Algebra & Number Theory Volume 8 014No. 8 The image of Carmichael's λ -function Kevin Ford, Florian Luca and Carl Pomerance

The image of Carmichael's λ -function

Kevin Ford, Florian Luca and Carl Pomerance

We show that the counting function of the set of values of Carmichael's λ -function is $x/(\log x)^{\eta+o(1)}$, where $\eta = 1 - (1 + \log \log 2)/(\log 2) = 0.08607...$

1. Introduction

Euler's function φ assigns to a natural number *n* the order of the group of units of the ring of integers modulo *n*. It is of course ubiquitous in number theory, as is its close cousin λ , which gives the exponent of the same group. Already appearing in Gauss's *Disquisitiones Arithmeticae*, λ is commonly referred to as Carmichael's function, after R. D. Carmichael, who studied it about a century ago. (A *Carmichael number n* is composite but nevertheless satisfies $a^n \equiv a \pmod{n}$ for all integers *a*, just as primes do. Carmichael discovered these numbers, which are characterized by the property that $\lambda(n) \mid n-1$.)

It is interesting to study φ and λ as functions. For example, how easy is it to compute $\varphi(n)$ or $\lambda(n)$ given *n*? It is indeed easy if we know the prime factorization of *n*. Interestingly, we know the converse. By [Miller 1976], given either $\varphi(n)$ or $\lambda(n)$, it is easy to find the prime factorization of *n*.

Within the realm of "arithmetic statistics" one can also ask for the behavior of φ and λ on typical inputs *n*, and ask how far this varies from their values on average. For φ , this type of question goes back to the dawn of the field of probabilistic number theory with the seminal paper of Schoenberg [1928], while some results in this vein for λ are found in [Erdős et al. 1991].

One can also ask about the value sets of φ and λ . That is, what can one say about the integers which appear as the order or exponent of the groups $(\mathbb{Z}/n\mathbb{Z})^*$?

These are not new questions. Let $V_{\varphi}(x)$ denote the number of positive integers $n \leq x$ for which $n = \varphi(m)$ for some m. Pillai [1929] showed $V_{\varphi}(x) \leq x/(\log x)^{c+o(1)}$ as $x \to \infty$, where $c = (\log 2)/e$. On the other hand, since $\varphi(p) = p - 1$, $V_{\varphi}(x)$ is at least $\pi(x+1)$ (the number of primes in [1, x+1]), and so $V_{\varphi}(x) \geq (1+o(1))x/\log x$.

Ford was supported in part by National Science Foundation grant DMS-1201442. Pomerance was supported in part by NSF grant DMS-1001180.

MSC2010: primary 11N64; secondary 11A25, 11N25.

Keywords: Carmichael's function, Carmichael's lambda function.

In one of his earliest papers, Erdős [1935] showed that the lower bound is closer to the truth: we have $V_{\varphi}(x) = x/(\log x)^{1+o(1)}$ as $x \to \infty$. This result has since been refined by a number of authors, including Erdős and Hall, Maier and Pomerance, and Ford; see [Ford 1998] for the current state of the art.

Essentially the same results hold for the sum-of-divisors function σ , but only recently were we able to show that there are infinitely many numbers that are simultaneously values of φ and of σ [Ford et al. 2010], thus settling an old problem of Erdős.

In this paper, we address the range problem for Carmichael's function λ . From the definition of $\lambda(n)$ as the exponent of the group $(\mathbb{Z}/n\mathbb{Z})^*$, it is immediate that $\lambda(n) | \varphi(n)$ and that $\lambda(n)$ is divisible by the same primes as $\varphi(n)$. We also have

$$\lambda(n) = \operatorname{lcm}[\lambda(p^a) : p^a \parallel n],$$

where $\lambda(p^a) = p^{a-1}(p-1)$ for odd primes p with $a \ge 1$ or p = 2 and $a \in \{1, 2\}$. Further, $\lambda(2^a) = 2^{a-2}$ for $a \ge 3$. Put $V_{\lambda}(x)$ for the number of integers $n \le x$ with $n = \lambda(m)$ for some m. Note that since $p - 1 = \lambda(p)$ for all primes p, it follows that

$$V_{\lambda}(x) \ge \pi(x+1) = (1+o(1))\frac{x}{\log x} \quad (x \to \infty), \tag{1-1}$$

as with φ . In fact, one might suspect that the story for λ is completely analogous to that of φ . As it turns out, this is not the case.

It is fairly easy to see that $V_{\varphi}(x) = o(x)$ as $x \to \infty$, since most numbers *n* are divisible by many different primes, so most values of $\varphi(n)$ are divisible by a high power of 2. This argument fails for λ , and in fact it is not immediately obvious that $V_{\lambda}(x) = o(x)$ as $x \to \infty$. Such a result was first shown in [Erdős et al. 1991], where it was established that there is a positive constant *c* with $V_{\lambda}(x) \ll x/(\log x)^c$. In [Friedlander and Luca 2007], a value of *c* in this result was computed. It was shown there that, as $x \to \infty$,

$$V_{\lambda}(x) \leq \frac{x}{(\log x)^{\alpha + o(1)}}$$
 holds with $\alpha = 1 - e(\log 2)/2 = 0.057913...$ (1-2)

The exponents on the logarithms in the lower and upper bounds (1-1) and (1-2) were brought closer in the recent paper [Luca and Pomerance 2014], where it was shown that, as $x \to \infty$,

$$\frac{x}{(\log x)^{0.359052}} < V_{\lambda}(x) \le \frac{x}{(\log x)^{\eta + o(1)}} \text{ with } \eta = 1 - \frac{1 + \log \log 2}{\log 2} = 0.08607\dots$$

In Section 2.1 of that paper, a heuristic was presented suggesting that the correct exponent of the logarithm should be the number η . In the present paper, we confirm the heuristic from [Luca and Pomerance 2014] by proving the following theorem:

Theorem 1. We have $V_{\lambda}(x) = x(\log x)^{-\eta+o(1)}$ as $x \to \infty$.

Just as results on $V_{\varphi}(x)$ can be generalized to similar multiplicative functions, such as σ , we would expect our result to be generalizable to functions similar to λ enjoying the property f(mn) = lcm[f(m), f(n)] when m, n are coprime.

Since the upper bound in Theorem 1 was proved in [Luca and Pomerance 2014], we need only show that $V_{\lambda}(x) \ge x/(\log x)^{\eta+o(1)}$ as $x \to \infty$. We remark that in our lower bound argument we will count only squarefree values of λ .

