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Yangians and quantizations of slices
in the affine Grassmannian

Joel Kamnitzer, Ben Webster, Alex Weekes and Oded Yacobi

We study quantizations of transverse slices to Schubert varieties in the affine
Grassmannian. The quantization is constructed using quantum groups called
shifted Yangians — these are subalgebras of the Yangian we introduce which
generalize the Brundan–Kleshchev shifted Yangian to arbitrary type. Building on
ideas of Gerasimov, Kharchev, Lebedev and Oblezin, we prove that a quotient of
the shifted Yangian quantizes a scheme supported on the transverse slices, and
we formulate a conjectural description of the defining ideal of these slices which
implies that the scheme is reduced. This conjecture also implies the conjectural
quantization of the Zastava spaces for PGLn of Finkelberg and Rybnikov.

1. Introduction

We initiate a program which relates the geometry of affine Grassmannians with
the representation theory of shifted Yangians. More precisely, we study slices in
affine Grassmannians which arise naturally in geometric representation theory; they
correspond to weight spaces of irreducible representations under the geometric
Satake correspondence. Our main result is that certain subquotients of Yangians
quantize these slices.

There is a general program to study symplectic resolutions by means of the
representation theory of their quantizations, generalizing the interplay between
semisimple Lie algebras and nilpotent cones. We believe that the representation
theory of shifted Yangians and its relationship to the geometry of slices in the affine
Grassmannian will prove to be a very fruitful area of inquiry.

1A. Slices in the affine Grassmannian. Let G be a complex semisimple group
and consider its thick affine Grassmannian Gr = G((t−1))/G[t]. Attached to each
pair of dominant coweights λ ≥ µ, we have Schubert varieties Grλ,Grµ ⊂ Gr,
with Grµ ⊂ Grλ. The neighborhood in Grλ of a point in Grµ is encapsulated in a
transversal slice to the latter variety in the former, which we denote by Grλµ. This
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slice is an important object of study in geometric representation theory because
under the geometric Satake correspondence it is related to the µ weight space in
the irreducible representation of G∨ of highest weight λ.

The Manin triple
(
g[t], t−1g[[t−1

]], g((t−1))
)

provides Gr with the structure of a
Poisson variety. The slice Grλµ is an affine Poisson subvariety, and thus its coordinate
ring is naturally a Poisson algebra. The purpose of this paper is to explicitly describe
quantizations of this Poisson algebra.

1B. Quotients of shifted Yangians. The slice Grλµ is defined as the intersection
Grλ∩Grµ, where Grµ is an orbit of the group G1[[t−1

]], the first congruence subgroup
of G[[t−1

]]. Thus on the level of functions O(Grλµ) is a quotient of O(Grµ), and
O(Grµ) is a subalgebra of O(G1[[t−1

]]). In order to quantize Grλµ we follow a
three-step procedure which mirrors this construction.

We first construct a version Y of the Yangian, which is a subalgebra of the
Drinfeld Yangian. Next, we define natural subalgebras Yµ ⊂ Y , called shifted
Yangians, that quantize Grµ. This generalizes the shifted Yangian for gln introduced
by Brundan and Kleshchev [2006]. Finally, we define a quotient Y λµ of Yµ using some
remarkable representations of Y as difference operators, constructed by Gerasimov,
Kharchev, Lebedev and Oblezin [Gerasimov et al. 2004].

Theorem A. The algebras defined above are all quantizations of the analogous
geometric objects. That is:

(1) The Yangian Y quantizes G1[[t−1
]].

(2) The shifted Yangian Yµ quantizes Grµ.

(3) The quotient Y λµ quantizes a (possibly nonreduced) scheme supported on Grλµ.

Item (1) is proven using a duality between quantum groups due to Drinfeld
and Gavarini, (2) follows simply from (1), and (3) follows using the Gerasimov–
Kharchev–Lebedev–Oblezin (GKLO) representation. In fact, we produce a family
Y λµ(c) of quantizations which we conjecture to map surjectively to the universal
family in the sense of Bezrukavnikov and Kaledin [2004].

Unfortunately, we are not able to prove that the scheme quantized by Y λµ is
reduced. However, we do provide a conjectural description of the generators of the
ideal of Grλµ inside Grµ and prove that this conjecture implies that Y λµ quantizes the
reduced scheme structure on Grλµ. Moreover, we prove that this conjecture gives a
simple description for the ideal defining Y λµ .

1C. Motivation and relation to other work. Brundan and Kleshchev [2006] con-
struct an isomorphism between quotients of shifted Yangians of gln and W -algebras
of glm . On the one hand, it is known that W -algebras are quantizations of Slodowy
slices. On the other hand, by the work of Mirković and Vybornov [2007], we
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have an isomorphism between Slodowy slices for slm and slices in the affine
Grassmannian for GLn . Thus via these results, we see that quotients of shifted
Yangians for gln quantize slices in the affine Grassmannian for GLn . This motivated
us to look for a direct construction of quantizations of affine Grassmannian slices
(for any semisimple G) using quotients of shifted Yangians. (The idea that the
Brundan–Kleshchev isomorphism should be thought of as a quantization of the
Mirković–Vybornov isomorphism was independently observed by Losev [2012,
Remark 5.3.4].)

If we take a limit of Grλµ as λ→∞ and λ−µ is fixed, then the slice Grλµ becomes
the Zastava space Zλ−µ. Finkelberg and Rybnikov [2010] have given conjectural
quantizations of Zastava spaces (for PGLn) using quotients of Borel Yangians,
which are a limit of shifted Yangians. We prove that our conjecture about the ideal
of Grλµ implies the conjecture of Finkelberg and Rybnikov.

Earlier work on shifted Yangians by Brundan and Kleshchev [2008] suggests
that one natural direction for future work is the study of a version of category O

over the algebra Y λµ . Because of the geometric Satake correspondence, we think of
category O for Y λµ as a categorification of a weight space in a representation of the
Langlands dual group G∨. Thus we expect that these categories (with λ fixed) carry
categorical g∨-actions. Moreover, conjectures of Braden, Licata, Proudfoot and
Webster [Braden et al. ≥ 2014] suggest that category O for Y λµ should be Koszul
dual to similar categories constructed from quiver varieties (in type A, we expect
that this reduces to parabolic-singular duality of Beilinson, Ginzburg and Soergel
[Beilinson et al. 1996]).

2. Symplectic structure on slices in the affine Grassmannian

2A. Notation. For any group H , we will write H((t−1)) = H(C((t−1))) for its
loop group and write H [t] = H(C[t]) and H [[t−1

]] = H(C[[t−1
]]) for its usual

subgroups. Let H1[[t−1
]] denote the first congruence subgroup of H [[t−1

]], i.e., the
kernel of the evaluation at t−1

= 0, H [[t−1
]] → H .

Throughout, G will denote a fixed complex semisimple group with opposite Borel
subgroups B, B−, unipotent subgroups N , N−, maximal torus T , Weyl group W , set
of roots 1, and simple roots {αi }i∈I . We will be concerned with both the coweights
and the weights of G, which we will be careful to distinguish throughout the paper.
Note that the coweights of G are the weights of its Langlands dual group G∨, which
we will occasionally consider in this paper.

We write {ωi }i∈I for the fundamental weights of the simply connected form
of G.

Following Drinfeld, we use generators ei , fi , hi for g, where

[hi , e j ] = (αi , α j )e j , [hi , f j ] = −(αi , α j ) f j , [ei , f j ] = δi j hi ,
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along with the usual Serre relations. Let (ai j )1≤i, j≤n be the Cartan matrix of g, and
let di be the unique coprime positive integers such that bi j = di ai j is a symmetric
matrix. Then the associated invariant form on g is defined by (ei , f j ) = δi j and
(αi , α j ) = (hi , h j ) = di ai j , and in particular, hi is the image of αi under the
identification of h and h∗.

This is as opposed to the standard Chevalley generators e′i , f ′i , h′i , which we will
identify as

ei =−d1/2
i e′i , fi =−d1/2

i f ′i , hi = di h′i .

In this way we have fundamental weights ωi (h′j )= δi j and a lift of the Weyl group
defined via si = exp ( f ′i ) exp (−e′i ) exp ( f ′i ).

If µ is a weight or coweight, we write µ∗ = −w0µ. Likewise, we write i∗ if
αi∗ =−w0αi .

Let V be a representation of G, and let v ∈ V , β ∈ V ∗. The matrix entry 1β,v is
a function on G given by 1β,v(g)= 〈β, gv〉. If w1, w2 ∈ W and τ is a dominant
weight, we define

1w1τ,w2τ (g)= 〈w1v−τ , w2vτ 〉

using the lift described above, where vτ is the highest-weight vector for the irre-
ducible representation V (τ ) and v−τ is the dual lowest-weight vector in V (τ ∗).

Using this matrix entry (also known as a generalized minor), we define the
function 1(s)β,v on G((t−1)), for s ∈ Z, whose value at g is the coefficient of t−s in
the polynomial 1β,v(g). So we have the formula

1β,v(g)=
∞∑

s=−∞

1
(s)
β,v(g)t

−s .

2B. Slices in the affine Grassmannian. Let G be a semisimple complex group.
In this paper, we will work with the thick affine Grassmannian Gr= G((t−1))/G[t].
We have an embedding of the usual thin affine Grassmannian into the thick affine
Grassmannian

G((t))/G[[t]] ∼= G[t, t−1
]/G[t] ↪→ G((t−1))/G[t].

We work with the thick affine Grassmannian since it is forced upon us by the
noncommutative algebras we consider. One manifestation of this is that the thick
Grassmannian is an honest scheme, while the thin Grassmannian is only an ind-
scheme. However, at a first reading, this difference will be of little importance, and
the reader can pretend that we are working with the usual thin affine Grassmannian.

Any coweight λ can be thought of as a C[t, t−1
]-point of G, which we can think

of as a C((t−1))-point as well. To avoid confusion, we use tλ to denote this point in
G((t−1)). We also use tλ for the image of tλ in Gr.
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Let λ and µ denote dominant coweights. Define

Grλ = G[t]tλ, Grµ = G1[[t−1
]]tw0µ.

Recall that the thin affine Grassmannian is precisely
⋃
λ

Grλ.
Our main object of interest will be

Grλµ := Grλ ∩Grµ.

This variety is a transverse slice to Grµ inside of Grλ since Grµ intersects every
Grν transversely and the intersection Grµµ is just the point tw0µ. In particular, this
variety is nonempty if and only if µ≤ λ, that is, if Grµ ⊂ Grλ. These varieties arise
naturally under the geometric Satake correspondence of Lusztig [1983], Ginzburg
[1995], and Mirković and Vilonen [2007]: the intersection homology of Grλµ is
identified with the µ-weight space of the irreducible G∨-representation of highest
weight λ.

Note that C× acts on Gr by loop rotation. This action preserves the G[t] and
G1[[t−1

]] orbits, and so C× acts on Grλµ. The following result is standard (it is a
special case of general results about flag varieties and their big cells).

Proposition 2.1. (1) Grλµ is an affine variety of dimension 2〈ρ, λ−µ〉.

