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In this paper, we investigate the distribution of the set of values of a linear map
at integer points on a quadratic surface. In particular, it is shown that, subject to
certain algebraic conditions, this set is equidistributed. This can be thought of as
a quantitative version of the main result from a previous paper. The methods used
are based on those developed by A. Eskin, S. Mozes and G. Margulis. Specifically,
they rely on equidistribution properties of unipotent flows.

1. Introduction

Consider the following situation. Let X be a rational surface in Rd , R be a fixed
region in Rs and F : X→ Rs be a polynomial map. An interesting problem is to
investigate the size of the set

Z = {x ∈ X ∩Zd
: F(x) ∈ R}

consisting of integer points in X such that the corresponding values of F are in R.
Suppose that the set of values of F at the integer points of X is dense in Rs . In this
case, the set Z will be infinite. However, the set

ZT = {x ∈ X ∩Zd
: F(x) ∈ R, ‖x‖ ≤ T }

can be considered. This set will be finite, and its size will depend on T . Typically,
the density assumption indicates that the set Z might be equidistributed within the
set of all integer points in X . Namely, as T increases, the size of the set ZT should
be proportional to the appropriately defined volume of the set

{x ∈ X : F(x) ∈ R, ‖x‖ ≤ T }

consisting of real points on X with values in R and bounded norm. Such a result,
if it is obtained, can be seen as quantifying the denseness of the values of F at
integral points.
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The situation described above is too general, but it serves as motivation for what
is to come. So far, what is proved is limited to special cases. For instance, when
M : Rd

→ Rs is a linear map, classical methods can be used to establish necessary
and sufficient conditions that ensure the values of M on Zd are dense in Rs . The
equidistribution problem described above can also be considered in this case. It is
straightforward to obtain an asymptotic estimate for the number of integer points
with bounded norm whose values lie in some compact region of Rs [Cassels 1972].

When Q : Rd
→ R is a quadratic form, the situation is that of the Oppenheim

conjecture. Margulis [1989] obtained necessary and sufficient conditions to ensure
that the values of Q on Zd are dense in R. Considerable work has gone into
the equidistribution problem in this case, first by Dani and Margulis [1993], who
obtained an asymptotic lower bound for the number of integers with bounded height
such that their images lie in a fixed interval. Later, Eskin, Margulis and Mozes
[Eskin et al. 1998] gave the corresponding asymptotic upper bound for the same
problem. The major ingredient, used in the proof of Oppenheim conjecture, is
to relate the density of the values of a quadratic form at integers to the density
of certain orbits inside a homogeneous space. This connection was first noted
by M. S. Raghunathan in the late 1970s (appearing in print in [Dani 1981], for
instance). It is, in this way, using tools from dynamical systems to study the orbit
closures of subgroups corresponding to quadratic forms, that Margulis proved the
Oppenheim conjecture. Similarly, the later refinement, due to Dani and Margulis
[1990], who considered the values of quadratic forms at primitive integral points,
and work on the equidistribution (quantitative) problem by Dani and Margulis and
Eskin, Margulis and Mozes, was also obtained by studying the orbit closures of
subgroups acting on homogeneous spaces.

Similar techniques were also used by Gorodnik [2004] to study the set of values
of a pair, consisting of a quadratic and linear form, at integer points and in [Sargent
2013] to establish conditions sufficient to ensure that the values of a linear map at
integers lying on a quadratic surface are dense in the range of the map. The main
result of this paper deals with the corresponding equidistribution problem and is
stated in the following:

Theorem 1.1. Suppose Q is a quadratic form on Rd such that Q is nondegenerate
and indefinite with rational coefficients. Let M = (L1, . . . , Ls) : R

d
→ Rs be a

linear map such that:

(1) The following relations hold: d > 2s and rank(Q|ker(M))= d − s.

(2) The quadratic form Q|ker(M) has signature (r1, r2), where r1 ≥ 3 and r2 ≥ 1.

(3) For all α ∈ Rs
\ {0}, α1L1+ · · ·+αs Ls is nonrational.

Let a ∈Q be such that the set {v ∈ Zd
: Q(v)= a} is nonempty. Then there exists

C0 > 0 such that, for every θ > 0 and all compact R ⊂ Rs with piecewise smooth
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boundary, there exists a T0 > 0 such that, for all T > T0,

(1− θ)C0 Vol(R)T d−s−2
≤ |{v ∈ Zd

: Q(v)= a, M(v) ∈ R, ‖v‖ ≤ T }|

≤ (1+ θ)C0 Vol(R)T d−s−2,

where Vol(R) is the s-dimensional Lebesgue measure of R.

Remark 1.2. The constant C0 appearing in Theorem 1.1 is such that

C0 Vol(R)T d−s−2
∼ Vol({v ∈ Rd

: Q(v)= a, M(v) ∈ R, ‖v‖ ≤ T }),

where the volume on the right is the Haar measure on the surface defined by
Q(v)= a.

Remark 1.3. Theorem 1.1 should hold with the condition that rank(Q|ker(M)) =

d − s replaced by the condition that rank(Q|ker(M)) > 3. Dealing with the more
general situation requires taking into account the nontrivial unipotent part of
StabSO(Q)(M); as such, lower bounds could probably be proved using methods of
[Dani and Margulis 1993], but so far, no way has been found to obtain the statement
that would be needed in order to obtain an upper bound.

Remark 1.4. As in [Eskin et al. 1998], it would be possible to obtain a version of
Theorem 1.1 where the condition that ‖v‖< T was replaced by v ∈ T K0, where K0

is an arbitrary deformation of the unit ball by a continuous and positive function. It
should also be possible to obtain a version of Theorem 1.1 where the parameters T0

and C0 remain valid for any pair (Q,M) coming from compact subsets of pairs
satisfying the conditions of the theorem.

Remark 1.5. The cases when the quadratic form Q|ker(M) has signature (2, 2)
or (2, 1) can be considered exceptional. There are asymptotically more integers
than expected (by a factor of log T ) lying on certain surfaces defined by quadratic
forms of signature (2, 2) or (2, 1). This leads to counterexamples of Theorem 1.1
in the cases when the quadratic form Q|ker(M) has signature (2, 2) or (2, 1). Details
of these examples are found in Section 6.

Outline of the paper. The proof of Theorem 1.1 rests on statements about the
distribution of orbits in certain homogeneous spaces. The philosophy is that equi-
distribution of the orbits corresponds to equidistribution of the points considered in
Theorem 1.1. Consider the following:

Ratner’s equidistribution theorem [Ratner 1994]. Let G be a connected Lie
group, 0 a lattice in G and U = {ut : t ∈ R} a one-parameter unipotent subgroup
of G. Then for all x ∈ G/0, the closure of the orbit Ux has an invariant measure
µUx supported on it, and for all bounded continuous functions f on G/0,

lim
T→∞

1
T

∫ T

0
f (ut x)=

∫
Ux

f dµUx .



898 Oliver Sargent

Recall that in the proof of the quantitative Oppenheim conjecture [Eskin et al.
1998] one needs to consider an unbounded function on the space of lattices. Simi-
larly, in order to prove Theorem 1.1, one needs to consider an unbounded function F
on a certain homogeneous space. The basic idea is to try to apply Ratner’s equi-
distribution theorem to F in order to show that the average of the values of F
evaluated along a certain orbit converges to the average of F on the entire space.
This is the fact that corresponds to the fact that integral points on the quadratic surface
with values in R are equidistributed. The main problem in doing this is that F is un-
bounded, and so one must obtain an ergodic theorem taking a similar form to Ratner’s
equidistribution theorem but valid for unbounded functions. In order to do this, one
needs precise information about the behavior of the orbits near the cusp. This infor-
mation is obtained in Section 3 and comes in the form of nondivergence estimates for
certain dilated spherical averages. In order to obtain these estimates, we use a certain
function defined by Benoist and Quint [2012]. The required ergodic theorem is then
proved in Section 4. Finally in Section 5, the proof of Theorem 1.1 is completed
using an approximation argument similar to that found in [Eskin et al. 1998]. Specif-
ically, the averages of F over the space are related to the quantity C0 Vol(R)T d−s−2

and the averages of F along an orbit are related to the number of integer points
with bounded height, lying on the surface and with values in R. In Section 2, the
basic notation is set up and the main results from Sections 3 and 4 are stated.

2. Set-up

2A. Main results. For the rest of the paper, the following convention is in place:
s, d and p will be fixed natural numbers such that 2s < d and 0< p < d . Also, r1

and r2 will be varying, natural numbers such that d − s = r1+ r2. Let L denote
the space of linear forms on Rd , and let CLin denote the subset of Ls such that for
all M ∈ CLin Condition (3) of Theorem 1.1 is satisfied. A quadratic form on Rd

is said to be defined over Q if it has rational coefficients or is a scalar multiple
of a form with rational coefficients. For a a rational number, let Q(p, a) denote
quadratic forms on Rd defined over Q with signature (p, d − p) such that the set
{v ∈ Zd

: Q(v)= a} is nonempty for all Q ∈ Q(p, a). Define

CPairs(a, r1, r2)

= {(Q,M) : Q ∈ Q(p, a), M ∈ CLin and Q|ker(M) has signature (r1, r2)}.

Note that for r1 ≥ 3 and r2 ≥ 1 the set CPairs(a, r1, r2) consists of pairs satisfying
the conditions of Theorem 1.1. Although the set CPairs(a, r1, r2) and hence its
subsets and sets derived from them depend on a, this dependence is not a crucial
one, so from now on, most of the time, this dependence will be omitted from the
notation. For M ∈ Ls and R ⊂ Rs a connected region with smooth boundary, let
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VM(R) = {v ∈ Rd
: M(v) ∈ R}. For Q ∈ Q(p, d − p), a ∈ Q and K = R or Z,

let Xa
Q(K) = {v ∈ Kd

: Q(v) = a}. Denote the annular region inside Rd by
A(T1, T2)= {v ∈ Rd

: T1 ≤ ‖v‖ ≤ T2}. Using this notation, we state the following
(equivalent) version of Theorem 1.1, which will be proved in Section 5:

Theorem 2.1. Suppose that r1 ≥ 3, r2 ≥ 1 and a ∈ Q. Then for all (Q,M) ∈
CPairs(a, r1, r2), there exists C0 > 0 such that, for every θ > 0 and all compact
R ⊂ Rs with piecewise smooth boundary, there exists a T0 > 0 such that, for all
T > T0,

(1−θ)C0 Vol(R)T d−s−2
≤|Xa

Q(Z)∩VM(R)∩A(0, T )|≤ (1−θ)C0 Vol(R)T d−s−2.

Remark 2.2. As remarked previously, the cases when r1 = 2 and r2 = 2 or r1 = 2
and r2 = 1 are interesting. In dimensions 3 and 4, there can be more integer points
than expected lying on some surfaces defined by quadratic forms of signature (2, 2)
or (2, 1); this means that the statement of Theorem 2.1 fails for certain pairs. In
Section 6, these counterexamples are explicitly constructed. Moreover, it is shown
that this set of pairs is big in the sense that it is of second category. We note that as
in [Eskin et al. 1998] one could also show that this set has measure 0 and one could
prove the expected asymptotic formula as in Theorem 2.1 for almost all pairs.

Even though Theorem 2.1 fails when r1 = 2 and r2 = 2 or r1 = 2 and r2 = 1, we
do have the following uniform upper bound, which will be proved in Section 5 and
is analogous to Theorem 2.3 from [Eskin et al. 1998]:

Theorem 2.3. Let R ⊂ Rs be a compact region with piecewise smooth boundary
and a ∈Q.

(I) If r1 ≥ 3 and r2 ≥ 1, then for all (Q,M) ∈ CPairs(a, r1, r2) there exists a
constant C depending only on (Q,M) and R such that, for all T > 1,

|Xa
Q(Z)∩ VM(R)∩ A(0, T )| ≤ CT d−s−2.

(II) If r1 = 2 and r2 = 1 or r1 = r2 = 2, then for all (Q,M) ∈CPairs(a, r1, r2) there
exists a constant C depending only on (Q,M) and R such that, for all T > 2,

|Xa
Q(Z)∩ VM(R)∩ A(0, T )| ≤ C(log T )T d−s−2.

