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Let G be a finite group, let p be an odd prime, and let P ∈ Sylp(G). If
NG(P) = PCG(P), then there is a canonical correspondence between the ir-
reducible complex characters of G of degree not divisible by p belonging to
the principal block of G and the linear characters of P . As a consequence, we
give a characterization of finite groups that possess a self-normalizing Sylow
p-subgroup or a p-decomposable Sylow normalizer.

1. Introduction

The McKay conjecture, one of the main problems in the representation theory
of finite groups, asserts that if G is a finite group and P is a Sylow p-subgroup
of G, then | Irrp′(G)| = | Irrp′(NG(P))|, where Irrp′(G) is the set of the irreducible
complex characters of G that have degree not divisible by p. It is well known that, in
general, no choice-free correspondence can exist between Irrp′(G) and Irrp′(NG(P)).
(On the other hand, the existence of certain type of bijections between these two
sets is the idea on which a possible solution of the McKay conjecture is nowadays
based [Isaacs et al. 2007].)

A key case to consider and understand in the McKay conjecture is when P is
self-normalizing or, even, when NG(P)= PCG(P). It is not often that a natural
correspondence of characters is found.

Theorem A. Let G be a finite group, let p be odd, and let P ∈ Sylp(G). Suppose
that NG(P)= PCG(P). If χ ∈ Irrp′(G) lies in the principal block, then

χNG(P) = χ
∗
+1,

where χ∗∈ Irr(NG(P)) is linear in the principal block and1 is either zero or a char-
acter whose irreducible constituents all have degree divisible by p. Furthermore,
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the map χ 7→ χ∗ is a bijection

Irrp′(B0(G))→ Irrp′
(
B0(NG(P))

)
,

where Irrp′(B0(G)) is the set of irreducible characters in the principal block of G
of degree not divisible by p.

For p = 2, Theorem A is unfortunately false, as shown, for instance, by S5.
(To prove the McKay conjecture for p = 2 for groups with a self-normalizing
Sylow p-subgroup is still a challenge.) For p odd, Theorem A is also not true for
p-blocks of maximal defect, as shown by the following example: G = SL2(27) ·C3

has a rational, faithful, irreducible character χ of degree 26 that belongs to the
unique nonprincipal 3-block of maximal defect of G, and χNG(P) contains two
linear characters as irreducible constituents.

Theorem A yields the following immediate consequence.

Corollary B. Let G be a finite group, let p be odd, and let P ∈ Sylp(G). Suppose
that NG(P)= P. Then there is a natural bijection χ 7→ χ∗ between Irrp′(G) and
the linear characters of P. In fact, if χ ∈ Irrp′(G) and λ ∈ Irr(P) is linear, then χ
and λ correspond under the bijection if and only if

χP = λ+1,

where1 is either zero or a character whose irreducible constituents all have degree
divisible by p. This happens if and only if

λG
= χ +4,

where 4 is either zero or a character whose irreducible constituents all have degree
divisible by p.

Corollary B was proved in [Navarro 2003] for p-solvable groups (although a
different proof was later given in [Isaacs and Navarro 2008]).

We now mention several applications. A not very well-known consequence of
the Galois version of the McKay conjecture [Navarro 2004] states that whenever
G is a finite group and p is an odd prime, then NG(P) = PCG(P) if and only
if the principal character 1G is the unique p-rational p′-degree character in the
principal block of G. If NG(P)= PCG(P), it follows by Theorem A that the fields
of values of the p′-degree nontrivial irreducible characters in the principal block
are cyclotomic fields Qpa for a > 0, which implies one half of the statement above.
(The other half will be treated separately in another paper.)

A consequence of Theorem A and Corollary B is the following (perhaps sur-
prising) characterization of finite groups that possess a self-normalizing Sylow
p-subgroup or a p-decomposable Sylow normalizer (i.e., NG(P)= PCG(P)), for
a given odd prime p.
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Corollary C. Let G be a finite group, let p be odd, and let P ∈ Sylp(G).

(a) NG(P)= P if and only if

(1P)
G
= 1G +4,

where 4 is either zero or a character whose irreducible constituents all have
degree divisible by p.

(b) NG(P) = PCG(P) if and only if 1G is the only irreducible constituent of
(1PCG(P))

G that has p′-degree and belongs to the principal p-block of G.

It is remarkable that Corollary C(a) gives the exact opposite of a recent result by
G. Malle and Navarro [2012]: a finite group G has a normal Sylow p-subgroup if
and only if all irreducible constituents of (1P)

G have degree not divisible by p.
Corollary C is false for p = 2, as shown again by G = S5: in this case (1P)

G

contains the trivial character of G and an irreducible character of degree 5.
Now, we come back to Theorem A and natural correspondences. Although it

is entirely possible that, under the hypotheses of Theorem A, a natural correspon-
dence exists between all the characters in Irrp′(G) and Irrp′(NG(P)) (not only the
characters in the principal blocks), we have not been able to find it, except for
p-solvable groups. In this case, our correspondence in Theorem D below extends
the Glauberman correspondence (and the correspondence in Theorem A).

Theorem D. Let G be a finite p-solvable group, and let P ∈ Sylp(G). Suppose
that NG(P)= PCG(P), and let N = Op′(G). Let IrrP(N ) be the set of P-invariant
characters θ ∈ Irr(N ). Then, for every θ ∈ IrrP(N ) and linear λ ∈ Irr(P/P ′), there
is a canonically defined character

λ ? θ ∈ Irrp′(G).

