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We show that the counting function of the set of values of Carmichael’s λ-function
is x/(log x)η+o(1), where η = 1− (1+ log log 2)/(log 2)= 0.08607 . . . .

1. Introduction

Euler’s function ϕ assigns to a natural number n the order of the group of units of
the ring of integers modulo n. It is of course ubiquitous in number theory, as is its
close cousin λ, which gives the exponent of the same group. Already appearing in
Gauss’s Disquisitiones Arithmeticae, λ is commonly referred to as Carmichael’s
function, after R. D. Carmichael, who studied it about a century ago. (A Carmichael
number n is composite but nevertheless satisfies an

≡ a (mod n) for all integers a,
just as primes do. Carmichael discovered these numbers, which are characterized
by the property that λ(n) | n− 1.)

It is interesting to study ϕ and λ as functions. For example, how easy is it to
compute ϕ(n) or λ(n) given n? It is indeed easy if we know the prime factorization
of n. Interestingly, we know the converse. By [Miller 1976], given either ϕ(n) or
λ(n), it is easy to find the prime factorization of n.

Within the realm of “arithmetic statistics” one can also ask for the behavior of ϕ
and λ on typical inputs n, and ask how far this varies from their values on average.
For ϕ, this type of question goes back to the dawn of the field of probabilistic
number theory with the seminal paper of Schoenberg [1928], while some results in
this vein for λ are found in [Erdős et al. 1991].

One can also ask about the value sets of ϕ and λ. That is, what can one say about
the integers which appear as the order or exponent of the groups (Z/nZ)∗?

These are not new questions. Let Vϕ(x) denote the number of positive integers
n6 x for which n=ϕ(m) for some m. Pillai [1929] showed Vϕ(x)6 x/(log x)c+o(1)

as x→∞, where c= (log 2)/e. On the other hand, since ϕ(p)= p−1, Vϕ(x) is at
least π(x+1) (the number of primes in [1, x+1]), and so Vϕ(x)> (1+o(1))x/ log x .

Ford was supported in part by National Science Foundation grant DMS-1201442. Pomerance was
supported in part by NSF grant DMS-1001180.
MSC2010: primary 11N64; secondary 11A25, 11N25.
Keywords: Carmichael’s function, Carmichael’s lambda function.

2009

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2014.8-8


2010 Kevin Ford, Florian Luca and Carl Pomerance

In one of his earliest papers, Erdős [1935] showed that the lower bound is closer to
the truth: we have Vϕ(x)= x/(log x)1+o(1) as x→∞. This result has since been
refined by a number of authors, including Erdős and Hall, Maier and Pomerance,
and Ford; see [Ford 1998] for the current state of the art.

Essentially the same results hold for the sum-of-divisors function σ , but only
recently were we able to show that there are infinitely many numbers that are simulta-
neously values of ϕ and of σ [Ford et al. 2010] , thus settling an old problem of Erdős.

In this paper, we address the range problem for Carmichael’s function λ. From
the definition of λ(n) as the exponent of the group (Z/nZ)∗, it is immediate that
λ(n) | ϕ(n) and that λ(n) is divisible by the same primes as ϕ(n). We also have

λ(n)= lcm[λ(pa) : pa
‖ n],

where λ(pa)= pa−1(p− 1) for odd primes p with a > 1 or p = 2 and a ∈ {1, 2}.
Further, λ(2a)= 2a−2 for a > 3. Put Vλ(x) for the number of integers n 6 x with
n= λ(m) for some m. Note that since p−1= λ(p) for all primes p, it follows that

Vλ(x)> π(x + 1)= (1+ o(1))
x

log x
(x→∞), (1-1)

as with ϕ. In fact, one might suspect that the story for λ is completely analogous
to that of ϕ. As it turns out, this is not the case.

It is fairly easy to see that Vϕ(x)= o(x) as x→∞, since most numbers n are
divisible by many different primes, so most values of ϕ(n) are divisible by a high
power of 2. This argument fails for λ, and in fact it is not immediately obvious
that Vλ(x)= o(x) as x→∞. Such a result was first shown in [Erdős et al. 1991],
where it was established that there is a positive constant c with Vλ(x)� x/(log x)c.
In [Friedlander and Luca 2007], a value of c in this result was computed. It was
shown there that, as x→∞,

Vλ(x)6
x

(log x)α+o(1) holds with α = 1− e(log 2)/2= 0.057913 . . . . (1-2)

The exponents on the logarithms in the lower and upper bounds (1-1) and (1-2)
were brought closer in the recent paper [Luca and Pomerance 2014], where it was
shown that, as x→∞,

x
(log x)0.359052 < Vλ(x)6

x
(log x)η+o(1) with η= 1−

1+ log log 2
log 2

= 0.08607 . . . .

