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Relative cohomology of cuspidal forms
on PEL-type Shimura varieties

Kai-Wen Lan and Benoît Stroh

We present a short proof that, for PEL-type Shimura varieties, subcanonical
extensions of automorphic bundles, whose global sections over toroidal compact-
ifications of Shimura varieties are represented by cuspidal automorphic forms,
have no higher direct images under the canonical morphism to the minimal
compactification, in characteristic zero or in positive characteristics greater than
an explicitly computable bound.
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1. Introduction

The main goal of this article is to present a short proof of Theorem 1.1 below, as
an application of a certain vanishing theorem of automorphic bundles in mixed
characteristics. (We refer to [Lan 2013; Lan and Suh 2012; 2013] for the precise
definitions and descriptions of smooth integral models of PEL-type Shimura varieties
and their various compactifications, and of the automorphic bundles and their
canonical and subcanonical extensions.)

Let π :Mtor
H,6→Mmin

H denote the canonical proper morphism from any projective
smooth toroidal compactification to the minimal compactification of a p-integral
model MH of a PEL-type Shimura variety at a neat level H ⊂ G(Ẑp), where p
is good for the integral PEL datum (O, ?, L , 〈 · , · 〉, h0) defining MH, as in [Lan
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and Suh 2013, §4.1] (and the references there). Let Wν0,R := Wν0,Z ⊗Z R be a
representation of M1 of weight ν0 ∈ X+M1

over a coefficient ring R, where Wν0,Z

denotes a Weyl module of weight ν0 of a split model Msplit of M1 over Z, as in [Lan
and Suh 2012, §2.6]. Let W ν0,R := EM1,R(Wν0,R) be the corresponding automorphic
bundle over MH, as in [Lan and Suh 2012, Definition 1.16 and §6.3], and let
W sub
ν0,R := E sub

M1,R(Wν0,R) be its subcanonical extension over Mtor
H,R , as in [Lan and

Suh 2013, Definition 4.12 and §7]. (We similarly define Wν,R , W ν,R , and W sub
ν,R for

all ν ∈ X+M1
.)

Theorem 1.1. With the setting as above, there exists a bound C(ν0) depending only
on the integral PEL datum (O, ?, L , 〈 · , · 〉, h0) and the weight ν0, such that

Riπ∗W sub
ν0,R = 0 (1.2)

for all i > 0 when the residue characteristics of R are zero or p greater than C(ν0).
(See Lemma 3.3 below for an explicit choice of C(ν0).)

To help the reader understand the restriction imposed by C(ν0), let us spell out
the bound in some simple special cases. If ν0 = 0, then we can take C(ν0) to be
the relative dimension d of MH over the base scheme S0 (see Example 3.9 below).
If MH is a p-integral model of the Siegel modular variety of genus three, then the
weight ν0 is of the form (k1, k2, k3; k0) for some integers k0 and k1 ≥ k2 ≥ k3, and
we can take C(ν0) to be 6+ (k1− k3)+ (k2− k3) (see Example 3.10 below with
r = 3 there). If MH is a p-integral model of a Picard modular surface, then the
weight ν0 is of the form (k1, k2, k3; k0) for some integers k0, k1, and k2≥ k3, and we
can take C(ν0) to be 2+ (k2−k3) (see Example 3.12 below with (r−q, q)= (2, 1)
there). (In all cases, C(ν0) is insensitive to shifting the weight ν0 by a “parallel
weight”. See Section 3C below for more examples.)

We note that, when R=C, global sections of W sub
ν0,R over Mtor

H,6 can be represented
by holomorphic cuspidal automorphic forms. (See, e.g., [Harris 1990b, Proposition
5.4.2]; see also [Harris 1990a] for a survey on how the higher cohomology of W sub

ν0,R
can be represented by nonholomorphic automorphic forms. See [Lan 2012] for
the comparison between algebraic and analytic constructions hidden behind this.)
Combined with the Leray spectral sequence, Theorem 1.1 allows one to identify
the cohomology of W sub

ν0,R over Mtor
H,6 with the cohomology of π∗W sub

ν0,R over Mmin
H .

Although the coherent sheaf π∗W sub
ν0,R is not locally free in general, there are reasons

for Mmin
H to be useful for the construction of p-adic modular forms and p-adic

Galois representations.
Special cases of Theorem 1.1 have been independently proved in [Andreatta et al.

2013a; 2013b] (in the Siegel and Hilbert cases, for trivial weight ν0) and in [Harris
et al. 2013] (in the unitary case, for all weights ν0), without any assumption on the
residue characteristic p. The idea in [Harris et al. 2013] has also been carried out for
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all PEL-type cases in [Lan 2014]. Such results have played crucial roles in positive
characteristics in [Andreatta et al. 2013a; 2013b; Emerton et al. 2013; Pilloni
and Stroh 2013], and in characteristic zero in [Harris et al. 2013; Tian and Xiao
2013]. The proofs in [Andreatta et al. 2013a; 2013b] and [Harris et al. 2013; Lan
2014] directly used the toroidal and minimal boundary structures, and hence can be
considered more elementary, which is why they work for all residue characteristics p;
but they are lengthier and arguably more complicated. It is not easy to see from their
proofs why Theorem 1.1 should be true. (It is not even clear how the two strategies in
[Andreatta et al. 2013a; 2013b] and [Harris et al. 2013; Lan 2014] are related to each
other.) Thus it is desirable to find a proof more closely related to other vanishing
statements, at least when the residue characteristics are zero or sufficiently large.

It was first observed by the second author that this is indeed possible — in
characteristic zero, the trivial weight case can be deduced from Grauert and Riemen-
schneider’s vanishing theorem [1970]; in positive characteristics, under suitable
assumptions (involving choices of projective but generally nonsmooth cone decom-
positions 6 for the toroidal compactification Mtor

H,6 , whose existence is not very
clearly documented in the literature), it is also possible to deduce the statement
from Deligne and Illusie’s [1987] and Kato’s [1989] vanishing theorems. Then the
first author made the observations that the assumption on cone decompositions can
be relaxed by using Esnault and Viehweg’s [1992] vanishing theorem as in [Lan
and Suh 2011], and that (along similar lines) cases of nontrivial weights can be
treated using stronger vanishing theorems in [Lan and Suh 2013]. (In the Siegel
case, one can also use [Stroh 2010; 2013].)

In Section 2, we will present the proof of Theorem 1.1 and highlight the main
inputs. In Section 3, we will carry out some elementary computations needed in
the proof of Theorem 1.1, and find an explicit choice of C(ν0). In Section 4, we
sketch a logically simpler proof for the trivial weight case.

2. Proof of the theorem

Let π : Mtor
H,6 → Mmin

H , ν0 ∈ X+M1
, and W sub

ν0,R be as in Section 1. Since Mtor
H,6,1

and Mmin
H,1 are proper over S1 = Spec(R1) (see [Lan and Suh 2013, §4.1] and the

references there for the notation), which are in particular separated and of finite type,
for the purpose of proving Theorem 1.1 we may write R as an inductive limit over
its sub-R1-algebras and assume that R is of finite type over R1, which is in particular
noetherian. Then we may base change to R and abusively denote Mtor

H,6,R→Mmin
H,R

by the same notation π . Our goal is to show that Riπ∗W sub
ν0,R = 0 for all i > 0.

As in [Lan and Suh 2012, §2.6], we shall denote by X+,<p
M1

the subset of X+M1
con-

sisting of p-small weights, namely the weights ν ∈X+M1
such that (ν+ρM1, α)≤ p

for all roots α ∈8M1 , where ρM1 is the usual half sum of positive roots.
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2A. Application of Serre’s fundamental theorem. By [Lan and Suh 2013, Propo-
sition 7.13], there exists some weight ν1 ∈ X+,<p

M1
such that Wν1,R is free of rank

one as an R-module, and such that there exists an ample line bundle ων1 over Mmin
H,R

such that
π∗ων1

∼=W can
ν1,R, (2.1)

the canonical extension W can
ν1,R of W ν1,R . Since (by definition)

W sub
ν0+Nν1,R

∼=W sub
ν0,R ⊗OMtor

H,6,R
(W can

ν1,R)
⊗N (2.2)

for all integers N , by the projection formula [EGA 1960, 0I, (5.4.10.1), p. 52] we
have

Riπ∗W sub
ν0+Nν1,R

∼= (Riπ∗W sub
ν0,R)⊗O

Mmin
H,R
ω⊗N
ν1
. (2.3)

Then we have the following:

Lemma 2.4. There exists some integer N1 ≥ 0 such that, for all integers N ≥ N1

and all i ≥ 0, the sheaves Riπ∗W sub
ν0+Nν1,R over Mmin

H,R are generated by their global
sections and satisfy H j (Mmin

H,R, Riπ∗W sub
ν0+Nν1,R)= 0 for all j > 0.

Proof. Since π is proper and Mmin
H,R is noetherian, by the theorem of finiteness

[EGA 1961, III, Théorème (3.2.1), p. 116], the sheaves Riπ∗W sub
ν0,R are coherent

over Mmin
H,R for all i ≥ 0, and are nonzero only for finitely many i . Since ων1 is

ample over Mmin
H,R , the lemma follows from (2.3) and Serre’s fundamental theorem

for projective schemes [EGA 1961, III, Théorème (2.2.1), p. 100]. �

2B. Shifting weights into the holomorphic chamber. Let w0 (resp. w1) be the
longest Weyl element in WM1 (resp. WM1) (see [Lan and Suh 2012, §2.4]), so that
(−w0)8

+

M1
=8+M1

and Wν
∼=W∨

−w0(ν)
for all ν∈X+,<p

M1
and l(w1)=d=dimS1(MH,1).

Remark 2.5. When R=C, for anyµ∈X+G1
, sections in H 0(Mtor

H,6,R, (W
∨

w1·µ,R)
sub)

are represented by holomorphic cusp forms of weight (−w0)(w1 ·µ) ∈X+M1
, which

contribute via the dual BGG spectral sequence to

H d
log−dR(M

tor
H,R, (V

∨

[µ],R)
sub)∼= H d

dR,c(MH,R, V∨
[µ],R)

(compactly supported of middle degree), compatible with their contribution to the
better-understood L2 cohomology of MH,R . (For more explanations see [Faltings
1983, Theorem 9; Harris 1990a, §2; 1990b, Proposition 5.4.2]; see also the compar-
isons with transcendental results in [Lan and Suh 2012; 2013] and the references
there.) Thus we consider weights of the form

(−w0)(w1 ·µ)= (−w0w1)(µ)+ (−w0)(w1 · 0)

holomorphic; these holomorphic weights form a translation of the dominant chamber
X+G1

because (−w0w1) preserves X+G1
.
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Proposition 2.6. There exists an integer N2, a positive parallel weight ν2 ∈ X+M1
,

and a weight µ0 ∈ X+G1
, all of which can be explicitly determined, such that

ν0+ N2ν1− ν2 =−w0(w1 ·µ0) (2.7)

This proposition is elementary in nature. One can prove Proposition 2.6 using
general principles that also work for all reductive groups defining Shimura varieties.
However, we shall spell out a (less elegant) case-by-case argument, which has the
advantage of giving explicit choices of N2, ν2, and µ0 of small sizes.

We will assume Proposition 2.6 in the remainder of this section, and post-
pone its proof until Section 3A. In Lemma 3.3, we will give an explicit choice
of C(µ0), depending only on (O, ?, L , 〈 · , · 〉, h0) and the weight ν0, such that
C(ν0)≥ |µ0|re (see [Lan and Suh 2012, Definition 3.9]) for some triple (N2, ν2, µ0)

as in Proposition 2.6.

2C. Application of automorphic vanishing.

Corollary 2.8. Let (N2, ν2, µ0) be any triple as in Proposition 2.6. Suppose that
p > |µ0|re and that N is any integer satisfying N ≥ N2. Then we have

H i (Mtor
H,6,R,W sub

ν0+Nν1,R)= 0 for every i > 0.

Proof. By definition, the subset X+,<p
M1

of X+M1
is preserved by translations by parallel

weights. Moreover, by [Lan and Suh 2012, Remark 2.30], and by the same argument
as in the proof of [Lan and Suh 2012, Lemma 7.20], we have ν0 ∈ X+,<p

M1
under

the assumption that p > |µ0|re. Then the assertion H i (Mtor
H,6,R,W sub

ν0+Nν1,R) = 0
follows from [Lan and Suh 2013, Theorem 8.13(2)], because ν := ν0+ Nν1 and
ν+ := (N − N2)ν1+ ν2 satisfy the condition there, with µ(ν− ν+)= µ0 ∈X+,<re p

G1

and w(ν)= w1 (so that d − l(w(ν))= d − l(w1)= 0). �

Remark 2.9 (erratum). There are typos in [Lan and Suh 2013, Theorem 8.13]:
both instances of X+,<W p

G1
there should be X+,<re p

G1
, which is what was used in [Lan

and Suh 2013, Corollary 7.24], on which the theorem depends.

2D. End of the proof of Theorem 1.1. Let N1 be as in Lemma 2.4, and let
(N2, ν2, µ0) be any triple as in Proposition 2.6 satisfying C(ν0)≥ |µ0|re for some
C(ν0) (which will be given in Lemma 3.3 below). Suppose that p>C(ν0) and that
N is any integer satisfying N ≥ N1 and N ≥ N2. By Lemma 2.4 and by the Leray
spectral sequence, and by Corollary 2.8, we have

H 0(Mmin
H,R, Riπ∗W sub

ν0+Nν1,R)
∼= H i (Mtor

H,6,R,W sub
ν0+Nν1,R)= 0 (2.10)

for all i>0. Since Riπ∗W sub
ν0+Nν1,R is generated by its global sections (by Lemma 2.4)

it follows that
Riπ∗W sub

ν0+Nν1,R = 0 (2.11)
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for all i > 0. By combining (2.3) and (2.11), we obtain the desired vanishing (1.2)
for all i > 0 (under the assumption that p > C(ν0)≥ |µ0|re).

Suppose that the residue characteristics of R are all zero. By shrinking R and
enlarging R by flat descent, we may replace the setup with a different one in which
p > C(ν0)≥ |µ0|re, and obtain the desired vanishing from the above.

Thus, Theorem 1.1 follows. �

3. Elementary computations

We shall freely use the notation in [Lan and Suh 2012, §2 and §7]. The material in
this section can be read without any knowledge of algebraic geometry or Shimura
varieties.

3A. Proof of Proposition 2.6. We can rewrite (2.7) as

ν0+ N2ν1− ν2 =−w0(w1µ0+w1ρ− ρ)= µ
′

0+ (−w0)(w1 · 0),

where µ′0=−(w0w1)(µ0)∈X+G1
satisfies V[µ′0]

∼=V∨
[µ0]

, becausew0w1 is the longest
Weyl element in WG1 . Hence it suffices to find N2 and ν2 such that

µ′0 = ν0+ N2ν1− ν2− (−w0)(w1 · 0) ∈ X+G1
. (3.1)

Let us write ν j = ((ν j,τ )τ∈ϒ/c; ν j,0) =
(
((ν j,τ,iτ )1≤iτ≤rτ )τ∈ϒ/c; ν j,0

)
∈ X+M1

for
j = 0, 1, 2. We shall also denote by ρτ (resp. w0,τ , w1,τ ) the corresponding factors
of ρ (resp. w0, w1). Then we need

µ′0,τ = ν0,τ + N2ν1,τ − ν2,τ − (−w0,τ )(w1,τ · 0) ∈ X+Gτ (3.2)

for each factor Gτ of G1. There are two cases:

(1) If τ = τ ◦c, then Gτ
∼= Sp2rτ ⊗Z R1 or Gτ

∼=O2rτ ⊗Z R1, and Mτ
∼=GLrτ ⊗Z R1.

If Gτ
∼= Sp2rτ ⊗Z R1, set dτ = 1

2rτ (rτ + 1) and r ′τ = rτ + 1. If Gτ
∼= O2rτ ⊗Z R1, set

dτ = 1
2rτ (rτ−1) and r ′τ = rτ . Set eτ = (1, 1, . . . , 1). If d[τ ]Q=

∑
τ ′∈[τ ]Q

dτ ′=0, then
we must have Gτ

∼=O2rτ ⊗Z R1 and rτ ≤ 1, in which case (3.2) is trivially true if we
take µ′0,τ = ν0,τ , any N2 ∈Z, and ν2,τ = N2ν1,τ −(−w0,τ )(w1,τ ·0). Hence we may
assume that d[τ ]Q >0. By assumption, we know that ν0,τ,1≥ν0,τ,2≥· · ·≥ν0,τ,rτ , and
that ν1,τ = k1,τ eτ , where k1,τ > 0 depends only on the equivalence class [τ ]Q of τ
(see [Lan and Suh 2012, Definition 7.12]). Also, we have ρτ = (r ′τ ,r

′
τ−1, . . . ,r ′τ−rτ )

and (−w0,τ )(w1,τ · 0)= r ′τ eτ . Thus, in order for (3.2) to hold, we need

ν0,rτ + Nk1,τ − k2,τ ≥ rτ + 1= r ′τ if Gτ
∼= Sp2rτ ⊗Z R1,

or

ν0,rτ−1+ Nk1,τ − k2,τ − rτ ≥ |ν0,rτ + Nk1,τ − k2,τ − rτ | if Gτ
∼= O2rτ ⊗Z R1.

We may take:
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(a) µ′0,τ := ν0,τ − ν0,[τ ]Qeτ , where ν0,[τ ]Q :=minτ ′∈[τ ]Q(ν0,τ ′,rτ );

(b) µ0,τ := −(w0,τw1,τ )(µ
′

0,τ )= µ
′

0,τ ; and

(c) Nτ to be any integer satisfying ν0,[τ ]Q + Nτ k1,τ > r ′τ , so that

ν0,τ + Nν1,τ −µ
′

0,τ − (−w0,τ )(w1,τ · 0)= (ν0,[τ ]Q + Nk1,τ − r ′τ ) eτ ,

with a positive coefficient ν0,[τ ]Q + Nk1,τ − r ′τ > 0 for every N ≥ Nτ .

(2) If τ 6= τ ◦ c, then Gτ
∼= GLrτ ⊗Z R1 and Mτ

∼= (GLqτ ×GLpτ )⊗Z R1. Set
dτ = pτqτ ,

eτ = (1, 1, . . . , 1︸ ︷︷ ︸
qτ

, 0, 0, . . . , 0), and e′τ = (0, 0, . . . , 0,−1,−1, . . . ,−1︸ ︷︷ ︸
pτ

).

If d[τ ]Q =
∑

τ ′∈[τ ]Q/c dτ ′ = 0, then we must have pτqτ = 0 for all τ ∈ [τ ]Q,
in which case (3.2) is trivially true if we take µ′0,τ = ν0,τ , any N2 ∈ Z, and
ν2,τ = N2ν1,τ − (−w0,τ )(w1,τ · 0). Hence we may assume that d[τ ]Q > 0. By
assumption, we know that

ν0,τ,1 ≥ ν0,τ,2 ≥ · · · ≥ ν0,τ,qτ and ν0,τ,qτ+1 ≥ ν0,τ,qτ+2 ≥ · · · ≥ ν0,τ,rτ ,

and that ν1,τ = k1,τ eτ + k1,τ◦ce′τ , where [k1]τ = k1,τ + k1,τ◦c > 0 depends only on
the equivalence class [τ ]Q of τ (see [Lan and Suh 2012, Proposition 7.15]). Also,
we have ρτ = 1

2(rτ − 1, rτ − 3, . . . ,−rτ + 1) and (−w0,τ )(w1,τ · 0)= pτ eτ +qτ e′τ .
Thus, in order for (3.2) to hold, we need

ν0,qτ + Nk1,τ − k2,τ − pτ ≥ ν0,qτ+1− Nk1,τ◦c+ k2,τ◦c+ qτ ,

or equivalently

(ν0,qτ − ν0,qτ+1)+ N [k1]τ − [k2]τ ≥ pτ + qτ = rτ .

We may take:

(a) µ′0,τ := ν0,τ − ν0,[τ ]Qeτ − (ν ′0,τ,1− ν0,[τ ]Q)(eτ − e′τ ), where

ν0,[τ ]Q := min
τ ′∈[τ ]Q,dτ ′ 6=0

(ν0,τ ′,qτ ′ − ν0,τ ′,qτ ′+1),

ν ′0,τ,1 :=

{
ν0,τ,1 if qτ > 0,
ν0,τ,1+ ν0,[τ ]Q if qτ = 0.

(b) µ0,τ := −(w0,τw1,τ )(µ
′

0,τ ), which ends with µ0,τ,rτ = 0 because µ′0,τ starts
with µ′0,τ,1 = 0; and

(c) Nτ to be any integer satisfying ν0,[τ ]Q + Nτ [k1]τ > rτ , so that

ν0,τ + Nν1,τ −µ
′

0,τ − (−w0,τ )(w1,τ · 0)

= (ν0,τ,1+ Nk1,τ − pτ ) eτ + (ν0,[τ ]Q − ν0,τ,1+ Nk1,τ◦c− qτ ) eτ
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with sum of coefficients, for every N ≥ Nτ ,

(ν0,τ,1+Nk1,τ−pτ )+(ν0,[τ ]Q−ν0,τ,1+Nk1,τ◦c−qτ )=ν0,[τ ]Q+N [k1]τ−rτ >0.

Now set:
N2 := max

τ∈ϒ/c
(Nτ );

µ0 := ((µ0,τ )τ∈ϒ/c;µ0,0) with any value of µ0,0;

µ′0 := (−w0w1)(µ0);

ν2 := ν0+ N2ν1−µ
′

0− (−w0)(w1 · 0).

Then the triple (N2, ν2, µ0) satisfies (3.1) and hence also (2.7), as desired, because
each of its factors (N2, ν2,τ , µ0,τ ) satisfies (3.2) by the above. �

3B. Explicit choice of C(ν0).

Lemma 3.3. The minimal size |µ0|re (see [Lan and Suh 2012, Definition 3.9])
among all µ0 appearing in some (N2, ν2, µ0) satisfying (2.7) in Proposition 2.6 is
smaller than or equal to

C(ν0) :=
∑
τ∈ϒ/c

Cτ (ν0,τ ), (3.4)

where each Cτ (ν0,τ ) is defined as follows:

(1) If τ = τ ◦ c, then we set dτ := 1
2rτ (rτ + 1) (resp. dτ := 1

2rτ (rτ − 1)) if
Gτ
∼= Sp2rτ ⊗Z R1 (resp. Gτ

∼= O2rτ ⊗Z R1), ν0,[τ ]Q :=minτ ′∈[τ ]Q(ν0,τ ′,rτ ), and

Cτ (ν0,τ ) := dτ +
∑

1≤iτ≤rτ

(ν0,τ,iτ − ν0,[τ ]Q). (3.5)

(2) If τ 6= τ ◦ c, then we set dτ := pτqτ ,

ν0,[τ ]Q := min
τ ′∈[τ ]Q,dτ ′ 6=0

(ν0,τ ′,qτ ′ − ν0,τ ′,qτ ′+1),

ν ′0,τ,1 :=

{
ν0,τ,1 if qτ > 0,
ν0,τ,1+ ν0,[τ ]Q if qτ = 0,

and

Cτ (ν0,τ ) := dτ +
∑

1≤iτ≤qτ

(ν ′0,τ,1− ν0,τ,iτ )+
∑

qτ<iτ≤rτ

(ν ′0,τ,1− ν0,[τ ]Q − ν0,τ,iτ ). (3.6)

Proof. These follow from the definition of |µ0|re = d +
∑

τ∈ϒ/c

(∑
1≤iτ≤rτ µ0,τ,iτ

)
and the explicit choices of µ0,τ in the proof of Proposition 2.6. �

Remark 3.7. By using [Lan and Suh 2013, (7.9) and (7.11)], it is possible to reduce
the proof of Theorem 1.1 to the case where the integral PEL datum is Q-simple,
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and replace (3.4) with

C ′(ν0) :=max
[τ ]Q

(
C[τ ]Q(ν0,[τ ]Q)

)
, (3.8)

where:

(1) C[τ ]Q(ν0,[τ ]Q)= 0 if d[τ ]Q =
∑

τ ′∈[τ ]Q/c dτ ≤ 1;

(2) C[τ ]Q(ν0,[τ ]Q)=
∑

τ ′∈[τ ]Q/c Cτ (ν0,τ ), where Cτ (ν0,τ ) are as in (3.5) and (3.6),
otherwise.

We leave the details to the interested readers.

3C. Some examples. To help the reader understand the notation and formulas, we
include some examples of familiar special cases.

Example 3.9 (trivial weight). If ν0 = 0, then (2.7) holds for µ0 = 0 and any
sufficiently large N2, and we have C(ν0) =

∑
τ∈ϒ/c Cτ (ν0,τ ) =

∑
τ∈ϒ/c dτ = d

in (3.4).

Example 3.10 (Siegel case). Suppose (O, ?, L , 〈 · , · 〉, h0) is given with O=Z with
trivial ?, with (L , 〈 · , · 〉) given by Z⊕2r with some standard self-dual symplectic
pairing, and with any conventional choice of h0. Then we are in the so-called Siegel
case. There is a unique τ ∈ϒ with τ = τ ◦c, which we can suppress in our notation,
and each ν0 ∈X+M1

can be represented by a tuple ((ν0,1, ν0,2, . . . , ν0,r ); ν0,0), where
ν0,1 ≥ ν0,2 ≥ · · · ≥ ν0,r are integers. Then µ0 can be chosen to be

ν0− ν0,r ((1, 1, . . . , 1, 1); 0)= ((ν0,1− ν0,r , . . . , ν0,r−1− ν0,r , 0); ν0,0)

(where the last entry is irrelevant), and then C(ν0)=
1
2r(r+1)+

∑
1≤i<r (ν0,i−ν0,r )

(see (3.5)).

Example 3.11 (“Q-similitude Hilbert case”). Suppose (O, ?, L , 〈 · , · 〉, h0) is given
with O =OF with trivial ?, where F is a totally real number field, with (L , 〈 · , · 〉)
given by O⊕2

F with some standard symplectic pairing defined by trace, and with any
conventional choice of h0; and suppose p is any prime number unramified in OF .
Then we are essentially in the so-called Hilbert case, although we only consider
elements in ResF/Q GL2 with similitudes in Gm (rather than ResF/Q Gm). There
are d elements τ ∈ ϒ corresponding to the d = [F :Q] homomorphisms from OF

to an algebraic closure of Qp, which all satisfy τ = τ ◦ c and determine a unique
equivalence class [τ ]Q (of Galois orbits of τ ), and our coefficient ring R is chosen
to contain the images of all these homomorphisms, over which all linear algebraic
data are split. Each ν0 ∈X+M1

can be represented by a tuple ((ν0,τ )τ∈ϒ ; ν0,0), where
each ν0,τ = (ν0,τ,1) consists of just one integer ν0,τ,1. Then ν0,[τ ]Q =minτ∈ϒ(ν0,τ,1),
and µ0 can be chosen to be ν0− ν0,[τ ]Q((1)τ∈ϒ ; 0) = ((ν0,τ,1− ν0,[τ ]Q)τ∈ϒ ; ν0,0),
and we have C(ν0)= d +

∑
τ∈ϒ(ν0,τ,1− ν0,[τ ]Q) (see (3.5)).
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Example 3.12 (simplest unitary case). Suppose (O, ?, L , 〈 · , · 〉, h0) is given with
O =OF , where F is an imaginary quadratic extension of Q with an embedding
F ↪→C, with ? given by complex conjugation, with (L , 〈 · , · 〉) given by a Hermitian
module over O⊕r

F with signature (r − q, q) at∞ (using the given F ↪→ C), and
with any conventional choice of h0 (respecting the signature); and suppose p is any
prime number unramified in OF . Then we obtain the simplest (nontrivial) unitary
case. There is a unique representative τ of orbits in ϒ/c such that τ 6= τ ◦ c and
(pτ , qτ )= (r−q, q), matching the signatures at∞ and at p; hence we shall always
choose this τ and suppress τ from the notation. Each ν0 ∈X+M1

can be represented by
a tuple ((ν0,1, ν0,2, . . . , ν0,q , ν0,q+1, . . . , ν0,r ); ν0,0), where ν0,1 ≥ ν0,2 ≥ . . .≥ ν0,q

and ν0,q+1 ≥ . . . ≥ ν0,r are integers. If q > 0, then µ0 can be chosen to be
(ν0,1−ν0,q+ν0,q+1−ν0,r , . . . , ν0,1−ν0,q , ν0,1−ν0,q , . . . , ν0,1−ν0,2, 0; ν0,0) (note
the reversed order and the repeated term ν0,1− ν0,q ), and we have

C(ν0)= (r − q)q +
∑

1≤i≤q

(ν0,1− ν0,i )+
∑

q<i≤r

(ν0,1− ν0,q + ν0,q+1− ν0,i ).

If q = 0, then µ0 can be chosen to be (ν0,1− ν0,r , . . . , ν0,1− ν0,2, 0; ν0,0) and we
have C(ν0)=

∑
1≤i≤r (ν0,τ,1−ν0,i ); but d = 0 and the map π is trivial — C(ν0)= 0

suffices. (See (3.6) and Remark 3.7.)

4. Simpler proof for the trivial weight case

In this final section, we sketch a logically simpler proof for the trivial weight case
ν0 = 0, which does not require the various advanced technical inputs in [Lan and
Suh 2013, §§1–3] (such as the theory of F-spans in [Ogus 1994]). The key is to
give a simpler proof of the vanishing statement in Corollary 2.8 when ν0 = 0 (with
a suitable choice of (N2, ν2, µ0)). By standard arguments, as in the proof of [Lan
and Suh 2013, Theorem 8.2], we may and we shall assume that R is a perfect field
extension of the residue field of R1.

Using the extended Kodaira–Spencer isomorphism — see [Lan 2013, Theo-
rem 6.4.1.1(4)] — and the very construction of canonical extensions of automorphic
bundles using the relative Lie algebra of the universal abelian scheme, one can
show that

W can
(−w0)(w1·0)

∼= (W∨w1·0)
can ∼=�

d
Mtor

H,6,1/S1
(log∞) :=

d∧
(�1

Mtor
H,6,1/S1

(log∞))

as line bundles over Mtor
H,6,1 (ignoring Tate twists). (The proof is left to the interested

readers.) Moreover, the proof of Proposition 2.6 in Section 3A shows that we
can take µ0 = 0 in Proposition 2.6, with some integer N2 such that the weight
ν2 = N2ν1− (−w0)(w1 · 0) is positive and parallel. Then we have

W sub
Nν1
∼=W sub

ν2
⊗Mtor

H,6,1
W can
(−w0)(w1·0)

∼=W sub
ν2
⊗Mtor

H,6,1
�d

Mtor
H,6,1/S1

(logD),
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where D is the boundary divisor Mtor
H,6,1−MH,1 (with reduced subscheme structure).

By [Lan and Suh 2013, Proposition 4.2(5) and Corollary 7.14], there exists a
(usually nonreduced) divisor D′ with D′red = D, and some r0 > 0, such that the line
bundle (W can

ν2
)⊗r (−D′) is ample for all integers r ≥ r0. (This follows from [Lan

2013, Theorem 7.3.3.4], which implies that there exists some D′ as above such that
OMtor

H,6,1
(−D′) is relatively ample over Mmin

H,1.) By base change from R1 to R, this is
exactly the condition (∗) needed in [Esnault and Viehweg 1992, Theorem 11.5].
Then, by [Esnault and Viehweg 1992, Theorem 11.5] and by Serre duality, we
obtain

H i (Mtor
H,6,R,W sub

Nν1,R)= H i (Mtor
H,6,R,W sub

ν2,R ⊗OMtor
H,6,1

�d
Mtor

H,6,1/S1
(logD))= 0

for all i > 0. (This is the same approach taken in [Lan and Suh 2011].) This
gives the desired vanishing statement in Corollary 2.8 when ν0 = 0, and we can
conclude as in Section 2D. This argument does not depend on [Lan and Suh 2013,
Theorem 8.13(2)], and hence not on the various advanced technical inputs in [Lan
and Suh 2013, §§1–3].
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`-modular representations of unramified
p-adic U(2,1)

Robert James Kurinczuk

We construct all irreducible cuspidal `-modular representations of a unitary group
in three variables attached to an unramified extension of local fields of odd residual
characteristic p with ` 6= p. We describe the `-modular principal series and show
that the supercuspidal support of an irreducible `-modular representation is unique
up to conjugacy.

1. Introduction

The abelian category RR(G) of smooth representations of a reductive p-adic
group G over an algebraically closed field R has been well studied when R has
characteristic zero. The same cannot be said when R has positive characteristic `;
here many questions remain unanswered. In this paper, we are concerned only with
the case ` 6= p. We study the set IrrR(G) of isomorphism classes of irreducible
R-representations, eventually specialising to G = U(2, 1), a unitary group in three
variables attached to an unramified extension F/F0 of nonarchimedean local fields
of odd residual characteristic. All R-representations henceforth considered will be
smooth.

A classical strategy for the classification of irreducible R-representations is
to split the problem into two steps: firstly, for any parabolic subgroup P of G
with Levi decomposition P = M n N and any σ ∈ IrrR(M), decompose the
(normalised) parabolically induced R-representation i G

P (σ ); and, secondly, con-
struct the irreducible R-representations which do not appear as a subquotient of an
R-representation appearing in the first step, the supercuspidal R-representations.
For any parabolic subgroup P , a supercuspidal irreducible R-representation π will
have trivial Jacquet module r G

P (π)= 0, by Frobenius reciprocity (i G
P is right-adjoint

to r G
P ). When R has characteristic zero the irreducible cuspidal R-representations,

those whose Jacquet modules are all trivial, are all supercuspidal. However, in
positive characteristic `, there can exist irreducible cuspidal nonsupercuspidal
R-representations.
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By transitivity of the Jacquet module and the geometric lemma — see [Vignéras
1996, II 2.19] — the cuspidal support of π ∈ IrrR(G), that is, the set of pairs (M, σ )
with M a Levi factor of a parabolic subgroup P of G and σ an irreducible cuspidal
R-representation of M such that π is a subrepresentation of i G

P (σ ), is a nonempty
set consisting of a single G-conjugacy class; we say that the cuspidal support is
unique up to conjugacy. By transitivity of parabolic induction, the supercuspidal
support of π ∈ IrrR(G), that is, the set of pairs (M, σ ) with M a Levi factor of a
parabolic subgroup P of G and σ an irreducible supercuspidal R-representation
of M such that π is a subquotient of i G

P (σ ), is nonempty. However, in general, it is
not known if the supercuspidal support of an irreducible R-representation is unique
up to conjugacy.

For GLn and its inner forms, Vignéras [1996] and Mínguez and Sécherre [2014b;
2014a] showed that the supercuspidal support of an irreducible R-representation is
unique up to conjugacy. The unicity of supercuspidal support is of great importance.
Firstly, the unicity of supercuspidal support (up to inertia) for GLn leads to the block
decomposition of RR(G) into indecomposable summands; see [Vignéras 1998].
Secondly, it is important in Vignéras’ `-modular local Langlands correspondence
for GLn , which is first defined on supercuspidal elements by compatibility with
the characteristic zero local Langlands correspondence and then extended to all
irreducible `-modular representations of GLn . In this paper, we prove unicity of
supercuspidal support for U(2, 1). We hope this is the first step in establishing
similar results for U(2, 1) and in extending these to classical groups in general.

Our strategy is first to construct all irreducible cuspidal R-representations by
compact induction from irreducible R-representations of compact open subgroups.
The type of construction we employ has been used to great effect to construct all
irreducible cuspidal R-representations in a large class of reductive p-adic groups
when R has characteristic zero: [Morris 1999] for level zero R-representations
of any reductive p-adic group, [Bushnell and Kutzko 1993a; 1993b] for GLn

and SLn , [Sécherre and Stevens 2008] for inner forms of GLn , [Yu 2001] and
[Kim 2007] for arbitrary connected reductive groups under “tame” conditions,
and [Stevens 2008] for classical p-adic groups with p odd. Vignéras [1996] and
Mínguez and Sécherre [2014b; 2014a] adapted the characteristic zero constructions
for GLn and its inner forms to `-modular representations. We perform similar
adaptations to Stevens’ construction to exhaust all irreducible cuspidal `-modular
representations of U(2, 1).

Theorem 5.3. Let G = U(2, 1) and let π be an irreducible cuspidal R-representa-
tion of G. There exist a compact open subgroup J of G with pro-unipotent radical
J 1 such that J/J 1 is a finite reductive group, an irreducible R-representation κ of J
and an irreducible cuspidal R-representation σ of J/J 1 such that π ' indG

J (κ⊗σ).
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The construction is explicit and, furthermore, all R-representations

Iκ(σ )= indG
J (κ ⊗ σ)

constructed in this way are cuspidal. Moreover, we show that Iκ(σ ) is supercuspidal
if and only if σ is supercuspidal (Remark 8.2). In work in progress, joint with
Stevens, we extend Stevens’ construction for arbitrary classical groups to the
`-modular setting.

In the split case, for general linear groups all irreducible cuspidal `-modular
representations lift to integral `-adic representations. For inner forms of GLn , this
is no longer true; some cuspidal nonsupercuspidal `-modular representations do not
lift. For U(2, 1) we also find cuspidal nonsupercuspidal `-modular representations
which do not lift (Remark 5.5). These nonlifting phenomena appear quite different.
For U(2, 1) this nonlifting occurs because, in certain cases, there are `-modular
representations of the finite group J/J 1 which do not lift. For inner forms of GLn ,
the nonlifting occurs when the normaliser of the reduction modulo ` of the inflation
of a cuspidal `-adic representation of an analogous group to J/J 1 is larger than
the normaliser of all of its cuspidal lifts. We find that all supercuspidal `-modular
representations of U(2, 1) lift (Remark 8.2), as is the case for GLn and its inner
forms.

Secondly, by studying the corresponding Hecke algebras, we find the charac-
ters χ of the maximal diagonal torus T of U(2, 1) such that the principal series
R-representation iU(2,1)

B (χ) is reducible. We let χ1 denote the character of F× given
by χ1(x)= χ(diag(x, x̄ x−1, x̄−1)), where x̄ is the Gal(F/F0)-conjugate of x .

Theorem 6.2. Let G = U(2, 1). Then i G
B (χ) is reducible exactly in the following

cases:

(1) χ1 = ν
±2, where ν is the absolute value on F ;

(2) χ1 = ην
±1, where η is any extension of the quadratic class field character

ωF/F0 to F×;

(3) χ1 is nontrivial, but χ1 |F×0
is trivial.

When R is of characteristic zero this is due to Keys [1984]. In our proof we
need to apply his results to determine a sign. It should be possible to remove
this dependency by computation using the theory of covers (cf. [Blondel 2012,
Remark 3.13]). An alternative proof, when F0 is of characteristic zero, would be to
use the computations of [Keys 1984] with [Dat 2005, Proposition 8.4].

Finally, by studying the interaction of the right adjoints Rκ of the functors Iκ
with parabolic induction we find cuspidal subquotients of the principal series. When
cuspidal subquotients appear in the principal series we show exactly which ones
from our exhaustive list do, finding that the supercuspidal support of an irreducible
R-representation is unique up to conjugacy.
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Theorem 8.1. Let π be an irreducible R-representation of U(2, 1). Then the
supercuspidal support of π is unique up to conjugacy.

In fact, in many cases, we obtain extra information on the irreducible quotients
and subrepresentations which appear. If ` 6= 2 and ` | q − 1, we show that all
the principal series R-representations iU(2,1)

B (χ) are semisimple (Lemma 6.8). If
` | q + 1, we show that iU(2,1)

B (χ) has a unique irreducible subrepresentation and a
unique irreducible quotient, and these are isomorphic (Lemma 6.10). A striking
example of the reducibilities that occur is when χ = ν−2.

Theorem (see Theorem 6.12 for more details). Let G = U(2, 1).

(1) If ` - (q − 1)(q + 1)(q2
− q + 1), then i G

B (ν
−2) has length two with unique

irreducible subrepresentation 1G and unique irreducible quotient StG .

(2) If ` 6= 2 and ` | q − 1, then i G
B (ν
−2)= 1G ⊕StG is semisimple of length two.

(3) If ` 6= 3 and ` | q2
− q + 1, then i G

B (ν
−2) has length three with unique cuspidal

subquotient. The unique irreducible subrepresentation is not isomorphic to the
unique irreducible quotient.

(4) If ` 6= 2 and ` | q + 1, or if ` = 2 and 4 | q + 1, then i G
B (ν
−2) has length six

with 1G appearing as the unique subrepresentation and the unique quotient, and
four cuspidal subquotients, one of which appears with multiplicity two. A maximal
cuspidal subquotient of i G

B (ν
−2) is not semisimple.

(5) If ` = 2 and 4 | q − 1, then i G
B (ν
−2) has length five with 1G appearing as the

unique subrepresentation and the unique quotient. All cuspidal subquotients of
i G

B (ν
−2) are semisimple and the irreducible cuspidal subquotients are pairwise

nonisomorphic.

2. Notation

2A. Unramified unitary groups. Let F0 be a nonarchimedean local field of odd
residual characteristic p. Let F be an unramified quadratic extension of F0 and a
generator of Gal(F/F0). If D is a nonarchimedean local field, we let oD denote the
ring of integers of D, pD denote the unique maximal ideal of oD , and kD = oD/pD

denote the residue field. We let o0 = oF0 , p0 = pF0 , k0 = kF0 , and q = q0 = |kF0 |.
We fix a choice of uniformiser $F of F0.

Let V be a finite-dimensional F-vector space and h :V×V→ F a hermitian form
on V , that is, a nondegenerate form which is sesquilinear (linear in the first variable
and -linear in the second variable) and such that h(v1, v2)= h(v2, v1) for all v1,
v2 ∈ V . The unitary group U(V, h) is the subgroup of isometries of GL(V ), i.e.,
U(V, h)= {g ∈GL(V ) : h(gv1, gv2)= h(v1, v2), v1, v2 ∈ V }. The form h induces
an anti-involution on EndF (V ) which we denote by . Let σ denote the involution
g 7→ ḡ−1 for g∈GL(V ). We also let σ act on EndF (V ) by a 7→−ā for a∈EndF (V ).
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2B. Parahoric subgroups. An oF -lattice in V is a compact open oF -submodule
of V . Let L be an oF -lattice in V and let Lat V denote the set of all oF -lattices
in V . The oF -lattice L] = {v ∈ V : h(v, L) ⊆ pF }, defined relative to h, is called
the dual lattice of L . Let A = EndF (V ) and g = {X ∈ A : X + Xσ

= 0}. An
oF -lattice sequence is a function 3 : Z→ Lat V which is decreasing and periodic.
Let 3 be an oF -lattice sequence. The dual oF -lattice sequence 3] of 3 is the
oF -lattice sequence defined by3](n)= (3(−n))] for all n ∈Z. We call3 self-dual
if there exists k ∈ Z such that 3(n) = 3](n + k) for all n ∈ Z. If 3 is self-dual
then we can always consider a translate 3k of 3 such that either 3k(0)=3

]
k(0) or

3k(1)=3
]
k(0).

Let 3 be an oF -lattice sequence in V . For n ∈ Z define

Pn(3)= {x ∈ A : x3(m)⊂3(m+ n) for all m ∈ Z},

which is an oF -lattice in A. We let P−n (3)=Pn(3)∩ g.
If 3 is self-dual then the groups Pn(3) are stable under the involution which h

induces on A. In this case, define compact open subgroups of G, called parahoric
subgroups, by

P(3)=P0(3)
×
∩G,

Pm(3)= (1+Pm(3))∩G, m ∈ N.

The pro-unipotent radical of P(3) is isomorphic to P1(3). The sequence
(Pm(3))m∈N is a fundamental system of neighbourhoods of the identity in G and
forms a decreasing filtration of P(3) by normal compact open subgroups. The
quotient M(3) = P(3)/P1(3) is the k0-points of a connected reductive group
defined over k0.

Let P1 = P(31) and P2 = P(32) be parahoric subgroups of G. Fix a set of
distinguished double coset representatives D2,1 for P2\G/P1, as in [Morris 1993,
§3.10]. Let n ∈ D2,1; then

P31,n32 = P1
1(P1 ∩Pn

2)/P1
1

is a parabolic subgroup of M1 = P1 /P1
1, by [Morris 1993, Corollary 3.20]. Fur-

thermore, the pro-p unipotent radical of P1
1(P1 ∩Pn

2) is P1
1(P1 ∩(Pn

2)
1), by [Morris

1993, Lemma 3.21]. If D2,1 is a set of distinguished double coset representatives
for P2\G/P1, then D−1

2,1 is a set of distinguished double coset representatives for
P1\G/P2. Hence

P32,n−131 = P1
2(P2 ∩

nP1)/P1
2

is a parabolic subgroup of M2 = P2 /P1
2. Furthermore, the pro-p unipotent radical

of P1
2(P2 ∩

nP1) is P1
2(P2 ∩

nP1
1).
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2C. U(2, 1)(F/F0). Let xi ∈ F for i = 1, 2, . . . , n. Denote by diag(x1, . . . , xn)

the n-by-n diagonal matrix with entries xi on the diagonal and by adiag(x1, . . . , xn)

the n-by-n matrix (ai, j ) such that am,n+1−m = xn+1−m and all other entries are zero.
Let V be a three-dimensional F-vector space with standard basis {e−1, e0, e1} and

h : V ×V → F be the nondegenerate hermitian form on V defined by, for v,w ∈ V ,

h(v,w)= v−1w1+ v0w0+ v1w−1

if v = (v−1, v0, v1) and w = (w−1, w0, w1) with respect to the standard basis
{e−1, e0, e1}. Let U(2, 1)(F/F0) denote the unitary group attached to the hermitian
space (V, h), i.e.,

U(2, 1)(F/F0)= {g ∈ GL3(F) : g J ḡT J = 1},

where J = adiag(1, 1, 1) is the matrix of the form h. We let U(1, 1)(F/F0) and
U(2)(F/F0) denote the two-dimensional unitary groups defined by the forms whose
associated matrices are adiag(1, 1) and diag(1,$F ) respectively. Let

U(1)(F/F0)= {g ∈ F× : gḡ = 1}

and occasionally, for brevity, let F1
= U(1)(F/F0). We use analogous notation for

unitary groups defined over extensions of F0 and defined over finite fields.
Let B be the standard Borel subgroup of U(2, 1)(F/F0) with Levi decomposition

B = T n N , where T = {diag(x, y, x̄−1) : x ∈ F×, y ∈ F1
} and

N =
{1 x y

0 1 x̄
0 0 1

 : x, y ∈ F, y+ ȳ = x x̄
}
.

The maximal F0-split torus contained in T is T0 = {diag(x, 1, x−1) : x ∈ F×0 }. The
subgroup of T generated by its compact subgroups is

T 0
= {diag(x, y, x̄−1) : x ∈ o×F , y ∈ F1

}.

Let T 1
= T 0

∩ diag(1+ pF , 1+ pF , 1+ pF ).
Let3I be the oF -lattice sequence of period three given by3I (0)= oF⊕oF⊕oF ,

3I (1) = oF ⊕ oF ⊕ pF and 3I (2) = oF ⊕ pF ⊕ pF with respect to the standard
basis. The (standard) Iwahori subgroup of G is the parahoric subgroup

P(3I )=

oF oF oF

pF oF oF

pF pF pF

∩G.

There are two parahoric subgroups of G which contain P(3I ), both of which are
maximal. These correspond to the lattice sequences 3x of period one and 3y of pe-
riod two with3x(0)=oF⊕oF⊕oF ,3y(0)=oF⊕oF⊕pF and3y(1)=oF⊕pF⊕pF .
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Note that we have M(3x)' U(2, 1)(kF/k0), M(3y)' U(1, 1)(kF/k0)× k1
F and

M(3I )' k×F × k1
F . Furthermore, M(3I ) is a maximal torus in M(3x) and P(3I )

is equal to the preimage in P(3x) of a Borel subgroup Bx , which we call standard,
under the projection map P(3x)→M(3x); the same holds with y in place of x
throughout.

The affine Weyl group W̃ = NG(T )/T 0 of U(2, 1)(F/F0) is an infinite dihedral
group generated by the cosets represented by the elements wx = adiag(1, 1, 1) and
wy = adiag($F , 1,$−1

F ). Furthermore, we have P(3x)=P(3I )∪P(3I )wx P(3I )

and P(3y)= P(3I )∪P(3I )wy P(3I ).

2D. Reduction modulo `. Let Q` be an algebraic closure of the `-adic numbers,
Z` be the ring of integers of Q`, 0 be the unique maximal ideal of Z`, and F`=Z`/0

be the residue field of Q`, which is an algebraic closure of the finite field with
` elements. Let GrR(G) denote the Grothendieck group of R-representations, i.e.,
the free abelian group with Z-basis IrrR(G). A representation in RQ`

(G) will be
called `-adic and a representation in RF`

(G) will be called `-modular. We say ` is
banal for G if it does not divide the pro-order of any compact open subgroup of G.

Let (π,V) be a finite-length `-adic representation of G. We call π integral if π sta-
bilises a Z`-lattice L in V. In this case π stabilises 0L and π induces a finite-length
`-modular representation on the space L/0L. In general, this depends on the choice
of the lattice L. However, due to [Vignéras 2004, Theorem 1], the semisimplification
of L/0L is independent of the lattice chosen and we define r`(π), the reduction
modulo ` of π , to be this semisimple `-modular representation. If π is a finite-length
R-representation of G we write [π ] for the semisimplification of π in GrR(G).

We fix choices of square roots of p in Q×` and F×` such that our chosen square
root of p in F×` is the reduction modulo ` of our chosen square root of p in Q×` ,
and make use of these choices in our definitions of normalised parabolic induction
and the Jacquet module.

Parabolic induction preserves integrality and commutes with reduction modulo `:
if P = MnN is a parabolic subgroup of G and σ is a finite-length integral `-adic
representation of M , then r`(i G

P (σ ))'
[
i G

P (r`(σ ))
]
. Furthermore, compact induction

commutes with reduction modulo `: if H is a closed subgroup of G and σ an
integral finite-length representation of H such that indG

H (σ ) is of finite length, then
r`(indG

H (σ ))= [indG
H (r`(σ ))]. For classical groups, due to [Dat 2005], the Jacquet

module preserves integrality and commutes with reduction modulo `: if P =MnN
is a parabolic subgroup of G and π is a finite-length integral `-adic representation
of G, then r`(r G

P (π))'
[
r G

P (r`(π))
]
. This implies that the reduction modulo ` of a

finite-length integral cuspidal `-adic representation is cuspidal.
An irreducible R-representation is admissible, due to [Vignéras 1996, II 2.8]. If π

is an R-representation, we let π̃ or π∼ denote the contragredient representation of π .
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The abelian category RR(G) has a decomposition as a direct product of full
subcategories Rx

R(G), consisting of all representations all of whose irreducible
subquotients have level x for x ∈Q>0, which is preserved by parabolic induction
and the Jacquet functor, by [Vignéras 1996, II 5.8 and 5.12].

3. Cuspidal representations of U(1, 1)(kF/k0) and U(2, 1)(kF/k0)

Our description of the supercuspidal `-adic representations of U(1, 1)(kF/k0) and
U(2, 1)(kF/k0) and the decomposition of the `-adic principal series follow from
similar arguments made for GL2(kF ) and SL2(kF ) by Digne and Michel [1991,
§15.9]. The character tables of both groups were first computed by Ennola [1963]
and the `-modular representations of U(2, 1)(kF/k0) were first studied by Geck
[1990]. In this section, let H = U(1, 1)(kF/k0) and G = U(2, 1)(kF/k0). We can
realise H and G as the fixed points of GL2(k̄) and GL3(k̄) under twisted Frobenius
morphisms F̃ : (ai j ) 7→ (aq

ji )
−1, where k̄ is an algebraic closure of k0 containing kF .

A torus T of GL2(k̄) (resp. GL3(k̄)) is called minisotropic if it is stable under the
twisted Frobenius morphism F̃ and is not contained in any F̃-stable parabolic sub-
group of GL2(k̄) (resp. GL3(k̄)). We call a torus in H or G minisotropic if it is equal
to the F̃-fixed points of a minisotropic torus of the corresponding algebraic group.

3A. Cuspidals of U(1, 1)(kF/k0).

3A1. Cuspidals. There are 1
2(q

2
+ q) irreducible `-adic supercuspidal represen-

tations of H . These can be parametrised by the regular irreducible characters of
the minisotropic tori of H . There is only one conjugacy class of minisotropic tori
in G, which is isomorphic to k1

F × k1
F ; hence a character of this torus corresponds

to two characters of k1
F . Furthermore, this character is regular if and only if it

corresponds to two distinct characters of k1
F . Thus the `-adic supercuspidals can be

parametrised by unordered pairs of distinct irreducible characters of k1
F . Let χ1, χ2

be distinct `-adic characters of k1
F . Let σ(χ1, χ2) denote the `-adic supercuspidal

representation parametrised by the set {χ1, χ2}.
Using Clifford Theory, the decomposition numbers for H follow from the

well-known decomposition numbers of SU(1, 1)(kF/k0) ' SL2(k0). We have
|H | = q(q − 1)(q + 1); hence, because q is odd, there are four cases to consider:
` | q − 1, ` | q + 1, `= 2, and ` is prime to (q2

− 1).
All irreducible `-modular cuspidal representations of H are isomorphic to the

reduction modulo ` of an irreducible `-adic supercuspidal representation. If χ is an
`-adic character we let χ denote its reduction modulo `. If χ ′1, χ

′

2 are `-adic charac-
ters of k1

F , we have r`(σ (χ1, χ2))= r`(σ (χ ′1, χ
′

2)) if and only if {χ1, χ2}={χ
′

1, χ
′

2}.
We let σ(χ1, χ2)= r`(σ (χ1, χ2)). Furthermore, σ(χ1, χ2) is supercuspidal if and
only if |{χ1, χ2}| = 2 and we have σ(χ1, χ2)= σ(χ2, χ1). Hence the irreducible
cuspidal nonsupercuspidal `-modular representations of H are parametrised by the
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`-modular characters of k1
F and, if χ is an `-modular character of k1

F equal to the
reduction modulo ` of two distinct `-adic characters of k1

F , we let σ(χ)= σ(χ, χ).
When ` - q+1, all irreducible cuspidal `-modular representations are supercuspidal.

3A2. Cuspidal nonsupercuspidals when ` | q + 1. Let `a
‖q + 1, so that there are

(q + 1)/`a cuspidal nonsupercuspidal `-modular representations denoted by σ(χ);
these occur as the reduction modulo ` of σ(χ1, χ2) when χ = χ1 = χ2. Let
T = {diag(x, x̄−1) : x ∈ k×F } be the maximal diagonal torus of H and BH be
the standard Borel subgroup containing T . The principal series representations
i H

BH
(χ ◦ ξ)' i H

BH
(1̄)(χ ◦ det) are uniserial of length three with (χ ◦ det) appearing

as the unique irreducible subrepresentation and the unique irreducible quotient, and
unique irreducible cuspidal subquotient σ(χ).

3B. Cuspidals of U(2, 1)(kF/k0).

3B1. `-adic supercuspidals. There are two conjugacy classes of minisotropic tori
in G, which give rise to two classes of irreducible supercuspidal `-adic repre-
sentations coming from regular irreducible characters of these tori. Let E be
an unramified cubic extension of F . One conjugacy class of the minisotropic
tori has representatives isomorphic to k1

F × k1
F × k1

F ; the other conjugacy class
has representatives isomorphic to k1

E . However, in contrast to H , the irreducible
representations parametrised by the irreducible regular characters of these tori do
not constitute all the irreducible supercuspidal representations of G: additionally
there exist unipotent supercuspidal representations of G. Thus we have three classes
of `-adic supercuspidals:

(1) There are 1
6(q+1)q(q−1) `-adic supercuspidals of dimension (q−1)(q2

−q+1)
parametrised by the irreducible regular characters of k1

F × k1
F × k1

F . An irreducible
`-adic character of k1

F × k1
F × k1

F is of the form χ1 ⊗ χ2 ⊗ χ3, with χ1, χ2, χ3

irreducible `-adic characters of k1
F , and is regular if and only if |{χ1, χ2, χ3}| = 3.

We let σ(χ1, χ2, χ3) denote the `-adic supercuspidal corresponding to the set
{χ1, χ2, χ3}.

(2) There are 1
3(q+1)q(q−1) `-adic supercuspidals of dimension (q−1)(q+1)2

parametrised by the irreducible regular characters of k1
E . An irreducible `-adic

character ψ of k1
E is regular if and only if ψq+1

6= 1. We let τ(ψ) denote the `-adic
supercuspidal representation corresponding to ψ .

(3) There are (q+1) unipotent `-adic supercuspidals of dimension q(q−1). These
can be parametrised by the irreducible characters of k1

F . We write ν(χ) for the
unipotent `-adic supercuspidal representation corresponding to the irreducible `-adic
character χ of k1

F .

3B2. `-modular cuspidals. We have |G| = q3(q − 1)(q + 1)3(q2
− q + 1); hence

there are six cases to consider: `=2, `=3 and ` |q+1, ` |q−1, ` |q+1, ` |q2
−q+1,
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and ` is prime to (q−1)(q+1)(q2
−q+1). When ` 6=2, the decomposition numbers

can be obtained from [Geck 1990] and [Okuyama and Waki 2002] using Clifford
theory. Parabolic induction of the trivial character is completely described in [Hiss
2004, Theorem 4.1]. When ` | q− 1 or ` | q+ 1, all irreducible cuspidal `-modular
representations lift to irreducible cuspidal `-adic representations. Analogously
to the two-dimensional case, we write ν(χ) = r`(ν(χ)), τ(ψ) = r`(τ (ψ)) and
σ(χ1, χ2, χ3)= r`(σ (χ1, χ2, χ3)).

When ` 6= 3 and ` | q2
−q+1, we have irreducible `-modular cuspidal represen-

tations which do not lift: if ψ is an `-adic character of k1
E such that ψq+1

6= 1 but
ψq+1

= 1̄, then r`(τ (ψ))= ν(χ)⊕τ+(χ), where χ is the character of k1
F such that

ψ = χ ◦ ξ , where ξ(x)= xq−1, and τ+(χ) does not lift. When `= 2 and 4 | q − 1,
we also have cuspidal representations which do not lift: if ψ is an `-adic character
of k1

E such that ψq+1
6= 1 but ψq+1

= 1̄, then r`(τ (ψ)) = ν(χ)⊕ ν(χ)⊕ τ+(χ),
where χ is the character of k1

F such that ψ = χ ◦ ξ , where ξ(x)= xq−1, and τ+(χ)
does not lift. All other irreducible cuspidal `-modular representations of G lift to
`-adic representations and we use the same notation as before.

3B3. `-adic principal series. Let T ={diag(x, y, x̄−1) : x ∈k×F , y∈k1
F } be the max-

imal diagonal torus in G and B be the standard Borel subgroup of G containing T .
Let χ1 be an `-adic character of k×F and χ2 an `-adic character of k1

F . Let χ be
the irreducible character of T defined by χ(diag(x, y, x−q)) = χ1(x)χ2(xyx−q).
The character χ is regular if and only if χq+1

1 6= 1, and in this case the principal
series representation i G

B (χ) is irreducible.
If χq+1

1 = 1 then χ1 = χ
′

1 ◦ ξ , where ξ(x)= xq−1 and χ ′1 is an `-adic character
of k1

F . If χ ′1 = 1, or equivalently χ1 = 1, then

i G
B (χ)= 1G(χ2 ◦ det)⊕StG(χ2 ◦ det),

where StG is an irreducible q3-dimensional representation of G. If χ ′1 6= 1 then

i G
B (χ)= R1H (χ

′

1)
(χ2 ◦ det)⊕ RStH (χ

′

1)
(χ2 ◦ det),

where R1H (χ
′

1)
and RStH (χ

′

1)
are irreducible representations of G of dimensions

q2
− q + 1 and q(q2

− q + 1) respectively. The reducibility here comes from
inducing first to the Levi subgroup L∗ = U(1, 1)(kF/k0)×U(1)(kF/k0), which is
not contained in any proper rational parabolic subgroup of G. Here 1H and StH

denote the trivial and Steinberg representations of U(1, 1)(kF/k0), and R is a
generalised induction from L∗ to G.

3B4. Cuspidal subquotients of `-modular principal series. If ` 6= 2 and ` | q − 1,
or ` is prime to (q− 1)(q+ 1)(q2

−q+ 1), then all irreducible cuspidal `-modular
representations are supercuspidal and the principal series representations are all
semisimple.
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Let χ2 be an `-modular character of k1
F . We first describe the `-modular principal

series representations i G
B (1̄)(χ2 ◦ det) in all the cases where cuspidal subquotients

appear.

(1) If ` 6= 3 and ` | q2
− q + 1, i G

B (1̄)(χ2 ◦ det) are uniserial of length three with
(χ ◦ det) appearing as the unique irreducible subrepresentation and the unique
irreducible quotient and τ+(χ) as the unique irreducible cuspidal subquotient.

(2) If ` 6= 2 and ` | q + 1, or ` = 2 and 4 | q + 1, then i G
B (1̄)(χ ◦ det) have

irreducible cuspidal subquotients ν(χ) and σ(χ)=σ(χ, χ, χ). The principal series
representations i G

B (1̄)(χ ◦ det) are uniserial of length five with (χ ◦ det) appearing
as the unique irreducible subrepresentation and the unique irreducible quotient.
A maximal cuspidal subquotient of i G

B (1̄)(χ ◦ det) is uniserial of length three
with ν(χ) appearing as the unique irreducible quotient and the unique irreducible
subrepresentation, and remaining subquotient σ(χ).

(3) If `= 2 and 4 | q−1 then i G
B (1̄)(χ ◦det) has length four with (χ ◦det) appearing

as the unique irreducible subrepresentation and the unique irreducible quotient, and
cuspidal subquotient ν(χ)⊕ τ+(χ).

Now let χ ′1 and χ2 be `-modular characters of k1
F with χ ′1 nontrivial and let

χ1 = χ
′

1 ◦ ξ . Let χ be the `-modular character of T defined by

χ(diag(x, y, x−q))= χ1(x)χ2(xyx−q).

If ` - q + 1 then i G
B (χ) does not possess any cuspidal subquotients. If ` | q + 1

then i G
B (χ) is uniserial of length three with R1̄H (χ

′

1)
(χ2 ◦ det) appearing as the

unique irreducible subrepresentation and the unique irreducible quotient and cusp-
idal subquotient σ(χ ′1, χ

′

1, χ2). This follows from [Bonnafé and Rouquier 2003,
Theorem 11.8] and the principal block of H as χ corresponds to a semisimple
element with centraliser H × k1

F in the dual group.

4. Irreducible cuspidal R-representations of U(2, 1)(F/F0)

Let G =U(2, 1)(F/F0). We construct all irreducible cuspidal representations of G
by compact induction from certain irreducible representations of compact open
subgroups. We review some general theory first and recall results of Vignéras on
level zero representations. Our construction of all irreducible cuspidal representa-
tions of G then follows the outline of Stevens’ construction [2008] of all irreducible
cuspidal representations of classical p-adic groups in the complex case. While his
construction is carried out when R=C the first part remains equally valid when R is
any algebraically closed field of characteristic unequal to p, essentially as all groups
involved are pro-p . However, when we move to defining β-extensions and beyond
the subgroups we are dealing with no longer have pro-order necessarily invertible
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in F`. It is here, and after, where we need to be careful and have to make nontrivial
changes to the proofs of the statements of [Stevens 2008]. It turns out that, even
though we have to change the proofs, the definitions and properties of β-extensions
in the `-modular case are completely analogous to those of complex β-extensions.
We note that as we are in the special case of unramified U(2, 1)(F/F0), using the
framework of Stevens, we can show that our β-extensions satisfy closer compatibility
properties than are available in the general case of classical groups.

4A. Types and Hecke algebras. By an R-type, we mean a pair (K , σ ) consisting
of a compact open subgroup K of G and an irreducible R-representation σ of K .
Given an R-type we consider the compactly induced representation indG

K (σ ) of G,
the goal being to find pairs (K , σ ) such that indG

K (σ ) is irreducible and cuspidal.
Let π ∈ IrrR(G); we say that π contains the R-type (K , σ ) if π is a quotient
of indG

K (σ ).
Let (K , σ ) be an R-type in G and W be the space of σ . The spherical Hecke

algebra H(G, σ ) of σ is the R-module consisting of the set of all functions f :
G → EndR(W) such that the support of f is a finite union of double cosets in
K\G/K and f transforms by σ on the left and the right, i.e., for all k1, k2 ∈ K
and all g ∈ G, f (k1gk2) = σ(k1) f (g)σ (k2). The product in H(G, σ ) is given by
convolution: if f1, f2 ∈H(G, σ ) then

f1 ? f2(h)=
∑
G/K

f1(g) f2(g−1h).

The spherical Hecke algebra H(G, σ ) is isomorphic to EndG(indG
K (σ )), where

multiplication in EndG(indG
K (σ )) is defined by composition. For g ∈ G, let

Ig(σ )= HomK (σ, indK
K∩K g σ g) and let IG(σ )= {g ∈ G : Ig(σ ) 6= 0}.

Let M(G, σ ) denote the category of right H(G, σ )-modules. Define

Mσ :RR(G)→M(G, σ )

by π 7→ HomG(indG
K (σ ), π); this is a (right) EndG(indG

K (σ ))-module by precom-
position. In the `-adic case, if (K , σ ) is a type in the sense of [Bushnell and Kutzko
1998, p. 584], Mσ induces an equivalence of categories between M(G, σ ) and the
full subcategory of RR(G) of representations all of whose irreducible subquotients
contain (K , σ ).

An R-representation (π,V) of G is quasiprojective if, for all R-representations
(σ,W) of G, all surjective 8 ∈ HomG(V,W) and all 9 ∈ HomG(V,W), there
exists 4 ∈ EndG(V) such that 9 =8 ◦4.

Theorem 4.1 [Vignéras 1998, Appendix, Theorem 10]. Let π be a quasiprojective,
finitely generated R-representation of G. The map ρ 7→HomG(π, ρ) induces a bijec-
tion between the irreducible quotients of π and the simple right EndG(π)-modules.
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Let P be a parabolic subgroup of G with Levi decomposition P=MnN . Let Pop

be the opposite parabolic subgroup of P with Levi decomposition Pop
= M n N op.

Let K+ = K ∩ N and K− = K ∩ N op. An element z of the centre of M is called
strongly (P, K )-positive if:

(1) zK+z−1
⊂ K+ and zK−z−1

⊃ K−.

(2) For all compact subgroups H1, H2 of N (resp. N op), there exists a positive
(resp. negative) integer m such that zm H1z−m

⊂ H2.

Let (KM , σM) be an R-type of M . An R-type (K , σ ) is called a G-cover of
(KM , σM) relative to P if we have:

(1) K ∩M = KM and we have an Iwahori decomposition K = K−KM K+.

(2) ResK
KM
(σ ) = σM , ResK

K+(σ ) and ResK
K−(σ ) are both multiples of the trivial

representation.

(3) There exists a strongly (P, K )-positive element z of the centre of M such that
the double coset K z−1K supports an invertible element of HR(G, σ ).

The point is that the properties of a G-cover allow one to define an injective
homomorphism of algebras jP :H(M, σM)→H(G, σ ) and hence a (normalised)
restriction functor ( jP)

∗
:M(G, σ )→M(M, σM); see [Bushnell and Kutzko 1998,

p. 585] and [Vignéras 1998, II §10].

Theorem 4.2 [Vignéras 1998, II §10.1]. Let π be a finitely generated `-modular
representation of G. We have an isomorphism ( jP)

∗(Mσ (π)) ' MσM (r
G
P (π)) of

representations of M.

4B. Level zero `-modular representations. An irreducible representation π of G
is of level zero if it has nontrivial invariants under the pro-p unipotent radical of
some maximal parahoric subgroup of G.

Let 3 be a self-dual oF -lattice sequence in V and P(3) the associated parahoric
subgroup in G. We define parahoric induction I3 :RR(M(3))→RR(G) on the
objects of RR(M(3)) by

I3(σ )= indG
P(3)(σ )

for σ an R-representation of M(3), where, by abuse of notation, we also write σ
for the inflation of σ to P(3) by defining P1(3) to act trivially. This functor has
a right-adjoint, parahoric restriction R3 :RR(G)→RR(M(3)), defined on the
objects of RR(G) by

R3(π)= πP1(3)

for π an R-representation of G. Parahoric induction and restriction are exact
functors.
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We have the following important lemma, due to Vignéras [2001]. In her paper,
the statement is for a general p-adic reductive group G.

