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Sho Saito

We prove a modified version of Previdi’s conjecture stating that the Waldhausen
space (K-theory space) of an exact category is delooped by the Waldhausen
space (K-theory space) of Beilinson’s category of generalized Tate vector spaces.
Our modified version states the delooping with nonconnective K-theory spectra,
extending and almost including Previdi’s original statement. As a consequence
we obtain that the negative K-groups of an exact category are given by the 0th
K-groups of the idempotent-completed iterated Beilinson categories, extending a
theorem of Drinfeld that the first negative K-group of a ring is isomorphic to the
0th K-group of the exact category of Tate modules.

1. Introduction

In his Ph.D. thesis, Previdi [2010] developed a categorical generalization of Kapra-
nov’s work [2001] on dimensional and determinantal theories for Tate vector spaces
over a field. His main results are formulated in terms of algebraic K-theory, and
he observes a certain relation between the K-groups Ki .A/ and KiC1. lim

 !
A/ for

i D 0; 1, where A is an exact category and lim
 !

A is an associated exact category
introduced by Beilinson [1987]. (See Section 2 below.) Previdi concluded the
thesis with the following conjecture, which would include all the higher analogues
of that relation:

Conjecture 1.1 [Previdi 2010, 5.1.7]. Write S.A/ for the geometric realization of
the simplicial category iS�.A/ given by Waldhausen’s S�-construction [1985], the
homotopy groups of whose loop space are the algebraic K-theory groups of the
exact category A. If A is partially abelian, i.e., if it and its opposite have pullbacks
of admissible monomorphisms with common target, then S.A/ is delooped by
S. lim
 !

A/. In particular, for such A there is an isomorphism between Ki .A/ and
KiC1. lim

 !
A/ for every i � 0.

In this article we prove the following modified version of the conjecture:
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Theorem 1.2. Let K.A/ be the nonconnective K-theory spectrum of the exact
category A, whose i-th homotopy group is the i-th K-group of A if i > 0, the 0th
K-group of the idempotent-completion of A if i D 0, and the .�i/-th negative K-
group of A if i < 0. (See [Schlichting 2006].) Then there is a homotopy equivalence
of spectra K.A/ �!� �K. lim

 !
A/.

Note that no assumption on A is necessary. We also remark that Theorem 1.2
includes almost all of the essential part of Conjecture 1.1. Indeed, there results
an isomorphism Ki .A/ �!� KiC1. lim

 !
A/ for any A and for every i � 1. If A

is idempotent-complete (this is the case for most of the typical examples, such
as the category P.R/ of finitely generated projective modules over a ring R, the
category of vector bundles on a scheme, or any abelian category) this holds also for
i D 0. Theorem 1.2 moreover says that the i -th negative K-group K�i .A/, i > 0, is
isomorphic to the 0th K-group of the idempotent-completion of the i -times iterated
Beilinson category lim

 !

iA.

Applications to the study of generalized Tate vector spaces. Previdi’s work has its
background in the study of generalized Tate vector spaces. Recall that a Tate vector
space over a discrete field k is a topological k-vector space of the form P ˚Q�,
where P and Q are discrete spaces and .�/� denotes the topological dual. There is
a canonical equivalence of the Beilinson category lim

 !
Vect0 k of the exact category

Vect0 k of finite-dimensional k-vector spaces, with the category of Tate k-vector
spaces of countable type, i.e., Tate vector spaces of the form P ˚Q� with P and
Q discrete of countable dimensions. (See [Previdi 2011, 7.4].)