The same number η in Theorem 1 appears in an unrelated problem. As shown by Erdős [1960], the number of distinct entries in the multiplication table for the numbers up to *n* is $n^2/(\log n)^{\eta+o(1)}$ as $n \to \infty$. Similarly, the asymptotic density of the integers with a divisor in [n, 2n] is $1/(\log n)^{\eta+o(1)}$ as $n \to \infty$. See [Ford 2008a; 2008b] for more on these kinds of results. As explained in the heuristic argument presented in [Luca and Pomerance 2014], the source of η in the λ -range problem comes from the distribution of integers *n* with about $(1/\log 2) \log \log n$ prime divisors: the number of these numbers $n \in [2, x]$ is $x/(\log x)^{\eta+o(1)}$ as $x \to \infty$. Curiously, the number η arises in the same way in the multiplication table problem: most entries in an *n*-by-*n* multiplication table have about $(1/\log 2) \log \log n$ prime divisors (a heuristic for this is given in the introduction of [Ford 2008a]).

We mention two related unsolved problems. Several papers [Banks et al. 2004; Banks and Luca 2011; Freiberg 2012; Pollack and Pomerance 2014] have discussed the distribution of numbers *n* such that n^2 is a value of φ ; in [Pollack and Pomerance 2014] it was shown that the number of such $n \leq x$ is between $x/(\log x)^{c_1}$ and $x/(\log x)^{c_2}$, where $c_1 > c_2 > 0$ are explicit constants. Is the count of the form $x/(\log x)^{c+o(1)}$ for some number *c*? The numbers c_1 , c_2 in [Pollack and Pomerance 2014] are not especially close. The analogous problem for λ is wide open. In fact, it seems that a reasonable conjecture (from [Pollack and Pomerance 2014]) is that asymptotically all even numbers *n* have n^2 in the range of λ . On the other hand, it has not been proved that there is a lower bound of the shape $x/(\log x)^c$ with some positive constant *c* for the number of such numbers $n \leq x$.

2. Lemmas

Here we present some estimates that will be useful in our argument. To fix notation, for a positive integer q and an integer a, we let $\pi(x; q, a)$ be the number of primes $p \le x$ in the progression $p \equiv a \pmod{q}$, and put

$$E^*(x;q) = \max_{y \leq x} \left| \pi(y;q,1) - \frac{\operatorname{li}(y)}{\varphi(q)} \right|,$$

where $\operatorname{li}(y) = \int_2^y \mathrm{d}t / \log t$.

We also let $P^+(n)$ and $P^-(n)$ denote the largest and smallest prime factors of *n*, respectively, with the convention that $P^-(1) = \infty$ and $P^+(1) = 0$. Let $\omega(m)$ be the number of distinct prime factors of *m*, and let $\tau_k(n)$ be the *k*-th divisor function;

that is, the number of ways to write $n = d_1 \cdots d_k$ with d_1, \ldots, d_k positive integers. Let μ denote the Möbius function.

First, we present an estimate for the sum of reciprocals of integers with a given number of prime factors.

Lemma 2.1. Suppose x is large. Uniformly for $1 \le h \le 2 \log \log x$,

$$\sum_{\substack{P^+(b) \leq x \\ \omega(b) = h}} \frac{\mu^2(b)}{b} \asymp \frac{(\log \log x)^h}{h!}.$$

Proof. The upper bound follows very easily from

$$\sum_{\substack{P^+(b) \le x\\\omega(b)=h}} \frac{\mu^2(b)}{b} \leqslant \frac{1}{h!} \left(\sum_{p \leqslant x} \frac{1}{p} \right)^h = \frac{(\log \log x + O(1))^h}{h!} \asymp \frac{(\log \log x)^h}{h!}$$

upon using Mertens' theorem and the given upper bound on h. For the lower bound, we have

$$\sum_{\substack{P^+(b)\leqslant x\\\omega(b)=h}}\frac{\mu^2(b)}{b} \ge \frac{1}{h!} \left(\sum_{p\leqslant x}\frac{1}{p}\right)^h \left[1 - \binom{h}{2}\left(\sum_{p\leqslant x}\frac{1}{p}\right)^{-2}\sum_p\frac{1}{p^2}\right].$$

Again, the sums of 1/p are each $\log \log x + O(1)$. The sum of $1/p^2$ is smaller than 0.46, hence for large enough x the bracketed expression is at least 0.08, and the desired lower bound follows.

Next, we recall (see e.g., [Davenport 2000, Chapter 28]) the well-known theorem of Bombieri and Vinogradov, and then we prove a useful corollary.

Lemma 2.2. For any number A > 0 there is a number B > 0 so that for $x \ge 2$

$$\sum_{q \leqslant \sqrt{x} (\log x)^{-B}} E^*(x;q) \ll_A \frac{x}{(\log x)^A}$$

Corollary 1. For any integer $k \ge 1$ and number A > 0 we have for all $x \ge 2$ that

$$\sum_{q \leq x^{1/3}} \tau_k(q) E^*(x;q) \ll_{k,A} \frac{x}{(\log x)^A}$$

Proof. Apply Lemma 2.2 with A replaced by $2A + k^2$, Cauchy's inequality, the trivial bound $|E^*(x;q)| \ll x/q$ and the easy bound

$$\sum_{q \leqslant y} \frac{\tau_k^2(q)}{q} \ll_k (\log y)^{k^2}$$
(2-1)

to get

$$\begin{split} \left(\sum_{q \leqslant x^{1/3}} \tau_k(q) E^*(x;q)\right)^2 &\leqslant \left(\sum_{q \leqslant x^{1/3}} \tau_k(q)^2 |E^*(x;q)|\right) \left(\sum_{q \leqslant x^{1/3}} |E^*(x;q)|\right) \\ &\ll_{k,A} x \left(\sum_{q \leqslant x^{1/3}} \frac{\tau_k(q)^2}{q}\right) \frac{x}{(\log x)^{2A+k^2}} \\ &\ll_{k,A} \frac{x^2}{(\log x)^{2A}}, \end{split}$$

which leads to the desired conclusion.

Finally, we need a lower bound from sieve theory.

Lemma 2.3. There are absolute constants $c_1 > 0$ and $c_2 \ge 2$ so that for $y \ge c_2$, $y^3 \le x$, and any even positive integer b, we have

$$\sum_{\substack{n \in (x,2x] \\ bn+1 \text{ prime} \\ P^-(n) > y}} 1 \ge \frac{c_1 bx}{\varphi(b) \log(bx) \log y} - 2 \sum_{m \le y^3} 3^{\omega(m)} E^*(2bx; bm).$$

Proof. We apply a standard lower bound sieve to the set

$$\mathcal{A} = \left\{ \frac{\ell - 1}{b} : \ell \text{ prime}, \ \ell \in (bx + 1, 2bx], \ \ell \equiv 1 \pmod{b} \right\}.$$

Letting \mathcal{A}_d be the set of elements of \mathcal{A} divisible by a squarefree integer *d*, we have $|\mathcal{A}_d| = Xg(d)/d + r_d$, where

$$X = \frac{\operatorname{li}(2bx) - \operatorname{li}(bx+1)}{\varphi(b)}, \quad g(d) = \prod_{\substack{p \mid d \\ p \nmid b}} \frac{p}{p-1}, \quad |r_d| \leq 2E^*(2bx; db).$$

