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We present a short proof that, for PEL-type Shimura varieties, subcanonical
extensions of automorphic bundles, whose global sections over toroidal compact-
ifications of Shimura varieties are represented by cuspidal automorphic forms,
have no higher direct images under the canonical morphism to the minimal
compactification, in characteristic zero or in positive characteristics greater than
an explicitly computable bound.
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1. Introduction

The main goal of this article is to present a short proof of Theorem 1.1 below, as
an application of a certain vanishing theorem of automorphic bundles in mixed
characteristics. (We refer to [Lan 2013; Lan and Suh 2012; 2013] for the precise
definitions and descriptions of smooth integral models of PEL-type Shimura varieties
and their various compactifications, and of the automorphic bundles and their
canonical and subcanonical extensions.)

Let π :Mtor
H,6→Mmin

H denote the canonical proper morphism from any projective
smooth toroidal compactification to the minimal compactification of a p-integral
model MH of a PEL-type Shimura variety at a neat level H ⊂ G(Ẑp), where p
is good for the integral PEL datum (O, ?, L , 〈 · , · 〉, h0) defining MH, as in [Lan
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and Suh 2013, §4.1] (and the references there). Let Wν0,R := Wν0,Z ⊗Z R be a
representation of M1 of weight ν0 ∈ X+M1

over a coefficient ring R, where Wν0,Z

denotes a Weyl module of weight ν0 of a split model Msplit of M1 over Z, as in [Lan
and Suh 2012, §2.6]. Let W ν0,R := EM1,R(Wν0,R) be the corresponding automorphic
bundle over MH, as in [Lan and Suh 2012, Definition 1.16 and §6.3], and let
W sub
ν0,R := E sub

M1,R(Wν0,R) be its subcanonical extension over Mtor
H,R , as in [Lan and

Suh 2013, Definition 4.12 and §7]. (We similarly define Wν,R , W ν,R , and W sub
ν,R for

all ν ∈ X+M1
.)

Theorem 1.1. With the setting as above, there exists a bound C(ν0) depending only
on the integral PEL datum (O, ?, L , 〈 · , · 〉, h0) and the weight ν0, such that

Riπ∗W sub
ν0,R = 0 (1.2)

for all i > 0 when the residue characteristics of R are zero or p greater than C(ν0).
(See Lemma 3.3 below for an explicit choice of C(ν0).)

To help the reader understand the restriction imposed by C(ν0), let us spell out
the bound in some simple special cases. If ν0 = 0, then we can take C(ν0) to be
the relative dimension d of MH over the base scheme S0 (see Example 3.9 below).
If MH is a p-integral model of the Siegel modular variety of genus three, then the
weight ν0 is of the form (k1, k2, k3; k0) for some integers k0 and k1 ≥ k2 ≥ k3, and
we can take C(ν0) to be 6+ (k1− k3)+ (k2− k3) (see Example 3.10 below with
r = 3 there). If MH is a p-integral model of a Picard modular surface, then the
weight ν0 is of the form (k1, k2, k3; k0) for some integers k0, k1, and k2≥ k3, and we
can take C(ν0) to be 2+ (k2−k3) (see Example 3.12 below with (r−q, q)= (2, 1)
there). (In all cases, C(ν0) is insensitive to shifting the weight ν0 by a “parallel
weight”. See Section 3C below for more examples.)

We note that, when R=C, global sections of W sub
ν0,R over Mtor

H,6 can be represented
by holomorphic cuspidal automorphic forms. (See, e.g., [Harris 1990b, Proposition
5.4.2]; see also [Harris 1990a] for a survey on how the higher cohomology of W sub

ν0,R
can be represented by nonholomorphic automorphic forms. See [Lan 2012] for
the comparison between algebraic and analytic constructions hidden behind this.)
Combined with the Leray spectral sequence, Theorem 1.1 allows one to identify
the cohomology of W sub

ν0,R over Mtor
H,6 with the cohomology of π∗W sub

ν0,R over Mmin
H .

Although the coherent sheaf π∗W sub
ν0,R is not locally free in general, there are reasons

for Mmin
H to be useful for the construction of p-adic modular forms and p-adic

Galois representations.
Special cases of Theorem 1.1 have been independently proved in [Andreatta et al.

