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If E is an elliptic curve defined over Q and p is a prime of good reduction for
E , let E(Fp) denote the set of points on the reduced curve modulo p. Define an
arithmetic function ME (N ) by setting ME (N ) := #{p : #E(Fp)= N }. Recently,
David and the third author studied the average of ME (N ) over certain “boxes” of
elliptic curves E . Assuming a plausible conjecture about primes in short intervals,
they showed the following: for each N , the average of ME (N ) over a box with
sufficiently large sides is∼ K ∗(N )/log N for an explicitly given function K ∗(N ).

The function K ∗(N ) is somewhat peculiar: defined as a product over the
primes dividing N , it resembles a multiplicative function at first glance. But
further inspection reveals that it is not, and so one cannot directly investigate its
properties by the usual tools of multiplicative number theory. In this paper, we
overcome these difficulties and prove a number of statistical results about K ∗(N ).
For example, we determine the mean value of K ∗(N ) over all N , odd N and
prime N , and we show that K ∗(N ) has a distribution function. We also explain
how our results relate to existing theorems and conjectures on the multiplicative
properties of #E(Fp), such as Koblitz’s conjecture.

1. Introduction

Let E be an elliptic curve defined over the field Q of rational numbers. For the sake
of concreteness, we assume that the affine points of E are given by a Weierstrass
equation of the form

E : Y 2
= X3

+ aX + b, (1)

where a and b are integers satisfying the condition −16(4a3
+ 27b2) 6= 0. For any

prime p where E has good reduction, we let E(Fp) denote the group of Fp-points
on the reduced curve. Kowalski [2006] introduced the arithmetic function ME(N ),
defined by

ME(N )= #{p prime : #E(Fp)= N }.
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The Hasse bound [1936a; 1936b; 1936c] implies that if p is counted by ME(N ),
then p lies between (

√
N − 1)2 and (

√
N + 1)2. Thus, ME(N ) is a well-defined

(finite) integer.
The problem of obtaining good estimates for ME(N ) appears to be very difficult.

The condition imposed by Hasse’s bound together with an upper bound sieve gives
the weak upper bound ME(N )�

√
N/log(N+1) for any N ≥ 1. Except in the case

that E has complex multiplication, nothing stronger is known. As we will explain
later, the average value of ME(N ) as N varies over various sets of integers is related
to some important theorems and conjectures in number theory. David and the third
author established an “average value theorem” for ME(N ) as E varies over a family
of elliptic curves [David and Smith 2013]. That work was inspired by pioneering
results of Fouvry and Murty [1996], who proved an average value theorem for
counts of supersingular primes. Unfortunately, because of the restriction that all
primes counted by ME(N ) lie between (

√
N − 1)2 and (

√
N + 1)2, the result of

[David and Smith 2013] is necessarily conditional upon a conjecture about the
distribution of primes in short intervals (see Conjecture 1.5 below).

The main result of [David and Smith 2013] introduced a strange arithmetic
function, which was called K (N ) because it is “almost a constant”. In order to
define K (N ), we recall the common notation νp(n) for the exact power of p that
divides n, so that n =

∏
p pνp(n). We also recall the Kronecker symbol

(a
b

)
, an

extension of the Jacobi symbol that is defined for all integers a and b 6= 0 (see, for
instance, [Cohen 1993, Definition 1.4.8, p. 28]).

Definition 1.1. For any positive integer N , we define

K (N )=
∏
p -N

(
1−

(N−1
p

)2
p+ 1

(p− 1)2(p+ 1)

)∏
p | N

(
1−

1
pνp(N )(p− 1)

)
.

We also define K ∗(N ) = K (N )N/φ(N ), where φ(N ) is the usual Euler totient
function.

As we will see later, it is actually the function K ∗(N ) that has an interesting
connection to the function ME(N ). The purpose of the present work is a statistical
study of the function K ∗(N ). Our computations will illustrate a technique for
dealing with arithmetic functions that have a form similar to, but are not exactly,
multiplicative functions. Our first main result is the computation of the average
value of K ∗, first over all N and then over odd values of N .

Theorem 1.2. For x ≥ 2, we have∑
N≤x

K ∗(N )= x + O
(

x
log x

)
and

∑
N≤x
Nodd

K ∗(N )=
x
3
+ O

(
x

log x

)
.
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Thus K ∗ has average value 1 on all N and average value 2/3 on odd N .
Our second main result is the computation of the average value of K ∗ on primes.

We employ the usual notation π(x)= #{p ≤ x : p is prime}.

Theorem 1.3. Fix A > 1. For x ≥ 2,∑
p≤x

K ∗(p)= 2
3C2 Jπ(x)+ OA

(
x

(log x)A

)
. (2)

Here the constants C2 and J are defined by

C2 =
∏
p>2

(
1−

1
(p− 1)2

)
, (3)

and

J =
∏
p>2

(
1+

1
(p− 2)(p− 1)(p+ 1)

)
. (4)

Furthermore, the asymptotic formula (2) also holds for
∑
p≤x

K (p).

Remark. We have written C2 and J as two separate constants because C2 arises
naturally by itself in the analysis of the function K (N ); see (5) below.

The technique we use to establish Theorems 1.2 and 1.3, which is dictated by
the unusual Definition 1.1 for K (N ), is of interest in its own right: the function
K looks much like a multiplicative function but actually is not. One can rewrite
Definition 1.1 in the following form:

K (N )= C2 F(N − 1)G(N ) (5)

where C2 is the twin primes constant defined in (3),

F(n)=
∏
p | n
p>2

(
1−

1
(p− 1)2

)−1∏
p | n

(
1−

1
(p− 1)2(p+ 1)

)
, (6)

and

G(n)=
∏
p | n
p>2

(
1−

1
(p− 1)2

)−1 ∏
pα‖n

(
1−

1
pα(p− 1)

)
. (7)

So to understand the average value of K (N ), we are forced to deal with the
correlation between the multiplicative function F , evaluated at N − 1, and the
multiplicative function G evaluated at the neighboring integer N . It is perhaps
somewhat surprising that the average values of C2 F(N − 1)G(N ) described in
Theorem 1.2 come out to simple rational numbers.
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That we can successfully compute average values of the function K ∗, even
though it is not truly multiplicative, makes it natural to wonder whether we can
analyze K ∗ in other ways; this is indeed the case. Our next result is an analogue for
K ∗(N ) of a classical result of Schoenberg [1928] for the function n/φ(n). Recall
that a distribution function D(u) is a nondecreasing, right-continuous function
D : R→ [0, 1] for which limu→−∞ D(u)= 0 and limu→∞ D(u)= 1.

Theorem 1.4. The function K ∗ possesses a distribution function relative to the set
of all natural numbers N. In other words, there exists a distribution function D(u)
with the property that at each of its points of continuity,

D(u)= lim
x→∞

1
x

#{N ≤ x : K ∗(N )≤ u}.

As a consequence of Theorems 1.2 and 1.3, we are able to show that the main
result of [David and Smith 2013] is consistent with various unconditional results.
As mentioned above, the restriction imposed by the Hasse bound creates a short-
interval problem in any study of ME(N ) when N is held fixed. Indeed, the interval
is so short that not even the Riemann hypothesis is any help. This problem is
circumvented in [David and Smith 2013] by assuming a conjecture in the spirit of
the classical Barban–Davenport–Halberstam theorem.

Conjecture 1.5. Recall the notation

θ(x; q, a)=
∑
p≤x

p≡a (mod q)

log p.

Let 0< η ≤ 1 and β > 0 be real numbers. Suppose that X , Y , and Q are positive
real numbers satisfying Xη

≤ Y ≤ X and Y/(log X)β ≤ Q ≤ Y . Then∑
q≤Q

∑
1≤a≤q
(a,q)=1

∣∣∣∣θ(X + Y ; q, a)− θ(X; q, a)−
Y
φ(q)

∣∣∣∣2�η,β Y Q log X.