In Section 2.1 of that paper, a heuristic was presented suggesting that the correct
exponent of the logarithm should be the number η. In the present paper, we confirm
the heuristic from [Luca and Pomerance 2014] by proving the following theorem:

Theorem 1. We have Vλ(x)= x(log x)−η+o(1) as x→∞.
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Just as results on Vϕ(x) can be generalized to similar multiplicative functions,
such as σ , we would expect our result to be generalizable to functions similar to λ
enjoying the property f (mn)= lcm[ f (m), f (n)] when m, n are coprime.

Since the upper bound in Theorem 1 was proved in [Luca and Pomerance 2014],
we need only show that Vλ(x)> x/(log x)η+o(1) as x→∞. We remark that in our
lower bound argument we will count only squarefree values of λ.

The same number η in Theorem 1 appears in an unrelated problem. As shown
by Erdős [1960], the number of distinct entries in the multiplication table for the
numbers up to n is n2/(log n)η+o(1) as n→∞. Similarly, the asymptotic density
of the integers with a divisor in [n, 2n] is 1/(log n)η+o(1) as n→∞. See [Ford
2008a; 2008b] for more on these kinds of results. As explained in the heuristic
argument presented in [Luca and Pomerance 2014], the source of η in the λ-range
problem comes from the distribution of integers n with about (1/ log 2) log log n
prime divisors: the number of these numbers n ∈ [2, x] is x/(log x)η+o(1) as x→∞.
Curiously, the number η arises in the same way in the multiplication table problem:
most entries in an n-by-n multiplication table have about (1/ log 2) log log n prime
divisors (a heuristic for this is given in the introduction of [Ford 2008a]).

We mention two related unsolved problems. Several papers [Banks et al. 2004;
Banks and Luca 2011; Freiberg 2012; Pollack and Pomerance 2014] have discussed
the distribution of numbers n such that n2 is a value of ϕ; in [Pollack and Pomerance
2014] it was shown that the number of such n 6 x is between x/(log x)c1 and
x/(log x)c2 , where c1 > c2 > 0 are explicit constants. Is the count of the form
x/(log x)c+o(1) for some number c? The numbers c1, c2 in [Pollack and Pomerance
2014] are not especially close. The analogous problem for λ is wide open. In fact,
it seems that a reasonable conjecture (from [Pollack and Pomerance 2014]) is that
asymptotically all even numbers n have n2 in the range of λ. On the other hand, it
has not been proved that there is a lower bound of the shape x/(log x)c with some
positive constant c for the number of such numbers n 6 x .

2. Lemmas

Here we present some estimates that will be useful in our argument. To fix notation,
for a positive integer q and an integer a, we let π(x; q, a) be the number of primes
p 6 x in the progression p ≡ a (mod q), and put

E∗(x; q)=max
y6x

∣∣∣∣π(y; q, 1)−
li(y)
ϕ(q)

∣∣∣∣,
where li(y)=

∫ y
2 dt/ log t .

We also let P+(n) and P−(n) denote the largest and smallest prime factors of n,
respectively, with the convention that P−(1) =∞ and P+(1) = 0. Let ω(m) be
the number of distinct prime factors of m, and let τk(n) be the k-th divisor function;
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that is, the number of ways to write n = d1 · · · dk with d1, . . . , dk positive integers.
Let µ denote the Möbius function.

First, we present an estimate for the sum of reciprocals of integers with a given
number of prime factors.

Lemma 2.1. Suppose x is large. Uniformly for 16 h 6 2 log log x ,∑
P+(b)6x
ω(b)=h

µ2(b)
b
�
(log log x)h

h!
.

Proof. The upper bound follows very easily from∑
P+(b)6x
ω(b)=h

µ2(b)
b
6

1
h!

(∑
p6x

1
p

)h

=
(log log x + O(1))h

h!
�
(log log x)h

h!

upon using Mertens’ theorem and the given upper bound on h. For the lower bound,
we have ∑

P+(b)6x
ω(b)=h

µ2(b)
b
>

1
h!

(∑
p6x

1
p

)h[
1−

(h
2

)(∑
p6x

1
p

)−2∑
p

1
p2

]
.