2B. A canonical form. For v1, v2 ∈Rd , we will use the notation 〈v1, v2〉 to denote
the standard inner product in Rd . For a set of vectors v1, . . . , vi ∈ Rd , we will also
use the notation 〈v1, . . . , vi 〉 to denote the span of v1, . . . , vi in Rd ; although this
could lead to some ambiguity, the meaning of the notation should be clear from the
context.

For some computations, it will be convenient to know that our system is conjugate
to a canonical form. Let e1, . . . , ed be the standard basis of Rd . Let (Q0,M0) be



900 Oliver Sargent

the pair consisting of a quadratic form and a linear map defined by

Q0(v)= Q1,...,s(v)+2vs+1vd+

s+r1∑
i=s+2

v2
i −

d−1∑
i=s+r1+1

v2
i and M0(v)= (v1, . . . , vs),

where vi = 〈v, ei 〉 and Q1,...,s(v) is a nondegenerate quadratic form in variables
v1, . . . , vs . By Lemma 2.2 of [Sargent 2013], all pairs (Q,M) such that the signature
of Q|ker(M) is (r1, r2) and rank(Q|ker(M))=d−s are equivalent to the pair (Q0,M0)

in the sense that there exist gd ∈ GLd(R) and gs ∈ GLs(R) such that (Q,M) =
(Qgd

0 , gs Mgd
0 ), where for g∈GLd(R)we write Q=Qg

0 if and only if Q0(gv)=Q(v)
for all v ∈ Rd . Moreover, since R ⊂ Rs is arbitrary, up to rescaling and possibly
replacing R by gs R, we assume that gd ∈ SLd(R) and that gs is the identity. Let

CSL(a, r1, r2)= {g ∈ SLd(R) : (Q
g
0,Mg

0 ) ∈ CPairs(a, r1, r2)}.

For g ∈CSL(a, r1, r2), let Gg be the identity component of the group {x ∈ SLd(R) :

Qg
0(xv) = Qg

0(v)}, 0g = Gg ∩ SLd(Z), Hg = {x ∈ Gg : Mg
0 (xv) = Mg

0 (v)} and
Kg = Hg ∩ g−1Od(R)g. By examining the description of the subgroup Hg given
in Section 2.3 of [Sargent 2013], it is clear that Kg is a maximal compact subgroup
of Hg. It is a standard fact that Gg is a connected semisimple Lie group and hence
has no nontrivial rational characters. Therefore, because Qg

0 is defined over Q, the
Borel–Harish-Chandra theorem [Platonov and Rapinchuk 1991, Theorem 4.13]
implies 0g is a lattice in Gg. We will consider the dynamical system that arises from
Hg acting on Gg/0g. For K=R or Z, the shorthand Xa

Qg
0
(K)= Xg(K) will be used.

2C. Equidistribution of measures. Consider the function α as defined in [Eskin
et al. 1998]. It is an unbounded function on the space of unimodular lattices in Rd .
It has the properties that it can be used to bound certain functions that we will
consider and it is left-K I -invariant. Similar functions have been considered in
[Schnell 1995], where it is related to various quantities involving successive minima
of a lattice. Let 1 be a lattice in Rd . For any such 1, we say that a subspace U
of Rd is 1-rational if Vol(U/U ∩1) <∞. Let

9i (1)= {U :U is a 1-rational subspace of Rd with dim U = i}.

For U ∈9i (1), define d1(U )=Vol(U/U∩1). Note that d1(U )=‖u1∧· · ·∧ui‖,
where u1, . . . , ui is a basis for U ∩1 over Z and the norm on

∧i
(Rd) is induced

from the euclidean norm on Rd . Now we recall the definition of the function α:

αi (1)= sup
U∈9i (1)

1
d1(U )

and α(1)= max
0≤i≤d

αi (1).

Here we use the convention that, if U is the trivial subspace, then d1(U )= 1; hence,
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α0(1)= 1. Also note that, if 1 is a unimodular lattice, then d1(Rd)= 1 and hence
αd(1)= 1.

In (2-2) and Theorem 2.5, we consider α as a function on Gg/0g; this is done
via the canonical embedding of Gg/0g into the space of unimodular lattices in Rd ,
given by x0g→ xZd . Specifically, every x ∈Gg/0g can be identified with its image
under this embedding before applying α to it. For f ∈ Cc(R

d) and g ∈ CSL(r1, r2),
we define the function F f,g : Gg/0g→ R by

F f,g(x)=
∑

v∈Xg(Z)

f (xv). (2-1)

The function α has the property that there exists a constant c( f ) depending only
on the support and maximum of f such that, for all x in Gg/0g,

F f,g(x)≤ c( f ) α(x). (2-2)

The last property is well known and follows from Minkowski’s theorem on suc-
cessive minima; see Lemma 2 of [Schmidt 1968] for example. Alternatively, see
[Henk and Wills 2008] for an up-to-date review of many related results.

We will be carrying out integration on various measure spaces defined by the
groups introduced at the beginning of the section. With this in mind, let us introduce
the following notation for the corresponding measures. If v denotes some variable,
the notation dv is used to denote integration with respect to Lebesgue measure and
this variable. Let µg be the Haar measure on Gg/0g; if g ∈ CSL(r1, r2), then since
0g is a lattice in Gg we can normalize so that µg(Gg/0g)= 1. In addition, νg will
denote the measure on Kg normalized so that νg(Kg)= 1. Let ma

g denote the Haar
measure on Xa

g(R) defined by∫
Rd

f (v) dv =
∫
∞

−∞

∫
Xa

g(R)

f (v) dma
g(v) da. (2-3)

The following provides us with our upper bounds and will be proved in Section 3:

Theorem 2.4. Let g ∈ CSL(r1, r2) be arbitrary, and let 1 = gZd . Let {at : t ∈ R}

denote a self-adjoint one-parameter subgroup of SO(2, 1) embedded into HI so
that it fixes the subspace 〈es+2, . . . , ed−1〉 and only has eigenvalues e−t , 1 and et .

(I) Suppose r1 ≥ 3, r2 ≥ 1 and 0< δ < 2; then

sup
t>0

∫
K I

α(at k1)δ dνI (k) <∞.

(II) Suppose r1 = r2 = 2 or r1 = 2 and r2 = 1; then

sup
t>1

1
t

∫
K I

α(at k1) dνI (k) <∞.
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In Section 4, we will modify the results from Section 4 of [Eskin et al. 1998]
and combine them with Theorem 2.4 to prove the following, which will be a major
ingredient of the proof of Theorem 2.1:

Theorem 2.5. Suppose r1 ≥ 3 and r2 ≥ 1. Let A = {at : t ∈ R} be a one-
parameter subgroup of Hg such that there exists a continuous homomorphism
ρ : SL2(R)→ Hg with ρ(D)= A and ρ(SO(2))⊂ Kg, where D=

{( t
0

0
t−1

)
: t > 0

}
.

Let φ ∈ L1(Gg/0g) be a continuous function such that, for some 0 < δ < 2 and
some C > 0,

|φ(1)|< Cα(4)δ for all 1 ∈ Gg/0g. (2-4)

Then for all ε > 0 and all g ∈CSL(r1, r2), there exists T0> 0 such that, for all t > T0,∣∣∣∣∫
Kg

φ(at k) dνg(k)−
∫

Gg/0g

φ dµg

∣∣∣∣≤ ε.
3. The upper bounds

In this section, we prove Theorem 2.4. By definition, HI ∼= SO(r1, r2) and is
embedded in SLd(R) so that it fixes 〈e1, . . . , es〉. Let {at : t ∈ R} denote a self-
adjoint one-parameter subgroup of SO(2, 1) embedded into HI so that it fixes the
subspace 〈es+2, . . . , ed−1〉. Moreover, suppose that the only eigenvalues of at are
e−t , 1 and et . For g ∈ CSL(r1, r2), let 1= gZd .

3A. Proof of Part (I) of Theorem 2.4. The aim is to construct a function f : HI→

R that is contracted by the operator

At f (h)=
∫

K I

f (at kh) dνI (k).

We say that f is contracted by the operator At if for any c > 0 there exists t0 > 0
and b > 0 such that, for all h ∈ HI ,

At0 f (h) < c f (h)+ b.

This fact will be used in conjunction with the following:

Proposition 3.1 [Eskin et al. 1998, Proposition 5.12]. Let f : HI → R be a strictly
positive function such that:

(1) For any ε > 0, there exists a neighborhood V (ε) of 1 in HI such that

(1− ε) f (h)≤ f (uh)≤ (1+ ε) f (h)

for all h ∈ HI and u ∈ V (ε).

(2) The function f is left-K I -invariant.

(3) f (1) <∞.
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(4) The function f is contracted by the operator At .

Then supt>0 At f (1) <∞.

It is clear that, if in addition to satisfying Properties (1)–(4) we have α(h1)δ ≤
f (h) for all h∈HI , then the conclusion of Part (I) of Theorem 2.4 follows. We define
the function in three stages. In the first stage, we define a function on the exterior
algebra of Rd ; then this function is used to define a function on the space of lattices
in Rd . Finally we use that function to define a function with the required properties.

3A.1. A function on the exterior algebra of Rd . Let
∧
(Rd) =

⊕d−1
i=1

∧i
(Rd).

We say that v ∈
∧
(Rd) has degree i if v ∈

∧i
(Rd). Let �i = {v1 ∧ · · · ∧ vi :

v1, . . . , vi ∈ Rd
} be the set of monomial elements of

∧
(Rd) with degree i . Define

� =
⋃d−1

i=1 �i . Consider the representation ρ : HI → GL(
∧
(Rd)). Since HI is

semisimple, this representation decomposes as a direct sum of irreducible subrepre-
sentations. Associated to each of these subrepresentations is a unique highest weight.
Let P denote the set of all these highest weights. For λ ∈P, denote by Uλ the sum
of all of the subrepresentations with highest weight λ and let τλ :

∧
(Rd)→Uλ be

the orthogonal projection.
Let ε > 0. For 0 < i < d and v ∈

∧i
(Rd), the following function was defined

by Benoist and Quint [2012]. Let

ϕε(v)=

{
minλ∈P\{0} ε

γi‖τλ(v‖)
−1 if ‖τ0(v)‖ ≤ ε

γi ,

0 else,

where for 0< i < d we define γi = (d−i)i . In fact, the definition of ϕε given here is
a special case of the definition given in [Benoist and Quint 2012]. In that definition
of ϕε , there is an extra set of exponents depending on λ∈P\{0} appearing. However,
we see that in our case we may choose all of these exponents to be equal to 1.

Let F = {v ∈
∧
(Rd) : HIv = v} be the fixed vectors of HI . Let Fc be the

orthogonal complement of F.

Remark 3.2. Since maxλ∈P\{0}‖τλ(v)‖ defines a norm on Fc, there exist constants
c1 and c2 depending on ε and the γi ’s such that

c1‖v‖
−1
≤ ϕε(v)≤ c2‖v‖

−1

for all v ∈ Fc.

Remark 3.3. For 0< i < d and v ∈
∧i
(Rd) \ {0}, we have ϕε(v)=∞ if and only

if v is HI -invariant and ‖v‖ ≤ εγi .

We will need to refer to the constant defined as b1 = sup{ϕε(v) : v ∈
∧
(Rd),

‖v‖ ≥ 1}. Benoist and Quint [2012, Lemma 4.2] showed that the function ϕε
satisfies the following convexity property:
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Lemma 3.4. There exists a positive constant C such that, for any 0 < ε < C−1,
u ∈�i1 , v ∈�i2 and w ∈�i3 with i1 ≥ 0, i2 > 0 and i3 > 0 such that ϕε(u∧ v)≥ 1
and ϕε(u ∧w)≥ 1, one has:

(1) If i1 > 0 and i1+ i2+ i3 < d, then

min{ϕε(u ∧ v), ϕε(u ∧w)} ≤ (Cε)1/2 max{ϕε(u), ϕε(u ∧ v∧w)}.

(2) If i1 = 0 and i1+ i2+ i3 < d , then

min{ϕε(v), ϕε(w)} ≤ (Cε)1/2ϕε(v∧w).

(3) If i1 > 0, i1+ i2+ i3 = d and ‖u ∧ v∧w‖ ≥ 1, then

min{ϕε(u ∧ v), ϕε(u ∧w)} ≤ (Cε)1/2ϕε(u).

