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Lefschetz theorem for
abelian fundamental group with modulus

Moritz Kerz and Shuji Saito

We prove a Lefschetz hypersurface theorem for abelian fundamental groups
allowing wild ramification along some divisor. In fact, we show that isomorphism
holds if the degree of the hypersurface is large relative to the ramification along
the divisor.

1. Statement of main results

Lefschetz hyperplane theorems represent an important technique in the study of
Grothendieck’s fundamental group π1(X) of an algebraic variety X (we omit base
points for simplicity). Roughly speaking, one gets an isomorphism of the form

ιY/X : π1(Y )
∼
−→ π1(X)

for a suitable hypersurface section Y→ X if dim(X)≥3. Purely algebraic Lefschetz
theorems for projective varieties satisfying certain regularity assumptions were de-
veloped in [SGA 2 1968]. The case of nonproper varieties X and Y is more intricate
because one needs a precise control of the ramification at the infinite locus. We show
in the present note that for the abelian quotient of the fundamental group a Lefschetz
hyperplane theorem does in fact hold. Our basic technical ingredient is the higher-
dimensional ramification theory of Brylinski, Kato and Matsuda, which is recalled
in Section 2. We expect that there is a noncommutative analog of our Lefschetz
theorem, which should have applications to `-adic representations of fundamental
groups, especially over finite fields as studied in [Esnault and Kerz 2012].

To formulate our main result, let X be a normal variety over a perfect field k, and
let U ⊂ X be an open subset such that X \U is the support of an effective Cartier
divisor on X . Let D be an effective Cartier divisor on X with support in X \U .
We introduce the abelian fundamental group π ab

1 (X, D) as a quotient of π ab
1 (U )

classifying abelian étale coverings of U with ramification bounded by D. More
precisely, for an integral curve Z ⊂U , let Z N be the normalization of the closure
of Z in X with φZ : Z N

→ X , the natural map. Let Z∞ ⊂ Z N be the finite set
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of points x such that φZ (x) /∈ U . Then π ab
1 (X, D) is defined as the Pontryagin

dual of the group filD H 1(U ) of continuous characters χ : π ab
1 (U )→ Q/Z such

that, for any integral curve Z ⊂U , its restriction χ |Z : π ab
1 (Z)→Q/Z satisfies the

following inequality of Cartier divisors on Z N :∑
y∈Z∞

arty(χ |Z )[y] ≤ φ∗Z D,

where arty(χ |Z ) ∈ Z≥0 is the Artin conductor of χ |Z at y ∈ Z∞ and φ∗Z D is the
pullback of D by the natural map φZ : Z N

→ X .
Such a global measure of ramification in terms of curves has been first considered

by Deligne and Laumon; see [Laumon 1981].
Now assume that X is smooth projective over k (we fix a projective embedding)

and that C = X \ U is a simple normal crossing divisor. Let Y be a smooth
hypersurface section such that Y ×X C is a reduced simple normal crossing divisor
on Y , and write deg(Y ) for the degree of Y with respect to the fixed projective
embedding of X . Set E = Y ×X D. Then one sees from the definition that the
map Y ∩U →U induces a natural map

ιY/X : π
ab
1 (Y, E)→ π ab

1 (X, D).

Our main theorem says:

Theorem 1.1. Assume that Y is sufficiently ample for (X, D) (see Definition 3.1).
If d := dim(X)≥ 3, ιY/X is an isomorphism. If d = 2, ιY/X is surjective.

The prime-to-p part of the theorem is due to [Schmidt and Spieß 2000], where
p = ch(k). Below we see that Y is sufficiently ample if deg(Y )� 0.

Corollary 1.2. Let X be a normal proper variety over a finite field k. Then
π ab

1 (X, D)0 is finite, where

π ab
1 (X, D)0 = Ker

(
π ab

1 (X, D)→ π ab
1 (Spec(k))

)
.

Proof. In case X and X \U satisfy the assumption of Theorem 1.1, the corollary
follows from the corresponding statement for curves. The finiteness in the curves
case is a consequence of class field theory. For the general case, one can take by
[de Jong 1996] an alteration f : X ′→ X such that X ′ and X ′\U ′ with U ′= f −1(U )
satisfy the assumption of Theorem 1.1. Then the assertion follows from the fact
that the map f∗ : π ab

1 (U
′)→ π ab

1 (U ) has a finite cokernel. �

Corollary 1.2 can also be deduced from [Raskind 1995, Theorem 6.2]. It has
recently been generalized to the noncommutative setting by Deligne; see [Esnault
and Kerz 2012].

