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We conclude the computation of the essential dimension of split spinor groups,
and an application to algebraic theory of quadratic forms is given. We also
compute essential dimension of the split even Clifford group or, equivalently, of
the class of quadratic forms with trivial discriminant and Clifford invariant.

1. Introduction

We recall briefly the definition of the essential dimension.
Let F be a field, and let F : Fields/F → Sets be a functor from the category

of field extensions over F to the category of sets. Let E ∈ Fields/F and K ⊂ E
a subfield over F . We say that K is a field of definition of an element α ∈ F(E)
if α belongs to the image of the map F(K )→ F(E). The essential dimension
of α, denoted edF(α), is the least transcendence degree tr.degF (K ) over all fields
of definition K of α. The essential dimension of the functor F is

ed(F)= sup{edF(α)},

where the supremum is taken over all fields E ∈ Fields/F and all α ∈ F(E) (see
[Berhuy and Favi 2003, Definition 1.2] or [Merkurjev 2009, §1]). Informally, the
essential dimension of F is the smallest number of algebraically independent param-
eters required to define F and may be thought of as a measure of complexity of F.

Let p be a prime integer. The essential p-dimension of α ∈ F(E), denoted
edF

p (α), is defined as the minimum of edF(αE ′), where E ′ ranges over all finite
field extensions of E of degree prime to p and αE ′ is the image of α under the map
F(E)→ F(E ′). The essential p-dimension of F is

edp(F)= sup{edF
p (α)},
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where the supremum ranges over all fields E ∈ Fields/F and all α ∈ F(E). By
definition, ed(F)≥ edp(F) for all p.

For convenience, we write ed0(F)= ed(F), so edp(F) is defined for p = 0 and
all prime p.

Let G be an algebraic group scheme over F . Write FG for the functor taking
a field extension E/F to the set H 1

ét(E,G) of isomorphism classes of principal
homogeneous G-spaces (G-torsors) over E . The essential (p-)dimension of FG is
called the essential (p-)dimension of G and is denoted by ed(G) and edp(G) (see
[Reichstein 2000; Reichstein and Youssin 2000]). Thus, the essential dimension
of G measures complexity of the class of principal homogeneous G-spaces.

In this paper, we conclude the computation of the essential dimension of the
split spinor groups Spinn originated in [Brosnan et al. 2010; Garibaldi 2009] and
continued in [Merkurjev 2009] (Theorem 2.2). In the missing case n = 4m ≥ 16,
we prove that

ed2(Spinn)= ed(Spinn)= 2(n−2)/2
+ 2m

−
n(n− 1)

2
,

where 2m is the largest power of 2 dividing n. The value of ed(Spinn) is surprisingly
large. Recall a striking consequence of this (see [Brosnan et al. 2010, Theorem 1-1]):
the Pfister number Pf(3, n) is at least exponential in n.

In Theorem 4.2, we give an application in algebraic theory of quadratic forms.
Precisely, we determine all pairs (n, b) of natural numbers (with two possible
exceptions) such that, for every field F , any quadratic form in I 3(F) of dimension n
contains a subform of trivial discriminant of dimension b. This result, stated entirely
in terms of algebraic theory of quadratic forms, is proved using the tools of the
essential dimension!

Theorem 4.2 is applied later in the paper for the computation of the essential
dimension of split even Clifford group 0+n or, equivalently, of the functor given
by n-dimensional quadratic forms with trivial discriminant and Clifford invariant
(Theorem 7.1).

We use heavily the work [Popov 1987], where the base field is assumed to be of
characteristic zero. This explains the characteristic restriction in most of our results.

2. Essential dimension of Spinn

Let G be an algebraic group over F , and let C ⊂ G be a normal subgroup over F .
For a torsor E → Spec(F) of the group H := G/C , consider the stack [E/G]
(see [Vistoli 2005]). Recall that an object of the category [E/G](K ) for a field
extension K/F is a pair (E ′, ϕ), where E ′ is a G-torsor over K and ϕ : E ′/C ∼

→ EK

is an isomorphism of H -torsors over K . The essential dimension ed[E/G] of the
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stack [E/G] is the essential dimension of the functor K 7→ set of isomorphism
classes of objects in [E/G](K ).

The following was proven independently by R. Lötscher [2013, Example 3.4]:

Proposition 2.1. Let C be a normal subgroup of an algebraic group G over F and
H = G/C. Then

ed(G)≤ ed(H)+max ed[E/G],

where the maximum is taken over all field extensions L/F and all H-torsors E
over L.

Proof. Let I ′ be a G-torsor over a field extension K/F . Then I := I ′/C is
an H -torsor over K . There is a subextension K0/F of K/F and an H -torsor
E over K0 such that there is an isomorphism ϕ : I ∼

→ EK of H -torsors and
tr.deg(K0/F)≤ ed(H).

