories of finite groups) with object X I as above.

1B. For an arbitrary symmetric tensor category T one can consider objects T ∈ T

satisfying the following:

(a) T has a structure of associative commutative algebra (given by the multiplica-
tion map µT : T ⊗ T → T ) with unit (given by the map 1T : 1→ T ).

MSC2010: primary 18D10; secondary 19D23.
Keywords: tensor categories, symmetric group.

1Set I to be the set of F-algebra homomorphisms T → F̄ where F̄ is an algebraic closure of F
and use an obvious homomorphism G→ SI .
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(b) The object T is rigid. Moreover, if we define the map Tr : T → 1 as the
composition

T
idT ⊗ coevT
−→ T ⊗ T ⊗ T ∗

µT⊗idT∗
−→ T ⊗ T ∗ ' T ∗⊗ T

evT
−→ 1,

then the pairing T ⊗T
µT
→ T

Tr
→ 1 is nondegenerate, that is, it corresponds to an

isomorphism T ' T ∗ under the identification Hom(T ⊗ T, 1)= Hom(T, T ∗).

(c) We have dim(T )= t ∈ F (equivalently, Tr(1T )= t).

For an arbitrary t ∈ F , Deligne [2007] defined a symmetric tensor category
Rep(St) with a distinguished object X which is universal in the following sense:

Proposition 1.1 [Deligne 2007, Proposition 8.3]. Let T be a Karoubian symmetric
tensor category over F. The functor F 7→F(X) is an equivalence of the category of
braided tensor functors Rep(St)→ T with the category of objects T ∈ T satisfying
(a), (b), (c) above and their isomorphisms.

Note that for t = d ∈ Z≥0, Proposition 1.1 applied to T = X I (with |I | = d)
produces a canonical functor Rep(Sd)→Rep(Sd) (where Sd := SI ). It is known (see
[Deligne 2007, Théorème 6.2]) that this functor is surjective on Hom’s. Moreover,
the morphisms sent to zero by this functor are precisely the so-called negligible
morphisms (see [Deligne 2007, §6.1]).

1C. The category Rep(St) is a Karoubian category; it is not abelian for t = d ∈Z≥0.
Remarkably, in [2007, Proposition 8.19] Deligne defined an abelian symmetric
tensor category Repab(Sd) and a fully faithful braided tensor functor Rep(Sd)→

Repab(Sd).2 The main goal of this paper is to prove a certain universal property of
the category Repab(Sd) conjectured in [Deligne 2007, Conjecture 8.21].

To state this property we need to use the language of algebraic geometry within
an abelian symmetric tensor category T (see [Deligne 1990]). Namely, for an
object T ∈ T satisfying (a), (b), (c) above we can talk about the (affine) T-scheme
I := Spec(T ) and the affine group scheme SI of its automorphisms; see [Deligne
2007, §8.10]. Furthermore, assume that the category T is pre-Tannakian (see
Section 2A below), that is, it satisfies the finiteness conditions in [Deligne 1990,
2.12.1]. Recall that in this case a fundamental group of T is defined in [Deligne 1990,
§8.13]. This is an affine group scheme π ∈T which acts functorially on any object
of T and this action is compatible with a formation of tensor products. In particular,
the action of π on T gives a homomorphism ε :π→ SI. Let Rep(SI) be the category
of representations of SI (see [Deligne 2007, §8.10]) and let Rep(SI, ε) be the full
subcategory of Rep(SI) consisting of such representations ρ : SI→ GL(V ) that
the action ρ ◦ ε of π on V coincides with the canonical action (see [Deligne 2007,

2We refer the reader to [Deligne 2007, §5.8] for an example of Karoubian symmetric tensor
category which admits no braided tensor functor to an abelian symmetric tensor category.
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§8.20]). Rep(SI, ε) is an abelian symmetric tensor category and T is one of its
objects. It follows that the functor F : Rep(St)→ T constructed in Proposition 1.1
factorizes as Rep(St)

FT
→Rep(SI, ε)→ T, where the functor FT is constructed by

applying Proposition 1.1 to T ∈ Rep(SI, ε) and Rep(SI, ε)→ T is the forgetful
functor. Here is the main result of this paper:

Theorem 1.2 (compare [Deligne 2007, 8.21.2]). Let T be a pre-Tannakian category
and T ∈T be an object satisfying (a), (b), (c) from Section 1B with t = d ∈Z≥0⊂ F.
Then the category Rep(SI, ε) endowed with the functor FT : Rep(Sd)→ Rep(SI, ε)

is equivalent to one of the following:

(a) Rep(Sd) together with the functor Rep(Sd)→ Rep(Sd) from Section 1B.

(b) Repab(Sd) together with the fully faithful functor Rep(Sd)→Repab(Sd) above.

Remark 1.3. A similar (and easier) statement holds true for t 6∈ Z≥0; see [Deligne
2007, Corollary B2].

1D. The forgetful functor Rep(SI, ε)→T above is an exact braided tensor functor.
Thus Theorem 1.2 implies that for a pre-Tannakian category T a braided tensor
functor F : Rep(Sd)→ T either factorizes through Rep(Sd)→ Rep(Sd) or ex-
tends to an exact tensor functor Repab(Sd)→ T. A crucial step in our proof of
Theorem 1.2 is a construction of the pre-Tannakian category K0

d and fully faithful
embedding Rep(Sd)⊂ K0

d such that we have the following extension property: a
tensor (not necessarily braided) functor Rep(Sd)→ T either factorizes through
Rep(Sd)→Rep(Sd) or extends to an exact tensor functor K0

d→T; see Section 5A.
Then we use general properties of the fundamental groups from [Deligne 1990, §8]
in order to prove that K0

d satisfies the universal property as in Theorem 1.2 and, in
fact, is equivalent to Repab(Sd).

The following analogy plays a significant role in the proof of Theorem 1.2. Let
TL(q) be the Temperley–Lieb category; see, for example, [Freedman 2003, §A1].
Assume that q is a nontrivial root of unity. It is well known that the category TL(q)
is tensor equivalent to the category of tilting modules over quantum SL(2); see, for
example, [Ostrik 2008, proof of Theorem 2.4]. Thus TL(q) is a Karoubian tensor
category (braided but not symmetric) endowed with a fully faithful functor to the
abelian tensor category Cq of finite-dimensional representations of quantum SL(2).
On the other hand there exists a well known semisimple tensor category C̄q and a full
tensor functor TL(q)� C̄q ; see, e.g., [Andersen 1992, §4]. We consider the diagram
C̄q �TL(q)⊂Cq as a counterpart of the diagram Rep(Sd)�Rep(Sd)⊂Repab(Sd).

The main technical result of [Ostrik 2008] states that tensor functors TL(q)→D

to certain abelian tensor categories D factorize either through TL(q) → C̄q or
through TL(q)⊂Cq (see [Ostrik 2008, §2.6]) which is reminiscent of the extension
property of the category K0

d above; see also [Ostrik 2008, Remark 2.10]. Thus
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in the construction of K0
d we follow the strategy from [Ostrik 2008] with crucial

use of information from [Comes and Ostrik 2011]. Namely, we find K0
d inside the

homotopy category of Rep(Sd) as a heart of a suitable t-structure (see Section 4B).
The definition of the t-structure is based on Lemma 3.11 (due to P. Deligne) and
almost immediately implies the extension property of the category K0

d mentioned
above. However, the verification of the axioms of a t-structure is quite nontrivial.
To do this we use a decomposition of the category Rep(Sd) into blocks described
in [Comes and Ostrik 2011, Theorem 5.3]. We provide a blockwise description of
the t-structure above in Section 4C2. We then observe that the description above
coincides with the description of a well known t-structure on the blocks of the
Temperley–Lieb category.

2. Preliminaries

2A. Tensor categories terminology. To us a tensor (or monoidal) category is a
category with a tensor product functor endowed with an associativity constraint
and a unit object 1; see, for example, [Bakalov and Kirillov 2001, Definition 1.1.7].
Recall that a tensor category is called rigid if any object admits both a left and right
dual; see [ibid., Definition 2.1.1]. A braided tensor category is a tensor category
equipped with a braiding; see [ibid., Definition 1.2.3]. A symmetric tensor category
is a braided tensor category such that the square of the braiding is the identity.

Recall that F is a fixed field of characteristic zero. All categories and functors
considered in this paper are going to be F-linear. So, an F-linear tensor category (or
tensor category over F) is a tensor category which is F-linear (but not necessarily
additive) and such that the tensor product functor is F-bilinear. A Karoubian tensor
category over F is an F-linear tensor category which is Karoubian as an F-linear
category (i.e., it is additive and every idempotent endomorphism is a projection to
a direct summand). A tensor ideal I in a tensor category T consists of subspaces
I(X, Y ) ⊂ HomT(X, Y ) for every X, Y ∈ T such that (i) h ◦ g ◦ f ∈ I(X,W )

whenever f ∈ HomT(X, Y ), g ∈ I(Y, Z), h ∈ HomT(Z ,W ), and (ii) f ⊗ idZ ∈

I(X ⊗ Z , Y ⊗ Z) whenever f ∈ I(X, Y ). For example, if the category T has a
well defined trace the collection of negligible morphisms3 forms a tensor ideal; see
[Freedman 2003, §A1.3].

Finally we say that an F-linear symmetric tensor category T is pre-Tannakian if
the following conditions are satisfied:

(a) All Hom’s are finite-dimensional vector spaces over F and End(1)= F .

(b) T is an abelian category and all objects have finite length.

(c) T is rigid.

3 Recall that a morphism f ∈ HomT(X, Y ) is negligible if Tr( f g)= 0 for any g ∈ HomT(Y, X).
We will call an object negligible if its identity morphism is negligible.
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Remark 2.1. In the terminology of [Deligne 1990] a pre-Tannakian category is the
same as a “catégorie tensorielle” (see [ibid., §2.1]) satisfying a finiteness assumption
[ibid., 2.12.1]. This is precisely the class of tensor categories over F for which a
fundamental group (see [ibid., §8]) is defined.

2B. The category Rep(St). We recall here briefly the construction of the category
Rep(St) following [Comes and Ostrik 2011, §2]. We refer the reader to loc. cit.
and [Deligne 2007, §8] for much more detailed exposition.

2B1. The category Rep0(St). Let A be a finite set. A partition π of A is a collection
of nonempty subsets πi ⊂ A such that A =

⊔
i πi (disjoint union); the subsets πi

are called parts of the partition π . We say that partition π is finer than partition
µ of the same set if any part of π is a subset of some part of µ. For three finite
sets A, B,C and the partitions π of A t B and µ of B tC we define the partition
µ?π of A t B tC as the finest partition such that parts of π and µ are subsets of
its parts. The partition µ?π induces a partition µ ·π of A tC such that parts of
µ ·π are nonempty intersections of parts of µ?π with AtC ⊂ At B tC ; we also
define an integer `(µ, π) which is the number of parts of µ?π contained in B.

Definition 2.2. Given t ∈ F , we define the F-linear symmetric tensor category
Rep0(St) as follows:

• Objects: finite sets; object corresponding to a finite set A is denoted [A].

• Morphisms: Hom([A], [B]) is the F-linear span of partitions of A t B;
composition of morphisms represented by partitions π ∈ Hom([A], [B]) and
µ ∈ Hom([B], [C]) is t`(µ,π)µ ·π ∈ Hom([A], [C]).

• Tensor product: disjoint union (see [Comes and Ostrik 2011, Definition 2.15]);
unit object is [∅]; tensor product of morphisms, associativity and commutativity
constraints are the obvious ones (see [ibid., §2.2]).

The category Rep0(St) has a distinguished object [pt] where pt is a one-element
set. The object [pt] has a natural structure of commutative associative algebra
in Rep0(St) where the multiplication (resp. unit) map is given by the partition
of ptt ptt pt (resp. pt) consisting of one part. It is immediate to check that the
object [pt] satisfies conditions (a), (b), (c) from Section 1B. Moreover, we have the
following universal property:

Proposition 2.3. Let T be an F-linear symmetric tensor category. The functor
from the category of braided tensor functors F : Rep0(St)→ T to the category of
objects T ∈T satisfying (a), (b), (c) from Section 1B and their isomorphisms, which
sends F 7→ F([pt]) and sends natural transformations (η : F→ F′) 7→ η[pt], is an
equivalence of categories.
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Sketch of proof. We restrict ourselves to a description of the inverse functor on
objects; for more details, see [Deligne 2007, §8]. So assume that T ∈T satisfies (a),
(b), (c) from Section 1B. We define F([A])= T⊗A (here T⊗A is a tensor product
of copies of T labeled by elements of A; since the category T is symmetric this is
well defined). The tensor structure on the functor F will be given by the obvious
isomorphisms T⊗AtB

= T⊗A
⊗ T⊗B . It remains to define F on the morphisms.

Observe that a morphism from Hom([A], [B]) represented by a partition π of AtB
is a tensor product of morphisms corresponding to partitions with precisely one
part π =

⊗
i πi . Thus it is sufficient to define F(π) only for π consisting of one

part A t B. In this case we set F(π) = T⊗A
→ T → T⊗B where the first map

is the multiplication morphism T⊗A
→ T and the second one is the dual to the

multiplication morphism T⊗B
→ T , where T and T ∗ are identified via (b) from

Section 1B. One verifies that the assumptions (a), (b), (c) from Section 1B ensure
that the tensor functor F is well defined. �

2B2. The categories Rep(St) and Repab(Sd).

Definition 2.4 (compare [Deligne 2007, Définition 2.17] or [Comes and Ostrik
2011, Definition 2.19]). The category Rep(St) is the Karoubian (or pseudoabelian)
envelope4 of the category Rep0(St).

It follows immediately from Proposition 2.3 that the category Rep(St) has univer-
sal property from Proposition 1.1. We now use this universal property to construct
Deligne’s category Repab(Sd) from the introduction.

