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We establish estimates for the number of solutions of certain affine congruences.
These estimates are then used to prove Manin’s conjecture for a cubic surface
split over Q whose singularity type is D4. This improves on a result of Browning
and answers a problem posed by Tschinkel.
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1. Introduction

The aim of this paper is to study the asymptotic behavior of the number of rational
points of bounded height on the cubic surface V ⊂ P3 defined over Q by

x0(x1+ x2+ x3)
2
− x1x2x3 = 0.

Manin’s conjecture [Franke et al. 1989], and the refinements concerning the value
of the constant due to Peyre [1995] and to Batyrev and Tschinkel [1998b], describe
precisely what should be the solution of this problem.

The variety V has a unique singularity at the point (1 : 0 : 0 : 0), of type D4.
In addition, it contains precisely six lines, which are defined by x0 = xi = 0 and
x1 + x2 + x3 = xi = 0 for i ∈ {1, 2, 3}. Rational points accumulate on these six
lines, hiding the interesting behavior of the number of rational points lying outside
the lines. We thus let U be the open subset formed by removing the six lines
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from V . We also let H : P3(Q)→ R>0 be the exponential height, defined for a
vector (x0, x1, x2, x3) ∈ Z4 satisfying gcd(x0, x1, x2, x3)= 1 by

H(x0 : x1 : x2 : x3)=max{|x0|, |x1|, |x2|, |x3|}.

The quantity in which we are interested is then defined by

NU,H (B)= #
{

x ∈U (Q)
∣∣ H(x)≤ B

}
.

In this specific context, Manin’s conjecture states that

NU,H (B)= cV,H B (log B)6(1+ o(1)),

where cV,H is a constant which is expected to agree with Peyre’s prediction. In
a more general setting, the exponent of the logarithm is expected to be equal to
the rank of the Picard group of the minimal desingularization of V minus one. In
comparison, the number NP1,H (B) of rational points of bounded height lying on a
line satisfies NP1,H (B)= c

P1,H B2(1+ o(1)), where c
P1,H > 0.

Manin’s conjecture for singular cubic surfaces has received an increasing amount
of attention over the last years (see, for instance, [de la Bretèche and Swinnerton-
Dyer 2007; de la Bretèche et al. 2007; Le Boudec 2012a]). The interested reader is
invited to refer to [Le Boudec 2012a, Section 1] for a comprehensive overview of
what is currently known concerning singular cubic surfaces defined over Q.

Any cubic surface in P3 defined over C which has only isolated singularities and
which is not a cone over an elliptic curve can only have ADE singularities (see [Coray
and Tsfasman 1988, Proposition 0.2]). In Table 1 below, we recall the classification
over Q of cubic surfaces with ADE singularities, and we give the number of lines
contained by the surfaces. Moreover, we indicate if Manin’s conjecture is known
for at least one example of the surface of the specified singularity type by giving
the corresponding reference. Note that the difficulty of proving Manin’s conjecture
increases as we go higher in Table 1.

At the American Institute of Mathematics workshop Rational and integral points
on higher-dimensional varieties in 2002, Tschinkel posed the problem of study-
ing the quantity NU,H (B). Motivated by [Heath-Brown 2003], which deals with
Cayley’s cubic surface, Browning [2006] gave a first answer to this question by
proving that

NU,H (B)� B(log B)6,

where � means that the ratio of these two quantities is between two positive
constants. To do so, he made use of the universal torsor calculated in [Hassett and
Tschinkel 2004], which is an open subset of the affine hypersurface embedded in
A10
' Spec(Q[η1, . . . , η10]) and defined by

η2η
2
5η8+ η3η

2
6η9+ η4η

2
7η10− η1η2η3η4η5η6η7 = 0.
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Singularity type Number of lines Result

A1 21
2A1 16
A2 15

3A1 12
A2+A1 11

A3 10
4A1 9

2A1+A2 8
A3+A1 7

2A2 7
A4 6
D4 6 [this paper]

2A1+A3 5
2A2+A1 5 [Le Boudec 2012a]

A4+A1 4
A5 3
D5 3 [Browning and Derenthal 2009]

3A2 3 [Batyrev and Tschinkel 1998a]
A5+A1 2 [Baier and Derenthal 2012]

E6 1 [de la Bretèche et al. 2007]

Table 1. Cubic surfaces with ADE singularities.

In this paper, we also make use of this auxiliary variety to establish Manin’s
conjecture for V .

Universal torsors were originally introduced by Colliot-Thélène and Sansuc in
order to study the Hasse principle and weak approximation for rational varieties
(see [Colliot-Thélène and Sansuc 1976; 1980; 1987]). These descent methods have
turned out to be a very pertinent tool for counting problems. The parametrizations
of rational points provided by universal torsors have been used in the context of
Manin’s conjecture for the first time by Peyre [1998] and Salberger [1998].

It is a well-established heuristic that counting rational points on cubic surfaces
becomes harder as the number N of (−2)-curves on the minimal desingularizations
decreases (which means as we go higher in Table 1). As a consequence, our result
can be seen as a new record, since V is the first example of cubic surface with
N = 4 for which Manin’s conjecture is proved. By way of comparison, we record
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here that N is also equal to 4 for Cayley’s cubic. Previously, Manin’s conjecture
was known for only two nontoric cubic surfaces with N = 6 (see [de la Bretèche
et al. 2007; Baier and Derenthal 2012]) and two cubic surfaces with N = 5 (see
[Browning and Derenthal 2009; Le Boudec 2012a]).

Since the parametrizations of the rational points resorting to universal torsors
become extremely complicated as N decreases, it seems to the author that establish-
ing Manin’s conjecture for a cubic surface with 1≤ N ≤ 3, and even for another
cubic surface with N = 4, is an extremely difficult problem. In particular, all such
surfaces have universal torsors which are not hypersurfaces. Actually, it is not
even clear if sharp upper bounds for NU,H (B) can be obtained for surfaces with
1 ≤ N ≤ 3. As a reminder, the best result known for nonsingular cubic surfaces
(that is, with N = 0) is the upper bound

NU,H (B)� B4/3+ε

for any fixed ε > 0, which holds if the surface contains three coplanar lines defined
over Q (see [Heath-Brown 1997]).

To prove Manin’s conjecture for V , we start by establishing estimates for the
number of (u, v) ∈ Z2 lying in a prescribed region and satisfying the congruence

a1u+ a2v ≡ b (mod q) (1-1)

and the condition gcd(uv, q)= 1, where a1, a2 ∈ Z6=0, q ∈ Z≥1 are such that a1a2

is coprime to q and b ∈ Z is divisible by each prime number dividing q . Then, the
first step of the proof consists in summing over three variables, viewing the torsor
equation as an affine congruence to which these estimates are applied.

At this stage of the proof, a very interesting phenomenon stands out. The error
term showing up in these estimates gives birth to a new congruence where the
coefficients a1 and a2 appear. However, it is not possible to give a good bound
for this quantity for any fixed a1 and a2 coprime to q. As a consequence, this
quantity has to be estimated on average over certain variables dividing a1 and a2.
More precisely, this error term is nontrivially summed over two other variables
whose squares respectively divide a1 and a2, using a result due to Heath-Brown
and coming from the geometry of numbers.

The step which makes this new congruence appear is definitely the key step of
our proof (see Lemma 2). Our method is believed to be quite new and will certainly
be useful in dealing with other diophantine problems. For instance, the methods
of Lemmas 2 and 9 are used in forthcoming work of la Bretèche and Browning
[2014], in which they study in a quantitative way the failure of the Hasse principle
for a certain family of Châtelet surfaces.

It is worth pointing out that it is very likely that our work can be adapted to yield
a proof of Manin’s conjecture for another cubic surface with a single singularity
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of type D4 but lying in the other isomorphism class over Q (there are exactly two
isomorphism classes of cubic surfaces with D4 singularity type over Q). This cubic
surface is defined over Q by

x0(x1+ x2+ x3)
2
+ x1(x1+ x2)= 0,

and the universal torsor corresponding to this problem is an open subset of the
affine hypersurface embedded in A10

' Spec(Q[η1, . . . , η10]) and defined by

η2η
2
5η8+ η3η

2
6η9+ η4η

2
7η10 = 0.

The study of the congruence (1-1) in the particular case b = 0 is expected to solve
the problem of proving Manin’s conjecture for this surface in a similar fashion.

Our main result is the following:

Theorem 1. As B tends to +∞, we have the estimate

NU,H (B)= cV,H B(log B)6
(

1+ O
(

1
(log log B)1/6

))
,

where cV,H agrees with Peyre’s prediction.

It has been checked that V is not an equivariant compactification of G2
m or

G2
a (see [Derenthal 2014, Proposition 13] and [Derenthal and Loughran 2010]).

Furthermore, let
Gd = Ga od Gm,

where d ∈ Z and the action of g ∈ Gm on x ∈ Ga is given by g · x = gd x . It can
be checked that if V were an equivariant compactification of Gd , then the number
of negative curves on its minimal desingularization would be less than or equal
to 8, which is not the case since this number is equal to 10. As a result, Theorem 1
does not follow from the general results concerning equivariant compactifications
of algebraic groups [Batyrev and Tschinkel 1998a; Chambert-Loir and Tschinkel
2002; Tanimoto and Tschinkel 2012].

The next section is dedicated to the proofs of several preliminary results. The
two following sections are devoted to the descriptions of the universal torsor and
Peyre’s constant respectively. Finally, in the remaining section we prove Theorem 1.

Throughout the proof, ε is an arbitrarily small positive number. As a convention,
the implicit constants involved in the notation O and � are always allowed to
depend on ε.

2. Preliminaries

2.1. Affine congruences. Let a1, a2 ∈ Z 6=0 be two integers, and set a = (a1, a2).
Let also q ∈ Z≥1 and b ∈ Z. We assume that a1a2 is coprime to q . Moreover, if we
let rad(n) denote the radical of an integer n ≥ 1; that is,
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rad(n)=
∏
p |n

p,

then we also assume that
rad(q)|b. (2-1)

Let I and J be two bounded intervals. We introduce the quantities

N (I,J; q, a, b)

= #
{
(u, v) ∈ I×J∩Z2 ∣∣ a1u+ a2v ≡ b (mod q), gcd(uv, q)= 1

}
, (2-2)

and

N ∗(I,J; q)=
1

ϕ(q)
#
{
(u, v) ∈ I×J∩Z2 ∣∣ gcd(uv, q)= 1

}
. (2-3)

It is immediate to check that one of the two conditions among gcd(u, q)= 1 and
gcd(v, q)=1 can be omitted in the definition of N (I,J; q, a, b). Indeed, if we omit
the condition gcd(u, q)= 1, then the conditions gcd(a2, q)= 1 and gcd(v, q)= 1
together imply that we have gcd(a1u− b, q)= 1. This last condition is seen to be
equivalent to gcd(u, q)= 1, thanks to the conditions (2-1) and gcd(a1, q)= 1.