There are two generalizations of this notion, one of which due to Arkhipov
and Kremnizer [2010] is the notion of an n-Tate vector space as an object of
the n-times iterated Beilinson category lim

 !

nVect0 k, n � 1. The other one, due
to Drinfeld [2006], replaces the field k with a general commutative ring R to
get the notion of a Tate R-module. (We assume commutativity for simplicity,
although Drinfeld’s definition makes sense for noncommutative rings.) More
precisely, Drinfeld defined an elementary Tate R-module to be a topological R-
module of the form P ˚Q�, where P and Q are discrete projective R-modules,
and a Tate R-module to be a direct summand of an elementary Tate R-module.
Drinfeld [2006, Theorem 3.6(iii)] showed that the first negative K-group K�1.R/
of the ring R is isomorphic to the 0th K-group of the exact category of Tate R-
modules. A very important theorem on Tate R-modules, due to [Drinfeld 2006,
Theorems 3.4, 3.7], is that they are Nisnevich-locally elementary, so that the presheaf
of first negative K-groups on the Nisnevich site of SpecR becomes trivial after
Nisnevich-sheafification.

The former of the two generalizations is obtained purely formally by iterating
the Beilinson construction, whereas the latter is based on nontrivial facts in ring
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theory. In fact, these two generalizations can be combined together. The equivalence
of lim
 !

Vect0 k with Tate k-vector spaces of countable type can be generalized to
show that lim

 !
P.R/ is very close to the category of elementary Tate R-modules.

(More precisely, lim
 !

P.R/ is equivalent to the category of topological R-modules
isomorphic to extensions of P and Q�, where P and Q are discrete R-modules
obtained as the inductive limits of systems

P1 ,! P2 ,! P3 ,! � � � and Q1 ,!Q2 ,!Q3 ,! � � �

This in particular shows that the idempotent-completion of lim
 !

P.R/ is very close
to the category of Tate R-modules. Most objects of the latter category which
one usually deals with can be considered as objects of the former, and vice versa.
In this sense, we regard the idempotent-completion of lim

 !
P.R/ as a categorical

substitute for Drinfeld’s category of TateR-modules. It is thus plausible to define an
n-Tate R-module, n� 1, as an object of the idempotent-completion of lim

 !

nP.R/.
Theorem 1.2 then can be regarded as a generalization of Theorem 3.6(iii) of [Drinfeld
2006], as it says that the n-th negative K-group K�n.R/ is isomorphic to the 0th
K-group of n-Tate R-modules.

We also briefly discuss here a consequence of Theorem 1.2 on 1-Tate modules.
Denote by K the sheaf of group-like E1-spaces on the Nisnevich site of SpecR,
that sends an étale R-algebra S to the space �1K.S/. We describe how our
Theorem 1.2, together with Drinfeld’s theorem on the Nisnevich-local vanishing of
K�1, provides a purely formal way to associate to a 1-Tate R-module M a K-torsor
with a canonical action of the sheaf of groups of automorphisms of M . We note
that this construction was essentially explained by Drinfeld [2006, Section 5.5],
who attributes it to Beilinson.

Firstly, Theorem 1.2 shows that, in the 1-topos of sheaves of spaces on the
Nisnevich site of SpecR, the sheaf S 7!�1K. lim

 !
P.S// is an object whose loop-

space object is K. It is obviously a pointed object. In addition, Drinfeld’s theorem
on the Nisnevich-local vanishing of K�1 tells that this object is connected, i.e.,
S 7!�1K. lim

 !
P.S// is the classifying-space object for the1-group object K.

Then by general theory a K-torsor corresponds to a map from the terminal object
to the sheaf S 7!�1K. lim

 !
P.S//, i.e., to a point of the space �1K. lim

 !
P.R//.

Thus the 1-Tate R-module M , as an object of the idempotent-completion of
lim
 !

P.R/, defines such a torsor. The sheaf of groups of automorphisms of M acts
on it since, in general, for any idempotent-complete exact category A and an object
A of A, the classifying space of AutAA admits a natural, canonical mapping to
�S.A/D�1K.A/ which sends the base point to the point of�S.A/D�1K.A/
defined by the object A. (This is the composition of the map B AutAA! BiA
with the first structure map BiA!�S.A/ of Waldhausen’s connective algebraic
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K-theory spectrum of A, where iA is the category of isomorphisms of A, and B
indicates the classifying space of a category.)

