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Finite generation of the cohomology
of some skew group algebras

Van C. Nguyen and Sarah Witherspoon

We prove that some skew group algebras have Noetherian cohomology rings,
a property inherited from their component parts. The proof is an adaptation of
Evens’ proof of finite generation of group cohomology. We apply the result to a
series of examples of finite-dimensional Hopf algebras in positive characteristic.

1. Introduction

The cohomology ring of a Hopf algebra encodes potentially useful information about
its structure and representations. It is always graded commutative (see, for example,
[Suarez-Alvarez 2004]). For many classes of finite-dimensional Hopf algebras, it is
also known to be finitely generated: for example, cocommutative Hopf algebras
[Friedlander and Suslin 1997], small quantum groups [Ginzburg and Kumar 1993],
and small quantum function algebras [Gordon 2000]. Etingof and Ostrik [2004]
conjectured that it is always finitely generated, as a special case of a conjecture
about finite tensor categories. Snashall and Solberg [2004] made an analogous
conjecture for Hochschild cohomology of finite-dimensional algebras that was seen
to be false when Xu [2008] constructed a counterexample. In contrast, there is
neither a counterexample nor a proof of the Hopf algebra conjecture. Each finite
generation result so far has used, in crucial ways, known structure of a particular
class of Hopf algebras. Further progress will require new ideas.

In this article, we present one technique for handling some types of algebras
inductively. Many (Hopf) algebras of interest are skew group algebras (that is,
smash products with group algebras). Under some conditions on a skew group
algebra, we show that its cohomology is Noetherian if the same is true of the
underlying algebra on which the group acts.
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Specifically, if A is a finite-dimensional augmented algebra over a field k, with an
action of a finite group G by automorphisms, there is a spectral sequence relating the
cohomology of the smash product A # kG (definition in Section 2) as an augmented
algebra to that of each of A and G. (It is essentially the Lyndon–Hochschild–Serre
spectral sequence.) This allows us to use the framework of Evens’ classic proof
[1961] of finite generation of group cohomology to prove that the cohomology
rings of some smash products are Noetherian (Theorem 3.1). In order to do this,
we need a particularly nice set of permanent cycles in the cohomology of A. In the
finite group case, these cycles exist due to an application of Evens’ norm map. In
our setting, there may be no such norm map, and we instead hypothesize existence
of these permanent cycles.

We focus on a class of examples (in Section 5) found by Cibils, Lauve, and
the second author [Cibils et al. 2009] that satisfy our hypotheses. We prove finite
generation of the cohomology of these noncommutative, noncocommutative Hopf
algebras in positive characteristic. While our main theorem is tailored to suit these
examples, we state and prove it in the abstract setting, in order to add one more
tool to the collection of techniques available for proving finite generation. Our
restrictive hypotheses serve to highlight the difficulty in adapting methods designed
for the finite group setting, where serendipity reigns.

2. Definitions and notation

Throughout this article, let k be a field. All algebras will be associative algebras
over k, and all modules will be left modules, finite-dimensional over k. Let ⊗=⊗k .

Let G be a finite group acting on a finite-dimensional augmented k-algebra A by
automorphisms. Let A #kG be the resulting smash product (or skew group algebra),
that is, A⊗ kG as a vector space, with multiplication (a⊗ g)(b⊗ h)= a(gb)⊗ gh,
for all a, b ∈ A and g, h ∈ G. (For simplicity, we will drop tensor symbols in this
notation from now on.) We assume the action of G preserves the augmentation of
A, so that A # kG is also augmented with augmentation map εA#kG : A # kG→ k
defined by εA#kG(ag)= εA(a), for all a ∈ A, g ∈ G.

We use the symbol k also to denote the one-dimensional A-module (respectively,
A # kG-module) on which A (respectively, A # kG) acts via its augmentation. Let

H∗(A, k) := Ext∗A(k, k) and H∗(A # kG, k) := Ext∗A#kG(k, k).