It follows that for $2 \leq v < w$,

$$\sum_{v \leqslant p < w} \frac{g(p)}{p} \log p = \log \frac{w}{v} + O(1),$$

the implied constant being absolute. Apply [Halberstam and Richert 1974, Theorem 8.3] with q = 1, $\xi = y^{3/2}$ and z = y, observing that the condition $\Omega_2(1, L)$ on page 142 of that work holds with an absolute constant *L*. With the function f(u)as defined on pages 225–227 there, we have $f(3) = \frac{2}{3}e^{\gamma} \log 2 > \frac{4}{5}$. Then with B_{19} the absolute constant in Theorem 8.3 of that work, we have

$$f(3) - B_{19} \frac{L}{(\log \xi)^{1/14}} \ge \frac{1}{2}$$

for large enough c_2 . We obtain the bound

$$#\{x < n \leq 2x : bn + 1 \text{ prime}, P^{-}(n) > y\}$$

$$\geqslant \frac{X}{2} \prod_{p \leq y} \left(1 - \frac{g(p)}{p}\right) - \sum_{m \leq \xi^2} 3^{\omega(m)} |r_m|$$

$$\geqslant \frac{c_1 bx}{\varphi(b) \log(bx) \log y} - 2 \sum_{m \leq y^3} 3^{\omega(m)} E^*(2bx; bm). \quad \Box$$

3. The set-up

If $n = \lambda(p_1 p_2 \cdots p_k)$, where p_1, p_2, \dots, p_k are distinct primes, then we have $n = \text{lcm}[p_1 - 1, p_2 - 1, \dots, p_k - 1]$. If we further assume that n is squarefree and consider the Venn diagram of the sets S_1, \ldots, S_k of the prime factors of $p_1 - 1, \ldots, p_k - 1$, respectively, then this equation gives an ordered factorization of *n* into $2^k - 1$ factors (some of which may be the trivial factor 1). Here we "see" the shifted primes $p_i - 1$ as products of certain subsequences of 2^{k-1} of these factors. Conversely, given n and an ordered factorization of n into $2^k - 1$ factors, we can ask how likely it is for those k products of 2^{k-1} factors to all be shifted primes. Of course, this is not likely at all, but if *n* has many prime factors, and so many factorizations, the odds that there is at least one such "good" factorization improve. For example, when k = 2, we factor a squarefree number n as $a_1a_2a_3$, and we ask for $a_1a_2 + 1 = p_1$ and $a_2a_3 + 1 = p_2$ to both be prime. If so, we would have $n = \lambda(p_1 p_2)$. The heuristic argument from [Luca and Pomerance 2014] was based on this idea. In particular, if a squarefree n is even and has at least $\theta_k \log \log n$ odd prime factors (where $\theta_k > k/\log(2^k - 1)$ is fixed and $\theta_k \to 1/\log 2$ as $k \to \infty$), then there are so many factorizations of n into $2^{k} - 1$ factors that it becomes likely that *n* is a λ -value. The lower bound proof from [Luca and Pomerance 2014] concentrated just on the case k = 2, but here we attack the general case. As in that work, we let r(n) be the number of representations of n as the λ of a number with k primes. To see that r(n) is often positive, we show that its average value is large, and that the average value of $r(n)^2$ is not much larger. Our conclusion will follow from Cauchy's inequality.

Let $k \ge 2$ be a fixed integer, let x be sufficiently large (in terms of k), and put

$$y = \exp\left\{\frac{\log x}{200k\log\log x}\right\}, \qquad l = \left\lfloor\frac{k}{(2^k - 1)\log(2^k - 1)}\log\log y\right\rfloor.$$
(3-1)

For $n \leq x$, let r(n) be the number of representations of n of the form

$$n = \prod_{i=0}^{k-1} a_i \prod_{j=1}^{2^k - 1} b_j, \qquad (3-2)$$

where $P^+(b_j) \leq y < P^-(a_i)$ for all *i* and *j*, where $2 | b_{2^k-1}$, where $\omega(b_j) = l$ for each *j*, where $a_i > 1$ for all *i*, and where furthermore $a_i B_i + 1$ is prime for all *i*, where

$$B_i = \prod_{\lfloor j/2^i \rfloor \text{ odd}} b_j. \tag{3-3}$$

Observe that each B_i is even since it is a multiple of $b_{2^{k}-1}$ (because $\lfloor (2^k - 1)/2^i \rfloor = 2^{k-i} - 1$ is odd), each B_i is the product of 2^{k-1} of the numbers b_j , and that every b_j divides $B_0 \cdots B_{k-1}$. Also, if *n* is squarefree and r(n) > 0, then the primes $a_i B_i + 1$ are all distinct, and it follows that

$$n = \lambda \left(\prod_{i=0}^{k-1} (a_i B_i + 1) \right);$$

therefore such $n \leq x$ are counted by $V_{\lambda}(x)$. We count how often r(n) > 0 using Cauchy's inequality in the following standard way:

$$\#\left\{2^{-2k}x < n \leqslant x : \mu^2(n) = 1, \ r(n) > 0\right\} \geqslant \frac{S_1^2}{S_2},\tag{3-4}$$

where

$$S_1 = \sum_{2^{-2k}x < n \leq x} \mu^2(n)r(n), \qquad S_2 = \sum_{2^{-2k}x < n \leq x} \mu^2(n)r^2(n).$$

Our application of Cauchy's inequality is rather sharp, as we will show below that r(n) is approximately 1 on average over the kind of integers we are interested in, both in mean and in mean-square. More precisely, in the next section, we prove

$$S_1 \gg \frac{x}{(\log x)^{\beta_k} (\log \log x)^{O_k(1)}},$$
 (3-5)

and in the final section we prove

$$S_2 \ll \frac{x(\log \log x)^{O_k(1)}}{(\log x)^{\beta_k}},$$
 (3-6)

where

$$\beta_k = 1 - \frac{k}{\log(2^k - 1)} (1 + \log\log(2^k - 1) - \log k).$$
(3-7)

Together, the inequalities (3-4), (3-5) and (3-6) imply that

$$V_{\lambda}(x) \gg \frac{x}{(\log x)^{\beta_k} (\log \log x)^{O_k(1)}}.$$

We deduce the lower bound of Theorem 1 by noting that $\lim_{k\to\infty} \beta_k = \eta$.

Throughout, constants implied by the symbols O, \ll, \gg , and \asymp may depend on k, but not on any other variable.

