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We study the 1-level density of low-lying zeros of Dirichlet L-functions in the
family of all characters modulo q, with Q=2< q �Q. For test functions whose
Fourier transform is supported in .�3

2
; 3

2
/, we calculate this quantity beyond the

square root cancellation expansion arising from the L-function ratios conjecture
of Conrey, Farmer and Zirnbauer. We discover the existence of a new lower-order
term which is not predicted by this powerful conjecture. This is the first family
where the 1-level density is determined well enough to see a term which is not
predicted by the ratios conjecture, and proves that the exponent of the error term
Q�1=2C� in the ratios conjecture is best possible. We also give more precise
results when the support of the Fourier transform of the test function is restricted
to the interval Œ�1; 1�. Finally we show how natural conjectures on the distribution
of primes in arithmetic progressions allow one to extend the support. The most
powerful conjecture is Montgomery’s, which implies that the ratios conjecture’s
prediction holds for any finite support up to an error Q�1=2C� .

1. Introduction 13
2. Background and new results 18
3. The explicit formula and needed sums 26
4. Unconditional results (Theorems 2.1 and 2.3) 37
5. Results under GRH (Theorems 1.2 and 2.6) 39
6. Results under de-averaging hypothesis (Theorem 2.8) 45
7. Results under Montgomery’s hypothesis (Theorem 2.13) 47
Acknowledgments 48
References 48

1. Introduction

In this paper we study the 1-level density of Dirichlet L-functions with modulus q.
The goal is to compute this statistic for large support and small error terms, providing
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a test of the predictions of the lower order and error terms in the L-function ratios
conjecture. In this introduction we assume the reader is familiar with low-lying
zeros of families of L-functions and the ratios conjecture, and briefly describe our
results. For completeness we provide a brief review of the subject in Section 2A,
and state our results in full in Section 2B to Section 2D.

We let � 2 L1.R/ be an even real function such that y� is C 2 and has compact
support. Denoting by �� D

1
2
C i� the nontrivial zeros of L.s; �/ (i.e., those

satisfying 0 < <.��/ < 1) and choosing Q a scaling parameter close to q, the
1-level density is1

D1Iq.�/ WD
1

�.q/

X
�mod q

X
�

�

�
�

log Q

2�

�
: (1-1)

Throughout this paper, a sum over � mod q always means a sum over all char-
acters, including the principal character. If we assume GRH then the � are real.
As �.y/D c. O�/.y/ is defined for complex values of y, it makes sense to consider
(1-1) for complex �, in case GRH is false (in other words, GRH is only needed to
interpret the 1-level density as a spacing statistic arising from an ordered sequence
of real numbers, allowing for a spectral interpretation). We also study the average
of (1-1) over the moduli Q=2< q �Q, which is easier to understand in general:

D1IQ=2;Q.�/ WD
1

Q=2

X
Q=2<q�Q

D1Iq.�/: (1-2)

The powerful ratios conjecture of Conrey, Farmer and Zirnbauer [Conrey et al. 2008;
Conrey et al. 2005b] yields a formula for D1IQ=2;Q.�/, which is believed to hold
up to an error of O�.Q

�1=2C�/. While there have been several papers [Conrey and
Snaith 2007; 2008; David et al. 2013; Goes et al. 2010; Huynh et al. 2011; Miller
2008; 2009b; Miller and Montague 2011] showing agreement between various
statistics involving L-functions and the ratios conjecture’s predictions, evidence
for this precise exponent in the error term is limited; the reason this exponent was
chosen is the “philosophy of square root cancellation”. While some of the families
studied have 1-level densities that agree beyond square root cancellation, it is always
for small support (supp.y�/� .�1; 1/). Further, in no family studied were nonzero
lower order terms beyond square root cancellation isolated in the 1-level density.

The motivation of this paper was to resolve these issues. As the ratios conjecture
is used in a variety of problems, it is important to test its predictions in the greatest
possible window. Our key findings are the following.

1Since y� is C 2, we have �.�/� ��2 for large �; hence the sum over the zeros is absolutely
convergent. While most of the literature uses � as the test function, since we will use Euler’s totient
function extensively we use �.
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� We uncover new, nonzero lower-order terms in the 1-level density for our
families of Dirichlet characters. These terms are beyond what the ratios
conjecture can predict, and suggest the possibility that a refinement may be
possible and needed.

� We show (unconditionally) that the natural limit of accuracy of the L-function
ratios conjecture is �.Q�1=2Co.1//. Thus the error term cannot be improved
for a general family of L-functions, though of course its veracity for all families
is still open.

The existence of lower-order terms beyond the ratios conjecture’s prediction in
statistics of L-functions is not without precedent. Indeed such terms have been
isolated in the second moment of jL.1

2
; �/j by Heath-Brown [1981], and for a more

general shifted sum by Conrey [2007].
Before stating our main result, we give the ratios conjecture’s prediction. This

prediction is done for a slightly different family in [Goes et al. 2010], but it is trivial
to convert from their formulation to the one below (we discuss the conversion in
Section 2B).

Conjecture 1.1 (ratios conjecture). The 1-level density D
1Iq
.�/ (from (1-1) with

scaling parameter QD q) equals

y�.0/

�
1�

log.8�e /

log q
�

1

log q

X
pjq

log p

p� 1

�
C

Z 1
0

y�.0/� y�.t/

qt=2� q�t=2
dt CO�

�
q�1=2C�

�
: (1-3)

The 1-level density D1IQ=2;Q.�/ (from rescaling2 (1-3)) equals

y�.0/

�
1�

log.4�e /C 1

log Q
�

1

log Q

X
p

log p

p.p� 1/

�

C

Z 1
0

y�.0/� y�.t/

Qt=2�Q�t=2
dt CO�

�
Q�1=2C�

�
: (1-4)

Surprisingly, our techniques are capable of not only verifying this prediction, but
we are able to determine the 1-level density beyond what even the ratios conjecture
predicts. In Theorem 1.2 we obtain a new (arithmetical) term of order Q�1=2= log Q,
which is not predicted by the ratios conjecture.

2 To rescale we multiply (1-3) by log q= log Q, replace qt=2 � q�t=2 with Qt=2 �Q�t=2 and
average over Q=2< q �Q. The term log q averages to log QC log 2�1CO.log Q=Q/, explaining
the “additional” term .log 2� 1/= log Q. Moreover the average of

P
pjq

log p
p�1

over this range is easily
shown to be

P
p

1
p.p�1/

CO.log Q=Q/.
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Theorem 1.2. Assume GRH. If the Fourier transform of the test function � is
supported in .�3

2
; 3

2
/, then D1Iq=2;Q.�/ equals

y�.0/

�
1�

log.4�e /C 1

log Q
�

1

log Q

X
p

log p

p.p� 1/

�
C

Z 1
0

y�.0/� y�.t/

Qt=2�Q�t=2
dt C

Q�1=2

log Q
S�.Q/; (1-5)

where

S�.Q/ D C1y�.1/CC2

y�0.1/

log Q
CO

�� log log Q

log Q

�2�
; (1-6)

with
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.p� 1/p1=2C 1

�!
: (1-7)

We can give a more precise formula for the term S�.Q/: see Remark 2.5. While
Theorem 1.2 is conditional on GRH, in Theorem 2.1 we prove a more precise
and unconditional result for test functions � whose Fourier transform has support
contained in Œ�1; 1�.

The first two terms in (1-5) agree with the ratios conjecture’s prediction. As for
the term Q�1=2S�.Q/= log Q, its presence confirms that the error term Q�1=2Co.1/

in the ratios conjecture is best possible, and suggests more generally that the 1-level
density of a family ought to contain a (possibly oscillating) arithmetical term of order
Q�1=2Co.1/, a statement which should be tested in other families. Interestingly
this new term contains the factors y�.1/ and y�0.1/, and is zero when y� is supported
in .�1; 1/. In this case we give a more precise estimate for the 1-level density in
Theorem 2.1, in which a lower-order term of order Q�=2�1Co.1/ appears, where
� D sup.supp y�/. This term is a genuine lower-order term, and shows that for such
test functions the ratios conjecture’s prediction is not best possible. We thus show
that a transition happens when � is near 1. Indeed looking at the difference between
the 1-level density and the ratios conjecture’s prediction, that is defining

EQ.�/ WDD1IQ=2;Q.�/�y�.0/

�
1�

log.4�e /C 1

log Q
�

1

log Q

X
p

log p

p.p� 1/

�

�

Z 1
0

y�.0/� y�.t/

Qt=2�Q�t=2
dt; (1-8)
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our results imply that3 EQ.�/DQ��.�/Co.1/, where

�.�/D

��
2
� 1 if � � 1;

�
1
2

if 1� � < 3
2
:

(1-9)

We conjecture that �.�/ should equal�1
2

for all � �1, and that our new lower-order
term Q�1=2S�.Q/= log Q should persist in this extended range.

Conjecture 1.3. Theorem 1.2 holds for test functions � whose Fourier transform
has arbitrarily large finite support � .

In Figure 1, the solid curve represents our results (Theorems 1.2 and 2.1), and the
dashed line represents Conjecture 1.3; note the resemblance between this graph and
the one appearing in Montgomery’s pair correlation conjecture [Montgomery 1973].
We prove in Theorem 2.13 that Montgomery’s conjecture on primes in arithmetic
progressions implies that �.�/� �1

2
for all � � 1.