Organization and conventions. In Section 2 we recall the definition and properties
of the Beilinson category lim

 !
A, following [Beilinson 1987] and [Previdi 2011].

We recall the notions of ind- and pro-objects, introduce the categories IndaN A and
ProaN A, and discuss their relation to lim

 !
A. All statements in this section are either

results of [Beilinson 1987] and [Previdi 2011] or their immediate consequences.
Section 3 begins by recalling Schlichting’s results [2004], which provide a

powerful tool for constructing a homotopy fibration sequence of nonconnective
K-theory spectra. We prove Theorem 1.2 according to the following strategy: We
construct, using Schlichting’s method, two homotopy fibration sequences which fit
into the commutative diagram

K.A/ ����! K.IndaN A/ ����! K.IndaN A=A/??y ??y ??y
K.ProaN A/ ����! K. lim

 !
A/ ����! K. lim

 !
A=ProaN A/

as the horizontal sequences. We then go on to show that the third vertical map is an
equivalence, and that in the left-hand square the upper-right and lower-left corners
are contractible, so that the stated homotopy equivalence is obtained. (We remark
that the upper horizontal homotopy fibration sequence and its consequence that
K.A/ is delooped by K.IndaN A=A/ are Schlichting’s results [2004]. Our delooping
is a combination of his delooping with its dual.)

We follow the notation adopted in [Previdi 2010; 2011]. For instance, we write
IndaN A for what is denoted by FA in [Schlichting 2004], and Funa.…;A/ instead
of the notation A…a used in [Beilinson 1987]. We write zA for the idempotent-
completion of A. By saying a functor A ,! U between exact categories is an
embedding of exact categories, we mean that it is a fully faithful exact functor
whose essential image is closed under extensions in U and such that a short sequence
in A is exact if and only if its image in U is exact.

2. Beilinson’s category lim
 !

A

2A. ind- and pro-objects in a category. We first recall some generalities on ind-
and pro-objects. For any category C, the category Ind C (resp. Pro C) of ind-objects
(resp. pro-objects) in C is defined to have as objects functors X WJ ! C with domain
J small and filtering (resp. X W I op! C with I small and filtering). The ind-object
X W J ! C (resp. pro-object X W I op ! C) defines a functor Cop ! .sets/, C 7!
lim
��!j2J

HomC.C;Xj / (resp. C! .sets/, C 7! lim
��!i2I

HomC.Xi ; C /). A morphism
X ! Y of ind-objects (resp. pro-objects) is a natural transformation between the
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functors Cop! .sets/ (resp. C! .sets/) associated to X and Y . Equivalently, the
sets of morphisms of ind- and pro-objects can be defined to be the projective-
inductive limits HomInd C.X ;Y/D lim

 ��j
lim
��!l

HomC.Xj ;Yl/ and HomPro C.X ;Y/D
lim
 ��k

lim
��!i

HomC.Xi ;Yk/, respectively.
If X and Y have a common index category, a natural transformation X ! Y

between the functors X and Y defines a map between the ind- or pro-objects X
and Y . Conversely, every map of ind- or pro-objects X ! Y can be “straightified”
to a natural transformation, in the sense that there is a commutative diagram in
Ind C or Pro C

X ����! Y

�

??y �

??y
zX ����! zY

with the vertical maps isomorphisms, zX and zY having a common index category,
and zX ! zY coming from a natural transformation. (See [Artin and Mazur 1969,
Appendix] for details.)