2013a; 2013b] (in the Siegel and Hilbert cases, for trivial weight ν0) and in [Harris
et al. 2013] (in the unitary case, for all weights ν0), without any assumption on the
residue characteristic p. The idea in [Harris et al. 2013] has also been carried out for
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all PEL-type cases in [Lan 2014]. Such results have played crucial roles in positive
characteristics in [Andreatta et al. 2013a; 2013b; Emerton et al. 2013; Pilloni
and Stroh 2013], and in characteristic zero in [Harris et al. 2013; Tian and Xiao
2013]. The proofs in [Andreatta et al. 2013a; 2013b] and [Harris et al. 2013; Lan
2014] directly used the toroidal and minimal boundary structures, and hence can be
considered more elementary, which is why they work for all residue characteristics p;
but they are lengthier and arguably more complicated. It is not easy to see from their
proofs why Theorem 1.1 should be true. (It is not even clear how the two strategies in
[Andreatta et al. 2013a; 2013b] and [Harris et al. 2013; Lan 2014] are related to each
other.) Thus it is desirable to find a proof more closely related to other vanishing
statements, at least when the residue characteristics are zero or sufficiently large.

It was first observed by the second author that this is indeed possible — in
characteristic zero, the trivial weight case can be deduced from Grauert and Riemen-
schneider’s vanishing theorem [1970]; in positive characteristics, under suitable
assumptions (involving choices of projective but generally nonsmooth cone decom-
positions 6 for the toroidal compactification Mtor

H,6 , whose existence is not very
clearly documented in the literature), it is also possible to deduce the statement
from Deligne and Illusie’s [1987] and Kato’s [1989] vanishing theorems. Then the
first author made the observations that the assumption on cone decompositions can
be relaxed by using Esnault and Viehweg’s [1992] vanishing theorem as in [Lan
and Suh 2011], and that (along similar lines) cases of nontrivial weights can be
treated using stronger vanishing theorems in [Lan and Suh 2013]. (In the Siegel
case, one can also use [Stroh 2010; 2013].)

In Section 2, we will present the proof of Theorem 1.1 and highlight the main
inputs. In Section 3, we will carry out some elementary computations needed in
the proof of Theorem 1.1, and find an explicit choice of C(ν0). In Section 4, we
sketch a logically simpler proof for the trivial weight case.

2. Proof of the theorem

Let π : Mtor
H,6 → Mmin

H , ν0 ∈ X+M1
, and W sub

ν0,R be as in Section 1. Since Mtor
H,6,1

and Mmin
H,1 are proper over S1 = Spec(R1) (see [Lan and Suh 2013, §4.1] and the

references there for the notation), which are in particular separated and of finite type,
for the purpose of proving Theorem 1.1 we may write R as an inductive limit over
its sub-R1-algebras and assume that R is of finite type over R1, which is in particular
noetherian. Then we may base change to R and abusively denote Mtor

H,6,R→Mmin
H,R

by the same notation π . Our goal is to show that Riπ∗W sub
ν0,R = 0 for all i > 0.

As in [Lan and Suh 2012, §2.6], we shall denote by X+,<p
M1

the subset of X+M1
con-

sisting of p-small weights, namely the weights ν ∈X+M1
such that (ν+ρM1, α)≤ p

for all roots α ∈8M1 , where ρM1 is the usual half sum of positive roots.



1790 Kai-Wen Lan and Benoît Stroh

2A. Application of Serre’s fundamental theorem. By [Lan and Suh 2013, Propo-
sition 7.13], there exists some weight ν1 ∈ X+,<p

M1
such that Wν1,R is free of rank

one as an R-module, and such that there exists an ample line bundle ων1 over Mmin
H,R

such that
π∗ων1

∼=W can
ν1,R, (2.1)

the canonical extension W can
ν1,R of W ν1,R . Since (by definition)

W sub
ν0+Nν1,R

∼=W sub
ν0,R ⊗OMtor

H,6,R
(W can

ν1,R)
⊗N (2.2)

for all integers N , by the projection formula [EGA 1960, 0I, (5.4.10.1), p. 52] we
have

Riπ∗W sub
ν0+Nν1,R

∼= (Riπ∗W sub
ν0,R)⊗O

Mmin
H,R
ω⊗N
ν1
. (2.3)

Then we have the following:

Lemma 2.4. There exists some integer N1 ≥ 0 such that, for all integers N ≥ N1

and all i ≥ 0, the sheaves Riπ∗W sub
ν0+Nν1,R over Mmin

H,R are generated by their global
sections and satisfy H j (Mmin

H,R, Riπ∗W sub
ν0+Nν1,R)= 0 for all j > 0.