It is known (see [Deligne 2007, Théorème 2.18] or [Comes and Ostrik 2011,
Corollary 5.21]) that the category Rep(St) is semisimple (and hence pre-Tannakian)
for t 6∈Z≥0. In particular, the category Rep(S−1) is pre-Tannakian, so its fundamental
group π is defined. For any d ∈ Z≥0 we can consider the commutative associative
algebra with nondegenerate trace pairing Td ∈ Rep(S−1) which is a direct sum of
[pt] and d + 1 copies of the algebra 1 = [∅]. Clearly, dim(Td) = d, so we can
use Proposition 1.1 to construct a symmetric tensor functor Rep(Sd)→ Rep(S−1).
Using the general properties of the fundamental group we get a factorization
of this functor as Rep(Sd) → Rep(SI, ε) → Rep(S−1) (here I = Spec(Td) and
ε : π→ SI is the canonical homomorphism). It is clear that the category Rep(SI, ε)

is pre-Tannakian; it is proved in [Deligne 2007, Proposition 8.19] that the functor
Rep(Sd)→ Rep(SI, ε) is fully faithful. We set Repab(Sd) := Rep(SI, ε); as ex-
plained above this is a pre-Tannakian category and we have a fully faithful braided
tensor functor Rep(Sd)→ Repab(Sd).

Remark 2.5. The existence of the embedding Rep(St) ⊂ Repab(St) implies that
Y1⊗ Y2 6= 0 for nonzero objects Y1, Y2 ∈ Rep(St) (this is true in any abelian rigid

4We refer the reader to [Deligne 2007, §1.7-1.8] for the discussion of this notion.
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tensor category with simple unit object). The same result can be proved directly as
follows. Given finite sets A and B, it follows from the definition of tensor products
that the obvious map End([A])⊗End([B])→ End([A]⊗ [B])= End([A t B]) is
injective. Since any indecomposable object of Rep(St) is the image of a primitive
idempotent e ∈ End([A]) for some finite set A (see, e.g., [Comes and Ostrik 2011,
Proposition 2.20]), it follows that the tensor product of two nonzero morphisms in
Rep(St) is nonzero. The statement for objects follows by considering their identity
morphisms.

2B3. Indecomposable objects of the category Rep(St). The indecomposable ob-
jects of the category Rep(St) are classified up to isomorphism in [Comes and Ostrik
2011, Theorem 3.3]. The isomorphism classes are labeled by the Young diagrams of
all sizes in the following way. Let λ be a Young diagram of size n=|λ| and let yλ be
the corresponding primitive idempotent in FSn , the group algebra of the symmetric
group.5 The symmetric braiding gives rise to an action of Sn on [pt]⊗n; let [pt]λ

denote the image of yλ ∈ End([pt]⊗n). For any Young diagram λ of size |λ| there
is a unique indecomposable object L(λ) ∈ Rep(St) characterized by the following
properties:

(a) L(λ) is not a direct summand of [pt]⊗k for k < |λ|.

(b) L(λ) is a direct summand (with multiplicity 1) of [pt]λ.

It is proved in [Comes and Ostrik 2011, Theorem 3.3] that the indecomposable
objects L(λ) are well defined up to isomorphism, and any indecomposable object
of Rep(St) is isomorphic to precisely one L(λ).

2B4. Blocks of the category Rep(St). Let A be a Karoubian category such that
any object decomposes into a finite direct sum of indecomposable objects. The
set of isomorphism classes of indecomposable objects of A splits into blocks
which are equivalence classes of the weakest equivalence relation for which two
indecomposable objects are equivalent whenever there exists a nonzero morphism
between them. We will also use the term block to refer to a full subcategory of A

generated by the indecomposable objects in a single block.
The main result of [Comes and Ostrik 2011] is the description of blocks of the

category Rep(St). We describe the results of loc. cit. here. We will represent a
Young diagram λ as an infinite nonincreasing sequence (λ1, λ2, . . .) of nonnegative
integers such that λk = 0 for some k > 0; see [Comes and Ostrik 2011, §1.1]. For a
Young diagram λ and t ∈ F we define a sequenceµλ(t)= (t−|λ|, λ1−1, λ2−2, . . .).

Theorem 2.6 [Comes and Ostrik 2011, Theorem 5.3]. The objects L(λ) and L(λ′)
of Rep(St) are in the same block if and only if µλ(t) is a permutation of µλ′(t).

5Here yλ is a scalar multiple of the so-called Young symmetrizer (see, for instance, [Fulton and
Harris 1991]).



480 Jonathan Comes and Victor Ostrik

Let B be the set of blocks of the category Rep(St); for any b ∈B let us denote
by Repb(St) the corresponding subcategory of Rep(St); we have a decomposition
Rep(St)=

⊕
b∈B Repb(St).

Proposition 2.7. Let b ∈B. One of the following holds:

(i) b is semisimple (or trivial): the category Repb(St) is equivalent to the category
VecF of finite-dimensional F-vector spaces as an additive category. We will
denote by L = L(b) the unique indecomposable object of this block. Then
dim(L)= 0, or, equivalently, idL is negligible.

(ii) b is nonsemisimple (or infinite): in this case the additive category Repb(St) is
described in [Comes and Ostrik 2011, §6] (in particular, it does not depend on
a choice of nonsemisimple block b). There is a natural labeling of indecompos-
able objects of the category Repb(St) by nonnegative integers; we will denote
these objects by L0, L1, . . . . Then dim(L i ) = 0 for i > 0 and dim(L0) 6= 0,
that is, idL i is negligible if and only if i > 0.

Further, it is shown in [Comes and Ostrik 2011] that for any t ∈ F there are
infinitely many semisimple blocks and finitely many (precisely the number of Young
diagrams of size t) nonsemisimple blocks. In particular, for t 6∈ Z≥0 all blocks are
semisimple (hence the category Rep(St) is semisimple).

2C. Temperley–Lieb category. The results on the category Rep(St) in many re-
spects are parallel to the results on the Temperley–Lieb category TL(q). We recall
the definition and some properties of this category here.

Definition 2.8 (see, for example, [Freedman 2003, §A1.2]). Let q be a nonzero
element of an algebraic closure of F such that q+q−1

∈ F . We define the F-linear
tensor category TL0(q) as follows:

• Objects: finite subsets of R considered up to isotopy; we will denote the object
corresponding to the set A by 〈A〉.

• Morphisms: Hom(〈A〉, 〈B〉) is the F-linear span of one-dimensional subman-
ifolds of R× [0, 1] with boundary A t B where A ⊂ R× 0 and B ⊂ R× 1
(such submanifolds are called embedded unoriented bordisms from A to B)
modulo the relation [bordismt circle] = (q + q−1)[bordism]; composition is
given by juxtaposition.

• Tensor product: disjoint union (write R = R<0 t 0 t R>0 and identify R<0

and R>0 with R); the unit object is 〈∅〉; tensor product of morphisms and
associativity constraint are the obvious ones.
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Next we define the category TL(q) as the Karoubian envelope of the category
TL0(q). The category TL(q) has a universal property (see, e.g., [Ostrik 2008,
Theorem 2.4]) but we don’t need it here. The indecomposable objects of the
category TL(q) are labeled by nonnegative integers: for any i ∈ Z≥0 there is a
unique indecomposable object Vi which is a direct summand (with multiplicity 1)
of 〈pt〉⊗i but is not a direct summand of 〈pt〉⊗k whenever k < i .

The category TL(q) is semisimple for generic values of q; more precisely the
category TL(q) is not semisimple precisely when there exists a positive integer l
such that 1+ q2

+ · · · + q2l
= 0 (we will denote the smallest such integer by lq).

Assume that the category TL(q) is not semisimple. Then we have a full tensor
functor TL(q)→ C̄q and a fully faithful tensor functor TL(q)→ Cq , where C̄q is
a semisimple tensor category (sometimes called the “Verlinde category”) and Cq is
the abelian tensor category of finite-dimensional representations of quantum SL(2);
see, e.g., [Ostrik 2008, Theorem 2.4].

The blocks of the category TL(q) are well known. Similarly to the case of the
category Rep(Sd) there are infinitely many semisimple blocks (which are equivalent
to the category VecF as an additive category) and finitely many (precisely lq)
nonsemisimple blocks. The following observation is very important for this paper:

Proposition 2.9 [Comes and Ostrik 2011, Remark 6.5]. All nonsemisimple blocks
of the category TL(q) are equivalent as additive categories. Moreover, they are
equivalent to the category Repb(Sd), where b is any nonsemisimple block of the
category Rep(Sd).

Remark 2.10. We can transport a labeling of indecomposable objects of Repb(Sd)

(see Proposition 2.7(ii)) to a nonsemisimple block of the category TL(q) via the
equivalence of Proposition 2.9 (it is easy to see that the resulting labeling does not
depend on a choice of the equivalence).

Recall that the category TL(q) has a natural spherical structure and so the
dimensions dimTL(q)(Y ) of objects Y ∈ TL(q) are defined; see, e.g., [Freedman
2003, §A1.3]. The following result is well known; see, e.g., [Andersen 1992, (1.6)
and Proposition 3.5]:

Lemma 2.11. Let L be a unique indecomposable object in a semisimple block of
TL(q). Then dimTL(q)(L)=0. For a nonsemisimple block we have dimTL(q)(L i )=0
for i > 0 and dimTL(q)(L0) 6= 0, where L i are indecomposable objects in this block
labeled as in Remark 2.10. �

3. Tensor ideals and the object 1 ∈ Rep(Sd)

In this section we define objects 1n ∈Rep(St) for n ∈ Z≥0 and t ∈ F . We then give
1n the structure of a commutative associative algebra in Rep(St) and study many
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1n-modules. Finally, using our results on the objects 1n , we classify tensor ideals
in Rep(Sd) when d is a nonnegative integer. Before defining the objects 1n we
prove the following easy observation which will be used throughout this section.

Proposition 3.1. Suppose A0, . . . , An and B0, . . . , Bm are finite sets with A0 = B0

and An = Bm . Suppose further that fi (resp. gi ) is an F-linear combination of
partitions of Ai−1 t Ai (resp. Bi−1 t Bi ) whose coefficients do not depend on t for
all 1 ≤ i ≤ n (resp. 1 ≤ i ≤ m). If fn · · · f1 = gm · · · g1 in Rep0(St) for infinitely
many values of t ∈ F , then fn · · · f1 = gm · · · g1 in Rep0(St) for all t ∈ F.

Proof. For each t ∈ F and partition π of A0 t An = B0 t Bm , let aπ (t) ∈ F (resp.
bπ (t) ∈ F) be such that fn · · · f1 =

∑
π aπ (t)π (resp. gm · · · g1 =

∑
π bπ (t)π) in

Rep0(St) where the sum is taken over all partitions π of A0 t An = B0 t Bm . Then
fn · · · f1 = gm · · · g1 in Rep0(St) if and only if aπ (t) = bπ (t) for all π . By the
definition of composition in Rep0(St), both aπ (t) and bπ (t) are polynomials in t
for each π . The result follows since a polynomial in t is determined by finitely
many values of t . �

3A. The objects 1n ∈ Rep(St). Suppose n is a nonnegative integer and let An =

{i | 1 ≤ i ≤ n}. Consider the endomorphism xn = xidn : [An] → [An] in Rep0(St)

(see [Comes and Ostrik 2011, Equation (2.1)]).

Proposition 3.2. xn is an idempotent which is equal to its dual for all n ≥ 0.

Proof. The fact that x∗n = xn follows from the definition of xn . By Proposition 3.1,
it suffices to show xn is an idempotent in Rep0(St) for infinitely many values of t .
It follows from [Comes and Ostrik 2011, Theorem 2.6 and Equation (2.2)] that xn

is an idempotent in Rep0(St) whenever t is an integer greater than 2n. �

Since Rep(St) is a Karoubian category (i.e., Rep(St) contains images of idempo-
tents) the following definition is valid.

Definition 3.3. Let 1n ∈ Rep(St) denote the image of the idempotent xn .6

Note that the commutative associative algebra structure on [pt] extends in an
obvious way to a commutative associative algebra structure on [An] ∼= [pt]⊗n . Let
µn : [An]⊗ [An]→ [An] be the multiplication map and 1n : 1→[An] the unit map.

Proposition 3.4. The multiplication map xnµn(xn⊗ xn) :1n⊗1n→1n gives1n

the structure of a commutative associative algebra in Rep(St) with unit given by
xn1n : 1→1n .

6In the notation of [Comes and Ostrik 2011], 1n = ([n], xn).
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Proof. We are required to show the following equalities hold in Rep0(St):

xnµn(xnµn(xn ⊗ xn)⊗ xn)= xnµn(xn ⊗ (xnµn(xn ⊗ xn)), (3-1)

xnµn(xn1n ⊗ xn)= xn = xnµn(xn ⊗ xn1n), (3-2)

xnµn(xn ⊗ xn)βn,n(xn ⊗ xn)= xnµn(xn ⊗ xn), (3-3)

where βn,n : An⊗An→ An⊗An is the braiding morphism (see for example [Comes
and Ostrik 2011, §2.2]). By Proposition 3.1, it suffices to show (3-1), (3-2) and
(3-3) hold for infinitely many values of t .7 Using Theorem 2.6 and Equation (2.2)
of the same reference it is easy to show (3-1), (3-2) and (3-3) hold whenever t is a
sufficiently large integer. �

By Proposition 3.4 we can consider the category 1n-mod of all left 1n-modules.

3B. Some 1n-modules. Suppose j is a nonnegative integer with 1 ≤ j ≤ n.
Given a finite set X , let 2 j

X : HomRep(St )(An, X) → HomRep(St )(An+1, X) and
2X

j : HomRep(St )(X, An) → HomRep(St )(X, An+1) be the F-linear maps defined
on partitions as follows: if π is a partition of X t An , then 2 j

X (π) = 2
X
j (π) is

the unique partition of X t An+1 which restricts to π and has j and n+ 1 in the
same part. Now let 2 j : EndRep(St )(An)→ EndRep(St )(An+1) be the F-linear map
2 j =2

j
An
◦2

An
j . It is easy to check that 2 j is an injective (nonunital) F-algebra

homomorphism for each 1≤ j ≤ n. In particular, by Proposition 3.2, xn, j :=2 j (xn)

is an idempotent for each j .

