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Linear forms in logarithms and integral
points on higher-dimensional varieties

Aaron Levin

We apply inequalities from the theory of linear forms in logarithms to deduce
effective results on S-integral points on certain higher-dimensional varieties when
the cardinality of S is sufficiently small. These results may be viewed as a
higher-dimensional version of an effective result of Bilu on integral points on
curves. In particular, we prove a completely explicit result for integral points on
certain affine subsets of the projective plane. As an application, we generalize an
effective result of Vojta on the three-variable unit equation by giving an effective
solution of the polynomial unit equation f (u, v) = w, where u, v, and w are
S-units, |S| ≤ 3, and f is a polynomial satisfying certain conditions (which are
generically satisfied). Finally, we compare our results to a higher-dimensional
version of Runge’s method, which has some characteristics in common with the
results here.

1. Introduction

The problem of proving effective results in Diophantine questions is one of the
most pervasive and basic problems in number theory. Already in the case of curves,
the fundamental finiteness theorems for integral points and rational points (Siegel’s
theorem and Faltings’ theorem, respectively) are not known in an effective way, that
is, in general there is no known algorithm to provably compute the finite sets in the
conclusion of either theorem. In certain special cases, however, effective techniques
have been developed for computing integral or rational points on curves. The most
general and widely used effective methods for integral points on curves come from
the theory of linear forms in logarithms, developed originally by Baker [1975]. In
higher dimensions, effective techniques have not received much attention. A natural
first step towards proving higher-dimensional effective results consists of taking the
known effective techniques for curves and applying them, to the extent possible,
to the higher-dimensional situation. In [Levin 2008], some progress towards this
goal was achieved by formulating a higher-dimensional version of an effective
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method of Runge for computing integral points on curves. In this article we will
consider the theory of linear forms in logarithms and applications to integral points
on higher-dimensional varieties.

One of the few directions in which progress has been made on the study of
integral points on higher-dimensional varieties involves varieties which, roughly
speaking, have many components at infinity (see, for example, [Autissier 2009;
2011; Corvaja et al. 2009; Corvaja and Zannier 2004; 2006; Levin 2008; 2009]).
The results given here also fit into this framework. We prove the following effective
result for integral points on higher-dimensional varieties.

Theorem 1. Let X be a nonsingular projective variety defined over a number field k.
Let D1, . . . , Dn be effective ample divisors on X defined over k. Let D =

∑n
i=1 Di .

Let m ≤ n be a positive integer such that for all subsets I ⊂ {1, . . . , n}, |I | =m, the
set
⋂

i∈I (Supp Di )(k̄) consists of finitely many points. Suppose that for each point
P ∈ (Supp D)(k̄), there exists a nonconstant rational function φ ∈ k(X) satisfying
P 6∈ Suppφ and Suppφ ⊂ Supp D. Let S be a set of places of k containing the
archimedean places with

(m− 1)|S|< n.

Let R be a set of S-integral points on X\D. Suppose that X, D1, . . . , Dn, D, R, S, k
satisfy (*) in Section 3.2. Then R is contained in an effectively computable proper
closed subset Z of X.

To make the meaning of “effective” precise, we have assumed in the theorem
that one can compute certain natural quantities described in Section 3.2. An explicit
description of the higher-dimensional part of Z is given in Theorem 14. If X = C
is a curve, then Theorem 1 (with m = 1) is easily seen to be equivalent to the
following theorem of Bilu.

Theorem 2 [Bilu 1995]. Let C ⊂ An be an affine curve defined over a number
field k. Suppose that there exist two everywhere nonvanishing regular functions
on C with multiplicatively independent images in k(C)∗/k∗. For any finite set
of places S of k containing the archimedean places, the set C(Ok,S) is finite and
effectively computable.

Thus, Theorem 1 may be viewed as a higher-dimensional generalization of Bilu’s
theorem. We note that, as mentioned in [Bilu 1995], when combined with finite
covers and the Chevalley–Weil theorem, Theorem 2 appears to be responsible for
all known “universally effective” results on integral points on curves (results valid
for all number fields k and finite sets of places S).

As an easy consequence of Theorem 1, we obtain the following result for integral
points on surfaces.
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Corollary 3. Let X be a nonsingular projective surface defined over a number
field k. Let D1, . . . , Dn be ample effective divisors on X , defined over k, that
generate a subgroup of Pic(X) of rank r and pairwise do not have any common
components. Let D =

∑n
i=1 Di . Suppose that the intersection of the supports of

any n− r of the divisors Di is empty. Let S be a set of places of k containing the
archimedean places with

|S|< n.

Let R be a set of S-integral points on X\D. Suppose that X, D1, . . . , Dn, D, R, S, k
satisfy (*) in Section 3.2. Then R is contained in an effectively computable proper
closed subset Z of X.

The requirement, in the above results, that the number of components at infinity
be large relative to the cardinality of S appears prominently in Runge’s method
[Levin 2008] as well. We will compare our results with a higher-dimensional
version of Runge’s method in Section 5.

As an application of our result on surfaces, we prove an effective result on
two-variable polynomials that take on S-unit values at S-unit arguments when
|S| ≤ 3.

Corollary 4. Let f ∈ k[x, y] be a polynomial of degree d > 0 such that f (0, 0) 6= 0
and xd and yd have nonzero coefficients in f . Let S be a finite set of places of k
containing the archimedean places with |S| ≤ 3. Then the set of solutions to

f (u, v)= w, u, v, w ∈ O∗k,S,

consists of a finite effectively computable set and a finite number of infinite families
of solutions where one of u, v, or w is constant.

The infinite families of solutions are explicitly described in Corollary 21 in
Section 4.

Taking f (x, y) to be an appropriate affine linear polynomial, we find that
Corollary 4 generalizes an effective result of Vojta on the three-variable S-unit
equation with |S| ≤ 3.

Theorem 5 [Vojta 1983]. Let k be a number field, S a finite set of places of k
containing the archimedean places, and a1, a2, a3 ∈ k∗. If |S| ≤ 3, then the set of
solutions to the equation

a1u1+ a2u2+ a3u3 = 1, u1, u2, u3 ∈ O∗k,S,

with ∑
i 6= j

ai ui 6= 0, j = 1, 2, 3,

is finite and effectively computable.
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We note that versions of Theorem 5 with k = Q were also proved by Mo and
Tijdeman [1992] and Skinner [1990]. Ineffectively, versions of Corollary 4 and
Theorem 5 can be proven without any assumption on the (finite) cardinality of S.
For Theorem 5, this is a special case of a well-known result on unit equations,
proved independently by Evertse [1984] and van der Poorten and Schlickewei
[1982]. In the case of Corollary 4, this is an easy consequence of a result of Vojta
[1987, Corollary 2.4.3] and the proof of Corollary 4. The ineffectivity here comes
ultimately from usage of the Schmidt subspace theorem.

More generally, Vojta proved the following result for systems of unit equations.

Theorem 6 (Vojta). Let m and n be positive integers with n > m. Let (ai j ) be an
m× n matrix with elements in a number field k such that no m+ 1 distinct columns
of the matrix have rank less than m, and such that no column is identically zero.
Assume further that S is a finite set of places of k, containing the archimedean
places, satisfying

(n−m− 2)|S|< n.

Then the set of solutions to the system of unit equations

ai1u1+ · · ·+ ainun = 0, 1≤ i ≤ m, u1, . . . , un ∈ O∗k,S,

can be effectively determined.

More precisely, viewing a solution in Theorem 6 as a point in Pn−1, the set of
solutions to a system of equations as in Theorem 6 lies in finitely many proper
linear subspaces of Pn−1, and these solutions may be explicitly described and
parametrized. In work to appear, Bennett (personal communication) has improved
the inequality on |S| in Theorem 6 to (n−m− 1)|S|< 2n. In particular, Bennett’s
methods allow one to extend Theorem 5 to four-variable unit equations, that is, to
effectively solve the unit equation

a1u1+ a2u2+ a3u3+ a4u4 = 1, u1, u2, u3, u4 ∈ O∗k,S,

where a1, a2, a3, a4 ∈ k∗ and |S| ≤ 3. It would be interesting to determine the extent
to which Bennett’s methods may be applied to gain a similar improvement to the
results presented here.

In Section 7, we prove a completely explicit version of Corollary 3 when X =P2

is the projective plane.

Theorem 7. Let k be a number field of degree δ and discriminant1. Let C1, . . . ,Cn

be distinct curves over k in P2 such that the intersection of any n− 1 of the curves
is empty. Let S be a set of places of k containing the archimedean places with
s = |S| < n. Then the set of integral points

(
P2
\
⋃n

i=1 Ci
)
(Ok,S) is contained

in an effectively computable proper Zariski closed subset Z of P2. Explicitly, let
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di = deg Ci , d=maxi di , h=maxi h(Ci ), and N =maxv∈S N (v). Let Ci be defined
by fi ∈ k[x, y, z], i = 1, . . . , n. Let T =

⋃
i 6= j (Ci ∩ C j )(k̄), and for each point

P ∈ T , let IP = {i : P 6∈ Ci }. For P ∈ T , let

8P =

{
f d j
i

f di
j

: i, j ∈ IP

}
.

Then Z may be taken to consist of the union of the finite set of points{
P ∈ X (k) :

h(P) < 220s+4δ+75d6s+34δ5s+8δ−3s4s+2 N d2
(log∗ N )2s

|1|3/2(log∗ |1|)3δ(h+ 1)
}

and the Zariski closure Z ′ of the set⋃
P∈T

⋂
φ∈8P

{Q ∈ X (k̄) : φ(Q)= φ(P)}.

Being more interested in the general shape of the explicit height bound in the
theorem, we have made no effort here to obtain the best possible explicit bound
coming from the proof of Theorem 7 (and indeed, carefully following the proof
gives a superior, but more cumbersome, expression).

Finally, we give a brief sketch of the proof of Theorem 1. The proof is a
generalization of the proofs of Bilu’s and Vojta’s results (Theorem 2 and Theorem 5).
Let R be a set of S-integral points on X \ D, as in Theorem 1, and let P ∈ R. Let
T ⊂ X (k̄) be the finite set of points contained in the support of m or more divisors Di .
Using the assumption on the cardinality of S, the pigeonhole principle implies that
for some point Q ∈ T and v ∈ S, P is v-adically close to Q. Our hypotheses
then provide us with a nonconstant rational function φ ∈ k(X) with zeros and
poles only in Supp D \ {Q}. Since P ∈ R, φ(P) is essentially an S-unit, and φ(P)
is v-adically close to φ(Q). Now assuming that φ(P) 6= φ(Q) (this is where a
higher-dimensional exceptional set may appear), we apply a Baker-type inequality
to conclude that φ(P), and hence P , must have height bounded by an explicit
constant.

2. Notation and definitions

Let k be a number field and let S be a finite set of places of k containing the
archimedean places. We use Ok , Ok,S , and O∗k,S to denote the ring of integers of k,
ring of S-integers of k, and group of S-units of k, respectively. Throughout, we let
δ = [k :Q] be the degree of k, 1 the (absolute) discriminant of k, Rk the regulator
of k, and RS the S-regulator.

