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The notion of adequate subgroups was introduced by Jack Thorne. It is a weaken-
ing of the notion of big subgroups used in generalizations of the Taylor–Wiles
method for proving the automorphy of certain Galois representations. Using this
idea, Thorne was able to strengthen many automorphy lifting theorems. It was
shown by Guralnick, Herzig, Taylor, and Thorne that if the dimension is small
compared to the characteristic, then all absolutely irreducible representations
are adequate. Here we extend that result by showing that, in almost all cases,
absolutely irreducible kG-modules in characteristic p whose irreducible G+-
summands have dimension less than p (where G+ denotes the subgroup of G
generated by all p-elements of G) are adequate.
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1. Introduction

Throughout the paper, let k be a field of characteristic p and let V be a finite-
dimensional vector space over k. Let ρ : G→ GL(V ) be an absolutely irreducible
representation. Thorne [2012] called (G, V ) adequate if the following conditions
hold (we rephrase the conditions slightly by combining two of the properties
into one):

(i) p does not divide dim V .

(ii) Ext1G(V, V )= 0.

(iii) End(V ) is spanned by the elements ρ(g) with ρ(g) semisimple.

We remark that recently Thorne has shown that one can relax condition (i) above
(see [Thorne 2015, Corollary 7.3] and [Guralnick et al. 2014, §1]).

If G is a finite group of order prime to p, then it is well known that (G, V ) is
adequate. In this case, condition (iii) is often referred to as Burnside’s lemma. It is
a trivial consequence of the Artin–Wedderburn theorem. Also, (G, V ) is adequate
if G is a connected algebraic group over k = k̄ and V is a rational irreducible
kG-module; see [Guralnick 2012a, Theorem 1.2].

The adequacy conditions are a generalization to higher dimension of the con-
ditions used by Wiles and Taylor in studying the automorphic lifts of certain
2-dimensional Galois representations, and they are a weakening of the previously
introduced bigness condition [Clozel et al. 2008]. Thorne [2012] strengthened
the existing automorphy lifting theorems for n-dimensional Galois representations
assuming the weaker adequacy hypotheses. We refer the reader to [Thorne 2012]
for more references and details.

The following theorem was proved in [Guralnick et al. 2012, Theorem 9]:

Theorem 1.1. Let k be a field of characteristic p and G a finite group. Let V be an
absolutely irreducible faithful kG-module. Let G+ denote the subgroup generated
by the p-elements of G. If dim W ≤ (p− 3)/2 for an absolutely irreducible kG+-
submodule W of V , then (G, V ) is adequate.

The example G = SL2(p) with V irreducible of dimension (p−1)/2 shows that
the previous theorem is the best possible. However, the counterexamples are rare.
Our first goal is to prove a similar theorem under the assumption that dim W < p.
We show that almost always (G, V ) is adequate; see Corollary 1.4. Indeed, we show
that the spanning condition always holds under the weaker hypothesis. We show
that there are only a handful of examples where Ext1G(V, V ) 6= 0. See Theorems 1.2
and 1.3 for more precise statements.

Theorem 1.1 was crucial in several recent applications of automorphy lifting
theorems, such as [Barnet-Lamb et al. 2014; Calegari 2012; Dieulefait 2014]. In fact,
the main two technical hypotheses in the most recent automorphy lifting theorems
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are potential diagonalizability (a condition in p-adic Hodge theory) and adequacy
of the residual image [Dieulefait and Gee 2012]. Since some important applications
of automorphy lifting theorems [Breuil et al. 2001; Khare and Wintenberger 2009;
Dieulefait 2014] require working with primes p that are small relative to the
dimension of the Galois representation, we expect that our results will be useful
in obtaining further arithmetic applications of automorphy lifting theorems. (Note
that adequacy of 2-dimensional linear groups has been analyzed in Appendix A of
[Barnet-Lamb et al. 2013].)

An outgrowth of our results leads us to prove an analogue of [Guralnick 1999]
and answer a question of Serre on complete reducibility of finite subgroups of
orthogonal and symplectic groups of small degree. This is done in the sequel
[Guralnick et al. 2014], where we essentially classify indecomposable modules in
characteristic p of dimension less than 2p− 2. We also extend adequacy results to
the case of linear groups of degree p and generalize the asymptotic result [Guralnick
2012a, Theorem 1.2] to disconnected algebraic groups G (with p - [G :G0

]), allowing
at the same time that p divides the dimension of the G-module.

Note that if the kernel of ρ has order prime to p, then there is no harm in
passing to the quotient. So we will generally assume that either ρ is faithful or
more generally has kernel of order prime to p. Also, note that the dimensions of
cohomology groups and the dimension of the span of the semisimple elements in
G in End(V ) do not change under extension of scalars. Hence, most of the time
we will work over an algebraically closed field k.

Following [Guralnick 2012b], we say that the representation ρ : G→ GL(V ),
or the pair (G, V ), is weakly adequate if End(V ) is spanned by the elements ρ(g)
with ρ(g) semisimple.

Our main results are the following:

Theorem 1.2. Let k be a field of characteristic p and G a finite group. Let V be an
absolutely irreducible faithful kG-module. Let G+ denote the subgroup generated
by the p-elements of G. If p > dim W for an irreducible kG+-submodule W of V,
then (G, V ) is weakly adequate.

Theorem 1.3. Let k = k be a field of characteristic p and G a finite group. Let V
be an irreducible faithful kG-module. Let G+ denote the subgroup generated by the
p-elements of G. Suppose that p > d := dim W for an irreducible kG+-submodule
W of V , and let H < GL(W ) be induced by the action of G+ on W . Then one of
the following holds:

(a) p is a Fermat prime, d = p− 1, G+ is solvable (and so G is p-solvable), and
H/Op′(H)= C p.

(b) H 1(G, k)= 0. Furthermore, either Ext1G(V, V )= 0, or one of the following
holds:
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(i) H = PSL2(p) or SL2(p), and d = (p± 1)/2.
(ii) H = SL2(p)× SL2(pa) (modulo a central subgroup), d = p − 1, and

W is a tensor product of a (p− 1)/2-dimensional SL2(p)-module and a
2-dimensional SL2(pa)-module.

(iii) p = (q + 1)/2, d = p− 1, and H ∼= SL2(q).
(iv) p = 2 f

+ 1 is a Fermat prime, d = p− 2, and H ∼= SL2(2 f ).
(v) (H, p, d)= (3A6, 5, 3) and (2A7, 7, 4).

(vi) (H, p, d)= (SL2(3a), 3, 2) and a ≥ 2.

Theorems 1.2 and 1.3 immediately imply:

Corollary 1.4. Let k be a field of characteristic p and G a finite group. Let V
be an absolutely irreducible faithful kG-module, and let G+ denote the subgroup
generated by the p-elements of G. Suppose that the dimension of any irreducible
kG+-submodule in V is less than p. Let W be an irreducible kG+-submodule of
V ⊗k k. Then (G, V ) is adequate, unless the group H < GL(W ) induced by the
action of G+ on W is as described in one of the exceptional cases (a), (b)(i)–(vi)
listed in Theorem 1.3.

Corollary 1.5. Let k be a field of characteristic p and G a finite group. Let V
be an absolutely irreducible faithful kG-module, and let G+ denote the subgroup
generated by the p-elements of G. Suppose that the dimension d of any irreducible
kG+-submodule in V is less than p−3. Let W be an irreducible kG+-submodule of
V⊗k k. Then (G, V ) is adequate, unless d= (p±1)/2 and the group H <PGL(W )

induced by the action of G+ on W is PSL2(p).

One should emphasize that, in all the aforementioned results, the dimension
bound dim W < p is imposed only on an irreducible G+-summand of V . In
general, G/G+ can be an arbitrary p′-group, and likewise, dim V/ dim W can be
arbitrarily large. So a major portion of the proofs, especially for Theorem 1.2, is
spent establishing the results under these more general hypotheses.

This paper is organized as follows. In Section 2, based on results of [Blau and
Zhang 1993], we describe the structure of (non-p-solvable) finite linear groups
G < GL(V ) such that the dimension of irreducible G+-summands in V is less
than p; see Theorem 2.4. Sections 3 and 4 are devoted to establish weak adequacy
for Chevalley groups in characteristic p. In Sections 5 and 6, we prove adequacy for
the remaining families of finite groups occurring in Theorem 2.4 and complete the
proof of Theorem 1.2. In Section 7, we collect various facts concerning extensions
and self-extensions of simple modules. The main result of Section 8, Proposition 8.2,
classifies self-dual indecomposable SL2(q)-modules for p | q. In Section 9, we
describe the structure of finite groups G possessing a reducible indecomposable
module of dimension ≤ 2p− 3 (Proposition 9.7). Theorem 1.3 and Corollary 1.4
are proved in Section 10.
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Notation. If V is a kG-module and X ≤ G is a subgroup, then VX denotes the
restriction of V to X . The containments X ⊂ Y (for sets) and X < Y (for groups)
are strict. Fix a prime p and an algebraically closed field k of characteristic p. Then
for any finite group G, IBrp(G) is the set of isomorphism classes of irreducible
kG-representations (or their Brauer characters, depending on the context), dp(G)
denotes the smallest degree of the nontrivial ϕ ∈ IBrp(G), and B0(G) denotes the
principal p-block of G. Sometimes we use 1 to denote the principal representation.
Op(G) is the largest normal p-subgroup of G, O p(G) is the smallest normal
subgroup N of G subject to G/N being a p-group, and similarly for Op′(G) and
O p′(G) = G+. Furthermore, the Fitting subgroup F(G) is the largest nilpotent
normal subgroup of G, and E(G) is the product of all subnormal quasisimple
subgroups of G, so that F∗(G)= F(G)E(G) is the generalized Fitting subgroup
of G. Given a finite-dimensional kG-representation 8 : G→ GL(V ), we denote
by M the k-span

〈8(g) :8(g) semisimple〉k .

If M is a finite-length module over a ring R, then define soci (M) by soc0(M)= 0
and soc j (M)/ soc j−1(M)= soc(M/ soc j−1(M)). If M = soc j (M) with j minimal,
we say that j is the socle length of M .

2. Linear groups of low degree

First we describe the structure of absolutely irreducible non-p-solvable linear groups
of low degree, relying on the main result of [Blau and Zhang 1993]:

Theorem 2.1. Let W be a faithful, absolutely irreducible k H-module for a finite
group H with O p′(H)= H. Suppose that 1< dim W < p. Then one of the following
cases holds, where P ∈ Sylp(H):

(a) p is a Fermat prime, |P| = p, H = Op′(H)P is solvable, dim W = p− 1, and
Op′(H) is absolutely irreducible on W .

(b) |P| = p, dim W = p− 1, and one of the following conditions holds:

(b1) (H, p) = (SUn(q), (qn
+ 1)/(q + 1)), (Sp2n(q), (q

n
+ 1)/2), (2A7, 5),

(3J3, 19), or (2Ru, 29).

(b2) p = 7 and H = 61 ·PSL3(4), 61 ·PSU4(3), 2J2, 3A7, or 6A7.

(b3) p = 11 and H = M11, 2M12, or 2M22.

(b4) p = 13 and H = 6 · Suz or 2G2(4).

(c) |P| = p, dim W = p− 2, and (H, p)= (PSLn(q), (qn
− 1)/(q − 1)), (Ap, p),

(3A6, 5), (3A7, 5), (M11, 11), or (M23, 23).

(d) (H, p, dim W )= (2A7, 7, 4), (J1, 11, 7).
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(e) Extraspecial case: |P| = p = 2n
+ 1 ≥ 5, dim W = 2n , Op′(H) = R Z(H),

R = [P, R]Z(R)∈ Syl2(Op′(H)), [P, R] is an extraspecial 2-group of order 21+2n ,
and V[P,R] is absolutely irreducible. Furthermore, S := H/Op′(H) is simple
nonabelian, and either S = Sp2a(2

b)′ or �−2a(2
b)′ with ab = n or S = PSL2(17)

and p = 17.

(f) Lie(p) case: H/Z(H) is a direct product of simple groups of Lie type in charac-
teristic p.

Furthermore, in the cases (b)–(d), H is quasisimple with Z(H) a p′-group.

Proof. We apply Theorem A of [Blau and Zhang 1993] and arrive at one of the
possibilities (a)–(j) listed there. Note that possibility (j) is restated as our case (f),
and possibilities (f)–(i) do not occur since H is absolutely irreducible. Possibility
(a) does not arise either since dim W > 1, and possibility (b) is restated as our
case (a). Next, in the case of possibility (c), either we are back to our case (a), or
else we are in case (e), where the simplicity of S follows from the assumption that
H = O p′(H). (Also, S ��+2a(2

b) since |S|p = |P| = p.)
In the remaining cases (d), (e), and (g) of [Blau and Zhang 1993, Theorem A],

we have that H/Z(H) = S is a simple nonabelian group, and Z(H) is a cyclic
p′-group by Schur’s lemma. Hence, H (∞) is a perfect normal subgroup of p′-index
in H = O p′(H). It follows that H = H (∞) and so it is quasisimple. Also, the
possibilities for (S, dim W, p) are listed. Using

• [Guralnick and Tiep 1999] if S = PSLn(q),

• [Guralnick et al. 2002] if S = PSUn(q) or PSp2n(q),

• [Guralnick and Tiep 2005, Lemma 6.1] if S = Ap and p ≥ 17, and

• [Jansen et al. 1995] for the other simple groups,

we arrive at cases (b)–(d). �

Next we prove some technical lemmas in the spirit of [Blau and Zhang 1993,
Lemma 3.10].

Lemma 2.2. Let G be a finite group with normal subgroups K1 and K2 such that
K1 ∩ K2 ≤ Op′(G). For any finite group X , let X denote X/Op′(X). Suppose that
G/K1 ∼=

∏
i∈I Mi and G/K2 ∼=

∏
j∈J N j are direct products of simple nonabelian

groups. Then there are some sets I ′ ⊆ I and J ′ ⊆ J such that

G ∼=
∏
i∈I ′

Mi ×
∏
j∈J ′

N j .

Proof. For i = 1, 2, let Ki ≤ Hi CG be such that Hi/Ki = Op′(G/Ki ). Then

G/H1 ∼=
∏
i∈I

Mi , G/H2 ∼=
∏
j∈J

N j .
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By [Blau and Zhang 1993, Lemma 3.9], there are sets I ′ ⊆ I and J ′ ⊆ J such that

G/(H1 ∩ H2)∼=
∏
i∈I ′

Mi ×
∏
j∈J ′

N j .

It remains to show that H1∩H2= Op′(G). Certainly, H1∩H2≥ Op′(G). Conversely,

(H1 ∩ K2)/(K1 ∩ K2) ↪→ H1/K1, (H1 ∩ H2)/(H1 ∩ K2) ↪→ H2/K2,

and K1 ∩ K2 ≤ Op′(G). It follows that H1 ∩ H2 is a p′-group. �

Lemma 2.3. Let G be a finite group with a faithful kG-module V . Suppose that
V =W1⊕· · ·⊕Wt is a direct sum of kG-submodules, and let Hi ≤GL(Wi ) be the
linear group induced by the action of G on Wi . Suppose that Si := Hi/Op′(Hi ) is a
simple nonabelian group for each i . Then there is a subset J ⊆{1, 2, . . . , t} such that

G/Op′(G)∼=
∏
j∈J

S j .

In particular, if Op′(Hi )= 1 for all i , then G ∼=
∏

j∈J S j .

Proof. We proceed by induction on t . The induction base t = 1 is obvious. For
the induction step, let Ki denote the kernel of the action of G on Wi , so that
Hi = G/Ki . The faithfulness of V implies that

⋂t
i=1 Ki = 1. Adopt the bar

notation X of Lemma 2.2. By the assumption, G/K1 ∼= S1. Next, observe that
L :=

⋂t
i=2 Ki is the kernel of the action of G on V ′ := W2 ⊕ · · · ⊕Wt , and the

action of G/L on Wi induces Hi for all i ≥ 2. Applying the induction hypothesis
to G/L acting on V ′, we see that G/L ∼=

∏
j∈J ′ S j for some J ′ ⊆ {2, 3, . . . , t}.

Also, K1 ∩ L = 1. Hence we can apply Lemma 2.2 to get G ∼=
∏

j∈J S j for some
J ⊆ {1, 2, 3, . . . , t}.

