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Primary decomposition of commutative monoid congruences is insensitive to
certain features of primary decomposition in commutative rings. These features
are captured by the more refined theory of mesoprimary decomposition of congru-
ences, introduced here complete with witnesses and associated prime objects. The
combinatorial theory of mesoprimary decomposition lifts to arbitrary binomial
ideals in monoid algebras. The resulting binomial mesoprimary decomposition
is a new type of intersection decomposition for binomial ideals that enjoys com-
putational efficiency and independence from ground field hypotheses. Binomial
primary decompositions are easily recovered from mesoprimary decomposition.
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1. Introduction

Overview. Primary decomposition of ideals and modules has been a mainstay of
commutative algebra since Emmy Noether’s unification of scattered results [1921].
A formally analogous theory for congruences on commutative monoids made its first
appearance in [Drbohlav 1963], and subsequently the topic of decompositions has
similarly played a central role in commutative semigroup theory [Grillet 2001]. Our
first goal is to demonstrate that the formal analogy in the setting of finitely generated
monoids and congruences — the combinatorial setting — fails to capture the essence
of primary decomposition in noetherian rings and modules. We justify this claim,
and rectify it, by exhibiting a more sensitive theory of mesoprimary decomposition
of congruences, complete with witnesses, associated prime objects, and other facets
of control afforded in parallel with primary decomposition in rings. We then
proceed beyond formal analogy by lifting our witnessed theory of mesoprimary
decomposition to the arithmetic setting of binomial ideals in semigroup rings, at
the interface of commutative ring theory with finitely generated monoids.

Mesoprimary decomposition of binomial ideals is not binomial primary decom-
position, but a new type of intersection decomposition for binomial ideals, with
numerous advantages over ordinary primary decomposition, such as combinatorial
clarity, independence from properties of the ground field, and computational ef-
ficiency. Nevertheless, binomial primary decomposition is easily recovered from
mesoprimary decomposition. In essence, by lifting mesoprimary decomposition
of congruences, binomial mesoprimary decomposition distills the coefficient-free
combinatorics inherent in primary decomposition of binomial ideals and isolates
the precise manner in which coefficients subsequently determine the primary com-
ponents. The subtlety of coefficient arithmetic causes the lifting procedure to fail
verbatim translation, particularly where redundancy is involved. Part of our study
therefore contrasts the slightly different notions of witness and associatedness in
the combinatorial and arithmetic settings.

General motivation. The need for natural decompositions in the monoid and bi-
nomial contexts has become increasingly important in recent years, in view of
appearances and applications in numerous areas. Some of these directly involve
commutative monoids, such as schemes over F1 [Connes and Consani 2011; Deitmar
2005], where monoids form the foundation just as rings do for usual schemes.
Another instance is the arrival of misère quotients in combinatorial game theory,
where monoids provide data structures for recording and computing winning strate-
gies [Plambeck 2005; Plambeck and Siegel 2008] (see also [Miller 2011] for an
algebraic introduction). At the same time, binomial ideals interact with other parts
of mathematics and the sciences, motivating research into applicable descriptions
of their decompositions. For example, dynamics of mass-action kinetics, where
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steady states in detailed-balanced cases are described by vanishing of binomial
trajectories, arise from stoichiometric exponential growth and decay [Adleman et al.
2014]; binomial decompositions in mass-action kinetics can identify which species
persist or become extinct [Shiu and Sturmfels 2010]. In algebraic statistics, decom-
positions of binomial ideals give insight into how a set of conditional independence
statements among random variables can be realized [Drton et al. 2009; Herzog
et al. 2010]. More generally, the connectivity of lattice point walks in polyhedra
can be analyzed using decompositions of binomial ideals [Diaconis et al. 1998;
Kahle et al. 2014b]. These applications rely on decompositions of unital ideals —
generated by monomials and differences of monomials — into unital ideals; these
are mesoprimary decompositions. The algebra, geometry, and combinatorics of
binomial primary decomposition interact with systems of differential equations of
hypergeometric type [Gelfand et al. 1987; Gelfand et al. 1989], whose solutions
are eigenfunctions for binomial differential operators encoding the infinitesimal
action of an algebraic torus. In fact, it was in the hypergeometric framework that the
combinatorics of binomial primary decomposition had its origin [Matusevich et al.
2005; Dickenstein et al. 2010a; 2010b], providing tight control over series solutions.
In the meantime, mesoprimary decomposition serves as an improved method for
presenting and visualizing binomial primary decomposition in algorithmic output
[Kahle 2012]. Beyond that, the methods here have already found a theoretical
application to combinatorial game theory [Guo and Miller 2011; Miller 2013].

Conventions. Unless otherwise stated, Q denotes a finitely generated (equivalently,
noetherian) commutative monoid, and k denotes an arbitrary field.

Gathering primary components rationally. Staring at output of binomial primary
decomposition algorithms intimates that certain primary components belong to-
gether.

Example 1.1. During investigations of presentations of misère quotients of com-
binatorial games (culminating in the definition of lattice games [Guo et al. 2009;
Guo and Miller 2011]), Macaulay2 [Grayson and Stillman] produced long lists of
primary binomial ideals. In one instance, eight of the components were

〈e−1, d−1, b−1, a−1, c3
〉, 〈e−1, d−1, b−1, a+1, c3

〉,

〈e−1, d+1, b−1, a−1, c3
〉, 〈e−1, d+1, b−1, a+1, c3

〉,

〈e+1, d−1, b+1, a−1, c3
〉, 〈e+1, d−1, b+1, a+1, c3

〉,

〈e+1, d+1, b+1, a−1, c3
〉, 〈e+1, d+1, b+1, a+1, c3

〉.

The urge to gather these eight into one piece (a piece of eight?), namely their
intersection

〈b−e, e2
−1, d2

−1, a2
−1, c3

〉,
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is irresistible. (Who would rather sift through the big list?) And it would have
become more so had the exponents in the single gathered component been larger
integers, for then the coefficients in the long list of primary ideals would not even
have been rational numbers, though the intersection would still have been rational.

An arbitrary binomial prime ideal Iρ,P in a finitely generated monoid algebra
k[Q] is determined by a monoid prime ideal P ⊂ Q and a character ρ : K → k∗

defined on a subgroup of the unit group G P ⊆ Q P in the localization of Q along P
(Definition 3.9 and Theorem 11.14). A binomial ideal I ⊆ k[Q] might possess
many associated primes sharing the same P and K , differing only in the character ρ.
Mesoprimary ideals (Definition 10.4; see also Propositions 12.10 and 15.1) are data
structures for keeping track of primary components for such groups of associated
binomial primes. The term “group” here is used in the ordinary nonmathematical
sense, but it is appropriate mathematically: the primary components of a meso-
primary ideal over an algebraically closed field are indexed by the characters of a
finite abelian group, namely the quotient sat(K )/K of the saturation of K in G P

(Propositions 11.9 and 15.4). Gathering primary components into mesoprimary
ideals saves space just as writing the presentation for a finite abelian group instead
of listing every one of its characters does.

The situation is not typically as simple as in Example 1.1. Indeed, upon inspecting
a binomial primary decomposition, it can be difficult to determine which mesopri-
mary ideals ought to occur, and which mesoprimary ideal each primary component
ought to contribute to. Furthermore, some primary components of a mesoprimary
ideal can be absent, even if the mesoprimary ideal clearly ought to appear.

Example 1.2. If char(k) 6= 2, the ideal I = 〈y− x2 y, y2
− xy2, y3

〉 ⊆ k[x, y] has
primary decomposition I =〈y〉∩〈1+x, y2

〉∩〈1−x, y3
〉. The ideal I is unital, being

generated by differences of monomials, so the component 〈1+ x, y2
〉 feels out of

place. Yet there are no obvious components to gather. What’s missing is a “phantom”
component 〈1− x, y2

〉, hidden by 〈1− x, y3
〉. Gathering yields 〈1+ x, y2

〉 ∩

〈1− x, y2
〉 = 〈1− x2, y2

〉. If char(k)= 2, then I = 〈y〉 ∩ 〈1− x2, y2
− xy2, y3

〉 is
a primary decomposition of I . While this decomposition is forced to be unital, it
feels not fine enough. Indeed, 1− x2 and 1− x look like they should contribute
two associated objects, and in all but a single characteristic they do. Independent
of the characteristic the mesoprimary decomposition splits the second component:
I = 〈y〉 ∩ 〈1− x2, y2

〉 ∩ 〈1− x, y3
〉.

A mesoprimary decomposition of a binomial ideal I is an expression of I as
an intersection of mesoprimary components (Definition 12.14), each of which is
a mesoprimary ideal. Mesoprimary decompositions of binomial ideals always
exist (Definition 13.1 and Theorem 13.2) in a form that realizes our initial intent
(Theorems 15.6 and 15.9). However, an arbitrary intersection of mesoprimary
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ideals is not a mesoprimary decomposition, even if the intersection is a binomial
ideal; exigent additional conditions must be met regarding the interaction of the
combinatorics and the arithmetic of the mesoprimary components, as compared
with that of I (Remark 13.6). In summary, mesoprimary decomposition gathers
primary components so that:

(1) The decomposition into binomial ideals requires no hypotheses on the field k.

(2) Specifying one mesoprimary component takes the place of individually listing
all primary components arising from saturated extensions of a fixed character.

(3) The combinatorics of the components and their associated prime objects reflects
accurately and faithfully the combinatorics of the decomposed binomial ideal.

Congruences: binomial combinatorics. The simple (and not new) idea of binomial
combinatorics is that a binomial ideal I ⊆k[Q] determines an equivalence relation∼
on Q that sets u ∼ v if I contains a two-term binomial tu

−λtv (Definition 2.15).
The quotient Q = Q/∼ modulo this relation is a monoid.

Example 1.3. The following ideals induce the depicted congruences on N2 and
quotient monoids. The congruence classes are the connected components of the
graphs drawn in the left-hand pictures. Each element labeled 0 is the identity
of the quotient monoid. Each element labeled∞ in the right-hand picture is nil
(Definition 2.9 and Remark 2.10) in the quotient monoid; its congruence class
comprises all monomials in the given binomial ideal. In items (2) and (4), the
groups labeling the rows indicate how the group in the bottom row acts on the
higher rows. In all four items, every element outside of the bottom row of the
quotient monoid is nilpotent (Definition 2.9).

(1) For the ideal 〈y〉 ⊂ k[x, y], the quotient monoid is N∪∞:
yy

x
�

0

∞

0

(2) For the ideal 〈1−x2, y2
〉 ⊂ k[x, y], the quotient monoid is a copy of the group

Z/2Z (the bottom row), a free module over Z/2Z (the middle row), and a nil:

y

x

y

x
�

0

∞

Z/2Z
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(3) For the ideal 〈1−x, y3
〉⊂k[x, y], the quotient monoid is the quotient N/(3+N)

of the natural numbers modulo the Rees congruence of the ideal 3+N, which
makes all elements of the ideal equivalent and leaves the other elements of N

alone:
y

x

�

0

∞

0

(4) For the ideal 〈y−x2 y, y2
−xy2, y3

〉⊂k[x, y], the quotient monoid is a disjoint
union of the group Z and three Z-modules:

y

x

�

0

Z/2

Z/Z

∞

Z/Z

Z/2Z

Z

We examined (the literature on) monoid congruences on the premise that an
appropriate decomposition theory for them should lift, either directly or analogously,
to the desired mesoprimary theory for binomial ideals. However, although we
found rich decomposition theories for commutative semigroups [Grillet 2001], the
expected analogue of binomial primary decomposition was absent.

The most promising development we encountered along these lines is Grillet’s
discovery of conditions guaranteeing that a commutative semigroup can be realized
as a subsemigroup of the multiplicative semigroup of a primary ring — that is, a ring
with just one associated prime [Grillet 1975]. That work covers ground anticipat-
ing — in a more general setting — the characterization of primary binomial ideals
over algebraically closed fields of characteristic zero [Dickenstein et al. 2010b].

The closest monoid relative in the literature to primary decomposition in rings
seems to be primary decomposition of congruences [Drbohlav 1963] (see [Gilmer
1984] for a treatment in the context of semigroup rings). However, one of our
motivating discoveries is that primary decomposition of congruences, being much
closer to a shadow of cellular binomial decomposition (see Theorem 10.6), falls short
of serving as a rubric for either primary or mesoprimary decomposition of binomial
ideals. Indeed, congruences that are prime, meaning that quotients modulo them
are cancellative except perhaps for a nil (Definition 2.12.4), fail to be irreducible
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(Example 2.22). Furthermore, congruences that are primary, meaning that every
element in the quotient is either nilpotent or cancellative (Definition 2.12.1), admit
further decompositions into pieces that are visibly more “homogeneous”, in a
manner more analogous to primary decomposition in the presence of embedded
primes than to irreducible decomposition of primary ideals.

Example 1.4. All of the congruences depicted in Example 1.3 are primary, but the
first three are visibly more homogeneous: in each one, the nonnil rows all look the
same. In fact, the fourth congruence is the common refinement (Section 3) of the
first three. This is equivalent, given that all of the ideals (and their intersection)
are binomial, to saying that the fourth binomial ideal equals the intersection of the
first three, since the ideals in question are all unital and contain monomials; see
Remark 2.16 and Theorem 9.12. This intersection is the mesoprimary decomposition
from Example 1.2.

Primary binomial ideals in characteristic zero induce primitive congruences
(Definition 2.12 and Theorem 10.6), but congruences usually do not admit ex-
pressions as intersections (common refinements) of primitive congruences. The
reason stems from the same phenomenon that requires one to assume, for binomial
primary decomposition, that the base field is algebraically closed: decompositions
of ideals generated by binomials — even unital ones — usually require nontrivial
roots of unity. Viewed another way, the arithmetic part of binomial primary de-
composition has a combinatorial ramification: intersecting multiple primary ideals
inducing the same primitive congruence results in a single mesoprimary ideal whose
associated prime congruence has finite index in the primitive one (Proposition 15.4).
In essence, primary congruences on Q are too coarse to reflect binomial primary
decomposition in k[Q] accurately, and primitive congruences on Q are too fine,
requiring additional arithmetic data from k to resolve otherwise indistinguishable
associated primes in k[Q].

An additional layer of complication arises from the fact that primary bino-
mial ideals in positive characteristic need not induce nicely filtered congruences
(Example 10.8). The reason for this failure is not under our control: the ideal
〈(x − 1)p, y(x − 1), y2

〉 happens to be primary, the ideal 〈x p
− 1, y(x − 1), y2

〉

happens to be binomial, and — accidentally, one may conclude — they coincide
in characteristic p. This highlights that even the “binomiality” of a ring-theoretic
construction can depend on the characteristic, and consequently no study of binomial
ideals can skirt the resulting distinctions.

The true monoid congruence analogue of primary decomposition in rings is a
suitable compromise, developed (in Sections 2–8) as mesoprimary decomposition
for congruences (Definition 8.1 and Theorem 8.3). The type of homogeneity
mentioned before Example 1.4, discovered by Grillet [1975] (Remark 2.13(4)),
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characterizes mesoprimary congruences (Corollary 6.7 and Remark 6.8). These
are also distinguished (Theorem 6.1) as those with just one associated prime
congruence (Definitions 2.12.4 and 5.2), a notion new to monoid theory. For
comparison, a congruence is primary precisely when it has just one associated
prime ideal (Definition 4.7 and Corollary 4.21).

The development of binomial mesoprimary decomposition in the latter half of
the paper (Sections 9–16) mirrors the first half directly. Arithmetic existence state-
ments build on combinatorial ones by exhibiting lifts of statements or requirements
concerning elements equivalent under congruences to statements or requirements
concerning binomials with nonzero coefficients.

It is worth warning the reader at this juncture of the inevitable clash of terminology
in translating between combinatorics and arithmetic; see the table in Section 10,
which in particular explains the source of our term mesoprimary to mean “between
the two occurrences of ‘primary’”. To aid readers coming from commutative ring
theory, the basic notions from semigroup theory are reviewed from scratch (Sec-
tions 2 and 3). For readers interested primarily in monoids, we complete the entire
combinatorial theory in Section 8, before starting the arithmetic theory in Section 9.

Witnessed associated objects. In ordinary primary decomposition, a witness is
an element whose annihilator is (an associated) prime. Our witnesses also have
associated prime objects (Definitions 4.7, 5.2, and 12.1). Continuing the parallel, our
notions of associatedness are defined by local combinatorial or algebraic conditions
but equivalently characterized by the consistent appearance of prime objects in every
primary decomposition (Theorems 4.20 and 15.11). The local conditions defining
witnesses incorporate the combinatorial quiddity of having prime annihilator in
ordinary ring theory.

The proof of concept for mesoprimary decomposition as a mode to connect the
combinatorial and arithmetic settings lies in a fundamental discovery: there is a
combinatorially defined set of witnesses that captures decompositions of both a bino-
mial ideal and its induced congruence. To yield finite decompositions, however, not
all witnesses are to be believed. The key witnesses for congruences (Definition 4.7)
and essential witnesses for binomial ideals (Definition 12.1) yield finitely many
components whose intersections suffice. These key and essential decompositions
can generally fail to be minimal in ways that even retain symmetry. In the cellular
binomial ideal case, we demonstrate a systematic reduction to character witnesses
(Definition 16.3) that should have an extension to general binomial ideals. The
dichotomy between key and essential witnesses demands care, as do other subtle
distinctions between the combinatorial and arithmetic aspects of the theory, since
they necessitate occasional slight weakenings, or failures of the combinatorics to lift;
see Remarks 12.20 and 12.21, for instance.



Decompositions of commutative monoid congruences and binomial ideals 1305

2. Taxonomy of congruences on monoids

Fix a commutative semigroup Q: a set with an associative, commutative binary
operation (usually denoted by + here). Assume that Q has an identity, usually
denoted by 0 here, so Q is a monoid. An ideal T ⊆Q is a subset such that T+Q⊆T ,
and T is prime if t+s ∈ T implies t ∈ T or s ∈ T . The ideal generated by elements
q1, . . . , qs is written 〈q1, . . . , qs〉. A congruence ∼ on Q is an equivalence relation
that is additively closed: a ∼ b =⇒ a+c ∼ b+c for all a, b, c ∈ Q. The quotient
Q/∼ by any congruence is a monoid. The minimal relation satisfying this definition
is equality itself, called the identity congruence. The congruence that equates all
pairs of elements in Q, and has trivial quotient, is the universal congruence. For
any ideal T ⊆ Q, under the Rees congruence ∼T all elements of T form one class,
while all elements outside of T are singletons.

Definition 2.1. A module over a commutative monoid Q is a nonempty set T with
an action of Q, which means a map Q×T→ T , written (q, t) 7→ q+t , that satisfies

• 0+ t = t for all t ∈ T , and

• (q+q ′)+ t = q+(q ′+ t),

the latter meaning that the action respects addition. A congruence on a module is an
equivalence relation that is preserved by the action. A module homomorphism over
a given monoid is a set map that respects the actions. For any element q ∈ Q, the
addition morphism φq : Q→ 〈q〉 is the module morphism defined by p 7→ p+q.
The kernel ker(φ) of a module homomorphism φ : T1→ T2 is the congruence on T1

under which t ∼ s⇐⇒ φ(t)= φ(s).

Remark 2.2. For general semigroups Grillet [2007] defines an act as a set with
an action of a semigroup that satisfies only the second bullet in Definition 2.1,
even if the semigroup was a monoid to start with. To every semigroup S a formal
identity element e can be adjoined (even if S is already a monoid) to form the
monoid S ∪ {e}. Upon this operation an S-act turns into an (S ∪ {e})-module as it
automatically satisfies the first item in Definition 2.1.

Remark 2.3. A subsemigroup of a monoid may have an identity, and in that case
it may or may not be the identity of the monoid. To the contrary, a submonoid is re-
quired to have the same identity as its ambient monoid. In this sense a subsemigroup
of a monoid can be a monoid without being a submonoid.

Definition 2.4. A subgroup of a monoid is a subsemigroup that is a group.

Definition 2.5. Green’s preorder on a monoid is the divisibility preorder p� q⇐⇒
〈p〉 ⊇ 〈q〉. Green’s relation on a monoid is p ∼ q⇐⇒ 〈p〉 = 〈q〉.
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Lemma 2.6 [Grillet 2001, Proposition I.4.1]. The quotient of a commutative monoid
modulo Green’s relation is partially ordered by divisibility.

Remark 2.7. Green’s relation measures the extent to which group-like behavior
occurs in a monoid. Idempotents and nontrivial units are obstructions to partially
ordering a monoid by divisibility. In particular, a monoid with trivial unit group is
partially ordered if Green’s relation is trivial. Note that our divisibility preorder is
the opposite direction compared to Grillet’s, to be compatible with divisibility of
monomials.

The following observation, which relies crucially on the noetherian hypothesis,
is applied in the proof of Proposition 7.9.

Lemma 2.8. Fix a noetherian commutative monoid Q. If p ∈ Q and the Green’s
class of w satisfies [w] = [p+w], then the map [w] → [p+w] of Green’s classes
induced by adding p is bijective.