Furthermore, the map

Irr(P/P ′)× IrrP(N )→ Irrp′(G)

given by (λ, θ) 7→ λ?θ is a bijection. As a consequence, NG(P)= P×CN (P), and
if θ∗ ∈ Irr(CN (P)) is the Glauberman correspondent of θ ∈ IrrP(N ), then the map

λ× θ∗ 7→ λ ? θ

is a natural bijection Irrp′(NG(P))→ Irrp′(G). Also, if θ = 1N and λ ∈ Irr(P/P ′),
then λ× θ∗ is the unique linear constituent of (λ ? θ)NG(P).

Theorem D suggests studying the blocks B of finite groups with defect group D
satisfying NG(D, bD) = DCG(D), where (D, bD) is a root of B. However, we
will leave this for another place.
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2. An extension theorem

We begin with a well-known lemma. If N G G and θ ∈ Irr(N ), then IG(θ) denotes
the stabilizer of θ in G. In general, we follow the notation of [Isaacs 2006] for
characters. If G is a finite group, Irrp′(G) denotes the set of the irreducible complex
characters of G whose degree χ(1) is not divisible by the prime p.

Lemma 2.1. Let G be a finite group, let p be a prime, let P ∈ Sylp(G), and
let χ ∈ Irrp′(G). Assume that L G G. Then χL has a P-invariant irreducible
constituent θ , and all such constituents are NG(P)-conjugate. In particular, if
NG/L(P L/L)= P L/L , then θ is unique.

Proof. Let η ∈ Irr(L) be any irreducible constituent, and let T be the inertia
subgroup of η in G. By the Clifford correspondence, |G : T | is not divisible by p,
and therefore Pg−1

≤ T for some g ∈ G, and thus P fixes ηg
= θ . If P fixes θ x ,

then P x−1
and P are Sylow p-subgroups of I = IG(θ), and P y

= P x−1
for some

y ∈ I . Hence yx ∈ NG(P) and θ x
= θ yx . The second part easily follows. �

Lemma 2.2. Let G be a finite group, let p be prime, and let P ∈Sylp(G). Let L G G,
and assume that NG/L(P L/L) = P L/L. Let θ ∈ Irr(L) be P-invariant, let T =
IG(θ) be the stabilizer of θ in G and assume that ψ ∈ Irr(T | θ) has p′-degree. Then

(ψG)L P = ψL P +1,

where either 1= 0 or every irreducible constituent of 1 has degree divisible by p.

Proof. Let
G =

⋃
x∈D

T x P

be a disjoint union of double cosets with 1 ∈ D. Then, by Mackey’s formula, we
have that

(ψG)L P = ψL P +
∑

16=x∈D

((ψ x)T x∩L P)
L P .

Suppose that some irreducible constituent α of ((ψ x)T x∩L P)
L P has degree not

divisible by p for 1 6= x ∈ D. Hence αL ∈ Irr(L) by Corollary (11.29) of [Isaacs
2006]. Thus the irreducible character αT x∩L P lies under ψ x . However (ψ x)L = dθ x ,
so we conclude that θ x

= αL is P-invariant. Then by Lemma 2.1, we have that
θ x
= θ and therefore x ∈ T . But this is impossible since 1 6= x ∈ D is a representative

of the double cosets of T and P in G. �

The following theorem is key in this paper, and follows from deep results in
[Navarro and Späth 2014] and [Späth 2013] on the McKay conjecture. Despite
many efforts, we have been unable to find an elementary proof of it. Recall that a
finite simple group X is involved in a finite group G if there exist K G H ≤ G such
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that X ∼= H/K . The so-called inductive Alperin–McKay condition is defined in
Definition 7.2 of [Späth 2013]. For character triples, see Chapter 11 of [Isaacs 2006].

Theorem 2.3. Let G be a finite group, and let p be a prime. Let P ∈ Sylp(G) and
assume that P = NG(P). Let L G G and let θ ∈ Irr(L) be P-invariant of p′-degree.
Suppose that L G H with H/L a p′-group. Assume that all nonabelian simple groups
of order divisible by p involved in L satisfy the inductive Alperin–McKay condition
for p. If θ is H-invariant, then θ extends to H. In particular, this holds if p is odd.

Proof. We argue by induction on |G|. Let Q = P ∩ L . We are going to use
Theorem 7.1 of [Navarro and Späth 2014]. The notation Irr0(L | Q) in that theorem
is defined in Notation 2.1 of the same article, and since Q ∈ Sylp(L), we have that
Irr0(L | Q)= Irrp′(L) in this case. Theorem 7.1 of [loc. cit.] implies now that there
is a NG(Q)-equivariant bijection

5Q : Irrp′(L)→ Irrp′(NL(Q))

such that the character triples (T, L , θ) and (NT (Q), NL(Q), θ ′) are isomorphic,
where θ ′ =5Q(θ) and T = IG(θ). (In Section 3 of [loc. cit.] the reader will find
the appropriate definitions involved in Theorem 7.1 there.) Since 5Q is NG(Q)-
equivariant, we have that NT (Q)= ING(Q)(θ

′). Since P ≤ NG(Q), we have that θ ′

is P-invariant. By character triple isomorphisms, we have that θ extends to H if
and only if θ ′ extends to NH (Q). Also NH (Q)/NL(Q) is a p′-group, so, arguing
by induction, it is no loss to assume that Q G G. Since NG(P) = P , it follows
that CL/Q(P)= 1. Let η ∈ Irr(Q) be P-invariant under θ , by Theorem (13.27) of
[Isaacs 2006]. Let I = IG(η). Since θ is H -invariant, we have that H = L(I ∩ H)
by using Clifford’s theorem. Let τ ∈ Irr(I ∩ L | η) be the Clifford correspondent
of θ over η. By the uniqueness in the Clifford correspondence, we have that τ
is I ∩ H -invariant. If I < G, then by induction we have that τ has an extension
ρ ∈ Irr(I ∩ H). Now,

(ρH )L = (ρI∩L)
L
= εL

= θ,

and we are also done in this case. So we may assume that η is G-invariant. Since
CL/Q(P) = 1, by Problem (13.10) of [loc. cit.] θ is the unique P-invariant con-
stituent of ηL . Now, we have that η has an extension η̂ ∈ Irr(H) by Corollary (8.16)
of [loc. cit.]. Since (η̂)L is P-invariant and lies over η, it coincides with θ by
uniqueness. Hence θ extends to H , as required.