Consider the stack [E/G] over K0. The pair (I ′, ϕ) is an object of [E/G](K ).
There is a subextension K1/K0 of K/K0 such that (I ′, ϕ) is defined over K1 and
tr.deg(K1/K0)≤ ed[E/G]. It follows that I ′ is defined over the field K1 with

tr.deg(K1/F)= tr.deg(K0/F)+ tr.deg(K1/K0)≤ ed(H)+ ed[E/G]. �

The following theorem concludes computation of the essential dimension of the
spinor groups initiated in [Brosnan et al. 2010; Garibaldi 2009] and continued in
[Merkurjev 2009]. We write Spinn for the split spinor group of a nondegenerate
quadratic form of dimension n and maximal Witt index.

If char(F) 6= 2, then the essential dimension of Spinn has the following values
for n ≤ 14 (see [Garibaldi 2009, §23]):

n ≤ 6 7 8 9 10 11 12 13 14
ed2(Spinn)= ed(Spinn) 0 4 5 5 4 5 6 6 7

In the following theorem, we give the values of edp(Spinn) for n ≥ 15 and p= 0
and 2. Note that edp(Spinn) = 0 if p 6= 0, 2 as every Spinn-torsor over a field is
split over an extension of degree a power of 2.

Theorem 2.2. Let F be a field of characteristic zero. For every integer n ≥ 15, we
have

ed2(Spinn)= ed(Spinn)=


2(n−1)/2

− n(n− 1)/2 if n is odd,
2(n−2)/2

− n(n− 1)/2 if n ≡ 2 (mod 4),
2(n−2)/2

+ 2m
− n(n− 1)/2 if n ≡ 0 (mod 4),

where 2m is the largest power of 2 dividing n.

Proof. The case n ≥ 15 and n not divisible by 4 has been considered in [Brosnan
et al. 2010, Theorem 3-3].
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Now assume that n> 15 and n is divisible by 4. The inequality “≥” was obtained
in [Merkurjev 2009, Theorem 4.9], so we just need to prove the inequality “≤”.
The case n = 16 was considered in [Merkurjev 2009, Corollary 4.10]. Assume that
n ≥ 20 and n is divisible by 4.

Consider the following diagram with exact rows:

1 // µ2 // Spinn

��

// Spin+n

��

// 1

1 // µ2 // O+n // PGO+n // 1

where Spin+n is the semispinor group, O+n is the split special orthogonal group and
PGO+n is the split special projective orthogonal group. We see from the diagram
that the image of the connecting map

δK : H 1
ét(K , Spin+n )→ H 2

ét(K ,µ2)⊂ Br(K )

is contained in the image of the other connecting map

H 1
ét(K ,PGO+n )→ H 2

ét(K ,µ2)⊂ Br(K )

for every field extension K/F . The image of the last map consists of the classes [A]
of all central simple K -algebras A of degree n admitting orthogonal involutions
(see [Knus et al. 1998, §31]). As ind(A) is a power of 2 dividing n, we have
ind(A)≤ 2m , where 2m is the largest power of 2 dividing n.

Let E be a Spin+n -torsor over K . We have shown that, if δK ([E]) = [A] for a
central simple K -algebra A, then ind(A)≤ 2m . It follows from [Brosnan et al. 2011,
Theorem 4.1] that ed[E/Spinn] = ind(A)≤ 2m .

It is shown in [Brosnan et al. 2010, Remark 3-10] that

ed(Spin+n )= 2(n−2)/2
−

n(n− 1)
2

for every integer n ≥ 20 divisible by 4. Finally, by Proposition 2.1,

ed(Spinn)≤ ed(Spin+n )+ 2m
= 2(n−2)/2

+ 2m
−

n(n− 1)
2

. �

3. The functors I k
n

We use the following notation. Let F be a field of characteristic different from 2
and K/F a field extension. We define

I 1
n (K )=

Set of isomorphism classes of nondegenerate
quadratic forms over K of dimension n
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and recall from [Knus et al. 1998, §29.E] the existence of a natural bijection
I 1
n (K )' H 1

ét(K ,On).
Recall that the discriminant disc(q) of a form q ∈ I 1

n (K ) is equal to

(−1)n(n−1)/2 det(q) ∈ K×/K×2.

Set

I 2
n (K )= {q ∈ I 1

n (K ) : disc(q)= 1}.

We have a natural bijection I 2
n (K )' H 1

ét(K ,O+n ) (see [Knus et al. 1998, §29.E]).
The Clifford invariant c(q) of a form q ∈ I 2

n (K ) is the class in the Brauer
group Br(K ) of the Clifford algebra of q if n is even and the class of the even
Clifford algebra if n is odd [Knus et al. 1998, §8.B]. Define

I 3
n (K )= {q ∈ I 2

n (K ) : c(q)= 0}.