Proof. Suppose that v ∈ [w] = [p+w]. For surjectivity, first note that v ∈ p+〈w〉,
because v ∈ 〈v〉 = 〈p+w〉 = p+〈w〉. Consequently v ∈ p+[w] because [v] = [w]
is the (unique) minimal element in the poset of Green’s classes with representatives
in 〈w〉 (that is, [v] can’t lie in p+[u] if [u] � [w]).

Since the sets in question can be infinite, injectivity requires additional reasoning.
Suppose that v ∈ [w] satisfies p+w = p+v. By surjectivity, for k ∈ N choose
wk, w

′

k ∈ [w] so that k · p+wk =w and k · p+w′k = v. If∼k is the kernel congruence
of addition by k · p, then ∼k refines ∼` whenever k ≤ `. The noetherian property
implies that the chain of kernel congruences stabilizes: ∼k =∼k+1 for k� 0. But
wk ∼k+1 w

′

k for all k because p+w = p+ v, whence wk ∼k w
′

k for k � 0 by
stability. For k� 0, then, w = k · p+wk ∼ k · p+w′k = v. �

Definition 2.9. A nonidentity element∞ in a monoid Q is nil if q+∞=∞ for
all q ∈ Q. An element q ∈ Q is

• nilpotent if one of its multiples nq is nil for some nonnegative integer n ∈ N,

• cancellative if addition by it is injective: q+a = q+b =⇒ a = b in Q,

• partly cancellative if q+a= q+b 6=∞=⇒ a= b for all cancellative a, b ∈ Q.

A set S of elements in a monoid is torsion-free if na = nb =⇒ a = b for all n ∈ N

whenever a, b ∈ S. An affine semigroup is a monoid isomorphic to a finitely
generated submonoid of a free abelian group. A nilmonoid is a monoid whose
nonidentity elements are all nilpotent.

Remark 2.10. In the literature a nil is often called a zero instead; but when we
work with monoid algebras, we need to distinguish the nil monomial t∞ from the
zero element 0 of the algebra (see Section 9 for ramifications of this distinction), and
we need to identify the identity monomial t0 with the unit element 1 of the algebra.
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Remark 2.11. The condition a+ c = b+ c′ for cancellative c, c′ means that a
and b are off by a unit in the localization Q′ of Q obtained by inverting all of its
cancellative elements. Note that the natural map Q→ Q′ is injective.

Definition 2.12. Fix a commutative monoid Q, a congruence ∼ , and use a bar to
denote passage to the quotient Q = Q/∼ . The congruence ∼ is

(1) primary if every element of Q is either nilpotent or cancellative,

(2) mesoprimary if it is primary and every element of Q is partly cancellative,

(3) primitive if it is mesoprimary and the cancellative subset of Q is torsion-free,

(4) prime if every element of Q is either nil or cancellative,

(5) toric if the nonnil elements of Q form an affine semigroup.

Remark 2.13. The notions just defined are nearly or exactly the same as concepts
that have appeared in the literature on monoids.

(1) Our definitions of prime and primary congruences agree with those in the
literature [Gilmer 1984, §5]. In the case of prime congruences, where the
nonnil elements of Q form a cancellative monoid, this is easy. In the case of
primary congruences, for q ∈ Q the condition Gilmer expresses as q+a∼q+b
for all a, b ∈ Q is equivalent to the class q being a nil in Q = Q/∼ , so q lies
in the nil class, and the condition that Gilmer expresses by saying that q lies
in the radical of the nil class is equivalent to q being nilpotent in Q.

(2) Our definition of affine semigroup differs slightly from [Grillet 2001, §II.7]:
Grillet requires the unit group to be trivial, whereas we do not. Equivalently,
our affine semigroups are the finitely generated, cancellative, torsion-free
commutative monoids, while Grillet additionally requires affine semigroups to
be reduced (that is, to have trivial unit group).

(3) A congruence on Q is primary if and only if Q is a subelementary monoid, by
definition [Grillet 2001, §VI.2.2].

(4) A congruence on Q is mesoprimary if and only if the subelementary monoid Q′,
obtained from the monoid Q in the previous item by inverting its cancellative
elements, is homogeneous [Grillet 2001, §VI.5.3]; this is Corollary 6.7, below.

Lemma 2.14. For monoid congruences,

• toric =⇒ prime =⇒ mesoprimary =⇒ primary, and

• toric =⇒ primitive =⇒ mesoprimary =⇒ primary.

Proof. The only implication that is not immediate from the definitions is that prime
implies mesoprimary. For this, assume∼ is a prime congruence and q+a= q+b in
Q with neither side being nil. Then q is not nil, whence a = b by cancellativity. �
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Definition 2.15. The semigroup algebra k[Q] =
⊕

q∈Q k· tq is the direct sum with
multiplication t p tq

= t p+q . Any congruence ∼ on Q induces a grading of k[Q]
by Q = Q/∼ in which the monomial tq has degree q ∈ Q whenever q 7→ q under
the quotient map Q → Q. A binomial ideal I ⊆ k[Q] is an ideal generated by
binomials t p

−λtq , where λ ∈ k is a scalar possibly equal to 0 ∈ k. A binomial
ideal is unital if all coefficients λ are equal to either 0 or 1. The ideal I induces the
congruence ∼I in which p ∼I q whenever t p

−λtq
∈ I for some unit λ ∈ k∗.

Remark 2.16. Giving a congruence on Q is the same as giving a unital ideal in
k[Q] that is generated by unital binomials t p

− tq (and no monomials). In particular,
every congruence is induced by some binomial ideal. That said, other binomial
ideals can induce the same congruence as the canonical unital ideal, by rescaling
the variables or via Theorem 9.12, for instance.

Example 2.17 (some congruences from unital ideals).

(1) The prime ideal 〈x−y〉 ⊂ k[x, y] induces a toric congruence such that N2∼=N.

(2) The ideal 〈x2
− y2
〉 ⊂ k[x, y] induces a prime congruence with N2 isomorphic

to the submonoid Q ⊆ G = Z⊕Z/2Z generated by (1, 0) and (1, 1). The
monoid is not torsion-free, since x2

= y2 but x 6= y in k[Q]. Therefore the
congruence on N2 is not toric, since Q generates G as a group.

(3) The ideal 〈x2
− x〉 ⊂ k[x] induces the same toric congruence on N as the

prime ideal 〈x〉 does, but 〈x2
− x〉 is not primary (in fact, not even cellular;

see Definition 10.4). Nevertheless ∼〈x2−1〉 =∼〈x〉 is irreducible according to
Definition 2.21.

(4) The 〈x, y〉-primary ideal 〈x2, x− y〉 induces the primitive congruence on N2

with N2 ∼= {0, x,∞} =: Q. The monoid algebra k[Q] has a presentation
k[x, y]/J , where J = 〈x − y, x − x2

〉 = 〈x −1, y−1〉 ∩ 〈x, y〉 induces the
same congruence.

(5) The binomial ideal 〈y−x2 y, y2
−xy2, y3

〉 induces a primary congruence whose
classes are depicted as connected components of the graph in the following
figure.

y

x

This congruence exhibits the distinction between primary and mesoprimary
congruences: for a primary congruence, no injectivity is required of addition
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by a nilpotent element. In the picture, this means that translating two dots in
different classes upward by one unit can force them into the same nonnil class.
To make the congruence mesoprimary, homogenize the bottom three rows by
replacing any two of them with the third; after that, upward translation on
two dots keeps them in separate classes unless both land in the nil class. This
replacement procedure also exhibits the distinction between mesoprimary and
primitive congruences: it results in a primitive congruence only if the bottom
row or the third row is preserved; preserving the second row yields torsion in
the cancellative part of Q.

The following example demonstrates the partly cancellative property.

Example 2.18. Partly cancellative elements can still merge congruence classes. For
instance, consider the congruence on N2 induced by I =〈x2

−xy, xy−y2, x3, y3
〉⊆

k[x, y]. In the figure
y

x

y

x

the congruence on N2 appears at left, and the quotient N2 appears at right. The
quotient is the monoid N with two copies of 1 modulo the Rees congruence of 〈3〉
(declare all elements in 〈3〉 congruent). The two copies of 1 become identified upon
addition by either: 1+1= 1+1′ = 1′+1′ = 2. Nonetheless, both 1 and 1′ are partly
cancellative and the congruence is mesoprimary.

The next result will be applied in the proofs of Theorems 8.4 and 10.6. The
conclusion says that Q/F is a nilmonoid whose Green’s preorder is an order (i.e.,
is antisymmetric). Equivalently, it says that Q/F is naturally partially ordered, or
a holoid [Grillet 2001, §V.2.2].

Lemma 2.19. Fix a monoid Q whose identity congruence is primary, so the non-
nilpotent elements of Q constitute a cancellative submonoid F ⊆ Q. The quotient
monoid Q/F defined by the congruence

p ∼ q ⇐⇒ p+ f = q+g for some f, g ∈ F

is a nilmonoid partially ordered by divisibility. If Q is finitely generated, Q/F is
finite.

Proof. This is more or less [Grillet 2001, Proposition VI.3.3], but the proof is
simple. Every nonidentity element of Q/F is nilpotent by definition, so when Q
is finitely generated, Q/F is finite. The rest follows because every nilmonoid is
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partially ordered by divisibility; this is easy, and can be found in [Grillet 2001,
Proposition IV.3.1]. �

Remark 2.20. It is a crucial assumption for Lemma 2.19 that every element is
nilpotent or cancellative, excluding idempotents. If every cancellative element is a
unit, e.g., after localizing at the nilpotent ideal (see Section 4), then Q/F equals Q
modulo Green’s relation.

Concluding this section, we comment on the notion of irreducibility for congru-
ences, which is, despite the close connection between binomial ideals and their
congruences, quite different from irreducibility for ideals.

Definition 2.21. A congruence is irreducible if it cannot be expressed as the com-
mon refinement of two congruences neither of which equals the given one.

The theories of irreducible and primary decomposition for congruences in com-
mutative monoids are not as nice as for (binomial) ideals in rings. The following
example might come as a nasty surprise (it did to us). Quotients by irreducible
congruences are characterized in [Grillet 2001, Theorem VI.5.3].

Example 2.22. The identity congruence on N2 is reducible: it is the common
refinement of the congruences induced by 〈x−1〉 and 〈y−1〉. Ring-theoretically,
this is due to the fact that 〈x−1〉 ∩ 〈y−1〉 does not contain binomials.

Example 2.22 demonstrates the sad reality that prime congruences need not be
irreducible. In a wider sense, unrestricted primary or irreducible decomposition of
congruences decomposes them into components that are too fine to provide nuanced
information about their combinatorics. The theory of mesoprimary decomposi-
tion, with its well-founded notions of associatedness for prime ideals and prime
congruences, is our remedy.

3. Primary decomposition and localization in monoids

We review the notion of primary decomposition for congruences on finitely generated
commutative monoids, which traces back to Drbohlav [1963]. This decomposition
is only a coarse approximation of mesoprimary decomposition, a central goal of
this paper. In general, a decomposition of a congruence is an expression of it as
a common refinement of congruences. The notion of refinement here is standard:
formally, an equivalence relation on Q is a reflexive, symmetric, transitive subset
of Q×Q; one relation ∼ refines another relation ≈ if ≈ contains ∼ (we also say
≈ coarsens ∼); and the common refinement of a family of equivalence relations is
their intersection in Q×Q.

Remark 3.1. Every congruence in this setting admits a primary decomposition:
an expression as the common refinement of finitely many primary congruences
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[Gilmer 1984, Theorem 5.7]. Similarly to the case of rings, this follows from the
existence of irreducible decomposition using a noetherian induction argument. Any
decomposition theory that is finer than primary decomposition — that is, any theory
that further decomposes each primary component — yields a greater number of
congruences, each of which is coarser than some primary component.

Remark 3.2. The preimage under any monoid homomorphism of a prime ideal
is prime. Since Nn has only finitely many prime ideals and a finitely generated
commutative monoid Q has a presentation Nn � Q, it follows that Q has only
finitely many prime ideals. Precisely one of these is the maximal ideal of Q.

Convention 3.3. To avoid tedious case distinctions in the following, we consider
the empty set as an ideal of any monoid, and in fact we declare it to be a prime
ideal (its complement is, after all, a submonoid). The empty set considered as an
ideal will be denoted by ∅⊂ Q; this symbol is never used for any other purpose in
this paper.

Definition 3.4. The nilpotent ideal of a congruence ∼ on Q is the ideal of Q
consisting of all elements with nilpotent image in Q/∼ . If P is the nilpotent ideal
of a primary congruence ∼ , then ∼ is P-primary.

Lemma 3.5. If ∼ is a primary congruence, then the nilpotent ideal is prime. If
Q/∼ is cancellative, then ∼ is ∅-primary. �

Remark 3.6. If q1, . . . , qn generate Q, then a primary congruence defines a
partition of {q1, . . . , qn} into generators with cancellative and nilpotent images,
respectively. In this case the nilpotent ideal is generated by the generators qi with
nilpotent images.

Proposition 3.7. The common refinement of finitely many P-primary congruences
is P-primary.

Proof. It suffices by induction to show this for two P-primary congruences
∼1 and∼2. Reducing modulo their intersection, we can assume that the intersection
is the identity congruence on Q. Denote by Q1 and Q2 the quotients modulo ∼1

and∼2, respectively. By assumption P ⊂ Q is the nilpotent ideal of both∼1 and∼2.
We claim that if p ∈ P then p is nilpotent already in Q. Indeed, a sufficiently high
multiple of p is congruent to nil under both∼1 and∼2, and since their intersection is
trivial this can only happen if that multiple is nil. On the other hand, if p /∈ P , then it
must be cancellative: if there exist a, b∈Q with a+p=b+p, then a∼1 b and a∼2 b
both hold — whence a = b, in fact — since p is cancellative modulo ∼1 and ∼2. �

Remark 3.8. Albeit in different language, [Gilmer 1984, Theorem 5.6.2] contains
a variant of the statement of Proposition 3.7.
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Passing from the theory surrounding P-primary congruences to that for general
congruences is best accomplished by localizing.

Definition 3.9. The localization TP of a Q-module T at a prime ideal P ⊂ Q is the
set of formal differences t−q for t ∈ T and q /∈ P , with t−q and t ′−q ′ identified
when w+ q ′+ t = w+ q + t ′ for some w ∈ Q \ P . Conventions for this are as
follows:

• The localization Q P of Q itself is naturally a monoid, and TP is a Q P -module.

• The image of P in Q P is the maximal ideal PP of Q P .

• Any given congruence ∼ on Q induces a congruence on Q P , also denoted ∼ .

• If Q = Q/∼ then we write Q P = Q P/∼ .

• The unit group at P is the subgroup G P = Q P \ PP .

Example 3.10. Localizing Q at the empty prime ideal yields the universal group Q∅.
When Q has a nil, Q∅ is trivial. In fact, the universal group Q∅ is trivial precisely
when Q has a nil. (Proof: If Q∅ is trivial, then q becomes equal to 0 after inverting
every element of Q. Thus there is an element xq ∈ Q such that xq+q = xq . As Q
is generated by a finite set S ⊆ Q, the sum of the elements xs for s ∈ S exists, and
it is nil in Q.)

By definition, the group of units of Q P acts on itself and also on the set Q P of
equivalence classes modulo any congruence on Q P . Here and in what follows, we
often think of the quotient Q explicitly as a set of congruence classes in Q. Thus
Q P is a set of congruence classes in Q P . We record this fact for future reference.

Lemma 3.11. Let P ⊂ Q be a prime ideal. Given any congruence on Q, the unit
group of Q P acts on the quotient Q P modulo the induced congruence on Q P . �

In analogy with what happens over rings, primary decomposition of congruences
behaves well under localization.

Theorem 3.12. Primary decomposition of congruences commutes with localization:
if ∼=∼1 ∩ · · · ∩ ∼r is a primary decomposition of the congruence ∼ on Q, and
P ⊂ Q is a prime ideal, then each of the congruences induced by ∼1, . . . ,∼r

on Q P is primary or universal, and their common refinement is the congruence
induced by ∼ on Q P .

Proof. If some element of Q lies outside of P but becomes nilpotent in Q/∼ j , then
∼ j induces the universal congruence on Q P , so assume no such element exists.
Suppose that q−u ∈ Q P . Our assumption means that u has cancellative image in
Q/∼ j . It follows that q−u ∈ Q P becomes cancellative in Q P/∼ j as long as q−u
does not become nilpotent in Q P/∼ j . Therefore ∼ j induces a primary congruence
on Q P . The rest of the proof is covered by the following lemma. �
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Lemma 3.13. Localization commutes with finite common refinement of congru-
ences: if∼=∼1∩ · · ·∩∼r as congruences on Q, and P ⊂ Q is a prime ideal, then
the induced congruences on the localization Q P still satisfy ∼=∼1 ∩ · · · ∩ ∼r .

Proof. For the duration of this proof, a dot denotes passage to Q P , so ∼̇ is the
congruence on Q P induced by ∼ on Q. If v ∼̇ j w in Q P for all j , then for each j
there is an element u j ∈ Q \ P with u j +v ∼ j u j +w. Summing these elements
u j yields an element u = u1+· · ·+ur such that u+v ∼ j u+w for all j , whence
u+v ∼ u+w by definition of ∼ as the common refinement. Therefore v ∼̇w. This
logic easily reverses to show that v ∼̇w =⇒ v ∼̇ j w for all j . We conclude that
∼̇ = ∼̇1 ∩ · · · ∩ ∼̇r , as desired. �

4. Witnesses and associated prime ideals of congruences

Our aim in this section is to show that primary decompositions of congruences in
finitely generated commutative monoids have well-defined associated prime ideals.
These, and their witnesses, reflect the combinatorial features of a given congruence
more accurately than does primary decomposition alone.

Definition 4.1. For any ideal T ⊆ Q, the annihilator modulo T is the common
refinement ann(T )=

⋂
t∈T ker(φt) of the kernels of the addition morphisms φt for

t ∈ T .

Remark 4.2. If q1 + v = q2 then ker(φq1) refines ker(φq2). Therefore, in the
definition of ann(T ), it suffices to intersect only over generators of T . Equivalently,
if T is generated by t1, . . . , tr , then ann(T ) = ker(φt1⊕· · ·⊕φtr : Q→ T⊕r ). If
T = ∅ is the empty ideal, then ann(T ) is the universal congruence (that has just
one class).

Example 4.3. To explain the “annihilator” terminology, let Q be a monoid with
nil∞ and write k[Q]− := k[Q]/〈t∞〉. If T ⊆ Q is a monoid ideal, then ann(T )
is the congruence induced by the binomials (and the monomials) in the ideal
(0 : k{T })= { f ∈ k[Q] | f k{T } = 0 in k[Q]−}.

Definition 4.4. Fix a prime ideal P ⊂ Q with PP ⊂ Q P minimally generated
by p1, . . . , pr . The P-covers of q ∈ Q are the elements q + pi ∈ Q P for i =
1, . . . , r . The cover morphisms at P are the morphisms φi : Q P → 〈pi 〉P defined
via q 7→ q+ pi ; if P is the maximal ideal, then the φi are called simply the cover
morphisms of Q.

Remark 4.5. The set of P-cover morphisms depends on the choice of generators
p1, . . . , pr and may be infinite if, for example, Q P has a lot of units. However,
modulo Green’s relation on Q P there is a unique finite minimal generating set of
any ideal, and every minimal generating set for PP maps bijectively to it.
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Lemma 4.6. For a fixed prime P , the set of kernels of P-cover morphisms is finite.

Proof. Two cover morphisms φp and φp′ for elements p, p′ that are Green’s-
equivalent in Q P have the same kernel, because if p ∈ 〈p′〉 then there exists an
element u such that p = p′+u, and thus the kernel of φp′ refines the kernel of φp

and vice versa. �

Next comes the first main new definition of the paper (note that the concept
of mesoprimary congruence in Definition 2.12 is equivalent to a notion already
available in the literature; cf. Remark 2.13(4), whose details can best be seen in
action in the proofs of Proposition 7.9 and Theorem 8.4.

Definition 4.7. Let ∼ be a congruence on Q and P ⊂ Q a prime ideal. Consider
the localized quotient Q P . For each q ∈ Q let q be its image in Q P . An element q
is exclusively maximal in a subset S ⊆ Q P if q is the unique maximal element of S
under Green’s preorder. An element w ∈ Q is a:

(1) witness for P if the class of w is nonsingleton under the kernel of each cover
morphism (i.e., the class p+w is nonsingleton for all p ∈ P) and in each of
its nonsingleton kernel classes, w is not exclusively maximal.

(2) key witness for P if the class of w is nonsingleton under the intersection of the
kernels of all cover morphisms (i.e., if the class of w is nonsingleton under
ann(P P)) and w is not exclusively maximal in the nonsingleton class;

The ideal P is an associated prime ideal of ∼ if the annihilator modulo P P ⊂ Q P

is not the identity congruence.