Lemma 4.3 [Vignéras 2001]. Let P1 = P(31) and P2 = P(32) be parahoric sub-
groups of G. Let σ be a representation of M(32) and fix a set D1,2 of distinguished
double coset representatives of P1\G/P2. We have an isomorphism

R31 ◦ I32(σ )'
⊕

n∈D1,2

iM(31)
P31,n32

(
rM(32)

P
32,n

−131
(σ )

)n
.

Lemma 4.4. Let P(31) and P(32) be parahoric subgroups of G associated to the
oF -lattice sequences 31 and 32 in V . Suppose that P(32) is maximal and let σ be
an irreducible cuspidal representation of M(32). We have

R31 ◦ I32(σ )'

{
σ if P(31) is conjugate to P(32) in G,
0 otherwise.

Proof. By cuspidality of σ , if rM(32)
P32,n

−131
(σ ) 6= 0, then P32,n−131 = M(32). If P(32)

is not conjugate to P(31) then, for all n ∈ D1,2, the parabolic subgroup P32,n−131 is
a proper parabolic subgroup of M(32). Hence R32 ◦ I31(σ )' 0 by Lemma 4.3. As
NG(P(32)) = P(32), if there exists n ∈ D1,2 such that P(n−131) = P(32), there
can be only one such n. In this case, R31 ◦ I32(σ )' σ , by Lemma 4.3. �

4C. Positive level cuspidal `-modular representations.

4C1. Semisimple strata and characters. Let [3, n, r, β] be a skew semisimple
stratum in A; see [Stevens 2008, Definition 2.8]. Associated to [3, n, r, β] and a
fixed level one character of F×0 are:

(1) A decomposition V =
⊕l

i=1 Vi , orthogonal with respect to h, and a sum of
field extensions E =

⊕l
i=1 Ei of E such that 3=

⊕l
i=13i with 3i an oEi -lattice

sequence in Vi ; we say that 3 is an oE -lattice sequence and write 3E when we are
considering 3 as such.

(2) The F0-points of a product of unramified unitary groups defined over F0,
G E =

∏l
i=1 G Ei .

(3) Compact open subgroups H(3, β)⊆ J (3, β) of G with decreasing filtrations
by pro-p normal compact open subgroups H n(3, β) = H(3, β) ∩ Pn(3) and
J n(3, β) = J (3, β) ∩ Pn(3), n > 1. When 3 is fixed we write J = J (3, β),
H = H(3, β), and use similar notation for their filtration subgroups. We have
J = P(3E)J 1, where P(3E) is the parahoric subgroup of G E obtained by consid-
ering 3 as an oE -lattice sequence.

(4) A set of semisimple characters C−(3, r, β) of H r+1(3, β). For r = 0, we
write C−(3, β)= C−(3, 0, β).
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Let [3i , n, 0, β], i=1, 2, be skew semisimple strata in A. For all θ1∈C−(31, β),
there is a unique θ2 ∈ C−(32, β) such that 1 ∈ IG(θ1, θ2), by [Stevens 2005,
Proposition 3.32]. This defines a bijection

τ31,32,β : C−(31, β)→ C−(32, β)

and we call θ2 = τ31,32,β(θ1) the transfer of θ1.
The skew semisimple strata in A fall into three classes:

(1) Skew simple strata [3, n, 0, β], where E is a field.

(a) If E = F we say that [3, n, 0, β] is a scalar skew simple stratum. In this
case, J/J 1

= P(3)/P1(3) is isomorphic to one of GL1(kF )×U(1)(kF/k0),
U(1, 1)(kF/k0)×U(1)(kF/k0) or U(2, 1)(kF/k0).

(b) Otherwise, E/F is cubic and J/J 1
' P(3E)/P1(3E) ' U(1)(kE/kE0) is a

finite unitary group of order qE0 + 1, where

qE0 =

{
q3

0 if E/F is unramified,
q0 if E/F is ramified.

(2) Skew semisimple strata [3, n, 0, β] = [31, n1, 0, β1] ⊕ [32, n2, 0, β2], not
equivalent to a skew simple stratum, with [3i , ni , 0, βi ] skew simple strata in
EndF0(Vi ). Without loss of generality, suppose that V1 is one-dimensional and
V2 is two-dimensional. We have J/J 1

'
∏2

i=1 P(3i,E)/P1(3i,E). If β2 ∈ F
and V2 is hyperbolic, then G E ' U (1, 1)(F/F0)×U(1)(F/F0) and P(32,E) is a
parahoric subgroup of U(1, 1)(F/F0) and need not be maximal. If β2 ∈ F and
V2 is anisotropic, then G E ' U(2)(F/F0)×U(1)(F/F0) is compact. If E2/F is
quadratic then it is ramified, because there is a unique unramified extension of F0

in each degree and E0
2/F0 is quadratic and also fixed by the involution. Thus, if

E2/F is quadratic then J/J 1
' U(1)(kF/k0)×U(1)(kF/k0).

(3) Skew semisimple strata [3, n, 0, β] =
⊕3

i=1[3i , ni , 0, βi ], not equivalent to a
skew semisimple stratum of the first two classes, with [3i , ni , 0, βi ] skew simple
strata in EndF0(Vi ). In this case, J/J 1

'U(1)(kF/k0)×U(1)(kF/k0)×U(1)(kF/k0).

We say that π contains the skew semisimple stratum [3, n, 0, β] if it contains a
character θ ∈ C−(3, β).

Theorem 4.5 [Stevens 2005, Theorem 5.1]. Let π be an irreducible cuspidal
`-modular representation of G. Then π contains a skew semisimple stratum
[3, n, 0, β].

4C2. Heisenberg representations. Let θ ∈ C−(3, β). By [Stevens 2008, Corol-
lary 3.29], there exists a unique irreducible representation η of J 1(3, β) which
contains θ . We call such an η a Heisenberg representation. Furthermore, by [Stevens
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2008, Proposition 3.31],

dimR(Ig(η))=

{
1 if g ∈ J 1G E J 1,

0 otherwise.

4C3. β-extensions. Assume P(3E) is maximal. A β-extension of a Heisenberg
representation η to J = J (3, β) is an extension κ with maximal intertwining,
IG(κ)= IG(η). By [Blasco 2002, Lemma 5.8], for all maximal skew semisimple
strata which are not skew scalar simple strata, β-extensions exist in the `-adic
case for G, and for `-modular representations we obtain β-extensions by reduction
modulo ` from the `-adic extensions. Note that the reduction modulo ` of an `-adic
β-extension κ̃ of J is irreducible: its restriction to J 1 is the reduction modulo ` of
η̃ = ResJ

J 1(κ̃), reduction modulo ` commutes with restriction, and, as J 1 is pro-p ,
the reduction modulo ` of η̃ is irreducible. Let [3, n, 0, β] be a scalar skew simple
stratum and θ ∈C−(3, β). Then J 1

= H 1
= P1(3), J = P(3), and θ = χ ◦det for

some character χ of P1(3) (cf. [Bushnell and Kutzko 1993a, Definition 3.23]). The
character χ extends to a character χ̃ of F1 and we define κ : J→ R× by κ = χ̃ ◦det.
Then κ extends θ and is intertwined by all of G, hence is a β-extension. Hence, in
the maximal case, β-extensions exist.

Let [3, n, 0, β] be a skew semisimple stratum. Suppose P(3E) is not maximal
and choose a maximal parahoric subgroup P(3m

E ) of G E associated to the oE -lattice
sequence 3m

E in V such that P(3E)⊂ P(3m
E ). This implies that P(3)⊂ P(3m).

Note that this is the case for unramified U(2, 1)(E/F), but not for classical groups
in general. Let θ ∈ C−(3, β) and let η be the irreducible representation of
J 1

m = J 1(β,3) which contains θ . Let θm = τ3,3m ,β(θ) and let ηm be the irreducible
representation of J 1(β,3m) which contains θm . Let κm be a β-extension of ηm .

Lemma 4.6. There exists a unique extension κ of η to J such that ResJm
P(3E )J 1

m
(κm)

and κ induce equivalent irreducible representations of P(3E)P1(3).

Proof. If P(3E) is maximal then κm = κ and there is nothing to prove. Let κ̃m be a
lift of κ . By [Stevens 2008, Lemma 4.3], there exists a unique irreducible `-adic
representation κ̃ of J such that ResJm

P(3E )J 1
m
(κ̃m) and κ induce equivalent irreducible

representations of P(3E)P1(3). By reduction modulo `, we have an irreducible
`-modular representation κ = r`(κ̃) which extends η such that[

indP(3E )P1(3)
J κ

]
=
[
indP(3E )P1(3)

P(3E )J 1
m

ResJm
P(3E )J 1

m
(κm)

]
.

By Mackey Theory,

ResP(3E )P1(3)
P1(3)

(indP(3E )P1(3)
J κ)' indP1(3)

J 1 κ.

Furthermore, J 1
⊆ IP1(3)(κ)⊆ IP1(3)(η)= J 1, so indP1(3)

J 1 κ and hence indP(3E )P1(3)
J κ

are irreducible. �
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A β-extension of η is an extension κ of η to J constructed in this way. We call two
β-extensions which induce equivalent representations, as in Lemma 4.6, compatible.
With the next lemma we show we can “go backwards” and from a β-extension
defined in the minimal case we define two unique compatible β-extensions in the
maximal case. In this way we get a triple of compatible β-extensions. Let P(3r

E) be
a maximal parahoric subgroup of G E containing P(3E) associated to the oE -lattice
sequence 3r

E in V . Let θr = τ3,3r ,β(θ), ηr be the irreducible representation of
J 1(β,3r ) which contains θr , and κ be a β-extension of η.

Lemma 4.7. There exists a unique β-extension κr of ηr which is compatible with κ .

Proof. By [Stevens 2008, Lemma 4.3], there exists a representation κ̂ of P(3E)J 1
r

such that κ and κ̂ induce equivalent representations of P(3E)P1(3). Let κ ′ be a
β-extension of ηr . The restriction to P(3E)J 1

r of κ ′ and κ̂ differ by a character
χ of Br = P(3E)/P1(3

r
E) which is trivial on the unipotent part of Br and inter-

twined by the nontrivial Weyl group element w. By the Bruhat decomposition,
Mr = M(3r

E) = Br ∪ BrwBr ; hence χ is intertwined by the whole of Mr and
extends to a character of Mr . Hence κr = κ ⊗χ

−1 is a β-extension of ηr which is
compatible with κ . By reduction modulo `, as in the proof of Lemma 4.6, we have
the corresponding statement in the `-modular setting. �

4C4. κ-induction and restriction. Fix [3, n, 0, β] a skew semisimple stratum in A,
θ ∈ C−(3, β), η the unique Heisenberg representation containing θ and κ a
β-extension of η.

Let σ be an R-representation of M(3E) and, by abuse of notation, we also write σ
for the inflation of σ to J obtained by defining J 1 to act trivially. The functor
RR(M(3E))→RR(J ) given by σ 7→ κ ⊗ σ identifies RR(M(3E)) with the full
subcategory of η-isotypic representations of J ; see [Vignéras 2001, Definition 8.1].
Define κ-induction, Iκ :RR(M(3E))→RR(G), by

Iκ(σ )= indG
J (κ ⊗ σ)

for σ an R-representation of M(3E) and defined analogously on the morphisms of
RR(M(3E)). This functor has a right adjoint, Rκ :RR(G)→RR(M(3E)), called
κ-restriction, defined by

Rκ(π)= HomJ 1(κ, π),

where the action of M(3E) is given by: for f ∈HomJ 1(κ, π) and m ∈M(3E), let
j ∈ J represent the coset m ∈ J/J 1, then m · f = π( j) ◦ f ◦ κ( j−1).

In the level zero case, we have J = P(3) and we can choose κ to be trivial,
thus we have Iκ = I3 and Rκ = R3. Hence κ-restriction and induction generalise
parahoric restriction and induction. Related to [3, n, 0, β], we also have functors
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of parahoric induction IE
3 : RR(M(3E)) → RR(G E) and parahoric restriction

RE
3 :RR(G E)→RR(M(3E)) obtained by considering3 as an oE -lattice sequence.

Theorem 4.8 [Kurinczuk and Stevens 2014]. Let [3i , n, 0, β], i = 1, 2, be skew
semisimple strata. Let θ1 ∈ C−(3

1, β) and θ2 = τ31,32,β(θ1). For i = 1, 2, let ηi

be a Heisenberg extension of θi , κi be compatible β-extensions of ηi , and let σ be
an R-representation of M(31

E). Then

Rκ2 ◦ Iκ1(σ )' RE
32 ◦ IE

31(σ ).

The proof of Theorem 4.8 in [Kurinczuk and Stevens 2014] follows from a
combination of Mackey theory, isomorphisms defined as in [Bushnell and Kutzko
1993a, Proposition 5.3.2], and the computation of the intertwining spaces Ig(η1, η2)

for g ∈ G, which are one-dimensional if g ∈ G E and zero otherwise.

Lemma 4.9. In the setting of Lemma 4.6, let κ and κm be compatible β-extensions.
Then, for all σ ∈RR(M(3E)), we have

Iκ(σ )' indG
J 1

m P(3E )
(κm ⊗ σ)

and, for all R-representations π of G, we have Rκ(π)' HomJ 1
m P1(3E )(κm, π).

Proof. By transitivity of induction and Lemma 4.6, Iκ(σ ) ' indG
J 1

m P(3E )
(κm ⊗ σ).

By reciprocity, for π an R-representation of G, Rκ(π)' HomJ 1
m P1(3E )(κm, π). �

Define κ̃-induction Iκ̃ : RR(M(3E))→ RR(G) by Iκ̃(σ ) = indG
J (κ̃ ⊗ σ) for

σ an R-representation of M(3E). This functor has a right adjoint, κ̃-restriction,
Rκ̃ : RR(G) → RR(M(3E)) defined by Rκ̃(π) = HomJ 1(κ̃, π), where the ac-
tion of M(3E) on Rκ̃(π) is defined analogously to κ-restriction. In fact, κ̃ is
a −β-extension for the semisimple character θ−1 for the semisimple stratum
[3, n, 0,−β].

Lemma 4.10. Let π be an R-representation of G and σ be an irreducible repre-
sentation of M(3E). Then (Rκ(π))∼ ' Rκ̃(π̃) and, if Iκ(σ ) is irreducible, then
Iκ(σ )∼ ' Iκ̃(σ̃ ).

Proof. We have an isomorphism of vector spaces

HomJ 1(κ, π)∼ ' HomJ 1(π, κ)' HomJ 1(κ̃, π̃)

by [Henniart and Sécherre 2014, Proposition 2.6], and checking the action of J/J 1

we have (Rκ(π))∼ ' Rκ̃(π̃). If Iκ(σ ) is irreducible, then it is admissible and we
have Iκ(σ )∼ ' Iκ̃(σ̃ ) by [Vignéras 1996, I 8.4]. �

If P(3E) is not maximal, let κT = ResJ
T 0(κ). Define RκT ,3 :RR(T )→RR(T )

by RκT ,3(π)= HomT 1(κT , π).
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5. Exhaustion of cuspidal representations

In this section, we exhaust all irreducible cuspidal `-modular representations of
unramified U(2, 1)(F/F0). To do this we construct covers. The construction we
give here is a vast simplification of that of [Stevens 2008], available as we are in the
special case of unramified U(2, 1). As the covers are constructed on compact open
subgroups with pro-order not necessarily invertible in F` it is not clear whether or
not the construction will follow mutatis mutandis the complex construction. In fact,
for the relatively simple proof we give here for U(2, 1)(F/F0), it does. It is only
when we come to computing the parameters of associated Hecke algebras later that
we have to change the complex proof, and these changes occur in computing the
parameters of Hecke algebras of certain associated finite reductive groups.

5A. Covers. In the `-adic case our construction of G-covers is a special case of the
general results of [Stevens 2008, Propositions 7.10 and 7.13]. Let [3, n, 0, β] be a
skew semisimple stratum in A such that P(3E) is not a maximal parahoric subgroup
of G E . For unramified U(2, 1)(F/F0), this implies H 1(3, β)= J 1(3, β), which,
in the notation of [ibid.], implies that J = JB . Moreover, P(3E)/P1(3E) is abelian
and isomorphic to k1

E×k×E . Let θ ∈C−(3, β); then η= θ is the unique Heisenberg
representation containing θ . Let κ be a β-extension of η and σ ∈ IrrR(J/J 1). Then
λ = κ ⊗ σ is a character of J . Let κT = ResJ

T 0(κ) and set λT = κT ⊗ σ . Let
J = (J ∩ N )(J ∩ T )(J ∩ N ) be the Iwahori decomposition of J with respect to B.
We have λ( j− jT j+)= λT ( jT ) for j− ∈ (J ∩ N ), jT ∈ J ∩ T , and j+ ∈ (J ∩ N ).

Lemma 5.1. The element wx intertwines λ if and only if wy intertwines λ.

Proof. Suppose wx ∈ IG(λ). Then, as wx normalises T 0, wx normalises ResJ
T 0(λ).

For all t ∈ T 0 we have wx twx = wy twy; hence wy normalises ResJ
T 0(λ). Let

j ∈ J ∩wy Jwy be such that j = wy j ′wy with j ′ ∈ J . Using the Iwahori decom-
position of J we have j = jN jT jN and j ′ = j ′N j ′T j ′

N
with jN , j ′N upper triangular

unipotent, jN , j ′
N

lower triangular unipotent and jT , j ′T in T . Thus

j = wy j ′w−1
y = (wy j ′Nwy)(wy j ′Twy)(wy j ′Nwy)

and, by unicity of the Iwahori decomposition, jN = wy j ′Nwy , jT = wy j ′Twy and
jN = wy j ′

N
wy . Therefore wy ∈ IG(λ). �

Lemma 5.2. Let λT = κT ⊗ σ . Then (J, λ) is a G-cover of (T 0, λT ).

Proof. In the `-modular case, it remains to show that there exists a strongly
(B, J )-positive element z of the centre of T such that J z−1 J supports an invertible
element of H(G, λ). Let ζ = wxwy . Then ζ is strongly (B, J )-positive. For
g ∈ IG(λ), because λ is a character, Ig(λ) ' R and there is a unique function in
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fg ∈ H(G, λ) with support Jg J such that fg(g) = 1. We have ζ, ζ−1
∈ IG(λ);

hence fζ , fζ−1 ∈H(G, λ).
Suppose that wx 6∈ IG(λ), i.e., IG(λ)= J T J . As ζ is strongly positive,

Jζ Jζ−1 J = Jζ J−ζ−1 J.

Suppose y ∈ Jζ Jζ−1 J ∩ J T J . Then we can write y = j1t j2 and y = j3ζ j−ζ−1 j4
with j1, j2, j3, j4 ∈ J , t ∈ T and j− ∈ J−. Thus, we can write

ζ j−ζ−1
= j t j ′

with j, j ′ ∈ J . By the Iwahori decomposition of J applied to the elements j and
( j ′)−1, we have

ζ j−ζ−1
= jN jT jN t j ′N j ′T j ′N

with jN , j ′N ∈ J∩N , jN , j ′
N
∈ J∩N and jT , j ′T ∈ J∩T . Then j−1

N
ζ j−ζ−1( j ′

N
)−1
∈N

and j−1
N
ζ j−ζ−1( j ′

N
)−1
= jT jN t j ′N j ′T ∈ B; hence j−1

N
ζ j−ζ−1( j ′

N
)−1
= 1 and

ζ j−ζ−1
∈ J . Therefore, y ∈ J and Jζ Jζ−1 J ∩ J T J = J . Hence fζ ? fζ−1 is

supported on the single double coset J . We have fζ ? fζ−1(1G)= q4. Hence fζ−1

is an invertible element of H(G, λ) supported on the single double coset Jζ−1 J .
Now, suppose that wx ∈ IG(λ), then wy ∈ IG(λ) by Lemma 5.1. Hence

fwx , fwy ∈H(G, λ). Let s ∈ {x, y}. The maximal parahoric subgroup P(3s) of G
contains J and ws and P(3s)∩G E is a maximal parahoric subgroup of G E . More-
over, (J∩G E)/(P1(3s)∩G E) is a Borel subgroup of (P(3s)∩G E)/(P1(3s)∩G E).
By [Stevens 2008, Lemma 5.12], IG(η)= J G E J , thus the support of H(G, λ) is
contained in J G E J . Hence,

supp( fws ? fws )⊆ (Jws Jws J )∩ J G E J

⊆ P(3s)∩ J G E J = J (P(3s)∩G E)J

= J ((J ∩G E)∪ (J ∩G E)ws(J ∩G E))J,

by the Bruhat decomposition of (P(3s)∩G E)/(P1(3s)∩G E), which is a finite
reductive group. Thus, supp( fws ? fws )⊆ J ∪ Jws J . We have that fws ? fws (1G)=

[J : J ∩ws Jws] is a power of q. Let as = fws ? fws (1G) and bs = fws ? fws (ws).
Therefore, for s ∈ {x, y}, fws is an invertible element of H(G, λ) with inverse
(1/as)( fws − bs f1). By [Stevens 2008, Lemma 7.11], we have (J ∩ N )wx ⊆ J ∩ N
and (J ∩ N )wy ⊆ J ∩ N . By the Iwahori decomposition of J ,

Jwy Jwx J = J (wy(J ∩ N )wy)wywx(wx(J ∩ T )wx)(wx(J ∩ N )wx)J

= J (J ∩ N )wywywx(J ∩ T )wx (J ∩ N )wx J

⊆ J (J ∩ N )wywx(J ∩ T )(J ∩ N )J = Jwywx J.

Moreover, we clearly have Jwywx J ⊆ Jwy Jwx J . Hence Jwywx J = Jwy Jwx J .
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Therefore, fwy ? fwx is an invertible element of H(G, λ) supported on the single
double coset Jζ−1 J . �

5B. Cuspidal representations. The following theorem addresses the construction
of all irreducible cuspidal `-modular and `-adic representations of G.

Theorem 5.3. (1) Let [3,n,0,β] be a skew semisimple stratum in A, θ ∈C−(β,3),
η the unique Heisenberg representation containing θ , κ a β-extension of η and σ
an irreducible cuspidal representation of M(3E). Then Iκ(σ ) is quasiprojective.
Furthermore, if P(3E) is a maximal parahoric subgroup of G E , then Iκ(σ ) is
irreducible and cuspidal.

(2) Let π be an irreducible cuspidal representation of G. Then there exist a
skew semisimple stratum [3, n, 0, β] with P(3E) a maximal parahoric subgroup
of G E , θ ∈ C−(β,3), a β-extension κ of the unique Heisenberg representation η
which contains θ and an irreducible cuspidal representation σ of M(3E) such
that π ' Iκ(σ ).

Proof. (1) Quasiprojectivity follows mutatis mutandis the proof given in [Vignéras
2001, Proposition 6.1]. So suppose P(3E) is a maximal parahoric subgroup of G E .
By Theorem 4.8 and Lemma 4.4 we have

Rκ ◦ Iκ(σ )' RE
3 ◦ IE

3(σ )' σ.

The proof of irreducibility follows mutatis mutandis the proof given in [Vignéras
2001, Proposition 7.1].

(2) By Theorem 4.5, π contains a skew semisimple stratum [3, n, 0, β]. Suppose
θ ∈ C−(3, β) is a skew semisimple character which π contains. Let κ be a
β-extension of the unique Heisenberg representation η which contains θ . Then π
contains κ⊗σ for some σ ∈ IrrR(M(3E)). We show that we may assume that σ is
cuspidal. If P(3E) is not maximal then σ is cuspidal, so we can suppose that P(3E)

is maximal. Let B(3E) be the standard Borel subgroup of M(3E) and P(3′E) the
preimage of B(3E) under the projection map. Suppose that rM(3E )

B(3E )
(σ ) 6= 0. Then,

as π contains σ , rM(3E )
B(3E )

(Rκ(π)) 6= 0. We have

rM(3E )
B(3E )

(Rκ(π))' HomJ 1(κ, π)P1(3
′

E )J
1/J 1
' HomP1(3

′

E )J
1(κ, π),

which, by Lemma 4.9, implies that Rκ ′,3′(π) 6= 0 where κ ′ is the unique β-extension
containing τ3,3′,β(θ) compatible with κ . Hence π contains a skew semisimple
stratum [3′, n, 0, β] such that P(3′E) is not maximal and thus contains κ ′ ⊗ σ ′,
with σ ′ a cuspidal representation of M(3′E). By Theorem 4.2 and Lemma 5.2, if π
contains a skew semisimple stratum [3, n, 0, β] such that P(3E) is not a maximal
parahoric subgroup of G E , then π is not cuspidal. Therefore P(3E) is maximal
and σ is cuspidal. �
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For level zero representations we can refine the exhaustive list of irreducible
cuspidal representations given in Theorem 5.3 into a classification.

Theorem 5.4. For i = 1, 2, let P(3i ) be a maximal parahoric subgroup of G and
σi an irreducible cuspidal representation of M(3i ). If HomG(I31(σ1), I32(σ2)) 6= 0
then (P(31), σ1) and (P(32), σ2) are conjugate.

Proof. By reciprocity and Lemma 4.3,

HomG(I31(σ1), I32(σ2))'
⊕

n∈D1,2

HomM(31)

(
σ1, iM(31)

P31,n32

(
rM(32)

P
32,n

−131
(σ2)

)n)
.

Hence
HomG(I31(σ1), I32(σ2)) 6= 0

if and only if there exists n ∈ D1,2 such that

HomM(31)

(
σ1, iM(31)

P31,n32

(
rM(32)

P
32,n

−131
(σ2)

)n)
6= 0.

Assume there exists such an element n. By cuspidality of σ2, P32,n−131 =M(32),
so P1(32)(P(32)∩P(n−131))/P1(32)=M(32). By cuspidality of σ1, P31,n32 =

M(31), so P1(31)(P(31)∩P(n32))/P1(31)=M(31). If P(31) and P(32) are not
conjugate then for all g ∈G, in particular n ∈ D1,2, the group P(31)∩P(g32) must
stabilise an edge in the building and hence is not maximal. Thus it cannot surject
onto either M(31) or M(32). Hence there exists n∈D1,2 such that P(31)=P(n32)

and HomM(31)(σ1, σ
n
2 ) 6= {0}; i.e., (P(31), σ1) and (P(32), σ2) are conjugate. �

Remark 5.5. Let ` | (q2
− q + 1). The irreducible cuspidal `-modular represen-

tations I3x (τ
+(χ)) do not lift. A lift must necessarily be cuspidal as the Jacquet

functor commutes with reduction modulo `. However, by Theorem 5.3, all `-adic
level zero irreducible cuspidal representations are of the form I3x (σx) or I3y (σy)

with σx (resp. σy) an irreducible cuspidal `-adic representation of M(3x) (resp.
M(3y)). Furthermore, r`(I3w(σw))= I3w(r`(σw)) as compact induction commutes
with reduction modulo `, for w ∈ {x, y}. Hence, by Section 3B2, I3x (τ

+(χ))

does not lift, but does appear in the reduction modulo ` of I3x (τ (ψ)), where
r`(I3x (τ (ψ))= I3x (ν(χ))⊕ I3x (τ

+(χ)).

6. Parabolically induced representations

Let ωF/F0 be the unique character of F×0 associated to F/F0 by local class field
theory. That is, ωF/F0 is defined by ωF/F0 |o×F0

= 1 and ωF/F0($F ) = −1. All
extensions of ωF/F0 to F× take values in Z×` , hence are integral. Let χ1 be a
character of F× and χ2 be a character of F1. Let χ be the character of T defined
by

χ(diag(x, y, x̄−1))= χ1(x)χ2(x x̄−1 y),
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which is well-defined because x 7→ x x̄−1 is a surjective map F×→ F1. Every
character of T appears in this way: we can recover χ1 and χ2 from χ by

χ1(x)= χ(diag(x, x̄/x, x̄−1)), χ2(y)= χ(diag(1, y, 1)).

The character χ2 factors through the determinant and

i G
B (χ)' i G

B (χ1)(χ2 ◦ det),

where χ1 is the character χ1(diag(x, y, x̄−1))= χ1(x) of T . Hence the reducibility
of i G

B (χ) is completely determined by that of i G
B (χ1). The character χ is not regular

if χ1(x) = χ1(x̄)−1, which occurs if and only if χ1 is an extension of 1 or ωF/F0

to F×. An irreducible character χ has level zero if and only if both χ1 and χ2 have
level zero.

Let ν be the character of T given by ν(diag(x, y, x̄−1))= |x |F , i.e., the character
with χ1(x) = |x |F and χ2 trivial, where we normalise | · |F so that |$ |F = 1/q.
The modulus character δB of B is given on T by δB = ν

−4. Because the image of ν
is contained in Z×` , ν and δB are integral. If q4

≡ 1 mod ` then δB is trivial.

6A. Hecke Algebras. To find the characters χ such that the induced representation
i G

B (χ) is reducible we study the algebras H(G, λ).

Theorem 6.1. Suppose λT is a character of T 0. Let (J, λ) be a G-cover of (T 0, λT )

as constructed in Lemma 5.2.

(1) If λT is regular then H(G, λ)' R[X±1
].

(2) If λT is not regular then H(G, λ) is a two-dimensional algebra generated as an
R-algebra by fwx and fwy and the relations

fwx ? fwx = (q
a
− 1) fwx + qa,

fwy ? fwy = (q − 1) fwy + q,

where a = 3 and fwx (1)= fwy (1)= 1 if λT is trivial on T 1 and factors through the
determinant, and a = 1, fwx (1)= 1/q and fwy (1)= 1 if not.

Proof. If g ∈ IG(λ) then Ig(λ) ' R, because χ is a character. For g ∈ IG(λ),
r ∈ R, we let fg,r denote the unique function supported on Jg J with fg,r (g)= r .
If λT is regular then the support of H(G, λ) is J T J =

⋃
n∈Z Jζ n J and, since each

intertwining space is one-dimensional and fζ n,1 has support Jζ n J , we have an
isomorphism H(G, λ)' R[X±1

] defined by fζ,1 7→ X .
Suppose wx ∈ IG(λ). By Lemma 5.1, wx intertwines λ if and only if wy

intertwines λ. The support of the Hecke algebra is contained in the intertwining of
η = ResJ

J 1(κ), which is J G E J . By the semisimple intersection property [Stevens
2008, Lemma 2.6] and the Bruhat decomposition we have J G E J =

⋃
w∈W̃ JwJ .

As in the proof of Lemma 5.2 we have Jwx Jwy J = Jwxwy J and, similarly,
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Jwy Jwx J = Jwywx J . Hence, as the intertwining spaces are one-dimensional, the
support of fwx ? fwy ? fwx ? · · ·? fwi is Jwxwywx · · ·wi J . Thus, as W̃ is an infinite
dihedral group generated bywx andwy , H(G, λ) is generated by fwx ,1 and fwy ,1 and
the quadratic relations fwx ,1 ? fwx ,1 and fwy ,1 ? fwy ,1. Let 3x and 3y be oE -lattice
sequences such that the parahoric subgroups P(3x

E)=P(3E)∪P(3E)wx P(3E) and
P(3y

E)= P(3E)∪P(3E)wy P(3E). The parahoric subgroups P(3x
E) and P(3y

E)

are nonconjugate, maximal and contain P(3E). Let κx and κy be the β-extensions,
compatible with κ , defined by Lemma 4.6 related to the skew semisimple strata
[3x , n, 0, β] and [3y, n, 0, β].

For z ∈ {x, y}, let κ̂z = ResJ
J 1(β,3i )P(3E )

(κz). We have a support-preserving
isomorphism

H(G, κ ⊗ σ)'H(G, κ̂z ⊗ σ)

by Lemma 4.6 and transitivity of compact induction. We have a support-preserving
injection of algebras

H(P(3z
E), σ )→H(P(3z), κ̂z ⊗ σ)

defined by 8 7→ κ̂z ⊗8, where σ is considered as a character of P(3E) trivial on
P1(3E).

Let Bz be the standard Borel subgroup of M(3z
E). In the `-adic case, by [Howlett

and Lehrer 1980, Theorem 4.14], if iM(3z
E )

Bz
(σ )= ρz

1⊕ ρ
z
2 with dim(ρz

1)> dim(ρz
2)

then H(M(3z
E), σ ) is generated by T z

w, which is supported on the double coset
Bzwx Bz and satisfies the quadratic relation

T z
w ? T z

w = (dz − 1)T z
w + dzT z

1 ,

where dz= dim(ρz
1)/ dim(ρz

2) and T z
1 is the identity of H(M(3z

E), σ ). By Section 3,
dy = q and

dx =

{
q3 if λT is trivial on T 1 and factors through the determinant,
q otherwise.

In the `-modular case, we choose a lift σ̂ of σ such that σ̂
wx
= σ̂ . Let L be

a lattice in σ̂ . Recall that σ̂ is called a reduction stable of σ if H(M(3z
E), σ ) =

Z` ⊗F`
H(M(3z

E), L) and H(M(3z
E), σ̂ ) = Q` ⊗F`

H(M(3z
E), L). A basis of

H(M(3z
E), σ̂ ) is called reduction stable if it is a basis of H(M(3z

E), L) and σ̂ is
reduction stable. By [Geck et al. 1996, Section 3.1], σ̂ is reduction stable and a basis
of H(M(3z

E), σ̂ ) is reduction stable. Hence we obtain a basis of H(M(3z
E), σ )

satisfying the quadratic relations required by reduction modulo `.
By inflation, T z

w determines an element fwz,rz ∈H(P(3z
E), σ ) supported on Jwz J .

Furthermore, fwx ,1 ? fwx ,1(1G) = [J : J ∩wx Jwx ] = q3 and fwy ,1 ? fwy ,1(1G) =
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[J : J ∩wy Jwy] = q in all cases; hence rx = ry = 1 if λT is trivial on T 1 and
factors through the determinant, and rx = 1/q and ry = 1 otherwise. �

6B. Reducibility points. Suppose i G
B (χ) is reducible and let λT = ResT

T 0(χ). By
Theorem 6.1, λT is not regular. Let (J, λ) be a G-cover of (T 0, λT ) as constructed
in Lemma 5.2 with λ = κ ⊗ σ . If π is an irreducible quotient of Iκ(σ ) and an
irreducible quotient of i G

B (χ) then, by exactness of the Jacquet functor, r G
B (π)

is one-dimensional. Hence, as ( jB)
∗(Mλ(π)) ' MλT (r

G
B (π)) by Theorem 4.2, π

must correspond to a character of H(G, λ) under the bijection of Theorem 4.1.
The characters of H(G, λ) are determined by their values on the generators fwx ,b

and fwy ,1, where we let b = 1 if λT is trivial on T 1 and factors through the
determinant and b= 1/q otherwise. Let a be given by Theorem 6.1. The characters
of H(G, λ) are summarised as follows:

Character of HR(G, λ) Value on fwx ,b Value on fwy ,1

4sgn −1 −1
4ind qa q
41 qa

−1
42 −1 q

If qa
6= −1 mod `, these characters are distinct; if qa

=−1 mod ` but q 6= −1
mod `, there are two characters, 4sgn =41 and 4ind =42; if q =−1 mod `, there
is a unique character 4sgn =41 =4ind =42.

To calculate the values of χ where this reducibility occurs we study the re-
striction of the characters of HR(G, λ) to H(T, λT ) under ( jB)

∗. The injection
jB :H(T, λT )→H(G, λ) is induced by taking the unique function f T

ζ,1 ∈H(T, λT )

with support JT ζ and f T
ζ,1(ζ ) = 1 to fζ,1, the unique function in H(G, λ) with

support Jζ J and fζ,1(ζ ) = 1. Moreover, we know that fζ,1 = ε fwx ,1 ? fwy ,1 for
some scalar ε ∈ R. It is determining the sign of this scalar which requires work.
The normalised restriction map ( jB)

∗ is then induced by this injection and twisting
by ν−2. To find ε we compare the value of the characters of H(G, λ) on fwx ,1? fwy ,1

twisted by εν−2(ζ ) to known reducibility points.

Character χ of εν−2(ζ )χ( fwx ,1 ? fwy ,1) εν−2(ζ )χ( fwx ,1 ? fwy ,1)

HR(G, λ) a = 3, b = 1 a = 1, b = 1/q

4sgn q−2ε q−1ε

4ind q2ε qε
41 −qε −ε

42 −q−1ε −ε
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First consider the case when a = 3 and b = 1/q . As the trivial representation is
an irreducible subquotient of i G

B (ν
±2), the induced representations are reducible.

Thus ν±2(ζ )= q±2
∈ {q−2ε, q2ε,−qε,−q−1ε} and this multiset of values of the

characters must be {q−2, q2,−q,−q−1
}. Moreover, by compatibility with the

`-adic case by reduction modulo `, we must have ε = 1 with ν±2 corresponding to
4sgn and 4ind. The other reducibility points, corresponding to the characters 41

and 42 of H(G, λ), are the characters χ of T of the form χ = ην±1, where η is
any extension of ωF/F0 to F× which is trivial on F1 such that χ |T 0 factors through
the determinant.

Now consider the case when a = 1 and b = 1/q. Using an alternative method,
Keys [1984] computed the `-adic reducibility points. Comparing the value of a pair
of these on ζ — see [Keys 1984, Section 7] — with our values in the table we must
have ε =−1 in all other cases. This gives reducibility points the characters χ of T
of the form χ = ην±1, where η is any extension of ωF/F0 to F× not trivial on F1,
corresponding to the characters4sgn and4ind of H(G, λ), and the characters χ of T
of the form χ1 is nontrivial, but χ1 |F×0

is trivial, corresponding to the characters
41 and 42 of H(G, λ).

Theorem 6.2. Let χ be an irreducible `-modular character of T . Then i G
B (χ) is

reducible exactly in the following cases:

(1) χ = ν±2;

(2) χ = ην±1, where η is any extension of ωF/F0 to F×;

(3) χ1 is nontrivial, but χ1 |F×0
is trivial.

6C. Parahoric restriction and parabolic induction. As the parabolic functors re-
spect the decomposition of RR(G) by level, by [Vignéras 1996, II 5.12], if χ is a
level zero character of T (i.e., a character of T trivial on T 1) then all irreducible
subquotients of i G

B (χ) have level zero.

Lemma 6.3. Let w ∈ {x, y} and let χ be a level zero character of T . Then
R3w(i

G
B (χ))' iM(3w)

Bw (χ).

Proof. The proof follows by Mackey theory, as the maximal parahoric subgroups
of G satisfy the Iwasawa decomposition. �

Let [3, n, 0, β] be a skew semisimple stratum in A. Let θ ∈ C−(3, β) and κ be
a β-extension of the unique Heisenberg representation containing θ . Let χ be
an irreducible `-modular character of T which contains the R-type (JT , κT ⊗ σ).
Furthermore, suppose that (J, κ⊗σ) is a G-cover of (JT , κT ⊗σ) relative to B, as
in Lemma 5.2. Let 3m be an oE -lattice sequence in V such that P(3m

E ) is maximal
and P(3E) ⊂ P(3m

E ). Let θm = τ3,3m ,β(θ) and κm be the unique β-extension of
the unique Heisenberg representation containing θm which is compatible with κ ,
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as in Lemma 4.6. Let B(3m
E ) be the Borel subgroup of M(3m

E ) whose preimage
under the projection map P(3m

E )→ M(3m
E ) is equal to J . Suppose B(3m

E ) has
Levi decomposition B(3m

E )= T (3m
E )n N (3m

E ).
The next theorem is a generalisation of a weakening of Lemma 6.3; precisely,

it generalises the isomorphism Lemma 6.3 induces in the Grothendieck group
GrR(M(3w)).

Theorem 6.4. With the notation as above, there is an isomorphism[
Rκm (i

G
B (χ))

]
'
[
i

M(3m
E )

B(3m
E )
(RκT (χ))

]
.

Proof. We prove the corresponding result in the `-adic case first and deduce the
`-modular result by reduction modulo `. The proof in the `-adic case follows a simi-
lar argument made for GLn(F) in [Schneider and Zink 1999]. Let�T =[T, ρ]T and
�=[T, ρ]G be inertial equivalence classes. Let RQ`

(�) denote the full subcategory
of RQ`

(G) of representations all of whose irreducible subquotients have inertial
support in�, and RQ`

(�T ) denote the full subcategory of RQ`
(T ) of representations

all of whose irreducible subquotients have inertial support in �T . Let ω denote the
M(3m

E )-conjugacy class of σ and ωT the T (3m
E )-conjugacy class of σ . Let RQ`

(ω)

be the full subcategory of RQ`
(M(3m

E )) of representations all of whose irreducible
subquotients have supercuspidal support in ω and RQ`

(ωT ) be the full subcategory
of RQ`

(T (3m
E )) of representations all of whose irreducible subquotients have lie

in ωT . Let Mω : RQ`
(ω)→ M(M(3m

E ), σ ) be defined by ρ 7→ HomB(3m
E )
(σ, ρ)

for ρ ∈ RQ`
(ω). Similarly, let MωT : RQ`

(ωT )→ M(T (3m
E ), σ ) be defined by

ρ 7→ HomT (3m
E )
(σ, ρ) for ρ ∈ RQ`

(ωT ). We prove that the following diagram
commutes.

RQ`
(ω) M(M(3m

E ), σ ) RQ`
(ω)

RQ`
(�) M(G, κ ⊗ σ) M(T (3m

E ), σ ) RQ`
(ωT )

RQ`
(�T ) M(T, κT ⊗ σ) RQ`

(�T )
'

MκT⊗σ

'

MκT⊗σ

'

Mκ⊗σ

'

MωT

i G
B ( jB)∗ Res RκT

'

Mω

'

Mω

Rκm Res ( jB(3m
E )
)∗ i

M(3m
E )

B(3m
E )

We have Mω◦i
M(3m

E )

B(3m
E )
' ( jB(3m

E )
)∗◦MωT and Mκ⊗σ ◦i G

B ' ( jB)∗◦MκT⊗σ by [Bushnell
and Kutzko 1998, Corollary 8.4], and Mκ⊗σ is an equivalences of categories by
[Bushnell and Kutzko 1998, Theorems 4.3 and 8.3].

We have support-preserving injections α1 :H(M(3m
E ), σ )→H(G, κ ⊗ σ) and

α2 :H(T (3m
E ), σ )→H(T, κT⊗σ), as in the proof of Theorem 6.1, hence restriction
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functors M(G, κ ⊗ σ)→M(M(3m
E ), σ ) and M(T, κT ⊗ σ)→M(T (3m

E ), σ ), de-
noted in the diagram by Res. Because H(T (3m

E ), σ ) is one-dimensional and the in-
jections defined are homomorphisms of algebras, we must have jB◦α1' jB(3m

E )
◦α2,

hence also Res ◦( jB)∗ ' ( jB(3m
E )
)∗ ◦Res.

We show that Mω◦Rκm 'Res ◦Mκ⊗σ ; a similar argument shows that MωT ◦RκT '

Res ◦MκT⊗σ . Let π ∈RQ`
(�). By Lemma 4.9 and adjointness, we have

Mω(Rκm (π))= HomB(3m
E )
(σ,Rκm (π))= HomB(3m

E )
(σ,Rκm (π))

' HomJ (σ, (Rκm (π))
J 1

m P1(3E )/J 1
m )

' HomJ (σ,Rκ(π))

' HomJ 1(κ ⊗ σ, π)= Mκ⊗σ (π).

In the `-modular case, we choose lifts of κ and χ and then by the `-adic isomor-
phism and reduction modulo ` we have

[
Rκm (i

G
B (χ))

]
'
[
i

M(3m
E )

B(3m
E )
(RκT (χ))

]
. �

6D. Parabolic induction, κ-restriction, and covers. Let χ be an irreducible char-
acter of T . Let (T 0, λT ) be an R-type contained in χ such that (J, λ) is a G-cover of
(T 0, λT ) relative to B as constructed in Lemma 5.2 with λ= κ⊗σ and λT = κT⊗σ ,
where κT = ResJ

T 0(κ). Hence J = P(3E)J 1 with P(3E) a nonmaximal parahoric
subgroup of G E corresponding to the oE -lattice sequence 3E . In all cases, there
are two nonconjugate maximal parahoric which contain P(3E); we denote the
oE -lattice sequences that correspond to these by 3x

E and 3y
E . Let m ∈ {x, y} and

let (κm,3
m
E ) be the unique pair compatible with (κ,3E) as in Lemma 4.6.

Lemma 6.5. Let π be an irreducible subrepresentation or quotient of i G
B (χ) and

m ∈ {x, y}. Then Rκm (π) 6= 0.

Proof. By the geometric lemma, r G
B (i

G
B (χ)) is filtered by χ and χwx =ψχ for some

unramified character ψ . Hence, by exactness of the Jacquet functor, r G
B (π)= ψχ .

By Theorem 4.2, π contains (J, λ) if and only if r G
B (π) contains (T 0, λT ). Thus π

contains (J, λ); hence Rκ(π) 6= 0. Therefore Rκm (π) 6= 0. �

The next lemma is crucial in our proof of unicity of supercuspidal support. It
shows that parabolic induction preserves the semisimple character up to transfer.

Lemma 6.6. Suppose that i G
B (χ) has an irreducible cuspidal subquotient π . Then

there exists m ∈ {x, y} such that Rκm (π) 6= 0.

Proof. By Theorem 5.3 there exist a skew semisimple stratum [3′, n′, 0, β ′] such
that P(3′E ′) is a maximal parahoric subgroup of G E ′ , where G E ′ denotes the
G-centraliser of β ′, a semisimple character θ ′ ∈ C−(3

′, β ′), a β ′-extension κ ′ to
J ′ = J (3′, β ′) of the unique Heisenberg representation η′ containing θ ′ and a
cuspidal representation σ ′ ∈ Irr(J ′/(J ′)1) such that π ' Iκ ′(σ ′).
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As π contains κ ′⊗σ ′, the restriction of i G
B (χ) to J ′ has κ ′⊗σ ′ as a subquotient.

We choose χ̂ an `-adic character lifting χ such that i G
B (χ̂) is reducible. Then,

because restriction and parabolic induction commute with reduction modulo `,
the restriction of i G

B (χ̂) to J ′ has an irreducible subquotient δ such that r`(δ)
contains κ ′ ⊗ σ ′. On restricting to (J ′)1 we see that δ contains the unique lift
η̂′ of η′ and, since δ is irreducible and J ′ normalises η̂′, ResJ ′

(J ′)1(δ) is a multiple
of η′. Thus δ = κ̂ ′⊗ ξ , with κ̂ ′ a lift of κ ′ and ξ an irreducible representation of
J ′/(J ′)1 whose reduction modulo ` contains σ . However, ξ cannot be cuspidal,
otherwise i G

B (χ̂) would have a cuspidal subquotient Iκ̂ ′(ξ). Hence G E ′ is not
compact. Therefore [3′, n′, 0, β ′] is either a scalar skew simple stratum or a skew
semisimple stratum with splitting V = V ′1 ⊕ V ′2, with V ′1 one-dimensional and
V ′2 two-dimensional hyperbolic. (Note that, as σ is cuspidal nonsupercuspidal, we
must have ` | q + 1 or ` | q2

− q + 1 by Section 3.)
We continue by induction on the level l(π) of π .
The base step is when π has level zero. If π has level zero then, as all subquotients

of i G
B (χ) have the same level as χ by [Vignéras 1996, 5.12], χ and i G

B (χ) have
level zero. Thus we can choose, and assume that we have chosen, κ ′, κ and κT to
be trivial. By conjugating, we may assume 3′ =3m for some m ∈ {x, y} and then
κm = κ

′ is trivial and Rκm (π)= R3m (π) 6= 0.
Suppose first that [3, n, n−1, β] is equivalent to a scalar stratum [3, n, n−1, γ ].

The stratum [3, n, n−1, γ ] corresponds to a character ψγ of Pn(3) which extends
to a character φ ◦ det of G. Twisting by φ−1

◦ det we reduce the level of π and
the level of i G

B (χ). The stratum [3, n, n− 1, β − γ ] is equivalent to a semisimple
stratum [3, n, n − 1, α] and the representations κ(φ−1

◦ det), κT (φ
−1
◦ det) and

κm(φ
−1
◦ det) for m ∈ {x, y} are α-extensions defined on the relevant groups.

Similarly, the stratum [3′, n′, n′− 1, β ′− γ ] is equivalent to a semisimple stratum
[3, n′, n′− 1, α′] and κ ′(φ−1

◦ det) is an α′-extension. Moreover, κm(φ
−1
◦ det) is

compatible with κ(φ−1
◦ det) for m ∈ {x, y}, (κ ⊗ σ)(φ−1

◦ det) is a G-cover of
(κT ⊗σ)(φ

−1
◦det) relative to B, (κT ⊗σ)(φ

−1
◦det) is contained in χ(φ−1

◦det),
and (κ ′⊗ σ ′)(φ−1

◦ det) is contained in π(φ−1
◦ det). Thus, by induction, we have

Rκm (π)' Rκm(φ−1◦det)(π(φ
−1
◦ det))

is nonzero for some m ∈ {x, y}.
Secondly, suppose that [3′, n′, n′ − 1, β ′] is equivalent to a scalar stratum
[3′, n′, n′ − 1, γ ′]. As in the last case, we can twist by a character to reduce
the level.

Hence we may assume that both [3, n, n− 1, β] and [3′, n′, n′− 1, β ′] are not
equivalent to scalar simple strata. This forces [3, n, 0, β] (resp. [3′, n′, 0, β ′]) to
be semisimple — and nonsimple — with splitting V = V1⊕ V2 (resp. V = V ′1⊕ V ′2)
with V1 (resp. V ′1) one-dimensional and V2 (resp. V ′2) two-dimensional hyperbolic.
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Thus, by conjugation we may assume that the splitting of [3′, n′, 0, β ′] is the same
as the splitting of [3, n, 0, β], i.e., V ′1 = V1 and V ′2 = V2. We have E = E ′ and
G E = G E ′ , and conjugating further we may assume that 3′E and 3E lie in the
closure of the same chamber of the building of G E . Moreover, 3′E is a vertex
and 3E is the barycentre of the chamber.

Let

w =

0 1 0
1 0 0
0 0 1

 .
We have

J (β ′,3)= w

 A0(3)
11 A

b
r ′+1

2 c
(3)12

A
b

r ′+1
2 c
(3)12 A0(3)

22

w∩G,

and

J (β,3)= w

 A0(3)
11 A

b
r+1

2 c
(3)12

A
b

r+1
2 c
(3)12 A0(3)

22

w∩G,

where r ′ (resp. r ) is minimal such that [3, n′, r ′, β] (resp. [3, n, r, β]) is equivalent
to a scalar stratum. Thus, as we are now assuming that [3, n, n − 1, β] and
[3′, n′, n′− 1, β ′] are not equivalent to scalar simple strata, we have r ′ = n′ and
r = n. Furthermore, we have l(χ) = l(π), i.e., n′/e(3′) = n/e(3). We let κ ′′ be
the unique β-extension to J (β ′,3) compatible with κ ′ relative to a semisimple
stratum [3, n, 0, β ′]. Therefore, J (β,3)= J (β ′,3). Similar considerations yield
H(β,3)= H(β ′,3) and J (β,3′)= J (β ′,3′).

As ξ is not cuspidal, it is a direct factor of i M(3′E )
B(3′E )

(τ̂ ′), where we choose B(3′E)
to be the image of P(3E) in M(3′E), for some representation τ̂ ′ of T (3′E). Fur-
thermore, i G

B (χ̂) contains κ̂ ′′⊗ τ̂ ′ with κ̂ ′′ a lift of κ ′′, by Lemma 4.6 and transitivity
of induction. By Lemma 5.2, (J, κ̂ ′′⊗ τ̂ ′) is a G-cover of (T 0, κ̂ ′′T ⊗ τ̂

′) relative
to B, where κ̂ ′′T = ResJ

T 0(κ̂
′′). By [Blondel 2005, Theorem 2], indG

J (κ̂
′′
⊗ τ̂ ′) '

IndG
Bop(indT

T0
(κ̂ ′′T ⊗ τ̂

′)). By second adjunction of parabolic induction and parabolic
restriction for `-adic representations, and right adjunction of restriction with compact
induction we have

HomT 0(κ̂ ′′T ⊗ τ̂
′, r G

B ◦ i G
B (χ̂))' HomG(indG

J (κ̂
′′
⊗ τ̂ ′), i G

B (χ̂)) 6= 0.

We have [r G
B ◦ i G

B (χ̂) |T 0] = χ̂ ⊕ χ̂wx |T 0= χ̂ ⊕ χ̂ |T 0 . Hence κ̂ ′′T ⊗ τ̂
′
= ResT

T 0(χ̂).
Similarly if we let κ̂ be a lift of κ , σ̂ be a lift of σ , and κ̂T =ResT

T 0(κ̂), then we have
κ̂T ⊗ σ̂ =ResJ

T 0(χ̂). This implies that we have an equality of semisimple characters
τ3′,3,β ′(θ̂

′) = θ̂ , where θ̂ ′ ∈ C−(β
′,3′) is contained in κ̂ ′ and θ̂ ∈ C(β,3) is

contained in κ̂ .
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We let H̃(β,3) (resp. H̃(β ′,3′)) denote the compact open subgroup of GL3(F)
defined in [Stevens 2008], which defines H(β,3) (resp. H(β ′,3′)) by inter-
secting with U(2, 1)(F/F0). The Iwahori decomposition for H̃ 1(β ′,3′) gives
H̃ 1(β ′,3′) = H̃ 1(β ′,3′)−(H̃ 1(β ′,3′)∩ M̃)H̃ 1(β ′,3′)+ where H̃ 1(β ′,3′)− de-
notes the lower triangular unipotent matrices in H̃ 1(β ′,3′), H̃ 1(β ′,3′)+ denotes
the upper triangular unipotent matrices in H̃ 1(β ′,3′), and M̃ the subgroup of
diagonal matrices. As H̃ 1(β ′,3) contains (H̃ 1(β ′,3′)∩ M̃) and is contained in
H̃ 1(β ′,3′), we have

H̃ 1(β ′,3′)= H̃ 1(β ′,3′)−
(
H̃ 1(β ′,3′)∩ H̃ 1(β ′,3)

)
H̃ 1(β ′,3′)+.

Thus a character of H̃ 1(β ′,3′) is determined by its values on H̃ 1(β ′,3′)−,
H̃ 1(β ′,3′)∩ H̃ 1(β ′,3), and H̃ 1(β ′,3′)+.

The semisimple characters θ̂ and θ̂ ′ are equal to the restriction of semisimple
characters θ̃ and θ̃ ′ of GL3(F). Moreover, τ3′,3,β ′(θ̃ ′) = θ̃ as τ3′,3,β ′(θ̂ ′) = θ̂ . It
follows from the decomposition of H̃ 1(β ′,3′) given above that τ3,3′,β(θ̃) = θ̃ ′;
they are both trivial on H̃ 1(β ′,3′)− and H̃ 1(β ′,3′)+, and as θ ′ = τ3,3′,β ′(θ) they
both agree with θ̃ on H̃ 1(β,3′) ∩ H̃ 1(β,3) = H̃ 1(β ′,3′) ∩ H̃ 1(β ′,3). Hence,
τ3,3′,β(θ)= θ

′ by restriction and reduction modulo `. As there is a unique Heisen-
berg representation containing θ ′, we have Rκm (π) 6= 0 for some m ∈ {x, y}. �

Lemma 6.7. Suppose that i G
B (χ) is reducible with irreducible subrepresentation π1

and quotient π2= i G
B (χ)/π1. If6 is a maximal cuspidal subquotient of Rκm (i

G
B (χ)),

i.e., all subquotients of Rκm (i
G
B (χ)) not contained in6 are not cuspidal, then Iκm (6)

is a subrepresentation of π2.

Proof. Let 6 be a maximal cuspidal subquotient of Rκm (i
G
B (χ)). By Lemma 6.5,

Rκm (π1) and Rκm (π2) are nonzero and must contain noncuspidal subquotients as
π1 and π2 are not cuspidal. However, by Theorem 6.4 and Section 3, there are only
two noncuspidal subquotients of Rκm (i

G
B (χ)). Thus each of Rκm (π1) and Rκm (π2)

must have a single noncuspidal irreducible subquotient, say ρ1 and ρ2 respectively.
If Rκm (π1) 6= ρ1 then Rκm (π1) has an irreducible cuspidal subrepresentation or

an irreducible cuspidal quotient. If Rκm (π1) has an irreducible cuspidal subrepre-
sentation σ then, by adjointness of Rκm and Iκm , Iκm (σ ) is an irreducible cuspidal
subrepresentation of π1, contradicting the irreducibility and noncuspidality of π1.
If Rκm (π1) has an irreducible cuspidal quotient σ then Rκ̃m (π̃1) has a cuspidal
subrepresentation σ̃ by Lemma 4.10. Thus Iκ̃m (σ̃ ) is an irreducible cuspidal subrep-
resentation of π̃1 by adjointness. Hence Iκm (σ ) is an irreducible cuspidal quotient
of π1 by Lemma 4.10, contradicting the irreducibility and noncuspidality of π1.
Thus Rκm (π1)= ρ1.
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Similarly, if Rκm (π2) has an irreducible cuspidal quotient σ , then Iκm (σ ) is an
irreducible cuspidal quotient of π2. Hence Iκm (σ ) is a quotient of i G

B (χ), contradict-
ing the cuspidality of Iκm (σ ). Hence Rκm (π2) can have no cuspidal quotients. Hence,
by Section 3, Lemma 6.3 and Theorem 6.4, 6 is a subrepresentation of Rκm (π2).
Note that, as Theorem 6.4 only gives us an isomorphism in the Grothendieck group
of finite-length representations of M(3E), we have used that 6 is irreducible by
Section 3 in the skew semisimple nonscalar case to imply it is a subrepresenta-
tion of Rκm (π2); in all other cases we twist by a character (if necessary) and use
Lemma 6.3. By reciprocity, Iκm (6) is a subrepresentation of π2. �

By [Blondel 2005, Theorem 2] and Lemma 5.2, Iκ(σ )' IndG
Bop(indT

T 0(κT ⊗ σ)).
By second adjunction (cf. [Dat 2009, Corollaire 3.9]),

HomG(IndG
Bop(indT

T 0(κT ⊗ σ)), π)' HomT (indT
T 0(κT ⊗ σ), r G

B (π)).

By Clifford theory, the irreducible quotients of indT
T 0(κT ⊗σ) are all the twists of χ

by an unramified character. Hence, π is an irreducible quotient of Iκ(σ ) if and only
if it is an irreducible quotient of i G

B (χψ) for some unramified character ψ of T .
The R-type (J, λ) is quasiprojective by Theorem 5.3; hence a simple module

of H(G, λ) corresponds to an irreducible quotient of i G
B (χψ) for some unramified

character ψ , by the bijection of Theorem 4.1. If i G
B (χψ) is reducible with proper

quotient π , then the Jacquet module of π is one-dimensional by the geometric
lemma. Hence, by Theorem 4.2, π must correspond to a character of H(G, λ) under
the bijection of Theorem 4.1 and all characters of H(G, λ) must correspond to a
proper quotient of a reducible principal series representation i G

B (χψ) with ψ an
unramified character of T .

Lemma 6.8. Suppose ` 6= 2 and ` | q − 1. Then i G
B (χ) is semisimple.

Proof. If i G
B (χ) is irreducible then it is semisimple, so suppose i G

B (χ) is re-
ducible. If i G

B (χ) has a cuspidal subquotient it is of the form Iκm (σ ) for m ∈ {x, y}
and σ an irreducible cuspidal representation of M(3x

E) by Theorem 5.3. By
Theorem 6.4, Rκx (i

G
B (χ))= iM(3x

E )

B(3x
E )
(RκT (χ)), and Rκx (Iκx (σ ))= σ , by Theorem 4.8

and Lemma 4.4. Hence, by exactness, σ is a cuspidal subquotient of i
M(3x

E )

B(3x
E )
(RκT (χ)).

However, by Section 3, when ` | q − 1 no such cuspidal subquotients exist; hence
i G

B (χ) has no cuspidal subquotients. Thus, by exactness of the Jacquet functor and
the geometric lemma, i G

B (χ) has length two. When ` 6= 2 and ` | q−1 there are four
characters of H(G, λ), yet only two reducibility points. Hence these two reducible
principal series representations must both have two nonisomorphic irreducible
quotients and must be semisimple. �

Remark 6.9. If χ−1
= χ then i G

B (χ) is self-contragredient and there is a simple
proof of Lemma 6.8 using the contragredient representation and avoiding the use
of covers or second adjunction.
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Lemma 6.10. Let ` | q + 1. Then the unique irreducible quotient of i G
B (χ) is

isomorphic to the unique irreducible subrepresentation.

Proof. Let π denote the unique irreducible quotient of i G
B (χ). When ` | q + 1 there

is only one character of H(G, κ⊗σ). Hence π corresponds to the unique character
of H(G, λ). Hence, if V is the space of π , Rκ(V) is one-dimensional and the action
of J is given by σ . As δB is trivial, the contragredient commutes with parabolic
induction: we have (i G

B (χ))
∼
' i G

B (χ̃). Furthermore, χ̃ = χ−1, where χ−1 is the
character defined by, for all x ∈ F×, χ−1(x) = χ(x−1). The character χ−1 is
not regular and similar arguments, given for i G

B (χ), apply to i G
B (χ

−1). We find
that i G

B (χ
−1) has a unique irreducible quotient ρ which corresponds to the unique

character of H(G, λ̃) under the bijection of Theorem 4.1. As the contragredient is
contravariant and exact, ρ̃ is a subrepresentation of i G

B (χ). By Lemma 4.10, we
have (Rκ̃(ρ))∼ ' Rκ(ρ̃) which is one-dimensional and hence must be isomorphic
to σ . Hence ρ̃ is irreducible and isomorphic to π . Thus π appears twice in the
composition series of i G

B (χ), as the unique irreducible quotient and as the unique
irreducible subrepresentation. �

Remark 6.11. If ` 6= 3 and ` |q2
−q+1, then similar counting arguments show that

the unique irreducible subrepresentation is not isomorphic to the unique irreducible
quotient. However, in these cases we find out more information later so this
argument is not necessary.

6E. On the unramified principal series.
6E1. Decomposition of i G

B (ν
2) and i G

B (ν
−2). In all cases of coefficient field, the

space of constant functions forms an irreducible subrepresentation of i G
B (ν
−2)

isomorphic to 1G . We let StG denote the quotient of i G
B (ν
−2) by 1G . Parabolic

induction preserves finite-length representations; hence StG has an irreducible
quotient υG . By the geometric lemma,

[
r G

B ◦i
G
B (ν
−2)
]
'ν−2

⊕(ν−2)wx . Considering
ν−2 as a character of F×, we have (ν−2)wx (x)= ν−2(x̄−1)= ν2(x), as ν−2(x)=
ν−2(x̄). Thus

[
r G

B ◦ i G
B (ν
−2)
]
= ν−2

⊕ ν2. We have r G
B (1G)= ν

−2, thus r G
B (StG)=

ν2 by exactness of the Jacquet functor. A quotient of a parabolically induced
representation has nonzero Jacquet module; hence r G

B (υG)= ν
2. Thus any other

composition factors which occur in i G
B (ν
−2) must be cuspidal.

Theorem 6.12. (1) If ` - (q − 1)(q + 1)(q2
− q + 1) then i G

B (ν
−2) has length two

with unique irreducible subrepresentation 1G and unique irreducible quotient StG .

(2) If ` 6= 2 and ` | q − 1 then i G
B (ν
−2)= 1G ⊕StG is semisimple of length two.

(3) If ` 6= 3 and ` | q2
− q + 1 then i G

B (ν
−2) has length three with unique cuspidal

subquotient I3x (τ
+(1̄)). The unique irreducible quotient υG is not a character.

(4) If ` 6= 2 and ` | q + 1, or if ` = 2 and 4 | q + 1, then i G
B (ν
−2) has length

six with 1G appearing as the unique subrepresentation and the unique quotient,
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and four cuspidal subquotients. Let π be a maximal proper submodule of StG .
Then π ' ρ ⊕ I3y (σ (1̄)⊗ 1̄), where ρ is of length three with unique irreducible
subrepresentation and unique irreducible quotient, both of which are isomorphic to
I3x (ν(1̄)), and remaining subquotient isomorphic to I3x (σ (1̄)).

(5) If ` = 2 and 4 | q − 1, then i G
B (ν
−2) has length five with unique irreducible

subrepresentation and unique irreducible quotient both isomorphic to 1G . Let π be
a maximal proper submodule of StG . Then

π ' I3x (ν(1̄))⊕ I3x (τ
+(χ))⊕ I3y (σ (1̄)⊗ 1̄).

Proof. By Theorem 5.3 and Lemma 6.6, if i G
B (ν
−2) has a cuspidal subquotient π

then π ' I3w(σ ) for w ∈ {x, y} and σ an irreducible cuspidal representation of
P(3w)/P1(3w).

If 6w is a maximal cuspidal subquotient of R3w(i
G
B (ν
−2)) then I3w(6w) is a

subrepresentation of StG , by Lemma 6.7. Thus, we have an exact sequence

0→ I3x (6x)⊕ I3y (6y)→ StG→ υG→ 0.

By exactness and Section 3, we obtain composition series of I3x (6x) and of I3y (6y).
If ` - (q− 1)(q+ 1)(q2

− q+ 1), or ` 6= 2 and ` | q− 1, then R3x (i
G
B (ν
−2)) and

R3y (i
G
B ν
−2)) are of length two with no cuspidal subquotients, by Theorem 5.3 and

Lemma 6.6. Hence, i G
B (ν
−2) has no cuspidal subquotients as R3w(I3w(σ ))' σ is

cuspidal by Lemma 4.4. By the geometric lemma, i G
B (ν
−2) is of length two with 1G

as an irreducible subrepresentation and StG as an irreducible quotient. By second
adjunction,

HomG(i G
B (ν
−2), 1G)' HomT (ν

−2, 1T ).

The character ν−2 is nontrivial when ` - (q−1)(q+1)(q2
−q+1) and trivial when

` | q − 1. Hence 1G is a direct factor when ` 6= 2 and ` | q − 1 and i G
B (ν
−2) is

semisimple, and i G
B (ν
−2) is nonsplit when ` - (q − 1)(q + 1)(q2

− q + 1).
In all other cases, i G

B (ν
−2) has cuspidal subquotients. Thus 1G cannot be a

direct factor. Therefore i G
B (ν
−2) has a unique irreducible quotient υG and a unique

irreducible subrepresentation 1G . When ` | q + 1 the unique irreducible quotient
is isomorphic to the unique irreducible subrepresentation by Lemma 6.10; hence
υG ' 1G . When ` 6= 3 and ` | q2

− q + 1, the representation R3y (i
G
B (ν
−2)) has

noncuspidal subquotients 1My and StMy . By exactness, R3y (υG)' StMy ; hence 1G

is not isomorphic to υG , which is not a character. �

Note that i G
B (ν

2)' i G
B (ν
−2)∼; hence decompositions of i G

B (ν
2) can be obtained

from Theorem 6.12.

6E2. Decomposition of unramified i G
B (ην) and i G

B (ην
−1). Let η be the unique un-

ramified character of F× extending ωF/F0 . If ` | q+1, then ωF/F0ν
−1
=ωF/F0ν= 1;
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hence we refer to Theorem 6.12. When ` | q2
+ q + 1 we have ν2

= ην−1 and
ν−2
= ην; hence once more we refer to Theorem 6.12. When ` | q − 1, ν is trivial,

hence ην = ην−1
= η. Thus i G

B (η) is self-contragredient. By Lemma 6.8, i G
B (η)

has length two and is semisimple.

6F. Cuspidal subquotients of the ramified level zero principal series. We describe
the reducible principal series i G

B (χ) which have length greater than two when χ
is a level zero character of T which does not factor through the determinant map.
We twist by a character that factors through the determinant map so that we can
assume χ2 = 1. Then χq+1

= 1 and χ = ψ ◦ ξ for ψ a nontrivial character of k1
F .

When ` - q + 1, because R3x (i
G
B (χ)) and R3y (i

G
B (χ)) have no cuspidal subquo-

tients, i G
B (χ) is of length two.

Theorem 6.13. Let ` | q + 1. The representation i G
B (χ) has length four with

a unique irreducible subrepresentation and a unique irreducible quotient, and
cuspidal subquotient isomorphic to I3x (σ (ψ,ψ, 1̄))⊕I3y (σ (ψ)⊗ 1̄). Furthermore,
the unique irreducible subrepresentation is isomorphic to the unique irreducible
quotient.