0:5 1 1:5 2 2:5
�.�/

�1

�0:5

�

Figure 1. The graph of �.�/.

We believe that this phenomenon is universal and should also happen in different
families, in the sense that we believe that the ratios conjecture’s prediction should
be best possible for � � 1, and should not be for � < 1. For example, in [Miller
2009b] it is shown that if the Fourier transform of the involved test function is
supported in .�1; 1/, then the ratios conjecture’s prediction is not best possible and
one can improve the remainder term; however, in this region of limited support
there are no new, nonzero lower order terms unpredicted by the ratios conjecture.
These results confirm the exceptional nature of the transition point � D 1, as is
the case in Montgomery’s pair correlation conjecture [1973]. Indeed if this last
conjecture were known to hold beyond the point ˛ D 1, then this would imply the
nonexistence of Landau–Siegel zeros [Conrey and Iwaniec 2002].

Our plan of attack is to use the explicit formula to turn the 1-level density into
an average of the various terms appearing in this formula. The bulk of the work
is devoted to carefully estimating the contribution of the prime sum, which when
summing over � mod q becomes a sum over primes in the residue class 1 mod q,

3For � > 1, this holds for test functions � for which either y�.1/¤ 0 or y�0.1/¤ 0 (see Theorem 1.2);
see Theorem 2.1 if � � 1. If y�.u/ vanishes in a small interval around uD 1, then Theorem 2.6 gives
the correct answer.
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averaged over q �Q. Accordingly, the proof of Theorem 1.2 is based on ideas in
[Fiorilli 2012], which improve on results of Fouvry [1985], Bombieri, Friedlander
and Iwaniec [Bombieri et al. 1986], Friedlander and Granville [1992] and Fried-
lander, Granville, Hildebrandt and Maier [Friedlander et al. 1991]. Theorem 1.1
of [Fiorilli 2012] cannot be applied directly here, since this estimate is only valid
when looking at primes up to x modulo q with q �Q, where Q is not too close
to x. Additional estimates are needed, including a careful analysis of the range
x1�� <Q� x, which required a combination of divisor switching techniques and
precise estimates on the mean value of smoothed sums of the reciprocal of Euler’s
totient function. Additionally, in our analysis of the 1-level density after using the
explicit formula and executing the sum over the family we obtain a sum over primes
in the arithmetic progressions 1 mod q; this is one of the cases where one obtains
an asymptotic in [Fiorilli 2012, Theorem 1.1], which explains the occurrence of the
lower-order term Q�1=2S�.Q/= log Q in Theorem 1.2.

The paper is organized as follows. In Section 2A we review previous results
on low-lying zeros in families of L-functions and describe the motivation for the
ratios conjecture. See for example [Goes et al. 2010; Miller 2009b] for a detailed
description of how to apply the ratios conjecture to predict the 1-level density. We
describe our unconditional results in Section 2B, and then improve our results
in Section 2C by assuming GRH. In previous families there often is a natural
barrier, and extending the support is related to standard conjectures (for example,
in [Iwaniec et al. 2000] the authors show how cancellation in exponential sums
involving square roots of primes leads to larger support for families of cuspidal
newforms). A similar phenomenon surfaces here, where in Section 2D we show that
increasing the support beyond .�2; 2/ is related to conjectures on the distribution of
primes in residue classes. We analyze the increase in support provided by various
conjectures. These range from a conjecture on the variance of primes in the residue
classes, which allow us to reach .�4; 4/, to Montgomery’s conjecture for a fixed
residue, which gives us any finite support. The next sections contain the details of
the proof; we state the explicit formula and prove some needed sums in Section 3,
and then prove our theorems in the remaining sections.

2. Background and new results

2A. Background and previous results. Assuming GRH, the nontrivial zeros of
any nice L-function lie on the critical line, and therefore it is possible to investigate
statistics of its normalized zeros. These zeros are fundamental in many problems,
ranging from the distribution of primes in congruence classes to the class number
[Conrey and Iwaniec 2002; Goldfeld 1976; Gross and Zagier 1986; Rubinstein
and Sarnak 1994]. Numerical and theoretical evidence [Hejhal 1994; Montgomery
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1973; Odlyzko 1987; 2001; Rudnick and Sarnak 1996] support a universality in
behavior of zeros of an individual automorphic L-function high above the central
point, specifically that they are well-modeled by ensembles of random matrices
(see [Firk and Miller 2009; Hayes 2003] for histories of the emergence of random
matrix theory in number theory). The story is different for the low-lying zeros,
the zeros near the central point. A convenient way to study these zeros is via the
1-level density, which we now describe. Let � 2 L1.R/ be an even real function
whose Fourier transform

y�.y/ D

Z 1
�1

�.x/e�2� ixy dx (2-1)

is C 2 and has compact support. Let FN be a (finite) family of L-functions satisfying
GRH.4 The 1-level density associated to FN is defined by

D1IFN
.�/ D

1

jFN j

X
g2FN

X
j

�

�
log cg

2�
 .j/g

�
; (2-2)

where 1
2
Ci

.j/
g runs through the nontrivial zeros of L.s;g/. Here cg is the “analytic

conductor” of g, and gives the natural scale for the low zeros. As � decays, only
low-lying zeros (i.e., zeros within a distance 1= log cg of the central point s D 1

2
)

contribute significantly. Thus the 1-level density can help identify the symmetry
type of the family. To evaluate (2-2), one applies the explicit formula, converting
sums over zeros to sums over primes.

Based in part on the function field analysis where G.F/ is the monodromy group
associated to the family F, Katz and Sarnak conjectured that for each reasonable
irreducible family of L-functions there is an associated symmetry group G.F/

(one of the following five: unitary U, symplectic USp, orthogonal O, SO.even/,
SO.odd/), and that the distribution of critical zeros near 1

2
mirrors the distribution of

eigenvalues near 1. The five groups have distinguishable 1-level densities. To date,
for suitably restricted test functions the statistics of zeros of many natural families
of L-functions have been shown to agree with statistics of eigenvalues of matrices
from the classical compact groups, including Dirichlet L-functions, elliptic curves,
cuspidal newforms, Maass forms, number field L-functions, and symmetric powers
of GL2 automorphic representations [Alpoge and Miller 2014; Alpoge et al. 2014;
Dueñez and Miller 2006; Fouvry and Iwaniec 2003; Gao 2005; Güloğlu 2005;
Hughes and Miller 2007; Hughes and Rudnick 2003; Iwaniec et al. 2000; Katz and
Sarnak 1999a; 1999b; Miller 2004; Miller and Peckner 2012; Ricotta and Royer
2011; Royer 2001; Rubinstein 2001; Shin and Templier 2012; Yang 2009; Young

4 We often do not need GRH for the analysis, but only to interpret the results. If the GRH is
true, the zeros lie on the critical line and can be ordered, which suggests the possibility of a spectral
interpretation.
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2006], to name a few, as well as nonsimple families formed by Rankin–Selberg
convolution [Dueñez and Miller 2009].

In addition to predicting the main term (see for example [Conrey 2001; Katz
and Sarnak 1999a; 1999b; Keating and Snaith 2000a; 2000b; 2003]), techniques
from random matrix theory have led to models that capture the lower order terms
in their full arithmetic glory for many families of L-functions (see for example the
moment conjectures in [Conrey et al. 2005a] or the hybrid model in [Gonek et al.
2007]). Since the main terms agree with either unitary, symplectic or orthogonal
symmetry, it is only in the lower order terms that we can break this universality and
see the arithmetic of the family enter. These are therefore natural and important
objects to study, and can be isolated in many families [Huynh et al. 2009; Miller
2009a; Young 2005]. We thus require a theory that is capable of making detailed
predictions. Recently the L-function ratios conjecture [Conrey et al. 2008; 2005b]
has had great success in determining lower order terms. Though a proof of the
ratios conjecture for arbitrary support is well beyond the reach of current methods,
it is an indispensable tool in current investigations as it allows us to easily write
down the predicted answer to a remarkable level of precision, which we try to prove
in as great a generality as possible.

To study the 1-level density, it suffices to obtain good estimates for

RFN
.˛;  / WD

1

jFN j

X
g2FN

L.1
2
C˛;g/

L.1
2
C  ;g/

: (2-3)

(In the current paper, the parameter Q plays the role of jFN j.) Asymptotic formulas
for RFN

.˛;  / have been conjectured for a variety of families FN (see [Conrey
et al. 2008; Conrey and Snaith 2007; 2008; Goes et al. 2010; Huynh et al. 2011;
Miller 2008; 2009b; Miller and Montague 2011]) and are believed to hold up to
errors of size jFN j

�1=2C� for any � > 0. The evidence for the correctness of this
error term is limited to test functions with small support (frequently significantly
less than .�1; 1/), though in such regimes many of the above papers verify this
prediction. Many of the steps in the ratios conjecture’s recipe lead to the addition or
omission of terms as large as those being considered, and thus there was uncertainty
as to whether or not the resulting predictions should be accurate to square root
cancellation. The results of the current paper can be seen as a confirmation that this
is the right error term for the final predicted answer, at least in this family. Further,
the novelty in our results resides in the fact that we are able to go beyond square root
cancellation and we find a smaller term which is unpredicted by the ratios conjecture
(see Theorem 1.2). For a precise explanation on how to derive the ratios conjecture’s
prediction in our family, we refer the reader to [Goes et al. 2010], and also recom-
mend [Conrey and Snaith 2007] for an accessible overview of the ratios conjecture.
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2B. Unconditional results. We now describe our unconditional results. We remind
the reader that � is a real even function such that y� is C 2 and has compact support.