Finally, if Op′(Hi )=1 for all i , then the action of Op′(G) on Wi induces a normal
p′-subgroup of Hi for all i , whence Op′(G)≤

⋂t
i=1 Ki = 1, and we are done. �

Theorem 2.4. Let V be a finite-dimensional vector space over an algebraically
closed field k of characteristic p and G < GL(V ) a finite irreducible subgroup.
Suppose that an irreducible G+-submodule W of V has dimension < p and G+ is
not solvable. Then G+ is perfect and has no composition factor isomorphic to C p;
in particular, H 1(G, k)= 0. Furthermore, if H is the image of G+ in GL(W ), then
one of the following statements holds:

(i) One of the cases (b)–(d) of Theorem 2.1 holds for H , and G+/Z(G+) =
S1× · · ·× Sn ∼= Sn is a direct product of n copies of the simple nonabelian group
S = H/Z(H). Here, G permutes these n direct factors S1, . . . , Sn transitively.
Furthermore, G+ = L1 ∗ · · · ∗ Ln is a central product of quasisimple groups L i ,
each being a central cover of S, and the action of G+ on each irreducible G+-
submodule Wi of W induces a quasisimple subgroup of GL(Wi ). Finally, if H is
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the full covering group of S or if H = S, then

G+ = L1× L2× · · ·× Ln ∼= H n.

(ii) Case (e) of Theorem 2.1 holds for H. Furthermore, Op′(G+) is irreducible on
any irreducible G+-submodule Wi of V , and G+/Op′(G+)∼= Sm is a direct product
of m ≥ 1 copies of the simple nonabelian group S listed in case (e) of Theorem 2.1.

(iii) Case (f) of Theorem 2.1 holds for H , and G+= L1∗· · ·∗Ln is a central product
of quasisimple groups L i of Lie type in characteristic p with Z(L i ) a p′-group.

Proof. (a) By Clifford’s theorem, VG+ ∼= e
∑t

i=1 Wi for some e, t ≥ 1, and
{W1, . . . ,Wt } is a full set of representatives of isomorphism classes of G-conjugates
of W ∼=W1. Let 8i : G+→ GL(Wi ) denote the corresponding representation, and
let Ki :=Ker(8i ), so that G+/Ki ∼= H for all i , where we denote by H the subgroup
of GL(W ) induced by the action of G+ on W . The faithfulness of the action of G
on V implies that

⋂t
i=1 Ki = 1. In particular, G+ injects into

∏t
i=1(G

+/Ki )∼= H t .
Hence case (a) of Theorem 2.1 is impossible since G+ is not solvable. In case
(f) of Theorem 2.1, an argument similar to the proof of Lemma 2.3 shows that
G+/Z(G+) = S1 × · · · × Sn is a direct product of simple groups Si of Lie type
in characteristic p. Since G+ = O p′(G+) and Op(G+) ≤ Op(G) = 1, it then
follows that G+ equals L1 ∗ · · · ∗ Ln , a central product of quasisimple groups L i

of Lie type in characteristic p with Z(L i ) a p′-group (just take L i to be a perfect
inverse image of Si in G+), i.e., (iii) holds. In the remaining cases (b)–(e) of
Theorem 2.1, H/Op′(H)∼= S, where S is a nonabelian simple group described in
Theorem 2.1(b)–(e). By Lemma 2.3, G+/Op′(G+)∼= Sn , a direct product of n ≥ 1
copies of S. Thus in all cases, G+ has no composition factor isomorphic to C p

and Z(G+)≤ Op′(G+). Furthermore, G+ = (G+)(∞)Op′(G+) and so (G+)(∞) is
a normal subgroup of p′-index in G+ = O p′(G+), whence G+ is perfect. Thus the
first claim of Theorem 2.4 holds in all cases.

(b) Suppose next that we are in the cases (b)–(d) of Theorem 2.1. Then H is qua-
sisimple and Z(H) is a p′-group; in particular, Op′(H)= Z(H) and H/Z(H)= S.
Note that 8i (Op′(G+)) is a normal p′-subgroup of Hi = 8i (G+) ∼= H , whence
8i (Op′(G+)) ≤ Z(Hi ). Thus, for any z ∈ Op′(G+) and any g ∈ G+, [z, g] acts
trivially on each Wi and so [z, g] ∈

⋂t
i=1 Ki = 1, i.e., z ∈ Z(G+). We have shown

that Op′(G+)= Z(G+)=: Z .
Now we can write G+/Z = S1× · · · × Sn with Si ∼= S. Let Mi denote the full

inverse image of Si in G+ and let L i := M (∞)
i . Then Mi = L i Z , L i/(L i ∩ Z) ∼=

Mi/Z ∼= S, and so L i is quasisimple and a central cover of S. Next, for i 6= j we
have [L i , L j ] ≤ Z and so, since L i is perfect,

[L i , L j ] = [[L i , L i ], L j ] = 1
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by the three subgroups lemma. It follows that M := L1L2 · · · Ln is a central product
of the L i . But G+ = M Z and G+ is perfect, so G+ = M .

The remaining claims in (i) are obvious if t = 1, so we will now assume that
t > 1. First we show that G acts transitively on {S1, . . . , Sn}. Relabeling the
Wi suitably we may assume that K1 Z/Z ≥

∏
i 6=1 Si and K2 Z/Z ≥

∏
i 6=2 Si . But

G+/K j =8 j (G+) is quasisimple, so in fact K j Z/Z =
∏

i 6= j Si for j = 1, 2. By
Clifford’s theorem, W2 = W g

1 for some g ∈ G. Now g sends K1 to K2, and so
it sends S1 to S2, as desired. If furthermore H = S, then Op′(H) = 1, whence
G+ = S1 × · · · × Sn ∼= H n by Lemma 2.3. Consider the opposite situation: H
is the full covering group of S. Again relabeling the Wi suitably and arguing as
above, we may assume that K1 Z/Z =

∏
i 6=1 Si . In this case, K1 Z ≥ L i for i ≥ 2,

whence L i = [L i , L i ] ≤ [K1 Z , K1 Z ] ≤ K1 and K1 ≥ L2L3 · · · Ln . It also follows
that G+ = K1L1 and so L1/(K1 ∩ L1) ∼= G+/K1 ∼= H . Recall that L1 is perfect
and L1/(L1 ∩ Z) ∼= S, i.e., L1 is a central extension of the simple group S. But
H is the full covering group of S, so |L1| ≤ |H |. It follows that L1 ∩ K1 = 1 and
L1 ∼= H ; in particular, L1∩

∏
j 6=1 L j = 1. Similarly, L i ∼= H and L i ∩

∏
j 6=i L j = 1

for all i . Thus G+ = L1× · · ·× Ln ∼= H n .

(c) Assume now that we are in case (e) of Theorem 2.1. Then Pi :=8i (Op′(G+))
is again a normal p′-subgroup of Hi , and so Pi ≤ Op′(Hi ). On the other hand,
Hi/Pi is a quotient of G+/Op′(G+)∼= Sn , whence all composition factors of Hi/Pi

are isomorphic to S. Since Hi/Op′(Hi ) ∼= S, we conclude that Pi = Op′(Hi ); in
particular, Op′(G+) is irreducible on Wi . �

3. Weak adequacy for SL2(Fp)

Proposition 3.1. Any nontrivial irreducible representation V of SL2(Fp) over Fp is
weakly adequate except when dim V = p and p ≤ 3.

Remark 3.2. When p ≤ 3 the p′-elements of SL2(Fp) generate a normal subgroup
of index p. If moreover dim V = p then this subgroup does not act irreducibly;
hence V cannot be weakly adequate.

The rest of the section is devoted to proving Proposition 3.1. Note that p > 2. In
the following we write V = L(a) with 0 < a ≤ p− 1. If a ≤ (p− 3)/2 then the
argument of [Guralnick et al. 2012, Theorem 9] applies. (Let T⊂ SL2 denote the
diagonal maximal torus. Then distinct weights of T/Fp

on L(a) restrict distinctly to
T(Fp), and End V is semisimple by [Serre 1994] with p-restricted highest weights.)
We will assume from now on that a ≥ (p− 1)/2.

Lemma 3.3. Suppose that (p− 1)/2≤ a ≤ p− 1. Then

headSL2(L(a)⊗ L(a))∼=
(p−1)/2⊕

i=0

L(2i).
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Moreover, if a 6= p−1, headSL2(Fp)(L(a)⊗L(a))=headSL2(L(a)⊗L(a)), whereas if
a = p− 1,

headSL2(Fp)(L(a)⊗ L(a))∼=
(p−1)/2⊕

i=0

L(2i)⊕ L(p− 1).

Proof. By [Doty and Henke 2005, Lemmas 1.1, 1.3], we see that for SL2,

L(a)⊗ L(a)∼=
p−2−a⊕

i=0

L(2i)⊕
(p−3)/2⊕

i=p−1−a

T (2p− 2− 2i)⊕ L(p− 1), (3-1)

where the tilting module T (2p− 2− r) for 0≤ r ≤ p− 2 is uniserial of the form
(L(r) | L(2p−2− r) | L(r)). This proves the first part of the lemma. As is pointed
out in Lemma 1.1 of [Doty and Henke 2005], T (2p−2−r)∼=Q(r) for 0≤ r ≤ p−2,
which implies that T (2p−2−r)|SL2(Fp) is projective. See also [Jantzen 2003, §2.7].

Noting that L(2p− 2− r)|SL2(Fp)
∼= L(p− 1− r)⊕ L(p− 3− r) and using that

L(p− 1) is the only irreducible projective SL2(Fp)-module, it follows that

T (2p− 2− r)|SL2(Fp)
∼=

{
U (r) if 0< r ≤ p− 2,
U (0)⊕ L(p− 1) if r = 0,

(3-2)

where U (i) denotes the projective cover of L(i). The claim follows. �

In the following, we will think of V ∼= L(a) as the space of homogeneous
polynomials in X, Y of degree a.

Lemma 3.4. (End V )U ∼=
a⊕

k=0
Fp · (X (∂/∂Y ))k , where U=

( 1 ∗
1

)
⊂ SL2.

Proof. The torus T=
(
∗

∗

)
⊂ SL2 acts on (End V )U, and, for λ ∈ X (T),

HomT(λ, (End V )U)∼= HomSL2(V (λ),End V ). (3-3)

So it follows from (3-1) that dim(End V )U = a + 1. (Namely, λ = 0, 2, . . . , 2a
each work once.) A simple calculation shows that X (∂/∂Y ) is U-invariant; hence,
so are (X (∂/∂Y ))k , (0≤ k ≤ a), which are clearly nonzero. Since (X (∂/∂Y ))k has
weight 2k, they are linearly independent. �

By Lemma 3.4 and (3-1), for 0 ≤ k ≤ a, the SL2-representation generated by
(X (∂/∂Y ))k is V (2k)⊂ End(V ).

Lemma 3.5. The weight-0 subspace in V (2k)⊂ End V is the line spanned by

1k :=

k∑
i=0

(−1)k−i
(k

i

)2
X i Y k−i

(
∂

∂X

)i( ∂
∂Y

)k−i
(0≤ k ≤ a).
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Proof. We compute the weight-0 part of
( 1
−1 1

)
· (X (∂/∂Y ))k . Take f ∈ Fp[X, Y ]

homogeneous of degree a. Under
( 1
−1 1

)
· (X (∂/∂Y ))k the element f is sent to((

1
−1 1

)
·

(
X ∂

∂Y

)k
)

f (X + Y, Y )

=

(
1
−1 1

)[
X k

k∑
i=0

(k
i

)((
∂

∂X

)i( ∂
∂Y

)k−i
f
)
(X + Y, Y )

]

= (X − Y )k
k∑

i=0

(k
i

)(
∂

∂X

)i( ∂
∂Y

)k−i
f.

The weight-0 part is the part that does not change the monomial degree, so it is 1k .
Finally, note that 1k 6= 0 as 1k(Xa) 6= 0. �

Now suppose that 0≤ k≤ (p−1)/2. By the SL2-invariant trace pairing on End V ,
the element 1k ∈ socSL2(End V ) induces an element δk ∈ (headSL2(End V ))∗ that
is zero on all irreducible constituents of headSL2(End V ) except for L(2k). Let
π` ∈ End V (0≤ `≤ a) denote the projection X i Y a−i

7→ δi`X i Y a−i .

Lemma 3.6. If 0≤k≤ (p−1)/2, then δk(π`) is a polynomial in ` of degree exactly k.

Proof. Note that δk(π`) = tr(π` ◦1k) is the eigenvalue of 1k on X`Y a−`, and
hence equals

k∑
i=0

(−1)k−i
(k

i

)2
`(`− 1) · · · (`− i + 1)(a− `)(a− `− 1) · · · (a− `− k+ i + 1).

This is a polynomial in ` of degree at most k. The coefficient of `k is
∑k

i=0
(k

i

)2
=(2k

k

)
6≡ 0 (mod p), as k < p/2. �

Let us denote this polynomial by pk(z) ∈ Fp[z].

Proof of Proposition 3.1. Recall that (p − 1)/2 ≤ a ≤ p − 1. Let M denote
the span of the image of the p′-elements in End V , and let M denote the image
of M in headSL2(Fp)(End V ). Since M is SL2(Fp)-stable, it suffices to show that
M = headSL2(Fp)(End V ).

(a) Suppose that a < p− 1. By Lemma 3.3, headSL2(Fp)(End V )∼=
⊕(p−1)/2

i=0 L(2i).
Suppose that M does not contain L(2k) for some 0 ≤ k ≤ (p − 1)/2. Then δk

annihilates the image of all p′-elements. The images of the diagonal elements of
SL2(Fp) in End(V ) span the subspace with basis

πi

(
a−

p− 3
2
≤ i ≤

p− 3
2

)
πi +πi+ p−1

2

(
0≤ i ≤ a−

p− 1
2

)
.
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Hence

pk(i)= 0
(

a−
p− 3

2
≤ i ≤

p− 3
2

)
,

pk(i)+ pk

(
i +

p− 1
2

)
= 0

(
0≤ i ≤ a−

p− 1
2

)
.

(3-4)

Now repeat the same argument with a nonsplit Cartan subgroup. After a linear
change of variables (X, Y ) 7→ (X ′, Y ′) over Fp2 , this subgroup acts as{(

x
x p

)
: x ∈ F×p2, x p+1

= 1
}
.

In this new basis of V we have corresponding elements 1′k , δ′k , π ′`. However, pk is
unchanged, as it is given by the explicit formula in the proof of Lemma 3.6. We
thus get

pk(i)= 0
(

a−
p− 1

2
≤ i ≤

p− 1
2

)
,

pk(i)+ pk

(
i +

p+ 1
2

)
= 0

(
0≤ i ≤ a−

p+ 1
2

)
.

(3-5)

From (3-4) and (3-5) we get that pk(`)= 0 for all 0≤ `≤ a. This contradicts the
fact that deg pk = k ≤ (p− 1)/2≤ a.

(b) Suppose that a = p − 1, so that p ≥ 5 by our assumption. By Lemma 3.3,
headSL2(Fp)(End V )∼=

⊕(p−1)/2
i=0 L(2i)⊕ L(p− 1).

(b1) Suppose that M does not contain L(2k) for some k ≤ (p− 3)/2. Then δk and
δ′k annihilate the image of all p′-elements, so by an argument analogous to the one
in (a) we get

pk(i)+ pk

(
i +

p− 1
2

)
= 0

(
0< i <

p− 1
2

)
,

pk(0)+ pk

(
p− 1

2

)
+ pk(p− 1)= 0;

(3-6)

pk(i)+ pk

(
i +

p+ 1
2

)
= 0

(
0≤ i ≤

p− 3
2

)
,

pk

(
p− 1

2

)
= 0.

(3-7)

Then pk(z+ 1)− pk(z) is a polynomial of degree k− 1< (p− 1)/2 with zeroes at
z=0, 1, . . . , (p−5)/2 and z= (p+1)/2, (p+3)/2, . . . , p−2. As p−3≥ (p−1)/2,
it follows that pk(z+1)≡ pk(z); hence by (3-7) we get pk(`)=0 for all 0≤`≤ p−1,
contradicting the fact that pk has degree 0≤ k < p.
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(b2) Suppose that M does not contain L(p− 1)⊕2. Note first that the second copy
of L(p− 1)⊂ End(V ) is contained in the Weyl module V (2p− 2) ↪→ T (2p− 2).
Using (3-2) we have V (2p−2)|SL2(Fp)

∼= L(p−1)⊕M , where 0→ L(0)→ M→
L(p−3)→ 0 is nonsplit. It follows using (3-3) that V (2p−2)U(Fp) = V (2p−2)U

(both are two-dimensional). Hence there is a U(Fp)-fixed vector in the second copy
of L(p−1) of the form v := (X (∂/∂Y ))p−1

+c for some c∈ Fp. We first compute c.
Note that if V is an SL2(Fp)-representation over Fp and v 6= 0 is fixed by the Borel
subgroup B :=

(
∗ ∗

∗

)
⊂ SL2(Fp), then v generates the p-dimensional irreducible

representation of SL2(Fp) if and only if∑
SL2(Fp)/(

∗ ∗

∗
)

gv = 0 ⇐⇒

∑
u∈Fp

(
1
−u 1

)
v+

(
−1

1

)
v = 0.

