

ℓ-modular representations of unramified p-adic $\mathrm{U}(2,1)$

Robert James Kurinczuk

Abstract

We construct all irreducible cuspidal ℓ-modular representations of a unitary group in three variables attached to an unramified extension of local fields of odd residual characteristic p with $\ell \neq p$. We describe the ℓ-modular principal series and show that the supercuspidal support of an irreducible ℓ-modular representation is unique up to conjugacy.

1. Introduction

The abelian category $\mathfrak{R}_{R}(G)$ of smooth representations of a reductive p-adic group G over an algebraically closed field R has been well studied when R has characteristic zero. The same cannot be said when R has positive characteristic ℓ; here many questions remain unanswered. In this paper, we are concerned only with the case $\ell \neq p$. We study the set $\operatorname{Irr}_{R}(G)$ of isomorphism classes of irreducible R-representations, eventually specialising to $G=\mathrm{U}(2,1)$, a unitary group in three variables attached to an unramified extension F / F_{0} of nonarchimedean local fields of odd residual characteristic. All R-representations henceforth considered will be smooth.

A classical strategy for the classification of irreducible R-representations is to split the problem into two steps: firstly, for any parabolic subgroup P of G with Levi decomposition $P=M \ltimes N$ and any $\sigma \in \operatorname{Irr}_{R}(M)$, decompose the (normalised) parabolically induced R-representation $i_{P}^{G}(\sigma)$; and, secondly, construct the irreducible R-representations which do not appear as a subquotient of an R-representation appearing in the first step, the supercuspidal R-representations. For any parabolic subgroup P, a supercuspidal irreducible R-representation π will have trivial Jacquet module $r_{P}^{G}(\pi)=0$, by Frobenius reciprocity (i_{P}^{G} is right-adjoint to r_{P}^{G}). When R has characteristic zero the irreducible cuspidal R-representations, those whose Jacquet modules are all trivial, are all supercuspidal. However, in positive characteristic ℓ, there can exist irreducible cuspidal nonsupercuspidal R-representations.

[^0]By transitivity of the Jacquet module and the geometric lemma - see [Vignéras 1996, II 2.19] - the cuspidal support of $\pi \in \operatorname{Irr}_{R}(G)$, that is, the set of pairs (M, σ) with M a Levi factor of a parabolic subgroup P of G and σ an irreducible cuspidal R-representation of M such that π is a subrepresentation of $i_{P}^{G}(\sigma)$, is a nonempty set consisting of a single G-conjugacy class; we say that the cuspidal support is unique up to conjugacy. By transitivity of parabolic induction, the supercuspidal support of $\pi \in \operatorname{Irr}_{R}(G)$, that is, the set of pairs (M, σ) with M a Levi factor of a parabolic subgroup P of G and σ an irreducible supercuspidal R-representation of M such that π is a subquotient of $i_{P}^{G}(\sigma)$, is nonempty. However, in general, it is not known if the supercuspidal support of an irreducible R-representation is unique up to conjugacy.

For GL_{n} and its inner forms, Vignéras [1996] and Mínguez and Sécherre [2014b; 2014a] showed that the supercuspidal support of an irreducible R-representation is unique up to conjugacy. The unicity of supercuspidal support is of great importance. Firstly, the unicity of supercuspidal support (up to inertia) for GL_{n} leads to the block decomposition of $\Re_{R}(G)$ into indecomposable summands; see [Vignéras 1998]. Secondly, it is important in Vignéras' ℓ-modular local Langlands correspondence for GL_{n}, which is first defined on supercuspidal elements by compatibility with the characteristic zero local Langlands correspondence and then extended to all irreducible ℓ-modular representations of GL_{n}. In this paper, we prove unicity of supercuspidal support for $\mathrm{U}(2,1)$. We hope this is the first step in establishing similar results for $\mathrm{U}(2,1)$ and in extending these to classical groups in general.

Our strategy is first to construct all irreducible cuspidal R-representations by compact induction from irreducible R-representations of compact open subgroups. The type of construction we employ has been used to great effect to construct all irreducible cuspidal R-representations in a large class of reductive p-adic groups when R has characteristic zero: [Morris 1999] for level zero R-representations of any reductive p-adic group, [Bushnell and Kutzko 1993a; 1993b] for GL_{n} and SL_{n}, [Sécherre and Stevens 2008] for inner forms of GL_{n}, [Yu 2001] and [Kim 2007] for arbitrary connected reductive groups under "tame" conditions, and [Stevens 2008] for classical p-adic groups with p odd. Vignéras [1996] and Mínguez and Sécherre [2014b; 2014a] adapted the characteristic zero constructions for GL_{n} and its inner forms to ℓ-modular representations. We perform similar adaptations to Stevens' construction to exhaust all irreducible cuspidal ℓ-modular representations of $U(2,1)$.

Theorem 5.3. Let $G=\mathrm{U}(2,1)$ and let π be an irreducible cuspidal R-representation of G. There exist a compact open subgroup J of G with pro-unipotent radical J^{1} such that J / J^{1} is a finite reductive group, an irreducible R-representation κ of J and an irreducible cuspidal R-representation σ of J / J^{1} such that $\pi \simeq \operatorname{ind}_{J}^{G}(\kappa \otimes \sigma)$.

The construction is explicit and, furthermore, all R-representations

$$
\mathrm{I}_{\kappa}(\sigma)=\operatorname{ind}_{J}^{G}(\kappa \otimes \sigma)
$$

constructed in this way are cuspidal. Moreover, we show that $\mathrm{I}_{\kappa}(\sigma)$ is supercuspidal if and only if σ is supercuspidal (Remark 8.2). In work in progress, joint with Stevens, we extend Stevens' construction for arbitrary classical groups to the ℓ-modular setting.

In the split case, for general linear groups all irreducible cuspidal ℓ-modular representations lift to integral ℓ-adic representations. For inner forms of GL_{n}, this is no longer true; some cuspidal nonsupercuspidal ℓ-modular representations do not lift. For $\mathrm{U}(2,1)$ we also find cuspidal nonsupercuspidal ℓ-modular representations which do not lift (Remark 5.5). These nonlifting phenomena appear quite different. For $\mathrm{U}(2,1)$ this nonlifting occurs because, in certain cases, there are ℓ-modular representations of the finite group J / J^{1} which do not lift. For inner forms of GL_{n}, the nonlifting occurs when the normaliser of the reduction modulo ℓ of the inflation of a cuspidal ℓ-adic representation of an analogous group to J / J^{1} is larger than the normaliser of all of its cuspidal lifts. We find that all supercuspidal ℓ-modular representations of $\mathrm{U}(2,1)$ lift (Remark 8.2), as is the case for GL_{n} and its inner forms.

Secondly, by studying the corresponding Hecke algebras, we find the characters χ of the maximal diagonal torus T of $\mathrm{U}(2,1)$ such that the principal series R-representation $i_{B}^{\mathrm{U}(2,1)}(\chi)$ is reducible. We let χ_{1} denote the character of F^{\times}given by $\chi_{1}(x)=\chi\left(\operatorname{diag}\left(x, \bar{x} x^{-1}, \bar{x}^{-1}\right)\right)$, where \bar{x} is the $\operatorname{Gal}\left(F / F_{0}\right)$-conjugate of x.
Theorem 6.2. Let $G=\mathrm{U}(2,1)$. Then $i_{B}^{G}(\chi)$ is reducible exactly in the following cases:
(1) $\chi_{1}=v^{ \pm 2}$, where v is the absolute value on F;
(2) $\chi_{1}=\eta \nu^{ \pm 1}$, where η is any extension of the quadratic class field character $\omega_{F / F_{0}}$ to F^{\times};
(3) χ_{1} is nontrivial, but $\left.\chi_{1}\right|_{F_{0}^{\times}}$is trivial.

When R is of characteristic zero this is due to Keys [1984]. In our proof we need to apply his results to determine a sign. It should be possible to remove this dependency by computation using the theory of covers (cf. [Blondel 2012, Remark 3.13]). An alternative proof, when F_{0} is of characteristic zero, would be to use the computations of [Keys 1984] with [Dat 2005, Proposition 8.4].

Finally, by studying the interaction of the right adjoints R_{κ} of the functors I_{κ} with parabolic induction we find cuspidal subquotients of the principal series. When cuspidal subquotients appear in the principal series we show exactly which ones from our exhaustive list do, finding that the supercuspidal support of an irreducible R-representation is unique up to conjugacy.

Theorem 8.1. Let π be an irreducible R-representation of $\mathrm{U}(2,1)$. Then the supercuspidal support of π is unique up to conjugacy.

In fact, in many cases, we obtain extra information on the irreducible quotients and subrepresentations which appear. If $\ell \neq 2$ and $\ell \mid q-1$, we show that all the principal series R-representations $i_{B}^{\mathrm{U}(2,1)}(\chi)$ are semisimple (Lemma 6.8). If $\ell \mid q+1$, we show that $i_{B}^{\mathrm{U}(2,1)}(\chi)$ has a unique irreducible subrepresentation and a unique irreducible quotient, and these are isomorphic (Lemma 6.10). A striking example of the reducibilities that occur is when $\chi=v^{-2}$.
Theorem (see Theorem 6.12 for more details). Let $G=\mathrm{U}(2,1)$.
(1) If $\ell \nmid(q-1)(q+1)\left(q^{2}-q+1\right)$, then $i_{B}^{G}\left(v^{-2}\right)$ has length two with unique irreducible subrepresentation 1_{G} and unique irreducible quotient St_{G}.
(2) If $\ell \neq 2$ and $\ell \mid q-1$, then $i_{B}^{G}\left(v^{-2}\right)=1_{G} \oplus \mathrm{St}_{G}$ is semisimple of length two.
(3) If $\ell \neq 3$ and $\ell \mid q^{2}-q+1$, then $i_{B}^{G}\left(v^{-2}\right)$ has length three with unique cuspidal subquotient. The unique irreducible subrepresentation is not isomorphic to the unique irreducible quotient.
(4) If $\ell \neq 2$ and $\ell \mid q+1$, or if $\ell=2$ and $4 \mid q+1$, then $i_{B}^{G}\left(\nu^{-2}\right)$ has length six with 1_{G} appearing as the unique subrepresentation and the unique quotient, and four cuspidal subquotients, one of which appears with multiplicity two. A maximal cuspidal subquotient of $i_{B}^{G}\left(\nu^{-2}\right)$ is not semisimple.
(5) If $\ell=2$ and $4 \mid q-1$, then $i_{B}^{G}\left(v^{-2}\right)$ has length five with 1_{G} appearing as the unique subrepresentation and the unique quotient. All cuspidal subquotients of $i_{B}^{G}\left(\nu^{-2}\right)$ are semisimple and the irreducible cuspidal subquotients are pairwise nonisomorphic.

2. Notation

2A. Unramified unitary groups. Let F_{0} be a nonarchimedean local field of odd residual characteristic p. Let F be an unramified quadratic extension of F_{0} and -a generator of $\operatorname{Gal}\left(F / F_{0}\right)$. If D is a nonarchimedean local field, we let \mathfrak{o}_{D} denote the ring of integers of D, \mathfrak{p}_{D} denote the unique maximal ideal of \mathfrak{o}_{D}, and $k_{D}=\mathfrak{o}_{D} / \mathfrak{p}_{D}$ denote the residue field. We let $\mathfrak{o}_{0}=\mathfrak{o}_{F_{0}}, \mathfrak{p}_{0}=\mathfrak{p}_{F_{0}}, k_{0}=k_{F_{0}}$, and $q=q_{0}=\left|k_{F_{0}}\right|$. We fix a choice of uniformiser ϖ_{F} of F_{0}.

Let V be a finite-dimensional F-vector space and $h: V \times V \rightarrow F$ a hermitian form on V, that is, a nondegenerate form which is sesquilinear (linear in the first variable and ${ }^{-}$-linear in the second variable) and such that $h\left(v_{1}, v_{2}\right)=\overline{h\left(v_{2}, v_{1}\right)}$ for all v_{1}, $v_{2} \in V$. The unitary group $\mathrm{U}(V, h)$ is the subgroup of isometries of $\mathrm{GL}(V)$, i.e., $\mathrm{U}(V, h)=\left\{g \in \mathrm{GL}(V): h\left(g v_{1}, g v_{2}\right)=h\left(v_{1}, v_{2}\right), v_{1}, v_{2} \in V\right\}$. The form h induces an anti-involution on $\operatorname{End}_{F}(V)$ which we denote by - . Let σ denote the involution $g \mapsto \bar{g}^{-1}$ for $g \in \operatorname{GL}(V)$. We also let σ act on $\operatorname{End}_{F}(V)$ by $a \mapsto-\bar{a}$ for $a \in \operatorname{End}_{F}(V)$.

2B. Parahoric subgroups. An \mathfrak{o}_{F}-lattice in V is a compact open \mathfrak{o}_{F}-submodule of V. Let L be an \mathfrak{o}_{F}-lattice in V and let Lat V denote the set of all \mathfrak{o}_{F}-lattices in V. The \mathfrak{o}_{F}-lattice $L^{\sharp}=\left\{v \in V: h(v, L) \subseteq \mathfrak{p}_{F}\right\}$, defined relative to h, is called the dual lattice of L. Let $A=\operatorname{End}_{F}(V)$ and $\mathfrak{g}=\left\{X \in A: X+X^{\sigma}=0\right\}$. An \mathfrak{o}_{F}-lattice sequence is a function $\Lambda: \mathbb{Z} \rightarrow$ Lat V which is decreasing and periodic. Let Λ be an \mathfrak{o}_{F}-lattice sequence. The dual \mathfrak{o}_{F}-lattice sequence Λ^{\sharp} of Λ is the \mathfrak{o}_{F}-lattice sequence defined by $\Lambda^{\sharp}(n)=(\Lambda(-n))^{\sharp}$ for all $n \in \mathbb{Z}$. We call Λ self-dual if there exists $k \in \mathbb{Z}$ such that $\Lambda(n)=\Lambda^{\sharp}(n+k)$ for all $n \in \mathbb{Z}$. If Λ is self-dual then we can always consider a translate Λ_{k} of Λ such that either $\Lambda_{k}(0)=\Lambda_{k}^{\sharp}(0)$ or $\Lambda_{k}(1)=\Lambda_{k}^{\sharp}(0)$.

Let Λ be an \mathfrak{o}_{F}-lattice sequence in V. For $n \in \mathbb{Z}$ define

$$
\mathfrak{P}_{n}(\Lambda)=\{x \in A: x \Lambda(m) \subset \Lambda(m+n) \text { for all } m \in \mathbb{Z}\}
$$

which is an \mathfrak{o}_{F}-lattice in A. We let $\mathfrak{P}_{n}^{-}(\Lambda)=\mathfrak{P}_{n}(\Lambda) \cap \mathfrak{g}$.
If Λ is self-dual then the groups $\mathfrak{P}_{n}(\Lambda)$ are stable under the involution which h induces on A. In this case, define compact open subgroups of G, called parahoric subgroups, by

$$
\begin{aligned}
\mathrm{P}(\Lambda) & =\mathfrak{P}_{0}(\Lambda)^{\times} \cap G \\
\mathrm{P}_{m}(\Lambda) & =\left(1+\mathfrak{P}_{m}(\Lambda)\right) \cap G, \quad m \in \mathbb{N}
\end{aligned}
$$

The pro-unipotent radical of $\mathrm{P}(\Lambda)$ is isomorphic to $\mathrm{P}_{1}(\Lambda)$. The sequence $\left(\mathrm{P}_{m}(\Lambda)\right)_{m \in \mathbb{N}}$ is a fundamental system of neighbourhoods of the identity in G and forms a decreasing filtration of $\mathrm{P}(\Lambda)$ by normal compact open subgroups. The quotient $\mathrm{M}(\Lambda)=\mathrm{P}(\Lambda) / \mathrm{P}_{1}(\Lambda)$ is the k_{0}-points of a connected reductive group defined over k_{0}.

Let $\mathrm{P}_{1}=\mathrm{P}\left(\Lambda_{1}\right)$ and $\mathrm{P}_{2}=\mathrm{P}\left(\Lambda_{2}\right)$ be parahoric subgroups of G. Fix a set of distinguished double coset representatives $D_{2,1}$ for $\mathrm{P}_{2} \backslash G / \mathrm{P}_{1}$, as in [Morris 1993, §3.10]. Let $n \in D_{2,1}$; then

$$
P_{\Lambda_{1}, n \Lambda_{2}}=\mathrm{P}_{1}^{1}\left(\mathrm{P}_{1} \cap \mathrm{P}_{2}^{n}\right) / \mathrm{P}_{1}^{1}
$$

is a parabolic subgroup of $\mathrm{M}_{1}=\mathrm{P}_{1} / \mathrm{P}_{1}^{1}$, by [Morris 1993, Corollary 3.20]. Furthermore, the pro- p unipotent radical of $\mathrm{P}_{1}^{1}\left(\mathrm{P}_{1} \cap \mathrm{P}_{2}^{n}\right)$ is $\mathrm{P}_{1}^{1}\left(\mathrm{P}_{1} \cap\left(\mathrm{P}_{2}^{n}\right)^{1}\right)$, by [Morris 1993, Lemma 3.21]. If $D_{2,1}$ is a set of distinguished double coset representatives for $\mathrm{P}_{2} \backslash G / \mathrm{P}_{1}$, then $D_{2,1}^{-1}$ is a set of distinguished double coset representatives for $\mathrm{P}_{1} \backslash G / \mathrm{P}_{2}$. Hence

$$
P_{\Lambda_{2}, n^{-1} \Lambda_{1}}=\mathrm{P}_{2}^{1}\left(\mathrm{P}_{2} \cap{ }^{n} \mathrm{P}_{1}\right) / \mathrm{P}_{2}^{1}
$$

is a parabolic subgroup of $\mathrm{M}_{2}=\mathrm{P}_{2} / \mathrm{P}_{2}^{1}$. Furthermore, the pro- p unipotent radical of $\mathrm{P}_{2}^{1}\left(\mathrm{P}_{2} \cap{ }^{n} \mathrm{P}_{1}\right)$ is $\mathrm{P}_{2}^{1}\left(\mathrm{P}_{2} \cap{ }^{n} \mathrm{P}_{1}^{1}\right)$.

2C. $\mathbf{U}(\mathbf{2}, \mathbf{1})\left(\boldsymbol{F} / \boldsymbol{F}_{\mathbf{0}}\right)$. Let $x_{i} \in F$ for $i=1,2, \ldots, n$. Denote by $\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right)$ the n-by- n diagonal matrix with entries x_{i} on the diagonal and by $\operatorname{adiag}\left(x_{1}, \ldots, x_{n}\right)$ the n-by- n matrix $\left(a_{i, j}\right)$ such that $a_{m, n+1-m}=x_{n+1-m}$ and all other entries are zero.

Let V be a three-dimensional F-vector space with standard basis $\left\{e_{-1}, e_{0}, e_{1}\right\}$ and $h: V \times V \rightarrow F$ be the nondegenerate hermitian form on V defined by, for $v, w \in V$,

$$
h(v, w)=v_{-1} \overline{w_{1}}+v_{0} \overline{w_{0}}+v_{1} \overline{w_{-1}}
$$

if $v=\left(v_{-1}, v_{0}, v_{1}\right)$ and $w=\left(w_{-1}, w_{0}, w_{1}\right)$ with respect to the standard basis $\left\{e_{-1}, e_{0}, e_{1}\right\}$. Let $\mathrm{U}(2,1)\left(F / F_{0}\right)$ denote the unitary group attached to the hermitian space (V, h), i.e.,

$$
\mathrm{U}(2,1)\left(F / F_{0}\right)=\left\{g \in \mathrm{GL}_{3}(F): g J \bar{g}^{T} J=1\right\}
$$

where $J=\operatorname{adiag}(1,1,1)$ is the matrix of the form h. We let $\mathrm{U}(1,1)\left(F / F_{0}\right)$ and $\mathrm{U}(2)\left(F / F_{0}\right)$ denote the two-dimensional unitary groups defined by the forms whose associated matrices are $\operatorname{adiag}(1,1)$ and $\operatorname{diag}\left(1, \varpi_{F}\right)$ respectively. Let

$$
\mathrm{U}(1)\left(F / F_{0}\right)=\left\{g \in F^{\times}: g \bar{g}=1\right\}
$$

and occasionally, for brevity, let $F^{1}=\mathrm{U}(1)\left(F / F_{0}\right)$. We use analogous notation for unitary groups defined over extensions of F_{0} and defined over finite fields.

Let B be the standard Borel subgroup of $\mathrm{U}(2,1)\left(F / F_{0}\right)$ with Levi decomposition $B=T \ltimes N$, where $T=\left\{\operatorname{diag}\left(x, y, \bar{x}^{-1}\right): x \in F^{\times}, y \in F^{1}\right\}$ and

$$
N=\left\{\left(\begin{array}{lll}
1 & x & y \\
0 & 1 & \bar{x} \\
0 & 0 & 1
\end{array}\right): x, y \in F, y+\bar{y}=x \bar{x}\right\} .
$$

The maximal F_{0}-split torus contained in T is $T_{0}=\left\{\operatorname{diag}\left(x, 1, x^{-1}\right): x \in F_{0}^{\times}\right\}$. The subgroup of T generated by its compact subgroups is

$$
T^{0}=\left\{\operatorname{diag}\left(x, y, \bar{x}^{-1}\right): x \in \mathfrak{o}_{F}^{\times}, y \in F^{1}\right\} .
$$

Let $T^{1}=T^{0} \cap \operatorname{diag}\left(1+\mathfrak{p}_{F}, 1+\mathfrak{p}_{F}, 1+\mathfrak{p}_{F}\right)$.
Let Λ_{I} be the \mathfrak{o}_{F}-lattice sequence of period three given by $\Lambda_{I}(0)=\mathfrak{o}_{F} \oplus \mathfrak{o}_{F} \oplus \mathfrak{o}_{F}$, $\Lambda_{I}(1)=\mathfrak{o}_{F} \oplus \mathfrak{o}_{F} \oplus \mathfrak{p}_{F}$ and $\Lambda_{I}(2)=\mathfrak{o}_{F} \oplus \mathfrak{p}_{F} \oplus \mathfrak{p}_{F}$ with respect to the standard basis. The (standard) Iwahori subgroup of G is the parahoric subgroup

$$
\mathrm{P}\left(\Lambda_{I}\right)=\left(\begin{array}{ccc}
\mathfrak{o}_{F} & \mathfrak{o}_{F} & \mathfrak{o}_{F} \\
\mathfrak{p}_{F} & \mathfrak{o}_{F} & \mathfrak{o}_{F} \\
\mathfrak{p}_{F} & \mathfrak{p}_{F} & \mathfrak{p}_{F}
\end{array}\right) \cap G .
$$

There are two parahoric subgroups of G which contain $\mathrm{P}\left(\Lambda_{I}\right)$, both of which are maximal. These correspond to the lattice sequences Λ_{x} of period one and Λ_{y} of period two with $\Lambda_{x}(0)=\mathfrak{o}_{F} \oplus \mathfrak{o}_{F} \oplus \mathfrak{o}_{F}, \Lambda_{y}(0)=\mathfrak{o}_{F} \oplus \mathfrak{o}_{F} \oplus \mathfrak{p}_{F}$ and $\Lambda_{y}(1)=\mathfrak{o}_{F} \oplus \mathfrak{p}_{F} \oplus \mathfrak{p}_{F}$.

Note that we have $\mathrm{M}\left(\Lambda_{x}\right) \simeq \mathrm{U}(2,1)\left(k_{F} / k_{0}\right), \mathrm{M}\left(\Lambda_{y}\right) \simeq \mathrm{U}(1,1)\left(k_{F} / k_{0}\right) \times k_{F}^{1}$ and $\mathrm{M}\left(\Lambda_{I}\right) \simeq k_{F}^{\times} \times k_{F}^{1}$. Furthermore, $\mathrm{M}\left(\Lambda_{I}\right)$ is a maximal torus in $\mathrm{M}\left(\Lambda_{x}\right)$ and $\mathrm{P}\left(\Lambda_{I}\right)$ is equal to the preimage in $\mathrm{P}\left(\Lambda_{x}\right)$ of a Borel subgroup B_{x}, which we call standard, under the projection map $\mathrm{P}\left(\Lambda_{x}\right) \rightarrow \mathrm{M}\left(\Lambda_{x}\right)$; the same holds with y in place of x throughout.