(2) The action of C× on Grλµ contracts Grλµ to the unique fixed point tw0µ.

Example 2.2. If λ = µ+ α∨i , then Grλµ is isomorphic to the Kleinian singularity
C2/(Z/n+ 2), where n = 〈µ, αi 〉. To see this, first we identify

C2/(Z/n+ 2)=
{
(u, v, w) | uv+wn+2

= 0
}
,

and then we define the isomorphism

C2/(Z/n+2)→ Grλµ,

(u, v, w) 7→ φi

([
1−wt−1 vt−(n+1)

ut−1 1+wt−1
+· · ·+wn+1t−(n+1)

])
tw0µ,

where φi : SL2→ G denotes the SL2 corresponding to αi .

Let G((t−1))µ denote the stabilizer of tw0µ inside of G((t−1)). The following
easy result describes the stabilizer on the Lie algebra level.

Lemma 2.3. Lie
(
G((t−1))µ

)
= t[t]⊕

⊕
α∈1 t 〈α,w0µ〉gα[t].

Proof. The result follows immediately after observing that for g ∈ G((t−1)), we
have g ∈ G((t−1))µ if and only if t−w0µgtw0µ ∈ G[t]. �

In what follows, we will need the following set-theoretic description of Grλ due
to Finkelberg and Mirković [1999, (10.2)]. As we shall see, it is much trickier to
find a description of this variety with its natural reduced scheme structure.
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Proposition 2.4. Let g ∈ G((t−1)). We have [g] ∈ Grλ if and only if 1(s)β,v(g) = 0
for all dominant weights τ , for all v ∈ V (τ ), β ∈ V (τ )∗, and for all s < 〈λ,w0τ 〉.

Proof. Fix τ and let k be the minimal s such that there exist β ∈ V (τ )∗, v ∈ V (τ )
with 1(s)β,v(g) 6= 0 (if such a minimum exists). It is easy to see that k only depends
on the G[t] double coset containing g. Thus if [g] ∈Grλ, we have that k = 〈λ,w0τ 〉.
The result follows. �

The proof makes it clear that the Proposition holds even if τ only ranges over a set
of dominant weights which spans (over Q) the weight lattice.

2C. Symplectic structure on the affine Grassmannian. There is a nondegenerate
pairing on g((t−1)) coming from residue and the invariant form on g. Hence the
Lie algebras g[t], t−1g[[t−1

]], and g((t−1)) form a Manin triple (see [Drinfeld 1987,
Example 3.3]). This induces a Poisson–Lie structure on G((t−1)) with G[t] and
G1[[t−1

]] as Poisson subgroups. In particular, it coinduces a Poisson structure on Gr,
by standard calculations which date back to work of Drinfeld [1993].

Let us state a couple of results concerning the interaction between this symplectic
structure and the geometry considered in the previous section. These results were
originally obtained by Mirković (personal communication).

Theorem 2.5. Subvarieties Grλµ = Grλ ∩Grµ are symplectic leaves of Gr.

Proof. First we note that Grλµ are connected by [Richardson 1992, 1.4], since
g((t−1)) = g[t] ⊕ t−1g[[t−1

]]. The argument is stated there for finite-dimensional
groups, but carries through to the loop situation without issues. Then the result
follows from [Lu and Yakimov 2008, Corollary 2.9]. �

These are not all symplectic leaves of Gr, since not every G1[[t−1
]]-orbit contains

a point tw0µ and not every G[t]-orbit contains a point tλ. A general symplectic
leaf which lies in the thin affine Grassmannian is of the form Grλ ∩G1[[t−1

]]gtw0µ,
where g ∈ G.

Let Sµ= N ((t−1))tw0µ. An MV cycle is a component of Grλ ∩ Sµ. By Mirković–
Vilonen, these MV cycles give a basis for weight spaces of irreducible representa-
tions of the Langlands dual group. As we now see, the MV cycles are Lagrangians
in Grλµ.

Proposition 2.6. Grλ ∩ Sµ is a Lagrangian subvariety of Grλµ.

Proof. First we prove that Grλ ∩ Sµ ⊂ Grλµ. Since N is unipotent, we have that
N ((t−1)) = N1[[t−1

]]N [t]. Now by Lemma 2.3, we have that N [t]tw0µ = tw0µ.
Hence N ((t−1))tw0µ = N1[[t−1

]]tw0µ and thus Sµ ⊂ Grµ.
From [Mirković and Vilonen 2007, Theorem 3.2], dimGrλ∩Sµ=〈ρ, λ−µ〉, and

thus the intersection Grλ ∩ Sµ is half-dimensional in Grλµ. Hence it is Lagrangian if
and only if it is coisotropic. The variety Grλµ is affine, and so it suffices to check that
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the Poisson bracket of any two functions that vanish on Grλ ∩ Sµ vanishes there as
well. The functions vanishing on Sµ∩Grλ are generated by all functions of negative
weight under the action of the coweight ρ∨ : C×→ G. Since that action preserves
the Poisson structure, the Poisson bracket of two negative weight functions is again
of negative weight; this completes the proof. �

It is natural to ask whether Grλµ has a symplectic resolution. Let us temporarily
assume that G is of adjoint type and let us fix a sequence Eλ = (λ1, . . . , λn) of
fundamental coweights such that λ= λ1+ · · ·+ λn . (If we do not assume that G
is of adjoint type, then we may not be able to write λ as a sum of fundamental
coweights of G.) Then we have the open and closed convolutions

Gr
Eλ
:= Grλ1 ×̃ · · · ×̃Grλn , Gr

Eλ
:= Grλ1 ×̃ · · · ×̃Grλn

along with the convolution morphisms m : GrEλ→ Grλ and m̄ : GrEλ→ Grλ. (Here
the convolution A ×̃ B of two G[t]-invariant subsets A, B in Gr is defined by
p−1(A)×G[t] B, where p : G((t−1))→ Gr.)

Let
Gr
Eλ
µ := m−1(Grµ), GrEλµ := m̄−1(Grµ).

Recall that a normal variety X with a fixed symplectic structure � on its smooth
locus is said to have symplectic singularities if, locally on X , there are resolutions
of singularities p :U → X , where p∗� is the restriction of a closed 2-form on U
(which is not assumed to be nondegenerate on the exceptional locus).

A variety X is said to have terminal singularities if there is a resolution of
singularities of X such that each irreducible exceptional fiber has positive discrep-
ancy, that is, X is as close to being smoothly resolved as is crepantly possible.
A terminalization X → Y is a map which is birational, proper, and crepant with
X having terminal singularities. We say a variety X is Q-factorial if every Weil
divisor on X has an integer multiple which is Cartier.

Theorem 2.7. The variety Grλµ has symplectic singularities, and GrEλµ is a Q-factorial
terminalization of Grλµ.

Proof. First, we claim that GrEλµ has singular locus in codimension at least 4. Since
Grµ is transverse to every G[t]-orbit, the codimension of the singular locus cannot
jump when we pass to GrEλµ, so we need only establish the same result for GrEλ,
for which it suffices to consider the case of a fundamental coweight. If ωi is a
fundamental coweight and ν is a dominant coweight such that Grν ⊂ Grωi , then we
have that ρ∨(ωi −ν)≥ 2, since ωi −α j is never dominant. Thus, the singular locus
Grν has codimension at least 4.

As Beauville [2000, (1.2)] notes, since GrEλµ is regular in codimension 3 and
normal, the existence of a symplectic form on its smooth locus implies that it has
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symplectic singularities. Since we have a Poisson map GrEλµ→ Grλµ, this variety also
has symplectic singularities. By a result of Namikawa [2001, Corollary 1], this
regularity in codimension 3 also implies that GrEλµ is terminal.

Because each local singularity in GrEλµ is a local singularity in GrEλ, and these are
the product of local singularities in Grωi , we need only prove Q-factoriality in this
case. The group of Weil divisors of Grωi is the same as that of Grωi , which is an
affine bundle over G/Pi , where Pi is the maximal parabolic containing all negative
simple root spaces but g−αi . Thus, the Weil divisor group of G/Pi is isomorphic
to Z.

Since Grωi is projective, some Weil divisor on Grωi is Cartier. Thus, the group
generated by any nontrivial Weil divisor must intersect the image of the Cartier
divisors, and so Grωi is Q-factorial.1

By general properties of Schubert varieties and Bott–Samuelson resolutions, the
map GrEλµ→ Grλµ is proper and birational. The preimage of Grµ for µ 6= λ, λ−αi

has codimension at least 4, so any exceptional divisor must be the closure of a
component of the preimage of Grλ−αi . The coefficients of these divisors in the
discrepancy can thus be computed locally in a neighborhood of x ∈ Grλ−αi , but the
germ of the map is equivalent to the minimal resolution of a Kleinian singularity
by Example 2.2. The Kleinian singularities are known to be crepant. �

An obvious question is when Grλµ has a symplectic resolution. First, we make
the following conjecture.

Conjecture 2.8. Any symplectic resolution of Grλµ is of the form GrEλµ.

We can easily see when GrEλµ is actually a resolution.

Theorem 2.9. The following are equivalent.

(1) Grλµ possesses a symplectic resolution of singularities.

(2) GrEλµ is smooth and thus is a symplectic resolution of singularities of Grλµ.

(3) Gr
Eλ
µ = GrEλµ.

(4) There do not exist coweights ν1, . . . , νn such that ν1+ · · ·+ νn = µ; for all k,
νk is a weight of V (λk); and for some k, νk is a not an extremal weight of
V (λk) (here we regard the νk as weights of G∨).

Proof. (1) =⇒ (2): If Grλµ has a symplectic resolution, then by [Namikawa 2011,
5.6], any Q-factorial terminalization of Grλµ, in particular GrEλµ, is smooth.

1We thank Alexander Braverman for suggesting this portion of the argument to us.
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(2)=⇒ (1): In this case, GrEλµ is an example of a symplectic resolution of singularities.

(2)⇒ (3): By [Evens and Mirković 1999, Theorem 0.1(b)], the smooth locus of
Grλ is precisely Grλ. Thus the smooth locus of GrEλ is precisely Gr

Eλ.
Next we assume that there is a point x in GrEλµ not in Gr

Eλ
µ; we know that GrEλ is not

smooth at x . By the transversality of the G1[[t−1
]] and G[t] orbits, the completion

of GrEλ at x coincides with the completion of GrEλµ at x times something smooth.
Therefore GrEλµ cannot be smooth at x either.

(3) =⇒ (2): Clear.

(3) =⇒ (4): If there exist ν1, . . . , νn as in (3), then (tν1, tν1+ν2, . . . , tµ) ∈ GrEλµrGr
Eλ
µ.

(4) =⇒ (3): Suppose that there exists

(L1, . . . , Ln) ∈ Gr
Eλ
µrGr

Eλ
µ.

Recall that we have a C× × T action on Gr where the first factor acts by loop
rotation. Consider a map C×→ C×× T which is the identity into the first factor
and a generic dominant coweight into the second factor. We get a resulting C×

action on Gr whose attracting sets are the I− orbits, where I− is the preimage of B
under G[[t−1

]] → G.
Let

(tµ1, . . . , tµn )= lim
s→0

s · (L1, . . . , Ln).