Remark 3.1. Our notation of the functors I k
n for k = 1, 2, 3 is explained by the

following property: I k
n (K ) consists of all classes of quadratic forms q ∈W (K ) of

dimension n such that q ∈ I (K )k if n is even and q ⊥ 〈−1〉 ∈ I (K )k if n is odd,
where I (K ) is the fundamental ideal in the Witt ring W (K ) of K .

The functor I 3
n is related to Spinn-torsors as follows. The short exact sequence

1→ µ2→ Spinn→ O+n → 1

yields an exact sequence

H 1
ét(K ,µ2)→ H 1

ét(K , Spinn)→ H 1
ét(K ,O+n )

c
−→ H 2

ét(K ,µ2), (1)

where c is the Clifford invariant. Thus, Ker(c)= I 3
n (K ).

The essential dimensions of I 1
n and I 2

n were computed in [Reichstein 2000,
Theorems 10.3 and 10.4]: we have ed(I 1

n )= n and ed(I 2
n )= n−1. In Section 7, we

compute ed(I 3
n ). We will need the following lemma, which was proven in [Brosnan

et al. 2010, Lemma 5-1]:

Lemma 3.2. We have edp(I 3
n )≤ edp(Spinn)≤ edp(I 3

n )+ 1 for every p ≥ 0.

Proof. Let K/F be a field extension. The group H 1
ét(K ,µ2) = K×/K×2 acts

transitively on the fibers of the second map in the sequence (1). It follows that the
natural map Spinn-Torsors→ I 3

n is a surjection with Gm acting surjectively on the
fibers. The statement follows from [Berhuy and Favi 2003, Proposition 1.13]. �

Let 0+n be the split even Clifford group (see [Knus et al. 1998, §23]). The
commutative diagram with exact rows and columns
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1

��

1

��

1 // µ2

��

// Spinn

��

// O+n // 1

1 // Gm

2
��

// 0+n

spinor norm
��

// O+n // 1

Gm

��

Gm

��

1 1

yields a bijection H 1
ét(K ,0

+
n ) ' I 3

n (K ) for any field extension K/F (see [Knus
et al. 1998, §28]). In particular, edp(0

+
n )= edp(I 3

n ).

4. Subforms of forms in I3
n

In this section, we study the following problem in quadratic form theory, which
will be used in Section 7 in order to compute the essential dimension of I 3

n . Note
that the problem is stated entirely in terms of quadratic forms while in the solution
we use the essential dimension. We don’t know how to solve the problem by means
of quadratic form theory.

Problem 4.1. Given a field F , determine all integers n such that every form
in I 3

n (K ) contains a nontrivial subform in I 2(K ) for any field extension K/F.

All forms in I 3
n (K ) for n ≤ 14 are classified (see [Garibaldi 2009, Example 17.8,

Theorems 17.13 and 21.3]). Inspection shows that for such n the problem has
positive solution.

In the following theorem, we show that in the range n ≥ 15 the problem has
negative solution (with possibly two exceptions):

Theorem 4.2. Let F be a field of characteristic zero, let n≥ 15 and let b be an even
integer with 0< b < n. Then there is a field extension K/F and a form in I 3

n (K )
that does not contain a subform in I 2

b (K ) (with possible exceptions (n, b)= (15, 8)
or (16, 8)).

Let a := n− b. Write Ha,b for the image of the natural homomorphism

Spina × Spinb→ Spinn. (2)

Note that the kernel of (2) is contained in

µ2×µ2 = Ker(Spina × Spinb→ O+a ×O+b )
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and therefore is the cyclic group of order 2 generated by (−1,−1). Hence, we have
an exact sequence

1→ µ2→ Ha,b→ O+a ×O+b → 1

and therefore a map

H 1
ét(R, Ha,b)→ H 1

ét(R,O+a ×O+b )= H 1
ét(R,O+a )× H 1

ét(R,O+b )

for a commutative F-algebra R.
We write q(η) := (qa, qb) for the image of an element η ∈ H 1

ét(R, Ha,b) under
this map, where qa ∈ H 1

ét(R,O+a ) and qb ∈ H 1
ét(R,O+b ).

Consider the commutative diagram with the exact rows

1 // µ2 // Ha,b

��

// O+a ×O+b

τ

��

// 1

1 // µ2 // Spinn
// O+n // 1

The image of an element ξ ∈ H 1
ét(R, Spinn) in H 1

ét(R,O+n ) will be denoted by q(ξ).
If ξ ∈ H 1

ét(R, Spinn) is the image of an element η ∈ H 1
ét(R, Ha,b), then q(ξ)=

qa ⊥ qb, the image of (qa, qb)= q(η) under the map induced by τ . We can reverse
this statement as follows.