Again, the sums of 1/p are each log log x+O(1). The sum of 1/p2 is smaller than
0.46, hence for large enough x the bracketed expression is at least 0.08, and the
desired lower bound follows. �

Next, we recall (see e.g., [Davenport 2000, Chapter 28]) the well-known theorem
of Bombieri and Vinogradov, and then we prove a useful corollary.

Lemma 2.2. For any number A > 0 there is a number B > 0 so that for x > 2∑
q6
√

x(log x)−B

E∗(x; q)�A
x

(log x)A .

Corollary 1. For any integer k > 1 and number A > 0 we have for all x > 2 that∑
q6x1/3

τk(q)E∗(x; q)�k,A
x

(log x)A .

Proof. Apply Lemma 2.2 with A replaced by 2A+ k2, Cauchy’s inequality, the
trivial bound |E∗(x; q)| � x/q and the easy bound∑

q6y

τ 2
k (q)
q
�k (log y)k

2
(2-1)
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to get( ∑
q6x1/3

τk(q)E∗(x; q)
)2

6

( ∑
q6x1/3

τk(q)2|E∗(x; q)|
)( ∑

q6x1/3

|E∗(x; q)|
)

�k,A x
( ∑

q6x1/3

τk(q)2

q

)
x

(log x)2A+k2

�k,A
x2

(log x)2A ,

which leads to the desired conclusion. �

Finally, we need a lower bound from sieve theory.

Lemma 2.3. There are absolute constants c1 > 0 and c2 > 2 so that for y > c2,
y3 6 x , and any even positive integer b, we have∑

n∈(x,2x]
bn+1 prime
P−(n)>y

1>
c1bx

ϕ(b) log(bx) log y
− 2

∑
m6y3

3ω(m)E∗(2bx; bm).

Proof. We apply a standard lower bound sieve to the set

A=
{
`−1

b
: ` prime, ` ∈ (bx + 1, 2bx], `≡ 1 (mod b)

}
.

Letting Ad be the set of elements of A divisible by a squarefree integer d , we have
|Ad | = Xg(d)/d + rd , where

X =
li(2bx)− li(bx + 1)

ϕ(b)
, g(d)=

∏
p | d
p - b

p
p− 1

, |rd |6 2E∗(2bx; db).

It follows that for 26 v < w,∑
v6p<w

g(p)
p

log p = log
w

v
+ O(1),

the implied constant being absolute. Apply [Halberstam and Richert 1974, Theo-
rem 8.3] with q = 1, ξ = y3/2 and z = y, observing that the condition �2(1, L) on
page 142 of that work holds with an absolute constant L . With the function f (u)
as defined on pages 225–227 there, we have f (3)= 2

3 eγ log 2> 4
5 . Then with B19

the absolute constant in Theorem 8.3 of that work, we have

f (3)− B19
L

(log ξ)1/14 >
1
2
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for large enough c2. We obtain the bound

#{x < n 6 2x : bn+ 1 prime, P−(n) > y}

>
X
2

∏
p6y

(
1−

g(p)
p

)
−

∑
m6ξ2

3ω(m)|rm |

>
c1bx

ϕ(b) log(bx) log y
− 2

∑
m6y3

3ω(m)E∗(2bx; bm). �

3. The set-up

If n = λ(p1 p2 · · · pk), where p1, p2, . . . , pk are distinct primes, then we have
n = lcm[p1 − 1, p2 − 1, . . . , pk − 1]. If we further assume that n is squarefree
and consider the Venn diagram of the sets S1, . . . , Sk of the prime factors of
p1−1, . . . , pk−1, respectively, then this equation gives an ordered factorization of
n into 2k

−1 factors (some of which may be the trivial factor 1). Here we “see” the
shifted primes pi − 1 as products of certain subsequences of 2k−1 of these factors.
Conversely, given n and an ordered factorization of n into 2k

− 1 factors, we can
ask how likely it is for those k products of 2k−1 factors to all be shifted primes.
Of course, this is not likely at all, but if n has many prime factors, and so many
factorizations, the odds that there is at least one such “good” factorization improve.
For example, when k = 2, we factor a squarefree number n as a1a2a3, and we
ask for a1a2+ 1= p1 and a2a3+ 1= p2 to both be prime. If so, we would have
n = λ(p1 p2). The heuristic argument from [Luca and Pomerance 2014] was based
on this idea. In particular, if a squarefree n is even and has at least θk log log n
odd prime factors (where θk > k/ log(2k

−1) is fixed and θk→ 1/ log 2 as k→∞),
then there are so many factorizations of n into 2k

− 1 factors that it becomes likely
that n is a λ-value. The lower bound proof from [Luca and Pomerance 2014]
concentrated just on the case k = 2, but here we attack the general case. As in that
work, we let r(n) be the number of representations of n as the λ of a number with
k primes. To see that r(n) is often positive, we show that its average value is large,
and that the average value of r(n)2 is not much larger. Our conclusion will follow
from Cauchy’s inequality.