Note that N ∗(I,J;q) is the average of N (I,J;q, a,b) over a1 or a2 coprime to q .
In Lemma 2, we show how we can approximate N (I,J; q, a, b) by N ∗(I,J; q).
We start by studying some exponential sums which will naturally appear in the proof
of Lemma 2. For q ∈ Z≥1, we let eq be the function defined by eq(x) = e2iπx/q ,
and we set for r, s ∈ Z

Sq(r, s, a, b)=
q∑

α,β=1
gcd(αβ,q)=1

a1α+a2β≡b (mod q)

eq(rα+ sβ).

Furthermore, we need to introduce the classical Ramanujan sum. For q ∈ Z≥1 and
n ∈ Z, we set

cq(n)=
q∑
α=1

gcd(α,q)=1

eq(nα)

and we recall that

cq(n)=
∑

d | gcd(q,n)

µ

(
q
d

)
d. (2-4)

Lemma 1. For any r, s ∈ Z, we have

Sq(r, s, a, b)= eq(ra−1
1 b)cq(a1s− a2r)

and, symmetrically,

Sq(r, s, a, b)= eq(sa−1
2 b)cq(a2r − a1s),
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where a−1
1 and a−1

2 denote respectively the inverses of a1 and a2 modulo q.
As a result, we have Sq(q, s, a, b)= cq(s) and Sq(r, q, a, b)= cq(r), and thus

these two quantities are independent of a and b.

Proof. The symmetry given by the map (r, s, a1, a2) 7→ (s, r, a2, a1) implies that
we only need to prove one of the two equalities. Let us prove the second one. Just
as we can omit the condition gcd(v, q) = 1 in the definition of N (I,J; q, a, b),
we can also omit the condition gcd(β, q) = 1 in the definition of Sq(r, s, a, b).
Therefore, we get

Sq(r, s, a, b)=
q∑
α=1

gcd(α,q)=1

eq(rα)
q∑
β=1

a1α+a2β≡b (mod q)

eq(sβ)

=

q∑
α=1

gcd(α,q)=1

eq(rα)eq(s(a−1
2 b− a−1

2 a1α))

= eq(sa−1
2 b)

q∑
α=1

gcd(α,q)=1

eq((r − a−1
2 a1s)α)

= eq(sa−1
2 b)cq(r − a−1

2 a1s) = eq(sa−1
2 b)cq(a2r − a1s),

as wished. �

From now on, for λ > 0 we define the arithmetic function σ−λ by

σ−λ(n)=
∑
k |n

k−λ.

Lemma 2. Let a1, a2 ∈ Z 6=0, q ∈ Z≥1 and b ∈ Z, satisfying the assumptions
gcd(a1a2, q)= 1 and rad(q)|b. We have the estimate

N (I,J; q, a, b)− N ∗(I,J; q)� E(q, a),

where E(q, a)= E0(q, a)+ E1(q) with

E0(q, a)=
∑
d |q

∣∣∣µ(q
d

)∣∣∣d ∑
0<|r |,|s|≤q/2

a1s−a2r≡0 (mod d)

|r |−1
|s|−1

and

E1(q)=
(

q
ϕ(q)

)3

(log q)2.
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Proof. We detect the congruence using sums of exponentials; we get

N (I,J; q, a, b)=
q∑

α,β=1
gcd(αβ,q)=1

a1α+a2β≡b (mod q)

#
{
(u, v) ∈ I×J∩Z2 ∣∣ q |α− u, β − v

}

=

q∑
α,β=1

gcd(αβ,q)=1
a1α+a2β≡b (mod q)

1
q2

(∑
u∈I

q∑
r=1

eq(rα−ru)
)(∑

v∈J

q∑
s=1

eq(sβ−sv)
)

=
1
q2

q∑
r,s=1

Sq(r, s, a, b)Fq(r, s),

where

Fq(r, s)=
(∑

u∈I

eq(−ru)
)(∑

v∈J

eq(−sv)
)
.

Using Lemma 1, we get

N (I,J; q, a, b)=
1
q2

q∑
r,s=1

eq(ra−1
1 b)cq(a1s− a2r)Fq(r, s).

Let ‖x‖ denote the distance from x to the set of integers. If r, s 6= q , then Fq(r, s)
is the product of two geometric sums, and we therefore have

Fq(r, s)�
∥∥∥ r

q

∥∥∥−1∥∥∥ s
q

∥∥∥−1
.

Let N (I,J; q) be the sum of the terms corresponding to r = q or s = q . As stated
in Lemma 1, N (I,J; q) is independent of a1, a2 and b. Using (2-4), we get

N (I,J; q, a, b)− N (I,J; q)=
1
q2

q−1∑
r,s=1

eq(ra−1
1 b)cq(a1s− a2r)Fq(r, s)

�
1
q2

∑
d |q

∣∣∣∣µ(q
d

)∣∣∣∣d q−1∑
r,s=1

a1s−a2r≡0 (mod d)

∥∥∥∥ r
q

∥∥∥∥−1∥∥∥∥ s
q

∥∥∥∥−1

�
1
q2

∑
d |q

∣∣∣∣µ(q
d

)∣∣∣∣d ∑
0<|r |,|s|≤q/2

a1s−a2r≡0 (mod d)

q
|r |

q
|s|
.

Recall that the right-hand side is equal to E0(q, a). We have thus obtained

N (I,J; q, a, b)− N (I,J; q)� E0(q, a). (2-5)
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Since N (I,J; q) is independent of a2 and since N ∗(I,J; q) is the average of
N (I,J; q, a, b) over a2 coprime to q , averaging this estimate over a2 coprime to q
shows that

N ∗(I,J; q)− N (I,J; q)� E ′1(q),

where

E ′1(q)=
1

ϕ(q)

∑
d |q

d
∑

0<|r |,|s|≤q/2

|r |−1
|s|−1

q∑
a2=1

gcd(a2,q)=1
a1s−a2r≡0 (mod d)

1

�
1

ϕ(q)

∑
d |q

d
∑

0<|r |,|s|≤q/2

gcd(r, s, d)|r |−1
|s|−1

�
1

ϕ(q)

∑
d |q

d
∑
d ′ |d

d ′
∑

0<|r |,|s|≤q/2
d ′ |r, d ′ |s

|r |−1
|s|−1

�
1

ϕ(q)
(log q)2

∑
d |q

dσ−1(d).

Furthermore, we can check that the right-hand side is bounded by E1(q). Thus

N ∗(I,J; q)− N (I,J; q)� E1(q), (2-6)

and therefore, combining the estimates (2-5) and (2-6), we obtain

N (I,J; q, a, b)− N ∗(I,J; q)� E(q, a),

which completes the proof. �

Note that an immediate consequence of Lemma 2 is the bound

N (I,J; q, a, b)�
1

ϕ(q)
#(I×J∩Z2)+ E(q, a). (2-7)

We now introduce a certain domain S⊂ R2 where the couple (u, v) is restricted
to lie. Let X, T, A1, A2 ≥ 1. We let S= S(X, T, A1, A2) be the set of (x, y) ∈ R2

such that

A1 |x |A2 |y||A1x + A2 y− T | ≤ T 2 X, (2-8)

|A1x + A2 y− T | ≤ X, (2-9)

A1|x | ≤ X, (2-10)

A2|y| ≤ X. (2-11)

Note that the last three conditions imply that we also have

T ≤ 3X.
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Finally, we set

D(S; q, a, b)= #
{
(u, v) ∈ S∩Z2

6=0

∣∣ a1u+ a2v ≡ b (mod q), gcd(uv, q)= 1
}

and

D∗(S; q)=
1

ϕ(q)
#
{
(u, v) ∈ S∩Z2

6=0

∣∣ gcd(uv, q)= 1
}
.

We now aim to prove the following lemma.

Lemma 3. Let L ≥ 1. We have the estimate

D(S; q, a, b)− D∗(S; q)�
1
L

X3

T A1 A2ϕ(q)
+ L4 log(2X)2 E(q, a).

Proving this requires a technical result similar to [Le Boudec 2012b, Lemma 4].

Lemma 4. Let 0 < ν ≤ 1 and M0 ∈ R>0. Let Y ∈ R>0 and Y ′ ∈ R be such that
0< Y −Y ′� νM2

0 . Let also A ∈R and set M =max(|A|, Y 1/2). Let R⊂R be the
set of real numbers y satisfying

Y ′ < |y2
+ 2Ay| ≤ Y.

If M0� M then we have the bound

#(R∩Z)� ν1/2 M2
0

M
+ 1.

Proof. Without using the assumption M0 � M , the proof of [Le Boudec 2012b,
Lemma 4] shows that we have

#(R∩Z)� ν
M2

0

M
+ ν1/2 M0+ 1.

Therefore, under the assumption M0 � M , we clearly have the claimed upper
bound. �

Proof of Lemma 3. If S∩Z2
6=0 =∅ then the result is obvious. We therefore assume

from now on that S ∩ Z2
6=0 6= ∅. We let 0 < δ, δ′ ≤ 1 be two parameters to be

selected in due course, and we set ζ = 1+ δ and ζ ′ = 1+ δ′. In addition, we let U
and V be variables running over the sets {±ζ n

| n ∈ Z≥−1} and {±ζ ′n | n ∈ Z≥−1},
respectively. We define I= ]U, ζU ] if U > 0 and I= [ζU,U [ if U < 0, and define
the interval J the same way using the variable V and the parameter ζ ′. We have

D(S; q, a, b)−
∑

I×J∩Z2⊂S

N (I,J; q, a, b)�
∑

I×J∩Z2*S

I×J∩Z2*R2
\S

N (I,J; q, a, b).
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We define the quantity

D(S; q)=
∑

I×J∩Z2⊂S

N ∗(I,J; q).

