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Splitting tower and degree of tt-rings
Paul Balmer

After constructing a splitting tower for separable commutative ring objects in
tensor-triangulated categories, we define and study their degree.

Introduction

Let K be a tensor-triangulated category (tt-category, for short). Denote its tensor
by ⊗ : K × K → K and its ⊗-unit by 1. Let A be a ring object in K, that is,
an associative monoid µ : A⊗ A→ A with unit η : 1→ A. We want to study
the degree of such a ring object under the assumption that A is what we call a
tt-ring, that is, is commutative and separable. We focus on tt-rings because their
Eilenberg–Moore category, A-ModK, of A-modules in K remains a tt-category and
extension of scalars FA : K→ A-ModK is a tt-functor (a fact which also explains
the terminology: tt-rings preserve tt-categories). See Section 1.

In practice, tt-rings appear in commutative algebra as finite étale algebras and
in representation theory of finite groups as the amusing algebras A = k(G/H)
associated to subgroups H <G; see [Balmer 2012]. In the latter case, if K=K(G)
is the derived or the stable category of the group G over a field k, then A-ModK is
nothing but the corresponding category K(H) for the subgroup. These two sources
already provide an abundance of examples. Furthermore, the topological reader
will find tt-rings among ring spectra, equivariant or not.

Let us contemplate the problem of defining a reasonable notion of degree, i.e.,
an integer deg(A) measuring the size of the tt-ring A in a general tt-category K.
When working over a field k, it is tempting to use dimk(A). When A is a projective
separable R-algebra over a commutative ring R, its rank must be finite [DeMeyer
and Ingraham 1971] and provides a fine notion of degree for A viewed in the tt-
category of perfect complexes Dperf(R)=Kb(R-proj). However, tt-geometry covers
more than commutative algebra. Unorthodox separable algebras already emerge
in representation theory, for instance, as the above A = k(G/H). In Db(kG-mod),
one can still forget the G-action and take dimension over k as a possible degree —
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which of course yields the index [G : H ] in that example — but one step further,
in the stable category K= stab(kG), dimension over k becomes a slippery notion
whereas the tt-ring A=k(G/H) remains equally important. Such questions become
even harder in general stable homotopy categories (see [Hovey et al. 1997]) where
there is simply no ground field k to deal with in the first place. So a good concept
of degree in the broad generality of tt-geometry requires a new idea.

Our solution relies on the following splitting theorem, which echoes a classical
property of usual separable rings (see [Chase et al. 1965]). Note that such a result
is completely wrong for nonseparable rings, already with B = A[X ], for instance.

Theorem 2.1. Let f : A→ B and g : B→ A be homomorphisms of tt-rings such
that g ◦ f = idA. Then there exists a tt-ring C and a ring isomorphism(g

∗

)
: B −→∼ A×C.

Using this theorem, we construct (Definition 3.1) a tower of tt-rings and homo-
morphisms

A =: A[1]→ A[2]→ · · · → A[n]→ · · ·

such that after extending scalars to A[n] our A splits as the product of 1× · · ·× 1
(n times) with A[n+1]. The degree of A is defined to be the last n such that A[n] 6= 0
(Definition 3.4).

We prove a series of results which show that this concept of degree behaves
according to intuition and provides a reasonable invariant. In basic examples, we
recover expected values, like [G : H ] in the case of k(G/H) in Db(kG-mod). In
the stable category however, deg(k(G/H)) can be smaller than [G : H ]. In the
extreme case of H < G strongly p-embedded, we even get deg(k(G/H))= 1 in
stab(kG); see Example 4.6. We prove in Section 4 that the degree is finite for every
tt-ring in the derived category of perfect complexes over a scheme, in the bounded
derived category of a finite-dimensional cocommutative Hopf algebra and in the
stable homotopy category of finite spectra.

It is an open question whether the degree must always be finite, at least locally.
Several aspects of this work extend to nontriangulated additive tensor categories.

This is discussed in Remark 3.13.
In [Balmer 2013], our degree theory will be used to control the fibers of the map

Spc(A-ModK)→ Spc(K). We shall notably reason by induction on the degree,
thanks to this result:

Theorem. Let A be a tt-ring of finite degree d in K. Then in the tt-category of
A-modules, we have an isomorphism of tt-rings FA(A)' 1× A[2] where the tt-ring
A[2] has degree d − 1 in A-ModK.