Remark. Languasco, Perelli, and Zaccagnini [Languasco et al. 2010] have es-
tablished Conjecture 1.5 in the range η > 7

12 ; they also showed, assuming the
generalized Riemann hypothesis, that any η > 1

2 is admissible.

Given integers a and b satisfying −16(4a3
+ 27b2) 6= 0, let Ea,b denote the

elliptic curve given by the Weierstrass equation (1). Then, given positive parameters
A and B, let E(A, B) denote the set defined by

E(A, B)= {Ea,b : |a| ≤ A, |b| ≤ B,−16(4a3
+ 27b2) 6= 0}.

David and Smith [2013; 2014] established the following average value theorem (in
fact a stronger version of it) for ME(N ) taken over the family E(A, B).
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Proposition 1.6. Assume the Barban–Davenport–Halberstam estimate (Conjecture
1.5) holds for some η < 1

2 . Let ε be a positive real number, and let A > N 1/2+ε and
B > N 1/2+ε be real numbers satisfying AB > N 3/2+ε . Then, for any positive real
number R,

1
#E(A, B)

∑
E∈E(A,B)

ME(N )=
K ∗(N )
log N

+ Oη,ε,R

(
1

(log N )R

)
.

Remarks. (1) It is not necessary to assume that Conjecture 1.5 holds for a fixed
η < 1/2. It is enough to assume that it holds for Y =

√
X/(log X)β+2.

(2) The originally published formula in [David and Smith 2013] contained an
error in the definition of K ∗(N ), which was corrected in [David and Smith
2014] to the form given in Definition 1.1. See the end of Section 2 for further
discussion of the original version of K ∗(N ).

(3) The proof of Proposition 1.6 given in [David and Smith 2013] is restricted to
odd values of N , but further work by Chandee, Koukoulopoulos, David, and
Smith [Chandee et al. 2014] establishes the proposition for even values of N
as well.

We note, as in [Kowalski 2006], that computing the average value of ME(N )
over the integers N ≤ x is easily seen to be equivalent to the prime number theorem.
In particular,∑

N≤x

ME(N )=
∑

p≤(
√

x+1)2

#{N ≤ x : #E(Fp)= N } = π(x)+ O(
√

x). (8)

Similarly, the average value of ME(N ) taken over the integers N ≤ x that satisfy a
congruence condition is equivalent to an appropriate application of the Chebotarev
density theorem. For example, if the 2-division field of E is an S3-extension of Q,
then the Chebotarev density theorem implies that∑

N≤x
N odd

ME(N )∼
1
3

x
log x

.

(The calculation of the constant 1
3 reduces to the fact that two-thirds of the elements

of GL2(Z/2Z), which is the automorphism group of E[2], have even trace.) If E
is given by the Weierstrass equation (1), the 2-division field is easily seen to be
the splitting field of the polynomial X3

+ aX + b. Since almost all cubics (when
ordered by height) have S3 as their Galois groups, it seems reasonable to conjecture
that

1
#E(A, B)

∑
N≤x
N odd

∑
E∈E(A,B)

ME(N )=
x

3 log x
+ O

(
x

(log x)2

)
, (9)
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provided that A and B are growing fast enough with respect to x . A precise version
of this conjecture was established by Banks and Shparlinski [2009, Theorem 19].
(In fact, their theorem shows that an analogous estimate holds with the condition
“N odd” replaced by “m -N”, for any given integer m.) The asymptotic result
(9), together with the result of Theorem 1.2 for odd N , shows that if we average
the two sides of the equation in Proposition 1.6, we obtain consistent results
(unconditionally). Similarly, the result of Theorem 1.2 for all N allows us to infer
the asymptotic formula

1
#E(A, B)

∑
N≤x

∑
E∈E(A,B)

ME(N )=
x

log x
+ O

(
x

(log x)2

)
,

which is consistent with (8). We can therefore, if we wish, view Theorem 1.2 as
additional evidence for the conclusion of Proposition 1.6.

A similar problem arises if we consider only primes p. Computing the average
value of ME(p) over the primes p ≤ x is easily seen to be equivalent to the famous
Koblitz conjecture [1988]:

Conjecture 1.7 (Koblitz). Given an elliptic curve E defined over the rational field
Q, there exists a constant C(E) with the property that as x→∞,∑

p≤x
p prime

ME(p)∼ C(E)
x

(log x)2
.

The constant C(E) appearing in Koblitz’s conjecture may be zero, in which case
the asymptotic is interpreted to mean that there are only finitely many primes p such
that ME(p) > 0. An obvious obstruction to there being infinitely many primes with
ME(p) > 0 is for E to be isogenous to a curve possessing nontrivial rational torsion.
It was once thought that this was the only case when C(E)= 0, but this turned out
to be false; see [Zywina 2011, Section 1.1] for an explicit counterexample due to
Nathan Jones.

The main theorem of [Balog et al. 2011] may be reinterpreted to say that the
asymptotic formula

1
#E(A, B)

∑
p≤x

p prime

∑
E∈E(A,B)

ME(p)= 2
3C2 J

∫ x

2

dt
(log t)2

+ OA

(
x

(log x)A

)

=
2
3C2 J

x
(log x)2

+ O
(

x
(log x)3

)
(10)

holds unconditionally for A and B growing fast enough with respect to x . Jones
[2009] has averaged the explicit formula for C(E) over the family E(A, B) and
shown that the result is consistent with the above formula. We view this as good
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evidence for the Koblitz conjecture. Equation (10), together with our Theorem 1.3,
shows that we obtain consistent results (unconditionally) when we average the
two sides of the equation in Proposition 1.6 over the primes N ≤ x . Thus all of
the conjectures and conditional theorems mentioned above reinforce one another’s
validity.

We note that the asymptotic formulas (9) and (10), in which we average over
odd integers N or primes p up to x , both hold for a much wider range of A and B
than is suggested by Proposition 1.6. In particular, Banks and Shparlinski [2009]
developed a character-sum argument based on a large sieve inequality to show that
one may take A, B > xε and AB > x1+ε in elliptic-curve averaging problems of
this sort, when the average number of elliptic curve isomorphism classes modulo
p satisfying the desired property is somewhat large. Baier [2009] was able to
adapt this technique to make similar improvements to the required length of the
average in the (fixed trace) Lang–Trotter problem, where the average number of
classes modulo p is significantly smaller. Given Baier’s result, it seems possible
that Proposition 1.6, in which the odd integer N is fixed, could itself be shown to
hold provided that A, B > N ε (note that such an improvement would still seem to
require that AB > N 3/2+ε rather than the weaker condition AB > N 1+ε). As we
are primarily concerned with the multiplicative function K ∗ herein, however, we
have not pursued this line of thinking.

The remainder of the article is organized as follows. We begin by establishing
Theorem 1.2 in Section 2. Briefly, we approximate the function K ∗(N ) by a similar
function whose values depend only upon the small primes dividing N and N − 1;
we then calculate the average value of this truncated function by partitioning the
numbers being averaged over into “configurations” based on local data about N
and N − 1 at these small primes. We prove the related Theorem 1.3 in Section 3;
here the calculation of the main term is simpler since the argument of K ∗ is always
a prime, while the estimation of the error term is more complicated due to the need
to invoke results on the distribution of primes in arithmetic progressions. Finally,
we establish Theorem 1.4 in Section 4 by studying the moments of K ∗.