We note here that since N ∗(I,J; q) is independent of a1, a2 and b, D(S; q) is also
independent of a1, a2 and b. Moreover, we have∑

I×J∩Z2⊂S

N (I,J; q, a, b)− D(S; q)�
log(2X)2

δδ′
E(q, a),

where we have used Lemma 2 and noted that the number of rectangles I×J such
that I×J∩Z2

⊂ S is at most

4
(

1+
log X
log ζ

)(
1+

log X
log ζ ′

)
�

log(2X)2

δδ′
,

since δ, δ′ ≤ 1. We have proved that

D(S; q, a, b)− D(S; q)�
∑

I×J∩Z2*S

I×J∩Z2*R2
\S

N (I,J; q, a, b)+
log(2X)2

δδ′
E(q, a).

Using the bound (2-7) for N (I,J; q, a, b), we conclude that

D(S; q, a, b)− D(S; q)�
1

ϕ(q)

∑
I×J∩Z2*S

I×J∩Z2*R2
\S

#(I×J∩Z2)+
log(2X)2

δδ′
E(q, a),

since the number of rectangles I×J satisfying I×J∩Z2 *S and I×J∩Z2 *R2
\S

is also � log(2X)2δ−1δ′−1. The sum of the right-hand side is over all the rectangles
I×J for which (ζ s1U, ζ ′s2 V )∈S∩Z2 and (ζ t1U, ζ ′t2 V )∈Z2

\S for some (s1, s2)∈

]0, 1]2 and (t1, t2) ∈ ]0, 1]2. This means that one of the inequalities defining S is
not satisfied by (ζ t1U, ζ ′t2 V ), and we need to estimate the contribution coming
from each of the conditions (2-8)–(2-11). Note that we always have the conditions

A1|U | ≤ X, (2-12)

A2|V | ≤ X. (2-13)

In what follows, we could sometimes write strict inequalities instead of nonstrict
ones, but this would not change anything in our reasoning. Let us first deal with
condition (2-8). For the rectangles I×J described above, for some (s1, s2)∈ ]0, 1]2

and (t1, t2) ∈ ]0, 1]2 we have
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ζ s1ζ ′s2 A1 |U |A2 |V |
∣∣ζ s1 A1U + ζ ′s2 A2V − T

∣∣≤ T 2 X, (2-14)

ζ t1ζ ′t2 A1 |U |A2 |V |
∣∣ζ t1 A1U + ζ ′t2 A2V − T

∣∣> T 2 X. (2-15)

These two conditions imply respectively

|A1U + A2V − T | ≤
T 2 X

A1 |U |A2 |V |
+ δA1|U | + δ′A2|V |,

and

|A1U + A2V − T |> ζ−1ζ ′−1 T 2 X
A1 |U |A2 |V |

− δA1|U | − δ′A2|V |.

Setting 1= δ+ δ′, we thus get

ζ−1ζ ′−1 T 2 X
A1 |U |A2 |V |

−1X < |A1U + A2V −T | ≤
T 2 X

A1 |U |A2 |V |
+1X. (2-16)

Going back to the variables u and v, it is immediate to check that∣∣|A1u+ A2v− T | − |A1U + A2V − T |
∣∣≤ δA1|U | + δ′A2|V | ≤1X.

Therefore, the inequality (2-16) gives

ζ−1ζ ′−1 T 2 X
A1|u|A2|v|

− 21X < |A1u+ A2v− T | ≤ ζ ζ ′
T 2 X

A1|u|A2|v|
+ 21X.

Finally, we obtain the condition

ζ−1ζ ′−1 T 2 X
A2

1 A2|v|
−41

X2

A2
1
< |u|

∣∣∣∣u+ A2

A1
v−

T
A1

∣∣∣∣≤ ζ ζ ′ T 2 X
A2

1 A2|v|
+41

X2

A2
1
. (2-17)

Since T ≤ 3X , we can apply Lemma 4 with

M0 =
X3/2

A1 A1/2
2 |v|

1/2

and ν =1. We see that the error we want to estimate is bounded by∑
(2-12),(2-13)

(2-16)

#(I×J∩Z2)� #
{
(u, v) ∈ Z2

6=0

∣∣ (2-17), |u| � X/A1, |v| � X/A2
}

�

∑
|v|�X/A2

(
11/2 X5/2

T A1 A1/2
2 |v|

1/2
+1
)
�11/2 X3

T A1 A2
+

X
A2
.

Using the symmetry between the variables u and v, we see that we also have∑
(2-12),(2-13)

(2-16)

#(I×J∩Z2)�11/2 X3

T A1 A2
+

X
A1
,
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and thus ∑
(2-12),(2-13)

(2-16)

#(I×J∩Z2)�11/2 X3

T A1 A2
+

X

A1/2
1 A1/2

2

.

We now reason in a similar way to treat the cases of the other conditions. Let us
estimate the contribution coming from condition (2-9). We see that the condition
which plays the role of (2-16) in the previous case is here

X −1X < |A1U + A2V − T | ≤ X +1X. (2-18)

Furthermore, going back to the variables u and v, we obtain

X − 21X < |A1u+ A2v− T | ≤ X + 21X. (2-19)

We therefore find that the error in this case is bounded by∑
(2-12),(2-13)

(2-18)

#(I×J∩Z2)� #
{
(u, v) ∈ Z2

6=0

∣∣ (2-19), |u| � X/A1, |v| � X/A2
}

�

∑
|v|�X/A2

(
1

X
A1
+ 1

)
�1

X2

A1 A2
+

X
A2
.

Once again using the symmetry between the variables u and v, we obtain∑
(2-12),(2-13)

(2-18)

#(I×J∩Z2)�1
X2

A1 A2
+

X

A1/2
1 A1/2

2

.

Finally, if X/A1 < 2 then it is clear that we do not have to consider the case of
condition (2-10), and if X/A1 ≥ 2 then we are going to choose δ such that X/A1

is an integer power of ζ and, as a result, we do not have to consider the case of this
condition, here either. The same reasoning holds for the choice of the parameter δ′

depending on the size of the quantity X/A2. As a consequence, we have obtained

D(S; q, a, b)−D(S; q)�11/2 X3

T A1 A2ϕ(q)
+

log(2X)2

δδ′
E(q, a)+

X

A1/2
1 A1/2

2 ϕ(q)
.

Note that if q=1 then the result of Lemma 3 is clear since D(S; 1, a, b)= D∗(S; 1)
and if q > 1 then the third term of the right-hand side is dominated by one of the
other two. We can always choose δ and δ′ such that ζ and ζ ′ are integer powers
of X/A1 and X/A2 respectively if these quantities are greater than or equal to 2;
and we can require that, given L ≥ 1,

δ, δ′ �
1
L2 .



1272 Pierre Le Boudec

These choices of δ and δ′ give

D(S; q, a, b)− D(S; q)�
1
L

X3

T A1 A2ϕ(q)
+ L4 log(2X)2 E(q, a).

Since D(S; q) does not depend on a2 and D∗(S; q) is the average of D(S; q, a, b)
over a2 coprime to q , averaging the last estimate over a2 coprime to q yields

D∗(S; q)− D(S; q)�
1
L

X3

T A1 A2ϕ(q)
+ L4 log(2X)2 E1(q).

Putting these two estimates together completes the proof. �

Our next aim is to approximate the cardinality which appears in D∗(S; q) by
its corresponding two-dimensional volume. For this, we define the real-valued
function

h : (x, y, t) 7→max
{
|xy||x + y− t |, t2

|x |, t2
|y|, t2

|x + y− t |
}
. (2-20)

It is immediate to check that

S=

{
(x, y) ∈ R2

∣∣∣ h
(

A1x
X1/3T 2/3 ,

A2 y
X1/3T 2/3 ,

T 1/3

X1/3

)
≤ 1

}
. (2-21)

We also introduce the real-valued functions

g1 : (y, t) 7→
∫

h(x,y,t)≤1
dx, g2 : t 7→

∫
g1(y, t) dy.

Lemma 5. For (y, t) ∈ R×R>0, we have the bounds

g1(y, t)� t−2 and g2(t)� 1.

Proof. The bound for g1 is clear since t2
|x | ≤ 1. To prove the bound for g2, we use

the elementary result [Derenthal 2009, Lemma 5.1]. We obtain∫
|xy| |x+y−t |≤1

dx �min
{

1
|y|1/2

,
1

|y| |y− t |

}
.

Therefore, we have

g2(t)�
∫
|y|≤1

dy
|y|1/2

+

∫
|y|,|y−t |≥1

dy
|y| |y− t |

+

∫
|y|≥1,|y−t |≤1

dy
|y|3/4|y− t |1/2

.

The three terms of the right-hand side are easily seen to be bounded by an absolute
constant, which completes the proof. �

We now prove that the following result holds:
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Lemma 6. We have the estimate

D∗(S; q)−
ϕ(q)
q2

X2/3T 4/3

A1 A2
g2

(
T 1/3

X1/3

)
�

X2

A1 A2q

(
A1/2

1

X1/2 +
A1/2

2

X1/2

)
E2(q),

where
E2(q)=

q
ϕ(q)

σ−1/2(q)σ−1(q).

Proof. We start by removing the two coprimality conditions gcd(u, q) = 1 and
gcd(v, q)= 1 using Möbius inversions. We get

D∗(S; q)=
1

ϕ(q)

∑
`1 |q

µ(`1)
∑
`2 |q

µ(`2)C(`1, `2,S), (2-22)

where
C(`1, `2,S)= #

{
(u′, v′) ∈ Z2

6=0

∣∣ (`1u′, `2v
′) ∈ S

}
.

To count the number of u′ to be considered, we use the estimate

#{n ∈ Z6=0 ∩ [t1, t2]} = t2− t1+ O(max(|t1|, |t2|)1/2), (2-23)

which is valid for any t1, t2 ∈ R such that t1 ≤ t2. We obtain

C(`1, `2,S)=
∑
v′∈Z6=0

A2`2|v
′
|≤X

(
X1/3T 2/3

A1`1
g1

(
A2`2v

′

X1/3T 2/3 ,
T 1/3

X1/3

)
+ O

(
X1/2

A1/2
1 `

1/2
1

))

=
X1/3T 2/3

A1`1

∑
v′∈Z6=0

A2`2|v
′
|≤X

g1

(
A2`2v

′

X1/3T 2/3 ,
T 1/3

X1/3

)
+ O

(
X3/2

A1/2
1 `

1/2
1 A2`2

)
.