If p is odd, then by Theorem A of [Guralnick et al. 2004], we have that all
nonabelian composition factors of G of order divisible by p are PSL2(33a

)with a≥1
and that p= 3. By elementary general group theory, if X is a simple group involved
in G, then X is involved in a composition factor of G. By using the classification
of the subgroups of PSL2(p f ) in Satz II.8.27 of [Huppert 1967], we have that the
only simple groups involved in G of order divisible by p are PSL2(33b

) (with p= 3
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and b ≥ 1). Now, the proof of Theorem 8.4 of [Späth 2013] shows that the simple
groups PSL2(33b

) with b ≥ 1 satisfy the inductive Alperin–McKay condition. �

Corollary 2.4. Let G be a finite group, p any prime, P ∈ Sylp(G), and assume
that P = NG(P). Let L G G. Let χ ∈ Irrp′(G), and let θ ∈ Irr(L) be P-invariant
under χ . Assume that all nonabelian simple groups of order divisible by p involved
in L satisfy the inductive Alperin–McKay condition for p. Then θ extends to IG(θ).
In particular, this holds if p is odd.

Proof. We may assume that θ is G-invariant. Now, χP L has some irreducible
constituent ξ ∈ Irr(P L) such that p does not divide ξ(1). Then ξL = θ , by
Corollary (11.29) of [Isaacs 2006]. Suppose now that q 6= p is another prime,
and let Q/L be a Sylow q-subgroup of G/L . Then θ extends to Q by Theorem 2.3.
Hence, we have that θ extends to G by Corollary (11.30) of [loc. cit.]. �

3. A group theoretical result

Our aim in this Section is to prove Theorem 3.2 below. We start with the following
lemma, whose parts (ii) and (iii) will be used in the proof of Theorem A.

Lemma 3.1. Let S := PSL2(q) with q = 33a
for some a ≥ 1, P ∈ Syl3(Aut(S)),

and Q := P ∩ S ∈ Syl3(S).

(i) Assume that Y is a 3′-subgroup of Aut(S) that centralizes Q. Then Y = 1.

(ii) Assume that Q ≤ R ≤ P and CNS(Q)/Q(R)= 1. Then R = P.

(iii) Irr(S) contains exactly four P-invariant characters: the principal character 1S ,
two irreducible Weil characters η± of degree (q−1)/2, and the Steinberg character
of degree q. If α ∈ {1S, η

+, η−}, then αQ contains a unique P-invariant irreducible
constituent α∗, which occurs with multiplicity one. Finally, the map α 7→ α∗ is a bi-
jection between {1S, η

+, η−} and the set of P-invariant irreducible characters of Q.

Proof. (i) Recall that Aut(S)∼= PGL2(q) ·C3a . Since Y is a 3′-group, it embeds in
CH (Q) for H := PGL2(q). But CH (Q)= Q, hence the claim follows.

(ii) Without loss we may assume that Q is the image of the subgroup{
[x] :=

(
1 x
0 1

) ∣∣∣ x ∈ Fq

}
in PSL2(q) and P = 〈Q, σ 〉, where σ acts on S as the field automorphism raising
every entry y of any matrix in SL2(q) to y3. Then the maximal subgroup 〈Q, σ 3

〉

of P centralizes a subgroup of order 13 of NS(Q)/Q, namely, the one induced by
{diag(z, z−1) | z ∈ F×27}. Hence the claim follows.
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(iii) We keep the notation of (ii). The character table of S is given, for instance, in
[Digne and Michel 1991, Table 2]. Now, it is straightforward to check that 1S , η±,
and the Steinberg character (of degree q) are the only P-invariant irreducible
characters of S. Next,

Irr(Q)=
{
λa : [x] → ω

tr Fq /F3
(ax)
| a ∈ Fq

}
,

where ω ∈ C is a fixed primitive cubic root of unity. Since σ acts on Irr(Q) via
λa 7→λa3 , the only P-invariant irreducible characters of Q are 1Q =λ0, λ1, and λ−1.
Relabeling η+ and η− if necessary, we have that

(η+)Q =
∑

a∈F×2
q

λa, (η−)Q =
∑

a∈F×q \F
×2
q

λa.

Hence λ1 and λ−1 are the only P-invariant irreducible constituents of (η+)Q and
(η−)Q , respectively, each occurring with multiplicity one. �

Theorem 3.2. Let G be a finite group, let p be a prime, and let P ∈ Sylp(G).
Suppose that NG(P) = P × X. If p is odd or G is p-solvable, then X ≤ Op′(G).
In particular, if NG(P)= PCG(P), then Op′(NG(P))≤ Op′(G).

Proof. We argue by induction on |G|. If N G G, then

NG/N (P N/N )= NG(P)N/N = P N/N × X N/N .