Notation. As above, we employ the Landau–Bachmann o and O notation, as
well as the associated Vinogradov symbols�,� with their usual meanings; any
dependence of implied constants on other parameters is denoted with subscripts.
We reserve the letters ` and p for prime variables. For each natural number n, we let
P(n) denote the largest prime factor of n, with the convention that P(1)= 1. The
natural number n is said to be y-friable (sometimes called y-smooth) if P(n)≤ y.
We write 9(x, y) for the number of y-friable integers not exceeding x . By a
partition of a set S, we mean any collection of disjoint sets whose union is S; we
do not require that all of the sets in the collection be nonempty.
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2. The average value of K∗

For notational convenience, set R(N ) := N/φ(N ), so that K ∗(N )= K (N )R(N ).
By definition, K (N ) is a product over primes, while R(N ) =

∏
`| N (1− 1/`)−1

can also be viewed as such a product. Moreover, it is the small primes that have
the largest influence on the magnitude of these products. This suggests it might be
useful to study the truncated functions Kz and Rz defined by

Kz(N ) :=
∏
p -N
p≤z

(
1−

(N−1
p

)2
p+ 1

(p− 1)2(p+ 1)

)∏
p | N
p≤z

(
1−

1
pνp(N )(p− 1)

)

and
Rz(N ) :=

∏
p | N
p≤z

(1− 1/p)−1.

We give the proof of the first half of Theorem 1.2, concerning the average
of K (N )R(N ) over all N , in complete detail. The proof of the second claim,
concerning the average over odd N , can be proved in the same way; the necessary
changes to the argument are indicated briefly at the end of this section.

The first half of Theorem 1.2 will be deduced from a corresponding estimate for
the mean value of Kz(N )Rz(N ):

Proposition 2.1. Let x ≥ 3, and set z := 1
10 log x. We have∑

N≤x

Kz(N )Rz(N )= x + O(x3/4).

We will establish this proposition at the end of this section (it follows upon
combining Lemmas 2.7 and 2.8). At this point, we show how Theorem 1.2 can be
deduced from the proposition.

Proof of Theorem 1.2, assuming Proposition 2.1. It suffices to show that with
z = 1

10 log x , ∑
N≤x

|Kz(N )Rz(N )− K (N )R(N )| � x/z. (11)

Now 0≤ K (N )≤ Kz(N )≤ 1 and 0≤ Rz(N )≤ R(N ), so that

|Kz(N )Rz(N )−K (N )R(N )| ≤ |Kz(N )||Rz(N )−R(N )|+|Kz(N )−K (N )|R(N )

≤ (R(N )−Rz(N ))+(Kz(N )−K (N ))R(N ).

Thus, it is enough to show that the sums of R(N )−Rz(N ) and (Kz(N )−K(N ))R(N )
up to x are also� x/z.
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Write R(N ) =
∑

d | n g(d) for an auxiliary function g. By a straightforward
calculation with the Möbius inversion formula, we see that g vanishes except at
squarefree integers d , for which g(d)= 1/φ(d). Hence, for all real t > 0,∑

N≤t

R(N )=
∑
N≤t

∑
d | N

g(d)=
∑
d≤t

1
φ(d)

∑
N≤t
d | N

1≤
∑
d≤t

t
dφ(d)

≤ t
∞∑

d=1

1
dφ(d)

= t
∏

p

(
1+

1
p(p− 1)

+
1

p3(p− 1)
+ · · ·

)
� t, (12)

so that R(N ) is bounded on average. Now writing Rz(N ) =
∑

d | n gz(d) for an
auxiliary function gz(d), one finds that gz vanishes except on squarefree z-friable
integers d , where again gz(d)= 1/φ(d). In particular, g(d)− gz(d) is nonnegative
for all d, and g(d)− gz(d)= 0 when d ≤ z. We deduce that∑

N≤x

(R(N )− Rz(N ))=
∑
N≤x

∑
d | N

(g(d)− gz(d))≤
∑
N≤x

∑
d | N
d>z

1
φ(d)

=

∑
z<d≤x

∑
N≤x
d | N

1
φ(d)

≤

∑
d>z

x
dφ(d)

.

Partitioning this last sum into dyadic intervals, we have∑
N≤x

(R(N )− Rz(N ))≤
∞∑

k=1

∑
2k−1z<d≤2k z

x
dφ(d)

= x
∞∑

k=1

∑
2k−1z<d≤2k z

R(d)
d2

≤ x
∞∑

k=1

1
(2k−1z)2

∑
d≤2k z

R(d)� x
∞∑

k=1

1
(2k−1z)2

2kz

�
x
z

∞∑
k=1

1
2k �

x
z
,

where we used the estimate (12) in the second-to-last inequality. This proves the
desired upper bound for the partial sums of R(N )− Rz(N ).

The partial sums of (Kz(N )−K (N ))R(N ) are easier. Since each factor appearing
in the products defining Kz and K has the form 1 − O(1/`2), it follows that
K (N )/Kz(N ) ≥ 1 − O

(∑
`>z 1/`2

)
≥ 1 − O(1/z). Thus, Kz(N ) − K (N ) =

Kz(N )(1− K (N )/Kz(N ))≤ 1− K (N )/Kz(N )� 1/z. It follows that∑
N≤x

(Kz(N )− K (N ))R(N )�
1
z

∑
N≤x

R(N )�
x
z
,
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using the estimate (12) once more in the last step. This completes the proof of
Theorem 1.2, assuming Proposition 2.1. �

In the remainder of this section, we concentrate on proving Proposition 2.1. Our
strategy, already alluded to in the introduction, is to partition the integers N ≤ x
according to local data at small primes. We choose the partition so that the values
Kz(N ) and Rz(N ) are constant along each set belonging to the partition (which we
call a configuration). For the remainder of this section, we continue to assume that
x ≥ 3 and that z = 1

10 log x .

Definition 2.2. We define the configuration space S as the set of all 4-tuples of
the form

(A,B,C, {e`}`∈B),

where the sets A,B,C partition the set of primes up to z and the e` are positive
integers. (Although S depends upon z and hence x , we will not include this
dependence in the notation.)

To each N ≤ x , we can associate a unique configuration in the following manner.

Definition 2.3. Given N ≤ x , define three subsets of the primes in [2, z] by setting
A := {` ≤ z : `-N (N − 1)}, B := {` ≤ z : `| N }, and C := {` ≤ z : `| N − 1}.
For each ` ∈ B, set e` := ν`(N ). Then σ = (A,B,C, {e`}`∈B) ∈S is called the
configuration σ corresponding to N and is denoted σN .

Remark. One checks easily that the value Kz(N )Rz(N ) depends only on σ = σN .
Thus, we often abuse notation by referring to Kz(σ ) and Rz(σ ) instead of Kz(N )
and Rz(N ).

We can rewrite the sum considered in Proposition 2.1 in the form∑
N≤x

Kz(N )Rz(N )=
∑
σ∈S

Kz(σ )Rz(σ )
∑
N≤x
σN=σ

1. (13)

In the next lemma, we estimate the inner sum on the right side of (13) in two ways.

Lemma 2.4. For each σ ∈S , we have∑
N≤x
σN=σ

1= dσ x + O(x1/5), (14)

where

dσ :=
(∏
`∈A

(1− 2/`)
)(∏

`∈B

1
`e`
(1− 1/`)

)(∏
`∈C

1
`

)
. (15)
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We also have the crude upper bound∑
N≤x
σN=σ

1≤ x
∏
`∈B

`−e` (16)

for any σ ∈S .

Proof. The condition that σN = σ is equivalent to a congruence condition on
N modulo

mσ :=

( ∏
`∈A∪C

`

)(∏
`∈B

`e`+1
)
. (17)

Indeed, σN = σ precisely when N belongs to a union of
∏
`∈A(`− 2)

∏
`∈B(`− 1)

congruence classes modulo mσ . This implies that

∑
N≤x
σN=σ

1=
x

mσ

∏
`∈A

(`− 2)
∏
`∈B

(`− 1)+ O
( ∏
`∈A∪B

`

)
= dσ x + O

(∏
`≤z

`

)
.