The affine Weyl group $\widetilde{W}=N_{G}(T) / T^{0}$ of $\mathrm{U}(2,1)\left(F / F_{0}\right)$ is an infinite dihedral group generated by the cosets represented by the elements $w_{x}=\operatorname{adiag}(1,1,1)$ and $w_{y}=\operatorname{adiag}\left(\varpi_{F}, 1, \varpi_{F}^{-1}\right)$. Furthermore, we have $\mathrm{P}\left(\Lambda_{x}\right)=\mathrm{P}\left(\Lambda_{I}\right) \cup \mathrm{P}\left(\Lambda_{I}\right) w_{x} \mathrm{P}\left(\Lambda_{I}\right)$ and $\mathrm{P}\left(\Lambda_{y}\right)=\mathrm{P}\left(\Lambda_{I}\right) \cup \mathrm{P}\left(\Lambda_{I}\right) w_{y} \mathrm{P}\left(\Lambda_{I}\right)$.

2D. Reduction modulo ℓ. Let $\overline{\mathbb{Q}}_{\ell}$ be an algebraic closure of the ℓ-adic numbers, $\overline{\mathbb{Z}}_{\ell}$ be the ring of integers of $\overline{\mathbb{Q}}_{\ell}, \Gamma$ be the unique maximal ideal of $\overline{\mathbb{Z}}_{\ell}$, and $\overline{\mathbb{F}}_{\ell}=\overline{\mathbb{Z}}_{\ell} / \Gamma$ be the residue field of $\overline{\mathbb{Q}}_{\ell}$, which is an algebraic closure of the finite field with ℓ elements. Let $\mathfrak{G r}_{R}(G)$ denote the Grothendieck group of R-representations, i.e., the free abelian group with \mathbb{Z}-basis $\operatorname{Irr}_{R}(G)$. A representation in $\mathfrak{R}_{\overline{\mathbb{Q}}_{\ell}}(G)$ will be called ℓ-adic and a representation in $\Re_{\overline{\mathbb{r}}_{\ell}}(G)$ will be called ℓ-modular. We say ℓ is banal for G if it does not divide the pro-order of any compact open subgroup of G.

Let (π, \mathscr{V}) be a finite-length ℓ-adic representation of G. We call π integral if π stabilises a $\overline{\mathbb{Z}}_{\ell}$-lattice \mathscr{L} in \mathscr{V}. In this case π stabilises $\Gamma \mathscr{L}$ and π induces a finite-length ℓ-modular representation on the space $\mathscr{L} / \Gamma \mathscr{L}$. In general, this depends on the choice of the lattice \mathscr{L}. However, due to [Vignéras 2004, Theorem 1], the semisimplification of $\mathscr{L} / \Gamma \mathscr{L}$ is independent of the lattice chosen and we define $r_{\ell}(\pi)$, the reduction modulo ℓ of π, to be this semisimple ℓ-modular representation. If π is a finite-length R-representation of G we write $[\pi]$ for the semisimplification of π in $\mathfrak{G r}_{R}(G)$.

We fix choices of square roots of p in $\overline{\mathbb{Q}}_{\ell}^{\times}$and $\overline{\mathbb{F}}_{\ell}^{\times}$such that our chosen square root of p in $\overline{\mathbb{F}}_{\ell}^{\times}$is the reduction modulo ℓ of our chosen square root of p in $\overline{\mathbb{Q}}_{\ell}^{\times}$, and make use of these choices in our definitions of normalised parabolic induction and the Jacquet module.

Parabolic induction preserves integrality and commutes with reduction modulo ℓ : if $P=M \ltimes N$ is a parabolic subgroup of G and σ is a finite-length integral ℓ-adic representation of M, then $r_{\ell}\left(i_{P}^{G}(\sigma)\right) \simeq\left[i_{P}^{G}\left(r_{\ell}(\sigma)\right)\right]$. Furthermore, compact induction commutes with reduction modulo ℓ : if H is a closed subgroup of G and σ an integral finite-length representation of H such that $\operatorname{ind}_{H}^{G}(\sigma)$ is of finite length, then $r_{\ell}\left(\operatorname{ind}_{H}^{G}(\sigma)\right)=\left[\operatorname{ind}_{H}^{G}\left(r_{\ell}(\sigma)\right)\right]$. For classical groups, due to [Dat 2005], the Jacquet module preserves integrality and commutes with reduction modulo ℓ : if $P=M \ltimes N$ is a parabolic subgroup of G and π is a finite-length integral ℓ-adic representation of G, then $r_{\ell}\left(r_{P}^{G}(\pi)\right) \simeq\left[r_{P}^{G}\left(r_{\ell}(\pi)\right)\right]$. This implies that the reduction modulo ℓ of a finite-length integral cuspidal ℓ-adic representation is cuspidal.

An irreducible R-representation is admissible, due to [Vignéras 1996, II 2.8]. If π is an R-representation, we let $\tilde{\pi}$ or π^{\sim} denote the contragredient representation of π.

The abelian category $\mathfrak{R}_{R}(G)$ has a decomposition as a direct product of full subcategories $\mathfrak{R}_{R}^{x}(G)$, consisting of all representations all of whose irreducible subquotients have level x for $x \in \mathbb{Q} \geqslant 0$, which is preserved by parabolic induction and the Jacquet functor, by [Vignéras 1996, II 5.8 and 5.12].

3. Cuspidal representations of $U(1,1)\left(k_{F} / k_{0}\right)$ and $U(2,1)\left(k_{F} / k_{0}\right)$

Our description of the supercuspidal ℓ-adic representations of $\mathrm{U}(1,1)\left(k_{F} / k_{0}\right)$ and $\mathrm{U}(2,1)\left(k_{F} / k_{0}\right)$ and the decomposition of the ℓ-adic principal series follow from similar arguments made for $\mathrm{GL}_{2}\left(k_{F}\right)$ and $\mathrm{SL}_{2}\left(k_{F}\right)$ by Digne and Michel [1991, §15.9]. The character tables of both groups were first computed by Ennola [1963] and the ℓ-modular representations of $\mathrm{U}(2,1)\left(k_{F} / k_{0}\right)$ were first studied by Geck [1990]. In this section, let $H=\mathrm{U}(1,1)\left(k_{F} / k_{0}\right)$ and $G=\mathrm{U}(2,1)\left(k_{F} / k_{0}\right)$. We can realise H and G as the fixed points of $\mathrm{GL}_{2}(\bar{k})$ and $\mathrm{GL}_{3}(\bar{k})$ under twisted Frobenius morphisms $\widetilde{F}:\left(a_{i j}\right) \mapsto\left(a_{j i}^{q}\right)^{-1}$, where \bar{k} is an algebraic closure of k_{0} containing k_{F}. A torus T of $\mathrm{GL}_{2}(\bar{k})$ (resp. $\left.\mathrm{GL}_{3}(\bar{k})\right)$ is called minisotropic if it is stable under the twisted Frobenius morphism \widetilde{F} and is not contained in any \widetilde{F}-stable parabolic subgroup of $\mathrm{GL}_{2}(\bar{k})\left(\right.$ resp. $\left.\mathrm{GL}_{3}(\bar{k})\right)$. We call a torus in H or G minisotropic if it is equal to the \widetilde{F}-fixed points of a minisotropic torus of the corresponding algebraic group.

3A. Cuspidals of $\mathbf{U}(1,1)\left(\boldsymbol{k}_{\boldsymbol{F}} / \boldsymbol{k}_{\mathbf{0}}\right)$.

3A1. Cuspidals. There are $\frac{1}{2}\left(q^{2}+q\right)$ irreducible ℓ-adic supercuspidal representations of H. These can be parametrised by the regular irreducible characters of the minisotropic tori of H. There is only one conjugacy class of minisotropic tori in G, which is isomorphic to $k_{F}^{1} \times k_{F}^{1}$; hence a character of this torus corresponds to two characters of k_{F}^{1}. Furthermore, this character is regular if and only if it corresponds to two distinct characters of k_{F}^{1}. Thus the ℓ-adic supercuspidals can be parametrised by unordered pairs of distinct irreducible characters of k_{F}^{1}. Let χ_{1}, χ_{2} be distinct ℓ-adic characters of k_{F}^{1}. Let $\sigma\left(\chi_{1}, \chi_{2}\right)$ denote the ℓ-adic supercuspidal representation parametrised by the set $\left\{\chi_{1}, \chi_{2}\right\}$.

Using Clifford Theory, the decomposition numbers for H follow from the well-known decomposition numbers of $\operatorname{SU}(1,1)\left(k_{F} / k_{0}\right) \simeq \mathrm{SL}_{2}\left(k_{0}\right)$. We have $|H|=q(q-1)(q+1)$; hence, because q is odd, there are four cases to consider: $\ell|q-1, \ell| q+1, \ell=2$, and ℓ is prime to $\left(q^{2}-1\right)$.

All irreducible ℓ-modular cuspidal representations of H are isomorphic to the reduction modulo ℓ of an irreducible ℓ-adic supercuspidal representation. If χ is an ℓ-adic character we let $\bar{\chi}$ denote its reduction modulo ℓ. If $\chi_{1}^{\prime}, \chi_{2}^{\prime}$ are ℓ-adic characters of k_{F}^{1}, we have $r_{\ell}\left(\sigma\left(\chi_{1}, \chi_{2}\right)\right)=r_{\ell}\left(\sigma\left(\chi_{1}^{\prime}, \chi_{2}^{\prime}\right)\right)$ if and only if $\left\{\bar{\chi}_{1}, \bar{\chi}_{2}\right\}=\left\{\bar{\chi}_{1}^{\prime}, \bar{\chi}_{2}^{\prime}\right\}$. We let $\bar{\sigma}\left(\bar{\chi}_{1}, \bar{\chi}_{2}\right)=r_{\ell}\left(\sigma\left(\chi_{1}, \chi_{2}\right)\right)$. Furthermore, $\bar{\sigma}\left(\bar{\chi}_{1}, \bar{\chi}_{2}\right)$ is supercuspidal if and only if $\left|\left\{\bar{\chi}_{1}, \bar{\chi}_{2}\right\}\right|=2$ and we have $\bar{\sigma}\left(\bar{\chi}_{1}, \bar{\chi}_{2}\right)=\bar{\sigma}\left(\bar{\chi}_{2}, \bar{\chi}_{1}\right)$. Hence the irreducible cuspidal nonsupercuspidal ℓ-modular representations of H are parametrised by the
ℓ-modular characters of k_{F}^{1} and, if $\bar{\chi}$ is an ℓ-modular character of k_{F}^{1} equal to the reduction modulo ℓ of two distinct ℓ-adic characters of k_{F}^{1}, we let $\bar{\sigma}(\bar{\chi})=\bar{\sigma}(\bar{\chi}, \bar{\chi})$. When $\ell \nmid q+1$, all irreducible cuspidal ℓ-modular representations are supercuspidal.
3A2. Cuspidal nonsupercuspidals when $\ell \mid q+1$. Let $\ell^{a} \| q+1$, so that there are $(q+1) / \ell^{a}$ cuspidal nonsupercuspidal ℓ-modular representations denoted by $\bar{\sigma}(\bar{\chi})$; these occur as the reduction modulo ℓ of $\sigma\left(\chi_{1}, \chi_{2}\right)$ when $\bar{\chi}=\bar{\chi}_{1}=\bar{\chi}_{2}$. Let $T=\left\{\operatorname{diag}\left(x, \bar{x}^{-1}\right): x \in k_{F}^{\times}\right\}$be the maximal diagonal torus of H and B_{H} be the standard Borel subgroup containing T. The principal series representations $i_{B_{H}}^{H}(\bar{\chi} \circ \xi) \simeq i_{B_{H}}^{H}(\overline{1})(\bar{\chi} \circ$ det $)$ are uniserial of length three with ($\bar{\chi} \circ \operatorname{det}$) appearing as the unique irreducible subrepresentation and the unique irreducible quotient, and unique irreducible cuspidal subquotient $\bar{\sigma}(\bar{\chi})$.

3B. Cuspidals of $\mathbf{U}(\mathbf{2}, \mathbf{1})\left(\boldsymbol{k}_{\boldsymbol{F}} / \boldsymbol{k}_{\boldsymbol{0}}\right)$.

3B1. ℓ-adic supercuspidals. There are two conjugacy classes of minisotropic tori in G, which give rise to two classes of irreducible supercuspidal ℓ-adic representations coming from regular irreducible characters of these tori. Let E be an unramified cubic extension of F. One conjugacy class of the minisotropic tori has representatives isomorphic to $k_{F}^{1} \times k_{F}^{1} \times k_{F}^{1}$; the other conjugacy class has representatives isomorphic to k_{E}^{1}. However, in contrast to H, the irreducible representations parametrised by the irreducible regular characters of these tori do not constitute all the irreducible supercuspidal representations of G : additionally there exist unipotent supercuspidal representations of G. Thus we have three classes of ℓ-adic supercuspidals:
(1) There are $\frac{1}{6}(q+1) q(q-1) \ell$-adic supercuspidals of dimension $(q-1)\left(q^{2}-q+1\right)$ parametrised by the irreducible regular characters of $k_{F}^{1} \times k_{F}^{1} \times k_{F}^{1}$. An irreducible ℓ-adic character of $k_{F}^{1} \times k_{F}^{1} \times k_{F}^{1}$ is of the form $\chi_{1} \otimes \chi_{2} \otimes \chi_{3}$, with $\chi_{1}, \chi_{2}, \chi_{3}$ irreducible ℓ-adic characters of k_{F}^{1}, and is regular if and only if $\left|\left\{\chi_{1}, \chi_{2}, \chi_{3}\right\}\right|=3$. We let $\sigma\left(\chi_{1}, \chi_{2}, \chi_{3}\right)$ denote the ℓ-adic supercuspidal corresponding to the set $\left\{\chi_{1}, \chi_{2}, \chi_{3}\right\}$.
(2) There are $\frac{1}{3}(q+1) q(q-1) \ell$-adic supercuspidals of dimension $(q-1)(q+1)^{2}$ parametrised by the irreducible regular characters of k_{E}^{1}. An irreducible ℓ-adic character ψ of k_{E}^{1} is regular if and only if $\psi^{q+1} \neq 1$. We let $\tau(\psi)$ denote the ℓ-adic supercuspidal representation corresponding to ψ.
(3) There are $(q+1)$ unipotent ℓ-adic supercuspidals of dimension $q(q-1)$. These can be parametrised by the irreducible characters of k_{F}^{1}. We write $\nu(\chi)$ for the unipotent ℓ-adic supercuspidal representation corresponding to the irreducible ℓ-adic character χ of k_{F}^{1}.
3B2. ℓ-modular cuspidals. We have $|G|=q^{3}(q-1)(q+1)^{3}\left(q^{2}-q+1\right)$; hence there are six cases to consider: $\ell=2, \ell=3$ and $\ell|q+1, \ell| q-1, \ell|q+1, \ell| q^{2}-q+1$,
and ℓ is prime to $(q-1)(q+1)\left(q^{2}-q+1\right)$. When $\ell \neq 2$, the decomposition numbers can be obtained from [Geck 1990] and [Okuyama and Waki 2002] using Clifford theory. Parabolic induction of the trivial character is completely described in [Hiss 2004, Theorem 4.1]. When $\ell \mid q-1$ or $\ell \mid q+1$, all irreducible cuspidal ℓ-modular representations lift to irreducible cuspidal ℓ-adic representations. Analogously to the two-dimensional case, we write $\bar{\nu}(\bar{\chi})=r_{\ell}(\nu(\chi)), \bar{\tau}(\bar{\psi})=r_{\ell}(\tau(\psi))$ and $\bar{\sigma}\left(\bar{\chi}_{1}, \bar{\chi}_{2}, \bar{\chi}_{3}\right)=r_{\ell}\left(\sigma\left(\chi_{1}, \chi_{2}, \chi_{3}\right)\right)$.

When $\ell \neq 3$ and $\ell \mid q^{2}-q+1$, we have irreducible ℓ-modular cuspidal representations which do not lift: if ψ is an ℓ-adic character of k_{E}^{1} such that $\psi^{q+1} \neq 1$ but $\bar{\psi}^{q+1}=\overline{1}$, then $r_{\ell}(\tau(\psi))=\bar{v}(\bar{\chi}) \oplus \bar{\tau}^{+}(\bar{\chi})$, where $\bar{\chi}$ is the character of k_{F}^{1} such that $\bar{\psi}=\bar{\chi} \circ \xi$, where $\xi(x)=x^{q-1}$, and $\bar{\tau}^{+}(\bar{\chi})$ does not lift. When $\ell=2$ and $4 \mid q-1$, we also have cuspidal representations which do not lift: if ψ is an ℓ-adic character of k_{E}^{1} such that $\psi^{q+1} \neq 1$ but $\bar{\psi}^{q+1}=\overline{1}$, then $r_{\ell}(\tau(\psi))=\bar{\nu}(\bar{\chi}) \oplus \bar{v}(\bar{\chi}) \oplus \bar{\tau}^{+}(\bar{\chi})$, where $\bar{\chi}$ is the character of k_{F}^{1} such that $\bar{\psi}=\bar{\chi} \circ \xi$, where $\xi(x)=x^{q-1}$, and $\bar{\tau}^{+}(\bar{\chi})$ does not lift. All other irreducible cuspidal ℓ-modular representations of G lift to ℓ-adic representations and we use the same notation as before.

3B3. ℓ-adic principal series. Let $T=\left\{\operatorname{diag}\left(x, y, \bar{x}^{-1}\right): x \in k_{F}^{\times}, y \in k_{F}^{1}\right\}$ be the maximal diagonal torus in G and B be the standard Borel subgroup of G containing T.

Let χ_{1} be an ℓ-adic character of k_{F}^{\times}and χ_{2} an ℓ-adic character of k_{F}^{1}. Let χ be the irreducible character of T defined by $\chi\left(\operatorname{diag}\left(x, y, x^{-q}\right)\right)=\chi_{1}(x) \chi_{2}\left(x y x^{-q}\right)$. The character χ is regular if and only if $\chi_{1}^{q+1} \neq 1$, and in this case the principal series representation $i_{B}^{G}(\chi)$ is irreducible.

If $\chi_{1}^{q+1}=1$ then $\chi_{1}=\chi_{1}^{\prime} \circ \xi$, where $\xi(x)=x^{q-1}$ and χ_{1}^{\prime} is an ℓ-adic character of k_{F}^{1}. If $\chi_{1}^{\prime}=1$, or equivalently $\chi_{1}=1$, then

$$
i_{B}^{G}(\chi)=1_{G}\left(\chi_{2} \circ \operatorname{det}\right) \oplus \operatorname{St}_{G}\left(\chi_{2} \circ \operatorname{det}\right),
$$

where St_{G} is an irreducible q^{3}-dimensional representation of G. If $\chi_{1}^{\prime} \neq 1$ then

$$
i_{B}^{G}(\chi)=R_{1_{H}\left(\chi_{1}^{\prime}\right)}\left(\chi_{2} \circ \operatorname{det}\right) \oplus R_{\mathrm{St}_{H}\left(\chi_{1}^{\prime}\right)}\left(\chi_{2} \circ \operatorname{det}\right),
$$

where $R_{1_{H}\left(\chi_{1}^{\prime}\right)}$ and $R_{\mathrm{St}_{H}\left(x_{1}^{\prime}\right)}$ are irreducible representations of G of dimensions $q^{2}-q+1$ and $q\left(q^{2}-q+1\right)$ respectively. The reducibility here comes from inducing first to the Levi subgroup $L^{*}=\mathrm{U}(1,1)\left(k_{F} / k_{0}\right) \times \mathrm{U}(1)\left(k_{F} / k_{0}\right)$, which is not contained in any proper rational parabolic subgroup of G. Here 1_{H} and St_{H} denote the trivial and Steinberg representations of $\mathrm{U}(1,1)\left(k_{F} / k_{0}\right)$, and R is a generalised induction from L^{*} to G.

3B4. Cuspidal subquotients of ℓ-modular principal series. If $\ell \neq 2$ and $\ell \mid q-1$, or ℓ is prime to $(q-1)(q+1)\left(q^{2}-q+1\right)$, then all irreducible cuspidal ℓ-modular representations are supercuspidal and the principal series representations are all semisimple.

Let $\bar{\chi}_{2}$ be an ℓ-modular character of k_{F}^{1}. We first describe the ℓ-modular principal series representations $i_{B}^{G}(\overline{1})\left(\bar{\chi}_{2} \circ\right.$ det $)$ in all the cases where cuspidal subquotients appear.
(1) If $\ell \neq 3$ and $\ell \mid q^{2}-q+1, i_{B}^{G}(\overline{1})\left(\bar{\chi}_{2} \circ\right.$ det $)$ are uniserial of length three with ($\bar{\chi} \circ \operatorname{det}$) appearing as the unique irreducible subrepresentation and the unique irreducible quotient and $\bar{\tau}^{+}(\bar{\chi})$ as the unique irreducible cuspidal subquotient.
(2) If $\ell \neq 2$ and $\ell \mid q+1$, or $\ell=2$ and $4 \mid q+1$, then $i_{B}^{G}(\overline{1})(\bar{\chi} \circ$ det $)$ have irreducible cuspidal subquotients $\bar{v}(\bar{\chi})$ and $\bar{\sigma}(\bar{\chi})=\bar{\sigma}(\bar{\chi}, \bar{\chi}, \bar{\chi})$. The principal series representations $i_{B}^{G}(\overline{1})(\bar{\chi} \circ$ det $)$ are uniserial of length five with ($\bar{\chi} \circ$ det $)$ appearing as the unique irreducible subrepresentation and the unique irreducible quotient. A maximal cuspidal subquotient of $i_{B}^{G}(\overline{1})(\bar{\chi} \circ$ det $)$ is uniserial of length three with $\bar{\nu}(\bar{\chi})$ appearing as the unique irreducible quotient and the unique irreducible subrepresentation, and remaining subquotient $\bar{\sigma}(\bar{\chi})$.
(3) If $\ell=2$ and $4 \mid q-1$ then $i_{B}^{G}(\overline{1})(\bar{\chi} \circ$ det $)$ has length four with ($\bar{\chi} \circ$ det $)$ appearing as the unique irreducible subrepresentation and the unique irreducible quotient, and cuspidal subquotient $\bar{\nu}(\bar{\chi}) \oplus \bar{\tau}^{+}(\bar{\chi})$.

Now let $\bar{\chi}_{1}^{\prime}$ and $\bar{\chi}_{2}$ be ℓ-modular characters of k_{F}^{1} with $\bar{\chi}_{1}^{\prime}$ nontrivial and let $\bar{\chi}_{1}=\bar{\chi}_{1}^{\prime} \circ \xi$. Let $\bar{\chi}$ be the ℓ-modular character of T defined by

$$
\bar{\chi}\left(\operatorname{diag}\left(x, y, x^{-q}\right)\right)=\bar{\chi}_{1}(x) \bar{\chi}_{2}\left(x y x^{-q}\right)
$$

If $\ell \nmid q+1$ then $i_{B}^{G}(\bar{\chi})$ does not possess any cuspidal subquotients. If $\ell \mid q+1$ then $i_{B}^{G}(\bar{\chi})$ is uniserial of length three with $\bar{R}_{\overline{1}_{H}\left(\bar{\chi}_{1}^{\prime}\right)}\left(\bar{\chi}_{2} \circ\right.$ det $)$ appearing as the unique irreducible subrepresentation and the unique irreducible quotient and cuspidal subquotient $\sigma\left(\bar{\chi}_{1}^{\prime}, \bar{\chi}_{1}^{\prime}, \bar{\chi}_{2}\right)$. This follows from [Bonnafé and Rouquier 2003, Theorem 11.8] and the principal block of H as χ corresponds to a semisimple element with centraliser $H \times k_{F}^{1}$ in the dual group.

4. Irreducible cuspidal \boldsymbol{R}-representations of $\mathbf{U}(\mathbf{2}, \mathbf{1})\left(\boldsymbol{F} / \boldsymbol{F}_{\mathbf{0}}\right)$

Let $G=\mathrm{U}(2,1)\left(F / F_{0}\right)$. We construct all irreducible cuspidal representations of G by compact induction from certain irreducible representations of compact open subgroups. We review some general theory first and recall results of Vignéras on level zero representations. Our construction of all irreducible cuspidal representations of G then follows the outline of Stevens' construction [2008] of all irreducible cuspidal representations of classical p-adic groups in the complex case. While his construction is carried out when $R=\mathbb{C}$ the first part remains equally valid when R is any algebraically closed field of characteristic unequal to p, essentially as all groups involved are pro- p. However, when we move to defining β-extensions and beyond the subgroups we are dealing with no longer have pro-order necessarily invertible
in $\overline{\mathbb{F}}_{\ell}$. It is here, and after, where we need to be careful and have to make nontrivial changes to the proofs of the statements of [Stevens 2008]. It turns out that, even though we have to change the proofs, the definitions and properties of β-extensions in the ℓ-modular case are completely analogous to those of complex β-extensions. We note that as we are in the special case of unramified $\mathrm{U}(2,1)\left(F / F_{0}\right)$, using the framework of Stevens, we can show that our β-extensions satisfy closer compatibility properties than are available in the general case of classical groups.

