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The algebraic dynamics
of generic endomorphisms of Pn

Najmuddin Fakhruddin

We investigate some general questions in algebraic dynamics in the case of
generic endomorphisms of projective spaces over a field of characteristic zero.
The main results that we prove are that a generic endomorphism has no nontrivial
preperiodic subvarieties, any infinite set of preperiodic points is Zariski-dense
and any infinite subset of a single orbit is also Zariski-dense, thereby verifying the
dynamical “Manin–Mumford” conjecture of Zhang and the dynamical “Mordell–
Lang” conjecture of Denis and Ghioca and Tucker in this case.

1. Introduction

The goal of this article is to study some aspects of the algebraic dynamics of
generic endomorphisms1 of Pn of degree d > 1 over a field K of characteristic
zero. Properties of algebraic varieties, for example smooth projective curves or
abelian varieties, are often easier to derive for generic varieties than for arbitrary
varieties, the main reason being that one has a great deal of freedom in choosing
specialisations. It is natural to expect that the same holds for algebraic dynamical
systems; we show that this is indeed the case for generic endomorphisms of Pn . We
prove three results for such endomorphisms: two of them have analogues expected
to hold much more generally, though at present this is far from being known.

Our main result is:

Theorem 1.1. Let f : Pn
K → Pn

K be a generic endomorphism of degree d > 1 over
an algebraically closed field K of characteristic zero. For each x ∈ Pn(K ), every
infinite subset of O f (x), the f -orbit of x , is Zariski-dense in Pn

K .

This implies the dynamical “Mordell–Lang” conjecture of [Denis 1994; Ghioca
and Tucker 2009] for generic endomorphisms. This conjecture has been proved for
étale endomorphisms of arbitrary varieties by Bell, Ghioca and Tucker [Bell et al.

MSC2010: primary 37P55; secondary 37F10.
Keywords: generic endomorphisms, projective space.

1The precise meaning of generic endomorphism is given in Definition 3.1, but we note here that
when K = C this means we consider endomorphisms in the complement of a countable union of
proper subvarieties of the natural parameter variety of endomorphisms of degree d.
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2010], but there are only a few other cases where it is known. The proof of this
theorem is based on two other results. The first is:

Theorem 1.2. Let f : Pn
K → Pn

K be a generic endomorphism of degree d > 1 over
an algebraically closed field K of characteristic zero. If X ⊂ Pn

K is an irreducible
subvariety such that f r (X)= X for some r > 0, then X is a point or X = Pn

K .

This is a rather straightforward consequence of the transitivity of the monodromy ac-
tion on the set of periodic points of a fixed period of a generic endomorphism, which
we prove (Proposition 3.3) using a result of Bousch [1992], Lau and Schleicher
[1994] and Morton [1998] for polynomials in one variable of the form z 7→ zd

+ c.
We then extend Proposition 3.3 to prove transitivity of the monodromy action on

the set of preperiodic points of fixed period and preperiod of a generic endomorphism
(Proposition 4.6); this does not hold for the 1-parameter family of polynomials
mentioned above, and we use a 2-parameter family containing this. This allows us
to prove Zhang’s “Manin–Mumford” conjecture [Ghioca et al. 2011] in the case of
generic endomorphisms in the following strong form:

Theorem 1.3. For f : Pn
K → Pn

K a generic endomorphism of degree d > 1 over
an algebraically closed field K of characteristic zero, any infinite subset of Pn(K )
consisting of f -preperiodic points is Zariski-dense in Pn

K .

We prove Theorem 1.1 by combining Theorems 1.2 and 1.3 with some p-adic
as well as mod p arguments. Note that the statement does not involve (pre)periodic
points in any way. However, using a lifting argument for periodic points, we show
that any subvariety Y containing an infinite subset of O f (x) must contain infinitely
many periodic points, or x can be specialised in such a way that one may apply
the p-adic interpolation argument used in [Bell et al. 2010] to prove the conjecture
for étale endomorphisms. Theorems 1.3 and 1.2 then force Y to be equal to Pn

K in
either of these cases.

2. Preliminaries

Let X be a set and f : X→ X any map. By f n , we shall mean the n-fold composite
of f with itself. For x ∈ X , we denote by O f (x) its orbit under f , i.e., the set
{ f n(x)}n≥0. A point x ∈ X is said to be f -periodic if f n(x)= x for some n > 0.
The smallest such integer is called the period of x . We denote the set of all periodic
points of period b by Per f (b). A point x ∈ X is said to f -preperiodic if O f (x) is
finite. The preperiod of f is the smallest nonnegative integer a such that f a(x)
is periodic, and the period of x is the period of any periodic point in its orbit. We
denote by Prep f (a, b) the set of all such points. Let Orb f (b) denote the set of orbits
of f -periodic points of period b. If this is finite, then |Per f (b)| = b · |Orb f (b)|. We
drop f from any of the notation introduced above if there is no scope for confusion.
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If X is an algebraic variety over a field K and f : X→ X is a morphism over K ,
we use the same notation as above for the induced map on the set of L-rational
points of X for any extension field L of K .

Let S be a smooth irreducible variety over a field k, and let g : Z → S be a
finite flat morphism. By the monodromy or Galois action of g, we shall mean the
action of Gal(k(S)/k(S)) on (the points of) a geometric generic fibre of g. If g is
generically smooth — this is always true if char(k)= 0 and Z is reduced — there is a
Zariski open subset U of S such that g induces a finite étale morphism g−1(U )→U ,
and then the monodromy may be interpreted as an action of π ét

1 (U, ∗ ), where ∗ is
a geometric point of U . If k = C, it may be interpreted as an action of π top

1 (U, ∗ ).
The monodromy action is transitive if and only if Z is irreducible. If Z is

generically smooth, this is equivalent to Z0, the smooth locus of Z , being connected
or, if k = C, path-connected.

Definition 2.1. Let π :X→ S be a projective morphism and f :X→X a surjective
morphism over S. We say that f is quasipolarised if there exists a line bundle L

on X such that f ∗(L)⊗L−1 is S-ample.

For any morphism π : X→ S and f : X→ X a morphism over S, we denote
by 0 f the graph of f in X×S X. Let P f (n) be the closed subscheme of X defined
by the intersection of 0f n with the diagonal. A geometric point of the fibre of P f (n)
over any point s ∈ S is a periodic point of period dividing n of the map fs of Xs

induced by f . Similarly, let P f (m, n) be the intersection of 0f m and 0f n , which
we view as a subscheme of X via the first projection.

Lemma 2.2. Let π : X→ S be a smooth projective morphism with S a regular
irreducible finite-dimensional scheme, and let f : X→ X be a finite quasipolarised
morphism. Then:

(1) For any m, n ≥ 0, m 6= n, P f (m, n) is finite and flat over S.

(2) For any s1 and s2 in S with s2 a specialisation of s1, any element of Prep fs2
(a, b)

can be lifted to an element of Prep fs1
(a, b).

Proof. Since f is proper, P f (m, n), being a closed subscheme of X, is also proper
over S. The dimension of each irreducible component of P f (m, n) is at least equal
to dim(S) since the codimension of 0f i in X×S X is the relative dimension of X

over S. To prove P f (m, n) is finite over S, it suffices to show that the fibres of
this map are finite since proper quasifinite morphisms are finite. Furthermore, the
finiteness of the fibres implies that the dimension of each component of P f (m, n) is
exactly dim(S); hence, P f (m, n) is a local complete intersection in X×S X that is
regular, which implies that P f (m, n) is Cohen–Macaulay. Since the dimension of
each irreducible component of P f (m, n) is at least dim(S), each such component
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dominates S if all the fibres are finite. It then follows from the fibrewise flatness
criterion that all of (1) is a consequence of the finiteness of the fibres.