From the definition of GrEλµ, we see that µn = µ. Also, for each k, we see that
d(tµk−1, tµk )≤λk (where d denotes the dominant coweight valued distance function
on Gr), and so νk :=µk−µk−1 is a weight of V (λk). Thus we obtain ν1, . . . , νn with
ν1+· · ·+νn =µ. Moreover, since (L1, . . . , Ln) /∈ Gr

Eλ
µ, we have d(Lk−1, Lk) < λk

for some k, and so νk is a nonextremal weight of V (λk). �

If λ is a sum of minuscule coweights, then the above conditions hold. For any
simple G not of type A, there are nonminiscule fundamental coweights λ; for such λ,
we can choose µ such that the above conditions do not hold. So there exist Grλµ
which do not admit symplectic resolutions.

2D. Beilinson–Drinfeld Grassmannian. Using the Beilinson–Drinfeld Grassman-
nian, we can define a family of Poisson varieties over An whose special fiber is Grλµ.
In this work, this family will only be used as motivation for a similar family of
quantizations of Grλµ; as illustrated in works such as [Bezrukavnikov and Kaledin
2004; Braden et al. 2012; Losev 2012], the universal symplectic deformation of a
symplectic singularity as a symplectic variety is intimately tied to understanding its
quantizations (see Section 4D). From this perspective, a natural next step (beyond
the scope of this paper) would be to study quantizations of the total spaces of these
deformations, not just of a single fiber.
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Recall that we have the moduli interpretation of the affine Grassmannian (see
[Mirković and Vilonen 2007, Section 5])

Gr =
{
(E, φ) | E is a principal G-bundle on P1

and φ : E |P1r{0}→ E0
|P1r{0} is an isomorphism

}
,

where E0 denotes the trivial G-bundle. We say that (E, φ) has Hecke type λ at 0 if
(E, φ) gives a point in Grλ under the above identification.

Note that the action of G[[t−1
]] by left multiplication in the homogeneous space

definition becomes change of trivialization in the new definition. Thus the G[[t−1
]]

orbit of (E, φ) is determined by isomorphism class of the G-bundle E , which is
given by a dominant coweight. Note also that the action of G1[[t−1

]] corresponds
to changes of trivialization which do not change anything at∞.

Let µ be a dominant coweight and let P be the corresponding standard parabolic
subgroup (so that WP is the stabilizer of µ in the Weyl group). Let E be a principal
G-bundle of type µ. Then E has a canonical P-structure.

Now let (E, φ) ∈ Gr. Let µ be the isomorphism type of E . Then φ∞ carries the
parabolic structure at∞ to a parabolic subgroup of G of type µ. Hence we see that
the G1[[t−1

]] orbits on Gr are labeled by a pair consisting of a dominant coweight
µ and a parabolic subgroup of G of type µ. In particular, Grµ is the locus of those
(E, φ) where E has isomorphism type µ and the parabolic subgroup produced is
the standard one.

We now consider the Beilinson–Drinfeld deformation of the affine Grassmannian.
This is a family GrAn over An whose fiber at a1, . . . , an ∈ An is given as

Gra1,...,an =
{
(E, φ) | E is a principal G-bundle on P1

and φ : E |P1r{a1,...,an}→ E0
|P1r{a1,...,an} is an isomorphism

}
.

Let Grµ,An be the locus of (E, φ), where E has isomorphism type µ and the
parabolic subgroup at∞ is the standard one.

Specializing to one choice of parameters, we can consider changes of triv-
ialization acting on Gra1,...,an . Let G1(P

1 r {a1, . . . , an}) denote the kernel of
G(P1r {a1, . . . , an})→ G given by evaluation at∞. Then Grµ,(a1,...,an) is an orbit
of G1(P

1r {a1, . . . , an}).
We may also think of this locus in terms of the C× action. We have an action

of C× on GrAn coming from the action of C× on P1. Note that this action moves
the base An . On the central fiber Gr(0,...,0) = Gr, this action of C× restricts to the
loop rotation action on Gr. Hence the fixed points of this C× action are the same as
the fixed points of the loop rotation action, namely, the sets Gtµ inside the affine
Grassmannian. Moreover, we have that Grµ,An is the attracting set for tw0µ under
the C× action.
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We have a fiberwise Poisson structure on GrAn using the Manin triples described in
[Etingof and Kazhdan 1998, Corollary 2.10 and Proposition 2.12]. As in Section 2C,
we get a Poisson structure on Grµ,(a1,...,an).

Now let us choose an expression λ = λ1 + · · · + λn , where λ1, . . . , λn are
fundamental coweights. This gives us a colored divisor D on P1 defined by D =∑
λi ai . We will think of D as a function on P1 with values in the dominant

coweights. Now we define

Gr
λ1,...,λn
µ,(a1,...,an)

:=
{
(E, φ)∈Grµ,(a1,...,an) | (E, φ) has Hecke type D(x) for all x ∈P1}.

From the above analysis, it is possible to show that these are symplectic leaves in
Grµ,(a1,...,an).

Fixing (λ1, . . . , λn) and letting (a1, . . . , an) vary, this forms a family of An . The
central fiber of this family is Grλµ.

Now, define

Gr
λ1,...,λn
µ,(a1,...,an)

:=
{
(E, φ) ∈ Grµ,(a1,...,an) | (E, φ) has Hecke type ≤ D(x) for all x ∈ P1}.

Then we obtain a family of symplectic varieties over An whose central fiber is Grλµ.

2E. Direct system on slices and Zastava spaces. We now look at what happens to
Grλµ when we increase λ,µ, keeping λ−µ fixed.

Let us fix ν in the positive coroot cone. Let µ,µ′ be dominant coweights with
µ′−µ dominant. From Lemma 2.3, we know that the stabilizer of tw0µ

′

in G1[[t−1
]]

contains the stabilizer of tw0µ in G1[[t−1
]]. So we can define a map Grµ→ Grµ′ by

gtw0µ 7→ gtw0µ
′

. From Proposition 2.4, we see that this restricts to a map

Grµ+νµ → Gr
µ′+ν

µ′ .

By construction, it is a Poisson map.
Clearly these maps are compatible with composition. Thus with ν fixed we get a

direct system of slices
{
Grµ+νµ

}
µ

. The limit of this system is an ind-scheme, but in
general it will not be represented by a scheme.

On the other hand, we can consider the Zastava space Zν , an affine variety, as
defined in [Finkelberg and Mirković 1999]. It is a partial compactification of the
moduli space Z◦ν of based maps from P1 into G/B of degree ν. The variety Zν
carries an action of C×, extending the action of C× on Z◦ν which rotates the source
of the map.

The following result shows that the algebras of functions O(Grµ+νµ ) stabilize to
O(Zν).

Theorem 2.10 [Braverman and Finkelberg 2011, Theorem 2.8]. There exists a map
Grµ+νµ → Zν . These maps are compatible with the above direct system on the slices
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and with the actions of C×. Moreover, the induced maps O(Zν)N → O(Grµ+νµ )N

are isomorphisms if N ≤ 〈αi , µ〉 for all i .

Remark 2.11. The theorem provides Zν with a Poisson structure. On the other
hand, Z◦ν carries a symplectic structure as described in [Finkelberg et al. 1999]. It
is expected that these two structures are compatible.

Example 2.12. Let us take G = PGL2 and ν = α∨, the simple coroot. Then (as in
Example 2.2), for n ≥ 0,

Grnω
∨+α∨

nω∨
∼= {(u, v, w) | uv+wn+2

= 0}.

Moreover, for m ≥ n, the map Grnω
∨+α∨

nω∨ → Grmω
∨+α∨

mω∨ is given by (u, v, w) 7→
(u, vwm−n, w). This is because we have an equality in GrPGL2 :[

1−wt−1 vt−(n+1)

ut−1 1+wt−1
+ · · ·+wn+1t−(n+1)

][
1 0
0 tm

]
=

[
1−wt−1 vwm−nt−(m+1)

ut−1 1+wt−1
+ · · ·+wm+1t−(m+1)

][
1 0
0 tm

]
.

On the other hand, the Zastava space Zα is A2. The map in Theorem 2.10 is given
by (u, v, w) 7→ (u, w).

With respect to the C× action on

Grnω
∨+α∨

nω∨ = {(u, v, w) | uv+wn+2
= 0},

the variables u, w have weight 1 and v has weight n+ 1. So we can see that

O(Zα)= C[u, w] → O
(
Grnω

∨+α∨

nω∨
)
= C[u, v, w]/(uv+wn+2)

is an isomorphism in degrees 0, . . . , n, as predicted by Theorem 2.10.
The Poisson structure on Grnω

∨+α∨

nω∨ is given by

{w, u} = u, {w, v} = −v, {u, v} = (n+ 2)wn+1,

while the Poisson structure on Zα is given by

{w, u} = u.

Finally, note that the C-points of the ind-scheme limn Gr
nω∨+α∨
nω∨ are

{(u, w) | u ∈ C×, w ∈ C} ∪ {(0, 0)},

which is a proper subset of C2, and hence this ind-scheme is not equal to A2.
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2F. Description of the Poisson structure. We would like to describe the Poisson
structure on G1[[t−1

]] in a little more detail. Let C ∈ g⊗ g be the Casimir ele-
ment for the bilinear form. Picking dual bases, we may represent this element as
C =

∑
Ja ⊗ J a; this Casimir element allows us to describe the Poisson bracket of

two minors. This can be written more compactly using the series

1β,v(u)=
∑
s≥0

1
(s)
β,vu

−s .

Note that 1(0)β,v = 〈β,w〉 is a constant function.

Proposition 2.13. The Poisson bracket {1β1,v1(u1),1β2,v2(u2)} is equal to

1
u1− u2

∑
a

1β1,Jav1(u1)1β2,J av2(u2)−1Jaβ1,v1(u1)1J aβ2,v2(u2)

in O(G1[[t−1
]])[[u−1

1 , u−1
2 ]].

Proof. The cobracket g((t−1)) → g((u1)) ⊗ g((u2)) is coboundary. If we let
r(u1, u2)= C/(u1− u2), it is given by

a(t) 7→
[
a(u1)⊗ 1+ 1⊗ a(u2), r(u1, u2)

]
.