Theorem 2.1. Suppose that the Fourier transform of the test function � is supported
on the interval Œ�1; 1�, so � D sup.supp y�/ � 1. There exists an absolute positive
constant c (coming from the Prime Number Theorem) such that the 1-level density
D

1Iq
.�/ (from (1-1) with scaling parameter QD q) equals

y�.0/
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�.q/

Z 1
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2
�
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log q
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du
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log q
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log p

�.p�/pe=2
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�
log pe
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�
C O

�
q�=2�1

ec
p
� log q

�
: (2-4)

Remark 2.2. The average over Q=2 < q �Q of the fourth term in (2-4) can be
shown to be O.Q�1/, and is therefore negligible when considering D1IQ=2;Q.�/

(see (3-16)). However, the term involving the second integral in (2-4) is of size
q�=2�1�o.1/, and thus constitutes a genuine lower-order term, smaller than the error
term in (1-3) predicted using the ratios conjecture.

Theorems 1.2 and 2.1 should be compared to the main result of Goes, Jackson,
Miller, Montague, Ninsuwan, Peckner and Pham [Goes et al. 2010], where they
show one can extend the support of y� to Œ�2; 2� and still get the main term, as well
as the lower order terms down to a power savings. They only consider q prime, and
thus the sum over primes p dividing q below in Theorem 2.3 is absorbed by their
error term. We briefly discuss how one can easily extend their results to the case of
general q. First note that L.s; �/ and L.s; ��/ have the same zeros in the critical
strip if �� is the primitive character of conductor q� inducing the nonprincipal
character � of conductor q. We now have log q�, which can be converted to a sum
over primes p dividing q by the same arguments as in the proof of Proposition 3.1.
The rest of the expansion follows from expanding the digamma function � 0=� in
the integral in [Goes et al. 2010, Theorem 1.3] and then standard algebra (along the
lines of the computations in Section 3). We use [Montgomery and Vaughan 2007,
Lemma 12.14], which in our notation says that for a; b > 0 we haveZ 1
�1

� 0.a˙ ib�/

�.a˙ ib�/
�.t/ dt

D
� 0.a/

�.a/
y�.0/C

2�

b

Z 1
0

exp.�2�ax=b/

1� exp.�2�x=b/

�
y�.0/� y�.�x/

�
dx; (2-5)
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and the identity

� 0.1
4
/

�.1
4
/
C
� 0.3

4
/

�.3
4
/
D �2 � 6 log 2; (2-6)

with  the Euler–Mascheroni constant. We then extend to q 2 .Q=2;Q� by rescaling
the zeros by log Q and not log q and summing over the family; recall the technical
issues involved in the rescaling are discussed in Footnote 2.

Theorem 2.3 (Goes, Jackson, Miller, Montague, Ninsuwan, Peckner, Pham [Goes
et al. 2010]). If 1< � � 2, then the 1-level density D

1Iq
.�/ (from (1-1) with scaling

parameter QD q) equals

y�.0/

�
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log.8�e /

log q
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log q

X
pjq

log p

p� 1

�
C

Z 1
0

y�.0/� y�.t/

qt=2� q�t=2
dt

CO

�
log log q

log q
q�=2�1

�
; (2-7)

and this agrees with the ratios conjecture.

Remark 2.4. Goes et al. [2010] actually proved (2-7) for any � � 2, with the
additional error term O.q�1=2C�/. We preferred not to include the case � � 1, as
Theorem 2.1 is more precise in this range.

2C. Results under GRH. We first mention a more precise version of Theorem 1.2.

Remark 2.5. If in addition to the hypotheses of Theorem 1.2 we assume that the
Fourier transform of the test function � is KC 1 times continuously differentiable,
then we can give a more precise expression for the term S�.Q/ appearing in (1-5):

S�.Q/ D

KX
iD0

ai.�/

.log Q/i
CO�;K

�
1

.log Q/KC1��

�
; (2-8)

where the ai.�/ are constants depending (linearly) on the Taylor coefficients of y�.t/
at t D 1. In fact, S�.Q/ is a truncated linear functional, which composed with the
Fourier transform operator is supported on f1g (in the sense of distributions).

Our next result is an extension of Theorem 1.2, in the case where y�.u/ vanishes
in a small interval to the right of uD 1.

Theorem 2.6. Assume GRH.

(1) If y� is supported in .�3
2
;�1���[ Œ�1; 1�[ Œ1C�; 3

2
/ for some � > 0, then for

any � > 0 the average 1-level density D
1IQ=2;Q

.�/ equals
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with C6 WD log.�=2/C 1C  C
P

p
log p

p.p�1/
.

(For � � 4
3

, unless y�.x/ has some mass near xD � for some 1<�< 4�2� ,
the fourth term in (2-9) goes in the error term, and hence (2-9) reduces to
(2-10). However, if 1< � < 4

3
, it is always a genuine lower-order term.)

(2) If f is supported in .�2;�a�[ Œ�1; 1�[ Œa; 2/ for some 1 � a < 2 (if aD 1,
we have the full interval .�2; 2/), then D

1IQ=2;Q
.�/ equals

y�.0/

�
1�

1C log.4�e /

log Q
�

1

log Q

X
p

log p

p.p� 1/

�

C

Z 1
0

y�.0/� y�.t/

Qt=2�Q�t=2
dt

�
4 log 2

Q

�.2/�.3/

�.6/

Z 1

0

Qu=2

�
y�.u/

2
�
y�0.u/

log Q

�
du

CO
�
Q�a=2

CQ��2 log Q
�
: (2-10)

Unless a> 1 and � < 3
2

, the third term of (2-10) goes in the error term.

2D. Results beyond GRH. As the GRH is insufficient to compute the 1-level den-
sity for test functions supported beyond Œ�2; 2�, we explore the consequences of
other standard conjectures in number theory involving the distribution of primes
among residue classes. Before stating these conjectures, we first set the notation.
Let

 .x/ WD
X
n�x

ƒ.n/;  .x; q; a/ WD
X
n�x

n�a mod q

ƒ.n/;

E.x; q; a/ WD  .x; q; a/�
 .x/

�.q/
: (2-11)
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If we assume GRH, we have

 .x/D xCO
�
x1=2.log x/2

�
; E.x; q; a/DO

�
x1=2.log x/2

�
: (2-12)

Our first result uses GRH and the following de-averaging hypothesis, which
depends on a parameter ı 2 Œ0; 1�.

Hypothesis 2.7. We haveX
Q
2
<q�Q

ˇ̌̌̌
 .xI q; 1/�

 .x/

�.q/

ˇ̌̌̌2
�Qı�1

X
Q
2
<q�Q

X
1�a�q
.a;q/D1

ˇ̌̌̌
 .xI q; a/�

 .x/

�.q/

ˇ̌̌̌2
: (2-13)

This hypothesis is trivially true for ı D 1, and while it is unlikely to be true
for ı D 0, it is reasonable to expect it to hold for any ı > 0. What we need is
some control over biases of primes congruent to 1 mod q; Hypothesis 2.7 can be
interpreted as bounding the average of j .xI q; 1/� .x/=�.q/j2 in terms of the
average variance.5

Under these hypotheses, we show how to extend the support to a wider but still
limited range.

Theorem 2.8. Assume GRH and Hypothesis 2.7 for some ı 2 .0; 1/. The average
1-level density D

1IQ=2;Q
.y�/ equals

y�.0/

�
1�

1C log.4�e /

log Q
�

1

log Q

X
p

log p

p.p� 1/

�
C

Z 1
0

y�.0/� y�.t/

Qt=2�Q�t=2
dt

C O
�
Q.ı�1/=2.log Q/3=2CQ.�C2ı/=4�1.log Q/1=3

�
; (2-14)

which is asymptotic to y�.0/ provided the support of y� is contained in .�4C2ı; 4�2ı/.

The proof of Theorem 2.8 is given in Section 6. It uses a result of Goldston
and Vaughan [1997], which is an improvement of results of Barban, Davenport,
Halberstam, Hooley, Montgomery and others.

Remark 2.9. In Theorem 2.8 we study the weighted 1-level density

D1IQ=2;Q.�/ WD
X

Q=2<q�Q

1

�.q/

X
�mod q

X
�

�

�
�

log Q

2�

�
; (2-15)

which is technically easier to study than the unweighted version

D
unweighted
1IQ=2;Q

.�/ WD
1

9=�2.Q=2/2

X
Q=2<q�Q

X
�mod q

X
�

�

�
�

log Q

2�

�
: (2-16)

5Note that we only need this de-averaging hypothesis for the special residue class aD 1.
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This is similar to many other families of L-functions, such as cuspidal newforms
[Iwaniec et al. 2000; Miller and Montague 2011] and Maass forms [Alpoge et al.
2014; Alpoge and Miller 2014], where the introduction of weights (arising from
the Petersson and Kuznetsov trace formulas) facilitates evaluating the arithmetical
terms.

Finally, we show how we can determine the 1-level density for arbitrary finite
support, under a hypothesis of Montgomery [1970].