Recall that we have a canonical set Mk of places (or absolute values) of k
consisting of one place for each prime ideal p of Ok , one place for each real
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embedding σ : k → R, and one place for each pair of conjugate embeddings
σ, σ : k→ C. For v ∈ Mk , we define

N (v)=
{

2 if v is archimedean,
N (p) if v corresponds to the prime p,

where N (p) = |Ok/p| is the norm of p. We normalize our absolute values so
that |p|v = 1/p if v corresponds to p and p lies above a rational prime p, and
|x |v = |σ(x)| if v corresponds to an embedding σ . For v ∈ Mk , let kv denote the
completion of k with respect to v. We set

‖x‖v = |x |[kv :Qv]/[k:Q]
v .

A fundamental equation is the product formula∏
v∈Mk

‖x‖v = 1,

which holds for all x ∈ k∗.
For x a positive real number we let

log∗ x =max{log x, 1},

εv(x)=
{

x if v is archimedean,
1 otherwise,

and

ε′v(x)= εv(x)
[kv :Qv]/[k:Q].

We note that ∏
v∈Mk

ε′v(x)= x .

In this notation, for v ∈ Mk and x, y ∈ k we have the inequalities

|x + y|v ≤ εv(2)max{|x |v, |y|v},

‖x + y‖v ≤ ε′v(2)max{‖x‖v, ‖y‖v}.

For v ∈ Mk and α ∈ k, we define the local height

hv(α)= log max{‖α‖v, 1}

and the height

h(α)=
∑
v∈Mk

hv(α).
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We will frequently make the identification P1(k)= k ∪ {∞}. More generally, for a
point P = (x0, . . . , xn) ∈ Pn(k), we have the absolute logarithmic height

h(P)=
∑
v∈Mk

log max{‖x0‖v, . . . , ‖xn‖v}.

Note that this is independent of the number field k and the choice of coordinates
x0, . . . , xn ∈ k.

For a polynomial f ∈ k[x1, . . . , xn] and v ∈Mk , we let | f |v denote the maximum
of the absolute values of the coefficients of f with respect to v. We define ‖ f ‖v
similarly. We define the height of a nonzero polynomial by

h( f )=
∑
v∈Mk

log ‖ f ‖v.

This is the same as the height of the point in projective space whose coordinates
are given by the coefficients of f . If φ : Pn

→ Pm is a rational map, where
φ= ( f0, . . . , fm) and f0, . . . , fm ∈ k[x0, . . . , xn] are polynomials with no common
factor, then we define

h(φ)=
∑
v∈Mk

log max
i
‖ fi‖v.

Let D be a hypersurface in Pn defined by a homogeneous polynomial f ∈
k[x0, . . . , xn] of degree d . We define

h(D)= h( f ).

For v ∈ Mk and P = (x0, . . . , xn) ∈ Pn(k) \ D, x0, . . . , xn ∈ k, we define the local
height function

hD,v(P)= log
‖ f ‖v maxi ‖xi‖

d
v

‖ f (P)‖v
. (1)

Note that this definition is independent of the choice of the defining polynomial f
and the choice of the coordinates for P . We let hD(P) = (deg D)h(P). By the
product formula, if P ∈ Pn(k) \ D, then

∑
v∈Mk

hD,v(P)= hD(P).
If P = (x0, . . . , xn), Q = (y0, . . . , yn) ∈ Pn(k), xi , yi ∈ k, P 6= Q, and v ∈ Mk ,

we define
hQ,v(P)= log

maxi ‖xi‖v maxi ‖yi‖v

maxi, j ‖xi y j − x j yi‖v
.

Much more generally, one can associate a height to any closed subscheme of a
projective variety. We give here a quick summary of the relevant properties of such
heights and refer the reader to [Silverman 1987] for the general theory and details.

Let Y be a closed subscheme of a projective variety X , both defined over k. For
v ∈ Mk , one can associate a local height function hY,v : X (k)\Y →R, well-defined
up to O(1), and a global height function hY , well-defined up to O(1), which is
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a sum of appropriate local height functions. If Y = D is an effective (Cartier)
divisor (which we will frequently identify with the associated closed subscheme),
these height functions agree with the usual height functions associated to divisors.
Local height functions satisfy the following properties: if Y and Z are two closed
subschemes of X , defined over k, and v ∈ Mk , then up to O(1),

hY∩Z ,v =min{hY,v, hZ ,v},

hY+Z ,v = hY,v + hZ ,v,

hY,v ≤ hZ ,v if Y ⊂ Z ,

hY,v ≤ chZ ,v if Supp Y ⊂ Supp Z ,

for some constant c > 0, where Supp Y denotes the support of Y . If φ :W → X is
a morphism of projective varieties, then

hY,v(φ(P))= hφ∗Y,v(P) for all P ∈W (k) \φ∗Y.

Here, Y ∩ Z , Y + Z , Y ⊂ Z , and φ∗Y are defined in terms of the associated ideal
sheaves (see [Silverman 1987]). Global height functions satisfy similar properties
(except the first property above, which becomes hY∩Z ≤min{hY , hZ }+ O(1)).

Let D be a divisor on a nonsingular projective variety X . For a nonzero rational
function φ ∈ k̄(X), we let div(φ) denote the divisor associated to φ. We let Supp D
denote the support of D and Suppφ = Supp div(φ). Let

L(D)= {φ ∈ k̄(X) : div(φ)+ D ≥ 0}

and h0(D)= dim H 0(X,O(D))= dim L(D). If h0(nD)= 0 for all n > 0, then we
let κ(D)=−∞. Otherwise, we define the dimension of D to be the integer κ(D)
such that there exist positive constants c1 and c2 with

c1nκ(D) ≤ h0(nD)≤ c2nκ(D)

for all sufficiently divisible n > 0. We define a divisor D on X to be big if
κ(D)= dim X .

Let D be an effective divisor on X and hD =
∑

v∈Mk
hD,v a height function

associated to D. A set of points R ⊂ X (k) \ D is called a set of S-integral points
on X \ D if there exist constants cv, v ∈ Mk , such that cv = 0 for all but finitely
many v, and for all v 6∈ S,

hD,v(P)≤ cv

for all P ∈ R. This is well-defined, independent of how we write X \D [Vojta 1987,
Corollary 1.4.2, Theorem 1.4.11]. There are other essentially equivalent definitions
of integrality (see, for example, [ibid., Proposition 1.4.7]), but since our main tools
involve heights, this will be the most natural definition for our purposes.
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Let Z be a closed subset of Pn defined over k. Let S be a finite set of places of
k containing the archimedean places. In this case there is a natural set of integral
points on Pn

\ Z . We define (Pn
\ Z)(Ok,S) to be the set of points P ∈ Pn(k) such

that the Zariski closures of P and Z in Pn
Ok

do not meet over any v 6∈ S. Equivalently,
if D is an effective divisor on Pn , using the local height functions defined in (1)
one easily finds that

(Pn
\ D)(Ok,S)= {P ∈ Pn(k) \ D : hD,v(P)= 0,∀v ∈ Mk \ S}

=

{
P ∈ Pn(k) \ D :

∑
v∈S

hD,v(P)= (deg D)h(P)
}
.

3. General results

For the purpose of clarifying our later proofs, we first collect together various
elementary facts about heights.

3.1. Heights. Throughout, we let X be a nonsingular projective variety defined
over a number field k. We first recall the Northcott property for heights associated
to ample divisors.

Lemma 8. Let D be an ample divisor on X and c ∈ R. Then the set of points
{P ∈ X (k) : hD(P) < c} is finite.

More generally, finiteness holds for points of X (k̄) of bounded degree and
bounded ample height. Every height is bounded by a multiple of an ample height
[Vojta 1987, Proposition 1.2.9(f)].

Lemma 9. Let A and D be divisors on X with A ample. Then there exists a positive
integer N such that

hD(P) < Nh A(P)+ O(1)

for all P ∈ X (k̄).

The next two lemmas give relations between the height of a point and its image
under a rational map.

Lemma 10. Let φ ∈ k(X) and let P1, . . . , Pq ∈ X (k)\Suppφ. Let S be a finite set
of places of k. Then

q∑
i=1

∑
v∈S

h Pi ,v(P) <
q∑

i=1

∑
v∈S

hφ(Pi ),v(φ(P))+ O(1)

for all P ∈ X (k) \Suppφ such that φ(P) 6= φ(Pi ), i = 1, . . . , q.

Proof. For an appropriate blow-up π : X̃ → X , where π is an isomorphism on
π−1(X \ Suppφ), φ extends to a morphism φ̃ : X̃ → P1 such that φ̃ = φ ◦ π
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on π−1(X \ Suppφ). For a point P ∈ X (k) \ Suppφ, we let P̃ = π−1(P). Let
P ∈ X (k) \ Suppφ be such that φ(P) 6= φ(Pi ), i = 1, . . . , q. By functoriality of
heights,

q∑
i=1

∑
v∈S

hφ̃∗φ(Pi ),v
(P̃)=

q∑
i=1

∑
v∈S

hφ(Pi ),v(φ̃(P̃))+ O(1).

Since P̃i is in the support of φ̃∗φ(Pi ), we have

q∑
i=1

∑
v∈S

h P̃i ,v
(P̃) <

q∑
i=1

∑
v∈S

hφ̃∗φ(Pi ),v
(P̃)+ O(1).

Now the lemma follows from the above two equations, noting that φ̃(P̃)= φ(P)
and by functoriality, h P̃i ,v

(P̃)= hπ∗Pi ,v(P̃)= h Pi ,v(P)+ O(1). �

Lemma 11. Let D be an effective divisor on X and let φ ∈ k(X) be a rational
function with every pole contained in Supp D. Then for some constant c > 0,

h(φ(P)) < chD(P)+ O(1)

for all P ∈ X (k̄) \Suppφ.

Proof. We use the same notation as in the proof of Lemma 10. Let P ∈ X (k̄)\Suppφ.
By functoriality,

h(φ(P))= h(φ̃(P̃))= hφ̃∗∞(P̃)+ O(1).

Since Supp φ̃∗∞⊂ Suppπ∗D, there exists a constant c > 0 such that

hφ̃∗∞(P̃) < chπ∗D(P̃)+ O(1).

By functoriality again, hπ∗D(P̃)= hD(P)+ O(1) and the result follows. �

The next lemma is crucial in our later proofs.

Lemma 12. Let E1, . . . , Em be effective divisors on X , defined over k, such that⋂m
i=1 Ei consists of a finite number of points, all defined over k. Let v ∈ Mk . Then

there exists a positive integer N such that

min
i

hEi ,v(P)≤ N
∑

Q∈
⋂m

i=1 Ei (k)

hQ,v(P)+ O(1),

for all P ∈ X (k) \
⋃

i Ei .

Proof. If
⋂m

j=1 Supp Ei =∅, then in fact

min{hDi1 ,v
(P), . . . , hDim ,v

(P)} ≤ c



Linear forms in logarithms and integral points on varieties 657

for some constant c. This is well known and follows, for instance, from formal
properties of heights since in this case min{hDi1 ,v

, . . . , hDim ,v
} is a local height

associated to the trivial divisor.
Otherwise, let N be a positive integer such that

⋂m
i=1 Ei ⊂ N

∑
Q∈

⋂m
i=1 Ei (k) Q.

Then by properties of heights,

min
i

hEi ,v(P)= h⋂m
i=1 Ei ,v

(P)+ O(1)≤ N
∑

Q∈
⋂m

i=1 Ei (k)

hQ,v(P)+ O(1)

for all P ∈ X (k) \
⋃

i Ei . �

Finally, we record two basic facts about integral points that follow from the defini-
tions and basic properties of height functions (see also [Vojta 1987, Lemma 1.4.6]).