Hence, if N > 1, then we have that X N/N ≤ Op′(G/N ). In particular, we may
assume that Op′(G)= 1. Now, suppose that N = Op(G) > 1. Then we conclude
that X ≤ Opp′(G)= M . Since [X, P] = 1, then [X, N ] = 1. However, using that
Op′(G)= 1, we have that CM(N )= Z(N )× Op′(M)= Z(N ), and we conclude
that X = 1, in this case. Hence, we may assume that G is not p-solvable, and that
p is odd.

Now, let N be a minimal normal subgroup of G. By [Guralnick et al. 2004], we
have that N = S1×· · ·× Sk , where {S1, . . . , Sk} are transitively permuted by G and
S1 = S = PSL2(33a

). Now P ∩ N = (P ∩ S1)× · · · × (P ∩ Sk). Fix some index i .
Since [P, X ] = 1, we have [Qi , X ] = 1, where 1< Qi = P∩ Si ∈ Syl3(Si ). Now, if
x ∈ X , then we have that (Si )

x
= S j for some j . However Qx

i ≤ Sx
i ∩Si = S j∩Si , so

we conclude that X ≤ NG(Si ) for all i with [X, Qi ]= 1. Let Yi = X CG(Si )/CG(Si ),
which is a 3′-subgroup of Aut(Si ) centralizing the Sylow 3-subgroup Qi of Si . By
Lemma 3.1(i), Yi = 1, whence X ≤ CG(Si ) for all i . Thus X ≤ CG(N ) for every
minimal normal subgroup. Since F(G)= 1, we have F∗(G)= E(G)= E . Since
Z(E)= 1, we have that E is semisimple and CG(E)= 1 by Theorems 9.7 and 9.8
of [Isaacs 2008]. Now, E is a direct product of nonabelian simple groups Ki and
the normal closure of Ki is a minimal normal subgroup of G (by Lemma 9.17 of
[Isaacs 2008], for instance), and we conclude that X ≤ CG(E)= 1, as desired.
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Finally, since CG(P)= Z(P)×Op′(NG(P)) (by the Schur–Zassenhaus theorem),
it follows that if NG(P) = PCG(P), then NG(P) = P × Op′(NG(P)), and we
apply the first part of the theorem. �

Note that Theorem 3.2 is not true for p = 2: If G = E6(11) and P ∈ Syl2(G),
then NG(P)= P ×C5; see [Kondratiev and Mazurov 2003, Theorem 6(c)].

4. Proof of main theorem

We will also need the following result.

Lemma 4.1 [Navarro et al. 2007]. Suppose that a finite p-group P acts on a finite
group G, stabilizing N G G. Suppose that Q/N ∈ Sylp(G/N ) is P-invariant, and
assume that

G/N = T1/N × · · ·× Ta/N ,

where the subgroups T1, . . . , Ta are permuted by P. Let Q1 = Q ∩ T1, and let P1

be the stabilizer of T1 in P. If CNG(Q)/Q(P)= 1, then CNT1 (Q1)/Q1(P1)= 1.

Proof. This follows by applying Lemma 4.1 of [Navarro et al. 2007] to each of the
P-orbits on {T1, . . . , Ta}. �

The proof of the following lemma is a trivial consequence of the fact that Op′(G)
is contained in the kernel of all the irreducible characters in the principal block
of G. (See, for instance, Theorem (6.10) of [Navarro 1998].)

Lemma 4.2. Suppose that N is a normal subgroup of H , with N ≤ Op′(H). Sup-
pose that H = NU for some U ≤ H. Then restriction defines a bijection between
the characters of the principal block of H and of the principal block of U ∩ N.

We are finally ready to prove the main result of this paper. The only way we have
found to prove it is to use a strong induction using normal subgroups. Theorem A
of the introduction will be recovered by letting L = 1 in the next result.

Theorem 4.3. Let G be a finite group, and let p be an odd prime. Let P ∈ Sylp(G),
and suppose that NG(P) = PCG(P). Let L G G. Let χ ∈ Irrp′(G) lie in the
principal block of G. Then χL NG(P) = χ

∗
+1, where χ∗ ∈ Irrp′(L NG(P)) lies in

the principal block of L NG(P), and 1 is either zero or a character of L NG(P)
whose irreducible constituents all have degree divisible by p. Furthermore, the map
χ 7→ χ∗ is a bijection

Irrp′(B0(G))→ Irrp′(B0(L NG(P))).

Proof. (I) Let (G, L) be a counterexample to the first part of the theorem with
|G| · |G/L| as small as possible.
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(a) Here we show that Op′(G)= 1 and NG(P)= P . To this end, using Theorem 3.2
we can write NG(P)= P× X , where X ≤ N := Op′(G). Write G = G/N and use
the bar convention. Hence L = L N/N , P = P N/N and NG(P)= P× X = P , by
elementary group theory. Now, N ≤ ker(χ). If N > 1, then, considering χ as a
character of G, by induction we have that

χL NG(P)
= χL P = χ

∗
+1,

where χ∗ is an irreducible character of p′-degree in the principal block of L P =
L P N/N and either1=0 or1 is a character of L P N/N such that every irreducible
constituent of 1 has degree divisible by p. Now, Lemma 4.2 applies, and we are
done in this case. So we have that N = 1 and that NG(P) = P . Hence, every
p′-degree character of every subgroup H with P ≤ H ≤ G (or of every quotient
G/K of G) lies in the principal block of H (of G/K ) by the first main theorem of
Brauer (Theorem (4.17) of [Navarro 1998]).