Let L be a line bundle on X so that M= f ∗(L)⊗L−1 is ample. Then ( f m)∗(L)=

L⊗ M ⊗ f ∗(M)⊗ · · · ⊗ ( f m−1)∗(M) and similarly for n. By the construction
of P f (m, n), ( f m)∗(L) and ( f m)∗(L) restrict to the same line bundle on it, so
assuming m > n without loss of generality, we get that ( f m−1)∗(M) ⊗ · · · ⊗
( f n)∗(M) is trivial on P f (m, n). But M is ample; hence, so is ( f i )∗(M) for all
i ≥ 0 since f is finite. There is at least one factor in the above tensor product of
line bundles, so this is only possible if all the fibres are finite.

If x ∈Prep fs2
(a, b), then x occurs in the fibre of P f (a+b, a) over s1 and does not

occur in the fibre of any P f (m, n) for m<a+b or n<a. By (1), there is a point x̃ in
the fibre of P f (a+b, a) specialising to x . By the definition of P f (m, n), it follows
that f a+b

s1
(x̃) = f a

s1
(x̃), so x̃ is preperiodic with preperiod ≤ a and period ≤ b.

Since neither the preperiod nor the period can increase under specialisation and x̃
specialises to x , (2) follows. �

3. Periodic points and periodic subvarieties

Let Morn,d be the scheme over Z representing morphisms of Pn
Z to itself of alge-

braic degree d. Its k-valued points, for any field k, consist of (n + 1)-tuples of
homogeneous polynomials of degree d over k without common zeros in Pn

k up to
a scalar. It is smooth and of finite type over Z and has geometrically irreducible
fibres. For any field L , we denote Morn,d ×Spec(Z) Spec(L) by Morn,d/L .

Definition 3.1. If K is an algebraically closed field, we say that an endomorphism f
of Pn

K is generic if the image of the induced map Spec(K )→Morn,d corresponding
to some conjugate of f by an element of PGLn+1(K ) = Aut(Pn

K ) is the generic
point of a fibre of the structure morphism Morn,d → Spec(Z).

If K = C, the set of points in Morn,d(C) corresponding to generic morphisms is
the complement of a countable union of proper subvarieties.

We recall the theorem of Bousch [1992, Chapitre 3, Théorème 4], Lau and
Schleicher [1994, Theorem 4.1] and Morton [1998, Theorem D] alluded to earlier;
the statement below is [Morton 1998, Theorem 10] except that we have replaced
the field Q there by k.

Theorem 3.2. Let k be a field of characteristic zero, and let f (z)= zd
+ t with t

transcendental over k and d ≥ 2. For any b ≥ 1, the Galois group of the polynomial
f b(z)− z over k(t) is the direct product

∏
e|b(Z/eZ wr Sre), where wr denotes the

wreath product and e · re is the number of periodic points of period e over k(t).

The theorem can be interpreted as saying that the Galois action is as large as
possible given that it must commute with the action of f . One may expect that a
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similar result holds for generic endomorphisms of projective spaces of arbitrary
dimension; however, the following proposition, for the proof of which we will
use only the transitivity of the Galois action in the above theorem, suffices for our
applications:

Proposition 3.3. Let k be a field of characteristic zero, and let kn,d be the function
field of Morn,d/k . Let fn,d be the endomorphism of Pn

kn,d
corresponding to the

generic point of Morn,d/k , and let b be any positive integer. Then Gal(kn,d/kn,d)

acts transitively on Per fn,d (b).

For a field k and any element λ ∈ k, let φλ : A1
k → A1

k be the map given by
z 7→ zd

+λ; the integer d will be assumed to be fixed whenever we use this notation.
The periodic points of φ0 are 0 and the roots of unity of order prime to d: if ζ is a
primitive n-th root of unity with (n, d)= 1, then the period of ζ is the order of d
in (Z/nZ)×.

We shall need the following simple lemma for the proof of Proposition 3.3:

Lemma 3.4. Let d > 1 and m,m′ ≥ 1 be integers such that (m, d)= (m′, d)= 1.
Assume that the highest powers of 2 dividing m and m′ are unequal or are both
equal to 1. Let a and a′ be the orders of d in (Z/mZ)× and (Z/m′Z)×, respectively.

(1) The order of d in (Z/ lcm(m,m′)Z)× is divisible by lcm(a, a′).

(2) There exist roots of unity ζ and ζ ′ of orders m and m′, respectively, so that
ζ ζ ′
−1 is of order lcm(m,m′).

(3) For ζ and ζ ′ as above, there exists a primitive lcm(m,m′)-th root of unity η so
that ηζ is a primitive lcm(m,m′)-th root of unity.

Proof. The natural quotient maps from Z/ lcm(m,m′)Z to Z/mZ and Z/m′Z in-
duce group homomorphisms from (Z/ lcm(m,m′)Z)× to (Z/mZ)× and (Z/m′Z)×,
respectively. This implies that the order of d in (Z/ lcm(m,m′)Z)× is divisible
by lcm(a, a′).

To prove (2) and (3), we may reduce to the case that m and m′ are powers of
the same prime p. Let P ⊂ Z/pr Z be the set of generators, so |P| = pr

− pr−1.
If p > 2, then |P| > pr−1, so the translate of P by any element of Z/pr Z has a
nonempty intersection with P . If p = 2, the claim follows from the extra condition
since the translate of P by an element not in P always intersects P nontrivially. �

Proof of Proposition 3.3. If n = 1 and b > 1, the proposition follows immediately
from Theorem 3.2. If b = 1, a much simpler version of the argument below shows
transitivity; since we do not use this later, we leave the details to the reader.

We now assume n > 1. Consider the morphism gn,d : Pn
k → Pn

k given by
[x0, . . . , xn] 7→ [xd

0 , . . . , xd
n ]. The set Pergn,d (b) consists of points that have a

representative [ξ0, ξ1, . . . , ξn] with each ξi equal to 0 or a (db
− 1)-th root of unity.
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The standard affine charts of Pn
k given by the locus where a fixed coordinate is

nonzero are preserved by gn,d . A simple computation on each such chart shows that
the eigenvalues of the differential of gb

n,d at a fixed point are equal to dbξ , where ξ
is a root of unity or 0. This is never equal to 1 since d > 1, so 0gb

n,d
and the diagonal

intersect transversely in Pn
k ×Pn

k for all b > 0. Consequently, all periodic points
of gn,d have multiplicity 1, so we may use gn,d as a basepoint in Morn,d in order to
compute the Galois action on Per fn,d .

For 0≤ i ≤ n, consider the family of endomorphisms fi : P
n
k ×An

k → Pn
k ×An

k
given by

fi (([x0, . . . , xi , . . . , xn], (c1, c2, . . . , cn)))

=
(
[xd

0+c1xd
i , . . . , xd

i−1+ci xd
i , xd

i , xd
i+1+ci+1xd

i , . . . , xd
n+cnxd

i ], (c1, c2, . . . , cn)
)
.

On the open affine Ui given by xi 6= 0, fi is the product of the n polynomials φc j .
On the complement of this affine, i.e., on the subvariety given by xi = 0 (which is
also preserved by fi ), the maps do not depend on c j , so the monodromy action of
this family on the periodic points in this locus is trivial. Let Gi be the subgroup of
the monodromy group acting on Pergn,d corresponding to this family; by applying
Theorem 3.2, one gets a complete description of this group. We let G be the
subgroup of the monodromy group generated by all the Gi .

Let P = [ζ, 1, . . . , 1, 1] where ζ is in Perφ0(b), and let Q = [ξ0, ξ1, . . . , ξn]

be any other element of Pergn,d (b). We may assume that some ξi = 1, so each
ξ j ∈ Perφ0(b

′) for some b′ | b, and also the lcm of the periods of all the ξ j is b.
We prove the transitivity of the monodromy action by showing that there exists an
element in the monodromy that sends P to Q.