Convention 4.8. A (key) witness is a (key) witness for some prime ideal P . When
we speak of the set of (key) witnesses for a given congruence we mean the set
of pairs (w, P) where w ∈ Q is a (key) witness for a prime ideal P ⊂ Q. If the
congruence ∼ is not clear from context, a (key) witness may be called a (key)
∼-witness.

Lemma 4.9. A prime ideal P ⊂ Q is associated to a congruence ∼ on Q if and
only if Q has a key witness for P.

Proof. Once the annihilator ann(P P) does not equal the identity congruence, it
has a class of size 2 or more; at least one element therein avoids being exclusively
maximal. �

Definition 4.10. Fix the notation of Definition 4.7.

(1) An aide1 for a witness w and a generator p ∈ P is an element w′ ∈ Q whose
image w′ ∈ Q P is (i) distinct from w, but (ii) congruent to w in the kernel of

1The English word “aide” is fortuitously a transliteration of the Hebrew word for “witness”. In
talmudic courts, a pair of witnesses was required for any conviction.
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the cover morphism φp, and (iii) maximal (under Green’s preorder) in the set
{w, w′}.

(2) A key aide for a key witness w is an element w′ ∈ Q whose image w′ ∈ Q P is
(i) distinct from w, but (ii) congruent to w in the intersection of the kernels
of all cover morphisms, and (iii) maximal (under Green’s preorder) in the set
{w, w′}.

Lemma 4.11. Every witness for P and generator p ∈ P has an aide. Every key
witness has a key aide.

Proof. In each case, there is a nonsingleton class containing w ∈ Q P , so there
exists an element w′ 6=w in this class. The point is to choose w′ so that it does not
precede w under Green’s preorder and so that w′ lies in the image of the composite
morphism Q→ Q→ Q P . The existence of w′ not preceding w is a consequence
of w not being exclusively maximal. Now use that every element of Q P is off from
the image of Q by an element of P , and that Q→ Q is surjective. �

Remark 4.12. Every key witness is a witness, because any key aide is an aide for
all generators of P .

Remark 4.13. An aide w′ for a witness w and p ∈ P can be a witness but need
not be:

• Adding p could join w to w′ while some other element of P fails to join w to
w′.

• w′ can be exclusively maximal in its class under the kernel of the cover
morphism.

Similarly, a key aide can be a witness (and hence a key witness) but need not be;
however, in the key case only the second circumstance (i.e., exclusive maximality)
can occur.

In the set of (key) witnesses for a congruence, a single w ∈ Q can occur multiple
times for different P . For instance, this happens when ∅ is associated.

Example 4.14. The condition for an element to be a witness for the empty prime
ideal ∅ is vacuous: there are no cover morphisms. Furthermore, the congruence
ann(∅) in the definition of key witness is an empty intersection of congruences,
so it is the universal congruence on Q∅. Thus the empty ideal is associated
to a congruence if and only if the universal group Q∅ of the quotient modulo
that congruence is nontrivial, and that occurs precisely when Q has no nil (see
Example 3.10). Every q ∈ Q is a (key) witness in this case but at the same time
Q∅ has only one class under Green’s relation.

The following series of examples demonstrates various features of associatedness
of prime ideals and their witnesses.
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Example 4.15. As usual it will be convenient to describe congruences on Nn by
unital binomial ideals in polynomial rings. We use ex , ey, . . . to denote the genera-
tors of Nn corresponding to variables x, y, . . . in the polynomial ring k[Nn

], but we
write the addition morphisms as φx , φy, . . . instead of φex , φey , . . . , for simplicity.

(1) Let ∼ be the congruence on N2 induced by the binomial ideal 〈x2
−xy, xy−y2

〉

of k[x, y]. The set of associated prime ideals in N2 consists of the empty ideal ∅
and the maximal ideal P = 〈ex , ey〉. Localization at the maximal ideal does nothing
and there are only two cover morphisms, given by adding ex and ey , respectively.
To establish that P is associated, note that ex and ey themselves are key witnesses
for P , congruent under ann(P), and serve as aides for one another. Indeed, ann(P),
the intersection of the two kernels, contains the pair (ex , ey) since ex+ex ∼ ey+ex

and also ex+ey ∼ ey+ey . The identity 0 ∈N2 is not a witness for P . Neither 〈ex 〉

nor 〈ey〉 is associated since adjoining inverses to either turns the quotient N2/∼

into a cancellative monoid. In this case all kernels of addition morphisms are trivial.
Finally, localizing at the empty prime ideal amounts to considering the induced
congruence on Z2, which is induced by the binomial ideal 〈x− y〉 ⊂ k[x±, y±].
Since the quotient is nontrivial, ∅ is associated too. Every element of N2 is a
witness for ∅, but taken together they form only one Green’s class in Z2.

(2) Let ∼ be the congruence on N3 induced by 〈x2
− xy, y2

− xy, x(z− 1)〉 ⊂
k[x, y, z]. The associated prime ideals are 〈ex , ey〉 and ∅. The argument for ∅
is the same as in item (1). The localization of ∼ at 〈ex , ey〉 is induced by the
same ideal, considered in k[x, y, z±]. This says that ez is cancellative, i.e., that
the addition morphism φz : q 7→ q+ ez is injective. The set of key witnesses is
invariant under the φz-action. It consists of ey+kez and ex+kez for k ∈ N. The
translates of ey all become equivalent when adding ex or ey . Any translates of ex

are witnesses since they are each joined to a translate of ey . No ez-translate of 0
is a witness, though. Again, all witnesses are key.

(3) Let ∼ be the congruence on N4 induced by

〈x2
− xy, y2

− xy, x(z−1), y(w−1)〉 ⊂ k[x, y, z, w].

The associated prime ideals are again ∅ and P = 〈ex , ey〉. The set of witnesses
for P is determined as follows. The element 0 ∈ N4 is a witness that is not
key. The kernel congruences of φx and φy are generated by {(0, ez), (ex , ey)} and
{(0, ew), (ex , ey)} in N4

×N4, respectively. This shows the witness property and
also, because their common refinement leaves it singleton similarly to Example 2.22,
that 0 is not key. In contrast, ex and ey are key witnesses because φx(ex)= φx(ey)

and likewise for φy . A mesoprimary decomposition (Theorem 13.2) of the binomial
ideal defining ∼ has components corresponding to all three witnesses, while a
mesoprimary decomposition of the congruence ∼ itself needs components only for
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the two key witnesses (Theorem 8.4). Why the extra binomial component? The
common refinement of the congruences induced by 〈z−1, x2, y〉 and 〈w−1, x, y2

〉

leaves the class of 0 singleton, but the intersection of the ideals is merely free of
binomials, rather than being altogether zero.

This next example demonstrates how the monoid prime ideal P matters in the
definition of a (key) witness for P , and how the same element can be a witness for
different P .

Example 4.16. Fix the congruence ∼ induced on N4 by the unital binomial ideal
〈x(z− 1), x(w− 1), y(z− 1), y2

〉 ⊂ k[x, y, z, w]. The associated prime ideals
of ∼ are 〈ex , ey〉 and 〈ey〉. Consider the addition morphisms φx and φy . The key
witnesses for 〈ey〉 are ey+kex and all their translates in the ez and ew directions.
No element in the ideal 〈ex 〉 can be a witness for a monoid prime containing ex

because φx acts injectively on that ideal. Indeed, the witnesses for 〈ex , ey〉 are
0 ∈ N4 together with all its translates in the ez direction, and ey together with its
translates in the ez and ew directions.

The final example on witnesses demonstrates the prohibition on exclusive max-
imality, which in particular bars ∞ and idempotents from being witnesses. See
Remark 7.10 for a deeper explanation of the ban on exclusive maximality.

Example 4.17. Let P = 〈ex , ey〉 be the maximal ideal of N2.

(1) Under the Rees congruence induced by the monomial ideal 〈x2, y2
〉, the

element ex+ey is joined to nil under both cover morphisms. Only ex+ey is a
P-witness, and is in fact a key witness. In contrast,∞ is a key aide but not a
witness, and hence certainly not a key witness.

(2) Under the congruence induced by the unital binomial ideal 〈y, x2
− x〉, both

cover morphisms join the identity 0 to ex . However, only the identity is a
witness, because ex lies in the ideal that 0 generates.

Lemma 4.18. If P is maximal among the prime ideals associated to the components
in a primary decomposition, then ann(P) refines all P ′-primary components with
P ′ ( P.

Proof. Fix a P ′-primary component ≈ with P ′ ( P , and choose p ∈ P \ P ′, so that
p ∈ Q/≈ is cancellative. By definition, if a, b ∈ Q are congruent modulo ann(P)
then a+ p and b+ p are congruent modulo the original congruence, so a+ p≈ b+ p,
and therefore a ≈ b by the cancellative property of p. Thus ann(P) refines ≈. �

Lemma 4.19. For all primes P 6⊇ P ′, the congruence on Q P induced by any
P ′-primary congruence on Q is universal on Q P .

Proof. Localization adjoins an inverse for a nilpotent element. �
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Despite the oddities in Example 2.22, primary decomposition of congruences is
combinatorially well-behaved: the associated prime ideals of a congruence reflect
which components are necessary in every primary decomposition.

Theorem 4.20. A prime P ⊂ Q is associated to a congruence ∼ on Q if and
only if every primary decomposition of ∼ has a P-primary component. Moreover,
if P is not associated to ∼ , then every P-primary component in every primary
decomposition of∼ is redundant: omitting it leaves another primary decomposition
of ∼ .

Proof. Suppose that a primary decomposition with no P-primary component is
given. Working modulo ∼ , assume that the congruence to be decomposed is the
identity congruence on Q. After localizing along P , the induced congruences on Q P

form a primary decomposition of the identity congruence there by Theorem 3.12,
with all P ′-primary components for P ′ 6⊆ P being universal and thus redundant
by Lemma 4.19. That is to say, we can assume that P is the maximal monoid
prime ideal of Q. Since the primary decomposition has no P-primary component,
Lemma 4.18 implies that ann(P) refines all primary components, and thus it refines
their intersection. Thus ann(P) is trivial and P is not associated.

To prove the rest of the statement, it suffices to show that P is an associated
prime of ∼ if some primary decomposition of ∼ has a P-primary component
∼P that is irredundant in the sense that omitting ∼P yields a coarser congruence
than ∼ . Write ≈ for the (not necessarily primary) common refinement of all other
congruences in the decomposition. Thus ∼P ∩ ≈ is a nontrivial decomposition
of the identity congruence. Choose a 6= b ∈ Q with a ≈ b but a 6∼P b. Let
T = {t ∈ Q | t+a ∼P t+b}. Since ∼P is P-primary, the radical of T is P . Modulo
Green’s relation on Q P , find a maximal element t̂ not in the image of T . If t ∈ Q
maps to t̂ then the images of t+a and t+b in Q P are joined under each cover
morphism. Therefore their class is nonsingleton under ann(P), so one of them is a
key witness for P . �

Theorem 4.20 implies a natural characterization of primary congruences.

Corollary 4.21. A congruence is primary if and only if it has exactly one associated
prime ideal.

Remark 4.22. Via the Rees congruence construction, primary decomposition of
congruences is a refinement of primary decomposition of ideals in monoids. There
is an extensive literature on the second type of decomposition surveyed in [Anderson
and Johnson 1984]. Our definitions are aligned with those in the literature: the
Rees congruence of a monoid ideal is primary if and only if that monoid ideal
is primary. In this case its unique associated monoid prime ideal is the unique
associated monoid prime ideal of the congruence.
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5. Associated prime congruences

Each primary congruence on a finitely generated commutative monoid Q has a
unique associated prime ideal. One of the most basic insights in this paper is that
a single primary congruence can have several associated prime congruences. The
first definition says how a congruence looks near a given q ∈ Q.

Definition 5.1. Fix a prime ideal P ⊆ Q, a congruence ∼ on Q, and an ele-
ment q ∈ Q. The P-prime congruence of ∼ at q is the kernel of the morphism
Q→ (〈q〉/〈q+P〉)P induced by the quotient Q→Q/∼=Q, addition φq :Q→〈q〉,
and localization at P .

Definition 5.2. A prime congruence ≈ on Q is associated to an arbitrary congru-
ence ∼ if ≈ equals the P-prime congruence of ∼ at a key witness for P .

Remark 5.3. The definition implies that the associated prime P of ≈ is associated
to ∼ too. If P is clear from the context, such as after ≈ is fixed, then we also speak
of a key witness for P simply as a key witness.

Lemma 5.4. If p, q ∈ Q are equivalent under Green’s relation, that is, if 〈p〉 = 〈q〉,
then their P-prime congruences agree for each P.

Proof. The same argument as for Lemma 4.6 applies. �

Example 5.5. In the situation of Example 4.16, the associated prime congruences
are induced by the ideals 〈x, y〉, 〈x, y, z − 1〉, and 〈y, z − 1, w− 1〉. The first
two correspond to witnesses for 〈ex , ey〉, while the third corresponds to all of the
witnesses for 〈ey〉.

The following and Lemma 2.19 are the central finiteness results, reflected in all
of the following development, particularly Theorem 8.4.

Theorem 5.6. Fix a congruence ∼ on a finitely generated commutative monoid Q.
For each of the finitely many primes P of Q, the key ∼-witnesses for P generate
only finitely many Green’s classes in the localization Q P along P. Consequently,
each congruence on Q has only finitely many associated prime congruences.

Proof. Since the definition of key witness for P is already local, it suffices to treat
the case where P is the maximal ideal of Q. Form a relation on Q by joining every
key witness w to a key aide a. This relation is a congruence by the definitions of key
witness and key aide. The claim about Green’s classes holds because Q is noetherian.
To prove the consequence for associated prime congruences, use Lemma 5.4. �

Example 5.7. The congruence in Example 2.18 is primary with respect to the
maximal ideal. The (key) witnesses are ex , ey , and also 2ex , ex + ey , and 2ey ,
since their class gets joined to nil under φx and φy . Although the witnesses look
combinatorially different, the only associated prime congruence is the identity
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congruence on the monoid {0,∞}. This is forced, as the identity is the only
cancellative element in Q.

If on Q the identity congruence is primary, then the assignment of witnesses
to their P-prime congruences is order-preserving. It would be interesting to un-
derstand which posets of witnesses and associated prime congruences can occur
(Problem 17.4).

6. Characterization of mesoprimary congruences

In parallel with the theory of ordinary primary ideals in commutative rings, the
mesoprimary condition admits a characterization in terms of associated prime
congruences. Definition 2.12 was made with this proposition in mind.

Theorem 6.1. A congruence is mesoprimary if and only if it has exactly one associ-
ated prime congruence.

Proof. Fix a P-primary congruence ∼ on Q. If ∼ is mesoprimary and w is not nil,
then the P-prime congruence of∼ atw coincides with the P-prime congruence of∼
at the identity because w is partly cancellative. The uniqueness of the associated
prime congruence follows from the special case where w is a key witness.

On the other hand, assume ∼ has a unique associated prime congruence. Then ∼
is primary by Corollary 4.21. Replacing Q with q, assume ∼ is the identity
congruence on Q. Suppose that a and b are distinct elements whose images in Q P

satisfy a+u = b for some unit u ∈ Q P . Using the partial order from Lemma 2.19,
let w ∈ Q be any element such that w+a 6= w+b and the image of w modulo the
cancellative elements F ⊆ Q is maximal with this property. Let w′ be any maximal
nonnil element whose image in the poset Q/F is comparable to w but not below.
The choices of w and w′ make them both key witnesses: w′ has∞ as an aide, and
w is verified directly to be a key witness since p+w = p+(w+a−b) in Q P for
all p ∈ P . Replacing w′ with w′+c for some cancellative element c if necessary,
assume that w′ = w+ q for some q ∈ Q. Uniqueness of the associated prime
congruence, combined with the relation φw′ = φq ◦φw among addition morphisms,
implies that w′+a 6=w′+b. By maximality of w′ in Q/F , the relation v+a= v+b
can only hold for v such that v+a =∞. Thus ∼ is partly cancellative. �

Remark 6.2. A primary congruence has only one associated monoid prime ideal
by Corollary 4.21. Theorem 6.1 makes precise the notion that further decompo-
sition along the associated prime congruences is natural, as is visible already in
Example 1.3.

Quotients by mesoprimary congruences can be described fairly explicitly in
terms related to the action in Lemma 3.11. Making this description into a precise
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alternative characterization of mesoprimary congruences requires some specialized
notions involving monoid actions.

Definition 6.3. The action of a monoid F on an F-module T is semifree if

• t 7→ f + t is an injection T ↪→ T for all f ∈ F , and

• f 7→ f + t is an injection F ↪→ T for all t ∈ T .

Remark 6.4. The letter “F” stands for “face”: in practice, the monoid F is often a
face of an affine semigroup, and thinking of it that way is good for intuition.

Lemma 6.5. An action of a cancellative monoid F on an F-module T is semifree
if and only if the localization map T ↪→ T∅ is injective and the universal group F∅
acts freely on T∅.

Proof. The cancellative condition means that the natural map F ↪→ F∅ is injective.
Using this fact, the “if” direction is elementary, and omitted. In the other direction,
the semifree case, the first injectivity condition guarantees that t− f = t ′− f ′⇐⇒
f ′+t = f +t ′. In particular, t−0= t ′−0⇐⇒ t = t ′, so the natural map T ↪→ T∅ is
injective. The second injectivity condition guarantees that the action of F∅ is free:
( f− f ′)+(t−w)= t−w⇐⇒ ( f+t)−( f ′+w)= t−w⇐⇒ (w+ f )+t= ( f ′+w)+t ,
and by the second injectivity condition this occurs if and only if f +w = f ′+w,
which is equivalent to f = f ′ because F is cancellative. �

In contrast to group actions, monoid actions need not define equivalence relations,
because the relation t ∼ f + t can fail to be symmetric. The relation is already
reflexive and transitive, however, precisely by the two axioms for monoid actions.

Definition 6.6. An orbit of a monoid action of F on T is an equivalence class
under the symmetrization of the relation {(s, t) | f +s = t for some f ∈ F} ⊆ T×T .

Combinatorially, from an F-module T , one can construct a directed graph with
vertex set T and an edge from s to t if t = f +s for some f ∈ F . Then an orbit is
a connected component of the underlying undirected graph.

Corollary 6.7. A congruence ∼ on a finitely generated commutative monoid Q is
mesoprimary if and only if the set F of nonnilpotent elements in Q = Q/∼ is a
cancellative monoid that acts semifreely on Q \{∞} with finitely many orbits.

Proof. Whether we assume the mesoprimary condition on ∼ or the condition on
the nonnilpotent elements in Q, we can in each case deduce that ∼ is P-primary
for some prime P ⊂ Q. The image of Q \ P in Q is the cancellative submonoid F
by definition, which has finitely many orbits by Lemma 2.19. The only feature of
the corollary’s statement that distinguishes mesoprimary congruences from general
primary ones is semifreeness, which we claim is equivalent to uniqueness of the
associated prime congruence in Theorem 6.1. Indeed, F acts semifreely if and only
if the P-prime congruences at all nonnil elements of Q coincide. Those coincidences
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certainly imply that the P-prime congruences at all witnesses coincide, in which
case ∼ is mesoprimary. On the other hand, if ∼ is mesoprimary, then the P-prime
congruences at all key witnesses coincide. They all coincide with the P-prime
congruence at the identity, or else there would be two key witnesses, one sharing its
P-prime congruence with the identity and the other not. Since the image in Q/F of
every nonnil element of Q lies between the identity and a key witness, the P-prime
congruence of every nonnil element is forced to agree with the one shared by the
identity and the key witnesses. �

Remark 6.8. As the proof of Corollary 6.7 shows, one interpretation of the structure
theorem in the statement is that a P-primary congruence has the same P-prime
congruence at every nonnil element as soon as it has the same P-prime congruence
at every key witness, and that is what it means to be mesoprimary.

Proposition 6.9. Given a finite set of congruences on Q, all of which are meso-
primary with the same associated prime congruence, their common refinement is
also mesoprimary with the same associated prime congruence.

Proof. Let ∼ be the common refinement of finitely many P-mesoprimary congru-
ences. Then ∼ is P-primary by Proposition 3.7. Applying Theorem 6.1, it suffices
to show that the P-prime congruence of ∼ at any element q ∈ Q that lies outside
the nil class of ∼ is the same as the P-prime congruence of ∼ at the identity.

Lemma 3.13 implies that we may assume P is the maximal ideal of Q with unit
group G = Q\P . Under each of the given mesoprimary congruences, Corollary 6.7
(in the guise of Remark 6.8) implies that the class of q is either nil or its intersection
with the orbit G+q equals K +q, where K ⊆ G is the subgroup that stabilizes
(fixes as a set, but not necessarily pointwise) the class of the identity under each of
the mesoprimary congruences. Since the nil class contains K+q once it contains q ,
the class of q under ∼ is either nil or its intersection with the orbit G+q equals
K +q. Having excluded nil by our choice of q, the intersection must be K +q.
Thus the P-prime congruence at q under ∼ coincides with the P-prime congruence
at q under (every) one of the mesoprimary congruences modulo which q is not nil.