Proof. Since π is proper and Mmin
H,R is noetherian, by the theorem of finiteness

[EGA 1961, III, Théorème (3.2.1), p. 116], the sheaves Riπ∗W sub
ν0,R are coherent

over Mmin
H,R for all i ≥ 0, and are nonzero only for finitely many i . Since ων1 is

ample over Mmin
H,R , the lemma follows from (2.3) and Serre’s fundamental theorem

for projective schemes [EGA 1961, III, Théorème (2.2.1), p. 100]. �

2B. Shifting weights into the holomorphic chamber. Let w0 (resp. w1) be the
longest Weyl element in WM1 (resp. WM1) (see [Lan and Suh 2012, §2.4]), so that
(−w0)8

+

M1
=8+M1

and Wν
∼=W∨

−w0(ν)
for all ν∈X+,<p

M1
and l(w1)=d=dimS1(MH,1).

Remark 2.5. When R=C, for anyµ∈X+G1
, sections in H 0(Mtor

H,6,R, (W
∨

w1·µ,R)
sub)

are represented by holomorphic cusp forms of weight (−w0)(w1 ·µ) ∈X+M1
, which

contribute via the dual BGG spectral sequence to

H d
log−dR(M

tor
H,R, (V

∨

[µ],R)
sub)∼= H d

dR,c(MH,R, V∨
[µ],R)

(compactly supported of middle degree), compatible with their contribution to the
better-understood L2 cohomology of MH,R . (For more explanations see [Faltings
1983, Theorem 9; Harris 1990a, §2; 1990b, Proposition 5.4.2]; see also the compar-
isons with transcendental results in [Lan and Suh 2012; 2013] and the references
there.) Thus we consider weights of the form

(−w0)(w1 ·µ)= (−w0w1)(µ)+ (−w0)(w1 · 0)

holomorphic; these holomorphic weights form a translation of the dominant chamber
X+G1

because (−w0w1) preserves X+G1
.
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Proposition 2.6. There exists an integer N2, a positive parallel weight ν2 ∈ X+M1
,

and a weight µ0 ∈ X+G1
, all of which can be explicitly determined, such that

ν0+ N2ν1− ν2 =−w0(w1 ·µ0) (2.7)

This proposition is elementary in nature. One can prove Proposition 2.6 using
general principles that also work for all reductive groups defining Shimura varieties.
However, we shall spell out a (less elegant) case-by-case argument, which has the
advantage of giving explicit choices of N2, ν2, and µ0 of small sizes.

We will assume Proposition 2.6 in the remainder of this section, and post-
pone its proof until Section 3A. In Lemma 3.3, we will give an explicit choice
of C(µ0), depending only on (O, ?, L , 〈 · , · 〉, h0) and the weight ν0, such that
C(ν0)≥ |µ0|re (see [Lan and Suh 2012, Definition 3.9]) for some triple (N2, ν2, µ0)

as in Proposition 2.6.

2C. Application of automorphic vanishing.

Corollary 2.8. Let (N2, ν2, µ0) be any triple as in Proposition 2.6. Suppose that
p > |µ0|re and that N is any integer satisfying N ≥ N2. Then we have

H i (Mtor
H,6,R,W sub

ν0+Nν1,R)= 0 for every i > 0.