Convention. All our tt-categories are essentially small and idempotent complete.
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1. The tt-category of A-modules

We quickly list standard properties of the Eilenberg–Moore category A-ModK of
A-modules in K; see [Eilenberg and Moore 1965; Mac Lane 1998, Chapter VI;
Balmer 2011].

As A is separable (that is, µ : A⊗ A→ A has a section σ as A, A-bimodules) the
category A-ModK admits a unique triangulation such that both extension of scalars
FA : K→ A-ModK, x 7→ A⊗x , and its forgetful right adjoint UA : A-ModK→K are
exact; see [Balmer 2011]. Also, A-ModK is equivalent to the idempotent completion
of the Kleisli category A-FreeK of free A-modules; see [Kleisli 1965]. Objects of
A-FreeK are the same as those of K, denoted FA(x) for every x ∈K, and morphisms
HomA(FA(x), FA(y)) := HomK(x, A ⊗ y). Denote by f̄ : FA(x)→ FA(y) the
morphism in A-FreeK corresponding to f : x→ A⊗ y in K.

As our tt-ring A is furthermore commutative, there is a tensor structure −⊗A− :

A-ModK× A-ModK→ A-ModK making FA : K→ A-ModK a tt-functor. Indeed,
one can define ⊗A on the Kleisli category by FA(x)⊗A FA(y) := FA(x ⊗ y) and
f̄ ⊗A ḡ = (µ⊗ 1⊗ 1)(23)( f ⊗ g) if f : x→ A⊗ x ′ and g : y→ A⊗ y′, thus:

x ⊗ y
f⊗g

// A⊗ x ′⊗ A⊗ y′
(23)

// A⊗ A⊗ x ′⊗ y′
µ⊗1⊗1

// A⊗ x ′⊗ y′.

Idempotent completion then yields ⊗A on A-ModK. One can also describe ⊗A

on all modules directly. First only assume that A is separable with a chosen
A, A-bimodule section σ : A→ A⊗ A of µ. Let (x1, %1) and (x2, %2) be right and
left A-modules in K, respectively. Then the endomorphism v in K,

(1.1) v : x1⊗ x2
1⊗η⊗1

// x1⊗ A⊗ x2
1⊗σ⊗1

// x1⊗ A⊗ A⊗ x2
%1⊗%2

// x1⊗ x2,

is an idempotent: v ◦ v = v. Hence one can define x1 ⊗A x2 := Im(v) as the
corresponding direct summand of x1⊗ x2. We obtain a split coequalizer in K:

x1⊗ A⊗ x2

%1⊗1
//

1⊗%2

// x1⊗ x2
v
// // Im(v)= x1⊗A x2,

as in the traditional definition of ⊗A. When A is commutative, left and right
A-modules coincide and one induces an A-action on x1 ⊗A x2 from the usual
formula on x1 ⊗ x2. One verifies that this coincides with the tensor constructed
above.

Proposition 1.2 (Projection formula). Let A be a tt-ring in K. For all y ∈ K and
x ∈ A-ModK, we have a natural isomorphism UA(x ⊗A FA(y))∼=UA(x)⊗ y in K.

Proof. By construction of ⊗A, it suffices to prove the existence of such an iso-
morphism for x ∈ A-FreeK, which is natural in x in that category (and in y too,
but that is easy). So, let x = FA(z) for some z ∈ K. Then UA(x ⊗ FA(y)) =
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UA(FA(z)⊗A FA(y))=UA(FA(z⊗ y))= A⊗ (z⊗ y)∼= (A⊗ z)⊗ y =UA(x)⊗ y.
This looks trivial, but the point is that this isomorphism is natural with respect to
morphisms f̄ : x = FA(z)→ FA(z′)= x ′ in A-FreeK for f : z→ A⊗ z′ in K (not
just natural in z). This is now an easy verification. �

Remark 1.3. For two ring objects A and B, the ring object A× B is A⊕ B with
componentwise structure. The ring object A⊗ B has multiplication (µ1⊗µ2)(23) :
(A⊗ B)⊗2

→ A⊗ B and obvious unit. The opposite Aop is A with µop
= µ(12).

The enveloping ring Ae is A⊗ Aop. Left Ae-modules are just A, A-bimodules.
If A and B are separable, then so are A× B, A⊗ B, and Aop. Conversely, if

A× B is separable then so are A and B (restrict the section “σ” to each factor).