4. The lower bound for S_1

For convenience, when using the sieve bound in Lemma 2.3, we consider a slightly larger sum S'_1 than S_1 , namely

$$S_1' := \sum_{n \in \mathcal{N}} r(n),$$

where \mathcal{N} is the set of $n \in (2^{-2k}x, x]$ of the form $n = n_0n_1$ with $P^+(n_0) \leq y < P^-(n_1)$ and n_0 squarefree. That is, in S'_1 we no longer require the numbers a_0, \ldots, a_{k-1} in (3-2) to be squarefree. The difference between S_1 and S'_1 is very small; indeed, putting $h = 2^k + k - 1$, note that $r(n) \leq \tau_h(n)$, so that we have by (3-2) the estimate

$$S_{1}' - S_{1} \leqslant \sum_{\substack{n \leqslant x \\ \exists p > y: p^{2} \mid n}} \tau_{h}(n) \leqslant \sum_{\substack{p > y \\ p^{2} \mid n}} \sum_{\substack{n \leqslant x \\ p^{2} \mid n}} \tau_{h}(n) \leqslant \sum_{\substack{p > y \\ p \neq y}} \tau_{h}(p^{2}) \sum_{\substack{m \leqslant x \\ p \neq y}} \frac{\tau_{h}(m)}{m} \ll \frac{x(\log x)^{h}}{y}.$$

$$(4-1)$$

Here we have used the inequality $\tau_h(uv) \leq \tau_h(u)\tau_h(v)$, as well as the easy bound

$$\sum_{m \leqslant x} \frac{\tau_h(m)}{m} \ll (\log x)^h, \tag{4-2}$$

which is similar to (2-1). By (3-2), the sum S'_1 counts the number of $(2^{k-1}+k)$ -tuples $(a_0, \ldots, a_{k-1}, b_1, \ldots, b_{2^k-1})$ satisfying

$$2^{-2k}x < a_0 \cdots a_{k-1}b_1 \cdots b_{2^k-1} \leqslant x \tag{4-3}$$

and with $P^+(b_j) \leq y < P^+(a_i)$ for every *i* and *j*, $b_1 \cdots b_{2^k-1}$ squarefree, $2 | b_{2^k-1}$, $\omega(b_j) = l$ for every *j*, $a_i > 1$ for every *i*, and $a_i B_i + 1$ prime for every *i*, where B_i is defined in (3-3). Fix numbers b_1, \ldots, b_{2^k-1} . Then

$$b_1 \cdots b_{2^k - 1} \leqslant y^{(2^k - 1)l} \leqslant y^{2 \log \log x} = x^{1/100k}.$$
 (4-4)

In the above, we used the fact that $k \leq 2\log(2^k - 1)$. Fix also A_0, \ldots, A_{k-1} , each a power of 2 exceeding $x^{1/2k}$, such that

$$\frac{x}{2b_1 \cdots b_{2^k - 1}} < A_0 \cdots A_{k-1} \leqslant \frac{x}{b_1 \cdots b_{2^k - 1}}.$$
(4-5)

Then (4-3) holds whenever $A_i/2 < a_i \leq A_i$ for each *i*. By Lemma 2.3, using the facts that $B_i/\varphi(B_i) \ge 2$ (because B_i is even) and $A_i B_i \le x$ (a consequence of (4-5)),

we deduce that the number of choices for each a_i is at least

$$\frac{c_1A_i}{\log x \log y} - 2\sum_{m \leqslant y^3} 3^{\omega(m)} E^*(A_i B_i; m B_i).$$

Using the elementary inequality

$$\prod_{j=1}^k \max(0, x_j - y_j) \ge \prod_{j=1}^k x_j - \sum_{i=1}^k y_i \prod_{j \neq i} x_j,$$

valid for any nonnegative real numbers x_j , y_j , we find that the number of admissible *k*-tuples (a_0, \ldots, a_{k-1}) is at least

$$\frac{c_1^k A_0 \cdots A_{k-1}}{(\log x \log y)^k} - \frac{2c_1^{k-1} A_0 \cdots A_{k-1}}{(\log x \log y)^{k-1}} \sum_{i=0}^{k-1} \frac{1}{A_i} \sum_{m \le y^3} 3^{\omega(m)} E^*(A_i B_i; m B_i) = M(A, b) - R(A, b),$$

say. By symmetry and (4-5),

$$\sum_{A,b} R(A, b) \\ \ll \frac{x}{(\log x \log y)^{k-1}} \sum_{b} \frac{1}{b_1 \cdots b_{2^k-1}} \sum_{A} \frac{1}{A_0} \sum_{m \leqslant y^3} 3^{\omega(m)} E^*(A_0 B_0; m B_0), \quad (4-6)$$

where the sum on **b** is over all $(2^k - 1)$ -tuples satisfying $b_1 \cdots b_{2^k-1} \leq x^{1/100k}$. Write $b_1 \cdots b_{2^k-1} = B_0 B'_0$, where $B'_0 = b_2 b_4 \cdots b_{2^k-2}$. Given B_0 and B'_0 , the number of corresponding tuples (b_1, \ldots, b_{2^k-1}) is at most $\tau_{2^{k-1}}(B_0)\tau_{2^{k-1}-1}(B'_0)$. Suppose $D/2 < B_0 \leq D$, where *D* is a power of 2. Since $E^*(x; q)$ is an increasing function of x, $E^*(A_0B_0; mB_0) \leq E^*(A_0D; mB_0)$. Also, $3^{\omega(m)} \leq \tau_3(m)$ and

$$\sum_{B'_0 \leq x} \frac{\tau_{2^{k-1}-1}(B'_0)}{B'_0} \ll (\log x)^{2^{k-1}-1}$$

(this is (4-2) with h replaced by $2^{k-1} - 1$). We therefore deduce that

$$\sum_{A,b} R(A, b) \\ \ll \frac{x(\log x)^{2^{k-1}-1}}{(\log x \log y)^{k-1}} \sum_{A} \frac{1}{A_0} \sum_{D} \frac{1}{D} \sum_{\substack{D/2 < B_0 \leqslant D \\ m \leqslant y^3}} \tau_3(m) \tau_{2^{k-1}}(B_0) E^*(A_0 D; mB_0),$$

with the sum taken over $(A_0, \ldots, A_{k-1}, D)$, each a power of 2, $D \leq x^{1/100k}$, $A_i \geq x^{1/2k}$ for each *i* and $A_0 \cdots A_{k-1}D \leq x$. With A_0 and *D* fixed, the number of

choices for (A_1, \ldots, A_{k-1}) is $\ll (\log x)^{k-1}$. Writing $q = mB_0$, we obtain

$$\begin{split} &\sum_{A,b} R(A,b) \\ &\ll x \frac{(\log x)^{2^{k-1}-1}}{(\log y)^{k-1}} \sum_{D \leqslant x^{1/100k}} \sum_{x^{1/2k} < A_0 \leqslant x/D} \frac{1}{A_0 D} \sum_{q \leqslant y^3 x^{1/100k}} \tau_{2^{k-1}+3}(q) E^*(A_0 D;q) \\ &\ll \frac{x}{(\log x)^{\beta_k+1}}, \end{split}$$

where we used Corollary 1 in the last step, with $A = 2^{k-1} - k + 4 + \beta_k$.