Lemma 13. Let D1, . . . , Dn be effective divisors on X , defined over k, and let
D=

∑n
i=1 Di . Let S be a finite set of places of k containing the archimedean places

and let R be a set of S-integral points on X \ D. Then∑
v∈S

hDi ,v(P)= hDi (P)+ O(1), i = 1, . . . , n,

for all P ∈ R. If φ ∈ k(X) with Suppφ ⊂ Supp D, then there exists a finite set of
places T of k such that

φ(P) ∈ O∗k,T

for all P ∈ R.

3.2. Results. Let X be a nonsingular projective variety defined over a number
field k. Let D1, . . . , Dn be effective ample divisors on X , defined over k, and set
D =

∑n
i=1 Di . Let S be a finite set of places of k containing the archimedean

places and R a set of S-integral points on X \ D. We need a hypothesis asserting
that one can effectively compute the height relations of the last section. We say
that X, D1, . . . , Dn, D, R, S, k satisfy (*) if there are height functions associated
to D1, . . . , Dn, D and points of X such that:

(1) The finite set in Lemma 8 is effectively computable for D and any c ∈ R.

(2) The positive integer N and O(1) in Lemma 9 are effectively computable for
D and A = Di , i = 1, . . . , n.

(3) The O(1) in Lemma 10 is effectively computable for S, any φ ∈ k(X) with
Suppφ ⊂ Supp D, and any set of points {P1, . . . , Pq} ⊂ X (k) \Suppφ.

(4) The O(1) in Lemma 11 is effectively computable for D and any φ.

(5) The positive integer N and O(1) in Lemma 12 are effectively computable for
any v ∈ S and subset {E1, . . . , Em} ⊂ {D1, . . . , Dn}.
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(6) The finite set T and O(1) in Lemma 13 are effectively computable for R,
D1, . . . , Dn, D, and any φ.

(7) The above remain true upon replacing k by a finite extension of k and S by
any finite set of places containing the set of places lying above places of S.

Additionally, we assume that we can compute in Pic(X) as follows:

(8) All of the relations between the images of D1, . . . , Dn in Pic(X) are effectively
computable, and for any principal divisor E supported on D1, . . . , Dn one can
effectively compute a rational function φ ∈ k(X) with div(φ)= E .

Examples of varieties where (*) is satisfied (for any reasonably defined R) include
curves, projective space, and more generally projective subvarieties of PN where
the divisors Di are hypersurface sections. We explicitly work out the case X = P2

in Section 7. For curves, key algorithms include the computation of Riemann–Roch
spaces [Schmidt 1991] and relations amongst points in the Jacobian [Masser 1988].

The main result of this section is a slightly more explicit version of Theorem 1.

Theorem 14. Let X be a nonsingular projective variety defined over a number
field k. Let D1, . . . , Dn be effective ample divisors on X defined over k. Let
D=

∑n
i=1 Di . Let m≤n be a positive integer such that for all subsets I ⊂{1, . . . , n},

|I | =m, the set
⋂

i∈I (Supp Di )(k̄) consists of finitely many points. Suppose that for
each point P ∈ (Supp D)(k̄), there exists a nonconstant rational function φ ∈ k(X)
satisfying P 6∈Suppφ and Suppφ⊂Supp D. Let S be a set of places of k containing
the archimedean places with

(m− 1)|S|< n.

Let R be a set of S-integral points on X\D. Suppose that X, D1, . . . , Dn, D, R, S, k
satisfy (*) in Section 3.2. Then R is contained in an effectively computable proper
closed subset Z of X. Explicitly, for a point P ∈ X (k̄), let

8P = {φ ∈ k(X)∗ : P 6∈ Suppφ,Suppφ ⊂ Supp D}

and let

T =
⋃

I⊂{1,...,n}
|I |=m

⋂
i∈I

(Supp Di )(k̄).

Then we may take Z to consist of a finite effectively computable set of points together
with the Zariski closure of the set⋃

P∈T

⋂
φ∈8P

{Q ∈ X (k̄) : φ(Q)= φ(P)}.
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Remark 15. As is typical, more generally one could replace ample with big in the
theorem by modifying the theorem slightly (e.g., increasing the exceptional set Z
to account for the base loci of certain divisors).

If D1, . . . , Dr+1 are nontrivial effective divisors on a variety X that generate a
subgroup of Pic(X) of rank r and pairwise do not have any common components,
then there exists a nonconstant rational function φ on X with all zeros and poles
contained in the support of

∑r+1
i=1 Di . Using this fact to construct appropriate

rational functions φ in Theorem 14, we immediately obtain the following corollary.

Corollary 16. Let X be a nonsingular projective variety defined over a number
field k. Let D1, . . . , Dn be ample effective divisors on X , defined over k, that
generate a subgroup of Pic(X) of rank r and pairwise do not have any common
components. Let D =

∑n
i=1 Di . Let m ≤ n be a positive integer such that for all

subsets I ⊂ {1, . . . , n}, |I | = m, the set
⋂

i∈I (Supp Di )(k̄) consists of finitely many
points. Suppose that the intersection of the supports of any n− r of the divisors Di

is empty. Let S be a set of places of k containing the archimedean places with

(m− 1)|S|< n.

Let R be a set of S-integral points on X\D. Suppose that X, D1, . . . , Dn, D, R, S, k
satisfy (*). Then R is contained in an effectively computable proper closed subset Z
of X.

Of particular interest is the case where X is a surface.

Corollary 17. Let X be a nonsingular projective surface over a number field k.
Let D1, . . . , Dn be ample effective divisors on X , defined over k, that generate a
subgroup of Pic(X) of rank r and pairwise do not have any common components.
Suppose that the intersection of the supports of any n−r of the divisors Di is empty.
Let S be a set of places of k containing the archimedean places with

|S|< n.

Let R be a set of S-integral points on X\D. Suppose that X, D1, . . . , Dn, D, R, S, k
satisfy (*). Then R is contained in an effectively computable proper closed subset Z
of X. Let

T =
⋃
i 6= j

(Di ∩ D j )(k̄),

and let8P be as in Theorem 14. Then we may take Z to consist of a finite effectively
computable set of points together with the Zariski closure of the set⋃

P∈T

⋂
φ∈8P

{Q ∈ X (k̄) : φ(Q)= φ(P)}.
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3.3. Proofs. The key tool in this section is the main theorem from the theory of
linear forms in logarithms, which we now state in the language of heights (see
Theorem 24 for a completely explicit version).

Theorem 18. Let k be a number field and S a finite set of places of k containing the
archimedean places. Let v ∈ Mk , α ∈ k∗, and ε > 0. Then there exists an effective
constant C such that

hα,v(x)≤ εh(x)+C

for all x ∈ O∗k,S , x 6= α.

We note that with an ineffective constant C , the theorem follows easily from
Roth’s theorem. Before proving Theorem 14, we prove a result which can be
regarded as a higher-dimensional version of Theorem 18.

Theorem 19. Let X be a nonsingular projective variety defined over a number
field k and let D be an effective divisor on X defined over k. Let φ ∈ k(X) be a
nonconstant rational function with Suppφ ⊂ Supp D. Let S be a finite set of places
of k and R a set of S-integral points on X \ D. Suppose that X, D, R, S, k satisfy
(3), (4), (6), (7) of Section 3.2. Let P1, . . . , Pq ∈ X (k) \Suppφ and ε > 0. Then

q∑
i=1

∑
v∈S

h Pi ,v(P) < εhD(P)+ O(1)

for all P ∈ R \ Z , where Z is the proper closed subset of X defined as the Zariski
closure of the set

{P ∈ X (k̄) : φ(P)= φ(Pi ) for some i ∈ {1, . . . , q}}.

Here, as well as elsewhere, the implicit constant in the O(1) is an effective
constant.

Proof. By Lemma 13, since R is a set of S-integral points on X \D, without loss of
generality, after enlarging S we can assume that φ(P) ∈ O∗k,S for all P ∈ R. Then
by Theorem 18,

q∑
i=1

∑
v∈S

hφ(Pi ),v(φ(P)) < εh(φ(P))+ O(1)

for all P ∈ R \ Z . By Lemma 10,
q∑

i=1

∑
v∈S

h Pi ,v(P) <
q∑

i=1

∑
v∈S

hφ(Pi ),v(φ(P))+ O(1)

for all P ∈ X (k) \ (Z ∪Suppφ). By Lemma 11,

εh(φ(P)) < εchD(P)+ O(1)
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for some positive constant c and all P ∈ X (k) \ Supp D. Replacing ε by ε/c and
combining the above inequalities yields

q∑
i=1

∑
v∈S

h Pi ,v(P) < εhD(P)+ O(1)

for all P ∈ R \ Z . �

We now prove Theorem 14.

Proof of Theorem 14. By Lemma 13, since R is a set of S-integral points on X \ D,
we have ∑

v∈S

hDi ,v(P)= hDi (P)+ O(1), i = 1, . . . , n,

for all P ∈ R. Let P ∈ R. Then for each i , there exists a place v ∈ S such that
hDi ,v(P)≥ (1/|S|)hDi (P)+O(1). Since (m−1)|S|< n, there exists a place v ∈ S
and distinct elements i1, i2, . . . , im ∈ {1, . . . , n} such that

min{hDi1 ,v
(P), . . . , hDim ,v

(P)} ≥ 1
|S|

min
j

hDi j
(P)+ O(1).

By Lemma 9, there exists a positive integer N such that

hD(P)≤ NhDi (P)+ O(1)

for all i and all P ∈ X (k̄). So for P ∈ R,

min{hDi1 ,v
(P), . . . , hDim ,v

(P)} ≥ 1
N |S|

hD(P)+ O(1).

The theorem is then a consequence of the following lemma.

Lemma 20. Let m, X, D1, . . . , Dn, R, S, k be as in the hypotheses of Theorem 14.
Let ε > 0, v ∈ S, and let i1, . . . , im ∈ {1, . . . , n} be distinct integers. Then the set of
points

{P ∈ R :min{hDi1 ,v
(P), . . . , hDim ,v

(P)}> εhD(P)}

is contained in an effectively computable proper closed subset Z of X. For P ∈ X (k̄),
let 8P be the set from Theorem 14 and let

T =
m⋂

j=1

(Supp Di j )(k̄).

Then we may take Z to consist of a finite effectively computable set of points together
with the Zariski closure of the set⋃

P∈T

⋂
φ∈8P

{Q ∈ X (k̄) : φ(Q)= φ(P)}.
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Proof. If L is a finite extension of k and w is a place of L lying above v, then we
can define a local height function

hDi ,w(P)=
[Lw : kv]
[L : k]

hDi ,v(P)

for all P ∈ X (k)\Di . It follows that without loss of generality, after replacing k by
a finite extension of k and v by a place lying above v, we may assume that every
point P ∈ X (k̄) in the intersection

⋂m
j=1 Supp Di j is defined over k (note that by

hypothesis this intersection consists of a finite number of points).
If
⋂m

j=1 Supp Di j =∅, then by Lemma 12,

min{hDi1 ,v
(P), . . . , hDim ,v

(P)} ≤ C

for some effective constant C . In this case, the lemma follows immediately from
the fact that since D is ample, the set of points {P ∈ X (k) : hD(P) < C/ε} is finite.