In particular, letting q be the identity shows that K is the intersection of the
identity class of ∼ with G. Consequently, the P-prime congruence of ∼ at q
coincides with the P-prime congruence of ∼ at the identity, as desired. �

7. Coprincipal congruences

In commutative rings, irreducible decomposition underlies primary decomposition.
Analogously, coprincipal decomposition underlies mesoprimary decomposition
of commutative monoid congruences (but see the remarks and examples after
Theorem 8.4).
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Definition 7.1. A peak of a monoid Q is a nonnil element q ∈Q such that q+a=∞
for all nonunit a ∈ Q. The cogenerators of a P-primary congruence on Q are the
elements of Q whose images in Q P are peaks.

Definition 7.2. A congruence ∼ on Q is coprincipal if it is P-mesoprimary for
some monoid prime P and additionally the quotient of Q P modulo its Green’s
relation has precisely one peak.

Example 7.3. The congruence in Example 2.18 is coprincipal. It is P-mesoprimary
for P = Q \{0} and its unique peak is the class of 2.

Definition 7.4. Fix a congruence on Q with quotient Q. The order ideal Q P
�q

cogenerated by q ∈ Q at a prime ideal P ⊂ Q consists of those a ∈ Q whose
image precedes that of q in the partially ordered quotient of Q P modulo its Green’s
relation (Lemma 2.6).

Example 7.5. Let ∼ be the congruence on N induced by the binomial ideal
〈x3
− x6
〉 ⊂ k[x]. Set P = 〈e〉, where e = ex is the generator of N.

(1) The order ideal NP
�e consists of e itself and 0 ∈ N.

(2) Including 2e yields the order ideal NP
�2e = {0, e, 2e}.

(3) The order ideals NP
�q for q = me with m ≥ 3 all coincide with N itself. Thus,

in general, order ideals Q P
�q ⊆ Q need not be finite, although their images in

Q P modulo Green’s relation always are.

(4) The order ideals N∅
�q for q ∈ N all coincide with N itself.

Example 7.6. Let ∼ be the identity congruence on Q = N3, and set P = 〈e, f 〉,
where e, f are two of the three generators of N3, the third being g. The order ideal
Q P
�e+ f+2g consists of the lattice points on the nonnegative g-axis together with

their translates by e, f , and e+ f . The answer would have been the same had
e+ f +2g been replaced by e+ f , or e+ f +g, or e+ f +mg for any m ∈ N.

Definition 7.7. Fix a congruence ∼ . The congruence cogenerated by q along P is
the coarsening ∼P

q of ∼ obtained by first joining any pair of elements in Q \Q P
�q

and also joining any pair (a, b) ∈ Q such that

(i) the images a and b in Q P differ by a unit in Q P , and

(ii) c+a = c+b = q ∈ Q P for some c ∈ Q P .

Example 7.8. The congruence∼P
q in Definition 7.7 need not be primary, and hence

it need not be coprincipal. Essentially, the prime P has to be small enough to foster
the mesoprimary condition. In Example 4.17.2, the congruence cogenerated by
q = ex along P ′ = {ex ,∞} is not primary. However, along P = {∞}, localization
inverts more, causing ex to be joined with 0, resulting in a primary — and hence
coprincipal — congruence.
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Proposition 7.9. Fix a congruence ∼ and a witness w for a prime P. All elements
of P are nilpotent modulo the congruence ∼P

w , whose nil class is Q \Q P
�w.

Proof. Given an aide w′ for w and a generator p of P , one of two things must
happen, and in both cases p+w is nil modulo ∼P

w . Write [q] for the Green’s class
of q ∈ Q P .

(1) [w] 6= [w′]. In this case, either [w]< [w′] or [w] and [w′] are incomparable,
but these both imply thatw′ maps to nil modulo the coprincipal congruence∼P

w ,
so p+w = p+w′ is nil modulo ∼P

w .

(2) [w] = [w′]; that is, their images lie in the same Green’s class. In this case,
[p+w]> [w] by Lemma 2.8, since addition by p joins [w] to [w′].

Since p is an arbitrary generator of P , it follows that P+w is nil modulo ∼P
w . This

implies that every element of P is nilpotent modulo ∼P
w , as follows. There are only

finitely many Green’s classes beneath [w], so the Green’s classes of multiples of
any given nonunit element a ∈ Q P/∼

P
w are not all distinct: there must be repeats.

Suppose [α ·a] = [β ·a] for some positive integers α < β. Every nonnil element of
Q P/∼

P
w precedes w in Green’s preorder. Therefore, if neither α ·a nor β ·a is nil,

then there is some c ∈ Q such that [α ·a]+c = [w], whence

[w] = [β ·a]+c = (β−α) ·a+[α ·a]+c = (β−α) ·a+[w] ⊆ P+[w]

is nil modulo ∼P
w , contradicting the choice of w.

The statement about the nil class holds because Q \Q P
�w is an ideal of Q (so its

image is nil) that does not contain w itself (so the image of w is not made nil by
the first relations in Definition 7.7) or any element in Q P

�w (so none of the relations
defined by (i) and (ii) in Definition 7.7 make w or any other element of Q P

�w nil). �

Remark 7.10. Proposition 7.9 can fail if w is merely an aide — even a key aide.
The not-exclusively-maximal property of a witness guarantees existence of an aide
that can be set congruent to nil modulo the coprincipal congruence without forcing
w to be nil as well. In Example 4.17.2, for instance, there is no way to define a
coprincipal congruence cogenerated by ex in such a way that ex is nilpotent without
it being nil.

Theorem 7.11. Given a congruence ∼ , the congruence ∼P
w cogenerated by any

witness w for P is coprincipal, with associated prime ideal P.

Proof. Every nonunit in the localization Q P/∼
P
w of the quotient monoid Q/∼P

w

along P is nilpotent by Proposition 7.9. The statement about the nil class in that
same proposition implies that the Green’s class of w is the unique peak. The local-
ization morphism Q/∼P

w→ Q P/∼
P
w is injective by condition (i) in Definition 7.7.

Condition (ii) there forces the P-prime congruence at the identity to equal the
P-prime congruence at w, which consequently forces the P-prime congruences at
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all nonnil elements to coincide, since they lie between the P-prime congruences
at the identity and at w. Therefore the action of the unit group of Q P/∼

P
w on its

nonnilpotent elements is free. The proof is complete by Corollary 6.7, using the
characterization of semifreeness in Lemma 6.5. �

Definition 7.12. If w is a witness for an associated P-prime congruence of ∼ , then
the congruence∼P

w is the coprincipal component of∼ cogenerated byw along P . If
the prime ideal P is clear from context, e.g., if w is already specified to be a witness
for P , then we simply speak of the coprincipal component cogenerated by w.

Example 7.13. Consider the congruence on N2 induced by I = 〈x3
− x2, y3

− y2
〉.

The quotient Q = N2/∼I has nine elements, with the class of 2ex+2ey being nil.
The quotient also has two idempotents, namely the classes of 2ex and 2ey . Neither of
the congruences cogenerated by q = ex+2ey and q = ey+2ex along P = 〈ex , ey〉

is primary; however, these elements are not P-witnesses. In fact, there are no
P-witnesses: the maximal ideal is not associated. In contrast, the coprincipal
components for the witnesses (2e2, 〈e1〉) and (2e1, 〈e2〉) are mesoprimary, as per
Theorem 7.11.

Example 7.14. In the setting of Example 7.5, the coprincipal component of ∼
cogenerated by any q ∈ N along ∅ is induced by the binomial ideal 〈1− x3

〉. The
component cogenerated by the key witness 2e along 〈e〉 is induced by the binomial
ideal 〈x3

〉.

Proposition 7.15. Given any witness w for an associated P-prime congruence
of ∼ , the coprincipal component of ∼ cogenerated by w along P is refined by ∼ .

Proof. Starting from ∼ the coprincipal component is formed by identifying addi-
tional pairs of elements. �

Proposition 7.16. Any mesoprimary congruence ∼ equals the common refinement
of the coprincipal components of ∼ cogenerated by the cogenerators of ∼ .

Proof. Fix a P-mesoprimary congruence ∼ . By Proposition 7.15 each coprincipal
component at a cogenerator coarsens ∼ . On the other hand, suppose that q 6∼ q ′.
Let q and q ′ denote their images in the localized quotient q P . By mesoprimariness,
q 6= q ′. Modulo Green’s relation on q P , every element precedes a peak. If exactly
one of q and q ′ precedes some peak w, then modulo ∼P

w exactly one of q and q ′

maps to nil, so they are incongruent. If no such peak exists, then q and q ′ both
precede some peak w. For q and q ′ to be joined by ∼P

w they must differ by a unit
and satisfy q+c = q ′+c = w for some c ∈ Q P , all by Definition 7.7. However,
since ∼ is mesoprimary, q+c= q ′+c implies that both sides are nil. Consequently,
q 6∼P

w q ′. �
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8. Mesoprimary decompositions of congruences

Definition 8.1. Fix a congruence ∼ on a finitely generated commutative monoid Q.

(1) An expression of ∼ as the common refinement of finitely many mesoprimary
congruences is a mesoprimary decomposition if, for each mesoprimary congru-
ence ≈ that appears in the decomposition with associated prime ideal P ⊂ Q,
the P-prime congruences of ∼ and ≈ at every cogenerator of ≈ coincide.

(2) Each mesoprimary congruence that appears is a mesoprimary component of ∼ .

(3) If every cogenerator of every P-mesoprimary component≈ is a key∼-witness
for P , then the decomposition is a key mesoprimary decomposition.

Example 8.2. According to Definition 8.1, the decomposition in Example 2.22 is
not a mesoprimary decomposition because the intersectands are not components of
the identity congruence: the combinatorics at the witnesses for the mesoprimary
congruences in the decomposition do not agree with the combinatorics of the identity
congruence. More precisely, the ∅-prime congruence at each element of N2 is the
identity congruence, not the congruence induced by 〈x−1〉 or 〈y−1〉.

Theorem 8.3. Every congruence on a finitely generated commutative monoid ad-
mits a key mesoprimary decomposition.

Proof. Two examples are the decompositions in Theorem 8.4 and Corollary 8.11, by
Remark 8.5 and finiteness of the set of Green’s classes of witnesses in Theorem 5.6.

�

In the remainder of this section, Convention 4.8 leads to some simplification of
terminology. The first statement to benefit is our first main decomposition theorem
(the other being Corollary 8.11), which generalizes to arbitrary monoid congruences
the notion of irreducible decomposition for monoid ideals; see Examples 8.6 and 8.7.

Theorem 8.4. Every congruence on a finitely generated commutative monoid is the
common refinement of the coprincipal congruences cogenerated by its key witnesses.

Proof. Fix a congruence ∼ on Q. Proposition 7.15 implies that the intersection of
all of the coprincipal congruences for witnesses is refined by ∼ . On the other hand,
suppose that q 6∼ q ′ for two elements q, q ′ ∈ Q. The proof is done once we find a
prime P ⊂ Q and a key witness w ∈ Q whose coprincipal congruence ∼P

w on Q
fails to join q to q ′.

Let T = {t ∈ Q | t+q ∼ t+q ′} be the ideal of elements joining q to q ′. Fix a
prime ideal P minimal among primes of Q containing T . The images q̂ and q̂ ′ of q
and q ′ in the localization Q P remain incongruent because P contains T . In contrast,
every element in the localized image TP joins q̂ to q̂ ′; that is, t̂+ q̂ ∼ t̂+ q̂ ′ for
all t̂ ∈ TP . Since the maximal ideal PP of Q P is minimal over TP by minimality of
P over T , there is a maximal Green’s class among those represented by the elements
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{t̂ ∈Q P | t̂+q̂ 6∼ t̂+q̂ ′}. If the image of t lies in such a maximal Green’s class, then in
Q at least one of the elements w= t+q and w′= t+q ′— namely one whose image
in Q P is not strictly greater than the other under Green’s preorder — is a key witness
by definition. Assuming, by symmetry, that w is a key witness, the localization of
the congruence ∼P

w satisfies q̂ 6∼P
w q̂ ′, so q 6∼P

w q ′ before localization. �

Remark 8.5. In Theorem 8.4 it makes no difference whether one uses all the key
witnesses or just one per Green’s class. This follows instantly from the definition
of a coprincipal component; indeed, for a given Green’s class of key witnesses, the
coprincipal components are all equal — not just equivalent, but literally the same
congruence.

Example 8.6. For a monomial ideal in an affine semigroup ring, the coprincipal
decomposition of the Rees congruence afforded by Theorem 8.4 arises equivalently
from the Rees congruences of the components in the unique irredundant irreducible
decomposition into monomial ideals [Miller 2002, Theorem 2.4]; see also [Miller
and Sturmfels 2005, Corollary 11.5 and Proposition 11.41].

Example 8.7. Unlike the case in Example 8.6, the decomposition in Theorem 8.4
can be redundant in general. This happens for the congruence in Example 4.15(1).
The decomposition produced by Theorem 8.4 has three mesoprimary components:
∼

P
w for P = 〈ex , ey〉 and w ∈ {(ex , 0), (0, ey)} arise from joining ey and ex , respec-

tively, to nil. A third component∼∅ arises for P=∅ (with any element as a witness)
and is induced by 〈x− y〉. The decomposition into three congruences is redundant:
the given congruence is already the common refinement of ∼∅ and either of ∼P

w ,
the point being that once ∼∅ is given, one only needs to separate (1, 0) from (0, 1).
That said, the points (1, 0) and (0, 1) represent distinct Green’s classes of key
witnesses for the associated prime congruence induced by the binomial ideal 〈x, y〉.
There is simply no way of constructing an irredundant coprincipal decomposition
without breaking the symmetry: no systematic method of eliminating one of the
redundant components in this example would have a way to choose between them.

Remark 8.8. A coprincipal congruence can have more than one Green’s class
of key witnesses, such as Example 2.18. In any such case the mesoprimary
decomposition from Theorem 8.4 produces more than one coprincipal compo-
nent. By Proposition 7.16, however, it is guaranteed that the original congruence
appears as the component for the Green’s class of the unique peak, and thus all
other components are redundant. This phenomenon prevents arbitrary coprincipal
congruences from accurately reflecting the combinatorics of irreducible decompo-
sition of binomial ideals. One irreducible decomposition of the coprincipal ideal
I = 〈x2

−xy, xy− y2, x3
〉 from Example 2.18 is I = 〈x− y, x3

〉∩ 〈x2, y〉∩ 〈x, y2
〉,

as can be seen by applying [Vasconcelos 1998, Proposition 3.1.7].
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Remark 8.9. Any irreducible congruence is mesoprimary: if a congruence is not
mesoprimary then it has at least two associated prime congruences by Theorem 6.1,
and then it is reducible by mesoprimary decomposition. However, irreducible
decompositions of congruences do not, in general, reflect the combinatorics of
congruences in a manner that is witnessed combinatorially by the congruence itself.

Lemma 8.10. Every cogenerator of the common refinement of a finite set of P-meso-
primary congruences is a cogenerator of one of the given mesoprimary congruences.

Proof. If w is a cogenerator of the common refinement ∼ , then w is not nil mod-
ulo ∼ , so w is not nil modulo (at least) one of the given mesoprimary congruences.
On the other hand, p+w is nil modulo∼ for all p ∈ P , whence P+w is nil modulo
each one of the given mesoprimary congruences. Therefore w is a cogenerator of
each of the given mesoprimary congruences modulo which it is not nil. �

Combining Theorem 8.4 with Proposition 6.9 and Lemma 8.10 yields the next
result, culminating our study of commutative monoid congruence decompositions.

Corollary 8.11. Every congruence on a finitely generated commutative monoid
admits a key mesoprimary decomposition with one component per associated prime
congruence.

Example 8.12. In general, the set of key witnesses is properly contained in the
set of witnesses. Example 4.15(3) shows one way this can happen. Exploiting the
weirdness of irreducible decomposition of the identity congruence is not necessary:
consider the primary congruence induced by the (cellular) binomial ideal

I = 〈a2
−1, b2

−1, x(b−1), y(a−1), z(a−b), x2, y2, z2
〉.

The geometry of the quotient is shown here, where Zδ2 is the diagonal copy of Z2 in
Z2×Z2, i.e., the copy generated by (1, 1):

d

b

c

a

z

y

x

z

Zδ2 0

0×Z2

Z2×0
x

y

The solid dots indicate key witnesses and are labeled with quotients of Q modulo
the corresponding stabilizers, under the action from Lemma 3.11. The origin is not a
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key witness because the common refinement of the three kernels of the addition mor-
phisms is trivial. According to Theorem 8.4, a coprincipal mesoprimary decomposi-
tion of∼I is induced by the following decomposition of I into unital binomial ideals:

I = 〈a−1, b−1, z2, y2, x2
〉 ∩ 〈a2

−1, b−1, z, y, x2
〉

∩ 〈a−1, b2
−1, z, x, y2

〉 ∩ 〈ab−1, a−b, y, x, z2
〉.

The heart of the remainder of this paper — the ring-theoretic part — is to make the
corresponding decomposition of arbitrary (nonunital) binomial ideals precise. For
reference, the primary decomposition of I is

I = 〈a−1, b−1, z2, y2, x2
〉 ∩ 〈a+1, b−1, z, y, x2

〉

∩〈a−1, b+1, z, x, y2
〉 ∩ 〈a+1, b+1, y, x, z2

〉.

9. Augmentation ideals, kernels, and nils

One of our goals is to compare the combinatorics of congruences on a commutative
monoid Q in purely monoid-theoretic settings with their ring-theoretic counterparts.
It is therefore important to note that various binomial ideals I ⊂ k[Q] can induce
the same congruence on Q. One way for this to happen is an arithmetic way, via
binomials involving the same monomials but different sets of coefficients; this
occurs for binomial primes Iρ,P whose characters share their domain of definition
(see Section 12).

Example 9.1. Let char(k) 6= 2. In the polynomial ring k[x, y, z], both of the ideals
I =〈x(z−1), y(z−1), z2

−1, x2, xy, y2
〉 and I ′=〈x(z−1), y(z+1), z2

−1, x2, y2
〉

induce the same congruence; note that I ′ contains 〈xy〉, so the only difference
between these two ideals is the character on Z= {0}×{0}×Z⊆ Z×Z×Z induced
by the monomials y, zy, z2 y, . . . due to the generator y(z+1) instead of y(z−1).

Another way, demonstrated in parts (3) and (4) of Example 2.17, is combinatorial:
when Q has a nil∞, the binomial ideal 〈t∞〉 induces the same (trivial) congruence
on Q as the zero ideal 〈0〉 ⊆ k[Q]. Nils are the only way for this to occur.

Lemma 9.2. Fix a binomial ideal I ⊆ k[Q] whose congruence ∼I is trivial (every
class is a singleton). Then I = 0 or I = 〈t∞〉 for a nil∞∈ Q.

Proof. If I 6= 0 then I must be a monomial ideal with a unique monomial, or else
the congruence ∼I has a class of size at least 2. Hence the result follows because a
monoid can have at most one nil. �

Definition 9.3. If∞∈Q is a nil, then the truncated algebra is k[Q]− :=k[Q]/〈t∞〉.
By convention, if Q has no nil, then we set k[Q]− := k[Q].
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Remark 9.4. Truncated algebras arise naturally from monoid algebras because of
differences in the way quotients of monoids and monoid algebras by ideals are
formed. If F ⊆ Q is a monoid ideal and ∼F its Rees congruence, the quotient
k[Q]→k[Q]/MF modulo the monomial ideal MF=〈t f

| f ∈F〉 equals k[Q/∼F ]
−

rather than k[Q/∼F ] itself. We shall see that if Q has a nil, then k[Q] and k[Q]−

reflect certain aspects of the algebra of Q to varying degrees of accuracy.

More generally, if the congruence induced by a (not necessarily unital) binomial
ideal I results in a quotient Q/∼I that has a nil, then throwing in monomials from
the nil class results in an ideal that determines the same congruence.

Proposition 9.5. Fix a binomial ideal I ⊆ k[Q]. The only binomial ideals contain-
ing I that determine the same congruence ∼I are I itself and, if Q = Q/∼I has a
nil∞, the ideal I +〈tq

| q =∞〉, where the bar denotes passage from q ∈ Q to its
image q ∈ Q.

Proof. Under the grading of the quotient algebra k[Q]/I by Q = Q/∼I , the
dimension of the graded piece (k[Q]/I )q as a vector space over k is either 0 or 1,
depending on whether I contains a monomial in the corresponding class. Since the
(exponents on) monomials in I form a single class, the dimension can only be 0 for
at most one q , and q must be a nil in Q. Now note that k[Q]/I is close enough to
the monoid algebra k[Q] for the argument from Lemma 9.2 to work, and lift the
result from k[Q]/I to k[Q]. �

The two binomial ideals in Proposition 9.5 are unequal precisely when I contains
no monomials, and in this case it is trivial to form the second ideal by inserting
monomials. In special circumstances, it is possible to reverse this procedure. To this
end, we wish to examine the transition from k[Q] to the truncated algebra k[Q]−

(when Q has a nil) in terms of primary decomposition of binomial ideals. This
naturally leads to the following concept refining that of a nil.