From the transitivity of the Galois action in Theorem 3.2, it follows that for
ξ j ∈ Perφ0(b

′), as long as some ξi = 1 with i 6= j , we can find an element of G that
fixes all coordinates of Q except that it replaces ξ j with any other ξ ′j ∈ Perφ0(b

′).
Since 0, 1 ∈ Perφ0(0), we may use this to assume that all ξi 6= 0 and then also, by
dividing through by ξn , that ξn = 1.

We now show that we may also assume that ξ0 ∈ Perφ0(b). Suppose ξ0 is a
primitive m-th root of unity, ξ1 is a primitive m′-th root of unity and ξ0 ∈ Perφ0(a)
and ξ1 ∈ Perφ0(a

′). By using the action of G, we may change ξ0 and ξ1 so that
m = da

−1 and m′= da′
−1. If the highest powers of 2 dividing m and m′ are equal

and greater than 1, we may change ξ0 to a primitive (da
−1)/2-th root of unity; the

period a remains unchanged. By Lemma 3.4, we may then assume that ξ0ξ1
−1 is a

primitive lcm(m,m′)-th root of unity. We multiply all coordinates of Q by ξ−1
1 , so

the zeroth coordinate becomes ξ0ξ1
−1, and the second becomes 1. Using the action

of G, we then replace the zeroth coordinate by η as in Lemma 3.4 while keeping all
other coordinates fixed. We then multiply all coordinates by ξ1. The resulting point
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has all coordinates except for the zeroth equal to the corresponding coordinates of Q
while the zeroth coordinate is now in Perφ0(lcm(a, a′)). Repeating this procedure
with ξ1 replaced by ξ2, then ξ3 and so on, since the lcm of the periods of all the ξi

is b, it follows that eventually we have that ξ0 ∈ Perφ0(b).
We now inductively transform P into Q using the action of G. If ξi has period ai

as an element of Perφ0 , we may use the action of G to replace it by a primitive
(dai − 1)-th root of unity. If the highest power of 2 dividing dai − 1 is equal
to the highest power of 2 dividing db

− 1 and d is odd, then we use a primitive
(dai − 1/2)-th root of unity instead if i > 0.

Let P0 = P , and suppose we have constructed Pi = [ξ0,i , ξ1,i , . . . , ξn−1,i , 1] in
Perφ0(b) by induction, with the following properties:

(1) ξ0,i ∈ Perφ0(b).

(2) ξ j,i = ξ j for 0< j ≤ i .

(3) ξ j,1 = 1 for j > i .

Clearly P0 satisfies these properties; we will show that given Pi with i < n we
can find an element of G that transforms it into a point Pi+1 with the required
properties.

So suppose Pi has been constructed. By Lemma 3.4, there exists η ∈ Perφ0(b)
so that η−1ξi+1 ∈ Perφ0(b). Since ξ0,i ∈ Perφ0(b), we may use the action of G to
replace ξ0,i with η while keeping the other coordinates fixed. We then multiply all
coordinates by η−1, so the zeroth coordinate becomes 1, and the (i+1)-th coordinate
becomes η−1. Since η−1ξi+1 ∈ Perφ0(b), we may use the action of G to replace the
(i + 1)-th coordinate by η−1ξi+1 while keeping all the other coordinates fixed. If
we now multiply all coordinates by η, we obtain a point Pi+1 with the property that
all coordinates except the zeroth and (i + 1)-th of Pi and Pi+1 are equal, the zeroth
coordinate is η ∈ Perφ0(b) and the (i + 1)-th is ξi+1, so fulfilling the requirements.

We thus obtain a point Pn with the property that all coordinates of Pn and Q are
equal except possibly for the first. Since the zeroth coordinate of both is in Perφ0(b)
and the n-th is 1, we may use an element of G to transform Pn into Q. It follows that
the action of G, hence of the full monodromy group, is transitive on Perφ0(b). �

Corollary 3.5. No preperiodic point of fn,d lies in the ramification locus.

Proof. The ramification locus of fn,d is defined over kn,d ; thus, if one preperiodic
point lies in the ramification locus, so must its entire Galois orbit.

The Galois orbit must map onto the Galois orbit of the corresponding periodic
point, i.e., the periodic point y such that f r

n,d(x)= y and f s
n,d(x) is not periodic for

any s< r . But this orbit consists of all periodic points of a fixed period b by Proposi-
tion 3.3. By specialisation to the d-power map gn,d , we see that this is not possible:
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the ramification locus of this map is actually preserved by the map and for no period b
are all the periodic points of period b contained in the ramification locus. �

Theorem 3.6. Let f : Pn
K → Pn

K be a generic endomorphism of degree d > 1 over
an algebraically closed field K of characteristic zero. Then:

(1) If X ⊂ Pn
K is an irreducible subvariety such that f r (X)= X for some r > 0,

then X is a point or X = Pn
K .

(2) If O f (x) is infinite for x ∈ Pn(K ), then O f (x) is Zariski-dense in Pn
K .

Proof. Since f is generic, we may identify f with fn,d defined above. Any
specialisation of X to a subvariety of Pn defined over a finite extension of kn,d

satisfies the same property as X , so we may assume that X is defined over a finite
extension of degree m of kn,d . Replacing X by the union of its Galois conjugates, we
may assume that X is defined over kn,d . Since dim(X)>0, it follows by [Fakhruddin
2003, Theorem 5.1] applied to f r that X contains infinitely many periodic points
of f . Since X is defined over kn,d , it then follows from Proposition 3.3 that there
is an infinite sequence of distinct integers bi , i = 1, 2, . . ., such that X contains
all the periodic points of fn,d of period bi for all i . Let gn,d : Pn

k → Pn
k be, as

before, the map that raises each coordinate to its d-th power. By specialisation and
Lemma 2.2(2), we obtain a subvariety X ′ of Pn

k defined over k that contains all the
periodic points of gn,d of period bi for all i .

For Z ⊂ An
k any subvariety (with k any field), if there is a sequence of finite

subsets Si ⊂ An(k) such that (Si )
n
⊂ Z(k) for all i and |Si | →∞, then Z = An

k ;
this is well-known and follows, for example, from [Tao and Vu 2006, Theorem 9.2].
By the previous paragraph, for all i , X ′ contains all elements of Pn(k) of the form
[ξ0, . . . , ξn−1, 1] with ξ j ∈ Perφ0(bi ). Since |Perφ0(bi )| →∞ with i , we must have
X ′ = Pn

k and hence X = Pn
kn,d

, proving (1).
To prove (2), we observe that the Zariski closure of O f (x) is mapped into itself

by f . If it is infinite, it must contain a positive-dimensional subvariety X such that
f r (X)= X for some r > 0. By (1), we must have X = Pn

K . �

Remark 3.7. One can give a simpler proof of (1) using the Lefschetz trace formula
rather than [Fakhruddin 2003, Theorem 5.1] if one only considers smooth X . Also,
from Theorem 4.1, it follows that the elementary version of [Fakhruddin 2003,
Theorem 5.1] asserting the density of preperiodic points suffices, but this introduces
other dependencies.

4. The dynamical “Manin–Mumford” conjecture for generic endomorphisms

The original “Manin–Mumford” conjecture of Zhang asserted that, for any polarised
endomorphism f of a projective variety X over a field K of characteristic 0, any
subvariety Y of X containing a Zariski-dense set of preperiodic points is preperiodic.
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This was known for abelian varieties and the multiplication-by-m maps but was
later shown to be false in general, even if X = Pn

K , by Ghioca and Tucker. Ghioca,
Tucker and Zhang then proposed a modified conjecture that takes into account the
action of f on the tangent space; see the article [Ghioca et al. 2011] for a discussion
of the history, the statement of the modified version and some positive results.2

The following theorem implies that Zhang’s conjecture, in its original form,
holds for generic endomorphisms of Pn

K :

Theorem 4.1. For f : Pn
K → Pn

K a generic endomorphism of degree d > 1 over
an algebraically closed field K of characteristic zero, any infinite subset of Pn(K )
consisting of f -preperiodic points is Zariski-dense in Pn

K .