Both are algebras under Yoneda composition. The embedding of A into A # kG as
a subalgebra induces a restriction map

resA#kG,A : H
∗(A # kG, k)→ H∗(A, k)

on cohomology. There is an action of G on H∗(A, k) that may be defined for
example via the diagonal action of G on the components of the bar resolution for A.
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There is a similar action of G on H∗(A # kG, k) that is trivial since it comes from
inner automorphisms on A # kG.

3. Finite generation of cohomology

In this section, we prove our main theorem that under certain hypotheses, the
cohomology ring H∗(A # kG, k) of A # kG is Noetherian:

Theorem 3.1. Let G be a finite group acting on a finite-dimensional augmented
algebra A, preserving the augmentation map. Assume that Im(resA#kG,A) contains
a polynomial subalgebra over which H∗(A, k) is Noetherian and free as a module,
with a free basis whose k-linear span is a kG-submodule of H∗(A, k). Then,
H∗(A # kG, k) is Noetherian.

Remarks 3.2. (a) The hypothesis that Im(resA#kG,A) contains a polynomial sub-
algebra over which H∗(A, k) is Noetherian, together with the left module version
of [Goodearl and Warfield 2004, Corollary 1.5], implies that H∗(A, k) is (left)
Noetherian.

(b) We did not specify the characteristic of the base field k in the theorem. If the
characteristic of k does not divide the order of G, then kG is semisimple and its
cohomology is trivial except in degree zero. In this case, H∗(A#kG, k)∼=H∗(A, k)G ,
the invariant ring under the action of G. Here, one can use invariant ring theory in
the noncommutative setting to show that the conclusion of the theorem holds. (See,
for example, [Montgomery 1993, Corollary 4.3.5].) For the proof of Theorem 3.1,
we assume the characteristic of k divides the order of G.

Proof. We use the Lyndon–Hochschild–Serre spectral sequence (see, for example,
[Barnes 1985, Chapter VI] in a very general setting):

E p,q
2 = E p,q

2 (k)= Hp(G,Hq(A, k))H⇒ Hp+q(A # kG, k).

Let Er (k) denote the resulting r-th page, and note that for each q, Hq(A, k) is a
finite-dimensional k-vector space.

Note that E0,∗
∞

is a submodule of E0,∗
2 , since no dr : E

p,q
r → E p+r,q−r+1

r ends
on the vertical edge. It follows that the restriction map H∗(A # kG, k)→ E0,∗

2 (k) is
part of the following commuting diagram:

H∗(A # kG, k)

��

resA#kG,A // H0(G,H∗(A, k))= H∗(A, k)G

E0,∗
∞
(k) ↪→ // E0,∗

2 (k)

We can identify E0,∗
∞

with the image of the restriction map in E0,∗
2 .
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Let T = k[χ1, . . . , χm] denote the polynomial subalgebra of Im(resA#kG,A)

hypothesized in the statement of the theorem. The action of G on H∗(A, k) restricts
to the trivial action on T since it is a subalgebra of Im(resA#kG,A). Therefore, by
the universal coefficients theorem, H∗(G, T )∼= H∗(G, k)⊗ T , an isomorphism of
graded algebras.

Let S := H∗(G, k) = E∗,02 (k). Let R be the subring of E2(k) generated by S
and T . By the above observations, R ∼= S[χ1, . . . , χm], a polynomial ring over S
in m indeterminates (that we also denote by χ1, . . . , χm for convenience). Since
d2 vanishes on the horizontal edge, R ⊆ Ker(d2). So R projects onto a subring
of E3(k)= H(E2(k), d2). Similarly, R projects onto a subring of Er (k) for every
r > 0 including∞. Therefore, we may consider Er (k) to be a module over R, for
every r > 0 including∞.

Claim 1. E2(k) is a Noetherian module over R.