Lemma 4.3. Let ξ ∈ H 1
ét(R, Spinn) with q(ξ) = qa ⊥ qb, where qa ∈ H 1

ét(R,O+a )
and qb ∈ H 1

ét(R,O+b ). Then ξ is the image of an element η under the map
H 1

ét(R, Ha,b)→ H 1
ét(R, Spinn) such that q(η)= (qa, qb).

Proof. The diagram above yields a commutative diagram with the exact rows

H 1
ét(R, Ha,b)

��

// H 1
ét(R,O+a )× H 1

ét(R,O+b )

��

c′
// H 2

ét(R,µ2)

H 1
ét(R, Spinn)

// H 1
ét(R,O+n )

c
// H 2

ét(R,µ2)

Moreover, the group H 1
ét(R,µ2) acts transitively on the fibers of the left maps in

the two rows. The result follows. �

For nonnegative integers a, b and a field extension K/F , set

I 3
a,b(K ) := {(qa, qb) ∈ I 2

a (K )× I 2
b (K ) : qa ⊥ qb ∈ I 3

n (K )}.
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Corollary 4.4. For any η∈H 1
ét(K , Ha,b), we have q(η)∈ I 3

a,b(K ). The morphism of
functors q : Ha,b-Torsors→ I 3

a,b is surjective. In particular, edp(I 3
a,b)≤ edp(Ha,b)

for every p ≥ 0.

Proof. Note that the map c′ in the proof of Lemma 4.3 when R = K takes a
pair (qa, qb) to the Clifford invariant of qa ⊥ qb in Br(K ). The pair (qa, qb) ∈

I 2
a (K )× I 2

b (K ) comes from H 1
ét(K , Ha,b) if and only if the Clifford invariant of

qa ⊥ qb is split, i.e., qa ⊥ qb ∈ I 3
n (K ). �

Lemma 4.5. For an even a and any b,

edp(I 3
a,b)≤ edp(I 3

a−1,b)+ 1

for every p ≥ 0.

Proof. Consider the morphism of functors

α : Gm × I 3
a−1,b→ I 3

a,b, (λ; f, g) 7→ (λ( f ⊥ 〈−1〉), g).

Every form h in I 2
a (K ) can be written in the form h = λ( f ⊥ 〈−1〉) for a value λ

of h and a form f ∈ I 2
a−1(K ); i.e., α is a surjection, whence the result. �

Write Vn and Wn for the (semi)spinor and regular representations, respectively,
of the group Spinn . We have

dim(Vn)=

{
2(n−1)/2 if n is odd,
2(n−2)/2 if n is even

and dim(Wn)= n. We consider the tensor product Va,b := Va ⊗ Vb as the represen-
tation of the group Ha,b. We also view Wa and Wb as Ha,b-representations via the
natural homomorphisms Ha,b→ O+a and Ha,b→ O+b , respectively.

A representation V of an algebraic group H is generically free if the stabilizer
of a generic vector in V is trivial. In this case, by [Reichstein and Youssin 2000],

ed(H)≤ dim(V )− dim(H).

Lemma 4.6. Let a be odd and b even. Suppose that Va,b is a generically free
representation of the image of the homomorphism Ha,b→GL(Va,b). Then Va,b⊕Wb

is a generically free representation of Ha,b. In particular,

ed(Ha,b)≤ dim(Va,b)+ dim(Wb)− dim(Ha,b).

Proof. Write Cn for the kernel of Spinn→ PGO+n and C ′n for the kernel of Spinn→

O+n , so C ′n = {±1} ⊂ Cn . By assumption, the generic stabilizer H of the action of
Spina × Spinb on Va,b is contained in the center Ca ×Cb. Since Cb/C ′b = µ2 acts
on Wb by multiplication by −1, we have H ⊂Ca×C ′b 'µ2×µ2. Note that µ2×1
and 1×µ2 act by multiplication by −1 on Va,b; hence, H is generated by (−1,−1).
It follows that Ha,b = (Spina × Spinb)/H acts generically freely on Va,b⊕Wb. �
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Proposition 4.7. Let char(F) = 0. If n = a + b ≥ 15 with a ≤ b, then Va,b is
a generically free representation of the image of Ha,b → GL(Va,b) if and only if
(a, b) 6= (3, 12), (4, 11), (4, 12), (6, 10) and (8, 8).

Proof. All the cases of infinite generic stabilizers H are listed in [Èlašvili 1972, §3,
Row 7 of Table 6]: H is infinite if and only if (a, b)= (3, 12) and (4, 12).