Proof. By definition, the subset X+,<p
M1

of X+M1
is preserved by translations by parallel

weights. Moreover, by [Lan and Suh 2012, Remark 2.30], and by the same argument
as in the proof of [Lan and Suh 2012, Lemma 7.20], we have ν0 ∈ X+,<p

M1
under

the assumption that p > |µ0|re. Then the assertion H i (Mtor
H,6,R,W sub

ν0+Nν1,R) = 0
follows from [Lan and Suh 2013, Theorem 8.13(2)], because ν := ν0+ Nν1 and
ν+ := (N − N2)ν1+ ν2 satisfy the condition there, with µ(ν− ν+)= µ0 ∈X+,<re p

G1

and w(ν)= w1 (so that d − l(w(ν))= d − l(w1)= 0). �

Remark 2.9 (erratum). There are typos in [Lan and Suh 2013, Theorem 8.13]:
both instances of X+,<W p

G1
there should be X+,<re p

G1
, which is what was used in [Lan

and Suh 2013, Corollary 7.24], on which the theorem depends.

2D. End of the proof of Theorem 1.1. Let N1 be as in Lemma 2.4, and let
(N2, ν2, µ0) be any triple as in Proposition 2.6 satisfying C(ν0)≥ |µ0|re for some
C(ν0) (which will be given in Lemma 3.3 below). Suppose that p>C(ν0) and that
N is any integer satisfying N ≥ N1 and N ≥ N2. By Lemma 2.4 and by the Leray
spectral sequence, and by Corollary 2.8, we have

H 0(Mmin
H,R, Riπ∗W sub

ν0+Nν1,R)
∼= H i (Mtor

H,6,R,W sub
ν0+Nν1,R)= 0 (2.10)

for all i>0. Since Riπ∗W sub
ν0+Nν1,R is generated by its global sections (by Lemma 2.4)

it follows that
Riπ∗W sub

ν0+Nν1,R = 0 (2.11)
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for all i > 0. By combining (2.3) and (2.11), we obtain the desired vanishing (1.2)
for all i > 0 (under the assumption that p > C(ν0)≥ |µ0|re).

Suppose that the residue characteristics of R are all zero. By shrinking R and
enlarging R by flat descent, we may replace the setup with a different one in which
p > C(ν0)≥ |µ0|re, and obtain the desired vanishing from the above.

Thus, Theorem 1.1 follows. �

3. Elementary computations

We shall freely use the notation in [Lan and Suh 2012, §2 and §7]. The material in
this section can be read without any knowledge of algebraic geometry or Shimura
varieties.

3A. Proof of Proposition 2.6. We can rewrite (2.7) as

ν0+ N2ν1− ν2 =−w0(w1µ0+w1ρ− ρ)= µ
′

0+ (−w0)(w1 · 0),

where µ′0=−(w0w1)(µ0)∈X+G1
satisfies V[µ′0]

∼=V∨
[µ0]

, becausew0w1 is the longest
Weyl element in WG1 . Hence it suffices to find N2 and ν2 such that

µ′0 = ν0+ N2ν1− ν2− (−w0)(w1 · 0) ∈ X+G1
. (3.1)

Let us write ν j = ((ν j,τ )τ∈ϒ/c; ν j,0) =
(
((ν j,τ,iτ )1≤iτ≤rτ )τ∈ϒ/c; ν j,0

)
∈ X+M1

for
j = 0, 1, 2. We shall also denote by ρτ (resp. w0,τ , w1,τ ) the corresponding factors
of ρ (resp. w0, w1). Then we need

µ′0,τ = ν0,τ + N2ν1,τ − ν2,τ − (−w0,τ )(w1,τ · 0) ∈ X+Gτ (3.2)

for each factor Gτ of G1. There are two cases:

(1) If τ = τ ◦c, then Gτ
∼= Sp2rτ ⊗Z R1 or Gτ

∼=O2rτ ⊗Z R1, and Mτ
∼=GLrτ ⊗Z R1.