Let k > 2 be a fixed integer, let x be sufficiently large (in terms of k), and put

y = exp
{

log x
200k log log x

}
, l =

⌊
k

(2k − 1) log(2k − 1)
log log y

⌋
. (3-1)

For n 6 x , let r(n) be the number of representations of n of the form

n =
k−1∏
i=0

ai

2k
−1∏

j=1

b j , (3-2)
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where P+(b j )6 y< P−(ai ) for all i and j , where 2 |b2k−1, whereω(b j )= l for each
j , where ai > 1 for all i , and where furthermore ai Bi + 1 is prime for all i , where

Bi =
∏

b j/2i c odd

b j . (3-3)

Observe that each Bi is even since it is a multiple of b2k−1 (because b(2k
−1)/2i

c=

2k−i
−1 is odd), each Bi is the product of 2k−1 of the numbers b j , and that every b j

divides B0 · · · Bk−1. Also, if n is squarefree and r(n) > 0, then the primes ai Bi + 1
are all distinct, and it follows that

n = λ
(k−1∏

i=0

(ai Bi + 1)
)
;

therefore such n 6 x are counted by Vλ(x). We count how often r(n) > 0 using
Cauchy’s inequality in the following standard way:

#
{
2−2k x < n 6 x : µ2(n)= 1, r(n) > 0

}
>

S2
1

S2
, (3-4)

where
S1 =

∑
2−2k x<n6x

µ2(n)r(n), S2 =
∑

2−2k x<n6x

µ2(n)r2(n).

Our application of Cauchy’s inequality is rather sharp, as we will show below that
r(n) is approximately 1 on average over the kind of integers we are interested in,
both in mean and in mean-square. More precisely, in the next section, we prove

S1�
x

(log x)βk (log log x)Ok(1)
, (3-5)

and in the final section we prove

S2�
x(log log x)Ok(1)

(log x)βk
, (3-6)

where

βk = 1−
k

log(2k − 1)
(1+ log log(2k

− 1)− log k). (3-7)

Together, the inequalities (3-4), (3-5) and (3-6) imply that

Vλ(x)�
x

(log x)βk (log log x)Ok(1)
.

We deduce the lower bound of Theorem 1 by noting that limk→∞ βk = η.
Throughout, constants implied by the symbols O , �, �, and � may depend

on k, but not on any other variable.
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4. The lower bound for S1

For convenience, when using the sieve bound in Lemma 2.3, we consider a slightly
larger sum S′1 than S1, namely

S′1 :=
∑
n∈N

r(n),

where N is the set of n∈ (2−2k x, x] of the form n=n0n1 with P+(n0)6 y< P−(n1)

and n0 squarefree. That is, in S′1 we no longer require the numbers a0, . . . , ak−1

in (3-2) to be squarefree. The difference between S1 and S′1 is very small; indeed,
putting h = 2k

+k−1, note that r(n)6 τh(n), so that we have by (3-2) the estimate

S′1− S1 6
∑
n6x

∃p>y:p2
|n

τh(n)6
∑
p>y

∑
n6x
p2
|n

τh(n)6
∑
p>y

τh(p2)
∑

m6x/p2

τh(m)

6
∑
p>y

τh(p2)
x
p2

∑
m6x

τh(m)
m
�

x(log x)h

y
. (4-1)

Here we have used the inequality τh(uv)6 τh(u)τh(v), as well as the easy bound∑
m6x

τh(m)
m
� (log x)h, (4-2)

which is similar to (2-1). By (3-2), the sum S′1 counts the number of (2k−1
+k)-tuples