As described earlier, the Lie algebra g((t−1)) carries an inner product

( f, g)t =− rest=0( f, g)

for which t−1g[[t−1
]] is Lagrangian and complementary to g[t]; this realizes g((t−1))

as the (topological) Drinfeld double of t−1g[[t−1
]]. In particular,

G1[[t−1
]] ⊂ G((t−1))

is a Poisson subgroup, and the Poisson bracket of any two functions on G1[[t−1
]]

can be calculated taking the bracket of any two extensions to all of G((t−1)) and
then restricting to G1[[t−1

]].
Thus, the Poisson structure on G((t−1)) is defined by

π = r L(u1, u2)− r R(u1, u2),

the difference of the left translation and right translation of the element r(u1, u2)

considered as a bivector at the identity. If X ∈ t−1g[[t−1
]] and g ∈ G1[[t−1

]], we
identify X with a tangent vector at g by left translation. Then we have

(d1β,v)g(X)= 〈β, gXv〉.
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Hence{
1β1,v1(u1),1β2,v2(u2)

}
(g)

=
〈
π, (d1β1,v1)g ⊗ (d1β2,v2)g(g)

〉
=
〈
r L(u1, u2)− r R(u1, u2), (d1β1,v1)g ⊗ (d1β2,v2)g(g)

〉
=

1
u1− u2

( ∑
a

〈β1, g(u1)Jav1〉〈β2, g(u2)J av2〉

−

∑
a

〈β1, Jag(u1)v1〉〈β2, J ag(u2)v2〉

)
=

1
u1− u2

∑
a

1β1,Jav1(u1)1β2,J av2(u2)−1Jaβ1,v1(u1)1J aβ2,v2(u2),

where the last step follows from the invariance of the pairing between dual repre-
sentations. �

We can unpack Proposition 2.13 into the following equations:{
1
(r+1)
β1,v1

,1
(s)
β2,v2

}
−
{
1
(r)
β1,v1

,1
(s+1)
β2,v2

}
=

∑
1
(r)
Jaβ1,v1

1
(s)
J aβ2,v2

−1
(r)
β1,Jav1

1
(s)
β2,J av2

(1)

for r, s ≥ 0. These equations specify all the desired Poisson brackets.

2G. A conjectural description of the ideal of Grλµ. In this section, we give a
conjectural description of the ideal of Grλµ as a subvariety of Gr0 = G1[[t−1

]].
Let Gsc denote the simply connected cover of G. Note that the natural map
Gsc

1 [[t
−1
]] → G1[[t−1

]] is an isomorphism. This allows us to consider 1(s)ωi ,ωi as
functions on G1[[t−1

]], even if ωi are not weights of G (for example if G is of
adjoint type).

We begin with the case of µ= 0. Let J λ0 denote the ideal in O(G1[[t−1
]]) Poisson

generated by 1(s)ωi ,ωi for s > 〈λ, ωi∗〉 and for i ∈ I .

Conjecture 2.14. The ideal of Grλ0 in O(G1[[t−1
]]) is J λ0 .

Let us make some comments on this conjecture. First, we have the following
result.

Proposition 2.15. J λ0 is generated as an ordinary ideal by 1(s)β,v for s > 〈λ, ωi∗〉

and for i ∈ I , where β, v range over bases for V (ωi )
∗ and V (ωi ).

Proof. Let I be the ideal generated as an ordinary ideal by 1(s)β,v for s > 〈λ, ωi∗〉.
First, we show that this ideal is contained in J λ0 .

We claim that 1(s)ωi ,v ∈ J λ0 for all v ∈ V (ωi ) and s > 〈λ, ωi∗〉. We proceed by
downward induction on the weight of v. The base case of v is highest weight
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follows by definition. For the inductive step, suppose that v is not highest weight.
In this case, v =

∑
f jv j for some v j of higher weight than v.

Fix s with s > 〈λ, ωi∗〉. Using (1) with s = 0 and the expression for the Casimir
(for notation see Section 3B)

C = Ch+

∑
α∈8+

Cαeα ⊗ fα +Cα fα ⊗ eα,

where (eα, fα)= C−1
α , we see that{

1(r)ωi ,v j
,1(1)ω j ,s jω j

}
=−1

(r)
ωi , f jv j

.

Thus we see that

1(s)ωi ,v
=

∑
j

1
(s)
ωi , f jv j

=−

∑
j

{
1(s)ωi ,v j

,1(1)ω j ,s jω j

}
.

All the terms on the right-hand side lie in J λ0 by the inductive assumption, and thus
1
(s)
ωi ,v ∈ J λ0 .
Now we claim that 1(s)β,v ∈ J λ0 for all β ∈ V (ωi )

∗, v ∈ V (ωi ), and s > 〈λ, ωi∗〉.
We have already proven this claim when β = v−ωi , so we proceed by induction

on the weight of β. Suppose that β ∈ V (ωi )
∗ is not lowest weight and assume that

the claim holds for all β of lower weight. In this case, we can write β =
∑

e jβ j

for some β j of lower weight.
Fix s with s > 〈λ, ωi∗〉. Again using the above expression for the Casimir, we

find that {
1
(s)
β j ,v

,1(1)s jω j ,ω j

}
=1

(s)
β j ,e jv

−1
(s)
e jβ j ,v

.

Thus we see that

1
(s)
β,v =

∑
j

1
(s)
e jβ j ,v

=

∑
j

{
1
(s)
β j ,v

,1(1)s jω j ,ω j

}
−1

(s)
β j ,e jv

.

All the terms on the right-hand side lie in J λ0 by the inductive assumption, and thus
1
(s)
β,v ∈ J λ0 . This shows that I ⊂ J 0

λ .
It remains to show that I is a Poisson ideal. Since 1(s)β,v, for β ∈ V (ωi )

∗, v ∈

V (ωi ), i ∈ I , generates O(G1[[t−1
]]), it suffices to check that I is closed under

Poisson bracket with these elements. This follows immediately from (1). �

Combining this proposition with Proposition 2.4, we obtain the following.

Corollary 2.16. The vanishing set of Jλ0 is Grλ0 .

Thus in order to establish Conjecture 2.14, it only remains to show that I λ0 is
radical.



872 Joel Kamnitzer, Ben Webster, Alex Weekes and Oded Yacobi

Remark 2.17. Let G = SLn . By an observation which goes back to Lusztig [1981,
Section 2], we know that there is an isomorphism Grnω1

0
∼= N, the nilpotent cone

of sln . For any dominant coweight λ with λ≤ nω1, under this isomorphism Grλ0 is
taken to a nilpotent orbit closure. Thus, the above conjecture implies generators
for the ideal of a nilpotent orbit closure inside the nilpotent cone of sln . From
this perspective, one can see that Conjecture 2.14 would imply the main result of
[Weyman 1989], which gives generators for the ideals of nilpotent orbit closures.
This gives additional evidence toward the conjecture, but also suggests it will be
difficult to prove.

Remark 2.18. One could imagine a similar conjecture for the ideal of Grλ inside
of the homogeneous coordinate ring of Gr with respect to its natural determinant
line bundle. However, this conjecture is false, already for SL2 and λ= α.

We will need the following generalization of Conjecture 2.14, which describes
the ideal of Grλµ. Consider the subgroup G1[[t−1

]]µ defined as the stabilizer in
G1[[t−1

]] of tw0µ. Note that, by Lemma 2.3, G1[[t−1
]]µ ⊂ N1[[t−1

]].
By the orbit-stabilizer theorem, we see that Grµ = G1[[t−1

]]/G1[[t−1
]]µ, and so

O(Grµ)= O(G1[[t−1
]])G1[[t−1

]]µ . Moreover, the map G1[[t−1
]]→Grµ is Poisson, and

thus O(Grµ) is a Poisson subalgebra of O(G1[[t−1
]]).

Lemma 2.19. The subalgebra O(Grµ) contains

1(s)siωi ,ωi
for all i ∈ I, s > 0,

1(s)ωi ,ωi
for all i ∈ I, s > 0,

(1ωi ,siωi /1ωi ,ωi )
(s) for all i ∈ I, s > 〈µ∗, αi 〉.

Later we will see that these elements generate O(Grµ) as a Poisson algebra.

Proof. Note that the action of G1[[t−1
]]µ on O(G1[[t−1

]]) is given by (k · f )(g)=
g( f k) for k ∈ G1[[t−1

]]µ, f ∈ O(G1[[t−1
]]), and g ∈ G1[[t−1

]]. In particular, we see
that k ·1β,v =1β,kv.

Since G1[[t−1
]]µ ⊂ N1[[t−1

]], the minors 1ωi ,ωi and 1siωi ,ωi will be G1[[t−1
]]µ-

invariant. Hence all 1(s)siωi ,ωi ,1
(s)
ωi ,ωi lie in O(Grµ).

On the other hand, let us consider the coefficients of the 1ωi ,siωi minor. If
k ∈G1[[t−1

]]µ, then we have k ·vsiωi = vsiωi+1ωi ,siωi (k)vωi . Hence if g ∈G1[[t−1
]],

then
1ωi ,siωi (gk)
1ωi ,ωi (gk)

=
1ωi ,siωi (g)+1ωi ,ωi (g)1ωi ,siωi (k)

1ωi ,ωi (g)
=
1ωi ,siωi (g)
1ωi ,ωi (g)

+1ωi ,siωi (k).

By Lemma 2.3, we have 1ωi ,siωi (k) ∈ t−〈w0µ,αi 〉C[t]. Hence the coefficient of t−s

in 1ωi ,siωi /1ωi ,ωi is invariant under the action of G1[[t−1
]]µ for s > 〈µ∗, αi 〉. Thus

(1ωi ,siωi /1ωi ,ωi )
(s)
∈ O(Grµ) for s > 〈µ∗, αi 〉. �
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Let J λµ denote the ideal of O(Grµ) Poisson generated by 1(s)ωi ,ωi for i ∈ I and
s > 〈λ−µ,ωi∗〉 = mi .

Conjecture 2.20. The ideal of Grλµ in O(Grµ) is J λµ .

This conjecture generalizes Conjecture 2.14. When µ 6= 0, we do not have a
set of (ordinary) generators for J λµ as in Proposition 2.15. However, we will now
establish an analogue of Corollary 2.16.

Proposition 2.21. The vanishing locus of Jλµ is Grλµ.

Proof. The vanishing locus of J λµ is the union of the symplectic leaves in the
vanishing locus of 1(s)ωi ,ωi for i ∈ I and s > 〈λ − µ,ωi∗〉 = mi ; after all, the
vanishing set is a union of symplectic leaves and if these functions vanish on a
symplectic leaf, then so do all Poisson brackets with them.

These generalized minors vanish on Grλµ by Proposition 2.4. So it suffices to
prove the vanishing locus of our generators does not contain Grνµ for some ν � λ.

Fix ν � λ such that µ≤ ν. Then d = 〈ν−µ,ωi∗〉> 〈λ−µ,ωi∗〉 for some i . We
will prove that there exists a point in Grνµ on which 1(d)ωi ,ωi is nonzero.

Let I++ = I ⊂ G((t−1)) denote the standard Iwahori and let I+− = w0 I++w
−1
0 be

the preimage of B− in G[t]. We claim that it suffices to prove that

I+
−

tw0ν I+
+
∩G−[[t−1

]]tw0µ 6=∅ in G((t−1)). (2)

To see that (2) suffices, let g ∈ G1[[t−1
]] such that gtw0µ lies in the above in-

tersection. As I+− , I++ ⊂ G[t], we see that gtw0µ ∈ Grνµ. Finally, we can write
g = b−tw0νb+t−w0µ for b− ∈ I+− , b+ ∈ I++ , and an elementary computation shows
that 1(d)ωi ,ωi (b−tw0νb+t−w0µ) 6= 0.