Proof. The proof is similar to the proof of Theorem 6.12. �

7. Cuspidal subquotients of positive level principal series

In this section, suppose that χ1 is a positive level character of F× trivial on F×0
and χ is the character of T given by χ1 and χ2 = 1. We assume we are in the same
setting as Section 6D with (T 0, λT ) an R-type contained in χ , (J, λ) a G-cover of
(T 0, λT ) relative to B with λ = κ ⊗ σ , and (κm,3

m) compatible with (κ,3) for
m ∈{x, y}. We have M(3m

E )'U(1, 1)(kF/k0)×U(1)(kF/k0). When ` -q+1, there
are no cuspidal subquotients of U(1, 1)(kF/k0), and hence no cuspidal subquotients
of i G

B (χ), by Lemma 6.6. Thus it remains to look at the case when ` | q + 1. Let
ψ = (χκ−1

T )T
1

and χ the character of k1
F such that ψ = χ ◦ ξ .

Theorem 7.1. Suppose ` | q + 1. The representation i G
B (χ) has length four with

unique irreducible subrepresentation and unique irreducible quotient which are
isomorphic, and cuspidal subquotient isomorphic to Iκx (σ (χ)⊗ 1̄)⊕ Iκy (σ (χ)⊗ 1̄).

Proof. The proof is similar to the proof of Theorem 6.12. �

8. Supercuspidal support

Theorem 8.1. Let G be an unramified unitary group in three variables and π an
irreducible `-modular representation of G. Then the supercuspidal support of π is
unique up to conjugacy.
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Proof. Suppose π is not cuspidal. Then the supercuspidal support of π is equal
to the cuspidal support of π and is thus unique up to conjugacy. If π is cuspidal
nonsupercuspidal then it appears in one of the decompositions given in Theorems
6.12, 6.13, and 7.1, or is a twist of such a representation by a character that factors
through the determinant map, and we see that the supercuspidal support of π is
unique up to conjugacy. �

Remark 8.2. Let Iκ ′(σ ′) be an irreducible cuspidal representation of G as con-
structed in Theorem 5.3. After the decomposition of the parabolically induced
representations given in Theorems 6.12, 6.13, and 7.1, we see that Iκ ′(σ ′) is super-
cuspidal if and only if σ ′ is supercuspidal. Hence all supercuspidal representations
of G lift, by Section 3.
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McKay natural correspondences
on characters

Gabriel Navarro, Pham Huu Tiep and Carolina Vallejo

Let G be a finite group, let p be an odd prime, and let P ∈ Sylp(G). If
NG(P) = PCG(P), then there is a canonical correspondence between the ir-
reducible complex characters of G of degree not divisible by p belonging to
the principal block of G and the linear characters of P . As a consequence, we
give a characterization of finite groups that possess a self-normalizing Sylow
p-subgroup or a p-decomposable Sylow normalizer.

1. Introduction

The McKay conjecture, one of the main problems in the representation theory
of finite groups, asserts that if G is a finite group and P is a Sylow p-subgroup
of G, then | Irrp′(G)| = | Irrp′(NG(P))|, where Irrp′(G) is the set of the irreducible
complex characters of G that have degree not divisible by p. It is well known that, in
general, no choice-free correspondence can exist between Irrp′(G) and Irrp′(NG(P)).
(On the other hand, the existence of certain type of bijections between these two
sets is the idea on which a possible solution of the McKay conjecture is nowadays
based [Isaacs et al. 2007].)

A key case to consider and understand in the McKay conjecture is when P is
self-normalizing or, even, when NG(P)= PCG(P). It is not often that a natural
correspondence of characters is found.

Theorem A. Let G be a finite group, let p be odd, and let P ∈ Sylp(G). Suppose
that NG(P)= PCG(P). If χ ∈ Irrp′(G) lies in the principal block, then

χNG(P) = χ
∗
+1,

where χ∗∈ Irr(NG(P)) is linear in the principal block and1 is either zero or a char-
acter whose irreducible constituents all have degree divisible by p. Furthermore,
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y Ciencia proyecto MTM2013-40464-P. Tiep gratefully acknowledges the support of the NSF
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the map χ 7→ χ∗ is a bijection

Irrp′(B0(G))→ Irrp′
(
B0(NG(P))

)
,

where Irrp′(B0(G)) is the set of irreducible characters in the principal block of G
of degree not divisible by p.

For p = 2, Theorem A is unfortunately false, as shown, for instance, by S5.
(To prove the McKay conjecture for p = 2 for groups with a self-normalizing
Sylow p-subgroup is still a challenge.) For p odd, Theorem A is also not true for
p-blocks of maximal defect, as shown by the following example: G = SL2(27) ·C3

has a rational, faithful, irreducible character χ of degree 26 that belongs to the
unique nonprincipal 3-block of maximal defect of G, and χNG(P) contains two
linear characters as irreducible constituents.

Theorem A yields the following immediate consequence.

Corollary B. Let G be a finite group, let p be odd, and let P ∈ Sylp(G). Suppose
that NG(P)= P. Then there is a natural bijection χ 7→ χ∗ between Irrp′(G) and
the linear characters of P. In fact, if χ ∈ Irrp′(G) and λ ∈ Irr(P) is linear, then χ
and λ correspond under the bijection if and only if

χP = λ+1,

where1 is either zero or a character whose irreducible constituents all have degree
divisible by p. This happens if and only if

λG
= χ +4,

where 4 is either zero or a character whose irreducible constituents all have degree
divisible by p.

Corollary B was proved in [Navarro 2003] for p-solvable groups (although a
different proof was later given in [Isaacs and Navarro 2008]).

We now mention several applications. A not very well-known consequence of
the Galois version of the McKay conjecture [Navarro 2004] states that whenever
G is a finite group and p is an odd prime, then NG(P) = PCG(P) if and only
if the principal character 1G is the unique p-rational p′-degree character in the
principal block of G. If NG(P)= PCG(P), it follows by Theorem A that the fields
of values of the p′-degree nontrivial irreducible characters in the principal block
are cyclotomic fields Qpa for a > 0, which implies one half of the statement above.
(The other half will be treated separately in another paper.)

A consequence of Theorem A and Corollary B is the following (perhaps sur-
prising) characterization of finite groups that possess a self-normalizing Sylow
p-subgroup or a p-decomposable Sylow normalizer (i.e., NG(P)= PCG(P)), for
a given odd prime p.
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Corollary C. Let G be a finite group, let p be odd, and let P ∈ Sylp(G).

(a) NG(P)= P if and only if

(1P)
G
= 1G +4,

where 4 is either zero or a character whose irreducible constituents all have
degree divisible by p.

(b) NG(P) = PCG(P) if and only if 1G is the only irreducible constituent of
(1PCG(P))

G that has p′-degree and belongs to the principal p-block of G.

It is remarkable that Corollary C(a) gives the exact opposite of a recent result by
G. Malle and Navarro [2012]: a finite group G has a normal Sylow p-subgroup if
and only if all irreducible constituents of (1P)

G have degree not divisible by p.
Corollary C is false for p = 2, as shown again by G = S5: in this case (1P)

G

contains the trivial character of G and an irreducible character of degree 5.
Now, we come back to Theorem A and natural correspondences. Although it

is entirely possible that, under the hypotheses of Theorem A, a natural correspon-
dence exists between all the characters in Irrp′(G) and Irrp′(NG(P)) (not only the
characters in the principal blocks), we have not been able to find it, except for
p-solvable groups. In this case, our correspondence in Theorem D below extends
the Glauberman correspondence (and the correspondence in Theorem A).

Theorem D. Let G be a finite p-solvable group, and let P ∈ Sylp(G). Suppose
that NG(P)= PCG(P), and let N = Op′(G). Let IrrP(N ) be the set of P-invariant
characters θ ∈ Irr(N ). Then, for every θ ∈ IrrP(N ) and linear λ ∈ Irr(P/P ′), there
is a canonically defined character

λ ? θ ∈ Irrp′(G).

Furthermore, the map

Irr(P/P ′)× IrrP(N )→ Irrp′(G)

given by (λ, θ) 7→ λ?θ is a bijection. As a consequence, NG(P)= P×CN (P), and
if θ∗ ∈ Irr(CN (P)) is the Glauberman correspondent of θ ∈ IrrP(N ), then the map

λ× θ∗ 7→ λ ? θ

is a natural bijection Irrp′(NG(P))→ Irrp′(G). Also, if θ = 1N and λ ∈ Irr(P/P ′),
then λ× θ∗ is the unique linear constituent of (λ ? θ)NG(P).

Theorem D suggests studying the blocks B of finite groups with defect group D
satisfying NG(D, bD) = DCG(D), where (D, bD) is a root of B. However, we
will leave this for another place.



1842 Gabriel Navarro, Pham Huu Tiep and Carolina Vallejo

2. An extension theorem

We begin with a well-known lemma. If N G G and θ ∈ Irr(N ), then IG(θ) denotes
the stabilizer of θ in G. In general, we follow the notation of [Isaacs 2006] for
characters. If G is a finite group, Irrp′(G) denotes the set of the irreducible complex
characters of G whose degree χ(1) is not divisible by the prime p.

Lemma 2.1. Let G be a finite group, let p be a prime, let P ∈ Sylp(G), and
let χ ∈ Irrp′(G). Assume that L G G. Then χL has a P-invariant irreducible
constituent θ , and all such constituents are NG(P)-conjugate. In particular, if
NG/L(P L/L)= P L/L , then θ is unique.

Proof. Let η ∈ Irr(L) be any irreducible constituent, and let T be the inertia
subgroup of η in G. By the Clifford correspondence, |G : T | is not divisible by p,
and therefore Pg−1

≤ T for some g ∈ G, and thus P fixes ηg
= θ . If P fixes θ x ,

then P x−1
and P are Sylow p-subgroups of I = IG(θ), and P y

= P x−1
for some

y ∈ I . Hence yx ∈ NG(P) and θ x
= θ yx . The second part easily follows. �

Lemma 2.2. Let G be a finite group, let p be prime, and let P ∈Sylp(G). Let L G G,
and assume that NG/L(P L/L) = P L/L. Let θ ∈ Irr(L) be P-invariant, let T =
IG(θ) be the stabilizer of θ in G and assume that ψ ∈ Irr(T | θ) has p′-degree. Then

(ψG)L P = ψL P +1,

where either 1= 0 or every irreducible constituent of 1 has degree divisible by p.

Proof. Let
G =

⋃
x∈D

T x P

be a disjoint union of double cosets with 1 ∈ D. Then, by Mackey’s formula, we
have that

(ψG)L P = ψL P +
∑

16=x∈D

((ψ x)T x∩L P)
L P .

Suppose that some irreducible constituent α of ((ψ x)T x∩L P)
L P has degree not

divisible by p for 1 6= x ∈ D. Hence αL ∈ Irr(L) by Corollary (11.29) of [Isaacs
2006]. Thus the irreducible character αT x∩L P lies under ψ x . However (ψ x)L = dθ x ,
so we conclude that θ x

= αL is P-invariant. Then by Lemma 2.1, we have that
θ x
= θ and therefore x ∈ T . But this is impossible since 1 6= x ∈ D is a representative

of the double cosets of T and P in G. �

The following theorem is key in this paper, and follows from deep results in
[Navarro and Späth 2014] and [Späth 2013] on the McKay conjecture. Despite
many efforts, we have been unable to find an elementary proof of it. Recall that a
finite simple group X is involved in a finite group G if there exist K G H ≤ G such
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that X ∼= H/K . The so-called inductive Alperin–McKay condition is defined in
Definition 7.2 of [Späth 2013]. For character triples, see Chapter 11 of [Isaacs 2006].

Theorem 2.3. Let G be a finite group, and let p be a prime. Let P ∈ Sylp(G) and
assume that P = NG(P). Let L G G and let θ ∈ Irr(L) be P-invariant of p′-degree.
Suppose that L G H with H/L a p′-group. Assume that all nonabelian simple groups
of order divisible by p involved in L satisfy the inductive Alperin–McKay condition
for p. If θ is H-invariant, then θ extends to H. In particular, this holds if p is odd.

Proof. We argue by induction on |G|. Let Q = P ∩ L . We are going to use
Theorem 7.1 of [Navarro and Späth 2014]. The notation Irr0(L | Q) in that theorem
is defined in Notation 2.1 of the same article, and since Q ∈ Sylp(L), we have that
Irr0(L | Q)= Irrp′(L) in this case. Theorem 7.1 of [loc. cit.] implies now that there
is a NG(Q)-equivariant bijection

5Q : Irrp′(L)→ Irrp′(NL(Q))

such that the character triples (T, L , θ) and (NT (Q), NL(Q), θ ′) are isomorphic,
where θ ′ =5Q(θ) and T = IG(θ). (In Section 3 of [loc. cit.] the reader will find
the appropriate definitions involved in Theorem 7.1 there.) Since 5Q is NG(Q)-
equivariant, we have that NT (Q)= ING(Q)(θ

′). Since P ≤ NG(Q), we have that θ ′

is P-invariant. By character triple isomorphisms, we have that θ extends to H if
and only if θ ′ extends to NH (Q). Also NH (Q)/NL(Q) is a p′-group, so, arguing
by induction, it is no loss to assume that Q G G. Since NG(P) = P , it follows
that CL/Q(P)= 1. Let η ∈ Irr(Q) be P-invariant under θ , by Theorem (13.27) of
[Isaacs 2006]. Let I = IG(η). Since θ is H -invariant, we have that H = L(I ∩ H)
by using Clifford’s theorem. Let τ ∈ Irr(I ∩ L | η) be the Clifford correspondent
of θ over η. By the uniqueness in the Clifford correspondence, we have that τ
is I ∩ H -invariant. If I < G, then by induction we have that τ has an extension
ρ ∈ Irr(I ∩ H). Now,

(ρH )L = (ρI∩L)
L
= εL

= θ,

and we are also done in this case. So we may assume that η is G-invariant. Since
CL/Q(P) = 1, by Problem (13.10) of [loc. cit.] θ is the unique P-invariant con-
stituent of ηL . Now, we have that η has an extension η̂ ∈ Irr(H) by Corollary (8.16)
of [loc. cit.]. Since (η̂)L is P-invariant and lies over η, it coincides with θ by
uniqueness. Hence θ extends to H , as required.

If p is odd, then by Theorem A of [Guralnick et al. 2004], we have that all
nonabelian composition factors of G of order divisible by p are PSL2(33a

)with a≥1
and that p= 3. By elementary general group theory, if X is a simple group involved
in G, then X is involved in a composition factor of G. By using the classification
of the subgroups of PSL2(p f ) in Satz II.8.27 of [Huppert 1967], we have that the
only simple groups involved in G of order divisible by p are PSL2(33b

) (with p= 3
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and b ≥ 1). Now, the proof of Theorem 8.4 of [Späth 2013] shows that the simple
groups PSL2(33b

) with b ≥ 1 satisfy the inductive Alperin–McKay condition. �

Corollary 2.4. Let G be a finite group, p any prime, P ∈ Sylp(G), and assume
that P = NG(P). Let L G G. Let χ ∈ Irrp′(G), and let θ ∈ Irr(L) be P-invariant
under χ . Assume that all nonabelian simple groups of order divisible by p involved
in L satisfy the inductive Alperin–McKay condition for p. Then θ extends to IG(θ).
In particular, this holds if p is odd.

Proof. We may assume that θ is G-invariant. Now, χP L has some irreducible
constituent ξ ∈ Irr(P L) such that p does not divide ξ(1). Then ξL = θ , by
Corollary (11.29) of [Isaacs 2006]. Suppose now that q 6= p is another prime,
and let Q/L be a Sylow q-subgroup of G/L . Then θ extends to Q by Theorem 2.3.
Hence, we have that θ extends to G by Corollary (11.30) of [loc. cit.]. �

3. A group theoretical result

Our aim in this Section is to prove Theorem 3.2 below. We start with the following
lemma, whose parts (ii) and (iii) will be used in the proof of Theorem A.

Lemma 3.1. Let S := PSL2(q) with q = 33a
for some a ≥ 1, P ∈ Syl3(Aut(S)),

and Q := P ∩ S ∈ Syl3(S).

(i) Assume that Y is a 3′-subgroup of Aut(S) that centralizes Q. Then Y = 1.

(ii) Assume that Q ≤ R ≤ P and CNS(Q)/Q(R)= 1. Then R = P.

(iii) Irr(S) contains exactly four P-invariant characters: the principal character 1S ,
two irreducible Weil characters η± of degree (q−1)/2, and the Steinberg character
of degree q. If α ∈ {1S, η

+, η−}, then αQ contains a unique P-invariant irreducible
constituent α∗, which occurs with multiplicity one. Finally, the map α 7→ α∗ is a bi-
jection between {1S, η

+, η−} and the set of P-invariant irreducible characters of Q.

Proof. (i) Recall that Aut(S)∼= PGL2(q) ·C3a . Since Y is a 3′-group, it embeds in
CH (Q) for H := PGL2(q). But CH (Q)= Q, hence the claim follows.

(ii) Without loss we may assume that Q is the image of the subgroup{
[x] :=

(
1 x
0 1

) ∣∣∣ x ∈ Fq

}
in PSL2(q) and P = 〈Q, σ 〉, where σ acts on S as the field automorphism raising
every entry y of any matrix in SL2(q) to y3. Then the maximal subgroup 〈Q, σ 3

〉

of P centralizes a subgroup of order 13 of NS(Q)/Q, namely, the one induced by
{diag(z, z−1) | z ∈ F×27}. Hence the claim follows.
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(iii) We keep the notation of (ii). The character table of S is given, for instance, in
[Digne and Michel 1991, Table 2]. Now, it is straightforward to check that 1S , η±,
and the Steinberg character (of degree q) are the only P-invariant irreducible
characters of S. Next,

Irr(Q)=
{
λa : [x] → ω

tr Fq /F3
(ax)
| a ∈ Fq

}
,

where ω ∈ C is a fixed primitive cubic root of unity. Since σ acts on Irr(Q) via
λa 7→λa3 , the only P-invariant irreducible characters of Q are 1Q =λ0, λ1, and λ−1.
Relabeling η+ and η− if necessary, we have that

(η+)Q =
∑

a∈F×2
q

λa, (η−)Q =
∑

a∈F×q \F
×2
q

λa.

Hence λ1 and λ−1 are the only P-invariant irreducible constituents of (η+)Q and
(η−)Q , respectively, each occurring with multiplicity one. �

Theorem 3.2. Let G be a finite group, let p be a prime, and let P ∈ Sylp(G).
Suppose that NG(P) = P × X. If p is odd or G is p-solvable, then X ≤ Op′(G).
In particular, if NG(P)= PCG(P), then Op′(NG(P))≤ Op′(G).

Proof. We argue by induction on |G|. If N G G, then

NG/N (P N/N )= NG(P)N/N = P N/N × X N/N .

Hence, if N > 1, then we have that X N/N ≤ Op′(G/N ). In particular, we may
assume that Op′(G)= 1. Now, suppose that N = Op(G) > 1. Then we conclude
that X ≤ Opp′(G)= M . Since [X, P] = 1, then [X, N ] = 1. However, using that
Op′(G)= 1, we have that CM(N )= Z(N )× Op′(M)= Z(N ), and we conclude
that X = 1, in this case. Hence, we may assume that G is not p-solvable, and that
p is odd.

Now, let N be a minimal normal subgroup of G. By [Guralnick et al. 2004], we
have that N = S1×· · ·× Sk , where {S1, . . . , Sk} are transitively permuted by G and
S1 = S = PSL2(33a

). Now P ∩ N = (P ∩ S1)× · · · × (P ∩ Sk). Fix some index i .
Since [P, X ] = 1, we have [Qi , X ] = 1, where 1< Qi = P∩ Si ∈ Syl3(Si ). Now, if
x ∈ X , then we have that (Si )

x
= S j for some j . However Qx

i ≤ Sx
i ∩Si = S j∩Si , so

we conclude that X ≤ NG(Si ) for all i with [X, Qi ]= 1. Let Yi = X CG(Si )/CG(Si ),
which is a 3′-subgroup of Aut(Si ) centralizing the Sylow 3-subgroup Qi of Si . By
Lemma 3.1(i), Yi = 1, whence X ≤ CG(Si ) for all i . Thus X ≤ CG(N ) for every
minimal normal subgroup. Since F(G)= 1, we have F∗(G)= E(G)= E . Since
Z(E)= 1, we have that E is semisimple and CG(E)= 1 by Theorems 9.7 and 9.8
of [Isaacs 2008]. Now, E is a direct product of nonabelian simple groups Ki and
the normal closure of Ki is a minimal normal subgroup of G (by Lemma 9.17 of
[Isaacs 2008], for instance), and we conclude that X ≤ CG(E)= 1, as desired.
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Finally, since CG(P)= Z(P)×Op′(NG(P)) (by the Schur–Zassenhaus theorem),
it follows that if NG(P) = PCG(P), then NG(P) = P × Op′(NG(P)), and we
apply the first part of the theorem. �

Note that Theorem 3.2 is not true for p = 2: If G = E6(11) and P ∈ Syl2(G),
then NG(P)= P ×C5; see [Kondratiev and Mazurov 2003, Theorem 6(c)].

4. Proof of main theorem

We will also need the following result.

Lemma 4.1 [Navarro et al. 2007]. Suppose that a finite p-group P acts on a finite
group G, stabilizing N G G. Suppose that Q/N ∈ Sylp(G/N ) is P-invariant, and
assume that

G/N = T1/N × · · ·× Ta/N ,

where the subgroups T1, . . . , Ta are permuted by P. Let Q1 = Q ∩ T1, and let P1

be the stabilizer of T1 in P. If CNG(Q)/Q(P)= 1, then CNT1 (Q1)/Q1(P1)= 1.

Proof. This follows by applying Lemma 4.1 of [Navarro et al. 2007] to each of the
P-orbits on {T1, . . . , Ta}. �

The proof of the following lemma is a trivial consequence of the fact that Op′(G)
is contained in the kernel of all the irreducible characters in the principal block
of G. (See, for instance, Theorem (6.10) of [Navarro 1998].)

Lemma 4.2. Suppose that N is a normal subgroup of H , with N ≤ Op′(H). Sup-
pose that H = NU for some U ≤ H. Then restriction defines a bijection between
the characters of the principal block of H and of the principal block of U ∩ N.

We are finally ready to prove the main result of this paper. The only way we have
found to prove it is to use a strong induction using normal subgroups. Theorem A
of the introduction will be recovered by letting L = 1 in the next result.

Theorem 4.3. Let G be a finite group, and let p be an odd prime. Let P ∈ Sylp(G),
and suppose that NG(P) = PCG(P). Let L G G. Let χ ∈ Irrp′(G) lie in the
principal block of G. Then χL NG(P) = χ

∗
+1, where χ∗ ∈ Irrp′(L NG(P)) lies in

the principal block of L NG(P), and 1 is either zero or a character of L NG(P)
whose irreducible constituents all have degree divisible by p. Furthermore, the map
χ 7→ χ∗ is a bijection

Irrp′(B0(G))→ Irrp′(B0(L NG(P))).

Proof. (I) Let (G, L) be a counterexample to the first part of the theorem with
|G| · |G/L| as small as possible.
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(a) Here we show that Op′(G)= 1 and NG(P)= P . To this end, using Theorem 3.2
we can write NG(P)= P× X , where X ≤ N := Op′(G). Write G = G/N and use
the bar convention. Hence L = L N/N , P = P N/N and NG(P)= P× X = P , by
elementary group theory. Now, N ≤ ker(χ). If N > 1, then, considering χ as a
character of G, by induction we have that

χL NG(P)
= χL P = χ

∗
+1,

where χ∗ is an irreducible character of p′-degree in the principal block of L P =
L P N/N and either1=0 or1 is a character of L P N/N such that every irreducible
constituent of 1 has degree divisible by p. Now, Lemma 4.2 applies, and we are
done in this case. So we have that N = 1 and that NG(P) = P . Hence, every
p′-degree character of every subgroup H with P ≤ H ≤ G (or of every quotient
G/K of G) lies in the principal block of H (of G/K ) by the first main theorem of
Brauer (Theorem (4.17) of [Navarro 1998]).

(b) Next we show that L = 1. By Lemma 2.1, let θ ∈ Irr(L) be P-invariant under χ .
Let T = IG(θ) be the stabilizer of θ in G, and let ψ ∈ Irr(T | θ) be the Clifford
correspondent of χ over θ . Assume that T < G. By the choice of G, we have that

ψL P = ψ
∗
+4,

where ψ∗ has p′-degree and either 4= 0 or the irreducible constituents of 4 have
degree divisible by p. Now, we use Lemma 2.2 to conclude that we may assume
that θ is G-invariant. By Corollary 2.4, we then have that θ has an extension
θ̃ ∈ Irr(G). Now, by Gallagher’s corollary [Isaacs 2006, Corollary (6.17)], we have
that χ = βθ̃ , for some β ∈ Irr(G/L). Now if L 6= 1, then the theorem holds for
G/L , whence we have that βP L is the sum of a p′-degree irreducible character β∗

of P L/L (and hence linear) plus some character 1 of P L/L such that all of its
irreducible constituents have degree divisible by p, or 1= 0. Then

χL P = (β
∗)θ̃L P +1θ̃L P ,

and, using Gallagher’s corollary, we see that we are done again. Hence L = 1, as
desired.

(c) Now we can show that p = 3, E := F∗(G) = E(G) = S1 × · · · × Sn with
Si ∼= PSL2(qi ) for some qi = 33ai , ai , n≥ 1, and ECG ≤Aut(E). Indeed, suppose
that K :=Op(G) 6=1. Since |G/K |< |G|=|G/L|, the first statement of the theorem
holds for (G, K ) and so for (G, L) as well (since K P= P), contradicting the choice
of (G, L). Thus Op(G)= 1. Since Op′(G)= 1, we have now that F(G)= 1 and so
E = F∗(G)= E(G). Next, Z(E)≤ F(G)= 1, whence E = S1×· · ·×Sn is a direct
product of nonabelian simple groups and CG(E)= 1, yielding E CG ≤ Aut(E).
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Since NG(P) = P and p is odd, we have that p = 3 and Si ∼= PSL2(qi ) with
qi = 33ai by the main result of [Guralnick et al. 2004].

(d) Let Q := P ∩ E ∈ Sylp(E) and write Q = Q1× · · ·× Qn with Qi ∈ Sylp(Si ).
Since P is self-normalizing in E P , by [Navarro et al. 2007, Lemma 2.1(ii)],
CNE (Q)/Q(P)= 1. This in turn implies by Lemma 4.1 that CNSi (Qi )/Qi (Pi )= 1 for
Pi := NP(Si ). It follows by Lemma 3.1(ii) that Pi must induce the full subgroup
C3ai of field automorphisms of Si . Applying Lemma 3.1(iii) to Si , we see that the
Pi -invariant irreducible characters of p′-degree of Si are αi := 1Si and the two Weil
characters η±i of degree (qi − 1)/2. Furthermore, for each α ∈ {αi , η

±

i }, Pi fixes a
unique irreducible constituent α∗ of αQi , occurring with multiplicity one. Moreover,
the map α 7→ α∗ is a bijection between the set of irreducible Pi -invariant characters
of p′-degree of Si and that of Qi .

(e) Since the theorem holds for (G, E),

χE P = χ
∗
+1,

where χ∗ ∈ Irrp′(E P) and all the irreducible constituents of 1 (if any) have degree
divisible by p. In particular, θ := (χ∗)E is irreducible. Write

θ = θ1× · · ·× θn,

with θi ∈ Irrp′(Si ). Since θ is P-invariant, it follows that θi is Pi -invariant of
p′-degree, and so θi ∈ {αi , η

±

i } by (d). As mentioned above,

(θi )Qi = θ
∗

i + δi ,

where θ∗i ∈ Irr(Qi ) is Pi -invariant and δi is a sum of non-Pi -invariant irreducible
characters of Qi . Setting

θ̃ := θ∗1 × · · ·× θ
∗

n ,

we see that each irreducible constituent of θQ− θ̃ is non-P-invariant and so must lie
under an irreducible character of P of degree divisible by p. But p - θ(1). Hence
θP contains a unique linear constituent which lies above θ̃ . Denote this constituent
by θ∗. We have shown that every irreducible constituent of θP − θ

∗
= (χ∗)P − θ

∗

is of degree divisible by p, whereas θ∗(1)= 1.

(f) It remains to show that every irreducible constituent of 1P has degree divisible
by p. Assume the contrary: 1P contains a linear constituent λ, and write

λQ = λ1× · · ·× λn,

with λi ∈ Irr(Qi ). Let γ ∈ Irr(E P) be an irreducible constituent of 1 that contains
λ upon restriction to P . Also, let

β = β1× · · ·×βn ∈ Irr(E)



McKay natural correspondences on characters 1849

lie under γ and above λQ . Since ECG and both θ and β are irreducible constituents
of χE , β is G-conjugate to θ . Recall that θ = θ1×· · ·×θn , with θi ∈ {αi , η

±

i }. Also,
note that the set {αi , η

±

i } is Aut(Si )-invariant. It follows that βi ∈ {αi , η
±

i }. As
mentioned in (d), (βi )Qi contains a unique Pi -invariant irreducible constituent β∗i ,
and each irreducible constituent of (βi )Qi −β

∗

i is non-Pi -invariant. Denoting

β̃ := β∗1 × · · ·×β
∗

n ,

we see that no irreducible constituent of βQ − β̃ can be invariant under P . But λQ

lies under βQ and is P-invariant. Hence λQ = β̃ and λi = β
∗

i .

(g) Now we consider two cases.

Case 1: β is not P-invariant. In this case, there is some g ∈ P such that βg
6= β.

Then βg lies above (λQ)
g
= λQ and under γ . Writing βg

= β ′1 × · · · × β
′
n and

arguing as in (f), we see that β ′i ∈ {αi , η
±

i } and, moreover,

β∗i = λi = (β
′

i )
∗.

As mentioned in (d), the map α 7→ α∗ is a bijection. It follows that βi = β
′

i and so
β = βg, a contradiction.

Case 2: β is P-invariant. Then, by Corollary 2.4, β extends to β̂ ∈ Irr(E P). Since
γ lies above β, by Gallagher’s corollary we have that γ = β̂µ, where µ∈ Irr(P/Q)
is considered as a character of E P/E . Note that p | γ (1), as γ is an irreducible
constituent of 1. On the other hand, p - β̂(1)= β(1). It follows that p | µ(1). As
shown in (f), no irreducible constituent of

β̂Q − λQ = βQ − λQ

can be P-invariant. Hence λ is the unique linear constituent of β̂P . Certainly, µλ
is irreducible over P and nonlinear. Furthermore, again as shown in (f), every
irreducible constituent of

(γP −µλ)Q = µ(1) · (βQ − λQ)

is non-P-invariant and so must lie under an irreducible P-character of degree
divisible by p. Thus the degree of every irreducible constituent of γP − µλ is
divisible by p, and the same is true for µλ ∈ Irr(P). Consequently, the linear
character λ cannot be a constituent of γP , again a contradiction.

Thus we have completed the proof of the first statement of the theorem.

(II) Now we prove that our map χ 7→ χ∗ is a bijection. Recall that Op′(NG(P))≤
Op′(G) by Theorem 3.2 and that Op′(G) is contained in the kernel of any ψ ∈
Irr(B0(G)). Modding out by Op′(G), we may assume that Op′(G) = 1 and so
NG(P)= P . Hence the principal block is the only block of maximal defect of G,
and the same is true for L P . Since all the nonabelian composition factors of G
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of order divisible by p are PSL2(33a
) with a ≥ 1, we know by [Isaacs et al. 2007,

Theorem A] that the McKay conjecture is true for G and for L P . Hence

| Irrp′(G)| = | Irrp′(NG(P))| = | Irr(P/P ′)| = | Irrp′(NL P(P))| = | Irrp′(L P)|.

Now, if δ ∈ Irrp′(L P), then some irreducible constituent χ of δG has p′-degree.
Therefore χL P contains δ and, by the first statement of the theorem, we necessarily
have that χ∗ = δ. Thus the map χ 7→ χ∗ is surjective, and therefore injective. �

The proof of Corollary B, which we restate below, is now immediate.

Corollary B. Let G be a finite group, let p be odd, and let P ∈ Sylp(G). Suppose
that NG(P)= P. Then there is a natural bijection χ 7→ χ∗ between Irrp′(G) and
the linear characters of P. In fact, if χ ∈ Irrp′(G) and λ ∈ Irr(P) is linear, then χ
and λ correspond under the bijection if and only if

χP = λ+1,

where1 is either zero or a character whose irreducible constituents all have degree
divisible by p. This happens if and only if

λG
= χ +4,

where 4 is either zero or a character whose irreducible constituents all have degree
divisible by p.

Proof. If NG(P) = P , then the principal block is the unique block of maximal
defect by Brauer’s first main theorem. Hence, the first part of the corollary follows
from Theorem 4.3 by letting L = 1. For the second part, if λ ∈ Irr(P) is linear, then
λG has degree not divisible by p, and therefore λG has a constituent χ ∈ Irrp′(G).
Then [χP , λ] 6= 0 and it follows that necessarily λ= χ∗. It also follows that χ is
unique, because our map is injective. �

Next is Corollary C.

Corollary C. Let G be a finite group, let p be odd, and let P ∈ Sylp(G).

(a) NG(P)= P if and only if

(1P)
G
= 1G +4,

where 4 is either zero or a character whose irreducible constituents all have
degree divisible by p.

(b) NG(P) = PCG(P) if and only 1G is the only irreducible constituent of
(1PCG(P))

G that belongs to Irrp′(B0(G)).
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Proof. Both proofs are very similar. We start with (a). One implication follows
from Corollary B. Assume now that

(1P)
G
= 1G +4,

where 4 is either zero or a character whose irreducible constituents all have degree
divisible by p, but N := NG(P) > P . Then there exists a nonprincipal character
γ ∈ Irr(N/P), which can be viewed as an N -character. Since γ has p′-degree
(because N/P is a p′-group), it follows that γ G possesses an irreducible constituent
χ ∈ Irrp′(G). Now, χ lies over γ 6= 1N and therefore 1G 6= χ lies over 1P , a
contradiction.

Next, we prove (b). Write C=CG(P). One implication follows from Theorem 4.3.
Assume now that 1G is the unique irreducible constituent of (1PC)

G that belongs to
Irrp′(B0(G)) and that N :=NG(P)> PC . Then there exists a nonprincipal character
γ ∈ Irr(N/PC), which can be viewed as an N -character. Since N is p-solvable, and
Op′(N )≤ C ≤ ker γ , it follows that γ lies in the principal block of N by [Navarro
1998, Theorem (10.20)]. Also, γ has p′-degree, because N/PC is a p′-group. If b
is now the principal block of N , we know that bG

= B = B0(G) is the principal
block of G, by Brauer’s third main theorem [loc. cit., Theorem (6.7)]. Write

(γ G)B =
∑

χ∈Irr(B)

[γ G, χ]χ.

(This is called the B-part of γ G ; see page 72 of [loc. cit.].) Now, by [loc. cit.,
Corollary (6.4)], we have that

1= (γ G(1))p = ((γ
G)B(1))p,

where n p is the largest power of p dividing the integer n. It then follows that
some irreducible constituent χ of γ G lies in Irrp′(B). We now have that χ lies
over γ and therefore over 1PC . Since γ 6= 1N , it follows that χ 6= 1G , and this is
a contradiction. �

5. p-solvable groups

Our proof of Theorem D is short but uses deep character theory of p-solvable groups.
We assume that the reader is familiar with π -special characters (i.e., the characters
of π -degree whose subnormal irreducible constituents have determinantal π -order;
see [Gajendragadkar 1979]).

Lemma 5.1. Suppose that L G G, P ∈ Sylp(G) and NG/L(P L/L) = P L/L.
Assume that G/L is p-solvable. Let θ ∈ Irr(L) be P-invariant and p′-special. Then
there exists a unique θ̂ ∈ Irr(G | θ) such that θ̂ is p′-special.
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Proof. We argue by induction on |G : L|. Let K/L be a chief factor of G, and notice
that G/K has a self-normalizing Sylow p-subgroup, by elementary group theory.
Assume first that K/L is a p-group, and let η ∈ Irr(K | θ) be the unique p′-special
character lying over θ , by using Proposition 4.3 of [Gajendragadkar 1979]. By
uniqueness, η is P-invariant, and by induction, there is a unique p′-special character
η̂ ∈ Irr(G) that lies over η (and therefore over θ ). Now, if θ̂ is any other p′-special
character of G lying over θ and ψ ∈ Irr(K ) lies under θ̂ and over θ , we have that
ψ is p′-special by Proposition 4.1 of [Gajendragadkar 1979], and therefore ψ = η,
by uniqueness. But in this case, θ̂ = η̂, by using the inductive hypothesis.

Suppose finally that K/L is a p′-group. Then CK/L(P L/L) = 1, using that
P L/L is self-normalizing. Hence, by Problem (13.10) of [Isaacs 2006], there
exists a unique P-invariant τ ∈ Irr(K | θ). Also, τ is p′-special by Lemma 4.4 of
[Gajendragadkar 1979]. By induction, there exists a unique p′-special character τ̂
lying over τ (and therefore over θ). Suppose now that γ ∈ Irr(G) is any other
p′-special character lying over θ . By Lemma 2.1, let φ ∈ Irr(K ) be P-invariant
under γ , and, by Theorem (13.27) of [Isaacs 2006], let ρ ∈ Irr(L) be P-invariant
under φ. Then ρ and θ are P-invariant and lie under γ , so ρ = θ by Lemma 2.1.
Then φ = τ by the uniqueness of τ , and hence γ = τ̂ by induction. �

We restate Theorem D for the reader’s convenience.

Theorem D. Let G be a finite p-solvable group, and let P ∈ Sylp(G). Suppose
that NG(P)= PCG(P), and let N = Op′(G). Let IrrP(N ) be the set of P-invariant
θ ∈ Irr(N ). Then for every θ ∈ IrrP(N ) and linear λ ∈ Irr(P/P ′), there is a
canonically defined character

λ ? θ ∈ Irrp′(G).

Furthermore, the map

Irr(P/P ′)× IrrP(N )→ Irrp′(G)

given by (λ, θ) 7→ λ?θ is a bijection. As a consequence, NG(P)= P×CN (P), and
if θ∗ ∈ Irr(CN (P)) is the Glauberman correspondent of θ ∈ IrrP(N ), then the map

λ× θ∗ 7→ λ ? θ

is a natural bijection Irrp′(NG(P))→ Irrp′(G). Also, if θ = 1N and λ ∈ Irr(P/P ′),
then λ× θ∗ is the unique linear constituent of (λ ? θ)NG(P).

Proof. By Theorem 3.2, we can write NG(P)= P × X , where X := CN (P). Let
λ ∈ Irr(P) be linear and let θ ∈ IrrP(N ). Since P ∩ N = 1, we trivially have that
λ extends to P N . Now, by Theorem 2.1 of [Isaacs and Navarro 2008] (or see
Corollary 2.2 of [Isaacs and Navarro 2001] for a self-contained proof), there exists
a maximal subgroup P ⊆W ⊆G such that λ extends to W . Hence P N ⊆W . Now,
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by elementary character theory, let λ̂ ∈ Irr(W ) be the unique linear character of
p-power order that extends λ. Now, NW/N (P N/N )= P N/N , and by Lemma 5.1,
there exists a unique p′-special θ̂ ∈ Irr(W ) lying over θ . Now, by Theorem 2.2 of
[Isaacs and Navarro 2008] and Theorem C of [Navarro 1997] we have that

λ ? θ := (θ̂ λ̂)G ∈ Irr(G).

Notice that λ?θ has p′-degree, because θ̂ has p′-degree and |G :W | is not divisible
by p. (We notice for the record that (λ ? θ)W contains θ̂ λ̂, and therefore, when
restricted to N , we have that (λ ? θ) lies over θ . It is not in general true that λ ? θ
lies over λ, on the other hand.)

We have now defined a map

Irr(P/P ′)× IrrP(N )→ Irrp′(G)

given by (λ, θ) 7→ λ ? θ .
Next we show that our map is surjective. Let χ ∈ Irrp′(G). By Theorem 3.6 of

[Isaacs and Navarro 2008], we have that χ is a satellite of some ψ ∈ Bp(G) of
p′-degree (see Section 3 of [Isaacs and Navarro 2008] for the necessary definitions).
In other words, this means that there is some linear character δ ∈ Irr(P) and a
p′-special character α ∈ Irr(U ), where U is the maximal subgroup of G to which δ
extends, such that

χ = (δ̂α)G,

where the order of δ̂ is a p-power and δ̂ extends δ. Now, αN contains a (unique)
P-invariant character µ∈ IrrP(N ) by Lemma 2.1, and it follows that α is the unique
p′-special character of U lying over µ by Lemma 5.1. It follows then that χ = δ ?µ,
and, therefore, that our map is surjective.

Recall that the Glauberman correspondence [Isaacs 2006, Theorem (13.1)] pro-
vides a natural bijection

IrrP(N )→ Irr(CN (P)).

Since the McKay conjecture is true for p-solvable groups (see for instance [Isaacs
et al. 2007]) we have that

| Irrp′(G)| = | Irrp′(NG(P))| = | Irr(P/P ′)|| Irr(CN (P))| = | Irr(P/P ′)|| IrrP(N )|.

It then follows that our map is bijective.
In the case where θ = 1N , the second part of the theorem easily follows from

Theorem 3.1 of [Isaacs and Navarro 2008] applied in the group G/N . �

Under the hypothesis of the previous theorem, we notice that the blocks with
defect group P ∈ Sylp(G) of G can be parametrized by the P-invariant irreducible
characters of N=Op′(G). The fact that in this case Irrp′(G |θ) and Irrp′(NG(P) |θ∗)
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have the same cardinality is a consequence of [Okuyama and Wajima 1980]. Our
hypothesis, however, allows us to obtain a canonical bijection in our case.

6. A non-p-solvable example

To finish the paper, it might be interesting to show the reader how to construct
a natural bijection Irrp′(G)→ Irrp′(NG(P)) in the paradigmatic case where G =
SL2(33a

) ·C3a and p = 3, with P ∈ Sylp(G) as usual.
Let S := [G,G] = SL2(q) with q = 33a

, and let σ denote the field automorphism
of S of order t := 3a , so that G = So 〈σ 〉. Using [Digne and Michel 1991, Table 2],
it is easy to check that Irrp′(S) contains exactly six σ -invariant characters: 1S , two
Weil characters η1,2 of degree (q − 1)/2 (denoted χ±b in [Isaacs et al. 2007, §15]),
two Weil characters ξ1,2 of degree (q+1)/2 (denoted χ±a in that work), and a unique
rational-valued character ψ of degree q − 1. Here, the three former characters are
nonfaithful, and the three latter ones are faithful. Furthermore, one can label ξ1,2

such that

ξi (x)= ηi (x)+ 1

for any element x ∈ S of order 3 and i = 1, 2. Since G/S is cyclic (and generated
by σ ), it follows that all these 6 characters extend to G, and the 6t extensions
are precisely the characters in Irrp′(G). In particular, 1S extends to λ j , 1≤ j ≤ t ,
with λ1 = 1G . Next, we will single out a “canonical” extension for each of the
remaining five characters of S. As shown in [Navarro and Tiep 2014, §3], G embeds
in H := Sp2t(3) in such a way that ηi extends to a Weil character of H that takes
value 1 at σ . We will denote the restriction of this character of H to G by η̃i , so that

η̃i (σ )= 1, i = 1, 2.

Likewise, ξi extends to a Weil character of H that takes value 2 at σ , and we will
denote the restriction of this character of H to G by ξ̃i , so that

ξ̃i (σ )= 2, i = 1, 2.

Finally, by [Navarro and Tiep 2008, Corollary 2.2], there is a unique rational-valued
extension ψ̃ of ψ to G.

Let 1Z and ν denote the two linear characters of Z := Z(G) ∼= C2. For any
γ ∈ Irr(Z), let Irrp′(G | γ ) denote the set of characters χ ∈ Irrp′(G) that lie above
γ , and similarly for N := NG(P)= P × Z . Now we see that

Irrp′(G | 1Z )= {λ j , η̃iλ j | 1≤ i ≤ 2, 1≤ j ≤ t},

Irrp′(G | ν)= {ψ̃λ j , ξ̃iλ j | 1≤ i ≤ 2, 1≤ j ≤ t}.
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Moreover, the first set is contained in the principal 3-block B0(G) of G and the sec-
ond set is contained in the other 3-block of maximal defect B1(G) of G. Theorem A
yields a natural correspondence Irrp′(B0(G))→ Irrp′(B0(N )). To get a natural
correspondence Irrp′(B1(G))→ Irrp′(B1(N )), it therefore suffices to define a natural
correspondence between Irrp′(G |1Z )= Irrp′(B0(G)) and Irrp′(G |ν)= Irrp′(B1(G)),
which can be given by

λ j 7→ ψ̃λ j , η̃iλ j 7→ ξ̃iλ j ,

and a natural correspondence between Irrp′(N |1Z )= Irrp′(B0(N )) and Irrp′(N |ν)=
Irrp′(B1(N )), which can be given by

µ× 1Z 7→ µ× ν

for all µ ∈ Irr(P/P ′).
Note that an equivariant bijection π : Irrp′(S)→ Irrp′(NS(P∩S)) was constructed

in [Isaacs et al. 2007, (15F)]. Choosing π(χ±a ) and π(χ±b ) suitably, one can check
that π extends (from S to G) to our bijection Irrp′(G)→ Irrp′(NG(P)).
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Quantum matrices by paths
Karel Casteels

We study, from a combinatorial viewpoint, the quantized coordinate ring ofm�n
matrices Oq.Mm;n.K// over an infinite field K (often simply called quantum ma-
trices).The first part of this paper shows that Oq.Mm;n.K//, which is traditionally
defined by generators and relations, can be seen as a subalgebra of a quantum
torus by using paths in a certain directed graph. Roughly speaking, we view each
generator of Oq.Mm;n.K// as a sum over paths in the graph, each path being
assigned an element of the quantum torus. The Oq.Mm;n.K// relations then arise
naturally by considering intersecting paths. This viewpoint is closely related to
Cauchon’s deleting derivations algorithm.

The second part of this paper applies the above to the theory of torus-invariant
prime ideals of Oq.Mm;n.K//. We prove a conjecture of Goodearl and Lenagan
that all such prime ideals, when the quantum parameter q is a non-root of unity,
have generating sets consisting of quantum minors. Previously, this result was
known to hold only when char.K/D 0 and with q transcendental over Q. Our
strategy is to prove the stronger result that the quantum minors in a given torus-
invariant ideal form a Gröbner basis.
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1. Introduction

The purpose of this paper is to introduce a “combinatorial model” of Oq.Mm;n.K//,
the quantized coordinate ring of m � n matrices over a field K (simply called
quantum matrices). We demonstrate the utility of this model by using it to study
the prime spectrum of Oq.Mm;n.K//.
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Quantum matrices have generated a good deal of interest since their discovery
during the initial development of quantum group theory in the 1980s. This is
because not only do quantum matrices underlie many of the traditional quantum
groups such as the quantum special and general linear groups, but there are also
interesting connections with topics such as braided tensor categories and knot
theory. See [Takeuchi 2002] for a brief survey. More recently, it has been observed
[Goodearl et al. 2011a; 2011b; Launois and Lenagan 2009] that the prime spectrum
of quantum matrices is deeply related to the theory of totally nonnegative matrices
and the totally nonnegative grassmannian in the sense of [Postnikov 2006].

Since the late 1990s, much effort has been expended toward understanding the
structure of the prime and primitive spectra of various quantum algebras. Quantum
matrices have received particular attention since, while this algebra has a seemingly
simple structure (for example, it is an iterated Ore extension over the field K), many
problems have proven difficult to resolve. In particular, the machinery employed
to analyze Spec.Oq.Mm;n.K/// has tended to use fairly sophisticated viewpoints
from noncommutative ring theory and representation theory, and even then often
requires extra restrictions on the base field K and choice of quantum parameter q.

The H-stratification theory of [Goodearl and Letzter 2000] (see also [Brown
and Goodearl 2002]) is an important advancement toward understanding the prime
and primitive spectra of some quantum algebras. Briefly, many noncommutative
rings support a rational action of a torus H which allows one to partition the
prime spectrum of the ring into finitely many H-strata, each H-stratum being
homeomorphic (with respect to the usual Zariski topology) to the prime spectrum
of a Laurent polynomial ring in finitely many commuting indeterminates, and each
containing a unique H-invariant prime ideal. Moreover, the primitive ideals of
the algebra are precisely those that are maximal within their H-stratum. For these
reasons, an important first step towards understanding the prime and primitive
spectra is to first study the H-invariant prime ideals, called H-primes.

The deleting derivations algorithm of [Cauchon 2003a; 2003b] has also proven
quite useful. Roughly speaking, this procedure shows that when the H-stratification
theory applies to a given quantum algebra, one can often embed the set of H-primes
into the set of H-primes of a quantum affine space. This is convenient since quantum
affine spaces are typically easy to handle thanks to results of Goodearl and Letzter
[1998]. The strategy then is to reverse the deleting derivations procedure in order
to transfer (more easily obtained) information about the quantum affine space back
to information about the quantum algebra.

The H-stratification and the deleting derivations theories both apply to quantum
matrices in the generic case, i.e., when the parameter q is a non-root of unity, and
so a natural problem is to find generating sets for the H-primes. For 2� 2 quantum
matrices, this problem is fairly straightforward, yet even the 3� 3 case required a
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significant amount of work by Goodearl and Lenagan [2002; 2003]. However, in all
cases their generating sets consisted of quantum minors, and so it was conjectured
that this held true in general. Launois [2004a; 2004b] was the first to prove this
conjecture under the constraints KDC and q transcendental over Q. This was later
extended to any K of characteristic zero [Goodearl et al. 2011a].

An important part of Cauchon’s results is a parametrization of the H-primes of
quantum matrices using what are now known in the quantum algebra community
as Cauchon diagrams. It turns out that a Cauchon diagram encodes fundamental
information about the corresponding H-stratum. For example, the Krull dimension
can be easily calculated from the Cauchon diagram using the main result of [Bell
et al. 2012]. Launois also described an algorithm to find the generators of a given
H-prime from its Cauchon diagram, but the calculations involved very quickly
become unwieldy. A graph-theoretic interpretation of Launois’ algorithm provided
in [Casteels 2011] forms the starting point for some of the results presented below.
In fact, much of Section 3.1 may be seen as a combinatorial interpretation of the
deleting derivations algorithm.

It is notable that Cauchon diagrams arose independently in work of Postnikov
[2006] in his investigations of the totally nonnegative Grassmannian. In this con-
text, Cauchon diagrams are called

�

-diagrams (also Le-diagrams) and have been
investigated by several authors (see [Lam and Williams 2008] and [Talaska 2011]
in particular). The connections between these two areas and Poisson geometry have
been explored by Goodearl, Launois and Lenagan [Goodearl et al. 2011b; 2011a].

Finally, let us also mention that Yakimov [2010; 2013] has developed represen-
tation-theoretic methods with great success. In particular, he independently verified
(and generalized) Goodearl and Lenagan’s conjecture, but again, only under the
constraint that char.K/D 0 and q transcendental over Q. Furthermore, the generat-
ing sets obtained are actually smaller than Launois’ in general. It is unclear how
Yakimov’s work relates to the viewpoint presented in this paper; however, recent
work of Geiger and Yakimov [2014] explores the connections between Yakimov’s
work and Cauchon’s, and so there is quite possibly a close relationship.

As will be reviewed in Section 2, the usual description of Oq.Mm;n.K// is by
generators and relations. Our approach to Oq.Mm;n.K// is the focus of Section 3,
where we begin by giving a directed graph and then assign elements (“weights”)
of a quantum torus to directed paths. We then discuss various subalgebras of the
quantum torus generated by sums over path weights. In particular, Corollary 3.2.5
shows that quantum matrices can be so obtained. One nice aspect of this is that the
quantum matrix relations naturally arise by considering intersecting paths (see the
proofs of Theorem 3.1.12 and Theorem 3.2.3).

While at first it may appear that the description of quantum matrices “by paths” is
a mere curiosity, it is in fact an indispensable tool in the bulk of this paper, Section 4.
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Here, the Goodearl–Lenagan conjecture is an immediate corollary to a stronger
result, Theorem 4.4.1, which states that for any infinite field K and non-root of
unity q 2K�, the quantum minors in a given H-prime form a Gröbner basis with
respect to a certain term ordering. The difficulty with this approach is that for a
given H-prime of Oq.Mm;n.K//, a priori we do not know any generating sets at all
to which we can apply Buchberger’s algorithm, so we must check that the minors
form a Gröbner basis by direct verification of the definition. The way we do this is
by using the strategy noted above for the deleting derivations algorithm. That is,
we transfer an (easily obtained) Gröbner basis for an H-prime in a quantum affine
space to a Gröbner basis for an H-prime in quantum matrices.

Finally, many nonstandard terms and notation have been invented for use in this
paper. A combined index and glossary is provided in a List of terms and notation
to assist the reader in more easily locating the definitions, should the need arise.

2. Quantum matrices

Let us first set some data, notation and conventions that are to be used throughout
this paper:

� Fix an infinite field K, integers m; n � 2, and a nonzero, non-root of unity
q 2 K.

� For a positive integer k, we set Œk�D f1; 2; : : : ; kg.

� The set of m�n matrices with integer entries is denoted by Mm;n.Z/. The set
of m�n matrices with nonnegative integer entries is denoted by Mm;n.Z�0/.

� The .i; j /-entry of N 2Mm;n.Z/ is denoted by .N /i;j , and .i; j / is called the
coordinate of this entry. In view of this, the elements of Œm�� Œn� are called
coordinates.

� We often describe relative positions of coordinates using the usual meaning of
terms such as north, northwest, etc. For example, .i; j / is northwest of .r; s/
if i < r and j < s, and north if i < r and j D s.

The restriction m; n� 2 is made simply to avoid some inconveniences in various
definitions that would occur if mD 1 or nD 1. Fortunately, it is already known
that all results presented in this paper hold when mD 1 or nD 1, since in these
cases all algebras in this paper reduce to quantum affine spaces, and such algebras
can be dealt with using results of [Goodearl and Letzter 1998].

2.1. The algebras R.t/.

Definition 2.1.1. The lexicographic order on Œm�� Œn� is the total order < obtained
by setting

.i; j / < .k; `/() i < k, or i D k and j < `.
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If .i; j / 2 Œm�� Œn�, then .i; j /� denotes the largest element less than .i; j / with
respect to the lexicographic order.

Note 2.1.2. Any reference in this paper relating to an ordering of the coordinates
Œm�� Œn� is with respect to the lexicographic order.

The algebras in the next definition each have a set of generators indexed by
Œm�� Œn�. It is natural to place these generators as the entries of an m� n matrix
that we call the matrix of generators.

Definition 2.1.3. Let t 2 Œmn� and set .r; s/ to be the t-th smallest coordinate.
Define R.t/ to be the K-algebra with the m� n matrix of generators X D Œxi;j �
subject to the following relations. If �

a b

c d

�
is any 2� 2 submatrix of X , then:

(1) ab D qba, cd D qdc;

(2) ac D qca, bd D qdb;

(3) bc D cb;

(4) ad D
�
da if d D xk;` and .k; `/ > .r; s/;
daC .q� q�1/bc if d D xk;` and .k; `/� .r; s/.

Example 2.1.4. If mD 2, nD 3 and t D 5, then .r; s/D .2; 2/ and R.5/ has matrix
of generators �

x1;1 x1;2 x1;3
x2;1 x2;2 x2;3

�
:

The relations corresponding to Part (4) of Definition 2.1.3 are

x1;1x2;2 D x2;2x1;1C .q� q
�1/x1;2x2;1;

x1;1x2;3 D x2;3x1;1;

x1;2x2;3 D x2;3x1;2:

The two extremities in the collection of R.t/ are of the most interest to us.

Notation 2.1.5. With respect to the notation in Definition 2.1.3:

(1) If t D 1, then in Definition 2.1.3(4) we always have

ad D da:

We call this algebra m � n quantum affine space, denoted Oq.K
m�n/. The

entries of the matrix of generators of Oq.K
m�n/ will often be labeled by ti;j

for .i; j / 2 Œm�� Œn�.
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(2) If t Dmn, then in Definition 2.1.3(4) we always have

ad D daC .q� q�1/bc:

This algebra is the quantized coordinate ring ofm�n matrices over K, denoted
by Oq.Mm;n.K// and simply referred to as the (m�n) quantum matrices.

(3) The localization of R.1/ D Oq.K
m�n/ with respect to the multiplicative set

generated by the standard generators ti;j is called the (m�n) quantum torus
Oq..K

�/m�n/.

(4) Two elements y; z 2R.t/ will be said to q�-commute if there is an integer r
such that yz D qrzy. Note that commuting elements q�-commute.

In later sections, we work intimately with monomials in the generators of R.t/,
so we here set some notation in this area. For the remainder of this section, fix
t 2 Œmn�, and let Œxi;j � be the matrix of generators for R.t/.

Notation 2.1.6. If N 2Mm;n.Z�0/, then we write

xN D x
.N/1;1
1;1 x

.N/1;2
1;2 � � � x

.N/m;n
m;n 2R.t/;

written so that the indices obey the lexicographic order from smallest to largest
as one goes from left to right. We call such a monomial a lexicographic term.
Similar notation will be used both for the quantum torus (where N 2Mm;n.Z/),
and, if .r; s/ is the t-th smallest coordinate, for R.t/Œx�1r;s � (where all entries of N
are nonnegative except possibly the .r; s/-entry).

It is not difficult to check that each R.t/ may be written as an iterated Ore
extension, which immediately yields the following:

Theorem 2.1.7. The following properties hold for every t 2 Œmn�:

(1) R.t/ is a Noetherian domain.

(2) As a K-vector space, R.t/ has a basis consisting of the lexicographic terms xN

with N 2Mm;n.Z�0/. The same properties also hold for the m�n quantum
torus (but with N 2Mm;n.Z/). �

Definition 2.1.8. The lexicographic expression of a 2 R.t/ is the unique linear
combination aD

P
N2Mm;n.Z�0/

˛NxN of distinct lexicographic terms with ˛N ¤
0. A lexicographic term in this expression will be called a lex term of a.

For R.1/ D Oq.K
m�n/, we will require a slight extension of Theorem 2.1.7.

Observe that any monomial t D ti1;j1 ti2;j2 � � � ti`;j` in the standard generators of
R.1/ may be written as tD q`tM

lex
for some integer ` and lexicographic term tM

lex
.

Since q` ¤ 0, the next result follows easily.
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Proposition 2.1.9. For any coordinate .r; s/, the set of lexicographic monomials
of Oq.K

m�n/ involving only ti;j with .i; j / > .r; s/ is linearly independent over
the subalgebra generated by the ti;j with .i; j / � .r; s/. Moreover, for a set
ft1; t2; : : : ; t`g of monomials in the standard generators of Oq.K

m�n/, the following
are equivalent:

(1) The set ft1; t2; : : : ; t`g is linearly independent over K.

(2) The set ft
M lex
1

1 ; t
M lex
2

2 ; : : : ; t
M lex
`

`
g is linearly independent over K.

(3) The matrices M lex
1 ; : : : ;M lex

`
are distinct.

A similar set of statements hold for the m�n quantum torus. �

We conclude this section by noting that R.t/ has a natural ZmCn
�0 -grading that

will be very much exploited in the proof of Theorem 4.4.1. If

sD .r1; r2; : : : ; rm; c1; c2; : : : ; cn/ 2 .Z�0/
mCn;

then the homogeneous component of degree s is the subspace of R.t/ spanned by
the lexicographic monomials of the form xN , where N satisfies

nX
jD1

.N /i;j D ri for all i 2 Œm�,

mX
iD1

.N /i;j D cj for all j 2 Œn�.

In other words, the sum of all entries in row i of N equals ri , and the sum of all
entries in column j of N equals cj . All references in this paper to a grading on
R.t/ will be with respect to this grading.

2.2. The deleting derivations algorithm. The relation between R.t/ and R.t�1/

has been studied by Cauchon [2003b] as a special case of the more general theory
developed in [Cauchon 2003a]. Here, we review his results as they apply to these
algebras. For each result in this section, we fix t 2 Œmn� with t ¤ 1, let .r; s/ denote
the t-th smallest coordinate, and let Œxi;j � be the matrix of generators of R.t/ and
Œyi;j � the matrix of generators for R.t�1/.

Theorem 2.2.1 [Cauchon 2003a, Lemme 2.1 and Théorème 3.2.1].

(1) The multiplicative set generated by xr;s is a left and right Ore set for R.t/, and
the multiplicative set generated by yr;s is a left and right Ore set for R.t�1/.

(2) There is an injective homomorphism

�!
� WR.t�1/!R.t/Œx�1r;s �
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defined on the standard generators by

��!yi;j D

�
xi;j � xi;sx

�1
r;s xr;j if i < r and j < s;

xi;j otherwise.

(3) There is an injective homomorphism

 �
� WR.t/!R.t�1/Œy�1r;s �

defined on the standard generators by

 ��xi;j D

�
yi;j Cyi;sy

�1
r;s yr;j if i < r and j < s;

yi;j otherwise.

(4) R.t/Œx�1r;s �DR
.t�1/Œy�1r;s �. �

The homomorphism in Theorem 2.2.1(2) is called the deleting derivations map.
We call the homomorphism in Theorem 2.2.1(3) the adding derivations map. (This
map is called the “reverse deleting derivations map” in [Launois 2004a], and a step
of the “restoration” algorithm in [Goodearl et al. 2011b].)

The strategy of Cauchon’s theory is to use these maps to iteratively transfer
information between R.1/ D Oq.K

m�n/ and R.mn/ D Oq.Mm;n.K//. For example,
to embed the prime spectrum of the latter algebra into the prime spectrum of the
former.

As usual, for an algebra A, denote by Spec.A/ the set of prime ideals, equipped
with the Zariski topology. We may partition Spec.R.t// as

Spec.R.t//D Spec62.R.t//[Spec2.R.t//;

where
Spec62.R.t//D fP 2 Spec.R.t// j xr;s 62 P g;

and
Spec2.R.t//D fP 2 Spec.R.t// j xr;s 2 P g:

Theorem 2.2.2 [Cauchon 2003b, Section 3.1]. There exists an injective map

�t W Spec.R.t//! Spec.R.t�1//

satisfying the following properties:

(1) Restricted to Spec62.R.t//, �t is bijective, sending P 2 Spec62.R.t// to

�t .P /D
 �
P Œy�1r;s �\R

.t�1/:

If Q 2 Spec62.R.t�1//, then

��1t .Q/D
�!
QŒx�1r;s �\R

.t/:
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(2) Restricted to Spec2.R.t//, �t is injective, sending P 2 Spec2.R.t// to

�t .P /D g
�1.P=hxr;si/;

where g W R.t�1/! R.t/=hxr;si is the unique homomorphism that maps the
standard generators as yi;j 7! xi;j Chxr;si: �

2.3. H-stratification. For many quantum algebras, including the R.t/, the struc-
ture of the prime spectrum may be understood by first understanding the prime
ideals that are invariant under a rational action of an algebraic torus H. For
R.t/ with matrix of generators Œxi;j �, let H D .K�/mCn and note that every
hD .�1; : : : ; �m; 1; : : : ; n/ 2H induces an automorphism of R.t/ by

h � xi;j D �ijxi;j :

Definition 2.3.1. An H-prime is a prime ideal K 2 Spec.R.t// such that h �K DK
for all h 2 H. The set of all H-primes of R.t/ is denoted H-Spec.R.t//. The
H-stratum associated to an H-prime K is the set

SpecK.R
.t//D

�
P 2 Spec.R.t//

ˇ̌̌ \
h2H

h �P DK

�
:

Theorem 2.3.2 [Goodearl and Letzter 2000; Brown and Goodearl 2002, Part II].
For every t 2 Œmn�, there are finitely many H-primes in H-Spec.R.t//, and

Spec.R.t//D
G

K2H-Spec.R.t//

SpecK.R
.t//: �

Remark 2.3.3. Theorem 2.2.1 and Theorem 2.3.2 are where it is necessary to
require q to be a nonzero, non-root of unity. We also note here that the H-primes
are well known to be homogeneous ideals.

The H-primes of R.1/ D Oq.K
m�n/ have generating sets of a simple form.

Theorem 2.3.4 [Goodearl and Letzter 1998, Section 2.1(ii)]. A prime ideal K 2
Spec.R.1// is an H-prime if and only if there exists a B � Œm�� Œn� such that

K D hti;j j .i; j / 2 Bi: �

It is convenient to describe these H-primes by using diagrams.

Definition 2.3.5. Anm�n diagram is anm�n grid of squares, each square colored
either black or white.

We index the squares of a diagram as one would the entries of anm�n matrix. If

K D hti;j j .i; j / 2 Bi 2H-Spec.R.1//
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Figure 1. Two 3� 4 diagrams.

for some B � Œm�� Œn�, then the diagram corresponding to K is that in which the
black squares are precisely those .i; j / 2 B . Conversely, any diagram defines a
subset B � Œm�� Œn� corresponding to the indices of the black squares, and therefore
a corresponding K 2 H-Spec.R.1//. We henceforth identify a diagram with the
corresponding subset B � Œm�� Œn�. Figure 1 presents two diagrams, the left one
corresponding to the H-prime ht1;1; t2;1; t2;3i 2H-Spec.Oq.K3�4//.

The deleting derivations map behaves nicely with respect to H-primes.

Theorem 2.3.6 [Cauchon 2003b, Section 3.1]. For every t 2 Œmn�, t¤1, the map �t
injects H-Spec.R.t// into H-Spec.R.t�1//. Consequently, the composition

� D �2 ı � � � ı�mn

is an injection of H-Spec.Oq.Mm;n.K/// into H-Spec.Oq.Km�n//. �

In view of the strategy mentioned in Section 2.2, a natural problem is to identify
the diagrams of those H-primes in H-Spec.R.1// that are the image of an H-prime
in H-Spec.R.mn// under �. We call these Cauchon diagrams

Definition 2.3.7. A diagram is a Cauchon diagram if, for any given black square,
either every square to the left or every square above is also black.

The right diagram in Figure 1 is an example of a Cauchon diagram, while the
left is not a Cauchon diagram since the black square in position .2; 3/ has a white
square both above and to its left.

Theorem 2.3.8 [Cauchon 2003b, Théorème 3.2.2]. A diagram is a Cauchon dia-
gram if and only if the corresponding H-prime in H-Spec.R.1// is the image under
� of an H-prime in H-Spec.R.mn//. �

3. Quantum matrices by paths

3.1. Graphs and paths. Let B be a Cauchon diagram and, by Theorem 2.3.8,
consider the corresponding H-prime K of Oq.Mm;n.K//. With the notation of
Section 2.3, the image of K under the composition �tC1 ı � � � ı�mn is an H-prime
Kt of R.t/. The goal of this section is to explain how R.t/=Kt is isomorphic to a
subalgebra A.t/B of the quantum torus Oq..K

�/m�n/ defined by considering paths
in a directed graph that is defined using B . In particular, when B D∅, we obtain a
combinatorial description of Oq.Mm;n.K//.
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Definition 3.1.1. For a Cauchon diagram B , construct a directed graph Gm�nB ,
called the Cauchon graph,1 as follows. The vertex set consists of white vertices

W D .Œm�� Œn�/ nB;

together with row vertices R D Œm� and column vertices2 C D Œn�. The set of
directed edges E consists precisely of those in the following list:

(1) If .i; j /; .i; j 0/ 2W are distinct white vertices with j > j 0 such that there is
no white vertex .i; j 00/ for any j 0 < j 00 < j , then we make an edge from .i; j /

to .i; j 0/.

(2) If .i; j /; .i 0; j / 2W are distinct white vertices with i < i 0 such that there is
no white vertex .i 00; j / for any i < i 00 < i 0, then we make an edge from .i; j /

to .i 0; j /.

(3) For i 2 R, we make an edge from i to .i; j /, where j is the largest integer
such that .i; j / 2W (if such a j exists).

(4) For j 2 C , we make an edge from .i; j / to j where i is the largest integer
such that .i; j / 2W (if such an i exists).

Note 3.1.2. There is a natural way to embed a Cauchon graph in the plane by placing
it “on top” of the Cauchon diagram B as follows. The white vertices are placed
at the center of the corresponding white squares, the row vertices to the right of the
corresponding diagram row, and the column vertices underneath the corresponding
diagram column. An example is illustrated in Figure 2. We call this the standard
embedding and always assume a given Cauchon graph is equipped with it. Hence,
without confusion we can refer to aspects of a Cauchon graph using common
directional or geometric terms.3 That a diagram is a Cauchon diagram easily
implies that the corresponding Cauchon graph has the following important property.