Definition 9.6. A kernel of a commutative monoid Q is a nonempty ideal contained
in all nonempty ideals of Q. (Such an ideal might not exist.)

Example 9.7. A nil is the same thing as a kernel of cardinality 1.

The existence of a nil in Q, or a finite kernel more generally, is reflected by a
certain kind of maximal ideal of k[Q] being an associated prime of k[Q].

Definition 9.8. Fix a commutative monoid Q, and write k∗ = k\{0}. The unital
augmentation ideal in the monoid algebra k[Q] is the ideal

I 1
aug := 〈t

q
−1 | q ∈ Q〉

generated by all monomial differences. More generally, an augmentation ideal for
a given binomial ideal I ⊆ k[Q] is a proper ideal of the form

Iaug := 〈tq
−λq | q ∈ Q, λq ∈ k∗〉 ⊆ k[Q]
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such that I ∩ Iaug is a binomial ideal.

Example 9.9. The ideal I = 〈x2
〉 ⊂ k[x, y] induces a primary congruence (a Rees

congruence) identifying all monomials in I . A compatible augmentation ideal is
Iaug=〈x−1, y−1〉, which satisfies I ∩ Iaug=〈x2

−x3, yx2
−x2
〉. This intersection

induces the same congruence ∼ as I does. Note that k[x, y]/(I ∩ Iaug)∼= k[N2/∼]

is isomorphic to the semigroup algebra of N2/∼ while k[N2
]/I ∼= k[N2/∼]− is the

truncated algebra.

Lemma 9.10. Given an augmentation ideal Iaug as in Definition 9.8, the association
q 7→ λq constitutes a monoid homomorphism φ : Q→ k∗.

Proof. The maximal ideals of k[Q] with residue field k are in bijection with the
monoid homomorphisms Q → k; Definition 9.8 guarantees that the image lies
in k∗. �

Proposition 9.11. Fix a monoid algebra k[Q] over a field k, with Q finitely gener-
ated. An augmentation ideal is associated to k[Q] if and only if Q has a finite kernel,
and in that case the unital augmentation ideal is associated to k[Q].

Proof. If Q has a finite kernel K , then I 1
aug is the annihilator of the sum f =

∑
k∈K tk .

Indeed, q+ K ⊆ K is an ideal of Q =⇒ q+ K = K for all q ∈ Q =⇒ tq f = f
for all q ∈ Q =⇒ (tq

− 1) f = 0 for all q ∈ Q =⇒ I 1
aug ⊆ ann( f ); but I 1

aug is a
maximal ideal.

Now suppose that an augmentation ideal Iaug is associated to k[Q]. The homo-
morphism q 7→ λq in Lemma 9.10 induces an automorphism of k[Q] that rescales
the monomials by tq

7→ λq tq . This automorphism takes Iaug to I 1
aug. Therefore, we

may as well assume Iaug = I 1
aug is the unital augmentation ideal. Let K ⊆ Q be a

nonempty subset such that f =
∑

k∈K µk tk is annihilated by I 1
aug, where µk ∈ k∗

for all k ∈ K . It suffices to show that K is a kernel of Q. But tq f = f for all q ∈ Q
implies that q+K = K for all q ∈ Q, which implies both that K is an ideal of Q
(since q+K ⊆ K for all q) and also that K is contained in every ideal of Q (since
K +q ⊇ K ). �

Theorem 9.12. If I` ⊃ · · · ⊃ I0 is a chain of distinct binomial ideals in k[Q]
inducing the same congruence on Q, then `≤ 1. Moreover, if `= 1 then I1 contains
monomials and I0 does not: I0= I1∩ Iaug for an augmentation ideal Iaug compatible
with I1.

Proof. The first sentence follows from Proposition 9.5, as does the statement about
monomials when `= 1. It remains to show that I0 = I1 ∩ Iaug if `= 1. Set I = I0.
Under the grading of the quotient algebra k[Q]/I by Q = Q/∼I , the dimension of
the graded piece (k[Q]/I )q as a vector space over k is 1 for all q ∈ Q. Let∞∈ Q
be the nil, which exists because it is the class of all exponents on monomials in I1.
Fix a nonzero element t∞ ∈ k[Q]/I of degree ∞. Then tq t∞ = λq t∞ for each
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q ∈ Q. Set Iaug = 〈tq
−λq | q ∈ Q〉. Then Iaug ⊇ I by construction, but Iaug 6⊇ I1,

since I1 contains monomials and Iaug does not. Therefore I1 ) I1∩ Iaug⊇ I , whence
I1 ∩ Iaug = I , because I1/I = 〈t∞〉 ⊆ k[Q]/I has dimension 1 as a vector space
over k by Proposition 9.5. �

Example 9.13. The ideal I = 〈x2
− xy, xy−2y2

〉 ⊆ k[x, y] contains monomials
even when char(k) 6= 2, because I contains both of x2 y− xy2 and x2 y−2xy2, so
x2 y and xy2 lie in I . However, Theorem 9.12 implies that there is no augmentation
ideal compatible with I . Indeed, every binomial ideal I ′ contained in I and inducing
the same congruence necessarily contains a binomial of the form x2

−λxy and one
of the form xy−µy2, so I ′ contains both x2

−xy and xy−2y2 (and therefore I ′= I )
since xy /∈ I .

10. Taxonomy of binomial ideals in monoid algebras

The concepts of primary, mesoprimary, primitive, prime, and toric congruence from
Definition 2.12 have precise analogues for binomial ideals in monoid algebras. As
a small measure to aid the reader with conflicting usages of the terms “primary”
and “prime”, long since immovably set in the literature, the items in the follow-
ing definition are listed in the order corresponding exactly to Definition 2.12, as
Theorem 10.6 makes precise; for quick reference, consult the following table.

. . . congruence on Q . . . binomial ideal in k[Q]

primary cellular
mesoprimary mesoprimary

primitive primary
prime mesoprime

toric prime

This table explains our choice of terminology: “mesoprimary” sits between the
two occurrences of “primary”, being stronger than one and weaker than the other.

Our choice to work over fields that need not be algebraically closed forces us to
consider slight generalizations of group algebras.

Definition 10.1. A twisted group algebra over a field k is a k-algebra that is graded
by a group G and, after tensoring with the algebraic closure k, is isomorphic to the
group algebra k[G] via a G-graded isomorphism. A monomial homomorphism from
a monoid algebra to a twisted group algebra takes each monomial to a homogeneous
element (possibly 0).

Example 10.2. The ring R =Q[x]/〈x3
−2〉 is not isomorphic to the group algebra

Q[G] for G = Z/3Z over Q, because no element of R is a cube root of 2. On
the other hand, the element y = x 3

√
2 ∈ RC := R⊗Q C generates RC, yielding the
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presentation RC=C[y]/〈y3
−1〉 ∼=C[G]. Therefore R is a nontrivial twisted group

algebra for the group G = Z/3Z over the rational numbers Q.

Generalizing the manipulations in Example 10.2 yields the following.

Proposition 10.3. The twisted group algebras R over k (for a finitely generated
group G) are precisely the quotients of Laurent polynomial rings over k by binomial
ideals.

Proof. Let R be a twisted group algebra. Every G-graded piece of R has dimension
dimk(Rg)= 1 for all g ∈G, because this is true after tensoring with k by definition.
Thus R admits a binomial presentation R ∼= k[Nn

]/I [Eisenbud and Sturmfels
1996, Proposition 1.11]. Every monomial xu

∈ k[Nn
] becomes invertible in R

because every such monomial becomes invertible in Rk := R⊗k k. Therefore
R ∼= k[Zn

]/I is a binomial quotient of a Laurent polynomial ring. On the other
hand, the characterization of Laurent binomial ideals I [Eisenbud and Sturmfels
1996, Theorem 2.1] (or see Lemma 11.10, below) implies that there is a unique
sublattice L ⊆ Zn and character σ : L → k such that I = 〈xq

− σ(q) | q ∈ L〉.
Over k, not much more can be said, in general; but over k, the fact that k∗ is an
injective abelian group implies that σ extends to a character ρ : Zn

→ k∗. If yi is
the image in Rk of ρ(xi )xi ∈ k[Zn

], then naturally Rk= k[y1, . . . , yn] = k[G] for
G = Zn/L . �

Definition 10.4. A binomial ideal I ⊂ k[Q] in the monoid algebra for a monoid
Q is

(1) cellular if every monomial tq
∈ k[Q]/I is either nilpotent or a nonzerodivisor;

(2) mesoprimary if it is maximal among the proper binomial ideals inducing a
given mesoprimary congruence (as per Theorem 9.12);

(3) primary if the quotient k[Q]/I has precisely one associated prime ideal;

(4) mesoprime if I is the kernel of a monomial homomorphism from k[Q] to a
twisted group algebra over k;

(5) prime if k[Q]/I is an integral domain: f g = 0 in k[Q]/I implies f = 0 or
g = 0.

Remark 10.5. The maximality for a mesoprimary ideal I ⊆ k[Q] amounts to
stipulating that the nil class of ∼I consists of elements q ∈ Q with tq

∈ I , the
alternative being that none of these monomials lie in I but differences of scalar
multiples thereof do.
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Theorem 10.6. For α ∈ {1, 2, 4}, a binomial ideal I satisfies condition (α) of
Definition 10.4 if and only if its induced congruence satisfies condition (α) of
Definition 2.12 and I is maximal among proper ideals inducing that congruence.
For α = 5, the same holds if k is algebraically closed. For α = 3, the condition in
Definition 2.12 implies the one in Definition 10.4 in general, and the converse holds
if k is algebraically closed of characteristic 0.

Proof. Fix a binomial ideal I and use notation as in Definition 2.12 for ∼=∼I . We
first assume that I satisfies Definition 10.4(α) and show that I satisfies Definition
2.12(α).

(1) If a monomial tq
∈ k[Q]/I is nilpotent or a nonzerodivisor then the image

q ∈ Q of q is nilpotent or cancellative, respectively.

(2) By definition.

(3) Pick a presentation Nn � Q. The kernel of the induced surjection k[Nn
]�

k[Q] is a binomial ideal [Gilmer 1984, §7], so the preimage of I in k[Nn
] is a

primary binomial ideal I ′ ⊆ k[Nn
] such that Nn/∼I ′ = Q. Replacing I by I ′

if necessary, we therefore may as well assume Q =Nn , since the definitions of
primitive congruence and primary ideal depend only on the quotients Nn = Q
and k[Nn

]/I ′ = k[Q]/I .
Each binomial prime in k[Nn

] = k[x1, . . . , xn] can be expressed as a sum
pb+mJ ⊆ k[Nn

] of its “binomial portion” pb, which is a prime binomial ideal
containing no monomials, and a monomial prime mJ := 〈xi | i /∈ J 〉, which is
generated by the variables whose indices are not contained in J ⊆ {1, . . . , n}
[Eisenbud and Sturmfels 1996, Corollary 2.6]; this deduction relies on the
algebraically closed hypothesis. Rescaling the variables of k[Nn

] if necessary,
we can assume that the unique associated prime p = pb+mJ of k[Nn

]/I is
unital — that is, pb is a unital ideal. Given that k is algebraically closed of char-
acteristic 0, the p-primary condition on I implies that it contains pb [Eisenbud
and Sturmfels 1996, Theorem 7.1′]. Therefore, replacing k[Nn

] by k[Nn
]/pb

and I by I/pb, we assume that Q is an affine semigroup and p is generated by
monomials. The desired result now follows from [Dickenstein et al. 2010b,
Theorem 2.15 and Proposition 2.13] or [Miller 2011, Theorem 2.23], the latter
being an equivalent statement that directly implies the characterization of
mesoprimary congruences in Corollary 6.7.

(4) If q is not nil then tq
∈k[Q] lies outside of I , so tq maps to a nonzero monomial

in the twisted group algebra, whence q is cancellative because G is cancellative.

(5) When I is a monomial prime in an affine semigroup ring, the result is obvi-
ous. But prime =⇒ primary, so the reduction to that case in part (3) applies.
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Moreover, since I = p contains pb already, the characteristic 0 hypothesis is
superfluous.

For this half of the theorem, it remains to explain, for α 6= 2, why I is maximal
among ideals inducing ∼ . For that, it suffices by Theorem 9.12 to show that I
contains a monomial if Q has a nil∞. For part (1) (the cellular case), if q =∞,
then by definition of nil there is for each r ∈ N a binomial tq

− λr trq
∈ I for

some λr ∈ k∗, so tq(1−λr t(r−1)q) ∈ I , whence tq is a zerodivisor modulo I and
thus nilpotent modulo I — say trq

∈ I ; then tq
−λr trq

∈ I =⇒ tq
∈ I . For part (3)

(the primary case), Theorem 9.12 implies that I has at least two associated primes —
one or more arising from an augmentation ideal — if maximality fails. For part (4)
(the mesoprime case), any monomial tq with q =∞ must lie in I because a group
has no nil. For part (5) (the prime case), the maximality is a special case of part (1),
because prime =⇒ cellular for binomial ideals.

Next, assuming that I is maximal among the binomial ideals inducing a con-
gruence ∼ on Q satisfying Definition 2.12(α), we prove that I satisfies Definition
10.4(α). As a matter of notation, write tq for the image of tq in k[Q]/I . In all cases,
if q ∈ Q is an element whose image q ∈ Q is nil, then tq

= 0 by Theorem 9.12,
using the maximality property of I . Consequently, if q ∈ Q is nilpotent, then tq is
nilpotent in k[Q]/I .

(1) By the previous paragraph, if q ∈ Q, then either the monomial tq is nilpotent or
q is cancellative. In the latter case, multiplication by tq is injective on k[Q]/I
because k[Q]/I is Q-graded and addition by q is injective on Q.

(2) By definition.

(3) The quotient Q satisfies the condition of Corollary 6.7 in which the cancellative
monoid F ⊆ Q is an affine semigroup. Each orbit is a finite union of translates
q+F because Q itself is generated by F and finitely many nilpotent elements.
The proof now proceeds as in [Dickenstein et al. 2010b, Proposition 2.13]:
owing to the partial order on the set of orbits afforded by Lemma 2.19, the Q/F-
grading on k[Q]/I induces a filtration by k[Q]-submodules with associated
graded module

gr(k[Q]/I )∼=
⊕

F-orbits T

k{T },

where k{T } is the vector space over k with basis T . The isomorphism above is
as k[F]-modules, or equivalently, as k[Q]-modules annihilated by the kernel
pF of the surjection k[Q]� k[F], with the k[F]-module structure on k{T }
induced by the F-action on T . Since k{T } is torsion-free as a k[F]-module,
the direct sum over T has only one associated prime, namely pF , whence
k[Q]/I does too.
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(4) Set Q′ = Q \ {∞} if Q has a nil, and Q′ = Q otherwise. By maximality
of I , the quotient k[Q]/I is Q′-graded. By part (1), every nonzero monomial
tq
∈ k[Q]/I is a nonzerodivisor. Therefore k[Q]/I injects into its localization

R obtained by inverting the nonzero monomials. Any presentation Zn � G
for the universal group G of Q results in a presentation k[Zn

] � k[G] �
k[G]/I = R whose kernel is a binomial ideal. Thus R is a twisted group
algebra over k by Proposition 10.3.

(5) The argument for part (4) works in this case, too, but now Q′ is an affine
semigroup, so that k⊗k R, and hence also k[Q]/I , are integral domains. �

Corollary 10.7. For binomial ideals in k[Q], over an arbitrary field except where
noted,

• prime =⇒ mesoprime =⇒ mesoprimary =⇒ cellular; and

• prime =⇒ primary =⇒ mesoprimary =⇒ cellular (we only claim the second
implication when k is algebraically closed of characteristic 0).

Proof. Use Theorem 10.6: if I is maximal among binomial ideals inducing a
congruence from Definition 2.12, then it is maximal among binomial ideals inducing
any of the weaker congruences from Lemma 2.14. This proves every implication
except for prime=⇒mesoprime, which a priori requires k to be algebraically closed,
if Theorem 10.6 is being applied. But in fact the implication holds in general, even
though the quotient by a prime binomial ideal I need not be an affine semigroup
ring if k is not algebraically closed. This is a consequence of the stronger statement
in Theorem 11.14, below. �

Example 10.8. In general a primary ideal need not be mesoprimary. For instance,
〈1− x p, y− xy, y2

〉 is primary in characteristic p, but the congruence it induces
has two associated prime congruences regardless of the characteristic.

Remark 10.9. The given proof of the implication Definition 10.4(3) =⇒ Definition
2.12(3) fails in characteristic p, even if the field k is algebraically closed, because
primary binomial ideals in characteristic p do not necessarily contain the binomial
part of their associated prime [Eisenbud and Sturmfels 1996, Theorem 7.1′].

Theorem 10.6 implies the following result, which reflects the table on page 1332
homogeneously across all of its rows, and shows that all of the richness in Definition
10.4 is already exhibited by unital ideals: those generated by monomials and unital
binomials.

Corollary 10.10. A congruence satisfies a part of Definition 2.12 if and only if
the kernel of the surjection k[Q] � k[Q]− satisfies the corresponding part of
Definition 10.4. �
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11. Monomial localization, characters, and mesoprimes

For arithmetic reasons, intersections of binomial ideals need not reflect their combi-
natorics completely accurately. The simplest example is 〈x2

−1〉 = 〈x−1〉∩ 〈x+1〉,
whose congruence fails to equal the common refinement of the congruences induced
by 〈x−1〉 and 〈x+1〉. Precise statements about relations between combinatorics
and arithmetic use characters on subgroups of the unit groups of localizations of Q.

Localizations of monoids at their prime ideals corresponds to inverting monomials
in their monoid algebras.

Definition 11.1. For a prime ideal P ⊂ Q, the corresponding monomial ideal in
k[Q] is mP = 〈t p

| p ∈ P〉.

Remark 11.2. When P is maximal, mP is the maximal proper Q-graded ideal in
the monoid algebra k[Q], but it need not be maximal in the set of all proper ideals
of k[Q].

Definition 11.3. The monomial localization k[Q]P of k[Q] along P is the monoid
algebra of the localization Q P , arising by adjoining inverses to all monomials
outside of mP . The monomial localization of any k[Q]-module M along P is
MP = M⊗k[Q]k[Q]P .

Localization behaves well upon passing between algebra and combinatorics;
it forms part of the justification for characterizing algebraic notions, such as the
concept of I -witness in the next section, in combinatorial terms.

Lemma 11.4. If I ⊆ k[Q] is a binomial ideal inducing the congruence ∼ on Q
with quotient Q, then for any monoid prime P ⊂ Q, the quotient of Q P modulo the
congruence induced by IP is the monoid localization Q P from Definition 3.9.

Proof. Immediate from the definitions. �

Definition 11.5. For any group L , a character is a homomorphism ρ : L→ k∗. A
character ρ ′ : L ′→ k∗ extends ρ if L ⊆ L ′ is a subgroup and ρ ′(`)= ρ(`) for `∈ L .
The extension is finite if L ′/L is finite.

Convention 11.6. The domain L is part of the data of a character ρ : L→ k∗; that
is, we simply speak of the character ρ, and write Lρ if it is necessary to specify L .

Definition 11.7. Fix a subgroup K ⊆ G P of the unit group G P at P . For any
character ρ :K→k∗, the P-mesoprime of ρ is the preimage Iρ,P in k[Q] of the ideal

(Iρ,P)P := 〈tu
−ρ(u−v)tv | u−v ∈ K 〉+mP ⊆ k[Q]P .

Viewing P as implicit in the definition of ρ, the symbol Iρ refers to the preimage
in k[Q] of the ideal 〈tu

−ρ(u−v)tv | u−v ∈ K 〉 ⊆ k[Q]P .



1338 Thomas Kahle and Ezra Miller

Definition 11.8. A subgroup L ⊆G of an abelian group is saturated in G if there is
no subgroup of G in which L is properly contained with finite index. The saturation
sat(L) of L is the intersection of all saturated subgroups of G that contain L . For
any prime number p ∈ N, the largest subgroup of sat(L) whose quotient modulo L
has order

• a power of p is denoted satp(L),

• coprime to p is denoted sat′p(L).

For p = 0, set satp(L)= L and sat′p(L)= sat(L).

The following implies, in particular, that the set of saturations of a character
is finite. The statement is actually a slight generalization of [Eisenbud and Sturmfels
1996, Corollary 2.2], in that the domain L of ρ is allowed to be a subgroup of an
arbitrary finitely generated abelian unit group G P , and Iρ,P is not an arbitrary ideal
in a finitely generated group algebra, but rather an ideal containing the maximal
monomial ideal in an arbitrary finitely generated monoid algebra. However, the
generalization follows from the original by working modulo the maximal monomial
ideal and lifting to any presentation of G P , taking note that all of the characters in
question are trivial on the kernel of the presentation.