As in Lemma 3.5,(
1
−u 1

)
·

(
X ∂

∂Y

)p−1
= (X − uY )p−1

p−1∑
i=0

(−u)i
(
∂

∂X

)i( ∂
∂Y

)p−1−i
;

hence ∑
u∈Fp

(
1
−u 1

)
·

[(
X ∂

∂Y

)p−1
+ c

]
=−

[
1p−1+ Y p−1

·

(
∂

∂X

)p−1]
.

Since (
−1

1

)
·

[(
X ∂

∂Y

)p−1
+ c

]
=

(
Y ∂

∂X

)p−1
+ c,

we deduce that c =−1.
Consider the annihilator M⊥ ⊂ socSL2(Fp)(End V ) of M under the trace pairing.

By assumption, N := M⊥ ∩ L(p− 1)⊕2
6= 0. Let ψ ∈ N B

− {0}, so that by the
previous paragraph we can write ψ = λ(X (∂/∂Y ))(p−1)/2

+µ
(
(X (∂/∂Y ))p−1

−1
)

for some (λ, µ) ∈ F2
p − {0}. As ψ ∈ M⊥, we get by a simple calculation that

0= tr
((
α
α−1

)
◦ψ

)
=−µ for any α ∈ F×p −{±1} 6=∅. Thus we may assume that

ψ = (X (∂/∂Y ))(p−1)/2. As the SL2(Fp)-subrepresentation of End(V ) generated by
ψ is the unique SL2-subrepresentation L(p−1)⊂ End(V ), we see that N contains
1k and 1′k for k = (p−1)/2, so δk and δ′k annihilate M . Now the argument of (b1)
gives a contradiction. �

4. Weak adequacy for Chevalley groups

Lemma 4.1. Suppose (X,8, X∨,8∨) is a reduced based root datum with 8
irreducible.
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(a) If 8 is not of type A1, then

2α∨0 ≤
∑
α∈8+

α∨,

where α∨0 is the highest coroot.

(b) If 8 is not of type A1, A2, A3, or B2, then

4β∨0 ≤
∑
α∈8+

α∨,

where β∨0 is the highest short coroot.

Proof. (a) Let {αi : i = 1, . . . , r} denote the simple roots. Then 〈α∨0 , αi 〉 ≥ 0
for all i and 〈α∨0 , α j 〉 > 0 for some j . Since α∨0 6= α

∨

j (as 8 is not of type A1),
β∨ := α∨0 −α

∨

j ∈8
∨. Since α∨0 = α

∨

j +β
∨ it follows that β∨ > 0. Also, α∨j 6= β

∨,
as 8 is reduced. Hence

2α∨0 = α
∨

0 +α
∨

j +β
∨
≤

∑
α∈8+

α∨.

(b) We pass to the dual root system to simplify notation. We want to show that

4β0 ≤
∑
α∈8+

α,

where β0 is the highest short root. It suffices to express β0 as sum of positive roots
in three nontrivial ways that do not overlap (similarly as in the proof of (a)). If 8 is
not simply laced, we only need two nontrivial ways because we can also use that
β0 < α0, where α0 is the highest root.

In the following we use Bourbaki notation:

• Type An−1 (n ≥ 5):

β0 = ε1− εn = (ε1− εi )+ (εi − εn) (1< i < n).

• Type Bn (n ≥ 3):

β0 = ε1 = (ε1− εi )+ εi (1< i ≤ n).

If n = 3, we also use β0 < α0 = ε1+ ε2.

• Type Cn (n ≥ 3):

β0 = ε1+ ε2 = (ε1− εi )+ (ε2+ εi )= (ε1+ εi )+ (ε2− εi ) (2< i ≤ n).

If n = 3, we also use β0 < α0 = 2ε1.
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• Type Dn (n ≥ 4):

β0 = ε1+ ε2 = (ε1− εi )+ (ε2+ εi )= (ε1+ εi )+ (ε2− εi ) (2< i ≤ n).

• Type E6:

β0 =
1
2(ε1+ ε2+ ε3+ ε4+ ε5− ε6− ε7+ ε8).

Note that β0− (εi + ε j ) and εi + ε j are positive (1≤ i < j ≤ 5).

• Type E7:

β0= ε8−ε7=
1
2

(
ε8−ε7+ε6+

5∑
i=1

(−1)v(i)εi

)
+

1
2

(
ε8−ε7−ε6−

5∑
i=1

(−1)v(i)εi

)
,

where
∑5

i=1 v(i) is odd.

• Type E8:

β0 = ε7+ ε8 = (−εi + ε7)+ (εi + ε8) (1≤ i < 7).

• Type F4:

β0 = ε1 = (ε1− εi )+ εi (1< i ≤ 4).

• Type G2:

β0 = 2α1+α2 = α1+ (α1+α2)β0 < 3α1+α2β0 < α0 = 3α1+ 2α2. �

We now prove variants of several results in [Guralnick et al. 2012].

Lemma 4.2. Suppose that G is a connected, simply connected, semisimple algebraic
group over Fp and 2 : G→ GL(V ) a semisimple finite-dimensional representation.
Let G>B> T denote a Borel subgroup and a maximal torus, and suppose that

for any irreducible component V ′ of V and for any two distinct weights
µ1, µ2 of T on V ′, we have µ1−µ2 /∈ pX (T).

(4-1)

Then there exist connected, simply connected, semisimple algebraic subgroups
I and J of G such that G = I× J, 2(J) = 1, and 2 induces a central isogeny
of I onto its image, which is a semisimple algebraic group. Moreover, assumption
(4-1) holds if for all irreducible constituents V ′ of V the highest weight of V ′ is
p-restricted and either

(i) dim V ′ < p, or

(ii) dim V ′ ≤ p and either p 6= 2 or G has no SL2-factor.
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Proof. Write V =
⊕

Vi with Vi irreducible and G=
∏

s∈S Gs with each Gs almost
simple. The last sentence of the proof of Lemma 4 in [Guralnick et al. 2012] together
with (4-1) show that the conclusion of that lemma holds for 2i : G→ GL(Vi ) for
all i . Hence there exists Si ⊂ S such that ker2i =

∏
s∈Si

Gs × Zi , where Zi is
a central subgroup of

∏
s /∈Si

Gs (maybe nonreduced). Then ker2 =
⋂

ker2i =∏
s∈
⋂

Si
Gs × Z , where Z is a central subgroup of

∏
s /∈
⋂

Si
Gs . So we can take I=∏

s /∈
⋂

Si
Gs and J=

∏
s∈
⋂

Si
Gs .

To prove the last part, we may suppose that V is irreducible. So V ∼=
⊗

s∈S Vs ,
where Vs is an irreducible Gs-representation. It is easy to see that if (4-1) fails, then
it fails for Gs→GL(Vs) for some s ∈ S, so we may assume that G is almost simple.

(a) First suppose that G ∼= SL2. The highest weight of V is
( x

x−1

)
7→ xa , for

some 0 ≤ a ≤ p− 1, and a 6= p− 1 if p = 2. Therefore the weights of ad V are( x
x−1

)
7→ xb, where b ∈ {−2a,−2a + 2, . . . , 2a − 2, 2a}. It follows that (4-1)

holds because b ≡ 0 (mod p) implies that b = 0.

(b) Next suppose that G�SL2. Let λ denote the highest weight of V ; it is p-restricted
by assumption. By Lemma 4.1(a) and Jantzen’s inequality [1997, Lemma 1.2] we get

|〈µ, β∨〉| ≤ 〈λ, α∨0 〉 ≤
1
2

〈
λ,
∑
α>0

α∨

〉
< 1

2 dim V ≤
p
2

for all weights µ of V and all roots β. Hence |〈µ1−µ2, β
∨
〉| < p for all root β

and all weights µi of V , so (4-1) holds. �

Lemma 4.3. Suppose that G≤
∏

GL(Wi ) is a connected reductive group over Fp,
where for all i the representation Wi is irreducible with p-restricted highest weight
and has dimension ≤ p. Let T be a maximal torus and U the unipotent radical of a
Borel subgroup of G that contains T. Let V =

⊕
Wi .

(i) The maps exp and log induce inverse isomorphisms of varieties between
Lie U≤ End(V ) and U≤ GL(V ).

(ii) For any positive root α we have exp(Lie Uα)=Uα.

(iii) The map exp : Lie U→U depends only on G and U, but not on V , Wi , or the
representation G ↪→ GL(V ).

(iv) If θ is an automorphism of G that preserves T and U, then we have a
commutative diagram

Lie U
dθ
//

exp
��

Lie U

exp
��

U
θ

// U
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Proof. The proof is the same as that of [Guralnick et al. 2012, Lemma 5], where
there was an extra assumption on the µi . The assumption on the weights µi is only
used to prove that Xα,n acts trivially on V =

⊕
Wi for all n ≥ p. Fix any i . It is

enough to show that Xα,n acts trivially on Wi for all n ≥ p. So it is enough to show
that Wi cannot have two weights λ and λ+ nα (α ∈ 8, n ≥ p). As dim Wi ≤ p,
it follows from [Jantzen 1997] that the weights of Wi are the same as those of
the irreducible characteristic-0 representation of the same highest weight. But
in characteristic 0 it is known that if λ and λ+ nα are weights of an irreducible
representation, then so are λ, λ + α, λ + 2α, . . . , λ + nα, so dim Wi > n ≥ p,
contradicting the assumption. �

Proposition 4.4. Let p > 3 be prime. Suppose that V is a finite-dimensional
vector space over Fp and that G ≤ GL(V ) is a finite subgroup that acts semisimply
on V . Let G+ ≤ G be the subgroup generated by p-elements of G. Then V is a
semisimple G+-module. Let d ≥ 1 be the maximal dimension of an irreducible
G+-submodule of V . Suppose that p > d and that G+ is a central product of
quasisimple Chevalley groups in characteristic p. Then there exists an algebraic
group G over Fp and a semisimple representation 2 : G/Fp

→ GL(V ) with the
following properties:

(i) The connected component G0 is semisimple simply connected.

(ii) G∼= G0o H , where H is a finite group of order prime to p.

(iii) 2(G(Fp))= G.

(iv) ker(2)∩G0(Fp) is central in G0(Fp).

Moreover, any highest weight of G0
/Fp

on V is p-restricted. Also, G does not have
any composition factor of order p.

Proof. The proof is essentially identical to the proof of [Guralnick et al. 2012,
Proposition 7]. We do not get 〈λ, α∨〉 < (p− 1)/2 in Step 2, but this was only
used to apply Lemmas 4 and 5 in [Guralnick et al. 2012]. By Lemmas 4.2 and 4.3
above one can bypass this assumption, as we now explain. Both times Lemma 4
in [Guralnick et al. 2012] is applied, condition (ii) in Lemma 4.2 holds. In Step 4
we can apply Lemma 4.3 instead of Lemma 5 in [Guralnick et al. 2012] because
I acts irreducibly on Wi and its highest weight is p-restricted (as I→ I is a
central isogeny). Similarly we can avoid Lemma 5 in [Guralnick et al. 2012] in
Step 5, noting that the highest weights of V ′ are Galois-conjugate to the highest
weights of V and recalling that ψ/Fp

is a central isogeny onto its image. Finally,
note that (iv) follows by construction. �
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Theorem 4.5. Suppose that p > 3, V is a finite-dimensional vector space over Fp,
and G ≤ GL(V ) is a finite subgroup that acts irreducibly on V . Let G+ ≤ G be
the subgroup generated by p-elements of G. Let d ≥ 1 be the maximal dimension
of an irreducible G+-submodule of V . Suppose that p > d and that G+ is a
central product of quasisimple Chevalley groups in characteristic p. Then the set of
p′-elements of G spans ad V as an Fp-vector space.

Remark 4.6. Theorem 4.5 generalizes [Guralnick et al. 2012, Theorem 9]. We take
the opportunity to point out a small gap in the last paragraph of the proof of that
theorem. In the notation there, it is implicitly assumed that (i) r(T (Fl))⊂ r(H), so
that the span of r(H) equals the span of r(T (Fl)H), and (ii) H normalizes the pair
(B, T ). Both assumptions are satisfied provided that when we apply [Guralnick
et al. 2012, Proposition 7] in the proof of Theorem 9 there, we take r , G =G0oH ,
B, T , . . . as constructed in the proof of that proposition.

Proof. Without loss of generality d > 1. Let 2: G/Fp
→ GL(V ) be as in

Proposition 4.4. Then V =
⊕

Wi , where Wi is an irreducible G0
/Fp

-subrepresentation
with p-restricted highest weight. Write G0

/Fp

∼= G1× · · ·×Gr , where Gi is almost
simple over Fp. Let G0 >B>T denote a Borel subgroup and a maximal torus, and
let 8 denote the roots of G0

/Fp
with respect to T/Fp

.

(a) We consider the case where one of the Wi (equivalently any) is tensor-decom-
posable as a G0

/Fp
-representation. Note that Wi ∼= X i1� · · ·� X ir , where X i j is an ir-

reducible G j -representation with p-restricted highest weight. Since dim X i j ≤ p−1,
its highest weight lies in the lowest alcove [Jantzen 1997; Serre 1994]; hence X i j is
tensor-indecomposable (as the highest weight is in the lowest alcove, we are reduced
to the characteristic-0 case, where this is well known). Hence our assumption
implies that X i j � 1 for at least two values of j . Hence dim X i j ≤ (p− 1)/2 for
all i, j . Therefore X∗ik ⊗ X jk is a semisimple Gk-representation by [Serre 1994],
so End V is a semisimple G0

/Fp
-representation. Moreover, all its highest weights are

p-restricted: this follows exactly as in Step 2 of the proof of [Guralnick et al. 2012,
Proposition 7] (use that dim X i j ≤ (p− 1)/2). Hence any G0(Fp)-submodule of
End V is a G0(Fp)-submodule.

Furthermore, arguing as in Step 2 of the proof of [Guralnick et al. 2012, Propo-
sition 7] for each Gk , we deduce that for all weights µ of the maximal torus T/Fp

on V we have |〈µ, α∨〉| < (p − 1)/2 for all α ∈ 8. We conclude as in the last
paragraph of the proof of [Guralnick et al. 2012, Theorem 9].

(b) We consider the case when G0
/Fp

has no factors of type A1, A2, A3, or B2.
We claim |〈µ, α∨〉| < (p− 1)/4 for all weights µ of T/Fp

on V and for all short
coroots α∨ ∈8∨. It suffices to show that 〈λ, β∨0 〉<(p−1)/4 for all highest weights
λ of T/Fp

on V and all highest short coroots β∨0 (one for each component of G0
/Fp

).
So it is enough to show that if G′ is an almost simple, simply connected group over
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Fp, not of type A1, A2, A3, or B2, then 〈λ, β∨0 〉 < (p − 1)/4 for all p-restricted
weights λ of G′ such that dim L(λ) < p, where β∨0 is the highest short coroot of
G′. But this follows from Lemma 4.1(b) and Jantzen’s inequality, and this proves
the claim.

Since the short coroots span X∗
(
T/Fp

)
⊗Q over Q, Lemma 3 of [Guralnick

et al. 2012] plus the claim show that distinct weights of T/Fp
on End V (and V )

remain distinct on T(Fp). Then [Guralnick 2012a, Lemma 1.1] shows that any
G0(Fp)-subrepresentation of End V is G0(Fp)-stable, so we can conclude as in the
last paragraph of the proof of Theorem 9 in [Guralnick et al. 2012].

(c) If neither (a) nor (b) apply, then the Wi are tensor-indecomposable; in particular,
the almost simple factors of G0

/Fp
are pairwise isomorphic. (Write G0 ∼=

∏
Hi ,

where the subgroups Hi are almost simple over Fp. Note that, for each i , G0(Fp)

acts irreducibly on Wi with all but one H j (Fp) acting trivially. As G(Fp) is ir-
reducible on V and, by Proposition 4.4(iv), the subgroups Hi (Fp) are pairwise
isomorphic and, as p > 3, so are the Hi .) Hence G0

/Fp

∼= SLn
2 , SLn

3 , SLn
4 , or Spn

4 for
some n ≥ 1.

(d) We consider the case where G0
/Fp

∼= SLn
3 , SLn

4 , or Spn
4 . We claim that for all

weights µ of T/Fp
on V and for all α ∈8,

|〈µ, α∨〉|< 1
2(p− 1). (4-2)

To see this, note that |〈µ, α∨〉| ≤ 〈λ, α∨0 〉 for some highest weight λ of V and some
highest coroot α∨0 . Applying Lemma 4.1(a) to the component 8 j of 8 such that
α∨0 ∈8

∨

j and using Jantzen’s inequality, we get

〈λ, α∨0 〉 ≤
1
2

∑
8 j,+

〈λ, α∨〉< 1
2(p− 1).