If C is an exact category, the categories Ind C and Pro C possess exact structures.
A pair of composable morphisms in Ind C or Pro C is a short exact sequence if it can
be straightified to a sequence of natural transformations which is levelwise exact
in C [Previdi 2011, 4.15, 4.16]. In this article we are mainly concerned with the
full subcategories Inda C and Proa C of admissible ind- and pro-objects introduced
in [Previdi 2011, 5.6]: An ind-object X W J ! C (resp. pro-object X W I op ! C)
is admissible if for every map j ! j 0 in J (resp. i ! i 0 in I ) the morphism
Xj ,!Xj 0 is an admissible monomorphism in C (resp. Xi �Xi 0 is an admissible
epimorphism). These subcategories are extension-closed in the exact categories
Ind C and Pro C, respectively, so they have induced exact structures. Since an object
C of C can be considered as an admissible ind- or pro-object which takes the
constant value C (one can use any small and filtering category as the category of
indices), there are embeddings of exact categories C ,! Inda C and C ,! Proa C.

We write IndaN C and ProaN C for the full, extension-closed subcategories of Inda C
and Proa C consisting of admissible ind- and pro-objects, respectively, indexed
by the filtering category of natural numbers. (There is precisely one morphism
j ! k if j � k 2 N.) The object C of C defines an object C D C D C D � � �
in IndaN C or ProaN C. Note that the resulting embedding C ,! IndaN C ,! Inda C
(resp. C ,!ProaN C ,!Proa C) is naturally isomorphic to the embedding C ,! Inda C
(resp. C ,! Proa C) mentioned above.

2B. Definition of lim
 !

A. Let A be an exact category. We write … for the ordered
set f.i; j / 2 Z � Z j i � j g, where .i; j / � .i 0; j 0/ if i � i 0 and j � j 0. A
functor X W …! A, where … is viewed as a filtering category, is admissible if
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for every triple i � j � k, the sequence Xi;j ,! Xi;k � Xj;k is a short exact
sequence in A. We denote by Funa.…;A/ the exact category of admissible functors
X W …! A and natural transformations, where a short sequence X ! Y ! Z

of natural transformations of admissible functors is a short exact sequence in
Funa.…;A/ if Xi;j ,! Yi;j �Zi;j is a short exact sequence in A for every i � j .
A bicofinal map � WZ!Z (� is said to be bicofinal if it is nondecreasing and satisfies
limi!˙1 �.i/D˙1) induces a cofinal functor z� W…!…, .i; j / 7! .�.i/; �.j //.
If � and  W Z ! Z are bicofinal maps such that �.i/ �  .i/ for all i , and
if X W … ! A is an admissible functor, then there is a natural transformation
uX;�; WX ı z�!X ı z .

Definition 2.1 [Beilinson 1987, A.3]. The category lim
 !

A is defined to be the
localization of Funa.…;A/ by the morphisms uX;�; , where X W …! A is in
Funa.…;A/ and � �  W Z! Z are bicofinal.

If X W…! A is an admissible functor, we have for each j 2 Z an admissible
pro-object X�;j W fi 2Z j i � j g!A, i 7!Xi;j , in A. We get in turn an admissible
ind-object Z! ProaA, j 7!X�;j , in ProaA. Thus the admissible functor X can be
viewed as an object of the iterated Ind-Pro category Inda ProaA. If � � W Z! Z

are bicofinal, the map uX;�; defines an isomorphism between the ind-pro-objects
X ı z� and X ı z . We get a functor lim

 !
A! Inda ProaA. In view of the following

theorem, we regard lim
 !

A as an exact subcategory of Inda ProaA.

Theorem 2.2 [Previdi 2011, 5.8, 6.1]. The functor lim
 !

A! Inda ProaA is fully
faithful. Moreover, the image is closed under extensions in Inda ProaA. In particu-
lar, lim

 !
A has an exact structure in which a sequence in lim

 !
A is exact if and only

if its image in Inda ProaA is exact.

By [Previdi 2011, 6.3], there are embeddings IndaN A ,! lim
 !

A and ProaN A ,!
lim
 !

A of exact categories, respectively sendingX1 ,!X2 ,!X3 ,!� � � 2 ob IndaN A
to the object in lim

 !
A determined by Xi;j D X0;j D Xj for i � 0 < j , and

sending X1 � X2 � X3 � � � � 2 ob ProaN A to the object in lim
 !