As in the other results of this paper, one of the key ingredients of the proof is
the Galois action on the set of periodic points. However, Proposition 3.3 alone
does not suffice since we also need the transitivity of the monodromy action on
the set of preperiodic points. It turns out that transitivity does not hold for the
monodromy action on Prep f (a, b) for f as in Theorem 3.2 and d > 2. Nevertheless,
by considering a larger family of polynomials, we prove in Proposition 4.6 that the
monodromy action on Prep fn,d

(a, b) is indeed transitive for all a and b. This then
allows us to use a specialisation argument to prove Theorem 4.1.

Fix d > 1. For b> 0, consider the polynomial Pb(c)= φb
c (0). The roots of Pb(c)

are exactly the parameters c so that 0 is a periodic point of period dividing b for
the polynomial φc(z).

Lemma 4.2 (Gleason). All roots of Pb are multiplicity-free.

Proof. The proof given in [Douady and Hubbard 1985, Lemma 19.1] for d = 2
goes through for general d simply by replacing 2 by d . �

Lemma 4.3. Fix d > 1. For (c, ε) ∈ A2, let φc,ε : A
1
→ A1 be given by φc,ε(z)=

z(z− ε)d−1
+ c. Then the monodromy action on Prepφc,ε

(1, b) is transitive for all
b > 0.

Proof. It follows from Theorem 3.2 that the monodromy action on Perφc,ε (b)
is transitive for all b > 0, so it suffices to prove that for any b > 0 there exists
x ∈Perφc,ε (b) and an element γ of the monodromy so that γ (x)= x and γ cyclically
permutes the d − 1 elements of φ−1

c,ε (x) (so if d = 2, there is nothing to prove).
By Lemma 4.2 and a simple counting argument, it follows that, for any b > 0,

there exists cb ∈ C so that 0 ∈ Perφcb
(b). Since 0 is a critical point of φcb , it is of

multiplicity 1 as an element of Perφcb
(b). It follows that, for |ε|� 0, there exists cb,ε

close to cb so that 0 is a periodic point of Perφcb,ε ,ε
(b) of multiplicity 1. By the

2It seems reasonable to expect the modified conjecture to hold even for quasipolarised endo-
morphisms.
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definition of φc,ε , it then follows that ε is the unique element of Prepφcb,ε ,ε
(1, b)

that is mapped to φcb,ε ,ε(0)= cb,ε by φcb,ε ,ε .
We now consider the 1-parameter family of maps φc,ε with ε such that |ε| � 0

fixed. In a neighbourhood of cb,ε , the element cb,ε ∈ Perφcb,ε ,ε
(b) deforms uniquely

as an element of Perφc,ε (b). However, since the critical points of φc,ε are independent
of c, it follows that the element ε∈Prepφcb,ε ,ε

(1, b) deforms to d−1 distinct elements
of Prepφc,ε

(1, b) that are all mapped to the deformed periodic point above by φc,ε .
We claim that the monodromy action of a small loop around cb,ε gives us the

required element γ . Since cb,ε deforms uniquely as a periodic point, the monodromy
action of γ on this point is trivial as required. To prove that the second condition
is satisfied, let C ⊂ A2 be the curve consisting of all points (z, c) so that z is a
preperiodic point of preperiod 1 and period b of φc,ε (with ε fixed as above). It
suffices to prove that C is smooth at the point (ε, cb,ε).

To see this, we consider the explicit equation for C . It is given in an neighbour-
hood of (ε, cb,ε) by

φb+1
c,ε (z)−φc,ε(z)= 0. (4-1)

To see that it is smooth at (cb,ε, ε), it suffices to substitute ε for z and check that
the resulting polynomial in c, φb+1

c,ε (ε)−φc,ε(ε), has cb,ε as a root of multiplicity 1.
However, from the definition of φc,ε it follows that

φb+1
c,ε (ε)−φc,ε(ε)= φ

b+1
c,ε (0)−φc,ε(0),

so we may replace ε by 0. In a neighbourhood of the point (0, cb,ε), the curve given
by (4-1) is smooth since it parametrises periodic points of period b and the periodic
point 0 of φcb,e,ε is of multiplicity 1. To show that the multiplicity of cb,ε as a root
of φb+1

c,ε (0)−φc,ε(0) is 1, we may then specialise ε to 0, so it suffices to consider
the multiplicity of cb as a root of the polynomial Pb(c)= φb

c . By Lemma 4.2, this
multiplicity is indeed 1 as required. �

To prove the transitivity of the monodromy action on Prepφc,ε
(a, b) for a > 1,

we shall need some results about Misiurewicz points. We refer the reader to [Lau
and Schleicher 1994; Eberlein 1999] for the basic facts that we use below, which
generalise results proved in [Douady and Hubbard 1984] in the case d = 2. Recall
that c0 ∈ C is called a Misiurewicz point if c0 is a strictly preperiodic point of the
map φc0 . By the results of [op. cit.], for any strictly preperiodic angle θ ∈ Q/Z,
there is a Misiurewicz point c0 such that the parameter ray with angle θ lands at c0.
By [Eberlein 1999, Lemma 8.3], the preperiod of θ (with respect to multiplication
by d) is equal to the preperiod of c0 (with respect to φc0) and the period of the
kneading sequence of θ , K (θ), is equal to the period of c0 (with respect to φc0).
For θ = 1/(da

· (db
− 1)), a, b > 0, the preperiod of θ is a and the period of K (θ)

is b, so there exists a Misiurewicz point with any preperiod a > 0 and period b.
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A point λ ∈ C is called parabolic of period b if it is the landing point of a
parameter ray with angle θ that is periodic of period b. By results from [Douady
and Hubbard 1984; Eberlein 1999], a parabolic point is never a Misiurewicz point.

To prove the transitivity of the monodromy action for a > 1, we shall need the
following analogue of Lemma 4.2, due to Douady and Hubbard:

Lemma 4.4. For a Misiurewicz point c0 as above, the equation φa+1+b
c (0) −

φa+1
c (0)= 0 has a simple root at c = c0.

Proof. The lemma is formulated and proved for d = 2 as Corollary 8.5 of [Douady
and Hubbard 1984]; however, Proposition 8.5 of the same work holds for general d ,
and so the proof goes through if we substitute Theorems 8.1 and 8.2 of [Eberlein
1999] for Douady and Hubbard’s Theorem 8.2. �

Lemma 4.5. The monodromy action of the 2-dimensional family of polynomials φc,ε

on Prepφc,ε
(a, b) is transitive for all a, b > 0.

Proof. We already know transitivity if a = 1. Thus, by induction, we may assume
a > 1, and then it suffices to prove that for the 1-dimensional family of polynomials
φc, there exists x ∈ Perφc(a− 1, b) and an element γ of the monodromy such that
γ (x)= x and γ induces a cyclic permutation on the d elements of Perφc(a− 1, b)
comprising φ−1

c (x).
Since 0 and ∞ are the only critical points of φλ, the preperiodic points for

general λ are multiplicity-free. Let c be a Misiurewicz point of preperiod a − 1
and period b, and consider a small loop γ in the parameter plane around c such
that all parabolic points of period b and all Misiurewicz points of preperiod a
and period b are outside this loop. We note that the preperiodic points of φc of
preperiod ≤ a and period b are multiplicity-free since none of them are critical
values and a Misiurewicz point is never a parabolic point. This remains true in
a neighbourhood of c, so we may assume that this holds in a neighbourhood U
of γ containing its interior; in particular, c deforms uniquely as a preperiodic point
cλ ∈ Prepφλ(a, b) as λ varies in this neighbourhood.