By Lemma 3 in [Guralnick et al. 2012], (4-2) shows that distinct weights of T/Fp

on V remain distinct on T(Fp). As usual, it thus suffices to show that End V is a
semisimple G0

/Fp
-module with p-restricted highest weights. We can argue indepen-

dently for each factor of G0
/Fp

, so it will suffice to show that if X, Y are nontrivial
irreducible G′-representations which are conjugate by Aut(G′) (with G′ = SL3, SL4,
or Sp4) with p-restricted highest weights λ, λ′ of dimension less than p, then X⊗Y
is semisimple with p-restricted highest weights. By [Jantzen 1997; Serre 1994],
λ and λ′ lie in the lowest alcove, so ch L(λ) and ch L(λ′) are given by Weyl’s
character formula.

In the following, note that 〈λ, β∨0 〉 = 〈λ
′, β∨0 〉.
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If G′ ∼= SL4, write λ = r$1 + s$2 + t$3 (r, s, t ≥ 0), where $i is the i-th
fundamental weight. Then

p− 1≥ dim L(λ)=
[(r + 1)(s+ 1)(t + 1)][(r + s+ 2)(s+ t + 2)](r + s+ t + 3)

2 · 2 · 3

≥
(r + s+ t + 1)(r + s+ t + 2)(r + s+ t + 3)

2 · 3
.

If 〈λ, β∨0 〉 = r + s+ t ≥ (p− 1)/4, then

p− 1≥
p+3

4 ·
p+7

4 ·
p+11

4

6
.

Equivalently, (p − 5)[(p + 13)2 − 292] ≤ 0, i.e., p = 5. In this case, equality
holds throughout so λ=$1 or $3. The maximal weight of X ⊗Y , namely 2$1 or
$1+$3 or 2$3, lies in the closure of the lowest alcove. Then X⊗Y is semisimple
by the linkage principle (or just [Jantzen 2003, Proposition II.4.13]) and it has
p-restricted highest weights. If 〈λ, β∨0 〉 < (p − 1)/4 the argument in (b) goes
through instead.

If G′ ∼= Sp4, write λ= r$1+ s$2 with r, s ≥ 0 (type B2). Then

p− 1≥ dim L(λ)=
[(r + 1)(s+ 1)](r + s+ 2)(2r + s+ 3)

6

≥
(r + s+ 1)(r + s+ 2)(r + s+ 3)

6
.

If 〈λ, β∨0 〉 = r + s ≥ (p− 1)/4, then p = 5 as above and λ =$2. Again, X ⊗ Y
has maximal weight 2$2 lying in the closure of the lowest alcove; hence X ⊗ Y is
semisimple with p-restricted highest weights. If 〈λ, β∨0 〉< (p− 1)/4 we are done
as in (b).

If G′ ∼= SL3, write λ= r$1+ s$2 (r, s ≥ 0). If r + s ≥ (p− 1)/2, then

p− 1≥ dim L(λ)=
[(r + 1)(s+ 1)](r + s+ 2)

2

≥
(r + s+ 1)(r + s+ 2)

2
≥

p+1
2 ·

p+3
2

2
.

Equivalently (p−2)2+7≤ 0, which is impossible. Hence r+s ≤ (p−3)/2, which
implies that the maximal weight of X ⊗ Y lies in the lowest alcove. So X ⊗ Y is
semisimple with p-restricted highest weights.

(e) We consider the case where G0
/Fp

∼=SLn
2 and each Wi is tensor-indecomposable as

a G0
/Fp

-representation. Here, G0(Fp)∼= SL2(Fq)
m , where [Fq : Fp] ·m = n. Also, V is

irreducible, each Wi is tensor-indecomposable, and SL2 has no outer automorphism.
It follows that V ∼=

[⊕`
i=1 Vi

]⊕k as G0
/Fp

-representations, where each Vi is of
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the form 1 � · · · � V0 � · · · � 1 (precisely one factor is V0), the Vi are pairwise
nonisomorphic, and V0 is an irreducible SL2-representation such that 1<dim V0< p
with p-restricted highest weight.

(e1) We claim that the span of the p′-elements of G0(Fp) in End V contains the
span of T(Fp) in End V .

If q > p, note from the description of Vi above that distinct weights of T/Fp
on

V remain distinct on T(Fp). Hence the span of T(Fp) in End V equals the span of
T(Fp) in End V .

If q = p, we will show that the p′-elements of G0(Fp) span the same sub-
space of End V as does all of G0(Fp). First, from Proposition 4.4(iv), we de-
duce that `= n. As the Vi are distinct and irreducible G0

/Fp
-representations, by the

Artin–Wedderburn theorem we need to show that the p′-elements in G0(Fp) span∏n
i=1 End(Vi ), or equivalently its G0(Fp)-head. (Note that the span of the p′-

elements is G0(Fp)-stable.) By Lemma 3.3, we see that the n representations
headG0(Fp)(End(Vi )) have no G0(Fp)-irreducible constituent in common except for
the trivial direct summand of scalar matrices in End(Vi ). By Proposition 3.1, the
image of the p′-elements span End(Vi ) for any i . Hence it suffices to show that the
image of the p′-elements under the map

G0(Fp) → Fn
p ,

g 7→ (tr(g|Vi ))
n
i=1

spans Fn
p. Note that as 1 < dim V0 < p, the split torus

(
∗

∗

)
< SL2(Fp) has a

nontrivial eigenvalue χ on V0 with multiplicity 1 or 2. Given 1≤ i ≤ n, there exists
an element in Fp[T(Fp)] that projects onto the 1⊗ · · · ⊗ χ ⊗ · · · ⊗ 1 eigenspace
in any T(Fp)-representation, so as p > 2 it has nonzero trace on Vi but is zero on⊕

j 6=i V j . This proves the claim.

(e2) We claim that headG0
/Fp
(End V ) = headG0(Fp)(End V ), and moreover that any

highest weight of this representation is p-restricted.
If d ≤ (p+ 1)/2, then by [Serre 1994] End V is a semisimple G0

/Fp
-module and

clearly any highest weight of End V is p-restricted. The claim follows.
If d≥ (p+3)/2, note that head is compatible with direct sums, so we can consider

each V ∗i ⊗ V j separately. If i 6= j , then V ∗i ⊗ V j is irreducible with p-restricted
highest weight. If i = j , from Lemma 3.3 we get

headSL2(V
∗

0 ⊗ V0)∼= L(0)⊕ L(2)⊕ · · ·⊕ L(p− 1).

In particular, any highest weight of headG0
/Fp
(V ∗i ⊗Vi ) is p-restricted. By Lemma 3.3,

showing

headG0
/Fp
(V ∗i ⊗ Vi )= headG0(Fp)(V

∗

i ⊗ Vi )
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is equivalent (after a Frobenius twist) to showing that

headSL2(T (2p− 2− 2 j))= headSL2(Fq )(T (2p− 2− 2 j))

for 0 ≤ j ≤ (p − 3)/2. If q = p this follows from Lemma 3.3, as d < p. This
in turn implies the statement for q > p, as any irreducible SL2-constituent of
T (2p−2−2 j) restricts irreducibly to SL2(Fq) if q > p and semisimply to SL2(Fp).
This proves the claim.

(e3) Now, let M denote the span of the images of the p′-elements of G(Fp) in
headG0(Fp)(End(V )). Note that M is a G0(Fp)-subrepresentation. To prove weak
adequacy, it suffices to show that M = headG0(Fp)(End(V )). By (e2) we have
that headG0

/Fp
(End(V ))= headG0(Fp)(End(V )) and that distinct irreducible G0

/Fp
-sub-

representations of headG0
/Fp
(End(V )) restrict to distinct irreducible G0(Fp)-represen-

tations. Hence, any G0(Fp)-subrepresentation of headG0
/Fp
(End(V )) is G0(Fp)-stable.

By (e1), we know that M contains the span of the image of T(Fp) · H . Therefore,
by Lemma 8 in [Guralnick et al. 2012], M contains the span of the image of G(Fp).
But the latter span equals headG0

/Fp
(End(V )) by the Artin–Wedderburn theorem. �

5. Weak adequacy in cross-characteristic

Recall that, given a finite-dimensional absolutely irreducible representation8 :G→
GL(V ), the pair (G, V ) is called weakly adequate if End(V ) equals

M := 〈8(g) ∈8(G) :8(g) semisimple〉k .

Assume k = k̄ has characteristic p. First, we recall:

Lemma 5.1 [Guralnick 2012b, Lemma 2.3]. If G < GL(V ) is p-solvable and
p - dim V , then (G, V ) is weakly adequate.

In general, a key tool to prove weak adequacy is provided by the following
criterion:

Lemma 5.2. Let V be a finite-dimensional vector space over k and G ≤ GL(V ) a
finite irreducible subgroup. Write V |G+ = e

∑t
i=1 Wi , where the G+-modules Wi

are irreducible and pairwise nonisomorphic. Suppose there is a subgroup Q ≤ G+

such that

(i) {Qg
: g ∈ G} = {Qx

: x ∈ G+}, and

(ii) the Q-modules Wi are irreducible and pairwise nonisomorphic,

then NG(Q) is an irreducible subgroup of GL(V ). If , furthermore,

(iii) NG+(Q) is a p′-group,

then (G, V ) is weakly adequate.
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Proof. The condition (i) is equivalent to the equality G= N G+, where N := NG(Q).
Since G/G+ is a p′-group, this implies that N is a p′-group if NG+(Q) is a p′-
group. By the Artin–Wedderburn theorem, it therefore suffices to show that N is
irreducible on V .

Set Vi = eWi so that V =
⊕m

i=1 Vi , G1 := IG(W1)= StabG(V1) the inertia group
of the G+-module W1 in G, and N1 := N ∩G1. Then we have that G1= N1G+ and
[N : N1] = [G : G1] = t . Trivially, the condition (ii) implies that the N+-modules
Wi (1≤ i ≤ t), are irreducible and pairwise nonisomorphic, where we set N+ :=
NG+(Q). It now follows that N1= IN (W1), the inertia group of the N+-module W1

in N ; moreover, N acts transitively on {V1, . . . , Vt }, and V |N = IndN
N1
(V1|N1). By

the Clifford correspondence, it suffices to show that the N1-module V1 is irreducible.
Let 8 denote the corresponding representation of G1 on V1 and let 9 denote

the corresponding representation of G+ on W1. By [Navarro 1998, Theorem 8.14],
there is a projective representation 91 of G1 such that

91(n)=9(n), 91(xn)=91(x)91(n), 91(nx)=91(n)91(x)

for all n ∈G+ and x ∈G1. Let α denote the factor set on G1/G+ induced by91. By
[Navarro 1998, Theorem 8.16], there is an e-dimensional projective representation
2 of G1/G+ with factor set α−1 such that 8(g) =2(g)⊗91(g) for all g ∈ G1.
(Here and in what follows, we will write 2(g) instead of 2(gG+).) Since 8 is
irreducible, 2 is irreducible.

Observe that N1/N+ is canonically isomorphic to G1/G+. Restricting to N1,
we then have that 8(g) = 2(g)⊗91(g) for all g ∈ N1, 91(n) = 9(n) for all
n ∈ N+, (91)N1 is a projective representation of N1 with factor set α, and 2N1/N+

is a projective representation of N1/N+ with factor set α−1. Furthermore, 2N1/N+

is irreducible. It follows by [Navarro 1998, Theorem 8.18] that 8N1 is irreducible,
as stated. �

In certain cases we will also need the following modification of Lemma 5.2:

Lemma 5.3. Let V be a finite-dimensional vector space over k and G ≤ GL(V ) a
finite irreducible subgroup. Write V |G+ = e

∑t
i=1 Wi , where the G+-modules Wi

are irreducible and pairwise nonisomorphic. Suppose there is a subgroup Q ≤ G+

with the following properties:

(i) {Qg
: g ∈ G} = {Qx

: x ∈ G+}.

(ii) Wi ∼= Ai ⊕ Bi as Q-modules, where all the 2t Q-modules Ai and B j are
irreducible and pairwise nonisomorphic.

If {A1, . . . , At } and {B1, . . . , Bt } are two disjoint N-orbits on IBr(Q) for N :=
NG(Q), then we have that VN ∼= A ⊕ B as N-modules, where A and B are
irreducible, AQ ∼= e

(⊕t
i=1 Ai

)
, and BQ ∼= e

(⊕t
i=1 Bi

)
. On the other hand, if

{A1, B1, . . . , At , Bt } forms a single N-orbit, then N is irreducible on V .
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Proof. Again, the condition (i) implies that G = N G+. Adopt the notation G1,
N1, N+, 8, 9, 91, α of the proof of Lemma 5.2. As shown there, there is an
irreducible e-dimensional projective representation 2 of G1/G+ with factor set
α−1 such that 8(g)=2(g)⊗91(g) for all g ∈ G1. Also, N1/N+ is canonically
isomorphic to G1/G+. According to (ii), (Wi )Q ∼= Ai ⊕ Bi , with Ai � Bi . Hence
we can decompose (Vi )Q = Ci ⊕ Di , where (Ci )Q ∼= eAi and (Di )Q ∼= eBi , and
define A :=

⊕t
i=1 Ci , B :=

⊕t
i=1 Di .

(a) First we consider the case where {A1, . . . , At } and {B1, . . . , Bt } are two disjoint
N -orbits. Then, for any x ∈ N , every composition factor of the Q-module x A is of
the form A j for some j , and every composition factor of B is of the form B j ′ for
some j ′. Hence we conclude that x A = A, and similarly x B = B. Thus A and B
are N -modules. Certainly, N permutes C1, . . . ,Ct transitively and N1 fixes C1. But
t=[N : N1]; hence N1=StabN (C1) and A= IndN

N1
(C1). Since (Ci )Q= eAi and the

Q-modules Ai are pairwise nonisomorphic, we also see that N1= IN (A1). Similarly,
N1 = IN (B1) and B = IndN

N1
(D1). Therefore, by the Clifford correspondence, it

suffices to prove that the N1-modules C1 and D1 are irreducible.
Recall the decompositions (W1)Q = A1 ⊕ B1 and 8(g) = 2(g)⊗91(g) for

all g ∈ G1. Without loss, we may assume that the representation 9 of G+ on W1

is written with respect to some basis (v1, . . . , va+b) which is the union of a basis
(v1, . . . , va) of A1 and a basis (va+1, . . . , va+b) of B1. Since8(g)=2(g)⊗91(g)
for all g ∈ G1 acting on V1, we can also choose a basis

{ui ⊗ v j : 1≤ i ≤ e, 1≤ j ≤ a+ b}

of V1 such that2(g) is written with respect to {u1, . . . , ue} and91(g) is written with
respect to {v1, . . . , va+b}. For any x ∈ N1, writing2(x)= (θi ′i ) and91(x)= (ψ j ′ j ),
we then have that

8(x)(ui ⊗ v j )=
∑
i ′, j ′

θi ′iψ j ′ j ui ′ ⊗ v j ′ .

Recall we are also assuming that the Q-modules A1 and B1 are not N -conjugate.
Therefore, 8(x) fixes each of

C1=〈ui⊗v j :1≤ i ≤ e, 1≤ j ≤a〉k, D1=〈ui⊗v j :1≤ i ≤ e, a+1≤ j ≤a+b〉k .

In particular, θi ′iψ j ′ j =0 whenever j ′>a and j ≤a. Now ifψ j ′ j 6=0 for some j ≤a
and some j ′ > a, we must have θi ′i = 0 for all i, i ′, i.e., 2(x)= 0, a contradiction.
Similarly, ψ j ′ j = 0 whenever j > a and j ′ ≤ a. Therefore, we can write

91(x)= diag(91A(x),91B(x)) (5-1)

in the chosen basis {v1, . . . , va+b}. It also follows that9(y) fixes each of A1 and B1

for all y ∈ N+, i.e., A1 and B1 are irreducible N+-modules.



Adequate groups of low degree 101

Now, 91(x)91(y)= α(x, y)91(xy) for any x, y ∈ N1. Together with (5-1) this
implies that

91A(x)91A(y)= α(x, y)91A(xy), 91B(x)91B(y)= α(x, y)91B(xy),

i.e., both 91A and 91B are projective representations of N1 with factor set α. Since
91(x) = 9(x) for all x ∈ N+ and (5-1) certainly holds for x ∈ N+, we also see
that 91A extends the representation of N+ on A1, and similarly 91B extends the
representation of N+ on B1. By [Navarro 1998, Theorem 8.18], the formulae

8A(g) :=2(g)⊗91A(g), 8B(g) :=2(g)⊗91B(g)

for g ∈ N1 define irreducible (linear) representations of N1 of dimension ea and
eb (acting on C1 and D1, respectively), and so we are done.