Suppose now that
⋂m

j=1 Supp Di j 6= ∅, in which case it consists of a finite
number q of points. By Lemma 12, there exists a positive integer N such that

min
j

hDi j ,v
(P)≤ N

∑
Q∈

m⋂
j=1

Di j(k)

hQ,v(P)+ O(1)

for all P ∈ X (k) \
⋃

j Di j .
Let Q ∈

⋂m
j=1 Di j (k). Note that 8Q is a monoid under multiplication, generated

by k∗ and finitely many rational functions in k(X)∗. Let ε > 0. Since R is a set of
S-integral points on X \D, applying Theorem 19 multiple times yields the inequality

hQ,v(P) <
ε

2Nq
hD(P)+ O(1)

for all P ∈ R \ Z Q , where Z Q is the Zariski closure of the set⋂
φ∈8Q

{P ∈ X (k̄) : φ(P)= φ(Q)}.

Summing over all points in
m⋂

j=1
Di j (k), we obtain

min
j

hDi j ,v
(P)≤ N

∑
Q∈

m⋂
j=1

Di j(k)

hQ,v(P)+ O(1) < ε

2
hD(P)+C

for all P ∈ R \ Z , where
Z =

⋃
Q∈

m⋂
j=1

Di j(k)

Z Q

and C is an effectively computable constant. So if P ∈ R \ Z satisfies

min
j

hDi j ,v
(P) > εhD(P),
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then hD(P) <
2
ε

C . It follows that{
P ∈ R :min

j
hDi j ,v

(P) > εhD(P)
}
⊂ Z ∪

{
P ∈ X (k) : hD(P) <

2
ε

C
}
,

where Z is a proper Zariski closed subset of X and the last set on the right is
finite. �

4. An application to polynomial unit equations

We prove a complete version of Corollary 4 from the introduction.

Corollary 21. Let f ∈ k[x, y] be a polynomial of degree d such that f (0, 0) =
c0 6= 0 and xd and yd have nonzero coefficients cx and cy in f , respectively. Let S
be a set of places of k containing the archimedean places with |S| ≤ 3. Then the set
of solutions to

f (u, v)= w, u, v, w ∈ O∗k,S,

consists of a finite effectively computable set and a finite number of infinite families
of solutions where one of u, v, or w is constant. Let

T1 = {a ∈ O∗k,S : (x − a) | ( f (x, y)− cy yd), cy ∈ O∗k,S},

T2 = {a ∈ O∗k,S : (y− a) | ( f (x, y)− cx xd), cx ∈ O∗k,S},

T3 = {a ∈ O∗k,S : (y− ax) | ( f (x, y)− c0), c0 ∈ O∗k,S}.

Then the infinite families of solutions are

(u, v, w)= (a, t, cy td), t ∈ O∗k,S, for each a ∈ T1,

(u, v, w)= (t, a, cx td), t ∈ O∗k,S, for each a ∈ T2,

(u, v, w)= (t, at, c0), t ∈ O∗k,S, for each a ∈ T3.

Proof. It will be convenient to work with the homogenized polynomial

F(x, y, z)= zd f (x/z, y/z).

Consider P2 with homogeneous coordinates (x, y, z) and let D1, D2, D3, D4 be
the curves defined by x = 0, y = 0, z = 0, and F(x, y, z) = 0, respectively. Let
D =

∑4
i=1 Di . Let

R = {(u, v, 1) ∈ P2(k) : u, v, f (u, v) ∈ O∗k,S}.

Then R⊂ (P2
\D)(Ok,S). Let {i, j, k}= {1, 2, 3} and P ∈ (Di∩D4)(k̄). Then, using

the notation of Corollary 17, the Zariski closure of
⋂
φ∈8P
{Q∈ X (k̄) :φ(Q)=φ(P)}

is a line through P and the unique point of D j ∩ Dk . Now let P1 = (1, 0, 0),
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P2 = (0, 1, 0), and P3 = (0, 0, 1), so that {Pi } =
⋂

j∈{1,2,3}\{i} D j (k̄). Let Zi be the
Zariski closure of ⋂

φ∈8Pi

{Q ∈ X (k̄) : φ(Q)= φ(Pi )}

for i = 1, 2, 3. Since (F(x, y, z)/xd)(P1) = cx , (F(x, y, z)/yd)(P2) = cy , and
(F(x, y, z)/zd)(P3)= c0, it follows that we have the equations

Z1 : F(x, y, z)= cx xd , Z2 : F(x, y, z)= cy yd , Z3 : F(x, y, z)= c0zd .

Let Z be the closed subset of P2 consisting of all lines connecting points of
(Di ∩ D j )(k̄) with points of (Dk ∩ Dl)(k̄), where {i, j, k, l} = {1, 2, 3, 4}, together
with the closed subsets Z1, Z2, and Z3. Then it follows from Corollary 17 that
R \ Z consists of a finite effectively computable set of points (in fact, an explicit
height bound for points in this set follows from Theorem 7).

Now let C be a geometrically irreducible curve in Z . If C is not defined over k
and C ′ is any nontrivial conjugate of C over k, then C(k)⊂ (C ∩C ′)(k̄), a finite
effectively computable set. In particular, R ∩C is finite and effectively computable.
Assume now that C is defined over k. Then R ∩C is a set of integral points on
C \ (C ∩ D). Consider the rational functions on C given by φ1 = (x/z)|C and
φ2 = (y/z)|C . The functions φ1 and φ2 have zeros and poles only in C ∩ D. If
φ1 and φ2 are multiplicatively independent modulo k∗, then Bilu’s Theorem 2
implies that R∩C is finite and effectively computable. Suppose now that this is not
the case. Then this easily implies that C is given by an equation xm yn−m

= azn ,
xmzn−m

= ayn , or ymzn−m
= axn for some nonnegative integers m and n and

a ∈ k∗. Suppose first that n ≥ 2. Then C is a component of Z1, Z2, or Z3.
Suppose that, say, C is given by xm yn−m

= azn and is a component of Z1. Then
F(x, y, z)= cx xd

+ (xm yn−m
−azn)g(x, y, z) for some homogeneous polynomial

g(x, y, z) ∈ k[x, y, z]. Since C is geometrically irreducible and n ≥ 2, we must
have 0<m < n. But from the form of F(x, y, z) we then see that yd cannot have a
nonzero coefficient in F(x, y, z), contradicting our assumptions. The other possible
cases are similar and we conclude that n = 1. So C is defined by a linear form
x − az, y− az, or y− ax , for some a ∈ k∗.

Suppose that C is defined by x−az=0. If R∩C 6=∅ then a∈O∗k,S , which we now
assume. Since yd must have a nonzero coefficient in F(x, y, z), it follows that C
cannot be an irreducible component of Z1 or Z3. If C is an irreducible component of
Z2, then f (x, y)= cy yd

+(x−a)g(x, y) for some polynomial g(x, y)∈ k[x, y]. If
C connects a point of Di∩D j with a point of Dk∩Dl , where {i, j, k, l}={1, 2, 3, 4},
then it must be that C connects the unique point of D1∩D3 with a point of D2∩D4.
If C intersects D in more than two points over k̄, then it follows easily again
from Theorem 2 that R ∩C is finite and effectively computable. So suppose that
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|(C∩D)(k̄)| ≤ 2, in which case |(C∩D)(k̄)| = 2. Then the fact that C∩D4 consists
of a single point contained in D2 implies that f (x, y)= cy yd

+ (x − a)g(x, y) for
some polynomial g(x, y)∈ k[x, y]. So in any case, f (x, y)= cy yd

+(x−a)g(x, y)
for some polynomial g(x, y) ∈ k[x, y]. Now C ∩ R 6=∅ implies that cy ∈ O∗k,S , and
in this case we find that C ∩ R = {(a, t, 1) : t ∈ O∗k,S}, leading to the infinite family
of solutions (u, v, w)= (a, t, cy td), where t ∈ O∗k,S .

The cases where C is defined by y− az or y− ax are similar, and we are led to
the classification of the infinite families in the theorem. �

5. Comparison with Runge’s method

An old method of Runge yields effective finiteness for the set of integral points on
certain curves. In its most basic form, Runge proved:

Theorem 22 [Runge 1887]. Let f ∈ Q[x, y] be an absolutely irreducible poly-
nomial of total degree n. Let f0 denote the leading form of f , that is, the sum
of the terms of total degree n in f . Suppose that f0 factors as f0 = g0h0, where
g0, h0 ∈ Q[x, y] are nonconstant relatively prime polynomials. Then the set of
solutions to

f (x, y)= 0, x, y ∈ Z,

is finite and effectively computable.

We will state a general higher-dimensional version of Runge’s method from
[Levin 2008] (see [Bombieri 1983] for earlier work on curves). Before stating a
higher-dimensional version, we give some definitions which allow for varying sets
of places and number fields. It will be more convenient here to use a definition of
integrality involving regular functions. Let V be a variety (not necessarily projective
or affine) defined over a number field k. Let s be a positive integer. We call a set
R ⊂ V (k̄) a set of s-integral points on V if for every point P ∈ R there exists a
set of places SP of k(P), containing the archimedean places of k(P), such that
|SP | ≤ s and for every regular function φ ∈ k̄(V ) on V there exists a nonzero
constant cφ ∈ k∗, independent of P , such that |cφφ(P)|v ≤ 1 for all places v of
k(P) not in SP (extending each place v of k(P) to k̄ in some fixed way). With
these definitions, we have a higher-dimensional version of Runge’s theorem:

Theorem 23. Let X be a nonsingular projective variety defined over a number
field k. Let D =

∑r
i=1 Di be a divisor on X , with D1, . . . , Dr effective divisors

defined over k. Suppose that the intersection of any m + 1 of the supports of the
divisors Di is empty. Let s be a positive integer satisfying

ms < r.

Let R be a set of s-integral points on X \ D. Suppose that for every regular function
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φ ∈ k̄(X) on X \ D, the constant cφ in the definition of s-integral is effectively
computable with respect to R. Suppose also that one can effectively compute a basis
of L(nDi ) for all n > 0 and all i . Then the following statements hold.

(a) If κ(Di ) > 0 for all i , then R is contained in an effectively computable proper
Zariski closed subset Z ⊂ X.

(b) If Di is big for all i , then there exists an effectively computable proper Zariski
closed subset Z ⊂ X , independent of R, such that the set R \ Z is finite (and
effectively computable).

(c) If Di is ample for all i , then R is finite and effectively computable.

We now briefly discuss some of the advantages and disadvantages of the higher-
dimensional Runge method as compared to our results here. To begin, in some
respects the conditions on the divisors Di in Theorem 23 are weaker than the
conditions required in Theorem 14. The divisors in Theorem 23 are not required to
be ample or big (though one still needs κ(Di )> 0) and furthermore there is no linear
equivalence condition present in Theorem 23. On the other hand, for the necessary
rational functions φ to exist in Theorem 14, it is necessary that the subgroup of
the Picard group generated by the divisors Di not be too large (this condition is
more explicitly present in Corollary 16). Another advantage of Theorem 23 is
that the result is uniform in |S|, giving degeneracy of integral points even as S
and k vary subject to an appropriate inequality. This is also, however, a limitation
of Theorem 23, as many results are simply not true in this generality (e.g., the
unit equation u + v = 1 likely has infinitely many solutions in rational S-units,
|S|≤ 3, since for instance there are expected to be infinitely many Mersenne primes).
It is not apparent from the statement of Theorem 23, but when Runge’s method
applies it also gives much smaller bounds than techniques coming from Baker’s
theorem.