Proposition 11.9 [Eisenbud and Sturmfels 1996, Corollary 2.2]. Fix an alge-
braically closed field k of characteristic p ≥ 0. Let ρ : L→ k∗ be a character on
a subgroup L ⊆ G P , and write g for the order of sat′p(L)/L. There are g distinct
characters ρ1, . . . , ρg on sat′p(L) that extend ρ. For each ρ j there is a unique
character ρ ′j on sat(L) extending ρ j . There is a unique character ρ ′ that extends ρ
and is defined on satp(L). Moreover,

(1)
√

Iρ,P = Iρ′,P ,

(2) Ass(S/Iρ,P)= {Iρ′j ,P | j = 1, . . . , g}, and

(3) Iρ,P =
⋂g

j=1 Iρ j ,P .

The following lemma is a variant of [Dickenstein et al. 2010a, Lemma 2.9] and
[Eisenbud and Sturmfels 1996, Theorem 2.1].

Lemma 11.10. If k[8] is the group algebra of a finitely generated abelian group8,
then for any proper binomial ideal I ⊂ k[8] there is a subgroup L ⊆ 8 and a
character ρ : L→ k∗ such that I = Iρ .

Proof. The binomial ideal is of the form 〈1−λu tu
| u ∈U〉 for some finite U⊆8.

First off, U is a subgroup of 8 since 1−λµtu+v
= µtv(1−λtu)+(1−µtv) for all

λ, µ ∈ k, including λ= λu and µ= λv . The set U is closed under inverses because
(1−λtu)/λtu

=−(1− t−u/λ) when λ 6= 0, and I 6=k[8]=⇒λu 6= 0. The very same
arguments show that the map ρ :U→k∗ defined by u 7→λu is a homomorphism. �
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Definition 11.11. Fix a binomial ideal I ⊆ k[Q].

(1) The stabilizer of an element q ∈ Q along a prime ideal P ⊂ Q is the subgroup
K P

q ⊆ G P (sometimes denoted by Kq if P is clear from context) fixing the
class of q ∈ Q P under the action from Lemma 3.11 for the congruence ∼I .

(2) For tq
6∈ IP , the character (of IP ) at q is the homomorphism ρ=ρ P

q : K
P
q →k∗

such that the k[G P ]-module map k[G P ] → k[Q P ]/IP taking 1 7→ tq has
kernel Iρ .

(3) The ideal Iq
P
:= Iρ,P ⊆ k[Q] is the P-mesoprime of I at q.

Remark 11.12. The homomorphism k[G P ] → k[Q P ]/IP in Definition 11.11(2)
has kernel of the form Iρ by Lemma 11.10. Indeed, the kernel is a priori the
binomial ideal (IP : tq)∩ k[G P ], which is not the unit ideal in k[G P ] because tq

lies outside of IP .

Saturations of subgroups (Definition 11.8) are more or less combinatorial in
nature. Saturations of characters, on the other hand, are more subtle, because
arithmetic properties of the target field k can enter.

Definition 11.13. Fix a subgroup L of an abelian group G. A character ρ : L→k∗ is

• saturated if the subgroup L is saturated, and

• arithmetically saturated if ρ has no finite proper extensions.

A saturation of ρ is an extension of ρ to sat(L).

The importance of saturated characters has been demonstrated in Proposition 11.9,
which required the algebraically closed hypothesis. Without it, the arithmetically
saturated condition holds sway, and equivalence of primality with saturation can
break.

Theorem 11.14. If a binomial ideal in k[Q] over an arbitrary field k is prime then
it is a mesoprime Iρ,P for an arithmetically saturated character ρ. The converse
holds if k is algebraically closed, and it can fail if not.

Proof. Suppose that k[Q]/I is a domain. The ideal of monoid elements p ∈ Q
such that t p

∈ I is a monoid prime P . Replacing Q with the monoid Q \ P and I
with its image in k[Q \ P] = k[Q]/〈t p

| p ∈ P〉, it suffices to prove that I = Iρ
for an arithmetically saturated character when Q is cancellative and I contains no
monomials. Since k[Q] injects into its localization k[Q]∅ = k[8] for the universal
group 8= Q∅, and I contains no monomials, Lemma 11.10 implies the existence
of a subgroup L ⊆8 and a character ρ : L→ k∗ such that I = Iρ . It remains to
show that Iρ is not prime if ρ is not arithmetically saturated. Suppose σ : K → k∗

properly extends ρ to a subgroup K ⊆ sat(L). Then Iσ ) Iρ . By restricting σ to a
subgroup of K that still properly contains L , we can assume that |K/L|> 1 and
one of the following occurs:
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• k has positive characteristic p and |K/L| is a power of p.

• k has positive characteristic p and |K/L| is relatively prime to p.

• k has characteristic 0.

Proposition 11.9 implies that in the first case, the extension I σ of Iσ to k has the
same radical as the extension I ρ , in which case Iρ itself is not a radical ideal. In the
remaining two cases, Proposition 11.9 implies that I ρ = I σ ∩ J , with no associated
prime of either intersectand containing an associated prime of the other. It follows
that Iρ = Iσ ∩ J , where Iσ and J := (Iρ | Iσ ) both properly contain Iρ , so Iρ is not
prime.

The k= k converse is implicit in Proposition 11.9, and anyway follows easily
from [Eisenbud and Sturmfels 1996, Theorem 2.1]. Example 11.15 demonstrates
failure of the general converse. �

Example 11.15. The ideal Iρ ⊂ Q[x] for the character ρ : 4Z→ Q∗ defined by
ρ(4) = −4 is 〈x4

+ 4〉. This ideal is not prime because it factors as 〈x4
+ 4〉 =

〈x2
−2x+2〉 ∩ 〈x2

+2x+2〉. Nonetheless, ρ is arithmetically saturated because
x4
+4 has no binomial factors of degree 2.

Example 11.16. The ideal 〈x3
− 2〉 in Example 10.2 is prime (by Eisenstein’s

criterion, for example). Therefore the character ρ : 3Z→ Q∗ sending 3 7→ 2 is
arithmetically saturated, viewing 3Z as a subgroup of Z: any proper extension of ρ
to a character Z→Q∗ would require a cube root of 2.

12. Coprincipal and mesoprimary components of binomial ideals

Definition 12.1. Fix a binomial ideal I ⊆ k[Q] inducing a congruence ∼ on Q.

(1) An element w ∈ Q is an I -witness for a monoid prime P if it is a ∼-witness
for P or if P =∅ is the empty monoid ideal and I contains no monomials.

(2) An element w ∈ Q is an essential I -witness for a monoid prime P if w
is a key ∼I -witness or some polynomial annihilated by mP in k[Q P ]/IP

(Definitions 11.1 and 11.3) has tw minimal (under Green’s preorder) among
its nonzero monomials.

(3) If Iρ,P is the P-mesoprime of I (Definition 11.11) at some I -witness w for P ,
then w is an I -witness for Iρ,P .

(4) Iρ,P is an associated mesoprime of I if there is an essential I -witness for Iρ,P .

Lemma 12.2. Every essential I -witness for P is an I -witness for P.

Proof. Assume that f ∈ k[Q] such that mP f ⊆ IP . Let m = λtw be a term of f
(that is, a nonzero constant times a monomial) minimal under Green’s preorder
on Q P restricted to the terms of f . Fix a nonunit monoid element p ∈ Q P .
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Since t p f ∈ IP , the term t pm must equal, modulo IP , some sum of terms whose
monomials t p+a have ta appearing with nonzero coefficient in f . It follows that
t pm shares its Q P -graded degree with at least one of these monomials t p+a , where
Q = Q/∼I . Thus w is a witness by minimality of m: at least one of the elements
a is an aide for w and p. �

Example 12.3. If I = 〈y− x2 y, y2
− xy2, y3

〉 is the binomial ideal from Example
2.17(5) then Iρ,P = 〈x2

− λ, y〉 for P = 〈ey〉 and ρ : 〈(2, 0)〉 → k∗ defined by
ρ(2, 0) = λ induces the associated prime congruence of ∼I for any λ ∈ k∗. The
monomial xa y ∈ k[x, y] is a witness for any a ∈ N, and it lies in one of two
possible essential witness classes, depending on the parity of a; see the figure in
Example 2.17. However, only λ = 1 gives the associated mesoprime itself, as
opposed to merely inducing its congruence.

Lemma 12.4. Every binomial ideal in k[Q] has only finitely many essential wit-
nesses.

Proof. Theorem 5.6 takes care of key witnesses, so it is enough to treat witnesses
arising from annihilation by mP . As Q has finitely many prime ideals, it suffices to
bound the number of essential witnesses for a fixed prime ideal P . By definition, mP

annihilates the k[Q P ]-submodule of k[Q P ]/IP consisting of polynomials giving
rise to essential I -witnesses. Hence the k[Q P ]-submodule in question is finitely
generated over k[G P ] = k[Q P ]/mP , so only finitely G P -orbits of (exponents on)
monomials are involved. �

Remark 12.5. All associated mesoprimes of a unital binomial ideal (generated by
differences of monomials with unit coefficients) are unital.

Remark 12.6. When I contains no monomials, every monomial is an essential I -
witness for the empty monoid ideal ∅⊂ Q. The condition that Iρ,∅ be an associated
mesoprime of I for some (unique) character ρ is similar to the condition that ∅
be associated to the congruence ∼ induced by I , but it is not equivalent. These
conditions differ only when I is minimal and not maximal among binomial ideals
inducing ∼ (see Theorem 9.12) — that is, when ∼ has a nil class but I nonetheless
contains no monomials — in which case I has an associated mesoprime Iρ,∅ but ∅
is not associated to ∼.

Lemma 12.7. If w is an I -witness for Iρ,P , then the localization along P of the
P-mesoprime IwP of I at w satisfies (IwP)P = (Iρ,P)P = (IP : tw)+mP .

Proof. The first equality is by Definition 11.11. For the second, use Theorem 7.11,
which implies that I and IP+twmP have the same P-mesoprime atw. It follows that
the natural isomorphism k[G P ] → k[Q P ]/mP induced by the inclusion k[G P ] →

k[Q P ] descends to an isomorphism

k[G P ]/(IP : tw)∩ k[G P ] → k[Q P ]/((IP : tw)+mP).



1342 Thomas Kahle and Ezra Miller

Now apply Remark 11.12. �

Remark 12.8. If Q = Nn and I is unital, then all information about associated
mesoprimes is contained in the set of associated lattices L ⊂ ZJ , each of which
comes with an associated subset J ⊆{1, . . . , n}. Indeed, a prime ideal P of Nn is the
complement of a face NJ of Nn , and specifying a prime congruence on Nn amounts
to choosing such a face along with a lattice L ⊂ ZJ . To see why, first observe
that localization along P inverts the face, turning Nn into ZJ

×NJ
= G P ×NJ .

Subsequently passing to the quotient by a given prime congruence, the complement
of the face maps to nil, and the subgroup L is the stabilizer of any class under the
action of ZJ

= G P on the quotient. We were led to associated lattices (before the
more general associated prime congruences) in part by [Eisenbud and Sturmfels
1996, Theorem 8.1]. Although that theorem only covers cellular cases, the upshot
is that a collection of associated lattice ideals contributes associated primes.

Remark 12.9. When the domain K of a character ρ :K→k∗ is a saturated subgroup
of G P , the ideal Iρ,P is often an associated prime of a binomial ideal I without
being an associated mesoprime of I . The reason is that the congruences induced
by associated P-mesoprimes are immediately visible in the congruence induced by
IP , whereas the associated primes of I usually induce coarser congruences (larger
congruence classes) than those visible. The quintessential example to consider is the
lattice ideal I for an unsaturated sublattice of Zn: the lattice ideal for the saturation
is an associated prime of I , but the unique associated mesoprime of I is I itself.

Proposition 12.10. A binomial ideal I ⊆ k[Q] is mesoprimary if and only if I has
exactly one associated mesoprime.

Proof. If I is mesoprimary then it is cellular by Corollary 10.7 and the congruence
∼I is mesoprimary by Definition 10.4. If w is any witness (essential or not) for
the unique associated prime congruence and I ′ = (I : tw) is the annihilator of
the image of tw in k[Q]/I , then multiplication by tw induces an isomorphism
IP+mP → I ′P+mP , so every associated mesoprime of I is equal to I +mP .

On the other hand, assume that I has only one associated mesoprime, and that its
associated monoid prime is P ⊂ Q. The congruence∼ induced by I is mesoprimary
by Lemma 4.9 and Theorem 6.1. Either I contains a monomial, in which case it
is already maximal among ideals inducing its congruence by Theorem 9.12, or
else I contains no monomials, in which case the unique associated monoid prime
ideal is P = ∅ by definition. When P = ∅, if I is not maximal then ∼ has a
witness for some monoid prime ideal other than ∅ by Remark 12.6, as ∼ has
an associated monoid prime but ∅ is not one of them. Thus uniqueness of the
associated mesoprime implies maximality. �
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Remark 12.11. Building on Remark 6.8, Proposition 12.10 says that the character
of IP is the same at every nonzero monomial as soon as it is the same at every
essential witness monomial, and that is what it means to be a mesoprimary ideal.

Definition 12.12. Given a monoid prime P ⊂ Q, a mesoprimary binomial ideal in
k[Q] is P-mesoprimary if the associated prime ideal of its induced congruence is P .

The principal use of the following definition, which builds on the notion of order
ideal from Definition 7.4, concerns the case where the set w consists of a single
witness. The more general case arises during the construction of mesoprimary
decompositions with as few components as possible (Corollary 13.5).

Definition 12.13. Fix a binomial ideal I ⊆ k[Q], a prime P ⊂ Q, and a finite
subset w ⊆ Q. The monomial ideal M P

w (I )⊆ k[Q] cogenerated by w along P is
generated by the monomials tu

∈ k[Q] such that u lies outside of the order ideal
Q P
�w cogenerated by w at P (Definition 7.4) under the congruence∼I for all w ∈w.

Definition 12.14. Fix a binomial ideal I ⊆ k[Q] and a finite set w ⊆ Q such
that the P-mesoprime IwP of I at w is Iρ,P for all w ∈ w. The P-mesoprimary
component of I cogenerated by w is the preimage W P

w (I ) in k[Q] of the ideal
IP+ Iρ+M P

w (I )⊆ k[Q]P .

Remark 12.15. Comparing to Definition 7.7, adding M P
w (I ) in Definition 12.14

joins all pairs of elements in Q \Q P
�q , while adding Iρ joins the pairs (a, b) ∈ Q

satisfying conditions (i) and (ii) in Definition 7.7.

Definition 12.16. A cogenerator of a mesoprimary binomial ideal I ⊆ k[Q], or
of the quotient k[Q]/I , is a monoid element that is a cogenerator of the induced
congruence. A monomial cogenerator is a monomial in k[Q] whose exponent is
a cogenerator.

The nomenclature in Definition 12.14 is justified by the following result, which
arithmetizes the combination of Theorem 7.11 and Lemma 8.10.

Proposition 12.17. If w consists of I -witnesses for P , then the ideal W P
w (I ) in

Definition 12.14 is mesoprimary with associated mesoprime Iρ,P . Moreover, if I
induces ∼ on Q, then W P

w (I ) induces the common refinement of the coprincipal
components ∼P

w cogenerated by the elements in w along P. Every cogenerator of
W P

w (I ) lies in w.

Proof. The claim has little content if P = ∅, as then Iρ,P = Iρ = IP , so assume
P 6=∅. Since W P

w (I ) contains monomials by definition, it suffices by Theorem 9.12
to verify that W P

w (I ) induces the common refinement ≈ of coprincipal congruences
in question, given that ≈ is mesoprimary by Theorem 7.11 and Proposition 6.9.

By construction (specifically, Definition 7.7; see also Remark 12.15), the meso-
primary congruence ≈ refines the congruence ≈′ induced by W P

w (I ): the monomial
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ideal M P
w (I ) sets all elements outside of the order ideal equivalent to one another,

and the generators of Iρ carry out the remaining required identifications. The harder
direction is showing that no more relations are introduced.

Since W P
w (I ) is obtained from an extension to the localization k[Q]P along P ,

we may as well assume that Q = Q P , so P is the maximal ideal of Q. The
congruences induced by I and Iρ each individually refine the congruence ≈ (not to
be confused with ≈′ here); for I this is by Theorem 8.4, and for Iρ this is by
Corollary 6.7 (see also Remark 6.8). Therefore both I and Iρ are ideals graded
by Q/≈. We deduce that W P

w (I ) is graded by Q/≈ as well, since M P
w (I ) is a

monomial ideal and hence is automatically graded by Q/≈. Consequently, each
nonnil congruence class of ≈′ is contained in some congruence class of ≈.

It remains to treat the nil class of≈′. Assuming a∈Q with ta
6∈M P

w (I ), it suffices
to show ta

6∈ W P
w (I ). Choose w ∈ w with a in the order ideal Q P

�w = Q P
�w(∼),

which can be done by definition of M P
w (I ). Next pick u ∈ Q such that the images

of u+a and w in Q/≈ are Green’s-equivalent to one another; this is possible by
definition of the order ideal Q P

�w. Use a double bar to denote passage from Q to
Q/≈, so q ∈ Q/≈ is the image of q for any q ∈ Q. The choice of the character ρ
was made precisely so that the graded piece (I )q of the ideal I contains the graded
piece (Iρ)q whenever q is Green’s-equivalent to w in Q/≈. This means that Iρ
adds no new relations to I in degree q . Since M P

w (I ) adds no new relations to I in
degree q by definition, W P

w (I )q = (I )q for q = u+a. The class of u+a is not nil
in Q/∼ because the character of IP at u+a is ρ. Hence ta

6∈W P
w (I ).

The final claim of the Proposition follows from Lemma 8.10. �

Definition 12.18. A binomial ideal is coprincipal if it is mesoprimary and its in-
duced congruence is coprincipal. A coprincipal component W P

q (I ) of I cogenerated
by q at P is a P-mesoprimary component W P

{q}(I ) cogenerated by a single element q .

Corollary 12.19. If I ⊆ k[Q] is a binomial ideal and w is an I -witness for P ,
then the coprincipal component of I cogenerated by w at P is a coprincipal
binomial ideal.

Proof. Immediate from Proposition 12.17 and the definitions. �

Remark 12.20. It would be superb if intersecting any pair of mesoprimary ideals
with the same associated mesoprime resulted in another mesoprimary ideal. More
precisely, a direct binomial ideal analogue of Proposition 6.9 would be desirable.
Unfortunately, the binomial analogue is false in general: in k[x, y], the intersection
of the mesoprimary ideals 〈x − 2y〉+ 〈x, y〉3 and 〈x − y〉+ 〈x, y〉3 is not meso-
primary when char(k) 6= 2; it is not even a binomial ideal. Heuristically, if I1

and I2 are mesoprimary ideals in k[Q P ] with associated mesoprime Iρ,P , then in
each of I1 and I2 there are “vertical” binomials from Iρ , whose coefficients are
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dictated by the character ρ, and “horizontal” binomials conglomerating the vertical
fibers, with more arbitrary coefficients. (The vertical and horizontal directions in
Examples 1.3 and 2.17 are reversed for aesthetic reasons; the usage here makes
sense in Examples 4.15, 4.16, 8.12, 9.1, and 17.5.) When the horizontal coefficients
from I1 and I2 conflict, the intersection need not be binomial.

That said, the analogue of Proposition 6.9 is true once control is granted over
binomiality, and that comes for free when I1 and I2 both arise from a single ideal
via sets of witnesses as in Proposition 12.17. In that sense, the binomial analogue of
Proposition 6.9 is “true enough” for the relevant aspects of the theory of mesoprimary
decomposition to succeed, namely Corollary 13.5.

Remark 12.21. The existence of a mesoprimary ideal inducing a given congruence
is automatic by Remark 2.16. However, the question becomes more subtle when
a given associated mesoprime other than the unital one is desired. Roughly speak-
ing, we do not know how to construct mesoprimary ideals with given associated
mesoprimes de novo, although by Proposition 12.17 we do know how to construct
mesoprimary ideals given the foundation of a binomial ideal to start from. More
precisely, fix a monoid prime P ⊂ Q, a P-mesoprimary congruence ≈ on Q, and a
character ρ :K→k∗ on the stabilizer K of some element that is not nil in the localiza-
tion of Q/≈ along P . It would be convenient to say that there exists a mesoprimary
ideal J inducing ≈ with associated mesoprime Iρ,P , but it is not clear to us whether
this should be true. What guarantees existence in the cases we care about, namely
Proposition 12.17, is the I -witnessed nature of≈: each I -witness prefers a particular
character over all others — the one it sees by virtue of it being an I -witness — and
that is the only one required for the theory of mesoprimary decomposition.