For the main term, by (4-5), given any $b_1, \ldots, b_{2^{k-1}}$, the product $A_0 \cdots A_{k-1}$ is determined (and larger than $\frac{1}{2}x^{1-1/100k}$ by (4-4)), so there are $\gg (\log x)^{k-1}$ choices for the *k*-tuple A_0, \ldots, A_{k-1} . Hence,

$$\sum_{A,b} M(A, b) \gg \frac{x}{(\log y)^k \log x} \sum_b \frac{1}{b_1 \cdots b_{2^k - 1}}.$$

Let $b = b_1 \cdots b_{2^k-1}$. Given an even, squarefree integer *b*, the number of ordered factorizations of *b* as $b = b_1 \cdots b_{2^k-1}$, where each $\omega(b_i) = l$ and b_{2^k-1} is even, is equal to

$$\frac{((2^k-1)l)!}{(2^k-1)(l!)^{2^k-1}}.$$

Let b' = b/2, so $h := \omega(b') = (2^k - 1)l - 1 = k(\log \log y)/\log(2^k - 1) + O(1)$. Applying Lemma 2.1, Stirling's formula and the fact that $(2^k - 1)l = h + O(1)$ produces

$$\begin{split} \sum_{b} \frac{1}{b_1 \cdots b_{2^k - 1}} &\geq \frac{((2^k - 1)l)!}{2(2^k - 1)(l!)^{2^k - 1}} \sum_{\substack{P^+(b') \leqslant y \\ \omega(b') = h}} \frac{\mu^2(b')}{b'} \\ &\gg \frac{((2^k - 1)l)!}{(l!)^{2^k - 1}} \frac{(\log \log y)^h}{h!} = \frac{(\log \log y)^h}{(l!)^{2^k - 1}} (\log \log x)^{O(1)} \\ &= \left[\frac{(2^k - 1)e \log(2^k - 1)}{k} \right]^{(2^k - 1)l} (\log \log x)^{O(1)} \\ &= (\log y)^{\frac{k}{\log(2^k - 1)} \log\left[\frac{(2^k - 1)e \log(2^k - 1)}{k}\right]} (\log \log x)^{O(1)} \\ &= (\log y)^{k - \beta_k + 1} (\log \log x)^{O(1)}. \end{split}$$

Invoking (3-1), we obtain that

$$\sum_{\boldsymbol{A},\boldsymbol{b}} M(\boldsymbol{A},\boldsymbol{b}) \ge \frac{x}{(\log x)^{\beta_k} (\log \log x)^{O(1)}}.$$
(4-7)

Inequality (3-5) now follows from estimate (4-7) and our earlier estimates (4-1) of $S'_1 - S_1$ and (4-6) of $\sum_{A,b} R(A, b)$.

5. A multivariable sieve upper bound

Here we prove an estimate from sieve theory that will be useful in our treatment of the upper bound for S_2 .

Lemma 5.1. Suppose that:

- $y, x_1, ..., x_h$ are reals with $3 < y \le 2 \min\{x_1, ..., x_h\}$.
- I_1, \ldots, I_k are nonempty subsets of $\{1, \ldots, h\}$.
- b_1, \ldots, b_k are positive integers such that if $I_i = I_j$, then $b_i \neq b_j$.

For $\mathbf{n} = (n_1, \dots, n_h)$ a vector of positive integers and for $1 \le j \le k$, let $N_j = N_j(\mathbf{n}) = \prod_{i \in I_j} n_i$. Then

$$#\{\mathbf{n}: x_i < n_i \leq 2x_i \ (1 \leq i \leq h), \ P^-(n_1 \cdots n_h) > y, \ b_j N_j + 1 \text{ prime } (1 \leq j \leq k)\} \\ \ll_{h,k} \frac{x_1 \cdots x_h}{(\log y)^{h+k}} (\log \log(3b_1 \cdots b_k))^k.$$

Proof. Throughout this proof, all Vinogradov symbols \ll and \gg as well as the Landau symbol *O* depend on both *h* and *k*. Without loss of generality, suppose that $y \leq (\min(x_i))^{1/(h+k+10)}$. Since $n_i > x_i \geq y^{h+k+10}$ for every *i*, we see that the number of *h*-tuples in question does not exceed

$$S := \#\{\mathbf{n} : x_i < n_i \leq 2x_i \ (1 \leq i \leq h), \ P^-(n_1 \cdots n_h(b_1 N_1 + 1) \cdots (b_k N_k + 1)) > y\}.$$

We estimate *S* in the usual way with sieve methods, although this is a bit more general than the standard applications and we give the proof in some detail (the case h = 1 being completely standard). Let \mathcal{A} denote the multiset

$$\mathcal{A} = \left\{ n_1 \cdots n_h \prod_{j=1}^k (b_j N_j + 1) : x_j < n_j \leq 2x_j \ (1 \leq j \leq h) \right\}.$$

For squarefree $d \leq y^2$ composed of primes $\leq y$, we have by a simple counting argument

$$|\mathcal{A}_d| := \#\{a \in \mathcal{A} : d \mid a\} = \frac{\nu(d)}{d^h} X + r_d,$$

where $X = x_1 \cdots x_h$, $\nu(d)$ is the number of solution vectors *n* modulo *d* of the congruence

$$n_1 \cdots n_h \prod_{j=1}^k (b_j N_j + 1) \equiv 0 \pmod{d},$$

and the remainder term satisfies, for $d \leq \min(x_1, \ldots, x_h)$,

$$\begin{aligned} |r_d| &\leqslant \nu(d) \sum_{i=1}^h \prod_{\substack{1 \leqslant l \leqslant h \\ l \neq i}} \left(\left\lfloor \frac{x_l}{d} \right\rfloor + 1 \right) \leqslant \nu(d) \sum_{i=1}^h \frac{(x_1 + d) \cdots (x_h + d)}{(x_i + d)d^{h-1}} \\ &\ll \frac{\nu(d)X}{d^{h-1}\min(x_i)}. \end{aligned}$$

The function v(d) is clearly multiplicative and satisfies the global upper bound $v(p) \leq (h+k)p^{h-1}$ for every p. If $v(p) = p^h$ for some $p \leq y$, then clearly S = 0. Otherwise, the hypotheses of [Halberstam and Richert 1974, Theorem 6.2] (Selberg's sieve) are clearly satisfied, with $\kappa = h + k$, and we deduce that

$$S \ll X \prod_{p \leqslant y} \left(1 - \frac{\nu(p)}{p^h} \right) + \sum_{\substack{d \leqslant y^2 \\ P^+(d) \leqslant y}} \mu^2(d) 3^{\omega(d)} |r_d|.$$