Hypothesis 2.10 (Montgomery). For any a; q such that .a; q/D 1 and q � x, we
have

 .xI q; a/�
 .x/

�.q/
�� x�

�
x

q

�1=2
: (2-17)

It is by gaining some savings in q in the error E.x; q; a/ that we can increase
the support for families of Dirichlet L-functions. The following weaker version of
Montgomery’s conjecture, which depends on a parameter � 2 .0; 1

2
�, also suffices

to increase the support beyond Œ�2; 2�.

Hypothesis 2.11. For any a; q such that .a; q/D 1 and q � x, we have

 .xI q; 1/�
 .x/

�.q/
��

x1=2C�

q�
: (2-18)

Hypothesis 2.12. Fix � > 0. We have for x� � q �
p

x thatX
n�x

n�1 mod q

ƒ.n/
�
1�

n

x

�
�

1

�.q/

X
n�x

ƒ.n/
�
1�

n

x

�
D o

�
x1=2

�
: (2-19)

Note that this is a weighted version of  .xI q; 1/� .x/=�.q/; that is, we added
the weight

�
1� n=x

�
. The reason for this is that it makes the count smoother, and

this makes it easier to analyze in general since the Mellin transform of g.y/ WD 1�y

in the interval Œ0; 1� is decaying faster in vertical strips than that of g.y/� 1.
Amongst the last three hypotheses, Hypothesis 2.12 is the weakest, but it is still

sufficient to derive the asymptotic in the 1-level density for test functions with
arbitrary large support.

Theorem 2.13. Suppose that the Fourier transform of � has arbitrarily large (but
compact) support.

(1) If we assume Hypothesis 2.12, the 1-level density D
1Iq
.�/ equals y�.0/C o.1/,

agreeing with the scaling limit of unitary matrices.
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(2) If we assume Hypothesis 2.11 for some 0< � � 1
2

, then D
1Iq
.�/ equals

y�.0/

�
1�

log.8�e /

log q
�

1

log q

X
pjq

log p

p� 1

�
C

Z 1
0

y�.0/� y�.t/

qt=2� q�t=2
dt

CO�
�
q��C�

�
: (2-20)

Remark 2.14. Under GRH, the left-hand side of (2-19) is O.x1=2 log q/. Therefore,
if we win by more than a logarithm over GRH, then we have the expected asymptotic
for the 1-level density for y� of arbitrarily large finite support.

Interestingly, if we assume Montgomery’s conjecture (Hypothesis 2.10), then
we can take � D 1

2
in (2-20), and doing so we end up precisely with the ratios

conjecture’s prediction; see (1-3).

We derive the explicit formula for the families of Dirichlet characters in Section 3,
as well as some useful estimates for some of the resulting sums. We give the
unconditional results in Section 4, Theorems 2.1 and 2.3. The proofs of Theorems
1.2 and 2.6 are conditional on GRH, and use results in [Friedlander and Granville
1992] and [Fiorilli 2012]; we give them in Section 5. We conclude with an analysis
of the consequences of the hypotheses on the distribution of primes in residue
classes, using the de-averaging hypothesis to prove Theorem 2.8 in Section 6 and
Montgomery’s hypothesis to prove Theorem 2.13 in Section 7.

3. The explicit formula and needed sums

Our starting point for investigating the behavior of low-lying zeros is the explicit
formula, which relates sums over zeros to sums over primes. We follow the
derivation in [Montgomery and Vaughan 2007] (see also [Iwaniec et al. 2000;
Rudnick and Sarnak 1996] and [Davenport 1980; Iwaniec and Kowalski 2004] for
all needed results about Dirichlet L-functions). We first derive the expansion for
Dirichlet characters with fixed conductor q, and then extend to q 2 .Q=2;Q�. We
conclude with some technical estimates that will be of use in proving Theorem 1.2.
Here and throughout, we will set f WD y�. Note that � is real and even, and thus so
is the case for f , and moreover we have yf D �.

3A. The explicit formula for fixed q.

Proposition 3.1 (explicit formula for the family of Dirichlet characters modulo q).
Let f be an even, twice differentiable test function with compact support. Denote
the nontrivial zeros of L.s; �/ by

�� D
1
2
C i�:
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Then the 1-level density D
1;q
. yf / equals

1

�.q/

X
�mod q

X
�

yf

�
�

log Q

2�

�

D
f .0/

log Q

�
log q� log.8�e /�

X
pjq

log p

p� 1

�
C

Z 1
0

f .0/�f .t/

Qt=2�Q�t=2
dt

�
2

log Q

X
p�kq

pe�1 mod q=p�

e;��1

log p

�.p�/pe=2
f

�
log pe

log Q

�

�
2

log Q

� X
n�1 mod q

�
1

�.q/

X
n

�
ƒ.n/

n1=2
f

�
log n

log Q

�
CO

�
1

�.q/

�
: (3-1)

Proof. We start with Weil’s explicit formula for L.s; �/, with � mod q a nonprinci-
pal character (we add the contribution from the principal character later). We can
replace L.s; �/ by L.s; ��/ (where �� is the primitive character of conductor q�

inducing �), since these have the same nontrivial zeros. Taking

F.x/ WD
2�

log Q
f

�
2�x

log Q

�
in Theorem 12.13 of [Montgomery and Vaughan 2007] (whose conditions are
satisfied by our restrictions on f ), we find

ˆ.s/ D yf

�
log Q

2�

.s� 1
2
/

i

�
;

andX
��

yf

�
log Q

2�
�

�
D

f .0/

log Q

�
log

q�

�
C
� 0

�

�
1

4
C

a.�/

2

��

�
2

log Q

1X
nD1

ƒ.n/<.��.n//

n1=2
f

�
log n

log Q

�

C
4�

log Q

Z 1
0

e�.1C2a.�//�x

1� e�4�x

�
f .0/�f

�
2�x

log Q

��
dx; (3-2)

where a.�/D 0 for the half of the characters with �.�1/D 1 and 1 for the half with
�.�1/D�1. Making the substitution t D 2�x=log Q in the integral and summing
over �¤ �0, we find
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X
�¤�0

X
�

yf

�
�

log Q

2�

�

D
f .0/

log Q

� X
�¤�0

log.q�=�/C
�.q/

2

� 0

�

�
3

4

�
C
�.q/

2

� 0

�

�
1

4

��

C�.q/

Z 1
0

Q�3t=2CQ�t=2

1�Q�2t

�
f .0/�f .t/

�
dt

�
2

log Q

�
�.q/

X
n�1 mod q

�

X
n

�
ƒ.n/

n1=2
f

�
log n

log Q

�

�
2

log Q

X
�¤�0

X
n

ƒ.n/<
�
��.n/��.n/

�
n1=2

f

�
log n

log Q

�
CO.1/: (3-3)

To get (3-3) from (3-2) we added zero by writing ��.n/ as
�
��.n/��.n/

�
C�.n/.

Summing �.n/ over all � mod q gives �.q/ if n� 1 mod q and 0 otherwise; as our
sum omits the principal character, the sum of �.n/ over the nonprincipal characters
yields the sum on the third line above. We also replaced .�.q/� 1/=2 by �.q/=2
in the first term, hence the O.1/.

We use [Fiorilli and Martin 2013, Proposition 3.3] for the first term (which
involves the sum over the conductor of the inducing character). We then use the
duplication formula of the digamma function  .z/D � 0.z/=�.z/ to simplify the
next two terms, namely  .1

4
/C .3

4
/. As  .1

2
/D� � 2 ln 2 (Equation 6.3.3 of

[Abramowitz and Stegun 1972]) and  .2z/D 1
2
 .z/C 1

2
 .zC 1

2
/C ln 2 (Equation

6.3.8, [ibid.]), setting zD 1
4

yields  .1
4
/C .3

4
/D�2 �6 ln 2. We keep the next

two terms as they are, and then apply [Fiorilli and Martin 2013, Proposition 3.4]
(with r D 1) for the last term, obtaining that it equals

�
2

log Q

X
n

ƒ.n/

n1=2
f

�
log n

log Q

�
<

� X
�¤�0

�
��.n/��.n/

��
: (3-4)

Writing n D pe, this term is zero unless p j q. If p j q, then it is zero unless
pe � 1 mod q=p� , where � � 1 is the largest � such that p� j q. Therefore this
term equals

�
2

log Q

X
p

X
p�kq

pe�1 mod q=p�

e;��1

ƒ.pe/

�.p�/pe=2
f

�
log pe

log Q

�
: (3-5)

Combining this with some elementary algebra yields
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1

�.q/

X
�¤�0

X
�

yf

�
�

log Q

2�

�

D
f .0/

log Q

�
log q� log.8�e /�

X
pjq

log p

p� 1

�
C

Z 1
0

f .0/�f .t/

Qt=2�Q�t=2
dt

�
2

log Q

� X
n�1 mod q

�
1

�.q/

X
n

�
ƒ.n/

n1=2
f

�
log n

log Q

�

�
2

log Q

X
p�kq

pe�1 mod q=p�

e;��1

log p

�.p�/pe=2
f

�
log pe

log Q

�
CO

�
1

�.q/

�
: (3-6)

Finally, since the nontrivial zeros of L.s; �0/ coincide with those of �.s/, the
difference between the left-hand side of (3-1) and that of (3-6) is

1

�.q/

X

�

yf

�
�

log Q

2�

�
�

1

�.q/
(3-7)

(since f is twice continuously differentiable, yf .y/�1=y2), completing the proof.6

�

3B. The averaged explicit formula for q 2 .Q=2 ; Q�. We now average the ex-
plicit formula for D

1Iq
. yf / (Proposition 3.1) over q 2 .Q=2;Q�. We concentrate

on deriving useful expansions, which we then analyze in later sections when we
determine the allowable support.