By our choice of z and the prime number theorem,
∏
`≤z ` < x1/5 for large x , and

so we have established the formula (14). To justify the inequality (16), it suffices to
observe that if σN = σ , then

∏
`∈B `

e` divides N . �

The modulus mσ , defined in (17), will continue to play a key role in subsequent
arguments. It will be convenient to know that mσ nearly determines σ ; this is the
substance of our next result.

Lemma 2.5. For each natural number m, the number of σ ∈S with mσ = m is
O(x1/4).

Proof. Suppose that mσ = m, where σ = (A,B,C, {e`}`∈B). Since the sets
A,B,C partition the primes up to z, the number of possibilities for these sets is
3π(z) = exp(O(log x/log log x))= xo(1). Having chosen these sets, the exponents
e`, for ` ∈ B, are determined by the prime factorization of m. This proves the
lemma with 1

4 replaced by any positive ε. �

We next investigate two sums over mσ for future use in estimating error terms.

Lemma 2.6. For each σ ∈S , define mσ by (17). Then for all x ≥ 3,

x6/5 log log x
∑
σ∈S
mσ>x

1
mσ

+ x1/5 log log x
∑
σ∈S
mσ≤x

1� x3/4. (18)



824 Greg Martin, Paul Pollack and Ethan Smith

Proof. We proceed by Rankin’s method:

x6/5 log log x
∑
σ∈S
mσ>x

1
mσ

+ x1/5 log log x
∑
σ∈S
mσ≤x

1

≤ x6/5 log log x
∑
σ∈S
mσ>x

(
mσ

x

)7/8 1
mσ

+ x1/5 log log x
∑
σ∈S
mσ≤x

(
x

mσ

)1/8

= x13/40 log log x
∑
σ∈S

1

m1/8
σ

.

Every value of mσ is z-friable, and there are at most x1/4 configurations σ ∈S for
every possible value of mσ by Lemma 2.5. Therefore

x13/40 log log x
∑
σ∈S

1

m1/8
σ

� x13/40 log log x · x1/4
∑

m z-friable

1
m1/8

= x23/40 log log x
∏
p≤z

(
1+

1
p1/8 +

1
p1/4 + · · ·

)

= x23/40 log log x
∏
p≤z

(
1−

1
p1/8

)−1

.

Each factor in the product is at most (1− 2−1/8)−1 < 13, and so the product is
less than 13π(z) = 13O(log x/log log x)

= xo(1). Thus the left-hand side of (18) is
� x23/40+o(1) log log x � x3/4 as claimed. �

The next lemma relates the mean value of Kz(N )Rz(N ), taken over odd N , to
the sum of Kz(σ )Rz(σ )dσ , taken over all configurations σ .

Lemma 2.7. For all x ≥ 3,∑
N≤x

Kz(N )Rz(N )= x
∑
σ∈S

Kz(σ )Rz(σ )dσ + O(x3/4).

Proof. We begin by noting that the upper bounds

0≤ K (N )≤ Kz(N )≤ 1,

0≤ Rz(N )≤ R(N )� log log x
(19)

are valid for all N ≤ x . We have
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N≤x

Kz(N )Rz(N )=
∑
σ∈S

Kz(σ )Rz(σ )
∑
N≤x
σN=σ

1

=

∑
σ∈S
mσ≤x

Kz(σ )Rz(σ )
∑
N≤x
σN=σ

1+
∑
σ∈S
mσ>x

Kz(σ )Rz(σ )
∑
N≤x
σN=σ

1

=

∑
σ∈S
mσ≤x

Kz(σ )Rz(σ )(dσ x + O(x1/5))

+ O
(∑
σ∈S
mσ>x

Kz(σ )Rz(σ )x
∏
`∈B

`−e`

)

by Lemma 2.4. Using the upper bounds (19) for Kz and Rz , we deduce after
extending the first sum to infinity that∑
N≤x

Kz(N )Rz(N )= x
∑
σ∈S

Kz(σ )Rz(σ )dσ + O
(

x log log x
∑
σ∈S
mσ>x

dσ

)

+ O
(

x1/5 log log x
∑
σ∈S
mσ≤x

1+ x log log x
∑
σ∈S
mσ>x

∏
`∈B

`−e`

)
;

since the inequality dσ ≤
∏
`∈B `

−e` follows from definition (15), the first error term
is dominated by the second. Because

∏
`∈B `

−e` = m−1
σ

∏
`≤z ` < m−1

σ x1/5 once x
is large, this error term is� x3/4 by Lemma 2.6, and the proof is complete. �

In view of Lemma 2.7, Proposition 2.1 is a consequence of this remarkable
identity:

Lemma 2.8.
∑
σ∈S

Kz(σ )Rz(σ )dσ = 1.

Proof. Referring back to the definitions of Kz and Rz , we see that for σ ∈S ,

Kz(σ )Rz(σ )=
∏
`∈A

(
1−

1
(`− 1)2

)
×

∏
`∈B

(
1−

1
`e`(`− 1)

)(
1−

1
`

)−1

×

∏
`∈C

(
1−

1
(`− 1)2(`+ 1)

)
. (20)

Multiplying by the expression (15) for dσ , we find that

Kz(σ )Rz(σ )dσ =
(∏
`∈A

`− 2
`− 1

)2

×

∏
`∈B

1
`e`

(
1−

1
`e`(`− 1)

)
×

∏
`∈C

`2
− `− 1

(`− 1)2(`+ 1)
. (21)
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Recall that σ is a 4-tuple with entries A,B,C, and {e`}`∈B. We sum the expression
(21) over the possibilities for {e`}. We have∑

{e`}
each e`≥1

∏
`∈B

1
`e`

(
1−

1
`e`(`− 1)

)
=

∏
`∈B

∞∑
e`=1

1
`e`

(
1−

1
`e`(`− 1)

)
.

By a short computation,
∞∑

e`=1

1
`e`

(
1−

1
`e`(`− 1)

)
=

`2
− 2

(`+ 1)(`− 1)2
.

Thus, if we now fix only A, B, and C and sum over all corresponding configurations
σ , we have∑
σ∈S

A,B,C fixed

Kz(σ )Rz(σ )dσ

=

(∏
`∈A

`− 2
`− 1

)2(∏
`∈B

`2
− 2

(`+ 1)(`− 1)2

)(∏
`∈C

`2
− `− 1

(`− 1)2(`+ 1)

)
=

(∏
`∈A

PA(`)

)(∏
`∈B

PB(`)

)(∏
`∈C

PC(`)

)
, (22)

where for notational convenience we have defined

PA(`)=

(
`− 2
`− 1

)2

, PB(`)=
`2
− 2

(`+ 1)(`− 1)2
, PC(`)=

`2
− `− 1

(`− 1)2(`+ 1)
. (23)

To finish the proof, we sum the right-hand side of (22) over all possibilities for A,
B, and C. The only condition on the sets A, B, and C is that they partition the set
of primes not exceeding z. Hence,∑

σ∈S

Kz(σ )Rz(σ )dσ =
∑

A,B,C disjoint
A∪B∪C={`≤z}

(∏
`∈A

PA(`)

)(∏
`∈B

PB(`)

)(∏
`∈C

PC(`)

)

=

∏
`≤z

(PA(`)+ PB(`)+ PC(`)).

However, PA(`)+ PB(`)+ PC(`)= 1, identically! This completes the proof of the
lemma, and so also of Proposition 2.1. �

As already remarked above, the first half of Theorem 1.2 follows immediately
upon combining Lemmas 2.7 and 2.8.

Proof of the second half of Theorem 1.2. The condition that N is odd amounts to the
requirement that 2 ∈ C in the configuration notation of this section. If we carry this
requirement through the proofs of Lemmas 2.7 and 2.8, the bulk of the argument is
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essentially unchanged, but the new conclusions are that∑
N≤x
2-N

Kz(N )Rz(N )= x
∑
σ∈S
2∈C

Kz(σ )Rz(σ )dσ + O(x3/4)

and ∑
σ∈S
2∈C

Kz(σ )Rz(σ )dσ =
∑

A,B,C disjoint
A∪B∪C={`≤z}

2∈C

(∏
`∈A

PA(`)

)(∏
`∈B

PB(`)

)(∏
`∈C

PC(`)

)

= PC(2)
∏

2<`≤z

(PA(`)+ PB(`)+ PC(`))= PC(2).