4A. Types and Hecke algebras. By an R-type, we mean a pair (K, σ) consisting of a compact open subgroup K of G and an irreducible R-representation σ of K. Given an R-type we consider the compactly induced representation $\operatorname{ind}_{K}^{G}(\sigma)$ of G, the goal being to find pairs (K, σ) such that $\operatorname{ind}_{K}^{G}(\sigma)$ is irreducible and cuspidal. Let $\pi \in \operatorname{Irr}_{R}(G)$; we say that π contains the R-type (K, σ) if π is a quotient of $\operatorname{ind}_{K}^{G}(\sigma)$.

Let (K, σ) be an R-type in G and \mathscr{W} be the space of σ. The spherical Hecke algebra $\mathscr{H}(G, \sigma)$ of σ is the R-module consisting of the set of all functions f : $G \rightarrow \operatorname{End}_{R}(\mathscr{W})$ such that the support of f is a finite union of double cosets in $K \backslash G / K$ and f transforms by σ on the left and the right, i.e., for all $k_{1}, k_{2} \in K$ and all $g \in G, f\left(k_{1} g k_{2}\right)=\sigma\left(k_{1}\right) f(g) \sigma\left(k_{2}\right)$. The product in $\mathscr{H}(G, \sigma)$ is given by convolution: if $f_{1}, f_{2} \in \mathscr{H}(G, \sigma)$ then

$$
f_{1} \star f_{2}(h)=\sum_{G / K} f_{1}(g) f_{2}\left(g^{-1} h\right)
$$

The spherical Hecke algebra $\mathscr{H}(G, \sigma)$ is isomorphic to $\operatorname{End}_{G}\left(\operatorname{ind}_{K}^{G}(\sigma)\right)$, where multiplication in $\operatorname{End}_{G}\left(\operatorname{ind}_{K}^{G}(\sigma)\right)$ is defined by composition. For $g \in G$, let $I_{g}(\sigma)=\operatorname{Hom}_{K}\left(\sigma, \operatorname{ind}_{K \cap K^{g}}^{K} \sigma^{g}\right)$ and let $I_{G}(\sigma)=\left\{g \in G: I_{g}(\sigma) \neq 0\right\}$.

Let $\mathcal{M}(G, \sigma)$ denote the category of right $\mathscr{H}(G, \sigma)$-modules. Define

$$
M_{\sigma}: \Re_{R}(G) \rightarrow \mathcal{M}(G, \sigma)
$$

by $\pi \mapsto \operatorname{Hom}_{G}\left(\operatorname{ind}_{K}^{G}(\sigma), \pi\right)$; this is a (right) $\operatorname{End}_{G}\left(\operatorname{ind}_{K}^{G}(\sigma)\right)$-module by precomposition. In the ℓ-adic case, if (K, σ) is a type in the sense of [Bushnell and Kutzko 1998, p. 584], M_{σ} induces an equivalence of categories between $\mathcal{M}(G, \sigma)$ and the full subcategory of $\Re_{R}(G)$ of representations all of whose irreducible subquotients contain (K, σ).

An R-representation (π, \mathscr{V}) of G is quasiprojective if, for all R-representations (σ, \mathscr{W}) of G, all surjective $\Phi \in \operatorname{Hom}_{G}(\mathscr{V}, \mathscr{W})$ and all $\Psi \in \operatorname{Hom}_{G}(\mathscr{V}, \mathscr{W})$, there exists $\Xi \in \operatorname{End}_{G}(\mathscr{V})$ such that $\Psi=\Phi \circ \Xi$.
Theorem 4.1 [Vignéras 1998, Appendix, Theorem 10]. Let π be a quasiprojective, finitely generated R-representation of G. The map $\rho \mapsto \operatorname{Hom}_{G}(\pi, \rho)$ induces a bijection between the irreducible quotients of π and the simple right $\operatorname{End}_{G}(\pi)$-modules.

Let P be a parabolic subgroup of G with Levi decomposition $P=M \ltimes N$. Let $P^{\text {op }}$ be the opposite parabolic subgroup of P with Levi decomposition $P^{\mathrm{op}}=M \ltimes N^{\mathrm{op}}$. Let $K^{+}=K \cap N$ and $K^{-}=K \cap N^{\mathrm{op}}$. An element z of the centre of M is called strongly (P, K)-positive if:
(1) $z K^{+} z^{-1} \subset K^{+}$and $z K^{-} z^{-1} \supset K^{-}$.
(2) For all compact subgroups H_{1}, H_{2} of N (resp. $N^{\text {op }}$), there exists a positive (resp. negative) integer m such that $z^{m} H_{1} z^{-m} \subset H_{2}$.
Let $\left(K_{M}, \sigma_{M}\right)$ be an R-type of M. An R-type (K, σ) is called a G-cover of (K_{M}, σ_{M}) relative to P if we have:
(1) $K \cap M=K_{M}$ and we have an Iwahori decomposition $K=K^{-} K_{M} K^{+}$.
(2) $\operatorname{Res}_{K_{M}}^{K}(\sigma)=\sigma_{M}, \operatorname{Res}_{K^{+}}^{K}(\sigma)$ and $\operatorname{Res}_{K^{-}}^{K}(\sigma)$ are both multiples of the trivial representation.
(3) There exists a strongly (P, K)-positive element z of the centre of M such that the double coset $K z^{-1} K$ supports an invertible element of $\mathscr{H}_{R}(G, \sigma)$.

The point is that the properties of a G-cover allow one to define an injective homomorphism of algebras $j_{P}: \mathscr{H}\left(M, \sigma_{M}\right) \rightarrow \mathscr{H}(G, \sigma)$ and hence a (normalised) restriction functor $\left(j_{P}\right)^{*}: \mathcal{M}(G, \sigma) \rightarrow \mathcal{M}\left(M, \sigma_{M}\right)$; see [Bushnell and Kutzko 1998, p. 585] and [Vignéras 1998, II §10].

Theorem 4.2 [Vignéras 1998, II §10.1]. Let π be a finitely generated ℓ-modular representation of G. We have an isomorphism $\left(j_{P}\right)^{*}\left(M_{\sigma}(\pi)\right) \simeq M_{\sigma_{M}}\left(r_{P}^{G}(\pi)\right)$ of representations of M.

4B. Level zero l-modular representations. An irreducible representation π of G is of level zero if it has nontrivial invariants under the pro-p unipotent radical of some maximal parahoric subgroup of G.

Let Λ be a self-dual \mathfrak{o}_{F}-lattice sequence in V and $\mathrm{P}(\Lambda)$ the associated parahoric subgroup in G. We define parahoric induction $\mathrm{I}_{\Lambda}: \mathfrak{R}_{R}(\mathrm{M}(\Lambda)) \rightarrow \mathfrak{R}_{R}(G)$ on the objects of $\mathfrak{R}_{R}(\mathrm{M}(\Lambda))$ by

$$
\mathrm{I}_{\Lambda}(\sigma)=\operatorname{ind}_{\mathrm{P}_{(\Lambda)}}^{G}(\sigma)
$$

for σ an R-representation of $\mathrm{M}(\Lambda)$, where, by abuse of notation, we also write σ for the inflation of σ to $\mathrm{P}(\Lambda)$ by defining $\mathrm{P}_{1}(\Lambda)$ to act trivially. This functor has a right-adjoint, parahoric restriction $\mathrm{R}_{\Lambda}: \mathfrak{R}_{R}(G) \rightarrow \mathfrak{R}_{R}(\mathrm{M}(\Lambda))$, defined on the objects of $\mathfrak{R}_{R}(G)$ by

$$
\mathrm{R}_{\Lambda}(\pi)=\pi^{\mathrm{P}_{1}(\Lambda)}
$$

for π an R-representation of G. Parahoric induction and restriction are exact functors.

We have the following important lemma, due to Vignéras [2001]. In her paper, the statement is for a general p-adic reductive group G.

Lemma 4.3 [Vignéras 2001]. Let $\mathrm{P}_{1}=\mathrm{P}\left(\Lambda_{1}\right)$ and $\mathrm{P}_{2}=\mathrm{P}\left(\Lambda_{2}\right)$ be parahoric subgroups of G. Let σ be a representation of $\mathrm{M}\left(\Lambda_{2}\right)$ and fix a set $D_{1,2}$ of distinguished double coset representatives of $\mathrm{P}_{1} \backslash G / \mathrm{P}_{2}$. We have an isomorphism

$$
\mathrm{R}_{\Lambda_{1}} \circ \mathrm{I}_{\Lambda_{2}}(\sigma) \simeq \bigoplus_{n \in D_{1,2}} i_{P_{\Lambda_{1}, n \Lambda_{2}}}^{\mathrm{M}\left(\Lambda_{1}\right)}\left(r_{P_{\Lambda_{2}, n^{-1} \Lambda_{1}}}^{\mathrm{M}\left(\Lambda_{2}\right)}(\sigma)\right)^{n}
$$

Lemma 4.4. Let $\mathrm{P}\left(\Lambda_{1}\right)$ and $\mathrm{P}\left(\Lambda_{2}\right)$ be parahoric subgroups of G associated to the \mathfrak{o}_{F}-lattice sequences Λ_{1} and Λ_{2} in V. Suppose that $\mathrm{P}\left(\Lambda_{2}\right)$ is maximal and let σ be an irreducible cuspidal representation of $\mathrm{M}\left(\Lambda_{2}\right)$. We have

$$
\mathrm{R}_{\Lambda_{1}} \circ \mathrm{I}_{\Lambda_{2}}(\sigma) \simeq \begin{cases}\sigma & \text { if } \mathrm{P}\left(\Lambda_{1}\right) \text { is conjugate to } \mathrm{P}\left(\Lambda_{2}\right) \text { in } G \\ 0 & \text { otherwise }\end{cases}
$$

Proof. By cuspidality of σ, if $r_{P_{\Lambda_{2}, n^{-1} \Lambda_{1}}}^{\mathrm{M}\left(\Lambda_{2}\right)}(\sigma) \neq 0$, then $P_{\Lambda_{2}, n^{-1} \Lambda_{1}}=M\left(\Lambda_{2}\right)$. If $\mathrm{P}\left(\Lambda_{2}\right)$ is not conjugate to $\mathrm{P}\left(\Lambda_{1}\right)$ then, for all $n \in D_{1,2}$, the parabolic subgroup $P_{\Lambda_{2}, n^{-1} \Lambda_{1}}$ is a proper parabolic subgroup of $\mathrm{M}\left(\Lambda_{2}\right)$. Hence $\mathrm{R}_{\Lambda_{2}} \circ \mathrm{I}_{\Lambda_{1}}(\sigma) \simeq 0$ by Lemma 4.3. As $N_{G}\left(\mathrm{P}\left(\Lambda_{2}\right)\right)=\mathrm{P}\left(\Lambda_{2}\right)$, if there exists $n \in D_{1,2}$ such that $\mathrm{P}\left(n^{-1} \Lambda_{1}\right)=\mathrm{P}\left(\Lambda_{2}\right)$, there can be only one such n. In this case, $\mathrm{R}_{\Lambda_{1}} \circ \mathrm{I}_{\Lambda_{2}}(\sigma) \simeq \sigma$, by Lemma 4.3.

4C. Positive level cuspidal ℓ-modular representations.

4C1. Semisimple strata and characters. Let $[\Lambda, n, r, \beta]$ be a skew semisimple stratum in A; see [Stevens 2008, Definition 2.8]. Associated to [Λ, n, r, β] and a fixed level one character of $F_{0}{ }^{\times}$are:
(1) A decomposition $V=\bigoplus_{i=1}^{l} V_{i}$, orthogonal with respect to h, and a sum of field extensions $E=\bigoplus_{i=1}^{l} E_{i}$ of E such that $\Lambda=\bigoplus_{i=1}^{l} \Lambda_{i}$ with Λ_{i} an $\mathfrak{o}_{E_{i}}$-lattice sequence in V_{i}; we say that Λ is an \mathfrak{o}_{E}-lattice sequence and write Λ_{E} when we are considering Λ as such.
(2) The F_{0}-points of a product of unramified unitary groups defined over F_{0}, $G_{E}=\prod_{i=1}^{l} G_{E_{i}}$.
(3) Compact open subgroups $H(\Lambda, \beta) \subseteq J(\Lambda, \beta)$ of G with decreasing filtrations by pro-p normal compact open subgroups $H^{n}(\Lambda, \beta)=H(\Lambda, \beta) \cap \mathrm{P}_{n}(\Lambda)$ and $J^{n}(\Lambda, \beta)=J(\Lambda, \beta) \cap \mathrm{P}_{n}(\Lambda), n \geqslant 1$. When Λ is fixed we write $J=J(\Lambda, \beta)$, $H=H(\Lambda, \beta)$, and use similar notation for their filtration subgroups. We have $J=P\left(\Lambda_{E}\right) J^{1}$, where $\mathrm{P}\left(\Lambda_{E}\right)$ is the parahoric subgroup of G_{E} obtained by considering Λ as an \mathfrak{o}_{E}-lattice sequence.
(4) A set of semisimple characters $\mathscr{C}_{-}(\Lambda, r, \beta)$ of $H^{r+1}(\Lambda, \beta)$. For $r=0$, we write $\mathscr{C}_{-}(\Lambda, \beta)=\mathscr{C}_{-}(\Lambda, 0, \beta)$.

Let $\left[\Lambda_{i}, n, 0, \beta\right], i=1,2$, be skew semisimple strata in A. For all $\theta_{1} \in \mathscr{C}_{-}\left(\Lambda_{1}, \beta\right)$, there is a unique $\theta_{2} \in \mathscr{C}_{-}\left(\Lambda_{2}, \beta\right)$ such that $1 \in I_{G}\left(\theta_{1}, \theta_{2}\right)$, by [Stevens 2005, Proposition 3.32]. This defines a bijection

$$
\tau_{\Lambda_{1}, \Lambda_{2}, \beta}: \mathscr{C}_{-}\left(\Lambda_{1}, \beta\right) \rightarrow \mathscr{C}_{-}\left(\Lambda_{2}, \beta\right)
$$

and we call $\theta_{2}=\tau_{\Lambda_{1}, \Lambda_{2}, \beta}\left(\theta_{1}\right)$ the transfer of θ_{1}.
The skew semisimple strata in A fall into three classes:
(1) Skew simple strata $[\Lambda, n, 0, \beta]$, where E is a field.
(a) If $E=F$ we say that $[\Lambda, n, 0, \beta]$ is a scalar skew simple stratum. In this case, $J / J^{1}=\mathrm{P}(\Lambda) / \mathrm{P}_{1}(\Lambda)$ is isomorphic to one of $\mathrm{GL}_{1}\left(k_{F}\right) \times \mathrm{U}(1)\left(k_{F} / k_{0}\right)$, $\mathrm{U}(1,1)\left(k_{F} / k_{0}\right) \times \mathrm{U}(1)\left(k_{F} / k_{0}\right)$ or $\mathrm{U}(2,1)\left(k_{F} / k_{0}\right)$.
(b) Otherwise, E / F is cubic and $J / J^{1} \simeq \mathrm{P}\left(\Lambda_{E}\right) / \mathrm{P}_{1}\left(\Lambda_{E}\right) \simeq \mathrm{U}(1)\left(k_{E} / k_{E^{0}}\right)$ is a finite unitary group of order $q_{E^{0}}+1$, where

$$
q_{E^{0}}= \begin{cases}q_{0}^{3} & \text { if } E / F \text { is unramified } \\ q_{0} & \text { if } E / F \text { is ramified }\end{cases}
$$

(2) Skew semisimple strata $[\Lambda, n, 0, \beta]=\left[\Lambda_{1}, n_{1}, 0, \beta_{1}\right] \oplus\left[\Lambda_{2}, n_{2}, 0, \beta_{2}\right]$, not equivalent to a skew simple stratum, with $\left[\Lambda_{i}, n_{i}, 0, \beta_{i}\right]$ skew simple strata in $\operatorname{End}_{F_{0}}\left(V_{i}\right)$. Without loss of generality, suppose that V_{1} is one-dimensional and V_{2} is two-dimensional. We have $J / J^{1} \simeq \prod_{i=1}^{2} \mathrm{P}\left(\Lambda_{i, E}\right) / \mathrm{P}_{1}\left(\Lambda_{i, E}\right)$. If $\beta_{2} \in F$ and V_{2} is hyperbolic, then $G_{E} \simeq U(1,1)\left(F / F_{0}\right) \times \mathrm{U}(1)\left(F / F_{0}\right)$ and $\mathrm{P}\left(\Lambda_{2, E}\right)$ is a parahoric subgroup of $\mathrm{U}(1,1)\left(F / F_{0}\right)$ and need not be maximal. If $\beta_{2} \in F$ and V_{2} is anisotropic, then $G_{E} \simeq \mathrm{U}(2)\left(F / F_{0}\right) \times \mathrm{U}(1)\left(F / F_{0}\right)$ is compact. If E_{2} / F is quadratic then it is ramified, because there is a unique unramified extension of F_{0} in each degree and E_{2}^{0} / F_{0} is quadratic and also fixed by the involution. Thus, if E_{2} / F is quadratic then $J / J^{1} \simeq \mathrm{U}(1)\left(k_{F} / k_{0}\right) \times \mathrm{U}(1)\left(k_{F} / k_{0}\right)$.
(3) Skew semisimple strata $[\Lambda, n, 0, \beta]=\bigoplus_{i=1}^{3}\left[\Lambda_{i}, n_{i}, 0, \beta_{i}\right]$, not equivalent to a skew semisimple stratum of the first two classes, with $\left[\Lambda_{i}, n_{i}, 0, \beta_{i}\right]$ skew simple strata in $\operatorname{End}_{F_{0}}\left(V_{i}\right)$. In this case, $J / J^{1} \simeq \mathrm{U}(1)\left(k_{F} / k_{0}\right) \times \mathrm{U}(1)\left(k_{F} / k_{0}\right) \times \mathrm{U}(1)\left(k_{F} / k_{0}\right)$.

We say that π contains the skew semisimple stratum $[\Lambda, n, 0, \beta]$ if it contains a character $\theta \in \mathscr{C}_{-}(\Lambda, \beta)$.

Theorem 4.5 [Stevens 2005, Theorem 5.1]. Let π be an irreducible cuspidal ℓ-modular representation of G. Then π contains a skew semisimple stratum $[\Lambda, n, 0, \beta]$.

4C2. Heisenberg representations. Let $\theta \in \mathscr{C}_{-}(\Lambda, \beta)$. By [Stevens 2008, Corollary 3.29], there exists a unique irreducible representation η of $J^{1}(\Lambda, \beta)$ which contains θ. We call such an η a Heisenberg representation. Furthermore, by [Stevens

2008, Proposition 3.31],

$$
\operatorname{dim}_{R}\left(I_{g}(\eta)\right)= \begin{cases}1 & \text { if } g \in J^{1} G_{E} J^{1} \\ 0 & \text { otherwise }\end{cases}
$$

4C3. β-extensions. Assume $P\left(\Lambda_{E}\right)$ is maximal. A β-extension of a Heisenberg representation η to $J=J(\Lambda, \beta)$ is an extension κ with maximal intertwining, $I_{G}(\kappa)=I_{G}(\eta)$. By [Blasco 2002, Lemma 5.8], for all maximal skew semisimple strata which are not skew scalar simple strata, β-extensions exist in the ℓ-adic case for G, and for ℓ-modular representations we obtain β-extensions by reduction modulo ℓ from the ℓ-adic extensions. Note that the reduction modulo ℓ of an ℓ-adic β-extension $\tilde{\kappa}$ of J is irreducible: its restriction to J^{1} is the reduction modulo ℓ of $\tilde{\eta}=\operatorname{Res}_{J^{1}}^{J}(\tilde{\kappa})$, reduction modulo ℓ commutes with restriction, and, as J^{1} is pro- p, the reduction modulo ℓ of $\tilde{\eta}$ is irreducible. Let $[\Lambda, n, 0, \beta]$ be a scalar skew simple stratum and $\theta \in \mathscr{C}_{-}(\Lambda, \beta)$. Then $J^{1}=H^{1}=\mathrm{P}_{1}(\Lambda), J=\mathrm{P}(\Lambda)$, and $\theta=\chi \circ \operatorname{det}$ for some character χ of $\mathrm{P}_{1}(\Lambda)$ (cf. [Bushnell and Kutzko 1993a, Definition 3.23]). The character χ extends to a character $\tilde{\chi}$ of F^{1} and we define $\kappa: J \rightarrow R^{\times}$by $\kappa=\tilde{\chi} \circ$ det. Then κ extends θ and is intertwined by all of G, hence is a β-extension. Hence, in the maximal case, β-extensions exist.

Let $[\Lambda, n, 0, \beta]$ be a skew semisimple stratum. Suppose $P\left(\Lambda_{E}\right)$ is not maximal and choose a maximal parahoric subgroup $P\left(\Lambda_{E}^{m}\right)$ of G_{E} associated to the \mathfrak{o}_{E}-lattice sequence Λ_{E}^{m} in V such that $P\left(\Lambda_{E}\right) \subset P\left(\Lambda_{E}^{m}\right)$. This implies that $P(\Lambda) \subset P\left(\Lambda^{m}\right)$. Note that this is the case for unramified $\mathrm{U}(2,1)(E / F)$, but not for classical groups in general. Let $\theta \in \mathscr{C}_{-}(\Lambda, \beta)$ and let η be the irreducible representation of $J_{m}^{1}=J^{1}(\beta, \Lambda)$ which contains θ. Let $\theta_{m}=\tau_{\Lambda, \Lambda^{m}, \beta}(\theta)$ and let η_{m} be the irreducible representation of $J^{1}\left(\beta, \Lambda^{m}\right)$ which contains θ_{m}. Let κ_{m} be a β-extension of η_{m}.
Lemma 4.6. There exists a unique extension κ of η to J such that $\operatorname{Res}_{P\left(\Lambda_{E}\right) J_{m}^{1}}^{J_{m}}\left(\kappa_{m}\right)$ and κ induce equivalent irreducible representations of $P\left(\Lambda_{E}\right) P_{1}(\Lambda)$.

Proof. If $\mathrm{P}\left(\Lambda_{E}\right)$ is maximal then $\kappa_{m}=\kappa$ and there is nothing to prove. Let $\tilde{\kappa}_{m}$ be a lift of κ. By [Stevens 2008, Lemma 4.3], there exists a unique irreducible ℓ-adic representation $\tilde{\kappa}$ of J such that $\operatorname{Res}_{P\left(\Lambda_{E}\right) J_{m}^{1}}^{J_{m}}\left(\tilde{\kappa}_{m}\right)$ and κ induce equivalent irreducible representations of $P\left(\Lambda_{E}\right) P_{1}(\Lambda)$. By reduction modulo ℓ, we have an irreducible ℓ-modular representation $\kappa=r_{\ell}(\tilde{\kappa})$ which extends η such that

$$
\left[\operatorname{ind}_{J}^{\mathrm{P}\left(\Lambda_{E}\right) \mathrm{P}_{1}(\Lambda)} \kappa\right]=\left[\operatorname{ind}_{\mathrm{P}\left(\Lambda_{E}\right) J_{m}^{1}}^{\mathrm{P}\left(\Lambda_{E}\right) \mathrm{P}_{1}\left(\Lambda^{2}\right)} \operatorname{Res}_{\mathrm{P}\left(\Lambda_{E}\right) J_{m}^{1}}^{J_{m}}\left(\kappa_{m}\right)\right]
$$

By Mackey Theory,

$$
\operatorname{Res}_{P_{1}(\Lambda)}^{P\left(\Lambda_{E}\right) P_{1}(\Lambda)}\left(\operatorname{ind}_{J}^{P\left(\Lambda_{E}\right) P_{1}(\Lambda)} \kappa\right) \simeq \operatorname{ind}_{J^{1}}^{P_{1}(\Lambda)} \kappa
$$

Furthermore, $J^{1} \subseteq I_{P_{1}(\Lambda)}(\kappa) \subseteq I_{P_{1}(\Lambda)}(\eta)=J^{1}$, so ind $J_{J^{1}}^{P_{1}(\Lambda)} \kappa$ and hence ind ${ }_{J}^{\mathrm{P}\left(\Lambda_{E}\right) \mathrm{P}_{1}(\Lambda)} \kappa$ are irreducible.