(4) If i1 = 0, i1+ i2+ i3 = d and ‖v∧w‖ ≥ 1, then

min{ϕε(v), ϕε(w)} ≤ b1.

We also need to obtain uniform bounds for the spherical averages of ϕε . In order
to do this, we use the following:

Lemma 3.5 [Eskin et al. 1998, Lemma 5.2]. Let V be a finite-dimensional real
inner-product space, A a self-adjoint linear transformation of V , K a closed
connected subgroup of O(V ) and S a closed subset of the unit sphere in V . Assume
the only eigenvalues of A are −1, 0 and 1, and denote by W−, W 0 and W+ the
corresponding eigenspaces. Assume that Kv 6⊂ W 0 for any v ∈ S and that there
exists a self-adjoint subgroup H1 of GL(V ) with the following properties:

(1) The Lie algebra of H1 contains A.

(2) H1 is locally isomorphic to SO(3, 1).

(3) H1 ∩ K is a maximal compact subgroup of H1.

Then for any δ, 0< δ < 2,

lim
t→∞

sup
v∈S

∫
K
‖exp(t A)kv‖−δ dν(k)= 0.

Using Lemma 3.5, we can obtain the following bound on the spherical averages:

Lemma 3.6. Suppose r1 ≥ 3 and r2 ≥ 1. Then for all ε > 0, 0< δ < 2 and c > 0,
there exists t0 > 0 such that, for all t > t0 and all v ∈ Fc

\ {0},∫
K I

ϕε(at kv)δ dνI (k) < cϕε(v)δ.
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Proof. The subset S = {v ∈
∧
(Rd) : ‖v− τ0(v)‖ = 1} is a closed subset of the unit

sphere in
∧
(Rd). We have at = exp(t A) for an appropriate choice of A satisfying

the conditions of Lemma 3.5.
We claim that, for any v ∈ S, Kv 6⊂W 0. To see this, let

Hv = {h ∈ HI : hkv = kv for all k ∈ K I }.

Note that K I normalizes Hv . Let Ev be the subgroup generated by K I ∪ Hv . By its
definition, Ev also normalizes Hv . Since K I is a maximal proper subgroup of HI , in
the case that Hv 6⊂ K I , we must have Ev = HI . Therefore, Hv is a normal subgroup
of HI . Since r1 ≥ 3 and r2 ≥ 1, HI is simple and hence Hv = HI or Hv is trivial.
Since S ∩F= 0, the first case is impossible. Therefore, for all v ∈ S, Hv ⊂ K I . In
particular, this means that {at : t ∈R} is not contained in Hv . This implies the claim.

Then if r1 ≥ 3 and r2 ≥ 1, the conditions of Lemma 3.5 are satisfied. Hence, for
any δ with 0< δ < 2,

lim
t→∞

sup
v∈S

∫
K I

‖at kv‖−δ dνI (k)= 0.

This implies that for all c > 0 there exists t0 > 0 such that, for all t > t0 and all
v ∈ Fc

\ {0}, ∫
K I

‖at kv‖−δ dνI (k) < c‖v‖−δ.

Then the claim of the lemma follows from Remark 3.2. �

3A.2. A function on the space of lattices. For any lattice 3, we say that v ∈ �
is 3-integral if one can write v = v1 ∧ · · · ∧ vi where v1, . . . , vi ∈3. Let �i (3)

and �(3) be the sets of 3-integral elements of �i and �, respectively. Define
fε : SLd(R)/SLd(Z)→ R by

fε(3)= max
v∈�(3)

ϕε(v).

Note that by Remark 3.2 for all ε > 0 there exists some constant cε > 0 such that,
for any unimodular lattice 3, we have

max
v∈�(3)

‖v‖−1
≤ max

0<i<d

(
max

v∈�i (3), ‖τ0(v)‖≤ε
γi
‖v‖−1

+ max
v∈�i (3), ‖τ0(v)‖>ε

γi
‖v‖−1

)
≤ cε fε(3)+ max

0<i<d
ε−γi . (3-1)

Moreover, it follows from the definition of the α function that

α(3)=max
{

max
v∈�(3)

‖v‖−1, 1
}
. (3-2)

The following is necessary to ensure that the function fε(h1) is finite for all h ∈ HI :
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Lemma 3.7. For all h ∈ HI , if u ∈�(h1), then u /∈ F.

Proof. Suppose for a contradiction that u ∈�(h1)∩F. Suppose that u has degree i
for some 0< i <d , and let u=u1∧· · ·∧ui and U =〈u1, . . . , ui 〉. Since u ∈�(h1),
it follows that U ∩ h1 is a lattice in U . Moreover, because u ∈ F, U ∩1 is also a
lattice in U or equivalently g−1U ∩Zd is a lattice in g−1U . The subspace g−1U is
Hg-invariant.

Conversely, it follows from Lemma 3.4 of [Sargent 2013] that, if V is any
Hg-invariant subspace, then either

(1) V ⊆ g−1
〈e1, . . . , es〉 or

(2) V = g−1
〈es+1, . . . , ed〉⊕ V ′ where V ′ ⊆ g−1

〈e1, . . . , es〉.

Thus, either V or the orthogonal complement of V is contained in g−1
〈e1, . . . , es〉.

By Corollary 3.2 of [Sargent 2013], g−1
〈e1, . . . , es〉 contains no subspaces defined

over Q. This implies that, if V is any Hg-invariant subspace, then V is not defined
over Q. In particular, V ∩Zd cannot be a lattice in V . This gives a contradiction. �

3A.3. A function on HI . Define f̃1,ε : HI → R by

f̃1,ε(h)= fε(h1).

In view of (3-1) and (3-2), the proof of Part (I) of Theorem 2.4 will be complete
provided that Conditions (1)–(4) from Proposition 3.1 are satisfied by the func-
tion f̃1,ε for some ε > 0. It is clear that f̃1,ε is left-K I -invariant. Also since
‖τλ(ρ(h−1)‖)−1

≤ ‖τλ(hv)‖/‖v‖ ≤ ‖τλ(ρ(h))‖ for all λ ∈ P, v ∈ � and h ∈ HI ,
f̃1,ε also satisfies Condition (1) of Proposition 3.1. From Remark 3.3, we get that
f̃1,ε(1)=∞ only if there exists v ∈�(1)∩F, but by Lemma 3.7, we know that
no such v exists and so f̃1,ε(1) <∞. It remains to show that f̃1,ε is contracted by
the operator At . The proof is very similar to that of Proposition 5.3 in [Benoist and
Quint 2012].

Lemma 3.8. Suppose r1 ≥ 3 and r2 ≥ 1. There exists ε > 0 such that, for all
0< δ < 2, the function f̃ δ1,ε is contracted by the operator At .

Proof. Fix c > 0. By Lemma 3.6, there exists t0 > 0 so that, for any v ∈ Fc
\ {0},∫

K I

ϕε(at0kv)δ dνI (k) <
c
d
ϕε(v)

δ. (3-3)

Let m0 = ‖ρ(at0)‖ = ‖ρ(a
−1
t0 )‖. Then for all v ∈

∧
(Rd),

m−1
0 ≤ ‖at0v‖/‖v‖ ≤ m0. (3-4)

It follows from the definition of ϕε and (3-4) that

m−1
0 ϕε(v)≤ ϕε(at0v)≤ m0ϕε(v). (3-5)
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Let
9(h1)= {v ∈�(h1) : fε(h1)≤ m2

0ϕε(v)}.

Note that
fε(h1)= max

ψ∈9(h1)
ϕε(ψ). (3-6)

Let C be the constant from Lemma 3.4. Assume that ε is small enough so that

m4
0Cε < 1. (3-7)

There are now two cases.

Case 1: fε(h1)≤max{b1,m2
0}. In this case, (3-5) and the fact that fε is left-K I -

invariant imply that fε(at0kh1)≤ m0 fε(h1). Hence,∫
K I

fε(at0kh1)δ dνI (k)≤ (m0 max{b1,m2
0})

δ. (3-8)

Case 2: fε(h1) >max{b1,m2
0}. This implies:

Claim 3.9. The set 9(h1) contains only one element up to sign change in each
degree.

Proof. Assume that, for some 0< i < d , 9(h1)∩�(h1) contains two noncolinear
elements, v0 and w0. Then because fε(h1) >m2

0 and v0 and w0 are in 9(h1), we
have ϕε(v0)≥ 1 and ϕε(w0)≥ 1. We can write v0 = u ∧ v and w0 = u ∧w, where
u ∈�i1(h1), v ∈�i2(h1) and w ∈�i2(h1) with i1 ≥ 0 and i2 > 0. There are four
cases.

Case 2.1: i2 < i and i2 < d − i . In this case,

fε(h1)≤ m2
0 min{ϕε(u ∧ v), ϕε(u ∧w)} ≤ (m4

0Cε)1/2 max{ϕε(u), ϕε(u ∧ v∧w)}

by Lemma 3.4(1). This implies that

fε(h1)≤ (m4
0Cε)1/2 fε(h1), (3-9)

which contradicts (3-7).

Case 2.2: i2 = i < d − i . In this case, u = 1. The same computation but using
Lemma 3.4(2) still gives (3-9), which is still a contradiction.

Case 2.3: i2 = d − i < i . In this case, ‖u ∧ v ∧w‖ is an integer. Therefore, the
same computation but using Lemma 3.4(3) still gives (3-9).

Case 2.4: i2 = i = d − i . The same computation, using Lemma 3.4(4), gives

fε(h1)≤ b1,

which is again a contradiction. �
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Suppose v ∈ � is arbitrary. If v /∈ 9(h1), then fε(h1) > m2
0ϕε(v), and by

left-K I -invariance of ϕε , (3-5) and (3-6), for all k ∈ K I , we have

ϕε(at0kv)≤ m0ϕε(v)≤ m−1
0 fε(h1)
≤ m−1

0 max
ψ∈9(h1)

ϕε(ψ)≤ max
ψ∈9(h1)

ϕε(at0kψ). (3-10)

If v ∈9(h1), then (3-10) holds for obvious reasons. Therefore, (3-10) holds for
all v ∈�. Thus, using the definition of fε and (3-10), we get∫

K I

fε(at0kh1)δ dνI (k)=
∫

K I

max
v∈�(h1)

ϕε(at0kv)δ dνI (k)

≤

∑
ψ∈9(h1)

∫
K I

ϕε(at0kψ)δ dνI (k). (3-11)

Using Lemma 3.7, we see that, for all ψ ∈9(h1), ψ /∈ F and hence ψ − τ0(ψ) ∈

Fc
\ {0}. Moreover, if ϕε(at0kψ) 6= 0, then ϕε(at0kψ)= ϕε(at0k(ψ − τ0(ψ))) and

we can apply (3-3) to get∫
K I

ϕε(at0kψ)δ dνI (k)≤
c
d
ϕε(ψ)

δ (3-12)

for each ψ ∈9(h1). If ϕε(at0kψ)= 0, then it is clear that (3-12) also holds. Using
Claim 3.9, we obtain∑

ψ∈9(h1)

∫
K I

ϕε(at0kψ)δ dνI (k)≤ d max
ψ∈9(h1)

∫
K I

ϕε(at0kψ)δ dνI (k);

the claim of the lemma follows from (3-6), (3-8), (3-11) and (3-12). �

3B. Proof of Part (II) of Theorem 2.4. This time, the aim is to construct a function
such that it satisfies the conditions of the following:

Lemma 3.10. Suppose r1 = 2 and r2 = 1 or r1 = r2 = 2. Let f : HI → R be a
strictly positive continuous function such that:

(1) For any ε > 0, there exists a neighborhood V (ε) of 1 in HI such that

(1− ε) f (h)≤ f (uh)≤ (1+ ε) f (h)

for all h ∈ HI and u ∈ V (ε).

(2) The function f is left-K I -invariant.

(3) f (1) <∞.

(4) There exist t0 > 0 and b > 0 such that, for all h ∈ HI and 0≤ t ≤ t0,

At f (h)≤ f (h)+ b.

Then supt>1(1/t)At f (1) <∞.