(b) Next we consider the case N acts transitively on {A1, . . . , Bt }. In this case,
N ◦1 := IN (A1) has index 2t in N and is contained in N1. Note that there is some
g ∈ N such that Bg

1
∼= A1 as Q-modules. Certainly, such g must belong to N1,

and also g interchanges C1 and D1. Applying the arguments of (a) to g, we see
that 91(g) interchanges A1 and B1. It follows that (91)N1 is irreducible. In turn,
this implies by [Navarro 1998, Theorem 8.18] that 8N1 is irreducible, i.e., N1 is
irreducible on V1. But [N1 : N ◦1 ]= 2 and V1=C1⊕D1 as N ◦1 -modules. Hence C1 is
an irreducible N ◦1 -module. Since N ◦1 = IN (A1) and C1 is the A1-isotypic component
for Q on V , we conclude by Clifford’s theorem that N is irreducible on V . �

Lemma 5.4. Let V be a finite-dimensional vector space over k and G ≤ GL(V ) a
finite irreducible subgroup. Write V |G+ = e

∑t
i=1 Wi , where the G+-modules Wi

are irreducible and pairwise nonisomorphic. Suppose there is a subgroup Q ≤ G+

with the following properties:

(a) {Qg
: g ∈ G} = {Qx

: x ∈ G+}.

(b) (Wi )Q ∼= Ai ⊕ Bi1⊕ · · ·⊕ Bis , where a := dim Ai 6= dim Bil for all 1≤ i ≤ t
and all 1≤ l ≤ s, the Q-modules Ai , Bil are irreducible, and the Q-modules
Ai (1≤ i ≤ t) are pairwise nonisomorphic.

Then the following statements hold:

(i) Denoting N := NG(Q), we have that VN ∼= A⊕ B as N-modules, where A is
irreducible, AQ ∼= e

(⊕t
i=1 Ai

)
and BQ ∼= e

(⊕
i,l Bil

)
.

(ii) Assume that N is a p′-subgroup, G+ is perfect, and that, whenever i 6= j , no
G+-composition factor of W ∗i ⊗W j is trivial. If all G+-composition factors of
End(V )/M (if there are any) are trivial, then in fact M= End(V ).
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Proof. (i) follows from same proof as Lemma 5.3. For (ii), note that since G+ is
perfect it must act trivially on E/End(V ), i.e., M⊇ [End(V ),G+]. It follows that

M⊇ [E1i ,G+] (5-2)

for E1i := End(Vi ). On the other hand, Hom(Vi , V j )= [Hom(Vi , V j ),G+], and so

M⊇
⊕

1≤i 6= j≤t

Hom(Vi , V j ).

It suffices to show that M⊇ E11 (and so by symmetry M⊇ E1i for all i).
Applying the Artin–Wedderburn theorem to N , we see that

M⊃ End(A)⊇ End(C1), (5-3)

where (C1)Q ∼= eA1. Also, as in the proof of Lemma 5.3, we can write

V1 =U ⊗W1, C1 =U ⊗ A1,

such that U affords a projective representation 2 of G1/G+ ∼= N1/N+, W1 affords
a projective representation 91 of G1 that extends the representation 9 of G+ on
W1, and 8(g)=2(g)⊗91(g) for the representation 8 of G1 on V1.

Note that the subspace End(W1)
◦ consisting of all transformations with trace 0

is a G+-submodule X of codimension 1 of End(W1). Next, as a G+-module,

E11 = End(V1)∼= End(U )⊗End(W1)∼= e2 End(W1).

So we see that E+11 := End(U )⊗End(W1)
◦ is a submodule of codimension e2 in

E11, and all G+-composition factors of E11/E
+

11 are trivial. Since G+ is perfect, it
follows that E+11 ⊇ [E11,G+]. But

dim HomkG+(E11, k)= e2 dim HomkG+(End(W1), k)

= e2 dim HomkG+(W1,W1)= e2.

Hence, E+11 = [E11,G+], and so by (5-2) we have that

M⊃ E+11 = End(U )⊗End(W1)
◦.

On the other hand, by (5-3) we also have that

M⊃ End(C1)= End(U )⊗End(A1).

Obviously, End(W1)
◦
+End(A1)= End(W1) (as End(A1) contains elements with

nonzero trace). Hence we conclude that M⊇ E11, as stated. �
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We also record the following trivial observation:

Lemma 5.5. Let E be a kG-module of finite length with submodules X and M.
Suppose that N ≤ G and that the N-modules X and E/X share no common
composition factor (up to isomorphism). Suppose that the multiplicity of each
composition factor C of X is at most its multiplicity as a composition factor of M
(for instance, X is a subquotient of M). Then M ⊇ X.

Proof. The hypothesis implies that the N -modules X and E/M have no common
composition factor. On the other hand, X/(M ∩ X) ∼= (X + M)/M ⊆ E/M as
N -modules. It follows that X = M ∩ X , as stated. �

Proposition 5.6. Let (G, V ) be as in the extraspecial case (ii) of Theorem 2.4. Then
(G, V ) is weakly adequate.

Proof. Decompose VG+ = e
∑t

i=1 Wi as in Lemma 5.2. Recall by Theorem 2.4(ii)
that R := Op′(G+)CG acts irreducibly on each Wi . First we show that if i 6= j
then the R-modules Wi and W j are nonisomorphic. Assume the contrary: Wi ∼=W j

as R-modules. Then the G+-modules Wi and W j are two extensions to G+B R
of the R-module Wi . By [Navarro 1998, Corollary 8.20], W j ∼= Wi ⊗U (as G+-
modules) for some one-dimensional G+/R-module U . But G+/R is perfect by
Theorem 2.4(ii). It follows that U is the trivial module and Wi ∼=W j as G+-modules,
a contradiction.

For future use, we also show that the G+-module Wi has a unique complex lift.
Indeed, the existence of a complex lift χ of Wi was established in [Blau and Zhang
1993, Theorem B]. Suppose that χ ′ is another complex lift. Then both χ and χ ′

are extensions of α := χR , and α is irreducible since R is irreducible on Wi . Then,
again by [Navarro 1998, Corollary 8.20], χ ′ = χλ for some linear character λ of
G+/R, and so λ= 1G+/R as G+/R is perfect. Thus χ ′ = χ .

Now we write G+/R = S1 × · · · × Sn with Si ∼= S as in Theorem 2.4(ii). We
will define the subgroup Q > R of G+ with

Q/R = Q1× · · ·× Qn

as follows. If p= 17 and S= PSL2(17), then Qi is a dihedral subgroup of order 16.
If S=�−2a(2

b)′ with ab= n (and a≥ 2 as S is simple nonabelian), then Qi is chosen
to be the first parabolic subgroup (which is the normalizer of an isotropic 1-space in
the natural module F2a

2b , of index (2n
+1)(2n−b

−1)/(2b
−1)). If S = Sp4(2)

′ ∼= A6,
choose Qi ∼= 32

: 4, of order 36. If S = Sp4(2
b) with b ≥ 2, we fix a prime divisor

r of b and choose Qi ∼= Sp4(2
b/r ). For S = Sp2a(2

b) with a ≥ 3, we choose Qi to
be the first parabolic subgroup (which is the normalizer of a 1-space in the natural
module F2a

2b , of index 22n
− 1). In all cases, our choice of Qi ensures that the

p′-subgroup Qi is a maximal subgroup of Si and, moreover, that the Si -conjugacy
class of Qi is Aut(Si )-invariant. In particular, NG+(Q) = Q. Also note that any
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g ∈ G normalizes R and permutes the simple factors Si of G+/R; in fact, its action
on G+/R belongs to Aut(Sn)=Aut(S) oSn . It follows that Q satisfies conditions (i)
and (iii) of Lemma 5.2. Since Wi � W j as R-modules for i 6= j , Wi � W j as
Q-modules as well. Hence we are done by Lemma 5.2. �

Theorem 5.7. Suppose (G, V ) is as in case (i) of Theorem 2.4. Then (G, V )
is weakly adequate unless one of the following possibilities occurs for the group
H <GL(W ) induced by the action of G+ on any irreducible G+-submodule W of V :

(i) p = (qn
− 1)/(q − 1), with n ≥ 3 a prime, and H ∼= PSLn(q).

(ii) (p,H, dim W )=(5,2A7,4), (7,61·PSL3(4),6), (11,2M12,10), or (19,3J3,18).

Proof. (a) Arguing as in part (b) of the proof of Theorem 2.4 (and using its notation),
we see that for each i there is some ki such that the kernel Ki of the action of G+

on Wi contains
∏

j 6=ki
L j , and so G+ acts on Wi as Hi = Lki /(Lki ∩ Ki ). We aim

to define a subgroup Q > Z(G+) of G+ such that

Q = Q1 ∗ Q2 ∗ · · · ∗ Qn,

where Qi/Z(L i )≤ L i/Z(L i )=: Si ∼= S and Q satisfies the conditions of Lemma 5.2.
In fact, we will find Qi so that the p′-subgroup Qi/Z(L i ) is a maximal subgroup
of Si and, moreover, the Si -conjugacy class of Qi/Z(L i ) is Aut(Si )-invariant.
To this end, we first find Q1; then for each i > 1, we can fix an element gi ∈

G conjugating S1 to Si and choose Qi = Qgi
1 . Since G fixes G+ and Z(G+)

and induces a subgroup of Aut(S) o Sn while acting on G+/Z(G+) ∼= Sn , it fol-
lows that Q satisfies conditions (i) and (iii) of Lemma 5.2. Moreover, in the
cases where

G+ = L1× · · ·× Ln ∼= H n, (5-4)

then we can also write Q = Q1 × · · · × Qn , which simplifies some parts of the
arguments.

(b1) Suppose first that we are in the case (b1) of Theorem 2.1. Assume that
(H, p) = (Sp2n(q), (q

n
+ 1)/2). Here H is the full cover of S, so (5-4) holds.

Then we choose Qi to be the last parabolic subgroup of Sp2n(q) (which is the
stabilizer of a maximal totally isotropic subspace in the natural module F2n

q ). Then
Qi/Z(L i ) is a maximal p′-subgroup of Si and, moreover, the Si -conjugacy class
of Qi/Z(L i ) is Aut(Si )-invariant. By [Guralnick et al. 2002, Theorem 2.1], the
H -module W is one of the two Weil modules of dimension (qn

− 1)/2 of H ∼=
Sp2n(q). Furthermore, by [Guralnick et al. 2002, Lemma 7.2], the restrictions
of these two Weil modules of L i to Qi are irreducible and nonisomorphic. It
follows that if Wi � W j as G+-modules and Ki = K j , then Wi � W j as Q-
modules. On the other hand, if Ki 6= K j , then ki 6= k j (otherwise we would have
Ki = K j =

∏
a 6=ki

La since Lki acts faithfully on Vi ), whence Ki ∩ Q 6= K j ∩ Q



Adequate groups of low degree 105

and so Wi � W j as Q-modules. Thus condition (ii) of Lemma 5.2 holds as well,
and so we are done.

Consider the case (H, p) = (2Ru, 29). Then H is the full cover of S and so
(5-4) holds. Choose Qi to be a unique (up to L i -conjugacy) maximal subgroup
of type (2× PSU3(5)) : 2 of L i ; see [Conway et al. 1985]. Note that L i has a
unique conjugacy class 3A of elements of order 3. By using [Jansen et al. 1995]
and [Conway et al. 1985], and comparing the character values at this class 3A, we
see that L i has two irreducible p-Brauer characters ϕ1, ϕ2, of degree 28, and their
restrictions to Qi yield the same irreducible character of Qi . Now, if Ki 6= K j , then
ki 6= k j (as W is a faithful k H -module), whence Ki∩Q 6= K j∩Q and so Wi �W j as
Q-modules. Suppose that Ki = K j . By Clifford’s theorem, there is some g∈G such
that W j =W g

i as G+-modules, and so as L i -modules as well. In this case, g induces
an automorphism of L i = 2Ru. But all automorphisms of Ru are inner [Conway
et al. 1985], so Wi and W j afford the same Brauer L i -character, whence Wi ∼=W j as
G+-modules. Thus condition (ii) of Lemma 5.2 holds as well, and so we are done.

Next assume that (H, p)= (SUn(q), (qn
+1)/(q+1)); in particular n≥ 3 is odd.

Since H is simple, (5-4) holds. Then we choose Qi to be the last parabolic subgroup
of SUn(q) (which is the stabilizer of a maximal totally isotropic subspace in the
natural module Fn

q2). Then the p′-subgroup Qi is a maximal subgroup of Si and the
Si -conjugacy class of Qi is Aut(Si )-invariant. Next, if n ≥ 5 then by [Guralnick
et al. 2002, Theorem 2.7], PSUn(q) has a unique irreducible module over k of
dimension p− 1= (qn

− q)/(q + 1), which is again a Weil module. Furthermore,
Lemmas 12.5 and 12.6 of [Guralnick et al. 2002] show that the restriction of this
Weil module of L i to Qi is irreducible. The same conclusions hold in the case
n = 3 by Theorem 4.2 and the proof of Remark 3.3 of [Geck 1990]. It follows that
if Wi �W j as G+-modules, then Ki 6= K j , ki 6= k j (as W is a faithful k H -module),
whence Ki ∩ Q 6= K j ∩ Q and so Wi �W j as Q-modules. Thus condition (ii) of
Lemma 5.2 holds, and so we are done again.

Note that we have listed the cases (p, H)= (5, 2A7) and (19, 3J3) as possible
exceptions in (ii).

(b2) Suppose now that we are in the case (b2) of Theorem 2.1; in particular, p = 7
and dim W = 6. Assume first that S = A7. The arguments in the cases L i ∼= 3A7

and 6A7 are the same, so we assume L i ∼= 6A7. Then we choose Qi/Z(L i ) to be a
unique (up to L i -conjugacy) maximal subgroup of type A6. Restricting the faithful
reducible complex characters of degree 4 of 2A7 and 6 of 3A7 [Conway et al. 1985]
to Qi (and comparing character values at elements of order 3), we see that Qi ∼= 6A6.
Now, using [Jansen et al. 1995], one can check that L i has six irreducible p-Brauer
characters of degree 6, and their restrictions to Qi are irreducible and distinct. Now
we can argue as in the case of Sp2n(q).
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Assume now that H = 2J2, and so (5-4) holds. Choose Qi/Z(L i ) to be a unique
(up to L i -conjugacy) maximal subgroup of type 3 · PGL2(9) (see [Conway et al.
1985]). Also, using [Jansen et al. 1995], one can check that L i has two irreducible
p-Brauer characters of degree 6, and their restrictions to Qi are irreducible and
distinct. Now we can argue as in the case of Sp2n(q).

Suppose that H = 61 ·PSU4(3). We will prove weak adequacy of (G, V ) in two
steps. First, we choose Mi/Z(L i ) to be a unique (up to Si -conjugacy) maximal
subgroup of type T ∼= SU3(3) of Si (see [Conway et al. 1985]). Since T has
trivial Schur multiplier, we have that Mi ∼= Zi × T , where Zi := Z(L i ). According
to [Jansen et al. 1995], L i has two irreducible p-Brauer characters of degree 6,
which have different central characters. It follows that their restrictions to Mi are
irreducible and distinct. Setting

M := M1 ∗ · · · ∗Mn,

we conclude by Lemma 5.2 that N := NG(M) is irreducible on V ; furthermore,
N/M ∼=G/G+ is a p′-group. But note that M is not a p′-group. Now, at the second
step, we note that MCN and N+ := O p′(N )= O p′(M)∼= T n , and, moreover, each
irreducible N+-submodule in V has dimension 6. Also, recall that T = SU3(3) and
p = 7. So we are done by applying the result of the case of PSUn(q).

(b3) Consider the case (b3) of Theorem 2.1; in particular, p = 11 and dim W = 10.
Putting the possibility H = 2M12 as a possible exception in (ii), we may assume
that H = M11 or 2M22. Then we choose Qi/Z(L i ) to be a unique (up to Si -
conjugacy) maximal subgroup of type M10 ∼= A6 · 23 or PSL3(4), respectively, of
Si (see [Conway et al. 1985]). In the former case, H is simple and so (5-4) holds.
In the latter case, since H j ∼= 2M22, we see that the cyclic group Z(L i )CG+ must
act as a central subgroup of order 1 or 2 of H j on each W j . Hence the faithfulness
of G on V implies that L i ∼= 2M22. Since PSL3(4) has no nontrivial representation
of degree 10, we must have that Qi ∼= 2 ·PSL3(4) is quasisimple in this case. Now,
using [Jansen et al. 1995], one can check that L i has two irreducible p-Brauer
characters of degree 10, and their restrictions to Qi are irreducible and distinct.
Hence we can argue as in the case of Sp2n(q).