A determined
by Xi;j DXi;1 DX�iC1 for i � 0 < j .

We refer to [Previdi 2011] for detailed discussion of ind/pro-objects in exact
categories.

3. Proof of Theorem 1.2

We prove the theorem using the s-filtering localization sequence constructed by
Schlichting [2004].

Let A ,! U be an embedding of exact categories. Following [Schlichting 2004],
we define a map in U to be a weak isomorphism with respect to A ,! U if it is
either an admissible monomorphism that admits a cokernel in the essential image
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of A ,! U or an admissible epimorphism that admits a kernel in the essential image
of A ,! U . In particular, for every A 2 obA, the maps 0! A and A! 0 are
weak isomorphisms. The localization of U by weak isomorphisms with respect
to A is denoted by U=A. Recall, from [Schlichting 2004], that the embedding
A ,! U of exact categories is a left s-filtering if the following conditions are
satisfied:

(1) If A� U is an admissible epimorphism in U with A 2 obA, then U 2 obA.

(2) If U ,!A is an admissible monomorphism in U with A2 obA, then U 2 obA.

(3) Every map A! U in U with A 2 obA factors through an object B 2 obA
such that B ,! U is an admissible monomorphism in U .

(4) If U � A is an admissible epimorphism in U with A 2 obA, then there is an
admissible monomorphism B ,! U with B 2 obA such that the composition
B � A is an admissible epimorphism in A.

(Here obA denotes by slight abuse of notation the collection of objects of U
contained in the essential image of A ,! U .) A right s-filtering embedding is
defined by dualizing the conditions above.

We use the following theorem, due to [Schlichting 2004, 1.16, 1.20, 2.10], as
the main technical tool for the proof:

Theorem 3.1. If A ,!U is left or right s-filtering, then the localization U=A has an
exact structure in which a short sequence is exact if and only if it is isomorphic to the
image of a short exact sequence in U . Moreover, the sequence of exact categories
A ! U ! U=A induces a homotopy fibration K.A/ ! K.U/ ! K.U=A/ of
nonconnective K-theory spectra.

Remark. Theorem 2.10 of [Schlichting 2004], which constructs this homotopy
fibration sequence, is stated there under the assumption that A is idempotent-
complete. But the theorem holds for general A in view of Lemma 1.20 of [loc. cit.],
which assures, whenever A ,! U is left or right s-filtering, the existence of an
extension-closed full subcategory zUA of zU such that U is cofinally contained in zUA,
the induced embedding zA ,! zU factors through a left or right s-filtering embedding
zA ,! zUA, and U=A�!� zUA= zA is an equivalence of exact categories. The homotopy

fibration sequence K. zA/ ! K.zUA/ ! K.zUA= zA/ is equivalent to the sequence
K.A/! K.U/! K.U=A/, since a cofinal embedding of exact categories induces
an equivalence of nonconnective K-theory spectra.

Lemma 3.2. For any exact category A, the embedding A,! IndaA is left s-filtering.

Proof. We start by checking condition (3) for being left s-filtering. LetX be an object
of A and Y an admissible ind-object in A indexed by a small filtering category J .
A morphism f W X ! Y in IndaA is an element of lim

��!j2J
HomA.X; Yj /, i.e., is
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represented as the class of a map fj0
WX!Yj0

in A for some j0 2J . The canonical
map Yj0

,! Y is an admissible monomorphism because the diagram j0=J ! A,
j 7! Yj =Yj0

, serves as its cokernel, where j0=J is the under-category of j0. We
get a factorization

f WX
fj0
��! Yj0

,! Y;

as desired.
Condition (1) follows from (3). Indeed, an admissible epimorphismX �Y with

X in A factors through some Z in A such that Z ,! Y is an admissible monomor-
phism. The composition X � Y � Y=Z is 0, but since this composition is also an
admissible epimorphism, Y=Z must be 0. This forces Y to be essentially constant.