Proof of Claim 1. By hypothesis, there are (homogeneous) elements ρ1, . . . , ρt ∈

H∗(A, k) that form a free basis of H∗(A, k) as a T -module, and for which

V := Spank{ρ1, . . . , ρt }

is a kG-submodule of H∗(A, k). Let

L := H∗(G, V ).

Note that L contains a copy of S = H∗(G, k) as V must include an element in
degree 0, that is, in H0(A, k) ∼= k, which has trivial G-action. By hypothesis,
H∗(A, k)= k[χ1, . . . , χm] · V , and so

E2(k)= H∗(G, k[χ1, . . . , χm] · V ).

Further, k[χ1, . . . , χm] has trivial G-action and the module H∗(A, k) for this poly-
nomial ring is free with free basis ρ1, . . . , ρt . It follows that, as a kG-module,

k[χ1, . . . , χm] · V ∼=
⊕

i1,...,im≥0

χ
i1
1 · · ·χ

im
m · V ∼=

⊕
i1,...,im≥0

V,

a direct sum of copies of the same kG-module, V . Therefore by the universal
coefficients theorem, E2(k) is the image of

H0(G, k[χ1, . . . , χm])⊗H∗(G, V )∼= k[χ1, . . . , χm]⊗ L ,

under cup product. We thus identify E∗,∗2 (k) with S[χ1, . . . , χm]⊗S L .
Since G is a finite group and V is a finite-dimensional vector space over k,

L =H∗(G, V ) is Noetherian over S =H∗(G, k) [Evens 1961]. By the Hilbert basis
theorem for graded commutative rings (see, for example, [Goodearl and Warfield
2004, Theorem 2.6]), S[χ1, . . . , χm]⊗S L is Noetherian over R = S[χ1, . . . , χm].
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Therefore, E∗,∗2 (k) is Noetherian over R. We have proven Claim 1.

Claim 2. The spectral sequence stops; i.e., Er = E∞ for some r <∞.

Proof of Claim 2. Let Zi be the space of i-cocycles and Bi be the space of i-
coboundaries in Ei = Ei (k). Recall that E1 = Z1 and E2 = Z2/B2. Consider the
“pull back” Br in E2 of dr (Er ) as follows.

Each element of E2 on which d2 vanishes determines an element of E3. Suppose
d3 vanishes on that element, so that it in turn determines an element of E4. Continue
placing such restrictions until we determine an element of Er , and suppose that
element is in the image of dr . We define:

Br := {τ ∈ E2 : τ ∈ Ker(di ) for 2≤ i ≤ r − 1 and τ ∈ Im(dr )}.

Note that Br is an R-submodule of E2 since d j is a derivation for all j , 2≤ j ≤ r ,
and the image in each E j of R consists of universal cycles. Moreover, Br ⊆ Br+1

so we obtain an ascending chain of R-submodules of E2:

0= B1 ⊆ B2 ⊆ · · ·

Since E2 is Noetherian over R by Claim 1, this chain must stabilize by the ascending
chain condition. Thus there exists some r0 finite such that Br0= Br0+1= Br0+2=· · · ,
and so dr = 0 for all r > r0. This implies Er = E∞ for r > r0, proving Claim 2.

We can put this together to finish the proof of the theorem: Each Zr , Br is a
submodule of E2 over R = S[χ1, . . . , χm]. Thus, each Er , which is a submodule
of a quotient module of Er−1, is Noetherian over R by Claim 1 and induction on
r . By Claim 2, E∞ is Noetherian over R, and so by [Goodearl and Warfield 2004,
Corollary 1.5] it is a Noetherian ring.

Now, H∗(A # kG, k) has a filtration whose filtered quotients are

E p,q
∞
(k)∼=

F p Hp+q(A # kG, k)
F p+1 Hp+q(A # kG, k)

.

Suppose that H∗(A#kG, k) is not Noetherian and let T1⊆ T2⊆ · · · ⊆H∗(A#kG, k)
be an infinite ascending chain of ideals of H∗(A # kG, k). Let

F pTi := Ti ∩ F p H∗(A # kG, k)
and

Ui :=
⊕
p ≥ 0

F pTi/F p+1Ti ⊆ E∞(k).