A β-extension of η is an extension κ of η to J constructed in this way. We call two β-extensions which induce equivalent representations, as in Lemma 4.6, compatible. With the next lemma we show we can "go backwards" and from a β-extension defined in the minimal case we define two unique compatible β-extensions in the maximal case. In this way we get a triple of compatible β-extensions. Let $\mathrm{P}\left(\Lambda_{E}^{r}\right)$ be a maximal parahoric subgroup of G_{E} containing $\mathrm{P}\left(\Lambda_{E}\right)$ associated to the \mathfrak{o}_{E}-lattice sequence Λ_{E}^{r} in V. Let $\theta_{r}=\tau_{\Lambda, \Lambda^{r}, \beta}(\theta), \eta_{r}$ be the irreducible representation of $J^{1}\left(\beta, \Lambda^{r}\right)$ which contains θ_{r}, and κ be a β-extension of η.

Lemma 4.7. There exists a unique β-extension κ_{r} of η_{r} which is compatible with κ.
Proof. By [Stevens 2008, Lemma 4.3], there exists a representation $\hat{\kappa}$ of $P\left(\Lambda_{E}\right) J_{r}^{1}$ such that κ and $\hat{\kappa}$ induce equivalent representations of $\mathrm{P}\left(\Lambda_{E}\right) \mathrm{P}_{1}(\Lambda)$. Let κ^{\prime} be a β-extension of η_{r}. The restriction to $\mathrm{P}\left(\Lambda_{E}\right) J_{r}^{1}$ of κ^{\prime} and $\hat{\kappa}$ differ by a character χ of $B_{r}=\mathrm{P}\left(\Lambda_{E}\right) / \mathrm{P}_{1}\left(\Lambda_{E}^{r}\right)$ which is trivial on the unipotent part of B_{r} and intertwined by the nontrivial Weyl group element w. By the Bruhat decomposition, $\mathrm{M}_{r}=\mathrm{M}\left(\Lambda_{E}^{r}\right)=B_{r} \cup B_{r} w B_{r}$; hence χ is intertwined by the whole of M_{r} and extends to a character of M_{r}. Hence $\kappa_{r}=\kappa \otimes \chi^{-1}$ is a β-extension of η_{r} which is compatible with κ. By reduction modulo ℓ, as in the proof of Lemma 4.6, we have the corresponding statement in the ℓ-modular setting.

4C4. κ-induction and restriction. Fix $[\Lambda, n, 0, \beta]$ a skew semisimple stratum in A, $\theta \in \mathscr{C}_{-}(\Lambda, \beta), \eta$ the unique Heisenberg representation containing θ and κ a β-extension of η.

Let σ be an R-representation of $\mathrm{M}\left(\Lambda_{E}\right)$ and, by abuse of notation, we also write σ for the inflation of σ to J obtained by defining J^{1} to act trivially. The functor $\mathfrak{R}_{R}\left(\mathrm{M}\left(\Lambda_{E}\right)\right) \rightarrow \mathfrak{R}_{R}(J)$ given by $\sigma \mapsto \kappa \otimes \sigma$ identifies $\Re_{R}\left(\mathrm{M}\left(\Lambda_{E}\right)\right)$ with the full subcategory of η-isotypic representations of J; see [Vignéras 2001, Definition 8.1]. Define κ-induction, $\mathrm{I}_{\kappa}: \mathfrak{R}_{R}\left(\mathrm{M}\left(\Lambda_{E}\right)\right) \rightarrow \mathfrak{R}_{R}(G)$, by

$$
\mathrm{I}_{\kappa}(\sigma)=\operatorname{ind}_{J}^{G}(\kappa \otimes \sigma)
$$

for σ an R-representation of $\mathrm{M}\left(\Lambda_{E}\right)$ and defined analogously on the morphisms of $\mathfrak{R}_{R}\left(\mathrm{M}\left(\Lambda_{E}\right)\right)$. This functor has a right adjoint, $\mathrm{R}_{\kappa}: \mathfrak{R}_{R}(G) \rightarrow \mathfrak{R}_{R}\left(\mathrm{M}\left(\Lambda_{E}\right)\right)$, called κ-restriction, defined by

$$
\mathrm{R}_{\kappa}(\pi)=\operatorname{Hom}_{J^{1}}(\kappa, \pi),
$$

where the action of $\mathrm{M}\left(\Lambda_{E}\right)$ is given by: for $f \in \operatorname{Hom}_{J^{1}}(\kappa, \pi)$ and $m \in \mathrm{M}\left(\Lambda_{E}\right)$, let $j \in J$ represent the coset $m \in J / J^{1}$, then $m \cdot f=\pi(j) \circ f \circ \kappa\left(j^{-1}\right)$.

In the level zero case, we have $J=\mathrm{P}(\Lambda)$ and we can choose κ to be trivial, thus we have $\mathrm{I}_{\kappa}=\mathrm{I}_{\Lambda}$ and $\mathrm{R}_{\kappa}=\mathrm{R}_{\Lambda}$. Hence κ-restriction and induction generalise parahoric restriction and induction. Related to $[\Lambda, n, 0, \beta]$, we also have functors
of parahoric induction $\mathrm{I}_{\Lambda}^{E}: \mathfrak{R}_{R}\left(M\left(\Lambda_{E}\right)\right) \rightarrow \mathfrak{R}_{R}\left(G_{E}\right)$ and parahoric restriction $\mathrm{R}_{\Lambda}^{E}: \mathfrak{R}_{R}\left(G_{E}\right) \rightarrow \mathfrak{R}_{R}\left(M\left(\Lambda_{E}\right)\right)$ obtained by considering Λ as an \mathfrak{o}_{E}-lattice sequence.
Theorem 4.8 [Kurinczuk and Stevens 2014]. Let $\left[\Lambda^{i}, n, 0, \beta\right]$, $i=1$, 2, be skew semisimple strata. Let $\theta_{1} \in \mathscr{C}_{-}\left(\Lambda^{1}, \beta\right)$ and $\theta_{2}=\tau_{\Lambda^{1}, \Lambda^{2}, \beta}\left(\theta_{1}\right)$. For $i=1$, 2, let η_{i} be a Heisenberg extension of θ_{i}, κ_{i} be compatible β-extensions of η_{i}, and let σ be an R-representation of $\mathrm{M}\left(\Lambda_{E}^{1}\right)$. Then

$$
\mathrm{R}_{\kappa_{2}} \circ \mathrm{I}_{\kappa_{1}}(\sigma) \simeq \mathrm{R}_{\Lambda^{2}}^{E} \circ \mathrm{I}_{\Lambda^{1}}^{E}(\sigma)
$$

The proof of Theorem 4.8 in [Kurinczuk and Stevens 2014] follows from a combination of Mackey theory, isomorphisms defined as in [Bushnell and Kutzko 1993a, Proposition 5.3.2], and the computation of the intertwining spaces $I_{g}\left(\eta_{1}, \eta_{2}\right)$ for $g \in G$, which are one-dimensional if $g \in G_{E}$ and zero otherwise.

Lemma 4.9. In the setting of Lemma 4.6, let κ and κ_{m} be compatible β-extensions. Then, for all $\sigma \in \mathfrak{R}_{R}\left(\mathrm{M}\left(\Lambda_{E}\right)\right)$, we have

$$
\mathrm{I}_{\kappa}(\sigma) \simeq \operatorname{ind}_{J_{m}^{1} \mathrm{P}\left(\Lambda_{E}\right)}^{G}\left(\kappa_{m} \otimes \sigma\right)
$$

and, for all R-representations π of G, we have $\mathrm{R}_{\kappa}(\pi) \simeq \operatorname{Hom}_{J_{m}^{1} \mathrm{P}_{1}\left(\Lambda_{E}\right)}\left(\kappa_{m}, \pi\right)$.
Proof. By transitivity of induction and Lemma 4.6, $\mathrm{I}_{\kappa}(\sigma) \simeq \operatorname{ind}_{J_{m} \mathrm{P}\left(\Lambda_{E}\right)}^{G}\left(\kappa_{m} \otimes \sigma\right)$. By reciprocity, for π an R-representation of $G, \mathrm{R}_{\kappa}(\pi) \simeq \operatorname{Hom}_{J_{m}^{1} \mathrm{P}_{1}\left(\Lambda_{E}\right)}\left(\kappa_{m}, \pi\right)$.

Define $\tilde{\kappa}$-induction $\mathrm{I}_{\tilde{\kappa}}: \mathfrak{R}_{R}\left(\mathrm{M}\left(\Lambda_{E}\right)\right) \rightarrow \mathfrak{R}_{R}(G)$ by $\mathrm{I}_{\tilde{\kappa}}(\sigma)=\operatorname{ind}_{J}^{G}(\tilde{\kappa} \otimes \sigma)$ for σ an R-representation of $\mathrm{M}\left(\Lambda_{E}\right)$. This functor has a right adjoint, $\tilde{\kappa}$-restriction, $\mathrm{R}_{\tilde{\kappa}}: \mathfrak{R}_{R}(G) \rightarrow \mathfrak{R}_{R}\left(\mathrm{M}\left(\Lambda_{E}\right)\right)$ defined by $\mathrm{R}_{\tilde{\kappa}}(\pi)=\operatorname{Hom}_{J^{1}}(\tilde{\kappa}, \pi)$, where the action of $\mathrm{M}\left(\Lambda_{E}\right)$ on $\mathrm{R}_{\tilde{\kappa}}(\pi)$ is defined analogously to κ-restriction. In fact, $\tilde{\kappa}$ is a $-\beta$-extension for the semisimple character θ^{-1} for the semisimple stratum $[\Lambda, n, 0,-\beta]$.

Lemma 4.10. Let π be an R-representation of G and σ be an irreducible representation of $\mathrm{M}\left(\Lambda_{E}\right)$. Then $\left(\mathrm{R}_{\kappa}(\pi)\right)^{\sim} \simeq \mathrm{R}_{\tilde{\kappa}}(\tilde{\pi})$ and, if $\mathrm{I}_{\kappa}(\sigma)$ is irreducible, then $\mathrm{I}_{\kappa}(\sigma)^{\sim} \simeq \mathrm{I}_{\tilde{\kappa}}(\tilde{\sigma})$.

Proof. We have an isomorphism of vector spaces

$$
\operatorname{Hom}_{J^{1}}(\kappa, \pi)^{\sim} \simeq \operatorname{Hom}_{J^{1}}(\pi, \kappa) \simeq \operatorname{Hom}_{J^{1}}(\tilde{\kappa}, \tilde{\pi})
$$

by [Henniart and Sécherre 2014, Proposition 2.6], and checking the action of J / J^{1} we have $\left(\mathrm{R}_{\kappa}(\pi)\right)^{\sim} \simeq \mathrm{R}_{\tilde{\kappa}}(\tilde{\pi})$. If $\mathrm{I}_{\kappa}(\sigma)$ is irreducible, then it is admissible and we have $\mathrm{I}_{\kappa}(\sigma)^{\sim} \simeq \mathrm{I}_{\tilde{\kappa}}(\tilde{\sigma})$ by [Vignéras 1996, I 8.4].

If $\mathrm{P}\left(\Lambda_{E}\right)$ is not maximal, let $\kappa_{T}=\operatorname{Res}_{T^{0}}^{J}(\kappa)$. Define $\mathrm{R}_{\kappa_{T}, \Lambda}: \mathfrak{R}_{R}(T) \rightarrow \mathfrak{R}_{R}(\bar{T})$ by $\mathrm{R}_{\kappa_{T}, \Lambda}(\pi)=\operatorname{Hom}_{T^{1}}\left(\kappa_{T}, \pi\right)$.

5. Exhaustion of cuspidal representations

In this section, we exhaust all irreducible cuspidal ℓ-modular representations of unramified $\mathrm{U}(2,1)\left(F / F_{0}\right)$. To do this we construct covers. The construction we give here is a vast simplification of that of [Stevens 2008], available as we are in the special case of unramified $U(2,1)$. As the covers are constructed on compact open subgroups with pro-order not necessarily invertible in $\overline{\mathbb{F}}_{\ell}$ it is not clear whether or not the construction will follow mutatis mutandis the complex construction. In fact, for the relatively simple proof we give here for $\mathrm{U}(2,1)\left(F / F_{0}\right)$, it does. It is only when we come to computing the parameters of associated Hecke algebras later that we have to change the complex proof, and these changes occur in computing the parameters of Hecke algebras of certain associated finite reductive groups.

5A. Covers. In the ℓ-adic case our construction of G-covers is a special case of the general results of [Stevens 2008, Propositions 7.10 and 7.13]. Let [$\Lambda, n, 0, \beta$] be a skew semisimple stratum in A such that $\mathrm{P}\left(\Lambda_{E}\right)$ is not a maximal parahoric subgroup of G_{E}. For unramified $\mathrm{U}(2,1)\left(F / F_{0}\right)$, this implies $H^{1}(\Lambda, \beta)=J^{1}(\Lambda, \beta)$, which, in the notation of [ibid.], implies that $J=J_{B}$. Moreover, $\mathrm{P}\left(\Lambda_{E}\right) / \mathrm{P}_{1}\left(\Lambda_{E}\right)$ is abelian and isomorphic to $k_{E}^{1} \times k_{E}^{\times}$. Let $\theta \in \mathscr{C}_{-}(\Lambda, \beta)$; then $\eta=\theta$ is the unique Heisenberg representation containing θ. Let κ be a β-extension of η and $\sigma \in \operatorname{Irr}_{R}\left(J / J^{1}\right)$. Then $\lambda=\kappa \otimes \sigma$ is a character of J. Let $\kappa_{T}=\operatorname{Res}_{T^{0}}^{J}(\kappa)$ and set $\lambda_{T}=\kappa_{T} \otimes \sigma$. Let $J=(J \cap \bar{N})(J \cap T)(J \cap N)$ be the Iwahori decomposition of J with respect to B. We have $\lambda\left(j^{-} j_{T} j^{+}\right)=\lambda_{T}\left(j_{T}\right)$ for $j^{-} \in(J \cap \bar{N}), j_{T} \in J \cap T$, and $j^{+} \in(J \cap N)$.

Lemma 5.1. The element w_{x} intertwines λ if and only if w_{y} intertwines λ.

Proof. Suppose $w_{x} \in I_{G}(\lambda)$. Then, as w_{x} normalises T^{0}, w_{x} normalises $\operatorname{Res}_{T^{0}}^{J}(\lambda)$. For all $t \in T^{0}$ we have $w_{x} t w_{x}=w_{y} t w_{y}$; hence w_{y} normalises $\operatorname{Res}_{T^{0}}^{J}(\lambda)$. Let $j \in J \cap w_{y} J w_{y}$ be such that $j=w_{y} j^{\prime} w_{y}$ with $j^{\prime} \in J$. Using the Iwahori decomposition of J we have $j=j_{\bar{N}} j_{T} j_{N}$ and $j^{\prime}=j_{N}^{\prime} j_{T}^{\prime} j_{\bar{N}}^{\prime}$ with j_{N}, j_{N}^{\prime} upper triangular unipotent, $j_{\bar{N}}, j_{\bar{N}}^{\prime}$ lower triangular unipotent and j_{T}, j_{T}^{\prime} in T. Thus

$$
j=w_{y} j^{\prime} w_{y}^{-1}=\left(w_{y} j_{N}^{\prime} w_{y}\right)\left(w_{y} j_{T}^{\prime} w_{y}\right)\left(w_{y} j_{\bar{N}}^{\prime} w_{y}\right)
$$

and, by unicity of the Iwahori decomposition, $j_{\bar{N}}=w_{y} j_{N}^{\prime} w_{y}, j_{T}=w_{y} j_{T}^{\prime} w_{y}$ and $j_{N}=w_{y} j_{\bar{N}}^{\prime} w_{y}$. Therefore $w_{y} \in I_{G}(\lambda)$.
Lemma 5.2. Let $\lambda_{T}=\kappa_{T} \otimes \sigma$. Then (J, λ) is a G-cover of $\left(T^{0}, \lambda_{T}\right)$.
Proof. In the ℓ-modular case, it remains to show that there exists a strongly (B, J)-positive element z of the centre of T such that $J z^{-1} J$ supports an invertible element of $\mathscr{H}(G, \lambda)$. Let $\zeta=w_{x} w_{y}$. Then ζ is strongly (B, J)-positive. For $g \in I_{G}(\lambda)$, because λ is a character, $I_{g}(\lambda) \simeq R$ and there is a unique function in
$f_{g} \in \mathscr{H}(G, \lambda)$ with support $J g J$ such that $f_{g}(g)=1$. We have $\zeta, \zeta^{-1} \in I_{G}(\lambda)$; hence $f_{\zeta}, f_{\zeta^{-1}} \in \mathscr{H}(G, \lambda)$.

Suppose that $w_{x} \notin I_{G}(\lambda)$, i.e., $I_{G}(\lambda)=J T J$. As ζ is strongly positive,

$$
J \zeta J \zeta^{-1} J=J \zeta J^{-} \zeta^{-1} J .
$$

Suppose $y \in J \zeta J \zeta^{-1} J \cap J T J$. Then we can write $y=j_{1} t j_{2}$ and $y=j_{3} \zeta j^{-} \zeta^{-1} j_{4}$ with $j_{1}, j_{2}, j_{3}, j_{4} \in J, t \in T$ and $j^{-} \in J^{-}$. Thus, we can write

$$
\zeta j^{-} \zeta^{-1}=j t j^{\prime}
$$

with $j, j^{\prime} \in J$. By the Iwahori decomposition of J applied to the elements j and $\left(j^{\prime}\right)^{-1}$, we have

$$
\zeta j^{-} \zeta^{-1}=j_{\bar{N}} j_{T} j_{N} t j_{N}^{\prime} j_{T}^{\prime} j_{\bar{N}}^{\prime}
$$

with $j_{N}, j_{N}^{\prime} \in J \cap N, j_{\bar{N}}, j_{\bar{N}}^{\prime} \in J \cap \bar{N}$ and $j_{T}, j_{T}^{\prime} \in J \cap T$. Then $j_{\bar{N}}^{-1} \zeta j^{-} \zeta^{-1}\left(j_{\bar{N}}^{\prime}\right)^{-1} \in N$ and $j_{\bar{N}}^{-1} \zeta j^{-} \zeta^{-1}\left(j_{\bar{N}}^{\prime}\right)^{-1}=j_{T} j_{N} t j_{N}^{\prime} j_{T}^{\prime} \in B$; hence $j_{\bar{N}}^{-1} \zeta j^{-} \zeta^{-1}\left(j_{\bar{N}}^{\prime}\right)^{-1}=1$ and $\zeta j^{-} \zeta^{-1} \in J$. Therefore, $y \in J$ and $J \zeta J \zeta^{-1} J \cap J T J=J$. Hence $f_{\zeta} \star f_{\zeta^{-1}}$ is supported on the single double coset J. We have $f_{\zeta} \star f_{\zeta^{-1}}\left(1_{G}\right)=q^{4}$. Hence $f_{\zeta^{-1}}$ is an invertible element of $\mathscr{H}(G, \lambda)$ supported on the single double coset $J \zeta^{-1} J$.

Now, suppose that $w_{x} \in I_{G}(\lambda)$, then $w_{y} \in I_{G}(\lambda)$ by Lemma 5.1. Hence $f_{w_{x}}, f_{w_{y}} \in \mathscr{H}(G, \lambda)$. Let $s \in\{x, y\}$. The maximal parahoric subgroup $P\left(\Lambda_{s}\right)$ of G contains J and w_{s} and $P\left(\Lambda_{s}\right) \cap G_{E}$ is a maximal parahoric subgroup of G_{E}. Moreover, $\left(J \cap G_{E}\right) /\left(P_{1}\left(\Lambda_{s}\right) \cap G_{E}\right)$ is a Borel subgroup of $\left(P\left(\Lambda_{s}\right) \cap G_{E}\right) /\left(P_{1}\left(\Lambda_{s}\right) \cap G_{E}\right)$. By [Stevens 2008, Lemma 5.12], $I_{G}(\eta)=J G_{E} J$, thus the support of $\mathscr{H}(G, \lambda)$ is contained in $J G_{E} J$. Hence,

$$
\begin{aligned}
\operatorname{supp}\left(f_{w_{s}} \star f_{w_{s}}\right) & \subseteq\left(J w_{s} J w_{s} J\right) \cap J G_{E} J \\
& \subseteq P\left(\Lambda_{s}\right) \cap J G_{E} J=J\left(P\left(\Lambda_{s}\right) \cap G_{E}\right) J \\
& =J\left(\left(J \cap G_{E}\right) \cup\left(J \cap G_{E}\right) w_{s}\left(J \cap G_{E}\right)\right) J,
\end{aligned}
$$

by the Bruhat decomposition of $\left(P\left(\Lambda_{s}\right) \cap G_{E}\right) /\left(P_{1}\left(\Lambda_{s}\right) \cap G_{E}\right)$, which is a finite reductive group. Thus, $\operatorname{supp}\left(f_{w_{s}} \star f_{w_{s}}\right) \subseteq J \cup J w_{s} J$. We have that $f_{w_{s}} \star f_{w_{s}}\left(1_{G}\right)=$ $\left[J: J \cap w_{s} J w_{s}\right]$ is a power of q. Let $a_{s}=f_{w_{s}} \star f_{w_{s}}\left(1_{G}\right)$ and $b_{s}=f_{w_{s}} \star f_{w_{s}}\left(w_{s}\right)$. Therefore, for $s \in\{x, y\}, f_{w_{s}}$ is an invertible element of $\mathscr{H}(G, \lambda)$ with inverse $\left(1 / a_{s}\right)\left(f_{w_{s}}-b_{s} f_{1}\right)$. By [Stevens 2008, Lemma 7.11], we have $(J \cap N)^{w_{x}} \subseteq J \cap N$ and $(J \cap \bar{N})^{w_{y}} \subseteq J \cap \bar{N}$. By the Iwahori decomposition of J,

$$
\begin{aligned}
J w_{y} J w_{x} J & =J\left(w_{y}(J \cap \bar{N}) w_{y}\right) w_{y} w_{x}\left(w_{x}(J \cap T) w_{x}\right)\left(w_{x}(J \cap N) w_{x}\right) J \\
& =J(J \cap \bar{N})^{w_{y}} w_{y} w_{x}(J \cap T)^{w_{x}}(J \cap N)^{w_{x}} J \\
& \subseteq J(J \cap \bar{N}) w_{y} w_{x}(J \cap T)(J \cap N) J=J w_{y} w_{x} J .
\end{aligned}
$$

Moreover, we clearly have $J w_{y} w_{x} J \subseteq J w_{y} J w_{x} J$. Hence $J w_{y} w_{x} J=J w_{y} J w_{x} J$.

Therefore, $f_{w_{y}} \star f_{w_{x}}$ is an invertible element of $\mathscr{H}(G, \lambda)$ supported on the single double coset $J \zeta^{-1} J$.

5B. Cuspidal representations. The following theorem addresses the construction of all irreducible cuspidal ℓ-modular and ℓ-adic representations of G.

Theorem 5.3. (1) Let $[\Lambda, n, 0, \beta]$ be a skew semisimple stratum in $A, \theta \in \mathscr{C}_{-}(\beta, \Lambda)$, η the unique Heisenberg representation containing θ, κ a β-extension of η and σ an irreducible cuspidal representation of $\mathrm{M}\left(\Lambda_{E}\right)$. Then $\mathrm{I}_{\kappa}(\sigma)$ is quasiprojective. Furthermore, if $\mathrm{P}\left(\Lambda_{E}\right)$ is a maximal parahoric subgroup of G_{E}, then $\mathrm{I}_{\kappa}(\sigma)$ is irreducible and cuspidal.
(2) Let π be an irreducible cuspidal representation of G. Then there exist a skew semisimple stratum $[\Lambda, n, 0, \beta]$ with $\mathrm{P}\left(\Lambda_{E}\right)$ a maximal parahoric subgroup of $G_{E}, \theta \in \mathscr{C}_{-}(\beta, \Lambda)$, a β-extension κ of the unique Heisenberg representation η which contains θ and an irreducible cuspidal representation σ of $\mathrm{M}\left(\Lambda_{E}\right)$ such that $\pi \simeq \mathrm{I}_{\kappa}(\sigma)$.