Definition 3.5. Let 1n( j) ∈ Rep(St) denote the image of xn, j .

Next we give 1n( j) the structure of a 1n-module. Let

α = xn, j2
An
j (xn)xn :1n→1n( j),

β = xn, j2 j (µn)(xn, j ⊗ xn, j ) :1n( j)⊗1n( j)→1n( j).

Finally, let φ = β(α⊗ xn, j ) :1n ⊗1n( j)→1n( j).

Proposition 3.6. (1) The map φ gives 1n( j) the structure of a 1n-module.

(2) The map xn, j2
An
j (idAn )xn : 1n → 1n( j) is an isomorphism of 1n-modules

with inverse xn2
j
An
(idAn )xn, j .

Proof. For part (1) we are required to show the following equation holds in Rep0(St):

xn, j2 j (µn)
(
(xn, j2

An
j (xn)xnµn(xn ⊗ xn))⊗ xn, j

)
= xn, j2 j (µn)

(
xn, j2

An
j (xn)xn ⊗ (xn, j2 j (µn)((xn, j2

An
j (xn)xn)⊗ xn, j ))

)
. (3-4)

7In fact, (3-1), (3-2) and (3-3) do not depend on t , so we only need to verify they hold for some t .
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For part (2) we are required to show the following equations hold in Rep0(St):

xn, j2
An
j (idAn )xn2

j
An
(idAn )xn, j = xn, j , (3-5)

xn2
j
An
(idAn )xn, j2

An
j (idAn )xn = xn. (3-6)

Now use Proposition 3.1 and [Comes and Ostrik 2011, Theorem 2.6 and Equa-
tion (2.2)]. �

Next, we give the object 1n+1 the structure of a 1n-module. To do so, set
ψ = xn+1(µn ⊗ id[pt])(xn ⊗ xn+1) :1n ⊗1n+1→1n+1.

Proposition 3.7. The map ψ gives 1n+1 the structure of a 1n-module.

Proof. We are required to show the following equation holds in Rep0(St):

xn+1(µn ⊗ id[pt])
(
(xnµn(xn ⊗ xn))⊗ xn+1

)
= xn+1(µn ⊗ id[pt])

(
xn ⊗ (xn+1(µn ⊗ id[pt])(xn ⊗ xn+1))

)
. (3-7)

Now use Proposition 3.1 and [Comes and Ostrik 2011, Theorem 2.6 and Equa-
tion (2.6)]. �

The following lemma will be important for us later.

Lemma 3.8. 1n ⊗[pt] ∼=1n+1⊕1n(1)⊕ · · ·⊕1n(n) in the category 1n-mod.

Proof. First, using Proposition 3.1 and [Comes and Ostrik 2011, Theorem 2.6 and
Equation (2.6)] it is easy to show that the following identities hold in Rep0(St):

xn ⊗ id[pt] = xn+1+
∑

1≤ j≤n

xn, j , (3-8)

xn, j xn+1 = 0= xn+1xn, j (1≤ j ≤ n), (3-9)

xn, j xn,k = δ j,k xn, j (1≤ j, k ≤ n). (3-10)

Next, define 9 :1n ⊗[pt] →1n+1⊕1n(1)⊕ · · ·⊕1n(n) by

9 =


xn+1(xn ⊗ id[pt])

xn,1(xn ⊗ id[pt])
...

xn,n(xn ⊗ id[pt])

 .
Using (3-8) it is easy to check that 9 is an isomorphism in Rep(St) with inverse

9−1
=
[
(xn ⊗ id[pt])xn+1 (xn ⊗ id[pt])xn,1 · · · (xn ⊗ id[pt])xn,n

]
.

It remains to show that9 and9−1 are morphisms in the category1n-mod. Showing
that 9 is a morphism in 1n-mod amounts to showing the following equations hold
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in Rep0(St):

xn+1(µn ⊗ id[pt])(xn ⊗ (xn+1(xn ⊗ id[pt])))

= xn+1((xnµn(xn ⊗ xn))⊗ id[pt]),

xn, j2 j (µn)((xn, j2
An
j (xn)xn)⊗ (xn, j (xn ⊗ id[pt])))

= xn, j ((xnµn(xn⊗xn))⊗ id[pt]) (1≤ j ≤ n).

(3-11)

To show the equations in (3-11) hold, use Proposition 3.1 and [Comes and Ostrik
2011, Theorem 2.6 and Equation (2.6)]. The proof for 9−1 is similar. �

3C. The category Rep1n(St). Let 1n-mod0 denote the full subcategory of 1n-
mod such that a1n-module M is in1n-mod0 if and only if M ∼=1n⊗Y in1n-mod
for some Y ∈ Rep(St). Let Rep1n (St) denote the Karoubian envelope of 1n-mod0.
The advantage of working in Rep1n (St) rather than in the category 1n-mod is that
we can give Rep1n (St) the structure of a tensor category with relative ease. Indeed,
given M,M ′ ∈1n-mod0 we know M ∼=1n⊗Y and M ′ ∼=1n⊗Y ′ as 1n-modules
for some Y, Y ′ ∈Rep(St). Set M⊗1n M ′ :=1n⊗Y ⊗Y ′. Given N , N ′ ∈1n-mod0

with N ∼=1n ⊗ Z and N ′ ∼=1n ⊗ Z ′ and morphisms f ∈ Hom1n-mod0(M, N ) and
g ∈ Hom1n-mod0(M

′, N ′), write

f̃ :1n ⊗ Y
∼=
→ M

f
→ N

∼=
→1n ⊗ Z ,

g̃ :1n ⊗ Y ′
∼=
→ M ′

g
→ N ′

∼=
→1n ⊗ Z ′.

Define f ⊗1n g : M ⊗1n M ′→ N ⊗1n N ′ to be the composition

M ⊗1n M ′ =1n ⊗ Y ⊗ Y ′
f̃⊗idY ′
−→ 1n ⊗ Z ⊗ Y ′

∼
→1n ⊗ Y ′⊗ Z

g̃⊗idZ
−→ 1n ⊗ Z ′⊗ Z

∼
→1n ⊗ Z ⊗ Z ′ = N ⊗1n N ′.

It is easy to check that⊗1n :1n-mod0×1n-mod0→1n-mod0 is a bifunctor which
(with the obvious choice of constraints) makes 1n-mod0 into a rigid symmetric
tensor category. The tensor structure on 1n-mod0 extends in an obvious way to
make Rep1n (St) a rigid symmetric tensor category too.

Notice that 1n+1 is an object in Rep1n (St). Indeed, by Lemma 3.8, the 1n-
module 1n+1 is the image of an idempotent of the form 1n ⊗ [pt] → 1n ⊗ [pt].
This idempotent is an element of End1n-mod0(1n ⊗ [pt]); hence its image is an
object in the Karoubian category Rep1n (St). The next two propositions concern
the structure of 1n+1 ∈ Rep1n (St). We start by computing its dimension:

Proposition 3.9. dimRep1n (St )(1n+1)= t − n.

Proof. First, by Lemma 3.8 and Proposition 3.6(2),

dimRep1n (St )(1n+1)= dimRep1n (St )(1n ⊗[pt])− n dimRep1n (St )(1n).
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Now, consider the tensor functor 1n ⊗ − : Rep(St) → Rep1n (St). Since ten-
sor functors preserve dimension, dimRep1n (St )(1n) = dimRep(St )([∅]) = 1 and
dimRep1n (St )(1n ⊗[pt])= dimRep(St )([pt])= t . �

Our next aim is to show 1n+1 ∈ Rep1n (St) satisfies (a) and (b) from Section 1B.
To do so, let inc : 1n+1 → 1n ⊗ [pt] and proj : 1n ⊗ [pt] → 1n+1 denote the
morphisms in Rep1n (St) determined by Lemma 3.8. Moreover, let

m : (1n ⊗[pt])⊗1n (1n ⊗[pt])→1n ⊗[pt]

denote the morphism1n⊗[pt]⊗[pt]
id1n ⊗µ1
−→ 1n⊗[pt]. Now consider the morphisms

1n+1⊗1n 1n+1
inc⊗1n inc
−→ (1n ⊗[pt])⊗1n (1n ⊗[pt])

m
−→1n ⊗[pt]

proj
−→1n+1

(3-12)

and
1n

id1n ⊗11
−→ 1n ⊗[pt]

proj
−→1n+1. (3-13)

Proposition 3.10. With the multiplication and unit maps given by (3-12) and (3-13)
respectively, 1n+1 ∈ Rep1n (St) satisfies (a) and (b) from Section 1B.

Proof. Write µ1n+1 and 11n+1 for the morphisms given by (3-12) and (3-13)
respectively. First, it is easy to see that m (resp. id1n ⊗11) is a morphism of
1n-modules. Hence, µ1n+1 (resp. 11n+1) is a morphism of 1n-modules too. Now,
to show 1n+1 satisfies (a) from Section 1B we must show the following equations
hold in Rep1n (St):

µ1n+1(µ1n+1 ⊗1n id1n+1)= µ1n+1(id1n+1 ⊗1nµ1n+1),

µ1n+1(11n+1 ⊗1n id1n+1)= id1n+1 = µ1n+1(id1n+1 ⊗1n 11n+1),

µ1n+1β1n+1,1n+1 = µ1n+1,

(3-14)

where β1n+1,1n+1 :1n+1⊗1n 1n+1→1n+1⊗1n 1n+1 denotes the braiding mor-
phism. To do so, first notice that by (3-8) the morphisms proj, inc, and id1n+1 are
all given by xn+1. Let τ (resp. ν) denote the identity morphism on 1n+1⊗1n 1n+1

(resp. 1n+1 ⊗1n 1n+1 ⊗1n 1n+1). Then, by the definition of ⊗1n , we have the
following realizations of τ and ν as morphisms in Rep0(St):

τ = (xn ⊗β1,1)(xn+1⊗ id[pt])(xn ⊗β1,1)(xn+1⊗ id[pt]),

ν = (xn ⊗β1,2)(xn+1⊗ id[pt]⊗[pt])(xn ⊗β2,1)(τ ⊗ id[pt]),
(3-15)

where βn,m : An ⊗ Am→ Am ⊗ An denotes the braiding morphism in Rep0(St) for
each n,m ≥ 0. Moreover,

11n+1 = xn+1(xn ⊗ 11), µ1n+1 = xn+1(xn ⊗µ1)τ,

β1n+1,1n+1 = τ(xn ⊗β1,1)τ.
(3-16)
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Thus, showing the equations in (3-14) hold in Rep1n (St) amounts to showing the
following equations hold in Rep0(St):

xn+1(xn ⊗µ1)τ (xn ⊗β1,1)(xn+1⊗ id[pt])(xn ⊗β1,1)
(
(xn+1(xn ⊗µ1)τ )⊗ id[pt]

)
ν

=xn+1(xn⊗µ1)τ (xn⊗β1,1)
(
(xn+1(xn⊗µ1)τ )⊗id[pt]

)
(xn⊗β1,2)(xn+1⊗id[pt]⊗[pt])ν,

xn+1(xn ⊗µ1)τ (xn ⊗β1,1)(xn+1⊗ id[pt])(xn ⊗β1,1)(xn+1(xn ⊗ 11)⊗ id[pt])

= xn+1 = xn+1(xn ⊗µ1)τ (xn+1⊗β1,1)
(
(xn+1(xn ⊗ 11))⊗ id[pt]

)
xn+1,

xn+1(xn ⊗µ1)τ (xn ⊗β1,1)τ = xn+1(xn ⊗µ1)τ.

All equations above are straightforward to check using Proposition 3.1 and [Comes
and Ostrik 2011, Theorem 2.6 and Equation (2.6)]. Thus 1n+1 satisfies part (a)
from Section 1B.

To show 1n+1 satisfies Section 1B(b), first notice that 1n+1 ∈ Rep1n (St) is
self-dual (because the morphism xn+1 is self-dual). Hence, we are required to show
that the following morphism is invertible in Rep1n (St):(

(Tr µ1n+1)⊗1n id1n+1

)
(id1n+1 ⊗1n coev1n+1) :1n+1→1n+1, (3-17)

where the morphism Tr :1n+1→1n is defined in Section 1B(b). In fact, we claim
the morphism in (3-17) is equal to the identity morphism id1n+1 . To prove this
claim, first notice that

Tr= ev1n+1 β1n+1,1n+1(µ1n+1 ⊗1n id1n+1)(id1n+1 ⊗1n coev1n+1). (3-18)

Also, ev1n+1 = xn(xn ⊗ ev[pt])τ and coev1n+1 = τ(xn ⊗ coev[pt])xn . Hence, using
(3-15), (3-16), and the definition of ⊗1n , we can realize the morphism in (3-17) as
a morphism in Rep0(St). Now use Proposition 3.1 and [Comes and Ostrik 2011,
Theorem 2.6 and Equation (2.6)] to show that this morphism is equal to xn+1. �

3D. Deligne’s lemma. Fix an integer d ≥ 0. Set 1 = 1d+1 ∈ Rep(Sd) and
1+ =1d+2 ∈ Rep1(Sd). By Proposition 3.9, dimRep1(Sd )(1

+) =−1. Hence, by
Propositions 1.1 and 3.10, there exists a tensor functor F1 :Rep(S−1)→Rep1(Sd)

with F1([pt]) =1+. Let ResSd
S−1

denote the tensor functor Rep(Sd)→ Rep(S−1)

described in Definition 2.4, i.e., the functor prescribed by Proposition 1.1 with
ResSd

S−1
([pt])= [pt]⊕ [∅]⊕d+1. Then we have the following:

Lemma 3.11. The functor 1⊗ − : Rep(Sd) → Rep1(Sd) is isomorphic to the
composition F1 ◦ResSd

S−1
.