Theorem 1.1 is a central ingredient in our paper [Kerz and Saito 2013]. There
we use it to construct a reciprocity isomorphism between a Chow group of zero
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cycles with modulus and the abelian fundamental group with bounded ramification.
In fact, Theorem 1.1 allows us to restrict to surfaces in this construction.

2. Review of ramification theory

First we review local ramification theory. Let K denote a henselian discrete valuation
field of ch(K ) = p > 0 with the ring OK of integers and residue field κ . Let π
be a prime element of OK and mK = (π)⊂ OK the maximal ideal. By the Artin–
Schreier–Witt theory, we have a natural isomorphism for s ∈ Z≥1,

δs :Ws(K )/(1− F)Ws(K )
∼
−→ H 1(K ,Z/psZ), (2-1)

where Ws(K ) is the ring of Witt vectors of length s and F is the Frobenius. We
have the Brylinski–Kato filtration indexed by integers m ≥ 0

fillog
m Ws(K )= {(as−1, . . . , a1, a0) ∈Ws(K ) | pivK (ai )≥−m},

where vK is the normalized valuation of K . In this paper, we use its nonlog version
introduced by Matsuda [1997]:

film Ws(K )= fillog
m−1 Ws(K )+ V s−s′ fillog

m Ws′(K ),

where s ′ = min{s, ordp(m)}. We define ramification filtrations on H 1(K ) :=
H 1(K ,Q/Z) as

fillog
m H 1(K )= H 1(K ){p′}⊕

⋃
s≥1

δs(fillog
m Ws(K )) (m ≥ 0),

film H 1(K )= H 1(K ){p′}⊕
⋃
s≥1

δs(film Ws(K )) (m ≥ 1),

where H 1(K ){p′} is the prime-to-p part of H 1(K ). We note that this filtration is
shifted by one from the filtration of Matsuda [1997, Definition 3.1.1]. We also let
fil0 H 1(K ) be the subgroup of all unramified characters.

Definition 2.1. For χ ∈ H 1(K ), we denote the minimal m with χ ∈ film H 1(K )
by artK (χ) and call it the Artin conductor of χ .

We have the following facts (cf. [Kato 1989; Matsuda 1997]):

Lemma 2.2. (1) fil1 H 1(K ) is the subgroup of tamely ramified characters.

(2) film H 1(K )⊂ fillog
m H 1(K )⊂ film+1 H 1(K ).

(3) film H 1(K )= fillog
m−1 H 1(K ) if (m, p)= 1.

The structure of graded quotients

grm H 1(K )= film H 1(K )/film−1 H 1(K ) (m > 1)
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is described as follows. Let �1
K be the absolute Kähler differential module, and put

film �1
K =m−m

K ⊗OK �
1
OK
.

We have an isomorphism

grm �
1
K = film �1

K /film−1�
1
K 'm−m

K �1
OK
⊗OK κ. (2-2)

We have the maps

F sd :Ws(K )→�1
K , (as−1, . . . , a1, a0) 7→

s−1∑
i=0

a pi
−1

i dai ,

and one can check F sd(filn Ws(K ))⊂ filn �1
K .

Theorem 2.3 [Matsuda 1997]. The maps F sd factor through δs and induce a
natural map

filn H 1(K )→ filn �1
K ,

which induces for m > 1 an injective map (called the refined Artin conductor for K )

artK : grn H 1(K ) ↪→ grn �
1
K . (2-3)

Next we review global ramification theory. Let X and C be as in the introduction,
and fix a Cartier divisor D with |D| ⊂ C . We recall the definition of π ab

1 (X, D).
We write H 1(U ) for the étale cohomology group H 1(U,Q/Z), which is identified
with the group of continuous characters π ab

1 (U )→Q/Z.

Definition 2.4. We define filD H 1(U ) to be the subgroup of χ ∈ H 1(U ) satisfying
this condition. For all integral curves Z ⊂ X not contained in C , its restriction
χ |Z : π

ab
1 (Z)→Q/Z satisfies the following inequality of Cartier divisors on Z N :∑

y∈Z∞

arty(χ |Z )[y] ≤ φ∗Z D,

where arty(χ |Z ) ∈ Z≥0 is the Artin conductor of χ |Z at y ∈ Z∞ and φ∗Z D is the
pullback of D by the natural map φZ : Z N

→ X . Define

π ab
1 (X, D)= Hom(filD H 1(U ),Q/Z), (2-4)

endowed with the usual profinite topology of the dual.