As compared to Theorem 23, we note that the intersection condition on the
divisors Di in Theorem 14 is much weaker, especially on surfaces. For instance, the
intersection condition on the divisors in Corollary 17 allows for highly degenerate
configurations of the divisors Di . Finally, we note that even in cases where the
divisors Di are in general position, the crucial inequality involving |S| in Theorem 14
is superior to the inequality in Theorem 23. This is particularly notable in the case
of surfaces, where the superior inequality on |S| is crucial, for instance, in proving
Corollary 4.

6. Effective inequalities

In preparation for the next section, we recall several needed inequalities and prove
them here.
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6.1. Linear forms in logarithms. The deepest effective result we need is from the
theory of linear forms in logarithms. We give a statement in terms of local heights,
based on an inequality of Bérczes, Evertse, and Győry [Bérczes et al. 2009].

Theorem 24. Let k be a number field of degree δ and let G be a finitely generated
multiplicative subgroup of k∗ of rank t > 0. Let α ∈ k∗ and v ∈ Mk . Let 0< ε < 1.
Then if x ∈ G, x 6= α, we have

hα,v(x)≤ εh(x)+ c1(ε, k,G, v, α)+ log 2,

where

c1(ε, k,G, v, α)

= 6.4c2(δ, t)N (v)
ε log N (v)

QG max{h(α), 1}max
{

log c2(δ, t)N (v)
ε

, log∗ QG

}
,

c2(δ, t)= 36(16eδ)3t+5(log∗ δ)2.

Here, if G is a finitely generated multiplicative subgroup of Q of rank t > 0,
then we let QG be the minimum value of

h(u1) · · · h(ut),

where u1, . . . , ut are generators for G modulo the roots of unity in G. We let
QS = QO∗k,S

.

Proof. Let x ∈ G, x 6= α. Suppose first that

hα,v(x)≤ εh(x)+ hv(α)+ hv(1/α)+ hv(2).

Then, using that h(α)= h(1/α), we have

hα,v(x)≤ εh(x)+ 2h(α)+ log 2≤ εh(x)+ c1(ε, k,G, v, α)+ log 2,

as 2h(α) is easily bounded by c1(ε, k,G, v, α). Suppose now that

hα,v(x) > εh(x)+ hv(α)+ hv(1/α)+ hv(2).

We have

hα,v(x)= log
max{‖α‖v, 1}max{‖x‖v, 1}

‖x −α‖v

= log
max{‖α‖v, 1}max

{∥∥ x
α

∥∥
v
,
∥∥ 1
α

∥∥
v

}∥∥ x
α
− 1

∥∥
v

.

Now ∥∥∥ x
α

∥∥∥
v
=

∥∥∥( x
α
− 1

)
+ 1

∥∥∥
v
≤ ε′v(2)max

{∥∥∥ x
α
− 1

∥∥∥
v
, 1
}
.
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It follows that

hα,v(x)≤ log
ε′v(2)max{‖α‖v, 1}max

{∥∥ x
α
− 1

∥∥
v
,
∥∥ 1
α

∥∥
v
, 1
}∥∥ x

α
− 1

∥∥
v

.

If
max

{∥∥∥ x
α
− 1

∥∥∥
v
,

∥∥∥ 1
α

∥∥∥
v
, 1
}
=

∥∥∥ x
α
− 1

∥∥∥
v
,

then hα,v(x)≤ log ε′v(2)max{‖α‖v, 1} ≤ hv(α)+ hv(2), contradicting our assump-
tions. Then we must have

hα,v(x)≤ log
ε′v(2)max{‖α‖v, 1}max

{∥∥ 1
α

∥∥
v
, 1
}∥∥ x

α
− 1

∥∥
v

≤ hv(2)+ hv(α)+ hv(1/α)− log
∥∥∥ x
α
− 1

∥∥∥
v
.

So
log
∥∥∥ x
α
− 1

∥∥∥
v
<−εh(x).

By [Bérczes et al. 2009, Theorem 4.2], this implies that

h(x)≤ c1(ε, k,G, v, α).

Now we note that by Lemma 32, proved later in this section, for any x ∈ k, x 6= α,

hα,v(x)≤ log 2+
∑
v∈Mk

hα,v(x)= log 2+ h(x).

Thus,
hα,v(x)≤ εh(x)+ c1(ε, k,G, v, α)+ log 2. �

6.2. Hilbert’s Nullstellensatz. We will need an effective version of Hilbert’s Null-
stellensatz. We use the following version, due to Masser and Wüstholz [1983].

Theorem 25 (effective Hilbert’s Nullstellensatz). Let k be a number field and let
p1, . . . , pm, q ∈ Ok[x1, . . . , xn] be polynomials of degree at most d ≥ 1 such that q
vanishes at all common zeros of p1, . . . , pm in An(k̄). Then there exists a positive
integer M ≤ (8d)2

n
and polynomials a1, . . . , am ∈ Ok[x1, . . . xn] of degrees at most

(8d)2
n
+1, such that

aq M
= a1 p1+ · · ·+ am pm

for some nonzero element a ∈ Ok . Furthermore, if

h∞ = log max
v∈Mk
v|∞

{|p1|v, . . . , |pm |v, |q|v},

then
log max

v∈Mk
v|∞

{|a1|v, . . . , |am |v, |a|v} ≤ (8d)2
n+1
−1(h∞+ 8d log 8d).
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Remark 26. Applying the theorem appropriately to An , it’s clear that the same
result holds for homogeneous polynomials p1, . . . , pm, q ∈ Ok[x1, . . . , xn] such
that q vanishes at all common zeros of p1, . . . , pm in Pn−1(k̄). Furthermore, in
this case one can clearly choose a1, . . . , am to be homogeneous polynomials with
deg ai = M deg q − deg pi .

6.3. Arithmetic Bézout. We will make use of the following arithmetic Bézout
theorem for curves in P2, which is essentially a special case of a general arithmetic
Bézout theorem of Philippon [1995].

Theorem 27. Let C1 and C2 be distinct curves in P2 over Q. Then∑
P∈(C1∩C2)(Q)

h(P)≤ (deg C1)h(C2)+ (deg C2)h(C1)+ 4(deg C1)(deg C2).

Proof. We will denote the height used by Philippon [1995] by hPh. By [ibid.,
Proposition 4], ∑

P∈(C1∩C2)(Q)

hPh(P)≤ (deg C1)hPh(C2)+ (deg C2)hPh(C1).

From [ibid., p. 347], for i = 1, 2 we have

hPh(Ci )= hPh( fi )+
deg Ci

2

and from the definitions of the heights, easy estimates give

hPh( fi )≤ h( fi )+
(
log 2+ 3

4

)
deg Ci = h(Ci )+

(
log 2+ 3

4

)
deg Ci .

So
hPh(Ci )≤ h(Ci )+ 2 deg Ci for i = 1, 2.

Finally, we note that if P is a point in Pn , then hPh(P) is the usual height h(P) except
that at the archimedean places one uses the `2-norm. In particular, h(P)≤ hPh(P).
Combining the above inequalities gives the result. �

6.4. Units and regulators. Let k be a number field of degree δ and discriminant 1.
We will use the following bound on the product of the class number and the regulator,
proven by Lenstra [1992, Theorem 6.5].

Lemma 28. Suppose that k 6=Q. Let r2 denote the number of complex places of k
and let C = (2/π)r2

√
|1|. We have

hk Rk ≤
C(log C)δ−1−r2(δ− 1+ log C)r2

(δ− 1)!
.
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Let S be a finite set of places of k containing the archimedean places. Recall
that QS is the minimum value of

h(u1) · · · h(us−1),

where s = |S| and u1, . . . , us−1 are generators of O∗k,S modulo roots of unity. For
the S-regulator and QS , Bugeaud and Győry [1996, Lemmas 1 and 3] gave the
bounds

RS ≤ hk Rk

∏
v∈S\S∞

log N (v),

QS ≤
((s− 1)!)2

2s−2δs−1 RS.

More crudely, letting s = |S| and N =maxv∈S N (v), we have the estimates

Rk ≤ hk Rk ≤

√
|1|( 1

2 log |1|)δ−1−r2(δ− 1+ 1
2 log |1|)r2

(δ− 1)!

≤

√
|1|(δ− 1+ 1

2 log |1|)δ−1

(δ− 1)!
≤

√
|1|2δ−1δδ−1(log∗ |1|)δ−1

(δ− 1)!

≤ δδ
√
|1|(log∗ |1|)δ−1

and

RS ≤ δ
δ(log∗ N )s−δ/2

√
|1|(log∗ |1|)δ−1, (2)

QS ≤ 22−ss2s−4δδ−s+1(log∗ N )s−δ/2
√
|1|(log∗ |1|)δ−1. (3)

6.5. Points in projective space. We first recall an inequality of Silverman relating
the height of a point in projective space and the discriminant of its field of definition.

Theorem 29 [Silverman 1984, Theorem 2]. Let k be a number field of degree δ
and discriminant 1. Let P ∈ Pn(k). Then

log |1|
δ
≤ (2δ− 2)h(P)+ log δ.

For a number field k and finite set of places S of k containing the archimedean
places, define

c3(k, S)=

 0 if δ = 1 or s = 1,
2s!ss+ 1

2 RS
(log δ/6δ3)s−2 otherwise,

where s = |S|. If S∞ denotes the set of archimedean places of k, then we let
c3(k)= c3(k, S∞).

The next lemma describes certain choices of coordinates for a point in projective
space.
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Lemma 30. Let k be a number field of degree δ, s the number of archimedean
places of k, and P ∈ Pn(k).

(a) There exists a choice of homogeneous coordinates P = (x0, . . . , xn) such that
x0, . . . , xn ∈ Ok and for any v ∈ Mk ,

1
s

h(P)− c3(k)≤ log max{‖x0‖v, . . . , ‖xn‖v}

≤
1
s

h(P)+ 1
2δs

log |1| + c3(k) if v | ∞,

−
1
2δ

log |1| ≤ log max{‖x0‖v, . . . , ‖xn‖v} ≤ 0 if v -∞.

(b) There exists a choice of homogeneous coordinates P = (x0, . . . , xn) such that
x0, . . . , xn ∈ Ok and for any v ∈ Mk ,

0≤ log max{‖x0‖v, . . . , ‖xn‖v}

≤ (2δ+ 1)h(P)+ log δ if v | ∞,

−δ2h(P)− δ
2

log δ ≤ log max{‖x0‖v, . . . , ‖xn‖v} ≤ 0 if v -∞.

Proof. Let S∞ denote the set of archimedean places of k. The case k =Q follows
immediately by choosing x0, . . . , xn to be integers with gcd(x0, . . . , xn)= 1 and
P = (x0, . . . , xn). We assume from now on that δ > 1. Let P = (x0, . . . , xn) be
some choice of homogeneous coordinates with x0, . . . , xn ∈ Ok . Let I be the ideal
of Ok generated by x0, . . . , xn . From the Minkowski bound, the ideal class of I
contains an (integral) ideal with norm ≤

√
|1|. Thus, after rescaling x0, . . . , xn ,

we may assume that the norm of I satisfies N (I )≤
√
|1|. From the definition of

the height, we have

h(P)=
∑
v∈Mk

log max{‖x0‖v, . . . , ‖xn‖v} =
∑
v∈S∞

log max
i
‖xi‖v −

1
δ

log N (I ).

So
h(P)≤

∑
v∈S∞

log max{‖x0‖v, . . . , ‖xn‖v} ≤ h(P)+ 1
2δ

log |1|.