(a0, . . . , ak−1, b1, . . . , b2k−1) satisfying

2−2k x < a0 · · · ak−1b1 · · · b2k−1 6 x (4-3)

and with P+(b j )6 y < P+(ai ) for every i and j , b1 · · · b2k−1 squarefree, 2 | b2k−1,
ω(b j )= l for every j , ai > 1 for every i , and ai Bi + 1 prime for every i , where Bi

is defined in (3-3). Fix numbers b1, . . . , b2k−1. Then

b1 · · · b2k−1 6 y(2
k
−1)l 6 y2 log log x

= x1/100k . (4-4)

In the above, we used the fact that k 6 2 log(2k
− 1). Fix also A0, . . . , Ak−1, each

a power of 2 exceeding x1/2k , such that

x
2b1 · · · b2k−1

< A0 · · · Ak−1 6
x

b1 · · · b2k−1
. (4-5)

Then (4-3) holds whenever Ai/2< ai 6 Ai for each i . By Lemma 2.3, using the
facts that Bi/ϕ(Bi )> 2 (because Bi is even) and Ai Bi 6 x (a consequence of (4-5)),
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we deduce that the number of choices for each ai is at least

c1 Ai

log x log y
− 2

∑
m6y3

3ω(m)E∗(Ai Bi ;m Bi ).

Using the elementary inequality

k∏
j=1

max(0, x j − y j )>
k∏

j=1

x j −

k∑
i=1

yi

∏
j 6=i

x j ,

valid for any nonnegative real numbers x j , y j , we find that the number of admissible
k-tuples (a0, . . . , ak−1) is at least

ck
1 A0 · · · Ak−1

(log x log y)k
−

2ck−1
1 A0 · · · Ak−1

(log x log y)k−1

k−1∑
i=0

1
Ai

∑
m6y3

3ω(m)E∗(Ai Bi ;m Bi )

= M(A, b)− R(A, b),

say. By symmetry and (4-5),∑
A,b

R(A, b)

�
x

(log x log y)k−1

∑
b

1
b1 · · · b2k−1

∑
A

1
A0

∑
m6y3

3ω(m)E∗(A0 B0;m B0), (4-6)

where the sum on b is over all (2k
− 1)−tuples satisfying b1 · · · b2k−1 6 x1/100k .

Write b1 · · · b2k−1= B0 B ′0, where B ′0=b2b4 · · · b2k−2. Given B0 and B ′0, the number
of corresponding tuples (b1, . . . , b2k−1) is at most τ2k−1(B0)τ2k−1−1(B ′0). Suppose
D/2< B0 6 D, where D is a power of 2. Since E∗(x; q) is an increasing function
of x , E∗(A0 B0;m B0)6 E∗(A0 D;m B0). Also, 3ω(m) 6 τ3(m) and∑

B ′06x

τ2k−1−1(B ′0)
B ′0

� (log x)2
k−1
−1

(this is (4-2) with h replaced by 2k−1
− 1). We therefore deduce that∑

A,b

R(A, b)

�
x(log x)2

k−1
−1

(log x log y)k−1

∑
A

1
A0

∑
D

1
D

∑
D/2<B06D

m6y3

τ3(m)τ2k−1(B0)E∗(A0 D;m B0),

with the sum taken over (A0, . . . , Ak−1, D), each a power of 2, D 6 x1/100k ,
Ai > x1/2k for each i and A0 · · · Ak−1 D 6 x . With A0 and D fixed, the number of
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choices for (A1, . . . , Ak−1) is� (log x)k−1. Writing q = m B0, we obtain∑
A,b

R(A, b)

� x
(log x)2

k−1
−1

(log y)k−1

∑
D6x1/100k

∑
x1/2k<A06x/D

1
A0 D

∑
q6y3x1/100k

τ2k−1+3(q)E
∗(A0 D; q)

�
x

(log x)βk+1 ,

where we used Corollary 1 in the last step, with A = 2k−1
− k+ 4+βk .

For the main term, by (4-5), given any b1, . . . , b2k−1 , the product A0 · · · Ak−1 is
determined (and larger than 1

2 x1−1/100k by (4-4)), so there are� (log x)k−1 choices
for the k-tuple A0, . . . , Ak−1. Hence,∑

A,b

M(A, b)�
x

(log y)k log x

∑
b

1
b1 · · · b2k−1

.

Let b= b1 · · · b2k−1. Given an even, squarefree integer b, the number of ordered fac-
torizations of b as b=b1 · · · b2k−1, where eachω(bi )= l and b2k−1 is even, is equal to

((2k
− 1)l)!

(2k − 1)(l!)2k−1
.