In a different light, the problem is one of automorphisms. The associated
mesoprime of any unital P-mesoprimary ideal I is I1,P for the trivial character.
Suppose, for simplicity, that the ground field k is algebraically closed. Then, for any
mesoprime Iρ,P , there is an automorphism of k[Q] taking I1,P to Iρ,P ; this amounts
to the feasibility of extending the character ρ :K→k∗ to the entire group G P of units
of Q P . To transform I into a mesoprimary ideal with associated mesoprime Iρ,P ,
however, the character must be extended appropriately to all of Q P , not just to G P .
It is not clear to us whether issues of horizontal coefficients (see Remark 12.20)
can intervene, particularly when the inclusion of G P into Q P fails to split.

Remark 12.22. Independent of the existence question, it is not clear how to describe
the class of mesoprimary ideals inducing a given congruence and with a given
associated mesoprime. Certainly, a solution to the problem in Remark 12.21 need
not be unique. For instance in the nilpotent situation, the one-parameter family
〈x−λy, x2, xy, y2

〉 (for λ 6= 0) consists of mesoprimary ideals over the associated
mesoprime 〈x, y〉, all inducing the same congruence.
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13. Mesoprimary decomposition of binomial ideals

This section makes precise the sense in which mesoprimary decomposition of
congruences lifts to a parallel combinatorial theory for binomial ideals in monoid
algebras.

Definition 13.1. Fix a binomial ideal I ⊆ k[Q] in a finitely generated commutative
monoid algebra over a field k.

(1) An expression of I as an intersection of finitely many mesoprimary ideals is a
mesoprimary decomposition if, for each prime P ⊂ Q and P-mesoprimary in-
tersectand J , the P-mesoprimes of I and J at every cogenerator of J coincide.

(2) The decomposition is a combinatorial mesoprimary decomposition if every co-
generator of every component J in the decomposition is an essential I -witness.

Theorem 13.2. Fix a finitely generated commutative monoid Q and a field k.
Every binomial ideal in the algebra k[Q] admits a combinatorial mesoprimary
decomposition.

Proof. Examples include those in Theorem 13.3 and Corollary 13.5, below, where
the finiteness of the intersection in Theorem 13.3 is Lemma 12.4. �

The use of all essential witnesses and not merely key witnesses in the next
result stems from the element f in the proof, which can have more than two terms.
See also Example 16.6, which shows that nonkey witnesses can be necessary for
the intersection of the corresponding coprincipal components to be a binomial ideal.
On the other hand, the restriction to essential witnesses instead of all witnesses
ensures finiteness of the number of intersectands, according to Lemma 12.4.

Theorem 13.3. Fix a finitely generated commutative monoid Q and a field k. Every
binomial ideal in the monoid algebra k[Q] is the intersection of the coprincipal
components cogenerated by its essential witnesses.

Proof. Pick an element f outside of I . The goal is to show that f lies outside of the
coprincipal component of I cogenerated by some essential witness. First assume that
f lies in the monomial localization IP ′ along every nonmaximal prime P ′. Thus f is
annihilated, modulo I , by some power of the maximal monomial ideal mP ⊆ k[Q].
Replacing f by a monomial multiple of f , assume that f is annihilated, modulo I ,
by the entire maximal monomial ideal; that is, assume mP f ⊆ I . By Definition 12.1,
some essential I -witness w for P is the exponent on a monomial tw with nonzero
coefficient in f . Minimality of w ensures that all terms of f other than tw itself
vanish modulo W P

w (I ), whence f 6∈W P
w (I ).

The argument just completed proves, in particular, the case where Q has only one
prime ideal. Now assume that Q has more than one prime ideal. By the argument
already given, assume the image of f under monomial localization along some
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nonmaximal monoid prime P lies outside of IP . Induction on the number of prime
ideals of Q implies that the localized image of f lies outside of some P-coprincipal
component of IP . By Definition 12.14, a P-coprincipal component of IP is the
localization along P of a P-coprincipal component of I . Lemma 13.4 implies that
f lies outside of that P-coprincipal component before localization, as desired. �

Lemma 13.4. If I is a P-mesoprimary ideal, then localization along a monoid
prime is either injective or 0 on k[Q]/I , with injectivity precisely when the prime
contains P.

Proof. By Definition 2.12, any P-mesoprimary congruence on Q is P-primary,
whence the quotient Q either injects into its localization along the given prime
(if the prime contains P) or else Q becomes trivial upon localization (if some
element of P — which is nilpotent in Q — is inverted). Lemma 11.4 implies that
the result for congruences lifts to binomial ideals. �

Using Theorem 13.3 and Proposition 12.17, one can find a mesoprimary decom-
position that minimizes the number of components by intersecting all coprincipal
components for a given associated mesoprime.

Corollary 13.5. Fix a finitely generated commutative monoid Q and a field k. Every
binomial ideal in the monoid algebra k[Q] admits a combinatorial mesoprimary
decomposition with one component per associated mesoprime.

Remark 13.6. The existence of any mesoprimary decomposition — let alone a
combinatorial one as in Theorem 13.2 — is much stronger than mere existence of
a decomposition as an intersection of mesoprimary ideals, essentially because of
the phenomenon in Remark 12.9. The strength is particularly visible when the
field k is algebraically closed of characteristic 0. In that case, every binomial
primary decomposition of I expresses I as an intersection of mesoprimary ideals
by Corollary 10.7, but a mesoprime must honor stringent combinatorial conditions
to be an associated mesoprime of I , and a mesoprimary ideal for an associated
mesoprime must honor stringent combinatorial conditions to be an intersectand
in a mesoprimary decomposition of I . The difference between ordinary and com-
binatorial mesoprimary decompositions is a relatively slight distinction among
potential cogenerator locations: in the ordinary case, I is merely required to possess
the correct characters at the cogenerators of the intersectands, whereas in the
combinatorial case only certain intrinsically defined elements possessing the correct
characters from I are allowed as cogenerators of components.

14. Binomial localization

Upon localization of a binomial quotient k[Q]/I at a binomial prime, some mono-
mials become units and others are annihilated. The units are easy: if the prime
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is Iσ,P , then the monomials outside of mP become units. The question of which
monomials die is much more subtle. There are two potential reasons that a monomial
gets killed upon ordinary localization (Theorem 14.9): a combinatorial one and
an arithmetic one. Combinatorially, a monomial dies if its class under ∼I points
into P (Definition 14.1); arithmetically, a monomial dies if the character of IP at it
is incommensurate with ρ (Definition 14.6). These annihilations result from the
inversion of two different types of binomials: in the combinatorial case the inverted
binomials have one monomial outside of mP , and in the arithmetic case the inverted
binomials lie along the unit group G P locally at P . The relevant monomials die
because locally each becomes a binomial unit multiple of a binomial in I ; see the
proof of Theorem 14.9.

Definition 14.1. Given a prime P ⊂ Q, and a congruence ∼ on Q, the congruence
class of q ∈ Q points into P if q+ p ∼ q in the localization Q P for some p ∈ P .

Lemma 14.2. Given a prime P ⊂ Q and a congruence ∼ on Q, the set of elements
in Q whose class points into P is an ideal of Q.

Proof. If q+ p ∼ q then u+q+ p ∼ u+q by additivity of ∼ . �

Definition 14.3. The P-infinite ideal M P
∞
(∼) ⊆ Q for a prime P ⊂ Q and con-

gruence ∼ on Q is generated by the elements of Q whose classes point into P .
If ∼ = ∼I is induced by a binomial ideal I ⊆ k[Q], then M P

∞
(I ) ⊆ k[Q] is the

corresponding P-infinite monomial ideal.

Remark 14.4. The terminology involving infinity stems from [Dickenstein et al.
2010b, Lemma 2.10], which concerns binomial localization at a monomial prime of
an affine semigroup ring: when the ambient monoid Q is an affine semigroup, a class
that points into P is infinite. The focus on monomial primes in affine semigroup
rings arises there because the field is algebraically closed of characteristic 0 and
the ideals to be localized are Iρ,P -primary (and hence contain Iρ), so the binomial
localization procedure can be carried out in the affine semigroup ring k[Q]/Iρ .
Definitions 14.1 and 14.3 lift the picture from (I+Iρ)/Iρ⊆k[Q]/Iρ to I+Iρ⊆k[Q]
itself; but see Remark 14.7.

Lemma 14.5. Let R be a set of characters on subgroups of the unit group G P

of Q P . Given a binomial ideal I ⊆ k[Q], the set

{q ∈ Q | the character ρ P
q of IP at q is not a restriction of every character from R}

is an ideal of Q.

Proof. The character ρ P
p+q of IP at p+q is an extension of ρ P

q . �

Definition 14.6. Given a binomial ideal I ⊆ k[Q] and a mesoprime Iρ,P , the
incommensurate ideal of I at ρ is the ideal M P

ρ (I )⊆ k[Q] spanned over k by all
monomials tq such that the character of IP at q is not a restriction of ρ.
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Remark 14.7. The condition for a monomial to lie in the incommensurate ideal
is phrased arithmetically, but in reality many monomials in it are there for combi-
natorial reasons: if the domain of the character of IP at q fails to be contained in
the (saturation of) the domain of ρ— that is, if the stabilizer of the class of q in
Q/∼I is too big — then q has no hope of being commensurate with ρ. This type
of combinatorial obstruction to commensurability also contributes infinite classes
in [Dickenstein et al. 2010b, Lemma 2.10].

Definition 14.8. The binomial localization of I ⊆ k[Q] at a binomial prime Iσ,P is
the sum I +M P

∞
(I )+M P

σ (I )⊆ k[Q] of I plus its P-infinite and incommensurate
ideals.

The point of this section is to compare the previous definition with ordinary
(inhomogeneous) localization of a k[Q]-module at a binomial prime Iσ,P , obtained
by inverting all elements of k[Q] outside of Iσ,P .

Theorem 14.9. Given a binomial ideal I ⊆ k[Q] over an arbitrary field k, the
kernel of the localization homomorphism from k[Q] to the ordinary localization of
k[Q]/I at a binomial prime Iσ,P contains the binomial localization of I at Iσ,P .

Proof. First suppose that the class of q ∈ Q points into P . Pick p ∈ P such that
q+ p∼ q . This congruence means that there is a binomial tq

−λtq+p
= tq(1−λt p)

in I . But 1−λt p lies outside of Iσ,P because its image modulo mP is already 1.
Therefore 1−λt p is a unit in the ordinary localization of k[Q]/I at Iσ,P , so tq

is 0 there.
Next suppose that tq

∈ M P
σ (I ). By definition, there is a binomial 1−λtg for

some g ∈ G P such that λ 6= σ(g) and tq(1−λtg) ∈ IP . The element 1−λtg lies
outside of Iσ,P by definition. Therefore the argument in the previous paragraph
works in this case, too. We conclude that the binomial localization of I is contained
in the kernel. �

Remark 14.10. How is Theorem 14.9 to be applied? While the binomial local-
ization I ′ of I at Iσ,P might not coincide with the kernel of ordinary localization
at Iσ,P , it is always the case, by Theorem 14.9, that I and I ′ have the same
ordinary localization at Iσ,P . Therefore, for the purpose of detecting Iσ,P -primary
components, I ′ is just as good as I was in the first place. But the combinatorics
of I ′ might be much simplified, thereby clarifying the role of Iσ,P in the primary
decomposition of I . See the proof of Theorem 15.11 for a quintessential example.

15. Primary decomposition of binomial ideals

Passing from mesoprimary and coprincipal ideals and decompositions to primary
ideals and decompositions requires a minimal amount of knowledge concerning
primary decomposition of mesoprimary ideals themselves. To speak about binomial
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primary decomposition of binomial ideals in k[Q], we are forced to assume, in
appropriate locations, that k is algebraically closed (Example 11.15); we write
k = k in that case. Doing so guarantees that each binomial ideal I ⊂ k[Q] has
binomial associated primes [Eisenbud and Sturmfels 1996, Theorem 6.1]. However,
most of this section works for an arbitrary ground field, so we are explicit about our
hypotheses in this section. One reason is that the characterization of binomial prime
ideals (Theorem 11.14) does not rely on properties of k: every binomial prime can
be expressed as a sum p+mP in which P ⊂ Q is a monoid prime ideal and p is
a binomial ideal (unique and prime modulo mP , but not necessarily in k[Q]) that
contains no monomials.

Proposition 15.1. Fix an arbitrary field k. If I ⊂ k[Q] is mesoprimary with
associated mesoprime Iρ,P , and the localized quotient monoid Q P = Q P/∼I

has unit group G, then (i) localizing along P induces an injection k[Q]/I ↪→
(k[Q]/I )P , and (ii) (k[Q]/I )P has finitely many nonzero (Q P/G)-graded pieces,
all isomorphic to (k[Q]/Iρ,P)P . Conditions (i) and (ii) characterize mesoprimary
ideals I with associated mesoprime Iρ,P .

Proof. The monomials outside of mP are nonzerodivisors on the quotient modulo
any P-mesoprimary ideal by definition; hence the injection (i). Claim (ii) and the
statement about characterizing mesoprimary ideals follow from Proposition 12.10
(see also Definition 11.11, Remark 11.12, and Lemma 12.7). �

Corollary 15.2. Fix an arbitrary field k. If I ⊂ k[Q] is mesoprimary, then the
associated primes of I are exactly the minimal primes of its unique associated
mesoprime. In particular, I is primary if it is mesoprimary and its associated
mesoprime is prime.

Proof. The partial order on the monoid Q P/G afforded by Lemma 2.19 induces
a filtration of (k[Q]/I )P by k[Q]P -submodules whose associated graded module
is free of finite rank — in fact isomorphic to (k[Q]/I )P itself — as a module over
(k[Q]/Iρ,P)P . �

Remark 15.3. Corollary 15.2 says that, although one expects to derive informa-
tion about associated primes of I from the characters at its witnesses, when I is
mesoprimary the appropriate characters appear at the identity 1 ∈ k[Q]. This is
another manifestation of semifreeness (Remark 6.8), detailed in the present case in
Proposition 15.1.

Primary decomposition of mesoprimary ideals reduces to that of mesoprimes.

Proposition 15.4. Fix k = k. Any mesoprimary ideal I ⊂ k[Q] with associated
mesoprime Iρ,P has unique minimal primary decomposition I =

⋂
σ (I + Iσ ),

if Iρ,P =
⋂
σ Iσ,P is the unique minimal primary decomposition of Iρ,P from

Proposition 11.9.
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Proof. Adding the binomials Iσ to the mesoprimary ideal I coarsens its congruence
to another mesoprimary one, so each ideal I+ Iσ is mesoprimary, and hence primary
by Corollary 15.2. The intersection J =

⋂
σ (I + Iσ ) obviously contains I , and we

need that J ⊆ I , or equivalently that Iρ =
⋂
σ Iσ maps to 0 in the quotient k[Q]/I .

This is a consequence of Proposition 15.1, completing the proof. �

Remark 15.5. If I is coprincipal in Proposition 15.4, then every primary component
there is a coprincipal ideal. Indeed, the partially ordered monoid of Green’s classes
that is used to detect (or construct) coprincipal ideals is the same for I and for I+ Iσ .

The remainder of this section outlines the main consequences of mesoprimary
decomposition for primary decomposition.

Theorem 15.6. Fix a binomial ideal I ⊆ k[Q] over an algebraically closed field k.
Refining any mesoprimary decomposition of I by canonical primary decomposition
of its components yields a binomial primary decomposition of I . In characteristic 0,
each primary component in this decomposition induces a primitive congruence
on Q.

Proof. Proposition 15.4 implies binomiality of the primary decomposition. For the
final claim, it suffices to prove that every component I + Iσ in Proposition 15.4
induces a primitive congruence in characteristic 0. But since σ is a saturation of ρ,
the quotient of Q P modulo the congruence induced by I+ Iσ is exactly the quotient
of Q P/∼I by the torsion subgroup of its unit group. �

Remark 15.7. No choices are necessary to construct the coprincipal decomposition
in Theorem 13.3 or the combinatorial mesoprimary decomposition in Corollary 13.5,
and hence no choices are necessary to construct the primary decomposition in
Theorem 15.6: these decompositions are all canonically recovered from essentially
combinatorial data — a set of witnesses and monoid primes, plus the congruence
induced by the binomial ideal — just as in the monomial case. Canonicality in the
binomial context, however, comes at the price of nonminimality. Some redundancy
can be eliminated using Section 16, but without arbitrary, unmotivated (and often
symmetry-breaking) choices, redundancy can stubbornly persist. The reason is that
the redundancy is already inherent in the combinatorics; that is, it happens at the
level of monoids, congruences, and witnesses, before coefficients enter the picture.
Note that by “canonical” we mean in the sense of “determined without extra data or
requirements”. In contrast, Ortiz [1959] uses the adjective “canonical” to refer to
primary decompositions that minimize a certain index of nilpotency. Regardless of
the name, Ojeda [2011] proves that the components in Ortiz’s “canonical” decom-
positions are binomial when the original ideal is binomial, but these decompositions
generally differ from the ones here, which rely solely on intrinsic data.
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Remark 15.8. In positive characteristic p, primary binomial ideals need not be
mesoprimary. This feature of mesoprimary decomposition reflects its freedom from
characteristic. For instance, according to Hasse’s local-to-global principle the ideal
〈x p
−1, y(x−1), y2

〉 has no business being primary: in all but one characteristic it
has two or more associated objects that accidentally coincide in characteristic p.

When the base field k is not algebraically closed, the binomial ideal I need not
possess a binomial primary decomposition over k (see Example 11.15, for instance),
but it does have one over the algebraic closure k. One of our original motivations for
seeking a theory of mesoprimary decomposition was to gather primary components
in such a way that Galois automorphisms (of k over k) permute them. In particular, if
two primes are Galois translates of one another, then we wanted their corresponding
primary components to look combinatorially the same.

Theorem 15.9. If the ideal I in Theorem 15.6 is defined over a subfield k of its
algebraic closure k, then the primary decomposition there is fixed by the Galois
group Gal(k/k). More precisely, if π ∈ Gal(k/k) is a Galois automorphism and C
is one of the primary components of I from Theorem 15.6, then π(C) is another
one of them.

Proof. The Galois group fixes every mesoprimary component of I , and the primary
decomposition of a mesoprimary ideal (Proposition 15.4) is canonical. �

Our final result on the primary-to-mesoprimary correspondence shows that, for
general binomial ideals, every associated prime is detected by an associated meso-
prime. For cellular binomial ideals, the relationship between associated mesoprimes
and associated primes is even more perfectly precise. The cellular case of the
following result over an algebraically closed field is [Eisenbud and Sturmfels 1996,
Theorem 8.1] and its converse; the latter was stated and used without proof after
[Eisenbud and Sturmfels 1996, Algorithm 9.5]. First, a matter of notation.

Definition 15.10. Fix a cellular binomial ideal I ⊂ k[Q]. If P ⊂ Q is the prime
ideal of exponents on monomials that are nilpotent modulo I , then I is P-cellular.

Theorem 15.11. Fix a binomial ideal I ⊆ k[Q] over an arbitrary field k.

(1) Each associated prime of I is minimal over some associated mesoprime of I .

(2) If I is cellular, then the binomial converse holds: every binomial prime that is
minimal over an associated mesoprime of I is an associated prime of I .

Proof. For part (1), apply Corollary 15.2 to the components of I under any meso-
primary decomposition from Theorem 13.2.

For the cellular converse, suppose that I is P-cellular, and that a binomial prime
Iσ,P is minimal over some associated mesoprime Iρ,P of I . The submodule of
k[Q]/I generated by a witness for Iρ,P is isomorphic to a quotient k[Q]/I ′, for a
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binomial ideal I ′ all of whose witness characters are extensions of ρ. After subse-
quently binomially localizing at Iσ,P , the only surviving characters are restrictions
of σ , and hence sit between σ and ρ. In particular, this is true for the character
at any given monomial tq such that q is a cogenerator of the induced congruence.
Such a monomial generates a mesoprime submodule with Iσ,P among its associated
primes by Corollary 15.2. Therefore Iσ,P is associated to I ′, and hence to I by
Theorem 14.9; see Remark 14.10. �

Example 15.12. Given an associated prime of I as in Theorem 5.11(1), the associ-
ated mesoprime guaranteed by the theorem need not be unique. This phenomenon
is illustrated by Example 2.17.5. The binomial prime 〈x − 1, y〉 for the trivial
character on the x-axis N×{0} is associated to I and has two possible choices of
associated mesoprime, namely 〈x−1, y〉 and 〈x2

−1, y〉. Combinatorially, the row
of dots at height 1 consists of two classes, each being the nonnegative points in
a coset of an unsaturated lattice, while the row of dots at height 2 comprise just
one class, the nonnegative points in a coset of the saturation. In general, when the
group of units G P acts, there could be a whole G P -orbit of classes corresponding
to an unsaturated subgroup K , and a higher G P -orbit with an associated subgroup
anything between K and its saturation.