Remark 1.4. Let h : A→ B be a homomorphism of tt-rings in K (that is, h is
compatible with multiplications and units). We also say that B is an A-algebra or a
tt-ring over A. Then idempotent-complete the functor Fh : A-FreeK→ B-FreeK de-
fined on objects by Fh(FA(x))= FB(x) and on morphisms by Fh( f̄ )= (h⊗ 1) ◦ f .
Alternatively, equip B with a right A-module structure via h and define for every A-
module x ∈ A-ModK, its extension Fh(x)= B⊗A x equipped with the left B-module
structure on the B factor. Both define the same tt-functor Fh : A-ModK→ B-ModK

and the following diagram commutes up to isomorphism:

K
FA

xx

FB

&&
A-ModK

Fh ∼= B⊗A− // B-ModK.

Furthermore, if k : B→ C is another homomorphism then Fkh ∼= Fk ◦ Fh .

Remark 1.5. For A a tt-ring in K, there is a one-to-one correspondence between

(i) A-algebras in K, that is, homomorphism h : A→ B of tt-rings in K, and

(ii) tt-rings B in A-ModK.

The correspondence is the obvious one: To every tt-ring B = (B, µ̄, η̄) in A-ModK,
associate B := UA(B) and h := UA(η̄). The ring structure on B is given by
B⊗ B = UA(B)⊗UA(B)

v
� UA(B⊗A B)

µ̄
→ UA(B) = B and ηB : 1

ηA
→ A

h
→ B.

Conversely, if h : A→ B is a homomorphism, then one can use h to equip B := B
with an A-module structure and verify that µ : B⊗ B→ B respects the idempotent
v of (1.1), and hence defines µ̄ : B ⊗A B→ B. Then B is separable in K (with
section σ of µ) if and only if B is separable in A-ModK (with section vσ of µ̄).

We tacitly use this dictionary below. If we need to distinguish the A-algebra B
in K from the tt-ring B in A-ModK, we shall write UA(B) for the former.
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Under this correspondence, if L := A-ModK, there is an equivalence B-ModK
∼=

B-ModL such that the following diagram commutes up to isomorphism:

K
FA //

FB
��

L= A-ModK

FB��
B-ModK

' B-ModL.

On Kleisli categories, it maps FB(x) to FB(FA(x)) for every x ∈ K and fol-
lows the sequence of isomorphisms HomB(FB(x), FB(y))∼= HomK(x, B⊗ y)∼=
HomA(FA(x), B⊗y)∼=HomA(FA(x), B⊗A FA(y))∼=HomB(FB FA(x), FB FA(y))
on morphisms. Idempotent completion does the rest.

Remark 1.6. Let F : K → L be a tt-functor. Let A be a tt-ring in K and let
B := F(A) its image in L. Then B is also a tt-ring and there exists a tt-functor
F : A-ModK→ B-ModL:

(1.7)
K

F //

FA
��

L

FB
��

A-ModK

UA

OO

F // B-ModL,

UB

OO

such that F FA = FB F and UB F = FUA. Explicitly, for every A-module (x, %),
we have F(x, %)= (F(x), F(%)), where

B⊗ F(x)= F(A)⊗ F(x)∼= F(A⊗ x)
F(%)
−→ F(x).

On morphisms, F( f )= F( f ). The “Kleislian” description of F is equally easy.

2. Splitting theorems

We will iteratively use the following splitting result:

Theorem 2.1. Let f : A→ B and g : B → A be homomorphisms of tt-rings in
K such that g ◦ f = idA. Then there exists a tt-ring C and a ring isomorphism
h : B −→∼ A×C such that pr1 h = g. Consequently, C becomes an A-algebra, via
pr2 h f . Moreover, if C ′ is another A-algebra and h′ : B −→∼ A × C ′ is another
A-algebra isomorphism such that pr1 h = g, then there exists an isomorphism of
A-algebras ` : C −→∼ C ′ such that h′ = (1× `)h.

We start with a couple of additive lemmas.

Lemma 2.2. Let B be a ring object, B1 and B2 two B, B-bimodules and

h : B −→∼ B1⊕ B2

an isomorphism of B, B-bimodules. Then B1 and B2 admit unique structures of
ring objects such that h becomes a ring isomorphism B −→∼ B1× B2.
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Proof. Write the given isomorphisms

h =
(h1

h2

)
: B −→∼ B1⊕ B2 and h−1

=
(
k1 k2

)
: B1⊕ B2 −→

∼ B.