Proposition 3.1.3. The standard embedding of a Cauchon graph is planar. �

Definition 3.1.4. A path in Gm�nB is a sequence P D .v0; v1; : : : ; vk/ of distinct
vertices such that4 for all i 2 Œk�, there exists an edge in Gm�nB directed from vi�1
to vi . Naturally, we say that P starts at v0 and ends at vk and write P W v0! vk .

We consider a directed edge e from v to w to be a path and write e W v! w. If
e is the edge between two consecutive vertices in a path P , then we abuse notation

1Cauchon graphs already appear in [Postnikov 2006], where they are called �-graphs. We call
them Cauchon graphs here to be consistent with the Cauchon diagrams from which they derive.

2There is ambiguity between labels of the row and column vertices, but the type of vertex we mean
will always be explicitly stated.

3For example, horizontal, vertical, above, below, northwest, etc.
4Strictly speaking, we are defining a directed path, but we will never have use for nondirected

paths in this paper.
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� 1

� 2

� 3

� 1 � 2 � 3

.1; 2/
�

.2; 1/
� �

.2; 2/

.3; 1/
�

.3; 2/
�

.3; 3/
�

Figure 2. The graph G3�3B , embedded on top of the 3�3 Cauchon
diagram B D f.1; 1/; .1; 3/; .2; 3/g.

by writing e 2P . Finally, if P W u! v, Q W v!w, then we write P [Q to denote
the concatenation of P and Q. To a path in a Cauchon graph we will assign an
element of the quantum torus as follows:

Definition 3.1.5. Let Gm�nB be a Cauchon graph. Define the function

w WE! Oq..K
�/m�n/

as follows, where the numbering and notation correspond to the edge types of
Definition 3.1.1:

(1) w.e W .i; j /! .i; j 0//D t�1i;j ti;j 0 ;

(2) w.e W .i; j /! .i 0; j //D 1;

(3) w.e W i ! .i; j //D ti;j ;

(4) w.e W .i; j /! j /D 1.

The image w.e/ of an edge e is called the weight of e.
If P D .v0; v1; : : : vk/ is a path, and ei W vi�1 ! vi , then the weight of P is

defined to be
w.P /D w.e1/w.e2/ � � �w.ek/:

Example 3.1.6. Figure 3 illustrates the graph of Figure 2 with edges labeled by
their weights. The weight of the path

P D .1; .1; 2/; .2; 2/; .2; 1/; .3; 1/; 1/

is
w.P /D .t1;2/.1/.t

�1
2;2t2;1/.1/.1/D t1;2t

�1
2;2t2;1:
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� 1

� 2

� 3

� 1 � 2 � 3

�

� �

� � �

t1;2

t2;2t�12;2t2;1

t�13;2t3;1 t�13;3t3;2 t3;3

1

1

1

1

1

1

Figure 3. The graph G3�3B , with B D f.1; 1/; .1; 3/; .2; 3/g, and
edges labeled by their weights. (Labels of white vertices omitted.)

It is convenient to observe that for a row vertex i and a column vertex j , the
weight of a path P W i ! j can be computed by looking at the sequence of “turns”.

Definition 3.1.7. Let P D .v0; v1; : : : ; vk�1; vk/ be a path in a Cauchon graph
starting from row vertex i D v0 and ending at column vertex j D vk .

� A �-turn in P is a white vertex vi 2 P such that the edge from vi�1 to vi is
horizontal, and the edge from vi to viC1 is vertical.

� A

�

-turn in P is a white vertex vi 2 P such that the edge from vi�1 to vi is
vertical and the edge from vi to viC1 is horizontal.

The next proposition follows easily using the definitions of edge and path weights.

Proposition 3.1.8. Let P W i ! j be a path in a Cauchon graph, where i is a
row vertex and j is a column vertex. If .vi1 ; vi2 ; : : : ; vit /� P is the subsequence
consisting of all �-turns and

�

-turns, then

w.P /D tvi1 t
�1
vi2
tvi3 � � � t

�1
vit�1

tvit :

Example 3.1.9. For the path P in Example 3.1.6, the vertex .1; 2/ is a �-turn,
.2; 2/ is a

�

-turn, and .2; 1/ is a �-turn, so that w.P /D .t1;2/.t�12;2/.t2;1/. This, of
course, agrees with Example 3.1.6.

Parts (1) and (2) of the next result are Lemmas 3.5 and 3.6 respectively in
[Casteels 2011]. Part (3) is proven similarly.
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�.r; s/

� i1
P1

� j1

� i2
P2

�j2

� i3
P3

� j3

Figure 4. The shaded area represents all white vertices greater
than the t-th smallest coordinate .r; s/. (This convention will be
repeated in later illustrations.) In this example, P1 2 �

.t/
B .i1; j1/

and P3 2 �
.t/
B .i3; j3/ but P2 62 �

.t/
B .i2; j2/.

Lemma 3.1.10. In a Cauchon graph Gm�nB , let .a; b/ be a white vertex, i and k
row vertices with i < k, and j and ` column vertices with j < `.

(1) If P W i ! .a; b/ and Q W .a; b/ ! ` are paths in Gm�nB with only .a; b/
in common, then

w.P /w.Q/D

�
w.Q/w.P / if b D `, i.e., Q has only vertical edges,
q�1w.Q/w.P / otherwise.

(2) If P W .a; b/ ! j and Q W .a; b/ ! ` are paths in Gm�nB with only .a; b/
in common, then

w.P /w.Q/D

�
w.Q/w.P / if b D `, i.e., Q has only vertical edges,
qw.Q/w.P / otherwise.

(3) If P W i ! .a; b/ and Q W k ! .a; b/ are paths in Gm�nB with only .a; b/
in common, then

w.P /w.Q/D qw.Q/w.P /:

For the remainder of this section, fix t 2 Œmn� and let .r; s/ be the t-th smallest
coordinate.

Notation 3.1.11. For a row vertex i and a column vertex j of Gm�nB , let �.t/B .i; j /

denote the set of all paths P W i! j in Gm�nB for which no vertex larger than .r; s/
is a

�

-turn.

Figure 4 is meant to clarify Notation 3.1.11, and while we have drawn a vertex
.r; s/ in this figure, it will not exist if .r; s/ 2 B . The main theorem of this section
is the following:



Quantum matrices by paths 1871

Theorem 3.1.12. LetGm�nB be a Cauchon graph, let i; k be row vertices with i < k,
and let j; ` be column vertices.

(1) If j < `, then there exists a permutation of �.t/B .i; j / � �
.t/
B .i; `/ sending

.P;Q/ 7! . zP ; zQ/, where

w.P /w.Q/D qw. zQ/w. zP /:

(2) If j D `, then there exists a permutation of �.t/B .i; j / � �
.t/
B .k; j / sending

.P;Q/ 7! . zP ; zQ/, where

w.P /w.Q/D qw. zQ/w. zP /:

(3) If j > `, then there exists a permutation of �.t/B .i; j / � �
.t/
B .k; `/ sending

.P;Q/ 7! . zP ; zQ/, where

w.P /w.Q/D w. zQ/w. zP /:

(4) If j < `, then:

(a) If P 2 �.t/B .i; j /, Q 2 �.t/B .k; `/ and P \QD∅, then

w.P /w.Q/D w.Q/w.P /:

(b) There exists a bijection from the subset of �.t/B .i; j /��
.t/
B .k; `/ consisting

of those .P;Q/ with P \Q¤∅ to �.t/B .i; `/��
.t/
B .k; j / sending .P;Q/

to . zP ; zQ/, where

w.P /w.Q/D qw. zQ/w. zP /:

Proof. Part (1): Let .P;Q/ 2 �.t/B .i; j /��
.t/
B .i; `/. Since j < `, P and Q have a

last (white) vertex in common, say .a; b/. See Figure 5. Therefore, we may write
P DP1[P2, where P1 W i! .a; b/ and P2 W .a; b/! j , andQDQ1[Q2, where
Q1 W k! .a; b/ and Q2 W .a; b/! `. Define zP DQ1[P2 and zQDP1[Q2. We
have . zP ; zQ/ 2 �.t/B .i; j /� �

.t/
B .i; `/ and that zzP D P and zzQ D Q, i.e., the map

.P;Q/ 7! . zP ; zQ/ is an involution and so a permutation.
Finally, we apply Lemma 3.1.10 to make our final conclusion as follows. If Q2

has only vertical edges, then (using the cited part of the lemma at each line)

w.P /w.Q/D w.P1/w.P2/w.Q1/w.Q2/
.1/
D qw.P1/w.Q1/w.P2/w.Q2/
.1;3/
D qw.P1/w.Q2/w.Q1/w.P2/

D qw. zQ/w. zP /:
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� i D k

� j � `

P

Q

�
.a; b/

� i D k

� j � `

zP

zQ

�
.a; b/

Figure 5. Illustration of Part (1) in the proof of Theorem 3.1.12.
The left figure shows paths P (solid) and Q (dashed). The right
figure shows paths zP (solid) and zQ (dashed).

If Q2 has a horizontal edge, then

w.P /w.Q/D w.P1/w.P2/w.Q1/w.Q2/
.1/
D q�1qw.P1/w.Q2/w.P2/w.Q1/
.1;3/
D qw.P1/w.Q2/w.Q1/w.P2/

D qw. zQ/w. zP /:

Part (2): Let .P;Q/ 2 �.t/B .i; j / � �
.t/
B .k; j /. In this case, P and Q have a

first common vertex, say .a; b/. Therefore, we may write P D P1 [P2, where
P1 W i ! .a; b/ and P2 W .a; b/! j , and Q DQ1 [Q2, where Q1 W k! .a; b/

and Q2 W .a; b/! `. Define zP D P1 [Q2 and zQ D Q1 [ P2. We again have
. zP ; zQ/2�

.t/
B .i; j /��

.t/
B .k; j / and that the map .P;Q/ 7! . zP ; zQ/ is a permutation.

The remainder of the proof for Part (2) proceeds as in Part (1) and by using (1) and
(2) of Lemma 3.1.10.

Part (3): Let .P;Q/ 2 �.t/B .i; j /��
.t/
B .k; `/, where i < k and j > `. In this case,

P and Q have a first common vertex .a; b/ and a last common vertex .a0; b0/.
We can write P D P1 [ P2 [ P3, where P1 W i ! .a; b/, P2 W .a; b/! .a0; b0/

and P3 W .a0; b0/! j . Similarly Q D Q1 [Q2 [Q3, where Q1 W k ! .a; b/,
Q2 W .a; b/ ! .a0; b0/ and Q3 W .a0; b0/ ! `. Define zP D P1 [Q2 [ P3 and
zQDQ1[P2[Q3.

We again have . zP ; zQ/2�.t/B .i; j /��
.t/
B .k; `/ and that the map .P;Q/ 7! . zP ; zQ/

is a permutation. To prove the final conclusion concerning the weights relation, we
must consider several possibilities, according to whether or not any of P2; P3 and
Q2 consists only of vertical edges, or no edges at all (the other paths here always
have a horizontal edge). Here, we discuss only the case that P2; P3 and Q2 each
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have a horizontal edge, the other possibilities being dealt with similarly. Before we
begin, we should mention that, strictly speaking, P2 and Q2 do not begin nor end
at a row or column vertex, and so Lemma 3.1.10 does not directly apply. In order
to use the lemma, we identify P2 and Q2 respectively with the paths obtained by
adding the vertical path from .a0; b0/ to b0 and the horizontal path from a to .a; b/.
We can do this since in either case these latter paths have the same weight as w.P2/
or w.P3/ respectively, by Proposition 3.1.8.

We have

w.P /w.Q/D w.P1/w.P2/w.P3/w.Q1/w.Q2/w.Q3/
.1/
D qw.P1/w.P2/w.Q1/w.Q2/w.P3/w.Q3/
.2/
D w.P1/w.P2/w.Q1/w.Q2/w.Q3/w.P3/
.1/
D q�1w.P1/w.P2/w.Q1/w.Q3/w.Q2/w.P3/
.1/
D w.P1/w.Q1/w.P2/w.Q3/w.Q2/w.P3/
.3;1/
D w.Q1/w.P2/w.P1/w.Q3/w.Q2/w.P3/;

where each line again uses the respective part of Lemma 3.1.10 and the third line is
applying the cited part to P2 andQ1[Q2. That the last line is equal to w. zQ/w. zP /
is now implied by the fact that w.P1/ and w.Q3/ commute. Indeed, we have

w.P1/w.Q3/D w.P1/w.Q2/
�1w.Q2/w.Q3/

.1/
D qw.Q2/

�1w.P1/w.Q2/w.Q3/
.1/
D w.Q2/

�1w.Q2/w.Q3/w.P1/

D w.Q3/w.P1/;

where the third line is applying the cited lemma to P3 and Q2[Q3.

Part (4a): Lemma 3.4 in [Casteels 2011] shows that the weight of any edge not
sharing a vertex with Q commutes with w.Q/. Since this is the case for all edges
of P we immediately have w.P /w.Q/D w.Q/w.P /.

Part (4b): As in Part (1), we let .a; b/ be the last common vertex in a nondisjoint
pair of paths .P;Q/ 2 �.t/B .i; j / � �

.t/
B .k; `/. We then “switch” the tails of P

and Q at .a; b/ to obtain a zP W i! ` and a zQ W k! j . The remainder of the proof
is as in Part (1). �

3.2. The algebras A
.t/

B
. In this section we introduce for each t 2 Œmn� and Cauchon

diagram B a subalgebra A.t/B of Oq..K
�/m�n/. When B D ∅, we will see that

A
.t/
∅ ' R.t/. Throughout this section we fix t 2 Œmn� and let .r; s/ be the t-th

smallest coordinate.
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� � �1 2 3

� �
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� � �1 2 3

� �

� ��

Figure 6. Two copies of the graph G2�3
f.1;1/g

of Example 3.2.2. The
left picture is shaded to assist the definition ofA.1/B , the right picture
shaded to assist that of A.5/B .

Definition 3.2.1. We define A.t/B to be the subalgebra of Oq..K
�/m�n/ with the

m�n matrix of generators Œxi;j � where, for each coordinate .i; j /,

xi;j D
X

P2�
.t/
B .i;j /

w.P /:

When B D∅ we write A.t/ D A.t/∅ .

Example 3.2.2. Consider the 2�3Cauchon diagramBDf.1; 1/g. Figure 6 presents
two copies of the corresponding Cauchon graph, where we continue our illustrative
convention that no path may contain a

�

-turn in the shaded region. For each t 2 Œ6�,
we denote by Œx.t/i;j � the matrix of generators for A.t/B .

The left graph of Figure 6 corresponds to t D 1. In this case, any path from
row vertex 1 to column vertex 1 necessarily contains a

�

-turn in the shaded region.
Therefore, A.1/B has matrix of generators"

x
.1/
1;1 x

.1/
1;2 x

.1/
1;3

x
.1/
2;1 x

.1/
2;2 x

.1/
2;3

#
D

�
0 t1;2 t1;3
t2;1 t2;2 t2;3

�
:

One may check that A.1/B D A
.2/
B D A

.3/
B D A

.4/
B . For t D 5, the Cauchon graph

is illustrated on the right in Figure 6. In this case, there exists a unique path in
�
.5/
B .1; 1/, so that the matrix of generators for A.5/B is"

x
.5/
1;1 x

.5/
1;2 x

.5/
1;3

x
.5/
2;1 x

.5/
2;2 x

.5/
2;3

#
D

�
t1;2t

�1
2;2t2;1 t1;2 t1;3

t2;1 t2;2 t2;3

�
:

Finally, one may check that A.6/B has matrix of generators"
x
.6/
1;1 x

.6/
1;2 x

.6/
1;3

x
.6/
2;1 x

.6/
2;2 x

.6/
2;3

#
D

�
t1;2t

�1
2;2t2;1C t1;3t

�1
2;3t2;1 t1;2C t1;3t

�1
2;3t2;2 t1;3

t2;1 t2;2 t2;3

�
:
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Theorem 3.1.12 implies some commutation relations between the generators of
A
.t/
B . Compare the following result with Definition 2.1.3:

Theorem 3.2.3. If X D Œxi;j � is the matrix of generators for A.t/B , and�
a b

c d

�
is any 2� 2 submatrix of X , then:

(1) ab D qba, cd D qdc;

(2) ac D qca, bd D qdb;

(3) bc D cb;

(4) ad D
�
da if d D xk;` and .k; `/ > .r; s/;
daC .q� q�1/bc if d D xk;` and .k; `/� .r; s/.

Proof. First note that for any coordinates .i; j / and .i 0; j 0/,

xi;jxi 0;j 0 D
X

P2�
.t/
B .i;j /

Q2�
.t/
B .i 0;j 0/

w.P /w.Q/

D

X
P;Q

P\QD∅

w.P /w.Q/C
X
P;Q

P\Q¤∅

w.P /w.Q/: (3-1)

Let �
a b

c d

�
D

�
xi;j xi;`
xk;j xk;`

�
be a 2� 2 submatrix of X .

First, consider xi;j and xi;`. In this case the first sum in (3-1) is necessarily
empty, since any pair .P;Q/ 2 �.t/B .i; j /��

.t/
B .i; `/ has row vertex i in common.

Part (1) of Theorem 3.1.12 shows that for any such pair, there is a unique pair
. zP ; zQ/2�

.t/
B .i; j /��

.t/
B .i; `/ such that w.P /w.Q/D qw. zQ/w. zP /. Hence, (3-1)

implies xi;jxi;` D qxi;`xi;j The relations between xk;j and xk;`; xi;j and xk;j ;
xi;` and xk;`; and xi;j and xk;j are all obtained similarly.

Now consider xi;j and xk;`. If .r; s/ < .k; `/, then

�
.t/
B .k; `/D fQD .k; .k; `/; `/g;

and any P 2 �.t/B .i; j / is disjoint from Q by definition of �.t/B .i; j /. Hence
xi;jxk;` D xk;`xi;j by Part (4a) of Theorem 3.1.12. If .k; `/� .r; s/, then by (3-1)
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and Part (4b) of Theorem 3.1.12, we obtain

xi;jxk;` D qxi;`xk;j C
X

P2�
.t/
B .i;j /

Q2�
.t/
B .i;j /

P\QD∅

w.P /w.Q/:

Since the weights of disjoint paths commute by Part (4a) of Theorem 3.1.12, it
follows that xi;jxk;`� xk;`xi;j D .q� q�1/xi;`xk;j . �

The intuition behind these algebras is that one obtains A.t/B from A
.t�1/
B by

“allowing more paths”. To be more precise, let Œxi;j � be the matrix of generators for
A
.t/
B and Œyi;j � that for A.t�1/B . We have

xi;j D yi;j C
X

w.P / (3-2)

as elements of Oq..K
�/m�n/, where the sum is over all paths P W i ! j for which

.r; s/ is a

�

-turn in P . If i � r , j � s, or .r; s/ 2 B , then no such P exists and

xi;j D yi;j :

On the other hand, if .r; s/ 62 B and both i < r and j < s, suppose P W i ! j is
a path with a

�
-turn at .r; s/. Consider w.P /w.Q/, where Q D .r; .r; s/; s/. As

in the proof of Theorem 3.1.12, we may form paths zP W i ! s and zQ W r ! j

by “switching tails” at .r; s/. Since w.P /w.Q/D qw. zQ/w. zP /, multiplying (3-2)
through by yr;s D xr;s D w.Q/ gives

xi;jxr;s D yi;jyr;sC
X

w.P /yr;s D yi;jyr;sC qyi;syr;j :

One may easily check that tr;s D xr;s D yr;s generates a left and right Ore set for
A
.t/
B and A.t�1/B . (For xr;s , this follows from the observation that xi;jxmC1r;s D xmr;sa

for some a 2 A.t/B when xi;j ¤ 0 and .i; j / is northwest of .r; s/.) Hence, we have
just proved Parts (1) and (2) of the following result. Part (3) follows from these,
and Part (4) is trivial.

Compare the following theorem with [Cauchon 2003a, Proposition 5.4.2]:

Theorem 3.2.4. (1) If .r; s/ 62 B , then A.t�1/B is a subalgebra of

A
.t/
B Œx

�1
r;s �;

where

yi;j D

�
xi;j � xi;s.xr;s/

�1xr;j if i < r and j < s;
xi;j otherwise.
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(2) If .r; s/ 62 B , then A.t/B is a subalgebra of

A
.t�1/
B Œy�1r;s �

where

xi;j D

�
yi;j Cyi;s.yr;s/

�1yr;j if i < r and j < s;
yi;j otherwise.

(3) If .r; s/ 62 B , then A.t/B Œx
�1
r;s �D A

.t�1/
B Œy�1r;s �.

(4) If .r; s/ 2 B , then A.t/B D A
.t�1/
B . �

In view of Theorem 2.2.1, we conclude the following when B D∅.

Corollary 3.2.5. For every t 2 Œmn� we have R.t/ ' A.t/, where R.t/ are the alge-
bras of Definition 2.1.3, and where the standard generator of R.t/ with coordinate
.i; j / maps to the generator of A.t/ with coordinate .i; j /.

Hence, A.1/ ' Oq.K
m�n/, A.mn/' Oq.Mm;n.K// and both the deleting deriva-

tions and H-stratification theories apply to A.t/. Moreover, we follow the arrow no-
tation introduced in Section 2.2 to distinguish a generator xi;j ofA.t/B from its image
 ��xi;j in A.t�1/B , and a generator yi;j of A.t�1/B Œy�1r;s � from its image ��!yi;j in A.t/B Œx

�1
r;s �.

3.3. H-primes as kernels. Fix t 2 Œmn� and a Cauchon diagram B . Denote the
matrix of generators for A.t/ by Œxi;j � and the matrix of generators for A.t/B by ŒxBi;j �.

Definition 3.3.1. For t 2 Œmn� and a Cauchon diagram B , let � .t/B WA
.t/!A

.t/
B be

defined on the standard generators by

�
.t/
B .xi;j /D x

B
i;j :

Section 3.1 of [Cauchon 2003b] implies the following two results:

Proposition 3.3.2. The map �.t/B extends to a well-defined surjective homomorphism.

Theorem 3.3.3. One has

ker
�
�
.t/
B

�
2H-Spec

�
A.t/

�
:

Moreover, if t > 1,
ker
�
�
.t�1/
B

�
D �t

�
ker
�
�
.t/
B

��
;

where �t is as in Theorem 2.2.2.

We conclude this short section with a technical lemma. For M 2Mm;n.Z�0/,
write M DM0CM1, where

.M0/i;j D

�
.M/i;j if .i; j /� .r; s/;
0 if .i; j / > .r; s/;
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and M1 DM �M0. Now, let Kt D a 2 ker
�
�
.t/
B

�
. Let M denote the set of M 2

Mm;n.Z�0/ for which xM is a lex term of a. Hence, for some ˛M 2 K�, we have

aD
X
M2M

˛MxM D
X
M2M

˛MxM0xM1 D
X

N2Mm;n.Z/

� X
M2M
M1DN1

˛MxM0
�

xN1 :

Consider

�
.t/
B .a/D

X
N2Mm;n.Z/

� X
M2M
M1DN1

˛M�
.t/
B .xM0/

�
�
.t/
B .xN1/D 0 (3-3)

Let N 2Mm;n.Z/. If there is a coordinate .i; j / > .r; s/ with both .i; j /2B and
.N /i;j �1, then xN1 2Kt since xi;j D ti;j and � .t/B .xi;j /D0. Otherwise, xN1¤0,
and the coefficient of � .t/B .xN1/ must be 0 by Proposition 2.1.9; i.e., we have thatX

M2M
M1DN1

˛MxM0 2Kt :

Lemma 3.3.4. With the notation of the preceding two paragraphs, we have that if
a 2Kt , then

aD a0C
X

N2Mm;n.Z/

xN1 62Kt

aNxN1 ;

where in the second summand each aN is in Kt , and a0 2Kt has the property that
every lex term xL of a0 satisfies xL1 2Kt , i.e., .L/i;j � 1 for some .i; j / > .r; s/
and .i; j / 2 B .

4. Generators of H-primes

The goal of this section is the proof of Theorem 4.4.1, where we show that an
H-prime in H-Spec.Oq.Mm;n.K/// has, as a right ideal, a Gröbner basis consisting
of the quantum minors it contains. That these elements also form a Gröbner basis
as a left ideal can be shown similarly.

We begin by defining quantum minors in Section 4.1 and recalling Theorem 4.4
in [Casteels 2011], which shows that a q-analogue of Lindström’s classic lemma
[1973] holds in the context of Cauchon graphs. We follow this by reviewing the
notions of Gröbner bases as applied to the algebras A.t/, and finally prove the main
result in Section 4.4.

4.1. Quantum minors. Throughout this section, we fix a Cauchon diagram B and
a t 2 Œmn�. Set .r; s/ to be the t-th smallest coordinate and Œxi;j � to be the matrix
of generators for A.t/B .
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Definition 4.1.1. Let I Dfi1<i2< � � �<ikg� Œm� and J Dfj1<j2< � � �<jkg�
Œn� be nonempty subsets of the same cardinality. The quantum minor associated to
I and J is the element of A.t/B defined by

ŒI jJ �
.t/
B D

X
�2Sk

.�q/`.�/xi1;j�.1/ � � � xik ;j�.k/ ;

where Sk is the set of permutations of Œk� and `.�/ is the number of inversions of
� 2 Sk , i.e., the number of pairs i; i 0 2 Œk� with i < i 0 but �.i/ > �.i 0/.

Remark 4.1.2. The defining expression for ŒI jJ �.t/B is its lexicographic expression.
More precisely, for � 2 Sk , let P� be the m�n matrix whose submatrix indexed
by .I; J / equals the standard k � k permutation matrix corresponding to � , and
where all other entries of P� are zero. We can then write

ŒI jJ �
.t/
B D

X
�2Sk

.�q/`.�/xP� :

We will often write ŒI jJ �.t/ for ŒI jJ �.t/∅ . However, for the remainder of this
section, we write ŒI jJ �D ŒI jJ �.t/B . For the remainder of this paper we shorten
“quantum minor” to just “minor”.

Definition 4.1.3. For I Dfi1<i2< � � �<ikg� Œm� and J Dfj1<j2< � � �<jkg�
Œn�, each .i`; j`/ is called a diagonal coordinate of ŒI jJ �. Moreover, .ik; jk/ is
the maximum coordinate of ŒI jJ �.

As elements of Oq..K
�/m�n/, each minor whose maximum coordinate is at most

.r; s/ reduces to a particularly nice form via a q-analogue of Lindström’s lemma.
To explain, we first need to set some notation. At this point, the reader may wish to
recall some of the notation defined in Section 3.1.

Definition 4.1.4. Let I D fi1; : : : ; ikg � Œm� and J D fj1; : : : ; jkg � Œn� be such
that jI j D jJ j D k.

(1) A vertex-disjoint path system from the row vertices I to the column ver-
tices J in Gm�nB is a set of k mutually disjoint paths .P1; : : : ; Pk/ where
Pr 2 �

.t/
B .ir ; jr/ for each r 2 Œk�. We write

�
.t/
B .I jJ /D fall vertex-disjoint path systems from I to J in Gm�nB g:

(2) If PD .P1; : : : ; Pk/ 2 �
.t/
B .I jJ /, then the weight of P is the product

w.P/D w.P1/w.P2/ � � �w.Pk/ 2 Oq..K
�/m�n/:
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�
.4; 1/

�
.4; 2/

�
.4; 3/

�
.4; 4/

�
.3; 3/

�
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�
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�
.2; 3/

�
.1; 2/

�
.1; 3/

� � � �1 2 3 4

� 4

� 3

� 2

� 1

Figure 7. A Cauchon graph.

Notation 4.1.5. If we wish to explicitly write out the elements of I and J in either
ŒI jJ � or �.t/B .I jJ /, we will omit the braces. For example, we write

ŒI jJ �D Œfi1; : : : ; ikg j fj1; : : : ; jkg�D Œi1; : : : ; ik j j1; : : : ; jk�:

Example 4.1.6. For the Cauchon graph shown in Figure 7, the path system PD

.P1; P2; P3/, where

P1 D
�
1; .1; 3/; .1; 2/; .2; 2/; .4; 2/; .4; 1/; 1

�
;

P2 D
�
2; .2; 3/; .3; 3/; .4; 3/; 3

�
;

P3 D
�
4; .4; 4/; 4

�
;

is a vertex-disjoint path system in �.16/B .1; 2; 3 j 1; 3; 4/. In fact, it is the unique
such vertex-disjoint path system, and

w.P/D .t1;2t
�1
4;2t4;1/.t2;3/.t3;4/:

The reader may verify that the set �.16/B .1; 2 j 1; 2/ is empty.

The following is the q-analogue of a special case of Lindström’s lemma:

Theorem 4.1.7 [Casteels 2011, Theorem 4.4]. If ŒI jJ � has maximum coordinate
at most .r; s/, then, as an element of Oq..K

�/m�n/,

ŒI jJ �D
X

P2�
.t/
B .I jJ/

w.P/: �

The proof in [Casteels 2011] deals with the case tDmn and uses a technique sim-
ilar to the “tail-switching” method of Theorem 3.1.12. The same proof is valid here
due to the assumption that the maximum coordinate of the minor is at most .r; s/.
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Example 4.1.8. In the Cauchon graph of Figure 7, say with t D 16, there is
no vertex-disjoint path system from f1; 2g to f1; 2g. Theorem 4.1.7 tells us that
Œ1; 2 j 1; 2�D 0. This may be verified directly:

Œ1; 2 j 1; 2�D x1;1x2;2� qx1;2x2;1

D .t1;2t
�1
4;2t4;1C t1;3t

�1
2;3t2;2t

�1
4;2t4;1C t1;3t

�1
4;3t4;1/.t2;2C t2;3t

�1
4;3t4;2/

� q.t1;2C t1;3t
�1
2;3t1;3t

�1
4;3t4;2/.t2;2t

�1
4;2t4;1C t2;3t

�1
4;3t4;1/

D 0:

Similarly, it may be checked that

Œ1; 2; 3 j 1; 3; 4�D x1;1x2;3x3;4� qx1;1x2;4x3;3� qx1;3x2;1x3;4� q
3x1;4x2;3x3;1

C q2x1;3x2;4x3;1C q
2x1;4x2;1x3;3

D w.P1/w.P2/w.P3/

D .t1;2t
�1
4;2t4;1/.t2;3/.t3;4/;

where P1; P2 and P3 are as in Example 4.1.6.

Before moving on, a quick application of Theorem 4.1.7 is worth mentioning:
the well-known fact that in Oq.Mn;n.K// the quantum determinant

Dq D Œ1; 2 : : : ; n j 1; 2; : : : ; n�

is central. Indeed, it is easy to see that there is exactly one vertex-disjoint path
system from Œn� to Œn� in Gn�n∅ , namely PD .P1; : : : ; Pn/, where Pi D .i; .i; i/; i/
for each i 2 Œn�. Hence,

Dq D t1;1t2;2 � � � tn;n:

Centrality of Dq follows from the observation that the right-hand side commutes
with every generator t˙1i;j of Oq..K

�/m�n/.
The next result was given as Theorem 4.5 in [Casteels 2011], but under the

additional assumption that q is transcendental over Q. We here provide a proof for
when q is a nonzero non-root of unity.

Theorem 4.1.9. A quantum minor ŒI jJ � with maximum coordinate at most .r; s/
equals zero if and only if there does not exist a vertex-disjoint path system from
I to J ; i.e., if and only if �.t/B .I jJ /D∅.

Proof. If �.t/B .I jJ /D∅, then Theorem 4.1.7 implies that ŒI jJ �D 0.
Now suppose �.t/B .I jJ / ¤ ∅, i.e., there is at least one vertex-disjoint path

system from I to J . The weight of a vertex-disjoint path system P is equal to
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q˛tMP 2 Oq..K
�/m�n/ for some integer ˛, where

.MP/i;j D

8<:
1 if there is a path in P with a �-turn at .i; j /;
�1 if there is a path in P with a

�

-turn at .i; j /;
0 otherwise.

Therefore, if for any distinct P;Q 2 �
.t/
B .I jJ / one has MP ¤ MQ, then, by

Theorem 4.1.7 and Proposition 2.1.9, we may conclude that ŒI jJ �¤ 0.
Suppose PD .P1; : : : ; Pk/ and QD .Q1; : : : ;Qk/ are two vertex-disjoint path

systems from I to J and that MP DMQ, i.e., a path in P has a �-turn or a

�

-turn
at .i; j / if and only if a path in Q does. We aim to show that PD Q. First, consider
the paths Pk and Qk . Let .ik; `/ be the first vertex where Pk turns and .ik; `0/
the first vertex where Qk turns. If ` > `0, then Qk goes straight through .ik; `0/.
However, since Q contains some path Q that turns at .i; `/, this implies (since B
is a Cauchon diagram) that Q and Qk intersect, contradicting the choice of Q as
a vertex-disjoint path system. The symmetric case shows that ` 6< `0 and hence
` D `0. A similar argument can then be applied to the remainder of the turning
vertices (if any) in Pk and Qk , from which we conclude that Pk DQk . Repeating
the argument with Pk�1 and Qk�1, etc., we see that PD Q, as desired. �

Recall the map � .t/B W A
.t/! A

.t/
B of Section 3.3.

Corollary 4.1.10. A quantum minor ŒI jJ �.t/ 2 A.t/ with maximum coordinate at
most .r; s/ is in ker.� .t/B / if and only if there does not exist a vertex-disjoint path
system from I to J in Gm�nB , i.e., �.t/B .I jJ /D∅. �

We conclude this section by showing how one may construct new vertex-disjoint
path systems from I to J from old ones. First, suppose i is a row vertex and j
is a column vertex in Gm�nB , and consider two paths P W i ! j and Q W i ! j .
Let .i D v0; : : : ; vk D j / be the subsequence of all vertices that P and Q have
in common. For each a 2 Œk�, let Pa and Qa denote the subpaths of P and Q,
respectively, starting at va�1 and ending at va. If Pa ¤Qa, then the first edge of
Pa is perpendicular to the first edge of Qa. If the first edge of Pa is horizontal, let
us say that Pa is above Qa, otherwise Pa is below Qa. Now consider the paths

Ua D

8<:
Pa if Pa DQa;
Pa if Pa is above Qa;
Qa if Qa is above Pa;

and

La D

8<:
Pa if Pa DQa;
Pa if Pa is below Qa;
Qa if Qa is below Pa.
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� i D v0

� v6 D j

P

�
v1

�

���
v2

�
v3

�
v4
��

�

�v5

Q
�

�

�

�

�

Figure 8. P is the solid path; Q is the dashed path; U.P;Q/ is
the shadowed path.

Definition 4.1.11. With notation as in the preceding paragraph, we let U.P;Q/ W
i ! j be the path

U.P;Q/D U1[U2[ � � � [Uk

and L.P;Q/ W i ! j the path

L.P;Q/D L1[L2[ � � � [Lk :

Example 4.1.12. With respect to Figure 8, U1 is the solid path from i D v0 to v1,
U2 is the dashed path from v1 to v2, U3 is the solid path from v2 to v3, etc. On
the other hand, L1 is the solid path from i D v0 to v1, L2 is the solid path from
v1 to v2, L3 is the solid path from v2 to v3, etc.

The following lemma states the key property of U.P;Q/ that we require:

Lemma 4.1.13. For a row vertex i and column vertex j in Gm�nB , consider two
paths P W i! j and Q W i! j . Suppose that R W i 0! j 0 is a path with i 0 > i . If R
is disjoint from either P or Q, then R is disjoint from U.P;Q/.

Proof. With respect to P and Q, we use the notation of the paragraph just prior to
Example 4.1.12. Without loss of generality, suppose P and R are disjoint.

If R and U.P;Q/ have a vertex w in common, then w 2Q and there exists an a
such that w is in the subpath Qa of Q. Since w 2 U.P;Q/, we have Ua DQa for
this a and so Qa is above Pa. On the other hand, since i 0 > i , R must intersect the
Jordan curve formed by Pa and Qa. Since Gm�nB is planar, the intersection occurs
at a vertex of P , a contradiction. �
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Corollary 4.1.14. Let i < i 0 be two row vertices and j < j 0 two column vertices in
Gm�nB . Suppose P W i ! j and P 0 W i 0! j 0 are disjoint paths and Q W i ! j and
Q0 W i 0! j 0 are disjoint paths. Then U.P;Q/ and U.P 0;Q0/ are disjoint.

Proof. By two applications of Lemma 4.1.13, U.P;Q/ is disjoint from both P 0

and Q0. Since U.P 0;Q0/ consists only of subpaths coming from either P 0 or Q0,
we have that U.P;Q/ and U.P 0;Q0/ are disjoint as well. �

Repeated application of Corollary 4.1.14 immediately gives the following result.

Corollary 4.1.15. Let PD .P1; : : : ; Pk/ and QD .Q1; : : : ;Qk/ be vertex-disjoint
path systems from I to J . Then

U.P;Q/D .U.P1;Q1/; : : : ; U.Pk;Qk//

is a vertex-disjoint path system from I to J . �

Now, if �.t/B .I jJ / is nonempty, then repeated application of Corollary 4.1.15
to the finitely many path systems in �.t/B .I jJ / shows that the next definition
is sensible.

Definition 4.1.16. If �.t/B .I jJ / ¤ ∅, then the supremum of �.t/B .I jJ / is the
(unique) vertex-disjoint path system .Q1; : : : ;Qk/ 2 �

.t/
B .I jJ / such that for any

PD .P1; : : : ; Pk/ 2 �
.t/
B .I jJ / one has, for each i 2 Œk�,

U.Qi ; Pi /DQi :

For L.P;Q/, it is clear that results similar to Lemma 4.1.13, Corollary 4.1.14
and Corollary 4.1.15 hold. We omit their explicit statements here, but note that the
next definition is also sensible.

Definition 4.1.17. If �.t/B .I j J / ¤ ∅, then the infimum of �.t/B .I j J / is the
(unique) vertex-disjoint path system .Q1; : : : ;Qk/ 2 �

.t/
B .I jJ / such that for any

PD .P1; : : : ; Pk/ 2 �
.t/
B .I jJ / one has, for each i 2 Œk�,

L.Qi ; Pi /DQi :

Example 4.1.18. Once again, consider the Cauchon graph shown in Figure 7. The
supremum of �.16/B .1; 3 j 1; 3/ is the path system . zQ1; zQ2/, where

zQ1 D
�
1; .1; 3/; .1; 2/; .2; 2/; .4; 2/; .4; 1/; 1

�
;

zQ2 D
�
3; .3; 4/; .3; 3/; .4; 3/; 3

�
;

while the infimum of �.16/B .1; 3 j 1; 3/ is the path system .Q1;Q2/, where

Q1 D
�
1; .1; 3/; .2; 3/; .2; 2/; .4; 2/; .4; 1/; 1

�
;

Q2 D
�
3; .3; 4/; .4; 4/; .4; 3/; 3

�
:



Quantum matrices by paths 1885

4.2. Gröbner bases. Gröbner basis theory is well known in commutative algebra,
and fortunately many of its key aspects transfer easily to quantum matrices and the
algebras R.t/ ' A.t/. For a more general and detailed account of Gröbner basis
theory for noncommutative algebras, we refer the reader to the book of Bueso,
Gómez-Torrecillas and Verschoren [Bueso et al. 2003].

Throughout this section, we fix t 2 Œmn�, let .r; s/ be the t -th smallest coordinate,
and denote the matrix of generators of A.t/ by Œxi;j �. We now define a total order
of the lexicographic monomials in A.t/.

Definition 4.2.1. The matrix lexicographic order � on Mm;n.Z/ is defined as
follows. If M ¤N 2Mm;n.Z/, let .k; `/ be the least coordinate in which M and
N differ. Then we set

M �N () .M/k;` < .N/k;`

and say that “M �N at .k; `/”.
If M �N are both in Mm;n.Z�0/, then the matrix lexicographic order induces a

total order (that we also call matrix lexicographic) on the lexicographic monomials
of A.t/, by setting

xM � xN ()M �N:

By allowing the .r; s/-entry in M and N to be negative, this terminology extends
to a total order on the lexicographic monomials of A.t/Œx�1r;s �.

For example, under the matrix lexicographic order, we have

xi;j � xk;`() .i; j / > .k; `/:

If .i; j /; .k; `/� .r; s/, and .i; j / is northwest of .k; `/, then we have the relation

xk;`xi;j D xi;jxk;`� .q� q
�1/xi;`xk;j :

On the other hand, we also have

xi;`xk;j � xi;jxk;`:

Essentially by repeated application of these facts and the other relations amongst
the standard generators, we obtain the following, which is a special case of the
more general Proposition 2.4 in [Bueso et al. 2003]:

Proposition 4.2.2. ForM;N 2Mm;n.Z�0/, the lexicographic expression of xMxN

is
xMxN D q˛xMCN C

X
L2Mm;n.Z�0/

˛LxL;

for some integer ˛ and where for every ˛L ¤ 0 one has L�M CN . �
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Definition 4.2.3. Let M;N 2Mm;n.Z�0/. We say that xM divides xN if

.M/i;j � .N /i;j for all .i; j / 2 Œm�� Œn�:

Using this terminology, we will use Proposition 4.2.2 in the following way:

Corollary 4.2.4. Let M;N 2Mm;n.Z�0/. If xM divides xN , then there exists an
integer ˛, matrices L�N , and scalars ˛L 2 K� such that

xN D q˛xMxN�M C
X
L

˛LxL: �

Remark 4.2.5. Proposition 4.2.2, Definition 4.2.3 and Corollary 4.2.4 extend to
A.t/Œx�1r;s � by allowing the .r; s/-entry in each matrix to be negative.

Definition 4.2.6. Let a 2 A.t/ with lexicographic expression

aD
X
L

˛LxL:

The leading term of a is the maximum lex term of a with respect to the matrix
lexicographic order. We denote the leading term of a by `t.a/.

We are now ready to give the definition of a Gröbner basis for a right ideal.

Definition 4.2.7. Let J be a right ideal of A.t/, and let

G D fg1; g2; : : : ; gkg � J:

We say that G is a Gröbner basis for J if for every a 2 J there exists a gi 2 G
such that `t.gi / divides `t.a/.

If one has a Gröbner basis fg1; g2; : : : ; gkg for a right ideal J , then one may
find an expression for any a 2 J as a combination of the gi recursively. If `t.a/ is
divided by `t.gi /, then by Corollary 4.2.4 we may write

aD gia
0
C b;

where `t.b/ � `t.a/. Since b 2 J , we can repeat the process if b ¤ 0. As there
are only finitely many lexicographic terms smaller than `t.a/, this will end after
finitely many steps. Thus, the elements of the Gröbner basis generate J .

We will eventually deal with quantum minors, and in this context require the
following, more refined version of Corollary 4.2.4.

Lemma 4.2.8. Let ŒI jJ �.t/ 2 A.t/ be a minor with maximum coordinate .ik; jk/.
Recalling Remark 4.1.2, if we write

ŒI jJ �.t/ D
X
�2Sk

.�q/`.�/xP� ;

then:
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(1) One has `t.ŒI jJ �.t//D xPid , where id is the identity permutation.

(2) If xPid divides xM for some M 2Mm;n.Z�0/, then

xM D q˛ŒI jJ �.t/xM�Pid Cw (4-1)

for some integer ˛ and w 2 A.t/, where if `t.w/ D xK , then K � M at a
coordinate northwest of .ik; jk/.

The first part of Lemma 4.2.8 is a trivial observation. The justification for the
second part is fairly technical, but its heart is the following auxiliary lemma. For this
lemma we setEk;` to be them�nmatrix with 1 in coordinate .k; `/ and 0 elsewhere.

Lemma 4.2.9. If .i; j / 2 Œm�� Œn� and xM 2 A.t/ is such that all entries of M in
coordinates larger than .a; b/ are zero, then we may write

xMxi;j D q
˛xi;jxM Cw;

where ˛ 2 Z and if w ¤ 0 and xK is a lex term of w, then M and K are equal in
all entries northeast of .i; j /. Moreover, if `t.w/D xL, then L�M CEi;j at a
coordinate northwest of .i; j /

Proof. We proceed by induction on j , starting with the easy observation that for
j D 1, xi;j and xM q�-commute.

Now, fix j > 1. Consider the process of commuting xi;j to the left of xM , and
define step .a; b/ to be the point in this process just before we commute xi;j past
x
.M/a;b
a;b

. For a given .a; b/, let M0 2Mm;n.Z�0/ be equal to M in all entries with
coordinate less than .a; b/, and let M1 DM �M0. Suppose we are at step .a; b/
and we have an expression of the form

xMxi;j D q
˛xM0x

.M/a;b
a;b

xi;jxM1 Cw;

where ˛ 2 Z and w 2A.t/ is such that `t.w/�M CEi;j , and if w ¤ 0 and xK is
a lex term of w, then M and K are equal in all entries northeast of .i; j /. We claim
that there is such an expression for step .a; b/�. Note that, once proven, repeated
applications of this claim proves the inductive step, and hence the lemma.

If xa;b and xi;j q�-commute, then the claim is trivial, so suppose xa;bxi;j D
xi;jxa;bC .q� q

�1/xi;bxa;j . Thus b < j and, as is easily shown by induction on
.M/a;b , there is a c 2 K such that

x
.M/a;b
a;b

xi;j D xi;jx
.M/a;b
a;b

C cxi;bx
.M/a;b�1

a;b
xa;j :

From this, we obtain

q˛xM0x
.M/a;b
a;b

xi;jxM1 Cw D q˛xM0xi;jx
.M/a;b
a;b

xM1

C cq˛xM0xi;bx
.M/a;b�1

a;b
xa;jxM1 Cw:
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Notice that the claim is established if we can show that any lex term xK of
xM0xi;bx

.M/a;b�1

a;b
xa;jxM1 is such that K equals M northeast of .i; j /.

As M1 is zero in all entries with coordinates less than .a; b/, there is a ˇ 2 Z

with x.M/a;b�1
a;b

xa;jxM1 D qˇxM
0
1 , where M 01 DM1C ..M/a;b �1/Ea;bCEa;j .

Since b < j , we apply the induction hypothesis for b to obtain

xi;bxM
0
1 D qxM

0
1CEi;b �w0;

for some integer  and w0 2 A.t/, where any lex term xK
0

of w0 is such that
K 0 �M 01 and K 0 equals M 01 in all entries northeast of .i; b/, and so in particular
northeast of .i; j /. Moreover, since K 0 �M 01, we know that K 0 can only be zero
in all entries with coordinate less than .a; b/. For this reason, xM0xK

0

D xM0CK
0

,
where M0 CK

0 is equal to M in all entries northeast of .i; j /. As M 01 C Ei;b
also equals M in all entries northeast of .i; j /, we have established the claimed
expression at step .a; b/�.

Finally, from the above procedure we also get L�MCEi;j , where `t.w/DxL.
Furthermore, since the commutation relations are homogeneous with respect to the
grading introduced at the end of Section 2.1, we in fact have that L�M CEi;j at
a coordinate northwest of .i; j /. �

Lemma 4.2.9 roughly says that as we commute xi;j to the left of xM and find the
lexicographic expression of any new terms, one never needs to “create or destroy”
any generator with coordinate northeast of .i; j /.

Proof of Lemma 4.2.8, Part (2). By applying Lemma 4.2.9 to the generators corre-
sponding to xPid in xM , we find that there is an integer ˛ and a w 2A.t/ such that

xM D q˛xPidxM�Pid Cw0;

where w0 2 A.t/ and if `t.w0/ D xK , then K �M at a coordinate northwest of
.ik; jk/. On the other hand, notice that if � 2 Sk with � ¤ id, then

xP�xM�Pid D xM�PidCP� Cw00;

where xM�PidCP� is the leading term of the right side and M �PidCP� �M at
a coordinate northwest of .ik; jk/. Our desired equation

xM D q˛ŒI jJ �.t/xM�Pid Cw;

follows for some integer ˛ and w 2 A.t/, where, if `t.w/D xK , then K �M at
a coordinate northwest of .ik; jk/. �

4.3. Adding derivations and lexicographic expressions. Throughout this section,
we fix t 2 Œmn�; t ¤ 1 and let .r; s/ be the t-th smallest coordinate. Let Œxi;j � be
the matrix of generators for A.t/ and Œyi;j � the matrix of generators for A.t�1/.
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The proof of the main theorem requires a somewhat detailed understanding of
the effect of the adding derivations map on the lexicographic expressions of an
element a 2 A.t/ and its image �a 2 A.t�1/Œy�1r;s �. This short section provides this
information.

Recall from Section 2.2 that the adding derivations map is the homomorphism

 �
� W A.t/! A.t�1/Œy�1r;s �

defined on the standard generators by

 ��xi;j D

�
yi;j Cyi;sy

�1
r;s yr;j if .i; j / is northwest of .r; s/;

yi;j otherwise;

or, equivalently, by

 ��xi;j D

�
yi;j C qyi;syr;jy

�1
r;s if .i; j / is northwest of .r; s/;

yi;j otherwise.

Let xM 2 A.t/ and write

xM D xi1;j1xi2;j2 � � � xip;jp ;

where for each k 2 Œp� 1�, .ik; jk/� .ikC1; jkC1/. Let D be the set of all k such
that .ik; jk/ is northwest of .r; s/. Then we may write

 ��

xM D
X
C�D

qjC j
C
 ���xi1;j1

C
 ���xi2;j2 � � �

C
 ���xip;jp ; (4-2)

where, for C � D,

C
 ���xik ;jkD

�
yik ;syr;jky

�1
r;s if k 2 C ;

yik ;jk if k 62 C .

Lemma 4.3.1. With notation as in the preceding discussion, let z 2A.t�1/Œy�1r;s � be
a summand on the right side of (4-2), so that for some C �D,

z D
C
 ���xi1;j1

C
 ���xi2;j2 � � �

C
 ���xip;jp :

Then in the lexicographic expression of z, written as

z D
X

LC2Mm;n.Z/

˛LCyLC

where ˛LC 2 K�, the following hold:

(1) For each LC ,
.LC /r;s D .M/r;s � jC j:
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(2) If C ¤∅, then for every LC , we have LC �M at the least .ik; jk/ for which
k 2 C .

(3) For each LC and for each i 2 Œm� n r ,

.LC /i;s D .M/i;sCjfk 2 C j ik D igj:

(4) If .i; j / is northwest of .r; s/ and if

.LC /i;j > .M/i;j � jfk 2 C j .ik; jk/D .i; j /gj;

then there is a coordinate .i; j 0/ with 1� j 0 < j such that

.LC /i;j 0 < .M/i;j 0 � jfk 2 C j .ik; jk/D .i; j
0/gj:

(5) For each LC , the entries in coordinates not north, west or northwest of .r; s/
are equal to the corresponding entries in M .

Proof. First, let us split the summand z by row indices, i.e., write

z D
� C
 ����x1;j1;1

C
 ����x1;j1;2 � � �

C
 �����x1;j1;p1

�
� � �

� C
 �����xm;jm;1

C
 ����xm;j1;2 � � �

C
 ������xm;j1;pm

�
;

where, for each i 2 Œm�, the generators appearing in the monomial

C
 ���xi;ji;1

C
 ���xi;ji;2 � � �

C
 ����xi;ji;pi

have indices
.a; b/ 2 f.i; j / j j 2 Œn�g[ f.r; j / j j 2 Œs�g:

Moreover, if yr;j appears with j ¤ s, then yr;j is to the right of any yi;j 0 with
j 0 < j . In other words, such a yr;j q�-commutes with every generator appearing
to its right. Also, in A.t�1/, we have that yr;s actually q�-commutes with every
generator of A.t�1/. Thus y�1r;s q

�-commutes with every generator in A.t�1/Œy�1r;s �
and we may write

C
 ���xi;ji;1

C
 ���xi;ji;2 � � �

C
 ����xi;ji;p1D q

˛yMiyRiy�ˇr;s ;

where ˛ 2 Z, ˇ is the number of occurrences of y�1r;s in the left monomial, Mi 2

Mm;n.Z�0/ is the matrix defined by

.Mi /a;b D

8̂̂̂<̂
ˆ̂:
0 if a¤ i ;
.M/i;b � jfk 2 C j .ik; jk/D .i; b/gj if aD i and 1� b < s;
.M/i;sCjfk 2 C j ik D igj if aD i and b D s;
.M/i;b if s < b � n;

and Ri is a matrix whose nonzero entries appear only in coordinates between .r; 1/
and .r; s� 1/.
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It follows that we may write

z D q˛
0

yM1yR1yM2yR2 � � �yMr�1yRr�1yRry�jC jr;s yL (4-3)

for some ˛0 2 Z, where the entries of Rr equal those of M at coordinates between
.r; 1/ and .r; s� 1/ and are zero elsewhere, and where entries of L equal those of
M at all coordinates greater than .r; s/.

Next, let yr;j be a generator with 1 � j < s, and consider yr;jyMi for some
1� i < r . Recall that, for j 0 < j , we have the relation

yr;jyi;j 0 D yi;j 0yr;j � .q� q
�1/yi;jyr;j 0 :

Repeated application of this relation implies that

yr;jyMi D yMiyr;j C
X
`

˛`y
M`
i yR

`

;

for nonzero scalars ˛` and where:

(1) Every M `
i 2Mm;n.Z�0/ satisfies M `

i �Mi , and the entries of each M `
i differ

from those in Mi only between coordinates .i; 1/ and .i; s� 1/;

(2) Each R` 2 Mm;n.Z�0/ has nonzero entries only between coordinates .r; 1/
and .r; s� 1/.

In particular, when finding the lexicographic expression of the monomial z written in
the form of (4-3), we never create or destroy any of the generators yi;s , y˙1r;s , nor any
generator with coordinates not north, west or northwest. Parts (1), (3) and (5) of the
lemma follow. It also follows that for every LC and i 2 Œr �1�, if the entries in LC
andM with coordinates between .i; 1/ and .i; s�1/ differ, then the first different en-
try is smaller in LC . This implies Part (4). Finally, Part (2) comes from the fact that
each term in the lexicographic expression of z must start with yi1;j1 � � �yik�1;jk�1
since no subsequent relation produces a generator ya;b with .a; b/ < .ik; jk/. �

Corollary 4.3.2. If a 2 A.t/ and `t.a/D xM , then `t. �a /D yM .

Proof. If C ¤ ∅, then each term yLC in the resulting lexicographic expression
satisfies yLC � yM by Part (2) of Lemma 4.3.1. On the other hand,

yM D
∅
 ���xi1;j1

∅
 ���xi2;j2 � � �

∅
 ���xip;jp : �

4.4. Generators of H-primes. We come to the main theorem of this paper. It is
fairly straightforward to modify the proof and some of the above definitions to
obtain the analogous result for left ideals. We remind the reader that the terms and
notation used in the following proof can be found in the List of terms and notation.
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Theorem 4.4.1. Fix the following data: a Cauchon diagram B; t 2 Œmn�; .r; s/ the
t -th smallest coordinate; Œxi;j � the matrix of generators for A.t/; and the sequence
of H-primes .K1; : : : ; Kmn/ where

Kt D ker
�
�
.t/
B

�
:

Let Gt be the set of all xi;j with .i; j / > .r; s/ and .i; j / 2 B , together with all
quantum minors in Kt whose maximum coordinate is at most .r; s/. Then Gt is a
Gröbner basis for Kt as a right ideal.

Proof. First, note that B D∅ if and only if K1 D h0i. On the other hand, in view
of Theorem 2.2.1, we have Kt D h0i for some t 2 Œmn� if and only if Kt D h0i for
every t 2 Œmn�. Since the empty set generates h0i, we are done in the case B D∅.
From now on, we suppose B ¤∅ and proceed by induction on t .

If t D 1, then the only minor in A.1/ D Oq.K
m�n/ whose maximum coordinate

is .1; 1/ is

Œ1 j 1�.1/ D t1;1:

Since t1;1 2 K1 if and only if .1; 1/ 2 B , we see that G1 is precisely the set
of generators ti;j with .i; j / 2 B . On the other hand, these ti;j generate K1 by
Theorem 2.3.4 and so Proposition 2.1.9 implies G1 is indeed a Gröbner basis.

So now suppose t ¤ 1 and that Gt�1 is a Gröbner basis for Kt�1. Let Œyi;j � be
the matrix of generators for A.t�1/. There are two cases to consider, according to
whether or not .r; s/ 2 B .

If .r; s/ 2 B , then, as elements of Oq..K
�/m�n/, we have for each coordinate

.i; j / that

�
.t/
B .xi;j /D �

.t�1/
B .yi;j /:

Therefore,

aD
X
L

˛LxL 2Kt

if and only if

a0 D
X
L

˛LyL 2Kt�1:

Hence, if yM divides `t.a0/, then xM divides `t.a/.
Now, the previous paragraph also implies that if ŒI jJ �.t�1/ 2Kt�1 with max-

imum coordinate at most .r; s/�, then ŒI jJ �.t/ 2 Kt with maximum coordinate
strictly less than .r; s/, so that ŒI jJ �.t/ 2 Gt . Also, if .i; j / > .r; s/ is such that
.i; j / 2 B , then xi;j 2Kt . Finally, since .r; s/ 2 B ,

Œr j s�.t/ D xr;s 2Kt :
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It now follows that since Gt�1 is a Gröbner basis for Kt�1, Gt is a Gröbner basis5

for Kt .
Now assume .r; s/ 62 B , i.e., xr;s 62 Kt , and that Gt�1 is a Gröbner basis for

Kt�1. In the following we aim to verify that Gt satisfies Definition 4.2.7 for Kt ,
but this requires some effort. The strategy we employ is as follows. Suppose a
nonzero a 2 Kt is chosen such that `t.a/ D xM is not divisible by the leading
term of a member of Gt . Using the full power of the paths viewpoint developed
above, we deduce in Claims 1 and 2 some structural properties of M . Using the
information so obtained, we then find a term yNC 2 A.t�1/ that is not divisible by
the leading term of any member of Gt�1 (Claim 3) yet is the leading term of an
element of Kt�1 (Claims 4 and 5). Of course, these opposing properties contradict
the induction hypothesis.

Fix a nonzero, monic a 2Kt with lexicographic expression

aD xM C
X
L

˛LxL;

where `t.a/ D xM . Furthermore, we may assume that a is homogeneous with
respect to the grading introduced at the end of Section 2.1, i.e., that for each i 2 Œm�,
the i-th row sum of every L and M are equal, and for every j 2 Œn�, the j -th
column sum of M and every L are equal.

If there exists an .i; j / 2 B with .i; j / > .r; s/ and .M/i;j � 1, then xi;j 2Gt
divides `t.a/, and we are done. So we may assume no such .i; j / exists. In fact by
Lemma 3.3.4 we may further assume that M and every L have the same values in
each coordinate .i; j / > .r; s/, and, without loss of generality, that these entries are
all zero, i.e., .M/i;j D 0D .L/i;j for all .i; j / > .r; s/.

Since .r; s/ 62 B , we have

Kt D
���!
Kt�1Œx

�1
r;s �\A

.t/;

and so there exists a b 2Kt�1 and a nonnegative integer h with

aD
�!
b x�hr;s :

Then b D �a yhr;s , and, by Corollary 4.3.2,

`t.b/D yMyhr;s:

We henceforth call a minor in Gt�1 whose leading term divides `t.b/ critical.
Note that since the maximum coordinate of a critical minor is at most .r; s/�, its
leading term actually divides yM . By induction, there exists at least one critical

5In general we have actually shown that a subset of Gt is a Gröbner basis for Kt , but nothing is
lost by adding the extra minors in Kt with maximum coordinates equal to .r; s/.
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minor. Now, if ŒI jJ �.t�1/ is critical and ŒI jJ �.t/ 2Kt , then, since the maximum
coordinate of ŒI jJ �.t/ is strictly less than .r; s/, we have found an element of Gt
whose leading term divides `t.a/, and we are done. From now on, we assume that
if ŒI jJ �.t�1/ is critical, then ŒI jJ �.t/ 62Kt .

Claim 1. If ŒI jJ �.t�1/ is critical, where I D .i1 < i2 < � � � < ik/ and J D
.j1 < j2 < � � �< jk/, then we may assume the following:

(1) The set �.t/B .I jJ / is nonempty and every vertex-disjoint path system in it
contains a path with a

�

-turn at .r; s/.

(2) If .ik0 ; jk0/ is the largest diagonal coordinate northwest of .r; s/, then

Œi1; : : : ; ik0 j j1; : : : ; jk0 �
.t�1/

is critical.

(3) If .ik; jk/ is northwest of .r; s/, then for every .i; j / with ik < i � r and
jk < j � s, one has .M/i;j D 0.

Proof of Claim 1. Part (1): This is simply restating the assumption preceding the
claim, since otherwise there is a vertex-disjoint path system in �.t�1/B .I jJ /, i.e.,

ŒI jJ �.t�1/ 62Kt�1:

Part (2): By Part (1), there exists a
�

-turn at .r; s/ in any vertex-disjoint path
system in �.t/B .I jJ /. Hence r 62 I (in particular, ik < r), s 62 J and at least .i1; j1/
is northwest of .r; s/. Therefore .ik; jk/ is either northwest or northeast of .r; s/.

If .ik; jk/ is northwest of .r; s/, then there is nothing to prove, so suppose .ik; jk/
is northeast of .r; s/. If ŒI n ik jJ n jk�.t�1/ 2Kt�1, then replace ŒI jJ �.t�1/ with
ŒI n ik jJ n jk�

.t�1/ and restart this argument. So assume that .ik; jk/ is northeast
of .r; s/ and ŒI n ik jJ n jk�.t�1/ 62 Kt�1, i.e, there exists a vertex-disjoint path
system

PD .P1; : : : ; Pk�1/ 2 �
.t�1/
B .I n ik jJ n jk/:

Let
QD .Q1; : : : ;Qk/ 2 �

.t/
B .I jJ /:

From Part (1), there exists a Q˛ W i˛ ! j˛ containing .r; s/ as a

�

-turn. Clearly,
we must have ˛ D k0, and k0 ¤ k since .ik; jk/ is northeast of .r; s/. Recalling
Corollary 4.1.15, consider the vertex-disjoint path system

RD U.P;Q nQk/ 2 �
.t�1/
B .I n ik jJ n jk/:

See Figure 9. Since Pk0 does not contain a

�

-turn at .r; s/, the path U.Pk0 ;Qk0/
does not contain a

�

-turn at .r; s/. Moreover, by Corollary 4.1.14, R is disjoint from
Qk . Hence, R[Qk is a vertex-disjoint path system in the empty set �.t�1/B .I jJ /,
an impossibility.
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�

.r; s/

� ik

� jk� jk�1� � �

� ik�1

:::

� i 0
k

:::

� i1

� j1 � j 0
k

� � �

Figure 9. Illustration of the idea used to prove Part (2) of Claim 1.
The dashed paths represent Q 2 �

.t/
B .I jJ /. The solid paths rep-

resent P 2 �
.t�1/
B .I n ik jJ n jk/. The shaded paths represent

U.P;Q nQk/.

Part (3): If .i; j /D .r; s/ and .M/r;s�1, then ŒI[r jJ[s�.t/ is a minor whose lead-
ing term divides xM with maximum coordinate .r; s/. The only path in �.t/B .r; s/

is .r; .r; s/; s/. Hence, if �.t/B .I [ r jJ [ s/ is nonempty, then any path system in
this set would have a subpath system from I to J not using .r; s/. But this is a
vertex-disjoint path system in the empty set �.t�1/B .I jJ /, an impossibility. Thus,
ŒI [ r jJ [ s�.t/ 2Gt with leading term dividing xM D `t.a/, and there is nothing
left to prove. So we may assume .M/r;s D 0.

If .i; j / ¤ .r; s/ but .M/i;j � 1, then the leading term of ŒI [ i jJ [ j �.t�1/

divides yM . Since ŒI jJ �.t�1/ 2Kt�1, there is no vertex-disjoint path system in
�
.t�1/
B .I jJ / and so certainly no vertex-disjoint path system in �.t�1/B .I[i jJ[j /.

Thus, ŒI [ i jJ [j �.t�1/ is critical and so there exists a P 2 �
.t/
B .I [ i jJ [j /. By

Part (1) and vertex-disjointness, the path P W i! j 2P is necessarily the path with
a

�

-turn at .r; s/. But then P n fP g is a vertex-disjoint path system in the empty
set �.t�1/B .I jJ /, an impossibility. This completes the proof of Claim 1. �

We now say that a coordinate .i; j / is critical if .i; j / is northwest of .r; s/ and
there exists a critical minor with .i; j / as its maximum coordinate.

Claim 2. If .i; j / is critical, then every .i; j 0/ for j < j 0 < s with .M/i;j 0 � 1 is
critical, and every .i 0; j / for i < i 0 < r with .M/i 0;j � 1 is critical.
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�
.r; s/

� i

�� � �

:::

�� � �

P nP

�

�j

�

�j 0

�

�

:::

� � � �

:::

Figure 10. Illustration of the idea used in proving Claim 2. In the
notation of that proof, the dashed line represents Q and the solid
line represents P . The other vertices and partial paths represent
P nP D Q nQ.

Proof of Claim 2 . Suppose ŒI jJ �.t�1/ is a critical minor whose maximum coordi-
nate is .i; j /. Notice that the leading term of

ŒI jJ n j [ j 0�.t�1/

divides yM and its maximum coordinate is .i; j 0/, so it remains to show that this
minor is in Kt�1.

Since ŒI jJ �.t�1/ is critical, we may consider the supremum P2�
.t/
B .I jJ /¤∅,

which, by Part (1) of Claim 1, contains a path P W i ! j with a

�

-turn at .r; s/.
Notice that P must have a horizontal subpath from .r; s/ to .r; j /, followed by a
�-turn at .r; j /, and then vertically down to the column vertex j . In particular,
.r; j / is a white vertex. See Figure 10.

Suppose that ŒI jJ n j [ j 0�.t�1/ 62Kt�1, i.e., there exists a vertex-disjoint path
system Q from I to J nj[j 0 in �.t�1/B .I jJ nj[j 0/. Therefore, the pathQ W i!j 0

in Q does not use vertex .r; s/. By considering the appropriate supremums, we may
assume without loss of generality that Q nQD P nP . Now, since j 0 > j , Q must
intersectP in order to end at j 0. SinceQ cannot have a

�

-turn at a .r; s/ or any larger
vertex, the Cauchon condition implies that .r; j 0/ is a white vertex. On the other
hand, PnP is disjoint from bothQ and P . If we letR be the path starting at i , equal
to Q up to .r; j 0/, and then equal to P until the column vertex j , then R is a path
from i to j that does not contain .r; s/. Now .PnP /[R is a vertex-disjoint path sys-
tem in �.t�1/B .I jJ /, a contradiction. That a coordinate .i 0; j / with i < i 0 < r with
.M/i 0;j � 1 is critical is proven similarly. This completes the proof of Claim 2. �
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��

M D

�

Figure 11. Structure of M : The bullet represents coordinate .r; s/.
All critical coordinates lie in the striped region. All entries in the
two regions shaded solid gray are 0.

To summarize the discussion so far, we have shown that it suffices to assume the
following:

� If ŒI jJ �.t�1/ is a critical minor, then �.t/B .I jJ /¤∅ and every vertex-disjoint
path system contains a path with a

�
-turn at .r; s/ (by Part (1) of Claim 1).

� Every critical minor contains a critical coordinate (by Part (2) of Claim 1).

� For each critical coordinate .i; j /, there is a critical minor whose maximum
coordinate is .i; j / (by definition).

� For each critical coordinate .i; j / (of which there exists at least one), .M/k;`D

0 for all i < k � r and j < ` � s (by Part (3) of Claim 1). In particular, no
critical coordinate is northwest of another critical coordinate and so any critical
minor contains a unique critical coordinate. See Figure 11.

� If .i; j / is northwest of .r; s/ and .i; j / is not a critical coordinate, then no
coordinate above or to its left is critical (by Claim 2).

The remainder of this proof will show that the above list of assumptions leads to
a contradiction to the induction hypothesis.