If x ∈ Ti+1 \ Ti , then for some p, x ∈ F pTi+1 but x /∈ F pTi and x /∈ F p+1Ti+1, so
x + F p+1Ti+1 is not in the image of the inclusion

F pTi/F p+1Ti ↪→ F pTi+1/F p+1Ti+1,
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that is, x ∈Ui+1 \Ui . So Ui+1 properly contains Ui , for all i . Therefore, we have
an infinite ascending chain of ideals of E∞(k):

U1 $ U2 $ · · ·

This contradicts the result that E∞(k) is Noetherian. Therefore, H∗(A # kG, k) is
Noetherian. �

Remark 3.3. Theorem 3.1 parallels the main step in Evens’ proof of finite genera-
tion of group cohomology: Let H be a finite p-group (where k has characteristic p),
A= k Z is the group algebra of a central subgroup Z of H of order p, and G= H/Z .
(In case Z is complemented in H , we obtain k H ∼= A #kG, whereas more generally,
k H is a crossed product of A with G.) In this case, Evens’ norm map is applied to
show that Im(resk H,k Z ) contains a polynomial subalgebra k[ζ ] (in one indetermi-
nate). One observes that H∗(k Z , k) is a free module over k[ζ ], and that the k-linear
span of any free basis is a kG-submodule. This special case is somewhat simpler
than our more general context as it uses a polynomial ring in one indeterminate.

We are particularly interested in those actions of finite groups G on algebras A
for which A # kG is a Hopf algebra. We turn to a class of such examples in the
remainder of the paper.

4. Examples: Nichols algebras in positive characteristic

In this section, we first recall the Nichols algebras A from [Cibils et al. 2009,
Corollary 3.14] and the corresponding Hopf algebras A # kG from the same paper.
We will prove that these Hopf algebras have finitely generated cohomology. This
will follow from Theorem 3.1 and explicit calculation using Anick’s resolution
[1986]. In this section we explain these calculations for A, and in the next we
complete the proof of finite generation of cohomology of A # kG. The results of
this section were anticipated by Ø. Solberg (personal communication, 2012) as a
consequence of computer calculations (for small p) that gave the graded vector
space structure and generators of cohomology.

In the remainder of the paper, k will be a field of characteristic p > 2. (The case
p = 2 is included in [Cibils et al. 2009], but is different, and we will not consider
that case here.) Let A be the augmented k-algebra generated by a, b, with relations

a p
= 0, bp

= 0, ba = ab+ 1
2a2,

and augmentation ε : A→ k given by ε(a)= ε(b)= 0. Let G be a cyclic group of
order p with generator g, acting on A by

g(a)= a, g(b)= b− a.
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Then A # kG is a Hopf algebra with comultiplication given by

1(g)= g⊗ g, 1(a)= a⊗ 1+ g⊗ a, 1(b)= b⊗ 1+ g⊗ b.

It is useful to consider A as a quotient of a larger algebra. Let

B := k〈a, b〉/(ba− ab− 1
2a2), (4-1)

so that A ∼= B/(a p, bp). We will show that B is a PBW algebra in the sense of
[Bueso et al. 2003] or [Shroff 2013, Section 2], although we will not need this fact
for our cohomology calculations.

Choose the lexicographic order on N2 for which (0, 1) < (1, 0), and assign
deg(a) = (0, 1), deg(b) = (1, 0). Then ba− ab− 1

2a2 is a Gröbner basis for the
ideal of the free algebra k〈a, b〉 that it generates. It follows that {ai b j

| i, j ≥ 0} is a
vector space basis of B. The relation ab= ba− 1

2a2 satisfies the required condition
in the definition of a PBW algebra since deg(a2) < deg(ab), so B is a PBW algebra.
Moreover, B is a Koszul algebra by Theorem 5.3 in [Priddy 1970].