If H is finite, by [Popov 1987, Theorem 1, Rows 1, 12 and 13 of Table 1], H is
nontrivial if and only if (a, b)= (4, 11), (6, 10) and (8, 8). �

Proof of Theorem 4.2. Note that the case (n, b)with n even implies the case (n−1, b).
Indeed, suppose that every form in I 3

n−1 for an even n contains a subform from I 2
b .

Take any form q ∈ I 3
n (K ) for a field extension K/F , and write q = λ( f ⊥ 〈−1〉) for

a λ∈ K× and f ∈ I 3
n−1(K ). If f contains a subform h ∈ I 2

b (K ), then q contains λh.
We need to show that the natural morphism of functors I 3

a,b→ I 3
n is not surjective.

It suffices to prove that ed(I 3
a,b) < ed(I 3

n ). We may assume that n (and hence also a)
is even. Moreover, we may assume that a ≤ b.

Suppose that n ≥ 18. By Proposition 4.7, Lemmas 4.5 and 4.6 and Corollary 4.4,

ed(I 3
a,b)≤ ed(I 3

a−1,b)+ 1

≤ ed(Ha−1,b)+ 1

≤ dim(Va−1,b)+ dim(Wb)− dim(Ha−1,b)+ 1

= 2n/2−2
+ b− (a− 1)(a− 2)/2− b(b− 1)/2+ 1

= 2n/2−2
− (a2

+ b2
− 3a− 3b)/2

≤ 2n/2−2
− (n2

− 6n)/4

as a2
+ b2
≥ n2/2. The last integer is strictly less than

2n/2−1
− n(n− 1)/2− 1≤ ed(Spinn)− 1≤ ed(I 3

n )

by Theorem 2.2 and Lemma 3.2.
It remains to consider the case n= 16. Note that, by Theorem 2.2 and Lemma 3.2,

ed(I 3
16)≥ ed(Spin16)− 1= 23. (3)

We shall prove that ed(I 3
a,b) < 23. All possible values of b are 8, 10, 12 and 14.

Case (n, b)= (16, 10). Consider the representation V :=W6⊕V6,10⊕W10 of H6,10.
We claim that V is generically free. The stabilizer in Spin6 of a point in general
position in W6 is Spin5. Hence, the stabilizer in H6,10 of a point in general position
in W6 is H5,10. Note that the restriction of V6,10 to H5,10 is isomorphic to V5,10.
Finally, the H5,10-representation V5,10⊕W10 is generically free by Proposition 4.7.
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It follows from (3) and Corollary 4.4 that

ed(I 3
6,10)≤ ed(H6,10)≤ dim(V )− dim(H6,10)= 80− 60= 20.

Case (n, b)= (16, 12). Consider the representation V :=W3⊕W3⊕ V3,12⊕W12

of H3,12. We claim that V is generically free as the representation of H3,12. Indeed,
the stabilizer in H3,12 of a generic vector in W12 is H3,11. We are reduced to showing
that W3⊕W3⊕V3,11 is a generically free representation of H3,11. By [Popov 1987,
§5, p. 246], the generic stabilizer S of H3,11 in V3,11 is finite (isomorphic to µ2×µ2),
and the restriction to S of the natural projection H3,11→O+3 is injective. It remains
to notice that the representation W3⊕W3 of O+3 = PGL2 is generically free.

It follows from Lemmas 4.5 and 4.6 and Corollary 4.4 that

ed(I 3
4,12)≤ ed(I 3

3,12)+ 1≤ ed(H3,12)+ 1

≤ dim(V )− dim(H3,12)+ 1= 82− 69+ 1= 14.

Case (n, b)= (16, 14). As every form in I 3
2 is hyperbolic, we have I 3

2,14 = I 3
14 and

ed(I 3
14)= 7 by Theorem 2.2. �

5. Unramified principal homogeneous spaces

Let G be an algebraic group over F , and let K/F be a field extension with a discrete
valuation v trivial on F . Write O for the valuation ring of v. It is a local F-algebra.
We say that a class ξ ∈ H 1

ét(K ,G) is unramified (with respect to v) if ξ belongs to
the image of the map H 1

ét(O,G)→ H 1
ét(K ,G).