Equidistribution of values of linear forms on quadratic surfaces 909

Proof. Since SO(2, 1) is locally isomorphic to SL2(R) and SO(2, 2) is locally
isomorphic to SL2(R)× SL2(R), this follows directly from Lemma 5.13 of [Eskin
et al. 1998]. �

The general strategy of this subsection is broadly the same as in the last one.
First we define a certain function on the exterior algebra of Rd , and then we use
this function to define a function that has the properties demanded by Lemma 3.10.

3B.1. Functions on the exterior algebra of Rd . As before, we work with a function
on the exterior algebra of Rd . This time, the definition is simpler because in this
case the vectors fixed by the action of HI cause no extra problems. For ε > 0,
0< i < d and v ∈

∧i
(Rd), we define

ϕ̃ε(v)= ε
γi‖v‖−1.

If v ∈
∧0
(Rd) or v ∈

∧d
(Rd), then we set ϕ̃ε(v)= 1. The following is the analogue

of Lemma 3.4:

Lemma 3.11. Let i1 ≥ 0 and i2 > 0 and 3 be a unimodular lattice. Then for all
u ∈�i1(3), v ∈�i2(3) and w ∈�i2(3),

ϕ̃ε(u ∧ v) ϕ̃ε(u ∧w)≤ ε2i2 ϕ̃ε(u) ϕ̃ε(u ∧ v∧w).

Proof. This is a direct consequence of Lemma 5.6 from [Eskin et al. 1998] and the
fact that 2γi1+i2 − γi1 − γi1+2i2 = 2i2. �

The following lemma is used to bound the spherical averages. It is analogous to
Lemma 3.6 (see also Lemma 5.5 of [Eskin et al. 1998]). It explains why in this
case the fixed vectors do not cause problems.

Lemma 3.12. Suppose r1 ≥ 2 and r2 ≥ 1. Then for all t ≥ 0 and v ∈
∧
(Rd) \ {0},∫

K I

‖at kv‖−1 dνI (k)≤ ‖v‖−1.

Proof. Let Fv(t)=
∫

K I
‖at kv‖−1 dνI (k). We will show that d

dt Fv(t)≤ 0 for all t ≥ 0
and v ∈

∧
(Rd) \ {0}, from which it is clear that the claim of the lemma follows.

Let π− and π+ be the projections from
∧
(Rd) onto the contracting and expanding

eigenspaces of at , respectively. Note that

d
dt

Fv(t)=
∫

K I

e−2t
‖π−(kv)‖2− e2t

‖π+(kv)‖2

‖at kv‖3
dνI (k)

≤

(
‖at‖

‖v‖

)3
∫

K I

(e−2t
‖π−(kv)‖2− e2t

‖π+(kv)‖2) dνI (k). (3-13)

Let Q0 also denote the matrix that defines the quadratic form Q0. Note that
‖π−(Q0v)‖ = ‖π

+(v)‖ and ‖π+(Q0v)‖ = ‖π
−(v)‖ for all v ∈

∧
(Rd). Because
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QT
0 =Q0=Q−1

0 , if det(Q0)=1, then Q0∈ K I , or if det(Q0)=−1, then−Q0∈ K I .
This means that Q0K I (v− τ0(v))= K I ± (v− τ0(v)) and thus∫

K I

‖π−(kv)‖2 dνI (k)=
∫

K I

‖π+(Q0(kv))‖2 dνI (k)

=

∫
K I

‖π+(kv)‖2 dνI (k). (3-14)

Therefore, using (3-13) and (3-14), we have

d
dt

Fv(t)≤
(
‖at‖

‖v‖

)3
∫

K I

‖π+(kv)‖2 dνI (k)(e−2t
− e2t)≤ 0

for all t ≥ 0 and v ∈
∧
(Rd) \ {0} as required. �

3B.2. Functions on HI . Define f̃1,ε : HI → R by

f̃1,ε(h)=
d∑

i=1

max
v∈�i (h1)

ϕ̃ε(v).

Note that for all ε >0 there exists some constant cε>0 such that, for any unimodular
lattice 3,

max
v∈�(3)

‖v‖−1
≤ cε max

v∈�(3)
ϕ̃ε(v)≤ cε

d∑
i=1

max
v∈�i (3)

ϕ̃ε(v).

In view of this and (3-2), the proof of Part (II) of Theorem 2.4 will be complete
provided that Conditions (1)–(4) from Lemma 3.10 are satisfied by the functions f̃1,ε
for some ε > 0. It is clear that f̃1,ε is left-K I -invariant. Also since ‖ρ(h−1)‖−1

≤

‖hv‖/‖v‖ ≤ ‖ρ(h)‖ for all v ∈� and h ∈ HI , f̃1,ε also satisfies Condition (1) of
Lemma 3.10. We also have that f̃1,ε(1) <∞. It remains to show that f̃1,ε satisfies
Condition (4) of Lemma 3.10.

Lemma 3.13. Suppose r1 = 2 and r2 = 1 or r1 = r2 = 2. Then there exist ε > 0
and t0 > 0 such that, for all 0≤ t < t0 and h ∈ HI ,∫

K I

f̃1,ε(at kh) dνI (k)≤ f̃1,ε(h).

Proof. Let m0 = ‖ρ(at0)‖. Then for all v ∈
∧
(Rd) and 0≤ t < t0,

m−1
0 ≤ ‖atv‖/‖v‖ ≤ m0. (3-15)

It follows from the definition of ϕ̃ε and (3-15) that, for all 0≤ t < t0,

m−1
0 ϕ̃ε(v)≤ ϕ̃ε(atv)≤ m0ϕ̃ε(v). (3-16)
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Let

9(h1)=
d⋃

i=1

{
v ∈�i (h1) : max

v∈�i (h1)
ϕ̃ε(v)≤ m2

0ϕ̃ε(v)
}
.

Now we show that for ε small enough the set 9(h1) contains only one element
up to sign change in each degree. To see this, assume that, for some 0 < i < d,
9(h1) ∩�(h1) contains two noncolinear elements, v0 and w0. We can write
v0 = u ∧ v and w0 = u ∧w where u ∈ �i1(h1), v ∈ �i2(h1) and w ∈ �i2(h1)
with i1 ≥ 0 and i2 > 0. In this case,

f̃1,ε(h)2 ≤ d2m4
0ϕ̃ε(u ∧ v) ϕ̃ε(u ∧w)≤ d2m4

0ε
2i2 f̃1,ε(h)2

by Lemma 3.11. Hence, the claim is true since taking ε small enough gives a
contradiction.

In view of this discussion, we can suppose that 9(h1)= {ψi }
d
i=1, where ψi has

degree i . Let v ∈ �i (h1) be arbitrary. If v /∈ 9(h1), then maxv∈�i (h1) ϕ̃ε(v) >

m2
0ϕ̃ε(v), and by left-K I -invariance of ϕ̃ε and (3-16), for all k ∈ K I , we have

ϕ̃ε(at0kv)≤ m0ϕ̃ε(v)≤ m−1
0 max

v∈�i (h1)
ϕ̃ε(v)= m−1

0 ϕ̃ε(ψi )≤ ϕ̃ε(at0kψi ). (3-17)

If v ∈9(h1), then (3-17) holds for obvious reasons. Therefore, (3-17) holds for
all v ∈�. Thus, using the definition of f̃1,ε and (3-17), we get∫

K I

f̃1,ε(at0kh) dνI (k)=
d∑

i=1

∫
K I

max
v∈�i (h1)

ϕ̃ε(at0kv) dνI (k)

≤

d∑
i=1

∫
K I

ϕ̃ε(at0kψi ) dνI (k). (3-18)

By Lemma 3.12, there exists t0 > 0 so that, for any v ∈
∧
(Rd) and all 0≤ t < t0,∫

K I

ϕ̃ε(at0kψi ) dνI (k)≤ ϕ̃ε(ψi ) (3-19)

for each ψi ∈9(h1). The claim of the lemma follows from (3-18) and (3-19). �

4. Ergodic theorems

For subgroups W1 and W2 of Gg, let X (W1,W2) = {g ∈ Gg : W2g ⊂ gW1}. As
in [Eskin et al. 1998], the ergodic theory is based on Theorem 3 from [Dani and
Margulis 1993], reproduced below in a form relevant to the current situation:

Theorem 4.1. Suppose r1 ≥ 2 and r2 ≥ 1. Let g ∈ CSL(r1, r2) be arbitrary. Let
U = {ut : t ∈ R} be a unipotent one-parameter subgroup of Gg and φ be a bounded
continuous function on Gg/0g. Let D be a compact subset of Gg/0g, and let ε > 0
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be given. Then there exist finitely many proper closed subgroups H1, . . . , Hk of
Gg such that Hi ∩0g is a lattice in Hi for all i and compact subsets C1, . . . ,Ck

of X (H1,U ), . . . , X (Hk,U ), respectively, such that for all compact subsets F of
D−

⋃
1≤i≤k Ci0g/0g there exists a T0 > 0 such that, for all x ∈ F and T > T0,∣∣∣∣ 1

T

∫ T

0
φ(ut x) dt −

∫
Gg/0g

φ dµg

∣∣∣∣< ε.
Remark 4.2. By construction, the subgroups Hi occurring are such that Hi ∩0g is
Zariski-dense in Hi and hence Hi are defined over Q. For a precise reference, see
Theorem 3.6.2 and Remark 3.4.2 of [Kleinbock et al. 2002].

The next result is a reworking of Theorem 4.3 from [Eskin et al. 1998]. The
difference is that in Lemma 4.3 the identity is fixed as the base point for the flow
and the condition that Hg be maximal is dropped.

Lemma 4.3. Suppose r1 ≥ 2 and r2 ≥ 1. Let g ∈ CSL(r1, r2) be arbitrary. Let
U = {ut : t ∈R} be a one-parameter unipotent subgroup of Hg, not contained in any
proper normal subgroup of Hg. Let φ be a bounded continuous function on Gg/0g.
Then for all ε > 0 and η > 0, there exists a T0 > 0 such that, for all T > T0,

νg

({
k ∈ Kg :

∣∣∣∣ 1
T

∫ T

0
φ(ut k) dt −

∫
Gg/0g

φ dµg

∣∣∣∣> ε})≤ η. (4-1)

Proof. Let H1, . . . , Hk and C1, . . . ,Ck be as in Theorem 4.1. Let γ ∈ 0g; consider
Yi (γ )= Kg ∩ X (Hi ,U )γ . Suppose that Yi (γ )= Kg; then Ukγ−1

⊂ kγ−1 Hi for
all k ∈ Kg. In other words,

k−1Uk ⊂ γ−1 Hiγ for all k ∈ Kg. (4-2)

The subgroup 〈k−1Uk : k ∈ Kg〉 is normalized by U ∪ Kg and clearly 〈k−1Uk :
k ∈ Kg〉⊆〈U∪Kg〉⊆Hg. If G is a simple Lie group with finite center, with maximal
compact subgroup K , it follows from Exercise A.3, Chapter IV of [Helgason 2001]
that K is also a maximal proper subgroup of G. This means that, because Hg is
semisimple with finite center, any connected subgroup L of Hg containing Kg can
be represented as L = H ′Kg where H ′ is a connected normal subgroup of Hg.
Because U is not contained in any proper normal subgroup of Hg, this implies
that 〈U ∪ Kg〉 = Hg. Therefore, 〈k−1Uk : k ∈ Kg〉 is a normal subgroup of Hg,
and because U is not contained in any proper normal subgroup of Hg, we have
〈k−1Uk : k ∈ Kg〉 = Hg. This and (4-2) imply that Hg ⊂ γ

−1 Hiγ . Note that
γ ∈ SLd(Z) and, by Remark 4.2, Hi is defined over Q. Therefore, γ−1 Hiγ is
defined over Q; it follows from Theorem 7.7 of [Platonov and Rapinchuk 1991]
that γ−1 Hiγ ∩SLd(Q)= γ

−1 Hiγ . Therefore, Lemma 3.7 and Proposition 4.1 of
[Sargent 2013] imply that γ−1 Hiγ = Gg, which is a contradiction, and therefore,
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Yi (γ )( Kg. This means, for all 1≤ i ≤ k, Yi (γ ) is a submanifold of strictly smaller
dimension than Kg and hence

νg(Yi (γ ))= 0. (4-3)