Let b′ = b/2, so h :=ω(b′)= (2k
−1)l−1= k(log log y)/log(2k

− 1)+O(1). Ap-
plying Lemma 2.1, Stirling’s formula and the fact that (2k

−1)l= h+O(1) produces∑
b

1
b1 · · · b2k−1

>
((2k
− 1)l)!

2(2k − 1)(l!)2k−1

∑
P+(b′)6y
ω(b′)=h

µ2(b′)
b′

�
((2k
− 1)l)!

(l!)2k−1

(log log y)h

h!
=
(log log y)h

(l!)2k−1
(log log x)O(1)

=

[
(2k
− 1)e log(2k

− 1)
k

](2k
−1)l

(log log x)O(1)

= (log y)
k

log(2k−1)
log
[
(2k
−1)e log(2k

−1)
k

]
(log log x)O(1)

= (log y)k−βk+1(log log x)O(1).

Invoking (3-1), we obtain that∑
A,b

M(A, b)>
x

(log x)βk (log log x)O(1) . (4-7)

Inequality (3-5) now follows from estimate (4-7) and our earlier estimates (4-1) of
S′1− S1 and (4-6) of

∑
A,b R(A, b).
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5. A multivariable sieve upper bound

Here we prove an estimate from sieve theory that will be useful in our treatment of
the upper bound for S2.

Lemma 5.1. Suppose that:

• y, x1, . . . , xh are reals with 3< y 6 2 min{x1, . . . , xh}.

• I1, . . . , Ik are nonempty subsets of {1, . . . , h}.

• b1, . . . , bk are positive integers such that if Ii = I j , then bi 6= b j .

For n = (n1, . . . , nh) a vector of positive integers and for 1 6 j 6 k, let N j =

N j (n)=
∏

i∈I j
ni . Then

#
{
n : xi < ni 6 2xi (16 i 6 h), P−(n1 · · · nh) > y, b j N j + 1 prime (16 j 6 k)

}
�h,k

x1 · · · xh

(log y)h+k (log log(3b1 · · · bk))
k .

Proof. Throughout this proof, all Vinogradov symbols � and � as well as the
Landau symbol O depend on both h and k. Without loss of generality, suppose
that y 6 (min(xi ))

1/(h+k+10). Since ni > xi > yh+k+10 for every i , we see that the
number of h-tuples in question does not exceed

S := #{n : xi < ni 6 2xi (16 i 6 h), P−(n1 · · · nh(b1 N1+1) · · · (bk Nk+1)) > y}.

We estimate S in the usual way with sieve methods, although this is a bit more
general than the standard applications and we give the proof in some detail (the
case h = 1 being completely standard). Let A denote the multiset

A=

{
n1 · · · nh

k∏
j=1

(b j N j + 1) : x j < n j 6 2x j (16 j 6 h)
}
.

For squarefree d 6 y2 composed of primes 6 y, we have by a simple counting
argument

|Ad | := #{a ∈A : d | a} =
ν(d)
dh X + rd ,

where X = x1 · · · xh , ν(d) is the number of solution vectors n modulo d of the
congruence

n1 · · · nh

k∏
j=1

(b j N j + 1)≡ 0 (mod d),
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and the remainder term satisfies, for d 6min(x1, . . . , xh),

|rd |6 ν(d)
h∑

i=1

∏
16l6h

l 6=i

(⌊
xl

d

⌋
+ 1

)
6 ν(d)

h∑
i=1

(x1+ d) · · · (xh + d)
(xi + d)dh−1

�
ν(d)X

dh−1 min(xi )
.

The function ν(d) is clearly multiplicative and satisfies the global upper bound
ν(p) 6 (h + k)ph−1 for every p. If ν(p) = ph for some p 6 y, then clearly
S = 0. Otherwise, the hypotheses of [Halberstam and Richert 1974, Theorem 6.2]
(Selberg’s sieve) are clearly satisfied, with κ = h+ k, and we deduce that

S� X
∏
p6y

(
1−

ν(p)
ph

)
+

∑
d6y2

P+(d)6y

µ2(d)3ω(d)|rd |.

By our initial assumption about the size of y,

∑
d6y2

µ2(d)3ω(d)|rd | �
X

min(xi )

∑
d6y2

(3k+ 3h)ω(d)�
X y3

min(xi )
�

X
y
.