Since φc is totally ramified at 0, 0 is the unique element of Prepφc
(a, b) mapping

to c by φc. By construction, for any other λ ∈U , there are d points of Prepφλ(a, b)
mapping to cλ and these points all come together at 0 as λ→ c. The set of these
points in a neighbourhood of (c, 0) is exactly the zero locus D of the polynomial
φa+1+b
λ (z)−φa+1

λ (z). By Lemma 4.4, the multiplicity of this after setting z = 0 is 1
at (c, 0), so it follows that D must be smooth at this point. Since the inverse image
of c in D is a single point, it follows that the map induced by the projection to the
first factor is totally ramified of degree d at (c, 0). Consequently, the monodromy
around γ induces a cyclic permutation of order d on φ−1

λ (cλ). We may thus take
x = cλ for any λ with |λ| � 0 to complete the proof. �
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Proposition 4.6. The Galois action on Prep fn,d
(a, b) is transitive for all a, b > 0.

Proof. Since fn,d is defined over kn,d , the Galois action on Prep fn,d
(a, b), a, b ≥ 1,

is compatible with the natural surjections

Prep fn,d
(a+ 1, b)

fn,d
−−→ Prep fn,d

(a, b).

Thus, by induction on a, it suffices to show that for any a>0, there exists an element
x ∈Prep fn,d

(a−1, b) such that, for any y, y′∈Prep fn,d
(a, b)with fn,d(y)= fn,d(y′),

there exists an element γ of the monodromy such that γ (y)= y′.
If n = 1, the claim follows immediately from Lemma 4.5, so in the following,

we shall assume n > 1.
As before, we may assume that k = C. The proof of transitivity is similar to that

for the case of periodic points except that we replace the use of the maps φc by φc,ε .
So for 0≤ i ≤ n, consider the family of endomorphisms fi : P

n
×A2n

→ Pn
×A2n

defined by

fi (([x0, . . . , xn], (c1, . . . , cn, ε1, . . . , εn)))

=
([

x0(x0− ε1xi )
d−1
+ c1xd

i , . . . , xi−1(xi−1− εi xi )
d−1
+ ci xd

i , xd
i ,

xi+1(xi+1− εi+1xi )
d−1
+ xd

i , . . . , xn(xn − εnxi )
d−1
+ cnxd

i
]
,

(c1, . . . , cn, ε1, . . . , εn)
)
.

On the open affine Ui given by xi 6= 0, fi is the product of the n polynomials φc j ,ε j .
Let gn,d be the d-power map as before. Contrary to the case of periodic points,

the map from the locus of preperiodic points to the base is not étale at preperiodic
points of gn,d contained in its ramification locus. However, the map is étale at
preperiodic points all of whose coordinates are nonzero, and this will suffice (except
when d = 2) for our needs (compare the discussion of monodromy on page 589).

Suppose a=1. Let ζ be a primitive (db
−1)-th root of unity, and let x ′∈Pergn,d (b)

be the point [ζ, 1, . . . , 1, 1], and let x = gn,d(x ′). The preperiodic points y such
that gn,d(y)= x are of the form [ζ ξ1, ξ2, . . . , ξn, 1], where all the ξi are d-th roots
of unity and at least one of them is not equal to 1.

We now also assume that d > 2. Using the monodromy action of the family fn

and Lemma 4.3, it follows that we may assume that ξi = ξ , where ξ is a fixed d-th
root of unity or ξi = 1.

Since d > 1, there exists a d-th root of unity ξ ′ such that ξ ′ 6= 1, ξ . Let y =
[ζ ξ, 1, . . . , 1] and y′ = [ζ ξ, ξ, . . . , ξ, 1, . . . , 1], where there are n1 ξ ’s and n2 1’s
with n1, n2 > 0. Each step of the following sequence of transformations is given
either by multiplying through by a constant or by applying the monodromy of fi

for some i such that the i-th coordinate is equal to 1:
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y = [ζ ξ, 1, . . . , 1] → [1, ζ−1ξ−1, . . . , ζ−1ξ−1
]

→ [1, ζ−1ξ ′
−1
, . . . , ζ−1ξ ′

−1
, ζ−1ξ−1, . . . , ζ−1ξ−1

]

→ [ζ ξ, ξξ ′
−1
, . . . , ξξ ′

−1
, 1 . . . , 1]

→ [ζ ξ, ξ, . . . , ξ, 1, . . . , 1] = y′.

In the last transformation, we also use the fact that ξξ ′−1 is a d-th root of unity not
equal to 1 so, like ξ and ξ ′, an element of Prepφ0

(1, 1).
Let y′′= [ζ, ξ, . . . , ξ, 1 . . . , 1], where there are n1 ξ ’s and n2 1’s with n1, n2 > 0

as before. Since d > 2, there exists ζ ′ ∈ Perφ0(b) such that ζ ζ ′−1 also has period b.
We then have a similar sequence of transformations:

y′ = [ζ ξ, ξ, . . . , ξ, 1, . . . , 1] → [1, ζ−1, . . . , ζ−1, ζ−1ξ−1, . . . , ζ−1ξ−1
]

→ [1, ζ ′ζ−1, . . . , ζ ζ−1, ζ−1ξ−1, . . . , ζ−1ξ−1
]

→ [ζ ξ, ζ ′ξ, . . . , ζ ′ξ, 1, . . . , 1]

→ [ζ ξ, ζ ′ξ ′, . . . , ζ ′ξ ′, 1, . . . , 1]

→ [ζ ξ(ζ ′ξ ′)−1, 1, . . . , 1, (ζ ′ξ ′)−1, . . . , (ζ ′ξ ′)−1
]

→ [ζ(ζ ′ξ)−1, 1, . . . , 1, (ζ ′ξ)−1, . . . , (ζ ′ξ)−1
]

→ [ζ, ζ ′ξ, . . . , ζ ′ξ, 1, . . . , 1]

→ [1, ζ−1ζ ′ξ, . . . , ζ−1ζ ′ξ, ζ−1, . . . , ζ−1
]

→ [1, ζ−1ξ, . . . , ζ−1ξ, ζ−1, . . . , ζ−1
]

→ [ζ, ξ, . . . , ξ, 1, . . . , 1] = y′′.

Here we have used that ζ , ζ ′, ζ ζ ′−1 and their inverses are in Perφ0(b) and each
one of these multiplied by ξ , ξ ′, ξξ−1 or any of their inverses is an element of
Prepφ0

(1, b). By symmetry, we then conclude that the desired transitivity holds in
this case.

Now suppose d = 2. In this case, Prepφ0
(1, 1)= {−1}, a singleton, so the above

argument breaks down, and we will need to consider paths passing through elements
of Prepgn,d

(1, b), one of whose coordinates is 0. This is justified by Lemma 4.7
below.

As before, let y = [−ζ, . . . ,−ζ, 1] with ζ a primitive (2b
− 1)-th root of unity

and y′ = [−ζ, . . . ,−ζ, ζ, . . . , ζ, 1], where there is at least one −ζ and one ζ . We
need to consider the cases b = 1 and b > 1 separately.

First suppose b = 1, so ζ = 1. We then have the sequence of transformations

y = [−1, . . . ,−1, 1] → [1, . . . , 1,−1] → [1, . . . , 1, 0,−1]

→ [−1, . . . ,−1, 0, 1] → [−1, . . . ,−1, 1, 1].
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Repeating this procedure, we see that we can connect y to y′, and by symmetry,
the transitivity follows in this case.

Now suppose b > 1, so there exists ζ ′ ∈ Perφ0(b) so that, as before, ζ ζ ′−1
∈

Perφ0(b). We then have a sequence of transformations

y = [−ζ, . . . ,−ζ, 1] → [1, . . . , 1,−ζ−1
] → [1, . . . , 1, 0,−ζ−1

]

→ [−ζ, . . . ,−ζ, 0, 1] → [−ζ, . . . ,−ζ, 1, 1]

→ [1, . . . , 1,−ζ−1,−ζ−1
] → [1, . . . , 1,−ζ ′−1,−ζ−1

]

→ [−ζ−1, . . . ,−ζ−1, ζ ζ ′−1, 1] → [−ζ−1, . . . ,−ζ−1, ζ,1].