Let K be the residue field of v. The ring homomorphism O→ K yields a map
H 1

ét(O,G)→ H 1
ét(K ,G). This map is a bijection if K is complete (see [SGA 3

1970, Exposé XXIV, Proposition 8.1]). Hence, we have the map

H 1
ét(K ,G) ∼→ H 1

ét(O,G)→ H 1
ét(K ,G). (4)

Example 5.1. Let char(F) 6= 2 and G = On . Then H 1
ét(K ,G) is the set of iso-

morphism classes of nondegenerate quadratic forms of dimension n over K . A
quadratic form q over a field K with a discrete valuation is unramified if and only
if q ' 〈a1, a2, . . . , an〉, where ai are units in the valuation ring O in K . In general,
every q can be written q = q1 ⊥ πq2 ⊥ h, where π is a prime element, q1 and q2

are unramified anisotropic quadratic forms and h is a hyperbolic form. The form q
is unramified if and only if q2 = 0. It follows that, if two forms q and πq are
both unramified, then q is hyperbolic. If K is complete, then the map (4) takes
f = 〈a1, a2, . . . , an〉 over K , where ai are units in O , to fK := 〈a1, a2, . . . , an〉.
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6. Essential dimension of PI3
n

Two quadratic forms f and g over a field K are called similar if f = λg for some
λ ∈ K×. If n is even, we write P I 3

n (K ) for the set of similarity classes of forms
in I 3

n (K ). The group K× acts transitively on the fibers of the natural surjective
map I 3

n (K )→ PI 3
n (K ). Hence,

edp(PI 3
n )≤ edp(I 3

n )≤ edp(PI 3
n )+ 1

for any p ≥ 0 by [Berhuy and Favi 2003, Proposition 1.13].

Proposition 6.1. Let char(F) 6= 2. For an even n ≥ 8, and p = 0 or 2, we have

edp(PI 3
n )= edp(I 3

n )− 1.

Proof. Let K/F be a field extension, and let q ∈ I 3
n (K ) be a nonhyperbolic form.

Consider the form tq over the field K ((t)). It suffices to show that

edI 3
n

p (tq)≥ edPI 3
n

p (q)+ 1.

Let M/K ((t)) be a finite field extension of degree prime to p (i.e., M = K ((t)) if
p = 0 and [M : K ((t))] is odd if p = 2), let L/F be a subextension of M/F and
let f ∈ I 3

n (L) be such that tr.deg(L/F)= edI 3
n

p (tq) and tqM ' fM .
Let v be the (unique) extension on M of the discrete valuation of K ((t)), and

let w be the restriction of v on L . The residue field M is a finite extension of K
of degree prime to p. As the form q is not hyperbolic, qM is not hyperbolic, and
therefore, the form tqM ' fM is ramified by Example 5.1. It follows that w is
nontrivial, i.e., w is a discrete valuation on L .

Let L̂ be the completion of L . Note that, as M is complete, we can identify L̂
with a subfield of M . Write f L̂ ' ( f1)L̂ ⊥ π( f2)L̂ , where f1 and f2 are quadratic
forms over the residue field L and π ∈ L is a prime element (see Example 5.1).
Note that f1, f2 ∈ I 2(L) by [Elman et al. 2008, Lemma 19.4]. If the ramification
index e of M/L is even, then π is a unit in the valuation ring O of M modulo
squares in M×; hence, fM is unramified, a contradiction. It follows that e is odd.
Writing π = ute with a unit u ∈ O×, we have

tqM ' fM ' ( f1)M ⊥ π( f2)M ' ( f1)M ⊥ ut ( f2)M ;

hence, ( f1)M = 0 and qM = u( f2)M in W (M). It follows that ( f1)M = 0 and
qM = u( f2)M in W (M), and therefore,

qM = u( f2)M = ugM , (5)

where g := f1 ⊥ f2 is the form over L of dimension n. Note that f L̂ − gL̂ =

〈π,−1〉( f2)L̂ ∈ I 3(L̂); hence, gL̂ ∈ I 3(L̂) and g ∈ I 3(L).
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It follows from (5) that qM is similar to gM , i.e., the form q is p-defined over L
for the functor PI 3

n (see [Merkurjev 2009, §1.1]), and therefore,

edI 3
n

p (tq)= tr.deg(L/F)≥ tr.deg(L/F)+ 1≥ edP I 3
n

p (q)+ 1. �

7. Essential dimension of 0+n

In this section, we compute the essential dimension of 0+n and I 3
n .

Theorem 7.1. Let F be a field of characteristic zero. Then for every integer n ≥ 15
and p = 0 or 2, we have

edp(0
+

n )= edp(I 3
n )=


2(n−1)/2

− 1− n(n− 1)/2 if n is odd,
2(n−2)/2

− n(n− 1)/2 if n ≡ 2 (mod 4),
2(n−2)/2

+ 2m
− 1− n(n− 1)/2 if n ≡ 0 (mod 4),

where 2m is the largest power of 2 dividing n.
If char(F) 6= 2, then the essential dimension of I 3

n has the following values for
n ≤ 14:

n ≤ 6 7 8 9 10 11 12 13 14

ed2(I 3
n )= ed(I 3

n ) 0 3 4 4 4 5 6 6 7

Proof. We will prove the theorem case by case.