Applying [Cibils et al. 2009, (3.9)], one finds that the elements a p, bp are in
the center of B. We may thus apply Theorem 4.3 of [Shroff 2013] to the Nichols
algebra A to conclude that the cohomology ring H∗(A, k) of A is Noetherian.

We will need some details about this cohomology of A for the next section.
For this, we will construct Anick’s resolution [1986] for A, and show that it is
minimal. We use the combinatorial description of the resolution given by Cojocaru
and Ufnarovski [1997], however we index differently, and use left modules instead
of right. This is a free resolution of the trivial A-module k, of the form

· · · −→ A⊗ kC2 −→ A⊗ kC1 −→ A⊗ kC0 −→ k→ 0,

for (finite) sets Cn , where kCn denotes the vector space with basis Cn . Let C0 := {1}
and C1 := {a, b}. Then C2 := {a p, bp, ba} is the set of “tips” or “obstructions.”
To define Cn in general, consider the graph

1

}} !!
a





boo




a p−1

II

bp−1

hh II

The elements of Cn correspond to paths of length n that start at 1. We label such
paths with the product of all elements through which the path passes (including the
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endpoint). In this way we obtain

C3 =
{
a p+1, bp+1, bpa, ba p},

C4 =
{
a2p, b2p, bp+1a, bpa p, ba p+1},

and in general

C2m−1 =
{
bkpa(m−1−k)p+1, bkp+1a(m−1−k)p

∣∣ k = 0, 1, . . . ,m− 1
}
,

C2m =
{
bmp, bkpa(m−k)p, bkp+1a(m−1−k)p+1 ∣∣ k = 0, 1, . . . ,m− 1

}
.

For qualitative understanding of the differentials, give each of the generators
a, b of A the degree 1. We claim that the differentials preserve degree, where the
graded module structure of a tensor product A⊗ kCi is given by deg(a ⊗ x) =
deg(a)+ deg(x) if a, x are homogeneous. This claim results from the recursive
definition of the differential d in each homological degree: By construction, d
applied to elements of A⊗ kC1 is multiplication, and to A⊗ kC2 takes each tip to
the Gröbner basis element to which it corresponds, suitably expressed as an element
of A⊗ kC1. The remaining differentials are defined iteratively, via splitting maps
in each homological degree that are also defined iteratively. Since the relations
are homogeneous and differentials in low homological degrees preserve degrees of
elements, the splitting maps and differentials in higher degrees may be chosen to
have the same property.

Now note that C2m−1 consists of elements of degree (m − 1)p + 1, and C2m

consists of elements of degrees mp and (m− 1)p+ 2. Therefore elements of Cn

and of Cn−1 never have the same degree. As a consequence the differential takes
elements of Cn to elements of A+⊗Cn−1, where A+ denotes all elements of A
of positive degree (and these are in the kernel of the augmentation map ε). When
applying the functor HomA(−, k), then, the induced differentials all become 0.
Therefore in this case, Anick’s resolution is minimal, and for each n, the dimension
of Hn(A, k) is n+ 1.

5. Examples: pointed Hopf algebras in positive characteristic

We wish to apply Theorem 3.1 to the Hopf algebras A # kG introduced in the
previous section. In order to do this, we next give some of the details from [Shroff
2013, Section 4] as they apply to these examples in particular. Recall the PBW
algebra B defined in (4-1). Let ξa, ξb : B⊗B→ k be the k-linear functions given by