To prove (2), we work in the affine flag variety G((t−1))/I and note that (2) is
equivalent to nonemptiness of the intersection I+− tw0ν∩G−[[t−1

]]tw0µ in G((t−1))/I .
Let I−+ denote the preimage of B in G[[t−1

]] under evaluation at t−1
= 0. Since

µ is dominant, B fixes tw0µ and thus G−[[t−1
]]tw0µ = I−+ tw0µ. Thus we reduce to

proving that

I+
−

tw0ν ∩ I−
+

tw0µ 6=∅ in G((t−1))/I.

Twisting by w0, we reduce to proving that

I+
+
w0tw0ν ∩ I−

−
w0tw0µ 6=∅ in G((t−1))/I,

where I−− is the preimage of B− in G[[t−1
]]. From general theory of flag varieties,

this is equivalent to w0tw0ν ≥ w0tw0µ in the Bruhat order on the (extended) affine
Weyl group. This last fact is easily verified under our hypothesis that µ, ν are
dominant and ν ≥ µ. �
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3. Yangians

3A. The Drinfeld Yangian. As mentioned in the introduction, we will study sub-
quotients of Yangians in order to quantize our slices. We will actually need a slight
variant on the usual Yangian, which will be produced via a theory developed by
Gavarini [2007; 2002]. We begin with the usual Yangian, which we call the Drinfeld
Yangian to avoid confusion with the Yangian we wish to consider.

We define the Drinfeld Yangian Uhg[t] as the associative C[[h]]-algebra with
generators e(s)i , h(s)i , f (s)i for i ∈ I and r, s ∈ N and relations[

h(s)i , h(s)j

]
= 0,[

e(r)i , f (s)i

]
= δi j h

(r+s)
i ,[

h(0)i , e(s)j

]
= (αi , α j )e

(s)
j ,[

h(r+1)
i , e(s)j

]
−
[
h(r)i , e(s+1)

j

]
=

h(αi , α j )

2

(
h(r)i e(s)j + e(s)j h(r)i

)
,[

h(0)i , f (s)j

]
=−(αi , α j ) f (s)j ,[

h(r+1)
i , f (s)j

]
−
[
h(r)i , f (s+1)

j

]
=−

h(αi , α j )

2

(
h(r)i f (s)j + f (s)j h(r)i

)
,

[
e(r+1)

i , e(s)j

]
−
[
e(r)i , e(s+1)

j

]
=

h(αi , α j )

2

(
e(r)i e(s)j + e(s)j e(r)i

)
,

[
f (r+1)
i , f (s)j

]
−
[

f (r)i , f (s+1)
j

]
=−

h(αi , α j )

2

(
f (r)i f (s)j + f (s)j f (r)i

)
,

i 6= j, N = 1− ai j =⇒ sym
[
e(r1)

i , [e(r2)
i , . . . [e(rN )

i , e(s)j ] . . . ]
]
= 0,

i 6= j, N = 1− ai j =⇒ sym
[

f (r1)
i , [ f (r2)

i , . . . [ f (rN )
i , f (s)j ] . . . ]

]
= 0,

where sym denotes symmetrization with respect to r1, . . . , rN .
The following result of Drinfeld [1987, Example 6.3] will be our starting point.

Theorem 3.1. Uhg[t] is a quantization of g[t]. More precisely, there is an isomor-
phism of co-Poisson Hopf algebras Uhg[t]/hUhg[t] ∼=Ug[t], where Ug[t] carries
the co-Poisson structure coming from the Manin triple

(
g[t], t−1g[[t−1

]], g((t−1))
)
.

3B. PBW basis for the Drinfeld Yangian. Fix any order on the nodes of the
Dynkin diagram; for each positive root α, we let α̌ denote the smallest simple
root such that α̂ = α− α̌ is again a positive root.

We define eα ∈ g for α ∈1+ recursively by

eαi = ei and eα = [eα̂, eα̌].

We extend this definition to Uhg[t] by setting
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e(r)αi
= e(r)i and e(r)α = [e

(r)
α̂
, e(0)
α̌
].

Similarly, we define fα and f (r)α . We have the following PBW theorem for the
Drinfeld Yangian due to Levendorskii [1993].

Proposition 3.2. (1) Under the isomorphism Uhg[t]/hUhg[t] ∼= Ug[t], e(r)α cor-
responds to eαtr .

(2) Ordered monomials in the e(r)α , h(r)i , f (r)β form a PBW basis for Uhg[t].

3C. Drinfeld–Gavarini duality. Our goal is to give a quantization of the Poisson–
Hopf algebra O(G1[[t−1

]]) using the Drinfeld Yangian Uhg[t]. For this we will use
the quantum groups duality of Drinfeld and Gavarini.

We describe in brief one half of Drinfeld–Gavarini duality [Drinfeld 1987;
Gavarini 2007; 2002]. Let (H,1, ε) be a Hopf algebra over C[[h]]. Consider maps
1n
: H → H⊗n for n ≥ 0 defined by 10

= ε, 11
= idH , and

1n
= (1⊗ id⊗(n−2)) ◦1n−1

for n ≥ 2. Let δn
= (idH − ε)

⊗n
◦1n , and define the Hopf subalgebra

H ′ =
{
a ∈ H | δn(a) ∈ hn H⊗n}.

In general, H ′/h H ′ is a commutative Hopf algebra over C and can be given the
Poisson bracket

{a+ h H ′, b+ h H ′} = h−1
[a, b] + h H ′.

Suppose that G is a Poisson affine algebraic group, namely the maximal spectrum
of a Poisson commutative Hopf algebra O(G), and let g, g∗ be its tangent and
cotangent Lie bialgebras. Let Uh =Uh(g) be a quantization of U (g).

Theorem 3.3 [Gavarini 2007, Theorem 2.2]. There is an isomorphism of Poisson–
Hopf algebras

Uh
′/hUh

′ ∼= O(G∗),

where G∗ is a connected algebraic group with tangent Lie bialgebra g∗.

By [Gavarini 2002], for any basis {xα} of g, there exists a lift {xα} in Uh such
that

• ε(xα)= 0,

• Uh
′ is generated by {hxα}, and

• ordered monomials in these generators span Uh
′ over C[[h]].

In particular, if {x i } generates g, then
{
hxi + hUh

′
}

generates Uh
′/hUh

′ as a Poisson
algebra.
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To allow for easier identification of Uh
′/hUh

′ and O(G∗), we can reformulate
Theorem 3.3 as follows. Consider

L= Der(Uh
′/hUh

′) :=
{
ϕ :Uh

′/hUh
′
→ C

∣∣ ϕ(ab)= ϕ(a)ε(b)+ ε(a)ϕ(b)
}
,

with Lie bracket

[ϕ, φ](a)= (ϕ⊗φ)
(
1(a)−1op(a)

)
and cobracket

δ(ϕ)(a⊗ b)= ϕ({a, b}).

This is the Lie bialgebra of the Poisson algebraic group Spec(Uh
′/hUh

′).
The isomorphism described in Theorem 3.3 can be rephrased as follows.

Corollary 3.4. There is an isomorphism of Lie bialgebras g∗ ∼= L defined by

y 7→
(
hx + hUh

′
7→ 〈y, x〉

)
for x a lift of x ∈ g, extended by the Leibniz rule. This isomorphism yields a perfect
Poisson–Hopf pairing 〈 · , · 〉 :U (g∗)×Uh

′/hUh
′
→ C.

3D. Our Yangian. We will now apply this theory to the Drinfeld Yangian Uhg[t].
We let Y := (Uhg[t])′. We will refer to Y as the Yangian from now on. Note that it
is a subalgebra of the usual Yangian.

For X = Eα, Hi , Fα and r ≥ 1, we define X (r)
= hx (r−1). By the general remarks

above, these elements generate Y and monomials in these generators give a PBW
basis for Y . We define a grading on Y where X (r) has degree r .

Theorem 3.5. The X (r) generate Y subject to the relations[
H (s)

i , H (s)
j

]
= 0,[

E (r)i , F (s)j

]
= hδi j H (r+s−1)

i ,[
H (1)

i , E (s)j

]
= h(αi , α j )E

(s)
j ,[

H (r+1)
i , E (s)j

]
−
[
H (r)

i , E (s+1)
j

]
=

1
2 h(αi , α j )

(
H (r)

i E (s)j + E (s)j H (r)
i

)
,[

H (1)
i , F (s)j

]
=−h(αi , α j )F

(s)
j ,[

H (r+1)
i , F (s)j

]
−
[
H (r)

i , F (s+1)
j

]
=−

1
2 h(αi , α j )

(
H (r)

i F (s)j + F (s)j H (r)
i

)
,[

E (r+1)
i , E (s)j

]
−
[
E (r)i , E (s+1)

j

]
=

1
2 h(αi , α j )

(
E (r)i E (s)j + E (s)j E (r)i

)
,[

F (r+1)
i , F (s)j

]
−
[
F (r)i , F (s+1)

j

]
=−

1
2 h(αi , α j )

(
F (r)i F (s)j + F (s)j F (r)i

)
,
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sym
[
E (r1)

i , [E (r2)
i , . . . [E (rN )

i , E (s)j ] . . . ]
]
= 0 if i 6= j and N = 1− ai j ,

sym
[
F (r1)

i , [F (r2)
i , . . . [F (rN )

i , F (s)j ] . . . ]
]
= 0 if i 6= j and N = 1− ai j ,

Eαi = Ei ,[
E (r)
α̂
, E (1)

α̌

]
= hE (r)α ,

Fαi = Fi ,[
F (r)
α̂
, F (1)

α̌

]
= hF (r)α .

We can repackage these generators and relations using generating series. Let

Ei (u)=
∞∑

s=1

E (s)i u−s, Hi (u)= 1+
∞∑

s=1

H (s)
i u−s, Fi (u)=

∞∑
s=1

F (s)i u−s .

Then the above relations can be written in series form. For example, the series
version of the commutator relation between Ei and Fi is

[Ei (u), F j (v)] = −δi j
h

u− v

(
Hi (u)− Hi (v)

)
. (3)

Remark 3.6. Note that the Drinfeld Yangian Uhg[t] and our Yangian Y have natural
C[h]-forms; moreover, their h = 1 specializations U1g[t] and Y1 coincide as Hopf
algebras. The gradings on Uhg[t] and on Y give rise to two different filtrations
on Y1. In the work of Brundan and Kleshchev [2006], these filtrations appear as the
“loop filtration” and the “Kazhdan filtration”, respectively.

3E. Identification of Yangian with functions of G1[[t−1]]. From the results above,
we can deduce that there is a perfect Hopf pairing between U (t−1g[[t−1

]]) and Y/hY ,
as per Corollary 3.4. Let us denote by Q the root lattice for g, let Q+ denote the
positive root cone, and let Q> = Q+r {0} and Q< =−Q>.

Lemma 3.7. The Drinfeld Yangian Uhg[t], Y , and Y/hY are all Q-graded Hopf
algebras (all tensor products being graded by total degree). The pairing between
U (t−1g[[t−1

]]) and Y/hY respects this grading.