We first consider (a). The case s = |S∞| = 1 is immediate from the above, so we
assume from now on that s > 1. Consider the image of the unit group O∗k via the
logarithmic map λ : O∗k 7→ Rs , λ(u)= (log ‖u‖v)v∈S∞ . The image is a lattice in the
hyperplane of Rs defined by

∑
v∈S∞ xv = 0. From [Hajdu 1993, p. 5], there exists a

fundamental domain of this lattice with diameter ≤ 2s!ss+ 1
2 Rk/(log δ/6δ3)s−2. Let

c =
∑

v∈S∞ log max{‖x0‖v, . . . , ‖xn‖v} and consider the vector

v = (log max{‖x0‖v, . . . , ‖xn‖v}− c/s)v∈S∞ .
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Then there exists a unit u ∈ O∗k such that

|v− λ(u)| ≤
2s!ss+ 1

2 Rk

(log δ/6δ3)s−2 = c3(k).

Therefore, for every v ∈ S∞,∣∣log max{‖u−1x0‖v, . . . , ‖u−1xn‖v}− c/s
∣∣≤ c3(k)

and
1
s

h(P)−c3(k)≤ log max{‖u−1x0‖v, . . . , ‖u−1xn‖v}≤
1
s

h(P)+ 1
2δs

log |1|+c3(k).

Note that if v -∞, we also have

−
1
2δ

log |1| ≤ −1
δ

log N (I )≤ log max{‖x0‖v, . . . , ‖xn‖v} ≤ 0.

We now prove (b). From our earlier choice of coordinates, we have in particular∑
v∈S∞

log ‖x0‖v =
1
δ

log |N k
Q(x0)| ≤ h(P)+ 1

2δ
log |1|.

Then after scaling by N k
Q
(x0)/x0 ∈ Ok , we may take P = (x0, . . . , xn) where x0 ∈Z,

1
δ

log |x0| ≤ h(P)+ 1
2δ

log |1| ≤ δh(P)+ 1
2 log δ

by Theorem 29, and x1, . . . , xn ∈ Ok . Let v ∈ S∞. Then log maxi ‖xi‖v ≥ 0 and

log max{‖x0‖v, . . . , ‖xn‖v} = h(P)−
∑

w∈Mk\{v}

log max{‖x0‖w, . . . , ‖xn‖w}

≤ h(P)−
∑

w∈Mk\{v}

log ‖x0‖w ≤ h(P)+ log ‖x0‖v

≤ h(P)+ 2(δh(P)+ 1
2 log δ)≤ (2δ+ 1)h(P)+ log δ.

We also clearly have

−δ2h(P)− δ
2

log δ ≤− log |x0| ≤ log max{‖x0‖v, . . . , ‖xn‖v} ≤ 0

if v is nonarchimedean. �

We also need the following result from the main theorem of [Hajdu 1993], which
is closely related to the previous lemma.

Theorem 31. Let k be a number field of degree δ and let S be a finite set of places
of k containing the archimedean places. Let α ∈ k. Then we can write

α = βu,
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where u ∈ O∗k,S and

h(β) < sc3(k, S)+
∑
v 6∈S

hv(α)+
∑
v∈S

log ‖α‖v < sc3(k, S)+
∑
v 6∈S

hv(α)+ hv(1/α).

The last inequality follows from the product formula. This result is actually only
proven in [ibid.] for S-integers α, but the same proof given there yields the result
above.

We note the estimates

c3(k, S)≤ 24ss2sδ3s+δ−6
√
|1|(log∗ |1|)δ−1(log∗ N )s−δ/2, (4)

c3(k)≤ 24δδ6δ−6
√
|1|(log∗ |1|)δ−1. (5)

6.6. Miscellaneous elementary estimates. We have the following lower bound for
heights on P1.

Lemma 32. Let S be a set of places of a number field k. Let P, Q ∈ P1(k), P 6= Q.
Then ∑

v∈S

hQ,v(P)≥− log 2.

Proof. Let P = (x1, y1), Q = (x2, y2), x1, x2, y1, y2 ∈ k. Then

hQ,v(P)= log
max{‖x1‖v, ‖y1‖v}max{‖x2‖v, ‖y2‖v}

‖x1 y2− x2 y1‖v

≥ log
max{‖x1‖v, ‖y1‖v}max{‖x2‖v, ‖y2‖v}

ε′v(2)max{‖x1 y2‖v, ‖x2 y1‖v

≥ log
max{‖x1‖v, ‖y1‖v}max{‖x2‖v, ‖y2‖v}

ε′v(2)max{‖x1‖v, ‖y1‖v}max{‖x2‖v, ‖y2‖v}

≥ − log ε′v(2).

Therefore,
∑
v∈S

hQ,v(P)≥− log 2. �

We need an estimate on the height of a product of polynomials [Hindry and
Silverman 2000, Proposition B.7.4].

Lemma 33. Let k be a number field. Let f1, . . . , fm ∈ k[x1, . . . , xn] be polynomials
and let f = f1 · · · fm . Then for any v ∈ Mk ,

| f |v ≤ εv

( m∏
i=2

2deg fi

) m∏
i=1

| fi |v.

In particular,

h( f )≤
m∑

i=1

h( fi )+

( m∑
i=2

deg fi

)
log 2.
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For maps between projective spaces, we have the following height inequality
[Hindry and Silverman 2000, p. 181].

Lemma 34. Let φ : Pn
→ Pm be a rational map of degree d defined over Q. Then

h(φ(P))≤ dh(P)+ h(φ)+ log
(

n+ d
n

)
for all P ∈ Pn(Q) where φ is defined.

We also need an elementary estimate for polynomials in two variables.

Lemma 35. Let k be a number field. Let f ∈ k[x, y] be a polynomial of degree d
and let v ∈ Mk . Let a, b, x, y ∈ k and suppose that |x − a|v, |y− b|v ≤ 1. Then

| f (x, y)− f (a, b)|v≤εv((d+2)42d)| f |v max{|a|v, |b|v, 1}d max{|x−a|v, |y−b|v}.

Proof. Let f (x, y)=
∑

ci j x i y j . Looking at the Taylor series for f (x, y) around
(a, b) and applying the triangle inequality, we find

| f (x, y)− f (a, b)|v ≤
∣∣∣∣ ∑
m,n,m+n>0

(
∂m+n f
∂xm∂yn

)
(a, b)

(x − a)m(y− b)n

m!n!

∣∣∣∣
v

≤ εv

((
d + 2

2

))
max
m,n

∣∣∣∣ 1
m!n!

(
∂m+n f
∂xm∂yn

)
(a, b)

∣∣∣∣
v

max{|x − a|v, |y− b|v}.

Since∣∣∣∣ 1
m!n!

(
∂m+n f
∂xm∂yn

)
(a, b)

∣∣∣∣
v

=

∣∣∣∣∑ ci j

(
i
m

)(
j
n

)
ai−mb j−n

∣∣∣∣
v

≤ εv

((
d + 2

2

))
max

i, j
|ci j |v

∣∣∣∣( i
m

)(
j
n

)∣∣∣∣
v

|ai−mb j−n
|v

≤ εv

((
d + 2

2

)
2d
)
| f |v max{|a|v, |b|v, 1}d ,

we have

| f (x, y)− f (a, b)|v
≤ εv((d + 2)42d)| f |v max{|a|v, |b|v, 1}d max{|x − a|v, |y− b|v}. �

Finally, we prove an explicit version of Lemma 10 when X = P2.

Lemma 36. Let k be a number field and let φ ∈ k(P2) be a rational function of
degree d on P2. Let P, Q∈P2(k)\Suppφ and T ⊂Mk . Suppose that φ(P) 6=φ(Q).
Then∑
v∈T

hQ,v(P)≤
∑
v∈T

hφ(Q),v(φ(P))+ (2d+2)h(Q)+8 log(d+2)+ (2d+4) log 2.
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Proof. Let φ = f1/ f2, where f1, f2 ∈ Ok[x, y, z] are homogeneous polynomials of
degree d . Let Q = (x0, y0, z0), P = (x, y, z), and α = φ(Q). From the definitions,

hQ,v(P)= log
max{‖x0‖v, ‖y0‖v, ‖z0‖v}max{‖x‖v, ‖y‖v, ‖z‖v}
max{‖z0x − x0z‖v, ‖z0 y− y0z‖v, ‖x0 y− y0x‖v}

,

hα,v(φ(P))= log
max{‖α‖v, 1}max {‖ f1(x, y, z)‖v, ‖ f2(x, y, z)‖v}

‖ f1(x, y, z)−α f2(x, y, z)‖v
.

Without loss of generality, after permuting the variables, we can assume that z0 6= 0
and Q = (x0, y0, 1). If z = 0, then

hQ,v(P)= log
max{‖x0‖v, ‖y0‖v, 1}max{‖x‖v, ‖y‖v}

max{‖x‖v, ‖y‖v, ‖x0 y− y0x‖v}
≤ log max{‖x0‖v, ‖y0‖v, 1}.

So ∑
v∈T

hQ,v(P)≤
∑
v∈T

log max{‖x0‖v, ‖y0‖v, 1} ≤ h(Q).

Then using Lemma 32, in this case we have∑
v∈T

hQ,v(P)≤
∑
v∈T

hα,v(P)+ h(Q)+ log 2.

Suppose now that z 6= 0, in which case we can take P = (x, y, 1), for some
x, y ∈ k.

First suppose that

max{|x − x0|v, |y− y0|v}<
1

εv((d + 2)42d+1)
min
j=1,2

| f j (x0, y0, 1)|v
| f j |v max{|x0|v, |y0|v, 1}d

.

In particular, max{|x−x0|v, |y− y0|v}≤ 1. Let F(u, v)= f1(u, v, 1)−α f2(u, v, 1).
Note that deg F ≤ d . From the definition of α, F(x0, y0)= 0. Then by Lemma 35,
with a = x0, b = y0, we have

|F(x, y)|v
≤ εv((d + 2)42d)|F |v max{|x0|v, |y0|v, 1}d max{|x − x0|v, |y− y0|v}. (6)

For j = 1, 2, using Lemma 35 again, we find, if v is archimedean,

| f j (x, y, 1)|v

≥ | f j (x0, y0, 1)|v − (d + 2)42d
| f j |vmax{|x0|v, |y0|v, 1}d max{|x − x0|v, |y− y0|v}

≥
1
2 | f j (x0, y0, 1)|v.

By the same reasoning, if v is nonarchimedean we have

| f j (x, y, 1)− f j (x0, y0, 1)|v < | f j (x0, y0, 1)|v,
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and so
| f j (x, y, 1)|v = | f j (x0, y0, 1)|v for j = 1, 2.

Then in any case,

| f j (x, y, 1)|v ≥
1

εv(2)
| f j (x0, y0, 1)|v for j = 1, 2.

Since max{|x − x0|v, |y− y0|v} ≤ 1, we also have

max{|x |v, |y|v, 1} ≤ εv(2)max{|x0|v, |y0|v, 1}.