If Gτ
∼= Sp2rτ ⊗Z R1, set dτ = 1

2rτ (rτ + 1) and r ′τ = rτ + 1. If Gτ
∼= O2rτ ⊗Z R1, set

dτ = 1
2rτ (rτ−1) and r ′τ = rτ . Set eτ = (1, 1, . . . , 1). If d[τ ]Q=

∑
τ ′∈[τ ]Q

dτ ′=0, then
we must have Gτ

∼=O2rτ ⊗Z R1 and rτ ≤ 1, in which case (3.2) is trivially true if we
take µ′0,τ = ν0,τ , any N2 ∈Z, and ν2,τ = N2ν1,τ −(−w0,τ )(w1,τ ·0). Hence we may
assume that d[τ ]Q >0. By assumption, we know that ν0,τ,1≥ν0,τ,2≥· · ·≥ν0,τ,rτ , and
that ν1,τ = k1,τ eτ , where k1,τ > 0 depends only on the equivalence class [τ ]Q of τ
(see [Lan and Suh 2012, Definition 7.12]). Also, we have ρτ = (r ′τ ,r

′
τ−1, . . . ,r ′τ−rτ )

and (−w0,τ )(w1,τ · 0)= r ′τ eτ . Thus, in order for (3.2) to hold, we need

ν0,rτ + Nk1,τ − k2,τ ≥ rτ + 1= r ′τ if Gτ
∼= Sp2rτ ⊗Z R1,

or

ν0,rτ−1+ Nk1,τ − k2,τ − rτ ≥ |ν0,rτ + Nk1,τ − k2,τ − rτ | if Gτ
∼= O2rτ ⊗Z R1.

We may take:
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(a) µ′0,τ := ν0,τ − ν0,[τ ]Qeτ , where ν0,[τ ]Q :=minτ ′∈[τ ]Q(ν0,τ ′,rτ );

(b) µ0,τ := −(w0,τw1,τ )(µ
′

0,τ )= µ
′

0,τ ; and

(c) Nτ to be any integer satisfying ν0,[τ ]Q + Nτ k1,τ > r ′τ , so that

ν0,τ + Nν1,τ −µ
′

0,τ − (−w0,τ )(w1,τ · 0)= (ν0,[τ ]Q + Nk1,τ − r ′τ ) eτ ,

with a positive coefficient ν0,[τ ]Q + Nk1,τ − r ′τ > 0 for every N ≥ Nτ .

(2) If τ 6= τ ◦ c, then Gτ
∼= GLrτ ⊗Z R1 and Mτ

∼= (GLqτ ×GLpτ )⊗Z R1. Set
dτ = pτqτ ,

eτ = (1, 1, . . . , 1︸ ︷︷ ︸
qτ

, 0, 0, . . . , 0), and e′τ = (0, 0, . . . , 0,−1,−1, . . . ,−1︸ ︷︷ ︸
pτ

).

If d[τ ]Q =
∑

τ ′∈[τ ]Q/c dτ ′ = 0, then we must have pτqτ = 0 for all τ ∈ [τ ]Q,
in which case (3.2) is trivially true if we take µ′0,τ = ν0,τ , any N2 ∈ Z, and
ν2,τ = N2ν1,τ − (−w0,τ )(w1,τ · 0). Hence we may assume that d[τ ]Q > 0. By
assumption, we know that

ν0,τ,1 ≥ ν0,τ,2 ≥ · · · ≥ ν0,τ,qτ and ν0,τ,qτ+1 ≥ ν0,τ,qτ+2 ≥ · · · ≥ ν0,τ,rτ ,

and that ν1,τ = k1,τ eτ + k1,τ◦ce′τ , where [k1]τ = k1,τ + k1,τ◦c > 0 depends only on
the equivalence class [τ ]Q of τ (see [Lan and Suh 2012, Proposition 7.15]). Also,
we have ρτ = 1

2(rτ − 1, rτ − 3, . . . ,−rτ + 1) and (−w0,τ )(w1,τ · 0)= pτ eτ +qτ e′τ .
Thus, in order for (3.2) to hold, we need

ν0,qτ + Nk1,τ − k2,τ − pτ ≥ ν0,qτ+1− Nk1,τ◦c+ k2,τ◦c+ qτ ,

or equivalently

(ν0,qτ − ν0,qτ+1)+ N [k1]τ − [k2]τ ≥ pτ + qτ = rτ .

We may take:

(a) µ′0,τ := ν0,τ − ν0,[τ ]Qeτ − (ν ′0,τ,1− ν0,[τ ]Q)(eτ − e′τ ), where

ν0,[τ ]Q := min
τ ′∈[τ ]Q,dτ ′ 6=0

(ν0,τ ′,qτ ′ − ν0,τ ′,qτ ′+1),

ν ′0,τ,1 :=

{
ν0,τ,1 if qτ > 0,
ν0,τ,1+ ν0,[τ ]Q if qτ = 0.