(b) Next we show that L = 1. By Lemma 2.1, let θ ∈ Irr(L) be P-invariant under χ .
Let T = IG(θ) be the stabilizer of θ in G, and let ψ ∈ Irr(T | θ) be the Clifford
correspondent of χ over θ . Assume that T < G. By the choice of G, we have that

ψL P = ψ
∗
+4,

where ψ∗ has p′-degree and either 4= 0 or the irreducible constituents of 4 have
degree divisible by p. Now, we use Lemma 2.2 to conclude that we may assume
that θ is G-invariant. By Corollary 2.4, we then have that θ has an extension
θ̃ ∈ Irr(G). Now, by Gallagher’s corollary [Isaacs 2006, Corollary (6.17)], we have
that χ = βθ̃ , for some β ∈ Irr(G/L). Now if L 6= 1, then the theorem holds for
G/L , whence we have that βP L is the sum of a p′-degree irreducible character β∗

of P L/L (and hence linear) plus some character 1 of P L/L such that all of its
irreducible constituents have degree divisible by p, or 1= 0. Then

χL P = (β
∗)θ̃L P +1θ̃L P ,

and, using Gallagher’s corollary, we see that we are done again. Hence L = 1, as
desired.

(c) Now we can show that p = 3, E := F∗(G) = E(G) = S1 × · · · × Sn with
Si ∼= PSL2(qi ) for some qi = 33ai , ai , n≥ 1, and ECG ≤Aut(E). Indeed, suppose
that K :=Op(G) 6=1. Since |G/K |< |G|=|G/L|, the first statement of the theorem
holds for (G, K ) and so for (G, L) as well (since K P= P), contradicting the choice
of (G, L). Thus Op(G)= 1. Since Op′(G)= 1, we have now that F(G)= 1 and so
E = F∗(G)= E(G). Next, Z(E)≤ F(G)= 1, whence E = S1×· · ·×Sn is a direct
product of nonabelian simple groups and CG(E)= 1, yielding E CG ≤ Aut(E).
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Since NG(P) = P and p is odd, we have that p = 3 and Si ∼= PSL2(qi ) with
qi = 33ai by the main result of [Guralnick et al. 2004].

(d) Let Q := P ∩ E ∈ Sylp(E) and write Q = Q1× · · ·× Qn with Qi ∈ Sylp(Si ).
Since P is self-normalizing in E P , by [Navarro et al. 2007, Lemma 2.1(ii)],
CNE (Q)/Q(P)= 1. This in turn implies by Lemma 4.1 that CNSi (Qi )/Qi (Pi )= 1 for
Pi := NP(Si ). It follows by Lemma 3.1(ii) that Pi must induce the full subgroup
C3ai of field automorphisms of Si . Applying Lemma 3.1(iii) to Si , we see that the
Pi -invariant irreducible characters of p′-degree of Si are αi := 1Si and the two Weil
characters η±i of degree (qi − 1)/2. Furthermore, for each α ∈ {αi , η

±

i }, Pi fixes a
unique irreducible constituent α∗ of αQi , occurring with multiplicity one. Moreover,
the map α 7→ α∗ is a bijection between the set of irreducible Pi -invariant characters
of p′-degree of Si and that of Qi .

(e) Since the theorem holds for (G, E),

χE P = χ
∗
+1,

where χ∗ ∈ Irrp′(E P) and all the irreducible constituents of 1 (if any) have degree
divisible by p. In particular, θ := (χ∗)E is irreducible. Write

θ = θ1× · · ·× θn,

with θi ∈ Irrp′(Si ). Since θ is P-invariant, it follows that θi is Pi -invariant of
p′-degree, and so θi ∈ {αi , η

±

i } by (d). As mentioned above,

(θi )Qi = θ
∗

i + δi ,

where θ∗i ∈ Irr(Qi ) is Pi -invariant and δi is a sum of non-Pi -invariant irreducible
characters of Qi . Setting

θ̃ := θ∗1 × · · ·× θ
∗

n ,

we see that each irreducible constituent of θQ− θ̃ is non-P-invariant and so must lie
under an irreducible character of P of degree divisible by p. But p - θ(1). Hence
θP contains a unique linear constituent which lies above θ̃ . Denote this constituent
by θ∗. We have shown that every irreducible constituent of θP − θ

∗
= (χ∗)P − θ

∗

is of degree divisible by p, whereas θ∗(1)= 1.

(f) It remains to show that every irreducible constituent of 1P has degree divisible
by p. Assume the contrary: 1P contains a linear constituent λ, and write

λQ = λ1× · · ·× λn,

with λi ∈ Irr(Qi ). Let γ ∈ Irr(E P) be an irreducible constituent of 1 that contains
λ upon restriction to P . Also, let

β = β1× · · ·×βn ∈ Irr(E)
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lie under γ and above λQ . Since ECG and both θ and β are irreducible constituents
of χE , β is G-conjugate to θ . Recall that θ = θ1×· · ·×θn , with θi ∈ {αi , η

±

i }. Also,
note that the set {αi , η

±

i } is Aut(Si )-invariant. It follows that βi ∈ {αi , η
±

i }. As
mentioned in (d), (βi )Qi contains a unique Pi -invariant irreducible constituent β∗i ,
and each irreducible constituent of (βi )Qi −β

∗

i is non-Pi -invariant. Denoting

β̃ := β∗1 × · · ·×β
∗

n ,

we see that no irreducible constituent of βQ − β̃ can be invariant under P . But λQ

lies under βQ and is P-invariant. Hence λQ = β̃ and λi = β
∗

i .