Proposition 3.2 (explicit formula for the averaged family of Dirichlet characters
modulo q). The averaged 1-level density, D

1IQ=2;Q
. yf /, equals

1

Q=2

X
Q=2<q�Q

D1Iq.
yf /

D
f .0/

log Q

�
log Q� 1�  � log.4�/�

X
p

log p

p.p� 1/

�
C

Z 1
0

f .0/�f .t/

Qt=2�Q�t=2
dt

C
2

Q=2

X
Q=2<q�Q

Z 1
0

�
f .u/

2
�
f 0.u/

log Q

�
 .QuI q; 1/� .Qu/=�.q/

Qu=2
du

CO
�

1

Q

�
: (3-8)

6While the explicit formula for �.s/ has a term arising from its pole at s D 1, that term does not
matter here as it is insignificant upon division by the family’s size.
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Setting

 2.xI q; a/ WD
X
n�x

n�a mod q

ƒ.n/
�
1�

n

x

�
;  2.x/ WD

X
n�x

ƒ.n/
�
1�

n

x

�
; (3-9)

the last integral in (3-8) may be replaced with

�2

Z 1
0

�
3f .u/

4
�

2f 0.u/

log Q
C

f 00.u/

.log Q/2

�
 2.Q

uI q; 1/� 2.Q
u/=�.q/

Qu=2
du: (3-10)

Proof. The main term in the expansion of D
1Iq
. yf / from Proposition 3.1 is

T1.q/ WD
f .0/

log Q

�
log q� log.8�e /�

X
pjq

log p

p� 1

�
: (3-11)

Using the antiderivative of log x is x log x � x, one easily finds its average over
Q=2< q �Q is

1

Q=2

X
Q<q�2Q

T1.q/

D
f .0/

log Q

�
log Q� 1�  � log.4�/�

X
p

log p

p.p� 1/

�
CO

�
1

Q

�
: (3-12)

We now turn to the lower-order term

T2.q/ WD �
2

log Q

X
p�kq

pe�1 mod q=p�

e;��1

log p

�.p�/pe=2
f

�
log pe

log Q

�
: (3-13)

Before determining its average behavior, we note that its size can vary greatly with
q. It is very small for prime q (so � D 1 and p D q in the sum), since

T2.q/ �
1

log Q

X
e�1

log q

�.q/qe=2
�

1

.q� 1/.q1=2� 1/
I (3-14)

however, it can be as large as C=.
p

q log Q/ for other values of q (such as q D

2.2e � 1/). This is, more or less, as large as it can get, since for general q we have

T2.q/ �
1

log Q

X
p�kq
e;��1

pe�Q�

log p

�.p�/.q=p�/1=2
�

.log q/1=2

q1=2 log log q
: (3-15)
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On average, however, T2.q/ is very small:

1

Q=2

X
Q=2<q�Q

T2.q/ �
1

Q

X
Q=2<q�Q

X
p�kq

pe�1 mod q=p�

e;��1

log p

p�Ce=2

�
1

Q

X
p�

�;e�1

log p

p�Ce=2

X
q�Q
p� jq

q

p�
jpe�1

1�
1

Q

X
p�

�;e�1

log p

p�Ce=2
�.pe

� 1/

��
1

Q

X
p�

�;e�1

log p

p�C.1��/e=2
�

1

Q

X
p

log p

p3=2��=2
�

1

Q
: (3-16)

While we will not rewrite the next lower order term, it is instructive to determine
its size. Set

T3.q/ WD

Z 1
0

f .0/�f .t/

Qt=2�Q�t=2
dt: (3-17)

Letting t D 2�x= log Q, we find

T3.q/ D
2�

log Q

Z 1
0

f .0/�f .2�x=log Q/

2 sinh.�x/
dx: (3-18)

Since f is twice differentiable with compact support, jf .0/�f .x/j � jxj, thus

T3.q/ �
2�

log Q

Z 1
0

x

2 sinh.�x/
dx D

�

4 log Q
: (3-19)

As Z 1
0

xk dx

sinh.�x/
D

2kC1� 1

2k�kC1
�.kC 1/�.kC 1/; (3-20)

if f has a Taylor series of order KC 1 we have

T3.q/ D

KX
kD1

.2kC1� 1/�.kC 1/f .k/.0/

logkC1 Q
CO

�
1

logKC1 Q

�
: (3-21)

If the Taylor coefficients of f decay very fast, we can even make our bounds
uniform and get an error term smaller than a negative power of Q.

The remaining term from Proposition 3.1 is the most important, and controls
the allowable support. The arithmetic lives here, as this term involves primes in
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arithmetic progressions. It is

T4.q/ WD �
2

log Q

� X
n�1 mod q

�
1

�.q/

X
n

�
ƒ.n/

n1=2
f

�
log n

log Q

�

D �
2

log Q

Z 1
1

t�1=2f

�
log t

log Q

�
d
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 .t I q; 1/�

 .t/

�.q/

�

D
2

log Q

Z 1
1

1
2
f
� log t

log Q

�
�

1
log Q

f 0
� log t

log Q

�
t3=2

�
 .t I q; 1/�

 .t/

�.q/

�
dt: (3-22)

The claim in the proposition follows by changing variables by setting t D Qu;
specifically, the final integral is

T4.q/ D 2

Z 1
0

�
f .u/

2
�
f 0.u/

log Q

�
 .QuI q; 1/� .Qu/=�.q/

Qu=2
du: (3-23)

We give an alternative expansion for the final integral. This expansion in-
volves a smoothed sum of ƒ.n/, which will be technically easier to analyze when
we turn to determining the allowable support under Montgomery’s hypothesis
(Theorem 2.13(1)). Recall

 2.xI q; a/ WD
X
n�x

n�a mod q

ƒ.n/
�
1�

n

x

�
;  2.x/ WD

X
n�x

ƒ.n/
�
1�

n

x

�
; (3-24)

We integrate by parts in (3-22). SinceZ x

1

�
 .t I q; 1/�

 .t/

�.q/

�
dt

D

Z x

1

� X
n�t

n�1 mod q

ƒ.n/�
1

�.q/

X
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D

X
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n�1 mod q

ƒ.n/

Z x

n

dt �
1

�.q/

X
n�x

ƒ.n/

Z x

n
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D x

� X
n�x

n�1 mod q

ƒ.n/
�
1�

n

x

�
�

1

�.q/

X
n�x

ƒ.n/
�
1�

n
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��
; (3-25)

we find

T4.q/ D �2

Z 1
0

�
3f .u/

4
�

2f 0.u/

log Q
C

f 00.u/

.log Q/2

�
 2.Q

uI q; 1/� 2.Q
u/=�.q/

Qu=2
du;

(3-26)

completing the proof. �
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Remark 3.3. It will be convenient later that in the averaged case  and  2 are
both evaluated at .QuI q; 1/ and not .quI q; 1/; this is because we are rescaling
all L-function zeros by the same quantity (a global rescaling instead of a local
rescaling).

3C. Technical estimates. In the proof of Theorem 2.6, we need the following
estimation of a weighted sum of the reciprocal of the totient function.

Lemma 3.4. Let � be Euler’s totient function. We haveX
r�R

1

�.r/

�
R1=2

C
r

R1=2
� 2r1=2

�
DD1R1=2 log RCD2R1=2

CD3CO

�
log R

R1=2

�
; (3-27)

where

D1 WD
�.2/�.3/

�.6/
; D2 WD D1

�
 � 3�

X
p

log p

p2�pC 1

�
;

D3 WD �2�
�
i 1

2
i
�
i
Y
p

�
i1C

1

.p� 1/p1=2

�
: (3-28)

More generally, if P .u/ WD
Pd

iD0 aiu
i is a polynomial of degree d and of norm

kPk WD max
i
jai j; (3-29)

thenX
r�R

1

�.r/

Z 1

log r

log R

P .u/

�
Ru=2

�
r

Ru=2

�
du

D E1 log R

Z 1

�1

Ru=2uP .u/ duCE2

Z 1

�1

Ru=2P .u/ du

C

dC1X
jD1

Fj .P /

.log R/j
COd

�
R�1=2

kPk
�
; (3-30)

where

E1 WD
�.2/�.3/

�.6/
; E2 WD E1

�
 � 1�

X
p

log p

p2�pC 1

�
; (3-31)

and the Fj .P / are constants depending on P which can be computed explicitly.
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For example,

F1.P / D �4�
�

1
2

�Y
p

�
1C

1

.p� 1/p1=2

� dX
iD0

.�1/iP .i/.1/

F2.P / D �4�
�

1
2

�Y
p

�
1C

1

.p� 1/p1=2

�

�

�
�0

�

�
1
2

�
�

X
p

log p

.p� 1/p1=2C 1

� dX
iD1

.�1/iP .i/.1/: (3-32)

Finally, X
r�R

1

�.r/

Z 1

log.r=2/

log.R=2/

P .u/

�
.R=2/u=2�

r

2.R=2/u=2

�
du

D E1 log.R=2/
Z 1

�1

.R=2/u=2uP .u/ du

C .E2CE1 log 2/

Z 1

�1

.R=2/u=2P .u/ du

C

dC1X
jD1

F
.2/
j .P /

.log.R=2//j
COd

�
R�1=2

kPk
�
; (3-33)

where the first two constants are given by

F
.2/
1
.P / WD

F1.P /
p

2

F
.2/
2
.P / WD �2

p
2�
�

1
2

�Y
p

�
1C

1

.p� 1/p1=2

�
�

�
�0

�

�
1
2

�
�

X
p

log p

.p� 1/p1=2C 1
C log 2

� dX
iD1

.�1/iP .i/.1/: (3-34)

Remark 3.5. It is possible to improve the estimates in (3-27), (3-30) and (3-33)
to ones with an error term of O�;d .R

�5=4C�kPk/; however, this is not needed for
our purposes.