The first bound of Lemma 5 implies that

sup
|y|≤X2/3/T 2/3

g1

(
y,

T 1/3

X1/3

)
�

X2/3

T 2/3 .

Since g1 is easily seen to have a piecewise continuous derivative, this bound, an
application of partial summation and a further use of the estimate (2-23) yield∑

v′∈Z6=0
A2`2|v

′
|≤X

g1

(
A2`2v

′

X1/3T 2/3 ,
T 1/3

X1/3

)
=

X1/3T 2/3

A2`2
g2

(
T 1/3

X1/3

)
+ O

(
X7/6

T 2/3 A1/2
2 `

1/2
2

)
.

We have finally proved that

C(`1, `2,S)=
1
`1`2

X2/3T 4/3

A1 A2
g2

(
T 1/3

X1/3

)
+ O

(
X3/2

A1`1 A1/2
2 `

1/2
2

+
X3/2

A1/2
1 `

1/2
1 A2`2

)
.
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Putting together this estimate and the equality (2-22) completes the proof. �

One of the immediate consequences of Lemmas 3 and 6 is the following result,
which corresponds exactly to the setting of the proof of Theorem 1:

Lemma 7. Let L ≥ 1 and L≥ 1. If

X
L
≤ T,

then we have the estimate

D(S; q, a, b)−
ϕ(q)
q2

X2/3T 4/3

A1 A2
g2

(
T 1/3

X1/3

)
� E,

where E = E(X, T, A1, A2, L ,L, q, a) is given by

E = L4 log(2X)2 E(q, a)+
X2/3T 4/3

A1 A2q
L4/3

(
L

L
+

A1/2
1

X1/2 +
A1/2

2

X1/2

)
E2(q).

2.2. The error term. We now turn to the investigation of the error term E(q, a′) in
the particular case where a′ = (b1c2

1, b2c2
2) for b1, b2, c1, c2 ∈ Z≥1. Recall that we

have gcd(b1b2c1c2, q)= 1. We aim to give an upper bound for the sums of E(q, a′)
over c1 and c2 in some dyadic ranges. For this, we make use of the following result,
which comes from the geometry of numbers and is due to Heath-Brown (see [1984,
Lemma 3]). Note that this result had already been used by Browning [2006] to
prove that NU,H (B) has the expected order of magnitude.

Lemma 8. Let (v1, v2, v3)∈Z3 be a primitive vector, and let W1,W2,W3 ≥ 1. The
number of primitive vectors (w1, w2, w3) ∈ Z3 satisfying the conditions |wi | ≤Wi

for i = 1, 2, 3 and the equation

v1w1+ v2w2+ v3w3 = 0
is at most

12π
W1W2W3

max{|vi |Wi }
+ 4,

where the maximum is taken over i = 1, 2, 3.

From now on, we let τ be the usual divisor function. Recall the definitions of
E(q, a′) and E1(q) given in Lemma 2. We now prove the following lemma:

Lemma 9. Let C1,C2 ≥
1
2 . We have the bound∑∗

Ci<ci≤2Ci
gcd(c1,c2)=1

E(q, a′)� (C1C2τ(q)+ q)2ω(q)E1(q),

where the notation
∑
∗ means that the summation is restricted to integers which are

coprime to q and where i implicitly runs over the set {1, 2}.
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Proof. We have ∑∗

Ci<ci≤2Ci
gcd(c1,c2)=1

E(q, a′)�
∑∗

Ci<ci≤2Ci
gcd(c1,c2)=1

E0(q, a′)+C1C2 E1(q).

The first term of the right-hand side is at most∑
d |q

d
∑

0<|r |,|s|≤q/2

|r |−1
|s|−1

∑∗

Ci<ci≤2Ci
gcd(c1,c2)=1

b1c2
1s−b2c2

2r≡0 (mod d)

1.

Let us set g = gcd(r, s, d) and s ′ = s/g, r ′ = r/g and d ′ = d/g. We have∑∗

Ci<ci≤2Ci
gcd(c1,c2)=1

b1c2
1s−b2c2

2r≡0 (mod d)

1=
∑

1≤ρ≤d
gcd(ρ,d)=1

b1sρ2
−b2r≡0 (mod d)

∑∗

Ci<ci≤2Ci
gcd(c1,c2)=1
ρc2≡c1 (mod d)

1

=

∑
1≤ρ≤d

gcd(ρ,d)=1
b1s′ρ2

−b2r ′≡0 (mod d ′)

∑∗

Ci<ci≤2Ci
gcd(c1,c2)=1
ρc2≡c1 (mod d)

1

=

∑
1≤ρ≤d

gcd(ρ,d)=1
ρ2
−(b1s′)−1b2r ′≡0 (mod d ′)

∑∗

Ci<ci≤2Ci
gcd(c1,c2)=1
ρc2≡c1 (mod d)

1,

since gcd(b1b2, d ′) = 1 and gcd(r ′, s ′, d ′) = 1, and where (b1s ′)−1 denotes the
inverse of b1s ′ modulo d ′. Using Lemma 8, we get

∑∗

Ci<ci≤2Ci
gcd(c1,c2)=1
ρc2≡c1 (mod d)

1�
C1C2

d
+ 1.

As a consequence, we have proved that

∑∗

Ci<ci≤2Ci
gcd(c1,c2)=1

b1c2
1s−b2c2

2r≡0 (mod d)

1� gcd(r, s, d)2ω(d)
(

C1C2

d
+ 1

)
.

Finally, we easily get
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∑
d |q

d
∑

0<|r |,|s|≤q/2

|r |−1
|s|−1 gcd(r,s,d)2ω(d)

d
�

∑
d |q

2ω(d)
∑
e |d

e
∑

0<|r |,|s|≤q/2
e |r, e |s

|r |−1
|s|−1

� 2ω(q)τ(q)σ−1(q)(log q)2

� 2ω(q)τ(q)E1(q),

and, as in the proof of Lemma 2, we obtain∑
d |q

d
∑

0<|r |,|s|≤q/2

|r |−1
|s|−1 gcd(r, s, d)2ω(d)� q2ω(q)E1(q).

As a result, we have proved that∑∗

Ci<ci≤2Ci
gcd(c1,c2)=1

E0(q, a′)� (C1C2τ(q)+ q)2ω(q)E1(q),

which completes the proof. �

2.3. Arithmetic functions. We now introduce several arithmetic functions which
will appear along the proof of Theorem 1. We set

ϕ∗(n)=
∏
p |n

(
1− 1

p

)
, (2-24)

ϕg(n)=
∏
p |n

(
1− 1

p

)−2(
1+ 2

p

)−1
, (2-25)

and also, for a, b ∈ Z≥1,

ψa(n)=
∏
p |n
p-a

(
1− 1

p

)2(
1− 1

p−1

)
, (2-26)

and

ψa,b(n)=
{
ψa(n) if gcd(n, b)= 1,
0 otherwise.

Following the straightforward reasoning of the proofs of [Le Boudec 2012b,
Lemmas 5, 6], we easily obtain the following result:

Lemma 10. Let 0 < γ ≤ 1 be fixed. Let 0 ≤ t1 < t2, and set I = [t1, t2]. Let
g : R>0→ R be a function with a piecewise continuous derivative on I whose sign
changes at most Rg(I ) times on I . We have∑

n∈I∩Z>0

ψa,b(n)g(n)= ϒ9(a, b)
∫

I
g(t) dt + Oγ

(
σ−γ /2(ab)tγ2 MI (g)

)
,
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where
ϒ =

∏
p

ϕg(p)−1, 9(a, b)= ϕ∗(b)ϕg(ab), (2-27)

and
MI (g)= (1+ Rg(I )) sup

t∈I∩R>0

|g(t)|.

3. The universal torsor

In this section we define a bijection between the set of rational points of bounded
height on U and a certain set of integral points on the hypersurface defined in
the introduction. The universal torsor corresponding to our present problem was
first determined by Hassett and Tschinkel [2004] and then used by Browning
[2006] to prove the lower and upper bounds of the expected order of magnitude
for NU,H (B). We employ the notation used in [Derenthal 2014]. Let T(B) be the
set of (η1, . . . , η10) ∈ Z7

>0×Z3
6=0 satisfying the equation

η2η
2
5η8+ η3η

2
6η9+ η4η

2
7η10− η1η2η3η4η5η6η7 = 0, (3-1)

the coprimality conditions

gcd(η10, η1η2η3η4η5η6)= 1, (3-2)

gcd(η9, η1η2η3η4η5η7)= 1, (3-3)

gcd(η8, η1η2η3η4η6η7)= 1, (3-4)

gcd(η1, η5η6η7)= 1, (3-5)

gcd(η2η5, η3η4η6η7)= 1, (3-6)

gcd(η3η6, η4η7)= 1, (3-7)

and the height conditions

|η8η9η10| ≤ B, (3-8)

η2
1η

2
2η3η4η

2
5|η8| ≤ B, (3-9)

η2
1η2η

2
3η4η

2
6|η9| ≤ B, (3-10)

η2
1η2η3η

2
4η

2
7|η10| ≤ B. (3-11)

Lemma 11. NU,H (B)= #T(B).

Proof. It is sufficient to show that the counting problem defined by the set T(B) is
equivalent to the one described in [Browning 2006, Section 4], which we call T′(B)
and which is defined exactly as T(B) except that the condition (3-5) is replaced by
the condition |µ(η2η3η4)| = 1.
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For i = 2, 3, 4, there is only one way to write ηi = η
′

iη
′′2
i in such a way that η′i is

squarefree. Setting η′i+3 = ηi+3η
′′

i and η′1 = η1η
′′

2η
′′

3η
′′

4 , we claim that the translation
between the two counting problems is achieved via the map

S : (η1, η2, η3, η4, η5, η6, η7) 7→ (η′1, η
′

2, η
′

3, η
′

4, η
′

5, η
′

6, η
′

7).