(g) Now we consider two cases.

Case 1: β is not P-invariant. In this case, there is some g ∈ P such that βg
6= β.

Then βg lies above (λQ)
g
= λQ and under γ . Writing βg

= β ′1 × · · · × β
′
n and

arguing as in (f), we see that β ′i ∈ {αi , η
±

i } and, moreover,

β∗i = λi = (β
′

i )
∗.

As mentioned in (d), the map α 7→ α∗ is a bijection. It follows that βi = β
′

i and so
β = βg, a contradiction.

Case 2: β is P-invariant. Then, by Corollary 2.4, β extends to β̂ ∈ Irr(E P). Since
γ lies above β, by Gallagher’s corollary we have that γ = β̂µ, where µ∈ Irr(P/Q)
is considered as a character of E P/E . Note that p | γ (1), as γ is an irreducible
constituent of 1. On the other hand, p - β̂(1)= β(1). It follows that p | µ(1). As
shown in (f), no irreducible constituent of

β̂Q − λQ = βQ − λQ

can be P-invariant. Hence λ is the unique linear constituent of β̂P . Certainly, µλ
is irreducible over P and nonlinear. Furthermore, again as shown in (f), every
irreducible constituent of

(γP −µλ)Q = µ(1) · (βQ − λQ)

is non-P-invariant and so must lie under an irreducible P-character of degree
divisible by p. Thus the degree of every irreducible constituent of γP − µλ is
divisible by p, and the same is true for µλ ∈ Irr(P). Consequently, the linear
character λ cannot be a constituent of γP , again a contradiction.

Thus we have completed the proof of the first statement of the theorem.

(II) Now we prove that our map χ 7→ χ∗ is a bijection. Recall that Op′(NG(P))≤
Op′(G) by Theorem 3.2 and that Op′(G) is contained in the kernel of any ψ ∈
Irr(B0(G)). Modding out by Op′(G), we may assume that Op′(G) = 1 and so
NG(P)= P . Hence the principal block is the only block of maximal defect of G,
and the same is true for L P . Since all the nonabelian composition factors of G
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of order divisible by p are PSL2(33a
) with a ≥ 1, we know by [Isaacs et al. 2007,

Theorem A] that the McKay conjecture is true for G and for L P . Hence

| Irrp′(G)| = | Irrp′(NG(P))| = | Irr(P/P ′)| = | Irrp′(NL P(P))| = | Irrp′(L P)|.

Now, if δ ∈ Irrp′(L P), then some irreducible constituent χ of δG has p′-degree.
Therefore χL P contains δ and, by the first statement of the theorem, we necessarily
have that χ∗ = δ. Thus the map χ 7→ χ∗ is surjective, and therefore injective. �

The proof of Corollary B, which we restate below, is now immediate.

Corollary B. Let G be a finite group, let p be odd, and let P ∈ Sylp(G). Suppose
that NG(P)= P. Then there is a natural bijection χ 7→ χ∗ between Irrp′(G) and
the linear characters of P. In fact, if χ ∈ Irrp′(G) and λ ∈ Irr(P) is linear, then χ
and λ correspond under the bijection if and only if

χP = λ+1,

where1 is either zero or a character whose irreducible constituents all have degree
divisible by p. This happens if and only if

λG
= χ +4,

where 4 is either zero or a character whose irreducible constituents all have degree
divisible by p.

Proof. If NG(P) = P , then the principal block is the unique block of maximal
defect by Brauer’s first main theorem. Hence, the first part of the corollary follows
from Theorem 4.3 by letting L = 1. For the second part, if λ ∈ Irr(P) is linear, then
λG has degree not divisible by p, and therefore λG has a constituent χ ∈ Irrp′(G).
Then [χP , λ] 6= 0 and it follows that necessarily λ= χ∗. It also follows that χ is
unique, because our map is injective. �

Next is Corollary C.

Corollary C. Let G be a finite group, let p be odd, and let P ∈ Sylp(G).

(a) NG(P)= P if and only if

(1P)
G
= 1G +4,

where 4 is either zero or a character whose irreducible constituents all have
degree divisible by p.

(b) NG(P) = PCG(P) if and only 1G is the only irreducible constituent of
(1PCG(P))

G that belongs to Irrp′(B0(G)).
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Proof. Both proofs are very similar. We start with (a). One implication follows
from Corollary B. Assume now that

(1P)
G
= 1G +4,

where 4 is either zero or a character whose irreducible constituents all have degree
divisible by p, but N := NG(P) > P . Then there exists a nonprincipal character
γ ∈ Irr(N/P), which can be viewed as an N -character. Since γ has p′-degree
(because N/P is a p′-group), it follows that γ G possesses an irreducible constituent
χ ∈ Irrp′(G). Now, χ lies over γ 6= 1N and therefore 1G 6= χ lies over 1P , a
contradiction.

Next, we prove (b). Write C=CG(P). One implication follows from Theorem 4.3.
Assume now that 1G is the unique irreducible constituent of (1PC)

G that belongs to
Irrp′(B0(G)) and that N :=NG(P)> PC . Then there exists a nonprincipal character
γ ∈ Irr(N/PC), which can be viewed as an N -character. Since N is p-solvable, and
Op′(N )≤ C ≤ ker γ , it follows that γ lies in the principal block of N by [Navarro
1998, Theorem (10.20)]. Also, γ has p′-degree, because N/PC is a p′-group. If b
is now the principal block of N , we know that bG

= B = B0(G) is the principal
block of G, by Brauer’s third main theorem [loc. cit., Theorem (6.7)]. Write

(γ G)B =
∑

χ∈Irr(B)

[γ G, χ]χ.