For the main term, consideration only of the congruence n1 · · · nh ≡ 0 (mod p)
shows that

ν(p)> h(p− 1)h−1
= hph−1

+ O(ph−2)

for all p. On the other hand, suppose that p - b1 · · · bk and furthermore that p - (bi−

b j ) whenever Ii = I j . Each congruence b j N j+1≡ 0 (mod p) has ph−1
+O(ph−2)

solutions with n1 . . . nh 6≡ 0 (mod p), and any two of these congruences have
O(ph−2) common solutions. Hence, ν(p)= (h+ k)ph−1

+O(ph−2). In particular,

h
p
+ O

(
1
p2

)
6
ν(p)

ph 6
h+ k

p
+ O

(
1
p2

)
. (5-1)

Further, writing E = b1 · · · bk
∏

i 6= j |bi −b j |, the upper bound (5-1) above is in fact
an equality except when p | E . We obtain

∏
p6y

(
1−

ν(p)
ph

)
�

∏
p6y

(
1−

1
p

)k+h ∏
p | E

(
1−

1
p

)−k

�
(E/ϕ(E))k

(log y)h+k �
(log log 3E)k

(log y)h+k

and the desired bound follows. �



The image of Carmichael’s λ-function 2021

6. The upper bound for S2

Here, S2 is the number of solutions of

n =
k−1∏
i=0

ai

2k
−1∏

j=1

b j =

k−1∏
i=0

a′i

2k
−1∏

j=1

b′j , (6-1)

with 2−2k x < n 6 x , n squarefree,

P+(b1b′1 · · · b2k−1b′2k−1)6 y < P−(a0a′0 · · · ak−1a′k−1),

ω(b j )=ω(b′j )= l for every j , ai > 1 for every i , 2 | b2k−1, 2 | b′2k−1, and ai Bi +1
and a′i B ′i + 1 prime for 06 i 6 k− 1, where B ′i is defined analogously to Bi (see
(3-3)). Trivially, we have

a :=
k−1∏
i=0

ai =

k−1∏
i=0

a′i , b :=
2k
−1∏

j=1

b j =

2k
−1∏

j=1

b′j . (6-2)

We partition the solutions of (6-1) according to the number of the primes ai Bi+1
that are equal to one of the primes a′j B ′j + 1, a number which we denote by m.
By symmetry (that is, by appropriate permutation of the vectors (a0, . . . , ak−1),
(a′0, . . . , ak−1), (b1, . . . , b2k−1) and (b′1, . . . , b′2k−1)

1), without loss of generality
we may suppose that ai Bi = a′i B ′i for 06 i 6 m− 1 and that

ai Bi 6= a j B j (i > m, j > m). (6-3)

Consequently,

ai = a′i and Bi = B ′i (06 i 6 m− 1). (6-4)

Now fix m and all the b j and b′j . For 0 6 i 6 m − 1, place ai into a dyadic
interval (Ai/2, Ai ], where Ai is a power of 2. The primality conditions on the
remaining variables are now coupled with the condition

am · · · ak−1 = a′m · · · a
′

k−1.

1The permutations may be described explicitly. Suppose that m 6 k − 1 and that we wish to
permute (b1, . . . , b2k−1) such that Bi1 , . . . , Bim become B0, . . . , Bm−1, respectively. Let Si =

{16 j 6 2k
−1 : b j/2i

c odd}. The Venn diagram for the sets Si1 , . . . , Sim has 2m
−1 components of

size 2k−m−1 and one component of size 2k−m−1
− 1, and we map the variables b j with j in a given

component to the variables whose indices are in the corresponding component of the Venn diagram
for S0, . . . , Sm−1.
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To aid the bookkeeping, let αi, j = gcd(ai , a′j ) for m 6 i, j 6 k− 1. Then

ai =

k−1∏
j=m

αi, j , a′j =
k−1∏
i=m

αi, j . (6-5)

As each ai > 1, a′j > 1, each product above contains at least one factor that is
greater than 1. Let I denote the set of pairs of indices (i, j) such that αi, j > 1, and
fix I . For (i, j) ∈ I , place αi, j into a dyadic interval (Ai, j/2, Ai, j ], where Ai, j is a
power of 2 and Ai, j > y. By the assumption on the range of n, we have

A0 · · · Am−1
∏
(i, j)∈I

Ai, j �
x
b
. (6-6)

For 06 i 6 m− 1, we use Lemma 5.1 (with h = 1) to deduce that the number of
ai with Ai/2< ai 6 Ai , P−(ai ) > y and ai Bi + 1 prime is

�
Ai log log Bi

log2 y
�

Ai (log log x)3

log2 x
. (6-7)