Case n≡ 2 (mod 4) and n ≥ 10. The exact sequence

1→ µ4→ Spinn→ PGO+n → 1

yields a surjective map Spinn-Torsors(K )→ PI 3
n (K ) for any K/F , with the group

K× acting transitively on the fibers of this map. It follows from Theorem 2.2,
Proposition 6.1 and Lemma 3.2 that

ed2(I 3
n )= ed2(PI 3

n )+ 1≥ ed2(Spinn)= ed(Spinn)≥ ed(I 3
n )≥ ed2(I 3

n ).

Hence, ed2(I 3
n )= ed(I 3

n )= ed(Spinn). The latter value is known by Theorem 2.2.

Case n 6≡ 2 (mod 4) and n ≥ 15. Let n = a + b with even b 6= 2. Let Z be the
trivial group if b= 0 and the image of the center Cb of Spinb in Ha,b if b≥ 4. Then
Z is central in Ha,b; hence, the group H 1

ét(K , Z) acts on H 1
ét(K , Ha,b).

Lemma 7.2. Let ξ, η ∈ H 1
ét(K , Ha,b) with even b 6= 2. Suppose that q(ξ)= qa ⊥ qb

and q(η)= qa ⊥ λqb with the forms qa ∈ I 2
a (K ) and qb ∈ I 2

b (K ) and λ ∈ K×. Then
η = αξ for some α ∈ H 1

ét(K , Z).

Proof. The statement is trivial if b = 0, so assume that b ≥ 4. The restriction
of the natural homomorphism Ha,b→ O+b to the subgroup Z yields a surjection
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ϕ : Z → µ2 = Center(O+b ). The kernel of ϕ coincides with the kernel C of the
canonical homomorphism Ha,b→ O+a ×O+b .

As Z is isomorphic to µ2 ×µ2 or µ4, the homomorphism ϕ∗ : H 1
ét(K , Z)→

H 1
ét(K ,µ2) = K×/K×2 is surjective. Let γ ∈ H 1

ét(K , Z) be such that ϕ∗(γ ) =
λK×2. Then q(γ ξ) = qa ⊥ λqb = q(η). Then there is β ∈ H 1

ét(K ,C) such that
η = β(γ ξ). Hence, η = αξ , where α = β ′γ with β ′ the image of β under the map
H 1

ét(K ,C)→ H 1
ét(K , Z) induced by the inclusion of C into Z . �

Let ξ ∈ H 1
ét(K , Spinn) be such that the form q = q(ξ) ∈ I 3

n(K ) is generic for
the functor I3

n (see [Merkurjev 2009, §2.2]). In particular, edI 3
n (q)= ed(I 3

n ). Note
that q is anisotropic.

Identifyingµ2 with the kernel of Spinn→O+n , we have an action of H 1
ét(E,µ2)=

E×/E×2 on H 1
ét(E, Spinn), where E = K ((t)). Consider the element tξE ∈ H 1

ét(E,
Spinn) over E . We claim that tξE is ramified. Suppose not, i.e., tξE comes from an
element ρ ∈ H 1

ét(O, Spinn), where O = K [[t]]. Let q ′ ∈ H 1
ét(O,O+n ) be the image

of ρ viewed as a quadratic form over O . We have

q ′E = q(tξE)= q(ξE)= qE ;

hence, q ′ = qO . Then ρ and ξO belong to the same fiber of the map

H 1
ét(O, Spinn)→ H 1

ét(O,O+n ).

As the group H 1
ét(O,µ2)= O×/O×2 acts transitively on the fiber, there is a unit

u ∈ O× satisfying tξE = uξE . It follows from [Knus et al. 1998, Proposition 28.11]
that tu−1 is in the image spinor norm map

O+(qE)→ H 1
ét(E,µ2)= E×/E×2

for the form qE ; hence, q is isotropic by [Elman et al. 2008, Theorem 18.3], a
contradiction. The claim is proven.

Let L/F be a subextension of E/F , and let η ∈ H 1
ét(L , Spinn) be such that

tr.deg(L/F)= edSpinn (tξ) and ηE ' tξE . We have q(η)E = q(tξ)= q(ξE)= qE ;
hence, the form q(η)E is anisotropic.

Let v be the restriction on L of the discrete valuation of E . As tξ is ramified, v
is nontrivial; hence, v is a discrete valuation. Let π ∈ L be a prime element.