(This is called the B-part of γ G ; see page 72 of [loc. cit.].) Now, by [loc. cit.,
Corollary (6.4)], we have that

1= (γ G(1))p = ((γ
G)B(1))p,

where n p is the largest power of p dividing the integer n. It then follows that
some irreducible constituent χ of γ G lies in Irrp′(B). We now have that χ lies
over γ and therefore over 1PC . Since γ 6= 1N , it follows that χ 6= 1G , and this is
a contradiction. �

5. p-solvable groups

Our proof of Theorem D is short but uses deep character theory of p-solvable groups.
We assume that the reader is familiar with π -special characters (i.e., the characters
of π -degree whose subnormal irreducible constituents have determinantal π -order;
see [Gajendragadkar 1979]).

Lemma 5.1. Suppose that L G G, P ∈ Sylp(G) and NG/L(P L/L) = P L/L.
Assume that G/L is p-solvable. Let θ ∈ Irr(L) be P-invariant and p′-special. Then
there exists a unique θ̂ ∈ Irr(G | θ) such that θ̂ is p′-special.
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Proof. We argue by induction on |G : L|. Let K/L be a chief factor of G, and notice
that G/K has a self-normalizing Sylow p-subgroup, by elementary group theory.
Assume first that K/L is a p-group, and let η ∈ Irr(K | θ) be the unique p′-special
character lying over θ , by using Proposition 4.3 of [Gajendragadkar 1979]. By
uniqueness, η is P-invariant, and by induction, there is a unique p′-special character
η̂ ∈ Irr(G) that lies over η (and therefore over θ ). Now, if θ̂ is any other p′-special
character of G lying over θ and ψ ∈ Irr(K ) lies under θ̂ and over θ , we have that
ψ is p′-special by Proposition 4.1 of [Gajendragadkar 1979], and therefore ψ = η,
by uniqueness. But in this case, θ̂ = η̂, by using the inductive hypothesis.

Suppose finally that K/L is a p′-group. Then CK/L(P L/L) = 1, using that
P L/L is self-normalizing. Hence, by Problem (13.10) of [Isaacs 2006], there
exists a unique P-invariant τ ∈ Irr(K | θ). Also, τ is p′-special by Lemma 4.4 of
[Gajendragadkar 1979]. By induction, there exists a unique p′-special character τ̂
lying over τ (and therefore over θ). Suppose now that γ ∈ Irr(G) is any other
p′-special character lying over θ . By Lemma 2.1, let φ ∈ Irr(K ) be P-invariant
under γ , and, by Theorem (13.27) of [Isaacs 2006], let ρ ∈ Irr(L) be P-invariant
under φ. Then ρ and θ are P-invariant and lie under γ , so ρ = θ by Lemma 2.1.
Then φ = τ by the uniqueness of τ , and hence γ = τ̂ by induction. �

We restate Theorem D for the reader’s convenience.

Theorem D. Let G be a finite p-solvable group, and let P ∈ Sylp(G). Suppose
that NG(P)= PCG(P), and let N = Op′(G). Let IrrP(N ) be the set of P-invariant
θ ∈ Irr(N ). Then for every θ ∈ IrrP(N ) and linear λ ∈ Irr(P/P ′), there is a
canonically defined character

λ ? θ ∈ Irrp′(G).

Furthermore, the map

Irr(P/P ′)× IrrP(N )→ Irrp′(G)

given by (λ, θ) 7→ λ?θ is a bijection. As a consequence, NG(P)= P×CN (P), and
if θ∗ ∈ Irr(CN (P)) is the Glauberman correspondent of θ ∈ IrrP(N ), then the map

λ× θ∗ 7→ λ ? θ

is a natural bijection Irrp′(NG(P))→ Irrp′(G). Also, if θ = 1N and λ ∈ Irr(P/P ′),
then λ× θ∗ is the unique linear constituent of (λ ? θ)NG(P).

Proof. By Theorem 3.2, we can write NG(P)= P × X , where X := CN (P). Let
λ ∈ Irr(P) be linear and let θ ∈ IrrP(N ). Since P ∩ N = 1, we trivially have that
λ extends to P N . Now, by Theorem 2.1 of [Isaacs and Navarro 2008] (or see
Corollary 2.2 of [Isaacs and Navarro 2001] for a self-contained proof), there exists
a maximal subgroup P ⊆W ⊆G such that λ extends to W . Hence P N ⊆W . Now,
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by elementary character theory, let λ̂ ∈ Irr(W ) be the unique linear character of
p-power order that extends λ. Now, NW/N (P N/N )= P N/N , and by Lemma 5.1,
there exists a unique p′-special θ̂ ∈ Irr(W ) lying over θ . Now, by Theorem 2.2 of
[Isaacs and Navarro 2008] and Theorem C of [Navarro 1997] we have that

λ ? θ := (θ̂ λ̂)G ∈ Irr(G).

Notice that λ?θ has p′-degree, because θ̂ has p′-degree and |G :W | is not divisible
by p. (We notice for the record that (λ ? θ)W contains θ̂ λ̂, and therefore, when
restricted to N , we have that (λ ? θ) lies over θ . It is not in general true that λ ? θ
lies over λ, on the other hand.)