By our initial assumption about the size of *y*,

$$\sum_{d \le y^2} \mu^2(d) 3^{\omega(d)} |r_d| \ll \frac{X}{\min(x_i)} \sum_{d \le y^2} (3k + 3h)^{\omega(d)} \ll \frac{Xy^3}{\min(x_i)} \ll \frac{X}{y}$$

For the main term, consideration only of the congruence $n_1 \cdots n_h \equiv 0 \pmod{p}$ shows that

$$v(p) \ge h(p-1)^{h-1} = hp^{h-1} + O(p^{h-2})$$

for all *p*. On the other hand, suppose that $p \nmid b_1 \cdots b_k$ and furthermore that $p \nmid (b_i - b_j)$ whenever $I_i = I_j$. Each congruence $b_j N_j + 1 \equiv 0 \pmod{p}$ has $p^{h-1} + O(p^{h-2})$ solutions with $n_1 \dots n_h \neq 0 \pmod{p}$, and any two of these congruences have $O(p^{h-2})$ common solutions. Hence, $v(p) = (h+k)p^{h-1} + O(p^{h-2})$. In particular,

$$\frac{h}{p} + O\left(\frac{1}{p^2}\right) \leqslant \frac{\nu(p)}{p^h} \leqslant \frac{h+k}{p} + O\left(\frac{1}{p^2}\right).$$
(5-1)

Further, writing $E = b_1 \cdots b_k \prod_{i \neq j} |b_i - b_j|$, the upper bound (5-1) above is in fact an equality except when $p \mid E$. We obtain

$$\prod_{p \leqslant y} \left(1 - \frac{\nu(p)}{p^h}\right) \ll \prod_{p \leqslant y} \left(1 - \frac{1}{p}\right)^{k+h} \prod_{p \mid E} \left(1 - \frac{1}{p}\right)^{-k} \ll \frac{(E/\varphi(E))^k}{(\log y)^{h+k}} \ll \frac{(\log\log 3E)^k}{(\log y)^{h+k}}$$

and the desired bound follows.

6. The upper bound for S_2

Here, S_2 is the number of solutions of

$$n = \prod_{i=0}^{k-1} a_i \prod_{j=1}^{2^k-1} b_j = \prod_{i=0}^{k-1} a'_i \prod_{j=1}^{2^k-1} b'_j,$$
(6-1)

with $2^{-2k}x < n \leq x$, *n* squarefree,

$$P^+(b_1b'_1\cdots b_{2^k-1}b'_{2^k-1}) \leqslant y < P^-(a_0a'_0\cdots a_{k-1}a'_{k-1}),$$

 $\omega(b_j) = \omega(b'_j) = l$ for every $j, a_i > 1$ for every $i, 2 | b_{2^k-1}, 2 | b'_{2^k-1}$, and $a_i B_i + 1$ and $a'_i B'_i + 1$ prime for $0 \le i \le k - 1$, where B'_i is defined analogously to B_i (see (3-3)). Trivially, we have

$$a := \prod_{i=0}^{k-1} a_i = \prod_{i=0}^{k-1} a'_i, \qquad b := \prod_{j=1}^{2^k - 1} b_j = \prod_{j=1}^{2^k - 1} b'_j.$$
(6-2)

We partition the solutions of (6-1) according to the number of the primes $a_i B_i + 1$ that are equal to one of the primes $a'_j B'_j + 1$, a number which we denote by m. By symmetry (that is, by appropriate permutation of the vectors (a_0, \ldots, a_{k-1}) , (a'_0, \ldots, a_{k-1}) , $(b_1, \ldots, b_{2^{k}-1})$ and $(b'_1, \ldots, b'_{2^{k}-1})^1$), without loss of generality we may suppose that $a_i B_i = a'_i B'_i$ for $0 \le i \le m-1$ and that

$$a_i B_i \neq a_j B_j \quad (i \ge m, j \ge m). \tag{6-3}$$

Consequently,

$$a_i = a'_i$$
 and $B_i = B'_i$ $(0 \le i \le m - 1).$ (6-4)

Now fix *m* and all the b_j and b'_j . For $0 \le i \le m - 1$, place a_i into a dyadic interval $(A_i/2, A_i]$, where A_i is a power of 2. The primality conditions on the remaining variables are now coupled with the condition

$$a_m \cdots a_{k-1} = a'_m \cdots a'_{k-1}.$$

¹The permutations may be described explicitly. Suppose that $m \le k - 1$ and that we wish to permute (b_1, \ldots, b_{2^k-1}) such that B_{i_1}, \ldots, B_{i_m} become B_0, \ldots, B_{m-1} , respectively. Let $S_i = \{1 \le j \le 2^k - 1 : \lfloor j/2^i \rfloor$ odd}. The Venn diagram for the sets S_{i_1}, \ldots, S_{i_m} has $2^m - 1$ components of size 2^{k-m-1} and one component of size $2^{k-m-1} - 1$, and we map the variables b_j with j in a given component to the variables whose indices are in the corresponding component of the Venn diagram for S_0, \ldots, S_{m-1} .

To aid the bookkeeping, let $\alpha_{i,j} = \text{gcd}(a_i, a'_j)$ for $m \leq i, j \leq k-1$. Then

$$a_i = \prod_{j=m}^{k-1} \alpha_{i,j}, \qquad a'_j = \prod_{i=m}^{k-1} \alpha_{i,j}.$$
 (6-5)

As each $a_i > 1, a'_j > 1$, each product above contains at least one factor that is greater than 1. Let *I* denote the set of pairs of indices (i, j) such that $\alpha_{i,j} > 1$, and fix *I*. For $(i, j) \in I$, place $\alpha_{i,j}$ into a dyadic interval $(A_{i,j}/2, A_{i,j}]$, where $A_{i,j}$ is a power of 2 and $A_{i,j} \ge y$. By the assumption on the range of *n*, we have

$$A_0 \cdots A_{m-1} \prod_{(i,j) \in I} A_{i,j} \asymp \frac{x}{b}.$$
(6-6)

For $0 \le i \le m - 1$, we use Lemma 5.1 (with h = 1) to deduce that the number of a_i with $A_i/2 < a_i \le A_i$, $P^-(a_i) > y$ and $a_i B_i + 1$ prime is

$$\ll \frac{A_i \log \log B_i}{\log^2 y} \ll \frac{A_i (\log \log x)^3}{\log^2 x}.$$
(6-7)