Proof. Both 1⊗− and F1 ◦ResSd
S−1

are tensor functors which map [pt] ∈ Rep(Sd)

to an object isomorphic to 1+⊕1⊕d+1
∈ Rep1(Sd) (see Propositions 3.6(2) and

3.8). Hence, by Proposition 1.1, they are isomorphic. �
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The following corollary to Deligne’s lemma will be used in the next section to
classify tensor ideals in Rep(Sd).

Corollary 3.12. Every nonzero tensor ideal in Rep(Sd) contains a nonzero identity
morphism.

Proof. Suppose I is a nonzero tensor ideal in Rep(Sd). Since tensor ideals are
closed under composition, it suffices to show that I contains a morphism which has
a nonzero isomorphism as a direct summand. Let f be a nonzero morphism in I.
Then, by Remark 2.5, id1⊗ f is also a nonzero morphism in I. By Lemma 3.11,
we have id1⊗ f = F1( f ′) for some nonzero morphism f ′ in Rep(S−1). Since
Rep(S−1) is semisimple (see [Deligne 2007, Théorème 2.18] or [Comes and Ostrik
2011, Corollary 5.21]) it follows that f ′ (and therefore F1( f ′)) is the direct sum
of isomorphisms and zero morphisms. �

3E. Tensor ideals in Rep(Sd). In this section we use results from [Comes and
Ostrik 2011] along with Corollary 3.12 to classify tensor ideals in Rep(Sd) for
arbitrary d ∈ Z≥0.8 We begin by introducing an equivalence class on Young
diagrams:

Definition 3.13. Consider the weakest equivalence relation on the set of all Young
diagrams such that λ and µ are equivalent whenever the indecomposable object
L(λ) is a direct summand of L(µ)⊗ [pt] in Rep(Sd). When λ and µ are in the
same equivalence class we write λ≈

d
µ.

The following proposition contains enough information on the equivalence rela-
tion ≈

d
for us to classify tensor ideals in Rep(Sd).

Proposition 3.14. Assume d is a nonnegative integer and λ,µ are Young diagrams.

(1) A nonzero morphism of the form L(λ)→ L(µ) is a negligible morphism in
Rep(Sd) if and only if L(λ) or L(µ) is not the minimal indecomposable object
in an infinite block of Rep(Sd).

(2) λ≈
d
µ whenever L(λ) and L(µ) are in trivial blocks of Rep(Sd).

(3) λ≈
d
µ whenever L(λ) is a nonminimal indecomposable object in an infinite

block and L(µ) is in a trivial block of Rep(Sd).

(4) λ≈
d
µ whenever neither L(λ) nor L(µ) is a minimal indecomposable object in

an infinite block of Rep(Sd).

(5) Suppose λ≈
d
µ and I is a tensor ideal in Rep(Sd) containing idL(λ). Then

idL(µ) is also in I.

8If t 6∈Z≥0, then Rep(St ) is semisimple (see [Deligne 2007, Théorème 2.18] or [Comes and Ostrik
2011, Corollary 5.21]). Hence, there are no nonzero proper tensor ideals in Rep(St ) when t 6∈ Z≥0.
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Proof. Part (1) follows from [Comes and Ostrik 2011, Proposition 3.25, Corol-
lary 5.9, and Theorem 6.10]. Part (2) is easy to check using [Comes and Ostrik
2011, Propositions 3.12, 5.15 and Lemma 5.20(1)]. Part (4) follows from parts
(2) and (3). Part (5) is easy to check. Hence, it suffices to prove part (3). To do
so, let b denote the infinite block of Rep(Sd) containing L(λ). We will proceed by
induction on b with respect to ≺ (see [Comes and Ostrik 2011, Definition 5.12]).

If b is the minimal with respect to ≺, then using [Comes and Ostrik 2011,
Proposition 3.12 and Lemmas 5.18(1) and 5.20(1)] we can find a Young diagram ρ

with L(ρ) in a trivial block of Rep(Sd) such that λ≈
d
ρ. By part (2), ρ≈

d
µ and we

are done. Now suppose b is not minimal with respect to ≺. Then, using [Comes
and Ostrik 2011, Proposition 3.12 and Lemmas 5.18(2) and 5.20(2)], we can find a
Young diagram ρ ′ with λ≈

d
ρ ′ such that L(ρ ′) is in an infinite block b′ of Rep(Sd)

with b′ � b. By induction ρ ′≈
d
µ and we are done. �

We are now ready to classify tensor ideals in Rep(Sd).

Theorem 3.15. If d is a nonnegative integer, then the only nonzero proper tensor
ideal in Rep(Sd) is the ideal of negligible morphisms.

Proof. Assume I is a nonzero proper tensor ideal of Rep(Sd). Then I is contained
in the ideal of negligible morphisms (see [Freedman 2003, Proposition 3.1]), hence
we must show that I contains all negligible morphisms. Suppose λ is a Young
diagram such that L(λ) is not the minimal indecomposable object in an infinite
block of Rep(Sd). By Proposition 3.14(1), it suffices to show idL(λ) is contained
in I. By Corollary 3.12, there exists a nonzero identity morphism in I. It follows
that I contains idL(µ) for some Young diagram µ. In particular, idL(µ) is a negligible
morphism. Hence, by Proposition 3.14(1), L(µ) is not the minimal indecomposable
object in an infinite block of Rep(Sd). Thus, by Proposition 3.14(4), λ≈

d
µ. Finally,

by Proposition 3.14(5), idL(λ) is contained in I. �

Corollary 3.16. The tensor ideal in Rep(Sd) generated by id1 is the ideal of all
negligible morphisms.

Proof. id1 = xd+1 is a nonzero negligible morphism in Rep(Sd) (see [Comes and
Ostrik 2011, Remark 3.22]). Hence, the result follows from Theorem 3.15. �

4. The t-structure on K b(Rep(Sd))

4A. Homotopy category. Let A be an additive category. Let K b(A) be the bounded
homotopy category of A; see, e.g., [Kashiwara and Schapira 2006, §11]. Thus
the objects of K b(A) are finite complexes of objects in A and the morphisms
are morphisms of complexes up to homotopy. The category K b(A) has a natural
structure of a triangulated category; see loc. cit. In particular, for each integer n we
have a translation functor [n] : K b(A)→ K b(A).
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Any object A ∈A can be considered as a complex A[0] concentrated in degree 0
or, more generally, as a complex A[n] concentrated in degree −n. Thus we have a
fully faithful functor A→K b(A), A 7→ A[0]. We will say that an object K ∈K b(A)

is split if it is isomorphic to an object of the form
⊕

i Ai [ni ] with Ai ∈A, ni ∈ Z.
Now assume that A is an additive tensor category. The category K b(A) has a

natural structure of an additive tensor category. If the category A is braided or
symmetric then so is the category K b(A). The functor A→ K b(A), A 7→ A[0]
has an obvious structure of a (braided) tensor functor. If the category A is rigid so
is the category K b(A).

4B. Definition of t-structure. We can apply the construction from Section 4A to
the case A=Rep(Sd). We obtain a triangulated tensor category Kd :=K b(Rep(Sd)).

Proposition 4.1. For any K ∈ Kd the object 1⊗ K is split.

Proof. By Lemma 3.11, the functor 1 ⊗ − : Rep(Sd) → Rep(Sd) is naturally
isomorphic to a composition Rep(Sd) → Rep(S−1) → Rep(Sd). The category
Rep(S−1) is semisimple ([Deligne 2007, Théorème 2.18] or [Comes and Ostrik 2011,
Corollary 5.21]), so every object of K b(Rep(S−1)) is split. The result follows. �

We define K≤0
d as the full subcategory of Kd consisting of objects K such that

1⊗ K is concentrated in nonpositive degrees (that is, isomorphic to
⊕

i Ai [ni ]

with Ai ∈A and ni ∈ Z≥0). Similarly, we define K≥0
d as the full subcategory of Kd

consisting of objects K such that 1⊗ K is concentrated in nonnegative degrees.
The following result will be proved in Section 4C.

Theorem 4.2. The pair (K≤0
d ,K≥0

d ) is a t-structure (see [Beı̆linson et al. 1982,
Définition 1.3.1]) on the category Kd .

Recall that the core of this t-structure is the subcategory K0
d =K≤0

d ∩K≥0
d . By

definition this means that K ∈ K0
d if and only if 1⊗ K is concentrated in degree

zero. In particular, for any A ∈ Rep(Sd) the object A[0] is in K0
d .

Corollary 4.3. (a) The category K0
d is abelian.

(b) The category K0
d is a tensor subcategory of Kd .

Proof. Part (a) follows from Theorem 4.2 and [Beı̆linson et al. 1982, Théorème
1.3.6]. For (b) we need to check that for K , K ′ ∈K0

d we have K⊗K ′ ∈K0
d . Assume

this is not the case. This means that the split complex1⊗K⊗K ′ is not concentrated
in degree zero. Since 1⊗ X 6= 0 for any 0 6= X ∈ Rep(Sd) (see Remark 2.5) we
get that 1⊗1⊗ K ⊗ K ′ is split and not concentrated in degree zero. But this is
not the case since 1⊗1⊗ K ⊗ K ′ ' (1⊗ K )⊗ (1⊗ K ′) and both 1⊗ K and
1⊗ K ′ are split and concentrated in degree zero. �
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We will show in Section 4C that the category K0
d is actually pre-Tannakian.

Thus we constructed a fully faithful tensor functor Rep(Sd)→ K0
d , where K0

d is
a pre-Tannakian category. Of course a priori this might be quite different from
Deligne’s functor Rep(Sd)→ Repab(Sd).

4C. Verification of t-structure axioms. The main goal of this section is to prove
Theorem 4.2.

4C1. We start by reformulating the definition of K≤0
d and K≥0

d in terms of negligible
objects, i.e., objects whose identity morphisms are negligible.

Proposition 4.4. Let K ∈ Kd . Then K ∈ K≤0
d if and only if Hom(K , A[n]) = 0

for any negligible A ∈ Rep(Sd) and n ∈ Z<0. Similarly, K ∈ K≥0
d if and only if

Hom(K , A[n])= 0 for any negligible A ∈ Rep(Sd) and n ∈ Z>0.

Proof. We prove only the characterization of K≤0
d (the case of K≥0

d is similar).
Assume first that Hom(K , A[n]) = 0 for any negligible A and n ∈ Z<0. By
Proposition 3.2 1∗ =1, thus by Corollary 3.16 1⊗ B =1∗⊗ B is negligible for
all B ∈ Rep(Sd). Hence, Hom(1⊗ K , B[n])= Hom(K ,1∗⊗ B[n]) = 0 for any
B ∈ Rep(Sd) and n ∈ Z<0. Since by Proposition 4.1 the object 1⊗ K ∈Kd is split
we get immediately that K ∈ K≤0

d .
Conversely, assume that K ∈ K≤0

d . Then by definition Hom(1⊗ K , B[n])= 0
for any B ∈ Rep(Sd) and n ∈ Z<0. Hence Hom(K ,1∗ ⊗ B[n]) = 0. Since, by
Corollary 3.16, any negligible object is a direct summand of an object of the form
1⊗ B =1∗⊗ B we are done. �

4C2. Blockwise description of (K≤0
d ,K≥0

d ). Recall that the category Rep(Sd) de-
composes into a direct sum of blocks Rep(Sd)=

⊕
b Repb(Sd); see Section 2B4.

Similarly, we have a decomposition Kd =
⊕

b(Kd)b (in other words, for any object
K ∈Kd we have a canonical decomposition K =

⊕
b Kb where all the terms of the

complex Kb ∈ (Kd)b are in the block Repb(Sd)). Since1⊗
(⊕

b Kb

)
=
⊕

b1⊗Kb

we see that K =
⊕

b Kb ∈ K≤0
d if and only if Kb ∈ K≤0

d for any b (and similarly
for K≥0

d ). In other words K≤0
d =

⊕
b(K
≤0
d )b where (K≤0

d )b = K≤0
d ∩ (Kd)b, that is,

the subcategory K≤0
d is compatible with the block decomposition (and similarly for

K≥0
d =

⊕
b(K
≥0
d )b). Thus in order to verify that (K≤0

d ,K≥0
d ) is a t-structure on Kd

it is sufficient to verify that ((K≤0
d )b, (K

≥0
d )b) is a t-structure on (Kd)b for every

block b. Fortunately, Proposition 4.4 gives rise to an easy description of (K≤0
d )b

and (K≥0
d )b.

Proposition 4.5. Let K ∈ (Kd)b.

(a) Assume that b is a semisimple block and let L be a unique indecomposable
object in b. Then K ∈ (K≤0

d )b (resp. K ∈ (K≥0
d )b) if and only if K ∈ (Kd)b and

Hom(K , L[n])= 0 for any n ∈ Z<0 (resp. for n ∈ Z>0).
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(b) Assume that b is a nonsemisimple block with indecomposable objects L i for
i ∈ Z≥0 labeled as in Proposition 2.7(ii). Then K ∈ (K≤0

d )b (resp. K ∈ (K≥0
d )b)

if and only if K ∈ (Kd)b and Hom(K , L i [n])= 0 for all i > 0 and any n ∈Z<0

(resp. for n ∈ Z>0).

Proof. Combine Proposition 4.4 and Proposition 2.7. �

4C3. Analogy with Temperley–Lieb category. The definition of the t-structure in
Section 4B was motivated by the following analogy. Pick a nontrivial root of
unity q such that q+q−1

∈ F and recall the Temperley–Lieb category TL(q) from
Section 2C. Consider the category K b(TL(q)). It is well known (see, e.g., [Ostrik
2008, Proposition 2.7] that the embedding TL(q)⊂ Cq induces an equivalence of
triangulated categories K b(TL(q))'Db(Cq), where Db(Cq) is the derived category
of the abelian category Cq . In particular the category Dq := K b(TL(q)) inherits
a natural t-structure (D≤0

q ,D≥0
q ) from the category Db(Cq); see, e.g., [Beı̆linson

et al. 1982, Exemple 1.3.2(i)].9 This t-structure can be characterized as follows.
Let St := Vl−1 ∈ TL(q) be the so-called Steinberg module. It is known (see

[Andersen et al. 1991, Theorem 9.8]) that St is a projective object of the category
Cq . Thus St⊗Y is a projective object of Cq for any Y ∈ Cq ; see [Andersen et al.
1991, Lemma 9.10]. In particular, for any K ∈ Dq the object St⊗K ∈ Dq is
isomorphic to its cohomology (as a finite complex consisting of projective modules
and with projective cohomology). It is well known that each projective object of
Cq is contained in TL(q)⊂ Cq ; see [Andersen 1992, (5.7)]. Thus, in the language
of Section 4A, for any K ∈ K b(TL(q)) the complex St⊗K is split (analogous to
Proposition 4.1). It is clear that K ∈ D≤0

q if and only if St⊗K is concentrated in
nonpositive degrees and similarly for D≥0

q . This is a counterpart of the definition of
the t-structure (K≤0

d ,K≥0
d ).