Note that, because Ci ⊆ X (Hi ,U ),

Kg ∩
⋃

1≤i≤k

Ci0g ⊆ Kg ∩
⋃

1≤i≤k

X (Hi ,U )0g =
⋃

1≤i≤k

⋃
γ∈0g

Yi (γ ),

and therefore, (4-3) implies

νg

(
Kg ∩

⋃
1≤i≤k

Ci0g

)
= 0. (4-4)

Let D be a compact subset of Gg such that Kg ⊂ D. Then from (4-4), it follows
that, for all η > 0, there exists a compact subset F of D−

⋃
1≤i≤k Ci0g such that

νg(F ∩ Kg)≥ 1− η. (4-5)

From Theorem 4.1, for all ε > 0, there exists a T0 > 0 such that, for all x ∈
(F ∩ Kg)/0g and T > T0,∣∣∣∣ 1

T

∫ T

0
φ(ut x) dt −

∫
Gg/0g

φ dµg

∣∣∣∣< ε.
Therefore, if k ∈ Kg, T > T0 and∣∣∣∣ 1

T

∫ T

0
φ(ut k) dt −

∫
Gg/0g

φ dµg

∣∣∣∣> ε,
then k ∈ Kg \ F , but νg(Kg \ F)≤ η by (4-5), and this implies (4-1). �

Lemma 4.4. Suppose r1 ≥ 2 and r2 ≥ 1. Let g ∈ CSL(r1, r2) be arbitrary. Let
U = {ut : t ∈R} be a one-parameter unipotent subgroup of Hg not contained in any
proper normal subgroup of Hg. Let φ be a bounded continuous function on Gg/0g.
Then for all ε > 0 and δ > 0, there exists a T0 > 0 such that, for all T > T0,∣∣∣∣ 1

δT

∫ (1+δ)T

T

∫
Kg

φ(ut k) dνg(k) dt −
∫

Gg/0g

φ dµg

∣∣∣∣< ε.
Proof. Let φ be a bounded continuous function on Gg/0g. Lemma 4.3 implies for
all ε > 0, η > 0 and d > 0 there exists a T0 > 0 such that, for all T > T0,

νg

({
k ∈ Kg :

∣∣∣∣ 1
dT

∫ dT

0
φ(ut k) dt −

∫
Gg/0g

φ dµg

∣∣∣∣> ε})≤ η. (4-6)
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Using (4-6) with d = 1 and d = 1+δ, we get that for all ε > 0 and η > 0 there exists
a subset C⊆ Kg with νg(C)≥ 1− η such that for all k ∈ C the following hold:∣∣∣∣∫ T

0
φ(ut k) dt − T

∫
Gg/0g

φ dµg

∣∣∣∣< εT,∣∣∣∣∫ (1+δ)T

0
φ(ut k) dt − (1+ δ)T

∫
Gg/0g

φ dµg

∣∣∣∣< (1+ δ)T ε.
Hence, for all k ∈ C, we have∣∣∣∣∫ (1+δ)T

T
φ(ut k) dt − δT

∫
Gg/0g

φ dµg

∣∣∣∣
=

∣∣∣∣∫ (1+δ)T

0
φ(ut k) dt − (1+ δ)T

∫
Gg/0g

φ dµg

−

∫ T

0
φ(ut k) dt + T

∫
Gg/0g

φ dµg

∣∣∣∣
≤

∣∣∣∣∫ T

0
φ(ut k) dt − T

∫
Gg/0g

φ dµg

∣∣∣∣
+

∣∣∣∣∫ (1+δ)T

0
φ(ut k) dt − (1+ δ)T

∫
Gg/0g

φ dµg

∣∣∣∣
≤ (2+ δ)T ε.

This means that, for all δ > 0, η > 0 and ε > 0,

νg

({
k ∈ Kg :

∣∣∣∣ 1
δT

∫ (1+δ)T

T
φ(ut k) dt −

∫
Gg/0g

φ dµg

∣∣∣∣< (2+ δ)ε
δ

})
≥ 1− η.

Since we can make ε and η as small as we wish, this implies the claim. �

Lemma 4.5. Suppose r1 ≥ 2 and r2 ≥ 1. Let A = {at : t ∈ R} be a one-parameter
subgroup of Hg, not contained in any proper normal subgroup of Hg, such that
there exists a continuous homomorphism ρ : SL2(R)→ Hg with ρ(D) = A and
ρ(SO(2)) ⊂ Kg, where D =

{( t
0

0
t−1

)
: t > 0

}
. Let φ be a continuous function on

Gg/0g vanishing outside of a compact set. Then for all g ∈ CSL(r1, r2) and ε > 0
there exists T0 > 0 such that, for all t > T0,∣∣∣∣∫

Kg

φ(at k) dνg(k)−
∫

Gg/0g

φ dµg

∣∣∣∣≤ ε.
Proof. This is very similar to the proof of Theorem 4.4 from [Eskin et al. 1998], and
some details will be omitted. Fix ε > 0. Assume that φ is uniformly continuous.
Let ut =

( 1
0

t
1

)
and w =

( 0
1
−1
0

)
. Then it is clear that dt =

( t
0

0
t−1

)
= bt ut ktw,

where bt = (1 + t−2)−1/2
( 1
−t−1

0
1+t−2

)
and kt = (1 + t−2)−1/2

( 1
−t−1

t−1

1

)
. By our

assumptions on A, there exists a continuous homomorphism ρ : SL2(R)→ Hg such
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that ρ(D) = A and ρ(SO(2)) ⊂ Kg. Let ρ(dt) = d ′t , ρ(bt) = b′t , ρ(kt) = k ′t and
ρ(w)= w′. Then for all t > 0 and g ∈ CSL(r1, r2),∫

Kg

φ(d ′t k) dνg(k)=
∫

Kg

φ(b′t u
′

t k
′

tw
′k) dνg(k)

=

∫
Kg

φ(b′t u
′

t k) dνg(k) (4-7)

since k ′t , w
′
∈ Kg. It follows from (4-7) that, for r, t > 0,∣∣∣∣∫

Kg

φ(d ′t k) dνg(k)−
∫

Kg

φ(u′r t k) dνg(k)
∣∣∣∣

≤

∣∣∣∣∫
Kg

(φ(d ′r t k)−φ(d
′

t k)) dνg(k)
∣∣∣∣+∣∣∣∣∫

Kg

(φ(d ′r t k)−φ(u
′

r t k))dνg(k)
∣∣∣∣

=

∣∣∣∣∫
Kg

(φ(d ′r d ′t k)−φ(d
′

t k)) dνg(k)
∣∣∣∣+∣∣∣∣∫

Kg

(φ(b′r t u
′

r t k)−φ(u
′

r t k)) dνg(k)
∣∣∣∣. (4-8)

By uniform continuity, the fact that limt→∞ bt = I and (4-8) imply there exist
T1 > 0 and δ > 0 such that for t > T1 and |r − 1|< δ we have∣∣∣∣∫

Kg

φ(d ′t k) dνg(k)−
∫

Kg

φ(u′r t k) dνg(k)
∣∣∣∣≤ ε.

Thus, if T > T1, then∣∣∣∣∫
Kg

φ(d ′t k) dνg(k)−
1
δT

∫ (1+δ)T

T

∫
Kg

φ(u′t k) dνg(k) dt
∣∣∣∣≤ ε. (4-9)

Combining (4-9) with Lemma 4.5 via the triangle inequality finishes the proof of
the lemma. �

The section is completed by the proof of the main ergodic result, whose proof
follows that of Theorem 3.5 in [Eskin et al. 1998].

Proof of Theorem 2.5. Assume that φ is nonnegative. Let A(r) = {x ∈ Gg/0g :

α(x) > r}. Choose a continuous nonnegative function gr on Gg/0g such that
gr (x)=1 if x ∈ A(r+1), gr (x)=0 if x /∈ A(r) and 0≤gr (x)≤1 if x ∈ A(r)\A(r+1).
Then∫

Kg

φ(at k) dνg(k)

=

∫
Kg

φ(at k) gr (at k) dνg(k)+
∫

Kg

(φ(at k)−φ(at k) gr (at k)) dνg(k). (4-10)
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Let β = 2− δ; then for x ∈ Gg/0g,

φ(x) gr (x)≤ Cα(x)2−βgr (x)

= Cα(x)2−β/2gr (x) α(x)−β/2 ≤ Cr−β/2α(x)2−β/2.

The last inequality is true because gr (x)= 0 if α(x)≤ r . Therefore,∫
Kg

φ(at k) gr (at k) dνg(k)≤ Cr−β/2
∫

Kg

α(at k)2−β/2 dνg(k). (4-11)

Since g ∈ CSL(r1, r2), r1 ≥ 3 and r2 ≥ 1, Theorem 2.4(I) implies there exists B
such that ∫

Kg

α(at k)2−β/2 dνg(k)=
∫

K I

α ◦ g−1(at kg)2−β/2 dνI (k)

≤ c(g)
∫

K I

α(at kg)2−β/2 dνI (k) < B

for all t ≥ 0. Then (4-11) implies that∫
Kg

φ(at k) gr (at k) dνg(k)≤ BCr−β/2. (4-12)

For all ε > 0, there exists a compact subset, C of Gg/0g, such that µg(C)≥ 1− ε.
The function α is bounded on C, and hence, for all ε > 0,

lim
r→∞

µg(A(r))

= lim
r→∞

(
µg({x ∈ C : α(x) > r})+µg({x ∈ (Gg/0g) \C : α(x) > r})

)
≤ ε.

This means that

lim
r→∞

µg(A(r))= 0. (4-13)

Note that ∫
Gg/0g

φ(x) gr (x) dµg(x)≤
∫

A(r)
φ(x) dµg(x). (4-14)

Since φ ∈ L1(Gg/0g), (4-13) and (4-14) imply that

lim
r→∞

∫
Gg/0g

φ(x) gr (x) dµg(x)= 0. (4-15)

Since the function φ(x) − φ(x)gr (x) is continuous and has compact support,
Lemma 4.5 implies for all ε > 0 and g ∈ CSL(r1, r2) there exists T0 > 0 such
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that, for all t > T0,∣∣∣∣∫
Kg

(φ(at k)−φ(at k) gr (at k)) dνg(k)

−

∫
Gg/0g

(φ(x)−φ(x) gr (x)) dµg(x)
∣∣∣∣< ε

2
. (4-16)

It is straightforward to check that (4-10), (4-12), (4-15) and (4-16) imply the
conclusion of the theorem if r is sufficiently large. �

5. Proof of Theorem 2.1

The proof of Theorem 2.1 follows the same route as that of Sections 3.4–3.5 of
[Eskin et al. 1998]. The main modification we make in order to handle the present
situation is that we work inside the surface Xg(R) rather than in the whole of Rd .
For t ∈ R and v ∈ Rd , define a linear map at by

atv = (v1, . . . , vs, e−tvs+1, vs+2, . . . , etvd).

Note that the one-parameter group {ât : t ∈R}= g−1
{at : t ∈R}g⊂ Hg and that there

exists a continuous homomorphism ρ : SL2(R)→ Hg with ρ(D)= {ât : t ∈R} and
ρ(SO(2))⊂ Kg where D=

{( t
0

0
t−1

)
: t > 0

}
. Moreover, note that {at : t ∈R} is self-

adjoint and not contained in any normal subgroup of Hg and the only eigenvalues
of at are e−t , 1 and et . In other words, {ât : t ∈ R} satisfies the conditions of
Theorems 2.5 and 2.4. For any natural number n, let Sn−1 denote the unit sphere
in an n-dimensional Euclidean space and let γn = Vol(Sn) and cr1,r2 = γr1−1γr2−1;
then define

C1 = cr1,r22(2−r1−r2)/2 = cr1,r22(2−d+s)/2. (5-1)

5A. Proof of Theorem 2.3. In Lemma 5.1, it is shown that it is possible to ap-
proximate certain integrals over Kg by integrals over Rd−s−2. The integral over
Rd−s−2 can be used like the characteristic function of R× A(T/2, T ); in particular,
Theorem 2.3 is proved as an application of Lemma 5.1. It should be noted that
Lemma 5.1 is analogous to Lemma 3.6 from [Eskin et al. 1998] and its proof is
similar.