(b) µ0,τ := −(w0,τw1,τ )(µ
′

0,τ ), which ends with µ0,τ,rτ = 0 because µ′0,τ starts
with µ′0,τ,1 = 0; and

(c) Nτ to be any integer satisfying ν0,[τ ]Q + Nτ [k1]τ > rτ , so that

ν0,τ + Nν1,τ −µ
′

0,τ − (−w0,τ )(w1,τ · 0)

= (ν0,τ,1+ Nk1,τ − pτ ) eτ + (ν0,[τ ]Q − ν0,τ,1+ Nk1,τ◦c− qτ ) eτ
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with sum of coefficients, for every N ≥ Nτ ,

(ν0,τ,1+Nk1,τ−pτ )+(ν0,[τ ]Q−ν0,τ,1+Nk1,τ◦c−qτ )=ν0,[τ ]Q+N [k1]τ−rτ >0.

Now set:
N2 := max

τ∈ϒ/c
(Nτ );

µ0 := ((µ0,τ )τ∈ϒ/c;µ0,0) with any value of µ0,0;

µ′0 := (−w0w1)(µ0);

ν2 := ν0+ N2ν1−µ
′

0− (−w0)(w1 · 0).

Then the triple (N2, ν2, µ0) satisfies (3.1) and hence also (2.7), as desired, because
each of its factors (N2, ν2,τ , µ0,τ ) satisfies (3.2) by the above. �

3B. Explicit choice of C(ν0).

Lemma 3.3. The minimal size |µ0|re (see [Lan and Suh 2012, Definition 3.9])
among all µ0 appearing in some (N2, ν2, µ0) satisfying (2.7) in Proposition 2.6 is
smaller than or equal to

C(ν0) :=
∑
τ∈ϒ/c

Cτ (ν0,τ ), (3.4)

where each Cτ (ν0,τ ) is defined as follows:

(1) If τ = τ ◦ c, then we set dτ := 1
2rτ (rτ + 1) (resp. dτ := 1

2rτ (rτ − 1)) if
Gτ
∼= Sp2rτ ⊗Z R1 (resp. Gτ

∼= O2rτ ⊗Z R1), ν0,[τ ]Q :=minτ ′∈[τ ]Q(ν0,τ ′,rτ ), and

Cτ (ν0,τ ) := dτ +
∑

1≤iτ≤rτ

(ν0,τ,iτ − ν0,[τ ]Q). (3.5)

(2) If τ 6= τ ◦ c, then we set dτ := pτqτ ,

ν0,[τ ]Q := min
τ ′∈[τ ]Q,dτ ′ 6=0

(ν0,τ ′,qτ ′ − ν0,τ ′,qτ ′+1),

ν ′0,τ,1 :=

{
ν0,τ,1 if qτ > 0,
ν0,τ,1+ ν0,[τ ]Q if qτ = 0,

and

Cτ (ν0,τ ) := dτ +
∑

1≤iτ≤qτ

(ν ′0,τ,1− ν0,τ,iτ )+
∑

qτ<iτ≤rτ

(ν ′0,τ,1− ν0,[τ ]Q − ν0,τ,iτ ). (3.6)

Proof. These follow from the definition of |µ0|re = d +
∑

τ∈ϒ/c

(∑
1≤iτ≤rτ µ0,τ,iτ

)
and the explicit choices of µ0,τ in the proof of Proposition 2.6. �

Remark 3.7. By using [Lan and Suh 2013, (7.9) and (7.11)], it is possible to reduce
the proof of Theorem 1.1 to the case where the integral PEL datum is Q-simple,
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and replace (3.4) with

C ′(ν0) :=max
[τ ]Q

(
C[τ ]Q(ν0,[τ ]Q)

)
, (3.8)

where:

(1) C[τ ]Q(ν0,[τ ]Q)= 0 if d[τ ]Q =
∑

τ ′∈[τ ]Q/c dτ ≤ 1;

(2) C[τ ]Q(ν0,[τ ]Q)=
∑

τ ′∈[τ ]Q/c Cτ (ν0,τ ), where Cτ (ν0,τ ) are as in (3.5) and (3.6),
otherwise.