Proof. By Mellin inversion, for c � 2 the left-hand side of (3-27) equals

1

2� i

Z
<.s/Dc

Z.s/

�
RsC1=2

s
C

RsC1=2

sC 1
� 2

RsC1=2

sC 1
2

�
ds

D
1

2� i

Z
<.s/Dc

Z.s/
RsC1=2

2s.sC 1
2
/.sC 1/

ds; (3-35)
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where

Z.s/ WD
X
n�1

1

ns�.n/
: (3-36)

Taking Euler products,

Z.s/ D �.sC 1/�.sC 2/Z2.s/; (3-37)

where

Z2.s/ WD
Y
p

�
1C

1

p.p� 1/

�
1

psC1
�

1

p2sC2

��
; (3-38)

which converges for <.s/ > �3
2

. We shift the contour of integration to the left to
the line <.s/ D �3=2C �. By a standard residue calculation, we get that (3-35)
equals

D1R1=2 log RCD2R1=2
CD3CD4

log R

R1=2
C

D
5

R1=2

C
1

2� i

Z
<.s/D� 3

2
C�

Z.s/
RsC1=2

2s.sC 1=2/.sC 1/
ds (3-39)

for some constants D
4

and D
5
. The proof now follows from standard bounds on

the zeta function, which show that this integral is �� R�1C�. See the proof of
[Fiorilli 2012, Lemma 6.9] for more details.

We now move to (3-30). The Mellin transform in this case is (for <.s/ > 0)

˛.s/ WD

Z R

0

r s�1

Z 1

log r

log R

P .u/

�
Ru=2

�
r

Ru=2

�
du dr

D

Z 1

�1

P .u/

Z Ru

0

r s�1

�
Ru=2

�
r

Ru=2

�
dr du

D

Z 1

�1

P .u/
Ru.sC1=2/

s.sC 1/
du; (3-40)

which is now defined for <.s/ >�1
2

. To meromorphically extend ˛.s/ to the whole
complex plane, we integrate by parts n times:

˛.s/ D
RsC1=2

s.sC 1/

nX
iD0

.�1/iP .i/.1/

.sC 1=2/iC1.log R/iC1
; (3-41)

which is a meromorphic function with poles at the points s D 0;�1
2
;�1. The

integral we need to compute is

1

2� i

Z
<.s/D1

Z.s/˛.s/ ds: (3-42)
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We remark that

˛.�3
2
C �C i t/ ��;d

R�1C�

t3
kPk; (3-43)

hence the proof is similar as in the previous case, since by shifting the contour of
integration to the left, we have

1

2� i

Z
<.s/D1

Z.s/˛.s/ ds D ACO�;d
�
R�1C�

kPk
�
; (3-44)

where A is the sum of the residues of Z.s/˛.s/ for �3
2
C � �<.s/� 2. Note that

if ˇ.s/ WD s.sC 1/˛.s/, then

ˇ.0/ D

Z 1

�1

Ru=2P .u/ du; ˇ0.0/ D log R

Z 1

�1

Ru=2uP .u/ du; (3-45)

so the residue at s D 0 equals

�.2/�.3/

�.6/
ˇ.0/

�
ˇ0

ˇ
.0/C  � 1�

X
p

log p

p2�pC 1

�
: (3-46)

For the pole at s D�1
2

, we need to use the analytic continuation of ˛.s/ provided
in (3-41), which shows that this residue equals

nC1X
jD1

Fj .P /

.log R/j
; (3-47)

where the Fj .P / are constants depending on P which can be computed explicitly.
For example,

F1.P / D �4�
�

1
2

�Y
p

�
1C

1

.p� 1/p1=2

� dX
iD0

.�1/iP .i/.1/

F2.P / D �4�
�

1
2

�Y
p

�
1C

1

.p� 1/p1=2

�
�

�
�0

�

�
1
2

�
�

X
p

log p

.p� 1/p1=2C 1

� dX
iD1

.�1/iP .i/.1/: (3-48)

Moreover, Fi.P /�d kPk for all i .
At s D�1, we have a double pole with residue

R�1=2
nC1X
jD0

Gj .P /

.log R/j
; (3-49)

for some constants Gj .P /�d kPk, hence the proof of (3-30) is complete.
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For the proof of (3-33), we proceed in the same way, noting that the Mellin
transform is

˛2.s/ D
2s

s.sC 1/

Z 1

�1

P .u/.R=2/u.sC1=2/ du; (3-50)

which completes the proof of Lemma 3.4. �

4. Unconditional results (Theorems 2.1 and 2.3)

Using the expansion for the 1-level density D
1;q
. yf / and the averaged 1-level density

D
1IQ=2;Q

. yf / from Propositions 3.1 and 3.2, we prove our unconditional results.

Proof of Theorem 2.1. We start from Proposition 3.1. The only term of (3-1) we
need to understand is the last one (the “prime sum”), which is given by

T4.q/ WD 2

Z 1

0

�
f .u/

2
�
f 0.u/

log q

�
 .quI q; 1/� .qu/=�.q/

qu=2
du: (4-1)

(We used that the support of f is contained in Œ�1; 1� and we made the substitution
t D qu.) However, since there are no integers congruent to 1 mod q in the interval
Œ2; qu� when u� 1 (this is also true when qu is replaced by Qu, with Q=2< q�Q),
the .quI q; 1/ term equals zero. By the Prime Number Theorem there is an absolute,
computable constant c > 0 such that

T4.q/ D �2

Z 1

0

�
f .u/

2
�
f 0.u/

log q

�
 .qu/

qu=2�.q/
du

D �
2

�.q/

Z 1

0

qu=2

�
f .u/

2
�
f 0.u/

log q

�
du

CO

�
1

�.q/

Z �

0

qu=2

ec
p

u log q
du

�
; (4-2)

and the error term is

�
q�=4

�.q/

Z �=2

0

e�c
p

u log q duC
e�c
p
.�=2/ log q

�.q/

Z �

�=2

qu=2 du �
q�=2�1

ec0
p
� log q

(4-3)

for q large enough (in terms of � ), completing the proof. �

Proof of Theorem 2.3. Starting again from (3-1), we have from (3-15)

�
2

log Q

X
p�kq

pe�1 mod q=p�

e;��1

log p

�.p�/pe=2
f

�
log pe

log Q

�
�

.log q/1=2

q1=2 log log q
I (4-4)
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hence this goes in the error term and the only term we need to worry about is the
last one.

As our support exceeds Œ�1; 1�, the  .quI q; 1/ no longer trivially vanishes, and
the last term is

T4.q/ D 2

Z 2

0

�
f .u/

2
�
f 0.u/

log q

�
 .quI q; 1/� .qu/=�.q/

qu=2
du: (4-5)

In the proof of Theorem 2.1 above we showed that the contribution from the integral
where 0� u� 1 is O.q�1=2/.

For any fixed � >0, trivial bounds for the region 1�u�1C� yield a contribution
that is

�

Z 1C�

1

.u log q/qu=2�1 du � q�1=2C�: (4-6)

We use the Brun–Titchmarsh Theorem (see [Montgomery and Vaughan 1973])
for the region where 1C � � u� 2, which asserts that for q < x,

�.xI q; a/ �
2x

�.q/ log.x=q/
: (4-7)

We first bound the contribution from prime powers as follows. First there are at
most 2e!.q/ residue classes b mod q such that be � 1 mod q, and so using that
!.q/� log q= log log q we computeX

e�2

X
p�x1=e

pe�1 mod q

log p�
X

2�e� 2
�

e!.q/ max
b mod q

 X
p�x1=e

p�b mod q

log p

!
C

X
2
�
�e�2 log x

X
p�x1=e

log p

�

X
2�e� 2

�

e!.q/
�
1C

x1=e

q

�
log xC

X
2
�
�e�2 log x

x1=e

�

�
2

�

�!.q/C1
�

1C
x1=2

q

�
log xCx�=2 log x

�� x�
�
1C

x1=2

q

�
; (4-8)

provided q is large enough in terms of �.
Thus, for 1C � � u� 2, we have

 .qu
I q; 1/ ��

qu�1 log.qu/ log log q

.u� 1/ log q
C q�C qu=2�1C�

�� qu�1 log log q;

(4-9)
which bounds the integral from 1C � to � by

�

Z �

1C�

qu=2�1 log log q du �
log log q

log q
q�=2�1; (4-10)
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completing the proof. �

5. Results under GRH (Theorems 1.2 and 2.6)

In this section we assume GRH (but none of the stronger results about the distri-
bution of primes among residue classes) and prove Theorems 1.2 and 2.6. The
main ingredient in the proofs are the results of [Fouvry 1985; Bombieri et al.
1986; Friedlander and Granville 1992; Fiorilli 2012]. The following is the needed
conditional version.