Proof. The Hopf grading on these spaces is induced by the action of the elements
h(0)i (resp. H (1)

i ). In each case, coproducts preserve total degree since the coproduct
is a homomorphism and the above elements are Lie algebra-like.

It is clear from Corollary 3.4 that the pairing between U (t−1g[[t−1
]]) and Y/hY

respects the grading for pairings 〈y, x〉 when y ∈ t−1g[[t−1
]] and x ∈ Y0. The result

follows for monomials y1 . . . yk ∈U (t−1g[[t−1
]]) by induction on k. �

For α ∈ Q, let Y (α) be the corresponding component of Y/hY as per Lemma 3.7.
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Proposition 3.8. In Y/hY we have:

1(H (r)
i )= H (r)

i ⊗1+1⊗H (r)
i +

r−1∑
s=1

H (s)
i ⊗H (r−s)

i +

⊕
α+β=0

α∈Q<,β∈Q>

Y (α)⊗Y (β),

1(E (r)i )= E (r)i ⊗ 1+ 1⊗ E (r)i +

r−1∑
s=1

H (s)
i ⊗ E (r−s)

i +

⊕
α+β=αi

α∈Q<,β∈Q>

Y (α)⊗ Y (β),

1(F (r)i )= F (r)i ⊗ 1+ 1⊗ F (r)i +

r−1∑
s=1

F (s)i ⊗ H (r−s)
i +

⊕
α+β=−αi
α∈Q<,β∈Q>

Y (α)⊗ Y (β).

Proof. To begin, we recall that 1(X (1))= X (1)
⊗ 1+ 1⊗ X (1) for all x ∈ g. Also,

using the presentation of Uhg[t] with generators x, J (x) for x ∈ g (for which the
coproduct is known), a direct calculation yields

1(H (2)
i )= H (2)

i ⊗ 1+ 1⊗ H (2)
i + H (1)

i ⊗ H (1)
i −

∑
β∈8+

Cβ(β, αi )F
(1)
β ⊗ E (1)β ,

where (eβ, fβ)= C−1
β . We prove the coproduct for E (r)i by induction on r , using

the identity

E (r+1)
i =

1
(αi , αi )

{
H (2)

i , E (r)i

}
− H (1)

i E (r)i .

The coproduct of the right side is expanded using the Poisson–Hopf algebra relations,
the formula for 1(H (2)

i ), and the inductive hypothesis. The above identity is then
applied again to reduce the terms in the result, and yields the form as claimed.

An analogous induction proves the case of 1(F (r)i ). Finally, we take the coprod-
uct of the identity

H (r)
i =

{
E (r)i , F (1)i

}
to finish the proof. �

Recall that the pairing between U (t−1g[[t−1
]]) and Y/hY is determined, as per

Corollary 3.4, by the pairing between t−1g[[t−1
]] and g[t] given in Section 2F. Take

an “FHE” total ordering on the generators fαtr , hi tr , eαtr for U (t−1g[[t−1
]]). Then

it is easy to see that the previous lemma and proposition completely control the
pairing between U (t−1g[[t−1

]]) and Y/hY for the corresponding PBW basis. For
example, −F (r)i acts as the dual of the basis element ei t−r , etc.

Theorem 3.9. There is an isomorphism φ : Y/hY ∼= O(G1[[t−1
]]) of N-graded
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Poisson–Hopf algebras such that

φ(Hi (u))=
∏

j

1ω j ,ω j (u)
−a j i ,

φ(Fi (u))= d−1/2
i

1ωi ,siωi (u)
1ωi ,ωi (u)

,

φ(Ei (u))= d−1/2
i

1siωi ,ωi (u)
1ωi ,ωi (u)

,

where O(G1[[t−1
]]) is graded using the loop rotation C× action.

Proof. We check explicitly that the right-hand sides act as described by the previous
proposition. Let X = (x1tr1) . . . (xk trk ) ∈U (t−1g[[t−1

]]) be a basis monomial with
the FHE order as chosen above. Then we have

1ωi ,siωi (u)
1ωi ,ωi (u)

(X)

=−d−1/2
i

∂k

∂z1 . . . ∂zk

〈
v−ωi , (1+ z1ur1 x1) . . . (1+ zkurk xk) fivωi

〉〈
v−ωi , (1+ z1ur1 x1) . . . (1+ zkurk xk)vωi

〉 ∣∣∣∣
z1=···=zk=0

,

noting that sivωi = f ′i vωi =−d−1/2
i fivωi in the generalized minor (see Section 2A).

Since we have an FHE order, to get something nonzero in the right-hand numerator,
xk must be a multiple of ei , since ei fivωi = hivωi = divωi . In this case, zkurk ei

does not contribute to the denominator, and the remaining factors cancel, leaving

1ωi ,siωi (u)
1ωi ,ωi (u)

(X)=−d1/2
i

∂k

∂z1 . . . ∂zk
zkurk

∣∣∣∣
z1=···=zk=0

,

so X must have been ei tr to start with. But this is precisely how d1/2
i Fi (u) acts

on X . Similar computations hold in the two remaining cases.
To prove the equality for Hi (u) one can also work in O(G1[[t−1

]]), and build off
the known results Ei (u) and Fi (u), since we must have

φ(Hi (u))−φ(Hi (v))

u− v
=−

{
φ(Ei (u)), φ(Fi (v))

}
.

We can then use formula (1) and identities for generalized minors.
The nondegeneracy of both Hopf pairings implies that φ is an injection. It follows

that φ is an isomorphism from a dimension count; both Y/hY and O(G1[[t−1
]])

have Hilbert series for the loop grading given by

∞∏
i=1

1
(1− q i )dim g

.



880 Joel Kamnitzer, Ben Webster, Alex Weekes and Oded Yacobi

Indeed, for Y/hY this follows from the PBW theorem coming from Y , since Y is
a free C[[h]]-algebra. On the other hand, the Hilbert series on O(G1[[t−1

]]) is the
same as the Hilbert series for Sym(t−1g[[t−1

]]), since as G1[[t−1
]] is pro-unipotent,

we have an isomorphism of vector spaces. �

3F. Shifted Yangians. The Yangian has a very interesting class of subalgebras: the
shifted Yangians. Let µ be a dominant coweight.

We will now redefine elements

F (s)α =
1
h

[
F (s−〈µ

∗,α̌〉)

α̂
, F (〈µ

∗,α̌〉+1)
α̌

]
, (4)

for α a positive nonsimple root and for s > 〈µ∗, α〉. Note that these F (s)α depend
on µ.

Definition 3.10. The shifted Yangian Yµ is the subalgebra of Y generated by E (s)α
for all α, s, H (s)

i for all i, s, and F (s)α for s > 〈µ∗, α〉.

Proposition 3.11. (1) Monomials in the E (s)α , H (s)
i , F (s)α give a basis for Yµ.

(2) The natural map Yµ/hYµ→ Y/hY is injective.

Proof. We first construct a PBW basis for Y slightly different from the one described
in Section 3D. The generators E (s)α are defined as usual (see Section 3D). The
generators F (s)α are given the usual definition when s ≤ 〈µ∗, α〉, but for s > 〈µ∗, α〉
we take definition (4). By the general remarks following Theorem 3.3, ordered
monomials in generators F (s)α , H (s)

i , E (s)α are a PBW basis of Y .
Any element x ∈ Yµ can be expressed as a linear combination of these PBW

monomials. We now show that any monomials appearing in such an expression do
not contain factors of the form F (s)α for s ≤ 〈µ∗, α〉.

By definition, x is a linear combination of (unordered) monomials in F (s)α , H (t)
i ,

E (u)α , where s> 〈µ∗, α〉. To put x in PBW form, one has to commute these generators
past each other. By definition, when s > 〈µ∗, α〉, F (s)α is a linear combination of
monomials built from F (t)i , where t > 〈µ∗, αi 〉. Therefore it suffices to show that
when commuting such F (t)i past the other generators of Yµ one never obtains factors
of the form F (u)j for u ≤ 〈µ∗, α j 〉. This is a direct consequence of the relations
appearing in Theorem 3.5.

This proves the first statement of the theorem. The second part is a direct
consequence of the first. �

In the limit as µ→∞, we then obtain Y∞, which is the subalgebra generated by
all E (s)α , A(s)i . This is called the Borel Yangian in [Finkelberg and Rybnikov 2010].

We will now show that this shifted Yangian is a quantization of Grµ. Recall that
O(Grµ) is embedded as a Poisson subalgebra of O(G1[[t−1

]]).
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Theorem 3.12. The isomorphism φ restricts to an isomorphism of Poisson algebras
from Yµ/hYµ to O(Grµ).

Proof. First note that Yµ/hYµ is generated as a Poisson algebra by all E (s)i , A(s)i ,
and those F (s)i for i > 〈µ∗, αi 〉. We note that Lemma 2.19 shows that the image of
these generators under φ land in the subalgebra O(Grµ).

Since O(Grµ) is a Poisson subalgebra of O(G1[[t−1
]]), we see that φ restricts to a

map Yµ/hYµ→ O(G1[[t−1
]]). This map is injective, since it is the restriction of an

injective map. Thus, we only need to show that it is surjective, which we do by a
dimension count.

Note that by Lemma 2.3, the isotropy Lie algebra of tw0µ in G1[[t−1
]] is the

finite-dimensional nilpotent Lie algebra

⊕
α∈1+

−〈w0µ,α〉⊕
i=1

t−igα.

As a C∗-module, the functions on the group are identical to those on the Lie algebra
by the unipotence of the stabilizer. Thus, if we let d(k) be the number of roots such
that 〈w0µ, α〉< k, the Hilbert series of the functions on the stabilizer is

∞∏
i=1

1
(1− q i )d(i)

.

The Hilbert series of O(G1[[t−1
]])G1[[t−1

]]µ is the quotient of that of O(G1[[t−1
]])

by that of functions on the stabilizer. That is, it is
∞∏

i=1

1
(1− q i )dim g−d(i) .

On the other hand, the PBW basis for the shifted Yangian gives us the same
Hilbert series for Yµ. �

Thus the shifted Yangian Yµ gives a quantization of Grµ.

Remark 3.13. We should note that it is this theorem that forces us to use the
thick Grassmannian; it will fail if we take the analogue of Grµ in the thin affine
Grassmannian, since this has “too many” functions, and will correspond to a
completion of Yµ.

3G. Deformation of the Yangian. We consider a deformation of the Yangian,
which we think of as related to the Beilinson–Drinfeld Grassmannian deforming
the affine Grassmannian. We consider for each node i in the Dynkin diagram an
infinite sequence of parameters r (1)i , r (2)i , . . . ∈ C[[h]] and their generating series
ri (u)= 1+ r (1)i u−1

+ · · · .
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Consider the algebra Y (r) generated by the coefficients of Ei (u), Fi (u), Ai (u).
The relations are as in the previous section, with the relation (3) replaced by

(u− v)
[
Ei (u), Fi (v)

]
=−h

(
ri (u)Hi (u)− ri (v)Hi (v)

)
, (5)

and let Yµ(r) be the shifted analogue of this algebra. Y (r) is actually isomorphic
to the trivial deformation of the Yangian via the map Hi (u) 7→ Hi (u)/ri (u).