If h is to be a ring isomorphism, we must have for i = 1, 2 that the multiplication
µi : Bi⊗Bi→ Bi is given by µi = hiµ(ki⊗ki ) and the unit ηi :1→ Bi by ηi = hiη.
Hence we have uniqueness. Conversely, let us see that these formulas provide the
wanted ring structures. Let ρ : B ⊗ B2→ B2 be the left B-action on B2. By left
B-linearity of k2 : B2→ B, we have µ(1⊗ k2) = k2ρ : B ⊗ B2→ B. Note that
hh−1

=
(

1 0
0 1

)
implies hi k j = 0 when i 6= j . Therefore h1µ(1⊗ k2)= h1k2ρ = 0.

Similarly, B, B-linearity of k1 and k2 gives hiµ(1⊗ k j )= 0 and hiµ(k j ⊗ 1)= 0
when i 6= j . So the bottom square of the following diagram commutes, in which
the top one commutes by definition:

(B1⊕ B2)⊗ (B1⊕ B2)

∼=

��

µB1×B2 //
h−1
⊗h−1

'

,,

B1⊕ B2

(B1⊗ B1)⊕ (B1⊗ B2)⊕ (B2⊗ B1)⊕ (B2⊗ B2)

(
µ1 0 0 0
0 0 0 µ2

)
//

( k1⊗k1 k1⊗k2 k2⊗k1 k2⊗k2 )

��

B1⊕ B2

B⊗ B
µ // B.

h=

(
h1
h2

)
'

OO

Hence h : B−→∼ B1⊕B2 is an isomorphism of objects-equipped-with-multiplications.
Since B is associative and unital, B1 and B2 must have the same properties. �

Lemma 2.3. Let C and C ′ be ring objects and(1 0
s `

)
: 1×C −→∼ 1×C ′

a ring isomorphism. Then s = 0 and ` is a ring isomorphism.

Proof. Let us denote by (C, µ, η) and (C ′, µ′, η′) the structures. Clearly ` is an
isomorphism of objects. From the fact that

(
1 0
s `

)
preserves the structures it follows

that η′ = s+ `η and that(1 0 0 0
0 0 0 µ′

)((1 0
s `

)
⊗

(1 0
s `

))
=

(1 0
s `

)(1 0 0 0
0 0 0 µ

)
,

giving in particular µ′(s⊗ `)= 0 and µ′(`⊗ `)= `µ. Composing the former with
(1⊗ `−1η′) : 1⊗ 1→ 1⊗C , we get

0= µ′(s⊗ `)(1⊗ `−1η′)= µ′(s⊗ η′)= µ′(1C ′ ⊗ η
′)s = s

and therefore `η = η′. Hence ` preserves multiplication and unit. �
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Proof of Theorem 2.1. Via the morphism g : B → A, we can equip A with a
structure of B, B-bimodule, so that g becomes Be-linear. Since Be

= B ⊗ Bop

is separable, the category Be-ModK of B, B-bimodules is triangulated in such a
way that UBe : Be-ModK→ K is exact. Choose a distinguished triangle over g in
Be-ModK say C→ B

g
→ A

z
→6C . Forgetting the Be-action, since g is split by f

in K, we see that UBe(z)= 0. Since UBe is faithful, z is also zero in the triangulated
category Be-ModK, which in turn yields an isomorphism h : B −→∼ A ⊕ C of
B, B-bimodules such that pr1 h = g. By Lemma 2.2, A and C can be equipped
with ring structures so that h is a ring isomorphism. We are left to verify that this
new ring structure on A is indeed the original one. This follows from the fact that
g : B→ A is a split epimorphism which is a homomorphism from B to A with
both structures (the original one by hypothesis and the new one because h =

( g
∗

)
is

a homomorphism). Note that C is separable by Remark 1.3. Finally, for uniqueness
of C as A-algebra, with the notation of the statement, we obtain an isomorphism
k := h′ ◦h−1

: 1×C −→∼ 1×C ′ in A-ModK such that pr1 k = pr1 which means that
k has the form

(
1 0
s `

)
, and we conclude by Lemma 2.3. �

Theorem 2.4. Let A be a tt-ring in K. Then there exists a ring isomorphism
h : A⊗ A −→∼ A× A′ for some tt-ring A′ in such a way that pr1 h = µ. Moreover,
the A-algebra A′ is unique up to isomorphism with this property, where A⊗ A is
considered as an A-algebra on the left (via the homomorphism 1⊗η : A→ A⊗ A).