We leave the details to the interested readers.

3C. Some examples. To help the reader understand the notation and formulas, we
include some examples of familiar special cases.

Example 3.9 (trivial weight). If ν0 = 0, then (2.7) holds for µ0 = 0 and any
sufficiently large N2, and we have C(ν0) =

∑
τ∈ϒ/c Cτ (ν0,τ ) =

∑
τ∈ϒ/c dτ = d

in (3.4).

Example 3.10 (Siegel case). Suppose (O, ?, L , 〈 · , · 〉, h0) is given with O=Z with
trivial ?, with (L , 〈 · , · 〉) given by Z⊕2r with some standard self-dual symplectic
pairing, and with any conventional choice of h0. Then we are in the so-called Siegel
case. There is a unique τ ∈ϒ with τ = τ ◦c, which we can suppress in our notation,
and each ν0 ∈X+M1

can be represented by a tuple ((ν0,1, ν0,2, . . . , ν0,r ); ν0,0), where
ν0,1 ≥ ν0,2 ≥ · · · ≥ ν0,r are integers. Then µ0 can be chosen to be

ν0− ν0,r ((1, 1, . . . , 1, 1); 0)= ((ν0,1− ν0,r , . . . , ν0,r−1− ν0,r , 0); ν0,0)

(where the last entry is irrelevant), and then C(ν0)=
1
2r(r+1)+

∑
1≤i<r (ν0,i−ν0,r )

(see (3.5)).

Example 3.11 (“Q-similitude Hilbert case”). Suppose (O, ?, L , 〈 · , · 〉, h0) is given
with O =OF with trivial ?, where F is a totally real number field, with (L , 〈 · , · 〉)
given by O⊕2

F with some standard symplectic pairing defined by trace, and with any
conventional choice of h0; and suppose p is any prime number unramified in OF .
Then we are essentially in the so-called Hilbert case, although we only consider
elements in ResF/Q GL2 with similitudes in Gm (rather than ResF/Q Gm). There
are d elements τ ∈ ϒ corresponding to the d = [F :Q] homomorphisms from OF

to an algebraic closure of Qp, which all satisfy τ = τ ◦ c and determine a unique
equivalence class [τ ]Q (of Galois orbits of τ ), and our coefficient ring R is chosen
to contain the images of all these homomorphisms, over which all linear algebraic
data are split. Each ν0 ∈X+M1

can be represented by a tuple ((ν0,τ )τ∈ϒ ; ν0,0), where
each ν0,τ = (ν0,τ,1) consists of just one integer ν0,τ,1. Then ν0,[τ ]Q =minτ∈ϒ(ν0,τ,1),
and µ0 can be chosen to be ν0− ν0,[τ ]Q((1)τ∈ϒ ; 0) = ((ν0,τ,1− ν0,[τ ]Q)τ∈ϒ ; ν0,0),
and we have C(ν0)= d +

∑
τ∈ϒ(ν0,τ,1− ν0,[τ ]Q) (see (3.5)).



1796 Kai-Wen Lan and Benoît Stroh

Example 3.12 (simplest unitary case). Suppose (O, ?, L , 〈 · , · 〉, h0) is given with
O =OF , where F is an imaginary quadratic extension of Q with an embedding
F ↪→C, with ? given by complex conjugation, with (L , 〈 · , · 〉) given by a Hermitian
module over O⊕r

F with signature (r − q, q) at∞ (using the given F ↪→ C), and
with any conventional choice of h0 (respecting the signature); and suppose p is any
prime number unramified in OF . Then we obtain the simplest (nontrivial) unitary
case. There is a unique representative τ of orbits in ϒ/c such that τ 6= τ ◦ c and
(pτ , qτ )= (r−q, q), matching the signatures at∞ and at p; hence we shall always
choose this τ and suppress τ from the notation. Each ν0 ∈X+M1

can be represented by
a tuple ((ν0,1, ν0,2, . . . , ν0,q , ν0,q+1, . . . , ν0,r ); ν0,0), where ν0,1 ≥ ν0,2 ≥ . . .≥ ν0,q

and ν0,q+1 ≥ . . . ≥ ν0,r are integers. If q > 0, then µ0 can be chosen to be
(ν0,1−ν0,q+ν0,q+1−ν0,r , . . . , ν0,1−ν0,q , ν0,1−ν0,q , . . . , ν0,1−ν0,2, 0; ν0,0) (note
the reversed order and the repeated term ν0,1− ν0,q ), and we have