Then

hQ,v(P)= log
max{‖x0‖v,‖y0‖v,1}max{‖x‖v,‖y‖v,1}
max{‖x− x0‖v,‖y− y0‖v,‖x0 y− y0x‖v}

≤ 2logmax{‖x0‖v,‖y0‖v,1}+ logε′v(2)− logmax{‖x− x0‖v,‖y− y0‖v}

and

hα,v(φ(P))= log
max{‖α‖v,1}max{‖ f1(x, y,1)‖v,‖ f2(x, y,1)‖v}

‖ f1(x, y,1)−α f2(x, y,1)‖v
= log max

j=1,2
‖ f j (x, y,1)‖v+logmax{‖α‖v,1}−log‖F(x, y)‖v

≥ log max
j=1,2
‖ f j (x0, y0,1)‖v+logmax{‖α‖v,1}−ε′v(log(d+2)42d+1)

−log‖F‖v−d logmax{‖x0‖v,‖y0‖v,1}−logmax{‖x−x0‖v,‖y−y0‖v}

by (6). We can write |F |v = | f1−α f2|v ≤ εv(2)max{| f1|v, | f2|v}max{|α|v, 1}. So

hα,v(φ(P))≥ log max
j=1,2
‖ f j (x0, y0, 1)‖v − ε′v(log(d + 2)42d+2)− log max

j=1,2
‖ f j‖v

− d log max{‖x0‖v, ‖y0‖v, 1}− log max{‖x − x0‖v, ‖y− y0‖v}.

Note that

| f j (x0, y0, 1)|v ≤ εv

((
d + 2

2

))
| f j |v max{|x0|v, |y0|v, 1}d for j = 1, 2.

This implies that∑
v∈T

log
max{‖ f1(x0, y0, 1)‖v, ‖ f2(x0, y0, 1)‖v}

max{‖ f1‖v, ‖ f2‖v}max{‖x0‖v, ‖y0‖v, 1}d

≥

2∑
j=1

∑
v∈Mk

log
‖ f j (x0, y0, 1)‖v

‖ f j‖v max{‖x0‖v, ‖y0‖v, 1}d
− 2 log ε′v

((
d + 2

2

))
≥−2dh(Q)− 4 log(d + 2)
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by the product formula. So∑
v∈T

hα,v(φ(P))

≥−2dh(Q)− 8 log(d + 2)− (d + 2) log 2−
∑
v∈T

log max{‖x − x0‖v, ‖y− y0‖v}.

Then∑
v∈T

hQ,v(P)≤
∑
v∈T

hα,v(φ(P))+ (2d + 2)h(Q)+ 8 log(d + 2)+ (d + 3) log 2.

Finally, suppose that

max{|x − x0|v, |y− y0|v} ≥ Cv,

where

Cv=
1

εv((d+2)42d+1)
min

{
| f1(x0,y0,1)|v

| f1|vmax{|x0|v,|y0|v,1}d
,

| f2(x0,y0,1)|v
| f2|vmax{|x0|v,|y0|v,1}d

}
.

As noted before, Cv ≤ 1. Then one easily finds that

max{|x |v, |y|v, 1}
max{|x − x0|v, |y− y0|v}

=
max{|(x − x0)+ x0|v, |(y− y0)+ y0|v, 1}

max{|x − x0|v, |y− y0|v}

≤
εv(2)max{|(x − x0)|v, |(y− y0)|v, |x0|v, |y0|v, 1}

max{|x − x0|v, |y− y0|v}

≤
εv(2)max{|x0|v, |y0|v, 1}

Cv
.

So

hQ,v(P)=
[kv :Qv]

[k :Q]
log

max{|x0|v, |y0|v, 1}max{|x |v, |y|v, 1}
max{|x − x0|v, |y− y0|v, |x0 y− y0x |v}

≤
[kv :Qv]

[k :Q]
log εv(2)max{|x0|v, |y0|v, 1}2/Cv

≤
[kv :Qv]

[k :Q]
(2 log max{|x0|v, |y0|v, 1}+ log εv(2)− log Cv).

Then using Lemma 32, we find∑
v∈T

hQ,v(P)≤
∑
v∈T

hα,v(φ(P))+ 2h(Q)+ 2 log 2−
∑
v∈T

[kv :Qv]

[k :Q]
log Cv.
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Since∑
v∈T

[kv :Qv]

[k :Q]
logCv ≥

∑
v∈Mk

[kv :Qv]

[k :Q]
logCv

≥

2∑
j=1

∑
v∈Mk

log
‖ f j (x0, y0,1)‖v

ε′v((d + 2)42d+1)‖ f j‖vmax{‖x0‖v,‖y0‖v,1}d

≥−8log(d + 2)− (2d + 2) log2− 2dh(Q),

where we have used the product formula in the last line, we obtain∑
v∈T

hQ,v(P)≤
∑
v∈T

hα,v(φ(P))+(2d+2)h(Q)+(2d+4) log 2+8 log(d+2). �

7. Explicit results for P2

In this section we give a proof of Theorem 7. The proof will follow the proof in
Section 3.3, except that we will give explicit estimates at each step. We begin with
an explicit version of Theorem 19.

Theorem 37. Let k be a number field of degree δ and discriminant 1. Let S be a
finite set of places of k, containing the archimedean places, of cardinality s. Let
C1 and C2 be distinct curves over k in P2 defined by homogeneous polynomials
f1, f2 ∈ Ok[x, y, z], respectively, of degrees d1 and d2, respectively. Let d =
max{d1, d2} and φ = f d2

1 (x, y, z)/ f d1
2 (x, y, z), a rational function on P2. Let

Q ∈ P2(k̄) \ (C1 ∪C2) and let δ′ = [k(Q) : Q]. Let w ∈ Mk(Q) and let 0 < ε < 1.
Then for all P ∈ (P2

\ (C1 ∪C2))(Ok,S), either

hQ,w(P)≤ εh(P)+ c4(ε, k, S, w, Q,C1,C2) (7)

or
φ(P)= φ(Q),

where

c4 = (2d2
+ 2)h(Q)+ 10 log(d2

+ 2)+ (2d2
+ 7) log 2

+
1
d
(h(C1)+ h(C2))+

log |1|
δd2 +

2δ
d2 c3(k)+ c5,

c5 = 6.4(d2c2(δ
′, s)/ε) N (w)

log N (w)
c6c7 max{log((d2c2(δ

′, s)/ε)N (w)), log∗ c6},

c6 = QS

(
1+ sc3(k, S)+ 1

δ
log |1|

)
,

c7= d2h(Q)+dh(C1)+dh(C2)+
1
δ

log |1|+2δc3(k)+2d2 log 2+2 log(d2
+2).
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In particular, (7) holds for all P ∈ (P2
\ (C1 ∪C2))(Ok,S) outside of an effectively

computable finite union of plane curves Z.

Proof. Let I1 and I2 be the ideals of Ok generated by the coefficients of g1 = f d2
1

and g2 = f d1
2 , respectively. We rescale g1 and g2 as in Lemma 30(a) and its proof

(viewing the coefficients of the polynomials as giving points in projective space). In
particular, N (I1), N (I2)≤

√
|1|. Let φ= g1/g2 and let P ∈ (P2

\(C1∪C2))(Ok,S).
Then it follows from the definitions that we have an equality of fractional ideals
φ(P)Ok = (I1/I2)J , where J is a fractional ideal supported on the primes in S. By
Theorem 31, we can write φ(P)= βu, where u ∈ O∗k,S and

h(β)≤ sc3(k, S)+ 1
δ

log N (I1)+
1
δ

log N (I2)≤ sc3(k, S)+ 1
δ

log |1|.

Let α = φ(Q) and suppose that φ(P) 6= α. By Theorem 24, substituting ε/d2

for ε and taking G to be the multiplicative group generated by β and O∗k,S , we have
the inequality

hα,w(φ(P))≤
ε

d2 h(φ(P))+ c1

(
ε

d2 , k(Q),G, w, α
)
+ log 2.

Note that degφ ≤ d2. By Lemma 36,

hQ,w(P)≤ hα,w(φ(P))+ (2d2
+ 2)h(Q)+ 8 log(d2

+ 2)+ (2d2
+ 4) log 2

≤
ε

d2 h(φ(P))+ (2d2
+ 2)h(Q)+ 8 log(d2

+ 2)

+ (2d2
+ 5) log 2+ c1

(
ε

d2 , k(Q),G, w, α
)
.

By Lemma 34,

h(φ(P))≤ d2h(P)+ h(φ)+ log
(

d2
+ 2
2

)
≤ d2h(P)+ h(φ)+ 2 log(d2

+ 2).

Let s∞ be the number of archimedean places of k. By Lemma 30(a) and the
construction of g1 and g2,

h(φ)=
∑
v∈Mk

logmax{‖g1‖v,‖g2‖v} ≤
∑
v∈Mk
v|∞

logmax{‖g1‖v,‖g2‖v}

≤ s∞

(
1

s∞
h( f d2

1 )+
1

2δs∞
log|1|+c3(k)+

1
s∞

h( f d1
2 )+

1
2δs∞

log|1|+c3(k)
)

≤ h( f d2
1 )+h( f d1

2 )+
1
δ

log|1|+2δc3(k).

By Lemma 33,

h( f d2
1 )+ h( f d1

2 )≤ dh( f1)+ dh( f2)+ 2d2 log 2= dh(C1)+ dh(C2)+ 2d2 log 2.
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So

h(φ)≤ dh(C1)+ dh(C2)+
1
δ

log |1| + 2δc3(k)+ 2d2 log 2.

Then

hQ,w(P)

< εh(P)+ (2d2
+ 2)h(Q)+ 10 log(d2

+ 2)+ (2d2
+ 7) log 2

+
1
d
(h(C1)+ h(C2))+

1
δd2 log |1| + 2δ

d2 c3(k)+ c1

(
ε

d2 , k(Q),G, w, α
)
.

Finally, we can estimate the last term using

QG ≤ QS max{h(β), 1} ≤ QS

(
1+ sc3(k, S)+ 1

δ
log |1|

)
and, using Lemma 34 again,

h(α)≤ d2h(Q)+ h(φ)+ 2 log(d2
+ 2)

≤ d2h(Q)+ dh(C1)+ dh(C2)+
1
δ

log |1|

+ 2δc3(k)+ 2d2 log 2+ 2 log(d2
+ 2). �

Proof of Theorem 7. Let di = deg Ci , i = 1, . . . , n. Let P ∈
(
P2
\
⋃n

i=1 Ci
)
(Ok,S).

Then ∑
v∈S

hCi ,v(P)= di h(P) for i = 1, . . . , n.

So for each i , there exists a place v ∈ S such that hCi ,v(P) ≥ (1/s)h(P). Since
s < n, there exists a place v ∈ S and distinct elements i, j ∈ {1, . . . , n} such that

min{hCi ,v(P), hC j ,v(P)} ≥
1
s

h(P).

The theorem is then a consequence of the following lemma.

Lemma 38. Let k be a number field of degree δ and discriminant 1. Let S be a
finite set of places of k, containing the archimedean places, of cardinality s. Let
C1, . . . ,Cn ⊂ P2 be distinct curves over k such that at most n− 2 of the curves Ci

intersect at any point of P2(k̄). Let di = deg Ci , d =maxi di , h =maxi h(Ci ), and
N = maxv∈S N (v). Let Z ′ be the set from Theorem 7. Let 0 < ε < 1 and v ∈ S.
Then any point P ∈

(
P2
\
⋃n

i=1 Ci
)
(Ok,S) with

min{hC1,v(P), hC2,v(P)} ≥ εh(P)

satisfies either P ∈ Z ′ or

h(P)<220s+4δ+75d6s+34δ5s+8δ−3s4s−1 N d2
(log∗ N )2s

|1|3/2(log∗ |1|)3δ(h+1)/ε3.
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Proof. Let
(C1 ∩C2)(k̄)= {Q1, . . . , Qr } ⊂ P2(k̄)

and let Qi = (xi , yi , zi ), xi , yi , zi ∈ Ok(Qi ), i = 1, . . . , r , where r ≤ d2. Let
L = k(Q1, . . . , Qr ). We note that [k(Qi ) : k] ≤ d2 for all i . Let Ci be defined by
fi ∈ Ok[x, y, z], i = 1, . . . , n, and let

h∞ = log max
w∈ML
w|∞

{
| f1|w, | f2|w,max

∣∣∣∣ r∏
i=1

gi

∣∣∣∣
w

}
,

where the max is taken over all possible choices of

gi ∈ {zi x − xi z, zi y− yi z, xi y− yi x} ⊂ OL [x, y, z], i = 1, . . . , r.