Recalling the notation in Section 4.3, let

`t.a/D xM D xi1;j1xi2;j2 � � � xip;jp ;

and set

C D fk 2 Œp� j .ik; jk/ is criticalg;



1898 Karel Casteels

where C is nonempty (since, by induction, there exists at least one critical minor,
which in turn contains a critical coordinate). Consider the monomial

C
 ���xi1;j1

C
 ���xi2;j2 � � �

C
 ���xip;jp y

h
r;s:

By the assumptions just established, Lemma 4.3.1 and Proposition 4.2.2, the lexi-
cographic expression of this monomial equals

q˛yNC C
X

LC2Mm;n.Z/

˛LCyLC ; (4-4)

for some integer ˛ and with every LC �NC , where

.NC /i;j D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0 if .i; j / is critical;
.M/i;j if i ¤ r , j ¤ s and .i; j / not critical;
.M/i;sC

P
j 0.M/i;j 0 if i ¤ r and j D s;

.M/r;j C
P
i 0.M/i 0;j if i D r and j ¤ s;

h� jC j if i D r and j D s;

and where the sum in the case that i ¤ r and j D s is over all j 0 with .i; j 0/ critical,
and the sum in the case that i D r and j ¤ s is over all i 0 with .i 0; j / critical. With
respect to Figure 11, the entries in the striped region are 0 in NC , while entries
above .r; s/ (respectively to the left of .r; s/) may become nonzero if there is a
critical coordinate to the left (respectively above).

Claim 3. The term yNC is not divisible by the leading term of any element of Gt�1.
Consequently, yNC is not the leading term of any element of Kt�1.

Proof of Claim 3. To the contrary, suppose that yNC is divisible by the leading term
of some element in Gt�1. Since .NC /i;j D .M/i;j D 0 for every .i; j / � .r; s/,
this element is a minor

ŒI jJ �.t�1/;

where, say,
I D .i1 < � � �< iz/ and J D .j1 < � � �< jz/:

Now, ŒI jJ �.t�1/ does not contain a critical coordinate, since .NC /i;j D 0 for all
critical coordinates .i; j /. Moreover, we may in this way conclude that yM is not
divisible by the leading term of ŒI jJ �.t�1/. By the structure of the entries of NC
compared to M , we then must have that ŒI jJ �.t�1/ contains a coordinate .ik; jk/
in which .NC /ik ;jk > 0 while .M/i;j D 0, and so there are only two possibilities:
either .ik; jk/D .ik; s/, where .ik; j 0k/ is critical for some j 0

k
, or .ik; jk/D .r; jk/,

where .i 0
k
; jk/ is critical for some i 0

k
. We here show that the former possibility leads

to a contradiction. The latter case is dealt with similarly.
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Before we begin, we simplify our presentation slightly by further assuming that
.ik; jk/D .ik; s/ is the maximum coordinate of ŒI jJ �.t�1/, i.e., that z D k. The
general case is obtained by simply adding in ikC1; : : : ; iz and jkC1; : : : ; jz to the
respective index sets of every minor we consider below.

As yM is divisible by the leading term of ŒI n ik jJ n s�.t�1/ (a minor with no
critical coordinate), we have ŒI n ik jJ n s�.t�1/ 62Kt�1. So it is well-defined to set

zQD . zQ1; zQ2; : : : ; zQk�1/

to be the supremum and

QD .Q1;Q2; : : : ;Qk�1/

to be the infimum of �.t�1/B .I n ik jJ n s/.
Because .ik;j 0k/ is critical for some j 0

k
, there exists, by Claim 1, a critical

quantum minor ŒI 0 jJ 0�.t�1/ where, for a (possibly nonpositive) integer ˛, we write

I 0 D .i 0˛ < i
0
˛C1 < � � �< i

0
k D ik/ and J 0 D .j 0˛ < j

0
˛C1 < � � �< j

0
k/:

Set
zPD . zP ˛; : : : ; zP k/

to be the supremum and
PD .P˛; : : : ; Pk/

to be the infimum of �.t/B .I 0 jJ 0/. By Claim 1, Pk is a path from i 0
k

to j 0
k

in which
.r; s/ is a

�

-turn.
The constructions to follow will show that if ˛ � 1, then we can construct a

vertex-disjoint path system

R1 2 �
.t�1/
B .I jJ /;

or, if ˛ > 1, a vertex-disjoint path system

R0˛ 2 �
.t�1/
B .I 0 jJ 0/:

As both �.t�1/B .I jJ / and �.t�1/B .I 0 jJ 0/ were assumed to be empty sets, either
case will establish a contradiction and so complete the proof of Claim 3. The
construction is fairly intricate, so we first give an indication on how we plan to
proceed. For ` 2 Œk�, let I` D .i` < � � � < ik/ and J` D .j` < � � � jk/. Define I 0

`

and J 0
`

for ˛� `� k similarly. The first step is to build a vertex-disjoint path system
Rk 2 �

.t�1/
B .Ik jJk/ using Q. If k D 1, then we are done. Otherwise, we use Rk

to build R0
k
2 �

.t�1/
B .I 0

k
jJ 0
k
/. Again, if ˛D k, then we are done. Now suppose we

have found R`C1 2 �
.t�1/
B .I`C1 jJ`C1/ and R0

`C1
2 �

.t�1/
B .I`C1 jJ`C1/ and that

`C1>max.1; ˛/. We will show how to construct R` 2�
.t�1/
B .I` jJ`/ using R`C1

and R0
`C1

. If ` D 1 we are done. Otherwise, we construct R0
`
2 �

.t�1/
B .I 0

`
jJ 0
`
/
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�.r; s/D v1
k

� ik D i
0
k
D v0

k

� j 0
k

�

� s D jk

Figure 12. Construction of Qk (dashed) from Pk (solid) in the
proof of Claim 3.

using R0
`C1

and the just-constructed R`. If `D ˛ we are then done; otherwise we
repeat the above, eventually ending with the desired vertex-disjoint path systems.

Now we give the promised details of the previous paragraph, beginning with the
construction Rk . Recall that Pk 2P has a subpath starting at row vertex i 0

k
D ik and

ending at vertex .r; s/. Define Qk to be this subpath followed by the vertical path
from .r; s/ to column vertex s. For the purposes of the construction, set v0

k
D ik ,

v1
k
D .r; s/, and note that v0

k
is the first vertex that Pk and Qk have in common,

while v1
k

is the last vertex they have in common. If one sets Rk DQk , then note
that we (trivially) have Rk DQk from ik to v0

k
, Rk D U.Pk;Qk/ from v0

k
to v1

k
,

and Rk DQk from v1
k

to jk D s. See Figure 12.
Set Rk D .Rk/. Of course, Rk is a vertex-disjoint path system from ik to jk in

�
.t�1/
B .Ik jJk/. If k D 1, then we are done, so we may assume k > 1.

In order to construct R0
k

, we first need to prove that jk�1 � j 0k . To the contrary,
suppose jk�1 < j 0k , and consider

ŒI jJ n s[ j 0k�
.t�1/:

If ŒI jJ n s[j 0
k
�.t�1/ 2Kt�1, then it is critical and so there exists a vertex-disjoint

path system from I to J n s[ j 0
k

with the path from ik to j 0
k

containing a

�

-turn
at .r; s/. But just as in the construction ofQk above, we may replace this path with a
path from ik to s, thereby producing a vertex-disjoint path system from I to J in the
empty set �.t�1/B .I jJ /, which is absurd. Next, suppose ŒI jJ ns[j 0

k
�.t�1/ 62Kt�1,

so that there does exist a vertex-disjoint path system from I to J n s[ j 0
k

, where
the path Q0 W ik ! j 0

k
does not contain a

�

-turn at .r; s/. We may take this path
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� .r; s/D v1
k

� ik D i
0
k
D v0

k

� ik�1

�
w0
k

�
w1
k

� j 0
k�1

� j 0
k

�

Figure 13. Qk�1 is the dashed path, Pk is the solid path, R0
k

is
the shadowed path.

system to be

. zQ1; : : : ; zQk�1;Q
0/:

Now zQk�1 is disjoint from Q0, and so disjoint from L.Q0; Pk/ by the lemma
that is analogous to Corollary 4.1.14. But this latter path contains .r; s/ (since Pk
does) and so we may replace Q0 with a path from ik to s, thereby again impossibly
producing a vertex-disjoint path system in the empty set �.t�1/B .I jJ /. We can
therefore conclude that jk�1 � j 0k .

As k > 1, consider Qk�1, which, in particular, does not contain .r; s/. Now,
Qk�1 must intersect Qk at a vertex coming before .r; s/ on Qk , as otherwise
Q[Qk 2 �

.t�1/
B .I jJ /. Let w0

k
be the first such common vertex. On the other

hand, since jk�1 � j 0k and Qk�1 goes above .r; s/, Qk�1 must also share with Pk
at least one vertex after .r; s/. Let w1

k
be the last vertex that Qk�1 and Pk share.

See Figure 13.
Define R0

k
to be the path that equals Pk from i 0

k
to w0

k
, then equals U.Qk�1; Pk/

from w0
k

to w1
k

, and then equals Pk from w1
k

to j 0
k

. Observe that R0
k

does not
contain .r; s/, so that

R0k D .R
0
k/

is a vertex-disjoint path system in �.t�1/B .I 0
k
jJ 0
k
/. If k D ˛, then again we have

obtained the desired contradiction, and so we may assume ˛ < k.
Now let ` be an integer with max.˛; 1/ � ` < k. Assume that i`C1 � i 0`C1,

j` � j
0
`C1

and that we have the following data:
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�i 0`C1

�i`C1

� i`

�
j 0
`C1

�

j`

�

j`C1

�
v0
`C1

�
v1
`C1

�i 0`C1

�i`C1

� i`

�
j 0
`C1

�

j`

�

j`C1

�
w0
`C1

�
w1
`C1

Figure 14. R`C1 is the shaded path on the left diagram; R0
`C1

is
the shaded path on the right diagram.

� We have a R`C1 D .R`C1; : : : ; Rk/ 2 �
.t�1/
B .I`C1 jJ`C1/. Moreover, there

exists a vertex v0
`C1

which is the first vertex that P`C1 and Q`C1 have in
common, a vertex v1

`C1
which is the last vertex that P`C1 and Q`C1 have in

common, and R`C1 equals Q`C1 from i`C1 to v0
`C1

, equals U.P`C1;Q`C1/
from v0

`C1
to v1

`C1
, and equals Q`C1 from v1

`C1
to j`C1.

� We have a R0
`C1
D .R0

`C1
; : : : ; R0

k
/ 2 �

.t�1/
B .I 0

`C1
jJ 0
`C1

/. Moreover, there
exists a vertex w0

`C1
which is the first vertex that P`C1 and Q` have in

common, a vertex w1
`C1

which is the last vertex that P`C1 and Q` have in
common, and R0

`C1
equals P`C1 from i 0

`C1
to w0

`C1
, equals U.P`C1;Q`/

from w0
`C1

to w1
`C1

, and equals P`C1 from w1
`C1

to j 0
`C1

.

We will construct a pathR` W i`!j` disjoint fromR`C1, but first we need to show
that i` � i 0`. Suppose that i` > i 0`. Since j` � j 0`C1 >j

0
`
, we may consider the minor

ŒI 00 jJ 00�.t�1/ D Œi 0˛; : : : ; i
0
`; i`; : : : ; ik�1 j j

0
˛; : : : ; j

0
`; j`; : : : ; jk�1�

.t�1/:

Note that this minor does not contain a critical coordinate since ŒI jJ �.t�1/ doesn’t
and .ik; jk/ is the unique critical coordinate in ŒI 0 jJ 0�.t�1/. But as yM is divisible
by the leading term of ŒI 00 jJ 00�.t�1/, we know that ŒI 00 jJ 00�.t�1/ is not in Kt�1,
i.e., �.t�1/B .I 00 jJ 00/ is nonempty.

Indeed, . zP 1; : : : ; zP `;Q`; : : : ;Qk�1/ 2 �
.t�1/
B .I 00 jJ 00/, since for any path

system in �.t�1/B .I 00 jJ 00/ we choose, the subpath system from fi 01; : : : ; i
0
`
g to

fj 01; : : : ; j
0
`
g may be replaced with the supremum of

�
.t�1/
B .i 01; : : : ; i

0
` j j
0
1; : : : ; j

0
`/;

and the subpath system from fi`; : : : ; ik�1g to fj`; : : : ; jk�1g with the infimum of

�
.t�1/
B .i`; : : : ; ik�1 j j`; : : : ; jk�1/:
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�i 0`C1

�i`C1

� i`

� i 0
`

�

j 0
`C1

�

j`

�

j`C1

�

j 0
`

�
v0
`

�
v1
`

�

w0
`C1

�
w1
`C1

Figure 15. Constructing R` (upper shaded path). Note that it is
disjoint from R`C1 (lower shaded path).

These two sets are, of course, . zP 1; : : : zP `/ and .Q`; : : : ;Qk�1/ respectively. In par-
ticular, this implies zP ` is disjoint from both Q`. But zP ` is also disjoint from P`C1.
By the construction of R0

`C1
, it follows that zP ` and R0

`C1
are also disjoint, so that

f zP 1; : : : ; zP `g[R0`C1

forms a vertex-disjoint path system in the empty set �.t�1/B .I jJ /. Since this is an
impossibility, it must be the case that i` � i 0`.

Next, we construct R`. Recall thatR0
`C1

has a first vertexw0
`C1

that is common to
P`C1 andQ`. On the other hand, since P` and P`C1 are disjoint and i`� i 0`< i

0
`C1

,
it must be the case that P`C1 intersects Q`. Let v0

`
be the first vertex they have in

common and note that v0
`

comes before w0
`C1

on Q`. See Figure 15 for an example.
Next, observe that P` must also intersect Q` at a vertex coming after w0

`C1
.

This is the case since otherwise P` is disjoint from R0
`C1

after w0
`C1

. But by the
construction of R0

`C1
, we would then have .P1; : : : ; P`/[R0

`
, a vertex-disjoint

path system in the empty set �.t�1/B .I 0 jJ 0/. So, let v1
`

be the last vertex that Q`
and P` have in common. Define R` as the path equal to Q` from i` to v0

`
, equal to

U.P`;Q`/ from v0
`

to v1
`

, and then equal to Q` from v1
`

to j`. Since Q` is disjoint
from Q`C1 up to v0

`
and after v1

`
, and U.P`;Q`/ is disjoint from U.P`C1;Q`C1/,

we see that R` is disjoint from R`C1, and so



1904 Karel Casteels

R` DR`C1[R` 2 �
.t�1/
B .i`; : : : ; ik j j`; : : : ; jk/:

If `D 1, then we have obtained the required path system, completing the proof of
this claim.

Assume ` > 1. To construct R0
`
, we first must show that j`�1 � j 0`. To the

contrary, suppose that j`�1<j 0`. Now, i`�1<i`� i 0`, so we may consider the minor

ŒI 000 jJ 000�.t�1/ D Œi1; : : : ; i`�1; i
0
`; : : : ; i

0
k j j1; : : : ; j`�1; j

0
`; : : : ; j

0
k�
.t�1/:

Since yM is divisible by the leading term of ŒI 000 jJ 000�.t�1/, there are two possi-
bilities. If ŒI 000 jJ 000�.t�1/ is in Kt�1, then it is a critical minor, and so there is a
vertex-disjoint path system in

�
.t/
B .i1; : : : ; i`�1; i

0
`; : : : ; i

0
k j j1; : : : ; j`�1; j

0
`; : : : ; j

0
k/;

which we may take to be

. zQ1; : : : ; zQ`�1; P`; : : : ; Pk/:

Therefore, zQ`�1 is disjoint from both P` and Q`, and so disjoint from R` by the
latter path’s construction. Hence, . zQ1; : : : ; zQ`�1/[R` is a vertex-disjoint path
system in the empty set �.t�1/B .I jJ /, an impossibility. The other possibility is that
ŒI 000 jJ 000�.t�1/ is not in Kt�1. This possibility is dealt with in a manner similar to
the above, where we justified the inequality jk�1 � j 0k . It follows that j`�1 � j 0`.

We now describe the construction of R0
`
. Since ` > 1, consider Q`�1. This path

is disjoint from Q`. If Q`�1 does not intersect P` at a vertex between v0
`

and v1
`

,
then Q`�1 is disjoint from R`, so that .Q1; : : : ;Q`�1/[R` is a vertex-disjoint
path system in the empty set �.t�1/B .I jJ /, an impossibility. So we may let w0

`
be

the first vertex that Q`�1 shares with P`. Now, since j 0
`
� j`�1 < j`, and the two

subpaths of P` and Q` starting at v1
`

together with the line from j 0
`

to j` form a
closed curve in the plane, Q`�1 must intersect P` at a vertex after v1

`
. Let w1

`
be

their last common vertex after v1
`

. We now take R0
`

to be the path equal to P` from
i 0
`

to w0
`

, equal to U.P`;Q`�1/ from w0
`

to w1
`

, and equal to P` from w1
`

to j 0
`
.

See Figure 16 for an example. That R0
`

is disjoint from R0
`C1

is seen similarly to
when we showed that R` and R`C1 are disjoint.

Of course, we now take

R0` DR0`C1[R
0
` 2 �

.t�1/
B .i 0`; : : : ; i

0
k j j

0
`; : : : ; j

0
k/:

If ` D ˛, then we are done. Otherwise continue as above. As this process ends
when `Dmax.˛; 1/, we eventually construct a vertex-disjoint path system in either
the empty set �.t�1/B .I jJ / or the empty set �.t�1/B .I 0 jJ 0/. This contradiction
completes the proof of Claim 3. �

Claim 4. The term yNC from Expression (4-4) is a lex term of b D �a yhr;s .
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�i 0`C1

� i`

� i`�1

�
w1
`

�
w0
`

�

j 0
`C1

�

j`�1

�

j`

� i 0
`

�

j 0
`

�
v0
`

�
v1
`

Figure 16. Constructing R0
`

(upper shaded path). Note that it is
disjoint from R0

`C1
(lower shaded path).

Proof of Claim 4. Recall that a lexicographic term is said to be a lex term of
an element of A.t�1/ or A.t/ if it has a nonzero coefficient in the lexicographic
expression of that element.

We have already seen that yNC is a lex term of

C
 ���xi1;j1

C
 ���xi2;j2 � � �

C
 ���xip;jp y

h
r;s:

We will show that this is, in fact, the unique appearance of yNC in (the lexicographic
expression of) any summand of

b D �a yhr;s D
 ��

xMyhr;sC
X
L

˛L
 �

xLyhr;s;

and so is a lex term of b.
To start, consider in

 ��
xMyhr;s the lexicographic expression of some

C 0
 ���xi1;j1

C 0
 ���xi2;j2 � � �

C 0
 ���xip;jp y

h
r;s D

X
LC 02Mm;n.Z/

˛LC 0y
LC 0 ;

where C 0 ¤ C . Suppose C 0 is chosen so that there is an LC 0 equal to NC .
Now, by Lemma 4.3.1, each term yLC 0 satisfies .LC 0/r;s D h � jC 0j. Since

.NC /r;s D h� jC j, we must have if jC 0j D jC j > 0. But, since C ¤ C 0, there
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must exist k 2 C 0 such that .ik; jk/ is not a critical coordinate. Since .ik; jk/ is
not critical, we should have

.LC 0/ik ;jk D .NC /ik ;jk D .M/ik ;jk > .M/ik ;jk�jfk
0
2C 0 j .ik0 ; jk0/D .ik; jk/gj:

By Part (4) of Lemma 4.3.1, there is a coordinate .ik; j / with j < jk and

.LC 0/ik ;j < .M/ik ;j D .NC /ik ;j ;

where the equality follows from the fact that since .ik; jk/ is not critical, neither is
.ik; j / by Claim 2. Hence, LC 0 cannot be equal to NC since their entries differ in
coordinate .ik; j /. This is a contradiction and so we conclude that yNC is a lex
term of

 ��
xMyhr;s .

Next, suppose
xL D xa1;b1 � � � xat ;bt

appears in a, where .ak; bk/� .akC1; bkC1/ for each k 2 Œt�1� and where L�M
at coordinate .i; j /. With the notation of Section 4.3, consider

 �

xLyhr;s D
X
D

qjDj
D
 ����xa1;b1

D
 ����xa2;b2 � � �

D
 ���xat ;bt y

h
r;s:

Suppose that yNC appears in

D
 ����xa1;b1

D
 ����xa2;b2 � � �

D
 ���xat ;bt y

h
r;s D

X
LD

˛LDyLD :

By Lemma 4.3.1(5), every entry in an LD with coordinates not northwest, north
or west of .r; s/ must equal the corresponding entry in L. Since we also require
LD DNC for someD, this implies that those entries are equal to the corresponding
entry in M as well. Thus, .i; j / can only be north, west or northwest of .r; s/. On
the other hand, if j D s, then all entries inL andM in row i except coordinate .i; j /
are equal. By homogeneity, this means that we must also have .L/i;j D .M/i;j ,
a contradiction. Hence .i; j / is not north of .r; s/, and by similar reasoning .i; j /
is not west of .r; s/. Therefore, we may assume that L�M at a coordinate .i; j /
northwest of .r; s/.

There are two cases to consider. First, suppose .i; j / is not a critical coordinate.
In this case,

.NC /i;j D .M/i;j > .L/i;j ;

and so we may proceed as above by applying Part (4) of Lemma 4.3.1 to see that
in order to have .LD/i;j D .NC /i;j , we would require an entry with coordinate
.i; j 0/ with j 0 < j to satisfy

.LD/i;j 0 < .L/i;j 0 D .M/i;j 0 D .NC /i;j 0 :
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Hence we cannot have NC D LD in this case.
Next, suppose .i; j / is critical. Let .i; j0/ be the least critical coordinate in row i .

Notice that no .i; j 0/D .ak; bk/ with j 0 < j0 has k 2D, for reasons similar to the
previous paragraph. Now, consider j 0 with j0 < j 0 � s. By Part (3) of Claim 1
applied to .i; j0/, we know that every entry of M south of .i; j 0/ is equal to zero.
Hence, the sum of the entries in column j 0 of M is equal to

Pi
i 0D1.M/i 0;j 0 . By

homogeneity, this is equal to the sum of the entries in column j 0 of L. On the other
hand, the entries north of .i; j 0/ in L are equal to the corresponding entries in M .
Since all entries of L are nonnegative, we see that

.L/i;j 0 � .M/i;j 0

for every j0 < j 0 � s. Also, since the entries of L and M are equal prior to
.i; j0/ and L�M , we must also have .L/i;j0 � .M/i;j0 . But, since we know that
.L/i;j < .M/i;j , applying Part (3) of Lemma 4.3.1 gives

.LD/i;s D .L/i;sCjfk 2D j ik D igj

� .L/i;sC

sX
j 0Dj0

.L/i;j 0 < .M/i;sC

sX
j 0Dj0

.M/i;j 0 D .NC /i;s:

Hence, we cannot have LD D NC in this case either, and so this completes the
proof of Claim 4. �

Claim 5. There exists an element of Kt�1 for which yNC is the leading term.

Note that Claims 3 and 5 are incompatible, thus providing the required con-
tradiction to the assumptions on the entries of M and completing the proof of
Theorem 4.4.1.

Proof of Claim 5 . By Lemma 3.3.4, we may write

b D

1X
iD0

biy
i
r;s;

where finitely many bi ¤ 0 and each bi 2Kt�1 with lexicographic expression using
only generators with coordinates less than .r; s/.

By Claim 4, yNC is a lex term of b and so, since .NC /r;s D h� jC j, it is a lex
term of

z0 D bh�jC jy
h�jC j
r;s :

Suppose for a positive integer k that we have constructed an element zk�12Kt�1
in which yNC is a lex term. Moreover, suppose any lex term of zk�1 that is greater
than yNC also is a lex term of z0. If `t.zk�1/ D yNC , then we have found the
required element of Kt�1. Otherwise, we construct in the following an element
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zk 2Kt�1 with the same properties as zk�1, but in which there are fewer lex terms
greater than yNC . Since there are only finitely many lex terms of z0 that are greater
than yNC , this process must end after finitely many steps, resulting in an element
of Kt�1 whose leading term is yNC , as required.

Let
`t.zk�1/D yL � yNC ;

so that for some L; NC 2 K� we may write

zk�1 D LyLC NCyNC C z0k�1:

In particular, observe that in z0
k�1

there are fewer lex terms greater than yNC than
in zk�1. Also, yL � yMyhr;s since the latter term is the leading term of b but
yL 2 bh�jC jy

h�jC j
r;s ¤ bhy

h
r;s since jC j> 0. Finally, for i 2 Œr � 1�, let Ci denote

the critical coordinates in row i .
Let i0 be the least index such that Ci D Ci0 is nonempty. Let .c0; d0/ be the

least coordinate in Ci0 . Since yNC � yL � yMyhr;s and the entries of NC and M
at coordinates prior to .c0; d0/ are equal, we have that the entries of L, M and NC
are equal prior to .c0; d0/ as well.

Suppose .c0; d /2Ci0 is such that .L/c0;d >0. In this case, we proceed as follows.
Since .c0; d / is a critical coordinate, there is a critical minor ŒI jJ �.t�1/ 2Kt�1
with maximum coordinate .c0; d / whose leading term divides yM , and so divides
yL by the previous paragraph. By Lemma 4.2.8, we have

yL D q˛ŒI jJ �.t�1/yL�Pid Cw;

where w 2 A.t�1/ has the property that if `t.w/ D yK , then K � L at an entry
northwest of .c0; d /. Since all entries of L northwest of .c0; d / are equal to those
of NC and M , we have that `t.w/� yNC as well.

Hence,

zk�1 D LyLC NCyNC C z0k�1

D L.q
˛ŒI jJ �.t�1/yL�Pid Cw/C NCyNC C z0k�1;

so that if we define

zk D zk�1� Lq
˛ŒI jJ �.t�1/yL�PidD NCyNC C LwC z

0
k�1;

then we have zk 2Kt�1 satisfying the desired properties described above.
Now, suppose each coordinate .c0; d / 2 Ci0 is such that .L/c0;d D 0. Thus,

L and NC are equal in all entries prior to .c0; s/. Also, since yL is a lex term of b,
there must be a lex term xL

0

of a so that yL is a lex term of
 ��
xL
0

yhr;s . We also have
xL
0

� xM , and it follows by Part (2) of Lemma 4.3.1 that the entries in L0 and M
are equal prior to .c0; d0/.
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Now, as in the proof of Claim 4, we may apply homogeneity to conclude that
.L0/c0;d � .M/c0;d for each .c0; d /2Ci0 , and if any of these inequalities are strict,
then .L/i0;s < .NC /i0;s , contradicting the assumption that NC � L. Hence, L0

and M have equal entries prior to .c0; s/.
Now, let i1 be the second least index such that Ci1 is nonempty, and consider

coordinates from .c0; s/ to .c1; d1/�, where .c1; d1/ is the least coordinate in Ci�1.
Since yNC � yL, we know that if any entry in L and NC in these coordinates
differ, then the first differing entry is larger in L than in NC . On the other hand,
the entries of NC and M are equal in this range of coordinates. Thus, if the first
differing entry is larger in L than in NC , then this entry in L0 is larger than in
M , yet every entry prior in L0 is equal to that in M , implying that yM � yL

0

, a
contradiction. Hence, the entries in this range of coordinates are equal in NC ;M;L
and L0.

Since all entries northwest of a critical coordinate are equal in M;NC ; L and L0,
we may now repeat the above arguments with the coordinates in Ci1 , and subsequent
Ci if necessary. Eventually we must find a critical coordinate with a positive entry
in L, as otherwise we would find that NC D L, contradicting the assumption that
yNC � yL. Hence, we can always construct the required zk and, eventually, an
element of Kt�1 with leading term yNC . This completes the proof of Claim 5 and
the theorem. �

4.5. Conclusions. The motivating goal of this work was to demonstrate the conjec-
ture of Goodearl and Lenagan that when q 2K� is a non-root of unity, an H-prime of
Oq.Mm;n.K// is generated by the set of quantum minors it contains. That this is true
is already immediate corollary of the t Dmn case of our Theorem 4.4.1. However,
the theorem actually implies a sharper result, since we may consider a minimal
Gröbner basis for the H-prime. The idea here is simple: if G is a Gröbner basis for
an ideal and if g1; g2 2G are such that `t.g1/ is divisible by `t.g2/, then G ng1
remains a Gröbner basis for the ideal. With respect to Oq.Mm;n.K//, this means the
following. Suppose ŒI jJ �.mn/D ŒI jJ � is a minor with I Dfi1<i2< � � �<ikg and
J Dfj1<j2< � � � jkg. IfL¨ Œk�, I 0DI\fi` j`2Lg and J 0DJ\fj` j`2Lg, then
call ŒI 0 jJ 0� a diagonal subminor of ŒI jJ �. From the t Dmn case of Theorem 4.4.1
we find the following:

Corollary 4.5.1. If q 2 K� is a non-root of unity, then every H-prime K of
Oq.Mm;n.K//, is generated, as a right ideal, by those quantum minors in K with
no diagonal subminor in K. These quantum minors form a minimal Gröbner basis
for K with respect to the matrix lexicographic order.

In the statement of Corollary 4.5.1, “right ideal” can be replaced by “left ideal”
after proving the left ideal version of Theorem 4.4.1.
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Figure 17. The Cauchon diagram corresponding to K.

Example 4.5.2. Let K be the H-prime of Oq.M3;4.K// corresponding to the Cau-
chon diagram in Figure 17. By using Corollary 4.1.10, we find that the quantum
minors in K are

fŒ123j123�; Œ123j124�; Œ12j12�; Œ13j12�; Œ23j12�; Œ23j13�; Œ23j23�g:

Theorem 4.4.1 says that these form a Gröbner basis for K. However, Œ12j12� is a
diagonal subminor of Œ123j123� and Œ123j124�. Therefore,

fŒ12j12�; Œ13j12�; Œ23j12�; Œ23j13�; Œ23j23�g

is a minimal (in fact reduced) Gröbner basis for K.

List of terms and notation

To assist in the reading of this paper, in particular the proof of Theorem 4.4.1, we
below provide an index of some terms and notation used throughout this paper.

Coordinates Beginning of Section 2.

Lexicographic order Definition 2.1.1.

.r; s/� Definition 2.1.1.

Cauchon Diagram Definitions 2.3.5 and 2.3.7.

Gm�nB (Cauchon graph) Definition 3.1.1.

�
.t/
B .I jJ / Definition 4.1.4.

U.P;Q/ Definition 4.1.11.

L.P;Q/ Definition 4.1.11.

U.P;Q/ (Supremum) Definition 4.1.16.

L.P;Q/ (Infimum) Definition 4.1.17.

A.t/; A
.t/
B Definition 3.2.1.

xN Notation 2.1.6.

Lexicographic expression Definition 2.1.8.

Lex term of Definition 2.1.8.

�
.t/
B Definition 3.3.1.
�!a Theorem 2.2.1.
 �a Theorem 2.2.1.
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C
 ��xi;j Lemma 4.3.1 and preceding paragraph.

(Quantum) Minor ŒI jJ �.t/B ; ŒI jJ �
.t/; ŒI jJ � Definition 4.1.1.

Diagonal coordinate (of a minor) Definition 4.1.3.

Maximum coordinate (of a minor) Definition 4.1.3.

� Definition 4.2.1.

`t.a/ (leading term of a 2 A.t/) Definition 4.2.6.

Gröbner Basis Definition 4.2.7.

NC See Expression (4-4) just prior to Claim 3
in proof of Theorem 4.4.1.

Critical Minor A minor in Kt�1 whose leading term di-
vides `t.b/D `t. �a yhr;s/.

Critical Coordinate A coordinate .i; j / that is northwest of
.r; s/ such that there exists a critical minor
with .i; j / as its maximum coordinate.
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Twisted Bhargava cubes
Wee Teck Gan and Gordan Savin

In his reinterpretation of Gauss’s composition law for binary quadratic forms,
Bhargava determined the integral orbits of a prehomogeneous vector space which
arises naturally in the structure theory of the split group Spin8. We consider a
twisted version of this prehomogeneous vector space which arises in quasisplit
SpinE8 , where E is an étale cubic algebra over a field F . We classify the generic
orbits over F by twisted composition F -algebras of E-dimension 2.
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1. Introduction

The seminal work of Bhargava [2004a; 2004b; 2004c] has extended Gauss’s compo-
sition law for binary quadratic forms to far more general situations. The key step in
his extension is the investigation of the integral orbits of a group over Z on a lattice
in a prehomogeneous vector space. The prehomogeneous vector space which plays
a role in elucidating the nature of the classical Gauss’s composition arises from a
simply connected Chevalley group G of type D4. More precisely, let P DMN
be a maximal parabolic subgroup of G corresponding to the branching point of
the Dynkin diagram of type D4. As it is readily seen from the Dynkin diagram,
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the derived group Mder of the Levi factor M is isomorphic to SL32. The unipotent
radical N is 9-dimensional, and is a two-step nilpotent group with 1-dimensional
center Z. The adjoint action of Mder on the abelian quotient N=Z is isomorphic
to V D V2˝ V2˝ V2, where V2 is the standard 2-dimensional representation of
SL2. Since Bhargava regards an element of .Z2/˝3 as a cube whose vertices are
labeled by elements of Z, we shall refer to the prehomogeneous vector space V or
its elements as Bhargava’s cubes.

One of Bhargava’s achievements is the determination of the corresponding
integral orbits, i.e., SL2.Z/3-orbits on Z2˝Z2˝Z2. In particular, he discovered
that generic orbits are in bijection with isomorphism classes of tuples .A; I1; I2; I3/,
whereA is an order in an étale quadratic Q-algebra and I1, I2 and I3 are elements in
the narrow class group of A, i.e., invertible fractional ideals, such that I1 �I2 �I3D 1.
More precisely, to every cube Bhargava attaches three pairs .Ai ; Bi /, i D 1; 2; 3, of
2�2 matrices by slicing the cube in the three possible ways. In this way he obtains
three binary quadratic forms

Qi .x; y/D� det.AixCBiy/:

A remarkable fact, discovered by Bhargava, is that the three forms have the same
discriminant �. It is a degree-4 polynomial on V , invariant under the action of
Mder. The cube is generic if �¤ 0. In this case, the ring A is the unique quadratic
order of discriminant � and the three fractional ideals Ii correspond to the three
quadratic forms Qi by a dictionary that essentially goes back to Gauss.

We now consider the group G over a field F of characteristic different from 2

and 3. The group G is exceptional in the sense that its outer automorphism group
is isomorphic to S3: no other absolutely simple linear algebraic group has such
a large outer automorphism group. In particular, since S3 is also the group of
automorphisms of the split étale cubic F -algebra F �F �F , we see that every
étale cubic F -algebra E determines a quasisplit form GE . Fixing an épinglage of
G defines a splitting of the outer automorphism group S3 to Aut.G/, so that S3 acts
on V by a group of symmetries of the cube, fixing two opposite vertices. Then the
quasisplit group GE contains a maximal parabolic subgroup PE DMENE , which
is a twisted form of the parabolic P mentioned above. The derived group ME;der

of ME is isomorphic to ResE=F SL2. The adjoint action of ME;der on NE=ZE ,
where ZE is the center of NE , is isomorphic to a twisted form VE of V . We shall
call VE .F / (or its elements) the E-twisted Bhargava cube.

Since the action of S3 on V permutes the three pairs .Ai ; Bi / of 2� 2 matrices
obtained by slicing a cube in three different ways, it follows by Galois descent
that � gives rise to a degree-4 polynomial invariant on VE , denoted by �E . It is a
quasi-invariant for ME . More precisely, if v 2 VE .F / and g 2ME .F /, then

�E .gv/D �.v/
2
��E .v/;
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where � is a character of ME given by the adjoint action on ZE . An ME .F /-orbit
O� VE .F / is called generic if �E .v/¤ 0 for one and hence for all v 2 O. If O is
generic, then the quadratic algebra K D F

�p
�E .v/

�
is étale. It is an invariant of

the generic orbit.
The purpose of this paper is to classify the generic ME .F /-orbits on VE .F /.

The main result is:

Theorem 1.1. Let F be a field of characteristic different from 2 or 3. Fix an étale
cubic F -algebra E.

(i) There are natural bijections between the following sets:

(a) Generic ME .F /-orbits O on the E-twisted Bhargava cube.

(b) E-isomorphism classes of E-twisted composition algebras .C;Q; ˇ/ over F
which are of E-dimension 2.

(c) E-isomorphism classes of pairs .J; i/, where J is a Freudenthal–Jordan
algebra over F of dimension 9 and

i WE ,! J

is anF -algebra homomorphism. Here anE-isomorphism from .J; i/ to .J 0; i 0/
is a commutative diagram

E
i

����! J??y ??y
E

i 0

����! J 0

where the first vertical arrows is the identity, while the second is an F -
isomorphism of J and J 0.

(ii) The bijections in (i) identify

StabME
.O/Š AutE .C;Q; ˇ/Š AutE .i WE ,! J /:

(iii) Let K D F
�p
�E .v/

�
be the étale quadratic algebra K attached to a generic

orbit O containing v. Let LDE˝F K. The group StabME
.O/ in (ii) sits in a short

exact sequence of algebraic groups

1 ����! TE;K ����! StabME
.O/ ����! Z=2Z ����! 1;

where
TE;K.F /D fx 2 L

�
WNL=E .x/D 1DNL=K.x/g

is a 2-dimensional torus and where the conjugation action of the nontrivial element
of Z=2Z on TE;K is given by x 7! x�1.
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The reader is probably not familiar with some terminology in the theorem, so
an explanation is necessary. In order to define twisted composition algebras, recall
that the algebra E carries a natural cubic form, the norm NE . The norm defines
a quadratic map x 7! x# from E to E such that x � x# DNE .x/. For example, if
E D F 3, then

NE .x1; x2; x3/D x1x2x3 and .x1; x2; x3/# D .x2x3; x3x1; x1x2/:

Now, an E-twisted composition algebra (or simply twisted composition algebra) of
E-dimension 2 is a triple .C;Q; ˇ/ where:

� C is an E-vector space of dimension 2.

� Q W C �!E is a quadratic form.

� ˇ W C �! C is a quadratic map such that, for every v 2 C and x 2E,

ˇ.xv/D x#
�ˇ.v/ and Q.ˇ.v//DQ.v/#:

� If bQ is the bilinear form associated to Q, then bQ.v; ˇ.v// 2 F for every
v 2 C .

This definition is due to Springer, as is the bijection of the sets (b) and (c). More
precisely, suppose we have an algebra embedding i W E ,! J . Then we have a
decomposition

J DE˚C;

where C is defined as the orthogonal complement to E with respect to the trace
form on J . The upshot is that the Jordan algebra J determines the structure of a
twisted composition algebra on C , and vice versa.

Our contribution is the bijection between the sets (a) and (b). Starting with a
twisted cube, we define a twisted composition algebra. In fact, the construction
works over Z, and can be tied to Bhargava’s description as follows. Let .I1; I2; I3/
be a triple of ideals in a quadratic order A such that I1 �I2 �I3DA. Let N.I / denote
the norm of the ideal I and z 7! Nz denote the action of the nontrivial automorphism
of the étale quadratic Q-algebra containing A. Let

C D I1˚ I2˚ I3:

Then C is a twisted composition algebra with quadratic form Q W C ! Z�Z�Z

defined by

Q.z1; z2; z3/D

�
N.z1/

N.I1/
;
N.z2/

N.I2/
;
N.z3/

N.I3/

�
and quadratic map ˇ W C ! C defined by

ˇ.z1; z2; z3/D . Nz2 Nz3N.I1/; Nz3 Nz1N.I2/; Nz1 Nz2N.I3//:
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The key parts of the paper are as follows. In order to prove the correspondence
of generic ME .F /-orbits and twisted composition algebras, we give a Galois
cohomological argument in Theorem 8.3, based on the observation that the stabilizer
of a distinguished cube is isomorphic to the automorphism group of a distinguished
twisted composition algebra. This gives a conceptual explanation for the existence
of the bijection. However, for arithmetic applications (such as Bhargava’s), it is
essential to have an explicit description of the bijection. This is done in two steps.
Firstly, after reviewing the theory of twisted composition algebras, we prove in
Proposition 3.5 that every twisted composition algebra C of E-dimension 2 has
a reduced basis, i.e., a basis of the form fv; ˇ.v/g for some v 2 C . Secondly, by
reinterpreting Bhargava’s work in the framework of twisted composition algebras in
Section 10, we attach to every genericE-twisted cube a twisted composition algebra
together with a good basis. In this correspondence, changing the cube by another
in the same ME .F /-orbit corresponds to changing the good basis. Since reduced
bases are good, every twisted composition algebra is obtained in this construction.

We also consider zM DM ÌS3 and its twisted form zME . In this case, generic
zME .F /-orbits correspond to the F -isomorphism classes of objects in (b) and (c).

The isomorphisms of the stabilizer groups in (ii) lead us to another description
of TE;K , which we view as an exceptional Hilbert 90 theorem. This is the topic
of Section 11. We conclude the paper by illustrating the main results in the case
where F is a local field.

2. Étale cubic algebras

Let F be a field of characteristic different from 2 and 3. Let F be a separable
closure of F , with absolute Galois group Gal.F =F /.

2-1. Étale cubic algebras. An étale cubic algebra is an F -algebra E such that
E˝F F Š F

3. More concretely, an étale cubic F -algebra is of the form

E D

8<:
F �F �F I

F �K, where K is a quadratic field extension of F ;
a cubic field.

Since the split algebra F � F � F has automorphism group S3 (the symmetric
group on 3 letters), the isomorphism classes of étale cubic algebras E over F are
naturally classified by the pointed cohomology set H 1.F; S3/, or more explicitly
by the set of conjugacy classes of homomorphisms

�E W Gal.F =F / �! S3:

2-2. Discriminant algebra of E . By composing the homomorphism �E with the
sign character of S3, we obtain a quadratic character (possibly trivial) of Gal.F =F /
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which corresponds to an étale quadratic algebra KE . We call KE the discriminant
algebra of E. To be concrete,

KED

8<:
F �F if E D F 3 or a cyclic cubic field;
K if E D F �K;
the unique quadratic subfield in the Galois closure of E otherwise.

2-3. Twisted form of S3. Fix an étale cubic F -algebra E. Then, via the asso-
ciated homomorphism �E , Gal.F =F / acts on S3 (by inner automorphisms) and
thus defines a twisted form SE of the finite constant group scheme S3. For any
commutative F -algebra A, we have

SE .A/D AutA.E˝F A/:

2-4. Quadratic map #. Given an étale cubic F -algebra, let NE WE �! F be the
norm map on E and let TrE WE �! F be the trace map. Then NE is a cubic form
and TrE is a linear form on E. There is a quadratic map

# WE �!E

such that
a#
� aD a � a#

DNE .a/ for a 2E.

It has an associated symmetric bilinear map

a� b WD .aC b/#� a#
� b#:

For the split algebra F 3, we have:

N.a1; a2; a3/D a1a2a3; Tr.a1; a2; a3/D a1C a2C a3;

.a1; a2; a3/
#
D .a2a3; a3a1; a1a2/:

We note the following identity in E:

(2.1) .f �y/yCfy#
D TrE=F .fy

#/:

This curious identity can be checked in E˝F F ŠF 3; we leave it as an interesting
exercise for the reader.

3. Twisted composition algebras

In this section, we introduce the E-twisted composition algebra of dimension 2 over
E. This notion was introduced by Springer, and the two standard (perhaps only)
references, covering many topics of this paper, are [Knus et al. 1998] and [Springer
and Veldkamp 2000]. Twisted composition algebras are treated in Chapter VIII, §36
of the former and Chapter 4 of the latter.
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3-1. Twisted composition algebras. A twisted composition algebra over F is a
quadruple .E; C;Q; ˇ/, where:

� E is an étale cubic F -algebra.

� C is a free E-module equipped with a nondegenerate quadratic form Q, with
associated symmetric bilinear form bQ.v1; v2/DQ.v1Cv2/�Q.v1/�Q.v2/.

� ˇ W C �! C is a quadratic map such that

ˇ.av/D a#
�ˇ.v/ and Q.ˇ.v//DQ.v/#

for every a 2E and v 2 C .

� If we set
NC .v/ WD bQ.v; ˇ.v//;

then NC .v/ 2 F for every v 2 C .

For a fixed E, we shall call .C;Q; ˇ/ an E-twisted composition algebra (over F ),
and the cubic form NC the norm form of C . Frequently, for ease of notation, we
shall simply denote this triple by C , suppressing the mention of Q and ˇ.

3-2. Morphisms. An F -morphism of twisted composition algebras .E; C;Q; ˇ/
and .E 0; C 0;Q0; ˇ0/ is a pair .�; �/ 2 HomF .C; C 0/�HomF .E;E 0/ such that

�.av/D �.a/ ��.v/

for v 2 C and a 2E, and

� ıˇ D ˇ0 ı� and � ıQDQ0 ı�:

In particular, we have the automorphism group AutF .E; C;Q; ˇ/. The second
projection gives a natural homomorphism

AutF .E; C;Q; ˇ/! SE :

The kernel of this map is the subgroup AutE .C;Q; ˇ/ consisting of those � which
are E-linear; we shall call these E-morphisms.

3-3. AutF .E;C /-action and isomorphism classes. Let us fix an E-vector space
C and let AutE .C / be the automorphism group of C as an E-vector space. Let

AutF .E; C /D f.g; �/ 2 AutF .C /�AutF .E/ W g ı�D �.�/ �g for all � 2Eg:

This is the group of E-sesquilinear automorphisms of C . The second projection
induces a short exact sequence

1 ����! AutE .C / ����! AutF .E; C / ����! SE ����! 1:
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This short exact sequence is split. Indeed, the choice of an E-basis for C gives a
splitting, with SE acting on the coordinates with respect to the basis.

Now if .C;Q; ˇ/ is an E-twisted composition algebra, then for any .g; �/ 2
AutF .E; C /, the triple

.C 0;Q0; ˇ0/D .C; � ıQ ıg�1; g ıˇ ıg�1/

is also an E-twisted composition algebra. The norm forms are related by

NC 0 DNC ıg
�1:

Moreover, we have

.g; �/ 2 HomF ..E; C;Q; ˇ/; .E; C 0;Q0; ˇ0//:

Thus the map .Q; ˇ/ 7! .Q0; ˇ0/ defines an action of AutF .E; C / on the set of
pairs .Q; ˇ/ which define an E-twisted composition algebra structure on C . The
orbits of such pairs under AutF .E; C / are precisely the F -isomorphism classes of
E-twisted composition algebras of a given E-dimension dimE C , and the stabilizer
of a given pair .Q; ˇ/ is precisely the automorphism group AutF .E; C;Q; ˇ/.
Similarly, the set of orbits under AutE .C / is the set of E-isomorphism classes of
such E-twisted composition algebras, and the stabilizer of a particular .Q; ˇ/ is
AutE .C;Q; ˇ/.

3-4. Dimension-2 case. It is known, by Corollary 36.4 in [Knus et al. 1998], that
for any E-twisted composition algebra .C;Q; ˇ/, dimE C D 1, 2, 4 or 8. We shall
only be interested in the case when dimE C D 2.

We give an example that will feature prominently in this paper. We set CE D
E˚E, and define Q and ˇ by

Q.x; y/D x �y and ˇ.x; y/D .y#; x#/

for every .x; y/ 2 E ˚ E. It is easy to check that this defines an E-twisted
composition algebra over F , with norm form

NC .x; y/DNE .x/CNE .y/:

The group of automorphisms of this E-twisted composition algebra is easy to
describe. Let E1 be the set of elements e in E such thatN.e/D e �e#D 1. For every
element e 2E1, we have an E-automorphism ie defined by ie.x; y/D .ex; e#y/.
We also have an E-automorphism w defined by w.x; y/D .y; x/. The group of
E-automorphisms is

AutE .CE ;Q; ˇ/DE1 ÌZ=2Z
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and the group of F -automorphisms is

AutF .CE ;Q; ˇ/D .E1 ÌZ=2Z/ÌSE DE1 Ì .Z=2Z�SE /:

If E D F �F �F , we denote the corresponding twisted composition algebra by
C0 D .C0;Q0; ˇ0/ and refer to it as the split twisted composition algebra. In this
case, E1 consists of .t1; t2; t3/ such that t1t2t3 D 1, so that

AutE .C0;Q0; ˇ0/Š G2m ÌZ=2Z:

Observe that there is a natural splitting

(3.1) S3 �Z=2Z �! AutF .C0;Q0; ˇ0/:

3-5. Identities. It follows by [Knus et al. 1998, Proposition 36.3] that if .E;C;Q; ˇ/
is a twisted composition algebra over F , then C ˝F F is isomorphic to C0˝F F .
This fact is useful for verifying polynomial identities in C . Indeed, any polynomial
identity in C may be verified over F and thus just needs to be checked in C0. In
the following lemma, we list some useful identities which may be checked in this
manner.

Lemma 3.2. Let .E; C;Q; ˇ/ be a twisted composition algebra over F . Then

(3.3) ˇ2.v/DNC .v/v�Q.v/ˇ.v/

and

(3.4) ˇ.xvCyˇ.v//D .y#NC .v/� .�Q.v/x/�y/ � vC .x
#
�Q.v/y#/ �ˇ.v/

for any v 2 C and x; y;2E.

It follows from (3.3) that Q is in fact determined by ˇ in a twisted composition
algebra. The proof of these identities can be found in [Springer and Veldkamp
2000, Lemmas 4.1.3 and 4.2.7]. We note that (3.4) looks slightly different from its
counterpart there (Lemma 4.2.7), but the two are equivalent by the identity (2.1).

3-6. Reduced basis. If dimE C D 2, we call an E-basis of C of the form fv; ˇ.v/g
a reduced basis of C . We note:

Proposition 3.5. Let .C;Q; ˇ/ be an E-twisted composition algebra.

(i) For v 2 C , let
�C .v/DNC .v/

2
� 4 �NE .Q.v// 2 F:

Then fv; ˇ.v/g is an E-basis of C if and only if �C .v/¤ 0.

(ii) The degree-6 homogeneous polynomial �C factors over F as

�C D a �P
2;
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with a 2 F � and P an absolutely irreducible homogeneous polynomial of degree 3
overF . The square class of a is uniquely determined, and for any g2AutE.C;Q;ˇ/,

(3.6) P.gv/D

�
P.v/ if g 2 AutE .C;Q; ˇ/0,
�P.v/ if g … AutE .C;Q; ˇ/0.

(iii) The algebra .C;Q; ˇ/ has a reduced basis.

(iv) Let fv0; ˇ.v0/g be another reduced basis of C . Let g 2 AutE .C / be such that
g.v/D v0 and g.ˇ.v//D ˇ.v0/. Then det.g/ 2 F �.

Proof. (i) The set fv; ˇ.v/g is a basis if and only if the matrix of the symmetric
bilinear form bQ with respect to fv; ˇ.v/g has determinant in E�. Since

bQ.v; v/D 2Q.v/; bQ.ˇ.v/; ˇ.v//D 2Q.v/
# and bQ.v; ˇ.v//DNC .v/;

it follows that the determinant is ��C .v/.

(ii) We first work over F , in which case we may assume that C DE2, with EDF 3,
Q.x; y/D xy and ˇ.x; y/D .y#; x#/. Then NC .x; y/DNE .x/CNE .y/. So

�C .x; y/D .NE .x/CNE .y//
2
� 4NE .x/NE .y/D .NE .x/�NE .y//

2:

The cubic polynomial P0.x; y/ D NE .x/ � NE .y/ D x1x2x3 � y1y2y3 (with
x D .x1; x2; x3/ 2 F

3) is easily seen to be irreducible over F .
To descend back to F , we note that for any � 2 Gal.F =F /, �.P0/D˙P0 by

unique factorization of polynomials over F . Thus there is a quadratic character �K
of Gal.F =F / such that �.P0/D �K.�/ �P0. If K is the quadratic étale F -algebra
associated to �K , represented by a2F �, then we see that P D

p
a
�1
�P0 is defined

over F and �C D a �P 2.
It is clear that the square class of a is uniquely determined. Equation (3.6) can

be checked over F ; we leave it to the reader.

(iii) Since F has more than 3 elements (as we assumed that char.F / ¤ 2 or 3),
there exists v 2 C such that P.v/¤ 0. Hence �C .v/¤ 0 by (ii) and fv; ˇ.v/g is a
reduced basis by (i).

(iv) If v0 D xv C yˇ.v/, then ˇ.v0/ is given by (3.4). So the transition matrix
between the bases fv; ˇ.v/g and fv0; ˇ.v0/g is given by

g D

�
x y#NC .v/� .�Q.v/x/�y

y x#�Q.v/y#

�
:

Hence

det.g/DNE .x/�NE .y/NC .v/C .�Q.v/xy#
C ..�Q.v/x/�y/y/

DNE .x/�NE .y/NC .v/�TrE .Q.v/xy#/ 2 F



Twisted Bhargava cubes 1923

where the second equality follows by applying (2.1). �

We note that Proposition 3.5(i) and (iii) are contained in [Springer and Veldkamp
2000, Lemma 4.2.12], but (ii) seems to be new; at least we are not able to find it in
[Springer and Veldkamp 2000] or [Knus et al. 1998]. The results of the proposition
will be used later in the paper.

3-7. The quadratic algebra KC . An immediate consequence of the proposition
is that to every twisted composition algebra .E; C;Q; ˇ/ with dimE C D 2, we
can associate an étale quadratic algebra KC which is given by the square-class of
�C .v/ 2 F

� as in the proof of Proposition 3.5(ii). Thus we have a map

(3.7) ftwisted composition F -algebras with E-rank 2g

�! fétale quadratic F -algebrasg:

For example, if CE is the twisted composition algebra introduced in Section 3-4,
then

�C .x; y/D .NE .x/�NE .y//
2

and the quadratic algebra associated to CE is the split algebra F �F .

3-8. Cohomological description. We come now to the classification of twisted
composition algebras C of rank 2 over E. Since every such C is isomorphic to C0
over F , the set of isomorphism classes of twisted composition algebras over F is
classified by the pointed cohomology set

H 1.F;AutF .F 3; C0;Q0; ˇ0//:

We have seen that AutF .F 3; C0;Q0; ˇ0/Š G2m Ì .Z=2Z�S3/, and so there is a
natural map

(3.8) H 1.F;AutF .F 3; C0;Q0; ˇ0// �!H 1.F;Z=2Z/�H 1.F; S3/:

Composing this with the first or second projections, we obtain natural maps

(3.9) H 1.F;AutF .F 3; C0;Q0; ˇ0//

�!H 1.F;Z=2Z/D fétale quadratic F -algebrasg

and

(3.10) H 1.F;AutF .F 3; C0;Q0; ˇ0// �!H 1.F; S3/:

All these projection maps are surjective, because of the natural splitting in (3.1).
Indeed, (3.1) endows each fiber of the maps in (3.8), (3.9) and (3.10) with a
distinguished point. We shall see in a moment that the map in (3.9) is the map
defined in (3.7).
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For an étale cubic F-algebraE with associated cohomology class ŒE�2H1.F;S3/,
the fiber of (3.10) over ŒE� is precisely the set of F -isomorphism classes of E-
twisted composition algebras. Moreover, a Galois descent argument shows that the
distinguished point in this fiber furnished by the splitting (3.1) is none other than
the E-twisted composition algebra CE constructed in Section 3-4.

Using CE as the base point, the fiber in question is identified naturally with the
set H 1.F;AutE .CE ;Q; ˇ// modulo the natural action of SE .F / (by conjugation).
The cohomology setH 1.F;AutE .CE ;Q; ˇ// classifies theE-isomorphism classes
of E-twisted composition algebras C over F , and the action of SE .F / is given by

� W .C;Q; ˇ/ 7! .C ˝E;� E; � ıQ;ˇ/

for � 2 SE .F /.

Lemma 3.11. The maps defined by (3.7) and (3.9) are the same.

Proof. We fix the cubic algebra E and let CE D .E2;Q; ˇ/ be the distinguished
E-twisted composition algebra introduced in Section 3-4. Let �C D P 2 be the
homogeneous polynomials as given in Proposition 3.5(ii).

Any E-twisted composition algebra C 0 is given by a pair of tensors .Q0; ˇ0/
on E2, and there is an element g 2 GL2.E˝F F / such that g � .Q; ˇ/D .Q0; ˇ0/.
A 1-cocycle associated to .Q0; ˇ0/ is given by

a� D g
�1�.g/ 2 AutF 3.E

2;Q; ˇ/ for � 2 Gal.F =F /.

The corresponding �C 0 is related to �C by

�C 0.v/D�C .g
�1v/:

Now, the quadratic algebra associated to C 0 by (3.9) corresponds to the quadratic
character

� W � 7! Œa� � 2 �0.AutF 3.E
2;Q; ˇ//D Z=2Z

of Gal.F =F /. By (3.6), we thus have

P.a�1� v/D �.�/ �P.v/

for any v 2 .E˝F F /2.
On the other hand, the quadratic algebra associated to C 0 by (3.7) is defined byp
�C 0.v/ for any v 2E2 such that �C 0.v/¤ 0. Sincep

�C 0.v/D

q
�C .g�1v/D P.g

�1v/;

we need to show that

�.P.g�1v//D �.�/P.g�1v/:
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But we have

�.P.g�1v//D P.�.g/�1v/D P.a�1� g�1v/D �.�/ �P.g�1v/;

as desired. �

3-9. Tits construction. Given an element

.ŒE�; ŒK�/ 2H 1.F; S3/�H
1.F;Z=2Z/;

we describe the composition algebras in the fiber of (3.8) over .ŒE�; ŒK�/. Note that
by (3.1), we have a distinguished point in this fiber. Now, we have:

Proposition 3.12. If C is an E-twisted composition algebra, with associated étale
quadratic algebra K, then we may identify C with E˝F K, such that

Q.x/D e �NE˝FK=E .x/ for some e 2E�

and
ˇ.x/D x#

� e�1 � � for some � 2K

where x 7! x is induced by the nontrivial automorphism of K over F . Moreover,
we have:

NE=F .e/DNK=F .�/:

The distinguished point in the fiber of (3.8) over .ŒE�; ŒK�/ corresponds to taking
.e; �/D .1; 1/.

Proof. The proof of Proposition 3.5(i) shows that the quadratic discriminant algebra
associated to Q is E ˝F K. Hence, we may identify C with E ˝F K with Q
given by e �NE˝FK=E for some e 2 E�. On the other hand, we claim that for
x 2E˝F K and x0 2 C , one has

ˇ.x � x0/D x
#
�ˇ.x0/:

Indeed, one can check this by going to F , where one is reduced to checking this
identity in the split algebra C0, which is straightforward. This shows that ˇ is
determined by ˇ.1/D � � e�1 for some � 2E˝F K. However, the identity

Q.1/# DQ.ˇ.1//

implies that
� � � DNE˝FK=E .�/DNE=F .e/ 2 F:

The requirement that N.x/ 2 F for all x 2E˝F K implies that

TrE˝FK=E .� �NE˝FK=K.x// 2 F:
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In particular, taking x D 1 and then a trace-zero element ı 2 K one obtains,
respectively,

�C � 2 F and �ıC �ı 2 F:

All these conditions imply that � 2K.
Finally, it is easy to see by Galois descent that the distinguished point in the fiber

over .ŒE�; ŒK�/ corresponds to .e; �/D .1; 1/. �

The description of twisted composition algebras given in the above proposition
is sometimes referred to as a Tits construction (though usually this terminology is
reserved for the Jordan algebra associated to the above twisted composition algebra
by Springer’s construction, which is the subject matter of the next section).

3-10. Automorphism group. Using Proposition 3.12, it is not difficult to determine
the automorphism group of any twisted composition algebra C . Indeed, if C Š
E˝F K as in the proposition, then the special orthogonal group

SO.C;Q/D f� 2E˝F K WNE˝K=E .�/D 1g

acts E ˝K-linearly on C by multiplication and preserves Q. An element � 2
SO.C;Q/ preserves ˇ if and only if

�#
D �:

But �# D ��1 since NE˝K=E .�/D � ��# D 1. So

AutE .C;Q; ˇ/\SO.C;Q/Df�2LDE˝K WNL=E .�/D1DNL=K.�/gDTE;K ;

which is a 2-dimensional torus. Since we know the automorphism group of the split
twisted composition algebra .C0;Q0; ˇ0/, we see that

AutE .C;Q; ˇ/0 D TE;K

and AutE .C;Q; ˇ/ sits in short exact sequences of algebraic groups as in (iii) of
Theorem 1.1.

3-11. Cohomology of TE;K . Using Proposition 3.12 and the above description of
AutE .C;Q; ˇ/0, we can describe the fiber of the natural map

H 1.F;AutF .F 3; C0;Q0; ˇ0// �!H 1.F;Z=2Z/�H 1.F; S3/

over the element .ŒK�; ŒE�/ 2 H 1.F;Z=2Z/ �H 1.F; S3/. Indeed, this fiber is
equal to

H 1.F; TE;K/ modulo the action of SE .F /�Z=2Z.
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The cohomology group H 1.TE;K/ classifies twisted composition algebras with
fixed E and K, up to E˝F K-linear isomorphism. With LDE˝F K, one has a
short exact sequence of algebraic tori

1 ����! TE;K ����! L�
NL=E�NL=K

���������! .E� �K�/0 ����! 1;

where

.E �K/0 D f.e; �/ 2E� �K� WNE=F .e/DNK=F .�/g:

The associated long exact sequence gives

(3.13) H 1.F; TE;K/Š .E
�
�K�/0= ImL�:

This isomorphism is quite evident in the context of Proposition 3.12. Indeed,
Proposition 3.12 tells us that any twisted composition algebra C with invariants
.E;K/ is given by an element .e; �/ 2 .E� �K�/0. Any L-linear map from C

to another twisted composition algebra C 0 with associated pair .e0; �0/ is given by
multiplication by an element a 2 L�, and this map is an isomorphism of twisted
composition algebras if and only if

.e; �/D .e0 �NL=E .a/; �
0
�NL=K.a//:

This is precisely what (3.13) expresses.

4. Springer’s construction

We can now relate twisted composition algebras to Freudenthal–Jordan algebras.
This construction is due to Springer. Our exposition follows [Knus et al. 1998,
§38A, p. 522].

4-1. Freudenthal–Jordan algebra of dimension 9. A Freudenthal–Jordan algebra
J of dimension 9 over F is a Jordan algebra which is isomorphic over F to the
Jordan algebra J0 associated to the associative algebra M3.F / of 3� 3-matrices,
with Jordan product

a ı b D 1
2
� .abC ba/:

An element a 2 J satisfies a characteristic polynomial

X3�TJ .a/X
2
CSJ .a/X �NJ .a/ 2 F ŒX�:

The maps TJ and NJ are called the trace and norm maps of J respectively. The
element

a#
D a2�TJ .a/aCSJ .a/
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is called the adjoint of a. It satisfies a � a# D NJ .a/. The cross product of two
elements a; b 2 J is defined by

a� b D .aC b/#� a#
� b#:

4-2. Cohomological description. The automorphism group of J0 is PGL3 ÌZ=2Z,
with g 2 PGL3 acting by conjugation and the nontrivial element of Z=2Z acting
by the transpose a 7! at . Thus, the isomorphism classes of Freudenthal–Jordan
algebras of dimension 9 are parametrized by the pointed set H 1.F;PGL3 ÌZ=2Z/,
and there is an exact sequence of pointed sets

H 1.F;PGL3/
f

����! H 1.F;PGL3 ÌZ=2Z/
�

����! H 1.F;Z=2Z/
fétale quadratic F -algebrasg:

The map � is surjective and the fiber of � over the split quadratic algebra F 2 is the
image of f . By [Serre 2002, Proposition 39(ii) and Corollary 1, p. 52], the image of
f is H 1.F;PGL3/ modulo a natural action of Z=2Z. Now the set H 1.F;PGL3/
parametrizes the set of central simple F -algebras B of degree 3, and the Z=2Z

action in question is B 7! Bop. Then the map f sends B to the associated Jordan
algebra.

In general, for any étale quadratic F -algebra K, an element in the fiber of � over
ŒK� 2H 1.F;Z=2Z/ is the Jordan algebra J3.K/ of 3� 3-Hermitian matrices with
entries inK. The automorphism group of J3.K/ is an adjoint groupPGUK3 ÌZ=2Z.
Using J3.K/ as the base point, the fiber of � over ŒK� can then be identified with
H 1.F; PGUK3 / modulo the action of Z=2Z (by [Serre 2002, pp. 50 and 52]). By
[Knus et al. 1998, p. 400], H 1.F; PGUK3 / has an interpretation as the set of
isomorphism classes of pairs .BK ; �/ where

� BK is a central simple K-algebra of degree 3,

� � is an involution of the second kind on BK .

Moreover, the action of the nontrivial element �K 2 Aut.K=F /D Z=2Z is via the
Galois twisting action B 7! B˝K;�K K, so that

H 1.F; PGUK3 /=Z=2Z ! fF -isomorphism classes of .BK ; �/g:

Then the map f sends .BK ; �/ to the Jordan algebra B�K of � -symmetric elements
in BK .

If J is a Freudenthal–Jordan algebra of dimension 9, we will write KJ for the
étale quadratic algebra corresponding to �.J /.
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4-3. Relation with twisted composition algebras. Fix an étale cubic F -algebra E
and a Freudenthal–Jordan algebra J . Suppose we have an algebra embedding

i WE ,! J:

Then, with respect to the trace form TJ , we have an orthogonal decomposition

J D i.E/˚C;

where C D i.E/?. We shall identify E with its image under i . Then for e 2E and
v 2 C , one can check that e� v 2 C . Thus, setting

e ı v WD �e� v

equips C with the structure of an E-vector space. Moreover, writing

v#
D .�Q.v/; ˇ.v// 2E˚C D J

for Q.v/ 2E and ˇ.v/ 2 V , we obtain a quadratic form Q on C and a quadratic
map ˇ on C . Then, by Theorem 38.6 in [Knus et al. 1998], the triple .C;Q; ˇ/ is
an E-twisted composition algebra over F .

Conversely, given anE-twisted composition algebra C over F , the same theorem
says that the spaceE˚C can be given the structure of a Freuthendal–Jordan algebra
over F . In particular, we have described the bijective correspondence between the
objects in (b) and (c) of the main theorem:

fE-twisted composition algebras over F g

l

fi WE �! J with J Freudenthal–Jordan of dimension 9g:

It is also clear that under this identification, one has

AutF .i WE! J /D AutF .i.E/?/:

4-4. Example. Let K be an étale quadratic F -algebra and consider the Jordan
algebra J3.K/ of 3� 3 Hermitian matrices with entries in K. Let E D F �F �F
be the subalgebra of J3.K/ consisting of diagonal matrices. Then C consists of
matrices

v D

0@ 0 Nz3 z2z3 0 Nz1
Nz2 z1 0

1A :
Thus C DK �K �K, and one checks that

Q.z1; z2; z3/D .z1 Nz1; z2 Nz2; z3 Nz3/ and ˇ.z1; z2; z3/D . Nz2 Nz3; Nz3 Nz1; Nz1 Nz2/:
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The algebra C is the distinguished point in the fiber of .ŒF 3�; ŒK�/, in the sense of
Proposition 3.12. The automorphism group of C is given by

AutF .C;Q; ˇ/D .K1 �K1 �K1/0 Ì .Z=2Z�S3/;

whereK1 denotes the torus of norm-1 elements inK and .K1�K1�K1/0 denotes
the subgroup of triples .t1; t2; t3/ such that t1t2t3 D 1.

4-5. The quadratic algebra associated to i WE !J . If an E-twisted composition
algebra C corresponds to a conjugacy class of embeddings i W E �! J , then we
may ask how the quadratic algebra KC associated to C can be described in terms
of i WE �! J . In this case, C DE? is an E-twisted composition algebra, and so
C DE˝KC for a quadratic algebra KC as in Proposition 3.12. On the other hand,
we know that J is associated to a pair .BKJ

; �/, where BKJ
is a central simple

algebra over an étale quadratic F -algebra KJ and � is an involution of the second
kind. Now, Examples (5) and (6) on page 527 in [Knus et al. 1998] show that

ŒKC � � ŒKE � � ŒKJ �D 1 2H
1.F;Z=2Z/D F �=F �2:

5. Quasisplit groups of typeD4

In this section, we shall introduce the E-twisted Bhargava’s cube by way of the
quasisplit groups of type D4.

5-1. Root system. Let ‰ be a root system of type D4 and …D f˛0; ˛1; ˛2; ˛3g a
set of simple roots such that the corresponding Dynkin diagram is

3

0 �
�
��HHHH

2 1

The group of diagram automorphisms Aut.…/ is identified with S3, the group of
permutations of f1; 2; 3g. We denote the highest root by ˇ0 D ˛1C˛2C˛3C 2˛0.