For the rest of this section, we assume that X is smooth and C is a simple normal
crossing. Let I be the set of generic points of C , and let Cλ = {λ} for λ ∈ I . Write

D =
∑
λ∈I

mλCλ. (2-5)
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For λ∈ I , let Kλ be the henselization of K = k(X) at λ. Note that Kλ is a henselian
discrete valuation field with residue field k(Cλ).

Proposition 2.5. We have

filD H 1(U )= Ker
(

H 1(U )→
⊕
λ∈I

H 1(Kλ)/filmλ
H 1(Kλ)

)
.

Proof. This is a consequence of ramification theory developed in [Kato 1989;
Matsuda 1997]. See [Kerz and Saito 2013, Corollary 2.7] for a proof. �

Proposition 2.6. Fix λ ∈ I such that mλ > 1 in (2-5). The refined Artin conductor
artKλ

(cf. Theorem 2.3) induces a natural injective map

artCλ : filD H 1(U )/filD−Cλ H 1(U ) ↪→ H 0(Cλ, �1
X (D)⊗OX OCλ),

which is compatible with pullback along maps f : X ′→ X of smooth varieties with
the property that f −1(C) is a reduced simple normal crossing divisor.

Proof. This follows from the integrality result [Matsuda 1997, Corollary 4.2.2] of
the refined Artin conductor. �

Proposition 2.6 motivates us to introduce the following log-variant of filD H 1(U ):

Definition 2.7. We define fillog
D H 1(U ) as

fillog
D H 1(U )= Ker

(
H 1(U )→

⊕
λ∈I

H 1(Kλ)/fillog
mλ

H 1(Kλ)

)
.

Lemma 2.8. (1) filC H 1(U ) is the subgroup of tamely ramified characters.

(2) filD H 1(U )⊂ fillog
D H 1(U )⊂ filD+C H 1(U ).

(3) filD H 1(U )= fillog
D−C H 1(U ) if (mλ, p)= 1 for all λ ∈ I .

Proof. This is a direct consequence of Lemma 2.2. �

3. Proof of the main theorem

Let X be a smooth projective variety over a perfect field of characteristic p > 0
and C ⊂ X a reduced simple normal crossing divisor on X . Let j :U = X \C ⊂ X
be the open immersion. We use the same notation as in the last part of the previous
section. Take an effective Cartier divisor

D =
∑
λ∈I

mλCλ with mλ ≥ 0.

Let I ′ =
{
λ ∈ I

∣∣ p | mλ

}
, and put

D′ =
∑
λ∈I ′

(mλ+ 1)Cλ+
∑
λ∈I\I ′

mλCλ.
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Let Y be a smooth hypersurface section such that Y ×X C is a reduced simple
normal crossing divisor on Y .

Definition 3.1. (1) Assuming dim(X) ≥ 3, we say that Y is sufficiently ample
for (X, D) if the following conditions hold:

(A1) H i (X, �d
X (−4+ Y )) = 0 for any effective Cartier divisor 4 ≤ D and

for i = d, d − 1, d − 2.
(A2) For any λ ∈ I ′, we have

H 0(Cλ, �1
X (D

′
− Y )⊗OCλ)= H 0(Cλ,OCλ(D

′
− Y ))

= H 1(Cλ,OCλ(D
′
− 2Y ))= 0.

(2) Assuming dim(X)= 2, we say that Y is sufficiently ample for (X, D) if the
following condition holds:
(B) H i (X, �d

X (−4+ Y )) = 0 for any effective Cartier divisor 4 ≤ D and
for i = 1, 2.

We remark that there is an integer N such that any smooth Y of degree ≥ N is
sufficiently ample for (X, D).

Theorem 1.1 is a direct consequence of the following:

Theorem 3.2. Let Y be sufficiently ample for (X, D). Write E = Y ×X D.

(1) Assuming d := dim(X)≥ 3, we have isomorphisms

filD H 1(U )
∼
−→ filE H 1(U ∩ Y ) and fillog

D H 1(U )
∼
−→ fillog

E H 1(U ∩ Y ).

(2) Assuming d = 2, we have injections

filD H 1(U ) ↪→ filE H 1(U ∩ Y ) and fillog
D H 1(U ) ↪→ fillog

E H 1(U ∩ Y ).

For an abelian group M , we let M{p′} denote the prime-to-p torsion part of M .