Theorem 5.1. Assume GRH. Fix an integer a¤0 and �>0. For M DM.x/�x1=4,
we haveX

x
2M

<q� x
M

.q;a/D1

�
 .xI q; a/�ƒ.a/�

 .x/

�.q/

�

D
�.a/

a

x

2M
�0.a;M /COa;�

�
x

M 3=2��
C
p

xM.log x/2
�
; (5-1)

where

�0.a;M / WD

8̂<̂
:
�

1
2

log M � 1
2
C6 if aD˙1

�
1
2

log p if aD˙pe

0 otherwise,

(5-2)

with

C6 WD log� C 1C  C
X
p

log p

p.p� 1/
: (5-3)

Proof. See [Fiorilli 2012, Remark 1.5]. Note that the restriction M Do.x1=4= log x/

is required for the error term to be negligible compared to the main term, but it can
be changed to M � x1=4. �

We now proceed to prove Theorems 1.2 and 2.6. Note that by the averaged
1-level density (Proposition 3.2), the proof is completed by analyzing the average
of T4.q/:

1

Q=2

X
Q=2<q�Q

T4.q/

D 2

Z �

0

�
f .u/

2
�
f 0.u/

log Q

�
1

Q=2

X
Q=2<q�Q

 .QuI q; 1/� .Qu/=�.q/

Qu=2
du: (5-4)

We break the integral into regions and bound each separately. Going through
the proof of Theorem 2.1 and applying GRH, we see that the contribution to the
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integral from u 2 Œ0; 1� equals

�
4 log 2

Q

�.2/�.3/

�.6/

Z 1

0

Qu=2

�
f .u/

2
�
f 0.u/

log Q

�
duCO

�
log2 Q

Q

�
: (5-5)

We now analyze the three cases of the theorem, corresponding to different support
restrictions for our test function.

Proof of Theorem 2.6 (2). To prove (2-10), we need to understand the part of the
integral in (5-4) with a � u � 2. Arguing as in [Friedlander and Granville 1992]
(see also the proof of [Fiorilli 2012, Proposition 6.1]), we have, for x1=2 �Q� x,

X
Q=2<q�Q

�
 .xI q; 1/�

 .x/

�.q/

�
� Q .log.x=Q/C 1/C

x3=2.log x/2

Q
: (5-6)

The basic idea to obtain this last estimate is to writeX
Q=2<q�Q

 .xI q; 1/D
X
n�x

n�1Dqr
Q=2<q�Q

ƒ.n/;

and to turn this into a sum over r � 2.x� 1/=Q of the function

 .xI r; 1/� .rQ=2C 1I r; 1/:

One then applies GRH and estimates the resulting sum over r using estimates on
the summatory function of 1=�.r/. Applying (5-6), the part of the integral in (5-4)
with a� u� 2 is

�

Z �

a

�
Q�u=2.log.Qu�1/C 1/CQu�2.log.Qu//2

�
du

� Q�a=2
CQ��2 log Q;

(5-7)

�

Proof of Theorem 2.6 (1). We need to study the part of the integral in (5-4) with
1C� � u� 3

2
. We first see that by (5-7), the part of the integral with 4

3
� u� 3

2
is

� Q�2=3
CQ��2 log Q: (5-8)

We turn to the part of the integral with 1C � � u� 4
3

. We have by Theorem 5.1
(setting x WDQu and M WDQu�1) that it is



The ratios conjecture in the 1-level density of Dirichlet L-functions 41

D 2

Z 4=3

1C�

�
f .u/

2
�
f 0.u/

log Q

�
Q�u=2

�
�

1
2

log.Qu�1/� 1
2
C6

CO�
�
Q

1�u
2
.1��/

CQ
3
2

u�2.log Qu/2
��

du

D �

Z 4=3

1C�

�
.u� 1/ log QCC6

�
Q�u=2

�
f .u/

2
�
f 0.u/

log Q

�
du

CO�

�
Q�1=2��.1��/

log Q
CQ�2=3 log Q

�
I (5-9)

hence (2-9) holds. �

Proof of Theorem 1.2. We now turn to (1-5), with f supported in .�3
2
; 3

2
/. Set

� WD
A log log Q

log Q
;

with A� 1 a constant. As the big-O constant in (5-9) is independent of �, we may
use (5-9) to estimate the contribution to (5-4) from u 2 Œ1C �; 4=3�. This part of
the integral contributes

�

Z 4=3

1C�

�
.u� 1/ log QCC6

�
Q�u=2

�
f .u/

2
�
f 0.u/

log Q

�
du

CO�

�
Q�1=2

.log Q/A.1��/C1

�
�

Q�1=2

.log Q/A=2
: (5-10)

The part of the integral with 4
3
� u � 3

2
was already shown to be � Q�2=3 C

Q��2 log Q, and hence is absorbed into the error term since � < 3
2

.
We now come to the heart of the argument, the part of the integral where

1 � u � 1C �. Since f 2 C 2.R/, we have that in our range of u, the function
g.u/ WD 1

2
f .u/�f 0.u/=log Q satisfies

g.u/ D
f .1/

2
C
f 0.1/

2
.u� 1/CO

�
.u� 1/2

�
�
f 0.1/

log Q
CO

�
u� 1

log Q

�
D P .u� 1/CO

�
.log log Q/2

.log Q/2

�
; (5-11)

where

P .u/ WD
f .1/

2
�
f 0.1/

log Q
C
f 0.1/

2
u:

At this point, if f were C K .R/, we could take its Taylor expansion and get an error
of

O�;A
�
.log log Q/K=.log Q/K

�
:
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We cannot apply Theorem 5.1 directly since the error term is not got enough
for moderate values of M . Instead, we argue as in the proof of [Fiorilli 2012,
Proposition 6.1]. Slightly modifying the proof and using GRH, we get

X
Q=2<q�Q

�
 .xI q; a/�

 .x/

�.q/

�

D x

�
�C1�

X
r<x�1

Q

1

�.r/

�
1�

r

x=Q

�
C

X
r<x�1

Q=2

1

�.r/

�
1�

r

2x=Q

��

CO�

�
x3=2C�=2

Q

�
; (5-12)

with

C1 WD
�.2/�.3/

�.6/
log 2: (5-13)

(We used that
P

Q=2<q�Q D
P

Q=2<q�x �
P

Q<q�x , as in the proof of [Fiorilli
2013, Theorem 4.1*].) The contribution of the error term in (5-12) to the part of
the integral in (5-4) with 1� u� 1C � is (remember � log QDA log log Q)

�

Z 1C�

1

1

Q=2

Q3u=2C�u=2=Q

Qu=2
du �� Q�1C�: (5-14)

Therefore, all that remains to complete the proof of Theorem 1.2 it to estimate
the contribution to (5-4) from u 2 Œ1; 1C ��. Using [Fiorilli 2012, Lemma 5.9] to
bound the error in replacing g.u/ with P .u� 1/, we find
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Z 1C�

1

g.u/
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2Qu�1

��
du
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Z 1C�

1

P .u� 1/Qu=2�1�
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r�Qu�1

Q
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Qu�1
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r�Qu�1
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1

�.r/

�
1�

r

2Qu�1

��
du

CO

�
Q�1=2.log log Q/2

.log Q/3

�
I (5-15)

we changed r < � � � to r � � � � in the sums above, which gives a negligible error
term.
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Setting R WDQ� � 1=Q, we compute that

Z 1C�
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P .u� 1/Q
u
2
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r�Qu�1
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log Q
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log r

log R
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duCO�
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Q�3=2C�

�
;

the error term coming from the fact that we replaced log.r C Q�1/ by log r .
Performing two changes of variables, we obtain that this is

D Q�1=2
X
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1

�.r/
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�
log r

log R
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Let
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log p
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By Lemma 3.4, we find that (5-16) equals
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log R
CF2

��P 0.�/

.log R/2
CO

�
R�1=2

��

D Q�1=2

�
E1 log Q

Z �

�1

Qu=2uP .u/ duCE2

Z �

�1

Qu=2P .u/ du

CF1

f .1/
2
�
f 0.1/
log Q

log Q
�F2

f 0.1/

2.log Q/2
CO

�
R�1=2

��
: (5-18)
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We obtain in an analogous way with R WD 2Q� � 2=Q that

Z 1C�

1

P .u� 1/Qu=2�1
X

r�2 Qu�1
Q

1

�.r/

�
1�

r

2Qu�1

�
du

D Q�1=2
X
r�R

1

�.r/

Z 1

log.r=2/

log.R=2/

�P .�v/

�
.R=2/v=2�

r

2.R=2/v=2

�
dv

CO�
�
Q�3=2C�

�
; (5-19)

which by Lemma 3.4 is

D
�

Q1=2

�
E1 log.R=2/

Z 1

�1

.R=2/v=2vP .�v/ dv

C .E2CE1 log 2/

Z 1

�1

.R=2/v=2P .�v/ dv

C

nX
jD1

F
.2/
j

.log.R=2//j
CO

�
R�1=2

��

D Q�1=2

�
E1 log Q

Z �

�1

Qu=2uP .u/ du

C .E2CE1 log 2/

Z �

�1

Qu=2P .u/ dvC
F1
p

2

f .1/
2
�
f 0.1/
log Q

log Q

�
F2CF1 log 2

p
2

f 0.1/

2.log Q/2
CO

�
R�1=2

��
: (5-20)