Repeating this procedure, we see that we can connect y to y′, and then by symmetry,
transitivity follows.

Finally, suppose a > 1. By induction, we can choose x to be an arbitrary point
of preperiod a − 1 and period b, so we let x ′ = [ζ, ζ, . . . , ζ, 1] where ζ is an
element of Prepφ0

(a, 1) and x = gn,d(x). The points in g−1
n,d(x) are of the form

[ζ ξ1, . . . , ζ ξn, 1] where ξ1 is a d-th root of 1, so ζ ξi ∈ Prepφ0
(a, 1). One sees that

the monodromy acts transitively on g−1
n,d(x) simply by considering the monodromy

of the family of maps fn and applying Lemma 4.5. �

Let F :Pn
k×Morn,d/k→Pn

k→Morn,d/k be the universal morphism of degree d ,
and consider PF (b+1, b)⊂Morn,d/k (the notation is defined just before Lemma 2.2).
The fibre of the projection map from PF (b + 1, b) to Morn,d/k over any point
f ∈Morn,d/k consists of f -preperiodic points of preperiod at most 1 and period
dividing b.

Lemma 4.7. If d = 2 and char(k) 6= 2, then PF (b+ 1, b) is smooth at any preperi-
odic point of gn,2 of preperiod 1 and period b.

Proof. We have F(PF (b + 1, b)) = PF (b). As we have already seen, PF (b) is
smooth at all periodic points of gn,d . Moreover, F is analytically locally at any
point of Prepgn,d

(1, b) with exactly one coordinate equal to 0, a cyclic cover of
degree 2. Thus, to prove smoothness, it suffices to show that the discriminant of F
intersects PF (b) transversely at any point of Pergn,d (b) with exactly one coordinate
equal to 0.

To prove transversality, it then suffices to restrict to any subvariety of Morn,d and
prove transversality for the induced subvarieties. By considering, say, the family fi

as in the proof of Proposition 3.3, where i is such that the i-th coordinate of the
point under consideration is nonzero, we reduce to the case of the one parameter
φc, c ∈ A1

c , and we need to prove transversality at the point (z, c) = (0, 0). The
discriminant locus is given by z = 0 (since d = 2) and the locus of fixed points by
z2
+ c− z = 0, so the lemma follows. �
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Proof of Theorem 4.1. Let X be the Zariski closure of an infinite subset of preperiodic
points. By Lemma 2.2(1), all preperiodic points of a quasipolarised map are defined
over the algebraic closure of the base field, so we may assume without loss of
generality that K is the algebraic closure of kn,d and X is defined over a finite
extension of kn,d . By replacing X by the union of its Galois conjugates, we may
then assume that X is defined over kn,d .

Since Prep fn,d
(a, b) is finite for all a and b, there exists an infinite sequence of

tuples (ai , bi ), with ai ≥ 0 and bi > 0, so that X contains a point xi ∈Prep fn,d
(ai , bi )

for all i . Since X is defined over kn,d , it follows from Propositions 3.3 and 4.6 that
Prep fn,d

(ai , bi )⊂ X for all i . We let X ′ be the Zariski closure of the specialisations,
over the point in Morn,d corresponding to gn,d , of the preperiodic points in X (K ).
Since all preperiodic points lift to the generic fibre by Lemma 2.2, it follows that
X ′ ⊂ Pn

k has the same properties as X but with respect to Pergn,d .
For any i , the set of points in Pn

k
of the form [ξ0, . . . , ξn1, 1]with ξi∈Prepφ0

(ai ,bi )

is contained in Prepgn,d
(ai , bi ) and hence in X ′. As in the proof of Theorem 3.6, it

then follows that X ′ = Pn
k , so X = Pn

kn,d
. �

Remark 4.8. Note that we do not use the full strength of the genericity hypothesis
in the proofs of this section or of the previous one. It suffices to assume that the
morphism under consideration corresponds to the generic point of an irreducibility
subvariety of Mord,n/k that contains all the families fc,ε and is smooth at gn,d .
Since all the fc,ε are smooth and have dimension 2n, there exist such subvarieties
for all n with dimension independent of d .

5. The dynamical “Mordell–Lang” conjecture for generic endomorphisms

Let (X, f ) be an algebraic dynamical system over a field K of characteristic 0; i.e.,
X is an algebraic variety and f : X→ X is a morphism. The conjecture of Ghioca
and Tucker [2009] asserts that, if x ∈ X (K ) and Y a subvariety of X are such that
O f (x)∩ Y (K ) is infinite, then there is a periodic subvariety Z of X with Z ⊂ Y
and Z(K )∩ O f (x) 6=∅. It has been proved when f is étale by Bell et al. [2010]
and in a few other cases. It is not known in general if X =Pn

K and deg( f ) > 1; this
was the original case investigated by Denis [1994], who proved the assertion under
the assumption that O f (x)∩ Y (K ) is large in a suitable sense.

For (X, f )= (Pn
K , f ), with f a generic endomorphism, by Theorem 3.6, there

are no nontrivial f -periodic subvarieties contained in Pn
K , so the conjecture in this

case is equivalent to the following:

Theorem 5.1. Let f : Pn
K → Pn

K be a generic endomorphism of degree d > 1 over
an algebraically closed field K of characteristic zero. For each x ∈ Pn(K ), every
infinite subset of O f (x) is Zariski-dense in Pn

K .
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The idea of the proof is as follows. We first use specialisation to reduce to the
case that K is a finite extension of kn,d . We then show using a p-adic argument,
for a prime p dividing d, that any Y such that O f (x)∩ Y is infinite must contain
infinitely many periodic points, or there exists a prime q not diving d, such that
x and f have specialisations x and f over Fq with f étale on the orbit of x . Both
these conditions lead to the conclusion that Y = Pn

K , the first from Theorem 4.1
and second by using a result of Bell, Ghioca and Tucker, which we recall:

Lemma 5.2. Let L/Qp be a finite extension, π : X→ Spec(R) a smooth scheme of
finite type over the ring of integers R of L and f : X→ X a morphism over Spec(R).
Suppose x ∈ X (R) is such that f is étale on the orbit of x. If Y ⊂ X is any closed
subscheme with Y∩O f (x) infinite, then YL contains a positive-dimensional periodic
subvariety of X L .

Proof. If L = Qp, this is an immediate consequence of the results in [Bell et al.
2010]. For general L , it follows from the methods in the same work, if one replaces
Theorem 3.3 therein by Theorem 7 of [Amerik 2011]. �

Lemma 5.3. Theorem 5.1 for arbitrary extensions K of kn,d follows from the case
of finite extensions.

Proof. Without loss of generality, we may assume that k =Q and K is a finitely
generated extension of kn,d . Let x ∈ Pn(K ), and let Y be a subvariety of Pn

K such
that O f (x)∩ Y (K ) is infinite.

Since K is finitely generated, there exists a smooth irreducible scheme M of
finite type over Z with function field K and a dominant morphism π : M→Morn,d

inducing the inclusion kn,d ⊂ K on function fields. Let f : M ×Pn
→ M ×Pn

be the pullback of the universal morphism from Morn,d ×Pn , so f restricted to
the generic fibre of the first projection is equal to f . Let x and Y be the Zariski
closures of x and Y , respectively, in M×Pn . By shrinking M if necessary, we may
assume that x and Y are flat over M .