4. Quantization of slices

In order to quantize the slices Grλµ, we will need to define a quotient of Yµ (and its
deformations Yµ(r)).

4A. Change of Cartan generators. It will be convenient for us to change the
Cartan generators of Y . Following [Gerasimov et al. 2004], we define A(s)i by the
equation

Hi (u)=

∏
j 6=i

−a j i∏
p=1

A j

(
u− h

2
(αi + pα j , α j )

)
Ai (u)Ai

(
u− h

2
(αi , αi )

) , (6)

where Ai (u)= 1+
∞∑

s=1
A(s)i u−s .

Example 4.1. In the G = SL2 case, this gives H(u) = 1
A(u)A(u−h)

, and so for
example we have

H (1)
=−2A(1), H (2)

= 3A(1)
2
− h A(1)− 2A(2).

Proposition 4.2 [Gerasimov et al. 2004, Lemma 2.1]. Equation (6) uniquely deter-
mines all the A(s)i .

One can think of the new generators A(s)i as being related to the fundamental
coweights of G, whereas the H (s)

i match with the simple coroots. In particular, we
have the following result which follows by setting h = 0 in (6).

Proposition 4.3. Let
φ : Y/hY → O(G1[[t−1

]])

be the isomorphism from Theorem 3.9. Then φ(A(s)i )=1
(s)
ωi ,ωi .

4B. The GKLO representation. In this section, we describe certain representations
via difference operators of shifted Yangians, based on [Gerasimov et al. 2004]. Fix
an orientation of the Dynkin diagram; we will write i← j to denote arrows in this
quiver. This will replace the ordering on the simple roots in [loc. cit.].

Fix a dominant coweight λ such that µ ≤ λ and let mi = 〈λ−µ,ωi∗〉 and let
λi = 〈λ, αi∗〉.
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Define a C[[h]]-algebra Dλ
µ, with generators zi,k, βi,k, β

−1
i,k , for i ∈ I and 1 ≤

k ≤ mi , and (zi,k − zi,l)
−1, and relations that all generators commute except that

βi,kzi,k = (zi,k + di h)βi,k .
This algebra Dλ

µ is an algebra of h-difference operators.

Proposition 4.4. The algebra Dλ
µ is a free C[[h]]-algebra and we have an isomor-

phism of Poisson algebras

Dλ
µ/h Dλ

µ
∼= C

[
zi,k, (zi,k − zi,l)

−1, βi,k, β
−1
i,k

]
,

where the right-hand side is given the Poisson structure defined by {βi,k, zi,k} =

diβi,k and all other generators Poisson commute.

Proof. Obviously, we have a map

C
[
zi,k, (zi,k − zi,l)

−1, βi,k, β
−1
i,k

]
→ Dλ

µ/h Dλ
µ

by observing that Dλ
µ/h Dλ

µ is commutative. From the Bergman diamond lemma,
we see that the algebra Dλ

µ has a PBW basis consisting of

h p
·

∏
β
±ai,k
i,k ·

∏
zb j,k

j,k ·
∏
k<`

(zi,k − zi,`)
ei,k,`

subject to the restriction that if b j,k 6= 0, then k must be maximal in its equivalence
class for the relation given by the transitive closure of the binary relation k ∼ ` if
e j,k,` 6= 0. Freeness over C[[h]] follows immediately and since the same monomials
give a basis of C[[h]]

[
zi,k, (zi,k − zi,l)

−1, βi,k, β
−1
i,k

]
, this confirms that we have the

desired isomorphism. The Poisson bracket calculation follows immediately from
the relations. �

Fix some complex numbers c(r)i for i ∈ I , 1≤ r ≤λi . For any variable x , consider
the monic degree-λi polynomial whose coefficients are the numbers c(r)i ,

Ci (x)= xλi + c(1)i xλi−1
+ · · ·+ c(λi )

i .

Note that x−λi Ci (x)= 1+c(1)i x−1
+· · ·+c(λi )

i x−λi . We also introduce polynomials
Zi (x) =

∏mi
k=1(x − zi,k) and Zi,k(x) =

∏
`6=k(x − zi,`). Let µi = 〈µ, αi∗〉 and set

Fµ,i (u)=
∑
∞

s=1 F (s+µi )
i u−s . Finally, for any c as above, define r by

ri (u)= u−λi Ci (u)

∏
j 6=i

−a j i∏
p=1

(
1− u−1

(
hdi

ai j

2
+ hd j p

))m j

(1− hdi u−1)mi
. (7)

We are now ready to define the GKLO representation:
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Theorem 4.5. There is a map of C[[h]]-algebras, 9λ
µ : Yµ(r)→ Dλ

µ, defined by:

Ai (u) 7→ u−mi Zi (u),

Ei (u) 7→ d−1/2
i

mi∑
k=1

∏
j→i

−a j i∏
p=1

Z j

(
zi,k − hdi

ai j

2
− hd j p

)
(u− zi,k)Zi,k(zi,k)

β−1
i,k .

And Fµ,i (u) maps to

−d−1/2
i

mi∑
k=1

Ci (zi,k + hdi )

∏
j←i

−a j i∏
p=1

Z j

(
zi,k − hdi

(ai j

2
− 1

)
− hd j p

)
(u− zi,k − hdi )Zi,k(zi,k)

βi,k .

Proof. When µ= 0, this is a reformulation of Theorem 3.1(i) of [Gerasimov et al.
2004]. Suppose then that µ 6= 0. Then the proof of the theorem cited applies to all
the relations in Yµ except for the commutator relation between Ei (u) and Fµ,i (v).

In the shifted Yangian this relation takes the form

(u− v)
[
Ei (u), Fµ,i (v)

]
= h

(
Jµ,i (v)− Jµ,i (u)

)
, (8)

where Ji (v)= ri (v)Hi (v)=
∞∑

p=0
J (p)i v−p and

Jµ,i (v)=
∞∑

p=1

J (p+µi )

i v−p.

To express the left-hand side of (8), we set

L i (v)=

Ci (zi,k + hdi )
∏
j 6=i

−a j i∏
p=1

Z j

(
zi,k − hdi

(ai j

2
− 1

)
− hd j p

)
Zi,k(zi,k + hdi )Zi,k(zi,k)(v− zi,k − hdi )

,

Ri (v)=

Ci (zi,k)
∏
j 6=i

−a j i∏
p=1

Z j

(
zi,k − hdi

ai j

2
− hd j p

)
Zi,k(zi,k − hdi )Zi,k(zi,k)(v− zi,k)

.

Then the left-hand side of (8) is equal to

d−1
i

mi∑
k=1

(
L i (v)− Ri (v)

)
−
(
L i (u)− Ri (u)

)
.

Note that we expressed this sum as a “v-part” minus a “u-part”.
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Now we consider the right-hand side of (8). Note that

λi = µi + 2mi +
∑
j↔i

a j i m j .

Therefore,

ri (u)= u−µi

Ci (u)
∏
j 6=i

−a j i∏
p=1

(
u− hdi

ai j

2
− hd j p

)m j

umi (u− hdi )mi
.

Now

Hi (u) 7→
umi (u− hdi )

mi∏
j 6=i

−a j i∏
p=1

(
u− hdi

ai j

2
− hd j p

)m j

∏
j 6=i

−a j i∏
p=1

Z j

(
u− hdi

ai j

2
− hd j p

)
Zi (u)Zi (u− hdi )

,

and hence

ri (u)Hi (u) 7→ u−µi Ci (u)

∏
j 6=i

−a j i∏
p=1

Z j

(
u− hdi

ai j

2
− hd j p

)
Zi (u)Zi (u− hdi )

.

Therefore

Ci (u)

∏
j 6=i

−a j i∏
p=1

Z j

(
u− hdi

ai j

2
− hd j p

)
Zi (u)Zi (u− hdi )

=

∞∑
p=0

J (p)i uµi−p.

On the other hand,

Jµ,i (u)=
∞∑

p=µi+1

J (p)i uµi−p,

showing that Jµ,i (u) is a truncation of

Ci (u)

∏
j 6=i

−a j i∏
p=1

Z j

(
u− hdi

ai j

2
− hd j p

)
Zi (u)Zi (u− hdi )

.

More precisely, for r = 1, 2, . . . ,

h Jµ,i (u)
∣∣
u−r = hCi (u)

∏
j 6=i

−a j i∏
p=1

Z j

(
u− hdi

ai j

2
− hd j p

)
Zi (u)Zi (u− hdi )

∣∣∣
u−r
.
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Using partial fractions, we have that h
Zi (u)Zi (u−hdi )

equals

mi∑
k=1

1
Zik(zik)Zik(zik + hdi )(u− zik − hdi )

−
1

Zik(zik)Zik(zik − hdi )(u− zik)
.

Therefore for r = 1, 2, . . . , the u−r -coefficient of h Jµ,i (u) is equal to the u−r -
coefficient of

mi∑
k=1

Ci (u)
∏
j 6=i

−a j i∏
p=1

Z j

(
u− hdi

ai j

2
− hd j p

)
Zik(zik)Zik(zik + hdi )(u− zik − hdi )

−

Ci (u)
∏
j 6=i

−a j i∏
p=1

Z j

(
u− hdi

ai j

2
− hd j p

)
Zik(zik)Zik(zik − hdi )(u− zik)

.

Now observe that for any polynomial p(u) and for r = 1, 2, . . . ,

p(u)
u− z

∣∣∣
u−r
=

p(z)
u− z

∣∣∣
u−r
.

Therefore for r = 1, 2, . . . , the u−r -coefficient of huµi Jµ,i (u) is equal to the u−r -
coefficient of

∑mi
k=1 L i (u)− Ri (u), proving (8). �

Example 4.6. If g = sl2 and λ = α∨, µ = 0, then the formulas above simplify
considerably. In this case,

A(u) 7→ 1− zu−1, E(u) 7→
1

u− z
β−1,

and F(u) 7→ −
(
(z+ h)2+ c(1)(z+ h)+ c(2)

) 1
u− z− h

β. In particular,

H (1)
7→ 2z, E (1) 7→ β−1, F (1) 7→ −

(
(z+ h)2+ c(1)(z+ h)+ c(2)

)
β.

Restrict this representation to the copy of sl2 generated by E (1), H (1)
+c(1)+h, F (1),

and consider these as difference operators acting on the polynomial ring C[z]. (More
precisely, these act on C[[h]][z], but one can specialize h to 1.) This is a standard
Whittaker module for sl2 with generic nilpotent character.

Remark 4.7. We can define a Z-grading on Dλ
µ by setting

deg h = 1, deg zi,k = 1, degβi,k = mi +
∑
i→ j

ai j m j + λi −µi .

With this definition, the GKLO representation preserves grading.
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4C. Quantization of the slices Grλµ. For any c as above, let Y λµ(c) be the image
of Yµ(r) in Dλ

µ under the GKLO representation 9λ
µ and let I λµ(c) denote the kernel

of 9λ
µ (here r is determined from c by (7)).