Lemma 3.3. (1) Assuming d := dim(X)≥ 3, we have an isomorphism

filD H 1(U ){p′}
∼
−→ filE H 1(U ∩ Y ){p′}

and the same isomorphism for fillog
D .

(2) Assuming d = 2, we have an injection

filD H 1(U ){p′} ↪→ filE H 1(U ∩ Y ){p′}

and the same injection for fillog
D .

Proof. Noting

filD H 1(U ){p′} = filC H 1(U ){p′} = fillog
C H 1(U ){p′} = fillog

D H 1(U ){p′},

this follows from the tame case of Theorem 1.1 due to [Schmidt and Spieß 2000]. �
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By the above lemma, Theorem 3.2 is reduced to the following:

Theorem 3.4. Let the assumption be as in Theorem 3.2. Take an integer n > 0.

(1) Assuming d := dim(X)≥ 3, we have isomorphisms

filD H 1(U )[pn
]
∼
−→ filE H 1(U ∩ Y )[pn

]

and the same isomorphism for fillog
D .

(2) Assuming d = 2, we have an injection

filD H 1(U )[pn
] ↪→ filE H 1(U ∩ Y )[pn

]

and the same injection for fillog
D .

In what follows, we consider an effective Cartier divisor with Z[1/p]-coefficient:

D =
∑
λ∈I

mλCλ, mλ ∈ Z[1/p]≥0.

We put
[D] =

∑
λ∈I

[mλ]Cλ with [mλ] =max{i ∈ Z | i ≤ mλ}

and F(±D)=F⊗OX OX (±[D]) for an OX -module. For D as above, let fillog
D WnOX

be the subsheaf of j∗WnOU of local sections

a ∈WnOU such that a ∈ fillog
mλ

Wn(Kλ) for any λ ∈ I ,

where fillog
mλ

Wn(Kλ) := fillog
[mλ]

Wn(Kλ) is defined in Section 2 for the henselization
Kλ of K = k(X) at λ. We note

OX (D)= fillog
D WnOX for n = 1.

The following facts are easily checked:

• The Frobenius F induces F : fillog
D/p WnOX → fillog

D WnOX .

• The Verschiebung V induces V : fillog
D Wn−1OX → fillog

D WnOX .

• The restriction R induces R : fillog
D WnOX → fillog

D/p Wn−1OX .

• The following sequence is exact:

0→ OX (D)
V n−1

−−→ fillog
D WnOX

R
−→ fillog

D/p Wn−1OX → 0. (3-1)

We define an object (Z/pnZ)X |D of the derived category Db(X) of bounded
complexes of étale sheaves on X :

(Z/pnZ)X |D = Cone
(
fillog

D/p WnOX
1−F
−−→ fillog

D WnOX
)
[−1].
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We have a distinguished triangle in Db(X):

(Z/pnZ)X |D→ fillog
D/p WnOX

1−F
−−→ fillog

D WnOX
+
−→ . (3-2)

Lemma 3.5. There is a distinguished triangle

(Z/pZ)X |D→ (Z/pnZ)X |D→ (Z/pn−1Z)X |D/p
+
−→ .

Proof. The lemma follows from the commutative diagram

0 // OX (D/p) V n−1
//

1−F

��

fillog
D/p WnOX

R
//

1−F
��

fillog
D/p2 Wn−1OX

1−F
��

// 0

0 // OX (D)
V n−1

// fillog
D WnOX

R
// fillog

D/p Wn−1OX // 0 �

Lemma 3.6. There is a canonical isomorphism

fillog
D H 1(U )[pn

] ' H 1(X, (Z/pnZ)X |D).

Proof. Noting that the restriction of (Z/pnZ)X |D to U is Z/pnZ on U , we have the
localization exact sequence

H 1(X, (Z/pnZ)X |D)→ H 1(U,Z/pnZ)→ H 2
C(X, (Z/pnZ)X |D). (3-3)

For the generic point λ of Cλ, (3-2) gives us an exact sequence

H 1
λ (X,fillog

D/p WnOX )
1−F
−−→ H 1

λ (X,fillog
D WnOX )

→ H 2
λ (X, (Z/pnZ)X |D)→ H 2

λ (X,fillog
D/p WnOX ).

By [Grothendieck 1967, Corollary 3.10] and (3-1), we have

H i
λ(X,fillog

D/p WnOX )= H i
λ(X,fillog

D WnOX )= 0 for i ≥ 2

and
H 1
λ (X,fillog

D/p WnOX )'Wn(Kλ)/fillog
mλ/p Wn(Kλ),

H 1
λ (X,fillog

D WnOX )'Wn(Kλ)/fillog
mλ

Wn(Kλ).