(b4) Suppose we are in the case (b4) of Theorem 2.1; in particular, p = 13 and
dim W = 12. Since H is the full cover of S, (5-4) holds. Then we may choose
Qi/Z(L i ) to be a unique (up to Si -conjugacy) maximal subgroup of type J2 : 2 or
SL3(4) : 23, respectively, of Si (see [Conway et al. 1985]). Since J2 has no nontrivial
representation of degree 12, in the former case we must have that Qi ∼= (C3×2J2)·C2,
where C3 = O3(Z(L i )) and the C2 induces an outer automorphism of J2. Also,
according to [Breuer et al.], L i has precisely two irreducible p-Brauer characters
of degree 12, which differ at the central elements of order 3. Using [Jansen et al.
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1995], we can now check that the restrictions of these two characters to Qi are
irreducible and distinct, and then finish as in the case of Sp2n(q). In the latter case
of L i = 2G2(4), since SL3(4) has no nontrivial representation of degree 12 we must
have that Qi ∼= (6 ·PSL3(4)) · 23. Now, using [Jansen et al. 1995], one can check
that L i has a unique irreducible p-Brauer character of degree 12, and its restriction
to Qi is irreducible. Hence we can argue as in the case of PSUn(q).

(c) Now we consider case (c) of Theorem 2.1; in particular, dim W = p−2. Assume
that H = Ap with p ≥ 5. Since H is simple, (5-4) holds. Choosing Qi ∼= Ap−1, we
see that the p′-subgroup Qi is a maximal subgroup of Si and that the Si -conjugacy
class of Qi is Aut(Si )-invariant. Also, using [Guralnick and Tiep 2005, Lemma 6.1]
for p ≥ 17 and [Jansen et al. 1995] for p ≤ 13, we see that H has a unique
irreducible k H -module of dimension p− 2, and the restriction of this module to
Ap−1 is irreducible. Now we can argue as in the case of PSUn(q).

Next suppose that (H, p)= (SL2(q), q+1); in particular, p is a Fermat prime and
H is simple so (5-4) holds. Choosing Qi < SL2(q) to be a Borel subgroup (of index
p), we see that Qi is a maximal p′-subgroup of Si and that the Si -conjugacy class
of Qi is Aut(Si )-invariant. Also, using [Burkhardt 1976], one can check that H
has a unique irreducible k H -module of dimension p− 2, and the restriction of this
module to Qi is irreducible. Now argue as above.

Suppose that p=5 and H =3A6 or 3A7. First we note that L i ∼=3As with s=6 or
s= 7 respectively. If not, then L i ∼= 6As , but then, since H j ∼= 3As , O2(Z(L i )) must
act trivially on all Wi , contradicting the faithfulness of G on V . Now we choose Qi

to be the normalizer of a Sylow 3-subgroup in L i , of order 108. It is straightforward
to check that NSi (Qi/Z(L i ))= Qi/Z(L i ) and that the Si -conjugacy class of Qi is
Aut(Si )-invariant. Also, using [Jansen et al. 1995], one can check that H has two
irreducible 5-Brauer characters of degree p− 2, and the restrictions of them to Qi

are irreducible and distinct. Now we can argue as in the case of Sp2n(q).
Suppose that (p, H)= (11,M11) or (23,M23). Again (5-4) holds as H is simple.

Choosing Qi to be M10 ∼= A6 · 23 (in the notation of [Conway et al. 1985]) or M22,
respectively, we have that Qi is a unique maximal subgroup of L i of the given
p′-order up to L i -conjugacy. Furthermore, L i has a unique irreducible k H -module
of dimension p− 2, and the restriction of this module to Qi is irreducible. Now
argue as in the case of PSUn(q).

(d) Finally, we consider case (d) of Theorem 2.1: (p, H) = (11, J1) or (7, 2A7).
Then we choose Qi/Z(L i ) to be a unique (up to Si -conjugacy) maximal subgroup
of type 23

: 7 : 3 or A6, respectively (see [Conway et al. 1985]). In the former
case, H is simple, and so (5-4) holds. In the latter case, note that L i is 2A7. If not,
then L i ∼= 6A7, but then, since H j ∼= 2A7, O3(Z(L i )) must act trivially on all Wi ,
contradicting the faithfulness of G on V . It then follows that Qi ∼= 2A6 (as any
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4-dimensional kA6-representation is trivial). Now, using [Jansen et al. 1995] one
can check that H has a unique irreducible p-Brauer character of given degree, and
its restriction to Qi is irreducible. Now we can argue as in the case of PSUn(q). �

Next we use Lemma 5.3 to handle three exceptions listed in Theorem 5.7:

Proposition 5.8. In the case (p, H, dim W )= (19, 3J3, 18) of (ii) of Theorem 5.7,
(G, V ) is weakly adequate.

Proof. Since H is the full cover of S, we have G+ = L1×· · ·× Ln ∼= H n . Since H
acts faithfully on W , for each i there is some ki such that the kernel Ki of the action
of G+ on Wi is precisely

∏
j 6=ki

L j . We define a subgroup Q of G+ such that

Q = Q1× · · ·× Qn,

where Qi/Z(L i ) ∼= SL2(16) : 2 is a maximal subgroup of Si = L i/Z(L i ) ∼= J3.
Since SL2(16) has a trivial Schur multiplier and Z(L i ) ≤ Z(Qi ), we have that
Qi ∼= 3× (SL2(16) : 2). Furthermore, the Si -conjugacy class of Qi is Aut(Si )-
invariant. Hence Q satisfies the condition (i) of Lemma 5.3.

Using [GAP 2004], one can check that L i has exactly four irreducible 19-Brauer
characters ϕ1, ϕ2, ϕ3, ϕ4 of degree 18, and (ϕ j )Qi = α j +β j , with α j of degree 1
with kernel [Qi , Qi ], β j of degree 17, and the β j are all distinct. Now we show that
Q fulfills the condition (ii) of Lemma 5.3. Suppose that Wi �W j as G+-modules.
Then Q acts coprimely on Wi , with character α̃i + β̃i , where α̃i has degree 1 and
β̃i has degree 17. If ki 6= k j , then α̃i and α̃ j have different kernels and so are
distinct, and likewise β̃i and β̃ j are distinct. Suppose now that ki = k j . Then,
because of the condition Wi � W j , we may assume that Wi and W j both have
kernel K := L2× · · ·× Ln , and afford L1-characters ϕk and ϕl with 1≤ k 6= l ≤ 4.
Since the G-module V is irreducible, we have Wi � W j ∼= W g

i for some g ∈ G
which stabilizes K and G+/K ∼= L1 but does not induce an inner automorphism
of L1. The latter condition implies that g interchanges the two classes of elements
of order 5 and inverts the central element of order 3 of L1 [Conway et al. 1985].
The same is true for Q1. It follows that αk 6= αl , βk 6= βl , and so

α̃i 6= α̃ j , β̃i 6= β̃ j ,

as claimed.
By Lemma 5.3, V ∼= A⊕ B as a module over the p′-group N := NG(Q), where

the N -modules A and B are irreducible of dimension e and 17e, respectively. Hence,
by the Artin–Wedderburn theorem applied to N ,

M := 〈8(g) : g ∈ G, g semisimple 〉k
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contains A := End(A)⊕ End(B) = (A∗ ⊗ A)⊕ (B∗ ⊗ B) (if 8 denotes the rep-
resentation of G on V ). As in Lemma 5.3 and its proof, write A =

⊕t
i=1 Ci =

e
(⊕t

i=1 Ai
)

and B =
⊕t

i=1 Di = e
(⊕t

i=1 Bi
)

as Q-modules, where Ai affords α̃i

and Bi affords β̃i . Hence, the complement to A in End(V ) affords the Q-character

1 := e2
t∑

i, j=1

(α̃i β̃ j + β̃i α̃ j ).

In particular, all irreducible constituents of 1[Q,Q] are of degree 17. The same must
be true for the quotient End(V )/M.

As a G+-module,

End(V )=
t⊕

i, j=1

(V ∗i ⊗ V j )∼= e2
( t⊕

i, j=1

W ∗i ⊗W j

)
.

Observe that the G+-module W ∗i ⊗W j is irreducible of dimension 324 if ki 6= k j .
Assume that ki = k j , say ki = k j = 1. Using [GAP 2004] one can check that no irre-
ducible constituent of ϕkϕl for 1≤ k, l ≤ 4 can consist of only irreducible characters
of degree 17 while restricted to the subgroup SL2(16) of L1 = 3J3. It follows that
no irreducible constituent of the G+-module End(V ) can consist of only irreducible
constituents of dimension 17 while restricted to [Q, Q]. Hence M= End(V ). �

Proposition 5.9. In the case (p, H, dim W )= (11, 2M12, 10) of (ii) of Theorem 5.7,
(G, V ) is weakly adequate.

Proof. As H is the full cover of S, we have that G+= L1×· · ·×Ln ∼= H n . Since H
acts faithfully on W , for each i there is some ki such that the kernel Ki of the action
of G+ on Wi is precisely

∏
j 6=ki

L j . We define a subgroup Q of G+ such that

Q = Q1× · · ·× Qn,

where Qi/Z(L i ) ∼= 21+4
+ · S3 is a maximal subgroup of Si = L i/Z(L i ) ∼= M12.

Note that the Si -conjugacy class of Qi is Aut(Si )-invariant. Hence Q satisfies
condition (i) of Lemma 5.3.

Using [GAP 2004], one can check that L i has exactly two irreducible 11-Brauer
characters ϕ1, ϕ2 of degree 10, and (ϕ j )Qi = α + β j , with α of degree 4, β j of
degree 6, and β1 6= β2. Furthermore, Zi := Z(Qi )∼= C2

2 , and

αZi = 4λ, (β j )Zi = 6µ, (5-5)

where λ and µ are the two linear characters of Zi that are faithful on Z(L i ) < Zi .
In particular,

(αβ j )Zi = 24ν (5-6)

with ν := λµ 6= 1Zi .



110 Robert Guralnick, Florian Herzig and Pham Huu Tiep

Now we show that Q fulfills condition (ii) of Lemma 5.3. Suppose that Wi �W j

as G+-modules. Then Q acts on Wi , with character α̃i + β̃i , where α̃i (1)= 4 and
β̃i (1)= 6. If ki 6= k j , then α̃i and α̃ j have different kernels and so are distinct, and
likewise β̃i and β̃ j are distinct. In particular, in this case W ∗i ⊗W j is also irreducible.
Suppose now that ki = k j . Then, we may assume that Wi and W j both have kernel
K := L2×· · ·× Ln , and afford L1-characters ϕk and ϕl with 1≤ k, l ≤ 2. Since the
G-module V is irreducible, we have W j ∼=W g

i for some g ∈ G which stabilizes K ,
and G+/K ∼= L1. But ϕk is Aut(L1)-invariant [Jansen et al. 1995], whence l = k,
i.e., W j ∼=Wi , a contradiction.

By Lemma 5.3, V ∼= A⊕ B as a module over the p′-group N := NG(Q), where
the N -modules A and B are irreducible of dimensions 4e and 6e, respectively.
Hence, by the Artin–Wedderburn theorem applied to N ,

M := 〈8(g) : g ∈ G, g semisimple 〉k

contains A := End(A)⊕ End(B) = (A∗ ⊗ A)⊕ (B∗ ⊗ B) (if 8 denotes the rep-
resentation of G on V ). As in Lemma 5.3 and its proof, write A =

⊕t
i=1 Ci =

e
(⊕t

i=1 Ai
)

and B =
⊕t

i=1 Di = e
(⊕t

i=1 Bi
)

as Q-modules, where Ai affords α̃i

and Bi affords β̃i . Hence, the complement to A in End(V ) affords the Q-character

1 := e2
t∑

i, j=1

(α̃i β̃ j + β̃i α̃ j ).

Together with (5-5) and (5-6), this implies that the restriction of any irreducible con-
stituents of1 to Z(Q)= Z1×· · ·×Zn does not contain 1Z(Q). Thus Z(Q) acts fixed-
point-freely on the quotient End(V )/M. Furthermore, the Q-character of this quo-
tient does not contain β̃i β̃ j (as an irreducible constituent of degree 36) for any i 6= j .

As a G+-module,

End(V )=
t⊕

i, j=1

(V ∗i ⊗ V j )∼= e2
( t⊕

i, j=1

W ∗i ⊗W j

)
.

Now, if i 6= j then the G+-module W ∗i ⊗W j is irreducible and its Brauer character,
while restricted to Q, contains β̃i β̃ j . On the other hand, the Brauer character of
W ∗i ⊗Wi is the direct sum of 1G+ and another irreducible character of degree 99
(as one can check using [GAP 2004]), whose restriction to Z(Q) contains 1Z(Q)
(which can be seen from (5-5)). Hence we conclude that M= End(V ). �

Lemma 5.10. Let char(k)= 5 and let W be a faithful irreducible k(2S7)-module of
dimension 8, with corresponding representation2. Decompose WL=W1⊕W2 as L-
modules for L=2A7. Then there is a 5′-element z∈2S7\L and a set X⊂ L such that

(i) x and xz are 5′-elements for all x ∈ X, and

(ii) 〈2(x) : x ∈ X〉k = End(W1)⊕End(W2).
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Proof. Using [Wilson et al.] and [GAP 2004], K. Lux verified that one can find
an element h ∈ 2S7 \ L (of order 12) and a set X⊂ L satisfying condition (i) such
that 〈2(xz) : x ∈ X〉k has dimension 32. Since 2(z) ∈ GL(W ), it follows that
〈2(x) : x ∈ X〉k is a subspace of dimension 32 in End(W1)⊕End(W2). Since the
latter also has dimension 32, we are done. �

Proposition 5.11. In the case (p, H, dim W )= (5, 2A7, 4) of (ii) of Theorem 5.7,
(G, V ) is weakly adequate.

Proof. (a) Recall that G+ = L1 ∗ · · · ∗ Ln , and for each i there is some ki such that
the kernel Ki of G+ contains

∏
j 6=ki

L j . By relabeling the Wi , we may assume that
k1= 1. Now, L1 acts on each W j either trivially or as the group H j ∼= 2A7. It follows
that O3(Z(L1)) acts trivially on each W j and so by faithfulness O3(Z(L1)) = 1,
yielding L1 ∼= 2A7. On the other hand, L1/(K1 ∩ L1) = H1 ∼= 2A7, whence
K1 ∩ L1 = 1, K1 =

∏
j 6=1 L j . This is true for all i , so we have shown that

G+ = L1× L2× · · ·× Ln ∼= H n.

Certainly, G permutes the n components L i , and this action is transitive by Theorem
2.4(i). Setting J1 := NG(L1), one sees that G1 = IG(W1)= StabG(V1) is contained
in J1 (as it fixes K1 =

∏
j>1 L j ). Fix a decomposition G =

⋃t
i=1 gi J1 with

g1 = 1 and L i = Lgi
1 = gi L1g−1

i , and choose a subgroup Q1 < L1 such that
Q1/Z(L1)∼= PSL2(7). Since involutions in A7 lift to elements of order 4 in L1, we
see that Q1 ∼= SL2(7). Now we define

Q = Q1× Qg2
1 × · · ·× Qgn

1 < G+.

Note that NG+(Q) = Q and so N := NG(Q) is a p′-group. Also, L1 has exactly
two irreducible 5-Brauer characters ϕ1, ϕ2 of degree 4, restricting irreducibly and
distinctly to Q1.

(b) Consider the case where ki 6= k j whenever i 6= j , i.e., J1 = G1 and t = n. We
claim that Q satisfies the conditions of Lemma 5.2. Indeed, the condition ki 6= k j

implies that the Q-modules Wi and W j are irreducible and nonisomorphic for i 6= j .
Next, for any x ∈ J1, since x fixes W1 (up to isomorphism), x fixes the character ϕ
of the L1-module W1 and so x cannot fuse the two classes 7A and 7B of elements
of order 7 in L1, whence x can induce only an inner automorphism of L1. It follows
that Qx

1 = Qt
1 for some t ∈ L1. Now we consider any g ∈ G. Then, for each i we

can find j and xi ∈ J1 such that ggi = g j xi . By the previous observation, there is
some ti ∈ L1 such that Qxi

1 = Qti
1 . Hence, setting yi = g j ti g−1

j ∈ L j , we have that

Qggi
1 = Qg j xi

1 = g j xi Q1x−1
i g−1

j = g j ti Q1t−1
i g−1

j = yi g j Q1g−1
j y−1

i = (Q
g j
1 )

yi .
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It follows that Qg
= Q y with y =

∏
i yi ∈ G+, i.e., Q fulfills condition (i) of

Lemma 5.2. Now we can conclude by Lemma 5.2 that N is irreducible on V and
so we are done.