(We assume in going from the first line to the second that z ≥ 2, i.e., that x ≥ e20.)
Since PC(2)= 1

3 , the second half of Theorem 1.2 follows. �

Most mathematical coincidences have explanations, of course, and the magical-
seeming PA(`)+ PB(`)+ PC(`)= 1 is no different. One might guess that PA(`),
PB(`), and PC(`) are probabilities of certain events occurring, and this is exactly
right: as γ ranges over all elements of GL2(F`), the expression det(γ )+ 1− tr(γ )
is congruent to 0 (mod `) with probability PB(`), congruent to 1 (mod `) with
probability PC(`), and congruent to each of the `− 2 other residue classes with
probability PA(`)/(`− 2). (See [David and Wu 2012, Equation (2.2)] for this
computation, as well as for the precise connection to elliptic curves.)

We conclude this section by saying a few words about the function that was
originally published in [David and Smith 2013], which we will here call K ◦ to
avoid confusion with the corrected function K ∗. For N odd, let

K ◦(N )=
N

φ(N )

∏
p -N

(
1−

(N−1
p

)2
p+ 1

(p− 1)2(p+ 1)

) ∏
p | N

2-νp(N )

(
1−

1
pνp(N )(p− 1)

)

×

∏
p | N

2| νp(N )

(
1−

p−
(
−Np

p

)
pνp(N )+1(p− 1)

)
,

where Np = N/pνp(N ) is the p-free part of N . This function is even further from
being a multiplicative function than K ∗, since its value can depend even on the
residue class modulo p of the p-free part of N . Nevertheless, our techniques can
in fact determine the average value of the function K ◦ as well.

To investigate the average of K ◦, we would expand the notion of a configuration
to a sextuple (A,B1,B2,C, {e`}`∈B1∪B2, {a`}`∈B2), where A,B1,B2,C partition
the set of primes up to z, the e` are positive integers, and the a` are integers satisfying
1 ≤ a` ≤ `− 1. We would modify Definition 2.3 by setting B1 := {` ≤ z : 2 -e`}
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and B2 := {` ≤ z : 2| e`} and, for ` ∈ B2, choosing a` ∈ {1, . . . , `− 1} such that
a` ≡ N/`e` (mod `). The analogue of (21) would be

K ◦z (σ )dσ =
(∏
`∈A

`− 2
`− 1

)2(∏
`∈C

`2
− `− 1

(`− 1)2(`+ 1)

)(∏
`∈B1

1
`e`

(
1−

1
`e`(`− 1)

))

×

(∏
`∈B2

1
`e`(`− 1)

(
1−

`−
(
−a`
`

)
`e`+1(`− 1)

))
.

We would then hold A,B1,B2,C, and the e` fixed and sum over all
∏
`∈B2

(`− 1)
possibilities for the a`; this has the effect of replacing the Legendre symbol

(
−a`
`

)
by its average value 0. At this point in the argument, the factors corresponding to
primes in B1 and B2 would be identical, and the calculation would soon dovetail
with (22).

We felt these few details of the determination of the average value of K ◦ were
worth mentioning, as an example of the wider applicability of our method and the
more complicated configuration spaces that can be used.

3. The average of K∗ over primes

In this section we establish Theorem 1.3. The main component of the proof is the
following asymptotic formula for the sum of the multiplicative function F evaluated
on shifted primes.

Proposition 3.1. Let F be the multiplicative function defined in (6) and let J be
the constant defined in (4). For any x > 2 and for any positive real number A,∑

p≤x

F(p− 1)= Jπ(x)+ OA(x/(log x)A).

Proof. Write F(n)=
∑

d | n g(d) for an auxiliary function g (not the same function as
in the proof of Theorem 1.2) which is also multiplicative. By a direct computation
with the Möbius inversion formula, g vanishes unless d is squarefree. Moreover,
g(2)=− 1

3 , while for odd primes `,

g(`)=
1

(`− 2)(`+ 1)
. (24)

Writing π(x; d, 1) for the number of primes p ≤ x with p ≡ 1 (mod d), we have∑
p≤x

F(p− 1)=
∑
p≤x

∑
d | p−1

g(d)

=

∑
d≤(log x)A

g(d)π(x; d, 1)+
∑

(log x)A<d≤x

g(d)π(x; d, 1). (25)
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We first consider the second sum on the last line. Trivially, π(x; d, 1) <
x
d

, and so∣∣∣∣ ∑
(log x)A<d≤x

g(d)π(x; d, 1)
∣∣∣∣≤ x

∑
d>(log x)A

|g(d)|
d

. (26)

When g(d) is nonvanishing, the formula (24) yields

d2g(d)�
∏

`| d, `>2

`2

`2− `− 2
�

∏
`| d

(
1−

1
`

)−1

=
d

φ(d)
,

and hence g(d)� 1/(dφ(d)) for all values of d. In particular, using the crude
lower bound φ(d)� d1/2 (compare with the precise Theorem 2.9 of [Montgomery
and Vaughan 2007, p. 55]), we find that g(d)� d−3/2. Thus, (26) gives∑

(log x)A<d≤x

g(d)π(x; d, 1)� x
∑

d>(log x)A

d−5/2
� x(log x)−3A/2,

and so (25) becomes∑
p≤x

F(p− 1)=
∑

d≤(log x)A

g(d)π(x; d, 1)+ O(x(log x)−3A/2). (27)

To deal with the remaining sum, we invoke the Siegel–Walfisz theorem [Mont-
gomery and Vaughan 2007, Corollary 11.21, p. 381]. That theorem implies that for
a certain absolute constant c > 0,∑
d≤(log x)A

g(d)π(x;d,1)=
∑

d≤(log x)A

g(d)
(
π(x)
φ(d)
+OA(x exp(−c

√
log x))

)

= π(x)
∑

d≤(log x)A

g(d)
φ(d)
+OA

(
x exp(−c

√
log x)

∞∑
d=1

|g(d)|
)

= π(x)
∞∑

d=1

g(d)
φ(d)

+OA

(
π(x)

∑
d>(log x)A

|g(d)|
φ(d)

+x exp(−c
√

log x)
∞∑

d=1

|g(d)|
)
.

In the error term, we again use the crude bounds g(d)� d−3/2 and φ(d)� d1/2,
obtaining∑
d≤(log x)A

g(d)π(x; d, 1)

= π(x)
∞∑

d=1

g(d)
φ(d)

+ OA
(
π(x)(log x)−A

+ x exp(−c
√

log x) · 1
)
,
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whereupon (27) becomes∑
p≤x

F(p− 1)= π(x)
∞∑

d=1

g(d)
φ(d)

+ OA(x(log x)−A).