To prove (4), let Y � X be an admissible epimorphism in IndaA with X in
A, whose kernel we denote by Z. The short exact sequence 0! Z ,! Y �
X ! 0 is isomorphic to a straight exact sequence 0 ! Z0 ,! Y 0 � X 0 !

0, where Z0, Y 0, and X 0 are all indexed by the same small filtering category
J and are respectively isomorphic to Z, Y , and X . The isomorphism X 0 �!�

X is a compatible collection of morphisms gj W X 0j ! X in A, j 2 J , such
that there is a morphism h W X ! X 0j0

for some j0 2 J such that gj0
ı h D

idX and h ı gj0
is equivalent to idX 0j0

in lim
��!j2J

HomA.X
0
j0
; X 0j /. Since X 0 is an

admissible ind-object, this implies that h ıgj0
D idX 0j0

, i.e., gj0
is an isomorphism.

(Note also that the gj are isomorphisms for all j 2 j0=J .) The map Y 0j0
,!

Y 0 �!� Y is an admissible monomorphism, as noted above, and its composition
with Y � X equals the composition Y 0j0

� X 0j0
�!�
gj0

X , which is an admissible
epimorphism in A.

Finally, if Y ,! X is an admissible monomorphism with X in A, its cokernel
Z is in A by condition (1). Let 0! Y 0 ,! X 0 � Z0! 0 be a straightification
of the exact sequence 0! Y ,!X �Z! 0, whose common indices we denote
by J . Then an argument similar to above shows that there is a j0 2 J such that
X 0j and Z0j are isomorphic to X and Z, respectively, for every j 2 j0=J . It follows
that Y 0j is essentially constant above j0, and we conclude that Y is contained in the
essential image of A, verifying condition (2). �

We remark that, given a composable pair of embeddings of exact categories
A ,! V and V ,! U , if their composition is naturally isomorphic to a left s-
filtering embedding A ,! U then A ,! V is also left s-filtering. This in par-
ticular implies that the embeddings A ,! IndaN A and ProaN A ,! lim

 !
A are left

s-filtering. Hence by Theorem 3.1 we get two homotopy fibration sequences
of nonconnective K-theory spectra K.A/ ! K.IndaN A/ ! K.IndaN A=A/ and
K.ProaN A/! K. lim

 !
A/! K. lim

 !
A=ProaN A/. We compare these sequences to

obtain Theorem 1.2.

Lemma 3.3. There is an equivalence IndaN A=A �!� lim
 !

A=ProaN A.
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Proof. We have a commutative diagram

A ����! IndaN A??y ??y
ProaN A ����! lim

 !
A

whence there results a functor F W IndaN A=A! lim
 !

A=ProaN A.
To construct a quasi-inverse, first we note that the functor Funa.…;A/! IndaN A,

.Xi;j /i�j 7!X0;1 ,!X0;2 ,!� � � , induces a functor zG W lim
 !

A! IndaN A=A. Indeed,
if �� WZ!Z are bicofinal, the map uX;�; WXı z�!Xı z in Funa.…;A/ is sent
to the map X�.0/;�.�/!X .0/; .�/, which factors as X�.0/;�.�/ ,!X�.0/; .�/ �
X .0/; .�/. The map X�.0/;�.�/ ,!X�.0/; .�/ is an isomorphism in IndaN A, since
it consists of natural isomorphisms

lim
��!j

HomA.A;X�.0/;�.j // �!
� lim
��!j

HomA.A;X�.0/; .j //; A 2 obA;

as � and  are bicofinal. We also see that X�.0/; .�/ � X .0/; .�/ is a weak
isomorphism in IndaN A with respect to A, since it has constant kernel X�.0/; .0/D
X�.0/; .0/ D � � � . The functor zG thus defined takes weak isomorphisms in lim

 !
A

with respect to ProaN A to weak isomorphisms in IndaN A with respect to A, since
if X 2 ob lim

 !
A is in the image of ProaN A, then its 0th row is constant: X0;1 D

X0;1 D � � � , i.e., zG.X/ is in the image of A. Hence zG factors through a functor
G W lim
 !