Indeed, (3-1) and the height conditions (3-8)–(3-11) are invariant under S. Also, the
coprimality conditions (3-2), (3-3), (3-4), (3-6) and (3-7) are preserved under S, and
the condition (3-5) is replaced by the condition |µ(η′2η

′

3η
′

4)| = 1, which completes
the proof. �

4. Calculation of Peyre’s constant

Peyre [1995] gives an interpretation for the constant cV,H appearing in the main
term of NU,H (B) in Theorem 1. In our specific case, we have

cV,H = α(Ṽ )β(Ṽ )ωH (Ṽ ),

where Ṽ denotes the minimal desingularization of V . The definitions of these three
quantities are omitted (the reader should refer to [Peyre 1995] or to Section 4 of
[Le Boudec 2012a] for some more details in an identical setting). Using the work
of Derenthal, Joyce and Teitler [Derenthal et al. 2008, Theorem 1.3], it is easy to
compute the constant α(Ṽ ). We find

α(Ṽ )=
1

120
·

1
#W (D4)

=
1

23040
,

where W (D4) stands for the Weyl group associated to the Dynkin diagram of the
singularity D4. Here, we have used #W (Dn)= 2n−1n! for any n ≥ 4. In addition,
β(Ṽ )= 1 since V is split over Q. Finally, ωH (Ṽ ) is given by

ωH (Ṽ )= ω∞
∏

p

(
1− 1

p

)7
ωp,

where ω∞ and ωp are the archimedean and p-adic densities respectively. Loughran
[2010, Lemma 2.3] has shown that we have

ωp = 1+
7
p
+

1
p2 .

Let us calculate ω∞. Let x= (x0, x1, x2, x3) and f (x)= x0(x1+x2+x3)
2
−x1x2x3.

We parametrize the points of V with x1, x2 and x3. We have

∂ f
∂x0

(x)= (x1+ x2+ x3)
2,
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and since x =−x ∈ P3, we obtain

ω∞ =
1
2

∫∫∫
|x1x2x3|/(x1+x2+x3)2,|x1|,|x2|,|x3|≤1

dx1 dx2 dx3

(x1+ x2+ x3)2
.

Recall the definition (2-20) of the function h. The change of variables defined by
x1 = t2x , x2 = t2 y and x3 =−t2(x + y− t) yields

ω∞ =
3
2

∫∫∫
h(x,y,t)≤1

dx dy dt = 3
∫∫∫

t>0,h(x,y,t)≤1
dx dy dt. (4-1)

5. Proof of the main theorem

5.1. Restriction of the domain. Note that in the torsor equation (3-1) the first three
terms are at most B/η2

1η2η3η4 (by the height conditions (3-9)–(3-11)), and thus we
have

η3
1η

2
2η

2
3η

2
4η5η6η7 ≤ 3B.

From now on, for n ∈ Z≥1 we denote by sq(n) the unique positive integer such
that sq(n)2 |n and n/sq(n)2 is squarefree. Note that for two coprime integers
m, n ∈ Z≥1, we have sq(mn)= sq(m) sq(n).

We now need to show that we can assume along the proof that

η1 sq(η2η3η4)≥ B15/ log log B, (5-1)

and, in addition, that

η3
1η

2
2η

2
3η

2
4η5η6η7 ≥

B
log log B

. (5-2)

The proof of Lemma 11 shows that we can make use of the estimates in [Browning
2006, Section 6] to prove that the contributions to NU,H (B) coming from those
(η1, . . . , η10) ∈ T(B) which do not satisfy one of the two inequalities (5-1) and
(5-2) are actually negligible.

We start by proving a lemma:

Lemma 12. Let M(B) be the overall contribution to NU,H (B) coming from those
(η1, . . . , η10) ∈ T(B) such that η1 sq(η2η3η4)≤ B15/ log log B . We have

M(B)�
B(log B)6

log log B
.

Proof. Recall the notation introduced in the proof of Lemma 11. We note that the
condition η1 sq(η2η3η4)≤ B15/ log log B is equivalent to η′1 ≤ B15/ log log B .

For i = 1, . . . , 10 we let Yi be variables running over the set {2n
| n ≥−1}. By

counting the number of (η′1, . . . , η
′

10) ∈ T′(B) which satisfy Yi < |η
′

i | ≤ 2Yi for
i = 1, . . . , 10, we claim that [Browning 2006, Sections 6.1, 6.2] gives
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M(B)� B(log B)5+
∑

Yi

X1/2
0 X1/6

1 X1/6
2 X1/6

3

+

∑
Yi

max
{i, j,k}={2,3,4}

{
Y1Y2Y3Y4Y5Y6Y7Y8Y9Y10

Yk+6 max{Yi Y
2
i+3Yi+6, Y j Y

2
j+3Y j+6, Zk}

}
, (5-3)

where the two sums are over the Yi , i = 1, . . . , 10, subject to the inequalities

Y8Y9Y10 ≤ B, (5-4)

Y 2
1 Y 2

2 Y3Y4Y 2
5 Y8 ≤ B, (5-5)

Y 2
1 Y2Y 2

3 Y4Y 2
6 Y9 ≤ B, (5-6)

Y 2
1 Y2Y3Y 2

4 Y 2
7 Y10 ≤ B, (5-7)

and also
Y1 ≤ B15/ log log B, (5-8)

and where X0, X1, X2, X3 denote the left-hand sides of the inequalities (5-4), (5-5),
(5-6) and (5-7) respectively, and finally, for k ∈ {2, 3, 4}, Zk is defined by

Zk =

{
YkY 2

k+3Yk+6 if YkY 2
k+3Yk+6 ≥ Y1Y2Y3Y4Y5Y6Y7,

1 otherwise.

Let us explain briefly how the upper bound (5-3) can be deduced from Browning’s
work without making use of the condition (5-8). It is useful to note that our variables
Yi , i = 1, . . . , 10, and X j , j = 0, . . . , 3, correspond respectively to Browning’s
variables S0, U1, U2, U3, S1, S2, S3, Y1, Y2, Y3 and X4, X1, X2, X3. First, the
second term of the right-hand side of [ibid., (6.26)] is equal to

(X0 X1 X2 X3)
1/4

Y 1/2
1

(
1+

log B
(Y8Y9Y10)

1/16 max
k∈{2,3,4}

Y 1/16
k+6

)
in our notation, and is easily seen to have overall contribution B(log B)5. As a
result, the right side of [ibid., (6.29)] can actually be replaced by (in our notation)

B(log B)5+
∑

Yi

X1/2
0 X1/6

1 X1/6
2 X1/6

3 . (5-9)

Taking into account [ibid., (6.31)], we see that the right-hand side of the upper
bound in [ibid., Proposition 4] can also be replaced by (5-9). Then, we note that
the first term of the right-hand side of the upper bound in [ibid., Lemma 13] has
overall contribution B(log B)4. This implies that the right-hand side of the upper
bound in [ibid., Proposition 5] can be replaced by, in our notation,

B(log B)4+
∑

Yi

max
{i, j,k}={2,3,4}

{
Y1Y2Y3Y4Y5Y6Y7Y8Y9Y10

Yk+6 max{Yi Y
2
i+3Yi+6, Y j Y

2
j+3Y j+6, Zk}

}
.
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This concludes the proof of the upper bound (5-3).
Let us denote by N1(B) and N2(B) the respective contributions of the two sums in

(5-3). In the following estimations, the notation
∑

Ŷ j
indicates that the summation is

over all the Yi with i 6= j . We start by investigating the quantity N1(B) by summing
over Y5, Y6 and Y7 using, respectively, the conditions (5-5), (5-6) and (5-7). We get

N1(B)=
∑

Yi

Y1Y 2/3
2 Y 2/3

3 Y 2/3
4 Y 1/3

5 Y 1/3
6 Y 1/3

7 Y 2/3
8 Y 2/3

9 Y 2/3
10

� B1/2
∑

Ŷ5,Ŷ6,Ŷ7

Y 1/2
8 Y 1/2

9 Y 1/2
10 � B

∑
Ŷ5,Ŷ6,Ŷ7,Ŷ8

1�
B(log B)6

log log B
,

where we have used the condition (5-4) to sum over Y8 and the condition (5-8) to
sum over Y1. We now deal with the quantity N2(B). We only treat the case where
(i, j, k)= (2, 3, 4), since the others are all identical. Note that if Z4=Y4Y 2

7 Y10 then
N2(B)≤N1(B). Thus, we only need to deal with the case where Z4=1. In addition,
we proceed without loss of generality under the assumption that Y2Y 2

5 Y8 ≤ Y3Y 2
6 Y9.

We first use this condition to sum over Y5, and then we sum over Y7 and Y8 using
the conditions (5-7) and (5-4) respectively. We get

N2(B)�
∑

Yi

Y1Y2Y4Y5Y−1
6 Y7Y8�

∑
Ŷ5

Y1Y 1/2
2 Y 1/2

3 Y4Y7Y 1/2
8 Y 1/2

9

� B1/2
∑
Ŷ5,Ŷ7

Y 1/2
8 Y 1/2

9 Y−1/2
10 � B

∑
Ŷ5,Ŷ7,Ŷ8

Y−1
10 �

B(log B)6

log log B
,

which completes the proof of Lemma 12. �

The following lemma proves that the contribution to NU,H (B) coming from
those (η1, . . . , η10) ∈ T(B) which are subject to the stronger condition

η3
1η

2
2η

2
3η

2
4η5η6η7 ≤

B
log log B

,

is negligible.

Lemma 13. Let M′(B) be the overall contribution to NU,H (B) coming from those
(η1, . . . , η10) ∈ T(B) such that

η3
1η

2
2η

2
3η

2
4η5η6η7 ≤

B
log log B

.