Finally, the constant in this main term is an absolutely convergent sum of a multi-
plicative function, and hence it can be expressed as the Euler product

∞∑
d=1

g(d)
φ(d)

=

∏
`

(
1+

g(p)
φ(p)

+
g(p2)

φ(p2)
+ · · ·

)
=

2
3

∏
`>2

(
1+

1
(`− 1)(`− 2)(`+ 1)

)
=

2
3

J

by (24). This completes the proof of the proposition. �

Proof of Theorem 1.3. We first claim that the asymptotic formula (2) for K ∗ follows
easily from the same asymptotic formula for K . Indeed, for each prime p, we
have K ∗(p)= K (p)p/(p− 1)= K (p)+ O(K (p)/p). Because each local factor
in Definition 1.1 is of the form 1+ O(p−2), we see that K is absolutely bounded.
Thus ∑

p≤x

K ∗(p)=
∑
p≤x

K (p)+ O
(∑

p≤x

1
p

)
=

∑
p≤x

K (p)+ O(log log x),

and so it suffices to establish the asymptotic formula (2) for K .
For each prime p, the decomposition (5) gives K (p)=C2 F(p−1)G(p), where

F and G are defined in equations (6) and (7) respectively. Again, all local factors
in these definitions are of the form 1+ O(p−2); hence G(p)= 1+ O(1/p2) and
F is absolutely bounded. Therefore,∑

p≤x

K (p)=
∑
p≤x

C2 F(p− 1)G(p)= C2
∑
p≤x

F(p− 1)+ O
(∑

p≤x

F(p− 1)
p2

)
= C2

∑
p≤x

F(p− 1)+ O(1),

so the desired asymptotic formula (2) is a direct consequence of Proposition 3.1. �

4. The distribution function of K∗

The goal of this section is to establish the existence of the distribution function of
K ∗(N ). We do so by bounding the moments of K ∗(N ):

µk := lim
x→∞

1
x

∑
N≤x

K ∗(N )k . (28)



Averages of the number of points on elliptic curves 831

We describe below how Theorem 1.4 follows from Proposition 4.3. Before we can
bound these moments, however, we must prove that the moments even exist. In
Theorem 1.2 we determined that µ1 = 1, and the same method of determining µk

applies in general.

Proposition 4.1. For every natural number k, the limit (28) defining µk exists.

Proof. Following the proof of Proposition 2.1, we obtain (with minimal changes to
the argument) that for each fixed k,∑

N≤x

(Kz(N )Rz(N ))k = x
∑
σ∈S

Kz(σ )
k Rz(σ )

kdσ + Ok(x3/4), (29)

where z = 1
10 log x and dσ is defined in (15). Note that for N ≤ x ,

(Kz(N )Rz(N ))k − (K (N )R(N ))k

�k max{K (N )R(N ), Kz(N )Rz(N )}k−1
· |K (N )R(N )− Kz(N )Rz(N )|

�k (log log x)k−1
· |K (N )R(N )− Kz(N )Rz(N )|

by the bounds in (19); therefore∑
N≤x

K ∗(N )k =
∑
N≤x

(Kz(N )Rz(N ))k +
∑
N≤x

(
(K (N )R(N ))k − (Kz(N )Rz(N ))k

)
=

∑
N≤x

(Kz(N )Rz(N ))k

+ Ok

(
(log log x)k−1

∑
N≤x

∣∣K (N )R(N )− Kz(N )Rz(N )
∣∣).

Using (29) in the main term and the estimate (11) in the error term, we obtain∑
N≤x

K ∗(N )k = x
∑
σ∈S

Kz(σ )
k Rz(σ )

kdσ + Ok
(
x3/4
+ (log log x)k−1x/z

)
= x

∑
σ∈S

Kz(σ )
k Rz(σ )

kdσ + Ok

(
x

log x
(log log x)k−1

)
.

Dividing both sides by x and passing to the limit, we deduce that

µk = lim
x→∞

∑
σ∈S

Kz(σ )
k Rz(σ )

kdσ , (30)

provided that this limit exists.
To compute the sum over σ in (30), we follow the proof of Lemma 2.8; however,

the details are somewhat messier. With the four components A, B, C, {e`}`∈B of
σ as before, we write down the expansion for Kz(σ )

k Rz(σ )
kdσ analogous to (21).

This expansion is made up of three pieces, which are products over primes ` in A,
B, and C. The B product depends additionally on the tuple {e`}`∈B. We sum over
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all possibilities for {e`}`∈B to remove this dependence. After straightforward but
uninspiring computations, we find that fixing only A, B, and C,∑

σ

Kz(σ )
k Rz(σ )

kdσ =
(∏
`∈A

PA(`)

)(∏
`∈B

PB(`)

)(∏
`∈C

PC(`)

)
,

where (we suppress the dependence on k in the notation on the left-hand sides)

PA(`)=

(
1−

2
`

)k+1(
1−

1
`

)−2k

,

PB(`)=

(
1−

1
`

)1−k ∞∑
d=1

1
`d

(
1−

1
`d(`− 1)

)k

,

PC(`)=
1
`

(
1−

1
(`− 1)2(`+ 1)

)k

.

(31)

(Note that when k = 1, these expressions reduce to the expressions in (23).) To
compute the sum appearing in (30), we sum over A, B, and C, keeping in mind
that these sets partition the primes in [2, z]. We find that∑

σ∈S

Kz(σ )
k Rz(σ )

kdσ =
∏
`≤z

(PA(`)+ PB(`)+ PC(`)),

and so from (30),
µk =

∏
`

(PA(`)+ PB(`)+ PC(`)). (32)

It remains to show that this product converges. From the definitions (31), we find
that

PA(`)= 1− 2/`+ Ok(1/`2),

PB(`)= 1/`+ Ok(1/`2),

PC(`)= 1/`+ Ok(1/`2).

It follows that each term in the product from (32) is 1+ O(1/`2); consequently,
that product converges, which completes the proof of the proposition. �

Remarks. For any given k, we can explicitly compute PA, PB, and PC and thus
write down an exact expression for µk as an infinite product over primes. For
example, taking k = 2, we find that

µ2 =
∏
`

(
1+

`5
− `3
− 2`2

− 2`− 1
(`− 1)4(`+ 1)2(`2+ `+ 1)

)
≈ 1.261605.

Now that we know these moments µk exist, we proceed to establish an upper
bound for them as a function of k. The following result, well-known in the theory of
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probability (see, for example, [Durrett 2010, Theorem 3.3.12, p. 123]), allows us to
pass from such an upper bound to the existence of a limiting distribution function.

Lemma 4.2. Let F1, F2, . . . be a sequence of distribution functions. Suppose that
for each positive integer k, the limit limn→∞

∫
uk dFn(u)= µk exists. If

lim sup
k→∞

µ
1/2k
2k

2k
<∞,

then there is a unique distribution function F possessing the µk as its moments, and
Fn converges weakly to F.

We will apply Lemma 4.2 with

Fn(u) :=
#{m ≤ n : K ∗(m)≤ u}

#{m ≤ n}
,

for which

lim
n→∞

∫
uk dFn(u)= lim

n→∞

1
n

∑
m≤n

K ∗(m)k = µk

(so that the uses of µk in (28) and Lemma 4.2 are consistent). In light of Lemma 4.2,
Theorem 1.4 is a consequence of the following upper bound.

Proposition 4.3. The moments µk defined in (28) satisfy logµk � k log log k for
large k. In particular, (µ1/2k

2k )/2k� (log k)A/k for some constant A.

Proof. Recall that R(N ) denotes the function N/φ(N ). The number µk is the k-th
moment of the function K (N )R(N ), and that function is bounded pointwise by
R(N ). So µk is bounded above by µ′k , where

µ′k := lim
x→∞

1
x

∑
N≤x

R(N )k .

Thus, it suffices to establish the estimate logµ′k � k log log k.
By a result known already to Schur (see [Schoenberg 1928, p. 194]; see also

[Montgomery and Vaughan 2007, Exercise 14, p. 42]), we have that for each k,

µ′k =
∏

p

(
1−

1
p
+

1
p

(
1− 1

p

)−k )
=

∏
p

(
1+

1
p

((
p

p− 1

)k

− 1k
))
.