Note that Y λµ(c) is free as a C[[h]]-algebra since it is a subalgebra of Dλ
µ, a free

C[[h]]-algebra.
We have the isomorphism Yµ(c)→ Yµ from Section 3G and thus we get an

isomorphism of Poisson algebras Yµ(c)/hYµ(c)→ O(Grµ) from Theorem 3.12.
On the other hand, because Y λµ(c) is free as a C[[h]]-algebra, we get a surjection of
Poisson algebras Yµ(c)/hYµ(c)→ Y λµ(c)/hY λµ(c).

We will now establish the following theorem, which shows that Y λµ is a quantiza-
tion of scheme supported on Grλµ.

Theorem 4.8. There is a surjective map of Poisson algebras Y λµ(c)/hY λµ(c)→
O(Grλ̄µ) which is an isomorphism modulo the nilradical of the left-hand side.

Remark 4.9. Consider the map

Y λµ(c)/hY λµ(c)→ C
[
zi,k, (zi,k − zi,l)

−1, βi,k, β
−1
i,k

]
obtained by reducing the GKLO representation mod h. If we knew that this map
was injective, then we would know that Y λµ(c)/hY λµ(c) was reduced and that the
map from Theorem 4.8 was an isomorphism. We will in fact make a stronger
conjecture.

If Conjecture 2.20 holds, then we can strengthen Theorem 4.8 as follows.

Theorem 4.10. If Conjecture 2.20 holds, then:

(1) There is an isomorphism of Poisson algebras Y λµ(c)/hY λµ(c)→ O(Grλ̄µ).

(2) Y λµ(c) is the quotient of Yµ(c) by the 2-sided ideal generated by A(s)i for
s > mi , i ∈ I .

Proof of Theorem 4.8. Via the isomorphism Yµ(c)/hYµ(c)→ O(Grµ), we can
regard Y λµ(c)/hY λµ(c) as a quotient of O(Grµ) by an ideal, which we denote by I2.

First, note that 9λ
µ(A

(s)
i )= 0 for i ∈ I , s >mi , and thus 1(s)ωi ,ωi ∈ I2 for i ∈ I and

s > mi . Since I2 is a Poisson ideal, we see that J λµ ⊂ I2.
By Proposition 2.21, we see that the vanishing locus of J λµ is Grλµ, and thus the

vanishing locus of I2 is contained in Grλµ. Thus it suffices to show that the vanishing
locus of I2 is not strictly contained in Grλµ.

Since I2 is a Poisson ideal, we see that V (I2) is a Poisson subvariety of Grλµ and
thus is the union of Grν̄µ, for ν ≤ λ. Suppose that we have

V (I2)=
⋃

j

Gr
ν̄ j
µ
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for ν j < λ. For each j , there exists i such that 〈ν j −µ,ωi∗〉< 〈λ−µ,ωi∗〉 = mi .
Thus applying Proposition 2.4,

∏
i 1

(mi )
ωi ,ωi vanishes on

⋃
j Gr

ν̄ j
µ . Hence for some k,

we have
(∏

i 1
(mi )
ωi ,ωi

)k
∈ I2.

On the other hand, we see that under the GKLO representation

9λ
µ(A

(mi )
i )= (−1)mi zi,1 . . . zi,mi ,

and thus under the map

O(Grµ)∼= Yµ(c)/hYµ(c)→ Dλ
µ/h Dλ

µ
∼= C

[
zi,k, (zi,k − zi,l)

−1, βi,k, β
−1
i,k

]
,(∏

i 1
(mi )
ωi ,ωi

)k is mapped to a monomial in the zi,k . In particular, this shows that(∏
i 1

(mi )
ωi ,ωi

)k does not lie in I2, contradicting the previous paragraph.
Thus we conclude that V (I2)= Grλµ as desired. �

Proof of Theorem 4.10. Suppose I1 is the ideal of Grλµ in O(Grµ).
Let K be the ideal in Yµ(c) generated by A(s)i for s > mi , i ∈ I . Then we have

an inclusion K ⊂ I λµ(c) and a resulting map

K/hK → I λµ(c)/hI λµ(c)= I2

which may not be injective. Let I3 denote the image of this map. From the
definitions, we see that I3 ⊂ I2. Moreover, we have that J λµ ⊂ I3, since I3 is a
Poisson ideal and it contains the generators of I3.

In the previous proof we showed that I2⊂ I1. Thus we have a chain of inclusions
J λµ ⊂ I3 ⊂ I2 ⊂ I1. On the other hand, Conjecture 2.20 shows us that I1 = J λµ .

Hence we conclude that I1 = I2 = I3 = J λµ . So the first assertion holds.
For the second assertion, note that I3 = I2 implies that K/hK → I λµ(c)/hI λµ(c)

is surjective. Let L = I λµ(c)/K . The long exact sequence for ⊗C[[h]]C gives

K/hK → I λµ(c)/hI λµ(c)→ L/hL→ 0,

and thus L/hL = 0. By Nakayama’s lemma, we conclude that L = 0, and thus
K = I λµ(c) as desired. �

4D. Universality of the quantization. There is already a rich literature on the
theory of deformation quantizations of symplectic varieties. The most relevant
work for us is [Bezrukavnikov and Kaledin 2004], showing the existence and
uniqueness of deformation quantizations of symplectic resolutions. This theory can
be applied directly to a smooth convolution variety Gr

Eλ
µ. Moreover, as noted by

Braden, Proudfoot and Webster [Braden et al. 2012, 3.4], it can be extended in a
very straightforward way to the nonsmooth case GrEλµ, since we know that GrEλµ is a
terminalization (Theorem 2.7).
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This shows that the variety Grλµ has a canonical family of quantizations which
extend to a deformation quantization sheaf on Gr

Ēλ
µ. The base of this family is the

same as the base for the universal deformation of Grλµ as a symplectic singularity (as
constructed by Kaledin and Verbitsky [2002] or Namikawa [2011]). By [Namikawa
2010, 1.1], this base B is an affine space modulo the action of a finite group. This
group can be described by looking at the codimension-2 strata of the product of
Grλµ, which are Grλ−αi

µ , and taking the product of the Weyl groups attached to them
by the McKay correspondence, which (using Example 2.2) in our case results in
the symmetric groups Sλ,µ =

∏
i :mi>0 Sλi . Here we use the fact that these strata are

simply connected.
For the remainder of this section, let us regard the complex numbers r (s)i and c(s)i

as variables and let Ỹµ be the C[r (s)i ]-algebra which recovers the old Yµ(r) upon
specializing the variables. Let

Ỹ λµ = Ỹµ⊗C[r (s)i ]
C[c(s)i ]

/ ({
A(s)i | s > mi

})
(here we use a map C[r (s)i ] → C[c(s)i ] given by (7)). If Conjecture 2.20 (and hence
Theorem 4.10) holds, then Ỹ λµ can be specialized (via a map C[c(s)i ] → C) to each
of the Y λµ(c). We conjecture that Ỹ λµ is related to the above universal quantization
as follows.

First note that the BD analogue Gr
Ēλ
µ;Aρ(λ)

is a symplectic deformation of Grλµ over
the base Aρ(λ), and thus is the pull-back of the universal deformation by a map
b : Aρ(λ)

→ B.

Conjecture 4.11. (1) The map b : Aρλ
→ B descends to a surjective map b̃ :

Aρλ/Sλ,µ→ B.

(2) The algebra Ỹ λµ is the base change along b̃ of the universal, Bezrukavnikov–
Kaledin-type quantization.

Example 4.12. We continue Example 4.6, so G = SL2 and λ= α∨, µ= 0. Note
that in Y λµ , we have that E (s) = (−A(1))s−1 E (1), and F (s) = F (1)(−A(1))s−1, and
so Y λµ is generated by E (1) and F (1).

Let Uhsl2 denote the h-version of the universal enveloping algebra of sl2. Let
C = E F + F E + 1

2 H 2 be its Casimir element. For any complex number c, let
Zc denote the ideal in Uhsl2 generated by the central element C − c. Standard
results give that Uhsl2/Zc is a quantization of the nilpotent cone of sl2, which is
isomorphic as a Poisson variety to Grλµ.

The map

E (1) 7→ E, H (1)
7→ H + c(1)+ h, F (1) 7→ F
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defines an isomorphism Y λµ ∼=Uhsl2/Zc, where c = 2c(2)− 1
2(c

(1))2+ 1
2 h2. If we

don’t specialize, then the same formulas combined with the assignment

c(2) 7→ − 1
2C + 1

4(c
(1))2− 1

4 h2

give an isomorphism
Ỹ 2

0
∼=Uh(sl2)[c(1)].

In this example, Uh(sl2) is the universal quantization and c(1) a trivial deformation
parameter. The universal family is

sl2
tr(a2)
−→ C.

Since the fiber of the BD analogue over (x, y) ∈ A2 can be identified with matrices
with eigenvalues x and y, the map b is just b(x, y)= 1

4(x − y)2. Thus, choosing
x + y and (x − y)2 as generators of symmetric functions, b̃ is just the projection
map A2

→ A1.

The sum of the c(1)i is always a trivial deformation parameter; usually this is the
only such parameter, but there are degenerate cases where other parameters can be
trivialized as well (for example, if λ= µ).

4E. Quantization of Zastava spaces. Here we assume that Conjecture 2.20 holds,
and thus we will assume the conclusions of Theorem 4.10.

Let us fix ν in the positive coroot cone. Choose some µ0 such that µ0 + ν

is dominant. Let c be a collection of complex numbers as above and consider
Yµ0+ν
µ0 (c).

Now for any dominant µ with µ≥ µ0, we extend c by 0 and (slightly abusing
notation) consider Yµ+νµ (c). Since the generators of Yµ+νµ (c) are a subset of the
generators of Yµ0+ν

µ0 (c) and the relations are the same, we obtain a map Yµ+νµ (c)→
Yµ0+ν
µ0 (c). It is easy to see that this map is an isomorphism on the N -th filtered

piece if 〈µ, αi 〉 ≥ N for all i .
Thus this system stabilizes to the algebra Y∞+ν

∞
, which is the quotient of the

Borel Yangian Y∞ by the 2-sided ideal generated by A(s)i for s > 〈ν, αi 〉; perhaps
surprisingly, this limit doesn’t depend on c or our starting µ0.

Combining Theorem 4.10 with Theorem 2.10, we obtain the following (dependent
on Conjecture 2.20), which was conjectured in [Finkelberg and Rybnikov 2010] for
G = SLn (and proven for G = SL2).

Theorem 4.13. Y∞+ν
∞

/hY∞+ν
∞

is isomorphic to the Poisson algebra O(Zν).

Remark 4.14. As mentioned above, the GKLO representation gives rise to a map
of graded Poisson algebras

Y λµ(c)/hY λµ(c)→ Dλ
µ(c)/h Dλ

µ(c)
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(which we expect is an inclusion) and thus to a C×-equivariant map of Poisson
varieties ∏

i

(Cmi r1)× (C×)mi → Grλµ,

which we expect to be étale.
If we then compose with the map Grλµ→ Zλ−µ, we obtain

∏
i
(Cmir1)→ Zλ−µ,

which was studied in [Gerasimov et al. 2004].
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