Lemma 5.1. Let f be a continuous function of compact support on Rd
+
= {v ∈Rd

:

〈v, es+1〉> 0}, and for g ∈ CSL(r1, r2), let

J f,g(`1, . . . , `s, r)

=
1

rd−s−2

∫
Rd−s−2

f (`1, . . . , `s, r, vs+2, . . . , vd−1, vd) dvs+2 · · · dvd−1,

where vd = (a−Qg
0(`1, . . . , `s, 0, vs+2, . . . , vd−1, 0))/2r so that Qg

0(`1, . . . , `s, r,
vs+2, . . . , vd−1, vd) = a. Then for every ε > 0, there exists T0 > 0 such that, for
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every t with et > T0 and every v ∈ Rd
+

with ‖v‖> T0,∣∣∣∣C1e(d−s−2)t
∫

Kg

f (ât kv) dνg(k)− J f,g(M
g
0 (v), ‖v‖e

−t)

∣∣∣∣< ε.
Proof. By Lemma 2.2 of [Sargent 2013], for all g ∈ CSL(r1, r2), there exists a basis
of Rd , denoted by b1, . . . , bd , such that

Qg
0(v)= Q1,...,s(v)+2vs+1vd+

s+r1∑
i=s+2

v2
i −

d−1∑
i=s+r1+1

v2
i and Mg

0 (v)= (v1, . . . , vs)

and
ât(v)= (v1, . . . vs, e−tvs+1, vs+2, . . . vd−1, etvd),

where vi = 〈v, bi 〉 for 1≤ i ≤ d and Q1,...,s(v) is a nondegenerate quadratic form in
variables v1, . . . , vs . Let E denote the support of f . Let c1 = infv∈E 〈v, bs+1〉 and
c2 = supv∈E 〈v, bs+1〉. From the definition of ât , it follows that f (âtw)= 0 unless

|〈w, bs+1〉〈w, bd〉| ≤ β, (5-2)

c1 ≤ 〈w, bs+1〉e−t
≤ c2, (5-3)

π ′(w) ∈ π ′(E), (5-4)

where β depends only on E and π ′ denotes the projection onto the span of b1, . . . , bs,

bs+2, . . . , bd−1. For w satisfying (5-2) and (5-3), we have 〈w, bd〉 = O(e−t). This,
together with (5-4) and (5-3), implies that, if f (âtw) 6= 0 and t is large, then

‖w‖ = 〈w, bs+1〉+ O(e−t). (5-5)

Note that by (5-5),

〈âtw, bs+1〉 = 〈w, bs+1〉e−t
= e−t

‖w‖+ O(e−2t) (5-6)

and
〈âtw, bi 〉 = 〈w, bi 〉 for 1≤ i ≤ s or s+ 2≤ i ≤ d − 1. (5-7)

Finally,

〈âtw, bd〉 =
(
Qg

0(w)− Qg
0

(
〈w, b1〉, . . . , 〈w, bs〉, 0,

〈w, bs+1〉, . . . , 〈w, bd−1〉, 0
))
/2〈âtw, bs+1〉

=
(
Qg

0(w)− Qg
0

(
〈w, b1〉, . . . , 〈w, bs〉, 0,

〈w, bs+1〉, . . . , 〈w, bd−1〉, 0
))
/2e−t

‖w‖+ O(e−t). (5-8)

Hence, using (5-6), (5-7) and (5-8) together with the uniform continuity of f ,
applied with w = kv for v ∈ Rd

+
and k ∈ Kg, we see that for all δ > 0 there exists a
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t0 > 0 so that if t > t0 then∣∣ f (ât kv)− f (v1, . . . , vs, ‖v‖e−t , 〈kv, bs+1〉, . . . , 〈kv, bd−1〉, vd)
∣∣< δ, (5-9)

where vd is determined by

Qg
0(v1, . . . , vs, ‖v‖e−t , 〈kv, bs+1〉, . . . , 〈kv, bd−1〉, vd)= Qg

0(v)= a.

Change basis by letting fs+1= (bs+1+bd)/
√

2, fd= (bs+1−bd)/
√

2 and fi = bi for
1≤ i ≤ s or s+2≤ i ≤d−1. In this basis, Kg∼=SO(r1)×SO(r2) consists of orthogo-
nal matrices preserving the subspaces L1=〈 f1, . . . , fs〉, L2=〈 fs+1, . . . , fs+r1〉 and
L3 = 〈 fs+r1+1, . . . , fd〉. For i = 1, 2 or 3, let πi denote the orthogonal projection
onto L i . Write ρi = ‖πi (v)‖; then the orbit Kgv is the product of a point and
two spheres {v1, . . . , vs}×ρ2Sr1−1

×ρ3Sr2−1, where Sr1−1 denotes the unit sphere
in L2 and Sr2−1 the unit sphere in L3.

Suppose w ∈ Kgv is such that f (âtw) 6= 0. Then from (5-2) and (5-3), it follows
that 〈w, bd〉=O(e−t). Now, setwi=〈w, fi 〉; thenws+1=2−1/2

〈w, bs+1〉+O(e−t),
wd = 2−1/2

〈w, bs+1〉+O(e−t) and, for 1≤ i ≤ s or s+ 2≤ i ≤ d− 1, wi = O(1).
Hence, for i = 2 or 3,

ρi = ‖πi (w)‖ = 2−1/2
〈w, bs+1〉+ O(e−t)= 2−1/2

‖w‖+ O(e−t), (5-10)

where the last estimate follows from (5-5).
By integrating (5-9) with respect to Kg, we see that for all ε > 0 there exists a

t0 > 0 so that if t > t0 then∣∣∣∣∫
Kg

f (ât kv) dνg(k)

−

∫
Kg

f (v1, . . . , vs, ‖v‖e−t , 〈kv, bs+1〉, . . . , 〈kv, bd−1〉, vd) dνg(k)
∣∣∣∣< ε. (5-11)

Equation (5-4) implies that, if f (ât kv) 6= 0, then kv is within a bounded distance
from ρ2 fs+1+ρ3 fd . As ‖v‖ increases, so do the ρi and the normalized Haar measure
on ρ2Sr1−1 near ρ2 fs+1 tends to (1/Vol(ρ2Sr1−1)) dvs+2 · · · dvs+r1 and similarly the
Haar measure on ρ3Sr2−1 near ρ3 fd tends to (1/Vol(ρ3Sr2−1)) dvs+r1+1 · · · dvd−1.
This means that as ‖v‖ tends to infinity the second integral in (5-11) tends to

ρ
1−r1
2 ρ

1−r2
3

cr1,r2

∫
Rd−s−2

f (v1, . . . , vs, ‖v‖e−t , vs+1, . . . , vd) dvs+2 · · · dvd−1

=
(‖v‖e−t)d−s−2

ρ
r1−1
2 ρ

r2−1
3 cr1,r2

J f,g(M
g
0 (v), ‖v‖e

−t). (5-12)

Because (5-10) implies that ρr1−1
2 ρ

r2−1
3 = 2(s+2−d)/2

‖v‖d−s−2
+ O(e−t), we can

use (5-11) and (5-12) to get that for all ε > 0 there exists a t0 > 0 so that if t > t0
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and ‖v‖> t0 then∣∣∣∣∫
Kg

f (ât kv) dνg(k)−
et (s+2−d)

C1
J f,g(M

g
0 (v), ‖v‖e

−t)

∣∣∣∣< ε.
By dividing through by the factor et (s+2−d)

C1
, we obtain the desired conclusion. �

For f1 and f2 continuous functions of compact support on Rd
+
= {v ∈ Rd

:

〈v, es+1〉 > 0}, define J f1,g + J f2,g = J f1+ f2,g and J f1,g J f2,g = J f1 f2,g. These
operations make the collection of functions of the form J f,g into an algebra of
real-valued functions on the set Rs

× {v ∈ R : v > 0}. Denote this algebra by A.
The following will be used in the proofs of Theorems 2.3 and 2.1:

Lemma 5.2. A is dense in Cc(R
s
×{v ∈ R : v > 0}).

Proof. Let B be a compact subset of Rs
× {v ∈ R : v > 0}. Let AB denote the

subalgebra of A of functions with support B. It is straightforward to check that the
algebra AB separates points in B and does not vanish at any point in B. Therefore,
by the Stone–Weierstrass theorem [Rudin 1976, Theorem 7.32], AB is dense in the
space of continuous functions on B. Since B is arbitrary, this implies the claim. �

Proof of Theorem 2.3. Let ε > 0 be arbitrary and g ∈ CSL(r1, r2). By Lemma 5.2,
there exists a continuous nonnegative function f on Rd

+
of compact support so that

J f,g ≥ 1+ ε on R×[1, 2]. Then if v ∈Rd satisfies et
≤ ‖v‖ ≤ 2et , Mg

0 (v) ∈ R and
Qg

0(v)= a, then J f,g(M
g
0 (v), ‖v‖e

−t)≥ 1+ε. Then by Lemma 5.1, for sufficiently
large t ,

C1e(d−s−2)t
∫

Kg

f (ât kv) dνg(k)≥ 1

if et
≤ ‖v‖ ≤ 2et , Mg

0 (v) ∈ R and Qg
0(v)= a. Then summing over v ∈ Xg(Z), we

get

|Xg(Z)∩ VM([a, b])∩ A(et , 2et)| ≤
∑

v∈Xg(Z)

C1e(d−s−2)t
∫

Kg

f (ât kv) dνg(k)

= C1e(d−s−2)t
∫

Kg

F f,g(ât k) dνg(k). (5-13)

Note that ∫
Kg

F f,g(ât k) dνg(k)=
∫

K I

F f,g(g−1at kg) dνI (k). (5-14)

By (2-2), we have the bound F f,g(x)≤ c( f ) α(x) for all x ∈ Gg/0g, where c( f )
is a constant depending only on f . Since g ∈ CSL(r1, r2), Part (I) of Theorem 2.4
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implies that if r1 ≥ 3 and r2 ≥ 1 then∫
K I

F f,g(g−1at kg) dνI (k) < c( f ◦ g−1)

∫
K I

α(at kg) dνI (k) <∞. (5-15)

In the case when r1 = 2 and r2 = 1 or r1 = r2 = 2, Part (II) of Theorem 2.4 implies
that for all g ∈ CSL(r1, r2) there exists a constant C so that∫

K I

F f,g(g−1at kg) dνI (k) < c( f ◦ g−1)

∫
K I

α(at kg) dνI (k) < Ct. (5-16)

Hence, (5-13), (5-14) and (5-15) imply that as long as r1 ≥ 3 and r2 ≥ 1 there exists
a constant C2 such that

|Xg(Z)∩ VM(R)∩ A(et , 2et)| ≤ C2e(d−s−2)t .

Similarly, (5-13), (5-14) and (5-16) imply that, if r1 = 2 and r2 = 1 or r1 = r2 = 2,
then

|Xg(Z)∩ VM(R)∩ A(et , 2et)| ≤ C2te(d−s−2)t .

Since we can write T = et and

A(0, T )= lim
n→∞

(
A(0, T/2n)

n⋃
i=1

A(T/2i , T/2i−1)

)
,

the theorem follows by summing a geometric series. �

Theorem 2.3 has the following corollary, which is comparable with Proposition
3.7 from [Eskin et al. 1998] and will be used in the proof of Theorem 2.1.

Corollary 5.3. Let f be a continuous function of compact support on Rd
+

. Then for
every ε > 0 and g ∈ CSL(r1, r2), there exists t0 > 0 so that, for t > t0,∣∣∣∣e−(d−s−2)t

∑
v∈Xg(Z)

J f,g(M
g
0 (v), ‖v‖e

−t)−C1

∫
Kg

F f,g(ât k) dνg(k)
∣∣∣∣< ε. (5-17)

Proof. Since J f,g has compact support, the number of nonzero terms in the sum
on the left-hand side of (5-17) is bounded by ce(d−s−2)t because of Theorem 2.3.
Hence, summing the result of Lemma 5.1 over v ∈ Xg(Z) proves (5-17). �

5B. Volume estimates. For a compactly supported function h on Rs
×Rd
\{0}, we

define

2(h, T )=
∫

Xg(R)

h(Mg
0 (v), v/T ) dmg(v).