Counting the vectors (αi, j )(i, j)∈I subject to the conditions

• Ai, j/2< αi, j 6 Ai, j and P−(αi, j ) > y for (i, j) ∈ I ;

• ai Bi + 1 prime (m 6 i 6 k− 1);

• a′j B ′j + 1 prime (m 6 j 6 k− 1);

• condition (6-5)

is also accomplished with Lemma 5.1, this time with h = |I | and with 2(k −m)
primality conditions. The hypothesis in the lemma concerning identical sets Ii ,
which may occur if αi, j = ai = a′j for some i and j , is satisfied by our assumption
(6-3), which implies in this case that Bi 6= B ′j . The number of such vectors is at most

�

∏
(i, j)∈I Ai, j (log log x)2k−2m

(log y)|I |+2k−2m �

∏
(i, j)∈I Ai, j (log log x)|I |+4k−4m

(log x)|I |+2k−2m . (6-8)

Combining the bounds (6-7) and (6-8), and recalling (6-6), we see that the number
of possibilities for the 2k-tuple (a0, . . . , ak−1, a′0 . . . , a′k−1) is at most

�
x(log log x)O(1)

b(log x)|I |+2k .

With I fixed, there are O((log x)|I |+m−1) choices for A0, . . . , Am−1 and Ai, j subject
to (6-6), and there are O(1) possibilities for I . We infer that with m and all of the
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b j , b′j fixed, the number of possible (a0, . . . , ak−1, a′0 . . . , a′k−1) is at most

�
x(log log x)O(1)

b(log x)2k+1−m .

We next prove that the identities in (6-4) imply that

Bv = B ′v (v ∈ {0, 1}m), (6-9)

where Bv is the product of all b j where the m least significant base-2 digits of j
are given by the vector v, and B ′v is defined analogously. Fix v = (v0, . . . , vm−1).
For 0 6 i 6 m − 1, let Ci = Bi if vi = 1 and Ci = b/Bi if vi = 0, and define C ′i
analogously. By (3-3), each number b j where the last m base-2 digits of j are
equal to v divides every Ci , and no other b j has this property. By (6-4), Ci = C ′i
for each i and thus

C0 · · ·Cm−1 = C ′0 · · ·C
′

m−1.

As the numbers b j are pairwise coprime, in the above equality the primes having
exponent m on the left are exactly those dividing Bv, and similarly the primes on
the right side having exponent m are exactly those dividing B ′v. This proves (6-9).

Say b is squarefree. We count the number of dual factorizations of b compatible
with both (6-2) and (6-9). Each prime dividing b first “chooses” which Bv = B ′v to
divide. Once this choice is made, there is the choice of which b j to divide and also
which b′j . For the 2m

−1 vectors v 6= 0, Bv = B ′v is the product of 2k−m numbers b j

and also the product of 2k−m numbers b′j . Similarly, B0 is the product of 2k−m
− 1

numbers b j and 2k−m
−1 numbers b′j . Thus, ignoring thatω(b j )=ω(b′j )= l for each

j and that b2k−1 and b′2k−1 are even, the number of dual factorizations of b is at most

(
(2m
− 1)(2k−m)2+ (2k−m

− 1)2
)ω(b)
= (22k−m

− 2k+1−m
+ 1)ω(b). (6-10)

Again, let

h = ω(b)= (2k
− 1)l =

k
log(2k − 1)

log log y+ O(1),

as in Section 4. Lemma 2.1 and Stirling’s formula give

∑
P+(b)6y
ω(b)=h

µ2(b)
b
�
(log log y)h

h!
� (e log(2k

− 1)/k)h .
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Combined with our earlier bound (6-10) for the number of admissible ways to dual
factor each b, we obtain

S2�
x(log log x)O(1)

log x
(e log(2k

− 1)/k)h

×

k∑
m=0

(log y)
m−2k+ k

log(2k−1)
log(22k−m

−2k+1−m
+1)
. (6-11)

For real t ∈ [0, k], let f (t)= k log(22k−t
− 2k+1−t

+ 1)− (2k− t) log(2k
− 1). We

have f (0)= f (k)= 0 and

f ′′(t)=
k(log 2)2(22k

− 2k+1)2−t

(22k−t − 2k+1−t + 1)2
> 0.

Hence, f (t) < 0 for 0 < t < k. Thus, the sum on m in (6-11) is O(1), and (3-6)
follows.

Theorem 1 is therefore proved.
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