Since p is a dominant finite-type morphism, there exists a point f ′ of M (which
we think of as an endomorphism of Pn using π) mapping to the generic point
of Morn,d and so that the residue field K ′ at f ′ is a finite extension of kn,d . Let x ′

and Y ′ denote the fibres of x and Y , respectively, over f ′. If O f ′(x ′) is infinite, then
so is O f ′(x ′)∩ Y ′; hence, by the condition on K ′, it would follow that Y ′ = Pn

K ′ ,
which (by flatness) implies Y = Pn

K .
If O f ′(x ′) is finite, then x ′ is f ′-preperiodic. Since f ′ is generic, it follows

from Corollary 3.5 that O f ′(x ′) does not intersect the ramification locus of f ′.
Let |O f ′(x ′)| = n, and let Z denote the Zariski closure of {x, f (x), . . . , f n−1(x)}
in M×Pn . Let R⊂M×Pn be the ramification locus of f , and consider the closed
subset R∩ Z of M×Pn . By the above, the fibre of this subset over f ′ is empty, so
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by the properness of Pn , its projection in M is a proper closed subset. Replacing M
by the complement of this subset, we may assume that R∩ Z =∅.

Now let f ′′ be any closed point (which we again think of as an endomorphism)
of M that lies in the closure of f ′. Since M is of finite type over Z, the residue
field of f ′′ is a finite field F . Let x ′′ and Y ′′ denote the fibres of x and Y , re-
spectively, over f ′′. Since f ′′ is in the closure of f ′, x ′′ is in the closure of x ′;
hence, |O f ′′(x ′′)| ≤ n. Since R ∩ Z = ∅, it follows that f ′′ is unramified at all
points of O f ′′(x ′′). Let W (F) be the ring of Witt vectors of F . Since M is smooth
over Z, by Hensel’s lemma, the set of points in M(W (F)) that specialise to f ′′ is in
bijection (after choosing local coordinates) with W (F)n . The subset consisting of
points that lie in a proper closed subscheme of M is a countable union of nowhere
dense (in the adic topology) subsets. It follows by Baire’s theorem that there exists a
point in M(W (F)) specialising to f ′′ and not lying in any proper closed subscheme.
Letting L be the quotient field of W (K ), it follows that the image of the induced
map from Spec(L) to M must be the generic point. We thus get an inclusion of K
into L , and we may apply Lemma 5.2 with R =W (K ) and X = Spec(W (F))×Pn

to the base change of f , x and Y via the morphism Spec(W (F))→ M to conclude
using Theorem 3.6(1) that Y = Pn

K . �

Lemma 5.4. Let p be a prime and gn,d,p denote the endomorphism of Pn
Fp

given
by raising each coordinate to its d-th power. Let X ⊂Pn

Fp
be a positive-dimensional

subvariety. Then the set
⋃
r≥0

gr
n,d,p(X (Fp)) contains periodic points of infinitely

many distinct periods.

Proof. Since gn,d,p preserves the standard decomposition of Pn as a disjoint union
of affine spaces, by projecting to a suitable coordinate, we reduce to the statement
for n = 1, in which case the statement is obvious. �

Remark 5.5. We expect that the lemma holds with gn,d,p replaced by an arbitrary
quasipolarised morphism — or even more generally with some extra conditions
on X — defined over a finite field, but this seems much harder to prove. However,
for endomorphisms of abelian varieties the corresponding statement can indeed be
proved.

Lemma 5.6. Let d > 1 be an integer and p a prime such that p | d. Let φ be the
morphism A2

→ A2 given by φ(x, c)= (xd
+ c, c) over the field Fp.

(a) For c ∈ Fp, the monodromy action on the set of fixed points of φc is transitive.

(b) Let X ⊂ A2 be an irreducible subvariety of dimension 1, mapping dominantly
to A1 via the second projection p2. Assume that the intersection of X with the
generic fibre of p2 is not a preperiodic point of φ. Then the φ-periods of the
points in X (Fp) (which are all preperiodic) are unbounded.
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Proof. We will use elementary intersection theory on P1
× Y with Y a smooth

projective curve.
Let Xn = φ

n(X) for n ≥ 0. By replacing X by φr (X) for some r ≥ 0, we assume
that the map p2 : Xn→ P1 has degree e for all n.

For any integer b > 0, let Pb be the locus of points in A2 that are φ-periodic of
period b. Since p | d , φ is inseparable on the fibres of p2, so the graph of φb

|P1×{c}

intersects the diagonal in A2 transversely for all c ∈ A1 and all b. It follows that Pb

is a finite étale cover of A1 via p2 and Pb ∩ Pb′ =∅ for b 6= b′.
Let Pb be the closure of Pb in P1

× P1
⊃ A1

× A1
= A2, and let Xn be the

closure of Xn in P1
×P1. The curve Pb is a subcurve of the curve Qb in A2 with

equation
( . . . ((xd

+ c)d + c)d . . . )d + c− x = 0,

where we have b pairs of brackets. Replacing c by 1/c′ in the above equation and
multiplying through by c ′ d

(b−1)
, we get the equation

( . . . ((c ′ xd
+ 1)d + c ′ d

b−1
−db−2

)d . . . )d + c ′ d
b−1
−1
− c ′ d

b−1
x = 0.

It follows that the only point on all the Pb intersecting the fibre over c =∞ is the
point at infinity on this fibre and the support of Pb ∩ Pb′ is equal to this point if
b 6= b′. When b = 1, the equation is

c′xd
+ 1− c′x = 0.

One then sees that P1 is irreducible since the equation shows that it is smooth at
the point (∞,∞) and the closure in P1

×P1 of any irreducible component of P1

must contain this point; this proves (a).
If the φ-periods of all points in X (Fp) are bounded, then there must exist some

b > 0 so that |Xn ∩ Pb| →∞ as n→∞ and, by assumption, Xn * Pb for all b.
Writing [Xn] = e[{0}×P1

]+an[P
1
×{0}] in NS(P1

×P1), it follows that an→∞

as n→∞.
Let X ′ be the normalisation of X , and denote by η : X ′→P1 the composition of

the normalisation map and the projection p2. Let x1, x2, . . . , xr be the points in X
mapping to the point (∞,∞) in P1

×P1. If r=0, it follows that X∩Pb 6=∅ for all b,
so we may assume that r > 0. Let b1, b2, . . . , br+1 be any distinct integers, and let
γ :Y→ X ′ be a Galois cover such that there are components Si of (id×ηγ )−1(Pbi )

in P1
× Y that map isomorphically to Y via the second projection. Let Z be the

section of this projection induced by the tautological section of P1
× X ′, and

let Zn = ψ
n(Z), where ψ is the map of P1

× Y induced by φ. We may write
[Si ] = [ ∗ × Y ] + si [P

1
× ∗ ] and [Zn] = [ ∗ × Y ] + an[P

1
× ∗ ] in NS(P1

× Y )
where si ≥ 0 and ∗ denotes any point. It follows that the intersection number
Si · Zn = si + an→∞ as n→∞ for all i = 1, 2, . . . , r .
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Now consider the local intersection multiplicity Iy(Si , Zn) of Si and Zn at a
point∞× y, where y ∈ Y is such that γ (y)= x j for some j . If this is bounded for
all such y and all n, since Si · Zn→∞, it would follow that for large n, Si and Zn

must intersect in a point (z, y′) such that ηγ (y′) ∈ A1
⊂ P1, which implies that

Xn ∩ Pbi 6=∅.
Suppose this is not the case, so Iy(Si , Znl )→∞ for some infinite sequence

nl→∞. Since the Si are all distinct smooth curves and there are only finitely many
of them, it follows that Iy(T, Znl ) must remain bounded as nl→∞, where T runs
over all Si ′ for i ′ 6= i and all of their Galois conjugates. Up to Galois conjugation,
there are only r points y as above, so it follows that we must have that, for all large nl ,
there exists inl ∈ {1, 2, . . . , r + 1} so that Iy(Sinl

, Znl ) is bounded by an integer
independent of nl for all y as above. It follows that we must have Xnl ∩ Pbinl

6=∅.
By choosing infinitely many disjoint sets of r + 1 distinct integers {b1, b2, . . . ,

br+1} as above, we see that Xnb ∩ Pb 6= ∅ for infinitely many distinct integers b
(and nb depending on b). Since all the Pb are disjoint, it follows that X contains
preperiodic points of infinitely many distinct periods. �

Remark 5.7. We also expect this lemma to hold in much greater generality, e.g.,
for any 1-parameter family of maps defined over Fp.