Furthermore, it is known that each direct summand of St⊗Y for Y ∈ TL(q)
is negligible (see [Andersen 1992, Proposition 3.5 and Lemma 3.6]) and that
each negligible object of TL(q) is a direct summand of St⊗Y with Y ∈ TL(q) (see
[Andersen 1992, p. 158]). Thus we have the following counterpart of Proposition 4.4
(with a similar proof):

(a) Let K ∈ Dq . Then K ∈ D≤0
q (resp. K ∈ D≥0

q ) if and only if Hom(K , A[n])= 0
for any negligible A ∈ TL(q) and n ∈ Z<0 (resp. n ∈ Z>0).

Hence, following Section 4C2, we can give a blockwise description of the
t-structure (D≤0

q ,D≥0
q ). For a block b let (Dq)b denote the full subcategory of

Dq = K b(TL(q)) consisting of complexes with all terms from the block b. Using
Lemma 2.11 we obtain the following counterpart of Proposition 4.5:

9Thus the category D≤0
q consists of objects of Db(Cq ) with nontrivial cohomology only in

nonpositive degrees and similarly for D≥0
q .
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(b) Let b be a nonsemisimple block of TL(q) with indecomposable objects L i for
i ∈ Z≥0 labeled as in Remark 2.10. Let K ∈ (Dq)b. Then K ∈D≤0

q (resp. K ∈D≥0
q )

if and only if Hom(K , L i [n])= 0 for all i > 0 and any n ∈ Z<0 (resp. for n ∈ Z>0).

From this description it is clear that the pair (D≤0
q ∩ (Dq)b,D≥0

q ∩ (Dq)b) of
subcategories of (Dq)b corresponds to the pair ((K≤0

d )b′, (K
≥0
d )b′) under the equiva-

lence (Dq)b ' (Kd)b′ induced by the equivalence of blocks from Proposition 2.9.
Since (D≤0

q ∩ (Dq)b,D≥0
q ∩ (Dq)b) is a t-structure on the category (Dq)b we have

the following:

Corollary 4.6. Let b be a nonsemisimple block of the category TL(q) and let
b′ be an equivalent block in the category Rep(Sd) as in Proposition 2.9. Then
((K≤0

d )b′, (K
≥0
d )b′) is a t-structure on the category (Kd)b′ . �

4C4. Proof of Theorem 4.2. It suffices to show ((K≤0
d )b, (K

≥0
d )b) is a t-structure

on (Kd)b for every block b. If the block b is semisimple then the category (Kd)b can
be identified with K b(VecF ) and Proposition 4.5(a) shows that ((K≤0

d )b, (K
≥0
d )b)

is the standard t-structure on K b(VecF ).
It remains to consider the case when b is a nonsemisimple block. Choose a

nontrivial root of unity q such that q + q−1
∈ F (for example, a primitive cubic

root of unity ζ will work for any F since ζ + ζ−1
= −1 ∈ F). Then there is a

nonsemisimple block in TL(q) which is equivalent to b (Proposition 2.9). Hence,
by Corollary 4.6, ((K≤0

d )b, (K
≥0
d )b) is a t-structure on (Kd)b. �

4C5. Complements. The proof in Section 4C4 implies the following:

Corollary 4.7. (a) The category K0
d is pre-Tannakian.

(b) Any object of the category K0
d is isomorphic to a subquotient of a direct sum of

tensor powers of [pt].

Proof. We already know that the category K0
d is an abelian tensor category (see

Corollary 4.3). It is obvious that Hom’s are finite-dimensional and End(1) = F
since this is true in the category Kd . The category K0

d is rigid: if 1 ⊗ K is
concentrated in degree zero then the same is true for 1⊗ K ∗ ' (1⊗ K )∗. It
remains to check that any object of K0

d has finite length. It is clear that we can
verify this block by block. The result is clear for semisimple blocks since by
Proposition 4.5(a) the core of the corresponding t-structure identifies with VecF .
This is also clear for nonsemisimple blocks since the corresponding t-structure
(described in Proposition 4.5) identifies with the t-structure on a block of the
Temperley–Lieb category and the corresponding core has all objects of finite length
since this is true for the category Cq . This proves (a).

For (b) we use the same argument as above: it is sufficient to verify the statement
block by block. Here the result is trivial for semisimple blocks and is known for
nonsemisimple ones since it is known to hold for the category Cq . �
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Remark 4.8. Using similar techniques of importing known results about the cate-
gory Cq to the category K0

d we can obtain detailed information about this category.
In particular, we see that the category K0

d has enough projective objects; all inde-
composable projective objects are direct summands of tensor powers of [pt] (but
powers of [pt] are not projective in general; for example [pt]⊗0

= 1 is not projective).
Thus Corollary 4.7(b) can be improved: any object of the category K0

d is isomorphic
to a quotient of a direct sum of tensor powers of [pt].

5. Universal property

5A. Extension property of the category K0
d .

Proposition 5.1. Let T be a pre-Tannakian category and let F : Rep(Sd)→ T be
a tensor functor. Assume that F(1) 6= 0. Then the functor F (uniquely) factorizes
as Rep(Sd)→ K0

d → T, where K0
d → T is an exact tensor functor.

Proof. Let K ∈ K0
d . We can consider F(K ) ∈ K b(T). Since the category T is

abelian we can talk about cohomology of F(K ).

Lemma 5.2. H i (F(K ))= 0 for i 6= 0.

Proof. Notice that for any 0 6= X ∈T we have X⊗F(1) 6= 0. Since the endofunctor
−⊗F(1) of the category T is exact (see, e.g., [Bakalov and Kirillov 2001, Proposi-
tion 2.1.8]) we see that H i (F(K⊗1))= H i (F(K )⊗F(1))= H i (F(K ))⊗F(1).
By the definition of K0

d the cohomology of F(K ⊗1) is concentrated in degree
zero and we are done. �

We now define the functor K0
d→T as K 7→ H 0(F(K )) with the tensor structure

induced by the one on F (or rather its extension to K b(Rep(Sd))→ Kb(T)). �

Remark 5.3. Here is an example of a tensor functor between abelian rigid tensor
categories which is not exact. Let k be a field of characteristic 2 and consider
the category Repk(Z/2Z) of finite-dimensional k-representations of Z/2Z. This
category has precisely 2 indecomposable objects: one is simple and 1-dimensional;
the other is projective and has categorical dimension 0. Thus the quotient of
Repk(Z/2Z) by the negligible morphisms is equivalent to the category Veck of finite-
dimensional vector spaces over k. Clearly the quotient functor Repk(Z/2Z)→Veck

is not exact since it sends the projective object to zero. One can also construct a
similar example over a field of characteristic zero using the representation category
of the additive supergroup of a 1-dimensional odd space.

5B. Fundamental groups of K0
d and Rep(Sd). Let π be the fundamental group

of the pre-Tannakian category K0
d . The action of π on [pt] ∈ Rep(Sd)⊂K0

d defines
a homomorphism π→ SI where I= Spec([pt]).

Proposition 5.4. The homomorphism ε : π→ SI is in fact an isomorphism.
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Proof. Since the object [pt] generates K0
d (see Corollary 4.7(b)) the homomorphism

ε : π→ SI is an embedding.
Consider the category Rep(SI, ε). It is shown in (the proof of) [Deligne 2007,

Proposition B1] that its fundamental group is precisely the group SεI =AutRep(SI,ε)(I).
We have an obvious tensor functor Rep(Sd)→ Rep(SI, ε); by Proposition 5.1 it
extends to a tensor functor F : K0

d → Rep(SI, ε). Thus we have a homomorphism
SεI →F(π). It is clear that the composition SεI →F(π)⊂F(SI)= SεI is the identity
map. The result follows. �

5C. Proof of Theorem 1.2. We start with the following result:

Proposition 5.5 [Deligne 1990, 8.14(ii)]. The fundamental group of the category
Rep(Sd) is the group Sd acting on itself by conjugation. �

Remark 5.6. It is explained in loc. cit. that we can replace Sd with any affine
algebraic group G in the statement of the proposition.

Theorem 5.7. Let T be a pre-Tannakian category and let F : Rep(Sd)→ T be a
tensor functor with T = F([pt]).

(a) If F(1) = 0, then the category Rep(SI, ε) endowed with the functor FT :

Rep(Sd) → Rep(SI, ε) is equivalent to Rep(Sd) equipped with the functor
Rep(Sd)→ Rep(Sd).

(b) If F(1) 6= 0, then the category Rep(SI, ε) endowed with the functor FT :

Rep(Sd)→Rep(SI, ε) is equivalent to K0
d equipped with the functor Rep(Sd)→

K0
d .

Proof. (a) In this case F factorizes as Rep(Sd)→Rep(Sd)→T (see Corollary 3.16).
The result follows from [Deligne 1990, Théorème 8.17] and Proposition 5.5.

(b) In this case F extends to a functor Rep(Sd)→K0
d→T by Proposition 5.1. The

result follows from [Deligne 1990, Théorème 8.17] and Proposition 5.4. �

If we apply Theorem 5.7(b) to the category T = Rep(S−1) and the functor
ResSd

S−1
: Rep(Sd)→ T described in Definition 2.4 and Section 3D we obtain the

following:

Corollary 5.8. The category Repab(Sd) endowed with the functor Rep(Sd) →

Repab(Sd) is equivalent to the category K0
d with the functor Rep(Sd)→K0

d . �

Clearly Theorem 5.7 and Corollary 5.8 together imply Theorem 1.2.
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Algebraicity of the zeta function associated
to a matrix over a free group algebra

Christian Kassel and Christophe Reutenauer

Following and generalizing a construction by Kontsevich, we associate a zeta
function to any matrix with entries in a ring of noncommutative Laurent polyno-
mials with integer coefficients. We show that such a zeta function is an algebraic
function.

1. Introduction

Fix a commutative ring K . Let F be a free group on a finite number of generators
X1, . . . , Xn and

KF = K 〈X1, X−1
1 , . . . , Xn, X−1

n 〉

be the corresponding group algebra: equivalently, it is the algebra of noncommu-
tative Laurent polynomials with coefficients in K . Any element a ∈ KF can be
uniquely written as a finite sum of the form

a =
∑
g∈F

(a, g)g,

where (a, g) ∈ K .
Let M be a d×d matrix with coefficients in KF . For any n≥ 1, we may consider

the n-th power Mn of M and its trace Tr(Mn), which is an element of KF . We
define the integer an(M) as the coefficient of 1 in the trace of Mn:

an(M)= (Tr(Mn), 1). (1-1)

Let gM and PM be the formal power series

gM =
∑
n≥1

an(M)tn and PM = exp
(∑

n≥1

an(M)
tn

n

)
. (1-2)

They are related by

gM = t
d log(PM)

dt
.
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Keywords: noncommutative formal power series, language, zeta function, algebraic function.
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We call PM the zeta function of the matrix M by analogy with the zeta function
of a noncommutative formal power series (see next section); the two concepts will
be related in Proposition 4.1.

The motivation for the definition of PM comes from the well-known identity
expressing the inverse of the reciprocal polynomial of the characteristic polynomial
of a matrix M with entries in a commutative ring

1
det(1− t M)

= exp
(∑

n≥1

Tr(Mn)
tn

n

)
.

Note that, for any scalar λ ∈ K , the corresponding series for the matrix λM
become

gλM(t)= gM(λt) and PλM(t)= PM(λt). (1-3)

Our main result is the following; it was inspired by Theorem 1 of [Kontsevich
2011]:

Theorem 1.1. For each matrix M ∈ Md(KF) where K =Q is the ring of rational
numbers, the formal power series PM is algebraic.

The special case d = 1 is due to Kontsevich [2011]. A combinatorial proof in
the case d = 1 and F is a free group on one generator appears in [Reutenauer and
Robado 2012].

Observe that by the rescaling equalities (1-3) it suffices to prove the theorem
when K = Z is the ring of integers.

It is crucial for the veracity of Theorem 1.1 that the variables do not commute:
for instance, if a = x + y + x−1

+ y−1
∈ Z[x, x−1, y, y−1

], where x and y are
commuting variables, then exp(

∑
n≥1(a

n, 1)tn/n) is a formal power series with
integer coefficients but not an algebraic function (this follows from Example 3 in
[Bousquet-Mélou 2005, §1]).

The paper is organized as follows. In Section 2, we define the zeta function ζS

of a noncommutative formal power series S and show that it can be expanded as
an infinite product under a cyclicity condition that is satisfied by the characteristic
series of cyclic languages.

In Section 3, we recall the notion of algebraic noncommutative formal power
series and some of their properties.

In Section 4, we reformulate the zeta function of a matrix as the zeta function of
a noncommutative formal power series before giving the proof of Theorem 1.1; the
latter follows the steps sketched in [Kontsevich 2011] and relies on the results of the
previous sections as well as on an algebraicity result by André [2004] elaborating
on an idea of D. and G. Chudnovsky.

We concentrate on two specific matrices in Section 5. We give a closed formula
for the zeta function of the first matrix; its nonzero coefficients count the planar
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rooted bicubic maps as well as Chapoton’s “new intervals” in a Tamari lattice (see
[Chapoton 2006; Tutte 1963]).