Thus, we get

H 2
λ (X, (Z/pnZ)X |D)' H 1(Kλ)[pn

]/fillog
mλ

H 1(Kλ)[pn
].

Hence, Lemma 3.6 follows from (3-3) and the injectivity of

H 2
C(X, (Z/pnZ)X |D)→

⊕
λ∈I

H 2
λ (X, (Z/pnZ)X |D).

This injectivity is a consequence of:
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Claim 3.7. For x ∈ C with dim(OX,x)≥ 2, we have

H 2
x (X, (Z/pnZ)X |D)= 0.

By Lemma 3.5, it suffices to show Claim 3.7 in case n = 1. Triangle (3-2) gives
us an exact sequence

H 1
x (X,OX (D))→ H 2

x (X, (Z/pZ)X |D)→ H 2
x (X,OX (D/p))

1−F
−−→ H 2

x (X,OX (D)).

If dim(OX,x) > 2, H 1
x (X,OX (D))= 0 and H 2

x (X,OX (D/p))= 0 by [Grothendieck
1967, Corollary 3.10], which implies H 2

x (X, (Z/pZ)X |D)= 0 as desired.
We now assume dim(OX,x)= 2. Let (Z/pZ)X denote the constant sheaf Z/pZ

on X , and put

FX |D = Coker
(
OX (D/p)

1−F
−−→ OX (D)

)
.

Note that FX |D = 0 for D = 0. By definition, we have a distinguished triangle

(Z/pZ)X → (Z/pZ)X |D→ FX |D
+
−→ .

By [SGA 1 1971, Exposé X, Théorèm 3.1], we have H 2
x (X, (Z/pZ)X )= 0. Hence,

we are reduced to showing

H 2
x (X,FX |D)= 0. (3-4)

Without loss of generality, we can assume that D has integral coefficients. We
prove (3-4) by induction on multiplicities of D reducing to the case D = 0. Fix
an irreducible component Cλ of C with the multiplicity mλ ≥ 1 in D, and put
D′ = D−Cλ. We have a commutative diagram with exact rows and columns

(Z/pZ)X

��

(Z/pZ)X

��

0 // OX (D′/p) //

1−F
��

OX (D/p) //

1−F
��

L

F
��

// 0

0 // OX (D′) // OX (D) // OCλ(D) // 0

Here OCλ(D)= OX (D)⊗OCλ , and L= OCλ(D/p) if p | mλ, and L= 0 otherwise.
Thus, we get short exact sequences

0→ FX |D′→ FX |D→ OCλ(D)→ 0 if p - mλ,

0→ FX |D′→ FX |D→ OCλ(D)/OCλ(D/p)p
→ 0 if p | mλ.
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We may assume H 2
x (X,FX |D′) = 0 by the induction hypothesis. Hence, (3-4)

follows from

H 2
x (Cλ,OCλ(D))= 0, (3-5)

H 2
x (Cλ,OCλ(D)/OCλ(E)

p)= 0, (3-6)

where we put E = [D/p]. We may assume x ∈ Cλ so that dim(OCλ,x)= 1 by the
assumption dim(OX,x)= 2. Equation (3-5) is a consequence of [Grothendieck 1967,
Corollary 3.10]. In view of an exact sequence

0 → OCλ(pE)/OCλ(E)
p
→ OCλ(D)/OCλ(E)

p
→ OCλ(D)/OCλ(pE)→ 0,

(3-6) follows from

H 2
x (Cλ,OCλ(pE)/OCλ(E)

p)= 0 and H 2
x (Cλ,OCλ(D)/OCλ(pE))= 0.

The first assertion follows from [Grothendieck 1967, Corollary 3.10] noting that
OCλ(pE)/OCλ(E)

p is a locally free O
p
Cλ-module. The second assertion holds since

OCλ(D)/OCλ(pE) is supported in a proper closed subscheme T of Cλ and x is a
generic point of T if x ∈ T . This completes the proof of Lemma 3.6. �

Proof of Theorem 3.4. In view of the above results, the assertions for fillog
D of

Theorem 3.4(1) and (2) follow from the following:

Theorem 3.8. Let the assumption be as in Theorem 3.2. The natural map

H 1(X, (Z/pnZ)X |D)→ H 1(Y, (Z/pnZ)Y |D)

is an isomorphism for d := dim(X)≥ 3, and it is injective for d = 2.