5-2. Quasisplit groups of typeD4. Let G be a split, simply connected Chevalley
group of type D4. We fix a maximal torus T contained in a Borel subgroup B
defined over F . The group G is then generated by root groups U˛ Š Ga, where
˛2‰. Steinberg showed that one can pick the isomorphisms x˛ WGa!U˛ such that

Œx˛.u/; x˛0.u
0/�D x˛C˛0.˙uu

0/
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whenever ˛C˛0 is a root. Fixing such a system of isomorphisms fixes an épinglage
(or pinning) for G. As Kac noted, a choice of signs corresponds to an orientation
of the Dynkin diagram. Since one can pick an orientation of the Dynkin diagram
which is invariant under Aut.…/, the group of automorphisms of … can be lifted
to a group of automorphisms of G. Thus, we have a semidirect product

zG DG ÌAut.…/DG ÌS3;

where the action of S3 permutes the root subgroups U˛ and the isomorphisms x˛.
Since the outer automorphism group S3 of G is also the automorphism group of

the split étale cubic F -algebra F 3, we see that every cubic étale algebra E defines
a simply connected quasisplit form GE of G, whose outer automorphism group is
the finite group scheme SE . Thus,

zGE DGE ÌSE

is a form of zG, and it comes equipped with a pair BE � TE , consisting of a Borel
subgroup BE containing a maximal torus TE , both defined over F , as well as a
Chevalley–Steinberg system of épinglage relative to this pair.

5-3. G2 root system. The subgroup of GE fixed pointwise by SE is isomorphic
to the split exceptional group of type G2.

Observe that B D G2 \BE is a Borel subgroup of G2 and T D TE \G2 is a
maximal split torus of G2. Via the adjoint action of T on GE , we obtain the root
system ‰G2

of G2, so that
‰G2
D‰jT :

We denote the short simple root of this G2 root system by ˛ and the long simple
root by ˇ. Then

ˇ D ˛0jT and ˛ D ˛1jT D ˛2jT D ˛3jT :

Thus, the short root spaces have dimension 3, whereas the long root spaces have
dimension 1. For each root  2‰G2

, the associated root subgroup U is defined
over F and the Chevalley–Steinberg system of épinglage gives isomorphisms

U Š

�
ResE=F Ga if  is short,
Ga if  is long.

5-4. The parabolic subgroup PE . The G2 root system gives rise to two parabolic
subgroups of GE . One of these is a maximal parabolic PE DMENE known as the
Heisenberg parabolic. Its unipotent radical NE is a Heisenberg group with center
ZE D Uˇ0

; see Section 2 in [Gan et al. 2002]. Moreover,

NE=ZE DUˇ �UˇC˛�UˇC2˛�UˇC3˛ ŠGa�ResE=F Ga�ResE=F Ga�Ga
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and
zME DME ÌSE Š GL2.E/0 ÌSE ;

where
GL2.E/0 D fg 2 GL2.E/ W det.g/ 2 F �g:

We shall fix the isomorphism ME ÌSE Š GL2.E/0 ÌSE as follows. We first
consider the case when E D F 3 is split. The pinning gives us an identification

Mder.F /Š SL2.F /3

such that

˛_1 .t/D

��
t

t�1

�
; 1; 1

�
2 SL2.F /3;

while ˛_2 .t/ and ˛_3 .t/ are defined analogously by cyclically permuting the entries
of ˛_1 .t/. We extend this identification to M.F / by

˛_0 .t/D

��
1

t

�
;

�
1

t

�
;

�
1

t

��
2 .GL2.F /3/0:

Note that, under the identification,

ˇ_0 .t/D

��
t

t

�
;

�
t

t

�
;

�
t

t

��
2 .GL2.F /3/0:

Finally, since the pinning is invariant under the action of Aut.…/ŠS3, it follows that

zM.F /Š .GL2.F /3/0 ÌS3;

where S3 acts on .GL2.F /3/0 by permuting the components. For general E, one
obtains the desired isomorphism by a Galois descent argument.

6. Bhargava’s cube

In this section, we shall examine the split case, where the pinning for G gives a
Z-structure on N=Z; for more details see Section 4 in [Gan et al. 2002].

6-1. Bhargava’s cube. Let V2 be the standard representation of SL2. Recall that
we have identified Mder with SL32 and M with .GL32/

0. Under this identification,
the representation of Mder on N=Z is isomorphic to the representation of SL32 on
V D V2˝V2˝V2. Since ˇ_0 .t/ acts on N=Z as multiplication by t , it follows that
.GL32/

0 acts on V by the standard action twisted by det�1. The group S3ŠAut.…/
acts on V2˝V2˝V2 by permuting the three factors.

Since V is an absolutely irreducible SL32-module, the isomorphism of N=Z and
V is unique up to a nonzero scalar. Since ˇ_0 .t/ acts on N=Z as multiplication
by t , the bijection between M -orbits on N=Z and M -orbits on V does not depend
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on the choice of the isomorphism. If we demand that the isomorphism preserves
Z-structures, i.e., that it gives an isomorphism of .N=Z/.Z/ and Z2˝ Z2˝ Z2,
then it is unique up to a sign.

An element v 2 V.F / is represented by a cube

e3 f1

f2 b












a e2

e1 f3













where a; : : : ;b2F and the vertices correspond to the standard basis inF 2˝F 2˝F 2.
More precisely, we fix this correspondence so that�

1

0

�
˝

�
1

0

�
˝

�
1

0

�
and

�
0

1

�
˝

�
0

1

�
˝

�
0

1

�
correspond to the vertices marked with letters a and b, respectively. We note that
elementary matrices in SL2.F /3 act on the space of cubes by the following three
types of “row-column” operations on cubes:

� add or subtract the front face from the rear face of the cube, and vice-versa;

� add or subtract the top face from the bottom face of the cube, and vice-versa;

� add or subtract the right face from the left face of the cube, and vice-versa.

The group S3 ŠAut.…/ acts as the group of symmetries of the cube fixing the two
vertices marked a and b. We shall often write the cube as a quadruple

.a; e;f; b/;

where e D .e1; e2; e3/ and f D .f1; f2; f3/ 2 F 3.

6-2. Reduced and distinguished cube. It is not hard to see that, using the action
of M.F /, every cube can be transformed into a cube of the form .1; 0; f; b/:

0 f1

f2 b












1 0

0 f3
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We shall call such a cube a reduced cube. In particular, we call the cube v0 D
.1; 0; 0;�1/ the distinguished cube.

6-3. Stabilizer of distinguished cube. Let StabM .v0/ and Stab zM .v0/ be the re-
spective stabilizers in M and zM of the distinguished cube v0 2 V . Since Aut.…/
stabilizes v0, the group Stab zM .v0/ is a semidirect product of StabM .v0/ and
Aut.…/. We shall now compute StabM .v0/. Let g D .g1; g2; g3/ 2M.F /, where

gi D

�
ai bi
ci di

�
:

Since

v0 D

�
1

0

�
˝

�
1

0

�
˝

�
1

0

�
�

�
0

1

�
˝

�
0

1

�
˝

�
0

1

�
and

g � v0 D det.g/�1 �
�
a1
c1

�
˝

�
a2
c2

�
˝

�
a3
c3

�
� det.g/�1 �

�
b1
d1

�
˝

�
b2
d2

�
˝

�
b3
d3

�
;

g � v0 D v0 if and only if eight equations hold. Six of these equations are homoge-
neous. They are

a1c2a3 D b1d2b3; a1c2c3 D b1d2d3;

with the additional four obtained by cyclically permuting the indices. If we multiply
the first equation by d3, the second by b3, and subtract them, then

0D a1c2a3d3� a1c2c3b3 D a1c2.a3d3� c3b3/:

Since a3d3 � c3b3 ¤ 0, we have a1c2 D 0. A similar manipulation of these two
equations gives b1d2 D 0. By permuting the indices, we have aicj D bidj D 0 for
all i ¤ j . This implies that all the gi are simultaneously diagonal or off-diagonal.
Now it is easy to see that the remaining two equations imply that StabM .v0/ has
two connected components, and the identity component consists of gD .g1; g2; g3/
such that gi are diagonal matrices, aidi D 1, and a1a2a3D 1. The other component
of StabM .v0/ contains an element w D .w1; w2; w3/ of order 2, where

wi D

�
0 1

1 0

�
:

We now have a complete description of StabM .v0/ (and of Stab zM .v0/):

StabM .v0/Š f.a1; a2; a3/ 2 G3m W a1a2a3 D 1gÌZ=2ZŠ G2m ÌZ=2Z:

In particular, we have shown:
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Proposition 6.1. The stabilizer Stab zM .v0/ in zM of the distinguished cube v0 D
.1; 0; 0;�1/ is isomorphic to the group of F -automorphisms of the split twisted
composition algebra C0. Indeed, they give identical subgroups of .GL2.F /3/0ÌS3,
where we fix the isomorphism M.F /Š .GL2.F /3/0 as above.

6-4. Three quadratic forms. One key observation in [Bhargava 2004a] is that one
can slice the cube (given in the picture in Section 6-1) in three different ways, giving
three pairs of matrices:

A1 D

�
a e2
e3 f1

�
; B1D

�
e1 f3
f2 b

�
;

A2 D

�
a e3
e1 f2

�
; B2D

�
e2 f1
f3 b

�
;

A3 D

�
a e1
e2 f3

�
; B3D

�
e3 f2
f1 b

�
:

Note that the pairs .A2; B2/ and .A3; B3/ are obtained by rotating the pair .A1; B1/
about the axis passing through a and b. For each pair .Ai ; Bi /, Bhargava defines a
quadratic binary form by

Qi D� det.AixCBiy/:

Proposition 6.2. Given a cube v, the three forms Q1, Q2 and Q3 have the same
discriminant �D�.v/.

Proof. We may assume the cube is reduced. Now an easy computation show that
the three forms are 8<:

Q1.x; y/D�f1x
2� bxyCf2f3y

2;

Q2.x; y/D�f2x
2� bxyCf3f1y

2;

Q3.x; y/D�f3x
2� bxyCf1f2y

2:

These forms have the same discriminant �D b2C 4f1f2f3. �

6-5. Quartic invariant. To every cube v 2 V , the discriminant �.v/ described
in the previous proposition is a homogeneous quartic polynomial in v, which is
invariant under the action of SL2.F /3. This describes the quartic invariant of the
prehomogeneous vector space V . An explicit computation gives the formula

�D a2b2� 2ab.e1f1C e2f2C e3f3/C e
2
1f

2
1 C e

2
2f

2
2 C e

2
3f

2
3

C 4af1f2f3C 4be1e2e3� 2.e1e2f1f2C e2e3f2f3C e3e1f3f1/:

If v is reduced, then this simplifies to �.v/D b2C 4f1f2f3. It is easy to check
that for g 2M , one has

�.g � v/D det.g/2 ��.v/:
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Thus, we see that � gives a well-defined map

� W fgeneric zM.F /-orbits on V.F /g�!F �=F �2Dfétale quadratic F -algebrasg:

7. E -twisted Bhargava cube

Now we can extend the discussion of the previous section to the case of general E,
where VE D F ˚E ˚E ˚ F and zME D GL2.E/0 Ì SE , via a Galois descent
using a cocycle in the class of

ŒE� 2H 1.F;Aut.…//DH 1.F; S3/:

A cube is a quadruple vD .a; e;f; b/, where e; f 2E. As in the split case, we shall
call cubes of the form v D .1; 0; f; b/ reduced, and the vector v0;E D .1; 0; 0;�1/
the E-distinguished cube.

7-1. Quartic invariant. By Galois descent, we see that the basic polynomial in-
variant �E is given by

�E .a; e;f; b/D a
2b2� 2ab TrE=F .ef /CTrE=F .e

2f 2/

C 4aNE=F .f /C 4bNE=F .e/� 2TrE=F .e
#f #/:

If v is reduced, then this simplifies to

�E .1; 0; f; b/D b
2
C 4 �NE=F .f /:

7-2. Group action. It is useful to note the action of certain elements of GL2.E/0

on VE . Specifically, � 2 SE acts by �.a; e;f; b/D .a; �.e/; �.f /; b/. Moreover,
the diagonal torus elements

t˛;ˇ D

�
˛ 0

0 ˇ

�
with ˛ˇ 2 F �

act by
.a; e;f; b/ 7! .˛#ˇ�1a; ˛#˛�1e; ˇ#ˇ�1f; ˇ#˛�1b/:

It is easy to check that

�E .t˛;ˇ � v/D .˛ˇ/
2
��E .v/:

Since the actions of SL2.E/ and SE preserve �E , we see that

�E .g � v/D .detg/2 ��E .v/;

so that �E induces a map

f zME -orbits on VE g �! F �=F �2 D fétale quadratic algebrasg:



Twisted Bhargava cubes 1937

In addition, the standard Weyl group element

w D

�
0 1

1 0

�
2 GL2.E/0

acts by

w W .a; e;f; b/ 7! .�b;�f;�e;�a/:

7-3. Stabilizer of distinguished E -cube. We can readily determine the stabilizer
of the E-distinguished cube . Namely, under the action described in Section 7-2, it
is easy to see that the subgroup

E1 D

��
˛

˛�1

�
W ˛ 2E1

�
� SL2.E/

fixes the E-distinguished cube v0;E . So does the Weyl group element w. Thus,
we see that

StabME
.v0;E /ŠE

1 ÌZ=2Z and Stab zME
.v0;E /DE

1 Ì .Z=2Z�SE /:

In particular, we have shown:

Proposition 7.1. The stabilizer Stab zME
.v0;E / in zME of the E-distinguished cube

.1; 0; 0;�1/ is isomorphic to the group of F -automorphisms of the twisted composi-
tion algebra CE introduced in Section 3-4. Indeed, they are identical as subgroups
of GL2.E/0 ÌSE .F / under the fixed isomorphism ME .F /Š GL2.E/0.

8. Generic orbits

We come now to the main result of this paper: the determination of the generic
zME .F /-orbits in VE .F /.

8-1. A commutative diagram. We have the following commutative diagram

(8.1)

H 1.F;Stab zM .v0// ����! H 1.F; zM/??y ??y
H 1.F;AutF .C0;Q0; ˇ0// ����! H 1.F; S3/

We make several observations about this commutative diagram.

Lemma 8.2. (i) The first vertical arrow is bijective.
(ii) The second vertical arrow is bijective.
(iii) The horizontal arrows are surjective.
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Proof. (i) This follows by Proposition 6.1.

(ii) Let the second vertical arrow be denoted by  . Since zM is a semidirect product
of M and S3, the map  is surjective. For injectivity, we shall use the exact
sequence of pointed sets

1 �!H 1.F;M/ �!H 1.F; zM/ �!H 1.F; S3/ �! 1:

Let c 2H 1.F; S3/ and let E be the étale cubic algebra corresponding to c. Then
ME is the twist of M by c. In order to prove that  �1.c/ consists of one element,
it suffices to show that H 1.F;ME / is trivial, by the twisting argument on page 50
of [Serre 2002]. We have an exact sequence of algebraic groups

1 �!ME;der �!ME �! GL1 �! 1;

where ME;der Š ResE=F SL2. By Hilbert’s theorem 90, H 1.F;GL1/ is trivial.
Since

H 1.F;ResE=F SL2/DH 1.E;SL2/D 0

(see [Serre 2002, p. 130]), it follows that H 1.F;ME / is trivial.

(iii) This follows because Stab zM .v0/D StabM .v0/ÌAut.…/, hence

H 1.F;Stab zM .v0//!H 1.F;Aut.…//

has a natural splitting. �

8-2. Determination of orbits. We can now determine the generic zME .F /-orbits
on VE .F /.

Theorem 8.3. Fix an étale cubic F -algebra E.

(i) The generic zME .F /-orbits on VE .F / are in bijective correspondence with the
set of F -isomorphism classes of E-twisted composition algebras over F , with the
orbit of v0;E D .1; 0; 0; 1/ corresponding to the twisted composition algebra CE
introduced in Section 3-4.

(ii) The generic ME .F /-orbits on VE .F / are in bijective correspondence with the
set of E-isomorphism classes of E-twisted composition algebras over F .

(iii) There is a commutative diagram

fE-twisted composition algebrasg ����! fétale quadratic F -algebrasg??y ??y
fgeneric zME -orbits on VE g ����! F �=F �2

where the bottom arrow is the map induced by �E (see Section 7-2).



Twisted Bhargava cubes 1939

Proof. (i) Given a cohomology class ŒE� 2H 1.F; S3/ corresponding to an étale
cubic F -algebra, we consider the fibers of the two horizontal arrows in the commu-
tative diagram (8.1) over ŒE�. Since the map Stab zM .v0/ �! S3 splits, the fiber of
the second horizontal arrow has a distinguished element which corresponds to the
twisted composition algebra CE . Similarly, the fiber over ŒE� of the first horizontal
arrow has a distinguished point which corresponds to the orbit of v0;ED .1; 0; 0;�1/.
Moreover, these two distinguished point correspond under the first vertical arrow.

By the twisting argument [Serre 2002, p. 50] we see that both fibers in question
are naturally identified with

Ker.H 1.F;Stab zME
.v0;E // �!H 1.F; zME //:

Thus, the fiber of the first horizontal map over ŒE� are the generic zME -orbits in
VE , while the fibers of the second map are F -isomorphism classes of E-twisted
composition algebras.

(ii) The bijection follows because both sets are in natural bijection with the set
H 1.F;StabME

.v0;E /DH
1.F;AutE .CE //.

(iii) Suppose an E-twisted composition algebra is represented by a cocycle

.a� / 2H
1.F;StabME

.v0;E //:

Then the associated étale quadratic F -algebra K corresponds to the group homo-
morphism

�K W Gal.F =F / ����! StabME
.v0;E /.F / ����! Z=2Z

given by � 7! a� 7! �.a� /, where � W StabME
.v0;E / ! Z=2Z is the natural

projection. In fact, regarding StabME
.v0;E /�ME as described in Section 7-3, we

see that the map � is simply given by the determinant map on ME D GL2.E/0.
On the other hand, the cocycle splits in H 1.F;ME /D 0, so that we may write

a� D g
�1
� �.g/ for some g 2ME .F /:

Then the zME -orbit associated to .a� / is that of g � v0;E . Now, we have

�E .g � v0;E /D det.g/2 ��E .v0;E /D det.g/2

and
�K.�/D det.a� /D det.g/�1 � �.det.g//

for any � 2Gal.F =F /. This shows that det.g/ is a trace-zero element in K, so that
K is represented by the square class of det.g/2 2 F �, as desired. �

In particular, we have established Theorem 1.1. However, the bijection between
the generic zME .F /-orbits on VE .F / and the F -isomorphism classes of twisted
composition algebras is obtained by a Galois cohomological argument, which is
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quite formal and not at all explicit. For applications, it is necessary to have an
explicit description of the bijection. We shall arrive at such an explicit description
in the following sections.

9. Reinterpreting Bhargava

In this section, revisiting the case when E D F 3 is split, we shall reinterpret
[Bhargava 2004a] in the framework of twisted composition algebras, leading to an
explicit recipe for the bijection in Theorem 8.3.

9-1. Bhargava’s result. We first review briefly Bhargava’s results and, following
him, we shall work over Z. Note that we have an action of the group SL2.Z/3

on the set of integer-valued cubes, by the “row-column” operations described in
Section 6-1.

In order to state the main result of Bhargava, we need a couple of definitions.
Fix a discriminant �. Let K DQ.

p
�/ and R the unique order of discriminant �.

A module M is a full lattice in K. In particular, it is a Z-module of rank 2. We
shall write M D fu; vg if u and v span M . For example,

RD

�
1;
�C
p
�

2

�
:

By fixing this basis of R, we have also fixed a preferred orientation of bases of
modules. An oriented module is a pair .M; �/, where � is a sign. IfM Dfu; vg, then
M becomes an oriented module .M; �/, where �D 1 if and only if the orientation of
fu; vg is preferred. The norm of an oriented module .M; �/ is N.M/D � � ŒR WM�.

Then:

� A triple of oriented modules .M1;M2;M3/, with R as the multiplier ring, is
said to be colinear if there exists ı 2 K� such that the product of the three
oriented modules is a principal oriented ideal ..ı/; �/, where � D sign.N.ı//,
i.e.,M1M2M3D .ı/, as ordinary modules, andN.M1/N.M2/N.M3/DN.ı/.

� A cube is projective of discriminant� if the three associated forms are primitive
and have discriminant �.

� Two triples of oriented modules .M1;M2;M3/ and .M 01;M
0
2;M

0
3/ are equiva-

lent if there exist �1; �2; �3 in K� with M 0i D�iMi and �0i D sign.N.�i //�i
for i D 1; 2; 3.

Then, Bhargava [2004a] showed:

Theorem 9.1. There is a bijection, to be described in the proof , between the
equivalence classes of oriented colinear triples of discriminant� and the SL2.Z/3-
equivalence classes of projective cubes of discriminant �.
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Sketch of proof. Let v be a projective cube. Again, without any loss of generality
we can assume that the cube is reduced and that the numbers f1, f2 and f3 are
nonzero. Define three modules by

M1 D

�
1;
b�
p
�

2f1

�
; M2 D

�
1;
b�
p
�

2f2

�
and M3 D

�
1;
b�
p
�

2f3

�
:

The norms of the three modules are �1=f1;�1=f2 and �1=f3, respectively, if we
take the given bases to be proper. For ı, we shall take

ı D�
2

bC
p
�
;

which has the correct norm �1=.f1f2f3/.
The modulesMi , with given oriented bases, correspond to the quadratic formsQi .

More precisely, if

zi D xi Cyi
b�
p
�

2fi
2Mi ;

then
�fiN.zi /DQi .xi ; yi /D�fix

2
i � bxiyi Cf

#
i y

2
i ;

where f # D .f2f3; f3f1; f1f2/. �

9-2. Integral twisted composition algebras. We can now give a reinterpretation
of Bhargava’s results, in particular of Bhargava’s triples .M1;M2;M3/, in the
framework of twisted composition algebras. Assume the notation from the previous
subsection, so that M1M2M3 D .ı/. Set

C DM1˚M2˚M3:

We shall define a pair of tensors .Q; ˇ/ on C as follows:
� Define a quadratic form Q W C ! Z�Z�Z by

Q.z1;z2;z3/D .�f1N.z1/;�f2N.z2/;�f3N.z3//D�f �.N.z1/;N.z2/;N.z3//:

� Define a quadratic map ˇ W C ! C by

ˇ.z1; z2; z3/D ı.f2f3 Nz2 Nz3; f3f1 Nz3 Nz1; f1f2 Nz1 Nz2/D ı �f
#
� . Nz1; Nz2; Nz3/

#:

The relations M1M2M3 D .ı/ and M NM D N.M/ imply that ˇ is well defined.
Moreover, using N.ı/D�1=.f1f2f3/, one checks that

Q.ˇ.z1; z2; z3//DQ.z1; z2; z3/
#

and

NC .z1; z2; z3/D Tr
�
z1z2z3

ı

�
:

Thus the triple .C;Q; ˇ/ is a twisted composition algebra over Z.
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In terms of the coordinates .xi ; yi / given by

zi D xi Cyi
b�
p
�

2fi
;

we have seen in the sketch proof of Theorem 9.1 that

Qi .zi /D�fiN.zi /D�fix
2
i � bxiyi Cf

#
i y

2
i :

We shall now do the same for ˇ. Write ˇ.z1; z2; z3/D .z01; z
0
2; z
0
3/, and let .x0i ; y

0
i /

be the coordinates of z0i . A short calculation shows that

x01 D�
�
x3 y3

� � 0 f3
f2 b

��
x2
y2

�
and y01 D

�
x3 y3

� �1 0

0 f1

��
x2
y2

�
;

while the expressions for .x02; y
0
2/ and .x3; y3/ are obtained by cyclically permuting

the indices.
There are two important observations to be made here:

� Firstly, these formulas make sense for any triple .f1; f2; f3/ and any b, i.e.,
the fi can be zero. The axioms of twisted composition algebra are satisfied
for formal reasons. For example, if .f1; f2; f3/D .0; 0; 0/ and b D �1, we
get the split algebra C0.

� Secondly, the two matrices are two opposite faces of the cube. This gives a
hint how to directly associate a composition algebra to any cube in general
(i.e., not just a reduced cube).

9-3. From cubes to twisted composition algebras. The above discussion suggests
an explicit recipe for associating a twisted composition algebra over F �F �F to
any cube v 2 V.F /.

LetC DF 2�F 2�F 2. An element z2C is a triple .z1; z2; z3/ of column vectors
zi D

�
xi

yi

�
. Slice a cube into three pairs of 2�2-matrices .Ai ; Bi /, as before, and let

Qi .zi /D� det.Aixi CBiyi /:

Then, we set:

� Q W C ! F �F �F , defined by

Q.z1; z2; z3/D .Q1.z1/;Q2.z2/;Q3.z3//:

� ˇ W C ! C , defined by

ˇ.z1; z2; z3/D .z
0
1; z
0
2; z
0
3/;
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where z0i D
�
x0

i

y0
i

�
,

x01 D�z
>
3 B1z2; x02 D�z

>
1 B2z3; x03 D�z

>
2 B3z1

and
y01 D z

>
3 A1z2; y02 D z

>
1 A2z3; y03 D z

>
2 A3z1:

Thus, starting from a cube v, we have defined a pair of tensors .Q; ˇ/ on
C D F 2 �F 2 �F 2. Let

Q� W V.F / �! ftensors .Q; ˇ/ on C g

be the resulting map. We may express this map using the coordinates .a; e;f; b/ of
a cube. A short calculation gives

Q.x; y/D .e#
� af /x2C .�ab� 2ef CTr.ef //xyC .f #

� be/y2;

ˇ.x; y/D .�ex#
� by#

� .f x/�y; ax#
Cfy#

C .ey/� x/:

In the next section, we shall study the properties of the map Q�; for example,
we shall show that a .Q; ˇ/ in the image of Q� does define a twisted composition
algebra on C .

10. Explicit parametrization

Using the results of the previous section, we can now give an explicit description of
the bijection between zME .F /-orbits of nondegenerate cubes and F -isomorphism
classes of E-twisted composition algebras.

10-1. Definition of Q�. Let us write C D E � e1˚E � e2. Motivated by the case
where E D F 3, studied in the previous section, we define the map

Q� W VE .F / �! ftensors .Q; ˇ/ on C g

using the coordinates v D .a; e;f; b/ of a cube, with a; b 2 F and e; f 2E, by

(10.1)
Q.x; y/D .e#

� af /x2C .�ab� 2ef CTr.ef //xyC .f #
� be/y2;

ˇ.x; y/D .�ex#
� by#

� .f x/�y; ax#
Cfy#

C .ey/� x/:

In particular, for a reduced cube .1; 0;f; b/, one has

(10.2)
Q.x; y/D�f x2� bxyCf #y2;

ˇ.x; y/D .�by#
� .f x/�y; x#

Cfy#/:

Thus, the image of the distinguished cube vE;0 D .1; 0; 0;�1/ is the algebra CE .
Observe also that one has

(10.3) ˇ.1; 0/D .0; 1/ and ˇ.0; 1/D .�b; f /:



1944 Wee Teck Gan and Gordan Savin

Thus, the standard basis fe1; e2g is a reduced basis with respect to .Q; ˇ/, in the
sense of Section 3-6.

Proposition 10.4. (i) The map Q� is injective.

(ii) For g 2 GL2.E/0 and � 2 SE .F /, one has

Q�.g � v/D tg�1 � Q�.v/ and Q�.� � v/D � � Q�.v/

for any v 2 VE .F /.
Thus, the map Q� is GL2.E/0ÌSE -equivariant, with respect to the outer automor-

phism .g; �/ 7! . tg�1; �/ of GL2.E/0ÌSE , and where the action of GL2.E/0ÌSE
on the set of .Q; ˇ/ is given as in Section 3-3.

(iii) For any nondegenerate cube v, Q�.v/D .Q; ˇ/ defines a twisted composition
algebra on C .

Proof. (i) If Q�.a; e;f; b/D .Q; ˇ/, then

ˇ.1; 0/D .�e; a/ and ˇ.0; 1/D .�b; f /:

Hence the cube .a; e;f; b/ is uniquely determined by ˇ.

(ii) We can verify this equivariance property over F ; thus we only need to check it
for E DF 3. For the central element .t; t; t /2GL2.E/0 or the element � 2 SE , the
desired equivariance property is clear. Thus, it remains to verify it for elementary
matrices such as

g D .Eu; 1; 1/D

��
1 u

0 1

�
; 1; 1

�
2 .GL2.F /�GL2.F /�GL2.F //0:

Now, if the cube v has a pair of faces .A1; B1/, then the corresponding pair for g�v is

.A01; B
0
1/D .A1CuB1; B1/:

Slicing the cube in the other two ways, we obtain

.A02; B
0
2/D .EuA2; EuB2/ and .A03; B

0
3/D .A3E

t
u; B3E

t
u/:

Hence, if Q�.g � v/D .Q0; ˇ0/, then ˇ0 is given on .z1; z2; z3/ 2 F 2 �F 2 �F 2 by�
x01 x

0
2 x
0
3

y01 y
0
2 y
0
3

�
D

�
�zt3B1z2 �zt1EuB2z3 �z

t
2B3E

t
uz1

zt3.A1CuB1/z2 zt1EuA2z3 zt2A3E
t
uz1

�
:
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On the other hand, tg�1 acts on ˇ by precomposing by .tg�1/�1 D gt , and post-
composing by tg�1:

tg�1 �ˇ.gt .z1; z2; z3//D
tg�1 �ˇ.Etuz1; z2; z3/

D
tg�1 �

�
�zt3B1z2 �z

t
1EuB2z3 �z

t
2B3E

t
uz1

zt3A1z2 zt1EuA2z3 zt2A3E
t
uz1

�
D

�
�zt3B1z2 �zt1EuB2z3 �z

t
2B3E

t
uz1

zt3.A1CuB1/z2 zt1EuA2z3 zt2A3E
t
uz1

�
D ˇ0.z1; z2; z3/:

(iii) Again, we may work over F , and hence we may assume that E D F 3. If
v is a reduced cube, we have seen in Section 9-2 that .Q; ˇ/ defines a twisted
composition algebra on E2. Since every zM.F /-orbit contains a reduced cube, the
result follows by (ii). �

The occurrence of the outer automorphism g 7! tg�1 is natural here. Indeed,
assume that E D F 3 and regard GL2.F / as GL.V / for a 2-dimensional F -vector
space V . Then the quadratic map ˇ is an element of .V �/˚3˝F .V �/˚3˝F V ˚3,
whereas its associated cube is an element in V ˝F V ˝F V ˝F det.V /�1. Thus
scaling a cube by t 2 F � corresponds to scaling ˇ by t�1.

10-2. Reduced cubes and bases. To describe the image of Q�, we examine the case
of reduced cubes more carefully.

Proposition 10.5. Suppose that the pair .Q; ˇ/ defines a twisted composition alge-
bra structure onE2 such that the standard basis fe1; e2g is reduced (i.e., ˇ.e1/De2).
Then .Q; ˇ/ is the image under Q� of the reduced cube

v D .1; 0;�Q.e1/;�NQ;ˇ .e1//:

Moreover, �E .v/D�Q;ˇ .e1/ (where the � on the left side is the quasi-invariant
form on the space VE of cubes while the one on the right is defined in Proposition 3.5).

Proof. We need to show that Q and ˇ are uniquely determined by f D �Q.e1/
and b D�NQ;ˇ .e1/. Since

Q.e2/DQ.ˇ.e1//D f
# and bQ.e1; e2/D bQ.e1; ˇ.e1//DN.e1/D�b;

we see that Q is uniquely determined. Then ˇ.xe1Cye2/ is uniquely determined
by (3.4) in Lemma 3.2. Finally, observe that

�E .v/D�Q;ˇ .e1/D b
2
C 4NE .f /: �
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10-3. Good bases. We call a basis of C a good basis if it is in the AutE .C /0 Š
GL2.E/0-orbit of a reduced basis. By Proposition 3.5(iv), this notion is independent
of the choice of the reduced basis. Similarly, since the action of SE preserves the
set of reduced cubes, the notion of good bases does not depend on whether one
uses AutE .C /0 or AutF .E; C /0 Š GL2.E/0 ÌSE .

As a consequence of the proposition, we have:

Corollary 10.6. (i) The map Q� gives a bijection between the set of reduced (nonde-
generate) cubes and the set of .Q; ˇ/ on E2 such that the standard basis fe1; e2g
is reduced.

(ii) The image of Q� consists precisely of those .Q; ˇ/ such that the standard basis
fe1; e2g of C DE2 is a good basis for .Q; ˇ/.

The definition we have given for a good basis fe1; e2g may not seem very
satisfactory. It would have been more satisfactory if one defines a good basis for
.C;Q; ˇ/ using purely the forms .Q; ˇ/ rather than using the action of AutE .C /0.
Indeed, it will not be easy to check that a given basis is good by our definition.
However, by Corollary 10.6, one knows a posteriori that a basis fe1; e2g is good for
.C;Q; ˇ/ if and only if ˇ.xe1Cye2/ has the form given in (10.1) with a; b 2 F .
We would have taken this as a definition, but it would have seemed completely
unmotivated without the results of this section!

10-4. A commutative diagram. As a summary of the above discussion, we have
the following refinement and explication of Theorem 8.3:

Theorem 10.7. (i) The bijective map Q� descends to give a commutative diagram

VE .F /
0 D fc 2 VE .F / W�E .c/¤ 0g ��! zME .F /-orbits on VE .F /0

Q�

??y ??y�
fpairs .Q; ˇ/ on E2: standard basis is goodg ��! fGL2.E/0 ÌSE .F /-orbits of .Q; ˇ/g??y ??y
fF -isomorphism classes of pairs .C; b/g ��! fF -isomorphism classes of C g

where all vertical arrows are GL2.E/0 ÌSE .F /-equivariant bijections and, in the
last row, C denotes an E-twisted composition algebra and b denotes a good basis
of C . Moreover the action of GL2.E/0 ÌSE .F / on a pair .C; fe1; e2g/ is given as
follows: g 2 GL2.E/0 sends the pair to .C; fe01; e

0
2g/, where�

e01
e02

�
D g �

�
e1
e2

�
;

whereas � 2 SE sends the pair to .E˝E;� C; fe1; e2g/.
(ii) The bijection � agrees with the one given in Theorem 8.3.
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Proof. (i) Our discussion above already shows that Q� is bijective and descends
to give the map �. It remains to show that the induced map � is bijective. The
surjectivity of � follows from Proposition 3.5(iii) and (iv) and Corollary 10.6(i).
The injectivity of � follows from Proposition 10.4(i) and (ii). We leave the bijection
and the equivariance of the lower half of the diagram to the reader.

(ii) The map Q� sends the distinguished cube vE;0 D .1; 0; 0;�1/ to the pair
.Q0; ˇ0/ on E2, which defines the algebra CE . Moreover, Q� is equivariant with
respect to the automorphism g 7! tg�1 of GL2.E/, which preserves the subgroup
StabGL2.E/0

.vE;0/D AutE .Q0; ˇ0/� GL2.E/0. Finally, since Q� is algebraic, it
is Galois-equivariant with respect to base field extension. All these imply that we
have a commutative diagram

fGL2.E/0-orbits on VE .F /0g ����! H 1.F;StabGL2.E/0
.vE;0//??y� ??yg 7! tg�1

fE-isomorphism classes
of twisted composition algebrasg ����! H 1.F;AutE .CE //

Since the map g 7! tg�1 of StabGL2.E/0
.vE;0/D AutE .Q0; ˇ0/ is given by con-

jugation by the element w 2 AutE .Q0; ˇ0/.F /, we see that the induced map on
H 1 is trivial. Hence � agrees with the bijection given in Theorem 8.3 by a Galois
cohomological argument. �

10-5. An example. As an example, assume that K D F.
p
�/ and consider the

composition algebra given by the example in Section 4-4. (This is the distinguished
point in the fiber of .ŒF 3�; ŒK�/.) Then vD .

p
�;
p
�;
p
�/ and ˇ.v/D .�;�;�/

is a reduced basis. The corresponding reduced cube is

0 �

� 0













1 0

0 �













10-6. Relation with Tits’ construction. If f 2E�, we can relate the construction
of Q� attached to the reduced cube .1; 0;�f; b/ to Proposition 3.12. Identify E˚E
with E˝K using the E-linear isomorphism given by

.x; y/ 7! x˝ 1C
y

f
˝
b�
p
�

2
D xCy

b�
p
�

2f
;
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where, in the last expression, we omitted tensor product signs for readability.
Then Q can be written as

Q

�
xCy

b�
p
�

2f

�
D�f �NE˝K=E

�
xCy

b�
p
�

2f

�
and ˇ as

ˇ

�
xCy

b�
p
�

2f

�
D�

2

bC
p
�
�f #
�

�
xCy

bC
p
�

2f

�#

:

Indeed, if E D F 3, these formulae are exactly the same as those in Section 9-2 .
Let

e D�f and � D�
bC
p
�

2
:

Using e�1 � N� D ��1 � e# (since NE=F .e/ D NK=F .�/) this composition algebra
is the algebra attached to the pair .e; �/, as in Proposition 3.12. Conversely, a
composition algebra given by a pair .e; �/, as in Proposition 3.12, arises from the
cube .1; 0;�e; b/ where b D�TrK=F .�/.

11. Exceptional Hilbert 90

Assume that E is an étale cubic F -algebra with corresponding étale quadratic
discriminant algebra KE , and let K be an étale quadratic F -algebra. Recall that

TE;K D fx 2E˝F K WNE=F .x/D 1DNK=F .x/g:

Suppose, for example, that ŒKE �D ŒK�D 1, so E is a Galois extension, and TE;K
is the group of norm-one elements in E�. Let � be a generator of the Galois group
GE=F . Then Hilbert’s theorem 90 states that the map

x 7! �.x/=�2.x/

induces an isomorphism of E�=F � and TE;K.F /. Our goal in this section is to
generalize this statement to all tori TE;K , thus obtaining an exceptional Hilbert’s
theorem 90. As an application, we give an alternative description of H 1.F; TE;K/.

11-1. The torus TE;K . We first describe the torus TE;K by Galois descent. OverF ,
we have the identification

TE;K.F /D f.a; b/ 2 F
3
˝F 2 W aibi D 1 for all i and a1a2a3 D 1g:

The F -structure is given by the twist of the Galois action on coordinates by the
cocycle

�E � �K W Gal.F =F / �! Aut.F 3/�Aut.F 2/Š S3 �Z=2Z;
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where S3 and Z=2Z act on Z3 and Z2, respectively, by permuting the coordinates.
We may describe TE;K using its cocharacter lattice X . We have

X D f.a;�a/ 2 Z3˝Z2 W a1C a2C a3 D 0g;

equipped with the Galois action given by

�E ˝ �K W Gal.F =F / �! S3 �Z=2Z:

11-2. The torus T 0
E;K

. Now we introduce another torus T 0E;K over F . Let KJ
be the étale quadratic F -algebra such that ŒKJ � � ŒK� � ŒKE �D 1 in H 1.F;Z=2Z/.
We define the tori

zT 0E;K D fx 2E˝F KJ WNE˝KJ =E .x/ 2 F
�
g

and
T 0E;K D

zT 0E;K=K
�
J ;

where the last quotient is taken in the sense of algebraic groups. If J D B� , where
B is a degree-3 central simple KJ -algebra with an involution � of the second kind,
andE!J is an F -embedding or, equivalently, E˝F KJ !B is aKJ -embedding
such that � pulls back to the nontrivial element of Aut.E˝F KJ =E/, then T 0E;K
acts naturally as a group of automorphisms of the embedding E! J .

We may again describe these tori by Galois descent. Over F , we may identify

zT 0E;K.F /D f.a; b/ 2 .F
�/3˝ .F �/2 W a1b1 D a2b2 D a3b3g;

and T 0E;K.F / is the quotient of this by the subgroup consisting of the elements
.a � 1; b � 1/. The action of Gal.F =F / which gives the F -structure of zT 0E;K is then
described as follows. Let �E W Gal.F =F / �! S3 be the cocycle associated to E,
so that sign ı�E W Gal.F =F / �! Z=2Z is the homomorphism associated to KE .
On the other hand, we let �K be the homomorphism associated to K, so that

.sign ı�E / � �K W Gal.F =F / �! Z=2Z

is the homomorphism associated to KJ . Now the action of Gal.F =F / on F 3˝F 2

is the twist of the action on coordinates by the cocycle

�E � .sign ı�E / � �K W Gal.F =F / �! S3 �Z=2Z:

As before, we may describe the tori zT 0E;K and T 0E;K by their cocharacter lattice.
The cocharacter lattice zY of zT 0E;K is given by

zY D f.a; b/ 2 Z3˝Z2 W a1C b1 D a2C b2 D a3C b3g;

equipped with the Galois action given by

�E � .sign ı�E / � �K W Gal.F =F / �! S3 �Z=2Z:
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This contains the Galois-stable sublattice

Z D .1; 1; 1/˝Z2;

so that Y D zY =Z is the cocharacter lattice of T 0E;K .

11-3. A homomorphism. We are going to construct a morphism of tori from zT 0E;K
to TE;K . We shall first define this morphism over F and then shows that it descends
to F .

Now we may define a morphism over F ,

f W zT 0E;K.F / �! TE;K.F /;

by

f W

�
a1 a2 a3
b1 b2 b3

�
7!

�
a2=a3 a3=a1 a1=a2
b2=b3 b3=b1 b1=b2

�
:

It is easy to see that this defines an F -isomorphism of tori

f W T 0E;K.F /Š TE;K.F /:

Moreover, if � 2 Se.F /D S3 is the cyclic permutation

.a1; a2; a3/ 7! .a2; a3; a1/;

then the map f is given by

f .x/D �.x/=�2.x/:

Now the morphism f induces a map

f� W zY �!X;

given by �
a1 a2 a3
b1 b2 b3

�
7!

�
a2� a3 a3� a1 a1� a2
b2� b3 b3� b1 b1� b2

�
:

This induces an isomorphism of Z-modules Y ŠX .

11-4. Exceptional Hilbert 90. The main result of this section is:

Theorem 11.1. The isomorphism f WT 0E;K�F F �!TE;K�F F is defined over F ,
and thus gives an isomorphism of tori

T 0E;K �! TE;K

given by
x 7! �.x/=�2.x/:
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Proof. It remains to prove that f is defined over F . For this, we may work at the
level of cocharacter lattices, and we need to show that f� is Galois-equivariant. For
this, regard Z3˝Z2 as a S3�Z=2Z-module with the permutation of the coordinates
in Z3 and Z2. Then observe that f� is not equivariant with respect to S3 �Z=2Z.
On the other hand, we have the automorphism of S3 �Z=2Z given by

.g; h/ 7! .g; sign.g/ � h/

If we twist the S3 �Z=2Z-module structure on the domain of f� by this automor-
phism, then f� is easily seen to be equivariant. Together with our description of
the Gal.F =F /-actions on the domain and codomain of f�, the desired Gal.F =F /-
equivariance follows. �

11-5. Cohomology of TE;K . As an application of the exceptional Hilbert 90, we
may give an alternative description of the cohomology group H 1.F; TE;K/, which
classifies twisted composition algebras with fixed invariants .E;K/ up to E˝F K-
linear isomorphisms.

In order to state our results, we need additional notation. For every quadratic
extension KJ of F , let Res1

KJ =F
Gm be the 1-dimensional torus defined by the

short exact sequence of algebraic tori

1 ����! Res1
KJ =F

Gm ����! ResKJ =F Gm ����! Gm ����! 1:

By the classical Hilbert theorem 90, the associated long exact sequence gives the
exact sequence

1 �!H 2.F;Res1KJ =F
Gm/ �!H 2.KJ ;Gm/ �!H 2.F;Gm/;

where the last map is the corestriction. By a theorem of Albert, Riehm, and
Scharlau [Knus et al. 1998, Theorem 3.1], the kernel of the corestriction map is the
set of Brauer equivalence classes of central simple algebras over KJ that admit an
involution of the second kind, and so we can view H 2.F;Res1

KJ =F
Gm/ as the set

of Brauer equivalence classes of such algebras.

Proposition 11.2. LetKJ be an étale quadratic algebra with ŒKJ � � ŒK� � ŒKE �D 1,
and set M DE˝F KJ .

(i) If KJ is a field, then we have an exact sequence

1 �!E�=F �NM=E .M
�/ �!H 1.F; TE;K/

�!H 2.F;Res1KJ =F
Gm/ �!H 2.E;Res1M=E Gm/:

The image ofH 1.F; TE;K/ consists of those central simple algebras overKJ which
contain M as a KJ -subalgebra and which admit an involution of the second kind
fixing E (or equivalently, restricting to the nontrivial automorphism of M over E).
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(ii) If KJ D F 2, then we have a simplified version of the above sequence:

H 1.F; TE;K/D Ker.H 2.F;Gm/ �!H 2.E;Gm//:

Proof. (i) By the exceptional Hilbert theorem 90, we have a short exact sequence
of algebraic tori

1 ����! Res1
KJ =F

Gm ����! ResE=F Res1
M=E

Gm ����! TE;K ����! 1:

Now, (i) follows from the associated long exact sequence, using

H 1.F;Res1KJ =F
Gm/D F

�=NKJ =FK
�
J ;

H 1.E;Res1M=E Gm/DE
�=NM=EM

�:

(ii) One argues as above, except that since KJ D F 2, we have

1 ����! Gm ����! ResE=F Gm ����! TE;K ����! 1:

Thus the long exact sequence gives

1 ����! H 1.F; TE;K/ ����! H 2.F;Gm/ ����! H 2.E;Gm/: �

11-6. Interpretation. The above description of H 1.F; TE;K/ fits beautifully with
the correspondence between E-twisted composition algebras and conjugacy classes
of embeddings E ,! J , where J is a Freudenthal–Jordan algebra of dimension 9.

More precisely, Proposition 11.2 exhibitsH 1.F; TE;K/ as the set of isomorphism
classes of triples .B; �; i/, where:

� B is a central simple KJ -algebra of degree 3.

� � is an involution of the second kind on B .

� i W E �! B� is an F -algebra embedding, or equivalently a KJ -algebra em-
bedding i WM D E ˝F KJ �! B such that � pulls back to the nontrivial
element of Aut.M=E/.

The map � WH 1.F; TE;K/!H 2.F;Res1
KJ =F

Gm/ sends .B; �; i/ toB . For a fixed

ŒB� 2 Ker.H 2.F;Res1KJ =F
Gm/ �!H 2.E;Res1M=E Gm//;

so thatB containsM DE˝FKJ as anKJ -subalgebra, the fiber of � over ŒB� is the
set of AutKJ

.B/-conjugacy classes of pairs .�; i/. The Skolem–Noether theorem
says that any two embeddings M ,! B are conjugate, and on fixing an embedding
i W M ,! B , the fiber of � over ŒB� is then the set of AutKJ

.B; i/-conjugacy
classes of involutions of the second kind on B which restricts to the nontrivial
automorphism of M over E. Therefore, the exact sequence in Proposition 11.2(i)
says that the set of such AutKJ

.B; i/-conjugacy classes of involutions is identified
with E�=F �NM=E .M�/. One has a natural map on the fiber ��1.ŒB�/ sending a
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AutKJ
.B; i/-conjugacy class of involutions to its AutKJ

.B/-conjugacy class. This
is the surjective map described in Corollary 19.31 in [Knus et al. 1998].

On the other hand, the map sending the triple .B; �; i/ to the pair .B; �/ is the
natural map

H 1.F; TE;K/ �!H 1.F; PGU
KJ

3 /

induced by the map TE;K ,! PU
KJ

3 where PGUKJ

3 is the identity component
of the automorphism group of the Freuthendal–Jordan algebra associated to the
distinguished twisted composition algebra with invariants .E;K/.

12. Local fields

In this section, we specialize and explicate the main result in the case of local fields.

12-1. Local fields. Let F be a local field, E an étale cubic F -algebra, and KE the
corresponding discriminant algebra. Let K be an étale quadratic F -algebra. We
consider
z�E;K D fgeneric zME -orbits on VE with associated quadratic algebra Kg;

�E;K D fgeneric ME -orbits on VE with associated quadratic algebra Kg:

We have seen that z�E;K has a distinguished element: this is the distinguished point
ofH 1.TE;K/which is fixed by SE .F /�Z=2Z. Moreover, by Galois cohomological
arguments,

z�E;K DH
1.F; TE;K/=SE .F /�Z=2Z and �E;K DH

1.F; TE;K/=Z=2Z:

We would like to explicate the sets z�E;K and �E;K .

12-2. Cohomology of tori. Recall that in (3.13), we have shown

H 1.F; TE;K/D .E
�
�K�/0= Im.L�/;

where LDE˝F K,

.E� �K�/0 D f.e; �/ 2E� �K� WNE=F .e/DNK=F .�/g

and the map from L� to .E� �K�/0 is given by

a 7! .NL=E .a/; NL=K.a//:

This description of H 1.F; TE;K/ is natural but may not be so explicit. When F is
a local field, we can further explicate this description.

Since the case when E or K is not a field is quite simple, we consider the case
when E and K are both fields. In that case, the norm map induces an isomorphism

E�=NL=E .L
�/ �! F �=NK=F .K

�/Š Z=2Z;
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so that any .e; �/2 .E��K�/0 has eDNL=E .a/ for some a 2L�. Hence any ele-
ment inH 1.F; TE;K/ is represented by .1; �/ for �2K1Df�2K� WNK=F .�/D1g.
We thus deduce that, with L1 D fa 2 L� WNL=E .a/D 1g,

H 1.F; TE;K/DK
1=NL=K.L

1/ŠK�=F �NL=K.L
�/;

where the last isomorphism is induced by the usual Hilbert theorem 90. Using this
last expression, we easily see that

H 1.F; TE;K/D

�
1 if K ¤KE ,
Z=3Z if K DKE .

Exchanging the roles of E and K in the above argument, one also has

H 1.F; TE;K/DE
1=NL=E .L1/;

where now L1 D fa 2 L
� WNL=K.a/D 1g. If E=F is Galois (and K is a field), it

follows by the usual Hilbert theorem 90 that

H 1.F; TE;K/DE
1=NL=E .L1/ŠE

�=F �NL=E .E
�/D 1;

thus partially recovering the result of the last section.
Alternatively, we could use Proposition 11.2 to computeH 1.F; TE;K/. IfKJ is a

field, then the only central simpleKJ -algebra which admits an involution of the sec-
ond kind is the split algebraM3.KJ /. Thus we deduce from Proposition 11.2(i) that

H 1.F; TE;K/ŠE
�=F �NM=E .M

�/;

where M DE˝F KJ . On the other hand, if KJ is split, Proposition 11.2(ii) gives

H 1.F; TE;K/Š Ker.H 2.F;Gm/ �!H 2.E;Gm//;

which is Z=3Z when E is a field.

12-3. Fibers. With the various computations ofH 1.F; TE;K/ given above, it is not
difficult to show the following proposition which determines j z�E;K j and j�E;K j.

Proposition 12.1. We have

E K TE;K H 1.F; TE;K/ j z�E;K j j�E;K j

F�KE K DKE K� 1 1 1

F�KE ,KE a field field¤KE .K˝KE /
�=K�E Z=2Z 2 2

F�KE ,KE a field F�F K�E 1 1 1

F 3 field K�=F ��K�=F � Z=2Z�Z=2Z 2 4

field K DKE E�=F � Z=3Z 2 2

field K ¤KE 1 1 1
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Here, the difference in the last two columns reflects the fact that SE .F / acts
trivially on H 1.F; TE;K/ except when E D F 3 and K is a field.

12-4. Embeddings into J . The main theorem says that the elements of �E;K are
in bijection with the conjugacy classes of embeddings

E ,! J;

where J is a 9-dimensional Freudenthal–Jordan algebra associated to a pair .B; �/,
where B is a central simple algebra over the quadratic algebra KJ and � is an
involution of the second kind on B . We now describe the elements of �E;K in
terms of such embeddings.

� When F is p-adic and K DKE , so that KJ D F �F is split, then

.B; �/D .D �Dop; sw/

where D is a central simple F -algebra of degree 3 and sw denotes the involution
which switches the two factors. Thus, there are two possible J in this case: the
Jordan algebra JC attached to M3.F / or the Jordan algebra J� attached to a cubic
division F -algebra (and its opposite). In either case, the set of embeddings E �! J

is either empty or a single conjugacy class, and it is empty if and only if J D J�

and E is not a field. Thus when K DKE , we have

z�E;K D�E;K D

�
fE! JC; E! J�g if E is a field;
fE! JCg if E is not a field.

On the other hand, when KJ is a field, then B DM3.KJ /, and there is a unique
isomorphism class of involution of the second kind on B , given by conjugation by
a nondegenerate hermitian matrix, so that J is isomorphic to the Jordan algebra
of 3�3-Hermitian matrices with entries in KJ . According to the proposition, there
is a unique conjugacy class of embedding E ,! J unless E D F �KE and K is
a field with K ¤ KE . In the exceptional case, there are two subalgebras E � J
up to conjugacy. We may write down the 2 non-F -isomorphic twisted composition
algebras corresponding to these. The twisted composition algebra can be realized on

E˝F K DK � .KE ˝K/:

Let f1; ˛g denote representatives of F �=NK�. Then the two twisted composition
algebras correspond to

.e; �/D ..1; 1/; 1/ or ..1; ˛/; ˛/ 2 .F �KE /
�
�K�:

We see that these two twisted composition algebras are not isomorphic because
they are not isomorphic as quadratic spaces over E (even allowing for twisting
by SE .F /).
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Further, when E D F 3, there are in fact four conjugacy classes of embed-
dings E ,! J . This corresponds to the fact that the F -isomorphism class of
the twisted composition algebras associated to ..1; ˛/; ˛/ above breaks into three
E-isomorphism classes. These are associated to

.e1; �1/D ..1; ˛; ˛/; ˛/; .e2; �2/D ..˛; 1; ˛/; ˛/; .e3; �3/D ..˛; ˛; 1/; ˛/:

� When F D R, then E D R3 or R�C. When KJ D R2 is split, then there is a
unique J , namely the one associated to M3.R/, and there is a unique conjugacy
class of embeddings E ,! J .

When KJ D C, then there are two possible J , associated to B DM3.C/ and
the involution � given by the conjugation action of two Hermitian matrices with
signature .1; 2/ and .3; 0/. We denote these two Jordan algebras by J1;2 and J3;0.

When E D R3 and K D C, we have j�E;K j D 2. However, the two elements in
question correspond to embeddings

R3 ,! J3;0 and R3 ,! J1;2:

Thus, we see that these subalgebras are unique up to conjugacy. When E D R�C

and K DR2, we have j�E;K j D 1. This reflects the fact that there is no embedding
R�C ,! J3;0, and there is a unique conjugacy class of embeddings C ,! J1;2.
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Proper triangular Ga-actions on A4

are translations
Adrien Dubouloz, David R. Finston and Imad Jaradat

We describe the structure of geometric quotients for proper locally triangulable
Ga-actions on locally trivial A3-bundles over a nœtherian normal base scheme X
defined over a field of characteristic 0. In the case where dim X = 1, we show
in particular that every such action is a translation with geometric quotient iso-
morphic to the total space of a vector bundle of rank 2 over X . As a consequence,
every proper triangulable Ga-action on the affine four space A4

k over a field of
characteristic 0 is a translation with geometric quotient isomorphic to A3

k .

Introduction

The study of algebraic actions of the additive group Ga = Ga,C on complex affine
spaces An

= An
C

has a long history which began in 1968 with a pioneering result
of Rentschler [1968] who established that every such action on the plane A2 is
triangular in a suitable polynomial coordinate system. Consequently, every fixed
point free Ga-action on A2 is a translation, in the sense that the geometric quotient
A2/Ga is isomorphic to A1 and that A2 is equivariantly isomorphic to A2/Ga×Ga

where Ga acts by translations on the second factor.
Arbitrary Ga-actions turn out to be no longer triangulable in higher dimensions

[Bass 1984]. But the question whether a fixed point free Ga-action on A3 is a
translation or not was settled affirmatively, first for triangulable actions in [Snow
1988], then in [Deveney and Finston 1994] under the additional assumption that
the action is proper and then in general in [Kaliman 2004]. The argument for
triangulable actions depends on their explicit form in an appropriate coordinate
system which is used to check that the algebraic quotient π : A3

→ A3//Ga =

Spec(0(A3,OA3)Ga ) is a geometric quotient and that A3//Ga is isomorphic to A2.
For proper actions, the properness implies that the geometric quotient A3/Ga ,
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004-01.
MSC2010: primary 14L30; secondary 14R10, 14R20, 14R25.
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which a priori only exists as an algebraic space, is separated whence a scheme
by virtue of Chow’s Lemma. This means equivalently that the Ga-action is not
only locally equivariantly trivial in the étale topology but in fact locally trivial in
the Zariski topology, that is, that A3 is covered by invariant Zariski affine open
subsets of the form Vi =Ui ×Ga on which Ga acts by translations on the second
factor. Since A3 is factorial, the open subsets Vi can even be chosen to be principal,
which implies in turn that A3/Ga is a quasiaffine scheme, in fact an open subset
of A3//Ga ' A2 with at most finite complement. The equality A3/Ga = A3//Ga

ultimately follows by comparing Euler characteristics. Kaliman’s general proof
proceeds along a completely different approach, drawing on topological arguments
to show directly that the algebraic quotient morphism π :A3

→A3//Ga is a locally
trivial A1-bundle. Similar topological methods have been also applied by Kaliman
and Saveliev [2004] to conclude more generally that every fixed point free Ga-action
on a smooth complex contractible affine threefold X is a translation in the broader
sense that X has the structure of a trivial Ga-bundle over its geometric quotient
X/Ga , which is a smooth contractible affine surface.

Kaliman’s result can be reinterpreted as the striking fact that the topological
contractiblity of A3 is a strong enough constraint to guarantee that a fixed point free
Ga-action on it is automatically proper. This implication fails completely in higher
dimensions where nonproper fixed point free Ga-actions abound, even in the case
of triangular actions on A4 as illustrated by Deveney, Finston and Gehrke [Deveney
et al. 1994]. And starting from dimension 5, properness is known to be no longer
enough to imply global equivariant triviality as illustrated by examples of proper
triangular actions on A5 with strictly quasiaffine geometric quotients constructed
by Winkelmann [1990].

On the other hand, a general characterization claimed by Fauntleroy and Magid
[1976] asserted that proper Ga-actions on factorial affine varieties were always
locally equivariantly trivial in the Zariski topology, with quasiaffine geometric
quotients. But counterexamples were constructed latter on by Deveney and Finston
[1995] in the form of proper triangular actions on A5 whose geometric quotients
exists only as separated algebraic spaces. So the question whether a proper Ga-
action on A4 is a translation or is at least locally equivariantly trivial in the Zariski
topology is essentially the last unsettled problem concerning proper Ga-actions on
affine spaces, and very little progress had been made on the subject during the last
decades.

The only existing partial results so far concern triangular actions: Deveney,
van Rossum and Finston [2004] established that a Zariski locally equivariantly
trivial triangular Ga-action on A4 is a translation. The proof depends on the
finite generation of the ring of invariants for such actions established by Daigle
and Freudenburg [2001] and exploits the very particular structure of these rings.
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Incidentally, it is known in general that local triviality for a proper action on An

follows from the finite generation and regularity of the ring of invariants. But
even knowing the former for triangular actions on A4, a direct proof of the latter
condition remains elusive. The second positive result concerns a special type of
triangular Ga-actions generated by derivations of C[x, y, z, u] of the form r(x)∂y+

q(x, y)∂z+ p(x, y)∂u where r(x)∈C[x] and p(x, y), q(x, y)∈C[x, y, ]. To insist
on the fact that p(x, y) belongs to C[x, y] and not only to C[x, y, z] as it would
be the case for a general triangular situation, these derivations (and the Ga-actions
they generate) were named twin-triangular in [Deveney and Finston 2000]. The
case where r(x) has simple roots was first settled there by explicitly computing
the invariant ring C[x, y, z, u]Ga and investigating the structure of the algebraic
quotient morphism A4

→ A4//Ga = Spec(C[x, y, z1, z2]
Ga ). The simplicity of the

roots of r(x) was crucial to achieve the computation, and the generalization of the
result to arbitrary twin-triangular actions obtained in 2012 by the first two authors
[Dubouloz and Finston 2014] required completely different methods which focused
more on the nature of the corresponding geometric quotients A4

C
/Ga . The latter a

priori exist only as separated algebraic spaces and the crucial step in loc. cit. was to
show that for twin-triangular actions they are in fact schemes, or, equivalently that
proper twin-triangular Ga-actions on A4 are not only locally equivariantly trivial in
the étale topology but also in the Zariski topology. This enabled in turn the use of
the aforementioned result of Deveney, Finston, and van Rossum to conclude that
such actions are indeed translations.

In this article, we reconsider proper triangular actions on A4 in broader framework
and we develop new techniques which enable to completely solve the question of
global equivariant triviality for such actions. The triangularity assumption is of
course a restriction, and it might look quite artificial from a geometric point of view.
But its main consequence is to reduce an a priori four-dimensional problem to a
relative three-dimensional one over a parameter space, a reduction which is crucial
for our argument and turns out to be the natural context in which to interpret the
aforementioned counterexamples to global or Zariski local equivariant triviality. A
second more technical benefit is that it enables an effective characterization of the
properness of a Ga-action in terms of its associated locally nilpotent derivation, a
problem which is in general much more delicate to handle than deciding the weaker
property of being fixed point free.

The existence of smooth factorial affine hypersurfaces of A5 on which the
proper triangular Ga-actions constructed by Deveney and Finston [1995] restrict to
proper actions whose geometric quotients exist only as separated algebraic spaces
shows that even under appropriate triangularity assumptions, the question whether
a proper Ga-action on A4 is Zariski locally equivariantly trivial remains a subtle
problem. It also indicates that in order to weaken these appropriate hypotheses,
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additional algebrogeometric properties of A4 beyond factoriality, such as for instance
topological contractibility, should play a role in the problem. But on the other hand,
the existence of smooth contractible complex affine threefolds nonisomorphic to
A3 shows that topological methods are not sufficient to infer that a given proper
Ga-action on A4 is a translation from its local or even global equivariant triviality.
In particular, knowing that every such action is a translation would solve the Zariski
Cancellation Problem in dimension three, for if X is a variety such that X×A1

'A4,
the Ga-action by translations on the second factor of X ×A1 is obviously proper.

In this article we embed the study of proper triangular Ga-actions on A4 into
the following more general setup: given a nœtherian normal scheme X defined
over a field of characteristic zero, we consider Zariski locally trivial A3-bundles
π : E→ X equipped with proper locally triangulable actions of the additive group
scheme Ga,X . The local triangularity assumption means roughly that X can be
covered by affine open subsets U = Spec(A) over which the restriction of E is
equivariantly isomorphic to A3

U = Spec(A[y, z, u]) equipped with the Ga,U -action
induced by a triangular A-derivation of A[y, z, u]. Our main result then is this:

Theorem. Let X be a nœtherian normal scheme defined over a field of characteris-
tic zero, let π : E→ X be a Zariski locally trivial A3-bundle equipped with a proper
locally triangulable Ga,X -action and let p : X = E/Ga,X → X be the geometric
quotient taken in the category of algebraic X-spaces. Then there exists an open
subscheme U of X with codimX (X \U )≥ 2 such that XU = p−1(U )→U has the
structure of a Zariski locally trivial A2-bundle.

The conclusion of this theorem is essentially optimal. Indeed, in the exam-
ple due to Winkelmann [1990], one has X = Spec(C[x, y]), π = prx,y : A3

X =

Spec(C[x, y][u, v, w])→ X equipped with the proper triangular Ga,X -action gen-
erated by the C[x, y]-derivation ∂= x∂u+y∂v+(1+xv−yu)∂w of C[x, y][u, v, w],
and the geometric quotient p :X=A3

X/Ga,X→ X is the strictly quasiaffine comple-
ment of the closed subset {x = y= z=0} in the 4-dimensional smooth affine quadric
Q ⊂ A3

X with equation xt2+ yt1 = z(z+ 1). The structure morphism p : X→ X
is easily seen to be an A2-fibration, which restricts to a locally trivial A2-bundle
over the open subset U = X \ {(0, 0)}. However, there is no Zariski or étale open
neighborhood of the origin (0, 0)∈ X over which p :X→ X restricts to a trivial A2-
bundle for otherwise p :X→ X would be an affine morphism and so X would be an
affine scheme. The situation for the C[x, y]-derivation ∂ = x∂u+ y∂v+(1+xv2)∂w

of C[x, y][u, v, w] constructed by Deveney and Finston [1995] is very similar: here
the geometric quotient X= A3

X/Ga,X is a separated algebraic space which is not a
scheme and the structure morphism p : X→ X is again an A2-fibration restricting
to a Zariski locally trivial A2-bundle over U = X \ {(0, 0)} but whose restriction to
any Zariski or étale open neighborhood of the origin (0, 0) ∈ X is nontrivial.
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In contrast, in the case of a 1-dimensional affine base, we can immediately derive
the following corollaries:

Corollary. Let π : E→ S be a rank 3 vector bundle over an affine Dedekind scheme
S = Spec(A) defined over a field k of characteristic 0. Then every proper locally
triangulable Ga,S-action on E is equivariantly trivial with geometric quotient
E/Ga,S isomorphic to a vector bundle of rank 2 over S, stably isomorphic to E.

Proof. By the previous theorem, the geometric quotient p : E/Ga,S → S has the
structure of a Zariski locally trivial A2-bundle, hence is a vector bundle of rank 2
by [Bass et al. 1977]. In particular, E/Ga,S is affine, which implies in turn that
ρ : E→ E/Ga,S is a trivial Ga,S-bundle. So E is isomorphic to E/Ga,S ×S A1

S as
vector bundles over S. �

Corollary. Let S = Spec(A) be an affine Dedekind scheme defined over a field of
characteristic 0. Then every proper triangular Ga,S-action on A3

S is a translation.

Proof. By the previous corollary, A3
S/Ga,S is a stably trivial vector bundle of rank 2

over S, whence is isomorphic to the trivial bundle A2
S over S by virtue of [Bass

1968, Chapter IV, Corollary 3.5]. �

Coming back to the question of proper triangular Ga-actions on A4, the observa-
tion that such actions preserve a variable in a appropriate coordinate system and
hence can be considered as proper triangular actions of the additive group scheme
Ga,S on the affine 3-space A3

S over the affine Dedekind base S = A1 suffices to
settle the problem:

Corollary. If k is a field of characteristic 0, then every proper triangular Ga,k-
action on A4

k is a translation.

It is worth mentioning that our Main Theorem and an appeal to the aforementioned
result [Deveney et al. 2004] would already be enough to conclude that every proper
triangular Ga,k-action on A4

k is a translation, but our results do actually eliminate the
need for loc. cit. hence the a priori dependency on the fact that the corresponding
rings of invariants are finitely generated.

Let us now briefly explain the general philosophy behind the proof. After localiz-
ing at codimension 1 points of X , the Main Theorem reduces to the statement that a
proper Ga,S-action σ :Ga,S×S A3

S→A3
S on the affine space A3

S = Spec(A[y, z, u])
over the spectrum of a discrete valuation ring, generated by a triangular A-derivation
∂ = a∂y + q(y)∂z + p(y, z)∂u of A[y, z, u], where a ∈ A \ {0}, q(y) ∈ A[y] and
p(y, z) ∈ A[y, z], is a translation. Triangularity immediately implies that the
restriction of σ to the generic fiber of prS : A

3
S→ S is a translation with a−1 y as a

global slice. This reduces the problem to the study of neighborhoods of points of
the geometric quotient X= A3

S/Ga,S supported on the closed fiber of the structure
morphism p : X→ S. A second feature of triangularity is that σ commutes with
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the action τ : Ga,S ×S A3
S→ A3

S generated by the A-derivation ∂u which therefore
descends to a Ga,S-action τ on the geometric quotient X= A3

S/Ga,S . On the other
hand, σ descends via the projection pry,z : A

3
S→ A2

S = Spec(A[y, z]) to the action
σ on A2

S generated by the A-derivation ∂ = a∂y + q(y)∂z of A[y, z]. Even though
σ and τ are no longer fixed point free in general, if we take the quotient of A2

S by
the action σ as an algebraic stack [A2

S/Ga,S] we obtain a cartesian square

A3
S

pry,z

��

// X= A3
S/Ga,S

��
A2

S
// [A2

S/Ga,S]

which simultaneously identifies the quotient stacks [A2
S/Ga,S] for the action σ and

[X/Ga,S] for the action τ with the quotient stack of A3
S for the G2

a,S-action defined
by the commuting actions σ and τ . In this setting, the global equivariant triviality of
the action σ becomes equivalent to the statement that a separated algebraic S-space
X admitting a Ga,S-action whose algebraic stack quotient [X/Ga,S] is isomorphic
to that of a triangular Ga,S-action on A2

S is an affine scheme.
While a direct proof of this reformulation seems totally out of reach with ex-

isting methods, it turns out that its conclusion holds over a certain Ga,S-invariant
principal open subset V of A2

S which dominates S and for which the algebraic stack
quotient [V/Ga,S] is in fact represented by a locally separated algebraic subspace
of [A2

S/Ga,S]. This provides at least an affine open subscheme V ×S A1
S/Ga,S of

X dominating S, and leaves us with a closed subset of codimension at most 2
of X, supported on the closed fiber of p : X→ S, in a neighborhood of which
no further information is a priori available to decide even the schemeness of X.
But similar to the argument in [Dubouloz and Finston 2014], this situation can be
rescued for twin-triangular actions: the fact that for such actions ∂u = p(y, z) is
actually a polynomial in y only enables the same reasoning with respect to the
other projection pry,u : A

3
S→ A2

S = Spec(A[y, u]), yielding a second affine open
subscheme V ′×S A1

S/Ga,S of X dominating S. This implies at least the schemeness
of X, provided that the open subsets V and V ′ can be chosen so that the union of
the corresponding open subschemes of X covers the closed fiber of p : X→ S.