We have

M′(B)�
B(log B)6

(log log B)1/6
.
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Proof. We proceed as in the proof of Lemma 12, with the same notation. We have

M′(B)� B(log B)5+
∑

Yi

X1/2
0 X1/6

1 X1/6
2 X1/6

3

+

∑
Yi

max
{i, j,k}={2,3,4}

{
Y1Y2Y3Y4Y5Y6Y7Y8Y9Y10

Yk+6 max{Yi Y
2
i+3Yi+6, Y j Y

2
j+3Y j+6, Zk}

}
, (5-10)

where the two sums are over the dyadic variables Yi , i = 1, . . . , 10, subject to the
inequalities (5-4)–(5-7) and

Y 3
1 Y 2

2 Y 2
3 Y 2

4 Y5Y6Y7 ≤
B

log log B
. (5-11)

Let us denote by N′1(B) and N′2(B) the respective contributions of the two sums in
(5-10). Combining conditions (5-4) and (5-5), we get

Y 1/4
1 Y 1/4

2 Y 1/8
3 Y 1/8

4 Y 1/4
5 Y8Y 7/8

9 Y 7/8
10 ≤ B. (5-12)

We start by bounding the contribution of the quantity N′1(B) by summing succes-
sively over Y8, Y9 and Y10 using the conditions (5-12), (5-6) and (5-7) respectively.
We deduce that

N′1(B)=
∑

Yi

Y1 Y 2/3
2 Y 2/3

3 Y 2/3
4 Y 1/3

5 Y 1/3
6 Y 1/3

7 Y 2/3
8 Y 2/3

9 Y 2/3
10

� B2/3
∑
Ŷ8

Y 5/6
1 Y 1/2

2 Y 7/12
3 Y 7/12

4 Y 1/6
5 Y 1/3

6 Y 1/3
7 Y 1/12

9 Y 1/12
10

� B5/6
∑

Ŷ8,Ŷ9,Ŷ10

Y 1/2
1 Y 1/3

2 Y 1/3
3 Y 1/3

4 Y 1/6
5 Y 1/6

6 Y 1/6
7

�
B

(log log B)1/6
∑

Ŷ7,Ŷ8,Ŷ9,Ŷ10

1�
B(log B)6

(log log B)1/6
,

where we have summed over Y7 using the condition (5-11). We now turn to the
case of the quantity N′2(B). As in the proof of Lemma 12, we only treat the case
where (i, j, k)= (2, 3, 4) and we work under the assumptions that Z4 = 1 and thus

Y4Y 2
7 Y10 ≤ Y1Y2Y3Y4Y5Y6Y7 (5-13)

and Y2Y 2
5 Y8 ≤ Y3Y 2

6 Y9. Combining conditions (5-11) and (5-13), we get

Y 2
1 Y2Y3Y 2

4 Y 2
7 Y10 ≤

B
log log B

. (5-14)



Affine congruences and rational points on a certain cubic surface 1283

We first use the condition Y2Y 2
5 Y8 ≤ Y3Y 2

6 Y9 to sum over Y5, and then we sum over
Y8 and Y7 using the conditions (5-4) and (5-14) respectively. We deduce

N′2(B)�
∑

Yi

Y1Y2Y4Y5Y−1
6 Y7Y8�

∑
Ŷ5

Y1Y 1/2
2 Y 1/2

3 Y4Y7Y 1/2
8 Y 1/2

9

� B1/2
∑
Ŷ5,Ŷ8

Y1Y 1/2
2 Y 1/2

3 Y4Y7Y−1/2
10

�
B

(log log B)1/2
∑

Ŷ5,Ŷ7,Ŷ8

Y−1
10 �

B(log B)6

(log log B)1/2
,

which completes the proof of Lemma 13. �

5.2. Setting up. First, we recall that we have the following condition (given at the
beginning of Section 5.1):

η3
1η

2
2η

2
3η

2
4η5η6η7 ≤ 3B. (5-15)

It is easy to check that the symmetry between the three quantities η2η
2
5, η3η

2
6 and

η4η
2
7 is demonstrated by the action of S3 on {(η2,η5,η8), (η3,η6,η9), (η4,η7,η10)}.

Throughout the proof, we will assume that

η4η
2
7 ≤ η2η

2
5, η3η

2
6.

The following lemma proves that we just need to multiply our future main term by
a factor of 3 to take this new assumption into account.

Lemma 14. Let N0(B) be the total number of (η1, . . . , η10) ∈ T(B) such that
η2η

2
5 = η4η

2
7 or η3η

2
6 = η4η

2
7. We have the upper bound

N0(B)� B(log B)3.

Proof. By symmetry, we only need to treat the case of the condition η3η
2
6 = η4η

2
7.

This equality and the condition gcd(η3η6, η4η7)=1 imply that η3=η4=η6=η7=1.
In this situation, the torsor equation is simply

η2η
2
5η8+ η9+ η10− η1η2η5 = 0.

Thus, N0(B) is bounded by the number of (η1, η2, η5, η8, η9)∈Z3
>0×Z2

6=0 satisfying

|η8η9||η2η
2
5η8+ η9− η1η2η5| ≤ B and η2

1η
2
2η

2
5 |η8| ≤ B.

Using [Le Boudec 2012a, Lemma 1] to count the number of η9 satisfying the first
of these two inequalities, we obtain

N0(B)�
∑

η1,η2,η5,η8
η2

1η
2
2η

2
5 |η8|≤B

(
B1/2

|η8|
1/2 + 1

)
� B(log B)3,
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as wished. �

Let N (B) be the overall contribution of those (η1, . . . , η10) ∈ T(B) subject to
the conditions

η4η
2
7 ≤ η2η

2
5, η3η

2
6, (5-16)

B15/ log log B
≤ η1 sq(η2η3η4), (5-17)

B
log log B

≤ η3
1η

2
2η

2
3η

2
4η5η6η7. (5-18)

Lemmas 11–14 give us the following result:

Lemma 15. NU,H (B)= 3N (B)+ O
(

B(log B)6

(log log B)1/6

)
.

The end of the proof is devoted to the estimation of N (B).

5.3. Application of Lemma 7. The idea of the proof is to view the equation (3-1)
as a congruence modulo η4η

2
7. For this, we replace η10 by its value given by the

equation (3-1) in the height conditions (3-8) and (3-11). These conditions become

|η8η9||η2η
2
5η8+ η3η

2
6η9− η1η2η3η4η5η6η7| ≤ Bη4η

2
7,

η2
1η2η3η4 |η2η

2
5η8+ η3η

2
6η9− η1η2η3η4η5η6η7| ≤ B,

and we still denote them respectively by (3-8) and (3-11). From now on, we use
the notation η = (η2, η3, η4, η5, η6, η7), and we set

η(r2,r3,r4,r5,r6,r7) = η
r2
2 η

r3
3 η

r4
4 η

r5
5 η

r6
6 η

r7
7

for (r2, r3, r4, r5, r6, r7) ∈Q6. We set

Y =
B

η2η3η4
, Z1 =

B1/3

η(2/3,2/3,2/3,1/3,1/3,1/3)
, (5-19)

and, for brevity, q8 = η2η
2
5, q9 = η3η

2
6, q10 = η4η

2
7. It is immediate to check that η

is restricted to lie in the region V defined by

V=
{
η ∈ Z6

>0 | Y (log log B)2/3 ≥ q8 Z2
1, Y (log log B)2/3 ≥ q9 Z2

1,

Z1 ≥ 3−1/3, q8 ≥ q10, q9 ≥ q10
}
. (5-20)

We fix η1 ∈ Z>0 and η ∈ V, subject to the conditions (5-15), (5-17) and (5-18)
and to the coprimality conditions (3-5)–(3-7). Let N (η1, η, B) be the number of
(η8, η9, η10) ∈Z3

6=0 satisfying the equation (3-1), the height conditions (3-8)–(3-11),
and finally the coprimality conditions (3-2)–(3-4). The goal of this section is to
prove the following lemma:
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Lemma 16. We have the estimate

N (η1, η, B)=
B2/3

η(1/3,1/3,1/3,2/3,2/3,2/3)
g2

(
η1

Z1

)
θ1(η1, η)θ2(η)+ R(η1, η, B),

where θ1(η1, η) and θ2(η) are arithmetic functions defined in (5-28) and (5-29)
respectively and ∑

η1,η

R(η1, η, B)� B(log B)5(log log B)7/3.

First, we see that since gcd(η2η5, η3η6η9) = 1 and gcd(η3η6, η2η5η8) = 1, the
equation (3-1) proves that the coprimality condition (3-2) can be replaced by
gcd(η10, η1η4)= 1. Let us remove the coprimality conditions gcd(η8, η6)= 1 and
gcd(η9, η5)= 1 using Möbius inversions; we obtain

N (η1, η, B)=
∑
k8 |η6

gcd(k8,η1η2η3η4η7)=1

µ(k8)
∑
k9 |η5

gcd(k9,η1η2η3η4η7)=1

µ(k9)Sk8,k9(η1, η, B),

where Sk8,k9(η1, η, B) is the cardinality of

{(η′8, η
′

9, η10) ∈ Z3
6=0

∣∣ η2η
2
5k8η

′

8+ η3η
2
6k9η

′

9+ η4η
2
7η10 = b, gcd(η10, η1η4)= 1,

(3-8), (3-9), (3-10), (3-11), gcd(η′8η
′

9, η1η2η3η4η7)= 1
}
,

and where we use the notation η8 = k8η
′

8, η9 = k9η
′

9 and b = η1η2η3η4η5η6η7.
From now on, we set

Z= B1/ log log B .

To take care of the error terms showing up in the application of Lemma 7, we need
to show that the summations over k8 and k9 can be restricted to k8, k9 ≤ Z3. To
do so, let N ′(η1, η, B) be the contribution of N (η1, η, B) under the assumption
k8 > Z3; that is,

N ′(η1, η, B)=
∑

k8 |η6, k8>Z3

gcd(k8,η1η2η3η4η7)=1

∑
k9 |η5

gcd(k9,η1η2η3η4η7)=1

Sk8,k9(η1, η, B).

Let us write η6 = k8η
′

6 and η5 = k9η
′

5. We notice that the equation in the definition
of Sk8,k9(η1, η, B) implies that k8k9 |η10, and thus we also write η10= k8k9ξ10. With
this notation, we get

N ′(η1, η, B)=
∑

Z3<k8≤B1/2

gcd(k8,η1η2η3η4η7)=1

∑
k9≤B1/2

gcd(k9,η1η2η3η4η7)=1

S′k8,k9
(η1, η, B),

where S′k8,k9
(η1, η, B) is the cardinality of
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(η′8, η

′

9, ξ10) ∈ Z3
6=0

∣∣ η2η
′2
5 k9η

′

8+ η3η
′2
6 k8η

′

9+ η4η
2
7ξ10 = b′, gcd(ξ10, η1η4)= 1,

(3-8), (3-9), (3-10), (3-11), gcd(η′8η
′

9, η1η2η3η4η7)= 1
}
,

where we have set b′ = η1η2η3η4η
′

5η
′

6η7. Let us split the summations over k8 and
k9 into dyadic ranges. Let us assume that K8, K9 ≥

1
2 and that K8 < k8 ≤ 2K8 and

K9 < k9 ≤ 2K9. Let us set ξ8 = k9η
′

8 and ξ9 = k8η
′

9. The height conditions (3-8),
(3-9), (3-10) and (3-11) imply respectively

|ξ8ξ9ξ10| ≤
B

K8K9
, (5-21)

η2
1η

2
2η3η4η

′2
5 |ξ8| ≤

B
K8K9

, (5-22)

η2
1η2η

2
3η4η

′2
6 |ξ9| ≤

B
K8K9

, (5-23)

η2
1η2η3η

2
4η

2
7|ξ10| ≤

B
K8K9

. (5-24)

We thus have, for K8 < k8 ≤ 2K8 and K9 < k9 ≤ 2K9,

S′k8,k9
(η1,η,B)

� #
{
(ξ8,ξ9,ξ10) ∈ Z3

6=0

∣∣ k8 |ξ9, k9 |ξ8,η2η
′2
5 ξ8+ η3η

′2
6 ξ9+ η4η

2
7ξ10 = b′,

(5-21), (5-22), (5-23), (5-24), gcd(ξ10,η1η4)= 1, gcd(ξ8ξ9,η1η2η3η4η7)= 1
}
.