By the mean value theorem,

1+
1
p

((
p

p−1

)k

−1k
)
= 1+O

(
k

p(p−1)

(
p

p−1

)k−1)
= 1+O

(
k
p2

(
1+

1
p−1

)k−1)
< 1+O

(
k
p2 exp

(
k−1
p−1

))
,
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and so

µ′k <
∏
p≤k

(
1+ O

(
k
p2 exp

(
k− 1
p− 1

)))∏
p>k

(
1+ O

(
k
p2 exp

(
k− 1
p− 1

)))
. (33)

In the first product, we use the crude inequality

1+ O
(

k
p2 exp

(
k− 1
p− 1

))
< 1+ O

(
k exp

(
k

p− 1

))
� k exp

(
k

p− 1

)
,

so that for some absolute constant C ,∏
p≤k

(
1+ O

(
k
p2 exp

(
k− 1
p− 1

)))
≤

∏
p≤k

Ck exp
(

k
p− 1

)

≤ (Ck)π(k) exp
(

k
∑
p≤k

1
p− 1

)
= exp(O(k)) exp(O(k log log k)).

In the second product, the exponential factor is uniformly bounded, so∏
p>k

(
1+ O

(
k
p2 exp

(
k− 1
p− 1

)))
=

∏
p>k

(
1+ O

(
k
p2

))

<
∏
p>k

(
exp

(
O
(

k
p2

)))

≤ exp
(

O
(∑

p

k
p2

))
= exp(O(k)).

In light of these last two estimates, (33) yields µ′k ≤ exp(O(k log log k)) as required.
�

Remarks. It is worthwhile to make a few remarks about the behavior of D(u).
Let u0 :=

2
3C2. We can view Equation (20), with z =∞, as providing us with a

conveniently factored Euler product expansion of K ∗(N ). Comparing the terms of
this expansion with those in the product expansion for C2, one sees that K ∗(N )> u0

for all N . In fact, one finds that K ∗(N ) is bounded away from u0 unless N is odd
and all of the small odd primes belong to A, i.e., unless 2 -N and N (N − 1) has
no small odd prime factors. Conversely, if 2 -N and N (N − 1) has no small odd
prime factors, an averaging argument shows that K ∗(N ) is usually close to u0. In
this way, one proves that D(u0)= 0 while D(u) > 0 for u > u0.

Since K (N ) is absolutely bounded and bounded away from zero, several results
on D(u) follow immediately from corresponding results for the distribution function
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of N/φ(N ), whose behavior has been studied by Erdős [1946] and Weingartner
[2007; 2012]. In particular, from [Erdős 1946, Theorem 1], we see that D(u) >
1− exp(−exp(Cu)) for a certain constant C > 0 and all large u.

Finally, we remark that there is an alternative, more arithmetic approach to the
proof of Theorem 1.4, based on ideas and results of Erdős [1935; 1937; 1938] and
Shapiro [1973]. This approach allows us to show that the distribution function
D(u) of Theorem 1.4 is continuous everywhere and strictly increasing for u > u0.
We omit the somewhat lengthy arguments for these claims.

Acknowledgements

We thank Igor Shparlinski for bringing [Banks and Shparlinski 2009] to our attention.
We also thank the anonymous referee for a careful reading of the manuscript.

References

[Baier 2009] S. Baier, “A remark on the Lang–Trotter conjecture”, pp. 11–18 in New directions in
value-distribution theory of zeta and L-functions, edited by R. Steuding and J. Steuding, Shaker,
Aachen, 2009. MR 2011k:11075 Zbl 1250.11056

[Balog et al. 2011] A. Balog, A.-C. Cojocaru, and C. David, “Average twin prime conjecture for
elliptic curves”, Amer. J. Math. 133:5 (2011), 1179–1229. MR 2012j:11118 Zbl 1281.11052

[Banks and Shparlinski 2009] W. D. Banks and I. E. Shparlinski, “Sato–Tate, cyclicity, and divisibility
statistics on average for elliptic curves of small height”, Israel J. Math. 173 (2009), 253–277.
MR 2011a:11121 Zbl 1250.11064

[Chandee et al. 2014] V. Chandee, C. David, D. Koukoulopoulos, and E. Smith, “The frequency of
elliptic curve groups over prime finite fields”, preprint, 2014. arXiv 1405.6923

[Cohen 1993] H. Cohen, A course in computational algebraic number theory, Graduate Texts in
Mathematics 138, Springer, Berlin, 1993. MR 94i:11105 Zbl 0786.11071

[David and Smith 2013] C. David and E. Smith, “Elliptic curves with a given number of points over
finite fields”, Compos. Math. 149:2 (2013), 175–203. MR 3020306 Zbl 06144655

[David and Smith 2014] C. David and E. Smith, “Corrigendum: Elliptic curves with a given number
of points over finite fields (Compos. Math. 149:2 (2013), 175–203)”, Compos. Math. (2014).

[David and Wu 2012] C. David and J. Wu, “Pseudoprime reductions of elliptic curves”, Canad. J.
Math. 64:1 (2012), 81–101. MR 2932170 Zbl 1271.11090

[Durrett 2010] R. Durrett, Probability: theory and examples, 4th ed., Cambridge University Press,
2010. MR 2011e:60001 Zbl 1202.60001
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[Erdős 1946] P. Erdős, “Some remarks about additive and multiplicative functions”, Bull. Amer. Math.
Soc. 52 (1946), 527–537. MR 7,507g Zbl 0061.07901

http://www.uea.ac.uk/~egy12uju/Papers/SBaier.pdf
http://msp.org/idx/mr/2011k:11075
http://msp.org/idx/zbl/1250.11056
http://dx.doi.org/10.1353/ajm.2011.0033
http://dx.doi.org/10.1353/ajm.2011.0033
http://msp.org/idx/mr/2012j:11118
http://msp.org/idx/zbl/1281.11052
http://dx.doi.org/10.1007/s11856-009-0091-0
http://dx.doi.org/10.1007/s11856-009-0091-0
http://msp.org/idx/mr/2011a:11121
http://msp.org/idx/zbl/1250.11064
http://msp.org/idx/arx/1405.6923
http://dx.doi.org/10.1007/978-3-662-02945-9
http://msp.org/idx/mr/94i:11105
http://msp.org/idx/zbl/0786.11071
http://dx.doi.org/10.1112/S0010437X12000541
http://dx.doi.org/10.1112/S0010437X12000541
http://msp.org/idx/mr/3020306
http://msp.org/idx/zbl/06144655
http://dx.doi.org/10.1112/S0010437X14007283
http://dx.doi.org/10.1112/S0010437X14007283
http://dx.doi.org/10.4153/CJM-2011-044-x
http://msp.org/idx/mr/2932170
http://msp.org/idx/zbl/1271.11090
http://www.math.duke.edu/~rtd/PTE/PTE4_1.pdf
http://msp.org/idx/mr/2011e:60001
http://msp.org/idx/zbl/1202.60001
http://dx.doi.org/10.1112/jlms/s1-10.1.120
http://msp.org/idx/mr/1574238
http://msp.org/idx/zbl/0012.01004
http://dx.doi.org/10.1112/jlms/s1-12.45.7
http://msp.org/idx/zbl/0016.01204
http://dx.doi.org/10.1112/jlms/s1-13.2.119
http://msp.org/idx/mr/1574138
http://msp.org/idx/zbl/0018.29301
http://dx.doi.org/10.1090/S0002-9904-1946-08604-8
http://msp.org/idx/mr/7,507g
http://msp.org/idx/zbl/0061.07901


836 Greg Martin, Paul Pollack and Ethan Smith

[Fouvry and Murty 1996] E. Fouvry and M. R. Murty, “On the distribution of supersingular primes”,
Canad. J. Math. 48:1 (1996), 81–104. MR 97a:11084 Zbl 0864.11030

[Hasse 1936a] H. Hasse, “Zur Theorie der abstrakten elliptischen Funktionenkörper, I: Die Struktur
der Gruppe der Divisorenklassen endlicher Ordnung”, J. Reine Angew. Math. 175 (1936), 55–62.
Zbl 0014.14903

[Hasse 1936b] H. Hasse, “Zur Theorie der abstrakten elliptischen Funktionenkörper, II: Automor-
phismen und Meromorphismen. Das Additionstheorem”, J. Reine Angew. Math. 175 (1936), 69–88.
Zbl 0014.24901