Proof. (1) Quasiprojectivity follows mutatis mutandis the proof given in [Vignéras 2001, Proposition 6.1]. So suppose $\mathrm{P}\left(\Lambda_{E}\right)$ is a maximal parahoric subgroup of G_{E}. By Theorem 4.8 and Lemma 4.4 we have

$$
\mathrm{R}_{\kappa} \circ \mathrm{I}_{\kappa}(\sigma) \simeq \mathrm{R}_{\Lambda}^{E} \circ \mathrm{I}_{\Lambda}^{E}(\sigma) \simeq \sigma .
$$

The proof of irreducibility follows mutatis mutandis the proof given in [Vignéras 2001, Proposition 7.1].
(2) By Theorem 4.5, π contains a skew semisimple stratum $[\Lambda, n, 0, \beta]$. Suppose $\theta \in \mathscr{C}_{-}(\Lambda, \beta)$ is a skew semisimple character which π contains. Let κ be a β-extension of the unique Heisenberg representation η which contains θ. Then π contains $\kappa \otimes \sigma$ for some $\sigma \in \operatorname{Irr}_{R}\left(\mathrm{M}\left(\Lambda_{E}\right)\right)$. We show that we may assume that σ is cuspidal. If $\mathrm{P}\left(\Lambda_{E}\right)$ is not maximal then σ is cuspidal, so we can suppose that $\mathrm{P}\left(\Lambda_{E}\right)$ is maximal. Let $B\left(\Lambda_{E}\right)$ be the standard Borel subgroup of $\mathrm{M}\left(\Lambda_{E}\right)$ and $\mathrm{P}\left(\Lambda_{E}^{\prime}\right)$ the preimage of $B\left(\Lambda_{E}\right)$ under the projection map. Suppose that $r_{B\left(\Lambda_{E}\right)}^{\mathrm{M}\left(\Lambda_{E}\right)}(\sigma) \neq 0$. Then, as π contains $\sigma, r_{B\left(\Lambda_{E}\right)}^{\mathrm{M}\left(\Lambda_{E}\right)}\left(\mathrm{R}_{\kappa}(\pi)\right) \neq 0$. We have

$$
r_{B\left(\Lambda_{E}\right)}^{\mathrm{M}\left(\Lambda_{E}\right)}\left(\mathrm{R}_{\kappa}(\pi)\right) \simeq \operatorname{Hom}_{J^{1}}(\kappa, \pi)^{\mathrm{P}_{1}\left(\Lambda_{E}^{\prime}\right) J^{1} / J^{1}} \simeq \operatorname{Hom}_{\mathrm{P}_{1}\left(\Lambda_{E}^{\prime}\right) J^{1}}(\kappa, \pi),
$$

which, by Lemma 4.9 , implies that $\mathrm{R}_{\kappa^{\prime}, \Lambda^{\prime}}(\pi) \neq 0$ where κ^{\prime} is the unique β-extension containing $\tau_{\Lambda, \Lambda^{\prime}, \beta}(\theta)$ compatible with κ. Hence π contains a skew semisimple stratum $\left[\Lambda^{\prime}, n, 0, \beta\right]$ such that $\mathrm{P}\left(\Lambda_{E}^{\prime}\right)$ is not maximal and thus contains $\kappa^{\prime} \otimes \sigma^{\prime}$, with σ^{\prime} a cuspidal representation of $\mathrm{M}\left(\Lambda_{E}^{\prime}\right)$. By Theorem 4.2 and Lemma 5.2, if π contains a skew semisimple stratum $[\Lambda, n, 0, \beta]$ such that $\mathrm{P}\left(\Lambda_{E}\right)$ is not a maximal parahoric subgroup of G_{E}, then π is not cuspidal. Therefore $\mathrm{P}\left(\Lambda_{E}\right)$ is maximal and σ is cuspidal.

For level zero representations we can refine the exhaustive list of irreducible cuspidal representations given in Theorem 5.3 into a classification.

Theorem 5.4. For $i=1,2$, let $\mathrm{P}\left(\Lambda_{i}\right)$ be a maximal parahoric subgroup of G and σ_{i} an irreducible cuspidal representation of $\mathrm{M}\left(\Lambda_{i}\right)$. If $\operatorname{Hom}_{G}\left(\mathrm{I}_{\Lambda_{1}}\left(\sigma_{1}\right), \mathrm{I}_{\Lambda_{2}}\left(\sigma_{2}\right)\right) \neq 0$ then $\left(\mathrm{P}\left(\Lambda_{1}\right), \sigma_{1}\right)$ and $\left(\mathrm{P}\left(\Lambda_{2}\right), \sigma_{2}\right)$ are conjugate.
Proof. By reciprocity and Lemma 4.3,

$$
\operatorname{Hom}_{G}\left(\mathrm{I}_{\Lambda_{1}}\left(\sigma_{1}\right), \mathrm{I}_{\Lambda_{2}}\left(\sigma_{2}\right)\right) \simeq \bigoplus_{n \in D_{1,2}} \operatorname{Hom}_{\mathrm{M}\left(\Lambda_{1}\right)}\left(\sigma_{1}, i_{P_{\Lambda_{1}, n \Lambda_{2}} \mathrm{M}\left(\Lambda_{1}\right)}\left(r_{P_{\Lambda_{2}, n^{-1} \Lambda_{1}}^{\mathrm{M}\left(\Lambda_{2}\right)}}\left(\sigma_{2}\right)\right)^{n}\right)
$$

Hence

$$
\operatorname{Hom}_{G}\left(\mathrm{I}_{\Lambda_{1}}\left(\sigma_{1}\right), \mathrm{I}_{\Lambda_{2}}\left(\sigma_{2}\right)\right) \neq 0
$$

if and only if there exists $n \in D_{1,2}$ such that

$$
\operatorname{Hom}_{\mathrm{M}\left(\Lambda_{1}\right)}\left(\sigma_{1}, i_{P_{\Lambda_{1}, \Lambda_{2}}}^{\mathrm{M}\left(\Lambda_{1}\right)}\left(r_{P_{\Lambda_{2}, n^{-1} \Lambda_{1}}}^{\mathrm{M}\left(\Lambda_{2}\right)}\left(\sigma_{2}\right)\right)^{n}\right) \neq 0 .
$$

Assume there exists such an element n. By cuspidality of $\sigma_{2}, P_{\Lambda_{2}, n^{-1} \Lambda_{1}}=\mathrm{M}\left(\Lambda_{2}\right)$, so $\mathrm{P}_{1}\left(\Lambda_{2}\right)\left(\mathrm{P}\left(\Lambda_{2}\right) \cap \mathrm{P}\left(n^{-1} \Lambda_{1}\right)\right) / \mathrm{P}_{1}\left(\Lambda_{2}\right)=M\left(\Lambda_{2}\right)$. By cuspidality of $\sigma_{1}, P_{\Lambda_{1}, n \Lambda_{2}}=$ $\mathrm{M}\left(\Lambda_{1}\right)$, so $\mathrm{P}_{1}\left(\Lambda_{1}\right)\left(\mathrm{P}\left(\Lambda_{1}\right) \cap \mathrm{P}\left(n \Lambda_{2}\right)\right) / \mathrm{P}_{1}\left(\Lambda_{1}\right)=\mathrm{M}\left(\Lambda_{1}\right)$. If $\mathrm{P}\left(\Lambda_{1}\right)$ and $\mathrm{P}\left(\Lambda_{2}\right)$ are not conjugate then for all $g \in G$, in particular $n \in D_{1,2}$, the group $\mathrm{P}\left(\Lambda_{1}\right) \cap \mathrm{P}\left(g \Lambda_{2}\right)$ must stabilise an edge in the building and hence is not maximal. Thus it cannot surject onto either $\mathrm{M}\left(\Lambda_{1}\right)$ or $\mathrm{M}\left(\Lambda_{2}\right)$. Hence there exists $n \in D_{1,2}$ such that $\mathrm{P}\left(\Lambda_{1}\right)=\mathrm{P}\left(n \Lambda_{2}\right)$ and $\operatorname{Hom}_{\mathrm{M}\left(\Lambda_{1}\right)}\left(\sigma_{1}, \sigma_{2}^{n}\right) \neq\{0\}$; i.e., $\left(\mathrm{P}\left(\Lambda_{1}\right), \sigma_{1}\right)$ and $\left(\mathrm{P}\left(\Lambda_{2}\right), \sigma_{2}\right)$ are conjugate.
Remark 5.5. Let $\ell \mid\left(q^{2}-q+1\right)$. The irreducible cuspidal ℓ-modular representations $\mathrm{I}_{\Lambda_{x}}\left(\bar{\tau}^{+}(\bar{\chi})\right)$ do not lift. A lift must necessarily be cuspidal as the Jacquet functor commutes with reduction modulo ℓ. However, by Theorem 5.3, all ℓ-adic level zero irreducible cuspidal representations are of the form $\mathrm{I}_{\Lambda_{x}}\left(\sigma_{x}\right)$ or $\mathrm{I}_{\Lambda_{y}}\left(\sigma_{y}\right)$ with σ_{x} (resp. σ_{y}) an irreducible cuspidal ℓ-adic representation of $\mathrm{M}\left(\Lambda_{x}\right)$ (resp. $\left.\mathrm{M}\left(\Lambda_{y}\right)\right)$. Furthermore, $r_{\ell}\left(\mathrm{I}_{\Lambda_{w}}\left(\sigma_{w}\right)\right)=\mathrm{I}_{\Lambda_{w}}\left(r_{\ell}\left(\sigma_{w}\right)\right)$ as compact induction commutes with reduction modulo ℓ, for $w \in\{x, y\}$. Hence, by Section 3B2, $\mathrm{I}_{\Lambda_{x}}\left(\bar{\tau}^{+}(\bar{\chi})\right)$ does not lift, but does appear in the reduction modulo ℓ of $\mathrm{I}_{\Lambda_{x}}(\tau(\psi))$, where $r_{\ell}\left(\mathrm{I}_{\Lambda_{x}}(\tau(\psi))=\mathrm{I}_{\Lambda_{x}}(\bar{\nu}(\bar{\chi})) \oplus \mathrm{I}_{\Lambda_{x}}\left(\bar{\tau}^{+}(\bar{\chi})\right)\right.$.

6. Parabolically induced representations

Let $\omega_{F / F_{0}}$ be the unique character of F_{0}^{\times}associated to F / F_{0} by local class field theory. That is, $\omega_{F / F_{0}}$ is defined by $\omega_{F / F_{0}} l_{0 \times x_{0}}=1$ and $\omega_{F / F_{0}}\left(\varpi_{F}\right)=-1$. All extensions of $\omega_{F / F_{0}}$ to F^{\times}take values in $\overline{\mathbb{Z}}_{\ell}^{\times}$, hence are integral. Let χ_{1} be a character of F^{\times}and χ_{2} be a character of F^{1}. Let χ be the character of T defined by

$$
\chi\left(\operatorname{diag}\left(x, y, \bar{x}^{-1}\right)\right)=\chi_{1}(x) \chi_{2}\left(x \bar{x}^{-1} y\right),
$$

which is well-defined because $x \mapsto x \bar{x}^{-1}$ is a surjective map $F^{\times} \rightarrow F^{1}$. Every character of T appears in this way: we can recover χ_{1} and χ_{2} from χ by

$$
\chi_{1}(x)=\chi\left(\operatorname{diag}\left(x, \bar{x} / x, \bar{x}^{-1}\right)\right), \quad \chi_{2}(y)=\chi(\operatorname{diag}(1, y, 1)) .
$$

The character χ_{2} factors through the determinant and

$$
i_{B}^{G}(\chi) \simeq i_{B}^{G}\left(\chi_{1}\right)\left(\chi_{2} \circ \mathrm{det}\right),
$$

where χ_{1} is the character $\chi_{1}\left(\operatorname{diag}\left(x, y, \bar{x}^{-1}\right)\right)=\chi_{1}(x)$ of T. Hence the reducibility of $i_{B}^{G}(\chi)$ is completely determined by that of $i_{B}^{G}\left(\chi_{1}\right)$. The character χ is not regular if $\chi_{1}(x)=\chi_{1}(\bar{x})^{-1}$, which occurs if and only if χ_{1} is an extension of 1 or $\omega_{F / F_{0}}$ to F^{\times}. An irreducible character χ has level zero if and only if both χ_{1} and χ_{2} have level zero.

Let v be the character of T given by $v\left(\operatorname{diag}\left(x, y, \bar{x}^{-1}\right)\right)=|x|_{F}$, i.e., the character with $\chi_{1}(x)=|x|_{F}$ and χ_{2} trivial, where we normalise $|\cdot|_{F}$ so that $|\varpi|_{F}=1 / q$. The modulus character δ_{B} of B is given on T by $\delta_{B}=v^{-4}$. Because the image of v is contained in $\overline{\mathbb{Z}}_{\ell}^{\times}, v$ and δ_{B} are integral. If $q^{4} \equiv 1 \bmod \ell$ then δ_{B} is trivial.

6A. Hecke Algebras. To find the characters χ such that the induced representation $i_{B}^{G}(\chi)$ is reducible we study the algebras $\mathscr{H}(G, \lambda)$.
Theorem 6.1. Suppose λ_{T} is a character of T^{0}. Let (J, λ) be a G-cover of $\left(T^{0}, \lambda_{T}\right)$ as constructed in Lemma 5.2.
(1) If λ_{T} is regular then $\mathscr{H}(G, \lambda) \simeq R\left[X^{ \pm 1}\right]$.
(2) If λ_{T} is not regular then $\mathscr{H}(G, \lambda)$ is a two-dimensional algebra generated as an R-algebra by $f_{w_{x}}$ and $f_{w_{y}}$ and the relations

$$
\begin{aligned}
& f_{w_{x}} \star f_{w_{x}}=\left(q^{a}-1\right) f_{w_{x}}+q^{a}, \\
& f_{w_{y}} \star f_{w_{y}}=(q-1) f_{w_{y}}+q,
\end{aligned}
$$

where $a=3$ and $f_{w_{x}}(1)=f_{w_{y}}(1)=1$ if λ_{T} is trivial on T^{1} and factors through the determinant, and $a=1, f_{w_{x}}(1)=1 / q$ and $f_{w_{y}}(1)=1$ if not.
Proof. If $g \in I_{G}(\lambda)$ then $\mathrm{I}_{g}(\lambda) \simeq R$, because χ is a character. For $g \in I_{G}(\lambda)$, $r \in R$, we let $f_{g, r}$ denote the unique function supported on $J g J$ with $f_{g, r}(g)=r$. If λ_{T} is regular then the support of $\mathscr{H}(G, \lambda)$ is $J T J=\bigcup_{n \in \mathbb{Z}} J \zeta^{n} J$ and, since each intertwining space is one-dimensional and $f_{\zeta^{n}, 1}$ has support $J \zeta^{n} J$, we have an isomorphism $\mathscr{H}(G, \lambda) \simeq R\left[X^{ \pm 1}\right]$ defined by $f_{\zeta, 1} \mapsto X$.

Suppose $w_{x} \in I_{G}(\lambda)$. By Lemma 5.1, w_{x} intertwines λ if and only if w_{y} intertwines λ. The support of the Hecke algebra is contained in the intertwining of $\eta=\operatorname{Res}_{J^{1}}^{J}(\kappa)$, which is $J G_{E} J$. By the semisimple intersection property [Stevens 2008, Lemma 2.6] and the Bruhat decomposition we have $J G_{E} J=\bigcup_{w \in \tilde{W}} J w J$. As in the proof of Lemma 5.2 we have $J w_{x} J w_{y} J=J w_{x} w_{y} J$ and, similarly,
$J w_{y} J w_{x} J=J w_{y} w_{x} J$. Hence, as the intertwining spaces are one-dimensional, the support of $f_{w_{x}} \star f_{w_{y}} \star f_{w_{x}} \star \cdots \star f_{w_{i}}$ is $J w_{x} w_{y} w_{x} \cdots w_{i} J$. Thus, as \widetilde{W} is an infinite dihedral group generated by w_{x} and $w_{y}, \mathscr{H}(G, \lambda)$ is generated by $f_{w_{x}, 1}$ and $f_{w_{y}, 1}$ and the quadratic relations $f_{w_{x}, 1} \star f_{w_{x}, 1}$ and $f_{w_{y}, 1} \star f_{w_{y}, 1}$. Let Λ^{x} and Λ^{y} be \mathfrak{o}_{E}-lattice sequences such that the parahoric subgroups $\mathrm{P}\left(\Lambda_{E}^{x}\right)=\mathrm{P}\left(\Lambda_{E}\right) \cup \mathrm{P}\left(\Lambda_{E}\right) w_{x} \mathrm{P}\left(\Lambda_{E}\right)$ and $\mathrm{P}\left(\Lambda_{E}^{y}\right)=\mathrm{P}\left(\Lambda_{E}\right) \cup \mathrm{P}\left(\Lambda_{E}\right) w_{y} \mathrm{P}\left(\Lambda_{E}\right)$. The parahoric subgroups $\mathrm{P}\left(\Lambda_{E}^{x}\right)$ and $\mathrm{P}\left(\Lambda_{E}^{y}\right)$ are nonconjugate, maximal and contain $\mathrm{P}\left(\Lambda_{E}\right)$. Let κ_{x} and κ_{y} be the β-extensions, compatible with κ, defined by Lemma 4.6 related to the skew semisimple strata [$\left.\Lambda^{x}, n, 0, \beta\right]$ and $\left[\Lambda^{y}, n, 0, \beta\right]$.

For $z \in\{x, y\}$, let $\hat{\kappa}_{z}=\operatorname{Res}_{J^{1}\left(\beta, \Lambda^{i}\right) \mathrm{P}\left(\Lambda_{E}\right)}^{J}\left(\kappa_{z}\right)$. We have a support-preserving isomorphism

$$
\mathscr{H}(G, \kappa \otimes \sigma) \simeq \mathscr{H}\left(G, \hat{\kappa}_{z} \otimes \sigma\right)
$$

by Lemma 4.6 and transitivity of compact induction. We have a support-preserving injection of algebras

$$
\mathscr{H}\left(\mathrm{P}\left(\Lambda_{E}^{z}\right), \sigma\right) \rightarrow \mathscr{H}\left(\mathrm{P}\left(\Lambda^{z}\right), \hat{\kappa}_{z} \otimes \sigma\right)
$$

defined by $\Phi \mapsto \hat{\kappa}_{z} \otimes \Phi$, where σ is considered as a character of $\mathrm{P}\left(\Lambda_{E}\right)$ trivial on $\mathrm{P}_{1}\left(\Lambda_{E}\right)$.

Let B_{z} be the standard Borel subgroup of $\mathrm{M}\left(\Lambda_{E}^{z}\right)$. In the ℓ-adic case, by [Howlett and Lehrer 1980, Theorem 4.14], if $i_{B_{z}}^{\mathrm{M}\left(\Lambda_{E}^{z}\right)}(\bar{\sigma})=\rho_{1}^{z} \oplus \rho_{2}^{z}$ with $\operatorname{dim}\left(\rho_{1}^{z}\right) \geqslant \operatorname{dim}\left(\rho_{2}^{z}\right)$ then $\mathscr{H}\left(\mathrm{M}\left(\Lambda_{E}^{z}\right), \bar{\sigma}\right)$ is generated by T_{w}^{z}, which is supported on the double coset $B_{z} w_{x} B_{z}$ and satisfies the quadratic relation

$$
T_{w}^{z} \star T_{w}^{z}=\left(d_{z}-1\right) T_{w}^{z}+d_{z} T_{1}^{z},
$$

where $d_{z}=\operatorname{dim}\left(\rho_{1}^{z}\right) / \operatorname{dim}\left(\rho_{2}^{z}\right)$ and T_{1}^{z} is the identity of $\mathscr{H}\left(\mathrm{M}\left(\Lambda_{E}^{z}\right), \bar{\sigma}\right)$. By Section 3, $d_{y}=q$ and

$$
d_{x}= \begin{cases}q^{3} & \text { if } \lambda_{T} \text { is trivial on } T^{1} \text { and factors through the determinant }, \\ q & \text { otherwise. }\end{cases}
$$

In the ℓ-modular case, we choose a lift $\hat{\bar{\sigma}}$ of $\bar{\sigma}$ such that $\hat{\bar{\sigma}}^{w_{x}}=\hat{\hat{\sigma}}$. Let L be a lattice in $\hat{\bar{\sigma}}$. Recall that $\hat{\bar{\sigma}}$ is called a reduction stable of $\bar{\sigma}$ if $\mathscr{H}\left(\mathrm{M}\left(\Lambda_{E}^{z}\right), \bar{\sigma}\right)=$ $\overline{\mathbb{Z}}_{\ell} \otimes_{\overline{\mathbb{F}}_{\ell}} \mathscr{H}\left(\mathrm{M}\left(\Lambda_{E}^{z}\right), L\right)$ and $\mathscr{H}\left(\mathrm{M}\left(\Lambda_{E}^{z}\right), \hat{\bar{\sigma}}\right)=\overline{\mathbb{Q}}_{\ell} \otimes_{\overline{\mathbb{F}}_{\ell}} \mathscr{H}\left(\mathrm{M}\left(\Lambda_{E}^{z}\right), L\right)$. A basis of $\mathscr{H}\left(\mathrm{M}\left(\Lambda_{E}^{z}\right), \hat{\bar{\sigma}}\right)$ is called reduction stable if it is a basis of $\mathscr{H}\left(\mathrm{M}\left(\Lambda_{E}^{z}\right), L\right)$ and $\hat{\bar{\sigma}}$ is reduction stable. By [Geck et al. 1996, Section 3.1], $\hat{\bar{\sigma}}$ is reduction stable and a basis of $\mathscr{H}\left(\mathrm{M}\left(\Lambda_{E}^{z}\right), \hat{\bar{\sigma}}\right)$ is reduction stable. Hence we obtain a basis of $\mathscr{H}\left(\mathrm{M}\left(\Lambda_{E}^{z}\right), \bar{\sigma}\right)$ satisfying the quadratic relations required by reduction modulo ℓ.

By inflation, T_{w}^{z} determines an element $f_{w_{z}, r_{z}} \in \mathscr{H}\left(\mathrm{P}\left(\Lambda_{E}^{z}\right), \sigma\right)$ supported on $J w_{z} J$. Furthermore, $f_{w_{x}, 1} \star f_{w_{x}, 1}\left(1_{G}\right)=\left[J: J \cap w_{x} J w_{x}\right]=q^{3}$ and $f_{w_{y}, 1} \star f_{w_{y}, 1}\left(1_{G}\right)=$
$\left[J: J \cap w_{y} J w_{y}\right]=q$ in all cases; hence $r_{x}=r_{y}=1$ if λ_{T} is trivial on T^{1} and factors through the determinant, and $r_{x}=1 / q$ and $r_{y}=1$ otherwise.

6B. Reducibility points. Suppose $i_{B}^{G}(\chi)$ is reducible and let $\lambda_{T}=\operatorname{Res}_{T^{0}}^{T}(\chi)$. By Theorem 6.1, λ_{T} is not regular. Let (J, λ) be a G-cover of $\left(T^{0}, \lambda_{T}\right)$ as constructed in Lemma 5.2 with $\lambda=\kappa \otimes \sigma$. If π is an irreducible quotient of $\mathrm{I}_{\kappa}(\sigma)$ and an irreducible quotient of $i_{B}^{G}(\chi)$ then, by exactness of the Jacquet functor, $r_{B}^{G}(\pi)$ is one-dimensional. Hence, as $\left(j_{B}\right)^{*}\left(M_{\lambda}(\pi)\right) \simeq M_{\lambda_{T}}\left(r_{B}^{G}(\pi)\right)$ by Theorem 4.2, π must correspond to a character of $\mathscr{H}(G, \lambda)$ under the bijection of Theorem 4.1. The characters of $\mathscr{H}(G, \lambda)$ are determined by their values on the generators $f_{w_{x}, b}$ and $f_{w_{y}, 1}$, where we let $b=1$ if λ_{T} is trivial on T^{1} and factors through the determinant and $b=1 / q$ otherwise. Let a be given by Theorem 6.1. The characters of $\mathscr{H}(G, \lambda)$ are summarised as follows:

Character of $\mathscr{H}_{R}(G, \lambda)$	Value on $f_{w_{x}, b}$	Value on $f_{w_{y}, 1}$
$\Xi_{\text {sgn }}$	-1	-1
$\Xi_{\text {ind }}$	q^{a}	q
Ξ_{1}	q^{a}	-1
Ξ_{2}	-1	q

If $q^{a} \neq-1 \bmod \ell$, these characters are distinct; if $q^{a}=-1 \bmod \ell$ but $q \neq-1$ $\bmod \ell$, there are two characters, $\Xi_{\mathrm{sgn}}=\Xi_{1}$ and $\Xi_{\text {ind }}=\Xi_{2}$; if $q=-1 \bmod \ell$, there is a unique character $\Xi_{\mathrm{sgn}}=\Xi_{1}=\Xi_{\text {ind }}=\Xi_{2}$.