Now fix a choice of gi ∈{zi x−xi z, zi y−yi z, xi y−yi x}, i=1, . . . , r . Since
∏r

i=1 gi

vanishes at all the points Qi , by the effective Hilbert Nullstellensatz (see Remark 26),
there exists a positive integer M , homogeneous polynomials a1, a2 ∈ OL [x, y, z]
with deg a1 = r M−deg f1, deg a2 = r M−deg f2, and a constant a ∈ OL such that

f1(x, y, z)a1(x, y, z)+ f2(x, y, z)a2(x, y, z)= a
( r∏

i=1

gi

)M

and
M ≤ (8d)8,

log max
w∈ML
w|∞

{|a1|w, |a2|w, |a|w} ≤ (8d)15(h∞+ 8d log 8d).

Let w be a place of L lying above v (we will choose a specific such w later). Let
x, y, z ∈ k. It follows that there exists a1, a2, a, and M , as above, such that( r∏

i=1

max{|zi x − xi z|w, |zi y− yi z|w, |xi y− yi x |w

)M

=
1
|a|w
| f1(x, y, z)a1(x, y, z)+ f2(x, y, z)a2(x, y, z)|w

≤ 2 max{| f1(x, y, z)a1(x, y, z)|w, | f2(x, y, z)a2(x, y, z)|w}/|a|w

≤ 2(r M)2 max
i=1,2

{
| fi (x, y, z)|w|ai |w max{|x |w, |y|w, |z|w}r M−deg fi

}
/|a|w.

So( r∏
i=1

max{|zi x − xi z|w, |zi y− yi z|w, |xi y− yi x |w
max{|x |w, |y|w, |z|w}

)M

≤
2(r M)2

|a|w
max{|a1|w, |a2|w}max

i=1,2

| fi (x, y, z)|w
max{|x |w, |y|w, |z|w}deg fi

.
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Let rw/v = [L : k]/[Lw : kv]. Taking logarithms, rearranging, and using the
definitions and inequalities above, we find

εh(P)≤min{hC1,v(P), hC2,v(P)} = rw/v min{hC1,w(P), hC2,w(P)}

≤ Mrw/v
r∑

i=1

hQi ,w(P)−Mrw/v
r∑

i=1

log max{‖xi‖w, ‖yi‖w, ‖zi‖w}

+ log 2(r M)2+ rw/v log max{‖ f1‖w, ‖ f2‖w}

+ rw/v log max{‖a1‖w, ‖a2‖w}− rw/v log ‖a‖w. (8)

Let Ql ∈ (C1∩C2)(k̄). Then by assumption, there exists i, j ∈ {1, . . . , n}, i 6= j ,
such that Ql 6∈ Ci ∪ C j . Let wl be the place of k(Ql) lying below w and let
rwl/v = [k(Ql) : k]/[k(Ql)wl : kv]. Let 8P and Z ′ be as in Theorem 7.

By Theorem 37, either

P ∈
⋂
φ∈8Ql

{Q ∈ X (k̄) : φ(Q)= φ(Ql)} ⊂ Z ′

or

rw/vhQl ,w(P)= rwl/vhQl ,wl (P)

<
ε

2r M
h(P)+max

i, j
c4

(
ε

2r Mrwl/v
, k, S, wl, Ql,Ci ,C j

)
for all P ∈

(
P2
\
⋃n

i=1 Ci
)
(Ok,S)=

⋂
i, j (P

2
\ (Ci ∪C j ))(Ok,S).

Suppose now that P 6∈ Z ′. Summing over all points in C1 ∩C2, we obtain

Mrw/v
r∑

l=1

hQl ,w(P) <
ε

2
h(P)+

r∑
l=1

max
i, j

c4

(
ε

2r Mrwl/v
, k, S, wl, Ql,Ci ,C j

)
.

Substituting into (8) we find that

h(P) < 2
ε

( r∑
l=1

max
i, j

c4

(
ε

2r Mrwl/v
, k, S, wl, Ql,Ci ,C j

)
+ log 2(r M)2+ rw/v log max

i=1,2
‖ fi‖w + rw/v log max

i=1,2
‖ai‖w

−Mrw/v
r∑

i=1

log max{‖xi‖w, ‖yi‖w, ‖zi‖w}− rw/v log ‖a‖w

)
. (9)

We now estimate all the terms on the right-hand side. The dominant term, which
comes from the first sum above, is

r∑
l=1

max
i, j

c5

(
ε

2r Mrwl/v
, k, S, wl, Ql,Ci ,C j

)
. (10)
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We estimate this term first. We note that by (2), (3), and (4),

c6(k, S)≤ 23s+3s4s−3δ2s+2δ−5(log∗ N )2s−δ
|1|(log∗ |1|)2δ−2.

Then

2r Mrwl/vd
2c2(d2δ, s)N (wl)c6(k, S)

= 72r Md2rwl/vN (wl)(16ed2δ)3s+5(log∗ d2δ)2c6(k, S)

≤ 220s+61d6s+28δ5s+2δ+2s4s−3 N d2
(log∗ N )2s−δ

|1|(log∗ |1|)2δ−2.

Simple estimates then also give

log 2r Mrwl/vd
2c2(d2δ, s)N (wl)c6(k, S)/ε ≤ 27s2d2(log∗ N )(log∗ |1|)/ε.

We have
∑r

l=1 h(Ql)≤ d(h(C1)+h(C2)+4d)≤ 4d2(h+1), by Theorem 27, and

r∑
l=1

max
i, j

c7
(
k, Ql,Ci ,C j

)
≤

r∑
l=1

(d2h(Ql)+ 2dh+ 2d2 log 2+ 2 log(d2
+ 2)+ 1

δ
log |1| + 2δc3(k))

≤ 24δ+2δ6δ−5
√
|1|(log∗ |1|)δd4(h+ 1).

Then (10) is bounded by

220s+4δ+73d6s+34δ5s+8δ−3s4s−1 N d2
(log∗ N )2s

|1|3/2(log∗ |1|)3δ(h+ 1)/ε2. (11)

In the remainder of the proof, we will show that the sum of the remaining
elements in the parentheses on the right-hand side of (9) can also be bounded by
this quantity. Thus, we find that

h(P)≤220s+4δ+75d6s+34δ5s+8δ−3s4s−1 N d2
(log∗ N )2s

|1|3/2(log∗ |1|)3δ(h+1)/ε3,

proving the lemma.
First, we handle the remaining terms coming from the first sum in (9):

r∑
l=1

(2d2
+ 2)h(Ql)+ 10r log(d2

+ 2)+ (2d2
+ 7)r log 2

+
r
d
(h(C1)+ h(C2))+

r
δd2 log |1| + 2δr

d2 c3(k)

≤ 4(2d2
+ 2)d2(h+ 1)+ 10d2 log(d2

+ 2)+ (2d2
+ 7)d2

+ 2dh+ 1
δ

log |1| + 2δ24δδ6δ
√
|1|(log∗ |1|)δ

≤ 55d4(h+ 1)+ 24δ+2δ6δ+1
√
|1|(log∗ |1|)δ.
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We now bound h∞, after making some appropriate choices. Choose f1, f2, and
Ql = (xl, yl, zl), l = 1, . . . , r , as in Lemma 30(b). Then

−

(
(d2δ)2h(Ql)+

(d2δ)

2
log(d2δ)

)
≤ log max{‖xl‖wl , ‖yl‖wl , ‖zl‖wl }

≤ (2d2δ+ 1)h(Ql)+ log d2δ,

log max
v∈Mk
v|∞

| f1|v ≤ (2δ+ 1)δh(C1)+ δ log δ ≤ 3δ2(h+ 1),

log max
v∈Mk
v|∞

| f2|v ≤ (2δ+ 1)δh(C2)+ δ log δ ≤ 3δ2(h+ 1).

Let gl ∈ {zl x − xl z, zl y− yl z, xl y− yl x}, i = 1, . . . , r . If w ∈ ML , w|∞, then

log
∣∣∣∣ r∏
l=1

gl

∣∣∣∣
w

≤ log 2r
r∏

l=1

|gl |w ≤ r log 2+ log
r∑

l=1

|gl |w

≤ r log 2+
r∑

l=1

log max{|xl |wl , |yl |wl , |zl |wl }

≤ d2 log 2+
r∑

l=1

(
(2d2δ+ 1)d2δh(Ql)+ d2δ log d2δ

)
≤ d2 log 2+ 4(2d2δ+ 1)d4δ(h+ 1)+ d4δ log d2δ.

Since w ∈ ML was arbitrary, we have

log max
w∈ML
w|∞

∣∣∣∣ r∏
l=1

gl

∣∣∣∣
w

≤ d2 log 2+ 4(2d2δ+ 1)d4δ(h+ 1)+ d4δ log d2δ.

It follows easily that

h∞ ≤ 14d6δ2(h+ 1).

Then from the above, we have

log 2(r M)2 ≤ log 2d4(8d)16
≤ 26d,

rw/v log max{‖ f1‖w, ‖ f2‖w} ≤ log max{| f1|w, | f2|w} ≤ 4δ2(h+ 1),

rw/v log max{‖a1‖w, ‖a2‖w} ≤ log max{|a1|w, |a2|w} ≤ (8d)15(h∞+ 8d log 8d)

≤ 251d21δ2(h+ 1).



Linear forms in logarithms and integral points on varieties 685

We also find

−Mrw/v
r∑

l=1

log max{‖xl‖w, ‖yl‖w, ‖zl‖w}

= −M
r∑

l=1

rwl/v log max{‖xl‖wl , ‖yl‖wl , ‖zl‖wl }

≤ (8d)8d2
(
(d2δ)2

r∑
l=1

h(Ql)+
d4δ

2
log(d2δ)

)
≤ 224d10

(
4d6δ2(h+ 1)+ d4δ

2
log(d2δ)

)
≤ 227d16δ2(h+ 1).

From the product formula and the fact that a ∈ OL , we have the inequality

−

∑
w′∈ML
w′|v

log ‖a‖w′ =
∑
w′∈ML
w′-v

log ‖a‖w′ ≤
∑
w′∈ML
w′|∞

max{log ‖a‖w′, 0}

≤ (8d)15(h∞+ 8d log 8d)≤ 251d21δ2(h+ 1).

Since L/k is Galois, there are exactly rw/v places w′ ∈ ML with w′|v. Therefore,
there exists a place w′ ∈ ML with w′|v and − log ‖a‖w′ ≤ (1/rw/v)251d36δ2(h+1).
Choosing now w = w′, we have

−rw/v log ‖a‖w ≤ 251d21δ2(h+ 1).

Summing all of the inequalities above, we find that, as claimed, the remaining
terms in (9) are easily bounded by (11). �
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