The scheme of the article is the following. The first two sections recall basic
notions and discuss a couple of preliminary technical reductions. The third section
is devoted to establishing an effective criterion for nonproperness of fixed point free
triangular actions from which we deduce the intermediate fact that every proper
triangular action is twin-triangulable. Then in the next section, we establish that
proper twin-triangular actions are indeed translations. Here, in contrast with the
proof for the complex case given in [Dubouloz and Finston 2014], our argument



Proper triangular Ga -actions on A4 are translations 1965

is independent of finite generation of rings of invariants and reduces the system-
atic study of algebraic spaces quotients to a minimum thanks to an appropriate
“Sheshadri cover trick” [Seshadri 1972].

1. Recollection on proper, fixed point free and locally triangulable Ga-actions

1A. Proper versus fixed point free actions. Recall that an action σ :Ga,S×S E→
E of the additive group scheme Ga,S = SpecS(OS[t]) = S ×Z Spec(Z[t]) on an
S-scheme E is called proper if the morphism 8= (pr2, σ ) :Ga,S ×S E→ E ×S E
is proper.

1A1. If S is moreover defined over a field k of characteristic zero, then the fact
that Ga,k is affine and has no nontrivial algebraic subgroups implies that properness
is equivalent to 8 being a closed immersion. In particular, a proper Ga,S-action
is in this case fixed point free and as such, is equivariantly locally trivial in the
étale topology on E . That is, there exists an affine S-scheme U and a surjective
étale morphism f : V = U ×S Ga,S → E which is equivariant for the action of
Ga,S on U ×S Ga,S by translations on the second factor. This implies in turn the
existence of a geometric quotient ρ : E → X = E/Ga,S in the form of an étale
locally trivial principal Ga,S-bundle over an algebraic S-space p : X→ S (see, for
example, [Laumon and Moret-Bailly 2000, Corollary 10.4]). Informally, X is the
quotient of U by the étale equivalence relation which identifies two points u, u′ ∈U
whenever there exists t, t ′ ∈ Ga,S such that f (u, t)= f (u′, t ′).

1A2. Conversely, a fixed point free Ga,S-action is proper if and only if the geometric
quotient X = E/Ga,S is a separated S-space. Indeed, by definition p : X→ S is
separated if and only if the diagonal morphism1 :X→X×SX is a closed immersion,
a property which is local on the target with respect to the fpqc topology [Knutson
1971, II, Extension 3.8; SGA1 1971, VIII, Corollaire 5.5]. Since ρ : E→ X is a
Ga,S-bundle, taking the fpqc base change by ρ × ρ : E ×S E→ X×S X yields a
cartesian square

Ga,S ×S E 8 //

ρ◦pr2

��

E ×S E

ρ×ρ

��
X

1 // X×S X

from which we see that 1 is a closed immersion if and only if 8 is.

1B. Locally triangulable actions. Given an affine scheme S = Spec(A) defined
over a field of characteristic zero, an action σ : Ga,S ×S An

S→ An
S generated by a

locally nilpotent A-derivation ∂ of 0(An
S,OAn

S
) is called triangulable if there exists

an isomorphism of A-algebras τ : 0(An
A,OAn

A
) ∼
−→ A[x1, . . . , xn] such that the
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conjugate δ = τ ◦ ∂ ◦ τ−1 of ∂ is triangular with respect to the ordered coordinate
system (x1, . . . , xn), that is, has the form

δ = p0
∂

∂x1
+

n∑
i=1

pi−1(x1, . . . , xi−1)
∂

∂xi

where p0 ∈ A and for every i = 1, . . . , n, pi−1(x1, . . . , xi−1) ∈ A[x1, . . . , xi−1] ⊂

A[x1, . . . , xn]. By localizing this notion over the base S, we arrive at the following
definition:

Definition 1.1. Let X be a scheme defined over a field of characteristic zero and let
π : E→ X be a Zariski locally trivial An-bundle over X . An action σ :Ga,X×X E→
E of Ga,X on E is called locally triangulable if there exists a covering of Spec(A)
by affine open subschemes Si = Spec(Ai ), i ∈ I , such that E |Si is isomorphic to
An

Si
and such that the Ga,Si -action σi : Ga,Si ×Si An

Si
→ An

Si
on An

Si
induced by σ is

triangulable.

A Zariski locally trivial A1-bundle π : E → X equipped with a fixed point
free Ga,X -action is nothing but a principal Ga,X -bundle. As mentioned in the
introduction, the nature of fixed point free locally triangulable Ga,X -actions on
Zariski locally trivial A2-bundles π : E → X is classically known. Namely, we
have the following generalization of the main theorem of [Snow 1988]:

Proposition 1.2. Let X be a nœtherian normal scheme defined over a field of
characteristic 0 and let π : E→ X be a Zariski locally trivial A2-bundle equipped
with a fixed point free locally triangulable Ga,X -action. Then the geometric quotient
p : E/Ga,X → X has the structure of a Zariski locally trivial A1-bundle over X.

Proof. The assertion being local on the base X , we may assume that X = Spec(A)
is the spectrum of a normal local domain containing a field of characteristic 0
and that E = A2

X = Spec(A[y, z]) is equipped with the Ga,X -action generated
by a triangular derivation ∂ = a∂y + q(y)∂z of A[y, z], where a ∈ A and q(y) ∈
A[y]. The fixed point freeness hypothesis is equivalent to the property that a and
q(y) generate the unit ideal in A[y, z]. So q(y) has the form q(y) = b+ cq̃(y)
where b ∈ A is relatively prime with a, c ∈

√
a A and q̃(y) ∈ A[y]. Letting

Q(y)=
∫ y

0 q(τ ) dτ = by+ c
∫ y

0 q̃(τ ) dτ , the polynomial v = az− Q(y) ∈ A[y, z]
belongs to the kernel Ker ∂ of ∂ hence defines a Ga,X -invariant morphism v :

E → A1
X = Spec(A[t]). Since a and b generate the unit ideal in A, it follows

from the Jacobian criterion that v : E→ A1
X is a smooth morphism. Furthermore,

the fibers of v coincide precisely with the Ga,X -orbits on E . Indeed, over the
principal open subset Xa = Spec(Aa) of X , ∂ admits a−1 y as a slice and we
have an equivariant isomorphism E |Xa' Spec(A[a−1v, a−1 y]) ' A1

Xa
×X Ga,X

where Ga,X acts by translations on the second factor. On the other hand, the
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restriction E |Z of E over the closed subset Z ⊂ X with defining ideal
√

a A ⊂ A
is equivariantly isomorphic to A2

Z equipped with the Ga,Z -action generated by the
derivation ∂ = b∂z of (A/

√
a A)[y, z], where b ∈ (A/

√
a A)∗ denotes the residue

class of b. The restriction of v to E |Z coincides via this isomorphism to the
morphism A2

Z → A1
Z defined by the polynomial v = by ∈ (A/

√
a A)[y, z] which

is obviously a geometric quotient. The above properties imply that the morphism
ṽ : E/Ga,X → A1

X induced by v is smooth and bijective. Since it admits étale
quasisections, ṽ is then an isomorphism locally in the étale topology on A1

X whence
an isomorphism. �

2. Preliminary reductions

2A. Reduction to a local base. The statement of the Main Theorem can be re-
phrased equivalently as the fact that a proper locally triangulable Ga,S-action on a
Zariski locally trivial A3-bundle π : E→ S is a translation in codimension 1. This
means that for every point s ∈ S of codimension 1 with local ring OS,s , the fiber
product E×S S′'A3

S′ of E→ S with the canonical immersion S′= Spec(OS,s) ↪→

S equipped with the induced proper triangular action of Ga,S′ = Ga,S ×S S′ is
equivariantly isomorphic to the trivial bundle A2

S′ ×S′ Ga,S′ over S′ equipped with
the action of Ga,S′ by translations on the second factor.

2A1. So we are reduced to the case where S is the spectrum of a discrete valuation
ring A containing a field of characteristic 0, say with maximal ideal m and residue
field κ = A/m, and where π = prS : E = A3

S = Spec(A[y, z, u])→ S = Spec(A)
is equipped with a proper triangulable Ga,S-action σ : Ga,S ×S A3

S→ A3
S . Letting

x ∈m be uniformizing parameter, every such action is equivalent to one generated
by an A-derivation ∂ of A[y, z, u] of the form

∂ = xn∂y + q(y)∂z + p(y, z)∂u

where n ≥ 0, q(y) ∈ A[y] and p(y, z) =
∑`

r=0 pr (y)zr
∈ A[y, z], the fixed point

freeness of σ being equivalent to the property that xn , q(y) and p(y, z) generate
the unit ideal in A[y, z, u].

2B. Reduction to proving the affineness of the geometric quotient. With the nota-
tion of Section 2A1, we can already observe that if n= 0 then y is an obvious global
slice for ∂ and hence that the action is globally equivariantly trivial with geometric
quotient X = A3

S/Ga,S ' A2
S . Similarly, if the residue class of q(y) in κ[y] is a

nonzero constant then the action σ is a translation. Indeed, in this case, the Ga,S-
action σ :Ga,S ×S A2

S→ A2
S on A2

S = Spec(A[y, z]) generated by the A-derivation
∂ = xn∂y + q(y)∂z of A[y, z] is fixed point free hence globally equivariantly
trivial with geometric quotient A2

S/Ga,S ' A1
S by virtue of Proposition 1.2. On the
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other hand, the Ga,S-equivariant projection pry,z : A
3
S→ A2

S descends to a locally
trivial A1-bundle between the geometric quotients A3

S/Ga,S and A2
S/Ga,S , and since

A2
S/Ga,S'A1

S is affine and factorial, it follows that A3
S/Ga,S'A2

S/Ga,S×S A1
S'A2

S .
The affineness of A2

S implies in turn that the quotient morphism A3
S→A3

S/Ga,S is the
trivial Ga,S-bundle whence that σ :Ga,S×S A3

S→A3
S is a translation. Alternatively,

one can observe that a global slice s ∈ A[y, z] for the action σ is also a global slice
for σ via the inclusion A[y, z] ⊂ A[y, z, u]

More generally, the following lemma reduces the question of global equivariant
triviality with geometric quotient X= A3

S/Ga,S isomorphic to A2
S to showing that

X, which a priori only exists as an algebraic S-space, is an affine S-scheme:

Lemma 2.1. A fixed point free triangular action σ :Ga,S ×S A3
S→ A3

S is a transla-
tion if and only if its geometric quotient X= A3

S/Ga,S is an affine S-scheme.

Proof. One direction is clear, so assume that X is an affine S-scheme. It suffices to
show that the structure morphism p : X→ S is an A2-fibration, that is, a faithfully
flat morphism with all its fibers isomorphic to affine planes over the corresponding
residue fields. Indeed, if so, the affineness of X implies on the one hand that X is
isomorphic to the trivial A2-bundle A2

S by virtue of [Sathaye 1983] and on the other
hand that ρ : A3

S→ X is isomorphic to the trivial Ga,S-bundle X×S Ga,S over S,
which yields Ga,S-equivariant isomorphisms A3

S ' X×S Ga,S ' A2
S ×S Ga,S .

To see that p :X→ S is an A2-fibration, recall that prS :A
3
S→ S and the quotient

morphism ρ : A3
S → X = A3

S/Ga,S are both faithfully flat, so that p : X→ S is
faithfully flat too [Knutson 1971, II.3.2; EGA 1965, IV2, Corollaire 2.2.13(iii)].
Letting m and ξ be the closed and generic points of S respectively, the fibers
pr−1

S (m)' A3
κ and pr−1

S (ξ)' A3
κ(ξ) coincide with the total spaces of the restriction

of the Ga,S-bundle ρ : A3
S → X over the fibers Xm = p−1(m) and Xξ = p−1(ξ)

respectively. Since the Ga,κ(ξ)-action induced by σ on pr−1
S (ξ) admits x−n y as a

global slice, it is a translation with geometric quotient A3
κ(ξ)/Ga,κ(ξ) 'A2

κ(ξ) and so
Xξ ' A2

κ(ξ). On the other hand, we may assume in view of the above discussion
that n ≥ 1 so that the Ga,κ -action on pr−1

S (m)'A3
κ induced by σ coincides with the

fixed point free action generated by the κ[y]-derivation ∂ = q(y)∂z + p(y, z)∂u of
κ[y][z, u], where q(y) and p(y, z) denote the respective residue classes of q(y) and
p(y, z) modulo x . By virtue of Proposition 1.2, the geometric quotient A3

κ/Ga,κ

has the structure of a Zariski locally trivial A1-bundle over A1
κ = Spec(κ[y]) hence

is isomorphic to A2
κ . This implies that Xm ' A3

κ/Ga,κ ' A2
κ , as desired. �

Note that the above characterization holds independently of the a priori knowledge
that the corresponding rings of invariants are finitely generated. But on the other
hand, by exploiting the more general fact that arbitrary Ga,S-actions on the affine
3-space A3

S over the spectrum S of a discrete valuation ring A containing a field of
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characteristic 0 have finitely generated rings of invariants [Bhatwadekar and Daigle
2009], one can derive the following stronger alternative:

Proposition 2.2. A fixed point free action σ :Ga,S×SA3
S→A3

S is either a translation
or its geometric quotient X= A3

S/Ga,S is an algebraic space which is not a scheme.

Proof. Indeed, the quotient morphism ρ : A3
S→ X is again an A2-fibration thanks

to [Daigle and Kaliman 2009, Theorem 3.2] which asserts that for every field κ
of characteristic 0 a fixed point free action of Ga,κ -action on A3

κ is a translation,
and so the assertion is equivalent to the fact that a Zariski locally equivariantly
trivial action σ has affine geometric quotient X. This can be seen in a similar way
as in the proof of [Deveney et al. 2004, Theorem 2.1]. Namely, by hypothesis we
can find an open covering of A3

S by finitely many invariant affine open subsets Ui

on which the induced Ga,S-action is a translation with affine geometric quotient
Ui/Ga,S , i = 1, . . . , n. Since Ui and A3

S are affine, A3
S \Ui is a Ga,S-invariant Weil

divisor on A3
S which is in fact principal as A, whence A[y, z, u], is factorial. It

follows that there exists invariant regular functions fi ∈ A[y, z, u]Ga ' 0(X,OX)

such that Ui = Spec(A[x, y, z] fi ) coincides with the inverse image by the quo-
tient morphism ρ : A3

S → X of the principal open subset X fi of X, i = 1, . . . , n.
Since ρ : A3

S → X is a Ga,S-bundle and Ui is isomorphic to Ui/Ga,S ×S Ga,S by
assumption, we conclude that X is covered by the principal affine open subsets
X fi ' Ui/Ga,S , i = 1, . . . , n, whence is quasiaffine. Now since by the afore-
mentioned result [Bhatwadekar and Daigle 2009], A[y, z, u]Ga is an integrally
closed finitely generated A-algebra, it is enough to check that the canonical open
immersion j : X→ X = Spec(0(X,OX))' Spec(A[y, z, u]Ga ) is surjective. The
surjectivity over the generic point of S follows immediately from the fact the kernel
of a locally nilpotent derivation of a polynomial ring in three variables over a field
K of characteristic 0 is isomorphic to a polynomial ring in two variables over
K (see, for example, [Miyanishi 1986]). So it remains to show that the induced
open immersion jm : Xm ' A2

κ ↪→ Xm = Spec(A[y, z, u]Ga ⊗A A/m) between
the corresponding fibers over the closed point m of S is surjective, in fact, an
isomorphism. Since x ∈ A[y, z, u]Ga is prime, Xm ' Spec(A[y, z, u]Ga/(x)) is an
integral κ-scheme of finite type and [Bhatwadekar and Daigle 2009, Corollary 4.10]
can be interpreted more precisely as the fact that Xm is isomorphic to C ×κ A1

κ

for a certain 1-dimensional affine κ-scheme C . This implies in turn that jm is
an isomorphism. Indeed, since C is dominated via jm by a general affine line
A1
κ ⊂ A2

κ , its normalization C̃ is isomorphic to A1
κ and so jm factors through an

open immersion j̃m :A2
κ ↪→ C̃×κ A1

κ 'A2
κ . The latter is surjective for otherwise the

complement of its image would be of pure codimension 1 hence a principal divisor
div( f ) for a nonconstant regular function f on C̃×κ A1

κ . But then f would restrict
to a nonconstant invertible function on the image of A2

κ which is absurd. Thus
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j̃m :A2
κ ↪→ C̃×κ A1

κ 'A2
κ is an isomorphism and since the normalization morphism

C̃ ×κ A1
κ→ C ×κ A1

κ is finite whence closed it follows that jm : A2
κ ↪→ C ×κ A1

κ is
an open and closed immersion hence an isomorphism. �

2C. Reduction to extensions of irreducible derivations. In view of the discussion
at the beginning of Section 2B, we may assume for the A-derivation

∂ = xn∂y + q(y)∂z + p(y, z)∂u

that n > 0 and that the residue class of q(y) in κ[y] is either zero or not constant.
In the first case, q(y) ∈ mA[y] has the form q(y) = xµq0(y) where µ > 0 and
where q0(y) ∈ A[y] has nonzero residue class modulo m, so that the derivation
∂ = xn∂y + q(y)∂z induced by ∂ on the subring A[y, z] is reducible. On the other
hand, the fixed point freeness of the Ga,S-action σ generated by ∂ implies that up
to multiplying u by an invertible element in A, one has p(y, z)= 1+ xν p0(y, z)
for some ν > 0 and p0(y, z) ∈ A[y, z].

If µ≥ n, then letting Q0(y)=
∫ y

0 q0(τ ) dτ ∈ A[y], the Ga,S-invariant polynomial
z1 = z− xµ−n Q0(y) is a variable of A[y, z, u] over A[y, u], and so ∂ is conjugate
to the derivation xn∂y + p(y, z1 + xµ−n Q0(y))∂u of the polynomial ring in two
variables A[z1][y, u] over A[z1]. Since σ is fixed point free, Proposition 1.2 implies
that it is equivariantly trivial with geometric quotient isomorphic to the total space
of the trivial A1-bundle over A1

S = Spec(A[z1]) whence to A2
S .

Otherwise, if µ < n, then the Ga,S-action σ̃ : Ga,S ×S A3
S → A3

S on A3
S =

Spec(A[ỹ, z̃, ũ]) generated by the A-derivation

∂̃ = xn−µ∂ỹ + q0(ỹ)∂z̃ + (1+ xν p0(ỹ, z̃))∂ũ

is again fixed point free, hence admits a geometric quotient ρ̃ :A3
S→ X̃=A3

S/Ga,S

in the form of an étale locally trivial Ga,S-bundle over a certain algebraic S-space
X̃.

Lemma 2.3. The quotient spaces X = A3
S/Ga,S and X̃ = A3

S/Ga,S for the Ga,S-
actions σ and σ̃ on A3

S generated by ∂ and ∂̃ respectively are isomorphic. In
particular σ is proper (resp. equivariantly trivial) if and only if σ̃ is proper (resp.
equivariantly trivial).

Proof. Letting ρ̃i : Vi = A3
S→ X̃i = Vi/Ga,S , i = 0, . . . , µ, denote the geometric

quotient of Vi =Spec(A[ỹi , z̃i , ũi ]) for the fixed point free Ga,S-action σ̃i generated
by the A-derivation

∂̃i = (1+ xν p0(ỹi , z̃i ))∂ũi + xµ−i q0(ỹi )∂z̃i + xn−i∂ỹi ,

the first assertion will follow from the more general fact that X̃i ' X̃i+1 for every
i = 0, . . . , µ− 1. Indeed, we first observe that since ũi is a slice for ∂̃i modulo x ,
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X̃i,m= X̃i×S Spec(κ) is isomorphic to A2
κ =Spec((A/m)[ỹi , z̃i ]) and the restriction

of ρ̃i over X̃i,m is isomorphic to the trivial bundle pr1 : X̃i,m×κ Spec(κ[ũi ])→ X̃i,m.
Now let βi : Vi+1→ Vi be the affine modification of the total space of ρ̃i :A

3
S→ X̃i

with center at the zero section of the induced bundle pr1 : X̃i,m×κSpec(κ[ũi ])→ X̃i,m

and with principal divisor x . In view of the previous description, βi : Vi+1→ Vi

coincides with the affine modification of Spec(A[ỹi , z̃i , ũi ]) with center at the ideal
(x, ũi ) and principal divisor x , that is, with the birational S-morphism induced by
the homomorphism of A-algebra

β∗i : A[ỹi+1, z̃i+1, ũi+1] → A[ỹi , z̃i , ũi ],

(ỹi+1, z̃i+1, ũi+1) 7→ (ỹi , z̃i , xũi ).

By construction, βi is equivariant for the Ga,S-actions σ̃i+1 and σ i generated re-
spectively by the locally nilpotent A-derivations ∂̃i+1 of A[ỹi+1, z̃i+1, ũi+1] and
∂ i = x ∂̃i of A[ỹi , z̃i , ũi ]. Furthermore, since ρ̃i : Vi → X̃i is also Ga,S-invariant
for the action σ i , the morphism ρ̃i ◦ βi : Vi+1 → X̃i is Ga,S-invariant, whence
descends to a morphism β̃i : X̃i+1→ X̃i . Since the latter restricts to an isomorphism
over the generic point of S, it remains to check that it is also an isomorphism in
a neighborhood of every point p ∈ X̃i lying over the closed point m of S. Let
f :U = Spec(B)→ X̃i be an affine étale neighborhood of such a point p ∈ X̃i over

which ρ̃i :Vi→ X̃i becomes trivial, say Vi×X̃i U is isomorphic to A1
U =Spec(B[ṽi ]).

The Ga,S-action on Vi generated by ∂ i lifts to the Ga,U -action on A1
U generated

by the locally nilpotent B-derivation x∂ṽi and since βi : Vi+1→ Vi is the affine
modification of Vi with center at the zero section of the restriction of ρ̃i : Vi → X̃i

over the closed point of S, we have a commutative diagram

Vi+1

ρ̃i+1
��

βi

~~

A1
U

oo

prU

��

δi

��
Vi

ρ̃i

��

A1
U

oo

prU

��

X̃i+1
β̃i

~~

Uoo

X̃i U
foo

in which the top and front squares are cartesian, and where the morphism δi :

A1
U = Spec(B[ṽi+1])→ A1

U = Spec(B[ṽi ]) is defined by the B-algebras homomor-
phism B[ṽi ] → B[ṽi+1], ṽi 7→ x ṽi+1. The latter is equivariant for the action on
Spec(B[ṽi+1]) generated by the locally nilpotent B-derivation ∂ṽi+1 and we conclude
that pr2 : A

1
U ' A1

U ×Vi Vi+1→ Vi+1 is an étale trivialization of the Ga,S-action
induced by σ̃i+1 on the open subscheme (ρ̃i ◦βi )

−1( f (U )) of Vi+1. This implies
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in turn that U ×X̃i
X̃i+1 'U , whence that β̃i : X̃i+1→ X̃i is an isomorphism in a

neighborhood of p ∈ X̃i as desired.
The second assertion is a direct consequence of the fact that properness and global

equivariant triviality of σ and σ̃ are respectively equivalent to the separatedness
and the affineness of the geometric quotients X' X̃. �

2C1. Summing up, we are now reduced to proving that a proper Ga,S-action on
A3

S generated by an A-derivation

∂ = xn∂y + q(y)∂z + p(y, z)∂u

of A[y, z, u], such that n > 0 and q(y) ∈ A[y] has nonconstant residue class in
κ[y], has affine geometric quotient X= A3

S/Ga,S . This will be done in two steps
in the next sections: we will first establish that a proper Ga,S-action as above is
conjugate to one generated by a special type of A-derivation called twin-triangular.
Then we will prove in Section 4 that proper twin-triangular Ga,S-actions on A3

S do
indeed have affine geometric quotients.

3. Reduction to twin-triangular actions

We keep the same notation as in Section 2A1 above, namely A is a discrete valuation
ring containing a field of characteristic 0, with maximal ideal m, residue field
κ = A/m, and uniformizing parameter x ∈m. We let again S = Spec(A).

We call an A-derivation ∂ of A[y, z, u] twin-triangulable if there exists a co-
ordinate system (y, z+, z−) of A[y, z, u] over A[y] in which the conjugate of ∂
is twin-triangular, that is, has the form xn∂y + p+(y)∂z+ + p−(y)∂z− for certain
polynomials p±(y) ∈ A[y]. This section is devoted to the proof of the following
intermediate characterization of proper triangular Ga,S-actions:

Proposition 3.1. With the notation above, let ∂ be an A-derivation of A[y, z, u] of
the form

∂ = xn∂y + q(y)∂z + p(y, z)∂u

where n > 0 and where q(y) ∈ A[y] has nonconstant residue class in κ[y]. If the
Ga,S-action on A3

S = Spec(A[y, z, u]) generated by ∂ is proper, then ∂ is twin-
triangulable.

The proof given below proceeds in two steps: we first construct a coordinate ũ of
A[y, z, u] over A[y, z] with the property that ∂ ũ = p̃(y, z) is either a polynomial
in y only or its leading term p̃`(y) as a polynomial in z has a very particular form.
In the second case, we exploit the properties of p̃`(y) to show that the Ga,S-action
generated by ∂ is not proper.
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3A. The ]-reduction of a triangular A-derivation. The conjugate of an A-deriv-
ation ∂ = xn∂y + q(y)∂z + p(y, z)∂u of A[y, z, u], as in Proposition 3.1, by an
isomorphism of A[y, z]-algebras ψ : A[y, z][ũ] ∼−→ A[y, z][u] is again triangular
of the form

ψ−1∂ψ = xn∂y + q(y)∂z + p̃(y, z)∂ũ

for some polynomial p̃(y, z) ∈ A[y, z]. In particular, we may choose from the
very beginning a coordinate system of A[y, z, u] over A[y, z] with the property
that the degree of ∂u ∈ A[y, z] with respect to z is minimal among all possible
conjugates ψ−1∂ψ of ∂ as above. In what follows, we will say for short that such
a derivation ∂ is ]-reduced with respect to the coordinate system (y, z, u). Letting
Q(y)=

∫ y
0 q(τ ) dτ ∈ A[y], this property can be characterized effectively as follows:

Lemma 3.2. Let ∂ = xn∂y + q(y)∂z + p(y, z)∂u be a ]-reduced derivation of
A[y, z, u] as in Proposition 3.1. If ∂ is not twin-triangular (i.e. p(y, z)= p0(y) ∈
A[y]) then the leading term p`(y), ` ≥ 1, of p(y, z) as a polynomial in z is not
congruent modulo xn to a polynomial of the form q(y) f (Q(y)) for some f (τ ) ∈
A[τ ].

Proof. Suppose that p(y, z)=
∑`

r=0 pr (y)zr with `≥ 1 and that

p`(y)= q(y) f (Q(y))+ xng(y)

for some polynomials f (τ ), g(τ ) ∈ A[τ ]. Then letting G(y)=
∫ y

0 g(τ ) dτ and

ũ = u−G(y)z`−
deg f∑
k=0

(−1)k∏k
j=0(`+ 1+ j)

f (k)(Q(y))xknz`+1+k,

one checks by direct computation that

∂ ũ =
`−2∑
r=0

pr (y)zr
+ (p`−1(y)−G(y)q(y))z`−1.

Thus (y, z, ũ) is a coordinate system of A[y, z, u] over A[y, z] in which the image
of ũ by the conjugate of ∂ has degree ≤ `− 1, a contradiction to the ]-reducedness
of ∂ . �

To prove Proposition 3.1, it remains to show that a proper Ga,S-action on A3
S

generated by a ]-reduced A-derivation of A[y, z, u] is twin-triangular. This is done
in the next subsection.

3B. A nonvaluative criterion for nonproperness. To disprove the properness of an
algebraic action σ :Ga,S×S E→ E of Ga,S on an S-scheme E , it suffices in principle
to check that the image of8= (pr2, σ ) :Ga×S E→ E×S E is not closed. However,
this image turns out to be complicated to determine in general, and it is more
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convenient for our purpose to consider the following auxiliary construction: letting
j : Ga,S ' Spec(OS[t]) ↪→ P1

S = Proj(OS[w0, w1]), t 7→ [t : 1] be the natural open
immersion, the properness of the projection prE×S E :P

1
S×S E×S E→E×S E implies

that (p2, σ ) is proper if and only if ϕ= ( j ◦pr1, pr2, σ ) :Ga,S×S E→P1
S×S E×S E

is proper, hence a closed immersion. Therefore the nonproperness of σ is equivalent
to the fact that the closure of Im(ϕ) in P1

S ×S E ×S E intersects the “boundary”
{w1 = 0} in a nontrivial way.

3B1. Now let σ : Ga,S ×S A3
S→ A3

S be the Ga,S-action generated by a non-twin-
triangular ]-reduced A-derivation ∂ = xn∂y + q(y)∂z + p(y, z)∂u of A[y, z, u] and
let

ϕ = ( j ◦ pr1, pr2, µ) : Ga,S ×S A3
S = Spec(A[t][y, z, u])→ P1

S ×S A3
S ×S A3

S

be the corresponding immersion. To disprove the properness of σ , it is enough to
check that the image by ϕ of the closed subscheme H = {z= 0} ' Spec(A[t][y, u])
of Ga,S ×S A3

S is not closed in P1
S ×S A3

S ×S A3
S . After identifying A[y, z, u] ⊗A

A[y, z, u] with the polynomial ring A[y1, y2, z1, z2, u1, u2] in the obvious way, the
image of H by (pr1, pr2, σ ) :Ga,S×S A3

S→A1
S×S A3

S×S A3
S is equal to the closed

subscheme of Spec(A[t][y1, y2, z1, z2, u1, u2]) defined by the following system of
equations:

y2 = y1+ xnt,

z1 = 0,

z2 = x−n(Q(y1+ xnt)− Q(y1))= (y1− y2)
−1(Q(y2)− Q(y1))t,

u2 = u1+ x−n
∫ t

0 p(y1+ xnτ)(Q(y1+ xnτ)− Q(y1)) dτ.

Letting p(y, z)=
∑̀
r=0

pr (y)zr with `≥ 1 and

0r (y1, y2)=

∫ y2

y1

pr (ξ)(Q(ξ)− Q(y1))
r dξ ∈ A[y1, y2], r = 0, . . . , `,

the last equality can be rewritten modulo the first ones in the form

u2 = u1+
∑̀
r=0

x−nr
∫ t

0
pr (y1+ xnτ)(Q(y1+ xnτ)− Q(y1))

r dτ

= u1+ t (y2− y1)
−1
∑̀
r=0

x−nr
∫ y2

y1

pr (ξ)(Q(ξ)− Q(y1))
r dξ

= u1+
∑̀
r=0

(
(y2− y1)

−r−10r (y1, y2)
)
tr+1.
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It follows that the closure V of ϕ(H) is contained in the closed subscheme W of
P1

S ×S A3
S ×S A3

S defined by the equations z1 = 0 and

(y2− y1)w1− xnw0 = 0,

w1z2− (y2− y1)
−1(Q(y2)− Q(y1))w0 = 0,

w`+1
1 (u2− u1)−

∑`
r=0
(
(y2− y1)

−r−10r (y1, y2)
)
wr+1

0 w`−r
1 = 0.

We further observe that W is irreducible, whence equal to V , given that 0`(y1, y2)∈

A[y1, y2] does not belong to the ideal generated by xn and Q(y2)− Q(y1). If so,
then W = V intersects {w1 = 0} along a closed subscheme Z isomorphic to the
spectrum of the algebra(

A[y1, y2]/(xn, (y2−y1)
−1(Q(y2)−Q(y1)), (y2−y1)

−`−10`(y1, y2))
)
[z2, u1, u2].

By virtue of the ]-reducedness assumption p`(y) is not of the form q(y) f (Q(y))+
xng(y), so the nonproperness of σ : Ga,S ×S A3

S → A3
S is then a consequence of

the following lemma which guarantees precisely that 0`(y1, y2) 6∈ (xn, Q(y2)−

Q(y1))A[y1, y2] and that Z is not empty.

Lemma 3.3. Let q(y) ∈ A[y] be a polynomial with nonconstant residue class in
κ[y] and let Q(y) =

∫ y
0 q(τ ) dτ . For a polynomial p(y) ∈ A[y] and an integer

`≥ 1, the following holds:

(a) The polynomial 0`(y1, y2) =
∫ y2

y1
p(y)(Q(y) − Q(y1))

` dy belongs to the
ideal (xn, Q(y2) − Q(y1)) if and only if p(y) can be written in the form
q(y) f (Q(y))+ xng(y) for certain polynomials f (τ ), g(τ ) ∈ A[τ ].

(b) The polynomial (y2 − y1)
−`−10`(y1, y2) is not invertible modulo the ideal

(xn, (y2− y1)
−1(Q(y2)− Q(y1))).

Proof. For the first assertion, a sequence of ` successive integrations by parts shows
that

0`(y1, y2)=
[
E1(y)(Q(y)− Q(y1))

`
]y2

y1
− `

∫ y2

y1

E1(y)q(y)(Q(y)−Q(y1))
`−1 dy

= S(y1, y2)+ (−1)``!
∫ y2

y1

E`(y)q(y) dy

= S(y1, y2)+ (−1)``!(E`+1(y2)− E`+1(y1)),

where Ek is defined recursively by E1(y)=
∫ y

0 p(τ )dτ, Ek+1(y)=
∫ y

0 Ek(τ )q(τ )dτ ,
and where S(y1, y2) ∈ (Q(y2)−Q(y1))A[y1, y2]. So

∫ y2
y1

p(y)(Q(y)−Q(y1))
r dy

belongs to (xn, Q(y2)−Q(y1))A[y1, y2] if and only if E`+1(y2)−E`+1(y1) belongs
to this ideal.

Since the residue class of Q(y) ∈ A[y] in κ[y] is not constant, it follows from
the local criterion for flatness that A[y] is a faithfully flat algebra over A[Q(y)].



1976 Adrien Dubouloz, David R. Finston and Imad Jaradat

By faithfully flat descent, this implies in turn that the sequence

A[Q(y)] ↪→ A[y]
·⊗1−1⊗·
−→ A[y]⊗A[τ ] A[y]

is exact whence, with the natural identification

A[y]⊗A[τ ] A[y] ' A[y1, y2]/(Q(y2)− Q(y1)),

that a polynomial F ∈ A[y] with F(y2)− F(y1) belonging to the ideal

(Q(y2)− Q(y1))A[y1, y2]

has the form F(y) = G(Q(y)) for a certain polynomial G(τ ) ∈ A[τ ]. Thus
E`+1(y2) − E`+1(y1) belongs to (xn, Q(y2) − Q(y1))A[y1, y2], if and only if
E`+1(y) is of the form G(Q(y)) + xn R`+1(y) for some G(τ ), R`+1(τ ) ∈ A[τ ].
This implies in turn that E`(y)q(y)= G ′(Q(y))q(y)+ xn R′`+1(y) whence, since
q(y) ∈ A[y] \mA[y] is not a zero divisor modulo xn , that E`(y) = G ′(Q(y))+
xn R`(y) for a certain R`(τ ) ∈ A[τ ]. We conclude by induction that E1(y) =
G(`+1)(Q(y))+ xn R1(y) and finally that p(y)= G(`+2)(Q(y))q(y)+ xn R(y) for
a certain R(τ ) ∈ A[τ ]. This proves (a).

The second assertion is clear in the case where p(y) ∈ mA[y]. Otherwise,
if p(y) ∈ A[y] \ mA[y] then reducing modulo x and passing to the algebraic
closure κ of κ , it is enough to show that if q(y) ∈ κ[y] is not constant and p(y) ∈
κ[y] is a nonzero polynomial then for every ` ≥ 1, the affine curves C and D
in A2

κ = Spec(κ[y1, y2]) defined by the vanishing of the polynomials 2(y1, y2)=

(y2−y1)
−`−1

∫ y2
y1

p(y)(Q(y)−Q(y1))
` dy and R(y1, y2)= (y2−y1)

−1
∫ y2

y1
q(y) dy

respectively always intersect each other. Suppose on the contrary that C ∩ D =∅
and let m = deg q ≥ 1 and d = deg p ≥ 0. Then the closures C and D of C and
D respectively in P2

κ = Proj(κ[y1, y2, y3]) intersect each others along a closed
subscheme Y of length deg C · deg D = m(d + `m) supported on the line {y3 =

0} ' Proj(κ[y1, y2]). By definition, up to multiplication by a nonzero scalar, the top
homogeneous components of R and 2 have the form

∏m
i=1(y2−ζ

i y1), where ζ ∈ κ
is a primitive (m+ 1)-th root of unity, and (y2− y1)

`−1
∫ y2

y1
yd(ym+1

− ym+1
1 )` dy

respectively. But on the other hand, we have for every i = 1, . . . ,m

κ[y2]

/(
y2− ζ

i , (y2− 1)−r−1
∫ y2

1
yd(ym+1

− 1)r dy
)

' κ[y2]

/(
y2− ζ

i , (ζ i
− 1)−r−1

∫ ζ i

1
τ d(τm+1

− 1)r dτ
)
,

and hence the length of the above algebra is either 1 or 0 depending on whether∫ ζ i

1 τ d(τm+1
− 1) dτ ∈ κ is zero or not. This implies that the length of Y is at most

equal to m and so the only possibility would be that d = 0 and `= m = 1, in other
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words C and D are parallel lines in A2
κ . But since

∫
−1

1 (τ 2
− 1) dτ 6= 0, this last

possibility is also excluded. �

4. Global equivariant triviality of twin-triangular actions

By virtue of Proposition 3.1, every proper triangular Ga,S-action on σ :Ga,S×S A3
S→

A3
S on A3

S is conjugate to one generated by a twin-triangular A-derivation ∂ of
A[y, z+, z−] of the form

∂ = xn∂y + p+(y)∂z+ + p−(y)∂z−

for certain polynomials p±(y) ∈ A[y]. So to complete the proof of the Main
Theorem, it remains to show the following generalization of the main result in
[Dubouloz and Finston 2014]:

Proposition 4.1. Let S be the spectrum of discrete valuation ring A containing a
field of characteristic 0. Then a proper twin-triangular Ga,S-action on A3

S has affine
geometric quotient X= A3

S/Ga,S .

4A1. The principle of the proof given below is the following: we exploit the twin
triangularity to construct two Ga,S-invariant principal open subsets W0+ and W0−

in A3
S with the property that the union of corresponding principal open subspaces

X0± =W0±/Ga,S of X covers the closed fiber of the structure morphism p :X→ S.
We then show that X0+ and X0− are in fact affine subschemes of X. On the
other hand, since ∂ admits x−n y as a global slice over Ax , the generic fiber of p
is isomorphic to the affine plane over the function field Ax of S. So it follows
that X is covered by three principal affine open subschemes X0+ , X0− and Xx

corresponding to regular functions x , 0+, 0− which generate the unit ideal in
0(X,OX)' A[y, z+, z−]Ga,S ⊂ A[y, z+, z−], whence is an affine scheme.

4A2. The fact that the affineness of p : X = A3
S/Ga,S → S = Spec(A) is a local

property with respect to the fpqc topology on S [SGA1 1971, VIII, Corollaire 5.6]
enables a reduction to the case where the discrete valuation ring A is Henselian or
complete. Since it contains a field of characteristic zero, an elementary application
of Hensel’s Lemma implies that a maximal subfield of such a local ring A is a
field of representatives, that is, a subfield which is mapped isomorphically by the
quotient projection A 7→ A/m onto the residue field κ = A/m. This is in fact the
only property of A that we will use in the sequel. So from now on, (A,m, κ) is a
discrete valuation ring containing a field κ of characteristic 0 and with residue field
A/m' κ .

4B. Twin-triangular actions in general position and associated invariant cover-
ing. Here we construct a pair of principal Ga,S-invariant open subsets W±=W0± of
A3

S associated with a twin-triangular A-derivation of A[y, z+, z−] whose geometric
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quotients will be studied in the next subsection. We begin with a technical condition
which will be used to guarantee that the union of W+ and W− covers the closed
fiber of the projection prS : A

3
S→ S.

Definition 4.2. Let (A,m, κ) be a discrete valuation ring containing a field of
characteristic 0 and let x ∈ m be a uniformizing parameter. A twin-triangular A-
derivation ∂ = xn∂y+ p+(y)∂z++ p−(y)∂z− of A[y, z+, z−] is said to be in general
position if it satisfies the following properties:

(a) The residue classes p± ∈ κ[y] of the polynomials p± ∈ A[y] modulo m are
both nonzero and relatively prime.

(b) There exist integrals P± ∈ A[y] of p± with respect to y for which the inverse
images of the branch loci of the morphisms P+ :A1

κ→A1
κ and P− :A1

κ→A1
κ

are disjoint.

Lemma 4.3. With the notation above, every twin-triangular A-derivation ∂ of
A[y, z+, z−] generating a fixed point free Ga,S-action on A3

S is conjugate to one in
general position.

Proof. A twin-triangular derivation ∂ = xn∂y + p+(y)∂z+ + p−(y)∂z− generates a
fixed point free Ga,S-action if and only if xn , p+(y) and p−(y) generate the unit
ideal in A[y, z+, z−]. So the residue classes p+ and p− of p+ and p− are relatively
prime and at least one of them, say p−, is nonzero. If p+= 0 then p− is necessarily
of the form p−(y)= c+ x p̃−(y) for some c ∈ A∗ and so changing z+ for z++ z−
yields a twin-triangular derivation conjugate to ∂ for which the corresponding
polynomials p±(y) both have nonzero residue classes modulo x . More generally,
changing z− for az−+ bz+ for general a ∈ A∗ and b ∈ A yields a twin-triangular
derivation conjugate to ∂ and still satisfying condition (a) in Definition 4.2. So it
remains to show that up to such a coordinate change, condition (b) in the definition
can be achieved.

This can be seen as follows : we consider A2
κ embedded in P2

κ = Proj(κ[u, v, w])
as the complement of the line L∞ = {w = 0} so that the coordinate system (u, v)
on A2 is induced by the projections from the κ-rational points [0 : 1 : 0] and
[1 : 0 : 0] respectively. We let C be the closure in P2 of the image of the morphism
j = (P+, P−) : A1

κ = Spec(κ[y])→ A2
κ defined by the residue classes P+ and

P− in κ[y] of integrals P±(y) ∈ A[y] of p±(y), and we denote by Z ⊂ C the
image by j of the inverse image of the branch locus of P+ : A1

κ → A1
κ . Note

that Z is a finite subset of C defined over k, and therefore the set of lines in P2
k

passing through a point of Z and tangent to a local analytic branch of C at some
point is finite. This follows from the fact that the set of lines in P2

k intersecting
transversely a fixed curve is Zariski open. Therefore, the complement of the finitely
many intersection points of these lines with L∞ is a Zariski open subset U of L∞
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with the property that for every q ∈U , the line through q and every arbitrary point
of Z intersects every local analytic branch of C transversally at every point. By
construction, the rational projections from [0 : 1 : 0] and an arbitrary κ-rational point
in U \ {[0 : 1 : 0]} induce a new coordinate system on A2

κ of the form (u, av+ bu),
a 6= 0, with the property that Z is not contained in the inverse image of the branch
locus of the morphism a P−+ bP+ : A1

κ → A1
κ . Changing z− for az−+ bz+ for

a pair (a, b) ∈ κ∗ × κ ⊂ A∗ × A corresponding to a general point in U yields a
twin-triangular derivation conjugate to ∂ and satisfying simultaneously conditions
(a) and (b) in Definition 4.2. �

4B1. Now let ∂ = xn∂y + p+(y)∂z+ + p−(y)∂z− be a twin-triangular A-derivation
of A[y, z+, z−] generating a proper whence fixed point free Ga,S-action σ :Ga,S×S

A3
S → A3

S . By virtue of Lemma 4.3 above, we may assume up to a coordinate
change preserving twin-triangularity that ∂ is in general position. Property (a) in
Definition 4.2 then guarantees in particular that the triangular derivations ∂± =
xn∂y + p±(y)∂z± of A[y, z±] are both irreducible. Furthermore, given any integral
P±(y) ∈ A[y] of p±(y), the morphism P± : A1

κ → A1
κ obtained by restricting

P± : A1
S = Spec(A[y])→ A1

S = Spec(A[t]) to the closed fiber of prS : A
3
S→ S is

not constant. The branch locus of P± is then a principal divisor div(α±(t)) for a
certain polynomial α±(t)∈ κ[t] ⊂ A[t] generating the kernel of the homomorphism
κ[t] → κ[y]/(p±(y)), t 7→ P±(y) + (p±(y)). Property (b) in Definition 4.2
guarantees that we can choose P+ and P− in such a way that the polynomial
α+(P+(y)) and α−(P−(y)) generate the unit ideal in κ[y]. Up to a diagonal
change of coordinates on A[y, z+, z−], we may further assume without loss of
generality that P+ and P− are monic.

4B2. We let R± = A[t]α± and we let U± = Spec(R±) be the principal open subset
of A1

S = Spec(A[t]) where α± does not vanish. The polynomial 8± = −xnz±+
P±(y) ∈ A[y, z+, z−] belongs to the kernel of ∂ hence defines a Ga,S-invariant
morphism 8± : A

3
S = Spec(A[y, z+, z−])→ A1

S = Spec(A[t]). We let

W± =8−1
±
(U±)' Spec

(
R±[y, z+, z−]/(−xnz±+ P±(y)− t)

)
Note that W± is a Ga,S-invariant open subset of A3

S which can be identified with
the principal open subset where the Ga,S-invariant regular function 0± = α± ◦8±
does not vanish. Since α+(P+(y)) and α−(P−(y)) generate the unit ideal in κ[y],
it follows that the union of W+ and W− covers the closed fiber of the projection
prS : A

3
S→ S.

4C. Affineness of geometric quotients. With the notation of Section 4B2 above,
the geometric quotientX±=W±/Ga,S for the action induced by σ :Ga,S×SA3

S→A3
S

can be identified with the principal open subspace X0± of X = A3
S/Ga,S where
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the invariant function 0± ∈ A[y, z+, z−]Ga,S ' 0(X,OX) does not vanish. The
properness of σ implies that X, whence X+ and X−, are separated algebraic spaces,
and the construction of W+ and W− guarantees that the closed fiber of the structure
morphism p : X→ S is contained in the union of X+ and X−. So to complete the
proof of Proposition 4.1, it remains to show that X± is an affine scheme. In fact, since
X± is by construction an algebraic space over the affine scheme U± = Spec(R±),
its affineness is equivalent to that of the structure morphism q± : X± → U±, a
property which can be checked locally with respect to the étale topology on U±.

4C1. In our situation, there is a natural finite étale base change ϕ± : Ũ±→ U±
which is obtained as follows: By construction, see Section 4B1 above, the morphism
P± :A1

κ =Spec(κ[y])→Spec(κ[t]), restricts to a finite étale covering h0,± :C1,±=

Spec(κ[y]α±(P±(y)))→C±= Spec(κ[t]α±(t)) of degree r±= degy(P±(y)). Letting
C̃± = Spec(B±) be the normalization of C± in the Galois closure L± of the field
extension i± : κ(t) ↪→ κ(y), the induced morphism h± : C̃±→C± is an étale Galois
cover with Galois group G± = Gal(L±/κ(t)), which factors as

h± : C̃± = Spec(B±)
h1,±
−→ C1,± = Spec

(
κ[y]α±(P±(y))

) h0,±
−→ C± = Spec(κ[t]α±(t))

where h1,± : C̃±→ C1,± is an étale Galois cover for a certain subgroup H± of G±
of index r±. Letting R̃± = A⊗κ B± ' A[t]α±(t)⊗κ[t]α±(t) B± and Ũ± = Spec(R̃±),
the morphism ϕ± = pr1 : Ũ± ' U±×C± C̃±→ U± is an étale Galois cover with
Galois group G±, in particular a finite morphism. Since X± is separated, the
algebraic space X̃± = X±×U± Ũ± is separated and, by construction, isomorphic to
the geometric quotient of the scheme

W̃± =W±×U±Ũ± ' Spec
(
R̃±[y, z+, z−]/(−xnz±+ P±(y)− t)

)
by the proper Ga,Ũ±-action generated by the locally nilpotent R̃±-derivation xn∂y+

p+(y)∂z+ + p−(y)∂z− of R̃±[y, z+, z−]//(−xnz±+ P±(y)− t), which commutes
with the action of G±. The following lemma completes the proof of Proposition 4.1
whence of the Main Theorem.

Lemma 4.4. The geometric quotient X̃± = W̃±/Ga,Ũ± is an affine Ũ±-scheme.

Proof. Since Ũ± is affine, the assertion is equivalent to the affineness of X̃±.
From now on, we only consider the case of X̃+ = W̃+/Ga,Ũ+ , the case of X̃− being
similar. To simplify the notation, we drop the corresponding subscript “+”, writing
simply W̃ = Spec(R̃[y, z, z−]/(−xnz+ P(y)− t)). We denote x⊗1∈ R̃= A⊗κ B
by x and we further identify B with a sub-κ-algebra of R̃ via the homomorphism
1⊗ idB : B→ R̃ and with the quotient R̃/x R̃ via the composition 1⊗ idB : B→
A⊗κ B→ A⊗κ B/((x ⊗ 1)A⊗κ B)= κ ⊗κ B ' B.

By construction of B, the monic polynomial P(y)− t ∈ B[y] splits as P(y)− t =∏
g∈G/H (y−tg) for certain elements tg ∈ B, g ∈G/H , on which the Galois group G
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acts by permutation g′ · tg = t (g′)−1·g. Furthermore, since h0 : C1→ C is étale, it
follows that for distinct g, g′ ∈ G/H , tg − tg′ ∈ B is an invertible regular function
on C̃ whence on Ũ = S×Spec(κ) C̃ via the identifications made above. This implies
in turn that there exists a collection of elements σg ∈ R̃ with respective residue
classes tg ∈ B = R̃/x R̃ modulo x , g ∈ G/H , on which G acts by permutation, a
G-invariant polynomial S1 ∈ R̃[y] with invertible residue class modulo x and a
G-invariant polynomial S2 ∈ R̃[y] such that in R̃[y] one can write

P(y)− t = S1(y)
∏

g∈G/H

(y− σg)+ xn S2(y).

Concretely, the elements σg=σg,n−1∈ R̃, g∈G/H , can be constructed by induction
via a sequence of elements σg,m ∈ R̃, g ∈ G/H , m = 0, . . . , n− 1, starting with
σg,0= tg ∈ B⊂ R̃ and culminating in σg,n−1= σg, and characterized by the property
that for every m = 0, . . . , n − 1, there exists µg,m ∈ R̃ such that P(σg,m)− t =
xm+1µg,m , g ∈ G/H . Indeed, writing P(y)− t =

∏
g∈G/H (y− tg)+ x P̃(y) for a

certain P̃(y) ∈ R̃[y] and assuming that the σg,m , g ∈ G/H , have been constructed
up to a certain index m < n− 1, we look for elements σg,m+1 ∈ R̃ written in the
form σg,m+xm+1λg for some λg ∈ R̃. For a fixed g0 ∈G/H , the conditions impose
that

P(σg0,m+1)− t =
∏

g∈G/H

(σg0,m + xm+1λg0 − tg)+ x P̃(σg0,m + xm+1λg0)

= xm+1λg0

∏
g∈(G/H)\{g0}

(tg0 − tg)+ P(σg0,m)− t + xm+2νg0,m

= xm+1λg0

∏
g∈(G/H)\{g0}

(tg0 − tg)+ xm+1µg0,m + xm+2νg0,m

for some νg0,m ∈ R̃, and since
∏

g∈(G/H)\{g0}
(tg0 − tg) ∈ R̃∗, we conclude that

λg0 =
µg0,m∏

g∈(G/H)\{g0}
(tg0 − tg)

and µg0,m+1 = νg0,m .

A direct computation shows further that g′ · σg,m+1 = σ(g′)−1·g,m+1 and that g′ ·
µg,m+1 = µ(g′)−1·g,m+1. Iterating this procedure n − 1 times yields the desired
collection of elements σg = σg,n−1 ∈ R̃. By construction,

∏
g∈G/H (y− σg) ∈ R̃[y]

is then an invariant polynomial which divides P(y)− t modulo xn R̃, which implies
in turn the existence of the G-invariant polynomials S1(y), S2(y) ∈ R̃[y].

The closed fiber of the induced morphism W̃ → S consists of a disjoint union
of closed subschemes Dg ' Spec(R̃[z, z−])' A2

C̃
with defining ideals (x, y− σg),

g ∈G/H . The open subscheme W̃g= W̃ \
⋃

g′∈(G/H)\{g} Dg′ of W̃ is Ga,Ũ -invariant
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and one checks using the above expression for P(y)− t that the rational map
W̃ 99K Spec(R̃[ug, z−]),

(y, z, z−) 7→ (ug, z−)=
(

y− σg

xn =
z− S2(y)

S1(y)
∏

g′∈(G/H)\{g}(y− σg′)
, z−

)
induces a Ga,Ũ -equivariant isomorphism τg : W̃g

∼
−→A2

Ũ
=Spec(R̃[ug, z−]) for the

Ga,Ũ -action on A2
Ũ

generated by the locally nilpotent R̃-derivation ∂ug+ p−(xnug+

σg)∂z− of R̃[ug, z−]. The latter is a translation with ug as a global slice and with
geometric quotient W̃g/Ga,Ũ isomorphic to Spec(R̃[vg]) where

vg = z−− x−n(P−(xnug + σg)− P−(σg)) ∈ R̃[ug, z−]Ga,Ũ .

By construction, for distinct g, g′ ∈ G/H , the rational functions τ ∗g vg and τ ∗g′vg′ on
W̃ differ by the addition of the element

fg,g′ = x−n(P−(σg)− P−(σg′)) ∈ R̃x ∈ 0(W̃g ∩ W̃g′,OW̃ ).

This implies that X̃ = W̃/Ga,Ũ is isomorphic to the Ũ -scheme obtained by glu-
ing r copies X̃g = Spec(R̃[vg]) of A1

Ũ
along the principal open subsets X̃g,x '

Spec(R̃x [vg]) via the isomorphisms induced by the R̃x -algebra isomorphisms

ξ∗g,g′ : R̃x [vg] → R̃x [vg′], vg 7→ vg′ + fg,g′, g, g′ ∈ G/H, g 6= g′.

Since by assumption X̃ is separated, it follows from [EGA 1960, I, Proposition
(5.5.6)] that for every pair of distinct elements g, g′∈G/H , the subring R̃[vg′, fg,g′]

of R̃x [vg′] generated by the union of R̃[vg′] and ξ∗g,g′(R̃[vg]) is equal to R̃x [vg′].
This holds if and only if R̃[ fg,g′] = R̃x whence if and only if fg,g′ ∈ R̃x has the
form fg,g′ = x−mg,g′ Fg,g′ for a certain mg,g′ > 1 and an element Fg,g′ ∈ R̃ with
invertible residue class modulo x .

This additional information enables a proof of the affineness of X̃ by induction on
r as follows: given a pair of distinct elements g, g′ ∈G/H such that mg,g′ =m > 0
is maximal, we let θg = 0 and θg′′ = xm−mg,g′′ Fg,g′′ ∈ R̃ for every g′′ ∈ (G/H)\ {g}.
The choice of the elements θg′′ ∈ R̃ guarantees that the local sections

ψg′′ = xmvg′′ + θg′′ ∈ 0(X̃g′′,OX̃), g′′ ∈ G/H,

glue to a global regular functionψ ∈0(X̃,OX̃). Since θg′= Fg,g′ is invertible modulo
x , the regular functions x , ψ and ψ − θg′ generate the unit ideal in 0(X̃,OX̃). The
principal open subset X̃x of X̃ is isomorphic to X̃g,x ' Spec(R̃x [vg]) for every
g ∈ G/H , hence is affine. On the other hand, X̃ψ and X̃ψ−θg′

are contained
respectively in the open subschemes X̃(g) and X̃(g′) obtained by gluing only the
r − 1 open subsets X̃g′′ corresponding to the elements g′′ in (G/H) \ {g} and
(G/H) \ {g′} respectively. By the induction hypothesis, the latter are both affine
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and hence X̃ψ and X̃ψ−θg′
are affine as well. This shows that X̃ is an affine scheme

and completes the proof. �
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Multivariate Apéry numbers and
supercongruences of rational functions

Armin Straub

One of the many remarkable properties of the Apéry numbers A(n), introduced
in Apéry’s proof of the irrationality of ζ(3), is that they satisfy the two-term
supercongruences

A(pr m)≡ A(pr−1m) (mod p3r )

for primes p > 5. Similar congruences are conjectured to hold for all Apéry-like
sequences. We provide a fresh perspective on the supercongruences satisfied
by the Apéry numbers by showing that they extend to all Taylor coefficients
A(n1, n2, n3, n4) of the rational function

1
(1− x1− x2)(1− x3− x4)− x1x2x3x4

.

The Apéry numbers are the diagonal coefficients of this function, which is simpler
than previously known rational functions with this property.

Our main result offers analogous results for an infinite family of sequences,
indexed by partitions λ, which also includes the Franel and Yang–Zudilin numbers
as well as the Apéry numbers corresponding to ζ(2). Using the example of
the Almkvist–Zudilin numbers, we further indicate evidence of multivariate
supercongruences for other Apéry-like sequences.

1. Introduction

The Apéry numbers

A(n)=
n∑

k=0

(n
k

)2(n+k
k

)2
(1)

played a crucial role in R. Apéry’s proof [Apéry 1979; van der Poorten 1979]
of the irrationality of ζ(3), and have inspired much further work. Among many
other interesting properties, they satisfy congruences with surprisingly large moduli,
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referred to as supercongruences, a term coined by F. Beukers [1985]. For instance,
for all primes p > 5 and all positive integers r ,

A(pr m)≡ A(pr−1m) (mod p3r ). (2)

The special case m = 1, r = 1 was conjectured by S. Chowla, J. Cowles and
M. Cowles [Chowla et al. 1980], who established the corresponding congruence
modulo p2. The case r = 1 was subsequently shown by I. Gessel [1982] and
Y. Mimura [1983], while the general case was proved by M. Coster [1988]. The
proof is an adaption of Beukers’ [1985] proof of the related congruence

A(pr m− 1)≡ A(pr−1m− 1) (mod p3r ), (3)

again valid for all primes p> 5 and all positive integers r . That congruence (3) can
be interpreted as an extension of (2) to negative integers is explained in Remark 1.3.
For further congruence properties of the Apéry numbers, we refer to [Cowles 1980;
Beukers 1987; Ahlgren and Ono 2000; Kilbourn 2006].

Given a series

F(x1, . . . , xd)=
∑

n1,...,nd>0

a(n1, . . . , nd)x
n1
1 · · · x

nd
d , (4)

its diagonal coefficients are the coefficients a(n, . . . , n) and the diagonal is the
ordinary generating function of the diagonal coefficients. For our purposes, F
will always be a rational function. It is well-known (see, for instance, [Lipshitz
and van der Poorten 1990, Theorem 5.2]) that the diagonal of a rational function
satisfies a Picard–Fuchs linear differential equation, and as such “comes from
geometry”. In particular, the diagonal coefficients satisfy a linear recurrence with
polynomial coefficients.

Many sequences of number-theoretic interest can be represented as the diagonal
coefficients of rational functions. In particular, it is known [Christol 1984; Lipshitz
and van der Poorten 1990] that the Apéry numbers are the diagonal coefficients of
the rational function

1
(1− x1)

[
(1− x2)(1− x3)(1− x4)(1− x5)− x1x2x3

] . (5)

Several other rational functions of which the Apéry numbers are the diagonal
coefficients are given in [Bostan et al. 2013], where it is also discussed how these
can be obtained from the representation of the Apéry numbers as the binomial
sum (1). However, all of these rational function involve at least five variables and,
in each case, the polynomial in the denominator factors. Our first result shows
that in fact the Apéry numbers are the diagonal coefficients of a simpler rational
function in only four variables.
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Theorem 1.1. The Apéry numbers A(n), defined in (1), are the diagonal coefficients
of

1
(1− x1− x2)(1− x3− x4)− x1x2x3x4

. (6)

Representing a sequence as the diagonal of a rational function has certain benefits.
For instance, asymptotic results can be obtained directly and explicitly from this
rational function. This is the subject of multivariate asymptotics, as developed
in [Pemantle and Wilson 2002]. For details and a host of worked examples we
refer to [Pemantle and Wilson 2008]. As a second example, the rational generating
function provides a means to compute the sequence modulo a fixed prime power.
Indeed, the diagonal of a rational function with integral Taylor coefficients, such
as (6), is algebraic modulo pα for any α [Lipshitz and van der Poorten 1990]. A
recent demonstration that this can be done very constructively is given in [Rowland
and Yassawi 2013], where the values modulo pα of sequences such as the Apéry
numbers are, equivalently, encoded as finite automata.

We note that a statement such as Theorem 1.1 is more or less automatic to prove
once discovered. For instance, given a rational function, we can always repeatedly
employ a binomial series expansion to represent the Taylor coefficients as a nested
sum of hypergeometric terms. In principle, creative telescoping [Petkovšek et al.
1996] will then obtain a linear recurrence satisfied by the diagonal coefficients, in
which case it suffices to check that the alternative expression satisfies the same
recurrence and agrees for sufficiently many initial values.

For the rational function F(x) given in (6), we can gain considerably more
insight. Indeed, for all the Taylor coefficients A(n), defined by

F(x1, x2, x3, x4)=
∑

n1,n2,n3,n4>0

A(n1, n2, n2, n4)x
n1
1 xn2

2 xn3
3 xn4

4 , (7)

we find, for instance by applying MacMahon’s master theorem [1915, pp. 93–98]
as detailed in Section 4, the explicit formula

A(n)=
∑
k∈Z

(n1
k

)(n3
k

)(n1+n2−k
n1

)(n3+n4−k
n3

)
, (8)

of which Theorem 1.1 is an immediate consequence.
An instance of our main result is the observation that the supercongruence (2)

for the Apéry numbers generalizes to all coefficients (8) of the rational function (6)
in the following sense:

Theorem 1.2. Let n = (n1, n2, n3, n4) ∈ Z4. The coefficients A(n), defined in (7)
and extended to negative integers by (8), satisfy, for primes p > 5 and positive
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integers r , the supercongruences

A(pr n)≡ A(pr−1n) (mod p3r ). (9)

Note that the Apéry numbers are A(n)= A(n, n, n, n), so that (9) indeed gen-
eralizes (2). Our reason for allowing negative entries in n is that by doing so, we
also generalize Beukers’ supercongruence (3). Indeed, as explained in Remark 1.3
below, A(n−1)= A(−n,−n,−n,−n). Theorem 1.2 is a special case of our main
result, Theorem 3.2, in which we prove such supercongruences for an infinite family
of sequences. This family includes other Apéry-like sequences such as the Franel
and Yang–Zudilin numbers, as well as the Apéry numbers corresponding to ζ(2).

We therefore review Apéry-like sequences in Section 2. Though no uniform
reason is known, each Apéry-like sequence appears to satisfy a supercongruence
of the form (2), some of which have been proved [Beukers 1985; Coster 1988;
Chan et al. 2010; Osburn and Sahu 2011; 2013; Osburn et al. 2014] while others
remain open [Osburn et al. 2014]. A major motivation for this note is to work
towards an understanding of this observation. Our contribution to this question is
the insight that, at least for several Apéry-like sequences, these supercongruences
generalize to all coefficients of a rational function. Our main result, which includes
the case of the Apéry numbers outlined in this introduction, is given in Section 3.
In that section, we also record two further conjectural instances of this phenomenon.
Finally, we provide proofs for our results in Sections 4 and 5.

Remark 1.3. Let us indicate that congruence (3) can be interpreted as the natural
extension of (2) to the case of negative integers m. To see this, generalize the
definition (1) of the Apéry numbers A(n) to all integers n by setting

A(n)=
∑
k∈Z

(n
k

)2(n+k
k

)2
. (10)

Here, we assume the values of the binomial coefficients to be defined as the (limiting)
values of the corresponding quotient of gamma functions, that is,(

n
k

)
= lim

z→0

0(z+ n+ 1)
0(z+ k+ 1)0(z+ n− k+ 1)

.

Since 0(z+ 1) has no zeros, and poles only at negative integers z, one observes
that the binomial coefficient

(n
k

)
is finite for all integers n and k. Moreover, the

binomial coefficient with integer entries is nonzero only if k > 0 and n− k > 0, or
if n < 0 and k > 0, or if n < 0 and n− k > 0. Note that in each of these cases k > 0
or n−k > 0, so that the symmetry

(n
k

)
=
( n

n−k

)
allows us to compute these binomial

coefficients in the obvious way. For instance,
(
−3
−5

)
=
(
−3
2

)
= (−3)(−4)/2! = 6. As

carefully shown in [Sprugnoli 2008], for all integers n and k, we have the negation
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rule (n
k

)
= sgn(k)(−1)k

(
−n+k−1

k

)
, (11)

where sgn(k)= 1 for k > 0 and sgn(k)=−1 for k < 0. Applying (11) to the sum
(10), we find that

A(−n)= A(n− 1).

In particular, the congruence (3) is equivalent to (2) with −m in place of m.

Remark 1.4. The proof of formula (8) in Section 4 shows that the coefficients can
be expressed as

A(n1, n2, n3, n4)= ct
(x1+ x2+ x3)

n1(x1+ x2)
n2(x3+ x4)

n3(x2+ x3+ x4)
n4

xn1
1 xn2

2 xn3
3 xn4

4
,

representing them as the constant terms of Laurent polynomials. In particular,
the Apéry numbers (1) are the constant term of powers of a Laurent polynomial.
Namely,

A(n)= ct
[
(x1+ x2)(x3+ 1)(x1+ x2+ x3)(x2+ x3+ 1)

x1x2x3

]n

.

Since the Newton polyhedron of this Laurent polynomial has the origin as its
only interior integral point, the results of [Samol and van Straten 2009; Mellit and
Vlasenko 2013] apply to show that A(n) satisfies the Dwork congruences

A(pr m+ n)A(bn/pc)≡ A(pr−1m+bn/pc)A(n) (mod pr )

for all primes p and all integers m, n > 0, r > 1. In particular,

A(pr m)≡ A(pr−1m) (mod pr ), (12)

which is a weaker version of (2) that holds for the large class of sequences repre-
sented as the constant term of powers of a Laurent polynomial, subject only to the
condition on the Newton polyhedron. This gives another indication why congruence
(2) is referred to as a supercongruence. It would be of considerable interest to find
similarly well-defined classes of sequences for which supercongruences of the form
(12) but modulo pkr for k > 1 hold. Let us note that the case r = 1 of the Dwork
congruences implies the Lucas congruences

A(n)≡ A(n0)A(n1) · · · A(n`) (mod p),

where n0, . . . , n`∈{0, 1, . . . , p−1} are the p-adic digits of n=n0+n1 p+· · ·+n` p`.
It is shown in [Rowland and Yassawi 2013] that Lucas congruences hold for all
Taylor coefficients of certain rational functions. Additional divisibility properties in
this direction are obtained in [Delaygue 2013] for Apéry-like numbers as well as
for constant terms of powers of certain Laurent polynomials. Finally, we note that
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an extension of Dwork congruences to the multivariate setting has been considered
in [Krattenthaler and Rivoal 2011]. In contrast to our approach, where, for instance,
the Apéry numbers appear as the diagonal (multivariate) Taylor coefficients of
a multivariate function F(x), the theory developed in [Krattenthaler and Rivoal
2011] is concerned with functions G(x)= G(x1, . . . , xd) for which, say, the Apéry
numbers are the (univariate) Taylor coefficients of the specialization G(x, . . . , x).