To calculate the values of χ where this reducibility occurs we study the restriction of the characters of $\mathscr{H}_{R}(G, \lambda)$ to $\mathscr{H}\left(T, \lambda_{T}\right)$ under $\left(j_{B}\right)^{*}$. The injection $j_{B}: \mathscr{H}\left(T, \lambda_{T}\right) \rightarrow \mathscr{H}(G, \lambda)$ is induced by taking the unique function $f_{\zeta, 1}^{T} \in \mathscr{H}\left(T, \lambda_{T}\right)$ with support $J_{T} \zeta$ and $f_{\zeta, 1}^{T}(\zeta)=1$ to $f_{\zeta, 1}$, the unique function in $\mathscr{H}(G, \lambda)$ with support $J \zeta J$ and $f_{\zeta, 1}(\zeta)=1$. Moreover, we know that $f_{\zeta, 1}=\varepsilon f_{w_{x}, 1} \star f_{w_{y}, 1}$ for some scalar $\varepsilon \in R$. It is determining the sign of this scalar which requires work. The normalised restriction map $\left(j_{B}\right)^{*}$ is then induced by this injection and twisting by ν^{-2}. To find ε we compare the value of the characters of $\mathscr{H}(G, \lambda)$ on $f_{w_{x}, 1} \star f_{w_{y}, 1}$ twisted by $\varepsilon \nu^{-2}(\zeta)$ to known reducibility points.

Character χ of $\mathscr{H}_{R}(G, \lambda)$	$\left.\begin{array}{c} \\ -2 \\ \hline\end{array} \zeta\right) \chi\left(f_{w_{x}, 1} \star f_{w_{y}, 1}\right)$	$\varepsilon v^{-2}(\zeta) \chi\left(f_{w_{x}, 1} \star f_{w_{y}, 1}\right)$
$\Xi_{\text {sgn }}$	$a=3, b=1$	$a=1, b=1 / q$
$\Xi_{\text {ind }}$	$q^{-2} \varepsilon$	$q^{-1} \varepsilon$
Ξ_{1}	$q^{2} \varepsilon$	$q \varepsilon$
Ξ_{2}	$-q \varepsilon$	$-\varepsilon$

First consider the case when $a=3$ and $b=1 / q$. As the trivial representation is an irreducible subquotient of $i_{B}^{G}\left(\nu^{ \pm 2}\right)$, the induced representations are reducible. Thus $\nu^{ \pm 2}(\zeta)=q^{ \pm 2} \in\left\{q^{-2} \varepsilon, q^{2} \varepsilon,-q \varepsilon,-q^{-1} \varepsilon\right\}$ and this multiset of values of the characters must be $\left\{q^{-2}, q^{2},-q,-q^{-1}\right\}$. Moreover, by compatibility with the ℓ-adic case by reduction modulo ℓ, we must have $\varepsilon=1$ with $\nu^{ \pm 2}$ corresponding to $\Xi_{\text {sgn }}$ and $\Xi_{\text {ind }}$. The other reducibility points, corresponding to the characters Ξ_{1} and Ξ_{2} of $\mathscr{H}(G, \lambda)$, are the characters χ of T of the form $\chi=\eta \nu^{ \pm 1}$, where η is any extension of $\omega_{F / F_{0}}$ to F^{\times}which is trivial on F^{1} such that $\left.\chi\right|_{T^{0}}$ factors through the determinant.

Now consider the case when $a=1$ and $b=1 / q$. Using an alternative method, Keys [1984] computed the ℓ-adic reducibility points. Comparing the value of a pair of these on ζ - see [Keys 1984, Section 7] — with our values in the table we must have $\varepsilon=-1$ in all other cases. This gives reducibility points the characters χ of T of the form $\chi=\eta \nu^{ \pm 1}$, where η is any extension of $\omega_{F / F_{0}}$ to F^{\times}not trivial on F^{1}, corresponding to the characters $\Xi_{\text {sgn }}$ and $\Xi_{\text {ind }}$ of $\mathscr{H}(G, \lambda)$, and the characters χ of T of the form χ_{1} is nontrivial, but $\left.\chi_{1}\right|_{F_{0}}$ is trivial, corresponding to the characters Ξ_{1} and Ξ_{2} of $\mathscr{H}(G, \lambda)$.
Theorem 6.2. Let χ be an irreducible ℓ-modular character of T. Then $i_{B}^{G}(\chi)$ is reducible exactly in the following cases:
(1) $\chi=v^{ \pm 2}$;
(2) $\chi=\eta \nu^{ \pm 1}$, where η is any extension of $\omega_{F / F_{0}}$ to F^{\times};
(3) χ_{1} is nontrivial, but $\left.\chi_{1}\right|_{F_{0}}$ is trivial.

6C. Parahoric restriction and parabolic induction. As the parabolic functors respect the decomposition of $\mathfrak{R}_{R}(G)$ by level, by [Vignéras 1996, II 5.12], if χ is a level zero character of T (i.e., a character of T trivial on T^{1}) then all irreducible subquotients of $i_{B}^{G}(\chi)$ have level zero.
Lemma 6.3. Let $w \in\{x, y\}$ and let χ be a level zero character of T. Then $\mathrm{R}_{\Lambda_{w}}\left(i_{B}^{G}(\chi)\right) \simeq i_{B_{w}}^{\mathrm{M}\left(\Lambda_{w}\right)}(\chi)$.
Proof. The proof follows by Mackey theory, as the maximal parahoric subgroups of G satisfy the Iwasawa decomposition.

Let $[\Lambda, n, 0, \beta]$ be a skew semisimple stratum in A. Let $\theta \in \mathscr{C}_{-}(\Lambda, \beta)$ and κ be a β-extension of the unique Heisenberg representation containing θ. Let χ be an irreducible ℓ-modular character of T which contains the R-type ($J_{T}, \kappa_{T} \otimes \sigma$). Furthermore, suppose that $(J, \kappa \otimes \sigma)$ is a G-cover of $\left(J_{T}, \kappa_{T} \otimes \sigma\right)$ relative to B, as in Lemma 5.2. Let Λ^{m} be an \mathfrak{o}_{E}-lattice sequence in V such that $\mathrm{P}\left(\Lambda_{E}^{m}\right)$ is maximal and $\mathrm{P}\left(\Lambda_{E}\right) \subset \mathrm{P}\left(\Lambda_{E}^{m}\right)$. Let $\theta_{m}=\tau_{\Lambda, \Lambda^{m}, \beta}(\theta)$ and κ_{m} be the unique β-extension of the unique Heisenberg representation containing θ_{m} which is compatible with κ,
as in Lemma 4.6. Let $B\left(\Lambda_{E}^{m}\right)$ be the Borel subgroup of $\mathrm{M}\left(\Lambda_{E}^{m}\right)$ whose preimage under the projection map $\mathrm{P}\left(\Lambda_{E}^{m}\right) \rightarrow \mathrm{M}\left(\Lambda_{E}^{m}\right)$ is equal to J. Suppose $B\left(\Lambda_{E}^{m}\right)$ has Levi decomposition $B\left(\Lambda_{E}^{m}\right)=T\left(\Lambda_{E}^{m}\right) \ltimes N\left(\Lambda_{E}^{m}\right)$.

The next theorem is a generalisation of a weakening of Lemma 6.3; precisely, it generalises the isomorphism Lemma 6.3 induces in the Grothendieck group $\mathfrak{G r}_{R}\left(\mathrm{M}\left(\Lambda_{w}\right)\right)$.

Theorem 6.4. With the notation as above, there is an isomorphism

$$
\left[\mathrm{R}_{\kappa_{m}}\left(i_{B}^{G}(\chi)\right)\right] \simeq\left[i_{B\left(\Lambda_{E}^{m}\right)}^{M\left(\Lambda_{\kappa_{T}}^{m}\right)}\left(\mathrm{R}_{\kappa_{T}}(\chi)\right)\right] .
$$

Proof. We prove the corresponding result in the ℓ-adic case first and deduce the ℓ-modular result by reduction modulo ℓ. The proof in the ℓ-adic case follows a similar argument made for $\mathrm{GL}_{n}(F)$ in [Schneider and Zink 1999]. Let $\Omega_{T}=[T, \rho]_{T}$ and $\Omega=[T, \rho]_{G}$ be inertial equivalence classes. Let $\Re_{\overline{\mathbb{Q}}_{\ell}}(\Omega)$ denote the full subcategory of $\mathrm{R}_{\overline{\mathbb{Q}}_{\ell}}(G)$ of representations all of whose irreducible subquotients have inertial support in Ω, and $\Re_{\overline{\mathbb{Q}}_{\ell}}\left(\Omega_{T}\right)$ denote the full subcategory of $\mathrm{R}_{\overline{\mathbb{Q}}_{\ell}}(T)$ of representations all of whose irreducible subquotients have inertial support in Ω_{T}. Let ω denote the $\mathrm{M}\left(\Lambda_{E}^{m}\right)$-conjugacy class of σ and ω_{T} the $T\left(\Lambda_{E}^{m}\right)$-conjugacy class of σ. Let $\mathfrak{R}_{\overline{\mathbb{Q}}_{\ell}}(\omega)$ be the full subcategory of $\Re_{\overline{\mathbb{Q}}_{\ell}}\left(\mathrm{M}\left(\Lambda_{E}^{m}\right)\right)$ of representations all of whose irreducible subquotients have supercuspidal support in ω and $\mathfrak{R}_{\overline{\mathbb{Q}}_{d}}\left(\omega_{T}\right)$ be the full subcategory of $\mathfrak{R}_{\overline{\mathbb{Q}}_{\ell}}\left(T\left(\Lambda_{E}^{m}\right)\right)$ of representations all of whose irreducible subquotients have lie in ω_{T}. Let $M_{\omega}: \mathfrak{R}_{\overline{\mathbb{Q}}_{\ell}}(\omega) \rightarrow \mathcal{M}\left(\mathrm{M}\left(\Lambda_{E}^{m}\right), \sigma\right)$ be defined by $\rho \mapsto \operatorname{Hom}_{B\left(\Lambda_{E}^{m}\right)}(\sigma, \rho)$ for $\rho \in \mathfrak{R}_{\overline{\mathbb{Q}}_{\ell}}(\omega)$. Similarly, let $M_{\omega_{T}}: \mathfrak{R}_{\overline{\mathbb{Q}}_{\ell}}\left(\omega_{T}\right) \rightarrow \mathcal{M}\left(T\left(\Lambda_{E}^{m}\right), \sigma\right)$ be defined by $\rho \mapsto \operatorname{Hom}_{T\left(\Lambda_{E}^{m}\right)}(\sigma, \rho)$ for $\rho \in \mathfrak{R}_{\overline{\mathbb{Q}}_{\ell}}\left(\omega_{T}\right)$. We prove that the following diagram commutes.

We have $M_{\omega} \circ i_{B\left(\Lambda_{E}^{m}\right)}^{\mathrm{M}\left(\Lambda_{E}^{m}\right)} \simeq\left(j_{B\left(\Lambda_{E}^{m}\right)}\right)_{*} \circ M_{\omega_{T}}$ and $M_{\kappa \otimes \sigma} \circ i_{B}^{G} \simeq\left(j_{B}\right)_{*} \circ M_{\kappa_{T} \otimes \sigma}$ by [Bushnell and Kutzko 1998, Corollary 8.4], and $M_{\kappa \otimes \sigma}$ is an equivalences of categories by [Bushnell and Kutzko 1998, Theorems 4.3 and 8.3].

We have support-preserving injections $\alpha_{1}: \mathscr{H}\left(\mathrm{M}\left(\Lambda_{E}^{m}\right), \sigma\right) \rightarrow \mathscr{H}(G, \kappa \otimes \sigma)$ and $\alpha_{2}: \mathscr{H}\left(T\left(\Lambda_{E}^{m}\right), \sigma\right) \rightarrow \mathscr{H}\left(T, \kappa_{T} \otimes \sigma\right)$, as in the proof of Theorem 6.1, hence restriction
functors $\mathcal{M}(G, \kappa \otimes \sigma) \rightarrow \mathcal{M}\left(\mathrm{M}\left(\Lambda_{E}^{m}\right), \sigma\right)$ and $\mathcal{M}\left(T, \kappa_{T} \otimes \sigma\right) \rightarrow \mathcal{M}\left(T\left(\Lambda_{E}^{m}\right), \sigma\right)$, denoted in the diagram by Res. Because $\mathscr{H}\left(T\left(\Lambda_{E}^{m}\right), \sigma\right)$ is one-dimensional and the injections defined are homomorphisms of algebras, we must have $j_{B} \circ \alpha_{1} \simeq j_{B\left(\Lambda_{E}^{m}\right)} \circ \alpha_{2}$, hence also Res $\circ\left(j_{B}\right)_{*} \simeq\left(j_{B\left(\Lambda_{E}^{m}\right.}\right)_{*} \circ$ Res.

We show that $M_{\omega} \circ \mathrm{R}_{\kappa_{m}} \simeq \operatorname{Res} \circ M_{\kappa \otimes \sigma} ;$ a similar argument shows that $M_{\omega_{T}} \circ \mathrm{R}_{\kappa_{T}} \simeq$ Res $\circ M_{\kappa_{T} \otimes \sigma}$. Let $\pi \in \Re_{\overline{\mathbb{Q}}_{\ell}}(\Omega)$. By Lemma 4.9 and adjointness, we have

$$
\begin{aligned}
M_{\omega}\left(\mathrm{R}_{\kappa_{m}}(\pi)\right)=\operatorname{Hom}_{B\left(\Lambda_{E}^{m}\right)}\left(\sigma, \mathrm{R}_{\kappa_{m}}(\pi)\right) & =\operatorname{Hom}_{B\left(\Lambda_{E}^{m}\right)}\left(\sigma, \mathrm{R}_{\kappa_{m}}(\pi)\right) \\
& \simeq \operatorname{Hom}_{J}\left(\sigma,\left(\mathrm{R}_{\kappa_{m}}(\pi)\right)^{J_{m}^{1} \mathrm{P}_{1}\left(\Lambda_{E}\right) / J_{m}^{1}}\right) \\
& \simeq \operatorname{Hom}_{J}\left(\sigma, \mathrm{R}_{\kappa}(\pi)\right) \\
& \simeq \operatorname{Hom}_{J^{1}}(\kappa \otimes \sigma, \pi)=M_{\kappa \otimes \sigma}(\pi)
\end{aligned}
$$

In the ℓ-modular case, we choose lifts of κ and χ and then by the ℓ-adic isomorphism and reduction modulo ℓ we have $\left[\mathrm{R}_{\kappa_{m}}\left(i_{B}^{G}(\chi)\right)\right] \simeq\left[i_{B\left(\Lambda_{E}^{m}\right)}^{M\left(\Lambda_{E}^{m}\right)}\left(\mathrm{R}_{\kappa_{T}}(\chi)\right)\right]$.

6D. Parabolic induction, $\boldsymbol{\kappa}$-restriction, and covers. Let χ be an irreducible character of T. Let $\left(T^{0}, \lambda_{T}\right)$ be an R-type contained in χ such that (J, λ) is a G-cover of $\left(T^{0}, \lambda_{T}\right)$ relative to B as constructed in Lemma 5.2 with $\lambda=\kappa \otimes \sigma$ and $\lambda_{T}=\kappa_{T} \otimes \sigma$, where $\kappa_{T}=\operatorname{Res}_{T^{0}}^{J}(\kappa)$. Hence $J=\mathrm{P}\left(\Lambda_{E}\right) J^{1}$ with $\mathrm{P}\left(\Lambda_{E}\right)$ a nonmaximal parahoric subgroup of G_{E} corresponding to the \mathfrak{o}_{E}-lattice sequence Λ_{E}. In all cases, there are two nonconjugate maximal parahoric which contain $\mathrm{P}\left(\Lambda_{E}\right)$; we denote the \mathfrak{o}_{E}-lattice sequences that correspond to these by Λ_{E}^{x} and Λ_{E}^{y}. Let $m \in\{x, y\}$ and let $\left(\kappa_{m}, \Lambda_{E}^{m}\right)$ be the unique pair compatible with $\left(\kappa, \Lambda_{E}\right)$ as in Lemma 4.6.
Lemma 6.5. Let π be an irreducible subrepresentation or quotient of $i_{B}^{G}(\chi)$ and $m \in\{x, y\}$. Then $\mathrm{R}_{\kappa_{m}}(\pi) \neq 0$.
Proof. By the geometric lemma, $r_{B}^{G}\left(i_{B}^{G}(\chi)\right)$ is filtered by χ and $\chi^{w_{x}}=\psi \chi$ for some unramified character ψ. Hence, by exactness of the Jacquet functor, $r_{B}^{G}(\pi)=\psi \chi$. By Theorem 4.2, π contains (J, λ) if and only if $r_{B}^{G}(\pi)$ contains $\left(T^{0}, \lambda_{T}\right)$. Thus π contains (J, λ); hence $\mathrm{R}_{\kappa}(\pi) \neq 0$. Therefore $\mathrm{R}_{\kappa_{m}}(\pi) \neq 0$.

The next lemma is crucial in our proof of unicity of supercuspidal support. It shows that parabolic induction preserves the semisimple character up to transfer.
Lemma 6.6. Suppose that $i_{B}^{G}(\chi)$ has an irreducible cuspidal subquotient π. Then there exists $m \in\{x, y\}$ such that $\mathrm{R}_{\kappa_{m}}(\pi) \neq 0$.

Proof. By Theorem 5.3 there exist a skew semisimple stratum $\left[\Lambda^{\prime}, n^{\prime}, 0, \beta^{\prime}\right]$ such that $\mathrm{P}\left(\Lambda_{E^{\prime}}^{\prime}\right)$ is a maximal parahoric subgroup of $G_{E^{\prime}}$, where $G_{E^{\prime}}$ denotes the G-centraliser of β^{\prime}, a semisimple character $\theta^{\prime} \in \mathscr{C}_{-}\left(\Lambda^{\prime}, \beta^{\prime}\right)$, a β^{\prime}-extension κ^{\prime} to $J^{\prime}=J\left(\Lambda^{\prime}, \beta^{\prime}\right)$ of the unique Heisenberg representation η^{\prime} containing θ^{\prime} and a cuspidal representation $\sigma^{\prime} \in \operatorname{Irr}\left(J^{\prime} /\left(J^{\prime}\right)^{1}\right)$ such that $\pi \simeq \mathrm{I}_{\kappa^{\prime}}\left(\sigma^{\prime}\right)$.

As π contains $\kappa^{\prime} \otimes \sigma^{\prime}$, the restriction of $i_{B}^{G}(\chi)$ to J^{\prime} has $\kappa^{\prime} \otimes \sigma^{\prime}$ as a subquotient. We choose $\hat{\chi}$ an ℓ-adic character lifting χ such that $i_{B}^{G}(\hat{\chi})$ is reducible. Then, because restriction and parabolic induction commute with reduction modulo ℓ, the restriction of $i_{B}^{G}(\hat{\chi})$ to J^{\prime} has an irreducible subquotient δ such that $r_{\ell}(\delta)$ contains $\kappa^{\prime} \otimes \sigma^{\prime}$. On restricting to $\left(J^{\prime}\right)^{1}$ we see that δ contains the unique lift $\hat{\eta}^{\prime}$ of η^{\prime} and, since δ is irreducible and J^{\prime} normalises $\hat{\eta}^{\prime}$, $\operatorname{Res}_{\left(J^{\prime}\right)^{1}}^{J^{\prime}}(\delta)$ is a multiple of η^{\prime}. Thus $\delta=\hat{\kappa}^{\prime} \otimes \xi$, with $\hat{\kappa}^{\prime}$ a lift of κ^{\prime} and ξ an irreducible representation of $J^{\prime} /\left(J^{\prime}\right)^{1}$ whose reduction modulo ℓ contains σ. However, ξ cannot be cuspidal, otherwise $i_{B}^{G}(\hat{\chi})$ would have a cuspidal subquotient $\mathrm{I}_{\hat{\kappa}^{\prime}}(\xi)$. Hence $G_{E^{\prime}}$ is not compact. Therefore $\left[\Lambda^{\prime}, n^{\prime}, 0, \beta^{\prime}\right.$] is either a scalar skew simple stratum or a skew semisimple stratum with splitting $V=V_{1}^{\prime} \oplus V_{2}^{\prime}$, with V_{1}^{\prime} one-dimensional and V_{2}^{\prime} two-dimensional hyperbolic. (Note that, as σ is cuspidal nonsupercuspidal, we must have $\ell \mid q+1$ or $\ell \mid q^{2}-q+1$ by Section 3.)

We continue by induction on the level $l(\pi)$ of π.
The base step is when π has level zero. If π has level zero then, as all subquotients of $i_{B}^{G}(\chi)$ have the same level as χ by [Vignéras 1996, 5.12], χ and $i_{B}^{G}(\chi)$ have level zero. Thus we can choose, and assume that we have chosen, κ^{\prime}, κ and κ_{T} to be trivial. By conjugating, we may assume $\Lambda^{\prime}=\Lambda_{m}$ for some $m \in\{x, y\}$ and then $\kappa_{m}=\kappa^{\prime}$ is trivial and $\mathrm{R}_{\kappa_{m}}(\pi)=\mathrm{R}_{\Lambda_{m}}(\pi) \neq 0$.

Suppose first that $[\Lambda, n, n-1, \beta]$ is equivalent to a scalar stratum $[\Lambda, n, n-1, \gamma]$. The stratum $[\Lambda, n, n-1, \gamma]$ corresponds to a character ψ_{γ} of $P_{n}(\Lambda)$ which extends to a character $\phi \circ \operatorname{det}$ of G. Twisting by $\phi^{-1} \circ$ det we reduce the level of π and the level of $i_{B}^{G}(\chi)$. The stratum $[\Lambda, n, n-1, \beta-\gamma]$ is equivalent to a semisimple stratum $[\Lambda, n, n-1, \alpha]$ and the representations $\kappa\left(\phi^{-1} \circ \operatorname{det}\right), \kappa_{T}\left(\phi^{-1} \circ \operatorname{det}\right)$ and $\kappa_{m}\left(\phi^{-1} \circ \operatorname{det}\right)$ for $m \in\{x, y\}$ are α-extensions defined on the relevant groups. Similarly, the stratum $\left[\Lambda^{\prime}, n^{\prime}, n^{\prime}-1, \beta^{\prime}-\gamma\right]$ is equivalent to a semisimple stratum [$\left.\Lambda, n^{\prime}, n^{\prime}-1, \alpha^{\prime}\right]$ and $\kappa^{\prime}\left(\phi^{-1} \circ \operatorname{det}\right)$ is an α^{\prime}-extension. Moreover, $\kappa_{m}\left(\phi^{-1} \circ \operatorname{det}\right)$ is compatible with $\kappa\left(\phi^{-1} \circ \operatorname{det}\right)$ for $m \in\{x, y\},(\kappa \otimes \sigma)\left(\phi^{-1} \circ \operatorname{det}\right)$ is a G-cover of $\left(\kappa_{T} \otimes \sigma\right)\left(\phi^{-1} \circ\right.$ det $)$ relative to $B,\left(\kappa_{T} \otimes \sigma\right)\left(\phi^{-1} \circ\right.$ det $)$ is contained in $\chi\left(\phi^{-1} \circ\right.$ det $)$, and $\left(\kappa^{\prime} \otimes \sigma^{\prime}\right)\left(\phi^{-1} \circ\right.$ det $)$ is contained in $\pi\left(\phi^{-1} \circ\right.$ det $)$. Thus, by induction, we have

$$
\mathrm{R}_{\kappa_{m}}(\pi) \simeq \mathrm{R}_{\kappa_{m}\left(\phi^{-1} \circ \mathrm{det}\right)}\left(\pi\left(\phi^{-1} \circ \text { det }\right)\right)
$$

is nonzero for some $m \in\{x, y\}$.
Secondly, suppose that $\left[\Lambda^{\prime}, n^{\prime}, n^{\prime}-1, \beta^{\prime}\right]$ is equivalent to a scalar stratum [$\left.\Lambda^{\prime}, n^{\prime}, n^{\prime}-1, \gamma^{\prime}\right]$. As in the last case, we can twist by a character to reduce the level.