[Hasse 1936c] H. Hasse, “Zur Theorie der abstrakten elliptischen Funktionenkörper, III: Die Struktur
des Meromorphismenrings. Die Riemannsche Vermutung”, J. Reine Angew. Math. 175 (1936),
193–208. Zbl 0014.24902

[Jones 2009] N. Jones, “Averages of elliptic curve constants”, Math. Ann. 345:3 (2009), 685–710.
MR 2010j:11090 Zbl 1177.14067

[Koblitz 1988] N. Koblitz, “Primality of the number of points on an elliptic curve over a finite field”,
Pacific J. Math. 131:1 (1988), 157–165. MR 89h:11023 Zbl 0608.10010

[Kowalski 2006] E. Kowalski, “Analytic problems for elliptic curves”, J. Ramanujan Math. Soc. 21:1
(2006), 19–114. MR 2007c:11108 Zbl 1144.11069 arXiv math/0510197

[Languasco et al. 2010] A. Languasco, A. Perelli, and A. Zaccagnini, “On the Montgomery–Hooley
theorem in short intervals”, Mathematika 56:2 (2010), 231–243. MR 2011g:11179 Zbl 1238.11087

[Montgomery and Vaughan 2007] H. L. Montgomery and R. C. Vaughan, Multiplicative number
theory, I: Classical theory, Cambridge Studies in Advanced Mathematics 97, Cambridge University
Press, 2007. MR 2009b:11001 Zbl 1142.11001

[Schoenberg 1928] I. Schoenberg, “Über die asymptotische Verteilung reeller Zahlen mod 1”, Math.
Z. 28:1 (1928), 171–199. MR 1544950 JFM 54.0212.02

[Shapiro 1973] H. N. Shapiro, “Addition of functions in probabilistic number theory”, Comm. Pure
Appl. Math. 26 (1973), 55–84. MR 51 #3107 Zbl 0253.10043

[Weingartner 2007] A. Weingartner, “The distribution functions of σ(n)/n and n/φ(n)”, Proc. Amer.
Math. Soc. 135:9 (2007), 2677–2681. MR 2009c:11156 Zbl 1169.11042

[Weingartner 2012] A. Weingartner, “The distribution functions of σ(n)/n and n/φ(n), II”, J. Number
Theory 132:12 (2012), 2907–2921. MR 2965199 Zbl 06097270

[Zywina 2011] D. Zywina, “A refinement of Koblitz’s conjecture”, Int. J. Number Theory 7:3 (2011),
739–769. MR 2012e:11107 Zbl 1278.11064

Communicated by Joseph Silverman
Received 2012-08-26 Revised 2013-12-14 Accepted 2014-02-15

gerg@math.ubc.ca Department of Mathematics, University of British Columbia,
Room 121, 1984 Mathematics Road,
Vancouver, BC V6T 1Z2, Canada

pollack@uga.edu Department of Mathematics, University of Georgia,
Boyd Graduate Studies Research Center, Athens, GA 30602,
United States

ecsmith13@liberty.edu Department of Mathematics, Liberty University,
1971 University Blvd., Lynchburg, VA 24502, United States

mathematical sciences publishers msp

http://dx.doi.org/10.4153/CJM-1996-004-7
http://msp.org/idx/mr/97a:11084
http://msp.org/idx/zbl/0864.11030
http://dx.doi.org/10.1515/crll.1936.175.55
http://dx.doi.org/10.1515/crll.1936.175.55
http://msp.org/idx/zbl/0014.14903
http://dx.doi.org/10.1515/crll.1936.175.69
http://dx.doi.org/10.1515/crll.1936.175.69
http://msp.org/idx/zbl/0014.24901
http://dx.doi.org/10.1515/crll.1936.175.193
http://dx.doi.org/10.1515/crll.1936.175.193
http://msp.org/idx/zbl/0014.24902
http://dx.doi.org/10.1007/s00208-009-0373-1
http://msp.org/idx/mr/2010j:11090
http://msp.org/idx/zbl/1177.14067
http://dx.doi.org/10.2140/pjm.1988.131.157
http://msp.org/idx/mr/89h:11023
http://msp.org/idx/zbl/0608.10010
http://www.math.ethz.ch/~kowalski/analytic-pbs.pdf
http://msp.org/idx/mr/2007c:11108
http://msp.org/idx/zbl/1144.11069
http://msp.org/idx/arx/math/0510197
http://dx.doi.org/10.1112/S0025579310000628
http://dx.doi.org/10.1112/S0025579310000628
http://msp.org/idx/mr/2011g:11179
http://msp.org/idx/zbl/1238.11087
http://dx.doi.org/10.1017/CBO9780511618314
http://dx.doi.org/10.1017/CBO9780511618314
http://msp.org/idx/mr/2009b:11001
http://msp.org/idx/zbl/1142.11001
http://dx.doi.org/10.1007/BF01181156
http://msp.org/idx/mr/1544950
http://msp.org/idx/jfm/54.0212.02
http://dx.doi.org/10.1002/cpa.3160260105
http://msp.org/idx/mr/51:3107
http://msp.org/idx/zbl/0253.10043
http://dx.doi.org/10.1090/S0002-9939-07-08771-0
http://msp.org/idx/mr/2009c:11156
http://msp.org/idx/zbl/1169.11042
http://dx.doi.org/10.1016/j.jnt.2012.06.001
http://msp.org/idx/mr/2965199
http://msp.org/idx/zbl/06097270
http://dx.doi.org/10.1142/S1793042111004411
http://msp.org/idx/mr/2012e:11107
http://msp.org/idx/zbl/1278.11064
mailto:gerg@math.ubc.ca
mailto:pollack@uga.edu
mailto:ecsmith13@liberty.edu
http://msp.org


Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart University of Wisconsin, Madison, USA

Dave Benson University of Aberdeen, Scotland

Richard E. Borcherds University of California, Berkeley, USA

John H. Coates University of Cambridge, UK

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad University of Michigan, USA

Hélène Esnault Freie Universität Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

Yujiro Kawamata University of Tokyo, Japan

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Barry Mazur Harvard University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Bernd Sturmfels University of California, Berkeley, USA

Richard Taylor Harvard University, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Efim Zelmanov University of California, San Diego, USA

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2014 is US $225/year for the electronic version, and $400/year (+$55, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscribers address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans
Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage
paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 8 No. 4 2014

781The derived moduli space of stable sheaves
KAI BEHREND, IONUT CIOCAN-FONTANINE, JUNHO HWANG and MICHAEL ROSE

813Averages of the number of points on elliptic curves
GREG MARTIN, PAUL POLLACK and ETHAN SMITH

837Noncrossed product bounds over Henselian fields
TIMO HANKE, DANNY NEFTIN and JACK SONN

857Yangians and quantizations of slices in the affine Grassmannian
JOEL KAMNITZER, BEN WEBSTER, ALEX WEEKES and ODED YACOBI

895Equidistribution of values of linear forms on quadratic surfaces
OLIVER SARGENT

933Posets, tensor products and Schur positivity
VYJAYANTHI CHARI, GHISLAIN FOURIER and DAISUKE SAGAKI

963Parameterizing tropical curves I: Curves of genus zero and one
DAVID E. SPEYER

999Pair correlation of angles between reciprocal geodesics on the modular surface
FLORIN P. BOCA, VICENT, IU PAS, OL, ALEXANDRU A. POPA and ALEXANDRU
ZAHARESCU

1037Étale contractible varieties in positive characteristic
ARMIN HOLSCHBACH, JOHANNES SCHMIDT and JAKOB STIX

1937-0652(2014)8:4;1-7

A
lgebra

&
N

um
ber

Theory
2014

Vol.8,
N

o.4


	1. Introduction
	2. The average value of K*
	3. The average of K* over primes
	4. The distribution function of K*
	Acknowledgements
	References
	
	