2. Cyclic formal power series

General definitions. As usual, if A is a set, we denote by A∗ the free monoid on A:
it consists of all words on the alphabet A, including the empty word 1.

Let A+ = A−{1}. Recall that w ∈ A+ is primitive if it cannot be written as ur

for any integer r ≥ 2 and any u ∈ A+. Two elements w,w′ ∈ A+ are conjugate if
w = uv and w′ = vu for some u, v ∈ A∗.

Given a set A and a commutative ring K , let K 〈〈A〉〉 be the algebra of noncom-
mutative formal power series on the alphabet A. For any element S ∈ K 〈〈A〉〉 and
any w ∈ A∗, we define the coefficient (S, w) ∈ K by

S =
∑
w∈A∗

(S, w)w.

As an example of such noncommutative formal power series, take the charac-
teristic series

∑
w∈L w of a language L ⊆ A∗. In the sequel, we shall identify a

language with its characteristic series.
The generating series gS of an element S ∈ K 〈〈A〉〉 is the image of S under the

algebra map ε : K 〈〈A〉〉 → K [[t]] sending each a ∈ A to the variable t . We have

gS − (S, 1)=
∑
w∈A+

(S, w)t |w| =
∑
n≥1

(∑
|w|=n

(S, w)
)

tn, (2-1)

where |w| is the length of w.
The zeta function ζS of S ∈ K 〈〈A〉〉 is defined by

ζS = exp
(∑
w∈A+

(S, w)
t |w|

|w|

)
= exp

(∑
n≥1

(∑
|w|=n

(S, w)
)

tn

n

)
. (2-2)

The formal power series gS and ζS are related by

t
d log(ζS)

dt
= t

ζ ′S

ζS
= gS − (S, 1), (2-3)

where ζ ′S is the derivative of ζS with respect to the variable t .

Cyclicity.

Definition 2.1. An element S ∈ K 〈〈A〉〉 is cyclic if

(i) ∀u, v ∈ A∗, (S, uv)= (S, vu) and

(ii) ∀w ∈ A+, ∀r ≥ 2, (S, wr )= (S, w)r .
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Cyclic languages provide examples of cyclic formal power series. Recall from
[Berstel and Reutenauer 1990, §2] that a language L ⊆ A∗ is cyclic if

(1) ∀u, v ∈ A∗, uv ∈ L⇐⇒ vu ∈ L and

(2) ∀w ∈ A+, ∀r ≥ 2, wr
∈ L⇐⇒ w ∈ L .

The characteristic series of a cyclic language is a cyclic formal power series in the
above sense.

Let L be any set of representatives of conjugacy classes of primitive elements
of A+.

Proposition 2.2. If S ∈ K 〈〈A〉〉 is a cyclic formal power series, then

ζS =
∏
`∈L

1
1− (S, `)t |`|

.

Proof. Since both sides of the equation have the same constant term 1, it suffices to
prove that they have the same logarithmic derivative. The logarithmic derivative of
the right-hand side multiplied by t is equal to

∑
`∈L

|`|(S, `)t |`|

1− (S, `)t |`|
,

which in turn is equal to ∑
`∈L , k≥1

|`|(S, `)k tk|`|.

In view of (2-1) and (2-3), it is enough to check that, for all n ≥ 1,∑
|w|=n

(S, w)=
∑

`∈L , k≥1, k|`|=n

|`|(S, `)k . (2-4)

Now any word w = uk is the k-th power of a unique primitive word u, which is the
conjugate of a unique element ` ∈ L . Moreover, w has exactly |`| conjugates and,
since S is cyclic, we have

(S, w)= (S, uk)= (S, u)k = (S, `)k .

From this, Equation (2-4) follows immediately. �

Corollary 2.3. If a cyclic formal power series S has integer coefficients, that is, if
(S, w) ∈ Z for all w ∈ A∗, then so does ζS .
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3. Algebraic noncommutative series

This section is essentially a compilation of well-known results on algebraic non-
commutative series.

Recall that a system of proper algebraic noncommutative equations is a finite set
of equations

ξi = pi , i = 1, . . . , n,

where ξ1, . . . , ξn are noncommutative variables and p1, . . . , pn are elements of
K 〈ξ1, . . . , ξn, A〉, where A is some alphabet. We assume that each pi has no
constant term and contains no monomial ξ j . One can show that such a system has
a unique solution (S1, . . . , Sn), i.e., there exists a unique n-tuple (S1, . . . , Sn) ∈

K 〈〈A〉〉n such that Si = pi (S1, . . . , Sn, A) for all i =1, . . . , n and each Si has no con-
stant term (see [Schützenberger 1962], [Salomaa and Soittola 1978, Theorem IV.1.1],
or [Stanley 1999, Proposition 6.6.3]).

If a formal power series S ∈ K 〈〈A〉〉 differs by a constant from such a formal
power series Si , we say that S is algebraic.

Example 3.1. Consider the proper algebraic noncommutative equation

ξ = aξ 2
+ b.

(Here A = {a, b}.) Its solution is of the form

S = b+ abb+ aabbb+ ababb+ · · · .

One can show (see [Berstel 1979]) that S is the characteristic series of Łukasiewicz’s
language, namely of the set of words w ∈ {a, b}∗ such that |w|b = |w|a + 1 and
|u|a ≥ |u|b for all proper prefixes u of w.

Recall also that S ∈ K 〈〈A〉〉 is rational if it belongs to the smallest subalge-
bra of K 〈〈A〉〉 containing K 〈A〉 and closed under inversion. By a theorem of
Schützenberger (see [Berstel and Reutenauer 2011, Theorem I.7.1]), a formal power
series S ∈ K 〈〈A〉〉 is rational if and only if it is recognizable, i.e., there exist an
integer n ≥ 1, a representation µ of the free monoid A∗ by matrices with entries
in K , a row-matrix α and a column-matrix β such that, for all w ∈ A∗,

(S, w)= αµ(w)β.

We now record two well-known theorems.

Theorem 3.2. (1) If S ∈ K 〈〈A〉〉 is algebraic, then its generating series gS ∈ K [[t]]
is algebraic in the usual sense.

(2) The set of algebraic power series is a subring of K 〈〈A〉〉.

(3) A rational power series is algebraic.
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(4) The Hadamard product of a rational power series and an algebraic power
series is algebraic.

(5) Let A = {a1, . . . , an, a−1
1 , . . . , a−1

n } and L be the language consisting of all
words on the alphabet A whose image in the free group on a1, . . . , an is the
neutral element. Then the characteristic series of L is algebraic.

Items (1)–(4) of the previous theorem are due to Schützenberger [1962] and
Item (5) to Chomsky and Schützenberger [1963] (see [Stanley 1999, Example 6.6.8]).

The second theorem is a criterion due to Jacob [1975].

Theorem 3.3. A formal power series S ∈ K 〈〈A〉〉 is algebraic if and only if there
exist a free group F , a representation µ of the free monoid A∗ by matrices with
entries in KF , indices i and j , and an element γ ∈ F such that, for all w ∈ A∗,

(S, w)= ((µw)i, j , γ ).

The following is an immediate consequence of Theorem 3.3:

Corollary 3.4. If S ∈ K 〈〈A〉〉 is an algebraic power series and ϕ : B∗→ A∗ is a
homomorphism of finitely generated free monoids, then the power series∑

w∈B∗
(S, ϕ(w))w ∈ K 〈〈B〉〉

is algebraic.

As a consequence of Theorem 3.2(5) and of Corollary 3.4, we obtain:

Corollary 3.5. Let f : A∗→ F be a homomorphism from A∗ to a free group F.
Then the characteristic series of f −1(1) ∈ K 〈〈A〉〉 is algebraic.

4. Proof of Theorem 1.1

Let M be a d × d matrix. As observed in the introduction, it is enough to establish
Theorem 1.1 when all the entries of M belong to ZF .

We first reformulate the formal power series gM and PM of (1-2) as the generating
series and the zeta function of a noncommutative formal power series, respectively.

Let A be the alphabet whose elements are triples [g, i, j], where i and j are
integers such that 1≤ i, j ≤ d and g ∈ F appears in the (i, j)-entry Mi, j of M , i.e.,
(Mi, j , g) 6= 0. We define the noncommutative formal power series SM ∈ K 〈〈A〉〉
as follows: for w = [g1, i1, j1] · · · [gn, in, jn] ∈ A+, the scalar (SM , w) vanishes
unless we have

(a) jn = i1 and jk = ik+1 for all k = 1, . . . , n− 1 and

(b) g1 · · · gn = 1 in the group F ,



Algebraicity of zeta functions associated to a matrix over a free group algebra 503

in which case (SM , w) is given by

(SM , w)= (Mi1, j1, g1) · · · (Min, jn , gn) ∈ K .

By convention, (SM , 1)= d.

Proposition 4.1. The generating series and the zeta function of SM are related to
the formal power series gM and PM of (1-2) by

gSM − d = gM and ζSM = PM .

Proof. For n ≥ 1, we have

Tr(Mn)=
∑

Mi1, j1 · · ·Min, jn

=
∑
(Mi1, j1, g1) · · · (Min, jn , gn)g1 · · · gn,

where the sum runs over all indices i1, j1, . . . , in, jn satisfying Condition (a) above
and over all g1, . . . , gn ∈ F . Then

an(M)= (Tr(Mn), 1)=
∑
(Mi1, j1, g1) · · · (Min, jn , gn),

where Conditions (a) and (b) are satisfied. Hence,

an(M)=
∑

w∈A∗, |w|=n

(S, w),

which proves the proposition in view of (1-2), (2-1) and (2-2). �

We next establish that SM is both cyclic in the sense of Section 2 and algebraic
in the sense of Section 3.

Proposition 4.2. The noncommutative formal power series SM is cyclic.

Proof. (i) Conditions (a) and (b) above are clearly preserved under cyclic permuta-
tions. Hence, we also have

(SM , w)= (Mi2, j2, g2) · · · (Min, jn , gn)(Mi1, j1, g1)

when w = [g1, i1, j1] · · · [gn, in, jn] such that Conditions (a) and (b) are satisfied.
It follows that (S, uv)= S(vu) for all u, v ∈ A∗.

(ii) If w satisfies Conditions (a) and (b), so does wr for r ≥ 2. Conversely, if wr

(r ≥ 2) satisfies Condition (a), then since

wr
= [g1, i1, j1] · · · [gn, in, jn][g1, i1, j1] · · ·

we must have jn = i1 and jk = ik+1 for all k = 1, . . . , n − 1, and so w satisfies
Condition (a).

If wr (r ≥ 2) satisfies Condition (b), i.e., (g1 · · · gn)
r
= 1, then g1 · · · gn = 1

since F is torsion-free. Hence, w satisfies Condition (b). It follows that (S, wr )=

((Mi1, j1, g1) · · · (Min, jn , gn))
r
= (S, w)r . �
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Proposition 4.3. The noncommutative formal power series SM is algebraic.

Proof. We write SM as the Hadamard product of three noncommutative formal
power series S1, S2 and S3.

The series S1 ∈ K 〈〈A〉〉 is defined for w = [g1, i1, j1] · · · [gn, in, jn] ∈ A+ by

(S1, w)= (Mi1, j1, g1) · · · (Min, jn , gn)

and by (S1, 1) = 1. This is a recognizable, hence rational, series with one-
dimensional representation A∗→ K given by [g, i, j] 7→ (Mi, j , g).

Next consider the representation µ of the free monoid A∗ defined by

µ([g, i, j])= Ei, j ,

where Ei, j denotes as usual the d × d matrix with all entries vanishing except the
(i, j)-entry, which is equal to 1. Set

S2 =
∑
w∈A∗

Tr((µw))w ∈ K 〈〈A〉〉.

The power series S2 is recognizable and hence rational. Let us describe S2 more
explicitly. For w = 1, µ(w) is the identity d × d matrix; hence, (S2, 1) = d. For
w = [g1, i1, j1] · · · [gn, in, jn] ∈ A+, we have

Tr((µw))= Tr(Ei1, j1 · · · Ein, jn ).

It follows that Tr((µw)) 6= 0 if and only if Tr(Ei1, j1 · · · Ein, jn ) 6= 0, which is equiv-
alent to jn = i1 and jk = ik+1 for all k = 1, . . . , n−1, in which case Tr((µw))= 1.
Thus,

S2 = d +
∑
n≥1

∑
[g1, i1, i2][g2, i2, i3] · · · [gn, in, i1],

where the second sum runs over all elements g1, . . . , gn ∈ F and all indices
i1, . . . , in .

Finally, consider the homomorphism f : A∗→ F sending [g, i, j] to g. Then
by Corollary 3.5 the characteristic series S3 ∈ K 〈〈A〉〉 of f −1(1) is algebraic.

It is now clear that SM is the Hadamard product of S1, S2 and S3:

SM = S1� S2� S3.

Since, by [Berstel and Reutenauer 2011, Theorem I.5.5] the Hadamard product
of two rational series is rational, S1� S2 is rational as well. It then follows from
Theorem 3.2(4) and the algebraicity of S3 that SM = S1� S2� S3 is algebraic. �

Since M has entries in ZF , the power series gSM = gM + d belongs to Z[[t]]. It
follows by Corollary 2.3 and Proposition 4.2 that the power series PM = ζSM has
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integer coefficients as well. Moreover, by Theorem 3.2(1) and Proposition 4.3,

t
d log(PM)

dt
= gM

is algebraic.
To complete the proof of Theorem 1.1, it suffices to apply the following alge-

braicity theorem:

Theorem 4.4. If f ∈ Z[[t]] is a formal power series with integer coefficients such
that t d log f/dt is algebraic, then f is algebraic.

Note that the integrality condition for f is essential: for the transcendental formal
power series f = exp(t), we have t d log f/dt = t , which is even rational.

Proof. This result follows from cases of the Grothendieck–Katz conjecture proved
in [André 2004] and in [Bost 2001]. The conjecture states that, if Y ′ = AY is a
linear system of differential equations with A ∈ Md(Q(t)), then far from the poles
of A it has a basis of solutions that are algebraic over Q(t) if and only if for almost
all prime numbers p the reduction mod p of the system has a basis of solutions
that are algebraic over Fp(t).