Hence we may assume that both $[\Lambda, n, n-1, \beta]$ and $\left[\Lambda^{\prime}, n^{\prime}, n^{\prime}-1, \beta^{\prime}\right]$ are not equivalent to scalar simple strata. This forces $[\Lambda, n, 0, \beta]$ (resp. $\left.\left[\Lambda^{\prime}, n^{\prime}, 0, \beta^{\prime}\right]\right)$ to be semisimple - and nonsimple - with splitting $V=V_{1} \oplus V_{2}$ (resp. $V=V_{1}^{\prime} \oplus V_{2}^{\prime}$) with V_{1} (resp. V_{1}^{\prime}) one-dimensional and V_{2} (resp. V_{2}^{\prime}) two-dimensional hyperbolic.

Thus, by conjugation we may assume that the splitting of $\left[\Lambda^{\prime}, n^{\prime}, 0, \beta^{\prime}\right]$ is the same as the splitting of $[\Lambda, n, 0, \beta]$, i.e., $V_{1}^{\prime}=V_{1}$ and $V_{2}^{\prime}=V_{2}$. We have $E=E^{\prime}$ and $G_{E}=G_{E^{\prime}}$, and conjugating further we may assume that Λ_{E}^{\prime} and Λ_{E} lie in the closure of the same chamber of the building of G_{E}. Moreover, Λ_{E}^{\prime} is a vertex and Λ_{E} is the barycentre of the chamber.

Let

$$
w=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

We have

$$
J\left(\beta^{\prime}, \Lambda\right)=w\left(\begin{array}{c|c}
\mathfrak{A}_{0}(\Lambda)^{11} & \mathfrak{A}_{\left\lfloor\frac{r^{\prime}+1}{2}\right\rfloor}(\Lambda)^{12} \\
\hline \mathfrak{A}_{\left\lfloor\frac{\iota^{\prime}+1}{2}\right\rfloor}(\Lambda)^{12} & \mathfrak{A}_{0}(\Lambda)^{22}
\end{array}\right) w \cap G,
$$

and

$$
J(\beta, \Lambda)=w\left(\begin{array}{c|c}
\mathfrak{A}_{0}(\Lambda)^{11} & \mathfrak{A}_{\left\lfloor\frac{r+1}{2}\right\rfloor}(\Lambda)^{12} \\
\hline \mathfrak{A}_{\left\lfloor\frac{r+1}{2}\right\rfloor}(\Lambda)^{12} & \mathfrak{A}_{0}(\Lambda)^{22}
\end{array}\right) w \cap G
$$

where r^{\prime} (resp. r) is minimal such that $\left[\Lambda, n^{\prime}, r^{\prime}, \beta\right]$ (resp. [$\left.\Lambda, n, r, \beta\right]$) is equivalent to a scalar stratum. Thus, as we are now assuming that $[\Lambda, n, n-1, \beta]$ and [$\left.\Lambda^{\prime}, n^{\prime}, n^{\prime}-1, \beta^{\prime}\right]$ are not equivalent to scalar simple strata, we have $r^{\prime}=n^{\prime}$ and $r=n$. Furthermore, we have $l(\chi)=l(\pi)$, i.e., $n^{\prime} / e\left(\Lambda^{\prime}\right)=n / e(\Lambda)$. We let $\kappa^{\prime \prime}$ be the unique β-extension to $J\left(\beta^{\prime}, \Lambda\right)$ compatible with κ^{\prime} relative to a semisimple stratum $\left[\Lambda, n, 0, \beta^{\prime}\right]$. Therefore, $J(\beta, \Lambda)=J\left(\beta^{\prime}, \Lambda\right)$. Similar considerations yield $H(\beta, \Lambda)=H\left(\beta^{\prime}, \Lambda\right)$ and $J\left(\beta, \Lambda^{\prime}\right)=J\left(\beta^{\prime}, \Lambda^{\prime}\right)$.

As ξ is not cuspidal, it is a direct factor of $i_{B\left(\Lambda_{E}^{\prime}\right)}^{M\left(\Lambda_{E}^{\prime}\right)}\left(\hat{\tau}^{\prime}\right)$, where we choose $B\left(\Lambda_{E}^{\prime}\right)$ to be the image of $P\left(\Lambda_{E}\right)$ in $M\left(\Lambda_{E}^{\prime}\right)$, for some representation $\hat{\tau}^{\prime}$ of $T\left(\Lambda_{E}^{\prime}\right)$. Furthermore, $i_{B}^{G}(\hat{\chi})$ contains $\hat{\kappa}^{\prime \prime} \otimes \hat{\tau}^{\prime}$ with $\hat{\kappa}^{\prime \prime}$ a lift of $\kappa^{\prime \prime}$, by Lemma 4.6 and transitivity of induction. By Lemma 5.2, ($J, \hat{\kappa}^{\prime \prime} \otimes \hat{\tau}^{\prime}$) is a G-cover of ($T^{0}, \hat{\kappa}_{T}^{\prime \prime} \otimes \hat{\tau}^{\prime}$) relative to B, where $\hat{\kappa}_{T}^{\prime \prime}=\operatorname{Res}_{T^{0}}^{J}\left(\hat{\kappa}^{\prime \prime}\right)$. By [Blondel 2005, Theorem 2], $\operatorname{ind}_{J}^{G}\left(\hat{\kappa}^{\prime \prime} \otimes \hat{\tau}^{\prime}\right) \simeq$ $\operatorname{Ind}_{B^{\text {op }}}^{G}\left(\operatorname{ind}_{T_{0}}^{T}\left(\hat{\kappa}_{T}^{\prime \prime} \otimes \hat{\tau}^{\prime}\right)\right)$. By second adjunction of parabolic induction and parabolic restriction for ℓ-adic representations, and right adjunction of restriction with compact induction we have

$$
\operatorname{Hom}_{T^{0}}\left(\hat{\kappa}_{T}^{\prime \prime} \otimes \hat{\tau}^{\prime}, r_{B}^{G} \circ i_{B}^{G}(\hat{\chi})\right) \simeq \operatorname{Hom}_{G}\left(\operatorname{ind}_{J}^{G}\left(\hat{\kappa}^{\prime \prime} \otimes \hat{\tau}^{\prime}\right), i_{B}^{G}(\hat{\chi})\right) \neq 0 .
$$

We have $\left[\left.r_{B}^{G} \circ i_{B}^{G}(\hat{\chi})\right|_{T^{0}}\right]=\left.\hat{\chi} \oplus \hat{\chi}^{w_{x}}\right|_{T^{0}}=\left.\hat{\chi} \oplus \hat{\chi}\right|_{T^{0}}$. Hence $\hat{\kappa}_{T}^{\prime \prime} \otimes \hat{\tau}^{\prime}=\operatorname{Res}_{T^{0}}^{T}(\hat{\chi})$. Similarly if we let $\hat{\kappa}$ be a lift of κ, $\hat{\sigma}$ be a lift of σ, and $\hat{\kappa}_{T}=\operatorname{Res}_{T^{0}}^{T}(\hat{\kappa})$, then we have $\hat{\kappa}_{T} \otimes \hat{\sigma}=\operatorname{Res}_{T^{0}}^{J}(\hat{\chi})$. This implies that we have an equality of semisimple characters $\tau_{\Lambda^{\prime}, \Lambda, \beta^{\prime}}\left(\hat{\theta}^{\prime}\right)=\hat{\theta}$, where $\hat{\theta}^{\prime} \in \mathscr{C}_{-}\left(\beta^{\prime}, \Lambda^{\prime}\right)$ is contained in $\hat{\kappa}^{\prime}$ and $\hat{\theta} \in \mathscr{C}(\beta, \Lambda)$ is contained in $\hat{\kappa}$.

We let $\widetilde{H}(\beta, \Lambda)\left(\right.$ resp. $\left.\widetilde{H}\left(\beta^{\prime}, \Lambda^{\prime}\right)\right)$ denote the compact open subgroup of $\mathrm{GL}_{3}(F)$ defined in [Stevens 2008], which defines $H(\beta, \Lambda)$ (resp. $H\left(\beta^{\prime}, \Lambda^{\prime}\right)$) by intersecting with $\mathrm{U}(2,1)\left(F / F_{0}\right)$. The Iwahori decomposition for $\widetilde{H}^{1}\left(\beta^{\prime}, \Lambda^{\prime}\right)$ gives $\widetilde{H}^{1}\left(\beta^{\prime}, \Lambda^{\prime}\right)=\widetilde{H}^{1}\left(\beta^{\prime}, \Lambda^{\prime}\right)^{-}\left(\widetilde{H}^{1}\left(\beta^{\prime}, \Lambda^{\prime}\right) \cap \widetilde{M}\right) \widetilde{H}^{1}\left(\beta^{\prime}, \Lambda^{\prime}\right)^{+}$where $\widetilde{H}^{1}\left(\beta^{\prime}, \Lambda^{\prime}\right)^{-}$denotes the lower triangular unipotent matrices in $\widetilde{H}^{1}\left(\beta^{\prime}, \Lambda^{\prime}\right), \widetilde{H}^{1}\left(\beta^{\prime}, \Lambda^{\prime}\right)^{+}$denotes the upper triangular unipotent matrices in $\widetilde{H}^{1}\left(\beta^{\prime}, \Lambda^{\prime}\right)$, and \widetilde{M} the subgroup of diagonal matrices. As $\widetilde{H}^{1}\left(\beta^{\prime}, \Lambda\right)$ contains $\left(\widetilde{H}^{1}\left(\beta^{\prime}, \Lambda^{\prime}\right) \cap \widetilde{M}\right)$ and is contained in $\widetilde{H}^{1}\left(\beta^{\prime}, \Lambda^{\prime}\right)$, we have

$$
\widetilde{H}^{1}\left(\beta^{\prime}, \Lambda^{\prime}\right)=\widetilde{H}^{1}\left(\beta^{\prime}, \Lambda^{\prime}\right)^{-}\left(\widetilde{H}^{1}\left(\beta^{\prime}, \Lambda^{\prime}\right) \cap \widetilde{H}^{1}\left(\beta^{\prime}, \Lambda\right)\right) \widetilde{H}^{1}\left(\beta^{\prime}, \Lambda^{\prime}\right)^{+} .
$$

Thus a character of $\widetilde{H}^{1}\left(\beta^{\prime}, \Lambda^{\prime}\right)$ is determined by its values on $\widetilde{H}^{1}\left(\beta^{\prime}, \Lambda^{\prime}\right)^{-}$, $\widetilde{H}^{1}\left(\beta^{\prime}, \Lambda^{\prime}\right) \cap \widetilde{H}^{1}\left(\beta^{\prime}, \Lambda\right)$, and $\widetilde{H}^{1}\left(\beta^{\prime}, \Lambda^{\prime}\right)^{+}$.

The semisimple characters $\hat{\theta}$ and $\hat{\theta}^{\prime}$ are equal to the restriction of semisimple characters $\tilde{\theta}$ and $\tilde{\theta}^{\prime}$ of $\mathrm{GL}_{3}(F)$. Moreover, $\tau_{\Lambda^{\prime}, \Lambda, \beta^{\prime}}\left(\tilde{\theta}^{\prime}\right)=\tilde{\theta}$ as $\tau_{\Lambda^{\prime}, \Lambda, \beta^{\prime}}\left(\hat{\theta^{\prime}}\right)=\hat{\theta}$. It follows from the decomposition of $\widetilde{H}^{1}\left(\beta^{\prime}, \Lambda^{\prime}\right)$ given above that $\tau_{\Lambda, \Lambda^{\prime}, \beta}(\tilde{\theta})=\tilde{\theta}^{\prime}$; they are both trivial on $\widetilde{H}^{1}\left(\beta^{\prime}, \Lambda^{\prime}\right)^{-}$and $\widetilde{H}^{1}\left(\beta^{\prime}, \Lambda^{\prime}\right)^{+}$, and as $\theta^{\prime}=\tau_{\Lambda, \Lambda^{\prime}, \beta^{\prime}}(\theta)$ they both agree with $\tilde{\theta}$ on $\widetilde{H}^{1}\left(\beta, \Lambda^{\prime}\right) \cap \widetilde{H}^{1}(\beta, \Lambda)=\widetilde{H}^{1}\left(\beta^{\prime}, \Lambda^{\prime}\right) \cap \widetilde{H}^{1}\left(\beta^{\prime}, \Lambda\right)$. Hence, $\tau_{\Lambda, \Lambda^{\prime}, \beta}(\theta)=\theta^{\prime}$ by restriction and reduction modulo ℓ. As there is a unique Heisenberg representation containing θ^{\prime}, we have $\mathrm{R}_{\kappa_{m}}(\pi) \neq 0$ for some $m \in\{x, y\}$.

Lemma 6.7. Suppose that $i_{B}^{G}(\chi)$ is reducible with irreducible subrepresentation π_{1} and quotient $\pi_{2}=i_{B}^{G}(\chi) / \pi_{1}$. If Σ is a maximal cuspidal subquotient of $\mathrm{R}_{\kappa_{m}}\left(i_{B}^{G}(\chi)\right)$, i.e., all subquotients of $\mathrm{R}_{\kappa_{m}}\left(i_{B}^{G}(\chi)\right)$ not contained in Σ are not cuspidal, then $\mathrm{I}_{\kappa_{m}}(\Sigma)$ is a subrepresentation of π_{2}.

Proof. Let Σ be a maximal cuspidal subquotient of $\mathrm{R}_{\kappa_{m}}\left(i_{B}^{G}(\chi)\right)$. By Lemma 6.5, $\mathrm{R}_{\kappa_{m}}\left(\pi_{1}\right)$ and $\mathrm{R}_{\kappa_{m}}\left(\pi_{2}\right)$ are nonzero and must contain noncuspidal subquotients as π_{1} and π_{2} are not cuspidal. However, by Theorem 6.4 and Section 3, there are only two noncuspidal subquotients of $\mathrm{R}_{\kappa_{m}}\left(i_{B}^{G}(\chi)\right)$. Thus each of $\mathrm{R}_{\kappa_{m}}\left(\pi_{1}\right)$ and $\mathrm{R}_{\kappa_{m}}\left(\pi_{2}\right)$ must have a single noncuspidal irreducible subquotient, say ρ_{1} and ρ_{2} respectively.

If $\mathrm{R}_{\kappa_{m}}\left(\pi_{1}\right) \neq \rho_{1}$ then $\mathrm{R}_{\kappa_{m}}\left(\pi_{1}\right)$ has an irreducible cuspidal subrepresentation or an irreducible cuspidal quotient. If $\mathrm{R}_{\kappa_{m}}\left(\pi_{1}\right)$ has an irreducible cuspidal subrepresentation σ then, by adjointness of $\mathrm{R}_{\kappa_{m}}$ and $\mathrm{I}_{\kappa_{m}}, \mathrm{I}_{\kappa_{m}}(\sigma)$ is an irreducible cuspidal subrepresentation of π_{1}, contradicting the irreducibility and noncuspidality of π_{1}. If $\mathrm{R}_{\kappa_{m}}\left(\pi_{1}\right)$ has an irreducible cuspidal quotient σ then $\mathrm{R}_{\tilde{\kappa}_{m}}\left(\tilde{\pi}_{1}\right)$ has a cuspidal subrepresentation $\tilde{\sigma}$ by Lemma 4.10. Thus $\mathrm{I}_{\tilde{\kappa}_{m}}(\tilde{\sigma})$ is an irreducible cuspidal subrepresentation of $\tilde{\pi}_{1}$ by adjointness. Hence $\mathrm{I}_{\kappa_{m}}(\sigma)$ is an irreducible cuspidal quotient of π_{1} by Lemma 4.10, contradicting the irreducibility and noncuspidality of π_{1}. Thus $\mathrm{R}_{\kappa_{m}}\left(\pi_{1}\right)=\rho_{1}$.

Similarly, if $\mathrm{R}_{\kappa_{m}}\left(\pi_{2}\right)$ has an irreducible cuspidal quotient σ, then $\mathrm{I}_{\kappa_{m}}(\sigma)$ is an irreducible cuspidal quotient of π_{2}. Hence $\mathrm{I}_{\kappa_{m}}(\sigma)$ is a quotient of $i_{B}^{G}(\chi)$, contradicting the cuspidality of $\mathrm{I}_{\kappa_{m}}(\sigma)$. Hence $\mathrm{R}_{\kappa_{m}}\left(\pi_{2}\right)$ can have no cuspidal quotients. Hence, by Section 3, Lemma 6.3 and Theorem 6.4, Σ is a subrepresentation of $\mathrm{R}_{\kappa_{m}}\left(\pi_{2}\right)$. Note that, as Theorem 6.4 only gives us an isomorphism in the Grothendieck group of finite-length representations of $\mathrm{M}\left(\Lambda_{E}\right)$, we have used that Σ is irreducible by Section 3 in the skew semisimple nonscalar case to imply it is a subrepresentation of $\mathrm{R}_{\kappa_{m}}\left(\pi_{2}\right)$; in all other cases we twist by a character (if necessary) and use Lemma 6.3. By reciprocity, $\mathrm{I}_{\kappa_{m}}(\Sigma)$ is a subrepresentation of π_{2}.

By [Blondel 2005, Theorem 2] and Lemma 5.2, $\mathrm{I}_{\kappa}(\sigma) \simeq \operatorname{Ind}_{B^{\text {op }}}^{G}\left(\operatorname{ind}_{T^{0}}^{T}\left(\kappa_{T} \otimes \sigma\right)\right)$. By second adjunction (cf. [Dat 2009, Corollaire 3.9]),

$$
\operatorname{Hom}_{G}\left(\operatorname{Ind}_{B^{\mathrm{op}}}^{G}\left(\operatorname{ind}_{T^{0}}^{T}\left(\kappa_{T} \otimes \sigma\right)\right), \pi\right) \simeq \operatorname{Hom}_{T}\left(\operatorname{ind}_{T^{0}}^{T}\left(\kappa_{T} \otimes \sigma\right), r_{B}^{G}(\pi)\right)
$$

By Clifford theory, the irreducible quotients of $\operatorname{ind}_{T^{0}}^{T}\left(\kappa_{T} \otimes \sigma\right)$ are all the twists of χ by an unramified character. Hence, π is an irreducible quotient of $\mathrm{I}_{\kappa}(\sigma)$ if and only if it is an irreducible quotient of $i_{B}^{G}(\chi \psi)$ for some unramified character ψ of T.

The R-type (J, λ) is quasiprojective by Theorem 5.3; hence a simple module of $\mathscr{H}(G, \lambda)$ corresponds to an irreducible quotient of $i_{B}^{G}(\chi \psi)$ for some unramified character ψ, by the bijection of Theorem 4.1. If $i_{B}^{G}(\chi \psi)$ is reducible with proper quotient π, then the Jacquet module of π is one-dimensional by the geometric lemma. Hence, by Theorem 4.2, π must correspond to a character of $\mathscr{H}(G, \lambda)$ under the bijection of Theorem 4.1 and all characters of $\mathscr{H}(G, \lambda)$ must correspond to a proper quotient of a reducible principal series representation $i_{B}^{G}(\chi \psi)$ with ψ an unramified character of T.

Lemma 6.8. Suppose $\ell \neq 2$ and $\ell \mid q-1$. Then $i_{B}^{G}(\chi)$ is semisimple.
Proof. If $i_{B}^{G}(\chi)$ is irreducible then it is semisimple, so suppose $i_{B}^{G}(\chi)$ is reducible. If $i_{B}^{G}(\chi)$ has a cuspidal subquotient it is of the form $\mathrm{I}_{\kappa_{m}}(\sigma)$ for $m \in\{x, y\}$ and σ an irreducible cuspidal representation of $\mathrm{M}\left(\Lambda_{E}^{x}\right)$ by Theorem 5.3. By Theorem 6.4, $\mathrm{R}_{\kappa_{x}}\left(i_{B}^{G}(\chi)\right)=i_{B\left(\Lambda_{E}^{x}\right)}^{\mathrm{M}\left(\Lambda_{E}^{x}\right)}\left(\mathrm{R}_{\kappa_{T}}(\chi)\right)$, and $\mathrm{R}_{\kappa_{x}}\left(\mathrm{I}_{\kappa_{x}}(\sigma)\right)=\sigma$, by Theorem 4.8 and Lemma 4.4. Hence, by exactness, σ is a cuspidal subquotient of $i_{B\left(\Lambda_{E}^{x}\right)}^{\mathrm{M}\left(\Lambda_{x}^{x}\right)}\left(\mathrm{R}_{\kappa_{T}}(\chi)\right)$. However, by Section 3, when $\ell \mid q-1$ no such cuspidal subquotients exist; hence $i_{B}^{G}(\chi)$ has no cuspidal subquotients. Thus, by exactness of the Jacquet functor and the geometric lemma, $i_{B}^{G}(\chi)$ has length two. When $\ell \neq 2$ and $\ell \mid q-1$ there are four characters of $\mathscr{H}(G, \lambda)$, yet only two reducibility points. Hence these two reducible principal series representations must both have two nonisomorphic irreducible quotients and must be semisimple.
Remark 6.9. If $\chi^{-1}=\chi$ then $i_{B}^{G}(\chi)$ is self-contragredient and there is a simple proof of Lemma 6.8 using the contragredient representation and avoiding the use of covers or second adjunction.

Lemma 6.10. Let $\ell \mid q+1$. Then the unique irreducible quotient of $i_{B}^{G}(\chi)$ is isomorphic to the unique irreducible subrepresentation.
Proof. Let π denote the unique irreducible quotient of $i_{B}^{G}(\chi)$. When $\ell \mid q+1$ there is only one character of $\mathscr{H}(G, \kappa \otimes \sigma)$. Hence π corresponds to the unique character of $\mathscr{H}(G, \lambda)$. Hence, if \mathscr{V} is the space of $\pi, \mathrm{R}_{\kappa}(\mathscr{V})$ is one-dimensional and the action of J is given by σ. As δ_{B} is trivial, the contragredient commutes with parabolic induction: we have $\left(i_{B}^{G}(\chi)\right)^{\sim} \simeq i_{B}^{G}(\tilde{\chi})$. Furthermore, $\tilde{\chi}=\chi^{-1}$, where χ^{-1} is the character defined by, for all $x \in F^{\times}, \chi^{-1}(x)=\chi\left(x^{-1}\right)$. The character χ^{-1} is not regular and similar arguments, given for $i_{B}^{G}(\chi)$, apply to $i_{B}^{G}\left(\chi^{-1}\right)$. We find that $i_{B}^{G}\left(\chi^{-1}\right)$ has a unique irreducible quotient ρ which corresponds to the unique character of $\mathscr{H}(G, \tilde{\lambda})$ under the bijection of Theorem 4.1. As the contragredient is contravariant and exact, $\tilde{\rho}$ is a subrepresentation of $i_{B}^{G}(\chi)$. By Lemma 4.10, we have $\left(\mathrm{R}_{\tilde{\kappa}}(\rho)\right)^{\sim} \simeq \mathrm{R}_{\kappa}(\tilde{\rho})$ which is one-dimensional and hence must be isomorphic to σ. Hence $\tilde{\rho}$ is irreducible and isomorphic to π. Thus π appears twice in the composition series of $i_{B}^{G}(\chi)$, as the unique irreducible quotient and as the unique irreducible subrepresentation.
Remark 6.11. If $\ell \neq 3$ and $\ell \mid q^{2}-q+1$, then similar counting arguments show that the unique irreducible subrepresentation is not isomorphic to the unique irreducible quotient. However, in these cases we find out more information later so this argument is not necessary.

6E. On the unramified principal series.