ξa(r ⊗ s)= γa, ξb(r ⊗ s)= γb,

where γa and γb are the scalar coefficients of a p and bp, respectively, in the product
rs in B. (Shroff writes these functions ζ̃1, ζ̃2.) Extending to left B-module homomor-
phisms in HomB(B⊗3, k) under the isomorphism HomB(B⊗3, k)∼=Homk(B⊗2, k),
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the functions ξa, ξb are coboundaries on the bar resolution of B, as shown in
[loc. cit.], and they factor through A ∼= B/(a p, bp). The resulting functions (which
we will also denote ξa, ξb by abuse of notation) are no longer coboundaries. They
represent nonzero elements in the cohomology of A, corresponding to permanent
cycles in the May spectral sequence for A as a filtered algebra (see [May 1966,
Theorem 3] or [Weibel 1994, Theorem 5.4.1]). On page E1 of this spectral sequence,
their counterparts generate a polynomial ring over which E1 is finitely generated (by
the elements 1, ηa, ηb, ηaηb, where ηa, ηb have cohomological degree 1, functions
dual to a and b in Homk(gr A, k) ∼= Homgr A(gr A⊗ gr A, k)). The cohomology
H∗(A, k) is finitely generated over its subalgebra generated by ξa, ξb, as a con-
sequence of the proof of [Shroff 2013, Theorem 4.3]. We will see below that
the subalgebra generated by ξa, ξb is in fact a polynomial ring in ξa, ξb, which is
Noetherian, so applying the left module version of [Goodearl and Warfield 2004,
Corollary 1.5], H∗(A, k) is itself (left) Noetherian.

To verify the hypothesis of Theorem 3.1, we use the above information to define
2-cocycles representing elements in H∗(A#kG, k): Note that a p, bp are G-invariant
by [Cibils et al. 2009, (3.10)]. Thus, by the construction of ξa, ξb, these functions are
also G-invariant, and so they in fact extend to 2-coboundaries on B # kG, factoring
through A # kG ∼= B # kG/(a p, bp). This also shows that ξa, ξb commute with each
other in H∗(A, k), since H∗(A # kG, k) is graded commutative and ξa, ξb each have
even degree, so they are commuting elements in Im(resA#kG,A).

We next claim that ξa, ξb generate a polynomial subalgebra k[ξa, ξb] of H∗(A, k)
over which H∗(A, k) is free with free basis {1, ηa, ηb, ηaηb}.1 This will follow
once we see that the set

{ξ i
aξ

j
b η

l
aη

m
b | i, j ≥ 0, l,m = 0, 1}

represents a basis of H∗(A, k), since ξa, ξb commute with each other. Note that
the cohomology of S = gr A is well known, and has a basis precisely of this form.
Recall that Anick’s resolution for A is minimal, and a comparison shows that
in each degree, the dimensions of H∗(A, k) and of H∗(S, k) are the same. This
forces the May spectral sequence [1966] for A to collapse at E1 = H∗(S, k), and
so gr H∗(A, k) ∼= H∗(S, k), and H∗(A, k) has basis as claimed. This implies that
ξa, ξb generate a polynomial subring (we already know they commute). Therefore
H∗(A, k) is free as a k[ξa, ξb]-module, as claimed. Further, the k-linear span of
{1, ηa, ηb, ηaηb} is indeed a kG-submodule of H∗(A, k): we compute

gηa = ηa + ηb,
gηb = ηb,

g(ηaηb)= ηaηb.

1 Since B is a Koszul algebra, H∗(B, k)∼= B!, the Koszul dual of B, which is generated by ηa, ηb
(by abuse of notation) with relations dual to those of B, that is, η2

a =
1
2ηaηb, η

2
b = 0, ηbηa =−ηaηb.

These relations also hold in H∗(A, k), however we do not need this fact.
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We have shown that the hypotheses of Theorem 3.1 are satisfied. Therefore,
H∗(A # kG, k) is Noetherian.

Question 5.1. Are there more examples of Nichols algebras in positive characteris-
tic to which Theorem 3.1 applies?

Nichols algebras and their bosonizations, which are Hopf algebras, have only just
begun to be explored in positive characteristic. There is a vast (and recent) literature
on Nichols algebras in characteristic zero. See, for example, [Andruskiewitsch et al.
2011a; 2011b; Andruskiewitsch and Schneider 2010; Heckenberger 2006].
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