Example 15.13. Unmixed (cellular) binomial ideals need not be mesoprimary.
Consider the cellular binomial ideal 〈x2

−1, y(x−1), y2
〉 ⊂ k[x, y]. It is not meso-

primary, but because its associated primes are 〈x−1, y〉 and 〈x+1, y〉, it is unmixed
(even primary if char(k)= 2). Consequently, the unmixed decompositions of [Eisen-
bud and Sturmfels 1996, Corollary 8.2] and [Ojeda Martínez de Castilla and Piedra-
Sánchez 2000, Algorithm A4] do not decompose this ideal and thus do not lead
to mesoprimary — let alone coprincipal — decompositions, even in cellular cases.

16. Character witnesses and false witnesses

The set of I -witnesses in the arithmetic setting of a binomial ideal I in a monoid
algebra can be redundant in a manner that parallels the redundancy of witnesses
in the combinatorial setting of monoid congruences. In the combinatorial setting,
some of the redundancy is naturally eliminated by restricting to key witnesses; in
the arithmetic setting here, character witnesses (Definition 16.3) play an analogous
role. For cellular binomial ideals this is Theorem 16.9. Lifting to the general
(i.e., noncellular) case is possible but would take us too far afield to be included here.

Definition 16.1. Fix a binomial ideal I ⊂ k[Q], an element q ∈ Q, and a monoid
prime ideal P ⊂ Q. A P-cover extension at q is an extension of the character
ρ P

q : Kq→ k∗ of IP at q to the character ρ P
p+q : K p+q→ k∗ at a P-cover p+q of q

(Definitions 4.4 and 11.11).
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There can be many — even infinitely many — choices of minimal generating
sets for P (Remark 4.5), but just as in Lemma 4.6, there are not too many P-cover
extensions.

Lemma 16.2. In the situation of Definition 16.1, the set of P-cover extensions at q
is finite, in the sense that only finitely many stabilizers K p+q occur, and only finitely
many characters defined on each stabilizer occur among the characters ρ P

p+q .

Proof. Let Q be the quotient of Q modulo the congruence determined by I . If
the images of p and p′ are Green’s-equivalent in Q, then the stabilizers K p+q and
K p′+q coincide, as do the extensions to ρ P

p+q and ρ P
p′+q . Now apply Remark 4.5. �

Definition 16.3. Fix a prime P ⊂ Q, a P-cellular binomial ideal I ⊂ k[Q], and
w ∈ Q.

(1) The testimony of w at P is the set TP(w) of P-cover extension characters.

(2) The testimony TP(w) is suspicious if the intersection of the correspond-
ing mesoprimes equals the P-mesoprime IwP (Definition 11.7); that is, if
IwP =

⋂
ρ∈TP (w)

Iρ,P .

(3) A false witness is an I -witness w for P that is not maximal (under Green’s
preorder) among I -witnesses for P and whose testimony at P is suspicious.

(4) An I -witness that is not false is a character witness.

Remark 16.4. For algebraically closed k= k, Definition 16.3(4) becomes transpar-
ent, as follows. Minimal primary decompositions of mesoprimes Iρ,P (Proposition
11.9) are easy and canonical in that case: every saturated finite extension of ρ appears
exactly once. A finite intersection of mesoprimes Iσ,P , each containing Iρ,P , equals
Iρ,P when, among all of the saturated finite extensions of the characters σ , every
saturated finite extension of ρ appears at least once. A character witness for P
with associated mesoprime Iρ,P is a witness in possession of a new character (a
saturated finite extension) not present in its testimony. By the same token, a witness
is false if it has no new characters to mention: the set of characters in its testimony
is suspiciously complete.

The relation between the different types of witnesses from monoid land (key
witnesses) and binomial land (character witnesses) is not as strong as one may hope.
For example, a key witness can be a false witness (Example 16.5), and a character
witness might not be a key witness (Example 16.6). It is also possible for a nonkey
witness to be a false witness (Example 16.7). All of these examples are cellular
binomial ideals.

Example 16.5. Consider the ideal I ′ = 〈x(z− 1), y(z+ 1), z2
− 1, x2, y2

〉 from
Example 9.1 and let P be the monoid prime of N3 such that mP = 〈x, y〉. Then
0 ∈N3 is a key I ′-witness for P that is a false I ′-witness: the P-mesoprimes at the
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P-covers of 0 are 〈z−1〉 and 〈z+1〉, whose characters form the complete set of
saturated finite extensions of the character for 〈z2

−1〉. The testimony is suspicious
because 〈z−1〉 ∩ 〈z+1〉 = 〈z2

−1〉. In contrast, 0 ∈ N3 is a character I -witness
for P , where the ideal I = 〈x(z−1), y(z−1), z2

−1, x2, xy, y2
〉 induces the same

congruence as I ′.

Example 16.6. In Definition 16.3, the intersection of the mesoprimes is the ana-
logue of intersecting the kernels of the cover morphisms in Definition 4.7. The neces-
sity of allowing all (nonkey) witnesses as potential character witnesses stems from
the phenomenon in Example 2.22 (the common refinement of the congruences in-
duced by 〈x−1〉 and 〈y−1〉 is trivial whereas the intersection of these ideals not) but
is better illustrated by I =〈x2

−xy, y2
−xy, x(z−1), y(w−1), x3

〉⊂ k[x, y, z, w],
which throws an extra generator x3 into the ideal from Example 4.15(3). In con-
trast with that example, the extra monomial causes I to be cellular: the primary
congruence it induces has associated monoid prime P = 〈ex , ey〉. But the P-prime
congruence at the character I -witness 0 ∈ N4 remains trivial, being the common
refinement of the congruences induced by 〈z− 1〉 and 〈w− 1〉. This trivial P-
prime congruence at 0 indicates a total lack of binomials in the Q-degree 0 part
of the intersection 〈z−1, x2, y〉 ∩ 〈w−1, x, y2

〉, but this lack is accompanied by
nonbinomial elements. An additional intersectand, namely the prime ideal 〈x, y〉
itself, is required to enforce binomiality.

In terms of Definition 16.3, the testimony consists entirely of saturated but infinite
extensions of the character of IP at 0 ∈N4. Therefore no saturated finite extensions
occur, in the sense of Remark 16.4, making 0 ∈ N4 a rather strong character
I -witness, even though it is not a key witness for the congruence induced by I .

Example 16.7. Nonkey witnesses can be false witnesses. In Example 8.12 the
origin is a false witness because 〈a2

−1, b−1〉 ∩ 〈a−1, b2
−1〉 ∩ 〈ab−1, a−b〉 =

〈a2
−1, b2

−1〉 exhibits suspicious testimony.

Definition 16.8. Fix a cellular binomial ideal I ⊆ k[Q] in a finitely generated
commutative monoid algebra over a field k. A mesoprimary decomposition of I is
characteristic if every cogenerator for every mesoprimary component is a character
I -witness.

Theorem 16.9. Fix I , a cellular binomial ideal. I admits a characteristic meso-
primary decomposition. In fact, I is the intersection of the coprincipal ideals
cogenerated by its character witnesses. More generally, if I is expressed as an
intersection of coprincipal components of I , then any component cogenerated by a
false witness is redundant.

In particular, the components for false witnesses can be thrown out (with their
testimony) from the coprincipal decomposition in Theorem 13.3 for a cellular
binomial ideal.
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Proof. P-cellular ideals have only finitely many Green’s classes of witnesses for P ,
because their induced congruences have only finitely many Green’s classes to begin
with by Lemma 2.19. Therefore the intersection over character witnesses is finite.

Express I as an intersection of mesoprimary components of I cogenerated by
single witnesses, one of which is W =W P

w (I ), cogenerated by a false witness w.
Given an element f 6∈ W , we need f to lie outside of the intersection I ′ of
the other components. It suffices to show that f lies outside at least one of the
other components. To that end, there is no harm in localizing along P , because by
Lemma 13.4 if f lies outside of a coprincipal component after localizing then it does
so before localizing. Henceforth, therefore, assume P is the maximal monoid ideal.
Furthermore, if f ′ is a monomial multiple of f that remains outside of W , then
concluding that f ′ 6∈ I ′ is enough. Therefore, replacing f by a monomial multiple
of f , assume f is annihilated, modulo W , by the entire maximal monomial ideal.
Write f = f�w+ f 6�w, where f�w is the sum of the terms of f whose exponents
lie in w+G for G = Q \ P , the unit group of Q.

The first goal is to show that f ∈ I ′ =⇒ f�w ∈ I ′. Let v be any I -witness and set
W ′ =W P

v (I ). When w 6≺ v in Green’s preorder, it is automatic that f�w ∈W ′, for
then all monomials with exponents in w+G lie in W ′. Therefore assume w ≺ v
and f ∈W ′. The relationw≺v implies thatw is not nil modulo the congruence∼W ′

induced by W ′, and consequently no term of f�w has an exponent that is congruent
under ∼W ′ to the exponent on a term of f 6�w. Therefore f ∈W ′ =⇒ f�w ∈W ′.

We have reduced to showing that f 6∈W =⇒ f 6∈ I ′ when f = f�w, so assume f =
f�w 6∈W . For each generator p ∈ P , let σp ∈ TP(w) be the corresponding P-cover
extension character. The crucial observation is that, since f is a sum over w+G,

t p f ∈ I ⇐⇒ f ∈W + Iσp .

This equivalence holds by tracing through all of the definitions; it implies that
t p f ∈ I for all generators p ∈ P precisely when

f ∈
⋂

p(W + Iσp)=W +
⋂

p Iσp =W + I P
w =W,

where the first displayed equality is a consequence of Proposition 15.1. Since
f 6∈ W , it follows that there is some generator p ∈ P such that t p f 6∈ I . But
t p f ∈W by construction, so t p f lies outside of some other coprincipal component
of I , and hence so does f itself, as desired. �

Where did cellularity enter the proof of the preceding proposition? Beyond
finiteness of witnesses, the conclusion that no term of f�w has an exponent congruent
under ∼W ′ to the exponent on a term of f 6�w would be false if W ′ were allowed
to be a coprincipal component for a monoid prime strictly contained in P; see the
next example.
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Example 16.10. Let

I =〈x2
−x ẋ, x ẋ− ẋ2, x3, x2 y, z2

−1, x2(z−1), y(z+1), y(x− ẋ)〉⊆k[x, ẋ, y, z].

(The variables x and ẋ correspond to x and y in Example 2.18.) Then ẋ is a false
I -witness monomial for the monoid prime P corresponding to mP = 〈x, ẋ, y〉: the
character at ẋ is z2

−1, while at x ẋ it is z−1 and at yẋ it is z+1. Omitting the
coprincipal component 〈x2, x ẋ, ẋ2, y, z2

−1〉 of I cogenerated by ẋ from the coprin-
cipal decomposition of I in Theorem 13.3 leaves 〈x3, x2

−x ẋ, x ẋ− ẋ2, y, z−1〉 ∩
〈x2, x − ẋ, z+ 1〉, which is not a binomial ideal. The element f = x − ẋ has a
monomial ẋ = tw whose exponent w is congruent to the exponent of x = tq under
∼W ′ for W ′ = 〈x2, x − ẋ, z+ 1〉 even though q and w are incomparable. W ′ is
P ′-mesoprimary for mP ′ = 〈x, ẋ〉(mP .

Remark 16.11. One reason Theorem 16.9 restricts to the cellular case is the au-
tomatic finiteness for witnesses. In contrast, in Section 12 the notion of essential
witness does the job by Lemma 12.4. In general, even modulo Green’s equiv-
alence the set of I -witnesses can be infinite. For example, infiniteness causes
Proposition 12.17 to fail when I = 〈x2 y− y2x〉 if one uses all I -witnesses for
mP = 〈x, y〉. The sets of essential and character witnesses do not coincide, because
of the false key witnesses in Example 16.5, but it is possible that every character
I -witness could be an essential I -witness.

Question 16.12. Are there redundant character witnesses? key witnesses?

17. Open problems

Beyond Question 16.12, the results of this paper raise other problems implicitly in
the remarks, and still others that constitute future research directions beyond the
scope of this paper. We collect some of these problems here.

17.1. Intersections of binomial ideals.

Problem 17.1. Characterize when an intersection of binomial ideals is binomial.

Problem 17.1 was originally posed by Eisenbud and Sturmfels [1996, Prob-
lem 4.9], who answered it in the reduced situation [1996, Theorem 4.1]. In our
language, that theorem contains information about the associated prime ideals of
the congruence induced by a radical binomial ideal. It is possible that the general
case could reduce to the radical case, by considering what the congruence or the
P-prime characters induced by the intersection could possibly look like at each
monoid element. This type of consideration underlies the definition of character
witness (Definition 16.3), where nonbinomiality at specific monoid elements would
otherwise occur, without specifically throwing in additional binomials, because of
incompatibility of congruences or characters arising from covers.
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As a stepping stone to a full answer to Problem 17.1, one might consider [Eisen-
bud and Sturmfels 1996, Problem 6.6]: does intersecting the minimal primary
components of a binomial ideal result in another binomial ideal?

17.2. Choices of vertical coefficients. Remarks 12.21 and 12.22 raise the follow-
ing.

Problem 17.2. Characterize the mesoprimary ideals that induce a fixed mesopri-
mary congruence with a fixed associated mesoprime. In particular, decide when the
set of such mesoprimary ideals is nonempty.

17.3. Primary binomial ideals in positive characteristic. Lack of knowledge con-
cerning the combinatorics of primary binomial ideals in positive characteristic is an
obstacle in our investigations. In particular we do not know exactly which primary
binomial ideals are mesoprimary.

Problem 17.3. Characterize primary binomial ideals with nontrivial mesoprimary
decompositions.

17.4. Posets of mesoprimes.

Problem 17.4. Characterize the posets of associated prime congruences of primary
congruences.

The problem could have been stated for arbitrary congruences, but then every
finite poset would be possible, because every finite poset occurs as the set of
associated primes of a monomial ideal (this is a good exercise, but it follows from
[Miller 1998]). Problem 17.4 is equivalent to characterizing posets of associated
mesoprimes of unital cellular binomial ideals. Such posets always possess a unique
minimal element, represented by the identity element of the finite partially ordered
monoid of Green’s classes in Lemma 2.19. When devising examples for the present
paper, we often used a technique to “place” associated mesoprimes at desired
locations, illustrated as follows.

Example 17.5. Let 1( 0 be simplicial complexes on {1, . . . , n} and consider the
polynomial ring in 2n variables S = k[x1, . . . , xn, y1, . . . , yn]. For any A ∈ 0 \1
write xA :=

∏
i∈A xi . The poset of associated mesoprimes of the cellular binomial

ideal

I0\1 =
∑

A∈0\1

IA+〈x2
i | i = 1, . . . , n〉 ⊂ S for IA = 〈xA(yi−1) | i ∈ A〉

is isomorphic to (0 \1)∪ {∅}.

Remark 17.6. The construction in the previous example is fairly general, and one
might hope that complete generality is possible. In practice this problem will be
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about understanding what happens to the partial order on Nn when passing to a
quotient and under the order-preserving map assigning to a witness its associated
prime congruence.

Remark 17.7. Definition 5.2 requires associated prime congruences to appear at
key witnesses. Allowing arbitrary witnesses yields an a priori different notion of
associated prime congruence: although the P-prime congruence at an arbitrary
witness for P agrees with the P-prime congruence at some key witness, the key
witness might be for a monoid prime smaller than P . This phenomenon does not
occur for primary congruences, however, as they have only one associated monoid
prime. Thus Problem 17.4 would have the same answer if Definition 5.2 had allowed
arbitrary witnesses.

Nonetheless, this line of thinking indicates that care must be taken in lifting
Problem 17.4 to the arithmetic setting, where Definition 12.1 requires associated
mesoprimes to appear at arbitrary witnesses, not at a subset of all witnesses. For
instance, a P-mesoprime can be associated to an ideal even though it only appears
at a false witness; this occurs in both Example 16.5 and Example 16.7. This
idiosyncrasy in the definition of associated mesoprime motivates a new definition.

Definition 17.8. An associated mesoprime of a binomial ideal I is truly associated
if it is the P-mesoprime of I at a character I -witness for P .

Problem 17.9. Characterize the posets of associated mesoprimes of cellular bino-
mial ideals. Do the same for posets of truly associated mesoprimes.

Remark 17.10. The family of posets referred to in (either version of) Problem 17.9
contains the family of posets in Problem 17.4 by Remark 17.7 applied to the case
of unital binomial ideals.

17.5. Mesoprimary decomposition of modules. Grillet [2007] shows how subdi-
rect decompositions of semigroups induce subdirect decompositions of sets acted
on by semigroups; see Remark 2.2. In a similar vein, mesoprimary decomposition
ought to extend to finitely generated monoid actions.

Problem 17.11. Generalize mesoprimary decomposition of congruences to Q-
modules.

The generalization ought to parallel the manner in which ordinary primary
decomposition of ideals in rings extends to primary decomposition of modules over
rings. In the arithmetic setting of mesoprimary decomposition, however, even the
first step of the extension requires thought.

Question 17.12. What is a binomial module over a commutative monoid algebra?

A good theory of such modules should yield the desired generalization.

Problem 17.13. Extend mesoprimary decomposition to binomial k[Q]-modules.
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17.6. Homological invariants of binomial rings. The combinatorics of the free
commutative monoid Nn gives rise to formulas and constructions for all sorts of
homological invariants involving monomial ideals — Betti numbers, Bass numbers,
free resolutions, local cohomology, and so on — due to the Nn-grading; see [Miller
and Sturmfels 2005]. Gradings by more general affine semigroups yield formulas
and constructions for local cohomology over affine semigroup rings (with maximal
support [Ishida 1988] as well as with more arbitrary monomial support [Helm
and Miller 2003; 2005]), and Betti numbers for toric ideals [Stanley 1996, Theo-
rem I.7.9], etc. Having identified the combinatorics controlling decompositions of
binomial ideals, the way is open to generalize monomial homological algebra.

Question 17.14. Do there exist combinatorial (monoid-theoretic) formulas for local
cohomology, Tor, and Ext involving binomial quotients of polynomial rings?

Remark 17.15. In contrast, it is unclear to us whether combinatorial formulas for
local cohomology with binomial support should exist, partly because of ill-behaved
characteristic dependence; see [Iyengar et al. 2007, Example 21.31].

As soon as there is some control over Betti tables, Boij–Söderberg theory [Fløys-
tad 2012] enters the picture. There one decomposes the Betti table β(M) of a
module M over a polynomial ring S as a rational linear combination of certain pure
tables πd :

β(M)=
∑

adπd .

Question 17.16. What combinatorics, if any, explains the coefficients ad of S/Iρ,P
as an S-module when Iρ,P is a mesoprime?

Even the special case of Boij–Söderberg theory for toric ideals is currently open.

17.7. Test sets in integer programming. Let A ∈ Zd×n be an integer matrix. An
integer program is an optimization problem that seeks, for a given cost vector ω∈Rn ,
to maximize ω·u over the integer points in the polyhedron Fb={u∈Nn

| Au=b} for
b∈NA := A(Nn)⊆Zd . A solution to this problem is the computation of a test set: a
set B of differences between points in Fb such that for any candidate solution u to the
optimization problem, its optimality can be tested by comparing it to u+v for v ∈B.
Computing a Gröbner basis of the toric ideal IA=〈xu

−xv |u, v∈Nn and Au= Av〉
provides a simultaneous test set for all right-hand sides b, but this procedure may
be computationally prohibitive. The hope behind the following problem is that for
many b a test set is significantly simpler than a Gröbner basis.

Problem 17.17. Fix a finite set B⊂ kerZ A.

(1) Characterize the multidegrees b ∈ NA for which B is a test set.

(2) Quantify the failure of B to be a test set in large fibers Fb.
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Intuition for the second problem comes from the geometry of mesoprimary
components, or better yet, coprincipal components: their thicknesses in various
directions should provide bounds on how close an integer point in Fb can get to
optimality using B. Indeed, starting at some u ∈ Zn and successively progressing
to the (local) optimum achieved by moving along vectors in B is equivalent to
normal form reduction of xu using binomials in the ideal IB= 〈xu

−xv | u−v ∈B〉.
Classes for the congruence induced by IB can be thought of, roughly speaking, as
polyhedra of the form Fb with bits (the “skerries” from [Dickenstein et al. 2010b,
Section 1.1]) eaten away from the boundary; mesoprimary decomposition controls
the missing boundary bits.

Diaconis, Eisenbud, and Sturmfels suggested — though not in the presence of a
cost vector — to systematically study lattice walks with step set B using primary
decomposition of IB [Diaconis et al. 1998]. Given the unsuitability of primary
decomposition for combinatorial purposes, the method should be updated to work
with mesoprimary decompositions. This is especially true in the presence of unsat-
urated lattices among the minimal primes of IB, in which case the combinatorial
flavor of the problem becomes clouded in the arithmetic (rather than combinatorics)
of binomial primary decomposition.

A first step toward Problem 17.17 was developed in [Kahle et al. 2014b]. There
the authors study only the connectivity of Fb as a function of the position of b
in the cone Q+A. Additionally all ideals there are radical, and consequently the
subtleties of mesoprimary decomposition play no role.
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