Proof. Apply Theorem 2.1 to the tt-ring B = A⊗ A with g = µ : A⊗ A→ A and
f = 1A⊗ η = FA(η) : A→ A⊗ A. �

Remark 2.5. From the isomorphism
( µ
∗

)
: A⊗ A −→∼ A⊕ A′, we observe that

A′ '6−1 cone(µ)' cone(1A⊗ η)' A⊗ cone(η) in K. Furthermore,

supp(A′)⊆ supp(A).

3. Splitting tower and degree

Definition 3.1. We define the splitting tower of a tt-ring A,

A[0]→ A[1]→ A[2]→ · · · → A[n]→ A[n+1]
→ · · · ,

as follows: We start with A[0]= 1, A[1]= A, and η : A[0]→ A[1]. Then for n≥ 1 we
define A[n+1]

= (A[n])′ in the notation of Theorem 2.4 applied to the tt-ring A[n] in
the tt-category A[n−1]-ModK (see Remark 1.5). Equivalently, A[n+1] is characterized
as an A[n]-algebra by the existence of an isomorphism of A[n]-algebras

(3.2) h : A[n]⊗A[n−1] A[n] −→∼ A[n]× A[n+1],

such that pr1 h = µ, where A[n]⊗A[n−1] A[n] is an A[n]-algebra via the left factor.
This tower {A[n]}n≥0 is well-defined up to isomorphism.
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Remark 3.3. By Remark 2.5, supp(A[n+1])⊆ supp(A[n]), and if A[n] = 0 for some
n then A[m]= 0 for all m ≥ n. Also, by construction, if we consider A[n] as a tt-ring
in A[n−1]-ModK, we have (A[n])[m] ∼= A[n+m−1] for all m ≥ 1.

Definition 3.4. We say that A has finite degree d if A[d] 6= 0 and A[d+1]
= 0. In

that case, we write deg(A)= d or degK(A)= d if we need to stress the category.
If A[n] 6= 0 for all n ≥ 0, we say that A has infinite degree.

Example 3.5. For A = 1× 1, we have A⊗ A ' A× A. Hence A[2] = A = A[1].
If one was to compute A[2]⊗ A[2] one would get A[2]× A again and misreading
Definition 3.4 could lead to the false impression that A[3] is A again and that
all A[n] are equal. This is not the way to compute A[3]! One needs to compute
A[2] ⊗A[1] A[2] = A⊗A A = A = A[2] × 0 and therefore A[3] = 0. So, the tt-ring
1×1 has degree 2. In (3.2), it is important to perform the tensor over A[n−1].

An immediate gain of having a numerical invariant like the degree is the possi-
bility of making proofs by induction. This is applied in [Balmer 2013] using the
splitting theorem (Theorem 2.4), in the following form:

Theorem 3.6. Let A be a tt-ring of finite degree d in a tt-category K. Then we have
a ring isomorphism FA(A)' 1A× A[2] and deg(A[2])= d − 1 in A-ModK.

Proof. Since A[2] = A′, this is simply Theorem 2.4 with A-algebras replaced by
tt-rings in A-ModK (see Remark 1.5 if necessary), together with the observation that
(A[2])[n] = A[n+1] for all n ≥ 1, which gives degA-ModK

(A[2])= degK(A)− 1. �

Before showing in Section 4 that many tt-rings have finite degree, let us build
our understanding of this deg(A) ∈ N∪ {∞}, starting with functorial properties.

Theorem 3.7. Let A be a tt-ring in K.

(a) Let F :K→L be a tt-functor. Then for every n≥0, we have F(A)[n]' F(A[n])
as tt-rings. In particular, deg(F(A))≤ deg(A).

(b) Let F : K→ L be a tt-functor. Suppose that F is “weakly conservative on
supp(A)”, that is, for x ∈ Ksupp(A) if F(x) = 0 then x⊗m

= 0 for m ≥ 0; for
instance, if F is just conservative. Then deg(F(A))= deg(A).

(c) Suppose that B ∈K is a tt-ring such that supp(B)⊇ supp(A); for instance, if
supp(B)= Spc(K). Then deg(A) is equal to the degree of FB(A) in B-ModK.

(d) Suppose K is local and that B ∈K is a nonzero tt-ring. Then the degree of A
in K is equal to the degree of FB(A) in B-ModK.