The following lemma is the key to our construction of a periodic point in Y
under the assumption that O(x)∩ Y (K ) is infinite:

Lemma 5.8. Let L/Qp be a finite extension, π : X→ Spec(R) a smooth projective
scheme over the ring of integers R of L and f : X→ X a quasipolarised morphism
over Spec(R). Assume that the differential of f , d f , is 0 on the special fibre of X.
For any x ∈ X (L)= X (R), let b be the period of the reduction x of x in the special
fibre of X. Then for any integer a ≥ 0, the sequence of points f a+bn(x) converges
to a periodic point of X (L) of period b.

Proof. Replacing f by f n and x by f a′(x), for any integer a′ greater than the
preperiod of x , we may assume that x is a fixed point of f , and we then need to
prove that f n(x) converges to a fixed point.

Since f is quasipolarised, by Lemma 2.2(2), x lifts to a fixed point y of f defined
over a finite extension of L; by replacing L by this extension, we may assume that
y ∈ X (L).

Let A be the completion of the local ring of x on X . Since π is smooth,
A ∼= R[[z1, z2, . . . , zn]], where n + 1 = dim(X). Using any such isomorphism,
the set of points of X (L) that specialise to x is identified with the set (m R)

n , where
m R is the maximal ideal of R. We fix such an isomorphism, which we also assume
identifies y with (0, . . . , 0) ∈ (m R)

n .
Since x is a fixed point of f , f induces an endomorphism of A that, with respect

to the chosen isomorphism, is given by an n-tuple of elements ( f1, f2, . . . , fn) in
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the maximal ideal of the local ring R[[z1, z2, . . . , zn]]. Moreover, since f fixes y,
it follows that the constant term of each fi is 0. Since d f is assumed to be zero
on the special fibre of X , it follows that the coefficients of the linear term of
each fi lies in m R . For any λ = (λ1, λ2, . . . , λn) ∈ (m R)

n , let |λ| = maxi {|λi |}.
The conditions on the fi imply that, for any such λ, | f (λ)|< |λ| if λ 6= (0, . . . , 0).
Since R is a discrete valuation ring, it follows that for any such λ we have that
f n(λ)→ (0, 0, . . . , 0) as n→∞; hence, f n(x)→ y as n→∞. �

Proof of Theorem 5.1. By Lemma 5.3, we may assume that K is a finite extension
of kn,d . Furthermore, we may assume without loss of generality that our base field
k =Q.

Let x ∈ Pn(K ), and assume that Y is a subvariety defined over K such that
I = O(x) ∩ Y (K ) is infinite. Let X be the Zariski closure of the image of x in
Morn,d ×Pn

Z, and let χ denote the map X→Morn,d induced by projection to the
first factor.

Let p be a prime dividing d. Since Morn,d is smooth over Spec(Z), there is a
map g : Spec(Zp)→Morn,d such that the generic point of Spec(Zp) maps to the
generic point of Morn,d and the closed point maps to the point corresponding to
gd,n,p, the d-power map over Fp. Since p | d , the differential of the endomorphism
of Pn

Zp
corresponding to g, which we also denote by g, is zero on the special

fibre. Suppose the fibre Xgd,n,p of χ over gd,n,p is infinite. By Lemma 5.4, the
set
⋃

r≥0 gr
d,n,p(Xgd,n,p(Fp)) contains infinitely many periodic points. By applying

Lemma 5.8, we can lift all these periodic points to periodic points of fn,d contained
in Y . It then follows from Theorem 4.1 that Y = Pn

K . Thus, we may assume from
now on that χ is finite over an open neighbourhood of gn,d,p.

By replacing x by f r (x) for some large r , we may assume that Xgd,n,p contains a
periodic point x ′=[x ′0, x ′1, . . . , x ′n]with x ′i ∈Fp. Since χ is finite in a neighbourhood
of gn,d,p, Mord,n is smooth, hence normal, and X is irreducible, it follows from the
going-down theorem that if none of the x ′i = 0 then the fibre Xgn,d of χ over gn,d

contains a point x̃ ′ lifting x ′. By specialisation, it follows that for all large primes q
the fibre of χ over gn,d,q contains a point all of whose coordinates are nonzero or,
equivalently, not contained in the ramification locus of gn,d,q . Since this locus is in-
variant under gn,d,q , we may apply Lemma 5.2 to conclude the existence of a positive-
dimensional periodic subvariety of Y , which, by Theorem 3.6, implies Y = Pn

K .
We now use Lemma 5.6 to show that such an x ′ must exist, at least after replacing

x by a Galois conjugate, or Y must contain infinitely many periodic points, both
cases leading to the conclusion that Y = Pn

K . Let x ′ be as above, and suppose that
x ′0 = 0. Some other coordinate must be nonzero, so by symmetry, we may assume
that x ′n 6= 0, and then by multiplying through by a scalar, we may assume x ′n = 1.
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Consider the family of endomorphisms ψc of Pn
Fp

parametrised by A1 given by

ψc([x0, x1, . . . , xn])= [xd
0 + cxd

n , xd
1 , . . . , xd

n ],

so ψ0 = gn,d,p. Note that, on the affine space given by the locus with xn 6= 0, ψc

is given in affine coordinates by (z0, z1, . . . , zn−1) 7→ (zd
0 + c, zd

1 , . . . , zd
n−1).

Let S ⊂Morn,d be the subscheme corresponding to the family ψc. By the going-
down theorem, there is an irreducible component T of χ−1(S) mapping onto S
and containing the point (gn,d,p, x ′). Let T ′ be the image of T in Pn

Fp
under the

projection of X to Pn . Since x ′n = 1, T ′ is not contained in the locus given by xn = 0,
so by projecting to the first n coordinates, we get a rational map ρ from T to An .

Suppose the composition of ρ with the i-th projection is nonconstant for some i ,
0< i ≤ n− 1. Since the action of ψc on the i-th coordinate doesn’t depend on c,
it follows that T (Fp) must contain preperiodic points of arbitrarily large period. By
Lemma 5.8 as before, we obtain infinitely many periodic points in Y , forcing Y =Pn

K .
So suppose ρ composed with all the i-th projections are constant for i > 0, and

let σ : T → A1
× S be given by (π0ρ, χ). By applying Lemma 5.6(b), it follows

that if the image of T is not contained inside a preperiodic curve for the map φ
(using the identification of S with A1) there must be φ preperiodic points in the
image with unbounded period. By the construction of ψd , it follows that there are
preperiodic points on T of unbounded period. As before, this implies that Y = Pn .

The last case we need to consider is when the image of T lies in a preperiodic
curve. By replacing x by an element in its orbit if necessary, we may assume that
this image lies in the periodic locus. Now 0 is a fixed point of the map z 7→ zd , and
the point (0, 0) is contained in the image of T by construction. By Lemma 5.6(a),
it follows that the point (0, 1) is also in the image of T . We conclude that Xgd,n,p

contains the periodic point x ′′ = [1, x ′1, . . . , x ′n−1, 1]. By replacing x ′ with x ′′ and
repeating the above argument if necessary, we conclude that Y contains infinitely
many periodic points, in which case it must be Pn

k , or Xgd,n,p contains a periodic
point x ′ = [x ′0, x ′1, . . . , x ′n] with x ′i 6= 0 for all i . As we have already seen, this also
implies that Y = Pn

K , concluding the proof. �

Remark 5.9. Note that a statement similar to Remark 4.8 holds: it suffices to
consider generic points of irreducible subschemes of Mord,n that contain all the
families fi and are smooth at the point gn,d,p for some prime p dividing d .
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