C(ν0)= (r − q)q +
∑

1≤i≤q

(ν0,1− ν0,i )+
∑

q<i≤r

(ν0,1− ν0,q + ν0,q+1− ν0,i ).

If q = 0, then µ0 can be chosen to be (ν0,1− ν0,r , . . . , ν0,1− ν0,2, 0; ν0,0) and we
have C(ν0)=

∑
1≤i≤r (ν0,τ,1−ν0,i ); but d = 0 and the map π is trivial — C(ν0)= 0

suffices. (See (3.6) and Remark 3.7.)

4. Simpler proof for the trivial weight case

In this final section, we sketch a logically simpler proof for the trivial weight case
ν0 = 0, which does not require the various advanced technical inputs in [Lan and
Suh 2013, §§1–3] (such as the theory of F-spans in [Ogus 1994]). The key is to
give a simpler proof of the vanishing statement in Corollary 2.8 when ν0 = 0 (with
a suitable choice of (N2, ν2, µ0)). By standard arguments, as in the proof of [Lan
and Suh 2013, Theorem 8.2], we may and we shall assume that R is a perfect field
extension of the residue field of R1.

Using the extended Kodaira–Spencer isomorphism — see [Lan 2013, Theo-
rem 6.4.1.1(4)] — and the very construction of canonical extensions of automorphic
bundles using the relative Lie algebra of the universal abelian scheme, one can
show that

W can
(−w0)(w1·0)

∼= (W∨w1·0)
can ∼=�

d
Mtor

H,6,1/S1
(log∞) :=

d∧
(�1

Mtor
H,6,1/S1

(log∞))

as line bundles over Mtor
H,6,1 (ignoring Tate twists). (The proof is left to the interested

readers.) Moreover, the proof of Proposition 2.6 in Section 3A shows that we
can take µ0 = 0 in Proposition 2.6, with some integer N2 such that the weight
ν2 = N2ν1− (−w0)(w1 · 0) is positive and parallel. Then we have

W sub
Nν1
∼=W sub

ν2
⊗Mtor

H,6,1
W can
(−w0)(w1·0)

∼=W sub
ν2
⊗Mtor

H,6,1
�d

Mtor
H,6,1/S1

(logD),
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where D is the boundary divisor Mtor
H,6,1−MH,1 (with reduced subscheme structure).

By [Lan and Suh 2013, Proposition 4.2(5) and Corollary 7.14], there exists a
(usually nonreduced) divisor D′ with D′red = D, and some r0 > 0, such that the line
bundle (W can

ν2
)⊗r (−D′) is ample for all integers r ≥ r0. (This follows from [Lan

2013, Theorem 7.3.3.4], which implies that there exists some D′ as above such that
OMtor

H,6,1
(−D′) is relatively ample over Mmin

H,1.) By base change from R1 to R, this is
exactly the condition (∗) needed in [Esnault and Viehweg 1992, Theorem 11.5].
Then, by [Esnault and Viehweg 1992, Theorem 11.5] and by Serre duality, we
obtain

H i (Mtor
H,6,R,W sub

Nν1,R)= H i (Mtor
H,6,R,W sub

ν2,R ⊗OMtor
H,6,1

�d
Mtor

H,6,1/S1
(logD))= 0

for all i > 0. (This is the same approach taken in [Lan and Suh 2011].) This
gives the desired vanishing statement in Corollary 2.8 when ν0 = 0, and we can
conclude as in Section 2D. This argument does not depend on [Lan and Suh 2013,
Theorem 8.13(2)], and hence not on the various advanced technical inputs in [Lan
and Suh 2013, §§1–3].
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