Therefore, using the standard bound for the divisor function,

τ(n)� n1/ log log(3n),

for n ≥ 1, we get ∑
K8<k8≤2K8
K9<k9≤2K9

S′k8,k9
(η1, η, B)� Z2SK8,K9,

where SK8,K9 = SK8,K9(η1, η2, η3, η4, η
′

5, η
′

6, η7, B) is the cardinality of{
(ξ8, ξ9, ξ10)∈Z3

6=0

∣∣η2η
′2
5 ξ8+η3η

′2
6 ξ9+η4η

2
7ξ10=b′, (5-21), (5-22), (5-23), (5-24),

gcd(ξ10, η1η4)= 1, gcd(ξ8ξ9, η1η2η3η4η7)= 1
}
.

Setting ξ6,8 = gcd(η′6, ξ8) and ξ5,9 = gcd(η′5, ξ9), we see that ξ6,8ξ5,9 |ξ10, and we
thus obtain ∑

η1,η2,η3,η4,η
′

5,η
′

6,η7

SK8,K9 �

∑
ξ6,8,ξ5,9≤B

NU,H

(
B

K8K9ξ6,8ξ5,9

)
.
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Therefore, we can apply [Browning 2006]. We get

∑
η1,η

N ′(η1, η, B)� Z2
∑

Z3<K8<B1/2

K9<B1/2

∑
ξ6,8,ξ5,9≤B

B(log B)6

K8K9ξ6,8ξ5,9
� BZ−1/2,

which is satisfactory. Therefore, we can restrict from now on the summations over
k8 and k9 as we wished.

We note that if we allow η10=0 in the definition of the cardinality Sk8,k9(η1, η, B)
then the coprimality condition gcd(η10, η1η4)= 1 implies η1 = η4 = 1. Moreover,
the equation η2η

2
5k8η

′

8+ η3η
2
6k9η

′

9 = η2η3η5η6η7 also implies η2 = η3 = 1. These
restrictions are in contradiction with the condition (5-17), so from now on, we
allow η10 to vanish in the definition of Sk8,k9(η1, η, B). Let us now remove the
coprimality condition gcd(η10, η1η4)= 1 using a Möbius inversion. We get that the
main term of N (η1, η, B) is equal to∑

k8 |η6, k8≤Z3

gcd(k8,η1η2η3η4η7)=1

µ(k8)
∑

k9 |η5, k9≤Z3

gcd(k9,η1η2η3η4η7)=1

µ(k9)
∑

k10 |η1η4

µ(k10)Sk8,k9,k10(η1, η, B),

where Sk8,k9,k10(η1, η, B) denotes the cardinality of{
(η′8,η

′

9,η
′

10) ∈ Z2
6=0×Z

∣∣ η2η
2
5k8η

′

8+η3η
2
6k9η

′

9+η4η
2
7k10η

′

10 = b,

(3-8), (3-9), (3-10), (3-11), gcd(η′8η
′

9,η1η2η3η4η7)= 1
}
.

Since gcd(η1η4, k8k9η5η6η
′

8η
′

9) = 1, we have gcd(k10, k8k9η5η6η
′

8η
′

9) = 1. Also,
the two conditions gcd(η2η5k8η

′

8, η3) = 1 and gcd(η3η6k9η
′

9, η2) = 1 imply that
we also have gcd(k10, η2η3) = 1. We now remove the coprimality conditions
gcd(η′8η

′

9, η1η2η3)= 1 using Möbius inversions. Setting η′8 = `8η
′′

8 and η′9 = `9η
′′

9 ,
we obtain that the main term of N (η1, η, B) is equal to∑

k8 |η6, k8≤Z3

gcd(k8,η1η2η3η4η7)=1

µ(k8)
∑

k9 |η5, k9≤Z3

gcd(k9,η1η2η3η4η7)=1

µ(k9)

×

∑
k10 |η1η4

gcd(k10,k8k9η2η3η5η6)=1

µ(k10)
∑

`8,`9 |η1η2η3
gcd(`8`9,k10η4η7)=1

µ(`8)µ(`9)S(η1, η, B),

where S(η1, η, B) denotes the cardinality of{
(η′′8, η

′′

9) ∈ Z2
6=0

∣∣ η2η
2
5k8`8η

′′

8 + η3η
2
6k9`9η

′′

9 ≡ b (mod k10η4η
2
7),

(3-8), (3-9), (3-10), (3-11), gcd(η′′8η
′′

9, k10η4η7)= 1
}
.
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Note that we have replaced the equation η2η
2
5k8`8η

′′

8+η3η
2
6k9`9η

′′

9+η4η
2
7k10η

′

10= b
by a congruence.

Setting

X =
B

η2
1η
(1,1,1,0,0,0)

, T = η1η
(1,1,1,1,1,1),

and A1= k8`8η2η
2
5, A2= k9`9η3η

2
6 and recalling the equality (2-21), it is immediate

to check that (η′′8, η
′′

9) ∈ Z2
6=0 is subject to the height conditions (3-8)–(3-11) if and

only if (η′′8, η
′′

9) ∈ S∩Z2
6=0. Setting L= log log B, we see that the condition (5-18)

can be rewritten X/L ≤ T . We can therefore apply Lemma 7 with L = log B,
q = k10η4η

2
7 and a = (k8`8η2η

2
5, k9`9η3η

2
6). Recall the definitions (2-24) of ϕ∗ and

(5-19) of Z1 and also the definitions of E(q, a) and E2(q), given in Lemmas 2
and 6 respectively . We obtain

S(η1, η, B)−
ϕ∗(k10η4η7)

k8`8k9`9k10

B2/3

η(1/3,1/3,1/3,2/3,2/3,2/3)
g2

(
η1

Z1

)
� E+E′,

where

E= (log B)6 E(q, a)

and

E′ =
B2/3

k8`8k9`9k10η(1/3,1/3,1/3,2/3,2/3,2/3)
L4/3

×

(
L

log B
+

k1/2
8 `

1/2
8 η1η2η

1/2
3 η

1/2
4 η5

B1/2 +
k1/2

9 `
1/2
9 η1η

1/2
2 η3η

1/2
4 η6

B1/2

)
E2(q).

Let us estimate the contribution of these error terms. Let us start by bounding
the overall contribution of E. For this, we write η5 = k9η

′

5 and η6 = k8η
′

6, and
we let Y5, Y6 and Y7 be variables running over the set {2n

| n ≥ −1}. We define
N=N(Y5, Y6, Y7) as the sum over η′5, η

′

6, η7∈Z≥1 satisfying Y5< k9η
′

5≤2Y5, Y6<

k8η
′

6 ≤ 2Y6 and Y7 < η7 ≤ 2Y7 and the coprimality conditions gcd(η′5η
′

6, η4η7)= 1
and gcd(η′5, η

′

6)= 1, of the quantity∑
k8,k9≤Z3

gcd(k8k9,η1η2η3η4η7)=1

∑
k10 |η1η4

gcd(k10,k8k9η2η3η
′

5η
′

6)=1

∑
`8,`9 |η1η2η3

gcd(`8`9,k10η4η7)=1

(log B)6 E(q, a′),

where a′ = (k9`8η2η
′2
5 , k8`9η3η

′2
6 ). We now aim to bound the contribution of the

error term E by first estimating the quantity N and then by summing N over η1, η2,
η3 and η4 and over all the possible values for Y5, Y6 and Y7. Note that the variables
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Y5, Y6 and Y7 satisfy the inequalities

η3
1η

2
2η

2
3η

2
4Y5Y6Y7 ≤ 3B, (5-25)

η4Y 2
7 ≤ 4η2Y 2

5 , (5-26)

η4Y 2
7 ≤ 4η3Y 2

6 . (5-27)

Applying Lemma 9 to sum over η′5 and η′6 and recalling that q = k10η4η
2
7, we see

that

N� (log B)6
∑

Y7<η7≤2Y7

∑
k8,k9≤Z3

∑
k10 |η1η4

∑
`8,`9 |η1η2η3

(
Y5Y6

k8k9
+ k10η4η

2
7

)
τ(q)2 E1(q)

� Z7
∑

Y7<η7≤2Y7

τ(η1η4)τ (η1η2η3)
2τ(η1η

2
4η

2
7)

2(Y5Y6+ η1η
2
4η

2
7)

� Z12(Y5Y6Y7+ η1η
2
4Y 3

7 ).

Using the two conditions (5-26) and (5-27), we finally obtain

N� Z12η1η
1/2
2 η

1/2
3 η4Y5Y6Y7.

We now aim to sum this quantity over all the possible values for Y5, Y6 and Y7. Let
us start by summing over Y7 using the condition (5-25) and then over η1 using the
condition (5-17); we obtain∑

Yi

N� Z12
∑

η1,η2,η3,η4,Y5,Y6,Y7

η1η
1/2
2 η

1/2
3 η4Y5Y6Y7

� BZ13
∑

η1,η2,η3,η4

1

η2
1η

3/2
2 η

3/2
3 η4

� BZ−2
∑

η2,η3,η4

sq(η2η3η4)

η
3/2
2 η

3/2
3 η4

� BZ−1,

which is satisfactory. In addition, the overall contributions of the three terms of the
error term E′ are easily seen to be bounded by B(log B)5(log log B)7/3, which is
also satisfactory.