Proof. To prove (a) by induction on n, simply apply F to (3.2), which characterizes
the splitting tower A[∗]. So, if deg(A)<∞ then F(A)[deg(A)+1]

' F(A[deg(A)+1])=0
and deg(F(A)) ≤ deg(A). For (b), recall that A[n] ∈ Ksupp(A) for every n ≥ 1
(Remark 3.3). As deg(F(A)) =: d <∞ implies F(A[d+1]) ' F(A)[d+1]

= 0 we
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get by weak-conservativity of F that A[d+1] is ⊗-nilpotent, and hence zero (every
ring object is a direct summand of its ⊗-powers via the unit). This A[d+1]

= 0
means deg(A) ≤ d = deg(F(A)), which finishes (b). Then (c) follows since
supp(B) ⊇ supp(A) implies that FB : K→ B-ModK is weakly conservative on
Ksupp(A). Indeed, if supp(x)⊆ supp(A) and FB(x)= 0 then B⊗ x =UB FB(x)= 0
and ∅ = supp(B ⊗ x) = supp(B) ∩ supp(x) = supp(x), which implies that x is
⊗-nilpotent. For (d), recall that a tt-category is local if x ⊗ y = 0 implies that x or
y is ⊗-nilpotent. Hence for the nonzero tt-ring B, the functor FB : K→ B-ModK

is weakly conservative on the whole of K and we can apply (b). �

Let us now describe the local nature of the degree. Recall that for every prime
P ∈ Spc(K), the local category KP = (K/P)

\ at P is the idempotent completion of
the Verdier quotient K/P, hence comes with a tt-functor q

P
: K � K/P ↪→ KP.

Theorem 3.8. Let A be a tt-ring in K. Suppose that q
P
(A) has finite degree in the

local tt-category KP for every point P ∈ Spc(K). Then A has finite degree and

deg(A)= max
P∈Spc(K)

deg(q
P
(A))= max

P∈supp(A)
deg(q

P
(A)).

Proof. There exists, for every P ∈ Spc(K), an integer nP ≥ 1 such that q
P
(A[nP])=

(q
P
(A))[nP] = 0. Hence P belongs to the open U(A[nP]) := Spc(K)− supp(A[nP]).

Putting all those open subsets together, we cover Spc(K). But the spectrum is always
quasicompact and U(A[n])⊆U(A[n+1]), hence there exists n≥0 such that U(A[n])=
Spc(K). This means A[n] = 0, that is, d := deg(A) <∞. By Theorem 3.7(a) we
have d = deg(A) ≥ maxP∈Spc(K) deg(q

P
(A)) ≥ maxP∈supp(A) deg(q

P
(A)). Since

A[d] 6= 0 there exists P ∈ supp(A[d]) ⊆ supp(A) with 0 6= q
P
(A[d]) ' (q

P
(A))[d]

and hence deg(q
P
(A))≥ d = deg(A), wrapping up all the above inequalities into

equalities. �

We now discuss the link between the degree and the trivial tt-ring 1.

Theorem 3.9. Let A be a tt-ring in K. Suppose K 6= 0.

(a) For every n ≥ 1, we have deg(1×n)= n.

(b) For every n ≥ 1 we have FA[n](A)' 1×n
× A[n+1] as tt-rings in A[n]-ModK.

(c) If deg(A) <∞ then B := A[deg(A)] is nonzero and we have in B-ModK

(3.10) FB(A)' 1× deg(A).

(d) If a tt-functor F :K→L is weakly conservative on Ksupp(A) (see Theorem 3.7(b)
for this notion — for example, if F is conservative), and if F(A)' 1×d in L,
then deg(A)= d.

(e) Let B be a tt-ring such that FB(A) ' 1×d as tt-rings in B-ModK. Suppose
either that supp(B)⊇ supp(A), or that K is local and B 6= 0. Then d = deg(A).
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We need another additive lemma, whose naive proof (with a permutation) fails.

Lemma 3.11. Let A = 1×n . Then there exists an isomorphism h : FA(A) = A⊗
A −→∼ A× A×(n−1) of A-algebras such that pr1 h = µ.

Proof. To keep track of the various copies of 1, write A =
⊕n

i=1 1i and A×(n−1)
=⊕n−1

`=1
⊕n

i=1 1i` where 1i = 1i` = 1 for all i and `. Then A⊗ A =
⊕

i, j 1i ⊗ 1 j .
Define h by mapping the summand 1i⊗1i =1 identically to 1i ↪→ A and 1i⊗1 j =1
identically to 1i j ↪→ A×(n−1) when i 6= j and j ≤ n− 1, but mapping 1i ⊗ 1n = 1
diagonally to

⊕n−1
`=1, 6̀=i 1i` ↪→ A×(n−1) for all i < n. Verifications are now an

exercise. �

Proof of Theorem 3.9. We prove (a) by induction on n. The result is clear for n = 1.
If A= 1×n for n ≥ 2 then Lemma 3.11 gives A[2]' A×(n−1)

' 1×(n−1)
A in A-ModK.