Proof. By Lemma 3.5, we have a commutative diagram:

0

��

0

��

H 1(X, (Z/pZ)X |D) //

��

H 1(Y, (Z/pZ)Y |E)

��

H 1(X, (Z/pnZ)X |D) //

��

H 1(Y, (Z/pnZ)Y |D)

��

H 1(X, (Z/pn−1Z)X |D/p) //

��

H 1(Y, (Z/pn−1Z)Y |E/p)

��

H 2(X, (Z/pZ)X |D) // H 2(Y, (Z/pZ)Y |E)
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The theorem follows by the induction on n from the following lemma. �

Lemma 3.9. Let the assumption be as in Theorem 3.2.

(1) Assuming d ≥ 3, the natural map

H i (X, (Z/pZ)X |D)→ H i (Y, (Z/pZ)Y |E)

is an isomorphism for i = 1 and injective for i = 2.

(2) Assuming d = 2, the natural map

H 1(X, (Z/pZ)X |D)→ H 1(Y, (Z/pZ)Y |E)

is injective.

Proof. We define an object K of Db(X):

K= Cone
(
OX (D/p− Y )

1−F
−−→ OX (D− Y )

)
[−1].

By the commutative diagram with exact horizontal sequences

0 // OX (D/p− Y ) //

1−F
��

OX (D/p) //

1−F
��

OY (E/p) //

1−F
��

0

0 // OX (D− Y ) // OX (D) // OY (E) // 0

we have a distinguished triangle in Db(X):

K→ (Z/pZ)X |D→ (Z/pZ)Y |E
+
−→ .

Hence, it suffices to show H i (X,K)= 0 for i = 1, 2 in case d≥ 3 and H 1(X,K)= 0
in case d = 2. We have an exact sequence

H 0(OX (D− Y ))→ H 1(X,K)→ H 1(OX (D/p− Y ))

→ H 1(OX (D− Y ))→ H 2(X,K)→ H 2(OX (D/p− Y )).

By Serre duality, for a divisor 4 on X , we have

H i (X,OX (4− Y ))= H d−i (X, �d
X (−4+ Y ))∨.

Thus, the desired assertion follows from Definition 3.1(A1) and (B). �

It remains to deduce the assertions for filD of Theorem 3.4(1) and (2) from those
for fillog

D . Let D′ be as in the beginning of this section and E ′ = D′×X Y . Noting
that the multiplicities of D′ are prime to p, we have by Lemma 2.8(3)

filD′ H 1(U )= fillog
D′−C H 1(U ) and filE ′ H 1(U ∩ Y )= fillog

E ′−C∩Y H 1(U ∩ Y ).
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Thus, the assertions for fillog
D′−C of Theorem 3.4 imply that for filD′ . Since filD⊂filD′ ,

it immediately implies the injectivity of

filD H 1(U )→ filE H 1(U ∩ Y ).

It remains to deduce its surjectivity from that of

filD′ H 1(U )→ filE ′ H 1(U ∩ Y )

assuming d ≥ 3. For this it, suffices to show the injectivity of

filD′ H 1(U )/filD H 1(U )→ filE ′ H 1(U ∩ Y )/filE H 1(U ∩ Y ).

By Proposition 2.6, we have a commutative diagram

filD′ H 1(U )/filD H 1(U ) �
�

//

��

⊕
λ∈I ′

H 0(Cλ, �1
X (D

′)⊗OX OCλ)

��

filE ′ H 1(U ∩ Y )/filE H 1(U ∩ Y ) �
�

//
⊕
λ∈I ′

H 0(Cλ ∩ Y, �1
Y (D

′)⊗OY OCλ∩Y )

Thus, we are reduced to showing the injectivity of the right vertical map. Putting
L= Ker(�1

X → i∗�1
Y ) where i : Y ⊂ X , the assertion follows from

H 0(Cλ,L(D′)⊗OX OCλ)= 0.

Note that we used the fact that Y and Cλ intersect transversally. We have an exact
sequence

0→�1
X (−Y )→ L→ OX (−Y )⊗OY → 0.

From this, we get an exact sequence

0→�1
X (D

′
− Y )⊗OX OCλ→ L(D′)⊗OX OCλ→ OCλ(D

′
− Y )⊗OCλ∩Y → 0.

We also have an exact sequence

0→ OCλ(D
′
− 2Y )→ OCλ(D

′
− Y )→ OCλ(D

′
− Y )⊗OCλ∩Y → 0.

Therefore, the desired assertion follows from Definition 3.1(A2). This completes
the proof of Theorem 3.4. �
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