For X⊆ Rd , we will use the notation VolXg (X)=
∫

Xg(R)
1X∩Xg(R) dmg to mean the

volume of X with respect to the volume measure on Xg(R).
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The following lemma and its corollary are analogous to Lemma 3.8 from [Eskin
et al. 1998], and the proofs share some similarities although it is here that the fact
we are integrating over Xg(R) rather than the whole of Rd becomes an important
distinction. In Lemma 5.4, we compute limT→∞(1/T d−s−2)2(h, T ). Here it is
crucial that h is not defined on Rs

×{0}; if it was, using the fact that h can be bounded
by an integrable function, one could directly pass the limit inside the integral and
the limit would be 0. The basic strategy of Lemma 5.4 is that we evaluate the
integral

∫
Xg(R)

dmg by switching to polar coordinates. This has the effect that the
integral changes into an integral over two spheres; then we approximate the spheres
by an orbit of Kg and an integral over the coordinates fixed by Kg.

Lemma 5.4. Suppose that h is a continuous function of compact support in Rs
×

Rd
\ {0}. Then

lim
T→∞

1
T d−s−22(h, T )= C1

∫
Kg

∫
∞

0

∫
Rs

h(z, rke0)rd−s−2 dz
dr
2r

dνg(k),

where e0 is a unit vector in Rd and C1 is the constant defined by (5-1).

Proof. By Lemma 2.2 of [Sargent 2013], for all g ∈ CSL(r1, r2), there exists a basis
of Rd , denoted by f1, . . . , fd , such that

Qg
0(v)=

s1∑
i=1

v2
i −

s∑
i=s1+1

v2
i +

s+r1∑
i=s+1

v2
i −

d∑
i=s+r1+1

v2
i and Mg

0 (v)= J (v1, . . . , vs),

where vi = 〈v, fi 〉 for 1 ≤ i ≤ d, J ∈ GLs(R), s1 is a nonnegative integer such
that r1 + s1 = p and s2 is a nonnegative integer such that r2 + s2 = d − p. Let
L1 = 〈v1, . . . , vs1, vs+1, . . . , vs+r1〉, L2 = 〈vs1+1, . . . , vs, vs+r1+1, . . . , vd〉, S p−1

be the unit sphere inside L1 and Sd−p−1 be the unit sphere inside L2. Let α ∈ S p−1

and β ∈ Sd−p−1. Using polar coordinates, we can parametrize v ∈ Xg(R) so that

vi =


√

aαi cosh t for 1≤ i ≤ s1,
√

aβi−s1 sinh t for s1+ 1≤ i ≤ s,
√

aαi−s+s1 cosh t for s+ 1≤ i ≤ s+ r1,
√

aβi−s1−r1 sinh t for s+ r1+ 1≤ i ≤ d.

(5-18)

In these coordinates, we may write

dmg(v)=
a(d−2)/2

2
coshp−1 t sinhq−1 t dt dξ(α, β)= P(et) dt dξ(α, β),

where P(x) = (a(d−2)/2/2d−1)xd−2
+ O(xd−3) and ξ is the Haar measure on

S p−1
× Sq−1. Making the change of variables, r =

√
aet/2T , gives

√
a cosh t = T r + a/4T r and

√
a sinh t = T r − a/4T r. (5-19)
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Let L ′1= 〈vs+1, . . . , vs+r1〉, L ′2= 〈vs+r1+1, . . . , vd〉, Sr1−1 be the unit sphere inside
L ′1, Sr2−1 be the unit sphere inside L ′2, α′ ∈ Sr1−1 and β ′ ∈ Sr2−1. We may write

dξ(α, β)= δ(α, β) dα1 · · · dαs1 dβ1 · · · dβs2 dξ ′(α′, β ′),

where δ(α, β) is the appropriate density function and dξ ′ is the Haar measure on
Sr1−1

× Sr2−1. This gives

dmg(v)= P
(2T r
√

a

)
δ(α, β)

dr
r

dα1 · · · dαs1 dβ1 · · · dβs2 dξ ′(α′, β ′). (5-20)

Let z ∈ Rs . Make the further change of variables

(α1, . . . , αs1, β1, . . . , βs−s1)=
1

T r
J−1z; (5-21)

this means that

dα1 · · · dαs1 dβ1 · · · dβs2 =
1

det(J )(T r)s
dz. (5-22)

Moreover, using (5-18), (5-19) and (5-21) gives

Mg
0 (v)= z+ O(1/T ) and v/T = r(α′+β ′)+ O(1/T ). (5-23)

Since h is continuous and compactly supported, it may bounded by an integrable
function and hence

lim
T→∞

1
T d−s−22(h, T )

= lim
T→∞

1
T d−s−2

∫
Xg(R)

h(Mg
0 (v), v/T ) dmg(v)

=

∫
Xg(R)

lim
T→∞

1
T d−s−2 h(Mg

0 (v), v/T ) dmg(v)

=

∫
Sr1−1×Sr2−1

∫
∞

0

∫
Rs

h(z, r(α′+β ′))rd−s−2δ(α′, β ′) dz
dr
2r

dξ ′(α′, β ′),

where the last step follows from (5-20), the definition of P(x), (5-22) and (5-23).
Note that from the definition of δ it is clear that δ(α′, β ′) = 1. Finally, let e0 =

1
√

2
( f1+ f p+1) and 1

√
2
(α′+β ′)= ke0 and r ′ =

√
2r to get that

lim
T→∞

1
T d−s−22(h, T )= C1

∫
Kg

∫
∞

0

∫
Rs

h(z, r ′ke0)r ′d−s−2 dz
dr ′

2r ′
dνg(k). �

Corollary 5.5. For all g ∈ CSL(r1, r2), there exists a constant C3 > 0 such that for
all compact regions R ⊂ Rs with piecewise smooth boundary

lim
T→∞

1
T d−s−2 VolXg (VMg

0
(R)∩ A(T/2, T ))= C3 Vol(R).
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Proof. Let 1 denote the characteristic function of R× A(1/2, 1); then it is clear that

lim
T→∞

1
T d−s−2 VolXg (VMg

0
(R)∩ A(T/2, T ))

= lim
T→∞

1
T d−s−2

∫
Xg(R)

1(M0(gv), v/T ) dmg(v)

= lim
T→∞

1
T d−s−22(1, T ).

Since R has piecewise smooth boundary, there exist regions R−δ ⊆ R× A(1/2, 1)⊆
R+δ such that limδ→0 R+δ = limδ→0 R−δ = R, and for all δ > 0, we can choose
continuous compactly supported functions h−δ and h+δ on Rs

× Rd
\ 0 such that

0 ≤ h−δ ≤ 1 ≤ h+δ ≤ 1, h−δ (v) = 1(v) if v ∈ R−δ and h+δ (v) = 0 if v /∈ R+δ . By
Lemma 5.4,

lim
T→∞

1
T d−s−22(h

−

δ , T )≤ lim inf
T→∞

1
T d−s−2

∫
Xg(R)

1(M0(gv), v/T ) dmg(v)

≤ lim sup
T→∞

1
T d−s−2

∫
Xg(R)

1(M0(gv), v/T ) dmg(v)

≤ lim
T→∞

1
T d−s−22(h

+

δ , T ).

It is clear that

lim
δ→∞

lim
T→∞

1
T d−s−22(h

−

δ , T )= lim
δ→∞

lim
T→∞

1
T d−s−22(h

+

δ , T )

= lim
T→∞

1
T d−s−22(1, T );

hence, we can apply Lemma 5.4 to get that

lim
T→∞

1
T d−s−22(1, T )

= C1

∫
Kg

∫
∞

0

∫
Rs

1(z, rk−1e0)rd−s−2 dz
dr
2r

dνg(k)

= C1

∫
Rs

1R(z) dz
∫

Kg

∫
∞

0
1A(1/2,1)(rk−1e0)rd−s−2 dr

2r
dνg(k)= C3 Vol(R).

The last equality holds because∫
Kg

∫
∞

0
1A(1/2,1)(rk−1e0)rd−s−2 dr

2r
dνg(k) <∞

as 1A(1/2,1) has compact support and Kg is compact. �
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5C. Proof of Theorem 2.1. By Theorem 4.9 of [Platonov and Rapinchuk 1991],
there exist v1, . . . , v j ∈ Xg(Z) such that Xg(Z)=

⊔ j
i=1 0gvi . Let Pi (g)={x ∈Gg :

xvi = vi } and 3i (g)= Pi (g)∩0g. By Proposition 1.13 of [Helgason 2000], there
exist Haar measures %3i , p3i and γ3i on Gg/3i (g), Pi (g)/3i (g) and 0g/3i (g),
respectively, such that, for f ∈ Cc(Gg/3i (g)) and hence for integrable functions
on Gg/3i (g),∫

Gg/3i (g)
f d%3i =

∫
Xg(R)

∫
Pi (g)/3i (g)

f (xp) dp3i(p) dmg(x), (5-24)∫
Gg/3i (g)

f d%3i =

∫
Gg/0g

∫
0g/3i (g)

f (xγ ) dγ3i(γ ) dµg(x). (5-25)

Note that 0g/3i (g)=0gvi is discrete and its Haar measure dγ3i is just the counting
measure and so ∫

0g/3i (g)
f (xγ ) dγ3i(γ )=

∑
v∈0gvi

f (xv). (5-26)

Therefore, the normalizations already present on mg and µg induce a normalization
on p3i . Moreover, it follows from the Borel–Harish-Chandra theorem [Platonov
and Rapinchuk 1991, Theorem 4.13] that the measure of p3i(Pi (g)/3i (g)) <∞
for each 1≤ i ≤ j . As in [Eskin et al. 1998; Dani and Margulis 1993], where the
proofs rely on Siegel’s integral formula, here the proof relies on the following result:

Lemma 5.6. For all f ∈ Cc(Xg(R)) and g ∈ CSL(r1, r2), there exists a constant

C(g)=
j∑

i=1

p3i (Pi (g)/3i (g))

such that

C(g)
∫

Xg(R)

f dmg =

∫
Gg/0g

F f,g dµg. (5-27)

Proof. Note that, for 1 ≤ i ≤ j , Gg/Pi (g) ∼= Xg(R). If f ∈ Cc(Xg(R)), then f
is 3i (g)-invariant and therefore can be considered as an integrable function on
Gg/3i (g) and so∫

Xg(R)

∫
Pi (g)/3i (g)

f (xp) dp3i(p) dmg(x)

=

∫
Pi (g)/3i (g)

dp3i

∫
Xg(R)

f dmg. (5-28)

Now it follows from the definition of F f,g (i.e., (2-1)), (5-24), (5-25), (5-26) and
(5-28) that
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∫
Gg/0g

F f,g dµg =

j∑
i=1

∫
Gg/0g

∑
v∈0gvi

f (xv) dµg(x)

=

j∑
i=1

∫
Pi (g)/3i (g)

dp3i

∫
Xg(R)

f dmg,

which is the desired result. �

The final lemma of this section is the counterpart of Lemma 3.9 from [Eskin
et al. 1998], and again the proof there is mimicked.

Lemma 5.7. Let f be a continuous function of compact support on Rd
+

. Then for
all g ∈ CSL(r1, r2),

lim
T→∞

1
T d−s−2

∫
Xg(R)

J f,g(M
g
0 (v), ‖v‖/T ) dmg(v)= C1C(g)

∫
Gg/0g

F f,g dµg,

where C1 is defined by (5-1) and C(g) is defined in Lemma 5.6.

Proof. Let vi be the components of v when written in the basis b1, . . . , bd from
Lemma 5.1. Using the change of variables (v1, . . . , vd)→ (z1, . . . , zs, r, vs+2,

. . . , a) where Qg
0(v1, . . . , vd)= a, we see that∫

Rd
f (v) dv =

∫
∞

−∞

∫
∞

0

∫
Rs

J f,g(z, r)rd−s−2 dz
dr
2r

da.

Hence, it follows from how mg is defined (i.e., (2-3)) that∫
Xg(R)

f (v) dmg(v)=

∫
∞

0

∫
Rs

J f,g(z, r)rd−s−2 dz
dr
2r
. (5-29)

Lemma 5.4 and (5-29) imply that

lim
T→∞

1
T d−s−2

∫
Xg(R)

J f,g(M
g
0 (v), ‖v‖/T ) dmg(v)

= C1

∫
Kg

(∫
Xg(R)

f (v) dmg

)
dνg(k).