Counting the vectors $(\alpha_{i,j})_{(i,j)\in I}$ subject to the conditions

- $A_{i,j}/2 < \alpha_{i,j} \leq A_{i,j}$ and $P^{-}(\alpha_{i,j}) > y$ for $(i, j) \in I$;
- $a_i B_i + 1$ prime $(m \leq i \leq k 1)$;
- $a'_{j}B'_{j} + 1$ prime $(m \leq j \leq k 1)$;
- condition (6-5)

is also accomplished with Lemma 5.1, this time with h = |I| and with 2(k - m) primality conditions. The hypothesis in the lemma concerning identical sets I_i , which may occur if $\alpha_{i,j} = a_i = a'_j$ for some *i* and *j*, is satisfied by our assumption (6-3), which implies in this case that $B_i \neq B'_j$. The number of such vectors is at most

$$\ll \frac{\prod_{(i,j)\in I} A_{i,j} (\log\log x)^{2k-2m}}{(\log y)^{|I|+2k-2m}} \ll \frac{\prod_{(i,j)\in I} A_{i,j} (\log\log x)^{|I|+4k-4m}}{(\log x)^{|I|+2k-2m}}.$$
 (6-8)

Combining the bounds (6-7) and (6-8), and recalling (6-6), we see that the number of possibilities for the 2*k*-tuple $(a_0, \ldots, a_{k-1}, a'_0, \ldots, a'_{k-1})$ is at most

$$\ll \frac{x(\log\log x)^{O(1)}}{b(\log x)^{|I|+2k}}.$$

With *I* fixed, there are $O((\log x)^{|I|+m-1})$ choices for A_0, \ldots, A_{m-1} and $A_{i,j}$ subject to (6-6), and there are O(1) possibilities for *I*. We infer that with *m* and all of the

 b_j, b'_j fixed, the number of possible $(a_0, \ldots, a_{k-1}, a'_0, \ldots, a'_{k-1})$ is at most

$$\ll \frac{x(\log\log x)^{O(1)}}{b(\log x)^{2k+1-m}}.$$

We next prove that the identities in (6-4) imply that

$$B_{v} = B'_{v} \quad (v \in \{0, 1\}^{m}), \tag{6-9}$$

where B_{v} is the product of all b_{j} where the *m* least significant base-2 digits of *j* are given by the vector v, and B'_{v} is defined analogously. Fix $v = (v_0, \ldots, v_{m-1})$. For $0 \le i \le m-1$, let $C_i = B_i$ if $v_i = 1$ and $C_i = b/B_i$ if $v_i = 0$, and define C'_i analogously. By (3-3), each number b_j where the last *m* base-2 digits of *j* are equal to *v* divides every C_i , and no other b_j has this property. By (6-4), $C_i = C'_i$ for each *i* and thus

$$C_0 \cdots C_{m-1} = C'_0 \cdots C'_{m-1}$$

As the numbers b_j are pairwise coprime, in the above equality the primes having exponent *m* on the left are exactly those dividing B_v , and similarly the primes on the right side having exponent *m* are exactly those dividing B'_v . This proves (6-9).

Say *b* is squarefree. We count the number of dual factorizations of *b* compatible with both (6-2) and (6-9). Each prime dividing *b* first "chooses" which $B_v = B'_v$ to divide. Once this choice is made, there is the choice of which b_j to divide and also which b'_j . For the $2^m - 1$ vectors $v \neq 0$, $B_v = B'_v$ is the product of 2^{k-m} numbers b_j and also the product of 2^{k-m} numbers b'_j . Similarly, B_0 is the product of $2^{k-m} - 1$ numbers b_j and $2^{k-m} - 1$ numbers b'_j . Thus, ignoring that $\omega(b_j) = \omega(b'_j) = l$ for each *j* and that b_{2^k-1} and b'_{2^k-1} are even, the number of dual factorizations of *b* is at most

$$\left((2^m - 1)(2^{k-m})^2 + (2^{k-m} - 1)^2\right)^{\omega(b)} = (2^{2k-m} - 2^{k+1-m} + 1)^{\omega(b)}.$$
 (6-10)

Again, let

$$h = \omega(b) = (2^{k} - 1)l = \frac{k}{\log(2^{k} - 1)} \log \log y + O(1),$$

as in Section 4. Lemma 2.1 and Stirling's formula give

$$\sum_{\substack{P^+(b) \leqslant y\\\omega(b)=h}} \frac{\mu^2(b)}{b} \ll \frac{(\log\log y)^h}{h!} \ll (e\log(2^k-1)/k)^h.$$

Combined with our earlier bound (6-10) for the number of admissible ways to dual factor each *b*, we obtain

$$S_2 \ll \frac{x(\log \log x)^{O(1)}}{\log x} (e \log(2^k - 1)/k)^h \times \sum_{m=0}^k (\log y)^{m-2k + \frac{k}{\log(2^{k-1})}\log(2^{2k-m} - 2^{k+1-m} + 1)}.$$
 (6-11)

For real $t \in [0, k]$, let $f(t) = k \log(2^{2k-t} - 2^{k+1-t} + 1) - (2k-t) \log(2^k - 1)$. We have f(0) = f(k) = 0 and

$$f''(t) = \frac{k(\log 2)^2 (2^{2k} - 2^{k+1})2^{-t}}{(2^{2k-t} - 2^{k+1-t} + 1)^2} > 0$$

Hence, f(t) < 0 for 0 < t < k. Thus, the sum on *m* in (6-11) is O(1), and (3-6) follows.

Theorem 1 is therefore proved.

Acknowledgements

Part of this work was done while Ford and Luca visited Dartmouth College in Spring 2013. They thank the people there for their hospitality. Pomerance gratefully acknowledges a helpful conversation with Andrew Granville in which the heuristic argument behind our proof first arose. The authors also thank one of the referees for constructive comments which improved the paper.

References

- [Banks and Luca 2011] W. D. Banks and F. Luca, "Power totients with almost primes", *Integers* **11**:3 (2011), 307–313. MR 2988064 Zbl 1268.11141
- [Banks et al. 2004] W. D. Banks, J. B. Friedlander, C. Pomerance, and I. E. Shparlinski, "Multiplicative structure of values of the Euler function", pp. 29–47 in *High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams*, edited by A. van der Poorten and A. Stein, Fields Inst. Commun. **41**, Amer. Math. Soc., Providence, RI, 2004. MR 2005f:11217 Zbl 1099.11055
- [Davenport 2000] H. Davenport, *Multiplicative number theory*, 3rd ed., Graduate Texts in Mathematics **74**, Springer, New York, 2000. MR 2001f:11001 Zbl 1002.11001
- [Erdős 1935] P. Erdős, "On the normal number of prime factors of p 1 and some related problems concerning Euler's φ -function", *Q. J. Math., Oxf. Ser.* **6** (1935), 205–213. Zbl 0012.14905
- [Erdős 1960] Р. Erdős, "Об одном асимптотическом неравенстве в теории чисел (An asymptotic inequality in number theory)", *Vestnik Leningrad. Univ.* **15**:13 (1960), 41–49. MR 23 #A3720 Zbl 0104.26804
- [Erdős et al. 1991] P. Erdős, C. Pomerance, and E. Schmutz, "Carmichael's lambda function", *Acta Arith.* **58**:4 (1991), 363–385. MR 92g:11093 Zbl 0734.11047
- [Ford 1998] K. Ford, "The distribution of totients", *Ramanujan J.* 2:1-2 (1998), 67–151. Updated version on the author's web page. MR 99m:11106 Zbl 0914.11053