By induction hypothesis applied to the tt-category A-ModK we get deg(A[2])=n−1
and hence the result by the definition of the degree. For (b), we need to prove that
there are A[n]-algebra isomorphisms A[n]⊗ A ' A[n]× · · · × A[n]× A[n+1] (with
n factors A[n]). This is an easy induction on n, applying A[n+1]

⊗A[n] − and using
(3.2) at each stage. Equation (3.10) follows since A[deg(A)+1]

= 0. Parts (d) and (e)
follow from (a) and Theorem 3.7(b)–(d). �

Corollary 3.12. Suppose that K is local and that A, B ∈K are two tt-rings of finite
degree. Then A×B and A⊗B have finite degree with deg(A×B)=deg(A)+deg(B)
and deg(A⊗ B)= deg(A) · deg(B).

Proof. By Theorem 3.9(c), there exists two tt-rings A 6= 0 and B 6= 0 such that
FA(A)' 1× deg(A) and FB(B)' 1× deg(B). Let then C = A⊗ B. Extending scalars
from A and from B to C gives FC(A× B)' 1×(deg(A)+deg(B)) and FC(A⊗ B)'
1×(deg(A)·deg(B)). Finally, C 6= 0 since K is local; now apply Theorem 3.9(e). �

Remark 3.13. It will be clear to the interested reader that several arguments, mostly
the early ones of Section 2, only depend on the property that split epimorphisms
in K admit a kernel (a property which holds when K is triangulated, regardless
of idempotent-completeness). The reader interested in using the degree in that
generality will easily adapt our definition. However, all results which involve
Spc(K), the support supp(A), or the local categories K/P, as well as the geometric
applications in [Balmer 2013], only make sense when K is triangulated. It is
nonetheless interesting to be able to speak of the degree in the generality of, say,
the category of abelian groups, for instance.

4. Examples

We start by quickly discussing tt-rings of minimal degree (beyond deg(0)= 0).
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Proposition 4.1. Let A be a tt-ring with deg(A) = 1, that is, such that µ : A⊗
A→ A is an isomorphism. Then A⊗− : K→ K is a (very special) Bousfield
localization with FA : K→ A-ModK as (Verdier) localization. Also, Spc(A-ModK)

is homeomorphic to the open and closed subset supp(A) of Spc(K). If K is rigid,
this further implies a decomposition K= K1×K2 under which A ∼= (1, 0).

Proof. Since µ is an isomorphism, so are its two right inverses η⊗ 1 and 1⊗ η :
A→ A⊗2, and these inverses coincide. So, L := A⊗− is a Bousfield localization
(ηL = Lη is an isomorphism). Let C→ 1

η
→ A→6(C) be an exact triangle on η.

Since A⊗η is an isomorphism, we have A⊗C = 0. Therefore Spc(K)= supp(A)t
supp(C), hence supp(A) is open and closed. Since every object x ∈ K fits in an
exact triangle C⊗x→ x→ A⊗x→6(C⊗x), it is standard to show that the kernel
of A⊗− is exactly the thick ⊗-ideal J := 〈C〉 generated by C and that FA induces
an equivalence K/J −→∼ A-ModK. Hence Spc(FA) induces a homeomorphism
Spc(A-ModK)∼={P∈Spc(K) |J⊆P}= {P |C ∈P}=U(C)= supp(A). When K

is rigid, supp(A)∩supp(C)=∅ forces, furthermore, HomK(A, 6C)= 0, in which
case the above triangle splits: 1' A⊕C . This gives the desired decomposition,
where K1 = A⊗K and K2 = C ⊗K. �

We want to show that the degree is finite in examples. Our main tool is:

Theorem 4.2. Suppose that K admits a conservative tt-functor F : K→ L into a
tt-category L such that every object of L is isomorphic to a sum of suspensions
of 1L.1 Then every tt-ring in K has finite degree. More precisely, if F(A) '⊕`

i=k 6
i 1ri for rk, . . . , r` ∈ N then deg(A)=

∑`
i=k ri .