We have now defined a map

Irr(P/P ′)× IrrP(N )→ Irrp′(G)

given by (λ, θ) 7→ λ ? θ .
Next we show that our map is surjective. Let χ ∈ Irrp′(G). By Theorem 3.6 of

[Isaacs and Navarro 2008], we have that χ is a satellite of some ψ ∈ Bp(G) of
p′-degree (see Section 3 of [Isaacs and Navarro 2008] for the necessary definitions).
In other words, this means that there is some linear character δ ∈ Irr(P) and a
p′-special character α ∈ Irr(U ), where U is the maximal subgroup of G to which δ
extends, such that

χ = (δ̂α)G,

where the order of δ̂ is a p-power and δ̂ extends δ. Now, αN contains a (unique)
P-invariant character µ∈ IrrP(N ) by Lemma 2.1, and it follows that α is the unique
p′-special character of U lying over µ by Lemma 5.1. It follows then that χ = δ ?µ,
and, therefore, that our map is surjective.

Recall that the Glauberman correspondence [Isaacs 2006, Theorem (13.1)] pro-
vides a natural bijection

IrrP(N )→ Irr(CN (P)).

Since the McKay conjecture is true for p-solvable groups (see for instance [Isaacs
et al. 2007]) we have that

| Irrp′(G)| = | Irrp′(NG(P))| = | Irr(P/P ′)|| Irr(CN (P))| = | Irr(P/P ′)|| IrrP(N )|.

It then follows that our map is bijective.
In the case where θ = 1N , the second part of the theorem easily follows from

Theorem 3.1 of [Isaacs and Navarro 2008] applied in the group G/N . �

Under the hypothesis of the previous theorem, we notice that the blocks with
defect group P ∈ Sylp(G) of G can be parametrized by the P-invariant irreducible
characters of N=Op′(G). The fact that in this case Irrp′(G |θ) and Irrp′(NG(P) |θ∗)
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have the same cardinality is a consequence of [Okuyama and Wajima 1980]. Our
hypothesis, however, allows us to obtain a canonical bijection in our case.

6. A non-p-solvable example

To finish the paper, it might be interesting to show the reader how to construct
a natural bijection Irrp′(G)→ Irrp′(NG(P)) in the paradigmatic case where G =
SL2(33a

) ·C3a and p = 3, with P ∈ Sylp(G) as usual.
Let S := [G,G] = SL2(q) with q = 33a

, and let σ denote the field automorphism
of S of order t := 3a , so that G = So 〈σ 〉. Using [Digne and Michel 1991, Table 2],
it is easy to check that Irrp′(S) contains exactly six σ -invariant characters: 1S , two
Weil characters η1,2 of degree (q − 1)/2 (denoted χ±b in [Isaacs et al. 2007, §15]),
two Weil characters ξ1,2 of degree (q+1)/2 (denoted χ±a in that work), and a unique
rational-valued character ψ of degree q − 1. Here, the three former characters are
nonfaithful, and the three latter ones are faithful. Furthermore, one can label ξ1,2

such that

ξi (x)= ηi (x)+ 1

for any element x ∈ S of order 3 and i = 1, 2. Since G/S is cyclic (and generated
by σ ), it follows that all these 6 characters extend to G, and the 6t extensions
are precisely the characters in Irrp′(G). In particular, 1S extends to λ j , 1≤ j ≤ t ,
with λ1 = 1G . Next, we will single out a “canonical” extension for each of the
remaining five characters of S. As shown in [Navarro and Tiep 2014, §3], G embeds
in H := Sp2t(3) in such a way that ηi extends to a Weil character of H that takes
value 1 at σ . We will denote the restriction of this character of H to G by η̃i , so that

η̃i (σ )= 1, i = 1, 2.

Likewise, ξi extends to a Weil character of H that takes value 2 at σ , and we will
denote the restriction of this character of H to G by ξ̃i , so that

ξ̃i (σ )= 2, i = 1, 2.

Finally, by [Navarro and Tiep 2008, Corollary 2.2], there is a unique rational-valued
extension ψ̃ of ψ to G.

Let 1Z and ν denote the two linear characters of Z := Z(G) ∼= C2. For any
γ ∈ Irr(Z), let Irrp′(G | γ ) denote the set of characters χ ∈ Irrp′(G) that lie above
γ , and similarly for N := NG(P)= P × Z . Now we see that

Irrp′(G | 1Z )= {λ j , η̃iλ j | 1≤ i ≤ 2, 1≤ j ≤ t},

Irrp′(G | ν)= {ψ̃λ j , ξ̃iλ j | 1≤ i ≤ 2, 1≤ j ≤ t}.
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Moreover, the first set is contained in the principal 3-block B0(G) of G and the sec-
ond set is contained in the other 3-block of maximal defect B1(G) of G. Theorem A
yields a natural correspondence Irrp′(B0(G))→ Irrp′(B0(N )). To get a natural
correspondence Irrp′(B1(G))→ Irrp′(B1(N )), it therefore suffices to define a natural
correspondence between Irrp′(G |1Z )= Irrp′(B0(G)) and Irrp′(G |ν)= Irrp′(B1(G)),
which can be given by

λ j 7→ ψ̃λ j , η̃iλ j 7→ ξ̃iλ j ,

and a natural correspondence between Irrp′(N |1Z )= Irrp′(B0(N )) and Irrp′(N |ν)=
Irrp′(B1(N )), which can be given by

µ× 1Z 7→ µ× ν

for all µ ∈ Irr(P/P ′).
Note that an equivariant bijection π : Irrp′(S)→ Irrp′(NS(P∩S)) was constructed

in [Isaacs et al. 2007, (15F)]. Choosing π(χ±a ) and π(χ±b ) suitably, one can check
that π extends (from S to G) to our bijection Irrp′(G)→ Irrp′(NG(P)).
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