We now substitute (5-18) and (5-20) in (5-15), to get that (5-15) is (notice the
remarkable cancellations)

D �4C1

Z 1C�

1

P .u�1/Qu=2�1 duC4E1 log 2Q�1=2

Z �

�1

Qu=2P .u/ du

C 4Q�1=2

�
�F1

f .1/
2
�
f 0.1/
log Q

log Q
CF2

f 0.1/

2.log Q/2

C
F1
p

2

f .1/
2
�
f 0.1/
log Q

log Q
�

F2CF1 log 2
p

2

f 0.1/

2.log Q/2

�

CO

�
Q�1=2 .log log Q/2

.log Q/3
C

Q�
1
2

.log Q/A=2

�
; (5-21)
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which by (3-31) and (5-13) is

D 4 log 2
�.2/�.3/

�.6/

Z 1

�1

P .u� 1/Qu=2�1 du

C .2�
p

2/Q�1=2

�
�F1

f .1/

log Q
C

�
F2�

p
2C4

3
F1

�
f 0.1/

.log Q/2

�
CO

�
Q�1=2 .log log Q/2

.log Q/3
C

Q�1=2

.log Q/A=2

�
: (5-22)

But, yet another cancellation is coming: we haveZ 1

�1

P .u� 1/Qu=2�1 du

D

Z 1

�1

g.u/Qu=2�1 duCO

�
Q�1=2 .log log Q/2

.log Q/3

�
; (5-23)

and so by (5-5) this term cancels (up to the error term O.Q�1/) with the part of
the integral of T4.Q/ with u� 1 (which is coming from a totally different part of
the problem, where there are no primes in arithmetic progressions involved)!

Combining all the terms,

1

Q=2

X
Q=2<q�Q

T4.Q/

D .2�
p

2/Q�1=2

�
�F1

f .1/

log Q
C

�
F2�

p
2C4

3
F1

�
f 0.1/

.log Q/2

�
CO

�
Q�1=2

.log Q/A=2
CQ�1=2 .log log Q/2

.log Q/3

�
: (5-24)

The proof is completed by taking AD 6. �

6. Results under de-averaging hypothesis (Theorem 2.8)

In this section we assume the de-averaging hypothesis (Hypothesis 2.7), which
relates the variance in the distribution of primes congruent to 1 to the average
variance over all residue classes. Explicitly, we assume (2-13) holds for some
ı 2 .0; 1�, and show how this allows us to compute the main term in the averaged
1-level density, D

1IQ=2;Q
. yf /, for test functions f supported in Œ�4C 2ı; 4� 2ı�.

(Remember that this hypothesis is trivially true for ı D 1, and expected to hold for
any ı > 0.)

Proof of Theorem 2.8. Starting from (3-23), we have

T4.q/ D 2

Z 1
0

�
f .u/

2
�
f 0.u/

log Q

�
 .QuI q; 1/� .Qu/=�.q/

Qu=2
du: (6-1)
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Feeding this into Proposition 3.2, we are left with determining

1

Q=2

X
Q=2<q�Q

T4.q/

D
1

Q=2

Z �

0

�
f .u/

2
�
f 0.u/

log Q

�
Q�u=2

X
Q=2<q�Q

�
 .Qu

I q; 1/�
 .Qu/

�.q/

�
du: (6-2)

We have already seen in the proof of Theorem 2.1 that the part of the integral in
(6-2) with 0� u� 1 is O.Q�1=2/. For the part where u� 1, the Cauchy–Schwarz
inequality shows that its contribution to the integral in (6-2) is

�
1

Q=2

Z �

1

Q�u=2

ˇ̌̌̌
ˇ X
Q=2<q�Q

�
 .Qu

I q; 1/�
 .Qu/

�.q/

�2
ˇ̌̌̌
ˇ
1=2 ˇ̌̌̌

ˇ X
Q=2<q�Q

12

ˇ̌̌̌
ˇ
1=2

du:

(6-3)
Now, by Hypothesis 2.7, this is

�
1

Q=2

Z �

1

Q�u=2Q.ı�1/=2

�

� X
Q=2<q�Q

X
1�a�q
.a;q/D1

�
 .Qu

I q; a/�
 .Qu/

�.q/

�2 �1=2

Q1=2 du: (6-4)

We now use a result in [Goldston and Vaughan 1997], which states that under GRH
we have for 1�Q� x that

X
q�Q

X
1�a�q
.a;q/D1

�
 .xI q; a/�

 .x/

�.q/

�2

DQx log Q�cxQCO�
�
Q2.x=Q/1=4C�Cx3=2.log 2x/5=2.log log 3x/2

�
; (6-5)

where

c WD  C log 2� C 1C
X
p

log p

p.p� 1/
:

We now split the range of integration into the two subintervals 1 � u � 2

and 2 � u � � . In the first range, we have, for � > 0 small enough, uC 1 �

max.7
4
C

1
4
uC �.u� 1/; 3

2
u/, so (6-5) implies that

X
q�Q

X
1�a�q
.a;q/D1

�
 .xI q; a/�

 .x/

�.q/

�2

� Qx.log x/3 (6-6)
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(which, up to x� , follows from the original result in [Hooley 1975]), so we get that
the part of (6-4) with 1� u� 2 is

� Qı=2�1

Z 2

1

Q�u=2Q.uC1/=2.log Q/3=2 du � Q.ı�1/=2.log Q/3=2; (6-7)

which is o.1/ if ı < 1.
We now examine the second interval, that is 2 � u � � . In this range, (6-5)

becomesX
q�Q

X
1�a�q
.a;q/D1

�
 .xI q; a/�

 .x/

�.q/

�2

� x3=2.log x/5=2.log log x/2 (6-8)

(which, up to a factor of x�, follows from Hooley’s original result). We thus get
that the part of (6-4) with 2� u� � is

�
Qı=2

Q=2

Z �

2

Q�u=2Q3u=4.u log Q/5=4 log log.Qu/ du

� Q.�C2ı/=4�1.log Q/1=4 log log Q: (6-9)

If � < 4� 2ı then the above is o.1/, completing the proof. �

7. Results under Montgomery’s hypothesis (Theorem 2.13)

We continue our investigations beyond the GRH, and assume a smoothed version of
Montgomery’s hypothesis, Hypothesis 2.12. Interestingly, this assumption allows
us to compute the main term of the 1-level density, D

1Iq
. yf /, for test functions of

arbitrarily large (but finite) support. While similar results have been previously
observed [Miller and Sarnak 2003], we include a proof both for completeness and
because these observations are not in the literature.

Proof of Theorem 2.13. As we are fixing the modulus, we take Q WD q. By the
explicit formula from Proposition 3.1, we have

D1Iq.
yf / D

f .0/

log q

�
log q� log.8�e /�

X
pjq

log p

p� 1

�

C

Z 1
0

f .0/�f .t/

qt=2� q�t=2
dt

�
2

log q

� X
n�1 mod q

�
1

�.q/

X
n

�
ƒ.n/

n1=2
f

�
log n

log q

�
CO

�
1

�.q/

�
: (7-1)

Let � WD sup.suppf / <1. We proved in Section 4 that the only terms that are
not O.1= log q/ are the leading term f .0/ and possibly the prime sum, which we
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now study. We have

T4.q/ D 2

Z 1
0

�
f .u/

2
�
f 0.u/

log q

�
 .quI q; 1/� .qu/=�.q/

qu=2
du: (7-2)

In the proof of Theorem 2.1 we determined that the part of the integral with
0� u� 1 is O.q�1=2/. From the proof of Theorem 2.3, the part with 1� u� 2 is
O.log log q=log q/.

Proof of (1). For the rest of the integral, we use Hypothesis 2.12. Note that u� 2,
so xD qu � q2 with u� � , hence we can replace ox!1 by oq!1. An integration
by parts gives that the rest of the integral is

D 0�

�
f .2/

2
�
f 0.2/

log q

�
 2.q

2I q; 1/� 2.q
2/=�.q/

q

� 2

Z 1
0

�
3f .u/

4
�

2f 0.u/

log q
C

f 00.u/

.log q/2

�
 2.q

uI q; 1/� 2.q
u/=�.q/

qu=2
du

D
o.q/

q
C

Z �

2

�
jf .u/jC jf 0.u/jC jf 00.u/j

�o.qu=2/

qu=2
duD o.1/; (7-3)

proving the claim. Note that we are using the smoothed version of the prime sum.

Proof of (2). We already know that the part of the integral with 0�u�1 is�q�1=2.
Taking � WD �0=� in Hypothesis 2.11, the rest of the integral is O

�R �
1 q�u�� du

�
,

which is O
�
q�
0��
�

and thus negligible if we may take � > 0. �
Remark 7.1. Depending on our assumptions about the size of the error term in the
distribution of primes in residue classes, we may allow � to grow with Q at various
explicit rates.
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