6E1. Decomposition of $i_{B}^{G}\left(v^{2}\right)$ and $i_{B}^{G}\left(v^{-2}\right)$. In all cases of coefficient field, the space of constant functions forms an irreducible subrepresentation of $i_{B}^{G}\left(\nu^{-2}\right)$ isomorphic to 1_{G}. We let St_{G} denote the quotient of $i_{B}^{G}\left(v^{-2}\right)$ by 1_{G}. Parabolic induction preserves finite-length representations; hence St_{G} has an irreducible quotient v_{G}. By the geometric lemma, $\left[r_{B}^{G} \circ i_{B}^{G}\left(v^{-2}\right)\right] \simeq v^{-2} \oplus\left(v^{-2}\right)^{w_{x}}$. Considering v^{-2} as a character of F^{\times}, we have $\left(v^{-2}\right)^{w_{x}}(x)=v^{-2}\left(\bar{x}^{-1}\right)=v^{2}(x)$, as $v^{-2}(x)=$ $v^{-2}(\bar{x})$. Thus $\left[r_{B}^{G} \circ i_{B}^{G}\left(v^{-2}\right)\right]=v^{-2} \oplus v^{2}$. We have $r_{B}^{G}\left(1_{G}\right)=v^{-2}$, thus $r_{B}^{G}\left(\operatorname{St}_{G}\right)=$ v^{2} by exactness of the Jacquet functor. A quotient of a parabolically induced representation has nonzero Jacquet module; hence $r_{B}^{G}\left(v_{G}\right)=v^{2}$. Thus any other composition factors which occur in $i_{B}^{G}\left(\nu^{-2}\right)$ must be cuspidal.
Theorem 6.12. (1) If $\ell \nmid(q-1)(q+1)\left(q^{2}-q+1\right)$ then $i_{B}^{G}\left(v^{-2}\right)$ has length two with unique irreducible subrepresentation 1_{G} and unique irreducible quotient St_{G}.
(2) If $\ell \neq 2$ and $\ell \mid q-1$ then $i_{B}^{G}\left(v^{-2}\right)=1_{G} \oplus \operatorname{St}_{G}$ is semisimple of length two.
(3) If $\ell \neq 3$ and $\ell \mid q^{2}-q+1$ then $i_{B}^{G}\left(\nu^{-2}\right)$ has length three with unique cuspidal subquotient $\mathrm{I}_{\Lambda_{x}}\left(\bar{\tau}^{+}(\overline{1})\right)$. The unique irreducible quotient v_{G} is not a character.
(4) If $\ell \neq 2$ and $\ell \mid q+1$, or if $\ell=2$ and $4 \mid q+1$, then $i_{B}^{G}\left(v^{-2}\right)$ has length six with 1_{G} appearing as the unique subrepresentation and the unique quotient,
and four cuspidal subquotients. Let π be a maximal proper submodule of St_{G}. Then $\pi \simeq \rho \oplus \mathrm{I}_{\Lambda_{y}}(\bar{\sigma}(\overline{1}) \otimes \overline{1})$, where ρ is of length three with unique irreducible subrepresentation and unique irreducible quotient, both of which are isomorphic to $\mathrm{I}_{\Lambda_{x}}(\bar{\nu}(\overline{1}))$, and remaining subquotient isomorphic to $\mathrm{I}_{\Lambda_{x}}(\bar{\sigma}(\overline{1}))$.
(5) If $\ell=2$ and $4 \mid q-1$, then $i_{B}^{G}\left(\nu^{-2}\right)$ has length five with unique irreducible subrepresentation and unique irreducible quotient both isomorphic to 1_{G}. Let π be a maximal proper submodule of St_{G}. Then

$$
\pi \simeq \mathrm{I}_{\Lambda_{x}}(\bar{v}(\overline{1})) \oplus \mathrm{I}_{\Lambda_{x}}\left(\bar{\tau}^{+}(\bar{\chi})\right) \oplus \mathrm{I}_{\Lambda_{y}}(\bar{\sigma}(\overline{1}) \otimes \overline{1}) .
$$

Proof. By Theorem 5.3 and Lemma 6.6, if $i_{B}^{G}\left(\nu^{-2}\right)$ has a cuspidal subquotient π then $\pi \simeq \mathrm{I}_{\Lambda_{w}}(\sigma)$ for $w \in\{x, y\}$ and σ an irreducible cuspidal representation of $\mathrm{P}\left(\Lambda_{w}\right) / \mathrm{P}_{1}\left(\Lambda_{w}\right)$.

If Σ_{w} is a maximal cuspidal subquotient of $\mathrm{R}_{\Lambda_{w}}\left(i_{B}^{G}\left(\nu^{-2}\right)\right)$ then $\mathrm{I}_{\Lambda_{w}}\left(\Sigma_{w}\right)$ is a subrepresentation of St_{G}, by Lemma 6.7. Thus, we have an exact sequence

$$
0 \rightarrow \mathrm{I}_{\Lambda_{x}}\left(\Sigma_{x}\right) \oplus \mathrm{I}_{\Lambda_{y}}\left(\Sigma_{y}\right) \rightarrow \mathrm{St}_{G} \rightarrow v_{G} \rightarrow 0
$$

By exactness and Section 3, we obtain composition series of $\mathrm{I}_{\Lambda_{x}}\left(\Sigma_{x}\right)$ and of $\mathrm{I}_{\Lambda_{y}}\left(\Sigma_{y}\right)$.
If $\ell \nmid(q-1)(q+1)\left(q^{2}-q+1\right)$, or $\ell \neq 2$ and $\ell \mid q-1$, then $\mathrm{R}_{\Lambda_{x}}\left(i_{B}^{G}\left(\nu^{-2}\right)\right)$ and $\left.\mathrm{R}_{\Lambda_{y}}\left(i_{B}^{G} \nu^{-2}\right)\right)$ are of length two with no cuspidal subquotients, by Theorem 5.3 and Lemma 6.6. Hence, $i_{B}^{G}\left(\nu^{-2}\right)$ has no cuspidal subquotients as $\mathrm{R}_{\Lambda_{w}}\left(\mathrm{I}_{\Lambda_{w}}(\sigma)\right) \simeq \sigma$ is cuspidal by Lemma 4.4. By the geometric lemma, $i_{B}^{G}\left(\nu^{-2}\right)$ is of length two with 1_{G} as an irreducible subrepresentation and St_{G} as an irreducible quotient. By second adjunction,

$$
\operatorname{Hom}_{G}\left(i_{B}^{G}\left(v^{-2}\right), 1_{G}\right) \simeq \operatorname{Hom}_{T}\left(v^{-2}, 1_{T}\right) .
$$

The character v^{-2} is nontrivial when $\ell \nmid(q-1)(q+1)\left(q^{2}-q+1\right)$ and trivial when $\ell \mid q-1$. Hence 1_{G} is a direct factor when $\ell \neq 2$ and $\ell \mid q-1$ and $i_{B}^{G}\left(v^{-2}\right)$ is semisimple, and $i_{B}^{G}\left(v^{-2}\right)$ is nonsplit when $\ell \nmid(q-1)(q+1)\left(q^{2}-q+1\right)$.

In all other cases, $i_{B}^{G}\left(v^{-2}\right)$ has cuspidal subquotients. Thus 1_{G} cannot be a direct factor. Therefore $i_{B}^{G}\left(v^{-2}\right)$ has a unique irreducible quotient v_{G} and a unique irreducible subrepresentation 1_{G}. When $\ell \mid q+1$ the unique irreducible quotient is isomorphic to the unique irreducible subrepresentation by Lemma 6.10; hence $v_{G} \simeq 1_{G}$. When $\ell \neq 3$ and $\ell \mid q^{2}-q+1$, the representation $\mathrm{R}_{\Lambda_{y}}\left(i_{B}^{G}\left(v^{-2}\right)\right)$ has noncuspidal subquotients $1_{M_{y}}$ and $\mathrm{St}_{M_{y}}$. By exactness, $\mathrm{R}_{\Lambda_{y}}\left(v_{G}\right) \simeq \mathrm{St}_{M_{y}}$; hence 1_{G} is not isomorphic to v_{G}, which is not a character.

Note that $i_{B}^{G}\left(\nu^{2}\right) \simeq i_{B}^{G}\left(\nu^{-2}\right)^{\sim}$; hence decompositions of $i_{B}^{G}\left(\nu^{2}\right)$ can be obtained from Theorem 6.12.

6E2. Decomposition of unramified $i_{B}^{G}(\eta \nu)$ and $i_{B}^{G}\left(\eta \nu^{-1}\right)$. Let η be the unique unramified character of F^{\times}extending $\omega_{F / F_{0}}$. If $\ell \mid q+1$, then $\omega_{F / F_{0}} \nu^{-1}=\omega_{F / F_{0}} \nu=1$;
hence we refer to Theorem 6.12. When $\ell \mid q^{2}+q+1$ we have $\nu^{2}=\eta \nu^{-1}$ and $\nu^{-2}=\eta \nu$; hence once more we refer to Theorem 6.12. When $\ell \mid q-1, v$ is trivial, hence $\eta \nu=\eta \nu^{-1}=\eta$. Thus $i_{B}^{G}(\eta)$ is self-contragredient. By Lemma 6.8, $i_{B}^{G}(\eta)$ has length two and is semisimple.

6F. Cuspidal subquotients of the ramified level zero principal series. We describe the reducible principal series $i_{B}^{G}(\chi)$ which have length greater than two when χ is a level zero character of T which does not factor through the determinant map. We twist by a character that factors through the determinant map so that we can assume $\chi_{2}=1$. Then $\chi^{q+1}=1$ and $\chi=\bar{\psi} \circ \xi$ for $\bar{\psi}$ a nontrivial character of k_{F}^{1}.

When $\ell \nmid q+1$, because $\mathrm{R}_{\Lambda_{x}}\left(i_{B}^{G}(\chi)\right)$ and $\mathrm{R}_{\Lambda_{y}}\left(i_{B}^{G}(\chi)\right)$ have no cuspidal subquotients, $i_{B}^{G}(\chi)$ is of length two.

Theorem 6.13. Let $\ell \mid q+1$. The representation $i_{B}^{G}(\chi)$ has length four with a unique irreducible subrepresentation and a unique irreducible quotient, and cuspidal subquotient isomorphic to $\mathrm{I}_{\Lambda_{x}}(\bar{\sigma}(\bar{\psi}, \bar{\psi}, \overline{1})) \oplus \mathrm{I}_{\Lambda_{y}}(\bar{\sigma}(\bar{\psi}) \otimes \overline{1})$. Furthermore, the unique irreducible subrepresentation is isomorphic to the unique irreducible quotient.

Proof. The proof is similar to the proof of Theorem 6.12.

7. Cuspidal subquotients of positive level principal series

In this section, suppose that χ_{1} is a positive level character of F^{\times}trivial on $F_{0}{ }^{\times}$ and χ is the character of T given by χ_{1} and $\chi_{2}=1$. We assume we are in the same setting as Section 6D with $\left(T^{0}, \lambda_{T}\right)$ an R-type contained in $\chi,(J, \lambda)$ a G-cover of (T^{0}, λ_{T}) relative to B with $\lambda=\kappa \otimes \sigma$, and $\left(\kappa_{m}, \Lambda^{m}\right)$ compatible with (κ, Λ) for $m \in\{x, y\}$. We have $\mathrm{M}\left(\Lambda_{E}^{m}\right) \simeq \mathrm{U}(1,1)\left(k_{F} / k_{0}\right) \times \mathrm{U}(1)\left(k_{F} / k_{0}\right)$. When $\ell \nmid q+1$, there are no cuspidal subquotients of $\mathrm{U}(1,1)\left(k_{F} / k_{0}\right)$, and hence no cuspidal subquotients of $i_{B}^{G}(\chi)$, by Lemma 6.6. Thus it remains to look at the case when $\ell \mid q+1$. Let $\bar{\psi}=\left(\chi \kappa_{T}^{-1}\right)^{T^{1}}$ and $\bar{\chi}$ the character of k_{F}^{1} such that $\bar{\psi}=\bar{\chi} \circ \xi$.
Theorem 7.1. Suppose $\ell \mid q+1$. The representation $i_{B}^{G}(\chi)$ has length four with unique irreducible subrepresentation and unique irreducible quotient which are isomorphic, and cuspidal subquotient isomorphic to $\mathrm{I}_{\kappa_{x}}(\sigma(\bar{\chi}) \otimes \overline{1}) \oplus \mathrm{I}_{\kappa_{y}}(\sigma(\bar{\chi}) \otimes \overline{1})$.

Proof. The proof is similar to the proof of Theorem 6.12.

8. Supercuspidal support

Theorem 8.1. Let G be an unramified unitary group in three variables and π an irreducible ℓ-modular representation of G. Then the supercuspidal support of π is unique up to conjugacy.

Proof. Suppose π is not cuspidal. Then the supercuspidal support of π is equal to the cuspidal support of π and is thus unique up to conjugacy. If π is cuspidal nonsupercuspidal then it appears in one of the decompositions given in Theorems $6.12,6.13$, and 7.1 , or is a twist of such a representation by a character that factors through the determinant map, and we see that the supercuspidal support of π is unique up to conjugacy.

Remark 8.2. Let $\mathrm{I}_{\kappa^{\prime}}\left(\sigma^{\prime}\right)$ be an irreducible cuspidal representation of G as constructed in Theorem 5.3. After the decomposition of the parabolically induced representations given in Theorems $6.12,6.13$, and 7.1 , we see that $\mathrm{I}_{\kappa^{\prime}}\left(\sigma^{\prime}\right)$ is supercuspidal if and only if σ^{\prime} is supercuspidal. Hence all supercuspidal representations of G lift, by Section 3 .

Acknowledgements

Part of this work was included in my doctoral thesis. I would like to thank my supervisor, Shaun Stevens, for his support and encouragement both during my doctorate and after. I would like to thank Vincent Sécherre and Alberto Mínguez for many useful conversations. Particularly, I would like to thank Vincent Sécherre for some technical suggestions regarding κ-induction and κ-restriction. I would like to thank the referee for their careful reading and helpful suggestions. This work was supported by the Engineering and Physical Sciences Research Council (EP/H00534X/1).

References

[Blasco 2002] L. Blasco, "Description du dual admissible de $\mathrm{U}(2,1)(F)$ par la théorie des types de C. Bushnell et P. Kutzko", Manuscripta Math. 107:2 (2002), 151-186. MR 2003d:22017 Zbl 1108.22011
[Blondel 2005] C. Blondel, "Quelques propriétés des paires couvrantes", Math. Ann. 331:2 (2005), 243-257. MR 2005k:20117 Zbl 1062.22035
[Blondel 2012] C. Blondel, "Représentation de Weil et β-extensions", Ann. Inst. Fourier (Grenoble) 62:4 (2012), 1319-1366. MR 3025745 Zbl 1252.22009
[Bonnafé and Rouquier 2003] C. Bonnafé and R. Rouquier, "Catégories dérivées et variétés de Deligne-Lusztig", Publ. Math. Inst. Hautes Études Sci. 97 (2003), 1-59. MR 2004i:20079 Zbl 1054.20024
[Bushnell and Kutzko 1993a] C. J. Bushnell and P. C. Kutzko, The admissible dual of GL(N) via compact open subgroups, Annals of Mathematics Studies 129, Princeton University Press, 1993. MR 94h:22007 Zbl 0787.22016
[Bushnell and Kutzko 1993b] C. J. Bushnell and P. C. Kutzko, "The admissible dual of SL(N), I", Ann. Sci. École Norm. Sup. (4) 26:2 (1993), 261-280. MR 94a:22033 Zbl 0787.22017
[Bushnell and Kutzko 1998] C. J. Bushnell and P. C. Kutzko, "Smooth representations of reductive p-adic groups: Structure theory via types", Proc. London Math. Soc. (3) 77:3 (1998), 582-634. MR 2000c:22014 Zbl 0911.22014
[Dat 2005] J.-F. Dat, " v-tempered representations of p-adic groups, I: l-adic case", Duke Math. J. 126:3 (2005), 397-469. MR 2005m:22014 Zbl 1063.22017
[Dat 2009] J.-F. Dat, "Finitude pour les représentations lisses de groupes p-adiques", J. Inst. Math. Jussieu 8:2 (2009), 261-333. MR 2010e:22007 Zbl 1158.22020
[Digne and Michel 1991] F. Digne and J. Michel, Representations of finite groups of Lie type, London Mathematical Society Student Texts 21, Cambridge University Press, 1991. MR 92g:20063 Zbl 0815.20014
[Ennola 1963] V. Ennola, "On the characters of the finite unitary groups", Ann. Acad. Sci. Fenn. Ser. A I No. 323 (1963), 35. MR 28 \#143 Zbl 0109.26001
[Geck 1990] M. Geck, "Irreducible Brauer characters of the 3-dimensional special unitary groups in nondefining characteristic", Comm. Algebra 18:2 (1990), 563-584. MR 91b:20016 Zbl 0696.20011
[Geck et al. 1996] M. Geck, G. Hiss, and G. Malle, "Towards a classification of the irreducible representations in non-describing characteristic of a finite group of Lie type", Math. Z. 221:3 (1996), 353-386. MR 98a:20017 Zbl 0858.20008
[Henniart and Sécherre 2014] G. Henniart and V. Sécherre, "Types et contragrédientes", Canad. J. Math. 66:6 (2014), 1287-1304. MR 3270784
[Hiss 2004] G. Hiss, "Hermitian function fields, classical unitals, and representations of 3-dimensional unitary groups", Indag. Math. (N.S.) 15:2 (2004), 223-243. MR 2005c:20080 Zbl 1139.05308
[Howlett and Lehrer 1980] R. B. Howlett and G. I. Lehrer, "Induced cuspidal representations and generalised Hecke rings", Invent. Math. 58:1 (1980), 37-64. MR 81j:20017 Zbl 0435.20023
[Keys 1984] D. Keys, "Principal series representations of special unitary groups over local fields", Compositio Math. 51:1 (1984), 115-130. MR 85d:22031 Zbl 0547.22009
[Kim 2007] J.-L. Kim, "Supercuspidal representations: An exhaustion theorem", J. Amer. Math. Soc. 20:2 (2007), 273-320. MR 2008c:22014 Zbl 1111.22015
[Kurinczuk and Stevens 2014] R. Kurinczuk and S. Stevens, " ℓ-modular cuspidal representations of classical p-adic groups", preprint, 2014.
[Mínguez and Sécherre 2014a] A. Mínguez and V. Sécherre, "Représentations lisses modulo ℓ de $\mathrm{GL}_{m}(D) "$, Duke Math. J. 163:4 (2014), 795-887. MR 3178433 Zbl 1293.22005
[Mínguez and Sécherre 2014b] A. Mínguez and V. Sécherre, "Types modulo ℓ pour les formes intérieures de GL (n) sur un corps local non archimédien", Proc. London Math. Soc. (3) 109:4 (2014), 823-891.
[Morris 1993] L. Morris, "Tamely ramified intertwining algebras", Invent. Math. 114:1 (1993), 1-54. MR 94g:22035 Zbl 0854.22022
[Morris 1999] L. Morris, "Level zero G-types", Compositio Math. 118:2 (1999), 135-157. MR 2000g:22029 Zbl 0937.22011
[Okuyama and Waki 2002] T. Okuyama and K. Waki, "Decomposition numbers of $\operatorname{SU}\left(3, q^{2}\right)$ ", J. Algebra 255:2 (2002), 258-270. MR 2003h:20026 Zbl 1023.20005
[Schneider and Zink 1999] P. Schneider and E.-W. Zink, " K-types for the tempered components of a p-adic general linear group", J. Reine Angew. Math. 517 (1999), 161-208. MR 2001f:22029 Zbl 0934.22021
[Sécherre and Stevens 2008] V. Sécherre and S. Stevens, "Représentations lisses de $\mathrm{GL}_{m}(D)$, IV: Représentations supercuspidales", J. Inst. Math. Jussieu 7:3 (2008), 527-574. MR 2009d:22023 Zbl 1140.22014
[Stevens 2005] S. Stevens, "Semisimple characters for p-adic classical groups", Duke Math. J. 127:1 (2005), 123-173. MR 2006a:22017 Zbl 1063.22018
[Stevens 2008] S. Stevens, "The supercuspidal representations of p-adic classical groups", Invent. Math. 172:2 (2008), 289-352. MR 2010e:22008 Zbl 1140.22016
[Vignéras 1996] M.-F. Vignéras, Représentations l-modulaires d'un groupe réductif p-adique avec $l \neq p$, Progress in Mathematics 137, Birkhäuser, Boston, 1996. MR 97g:22007 Zbl 0859.22001
[Vignéras 1998] M.-F. Vignéras, "Induced R-representations of p-adic reductive groups", Selecta Math. (N.S.) 4:4 (1998), 549-623. MR 99k:22026 Zbl 0943.22017
[Vignéras 2001] M.-F. Vignéras, "Irreducible modular representations of a reductive p-adic group and simple modules for Hecke algebras", pp. 117-133 in European Congress of Mathematics, I (Barcelona, 2000), edited by C. Casacuberta et al., Progr. Math. 201, Birkhäuser, Basel, 2001. MR 2003g:22023 Zbl 1024.22011
[Vignéras 2004] M.-F. Vignéras, "On highest Whittaker models and integral structures", pp. 773-801 in Contributions to automorphic forms, geometry, and number theory, edited by H. Hida et al., Johns Hopkins Univ. Press, Baltimore, MD, 2004. MR 2006b:11048 Zbl 1084.11023
[Yu 2001] J.-K. Yu, "Construction of tame supercuspidal representations", J. Amer. Math. Soc. 14:3 (2001), 579-622. MR 2002f:22033 Zbl 0971.22012

Communicated by Marie-France Vignéras
Received 2013-10-21 Revised 2014-06-24 Accepted 2014-09-08
robkurinczuk@gmail.com Department of Mathematics, Heilbronn Institute for Mathematical Research, University of Bristol, Bristol, BS8 1TW, United Kingdom

Algebra \& Number Theory

msp.org/ant

EDITORS

MANAGING Editor
Bjorn Poonen
Massachusetts Institute of Technology
Cambridge, USA

Editorial Board Chair
David Eisenbud
University of California
Berkeley, USA

Board of Editors

Georgia Benkart	University of Wisconsin, Madison, USA
Dave Benson	University of Aberdeen, Scotland
Richard E. Borcherds	University of California, Berkeley, USA
John H. Coates	University of Cambridge, UK
J-L. Colliot-Thélène	CNRS, Université Paris-Sud, France
Brian D. Conrad	University of Michigan, USA
Hélène Esnault	Freie Universität Berlin, Germany
Hubert Flenner	Ruhr-Universität, Germany
Edward Frenkel	University of California, Berkeley, USA
Andrew Granville	Université de Montréal, Canada
Joseph Gubeladze	San Francisco State University, USA
Roger Heath-Brown	Oxford University, UK
Craig Huneke	University of Virginia, USA
János Kollár	Princeton University, USA
Yuri Manin	Northwestern University, USA
Barry Mazur	Harvard University, USA
Philippe Michel	École Polytechnique Fédérale de Lausanne
Susan Montgomery	University of Southern California, USA

\author{

PRODUCTION

 production@msp.org
 Silvio Levy, Scientific Editor
 Silve Leve}

RIMS, Kyoto University, Japan
Emory University, USA
University of Oxford, UK
University of Notre Dame, USA
University of Minnesota, USA
Princeton University, USA
Brown University, USA
North Carolina State University, USA
Tata Inst. of Fund. Research, India
University of Michigan, USA
University of California, Berkeley, USA
Harvard University, USA
Stanford University, USA
Hasselt University, Belgium
Université Paris VII, France
Nihon University, Japan
University of California, San Diego, USA
Princeton University, USA

See inside back cover or msp.org/ant for submission instructions.
The subscription price for 2014 is US $\$ 225 /$ year for the electronic version, and $\$ 400 /$ year ($+\$ 55$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscribers address should be sent to MSP.

Algebra \& Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOw ${ }^{\circledR}$ from MSP.

PUBLISHED BY

- mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/
© 2014 Mathematical Sciences Publishers

Algebra \& Number Theory

Volume 8 No. 82014

Relative cohomology of cuspidal forms on PEL-type Shimura varieties 1787
Kai-Wen Lan and Benoît Stroh
ℓ-modular representations of unramified p-adic $\mathrm{U}(2,1)$ 1801
Robert James Kurinczuk
McKay natural correspondences on characters 1839
Gabriel Navarro, Pham Huu Tiep and Carolina Vallejo
Quantum matrices by paths 1857
Karel Casteels
Twisted Bhargava cubes 1913
Wee Teck Gan and Gordan Savin
Proper triangular \mathbb{G}_{a}-actions on A^{4} are translations 1959
Adrien Dubouloz, David R. Finston and Imad Jaradat
Multivariate Apéry numbers and supercongruences of rational functions 1985
Armin Straub
The image of Carmichael's λ-function 2009
Kevin Ford, Florian Luca and Carl Pomerance

[^0]: MSC2010: 22E50.
 Keywords: representations of p-adic groups, modular representations.