(c) From now on we assume that, say, k1 = k2. Then W1 and W2 are nonisomorphic
modules over G+/K1= L1. So we may assume that Wi affords the L1-character ϕi

for i = 1, 2. Note that any x ∈ J1 sends W1 to another irreducible G+-module with
the same kernel K1, and so ϕx

1 ∈ {ϕ1, ϕ2}. The irreducibility of G on V implies by
Clifford’s theorem that the induced action of J1 on {ϕ1, ϕ2} is transitive, with kernel
G1. We have shown that [J1 : G1] = 2 and t = 2n. We will label gi (W1) as W2i−1

and gi (W2) as W2i . We also have that W2 ∼= W h
1 for all h ∈ J1 \G1. Comparing

the kernels and the characters of Q on Wi , we see that the Q-modules Wi are all
irreducible and pairwise nonisomorphic. Let

E1 :=

t⊕
i=1

End(Vi )=

n⊕
i=1

Ai , Ai := End(V2i−1)⊕End(V2i ),

E21 :=

n⊕
i=1

Bi , Bi := Hom(V2i−1, V2i )⊕Hom(V2i , V2i−1),

E22 :=
⊕

1≤i 6= j≤2n
{i, j}6={2a−1,2a}

Hom(Vi , V j )

so that End(V )= E1⊕E21⊕E22. Note that the G+-composition factors of E21 are
all of dimensions 6 and 10, whereas the G+-composition factors of E1 are either
trivial or of dimension 15, as one can check using [Jansen et al. 1995]. Furthermore,
the G+-composition factors of E22 are all of dimension 16. In particular, no G+-
composition factor of Hom(Wi ,W j ) is trivial when i 6= j . Similarly, whenever
i 6= j , the only common G+-composition factor shared by Ai and A j is k, and Bi

and B j share no common G+-composition factor.

(d) Here we show that Ai ⊕Bi is a subquotient of M. To this end, note that J1

acts irreducibly on V1⊕ V2. There is no loss in replacing G by the image of J1 in
End(V1⊕ V2) and V by V1⊕ V2. In doing so, we also get that n = 1, G+ = L1,
[G : G1] = 2, K1 = 1, and G1 = C ∗ L1, where C := CG(L1) is a 5′-group. So for
i = 1, 2 we can write Vi =Ui ⊗Wi as G1-modules, where Ui is an irreducible kC-
module with corresponding representation 3i . Hence for the representation 8i of
G1 on Vi , we have8i =3i⊗2i , where2i is the representation of L1 on Wi . Finally,
for the representation8 of G on V = V1⊕V2, we have8(g)= diag(81(g),82(g))
whenever g ∈ G1.

Recall the element z ∈ 2S7 and the set X⊂ L1 constructed in Lemma 5.10. Now
we fix a 5′-element h∈G\G1 such that h induces the same action on L1/Z(L1)∼=A7
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as the action of z on A7. It follows that for all elements x ∈ X and for all u ∈ C ,
ux and uxh are 5′-elements, whence M contains the subspaces

C := 〈8(ux) : u ∈ C, x ∈ X〉k, C8(h) := {v8(h) : v ∈ C}.

We also have that 22 ∼=2
h
1 =2

z
1. Setting 2(x)= diag(21(x),22(x)) for x ∈ X,

we have by the construction of X that

〈2(x) : x ∈ X〉k = End(W1)⊕End(W2).

Thus, for X ∈End(W1), we can write the element diag(X, 0) of End(W1)⊕End(W2)

as diag(X, 0)=
∑

x∈X ax2(x) for some ax ∈ k; i.e.,∑
x∈X

ax21(x)= X,
∑
x∈X

ax22(x)= 0.

On the other hand, applying the Artin–Wedderburn theorem to the representation
3i of the 5′-group C on Ui , we have that

〈3i (u) : u ∈ C〉k = End(Ui ).

In particular, any Y ∈ End(U1) can be written as Y =
∑

u∈C bu31(u) for some
bu ∈ k. It follows that the element diag(Y ⊗ X, 0) of

End(U1)⊗End(W1)∼= End(U1⊗W1)= End(V1) ↪→ End(V )

can be written as

diag
( ∑

u∈C, x∈X

buax31(u)⊗21(x),
∑

u∈C, x∈X

buax32(u)⊗22(x)
)

=

∑
u∈C, x∈X

ax bu · diag(81(ux),82(ux))=
∑

u∈C, x∈X

ax bu8(ux),

and so it belongs to C. Thus C⊇ End(V1), and similarly C⊇ End(V2). Since G1

stabilizes each of V1 and V2, we then have that

C= End(V1)⊕End(V2)=A1.

But 8(h) interchanges V1 and V2. It follows that M also contains

C8(h)= Hom(V1, V2)⊕Hom(V2, V1)=B1,

as stated.

(e) Next we show that E22 is a subquotient of M. Choose Ri ∼= 2× (7 : 3) < L i , the
normalizer of some Sylow 7-subgroup of L i . Note that NL i (Ri )= Ri and

(ϕ j )R1 = α j +β, (5-7)
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where α j , β ∈ Irr(R1) are of degree 3 and 1, respectively, and α1 6= α2. Defining

R = R1× R2× · · ·× Rn < G+,

we see that R satisfies the conditions of Lemma 5.4. Hence the subspace A =
e
(⊕t

i=1 Ai
)

defined in Lemma 5.4 (with A1 affording the R1-character α1) is
irreducible over the p′-group NG(R). By the Artin–Wedderburn theorem applied
to NG(R) acting on V = A⊕ B, M contains

End(A)⊃ D :=
⊕

1≤i 6= j≤2n
{i, j}6={2a−1,2a}

Hom(eAi , eA j ).

As noted previously, each summand Hom(Vi , V j ) in E22 is acted on trivially by∏
s 6=ki ,k j

Ls , and affords the Lki × Lk j -character ϕ ⊗ ϕ′, where ϕ, ϕ′ ∈ {ϕ1, ϕ2}.
Working modulo E1⊕E21 and using this observation and (5-7), we then see that all
irreducible constituents of the R-character of the complement to D in E22 are of the
form γ1⊗ γ2⊗ · · · ⊗ γn , where γi ∈ Irr(Ri ) and all but at most one of them have
degree 1 (and the remaining, if any, is some α j of degree 3). The same is true for
the complement to M in E22 (again modulo E1⊕E21). On the other hand, (5-7) and
the aforementioned observation imply that the R-character of the G+-composition
factor Hom(Wi ,W j ) contains an irreducible R-character of degree 9 (namely, an
Rki × Rk j -character of the form α⊗α′, with α, α′ ∈ {α1, α2}). It follows that E22

is a subquotient of M.

(f) The results of (d) and (e), together with the remarks made at the end of (c),
imply that all G+-composition factors of End(V )/M (if any) are trivial. Hence by
Lemma 5.4 we conclude that M= End(V ). �

6. Weak adequacy for special linear groups

The exception (i) in Theorem 5.7 requires much more effort to resolve. We begin
by setting up some notation. Let n ≥ 3 and let q be a prime power such that
p = (qn

− 1)/(q − 1). In particular, n is a prime, q = q f
0 for some prime q0 and

some odd f , gcd(n, q−1)= 1 and so PSLn(q)=SLn(q)=: S and Gn :=GLn(q)=
S× Z(Gn). Consider the natural module

N= Fn
q = 〈e1, . . . , en〉Fq

for Gn , and let
Q = RL = StabS(〈e2, . . . , en〉Fq ),

where R is elementary abelian of order qn−1 and L ∼= GLn−1(q). Note that Q is
a p′-group. It is well known (see [Guralnick and Tiep 1999, Theorem 1.1]) that
Gn/Z(Gn) has a unique irreducible p-Brauer character δ of degree p− 2, where
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δ(x) = ρ(x)− 2 for all p′-elements x ∈ Gn , if we denote by ρ the permutation
character of Gn acting on the set � of 1-spaces of N. Let D denote a kGn-module
affording δ.

Lemma 6.1. In the above notation, δQ = α + β, where α ∈ Irr(Q) has degree
qn−1
− 1, β ∈ Irr(Q) has degree (qn−1

− q)/(q − 1), and

αR =
∑

1R 6=λ∈Irr(R)

λ, βR = β(1)1R.

Proof. Note that all nontrivial elements in R are L-conjugate to a fixed transvection
t ∈ R, and δ(t)= ρ(t)− 2= (qn−1

− q)/(q − 1)− 1. It follows that

δR =
∑

1R 6=λ∈Irr(R)

λ+
qn−1
− q

q − 1
· 1R.

Next, Q acts doubly transitively on the 1-spaces of 〈e2, . . . , en〉Fq , with kernel con-
taining R and with character β+1Q , where β ∈ Irr(Q) of degree (qn−1

−q)/(q−1).
Hence β is an irreducible constituent of δ, and the statement follows. �

In the subsequent treatment of SLn(q), it is convenient to adopt the labeling of
irreducible CGn-modules as given in [James 1986], which uses Harish-Chandra
induction, denoted ◦. Each such module is labeled as S(s1, λ1) ◦ · · · ◦ S(sm, λm),
where si ∈ F×q has degree di (over Fq), λi is a partition of ki , and

∑m
i=1 ki di = n

[James 1986; Kleshchev and Tiep 2009]. Similarly, irreducible kGn-modules are
labeled as D(s1, λ1) ◦ · · · ◦ D(sm, λm), with some extra conditions including si

being a p′-element. For λ ` n, let χλ = S(1, λ) denote the unipotent character of
GLn(q) labeled by λ. We set the convention that χ (n−2,2)

= 0 for n = 3. Also,
note that 1Gn = χ

(n) and ρ = 1Gn +χ
(n−1,1) (see, e.g., [Guralnick and Tiep 1999,

Lemma 5.1]). We next establish the following result, which holds for arbitrary
GLn(q) with n ≥ 3 and which is interesting in its own right:

Lemma 6.2. In the above notation, we have the following decomposition of ρ2 into
irreducible constituents over Gn = GLn(q):

ρ2
= 2χ (n)+ 4χ (n−1,1)

+χ (n−2,2)
+ 2χ (n−2,12)

+

∑
a∈F×q

a2
=16=a

S(a, (12)) ◦ S(1, (n− 2))

+

∑
a∈F×q

aq−1
=1 6=a2

S(a, (1)) ◦ S(a−1, (1)) ◦ S(1, (n− 2))

+

∑
a∈F×q

bq+1
=16=b2

S(b, (1)) ◦ S(1, (n− 2)).



116 Robert Guralnick, Florian Herzig and Pham Huu Tiep

Proof. Recall that ρ is the permutation character of Gn acting on � and also on
the diagonal {(x, x) : x ∈ �} of � × �, whereas ρ2 is the permutation char-
acter of Gn acting on � × �. Letting Hn := StabGn (〈e1〉Fq , 〈e2〉Fq ), we then
see that

ρ2
= ρ+ IndGn

Hn
(1Hn ).

Notice that IndGn
Hn
(1Hn ) is just the Harish-Chandra induction of the character

IndG2
H2
(1H2)⊗ 1Gn−2 of the Levi subgroup G2×Gn−2 of the parabolic subgroup

P := StabGn (〈e1, e2〉Fq )

of Gn , i.e.,

IndGn
Hn
(1Hn )= IndG2

H2
(1H2) ◦ 1Gn−2 . (6-1)

Consider the case of odd q. Then, according to the proof of [Navarro and Tiep
2010, Proposition 5.5],

IndG2
H2
(1H2)= S(1, (2))+ 2S(1, (12))+ S(−1, (12))

+a
∑
a∈F×q

aq−1
=16=a2

S(a, (1)) ◦ S(a−1, (1))+
∑
a∈F×q

bq+1
=16=b2

S(b, (1)). (6-2)

Next, by [Guralnick and Tiep 1999, Lemma 5.1] we have

S(1, (2))◦S(1, (n−2))= IndGn
P (1P)= χ

(n)
+χ (n−1,1)

+χ (n−2,2), (6-3)

S(1, (1))◦S(1, (1))◦S(1, (n−2))= χ (n)+2χ (n−1,1)
+χ (n−2,2)

+χ (n−2,12). (6-4)

Since S(1, (1))◦S(1, (1))= S(1, (2))+S(1, (12)), the statement follows from (6-1)–
(6-4) and properties of the Harish-Chandra induction in Gn (see [James 1986]).

The case q is even can be proved similarly, using

IndG2
H2
(1H2)= S(1, (2))+ 2S(1, (12))+

∑
a∈F×q

aq−1
=16=a2

S(a, (1)) ◦ S(a−1, (1))

+

∑
a∈F×q

bq+1
=16=b2

S(b, (1))

instead of (6-2). �

Lemma 6.3. In the above notation, if p = (qn
− 1)/(q − 1), we have the following

decomposition of δ2 into irreducible constituents over S = SLn(q):
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δ2
= 2D(1, (n))+ 2D(1, (n− 1, 1))+ D(1, (n− 2, 2))+ 2D(1, (n− 2, 12))

+

∑
a∈F×q

a2
=16=a

D(a, (12)) ◦ D(1, (n− 2))

+

∑
a∈F×q

aq−1
=16=a2

D(a, (1)) ◦ D(a−1, (1)) ◦ D(1, (n− 2))

+

∑
b∈F×q

bq+1
=16=b2

D(b, (1)) ◦ D(1, (n− 2)).

In particular, if there is a composition factor U of the kS-module D ⊗ D with
U R
= 0, then n = 3 and U affords the Brauer character D(1, (13)). Furthermore,

the only composition factors of D⊗D that are not of p-defect zero are the ones with
Brauer character 1S = D(1, (n)), δ = D(1, (n− 1, 1)), and D(1, (n− 2, 12)).

Proof. Let us denote by χ◦ the restriction of any character χ of Gn to the set of
p′-elements of Gn . Then

δ2
= (ρ◦− 2 · 1Gn )

2
= (ρ◦)2− 4(χ (n−1,1))◦,

and we can apply Lemma 6.2. Since p = (qn
− 1)/(q − 1) (or more generally, if p

is a primitive prime divisor of qn
− 1), all complex characters in the decomposition

for ρ2 in Lemma 6.2 are of p-defect 0, except for χ (n), χ (n−1,1), and χ (n−2,12).
Furthermore, (χ (n−2,12))◦ = D(1, (n − 1, 1))+ D(1, (n − 2, 12)) [Guralnick and
Tiep 1999, Proposition 3.1 and §4]; in particular,

D(1, (n− 2, 12))(1)=
(qn
− q)(qn

− 2q2
+ 1)

(q − 1)(q2− 1)
+ 1.

Since Gn = S × Z(Gn), we arrive at the desired decomposition of δ2. Also,
the degree of any irreducible constituent ψ of δ2 listed above is not divisible by
|R| − 1 = qn−1

− 1, unless n = 3 and ψ = D(1, (13)), whence ψR must contain
1R since L acts transitively on Irr(R) \ {1R}. In the exceptional case, ψR does not
contain 1R , as one can see by direct computation (or by using [Kleshchev and Tiep
2010, Theorem 5.4]). �

Corollary 6.4. Assume that p = (qn
− 1)/(q − 1) and n ≥ 5. Then S = SLn(q) is

weakly adequate on D.

Proof. By Lemma 6.1 and the Artin–Wedderburn theorem applied to Q, M contains
the subspace A := (A⊗ A)⊕ (B ⊗ B) of D⊗D = End(D), with A affording α
and B affording β. Thus, the complement to A in End(V ) affords the Q-character
1 := 2αβ. It follows by Lemma 6.1 that 1R does not contain 1R , whence R does
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not have any nonzero fixed point while acting on this complement. The same must
be true for the quotient End(V )/M, which is a semisimple Q-module. Since n > 3,
by Lemma 6.3 this can happen only when M= End(V ). �

Next we will extend the result of Corollary 6.4 to the case n = 3.

Proposition 6.5. Assume that p = (q3
− 1)/(q − 1). Then S = SL3(q) is weakly

adequate on D.

Proof. Note that δ is invariant under the graph automorphism τ of S, which
interchanges the two conjugacy classes of the maximal parabolic subgroup

Q = RL = StabS(U)= StabS(〈e1, e2〉Fq )

and its opposite
Q]
= R]L] = StabS(〈e1〉Fq ).

Hence Lemma 6.1 also applies to Q]. To simplify the notation, we will drop the
subscript Fq in various spans 〈 · 〉Fq in this proof.