Let us now sketch a proof of the theorem (see also Exercise 5 of [André 1989,
p. 160]). Set g= t f ′/ f , and consider the system y′= (g/t)y; it defines a differential
form ω on an open set S of the smooth projective complete curve S associated
to g. We now follow [André 2004, §6.3], which is inspired from [Chudnovsky
and Chudnovsky 1985]. First, extend ω to a section (still denoted ω) of �1

S
(−D),

where D is the divisor of poles of ω. For any n ≥ 2, we have a differential form∑n
i=1 p∗i (ω) on Sn , where pi : Sn

→ S is the i-th canonical projection; this form
goes down to the symmetric power S(n). Now let J be the generalized Jacobian
of S parametrizing invertible fiber bundles over S that are rigidified over D. There
is a morphism ϕ : S→ J and a unique invariant differential form ωJ on J such
that ω = ϕ∗(ωJ ). For any n ≥ 2, ϕ induces a morphism ϕ(n) : S(n)→ J such that
(ϕ(n))∗(ωJ ) =

∑n
i=1 p∗i (ω). For n large enough, ϕ(n) is dominant, and if ωJ is

exact, then so is ω. To prove that ωJ is exact, we note that J , being a scheme of
commutative groups, is uniformized by Cn . We can now apply Theorem 5.4.3 of
[André 2004], whose hypotheses are satisfied because the solution f of the system
has integer coefficients.

Alternatively, one can use a special case of a generalized Grothendieck–Katz
conjecture proved by Bost, namely Corollary 2.8 in [Bost 2001, §2.4]: the vanishing
of the p-curvatures in Condition (i) follows by a theorem of Cartier from the fact
that the system has a solution in Fp(t), namely the reduction mod p of f for all
prime numbers p for which such a reduction of the system exists (see Exercise 3
of [André 1989, p. 84] or Theorem 5.1 of [Katz 1970]); Condition (ii) is satisfied
since Cn satisfies the Liouville property. �
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A nice overview of such algebraicity results is given in the Bourbaki report of
Chambert-Loir [2002]; see especially Theorem 2.6 and the following lines.

5. Examples

Kontsevich [2011] computed Pω when ω= X1+ X−1
1 +· · ·+ Xn+ X−1

n considered
as a 1× 1 matrix, obtaining

Pω =
2n

(2n− 1)n−1 ·
(n− 1+ n(1− 4(2n− 1)t2)1/2)n−1

(1+ (1− 4(2n− 1)t2)1/2)n
, (5-1)

which shows that Pω belongs to a quadratic extension of Q(t).
We now present similar results for the zeta functions of two matrices: the first

one of order 2 and the second one of order d ≥ 3.

Computing PM for a 2 × 2 matrix. Consider the following matrix with entries in
the ring Z〈a, a−1, b, b−1, d, d−1

〉, where a, b and d are noncommuting variables:

M =
(

a+ a−1 b
b−1 d + d−1

)
. (5-2)

Proposition 5.1. We have

gM = 3
(1− 8t2)1/2− 1+ 6t2

1− 9t2 , (5-3)

PM =
(1− 8t2)3/2− 1+ 12t2

− 24 t4

32 t6 . (5-4)

Expanding PM as a formal power series, we obtain

PM = 1+
∑
n≥1

3 · 2n

(n+ 2)(n+ 3)

(2n+2
n+1

)
t2n.

Proof. View the matrix M under the form of the graph of Figure 1 with two vertices 1
and 2 and six labeled oriented edges. We identify paths in this graph and words
on the alphabet A = {a, a−1, b, b−1, d, d−1

}. Let B denote the set of nonempty
words on A that become trivial in the corresponding free group on a, b and d and
whose corresponding path is a closed path. Then the integer an(M) is the number
of words in B of length n. We have ε(B)= gM , where ε : K 〈〈A〉〉 → K [[t]] is the
algebra map defined in Section 2.

We define Bi (i = 1, 2) as the set of paths in B starting from and ending at the
vertex i ; we have B = B1+ B2. Each set Bi is a free subsemigroup of A∗, freely
generated by the set Ci of closed paths not passing through i (except at their ends).
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1 2

d

d−1

a

a−1

b

b−1

Figure 1. A graph representing M .

The sets Ci do not contain the empty word. We have

Bi = C+i =
∑
n≥1

Cn
i , i = 1, 2.

Given a letter x , we denote by Ci (x) the set of closed paths in Ci starting with x .
Any word of Ci (x) is of the form xwx−1, where w ∈ B j when i

x
−→ j ; such w does

not start with x−1. Identifying a language with its characteristic series and using the
standard notation L∗ = 1+

∑
n≥1 Ln for any language L , we obtain the equations

C1(a)= a(C1(a)+C1(b))∗a−1, (5-5)

C1(b)= b(C2(d)+C2(d−1))∗b−1. (5-6)

Applying the algebra map ε and taking into account the symmetries of the graph,
we see that the four noncommutative formal power series C1(a), C1(a−1), C2(d)
and C2(d−1) are sent to the same formal power series u ∈ Z[[t]] while C1(b) and
C2(b−1) are sent to the same formal power series v. It follows from (5-5) and (5-6)
that u and v satisfy the equations

u = t2(u+ v)∗ =
t2

1− u− v
and v = t2(2u)∗ =

t2

1− 2u
, (5-7)

from which we deduce

t2
= u(1− u− v)= v(1− 2u).

The second equality is equivalent to (u−v)(u−1)=0. Since C1(a) does not contain
the empty word, the constant term of u vanishes; hence, u−1 6= 0. Therefore, u= v.

Since C1=C1(a)+C1(a−1)+C1(b) and C2=C2(d)+C2(d−1)+C2(b−1), we
have ε(C1)= ε(C2)= 2u+ v = 3u. Therefore, ε(B1)= ε(B2)= 3u/(1− 3u) and

gM = ε(B)=
6u

1− 3u
. (5-8)

Let us now compute u using (5-7) and the equality u= v. The formal power series u
satisfies the quadratic equation 2u2

− u+ t2
= 0. Since u has zero constant term,
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we obtain

u =
1− (1− 8t2)1/2

4
.

From this and (5-8), we obtain the desired form for gM .
Let P(t) be the right-hand side in Equation (5-4). To prove PM = P(t), we

checked that t P ′(t)/P(t)= gM and the constant term of P(t) is 1. �

Remark 5.2. We found Equation (5-4) for P(t) as follows. We first computed the
lowest coefficients of gM up to degree 10:

gM = 6(t2
+ 5t4

+ 29t6
+ 181t8

+ 1181t10)+ O(t12).

From this, it was not difficult to find that

PM = 1+ 3t2
+ 12t4

+ 56t6
+ 288t8

+ 1584t10
+ O(t12). (5-9)

Up to a shift, the sequence (5-9) of nonzero coefficients of PM is the same as the
sequence of numbers of “new” intervals in a Tamari lattice computed in [Chapo-
ton 2006, §9]. (We learnt this from [OEIS 2010], where this sequence is listed
as A000257.) Chapoton gave an explicit formula for the generating function ν of
these “new” intervals (see Equation (73) in [Chapoton 2006]). Rescaling ν, we
found that P(t)= (ν(t2)− t4)/t6 has up to degree 10 the same expansion as (5-9).
It then sufficed to check that t P ′(t)/P(t)= gM .

By [OEIS 2010], the integers in the sequence A000257 also count the number of
planar rooted bicubic maps with 2n vertices (see [Tutte 1963, p. 269]). Planar maps
also come up in the combinatorial interpretation of (5-1) given in [Reutenauer and
Robado 2012, §5] for n = 2.

Note that the sequence of nonzero coefficients of gM/6 is listed as A194723 in
[OEIS 2010].

A similar d × d matrix. Fix an integer d ≥ 3, and let M be the d × d matrix with
entries Mi, j defined by

Mi,i = ai + a−1
i and Mi, j =

{
bi j if i < j ,
b−1

j i if j < i ,

where a1, . . . , ad , bi j (1≤ i < j ≤ d) are noncommuting variables. This matrix is
a straightforward generalization of (5-2).

Proceeding as above, we obtain two formal power series u and v satisfying the
following equations similar to (5-7):

u = t2(u+ (d − 1)v)∗ =
t2

1− u− (d − 1)v
,

v = t2(2u+ (d − 2)v)∗ =
t2

1− 2u− (d − 2)v
.
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We deduce the equality u = v and the quadratic equation u(1−du)= t2. We finally
have

gM =
d(d + 1)u

1− (d + 1)u
,

which leads to

gM =
d(d + 1)

2
(1− 4dt2)1/2− 1+ 2(d + 1)t2

1− (d + 1)2 t2 .

Its expansion as a formal power series is the following:

gM = d(d + 1)
{
t2
+ (2d + 1)t4

+ (5d2
+ 4d + 1)t6

+ (14d3
+ 14d2

+ 6d + 1)t8

+ (42d4
+ 48d3

+ 27d2
+ 8d + 1)t10}

+ O(t12).

When d = 2, 3, 4, the sequence of nonzero coefficients of gM/d(d + 1) is listed
respectively as A194723, A194724 and A194725 in [OEIS 2010] (it is also the d-th
column in Sequence A183134). These sequences count the d-ary words, either
empty or beginning with the first letter of the alphabet, that can be built by inserting
n doublets into the initially empty word.

We were not able to find a closed formula for PM analogous to (5-4). Using
Maple, we found that, for instance up to degree 10, the expansion of PM is

1+
d(d+1)

2
t2
+

d(d+1)(d2
+5d+2)

8
t4

+
d(d+1)(d4

+14d3
+59d2

+38d+8)
48

t6

+
d(d+1)(d6

+27d5
+271d4

+1105d3
+904d2

+332d+48)
384

t8.

Acknowledgements

We are most grateful to Yves André, Jean-Benoît Bost and Carlo Gasbarri for their
help in the proof of Theorem 4.4. We are also indebted to François Bergeron and
Pierre Guillot for assisting us with computer computations in the process detailed
in Remark 5.2, to Frédéric Chapoton for his comments on the last part of Section 5
and to an anonymous referee for having spotted slight inaccuracies. Thanks also to
Stavros Garoufalidis for pointing out references [Garoufalidis and Bellissard 2007;
Sauer 2003], in which the algebraicity of gM had been proved.

Kassel was partially funded by the Laboratoire International Franco-Québécois
de Recherche en Combinatoire (LIRCO) and Université du Québec à Montréal
(UQAM). Reutenauer is supported by NSERC (Canada).



510 Christian Kassel and Christophe Reutenauer

References

[André 1989] Y. André, G-functions and geometry, Aspects of Mathematics 13, Friedr. Vieweg &
Sohn, Braunschweig, 1989. MR 90k:11087 Zbl 0688.10032

[André 2004] Y. André, “Sur la conjecture des p-courbures de Grothendieck–Katz et un problème de
Dwork”, pp. 55–112 in Geometric aspects of Dwork theory, vol. I, edited by A. Adolphson et al.,
Walter de Gruyter GmbH & Co. KG, Berlin, 2004. MR 2006d:12005 Zbl 1102.12004

[Berstel 1979] J. Berstel, Transductions and context-free languages, Leitfäden der Angewandten
Mathematik und Mechanik 38, B. G. Teubner, Stuttgart, 1979. MR 80j:68056 Zbl 0424.68040

[Berstel and Reutenauer 1990] J. Berstel and C. Reutenauer, “Zeta functions of formal languages”,
Trans. Amer. Math. Soc. 321:2 (1990), 533–546. MR 91f:68110 Zbl 0797.68092

[Berstel and Reutenauer 2011] J. Berstel and C. Reutenauer, Noncommutative rational series with
applications, Encyclopedia of Mathematics and its Applications 137, Cambridge University Press,
2011. MR 2012b:68152 Zbl 1250.68007

[Bost 2001] J.-B. Bost, “Algebraic leaves of algebraic foliations over number fields”, Publ. Math.
Inst. Hautes Études Sci. 93 (2001), 161–221. MR 2002h:14037 Zbl 1034.14010

[Bousquet-Mélou 2005] M. Bousquet-Mélou, “Algebraic generating functions in enumerative combi-
natorics and context-free languages”, pp. 18–35 in STACS 2005, edited by V. Diekert and B. Durand,
Lecture Notes in Comput. Sci. 3404, Springer, Berlin, 2005. MR 2006c:05012 Zbl 1118.05300

[Chambert-Loir 2002] A. Chambert-Loir, “Théorèmes d’algébricité en géométrie diophantienne
(d’après J.-B. Bost, Y. André, D. & G. Chudnovsky)”, pp. 175–209 in Séminaire Bourbaki 2000/2001,
Astérisque 282, Société Mathématique de France, Paris, 2002. MR 2004f:11062 Zbl 1044.11055

[Chapoton 2006] F. Chapoton, “Sur le nombre d’intervalles dans les treillis de Tamari”, Sém. Lothar.
Combin. 55 (2006), Art. B55f. MR 2007g:05009 Zbl 1207.05011

[Chomsky and Schützenberger 1963] N. Chomsky and M. P. Schützenberger, “The algebraic theory
of context-free languages”, pp. 118–161 in Computer programming and formal systems, edited by P.
Braffort and D. Hirschberg, North-Holland, Amsterdam, 1963. MR 27 #2371 Zbl 0148.00804

[Chudnovsky and Chudnovsky 1985] D. V. Chudnovsky and G. V. Chudnovsky, “Applications of
Padé approximations to the Grothendieck conjecture on linear differential equations”, pp. 52–100 in
Number theory (New York, 1983–1984), edited by D. V. Chudnovsky et al., Lecture Notes in Math.
1135, Springer, Berlin, 1985. MR 87d:11053 Zbl 0565.14010

[Garoufalidis and Bellissard 2007] S. Garoufalidis and J. Bellissard, “Algebraic G-functions associ-
ated to matrices over a group-ring”, preprint, 2007. arXiv 0708.4234v4

[Jacob 1975] G. Jacob, “Sur un théorème de Shamir”, Information and Control 27 (1975), 218–261.
MR 51 #2361 Zbl 0318.68053

[Katz 1970] N. M. Katz, “Nilpotent connections and the monodromy theorem: applications of a result
of Turrittin”, Inst. Hautes Études Sci. Publ. Math. 39 (1970), 175–232. MR 45 #271 Zbl 0221.14007

[Kontsevich 2011] M. Kontsevich, “Noncommutative identities”, notes of talk at Mathematische
Arbeitstagung, Bonn, 2011. arXiv 1109.2469v1

[OEIS 2010] “The on-line encyclopedia of integer sequences”, 2010, http://oeis.org.