Consider the completion L̂ of L . As E is complete, we can view L̂ as a subfield
of E . Write q(ηL̂) = (qa)L̂ ⊥ π(qb)L̂ , where qa and qb are anisotropic quadratic
forms over the residue field L of dimension a and b, respectively. As q(η) ∈ I 3(L̂),
we have qb ∈ I 2(L), and therefore, b is even and b 6= 2. By Lemma 4.3, there is
η′ ∈ H 1

ét(L̂, Ha,b) that maps to η with q(η′)= ((qa)L̂ , π(qb)L̂).
We claim that the ramification index e of the extension E/L̂ is odd. Suppose e

is even. Note that qa ⊥ qb ∈ I 3
n (L). Lemma 4.3 allows us to choose an unramified
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element ν ∈ H 1
ét(L̂, Ha,b) with q(ν) = ((qa)L̂ , (qb)L̂). By Lemma 7.2, there is

α ∈ H 1
ét(L̂, Z) such that η′ = αν. If b is divisible by 4, we have Z ' µ2×µ2. As

e is even, α is unramified over E ; hence, η′E is unramified. It follows that ηE ' tξ
is also unramified, a contradiction.

Suppose that b ≡ 2 (mod 4). Note that 0 < b < n since n 6≡ 2 (mod 4). Write
π = utk with a unit u ∈ O× and even k. Then

(qa ⊥ uqb)E ' (qa ⊥ πqb)E ' q(ηE)' q(tξE)= q(ξE)= qE .

It follows that q ' (qa)K ⊥ (uqb)K , i.e., q contains the subform (uqb)K in I 2(K )
of dimension b. This contradicts Theorem 4.2. The claim is proven.

Thus, e is odd. We have

(qa ⊥ utqb)E ' (qa ⊥ πqb)E ' q(ηE)' q(tξE)= q(ξE)= qE .

It follows that (qb)K is hyperbolic and hence (qa ⊥ qb)K = (qa)K = q in W (K ),
i.e., (qa ⊥ qb)K ' q.

Note that (qa)L̂ = (qa)L̂ + π(qb)L̂ = q(ηL̂) ∈ I 3(L̂); hence, qa ∈ I 3(L) and
qa ⊥ qb ∈ I 3

n (L). Therefore, q is defined over L for the functor I 3
n ; hence,

edSpinn (tξ)= tr.deg(L/F)≥ tr.deg(L/F)+ 1≥ edI 3
n (q)+ 1= ed(I 3

n )+ 1.

It follows that ed(Spinn)≥ ed(I 3
n )+1; hence, ed(I 3

n )= ed(Spinn)−1 by Lemma 3.2.
The value of ed(Spinn) is given in Theorem 2.2.

In what follows, we use the following observation (see [Berhuy and Favi 2003]):
if a functor F admits a nontrivial cohomological invariant of degree d with values
in Z/2Z, then ed2(F)≥ d .

Case n = 7. Every form q in I 3
7 (K ) is the pure subform of a 3-fold Pfister

form 〈〈a, b, c〉〉; hence, ed(I 3
7 ) ≤ 3. On the other hand, the Arason invariant

e3(q ⊥ 〈−1〉)= (a)∪ (b)∪ (c) ∈ H 3(K ,Z/2Z) is nontrivial (see [Garibaldi 2009,
§18.6]); hence, ed2(I 3

7 )≥ 3.

Case n = 8. Every form q in I 3
8 (K ) is a multiple e〈〈a, b, c〉〉 of a 3-fold Pfister

form; hence, ed(I 3
8 )≤ 4. The invariant a4(q)= (e)∪(a)∪(b)∪(c)∈ H 4(K ,Z/2Z)

is nontrivial; hence, ed2(I 3
8 )≥ 4.

Case n = 9 and 10. Every form q in I 3
9 (K ) or I 3

10(K ) is equal to f ⊥ 〈1〉 or
f ⊥ 〈1,−1〉, respectively, where f is a multiple of a 3-fold Pfister form over K ,
by [Lam 2005, XII.2.8]. Hence, I 3

8 ' I 3
9 ' I 3

10.

Case n= 11. The degree-5 cohomological invariant a5 of Spin11 defined in [Gari-
baldi 2009, §20.8] factors through a nontrivial invariant of I 3

11; hence ed2(I 3
11)≥ 5.

On the other hand, ed(I 3
11)≤ ed(Spin11)= 5.
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Case n= 12. The degree-6 cohomological invariant a6 of Spin12 defined in [Gari-
baldi 2009, §20.13] factors through a nontrivial invariant of I 3

12, so ed2(I 3
12) ≥ 6.

On the other hand, ed(I 3
12)≤ ed(Spin12)= 6.

Case n= 13 and 14. We know from the beginning of the proof (case n≡ 2 (mod 4)
and n ≥ 10) and from Theorem 2.2 that ed2(I 3

14) = ed(I 3
14) = ed(Spin14) = 7.

By Lemma 4.5, ed2(I 3
13) = ed2(I 3

13,0) ≥ ed2(I 3
14,0)− 1 = 6. On the other hand,

ed(I 3
13)≤ ed(Spin13)= 6. �
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