Therefore, the main term of N (η1, η, B) is equal to∑
k8 |η6, k8≤Z3

gcd(k8,η1η2η3η4η7)=1

µ(k8)

k8

∑
k9 |η5, k9≤Z3

gcd(k9,η1η2η3η4η7)=1

µ(k9)

k9

∑
k10 |η1η4

gcd(k10,k8k9η2η3η5η6)=1

µ(k10)

k10

×

∑
`8,`9 |η1η2η3

gcd(`8`9,k10η4η7)=1

µ(`8)

`8

µ(`9)

`9
ϕ∗(k10η4η7)

B2/3

η(1/3,1/3,1/3,2/3,2/3,2/3)
g2

(
η1

Z1

)
.
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Using the bound of Lemma 5 for g2, we see that this quantity is

�

∑
k8 |η6, k9 |η5

k8,k9≤Z3

1
k8

1
k9
σ−1(η1η4)σ−1(η1η2η3)

2 B2/3

η(1/3,1/3,1/3,2/3,2/3,2/3)
.

As a result, we see that if we remove the conditions k8, k9 ≤Z3 from the sums over
k8 and k9, we create an error term whose overall contribution is, for instance, seen
to be bounded by BZ−1. Thus, we have proved that we can write

N (η1, η, B)= M(η1, η, B)+ R(η1, η, B),

where ∑
η1,η

R(η1, η, B)� B(log B)5(log log B)7/3,

and

M(η1, η, B)=
B2/3

η(1/3,1/3,1/3,2/3,2/3,2/3)
g2

(
η1

Z1

)
θ(η1, η),

where

θ(η1, η)=
∑
k8 |η6

gcd(k8,η1η2η3η4η7)=1

µ(k8)

k8

∑
k9 |η5

gcd(k9,η1η2η3η4η7)=1

µ(k9)

k9

×

∑
k10 |η1η4

gcd(k10,k8k9η2η3η5η6)=1

µ(k10)

k10

∑
`8,`9 |η1η2η3

gcd(`8`9,k10η4η7)=1

µ(`8)

`8

µ(`9)

`9
ϕ∗(k10η4η7)

=
ϕ∗(η3η6)

ϕ∗(η3)

ϕ∗(η2η5)

ϕ∗(η2)
ϕ∗(η1η2η3η4η7)

2
∑

k10 |η1η4
gcd(k10,η2η3η5η6)=1

µ(k10)

k10ϕ∗(η4η7k10)
.

It is easy to check that for a, b, c ≥ 1, we have∑
k |a

gcd(k,c)=1

µ(k)
kϕ∗(kb)

=
ϕ∗(gcd(a, b))

ϕ∗(b)ϕ∗(gcd(a, b, c))

∏
p |a
p-bc

(
1− 1

p−1

)
.

Using this equality and the remaining coprimality conditions (3-5), (3-6) and (3-7)
and recalling the definition (2-26) of ψ , we see that we can write

θ(η1, η)= θ1(η1, η)θ2(η),

where
θ1(η1, η)= ψη2η3η4

(η1), (5-28)
and

θ2(η)= ϕ
∗(η2η3η4)ϕ

∗(η2η3η4η5η6η7). (5-29)
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5.4. Summation over η1. We now need to sum the main term of N (η1, η, B) over
η1 ∈ Z>0, where η1 is subject to the conditions (5-17) and (5-18) (the condition
(5-15) is implied by the definition of g2) and to the coprimality condition (3-5). We
start by proving that we can remove the restrictions that η1 satisfies the conditions
(5-17) and (5-18). Indeed, let us first assume that we have the condition

η1 sq(η2η3η4) < B15/ log log B . (5-30)

The bound of Lemma 5 for g2 implies that the main term M(η1, η, B) of N (η1, η, B)
satisfies

M(η1, η, B)�
B2/3

η(1/3,1/3,1/3,2/3,2/3,2/3)
.

Let us now sum this quantity over η7 using the condition (5-15) and then over η1
using the condition (5-30); we obtain∑

η1,η

M(η1, η, B)�
∑

η1,η2,η3,η4,η5,η6

B
η1η

(1,1,1,1,1,0)

�

∑
η2,η3,η4,η5,η6

B(log B)
η(1,1,1,1,1,0) log log B

�
B(log B)6

log log B
.

This error term is satisfactory. Let us now assume that we have the condition

η3
1η

2
2η

2
3η

2
4η5η6η7 <

B
log log B

.

Let us sum over η1 using this condition; we get∑
η1,η

M(η1, η, B)�
∑

η

B
η(1,1,1,1,1,1)(log log B)1/3

�
B(log B)6

(log log B)1/3
.

This error term is also satisfactory. We can thus remove the restrictions that η1
satisfies the conditions (5-17) and (5-18), and we proceed to sum over η1. Recall
the definition (5-20) of V. For fixed η ∈ V satisfying the coprimality conditions
(3-6) and (3-7), let N (η, B) be the sum of the main term of N (η1, η, B) over η1,
where η1 is subject to the coprimality condition (3-5). Recall the definition (2-27)
of ϒ . We now prove the following lemma.

Lemma 17. We have the estimate

N (η, B)= ϒ
ω∞

3
B

η(1,1,1,1,1,1)
2(η)+ R(η, B),

where 2(η) is a certain arithmetic function defined in (5-31) and where∑
η

R(η, B)� B(log B)5.
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Proof. Let us use Lemma 10 to sum over η1. For any fixed 0< γ ≤ 1, we obtain

N (η, B)= ϒ
B

η(1,1,1,1,1,1)
2(η)

∫
t>0

g2(t) dt

+ O
(

B2/3

η(1/3,1/3,1/3,2/3,2/3,2/3)
Zγ1 σ−γ /2(η2η3η4η5η6η7) sup

t>0
g2(t)

)
,

where

2(η)= ϕ∗(η2η3η4)ϕ
∗(η2η3η4η5η6η7)ϕ

∗(η5η6η7)ϕ
g(η2η3η4η5η6η7). (5-31)

Let us set γ = 1/2. Using the bound of Lemma 5 for g2, we deduce that the overall
contribution of this error term is∑

η

B5/6

η(2/3,2/3,2/3,5/6,5/6,5/6)
σ−1/4(η2η3η4η5η6η7)� B(log B)5,

where we have summed over η using the condition Z1 ≥ 3−1/3. Recalling the
definition of g2 and the equality (4-1), we see that∫

t>0
g2(t) dt =

ω∞

3
,

which completes the proof. �

5.5. Conclusion. It remains to sum the main term of N (η, B) over the η ∈ V

satisfying the coprimality conditions (3-6) and (3-7). It is easy to see that replacing
V by the region

V′ =
{
η ∈ Z6

>0

∣∣ Y ≥ q8 Z2
1, Y ≥ q9 Z2

1, Z1 ≥ 1, q8 ≥ q10, q9 ≥ q10
}

produces an error term whose overall contribution is � B(log B)5 log log log B.
Let us redefine the arithmetic function 2 as being equal to zero if the remaining
coprimality conditions (3-6) and (3-7) are not satisfied. Recalling Lemma 15, we
see that we have proved the following lemma:

Lemma 18. We have the estimate

NU,H (B)= ϒω∞B
∑
η∈V′

2(η)

η(1,1,1,1,1,1)
+ O

(
B(log B)6

(log log B)1/6

)
.

The end of the paper is dedicated to the completion of the proof of Theorem 1.
Let us introduce the generalized Möbius function µ defined for (n1, . . . , n6) ∈ Z6

>0
by µ(n1, . . . , n6) = µ(n1) · · ·µ(n6). We set k = (k2, k3, k4, k5, k6, k7) and we
define for s ∈ C, such that <(s) > 1,
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F(s)=
∑

η∈Z6
>0

|(2 ∗µ)(η)|

ηs
2η

s
3η

s
4η

s
5η

s
6η

s
7
=

∏
p

( ∑
k∈Z6

≥0

|(2 ∗µ)(pk2, pk3, pk4, pk5, pk6, pk7)|

pk2s pk3s pk4s pk5s pk6s pk7s

)
.

It is easy to check that if k /∈{0, 1}6 then (2∗µ)(pk2, pk3, pk4, pk5, pk6, pk7)=0 and
if exactly one of the ki is equal to 1, then (2∗µ)(pk2, pk3, pk4, pk5, pk6, pk7)�1/p,
so the local factors Fp of F satisfy

Fp(s)= 1+ O
(

1
pmin(<(s)+1,2<(s))

)
.

This proves that the function F converges in the half-plane <(s) > 1/2, which
implies that 2 satisfies the assumption of [Le Boudec 2012b, Lemma 8]. The
application of this lemma provides∑

η∈V′

2(η)

η(1,1,1,1,1,1)
= α

( ∑
η∈Z6

>0

(2 ∗µ)(η)

η(1,1,1,1,1,1)

)
(log B)6+ O((log B)5), (5-32)

where α is the volume of the polytope defined in R6 by t2, t3, t4, t5, t6, t7 ≥ 0 and

2t2− t3− t4+ 4t5− 2t6− 2t7 ≤ 1,

−t2+ 2t3− t4− 2t5+ 4t6− 2t7 ≤ 1,

2t2+ 2t3+ 2t4+ t5+ t6+ t7 ≤ 1,

−t2+ t4− 2t5+ 2t7 ≤ 0,

−t3+ t4− 2t6+ 2t7 ≤ 0.

It is easy to compute α using Franz’s additional Maple package Convex [2009].
We find α = 1/23040; that is,

α = α(Ṽ ). (5-33)

Furthermore, we have∑
η∈Z6

>0

(2 ∗µ)(η)

η(1,1,1,1,1,1)
=

∏
p

( ∑
k∈Z6

≥0

(2 ∗µ)(pk2, pk3, pk4, pk5, pk6, pk7)

pk2 pk3 pk4 pk5 pk6 pk7

)

=

∏
p

(
1−

1
p

)6( ∑
k∈Z6

≥0

2(pk2, pk3, pk4, pk5, pk6, pk7)

pk2 pk3 pk4 pk5 pk6 pk7

)
.

The calculation of these local factors is straightforward, and we find∑
k∈Z6

≥0

2(pk2, pk3, pk4, pk5, pk6, pk7)

pk2 pk3 pk4 pk5 pk6 pk7
= ϕg(p)

(
1−

1
p

)(
1+

7
p
+

1
p2

)
.
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We finally obtain ∑
η∈Z6

>0

(2 ∗µ)(η)

η(1,1,1,1,1,1)
= ϒ−1

∏
p

(
1−

1
p

)7

ωp. (5-34)

Putting together the equalities (5-32)–(5-34) and Lemma 18 completes the proof of
Theorem 1.
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