[Reutenauer and Robado 2012] C. Reutenauer and M. Robado, “On an algebraicity theorem of
Kontsevich”, pp. 239–246 in 24th International Conference on Formal Power Series and Alge-
braic Combinatorics (Nagoya, 2012), Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2012.
MR 2958001

[Salomaa and Soittola 1978] A. Salomaa and M. Soittola, Automata-theoretic aspects of formal power
series, Springer, New York, 1978. MR 58 #3698 Zbl 0377.68039

http://dx.doi.org/10.1007/978-3-663-14108-2
http://msp.org/idx/mr/90k:11087
http://msp.org/idx/zbl/0688.10032
http://msp.org/idx/mr/2006d:12005
http://msp.org/idx/zbl/1102.12004
http://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.html
http://msp.org/idx/mr/80j:68056
http://msp.org/idx/zbl/0424.68040
http://dx.doi.org/10.2307/2001573
http://msp.org/idx/mr/91f:68110
http://msp.org/idx/zbl/0797.68092
http://msp.org/idx/mr/2012b:68152
http://msp.org/idx/zbl/1250.68007
http://dx.doi.org/10.1007/s10240-001-8191-3
http://msp.org/idx/mr/2002h:14037
http://msp.org/idx/zbl/1034.14010
http://dx.doi.org/10.1007/978-3-540-31856-9_2
http://dx.doi.org/10.1007/978-3-540-31856-9_2
http://msp.org/idx/mr/2006c:05012
http://msp.org/idx/zbl/1118.05300
http://www.numdam.org/item?id=SB_2000-2001__43__175_0
http://www.numdam.org/item?id=SB_2000-2001__43__175_0
http://msp.org/idx/mr/2004f:11062
http://msp.org/idx/zbl/1044.11055
http://www.emis.de/journals/SLC/wpapers/s55chapoton.html
http://msp.org/idx/mr/2007g:05009
http://msp.org/idx/zbl/1207.05011
http://msp.org/idx/mr/27:2371
http://msp.org/idx/zbl/0148.00804
http://dx.doi.org/10.1007/BFb0074601
http://dx.doi.org/10.1007/BFb0074601
http://msp.org/idx/mr/87d:11053
http://msp.org/idx/zbl/0565.14010
http://msp.org/idx/arx/0708.4234v4
http://dx.doi.org/10.1016/S0019-9958(75)90140-0
http://msp.org/idx/mr/51:2361
http://msp.org/idx/zbl/0318.68053
http://www.numdam.org/item?id=PMIHES_1970__39__175_0
http://www.numdam.org/item?id=PMIHES_1970__39__175_0
http://msp.org/idx/mr/45:271
http://msp.org/idx/zbl/0221.14007
http://msp.org/idx/arx/1109.2469v1
http://oeis.org
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/viewArticle/dmAR0122
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/viewArticle/dmAR0122
http://msp.org/idx/mr/2958001
http://dx.doi.org/10.1007/978-1-4612-6264-0
http://dx.doi.org/10.1007/978-1-4612-6264-0
http://msp.org/idx/mr/58:3698
http://msp.org/idx/zbl/0377.68039


Algebraicity of zeta functions associated to a matrix over a free group algebra 511

[Sauer 2003] R. Sauer, “Power series over the group ring of a free group and applications to Novikov–
Shubin invariants”, pp. 449–468 in High-dimensional manifold topology, edited by F. T. Farrell and
W. Lück, World Sci. Publ., 2003. MR 2005b:16078 Zbl 1051.16013

[Schützenberger 1962] M. P. Schützenberger, “On a theorem of R. Jungen”, Proc. Amer. Math. Soc.
13 (1962), 885–890. MR 26 #350 Zbl 0107.03102

[Stanley 1999] R. P. Stanley, Enumerative combinatorics, vol. 2, Cambridge Studies in Advanced
Mathematics 62, Cambridge University Press, 1999. MR 2000k:05026 Zbl 0928.05001

[Tutte 1963] W. T. Tutte, “A census of planar maps”, Canad. J. Math. 15 (1963), 249–271. MR 26
#4343 Zbl 0115.17305

Communicated by Victor Reiner
Received 2013-04-25 Revised 2013-07-15 Accepted 2013-07-24

kassel@math.unistra.fr Institut de Recherche Mathématique Avancée, CNRS,
Université de Strasbourg, 7 rue René Descartes,
67084 Strasbourg, France

reutenauer.christophe@uqam.ca Mathématiques, Université du Québec à Montréal, CP 8888
succursale Centre Ville, Montréal QC H3C 3P8, Canada

mathematical sciences publishers msp

http://dx.doi.org/10.1142/9789812704443_0020
http://dx.doi.org/10.1142/9789812704443_0020
http://msp.org/idx/mr/2005b:16078
http://msp.org/idx/zbl/1051.16013
http://dx.doi.org/10.2307/2034080
http://msp.org/idx/mr/26:350
http://msp.org/idx/zbl/0107.03102
http://dx.doi.org/10.1017/CBO9780511609589
http://msp.org/idx/mr/2000k:05026
http://msp.org/idx/zbl/0928.05001
http://dx.doi.org/10.4153/CJM-1963-029-x
http://msp.org/idx/mr/26:4343
http://msp.org/idx/mr/26:4343
http://msp.org/idx/zbl/0115.17305
mailto:kassel@math.unistra.fr
mailto:reutenauer.christophe@uqam.ca
http://msp.org




Guidelines for Authors

Authors may submit manuscripts in PDF format on-line at the Submission page at
the ANT website.

Originality. Submission of a manuscript acknowledges that the manuscript is orig-
inal and and is not, in whole or in part, published or under consideration for pub-
lication elsewhere. It is understood also that the manuscript will not be submitted
elsewhere while under consideration for publication in this journal.

Language. Articles in ANT are usually in English, but articles written in other
languages are welcome.

Length There is no a priori limit on the length of an ANT article, but ANT con-
siders long articles only if the significance-to-length ratio is appropriate. Very long
manuscripts might be more suitable elsewhere as a memoir instead of a journal
article.

Required items. A brief abstract of about 150 words or less must be included.
It should be self-contained and not make any reference to the bibliography. If the
article is not in English, two versions of the abstract must be included, one in the
language of the article and one in English. Also required are keywords and sub-
ject classifications for the article, and, for each author, postal address, affiliation (if
appropriate), and email address.

Format. Authors are encouraged to use LATEX but submissions in other varieties
of TEX, and exceptionally in other formats, are acceptable. Initial uploads should
be in PDF format; after the refereeing process we will ask you to submit all source
material.

References. Bibliographical references should be complete, including article titles
and page ranges. All references in the bibliography should be cited in the text. The
use of BibTEX is preferred but not required. Tags will be converted to the house
format, however, for submission you may use the format of your choice. Links will
be provided to all literature with known web locations and authors are encouraged
to provide their own links in addition to those supplied in the editorial process.

Figures. Figures must be of publication quality. After acceptance, you will need
to submit the original source files in vector graphics format for all diagrams in your
manuscript: vector EPS or vector PDF files are the most useful.

Most drawing and graphing packages (Mathematica, Adobe Illustrator, Corel Draw,
MATLAB, etc.) allow the user to save files in one of these formats. Make sure that
what you are saving is vector graphics and not a bitmap. If you need help, please
write to graphics@msp.org with details about how your graphics were generated.

White space. Forced line breaks or page breaks should not be inserted in the
document. There is no point in your trying to optimize line and page breaks in
the original manuscript. The manuscript will be reformatted to use the journal’s
preferred fonts and layout.

Proofs. Page proofs will be made available to authors (or to the designated corre-
sponding author) at a Web site in PDF format. Failure to acknowledge the receipt of
proofs or to return corrections within the requested deadline may cause publication
to be postponed.

http://dx.doi.org/10.2140/ant
mailto:graphics@msp.org


Algebra & Number Theory
Volume 8 No. 2 2014

257Large self-injective rings and the generating hypothesis
LEIGH SHEPPERSON and NEIL STRICKLAND

303On lower ramification subgroups and canonical subgroups
SHIN HATTORI

331Wild models of curves
DINO LORENZINI

369Geometry of Wachspress surfaces
COREY IRVING and HAL SCHENCK

397Groups with exactly one irreducible character of degree divisible by p
DANIEL GOLDSTEIN, ROBERT M. GURALNICK, MARK L. LEWIS, ALEXANDER
MORETÓ, GABRIEL NAVARRO and PHAM HUU TIEP

429The homotopy category of injectives
AMNON NEEMAN

457Essential dimension of spinor and Clifford groups
VLADIMIR CHERNOUSOV and ALEXANDER MERKURJEV

473On Deligne’s category Repab(Sd)

JONATHAN COMES and VICTOR OSTRIK

497Algebraicity of the zeta function associated to a matrix over a free group algebra
CHRISTIAN KASSEL and CHRISTOPHE REUTENAUER

1937-0652(2014)8:2;1-9

A
lgebra

&
N

um
ber

Theory
2014

Vol.8,
N

o.2


	 vol. 8, no. 2, 2014
	Masthead and Copyright
	Leigh Shepperson and Neil Strickland
	1. Introduction
	2. General theory of self-injective rings
	3. Criteria for self-injectivity
	4. The Noetherian case
	5. Coherence
	6. Self-injective adjustment
	7. The cube algebra
	8. Pontrjagin self-dual rings
	9. The infinite root algebra
	10. The Rado algebra
	11. The 0-algebra
	12. Triangulation
	References

	Shin Hattori
	1. Introduction
	2. The Breuil–Kisin classification
	3. Lower ramification subgroups
	4. Description of the ideal In,i
	5. Application to canonical subgroups
	Acknowledgments
	References

	Dino Lorenzini
	1. Introduction
	1.3. 
	1.4. 

	2. Cyclic morphisms and torsion
	2.1. 
	2.2. 
	2.3. 
	2.4. 

	3. Arithmetical trees
	3.1. 
	3.2. 
	3.3. 

	4. Some combinatorics
	4.1. 
	4.2. 
	4.4. 
	4.6. 
	4.7. 
	4.8. 

	5. The quotient construction
	5.1. 
	5.2. 

	6. The weakly ramified case
	6.1. 
	6.2. 
	6.11. 

	Acknowledgements
	References

	Corey Irving and Hal Schenck
	1. Introduction
	1A. Statement of main results
	1B. Geometric modeling background
	1C. Algebraic geometry background

	2. H0(Dd-2) and the Wachspress surface
	2A. Background on blowups of P2
	2B. Wachspress surfaces

	3. The Wachspress quadrics
	3A. Diagonal monomials
	3B. The map to (IC)2
	3C. Wachspress quadrics
	3D. Decomposition of V("426830A (IWd)2 "526930B )

	4. The Wachspress cubics
	4A. Construction of Wachspress cubics

	5. Gröbner basis, Stanley–Reisner ring, and free resolution
	5A. Simplicial complexes and combinatorial commutative algebra
	5B. Application to Wachspress surfaces

	Acknowledgments
	References

	Daniel Goldstein and Robert M. Guralnick and Mark L. Lewis and Alexander Moretó and Gabriel Navarro and Pham Huu Tiep
	1. p-solvable groups
	2. Non-p-solvable groups
	References

	Amnon Neeman
	Introduction
	1. Cardinality estimates in Grothendieck abelian categories
	2. An adjoint to the inclusion K(InjA)-3muK(A)
	3. The -compact generation of K(InjA)
	4. The failure of recollement
	References

	Vladimir Chernousov and Alexander Merkurjev
	1. Introduction
	2. Essential dimension of Spinn
	3. The functors Ikn
	4. Subforms of forms in I3n
	5. Unramified principal homogeneous spaces
	6. Essential dimension of P` `I3n
	7. Essential dimension of n+
	References

	Jonathan Comes and Victor Ostrik
	1. Introduction
	1A. 
	1B. 
	1C. 
	1D. 

	2. Preliminaries
	2A. Tensor categories terminology
	2B. The category Rep(St)
	2B1. The category Rep0(St)
	2B2. The categories Rep(St) and Repab(Sd)
	2B3. Indecomposable objects of the category Rep(St)
	2B4. Blocks of the category Rep(St)

	2C. Temperley–Lieb category

	3. Tensor ideals and the object Rep(Sd)
	3A. The objects nRep(St)
	3B. Some n-modules
	3C. The category Repn(St)
	3D. Deligne's lemma
	3E. Tensor ideals in Rep(Sd)

	4. The t-structure on Kb(Rep(Sd))
	4A. Homotopy category
	4B. Definition of t-structure
	4C. Verification of t-structure axioms
	4C1. 
	4C2. Blockwise description of (Kd0, Kd0)
	4C3. Analogy with Temperley–Lieb category
	4C4. Proof of 0=theorem.991=Theorem 4.2
	4C5. Complements


	5. Universal property
	5A. Extension property of the category Kd0
	5B. Fundamental groups of Kd0 and Rep(Sd)
	5C. Proof of 0=theorem.111=Theorem 1.2

	Acknowledgments
	References

	Christian Kassel and Christophe Reutenauer
	1. Introduction
	2. Cyclic formal power series
	3. Algebraic noncommutative series
	4. Proof of 0=theorem.51=Theorem 1.1
	5. Examples
	Acknowledgements
	References

	Guidelines for Authors
	Table of Contents