Proof. By Theorem 3.7(b), it suffices to prove that every tt-ring A in L has finite
degree d =

∑`
i=k ri , where A '

⊕`
i=k 6

i 1ri as objects in L. First, let B = A[d+1].
Then, by Theorem 3.9(b), we have FB(A) ' 1d+1

⊕ x in B-ModL. On the other
hand, FB(A) '

⊕`
i=k 6

i 1ri . Therefore there is a split monomorphism 1d+1 �⊕`
i=k 6

i 1ri in B-ModL which can be described by a split injective d × (d + 1)
matrix with coefficients in the graded-commutative ring S• = End•B(1B). This is
impossible (by mapping to a graded residue field of S•) unless S•= 0, that is, B = 0
meaning A[d+1]

= 0. Hence deg(A)≤ d . Now, replace B by A[deg(A)] and reason as
above. We now have isomorphisms FB(A)' 1deg(A) and FB(A)'

⊕`
i=k 6

i 1ri in
B-ModL with B 6= 0. The isomorphism 1deg(A)

'
⊕`

i=k 6
i 1ri forces (periodicities

6i 1' 1 in B-ModK whenever ri 6= 0 and) deg(A)=
∑`

i=k ri . �

Corollary 4.3. Let X be a quasicompact and quasiseparated scheme (for example,
an affine or a noetherian scheme). Then every tt-ring in Dperf(X) has finite degree.

1Such an L is sometimes called a “field” but the author finds this definition too restrictive. Also
note that the existence of such a functor F forces K to be local.
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Proof. By Theorem 3.8, we can assume that X = Spec(R) with (R,m) local. Then,
the functor Dperf(R)→ Dperf(k) to the residue field k = R/m is conservative. �

Example 4.4. Let A be a separable commutative R-algebra which is projective as
an R-module (and finitely generated by [DeMeyer and Ingraham 1971, Proposi-
tion II.2.1]). Since A is R-flat, we can view it as the “same” tt-ring in Dperf(R).
Then its degree can be computed in every residue field, hence deg(A) coincides
with the rank of A as R-module.

Corollary 4.5. Let H be a finite-dimensional cocommutative Hopf algebra over a
field k. Then every tt-ring in the bounded derived category Db(H-mod) of finitely
generated H-modules (with ⊗=⊗k) has finite degree.

Proof. Apply Theorem 4.2 to the fiber functor Db(H-mod)→ Db(k). �

Example 4.6. For any finite group G, all tt-rings in Db(kG-mod) have finite degree.
For every subgroup H ≤ G, the tt-ring A = k(G/H) has finite degree deg(A) =
dimk(A)= [G : H ] in Db(kG-mod). Hence A has also finite degree in

stab(kG)∼=
Db(kG-mod)

Dperf(kG)

by Theorem 3.7(a). However, if H < G is a strongly p-embedded subgroup then
FA ∼= ResG

H is an equivalence stab(kG) −→∼ stab(kH) and ηA : 1 −→∼ A is an
isomorphism, hence deg(A)= 1 in stab(kG). (Example: p = 2 and C2 < S3.)

Example 4.7. Let H1 and H2 be two nonconjugate cyclic subgroups of order p
in G (for instance, two nonconjugate symmetries in D8 for p = 2) and consider
Ai = k(G/Hi ) in K = stab(kG) as above. Then, by the Mackey formula, A1 ⊗

A2 = 0. Consequently they have disjoint support and therefore both formulas of
Corollary 3.12 fail in this case, showing the importance of our assumption that the
category be local. Yet one can still deduce global formulas via Theorem 3.8.

Corollary 4.8. In the stable homotopy category K = SHfin of finite (topological)
spectra, every tt-ring has finite degree.

Proof. First note that the result is true in the localizations SHfin
Q
∼=Db(Q-mod) and

SHfin
p , at zero and at each prime p. For the latter, it suffices to apply Theorem 4.2 to

homology with coefficients in Z/p, which is conservative on SHfin
p and takes values

in Db(Z/p-mod). Now, if A is a tt-ring in SHfin, then there exists m ≥ 1 such that
A[m] goes to zero in SHfin

Q (since its degree is finite there). Replacing A by A[m],
we can assume that A itself maps to zero in SHfin

Q , that is, A is torsion. But then A
is nonzero in SHfin

p for only finitely many primes p. Therefore we can find n big
enough that A[n] = 0 everywhere. Hence A[n] = 0. �
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