2. Review of Apéry-like numbers

The Apéry numbers A(n) are characterized by the 3-term recurrence

(n+ 1)3un+1 = (2n+ 1)(an2
+ an+ b)un − n(cn2

+ d)un−1, (13)

where (a, b, c, d)= (17, 5, 1, 0), together with the initial conditions

u−1 = 0, u0 = 1. (14)

As explained in [Beukers 2002], the fact that in the recursion (13) we divide
by (n + 1)3 at each step means that we should expect the denominator of un to
grow like (n!)3. While this is what happens for generic choice of the parameters
(a, b, c, d), the Apéry numbers have the, from this perspective, exceptional property
of being integral. Initiated by Beukers [2002], systematic searches have therefore
been conducted for recurrences of this kind, which share the property of having an
integer solution with initial conditions (14). This was done by D. Zagier [2009] for
recurrences of the form

(n+ 1)2un+1 = (an2
+ an+ b)un − cn2un−1, (15)

by G. Almkvist and W. Zudilin [2006] for recurrences of the form (13) with d = 0
and, more recently, by S. Cooper [2012] for recurrences of the form (13). In
each case, apart from degenerate cases, only finitely many sequences have been
discovered. For details and a possibly complete list of the sequences, we refer to
[Zagier 2009; Almkvist and Zudilin 2006; Almkvist et al. 2011; Cooper 2012].

Remarkably, and still rather mysteriously, all of these sequences, often referred
to as Apéry-like, share some of the interesting properties of the Apéry numbers.
For instance, they all are the coefficients of modular forms expanded in terms of
a corresponding modular function. In the case of the Apéry numbers A(n), for
instance, it was shown by Beukers [1987] that∑

n>0

A(n)
(
η(τ)η(6τ)
η(2τ)η(3τ)

)12n

=
η7(2τ)η7(3τ)
η5(τ )η5(6τ)

, (16)

where η(τ) is the Dedekind eta function η(τ)= eπ iτ/12 ∏
n>1
(1−e2π inτ ). The modular
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function and the modular form appearing in (16) are modular with respect to the
congruence subgroup 00(6) of level 6 (in fact, they are modular with respect to
a slightly larger group). While this relation with modular forms can be proven in
each individual case, no conceptual explanation is available, in the sense that if
an additional Apéry-like sequence was found we would not know a priori that its
generating function has a modular parametrization such as (16).

As a second example, it is conjectured and in some cases proven [Osburn et al.
2014] that each Apéry-like sequence satisfies a supercongruence of the form (2).
Again, no uniform explanation is available and, the known proofs [Gessel 1982;
Mimura 1983; Beukers 1985; Coster 1988] of the supercongruences (2) and (3) all
rely on the explicit binomial representation (1) of the Apéry numbers. However,
not all Apéry-like sequences have a comparably effective binomial representation
so that, for instance, for the Almkvist–Zudilin numbers [Almkvist et al. 2011,
Sequence (4.12)(δ); Chan and Zudilin 2010; Chan et al. 2010]

Z(n)=
n∑

k=0

(−3)n−3k
( n

3k

)(n+k
n

)(3k)!
k!3

, (17)

which solve (13) with (a, b, c, d)= (−7,−3, 81, 0), the supercongruence

Z(pr m)≡ Z(pr−1m) (mod p3r ) (18)

for primes p > 3 is conjectural only.
It would therefore be of particular interest to find alternative approaches to proving

supercongruences. In this paper, we provide a new perspective on supercongruences
of the form (18) by showing that they hold, at least for several Apéry-like sequences,
for all coefficients C(n) of a corresponding rational function, which has the sequence
of interest as its diagonal coefficients. In such a case, one may then hope to use
properties of the rational function to prove, for some k > 1, the supercongruence

C(pr n)≡ C(pr−1n) (mod pkr ).

For instance, for fixed pr , these congruences can be proved, at least in principle,
by computing the multivariate generating functions of both C(pr n) and C(pr−1n),
which are rational functions because they are multisections of a rational function,
and comparing them modulo pkr .

Let us note that, in Example 3.9 below, we give a characterization of the Almkvist–
Zudilin numbers (17) as the diagonal of a surprisingly simple rational function,
and conjecture that the supercongruences (18), which themselves have not been
proved yet, again extend to all coefficients of this rational function. We hope
that the simplicity of the rational function might help inspire a proof of these
supercongruences.
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3. Main result and examples

We now generalize what we have illustrated in the introduction for the Apéry
numbers A(n) to an infinite family of sequences Aλ,ε(n), indexed by partitions
λ and ε ∈ {−1, 1}, which includes other Apéry-like numbers such as the Franel
and Yang–Zudilin numbers as well as the sequence used by Apéry in relation
with ζ(2). Our main theorem is Theorem 3.2, in which we prove (multivariate)
supercongruences for this family of sequences, thus unifying and extending a number
of known supercongruences. To begin with, the sequences we are concerned with
are introduced by the following extension of formula (8). Here, xn is short for
xn1

1 xn2
2 · · · x

nd
d .

Theorem 3.1. Let α ∈ C and λ= (λ1, . . . , λ`) ∈ Z`>0 with d = λ1+ · · ·+ λ`, and
set s( j)= λ1+ · · ·+ λ j−1. Then the Taylor coefficients of the rational function(∏̀

j=1

[
1−

λ j∑
r=1

xs( j)+r

]
−αx1x2 · · · xd

)−1

=

∑
n∈Zd

>0

Aλ,α(n)xn (19)

are given by

Aλ,α(n)=
∑
k∈Z

αk
∏̀
j=1

(ns( j)+1+· · ·+ns( j)+λ j−(λ j−1)k
ns( j)+1−k, . . . , ns( j)+λ j−k, k

)
. (20)

The proof of this elementary but crucial result will be given in Section 4. Observe
that the multivariate Apéry numbers A(n), defined in (8), are the special case
A(2,2),1(n).

Our main result, of which Theorem 1.2 is the special case λ= (2, 2) and ε = 1,
follows next. Note that, if n ∈ Zd

>0, then the sum (20) defining Aλ,α(n) is finite and
runs over k=0, 1, . . . ,min(n1, . . . , nd). On the other hand, if max(λ1, . . . , λ`)>2,
then Aλ,α(n) is finite for any n ∈ Zd .

Theorem 3.2. Let ε ∈ {−1, 1}, λ = (λ1, . . . , λ`) ∈ Z`>0, and assume that n ∈ Zd ,
d = λ1+ · · ·+ λ` is such that Aλ,ε(n), as defined in (20), is finite.

(a) If `> 2, then, for all primes p > 3 and integers r > 1,

Aλ,ε(pr n)≡ Aλ,ε(pr−1n) (mod p2r ). (21)

If ε = 1, then these congruences also hold for p = 2.

(b) If `> 2 and max(λ1, . . . , λ`)6 2, then, for primes p > 5 and integers r > 1,

Aλ,ε(pr n)≡ Aλ,ε(pr−1n) (mod p3r ). (22)

A proof of Theorem 3.2 is given in Section 5. One of the novel features of the
proof, which is based on the approach of [Gessel 1982] and [Beukers 1985], is that it
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proceeds in a uniform fashion for all n ∈Zd . As outlined in Remark 1.3, this allows
us to also conclude, and to a certain extent explain, the shifted supercongruences (3),
which, among Apéry-like numbers, are special to the Apéry numbers as well as their
version (23) related to ζ(2). In cases where n has negative entries, the summation
(20), while still finite, may include negative values for k (see Remark 1.3). We
therefore extend classical results, such as Jacobsthal’s binomial congruences, to the
case of binomial coefficients with negative entries.

Example 3.3. For λ= (2), the numbers (20) specialize to the Delannoy numbers

A(2),1(n)=
∑
k∈Z

(n1
k

)(n1+n2−k
n1

)
,

which, for n1, n2 > 0, count the number of lattice paths from (0, 0) to (n1, n2) with
steps (1, 0), (0, 1) and (1, 1). The Delannoy numbers do not satisfy (21) or (22),
thus demonstrating the necessity of the condition `> 2 in Theorem 3.2. They do
satisfy (21) modulo pr , by virtue of Remark 1.4.

Example 3.4. The Apéry-like sequence

B(n)=
∑
k∈Z

(n
k

)2(n+k
k

)
, (23)

which satisfies recurrence (15) with (a, b, c) = (11, 3,−1), was introduced by
Apéry [Apéry 1979; van der Poorten 1979] along with (1) and used to (re)prove the
irrationality of ζ(2). By Theorem 3.1 with λ= (2, 1) and ε = 1, the numbers B(n)
are the diagonal coefficients of the rational function

1
(1− x1− x2)(1− x3)− x1x2x3

=

∑
n∈Z3

>0

B(n)xn. (24)

In addition to the binomial sum for B(n) given by Theorem 3.1, MacMahon’s master
theorem (Theorem 4.1) shows that B(n1, n2, n3) is the coefficient of xn1

1 xn2
2 xn3

3 in
the product (x1+ x2+ x3)

n1(x1+ x2)
n2(x2+ x3)

n3 . An application of Theorem 3.2
shows that, for n ∈ Z3 and integers r > 1, the supercongruences

B(pr n)≡ B(pr−1n) (mod p3r ) (25)

hold for all primes p > 5. In the diagonal case n1 = n2 = n3, this result was first
proved by Coster [1988].

Proceeding as in Remark 1.3, and using the curious identity

n∑
k=0

(n
k

)2(n+k
k

)
=

n∑
k=0

(−1)n+k
(n

k

)(n+k
k

)2
, (26)
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we find that B(−n)= (−1)n−1 B(n− 1) for n > 0. Consequently, (25) implies the
shifted supercongruences B(pr m− 1)≡ B(pr−1m− 1), which hold modulo p3r

for all primes p > 5 and were first proved in [Beukers 1985], along with (3). We
observe that, among the known Apéry-like numbers, the sequence B(n) and the
Apéry numbers (1) are the only ones to satisfy shifted supercongruences of the
form (3) in addition to the supercongruences of the form (2).

Example 3.5. As a result of Theorem 3.1 with λ= (3, 1) and ε = 1, the numbers

C(n)=
n∑

k=0

(n
k

)2(n+k
k

)(n+2k
k

)
are the diagonal coefficients of the rational function

1
(1− x1− x2− x3)(1− x4)− x1x2x3x4

.

By Theorem 3.2, it follows that C(pr n)≡ C(pr−1n) modulo p2r , for all primes p.
We note that this congruence does not, in general, hold modulo a larger power of
p, as is illustrated by C(5)= 4,009,657 6≡ 7= C(1) modulo 53. This demonstrates
that in Theorem 3.2(a) the modulus p2r of the congruences cannot, in general, be
replaced with p3r , even for p > 5.

Example 3.6. Next, we consider the sequences

Yd(n)=
n∑

k=0

(n
k

)d
. (27)

The numbers Y3(n) satisfy the recurrence (15) with (a, b, c)= (7, 2,−8) and are
known as Franel numbers [1894], while the numbers Y4(n), corresponding to
(a, b, c, d) = (6, 2,−64, 4) in (13), are sometimes referred to as Yang–Zudilin
numbers [Chan et al. 2010]. It follows from Theorem 3.1 with λ = (1, 1, . . . , 1)
and ε = 1 that

1
(1− x1)(1− x2) · · · (1− xd)− x1x2 · · · xd

=

∑
n∈Zd

>0

Yd(n)xn, (28)

where
Yd(n)=

∑
k>0

(n1
k

)(n2
k

)
· · ·

(nd
k

)
. (29)

It is proved in [Chan et al. 2010] that Yd(pn)≡Yd(n)modulo p3 for primes p> 5 if
d>2. These congruences are generalized to the multivariate setting by Theorem 3.2,
which shows that, if d > 2, then, for n ∈ Zd

>0 and integers r > 1,

Yd(pr n)≡ Yd(pr−1n) (mod p3r ) (30)
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for primes p > 5. Note that

Y2(n)=
∑
k∈Z

(n1
k

)(n2
k

)
=

(n1+n2
n1

)
.

Hence, congruence (30) includes, in particular, the appealing binomial congruence( pa
pb

)
≡

(a
b

)
(mod p3),

which is attributed to W. Ljunggren [Granville 1997] and which generalizes the
classical congruences by C. Babbage, J. Wolstenholme and J. W. L. Glaisher. It
is further refined by E. Jacobsthal’s binomial congruence, which we review in
Lemma 5.1 and which the proof of Theorem 3.2 crucially depends on.

Let us conclude this section with two conjectural examples, which suggest that
our results are not an isolated phenomenon.

Example 3.7. As noted in the introduction for the Apéry numbers, there is no
unique rational function of which a given sequence is the diagonal. For instance,
the Franel numbers Y3(n) are also the diagonal coefficients of the rational function

1
1− (x1+ x2+ x3)+ 4x1x2x3

. (31)

A rational function F(x) is said to be positive if its Taylor coefficients (4) are all
positive. The Askey–Gasper rational function (31), whose positivity is proved in
[Askey and Gasper 1977] and [Gillis et al. 1983], is an interesting instance of a
rational function on the boundary of positivity (if the 4 is replaced by 4+ ε, for any
ε > 0, then the resulting rational function is not positive). The present work was, in
part, motivated by the observation [Straub and Zudilin 2014] that for several of the
rational functions, which have been shown or conjectured to be on the boundary
of positivity, the diagonal coefficients are arithmetically interesting sequences
with links to modular forms. Note that the Askey–Gasper rational function (31)
corresponds to the choice λ= (3) and α=−4 in Theorem 3.1, which makes its Taylor
coefficients G(n)= A(3),−4(n) explicit. We also note that an application of MacMa-
hon’s master theorem (Theorem 4.1) shows that G(n1, n2, n3) is the coefficient of
xn1

1 xn2
2 xn3

3 in the product (x1− x2− x3)
n1(x2− x1− x3)

n2(x3− x1− x2)
n3 . Although

it is unclear how one might adjust the proof of Theorem 3.2, numerical evidence
suggests that the coefficients G(n) satisfy supercongruences modulo p3r as well.

Conjecture 3.8. The coefficients G(n) of the rational function (31) satisfy, for
primes p > 5 and integers r > 1,

G(pr n)≡ G(pr−1n) (mod p3r ).
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Example 3.9. Remarkably, the previous example has a four-variable analog, which
involves the Almkvist–Zudilin numbers Z(n), introduced in (17). Namely, the
numbers Z(n) are the diagonal coefficients of the unexpectedly simple rational
function

1
1− (x1+ x2+ x3+ x4)+ 27x1x2x3x4

, (32)

as can be deduced from Theorem 3.1 with λ= (4) and α =−27. Again, numerical
evidence suggests that the coefficients Z(n) of (32) satisfy supercongruences modulo
p3r . This is particularly interesting, since even the univariate congruences (18) are
conjectural at this time.

Conjecture 3.10. The coefficients Z(n) of the rational function (32) satisfy, for
primes p > 5 and integers r > 1,

Z(pr n)≡ Z(pr−1n) (mod p3r ).

Remark 3.11. The rational functions (31) and (32) involved in the previous exam-
ples make it natural to wonder whether supercongruences might similarly exist for
the family of rational functions given by

1
1− (x1+ x2+ · · ·+ xd)+ (d − 1)d−1x1x2 · · · xd

.

This does not, however, appear to be the case for d > 5. In fact, no value b 6= 0 in

1
1− (x1+ x2+ · · ·+ xd)+ bx1x2 · · · xd

appears to give rise to supercongruences (by computing coefficients, we have ruled
out supercongruences modulo p2r for integers |b|< 100,000 and d 6 25).

4. The Taylor coefficients

This section is devoted to proving Theorem 3.1. Before we give a general proof,
we offer an alternative approach based on MacMahon’s master theorem, to which
we refer at several occasions in this note and which offers additional insight into
the Taylor coefficients by expressing them as coefficients of certain polynomials
(see also Remark 1.4). This approach, which we apply here to prove formula (8), is
based on the following result of P. MacMahon [1915], coined by himself “a master
theorem in the Theory of Permutations”. Here, [xm

] denotes the coefficient of
xm1

1 · · · x
mn
n in the expansion of what follows.
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Theorem 4.1. For x= (x1,. . .,xn), matrices A∈Cn×n and m= (m1,. . .,mn)∈Zn
>0,

[xm
]

n∏
i=1

( n∑
j=1

Ai, j x j

)mi

= [xm
]

1
det(In − AX)

,

where X is the diagonal n× n matrix with entries x1, . . . , xn .

Proof of formula (8). We note that

1
(1− x1− x2)(1− x3− x4)− x1x2x3x4

=
1

det(I4−M X)
,

where M and X are the matrices

M =


1 1 1 0
1 1 0 0
0 0 1 1
0 1 1 1

 , X =


x1

x2

x3

x4

 .
An application of MacMahon’s master theorem therefore shows that the coefficients
A(n), with n= (n1, n2, n3, n4), are given by

A(n)= [xn
](x1+ x2+ x3)

n1(x1+ x2)
n2(x3+ x4)

n3(x2+ x3+ x4)
n4 .

In order to extract the requisite coefficient, we expand the right-hand side as

(x1+ x2+ x3)
n1(x1+ x2)

n2(x3+ x4)
n3(x2+ x3+ x4)

n4

=

∑
k1,k4

(n1
k1

)(n4
k4

)
xn4−k4

2 xn1−k1
3 (x1+ x2)

k1+n2(x3+ x4)
n3+k4

=

∑
k1,k2,k3,k4

(n1
k1

)(n4
k4

)(k1+n2
k2

)(n3+k4
k3

)
xk1+n2−k2

1 xn4−k4+k2
2 xn1−k1+k3

3 xn3+k4−k3
4 .

The summand contributes to xn1
1 xn2

2 xn3
3 xn4

4 if and only if ni − ki = n j − k j for all
i, j = 1, . . . , 4. Writing k = ni − ki for the common value, we obtain

A(n1, n2, n3, n4)=
∑
k∈Z

(n1
k

)(n4
k

)(n1−k+n2
n2−k

)(n3+n4−k
n3−k

)
,

which is equivalent to the claimed (8). �

Proof of Theorem 3.1. Recall the elementary formula

1
(1− x)k+1 =

∑
n>0

(
n+ k

k

)
xn,
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for integers k > 0. Combined with an application of the multinomial theorem, it
implies that

1
(1− x1− · · ·− xρ)k+1 =

∑
n1>0

· · ·

∑
nρ>0

(n1+· · ·+nρ+k
n1, . . . , nρ, k

)
xn1

1 · · · x
nρ
ρ ,

and hence

(x1 · · · xρ)k

(1− x1− · · ·− xρ)k+1 =
∑
n1>0

· · ·

∑
nρ>0

(n1+· · ·+nρ−(ρ−1)k
n1−k, . . . , nρ−k, k

)
xn1

1 · · · x
nρ
ρ . (33)

Here, we used that the multinomial coefficient vanishes if k > min(n1, . . . , nρ).
Geometrically expanding the left-hand side of (19), we find that(∏̀

j=1

[
1−

λ j∑
r=1

xs( j)+r

]
−αx1x2 · · · xd

)−1

=

∑
k>0

αk
∏̀
j=1

(xs( j)+1 · · · xs( j)+λ j )
k[

1−
∑λ j

r=1 xs( j)+r
]k+1 ,

which we further expand using (33) to get

∑
k>0

αk
∑

n∈Zd
>0

xn
∏̀
j=1

(ns( j)+1+· · ·+ns( j)+λ j−(λ j−1)k
ns( j)+1−k, . . . , ns( j)+λ j−k, k

)
=

∑
n∈Zd

>0

Aλ,α(n)xn,

with Aλ,α(n) as in (20). �

5. The supercongruences

Our proof of Theorem 3.2, which generalizes the supercongruence in Theorem 1.2,
builds upon the respective proofs in [Gessel 1982] and [Beukers 1985].

We need a number of lemmas in preparation. To begin with, we prove the follow-
ing extension of Jacobsthal’s binomial congruence [Gessel 1983; Granville 1997] to
binomial coefficients which are allowed to have negative entries (see Remark 1.3).

Lemma 5.1. For all primes p and all integers a, b,(ap
bp

)/(a
b

)
≡ ε (mod pq), (34)

where q is the power of p dividing p3ab(a− b)/12 and where ε = 1, unless p = 2
and (a, b)≡ (0, 1) modulo 2, in which case ε =−1.

Proof. Congruence (34), for nonnegative a, b, is proved in [Gessel 1983] (alterna-
tively, a proof for p > 5 is given in [Granville 1997]). We therefore only indicate
how to extend (34) to negative values of a or b. Note that, for all a, b ∈ Z with
b 6= 0, (a

b

)
=

a
b

(a−1
b−1

)
,
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and hence (ap
bp

)/(a
b

)
=

(ap−1
bp−1

)/(a−1
b−1

)
.

We claim that the extension of (34) to the case a<0 and b<0 therefore follows from(a
b

)
=

(
−b−1
−a−1

)
(−1)a−b sgn(a− b), (35)

where sgn is defined as in Remark 1.3. This is clear for p> 3. Write ε(a, b)=−1 if
(a, b)≡ (0, 1)modulo 2 and ε(a, b)=1 otherwise. It is straightforward to check that

(−1)a−bε(−b,−a)= ε(a, b),

which shows the case p = 2.
Similarly, if a < 0 and b > 0, then we may apply(a

b

)
=

(b−a−1
−a−1

)
(−1)b+1 sgn(a− b) sgn(−a− 1)

as well as

(−1)bε(b− a,−a)= ε(a, b).

A derivation of the above binomial identities, which are valid for all a, b ∈ Z, may
be found in [Sprugnoli 2008]. �

Much simpler and better known is the following congruence:

Lemma 5.2. Let p > 5 be a prime, and ε ∈ {−1, 1}. Then, for all integers r > 0,

pr
−1∑

k=1, p-k

εk

k2 ≡ 0 (mod pr ). (36)

Proof. Let α be an odd integer, not divisible by p, such that α2
6≡ 1 modulo p (take,

for instance, α = 3). Then,

1
α2

pr
−1∑

k=1, p-k

εk

k2 =

pr
−1∑

k=1, p-k

εk

(αk)2
≡

pr
−1∑

k=1, p-k

εk

k2 (mod pr ),

since the second and third sum run over the same residues modulo pr (note that
εαk
= εk since α is odd). As α2 is not divisible by p, the congruence (36) follows. �

The next lemmas establish properties of the summands of the numbers Aλ,ε(n) as
introduced in (20), which will be needed in our proof of Theorem 3.2. Throughout
this section, we fix the notation of Theorem 3.2, letting λ = (λ1, . . . , λ`) ∈ Z`>0
with d = λ1+ · · ·+ λ`, and setting s( j)= λ1+ · · ·+ λ j−1.
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Lemma 5.3. Let n ∈ Zd , k ∈ Z, and define

Aλ(n; k)=
∏̀
j=1

(
ns( j)+1+ · · ·+ ns( j)+λ j − (λ j − 1)k

ns( j)+1− k, . . . , ns( j)+λ j − k, k

)
. (37)

(a) If `> 2, then, for all primes p and integers r > 1,

Aλ(pr n; pk)≡ Aλ(pr−1n; k) (mod p2r ). (38)

(b) If `> 2 and max(λ1, . . . , λ`)6 2, then, for primes p > 5 and integers r > 1,

Aλ(pr n; pk)≡ Aλ(pr−1n; k) (mod p3r ). (39)

Proof. We show (38) and (39) by proving that for integers r, s > 1 and k such
that p - k,

Aλ(pr n; psk)≡ Aλ(pr−1n; ps−1k) (mod pαr ), (40)

where α = 2 or α = 3 depending on whether max(λ1, . . . , λ`)6 2.
Let us first consider the case `> 2 and max(λ1, . . . , λ`)6 2. Then each factor

of (37) is a single binomial, if λ j = 1, or of the form(m1
k

)(m1+m2−k
m1

)
,

if λ j = 2. Let p be a prime such that p> 5. It follows from Jacobsthal’s congruence
(34) that ( pr m1

psk

)/( pr−1m1
ps−1k

)
≡ 1 (mod pr+s+min(r,s))

as well as( pr (m1+m2)− psk
pr m1

)/( pr−1(m1+m2)− ps−1k
pr−1m1

)
≡ 1 (mod pr+2 min(r,s)).

Consequently,
Aλ(pr n; psk)= cAλ(pr−1n; ps−1k) (41)

with c ≡ 1 modulo pr+2 min(r,s). If s > r , this proves congruence (40) with α = 3.
On the other hand, suppose s 6 r . Since p - k, we have( pr n

psk

)
= pr−s n

k

( pr n−1
psk−1

)
≡ 0 (mod pr−s).

Since `>2, it follows that p2(r−s) divides Aλ(pr n; psk). Since (r+2s)+2(r−s)=
3r , the congruence (40), with α = 3, now follows from (41). This shows (b).

Let us now turn to the proof of (a). Assume that `> 2. For any positive integer ρ,(m1+· · ·+mρ−(ρ−1)k
m1−k, . . . ,mρ−k, k

)
=

(m1
k

)(m1+(m2−k)+· · ·+(mρ−k)
m1,m2−k, . . . ,mρ−k

)
,
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so that, as in the previous case, p`(r−s) divides Aλ(pr n; psk) if r > s.
Initially, assume that p > 3. By further unraveling the multinomial coefficient

as a product of binomial coefficients and applying Jacobsthal’s congruence (34) as
above, we find that

Aλ(pr n; psk)= cAλ(pr−1n; ps−1k)

with c ≡ 1 modulo p3 min(r,s)−δ, and δ = 0 if p > 5 and δ = 1 if p = 3. In light of
p2(r−s) dividing Aλ(pr n; psk) if r > s, we conclude congruence (40) with α = 2.

Now, consider p = 2. If r > 2 and s > 2, then the sign ε in Jacobsthal’s
congruence (34) is always +1 when applying the above approach, and we again
find that (40) holds with α = 2. On the other hand, if r = 1, then it suffices to use
the (combinatorial) congruence( pa

pb

)
≡

(a
b

)
(mod p2),

which holds for all primes p. It remains to consider the case r > 2 and s = 1.
Applying the approach employed for p > 3, we find that

Aλ(pr n; psk)= cAλ(pr−1n; ps−1k), (42)

where c ≡ ±1 modulo p3 min(r,s)−2
= 2. If max(λ1, . . . , λ`) 6 2, then we, in fact,

have c ≡ (−1)` modulo pr+2 min(r,s)−2
= 2r . Since Aλ(pr n; psk) is divisible by

p`(r−1), congruence (40) trivially holds with α= 2 if `> 3. Hence, we may assume
that `= 2. If max(λ1, λ2)6 2, then c ≡ 1 modulo 2r in (42) and, since both sides
of (42) are divisible by 22r−2, congruence (40) with α = 2 again follows. Finally,
suppose that there is j such that λ j > 3. Then the factor corresponding to j in (37)
is of the form(m1

k

)(m1+m2−k
m1

)(m1+m2+m3−2k
m3−k

)( m1+· · ·+mρ−(ρ−1)k
m1+m2+m3−2k,m4−k, . . .

)
.

Note that for even m1,m2,m3 and odd k, the third binomial in this product is even.
Hence, Aλ(pr n; psk) is divisible by 22(r−1)+1

= 22r−1. In light of (42), this proves
congruence (40) with α = 2. �

The next congruence, with k > 0, has been used in [Beukers 1985]. For our
present purpose, we extend it to the case of negative k.

Lemma 5.4. For primes p, integers m, k and integers r > 1,( pr m−1
k

)
(−1)k ≡

( pr−1m−1
[k/p]

)
(−1)[k/p] (mod pr ). (43)
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Proof. First, assume that k > 0. Following [Beukers 1985, Lemma 2], we split
the defining product of the binomial coefficient, according to whether the index is
divisible by p or not, to obtain( pr m−1

k

)
=

k∏
j=1

pr m− j
j
=

k∏
j=1,p- j

pr m− j
j

[k/p]∏
λ=1

pr−1m− λ
λ

=

( pr−1m−1
[k/p]

) k∏
j=1, p- j

pr m− j
j

.

Congruence (43), with k > 0, follows upon reducing modulo pr .
On the other hand, assume k < 0. Since (43) is trivial if m > 0, we let m 6 0.

We use the basic symmetry relation( pr m−1
k

)
=

( pr m−1
pr m−k−1

)
and note that, since k < 0, the binomials are zero unless pr m− k− 1> 0. Observe
that for all integers k,m,

[(pr m− k− 1)/p] = pr−1m+ [−(k+ 1)/p] = pr−1m− [k/p] − 1. (44)

Thus, assuming pr m− 1− k > 0, we may apply (43) to find( pr m−1
k

)
(−1)k =

( pr m−1
pr m−k−1

)
(−1)k

≡

( pr−1m−1
pr−1m−[k/p]−1

)
(−1)[k/p](−1)pr m+pr−1m

=

( pr−1m−1
[k/p]

)
(−1)[k/p](−1)pr m+pr−1m (mod pr ).

It only remains to note that pr m + pr−1m = pr−1(p+ 1)m is even unless p = 2
and r = 1. Hence, in all cases, (−1)pr m+pr−1m

≡ 1 modulo pr . �

Lemma 5.5. For primes p, integers m1,m2, k and integers r > 1,( pr m1+ pr m2−k−1
pr m1

)
≡

( pr−1m1+ pr−1m2−[k/p]−1
pr−1m1

)
(mod pr ).

Proof. By an application of (11),(m1+m2−k−1
m1

)
= sgn(m2− k− 1)(−1)m2−k−1

(
−m1−1

m2−k−1

)
.

Since for all a ∈ Z, sgn(a)= sgn([a/p]), the claimed congruence therefore follows
from (44) and Lemma 5.4. �

The following generalizes [Beukers 1985, Lemma 3] to our needs:
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Lemma 5.6. Let p be a prime and n ∈ Zd .

• Let ak ∈ Zp, with k ∈ Z, be such that, for all l, s ∈ Z with s > 0,∑
[k/ps ]=l

ak ≡ 0 (mod ps).

• Let C(n; k) be such that, for all k, r ∈ Z with r > 0,

C(pr n; k)≡ C(pr−1n; [k/p]) (mod pr ). (45)

Then, for all r, l ∈ Z with r > 0,∑
[k/pr ]=l

akC(pr n; k)≡ 0 (mod pr ). (46)

Proof. The claim is trivial for r = 0. Fix r > 0 and assume, for the purpose of
induction on r , that the congruence (46) holds for the exponent r − 1 in place of r .
By the assumption (45) on C(n; k), we have that, modulo pr ,∑

[k/pr ]=l

akC(pr n; k)≡
∑
[k/pr ]=l

akC(pr−1n; [k/p])

=

∑
[m/pr−1]=l

( ∑
[k/p]=m

ak

)
C(pr−1n;m)

= p
∑

[m/pr−1]=l

bmC(pr−1n;m),

where bm is the sequence

bm =
1
p

∑
[k/p]=m

ak .

We note that, for all s, l ∈ Z with s > 0,∑
[m/ps ]=l

bm =
1
p

∑
[m/ps ]=l

∑
[k/p]=m

ak =
1
p

∑
[k/ps+1]=m

ak ≡ 0 (mod ps),

so that we may apply our induction hypothesis (46) with r − 1 to conclude∑
[k/pr ]=l

akC(pr n; k)= p
∑

[m/pr−1]=l

bmC(pr−1n;m)≡ 0 (mod pr ).

The claim therefore follows by induction. �

We are now in a comfortable position to prove Theorem 3.2.
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Proof of Theorem 3.2. In terms of the numbers Aλ,ε(n; k), defined in (37), we have

Aλ,ε(n)=
∑
k>0

εk Aλ(n; k)=
∑
s>0

Gs(n),

where
Gs(n)=

∑
p-k

ε psk Aλ(n; psk).

Suppose that ` > 2. Further, suppose that p > 3, or that p = 2 and ε = 1. Then
ε psk
= ε ps−1k , and it follows from Lemma 5.3 that, for s > 1,

Gs(pr n)≡ Gs−1(pr−1n) (mod p2r ).

In order to prove that Aλ,ε(pr n)≡ Aλ,ε(pr−1n) modulo p2r , it therefore remains
only to show that G0(pr n)≡ 0 modulo p2r . This, however, is immediate because,
as observed in the proof of Lemma 5.3, Aλ(pr n; k), with p - k, is divisible by p`r .
This proves congruence (21).

Now, suppose that `> 2 and max(λ1, . . . , λ`)6 2. Let p be a prime such that
p > 5. It again follows from ε psk

= ε ps−1k and Lemma 5.3 that, for s > 1,

Gs(pr n)≡ Gs−1(pr−1n) (mod p3r ).

To prove Aλ,ε(pr n)≡ Aλ,ε(pr−1n)modulo p3r , we have to show that G0(pr n)≡ 0
modulo p3r . As in the previous case, this is trivial if `> 3. We thus assume `= 2.

Note that, since max(λ1, . . . , λ`)6 2, each factor of Aλ(n; k) is of the form(m1
k

)
or

(m1
k

)(m1+m2−k
m1

)
.

Using the basic identity (m1
k

)
=

m1

k

(m1−1
k−1

)
,

it is clear that the numbers

Bλ(n; k)=
k2

n1n1+λ1

Aλ(n; k)

are integers. Moreover, it follows from Lemmas 5.4 and 5.5, and the fact that `= 2,
that the integers Cλ(n; k)= Bλ(n; k+ 1) satisfy, for all k, r ∈ Z with r > 0,

C(pr n; k)≡ C(pr−1n; [k/p]) (mod pr ).

If p - k then [(k− 1)/p] = [k/p] so that, in particular,

C(pr n, k− 1)≡ C(pr n, [k/p])≡ C(pr n; k) (mod pr ).
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By construction,

G0(pr n)= p2r n1n1+λ1

∑
p-k

εk

k2 C(pr n; k− 1),

so that in order to show that G0(pr n)≡ 0 modulo p3r , it suffices to prove∑
p-k

εk

k2 C(pr n; k)≡ 0 (mod pr ). (47)

Define ak = ε
k/k2, if p - k, and ak = 0 otherwise. Since p > 5, it follows from

Lemma 5.2 that, for all l, s ∈ Z with s > 0,

∑
[k/ps ]=l

ak =

ps
−1∑

k=1,p-k

εlps
+k

(lps + k)2
≡ εl

ps
−1∑

k=1,p-k

εk

k2 ≡ 0 (mod ps).

Hence, the conditions of Lemma 5.6 are met, allowing us to conclude that∑
p-k

εk

k2 C(pr n; k)=
∑

l

∑
[k/pr ]=l

akC(pr n; k)≡ 0 (mod pr ).

This shows (47) and completes our proof. �
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The image of Carmichael’s λ-function
Kevin Ford, Florian Luca and Carl Pomerance

We show that the counting function of the set of values of Carmichael’s λ-function
is x/(log x)η+o(1), where η = 1− (1+ log log 2)/(log 2)= 0.08607 . . . .

1. Introduction

Euler’s function ϕ assigns to a natural number n the order of the group of units of
the ring of integers modulo n. It is of course ubiquitous in number theory, as is its
close cousin λ, which gives the exponent of the same group. Already appearing in
Gauss’s Disquisitiones Arithmeticae, λ is commonly referred to as Carmichael’s
function, after R. D. Carmichael, who studied it about a century ago. (A Carmichael
number n is composite but nevertheless satisfies an

≡ a (mod n) for all integers a,
just as primes do. Carmichael discovered these numbers, which are characterized
by the property that λ(n) | n− 1.)

It is interesting to study ϕ and λ as functions. For example, how easy is it to
compute ϕ(n) or λ(n) given n? It is indeed easy if we know the prime factorization
of n. Interestingly, we know the converse. By [Miller 1976], given either ϕ(n) or
λ(n), it is easy to find the prime factorization of n.

Within the realm of “arithmetic statistics” one can also ask for the behavior of ϕ
and λ on typical inputs n, and ask how far this varies from their values on average.
For ϕ, this type of question goes back to the dawn of the field of probabilistic
number theory with the seminal paper of Schoenberg [1928], while some results in
this vein for λ are found in [Erdős et al. 1991].

One can also ask about the value sets of ϕ and λ. That is, what can one say about
the integers which appear as the order or exponent of the groups (Z/nZ)∗?

These are not new questions. Let Vϕ(x) denote the number of positive integers
n6 x for which n=ϕ(m) for some m. Pillai [1929] showed Vϕ(x)6 x/(log x)c+o(1)

as x→∞, where c= (log 2)/e. On the other hand, since ϕ(p)= p−1, Vϕ(x) is at
least π(x+1) (the number of primes in [1, x+1]), and so Vϕ(x)> (1+o(1))x/ log x .

Ford was supported in part by National Science Foundation grant DMS-1201442. Pomerance was
supported in part by NSF grant DMS-1001180.
MSC2010: primary 11N64; secondary 11A25, 11N25.
Keywords: Carmichael’s function, Carmichael’s lambda function.
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In one of his earliest papers, Erdős [1935] showed that the lower bound is closer to
the truth: we have Vϕ(x)= x/(log x)1+o(1) as x→∞. This result has since been
refined by a number of authors, including Erdős and Hall, Maier and Pomerance,
and Ford; see [Ford 1998] for the current state of the art.

Essentially the same results hold for the sum-of-divisors function σ , but only
recently were we able to show that there are infinitely many numbers that are simulta-
neously values of ϕ and of σ [Ford et al. 2010] , thus settling an old problem of Erdős.

In this paper, we address the range problem for Carmichael’s function λ. From
the definition of λ(n) as the exponent of the group (Z/nZ)∗, it is immediate that
λ(n) | ϕ(n) and that λ(n) is divisible by the same primes as ϕ(n). We also have

λ(n)= lcm[λ(pa) : pa
‖ n],

where λ(pa)= pa−1(p− 1) for odd primes p with a > 1 or p = 2 and a ∈ {1, 2}.
Further, λ(2a)= 2a−2 for a > 3. Put Vλ(x) for the number of integers n 6 x with
n= λ(m) for some m. Note that since p−1= λ(p) for all primes p, it follows that

Vλ(x)> π(x + 1)= (1+ o(1))
x

log x
(x→∞), (1-1)

as with ϕ. In fact, one might suspect that the story for λ is completely analogous
to that of ϕ. As it turns out, this is not the case.

It is fairly easy to see that Vϕ(x)= o(x) as x→∞, since most numbers n are
divisible by many different primes, so most values of ϕ(n) are divisible by a high
power of 2. This argument fails for λ, and in fact it is not immediately obvious
that Vλ(x)= o(x) as x→∞. Such a result was first shown in [Erdős et al. 1991],
where it was established that there is a positive constant c with Vλ(x)� x/(log x)c.
In [Friedlander and Luca 2007], a value of c in this result was computed. It was
shown there that, as x→∞,

Vλ(x)6
x

(log x)α+o(1) holds with α = 1− e(log 2)/2= 0.057913 . . . . (1-2)

The exponents on the logarithms in the lower and upper bounds (1-1) and (1-2)
were brought closer in the recent paper [Luca and Pomerance 2014], where it was
shown that, as x→∞,

x
(log x)0.359052 < Vλ(x)6

x
(log x)η+o(1) with η= 1−

1+ log log 2
log 2

= 0.08607 . . . .

In Section 2.1 of that paper, a heuristic was presented suggesting that the correct
exponent of the logarithm should be the number η. In the present paper, we confirm
the heuristic from [Luca and Pomerance 2014] by proving the following theorem:

Theorem 1. We have Vλ(x)= x(log x)−η+o(1) as x→∞.
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Just as results on Vϕ(x) can be generalized to similar multiplicative functions,
such as σ , we would expect our result to be generalizable to functions similar to λ
enjoying the property f (mn)= lcm[ f (m), f (n)] when m, n are coprime.

Since the upper bound in Theorem 1 was proved in [Luca and Pomerance 2014],
we need only show that Vλ(x)> x/(log x)η+o(1) as x→∞. We remark that in our
lower bound argument we will count only squarefree values of λ.

The same number η in Theorem 1 appears in an unrelated problem. As shown
by Erdős [1960], the number of distinct entries in the multiplication table for the
numbers up to n is n2/(log n)η+o(1) as n→∞. Similarly, the asymptotic density
of the integers with a divisor in [n, 2n] is 1/(log n)η+o(1) as n→∞. See [Ford
2008a; 2008b] for more on these kinds of results. As explained in the heuristic
argument presented in [Luca and Pomerance 2014], the source of η in the λ-range
problem comes from the distribution of integers n with about (1/ log 2) log log n
prime divisors: the number of these numbers n ∈ [2, x] is x/(log x)η+o(1) as x→∞.
Curiously, the number η arises in the same way in the multiplication table problem:
most entries in an n-by-n multiplication table have about (1/ log 2) log log n prime
divisors (a heuristic for this is given in the introduction of [Ford 2008a]).

We mention two related unsolved problems. Several papers [Banks et al. 2004;
Banks and Luca 2011; Freiberg 2012; Pollack and Pomerance 2014] have discussed
the distribution of numbers n such that n2 is a value of ϕ; in [Pollack and Pomerance
2014] it was shown that the number of such n 6 x is between x/(log x)c1 and
x/(log x)c2 , where c1 > c2 > 0 are explicit constants. Is the count of the form
x/(log x)c+o(1) for some number c? The numbers c1, c2 in [Pollack and Pomerance
2014] are not especially close. The analogous problem for λ is wide open. In fact,
it seems that a reasonable conjecture (from [Pollack and Pomerance 2014]) is that
asymptotically all even numbers n have n2 in the range of λ. On the other hand, it
has not been proved that there is a lower bound of the shape x/(log x)c with some
positive constant c for the number of such numbers n 6 x .

2. Lemmas

Here we present some estimates that will be useful in our argument. To fix notation,
for a positive integer q and an integer a, we let π(x; q, a) be the number of primes
p 6 x in the progression p ≡ a (mod q), and put

E∗(x; q)=max
y6x

∣∣∣∣π(y; q, 1)−
li(y)
ϕ(q)

∣∣∣∣,
where li(y)=

∫ y
2 dt/ log t .

We also let P+(n) and P−(n) denote the largest and smallest prime factors of n,
respectively, with the convention that P−(1) =∞ and P+(1) = 0. Let ω(m) be
the number of distinct prime factors of m, and let τk(n) be the k-th divisor function;
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that is, the number of ways to write n = d1 · · · dk with d1, . . . , dk positive integers.
Let µ denote the Möbius function.

First, we present an estimate for the sum of reciprocals of integers with a given
number of prime factors.

Lemma 2.1. Suppose x is large. Uniformly for 16 h 6 2 log log x ,∑
P+(b)6x
ω(b)=h

µ2(b)
b
�
(log log x)h

h!
.

Proof. The upper bound follows very easily from∑
P+(b)6x
ω(b)=h

µ2(b)
b
6

1
h!

(∑
p6x

1
p

)h

=
(log log x + O(1))h

h!
�
(log log x)h

h!

upon using Mertens’ theorem and the given upper bound on h. For the lower bound,
we have ∑

P+(b)6x
ω(b)=h

µ2(b)
b
>

1
h!

(∑
p6x

1
p

)h[
1−

(h
2

)(∑
p6x

1
p

)−2∑
p

1
p2

]
.

Again, the sums of 1/p are each log log x+O(1). The sum of 1/p2 is smaller than
0.46, hence for large enough x the bracketed expression is at least 0.08, and the
desired lower bound follows. �

Next, we recall (see e.g., [Davenport 2000, Chapter 28]) the well-known theorem
of Bombieri and Vinogradov, and then we prove a useful corollary.

Lemma 2.2. For any number A > 0 there is a number B > 0 so that for x > 2∑
q6
√

x(log x)−B

E∗(x; q)�A
x

(log x)A .

Corollary 1. For any integer k > 1 and number A > 0 we have for all x > 2 that∑
q6x1/3

τk(q)E∗(x; q)�k,A
x

(log x)A .

Proof. Apply Lemma 2.2 with A replaced by 2A+ k2, Cauchy’s inequality, the
trivial bound |E∗(x; q)| � x/q and the easy bound∑

q6y

τ 2
k (q)
q
�k (log y)k

2
(2-1)
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to get( ∑
q6x1/3

τk(q)E∗(x; q)
)2

6

( ∑
q6x1/3

τk(q)2|E∗(x; q)|
)( ∑

q6x1/3

|E∗(x; q)|
)

�k,A x
( ∑

q6x1/3

τk(q)2

q

)
x

(log x)2A+k2

�k,A
x2

(log x)2A ,

which leads to the desired conclusion. �

Finally, we need a lower bound from sieve theory.

Lemma 2.3. There are absolute constants c1 > 0 and c2 > 2 so that for y > c2,
y3 6 x , and any even positive integer b, we have∑

n∈(x,2x]
bn+1 prime
P−(n)>y

1>
c1bx

ϕ(b) log(bx) log y
− 2

∑
m6y3

3ω(m)E∗(2bx; bm).

Proof. We apply a standard lower bound sieve to the set

A=
{
`−1

b
: ` prime, ` ∈ (bx + 1, 2bx], `≡ 1 (mod b)

}
.

Letting Ad be the set of elements of A divisible by a squarefree integer d , we have
|Ad | = Xg(d)/d + rd , where

X =
li(2bx)− li(bx + 1)

ϕ(b)
, g(d)=

∏
p | d
p - b

p
p− 1

, |rd |6 2E∗(2bx; db).

It follows that for 26 v < w,∑
v6p<w

g(p)
p

log p = log
w

v
+ O(1),

the implied constant being absolute. Apply [Halberstam and Richert 1974, Theo-
rem 8.3] with q = 1, ξ = y3/2 and z = y, observing that the condition �2(1, L) on
page 142 of that work holds with an absolute constant L . With the function f (u)
as defined on pages 225–227 there, we have f (3)= 2

3 eγ log 2> 4
5 . Then with B19

the absolute constant in Theorem 8.3 of that work, we have

f (3)− B19
L

(log ξ)1/14 >
1
2
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for large enough c2. We obtain the bound

#{x < n 6 2x : bn+ 1 prime, P−(n) > y}

>
X
2

∏
p6y

(
1−

g(p)
p

)
−

∑
m6ξ2

3ω(m)|rm |

>
c1bx

ϕ(b) log(bx) log y
− 2

∑
m6y3

3ω(m)E∗(2bx; bm). �

3. The set-up

If n = λ(p1 p2 · · · pk), where p1, p2, . . . , pk are distinct primes, then we have
n = lcm[p1 − 1, p2 − 1, . . . , pk − 1]. If we further assume that n is squarefree
and consider the Venn diagram of the sets S1, . . . , Sk of the prime factors of
p1−1, . . . , pk−1, respectively, then this equation gives an ordered factorization of
n into 2k

−1 factors (some of which may be the trivial factor 1). Here we “see” the
shifted primes pi − 1 as products of certain subsequences of 2k−1 of these factors.
Conversely, given n and an ordered factorization of n into 2k

− 1 factors, we can
ask how likely it is for those k products of 2k−1 factors to all be shifted primes.
Of course, this is not likely at all, but if n has many prime factors, and so many
factorizations, the odds that there is at least one such “good” factorization improve.
For example, when k = 2, we factor a squarefree number n as a1a2a3, and we
ask for a1a2+ 1= p1 and a2a3+ 1= p2 to both be prime. If so, we would have
n = λ(p1 p2). The heuristic argument from [Luca and Pomerance 2014] was based
on this idea. In particular, if a squarefree n is even and has at least θk log log n
odd prime factors (where θk > k/ log(2k

−1) is fixed and θk→ 1/ log 2 as k→∞),
then there are so many factorizations of n into 2k

− 1 factors that it becomes likely
that n is a λ-value. The lower bound proof from [Luca and Pomerance 2014]
concentrated just on the case k = 2, but here we attack the general case. As in that
work, we let r(n) be the number of representations of n as the λ of a number with
k primes. To see that r(n) is often positive, we show that its average value is large,
and that the average value of r(n)2 is not much larger. Our conclusion will follow
from Cauchy’s inequality.

Let k > 2 be a fixed integer, let x be sufficiently large (in terms of k), and put

y = exp
{

log x
200k log log x

}
, l =

⌊
k

(2k − 1) log(2k − 1)
log log y

⌋
. (3-1)

For n 6 x , let r(n) be the number of representations of n of the form

n =
k−1∏
i=0

ai

2k
−1∏

j=1

b j , (3-2)
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where P+(b j )6 y< P−(ai ) for all i and j , where 2 |b2k−1, whereω(b j )= l for each
j , where ai > 1 for all i , and where furthermore ai Bi + 1 is prime for all i , where

Bi =
∏

b j/2i c odd

b j . (3-3)

Observe that each Bi is even since it is a multiple of b2k−1 (because b(2k
−1)/2i

c=

2k−i
−1 is odd), each Bi is the product of 2k−1 of the numbers b j , and that every b j

divides B0 · · · Bk−1. Also, if n is squarefree and r(n) > 0, then the primes ai Bi + 1
are all distinct, and it follows that

n = λ
(k−1∏

i=0

(ai Bi + 1)
)
;

therefore such n 6 x are counted by Vλ(x). We count how often r(n) > 0 using
Cauchy’s inequality in the following standard way:

#
{
2−2k x < n 6 x : µ2(n)= 1, r(n) > 0

}
>

S2
1

S2
, (3-4)

where
S1 =

∑
2−2k x<n6x

µ2(n)r(n), S2 =
∑

2−2k x<n6x

µ2(n)r2(n).

Our application of Cauchy’s inequality is rather sharp, as we will show below that
r(n) is approximately 1 on average over the kind of integers we are interested in,
both in mean and in mean-square. More precisely, in the next section, we prove

S1�
x

(log x)βk (log log x)Ok(1)
, (3-5)

and in the final section we prove

S2�
x(log log x)Ok(1)

(log x)βk
, (3-6)

where

βk = 1−
k

log(2k − 1)
(1+ log log(2k

− 1)− log k). (3-7)

Together, the inequalities (3-4), (3-5) and (3-6) imply that

Vλ(x)�
x

(log x)βk (log log x)Ok(1)
.

We deduce the lower bound of Theorem 1 by noting that limk→∞ βk = η.
Throughout, constants implied by the symbols O , �, �, and � may depend

on k, but not on any other variable.
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4. The lower bound for S1

For convenience, when using the sieve bound in Lemma 2.3, we consider a slightly
larger sum S′1 than S1, namely

S′1 :=
∑
n∈N

r(n),

where N is the set of n∈ (2−2k x, x] of the form n=n0n1 with P+(n0)6 y< P−(n1)

and n0 squarefree. That is, in S′1 we no longer require the numbers a0, . . . , ak−1

in (3-2) to be squarefree. The difference between S1 and S′1 is very small; indeed,
putting h = 2k

+k−1, note that r(n)6 τh(n), so that we have by (3-2) the estimate

S′1− S1 6
∑
n6x

∃p>y:p2
|n

τh(n)6
∑
p>y

∑
n6x
p2
|n

τh(n)6
∑
p>y

τh(p2)
∑

m6x/p2

τh(m)

6
∑
p>y

τh(p2)
x
p2

∑
m6x

τh(m)
m
�

x(log x)h

y
. (4-1)

Here we have used the inequality τh(uv)6 τh(u)τh(v), as well as the easy bound∑
m6x

τh(m)
m
� (log x)h, (4-2)

which is similar to (2-1). By (3-2), the sum S′1 counts the number of (2k−1
+k)-tuples

(a0, . . . , ak−1, b1, . . . , b2k−1) satisfying

2−2k x < a0 · · · ak−1b1 · · · b2k−1 6 x (4-3)

and with P+(b j )6 y < P+(ai ) for every i and j , b1 · · · b2k−1 squarefree, 2 | b2k−1,
ω(b j )= l for every j , ai > 1 for every i , and ai Bi + 1 prime for every i , where Bi

is defined in (3-3). Fix numbers b1, . . . , b2k−1. Then

b1 · · · b2k−1 6 y(2
k
−1)l 6 y2 log log x

= x1/100k . (4-4)

In the above, we used the fact that k 6 2 log(2k
− 1). Fix also A0, . . . , Ak−1, each

a power of 2 exceeding x1/2k , such that

x
2b1 · · · b2k−1

< A0 · · · Ak−1 6
x

b1 · · · b2k−1
. (4-5)

Then (4-3) holds whenever Ai/2< ai 6 Ai for each i . By Lemma 2.3, using the
facts that Bi/ϕ(Bi )> 2 (because Bi is even) and Ai Bi 6 x (a consequence of (4-5)),
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we deduce that the number of choices for each ai is at least

c1 Ai

log x log y
− 2

∑
m6y3

3ω(m)E∗(Ai Bi ;m Bi ).

Using the elementary inequality

k∏
j=1

max(0, x j − y j )>
k∏

j=1

x j −

k∑
i=1

yi

∏
j 6=i

x j ,

valid for any nonnegative real numbers x j , y j , we find that the number of admissible
k-tuples (a0, . . . , ak−1) is at least

ck
1 A0 · · · Ak−1

(log x log y)k
−

2ck−1
1 A0 · · · Ak−1

(log x log y)k−1

k−1∑
i=0

1
Ai

∑
m6y3

3ω(m)E∗(Ai Bi ;m Bi )

= M(A, b)− R(A, b),

say. By symmetry and (4-5),∑
A,b

R(A, b)

�
x

(log x log y)k−1

∑
b

1
b1 · · · b2k−1

∑
A

1
A0

∑
m6y3

3ω(m)E∗(A0 B0;m B0), (4-6)

where the sum on b is over all (2k
− 1)−tuples satisfying b1 · · · b2k−1 6 x1/100k .

Write b1 · · · b2k−1= B0 B ′0, where B ′0=b2b4 · · · b2k−2. Given B0 and B ′0, the number
of corresponding tuples (b1, . . . , b2k−1) is at most τ2k−1(B0)τ2k−1−1(B ′0). Suppose
D/2< B0 6 D, where D is a power of 2. Since E∗(x; q) is an increasing function
of x , E∗(A0 B0;m B0)6 E∗(A0 D;m B0). Also, 3ω(m) 6 τ3(m) and∑

B ′06x

τ2k−1−1(B ′0)
B ′0

� (log x)2
k−1
−1

(this is (4-2) with h replaced by 2k−1
− 1). We therefore deduce that∑

A,b

R(A, b)

�
x(log x)2

k−1
−1

(log x log y)k−1

∑
A

1
A0

∑
D

1
D

∑
D/2<B06D

m6y3

τ3(m)τ2k−1(B0)E∗(A0 D;m B0),

with the sum taken over (A0, . . . , Ak−1, D), each a power of 2, D 6 x1/100k ,
Ai > x1/2k for each i and A0 · · · Ak−1 D 6 x . With A0 and D fixed, the number of
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choices for (A1, . . . , Ak−1) is� (log x)k−1. Writing q = m B0, we obtain∑
A,b

R(A, b)

� x
(log x)2

k−1
−1

(log y)k−1

∑
D6x1/100k

∑
x1/2k<A06x/D

1
A0 D

∑
q6y3x1/100k

τ2k−1+3(q)E
∗(A0 D; q)

�
x

(log x)βk+1 ,

where we used Corollary 1 in the last step, with A = 2k−1
− k+ 4+βk .

For the main term, by (4-5), given any b1, . . . , b2k−1 , the product A0 · · · Ak−1 is
determined (and larger than 1

2 x1−1/100k by (4-4)), so there are� (log x)k−1 choices
for the k-tuple A0, . . . , Ak−1. Hence,∑

A,b

M(A, b)�
x

(log y)k log x

∑
b

1
b1 · · · b2k−1

.

Let b= b1 · · · b2k−1. Given an even, squarefree integer b, the number of ordered fac-
torizations of b as b=b1 · · · b2k−1, where eachω(bi )= l and b2k−1 is even, is equal to

((2k
− 1)l)!

(2k − 1)(l!)2k−1
.

Let b′ = b/2, so h :=ω(b′)= (2k
−1)l−1= k(log log y)/log(2k

− 1)+O(1). Ap-
plying Lemma 2.1, Stirling’s formula and the fact that (2k

−1)l= h+O(1) produces∑
b

1
b1 · · · b2k−1

>
((2k
− 1)l)!

2(2k − 1)(l!)2k−1

∑
P+(b′)6y
ω(b′)=h

µ2(b′)
b′

�
((2k
− 1)l)!

(l!)2k−1

(log log y)h

h!
=
(log log y)h

(l!)2k−1
(log log x)O(1)

=

[
(2k
− 1)e log(2k

− 1)
k

](2k
−1)l

(log log x)O(1)

= (log y)
k

log(2k−1)
log
[
(2k
−1)e log(2k

−1)
k

]
(log log x)O(1)

= (log y)k−βk+1(log log x)O(1).

Invoking (3-1), we obtain that∑
A,b

M(A, b)>
x

(log x)βk (log log x)O(1) . (4-7)

Inequality (3-5) now follows from estimate (4-7) and our earlier estimates (4-1) of
S′1− S1 and (4-6) of

∑
A,b R(A, b).
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5. A multivariable sieve upper bound

Here we prove an estimate from sieve theory that will be useful in our treatment of
the upper bound for S2.

Lemma 5.1. Suppose that:

• y, x1, . . . , xh are reals with 3< y 6 2 min{x1, . . . , xh}.

• I1, . . . , Ik are nonempty subsets of {1, . . . , h}.

• b1, . . . , bk are positive integers such that if Ii = I j , then bi 6= b j .

For n = (n1, . . . , nh) a vector of positive integers and for 1 6 j 6 k, let N j =

N j (n)=
∏

i∈I j
ni . Then

#
{
n : xi < ni 6 2xi (16 i 6 h), P−(n1 · · · nh) > y, b j N j + 1 prime (16 j 6 k)

}
�h,k

x1 · · · xh

(log y)h+k (log log(3b1 · · · bk))
k .

Proof. Throughout this proof, all Vinogradov symbols � and � as well as the
Landau symbol O depend on both h and k. Without loss of generality, suppose
that y 6 (min(xi ))

1/(h+k+10). Since ni > xi > yh+k+10 for every i , we see that the
number of h-tuples in question does not exceed

S := #{n : xi < ni 6 2xi (16 i 6 h), P−(n1 · · · nh(b1 N1+1) · · · (bk Nk+1)) > y}.

We estimate S in the usual way with sieve methods, although this is a bit more
general than the standard applications and we give the proof in some detail (the
case h = 1 being completely standard). Let A denote the multiset

A=

{
n1 · · · nh

k∏
j=1

(b j N j + 1) : x j < n j 6 2x j (16 j 6 h)
}
.

For squarefree d 6 y2 composed of primes 6 y, we have by a simple counting
argument

|Ad | := #{a ∈A : d | a} =
ν(d)
dh X + rd ,

where X = x1 · · · xh , ν(d) is the number of solution vectors n modulo d of the
congruence

n1 · · · nh

k∏
j=1

(b j N j + 1)≡ 0 (mod d),
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and the remainder term satisfies, for d 6min(x1, . . . , xh),

|rd |6 ν(d)
h∑

i=1

∏
16l6h

l 6=i

(⌊
xl

d

⌋
+ 1

)
6 ν(d)

h∑
i=1

(x1+ d) · · · (xh + d)
(xi + d)dh−1

�
ν(d)X

dh−1 min(xi )
.

The function ν(d) is clearly multiplicative and satisfies the global upper bound
ν(p) 6 (h + k)ph−1 for every p. If ν(p) = ph for some p 6 y, then clearly
S = 0. Otherwise, the hypotheses of [Halberstam and Richert 1974, Theorem 6.2]
(Selberg’s sieve) are clearly satisfied, with κ = h+ k, and we deduce that

S� X
∏
p6y

(
1−

ν(p)
ph

)
+

∑
d6y2

P+(d)6y

µ2(d)3ω(d)|rd |.

By our initial assumption about the size of y,

∑
d6y2

µ2(d)3ω(d)|rd | �
X

min(xi )

∑
d6y2

(3k+ 3h)ω(d)�
X y3

min(xi )
�

X
y
.

For the main term, consideration only of the congruence n1 · · · nh ≡ 0 (mod p)
shows that

ν(p)> h(p− 1)h−1
= hph−1

+ O(ph−2)

for all p. On the other hand, suppose that p - b1 · · · bk and furthermore that p - (bi−

b j ) whenever Ii = I j . Each congruence b j N j+1≡ 0 (mod p) has ph−1
+O(ph−2)

solutions with n1 . . . nh 6≡ 0 (mod p), and any two of these congruences have
O(ph−2) common solutions. Hence, ν(p)= (h+ k)ph−1

+O(ph−2). In particular,

h
p
+ O

(
1
p2

)
6
ν(p)

ph 6
h+ k

p
+ O

(
1
p2

)
. (5-1)

Further, writing E = b1 · · · bk
∏

i 6= j |bi −b j |, the upper bound (5-1) above is in fact
an equality except when p | E . We obtain

∏
p6y

(
1−

ν(p)
ph

)
�

∏
p6y

(
1−

1
p

)k+h ∏
p | E

(
1−

1
p

)−k

�
(E/ϕ(E))k

(log y)h+k �
(log log 3E)k

(log y)h+k

and the desired bound follows. �
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6. The upper bound for S2

Here, S2 is the number of solutions of

n =
k−1∏
i=0

ai

2k
−1∏

j=1

b j =

k−1∏
i=0

a′i

2k
−1∏

j=1

b′j , (6-1)

with 2−2k x < n 6 x , n squarefree,

P+(b1b′1 · · · b2k−1b′2k−1)6 y < P−(a0a′0 · · · ak−1a′k−1),

ω(b j )=ω(b′j )= l for every j , ai > 1 for every i , 2 | b2k−1, 2 | b′2k−1, and ai Bi +1
and a′i B ′i + 1 prime for 06 i 6 k− 1, where B ′i is defined analogously to Bi (see
(3-3)). Trivially, we have

a :=
k−1∏
i=0

ai =

k−1∏
i=0

a′i , b :=
2k
−1∏

j=1

b j =

2k
−1∏

j=1

b′j . (6-2)

We partition the solutions of (6-1) according to the number of the primes ai Bi+1
that are equal to one of the primes a′j B ′j + 1, a number which we denote by m.
By symmetry (that is, by appropriate permutation of the vectors (a0, . . . , ak−1),
(a′0, . . . , ak−1), (b1, . . . , b2k−1) and (b′1, . . . , b′2k−1)

1), without loss of generality
we may suppose that ai Bi = a′i B ′i for 06 i 6 m− 1 and that

ai Bi 6= a j B j (i > m, j > m). (6-3)

Consequently,

ai = a′i and Bi = B ′i (06 i 6 m− 1). (6-4)

Now fix m and all the b j and b′j . For 0 6 i 6 m − 1, place ai into a dyadic
interval (Ai/2, Ai ], where Ai is a power of 2. The primality conditions on the
remaining variables are now coupled with the condition

am · · · ak−1 = a′m · · · a
′

k−1.

1The permutations may be described explicitly. Suppose that m 6 k − 1 and that we wish to
permute (b1, . . . , b2k−1) such that Bi1 , . . . , Bim become B0, . . . , Bm−1, respectively. Let Si =

{16 j 6 2k
−1 : b j/2i

c odd}. The Venn diagram for the sets Si1 , . . . , Sim has 2m
−1 components of

size 2k−m−1 and one component of size 2k−m−1
− 1, and we map the variables b j with j in a given

component to the variables whose indices are in the corresponding component of the Venn diagram
for S0, . . . , Sm−1.



2022 Kevin Ford, Florian Luca and Carl Pomerance

To aid the bookkeeping, let αi, j = gcd(ai , a′j ) for m 6 i, j 6 k− 1. Then

ai =

k−1∏
j=m

αi, j , a′j =
k−1∏
i=m

αi, j . (6-5)

As each ai > 1, a′j > 1, each product above contains at least one factor that is
greater than 1. Let I denote the set of pairs of indices (i, j) such that αi, j > 1, and
fix I . For (i, j) ∈ I , place αi, j into a dyadic interval (Ai, j/2, Ai, j ], where Ai, j is a
power of 2 and Ai, j > y. By the assumption on the range of n, we have

A0 · · · Am−1
∏
(i, j)∈I

Ai, j �
x
b
. (6-6)

For 06 i 6 m− 1, we use Lemma 5.1 (with h = 1) to deduce that the number of
ai with Ai/2< ai 6 Ai , P−(ai ) > y and ai Bi + 1 prime is

�
Ai log log Bi

log2 y
�

Ai (log log x)3

log2 x
. (6-7)

Counting the vectors (αi, j )(i, j)∈I subject to the conditions

• Ai, j/2< αi, j 6 Ai, j and P−(αi, j ) > y for (i, j) ∈ I ;

• ai Bi + 1 prime (m 6 i 6 k− 1);

• a′j B ′j + 1 prime (m 6 j 6 k− 1);

• condition (6-5)

is also accomplished with Lemma 5.1, this time with h = |I | and with 2(k −m)
primality conditions. The hypothesis in the lemma concerning identical sets Ii ,
which may occur if αi, j = ai = a′j for some i and j , is satisfied by our assumption
(6-3), which implies in this case that Bi 6= B ′j . The number of such vectors is at most

�

∏
(i, j)∈I Ai, j (log log x)2k−2m

(log y)|I |+2k−2m �

∏
(i, j)∈I Ai, j (log log x)|I |+4k−4m

(log x)|I |+2k−2m . (6-8)

Combining the bounds (6-7) and (6-8), and recalling (6-6), we see that the number
of possibilities for the 2k-tuple (a0, . . . , ak−1, a′0 . . . , a′k−1) is at most

�
x(log log x)O(1)

b(log x)|I |+2k .

With I fixed, there are O((log x)|I |+m−1) choices for A0, . . . , Am−1 and Ai, j subject
to (6-6), and there are O(1) possibilities for I . We infer that with m and all of the
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b j , b′j fixed, the number of possible (a0, . . . , ak−1, a′0 . . . , a′k−1) is at most

�
x(log log x)O(1)

b(log x)2k+1−m .

We next prove that the identities in (6-4) imply that

Bv = B ′v (v ∈ {0, 1}m), (6-9)

where Bv is the product of all b j where the m least significant base-2 digits of j
are given by the vector v, and B ′v is defined analogously. Fix v = (v0, . . . , vm−1).
For 0 6 i 6 m − 1, let Ci = Bi if vi = 1 and Ci = b/Bi if vi = 0, and define C ′i
analogously. By (3-3), each number b j where the last m base-2 digits of j are
equal to v divides every Ci , and no other b j has this property. By (6-4), Ci = C ′i
for each i and thus

C0 · · ·Cm−1 = C ′0 · · ·C
′

m−1.

As the numbers b j are pairwise coprime, in the above equality the primes having
exponent m on the left are exactly those dividing Bv, and similarly the primes on
the right side having exponent m are exactly those dividing B ′v. This proves (6-9).

Say b is squarefree. We count the number of dual factorizations of b compatible
with both (6-2) and (6-9). Each prime dividing b first “chooses” which Bv = B ′v to
divide. Once this choice is made, there is the choice of which b j to divide and also
which b′j . For the 2m

−1 vectors v 6= 0, Bv = B ′v is the product of 2k−m numbers b j

and also the product of 2k−m numbers b′j . Similarly, B0 is the product of 2k−m
− 1

numbers b j and 2k−m
−1 numbers b′j . Thus, ignoring thatω(b j )=ω(b′j )= l for each

j and that b2k−1 and b′2k−1 are even, the number of dual factorizations of b is at most

(
(2m
− 1)(2k−m)2+ (2k−m

− 1)2
)ω(b)
= (22k−m

− 2k+1−m
+ 1)ω(b). (6-10)

Again, let

h = ω(b)= (2k
− 1)l =

k
log(2k − 1)

log log y+ O(1),

as in Section 4. Lemma 2.1 and Stirling’s formula give

∑
P+(b)6y
ω(b)=h

µ2(b)
b
�
(log log y)h

h!
� (e log(2k

− 1)/k)h .
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Combined with our earlier bound (6-10) for the number of admissible ways to dual
factor each b, we obtain

S2�
x(log log x)O(1)

log x
(e log(2k

− 1)/k)h

×

k∑
m=0

(log y)
m−2k+ k

log(2k−1)
log(22k−m

−2k+1−m
+1)
. (6-11)

For real t ∈ [0, k], let f (t)= k log(22k−t
− 2k+1−t

+ 1)− (2k− t) log(2k
− 1). We

have f (0)= f (k)= 0 and

f ′′(t)=
k(log 2)2(22k

− 2k+1)2−t

(22k−t − 2k+1−t + 1)2
> 0.

Hence, f (t) < 0 for 0 < t < k. Thus, the sum on m in (6-11) is O(1), and (3-6)
follows.

Theorem 1 is therefore proved.
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