2024

- [Ford 2008a] K. Ford, "The distribution of integers with a divisor in a given interval", *Ann. of Math.*(2) 168:2 (2008), 367–433. MR 2009m:11152 Zbl 1181.11058
- [Ford 2008b] K. Ford, "Integers with a divisor in (*y*, 2*y*]", pp. 65–80 in *Anatomy of integers*, edited by J.-M. De Koninck et al., CRM Proc. Lecture Notes **46**, Amer. Math. Soc., Providence, RI, 2008. MR 2009i:11113 Zbl 1175.11053
- [Ford et al. 2010] K. Ford, F. Luca, and C. Pomerance, "Common values of the arithmetic functions ϕ and σ ", *Bull. Lond. Math. Soc.* **42**:3 (2010), 478–488. MR 2011m:11191 Zbl 1205.11010
- [Freiberg 2012] T. Freiberg, "Products of shifted primes simultaneously taking perfect power values", *J. Aust. Math. Soc.* **92**:2 (2012), 145–154. MR 2999152 Zbl 06124076
- [Friedlander and Luca 2007] J. B. Friedlander and F. Luca, "On the value set of the Carmichael λ -function", *J. Aust. Math. Soc.* **82**:1 (2007), 123–131. MR 2008c:11124 Zbl 1146.11046
- [Halberstam and Richert 1974] H. Halberstam and H.-E. Richert, *Sieve methods*, London Mathematical Society Monographs **4**, Academic Press, London, New York, 1974. MR 54 #12689 Zbl 0298.10026
- [Luca and Pomerance 2014] F. Luca and C. Pomerance, "On the range of Carmichael's universalexponent function", *Acta Arith.* **162**:3 (2014), 289–308. MR 3173026 Zbl 1292.11109
- [Miller 1976] G. L. Miller, "Riemann's hypothesis and tests for primality", *J. Comput. System Sci.* **13**:3 (1976), 300–317. MR 58 #470a Zbl 0349.68025
- [Pillai 1929] S. S. Pillai, "On some functions connected with $\phi(n)$ ", Bull. Amer. Math. Soc. **35**:6 (1929), 832–836. MR 1561819 Zbl 55.0710.02
- [Pollack and Pomerance 2014] P. Pollack and C. Pomerance, "Square values of Euler's function", *Bull. Lond. Math. Soc.* **46**:2 (2014), 403–414. MR 3194758 Zbl 1297.11125
- [Schoenberg 1928] I. Schoenberg, "Über die asymptotische Verteilung reeller Zahlen mod 1", *Math. Z.* **28**:1 (1928), 171–199. MR 1544950 Zbl 54.0212.02

Communicated by Andrew Granville Received 2014-06-23 Revised 2014-09-04 Accepted 2014-10-09 ford@math.uiuc.edu Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, IL 61801, United States florian luca@wits ac.za School of Mathematics, University of the Witwatersrand, P.O. Box Wits 2050, Johannesburg, South Africa Instituto de Matématicas, UNAM Juriquilla, Santiago de Querétaro, 76230, Querétaro de Arteaga, México carl.pomerance@dartmouth.edu Mathematics Department, Dartmouth College, Kemeny Hall, Hanover, NH 03755, United States

Algebra & Number Theory

msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen Massachusetts Institute of Technology Cambridge, USA EDITORIAL BOARD CHAIR David Eisenbud University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart	University of Wisconsin, Madison, USA	Shigefumi Mori	RIMS, Kyoto University, Japan
Dave Benson	University of Aberdeen, Scotland	Raman Parimala	Emory University, USA
Richard E. Borcherds	University of California, Berkeley, USA	Jonathan Pila	University of Oxford, UK
John H. Coates	University of Cambridge, UK	Anand Pillay	University of Notre Dame, USA
J-L. Colliot-Thélène	CNRS, Université Paris-Sud, France	Victor Reiner	University of Minnesota, USA
Brian D. Conrad	University of Michigan, USA	Peter Sarnak	Princeton University, USA
Hélène Esnault	Freie Universität Berlin, Germany	Joseph H. Silverman	Brown University, USA
Hubert Flenner	Ruhr-Universität, Germany	Michael Singer	North Carolina State University, USA
Edward Frenkel	University of California, Berkeley, USA	Vasudevan Srinivas	Tata Inst. of Fund. Research, India
Andrew Granville	Université de Montréal, Canada	J. Toby Stafford	University of Michigan, USA
Joseph Gubeladze	San Francisco State University, USA	Bernd Sturmfels	University of California, Berkeley, USA
Roger Heath-Brown	Oxford University, UK	Richard Taylor	Harvard University, USA
Craig Huneke	University of Virginia, USA	Ravi Vakil	Stanford University, USA
János Kollár	Princeton University, USA	Michel van den Bergh	Hasselt University, Belgium
Yuri Manin	Northwestern University, USA	Marie-France Vignéras	Université Paris VII, France
Barry Mazur	Harvard University, USA	Kei-Ichi Watanabe	Nihon University, Japan
Philippe Michel	École Polytechnique Fédérale de Lausan	ne Efim Zelmanov	University of California, San Diego, USA
Susan Montgomery	University of Southern California, USA	Shou-Wu Zhang	Princeton University, USA

PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2014 is US \$225/year for the electronic version, and \$400/year (+\$55, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscribers address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW[®] from MSP.

PUBLISHED BY mathematical sciences publishers nonprofit scientific publishing

http://msp.org/ © 2014 Mathematical Sciences Publishers

Algebra & Number Theory

Volume 8 No. 8 2014

Relative cohomology of cuspidal forms on PEL-type Shimura varieties KAI-WEN LAN and BENOÎT STROH	1787
ℓ -modular representations of unramified <i>p</i> -adic U(2,1) ROBERT JAMES KURINCZUK	1801
McKay natural correspondences on characters GABRIEL NAVARRO, PHAM HUU TIEP and CAROLINA VALLEJO	1839
Quantum matrices by paths KAREL CASTEELS	1857
Twisted Bhargava cubes WEE TECK GAN and GORDAN SAVIN	1913
Proper triangular \mathbb{G}_a -actions on \mathbb{A}^4 are translations ADRIEN DUBOULOZ, DAVID R. FINSTON and IMAD JARADAT	1959
Multivariate Apéry numbers and supercongruences of rational functions ARMIN STRAUB	1985
The image of Carmichael's λ-function KEVIN FORD, FLORIAN LUCA and CARL POMERANCE	2009