A=ProaN A! IndaN A=A.
We haveGıF D idInda

N A=A by definition. On the other hand, ifX D .Xi;j /i�j 2
ob lim
 !

A, then F ıG.X/ is the object zX of lim
 !

A determined by zX i;j D zX0;j D
X0;j , i � 0 < j . Define an admissible epimorphism fX WX � zX in Funa.…;A/
(hence in lim

 !
A) by

.fX /i;j D

8<:
Xi;j DXi;j for 0� i � j;
Xi;j �X0;j for i � 0 < j;
Xi;j � 0 for i � j � 0:

The kernel coincides with the image of 0�X�1;0 �X�2;0 �X�3;0 � � � � 2

ob ProaN A in lim
 !

A. Hence fX is a weak isomorphism in lim
 !

A with respect to
ProaN A. Thus we get an isomorphism f W id lim

 !
A=Proa

N A �!
� F ıG, to conclude that

G is a quasi-inverse to F . �

This means that in the commutative diagram of nonconnective K-theory spectra

K.A/ ����! K.IndaN A/ ����! K.IndaN A=A/??y ??y ??y
K.ProaN A/ ����! K. lim

 !
A/ ����! K. lim

 !
A=ProaN A/
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the third vertical map is an equivalence. Since the two horizontal sequences are
homotopy fibrations, it follows that the square

K.A/ ����! K.IndaN A/??y ??y
K.ProaN A/ ����! K. lim

 !
A/

is homotopy-cartesian, i.e., K.A/�!� holim.K.ProaNA/!K. lim
 !

A/ K.IndaNA//
is an equivalence. We finally note:

Lemma 3.4. There are canonical contractions for the nonconnective K-theory
spectra K.IndaN A/ and K.ProaN A/.

Proof. The contraction for K.IndaN A/ comes from the canonical flasque structure
on IndaN A (i.e., an endofunctor whose direct sum with the identity functor is
naturally isomorphic to itself), given as follows. Let X D .Xj /j�1 2 ob IndaN A
be an N-indexed admissible ind-object in A, whose structure maps we denote by
�D�j;j 0 WXj ,!Xj 0 , j � j 0. Write T .X/2ob IndaN A for the admissible ind-object

0 �!X1
.�;0/
���!X2˚X1

.�˚�;0/
�����!X3˚X2˚X1

.�˚�˚�;0/
�������! � � � :

A morphism f 2HomInda
N A.Y;X/D lim

 ��j
lim
��!l

HomA.Yj ; Xl/with j -th component
represented by fj W Yj !Xl.j / defines a morphism T .f / W T .Y /! T .X/ whose
j -th component is the class of the composition

Yj�1˚ � � �˚Y1
fj�1˚���˚f1

���������!Xl.j�1/˚ � � �˚Xl.1/
�˚���˚�
�����!XkCj�1˚ � � �˚XkC1 ,! T .X/kCj ;

where k is chosen to be sufficiently large. The endofunctor T thus defined is
a flasque structure on IndaN A since .X ˚ T .X//j

D
�! T .X/jC1 give a natural

isomorphism of ind-objects.
The contraction for K.ProaN A/ follows from the contraction for K.IndaN.�// via

the identification ProaN AD .IndaN Aop/op and the general equivalence K.Bop/ �!�

K.B/. �

We now obtain the desired homotopy equivalence K.A/D holim.K.ProaN A/!
K. lim
 !

A/ K.IndaN A// �!� holim.�! K. lim
 !

A/ �/D�K. lim
 !

A/, and the
proof of Theorem 1.2 is complete.
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