Now the conclusion follows from Lemma 5.6. �

The purpose of Lemma 5.7 is to relate the integral over Gg/0g to an integral
over Xg(R) in order that the integral over Xg(R) can be approximated by an integral
over Kg via Theorem 2.5. Then the integral over Kg can be approximated by the
appropriate counting function via Corollary 5.3. We now proceed to put this into
action in the proof of our main theorem, which is just a modification of the proof
in [Eskin et al. 1998].
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Proof of Theorem 2.1. By Lemma 5.4, the functional 9 on Cc(R
s
×Rd

\ {0}) given
by

9(h)= lim
T→∞

1
T d−s−22(h, T )

is continuous. For all connected regions R ⊂ Rs with smooth boundary, if 1
denotes the characteristic function of R× A(1/2, 1), then for every ε > 0 there exist
continuous functions h+ and h− on Rs

×Rd
\{0} such that, for all (r, v)∈Rs

×Rd
\{0},

h−(r, v)≤ 1(r, v)≤ h+(r, v) (5-30)

and
|9(h+)−9(h−)|< ε. (5-31)

Let J denote the space of linear combinations of functions on Rs
×Rd of the form

J f,g(r, ‖v‖), where f is a continuous function of compact support on Rd
+

. Let H

denote the collection of functions in Cc(R
s
× Rd

\ {0}) such that if h ∈ H then
h takes an argument of the form (r, ‖v‖). By Lemma 5.2, J is dense in H, and
since h+ and h− belong to H, we may suppose that h+ and h− may be written
as a finite linear combination of functions from J. The function F f,g defined by
(2-1) obeys the bound (2-4) with δ = 1 by (2-2). Moreover, Lemma 3.10 of [Eskin
et al. 1998] implies that F f,g ∈ L1(Gg/0g). Therefore, if h′ ∈ {h+, h−}, then for
all g ∈ CSL(r1, r2), we can apply Theorem 2.5 with the function F f,g followed by
Corollary 5.3 and Lemma 5.7 to get that there exists t0 > 0 so that, for all ε > 0
and t > t0, ∣∣∣∣ C(g)

e(d−s−2)t

∑
v∈Xg(Z)

h′(Mg
0 (v), ve−t)−9(h′)

∣∣∣∣< ε. (5-32)

From the definition of 9(h), we see that for all h ∈ Cc(R
s
× Rd

\ {0}) and g ∈
CSL(r1, r2) there exists t0 > 0 so that, for all ε > 0 and t > t0,∣∣∣∣ 1

e(d−s−2)t

∫
Xg(R)

h(Mg
0 (v), ve−t) dmg(v)−9(h)

∣∣∣∣< ε. (5-33)

Clearly (5-30) implies

C(g)
e(d−s−2)t

∑
v∈Xg(Z)

h−(M
g
0 (v), ve−t)−9(h+)

≤
C(g)

e(d−s−2)t

∑
v∈Xg(Z)

1(Mg
0 (v), ve−t)−9(h+)

≤
C(g)

e(d−s−2)t

∑
v∈Xg(Z)

h+(M
g
0 (v), ve−t)−9(h+). (5-34)
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Apply (5-31) to the left-hand side of (5-34), and then apply (5-32) with suitable
choices of ε’s to get that for all g ∈ CSL(r1, r2) there exists t0 > 0 so that, for all
θ > 0 and t > t0,∣∣∣∣ C(g)

e(d−s−2)t

∑
v∈Xg(Z)

1(Mg
0 (v), ve−t)−9(h+)

∣∣∣∣≤ θ2 . (5-35)

Similarly using (5-30), (5-31) and (5-33), we see that for all g ∈ CSL(r1, r2) there
exists t0 > 0 so that, for all θ > 0 and t > t0,∣∣∣∣ 1

e(d−s−2)t

∫
Xg(R)

1(Mg
0 (v), ve−t) dmg(v)−9(h+)

∣∣∣∣≤ θ2 . (5-36)

Hence, using (5-35) and (5-36), we see that for all g ∈CSL(r1, r2) there exists t0> 0
so that, for all θ > 0 and t > t0,∣∣∣∣C(g) ∑

v∈Xg(Z)

1(Mg
0 (v), ve−t)−

∫
Xg

1(Mg
0 (v), ve−t) dmg(v)

∣∣∣∣≤ θ. (5-37)

This means that for all g ∈ CSL(r1, r2) there exists t0 > 0 so that, for all θ > 0 and
t > t0,

(1− θ)
∫

Xg(R)

1(Mg
0 (v), ve−t) dmg(v)≤ C(g)

∑
v∈Xg(Z)

1(Mg
0 (v), ve−t)

≤ (1+ θ)
∫

Xg(R)

1(Mg
0 (v), ve−t) dmg(v). (5-38)

Hence, for all (Q,M) ∈ CPairs(r1, r2), there exists t0 > 0 so that, for all θ > 0 and
t > t0,

(1− θ)VolX Q (VM(R)∩ A(T/2, T ))≤ C(g)|X Q(Z)∩ VM(R)∩ A(T/2, T )|

≤ (1+ θ)VolX Q (VM(R)∩ A(T/2, T )).

The conclusion of the theorem follows by applying Corollary 5.5 and summing a
geometric series. �

6. Counterexamples

In small dimensions, there are slightly more integer points than expected on the
quadratic surfaces defined by forms with signature (1, 2) and (2, 2). This fact was
exploited in [Eskin et al. 1998] to show that the expected asymptotic formula for
the situation they consider is not valid for these special cases. In a similar manner,
it is possible to construct examples that show that Theorem 1.1 is not valid in the
cases that the signature of Hg is (1, 2) or (2, 2). In this section, for the sake of
brevity, we restrict our attention to the case when s = 1, but we note that similar
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arguments would hold in the case when s > 1. To start with, make the following
definitions:

Q1(x)=−x1x2+ x2
3 + x2

4 ,

Q2(x)= x1x2+ x2
3 − x2

4 ,

Q3(x)=−x1x2+ x2
3 + x2

4 −αx2
5 ,

Lα(x)= x1−αx2.

We can now prove:

Lemma 6.1. Let ε > 0; suppose [a, b]= [1/2− ε, 1] or [−1,−1/2+ ε]. Let a> 0;
then for every T0 > 0, the set of β ∈ R for which there exists a T > T0 such that∣∣Xa

Q1
(Z)∩ VLβ ([a, b])∩ A(0, T )

∣∣> T (log T )1−ε

or
∣∣Xa

Q2
(Z)∩ VLβ ([a, b])∩ A(0, T )

∣∣> T (log T )1−ε

is dense. Similarly if a = 0, then for every T0 > 0, the set of β ∈ R for which there
exists a T > T0 such that∣∣Xa

Q3
(Z)∩ VLβ ([a, b])∩ A(0, T )

∣∣> T 2(log T )1−ε

is dense.

Proof. Let Si (α, T, a)= {x ∈Zdi : Lα(x)= 0, Qi (x)= a, ‖x‖ ≤ T }, where di = 4
if i = 1 or 2 and di = 5 if i = 3. Lemma 3.14 of [Eskin et al. 1998] implies that

|Si (α, T, a)| ∼ ci,αT log T for i = 1, 2 and
√
α ∈Q and a > 0, (6-1)

|S3(α, T, 0)| ∼ c3,αT 2 log T for
√
α ∈Q, (6-2)

where ci,α are constants that depend on α. Note that if i = 1, 2 and x ∈ Si (α, T, a)\
Si (α, T/2, a), then

T 2

4
− (α2

+ 1)x2
2 ≤ x2

3 + x2
4 ≤ T 2

− (α2
+ 1)x2

2 (6-3)

and
x2

3 + x2
4 = αx2

2 + a. (6-4)

Similarly if x ∈ S3(α, T, 0) \ S3(α, T/2, 0),

T 2

4
− (α2

+ 1)x2
2 ≤ x2

3 + x2
4 + x2

5 ≤ T 2
− (α2

+ 1)x2
2 (6-5)

and
x2

3 + x2
4 = α(x

2
2 + x2

5). (6-6)

Combining (6-3) and (6-4) gives

T 2
− 4a

4(α2+α+ 1)
≤ x2

2 ≤
T 2
− a

α2+α+ 1
. (6-7)
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Respectively, combining (6-5) and (6-6) gives

T 2
− (α+ 1)x2

5

4(α2+α+ 1)
≤ x2

2 ≤
T 2
− (α+ 1)x2

5

α2+α+ 1
, (6-8)

which upon noting that −T ≤ x5 ≤ T offers

T 2
− (α+ 1)T

4(α2+α+ 1)
≤ x2

2 ≤
T 2
+ (α+ 1)T
α2+α+ 1

. (6-9)

Take

β± = α±

√
α2+α+ 1

T 2 . (6-10)

It is clear that Lβ±(x)= Lα(x)±
√
(α2+α+ 1)/T 2 x2, and hence, if i = 1, 2 and

x ∈ Si (α, T, a) \ Si (α, T/2, a), then (6-7) implies√
1
4
−

a
T 2 ≤ Lβ+(x)≤

√
1−

a
T 2 ,

−

√
1−

a
T 2 ≤ Lβ−(x)≤−

√
1
4
−

a
T 2 .

(6-11)

Similarly if x ∈ S3(α, T, 0) \ S3(α, T/2, 0), then (6-9) implies√
1
4
−
(α+ 1)

T
≤ Lβ+(x)≤

√
1−

(α+ 1)
T

,

−

√
1−

(α+ 1)
T
≤ Lβ−(x)≤−

√
1
4
−
(α+ 1)

T
.

(6-12)

This means for all ε > 0 there exists T+ > 0 such that if T > T+ then Si (α, T, a)⊂
Xa

Qi
(Z)∩ VLβ+ ([1/2− ε, 1])∩ A(0, T ); respectively, there also exists T− > 0 such

that if T > T− then Si (α, T, a)⊂ Xa
Qi
(Z)∩ VLβ− ([−1,−1/2+ ε])∩ A(0, T ). By

(6-1) and (6-2), for i = 1, 2 and large enough T (depending on α), |Si (α, T, a)|>
T (log T )1−ε and |Si (α, T, a)|> CT 2(log T )1−ε . The set of β satisfying (6-10) for
rational α and large T is clearly dense, and this proves the lemma. �

Theorem 6.2. Let j = 1, 2. For every ε > 0 and every interval [a, b], there
exists a rational quadratic form Q and an irrational linear form L such that
StabSO(Q)(L)∼= SO( j, 2) such that, for an infinite sequence Tk→∞,∣∣Xa j

Q (Z)∩ VL([a, b])∩ A(0, Tk)
∣∣> T j

k (log Tk)
1−ε,

where a1 > 0 and a2 = 0.

Proof. Since the interval [a, b] must intersect either the positive or negative reals,
there is no loss of generality in assuming, after passing to a subset and rescaling,
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that [a, b] = [1/4, 5/4] or [−5/4,−1/4]. For a given S > 0 and i = 1, 2, let US

be the set of γ ∈ R for which there exist β ∈ R and T > S with∣∣Xa1
Qi
(Z)∩ VLβ ([1/2, 1])∩ A(0, T )

∣∣> CT log T (6-13)

and
|β − γ |< T−2. (6-14)

Then US is open and dense by Lemma 6.1. By the Baire category theorem [Rudin
1987, Theorem 5.6],

⋂
∞

k=1 U2k+1 is dense in R and is in fact of second category and
hence uncountable. Let γ ∈

⋂
∞

k=1 U2k+1 \Q; then there exist infinite sequences βk

and Tk such that (6-13) and (6-14) hold with β replaced by βk and T by Tk . Note
that (6-14) implies that, for ‖x‖< Tk ,

|Lβk (x)− Lγ (x)|<
1
Tk
<

1
4

so that

Xa1
Qi
(Z)∩ VLβk

([1/2, 1])∩ A(0, Tk)⊆ Xa1
Qi
(Z)∩ VLγ ([1/4, 5/4])∩ A(0, Tk)

and hence |Xa1
Qi
(Z)∩ VLγ ([1/4, 5/4])∩ A(0, Tk)|> CTk log Tk by (6-13). If i = 3,

then we can carry out the same process, but we replace US by the set WS of γ ∈ R

for which there exist β ∈ R and T > S with∣∣X0
Q3
(Z)∩ VLβ ([1/2, 1])∩ A(0, T )

∣∣> CT 2 log T

and
|β − γ |< T−2. �
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