First we will construct the Q-submodules A,B affording the character α and β
in D. Clearly, R has q + 1 fixed points in PU and one orbit of length q2,

O := {〈e3+ y〉 : y ∈U},

on �= PN. Denoting I :=
〈∑

ω∈PN ω
〉
k , we can now decompose D=A⊕B as

Q-modules, where

A := [D, R] =
({∑

y∈U

ay〈e3+ y〉 : ay ∈ k,
∑
y∈U

ay = 0
}
⊕I

) /
I,

B := CD(R)=
({∑

ω∈PU

bωω : bω ∈ k,
∑
ω∈PU

bω = 0
}
⊕I

) /
I.

Next, R] has 1 fixed point 〈e1〉 and q + 1 orbits of length q ,

O∞ := PU \ {〈e1〉}, Oc := {〈e3+ ce2+ de1〉 : d ∈ Fq}, c ∈ Fq ,

on PN. Then we can again decompose D = A]
⊕ B] as Q]-modules, where

A]
= [D, R]] and B]

= CD(R]). Note that O= PN \PU=
⋃

c∈Fq
Oc. Hence, the

q(q − 1) vectors

vc,d = 〈e3+ ce2+ de1〉− 〈e3+ ce2〉, c ∈ Fq , d ∈ F×q

belong to A∩A], and similarly the q − 1 vectors

ua = 〈e2+ ae1〉− 〈e2〉, a ∈ F×q
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belong to B∩A], and they are linearly independent. Thus

ua ⊗ vc,d ∈ (A
]
⊗A])∩ (B⊗A) and vc,d ⊗ ua ∈ (A

]
⊗A])∩ (A⊗B),

and so both (A]
⊗A])∩ (B⊗A) and (A]

⊗A])∩ (A⊗B) have dimension at least
q(q − 1)2. As a consequence,

dim((A]
⊗A])∩ (A⊗B⊕B⊗A))≥ 2q(q − 1)2. (6-5)

Since D is self-dual, it supports a nondegenerate S-invariant symmetric bilinear
form ( · , · ), with respect to which A and B are orthogonal, as are A] and B]. As
usual, we can now identify D⊗D with End(D) by sending u⊗ v ∈ D⊗D to

fu,v : x 7→ (x, u)v

for all x ∈D. Furthermore, in the proof of Corollary 6.4, we have already mentioned
that M contains the subspaces End(A)⊕End(B) (arguing with Q) and End(A])

(arguing with Q]). It now follows from (6-5) that

dim(End(A])∩ (Hom(A,B)⊕Hom(B,A)))≥ 2q(q − 1)2.

Hence for q ≥ 5 we have that

dim End(D)− dim M≤ (q2
+ q − 1)2− (q2

− 1)2− q2
− 2q(q − 1)2

= 4q(q − 1) < (q − 1)(q2
− 1)= dim D(1, (13)).

On the other hand, Lemma 6.3 and the proof of Corollary 6.4 show that the only
S-composition factor of End(D)/M (if any) is D(1, (13)). Hence, we conclude that
M= End(V ) if q ≥ 5. Since p = (q3

− 1)/(q− 1), in the remaining cases we have
q = 2, 3. The case q = 2 is already handled before as S ∼= PSL2(7), and the case
q = 3 has been checked with a computer by F. Lübeck. �

Now we can prove the weak adequacy of G on V in the case the G+-module
is homogeneous.

Proposition 6.6. Assume that t = 1, i.e., the G+-module V is homogeneous in the
case (p, H, dim W ) = ((qn

− 1)/(q − 1),SLn(q), p − 2) of Theorem 5.7. Then
(G, V ) is weakly adequate.

Proof. Since V |G+ = eW , by Theorem 2.4 we have that G+ = S = SLn(q). Recall
that gcd(n, q − 1)= 1 and q = q f

0 , where q0 is a prime and f is odd; in particular,
Out S ∼= C2 f is cyclic. It follows that L := C × SCG = 〈L , τ 〉 for some τ ∈ G,
and C := CG(S) is a p′-group. Let 9 denote the corresponding representation
of S on W and 8 denote the corresponding representation of G on V . Then, by
Corollary 6.4 and Proposition 6.5, we have that

〈9(y) : y ∈ S, y semisimple〉k = End(W ).
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First we consider the case where VL is irreducible. Then V ∼= U ⊗W , where
U is an irreducible kC-module and C acts trivially on W . Let 2 denote the
corresponding representation of C on U . By the Artin–Wedderburn theorem,
〈2(x) : x ∈ C〉k = End(U ). Since 8(xy) = 2(x)⊗9(y) for x ∈ C , y ∈ S, and
since C is a p′-group, we conclude that M contains X ⊗Y for all X ∈ End(U ) and
Y ∈ End(W ), i.e., M= End(V ).

Assume now that VL is reducible. Note that VL is semisimple and multiplicity-
free, as G/L is cyclic. Since W is τ -invariant, it follows that

VL = V1⊕ V2⊕ · · ·⊕ Vs ∼= (U1⊕U2⊕ · · ·⊕Us)⊗W,

where Vi = Ui ⊗ W for some pairwise nonisomorphic irreducible kC-modules
U1, . . . ,Us , 〈τ 〉 acts transitively on the set of isomorphism classes of U1, . . . ,Us ,
C acts trivially on W as before, and8(τ) permutes the summands V1, . . . , Vs transi-
tively. Let 2i denote the corresponding representation of C on Ui , and let 2 denote
the corresponding representation of C on U :=U1⊕· · ·⊕Us . Since Ui �U j for i 6= j ,
by the Artin–Wedderburn theorem, 〈2(x) : x ∈C〉k = End(U1)⊕· · ·⊕End(Us). It
follows as above that M contains X ⊗ Y for all Y ∈ End(W ) and all X ∈ End(Ui )

(viewing X as an element of End(U ) by letting it act as zero on U j for all j 6= i).
In other words, M contains the subspace End(V1)⊕ · · ·⊕End(Vs) of End(V ).

It remains to show that M contains Hom(Vi , V j ) for any i 6= j . Since 8(τ)
permutes the summands V1, . . . , Vs transitively, we can find σ ∈ 〈τ 〉 \C S such that
8(σ) sends Vi to V j and such that σ induces a nontrivial outer automorphism of S.
Observe that the condition p = (qn

− 1)/(q − 1) implies that all elements in the
coset Sσ are p′-elements. (Indeed, assume that xσ has order divisible by p for
some x ∈ S. Then some p′-power g of xσ is a p-element in S. It follows that σ
preserves the conjugacy class gS , which is impossible by inspecting the eigenvalues
of g.) So all elements in Lσ are p′-elements. Hence M also contains the subspace

A := 〈8(hσ) : h ∈ L〉k = 〈8(h) : h ∈ L〉k ·8(σ).

Again, by the Artin–Wedderburn theorem,

〈8(h) : h ∈ L〉k = End(V1)⊕ · · ·⊕End(Vs).

Since 8(σ) sends Vi (isomorphically) to V j , we conclude that

A⊃ End(V j , V j )8(σ)= Hom(Vi , V j ),

and so M= End(V ). �

Next we consider the subgroup

Q′ = R′L ′ = StabS(〈en〉Fq , 〈e2, . . . , en〉Fq ),
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where R′ is a q0-group of special type of order q2n−3 and L ′∼=GLn−2(q)×GL1(q).
Note that the graph automorphism x 7→ t x−1 of S sends Q′ to (Q′)g, where g ∈ S
sends e1 to en , en to −e1, and fixes all other ei . Since the S-conjugacy class of the
p′-group Q′ is fixed by all field automorphisms, it is Aut(S)-invariant. Also, Q′ is
just the normalizer in S of the root subgroup Z ′ := Z(R′)= [R′, R′] (of order q),
whence NS(Q′)= Q′.

Lemma 6.7. In the above notation, δQ′ =α
′
+β ′1+β

′

2+γ
′
+1Q′ , where α′ ∈ Irr(Q′)

has degree qn−2(q − 1), β ′1, β
′

2 ∈ Irr(Q′) have degree qn−2
− 1, γ ′ ∈ Irr(Q′) has

degree (qn−2
− q)/(q − 1) if n > 3 and is zero if n = 3, and

α′Z ′ = qn−2
∑

1Z ′ 6=λ∈Irr(Z ′)

λ, Z ′ ≤ Ker(β ′1)∩Ker(β ′2)∩Ker(γ ′).

Proof. Note that all nontrivial elements in Z ′ are L ′-conjugate to a fixed transvection
t ∈ Z ′, and δ(t)= ρ(t)− 2= (qn−1

− q)/(q − 1)− 1. It follows that

δZ ′ = qn−2
∑

1R′ 6=λ∈Irr(Z ′)

λ+

(
2(qn−2

− 1)+
qn−2
− q

q − 1
+ 1

)
· 1Z ′ .

Since R′ is of special type, it also follows that [D, Z ′] gives rise to an irreducible
Q′-module of dimension qn−2(q − 1), with character α′. Now we can write
R′/Z ′ = (R′1/Z ′) × (R′2/Z ′) as a direct product of two L ′-invariant subgroups.
Next, Q′ acts on the subset �′ of � consisting of all 1-spaces of 〈e2, . . . , en〉Fq

(with kernel containing R′1), with two orbits. Arguing as in the proof of Lemma 6.1,
we see that this permutation action affords the Q′-character β ′2+γ

′
+2 ·1Q′ , where

the irreducible characters β ′2 and γ ′ (if n > 3; γ ′ = 0 if n = 3) have the indicated
degrees. In general, Q′ has three orbits on �, whence 1Q′ enters δQ′ . Also, note
that t has an S-conjugate t ′ ∈ R′1 \ Z ′ and α′(t ′)= 0. So if we set

β ′1(1) := δQ′ − (α
′
+β ′2+ γ

′
+ 1Q′),

then we see that β ′1 = β
′

1(t) = qn−2
− 1 and β ′1(t

′) = −1. Since L ′ acts transi-
tively on the nontrivial elements of R′1/Z ′, we conclude by Clifford’s theorem that
β ′1 ∈ Irr(Q′). �

As mentioned above, S = SLn(q) has a unique irreducible kS-module D of
dimension p−2. It follows by Theorem 2.4 that in the situation (i) of Theorem 5.7,

G+ = S1× · · ·× St ,

with Si ∼= S, and G+ acts on Wi with kernel Ki :=
∏

j 6=i S j . Now, as G+-modules,
we have that

E := End(V )∼=
⊕

1≤i, j≤t

V ∗i ⊗ V j ∼= e2
⊕

1≤i, j≤t

W ∗i ⊗W j ,
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where V ∗i ⊗ Vi ∼= End(Vi ) is acted on trivially by Ki , whereas W ∗i ⊗ W j is an
irreducible kG+-module with kernel Ki ∩ K j for i 6= j . It follows that the two
G+-submodules

E1 :=
⊕

1≤i≤t

V ∗i ⊗ Vi , E2 :=
⊕

1≤i 6= j≤t

V ∗i ⊗ V j

of End(V ) share no common composition factor.
Now we can prove the main result of this section:

Theorem 6.8. Suppose we are in the case (i) of Theorem 5.7, i.e., (p, H, dim W )=

((qn
− 1)/(q − 1),SLn(q), p− 2). Then (G, V ) is weakly adequate.

Proof. (a) Consider the subgroup

Q′ t = Q′× · · ·× Q′ = Q′1× · · ·× Q′t < S1× · · ·× St

of G+. By Lemma 6.7 and the discussion preceding it, Q′ t satisfies the hypotheses
of Lemma 5.4, with Ai affording the Q′-character α′, and NG(Q′t) is a p′-group.
Note that Ai � A j for i 6= j since Ki∩Q′t 6= K j∩Q′t . Also, the summands A and B
of the Q′t -module V constructed in Lemma 6.7 have no common composition
factor and A is irreducible. Hence,

M⊇ End(A)⊃ e2
⊕

1≤i 6= j≤t

A∗i ⊗ A j =:A

by the Artin–Wedderburn theorem. Note that A ⊂ E2. Furthermore, if 1 is the
Q′t -character of the complement of A in E2, then, by Lemma 6.7, each irreducible
constituent of 1, when restricted to

Z ′t = Z ′× · · ·× Z ′ = Z ′1× · · ·× Z ′t ,

is trivial on (at least) all but one Z ′i . The same is true for the G+-module E/(E1+M).
On the other hand, as mentioned above, all G+-composition factors of E/E1 ∼= E2

are of the form W ∗i ⊗W j with i 6= j . The Brauer character of any such W ∗i ⊗W j ,
being restricted to Si × S j , is δ ⊗ δ, and so it contains the Q′i × Q′j -irreducible
constituent α′⊗α′ which is nontrivial at both Z ′i and Z ′j by Lemma 6.7. It follows
that E1+M = E, i.e., M surjects onto E2. Applying Lemma 5.5 to the subgroup
G+ ≤ G, we conclude that M⊇ E2.

(b) We already mentioned that the G+-modules E1 =
⊕t

i=1 E1i and E2 share no
common composition factor; in particular, k is not a composition factor of E2.
Furthermore, since

∏
j 6=i S j acts trivially on Vi , we see that for distinct i 6= j the

only common G+-composition factor that E1i and E1 j can share is the principal
character 1G+ . Recall that E1i ∼=D⊗D as Si -modules. The irreducibility of G on
V implies that Gi := StabG(Vi ) acts irreducibly on Vi , and certainly G+CGi acts
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homogeneously on Vi . By Proposition 6.6 applied to Gi , E1i is a subquotient of M.
We have therefore shown that all nontrivial G+-composition factors of E= End(V )
also occur in M with the same multiplicity, and so all the composition factors of
the G+-module E/M (if any) are trivial. Applying Lemma 5.4 to the subgroup
Q′t < G+, we conclude that M= E. �

Finally we can prove:

Theorem 6.9. Suppose (G, V ) is as in the case (i) of Theorem 2.4. Then (G, V ) is
weakly adequate.

Proof. In view of Theorems 5.7, 6.8, and Propositions 5.8, 5.9, 5.11, we need to
handle the case (p, H, dim W )= (7, 6·PSL3(4), 6). In this case, L i acts on each W j

either trivially or as H j ∼= 6 ·PSL3(4). It follows by the faithfulness of G on V that
Z(L i ) has exponent 6, and so L i is (isomorphic to) either X := (2×2) ·3 ·PSL3(4)
or a quotient 6 ·PSL3(4) of X . We can also find ki such that the kernel Ki of G+ =
L1 ∗ · · · ∗ Ln acting on Wi contains

∏
j 6=ki

L j . Without loss we may assume k1 = 1.

(a) We claim that L1 contains a subgroup Q1 = Z1×A5, whose conjugacy class is
Aut(L1)-invariant (with Z1 := Z(L1)). For this purpose, without loss of generality
we may assume that L1 ∼= X . We consider a Levi subgroup C3×SL2(4)∼=C3×A5

of SL3(4) which acts semisimply on the natural module F3
4. Then its conjugacy

class in SL3(4) is fixed by all the outer automorphisms of SL3(4). Consider a
faithful representation 3 : X → GL18(C) which is the sum of three irreducible
representations, on which X acts with different kernels ∼= C2, and let Y be the full
inverse image of A5 in X . Note that involutions in PSL3(4) lift to involutions in
6 · PSL3(4), whereas involutions in A5 lift to elements of order 4 in 2 ·A5 [Conway
et al. 1985]. It follows that 3(x) has order 2 for the inverse image x ∈ X of any
involution in A5, and so |x | = 2. Hence Y ∼= (2× 2)×A5, and the claim follows.

Defining Qi < L i similarly, we see that

Q = Q1 ∗ Q2 ∗ · · · ∗ Qn

satisfies condition (i) of Lemma 5.3. Since Q1 is self-normalizing in L1, we see
that NG+(Q)= Q and that N := NG(Q) is a p′-group.

We will now inflate Brauer characters of L1 acting on W1 to X and then replace L1

by X . According to [Jansen et al. 1995], L1 has exactly six irreducible 7-Brauer char-
acters ϕs of degree 6, 1≤ s≤ 6, lying above the six distinct characters λs of Z1 (with
kernels the three distinct central subgroups of order 2), and (ϕs)Q1 = λs ⊗ (α+β),
where α 6= β ∈ Irr(A5), and either

{α, β} = {1a, 5a} (6-6)

or
{α, β} = {3a, 3b}, (6-7)
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depending on whether ϕs takes value 2 or −2 on involutions in A5. (Here we
adopt the notation that Irr(A5)= {1a, 3a, 3b, 4a, 5a}.) In either case, we have that
(W1)Q = A1⊕ B1, where the Q-modules A1 and B1 are irreducible and nonisomor-
phic. As shown in the proof of Lemma 5.2, N G+=G and N1G+=G1 :=StabG(V1)

for N1 := NG1(Q). So we fix a decomposition G =
⋃t

i=1 gi G1 with gi ∈ N , g1= 1,
and define Ai := gi (A1) ⊂ Wi and Bi := gi (B1) ⊂ Wi . In particular, either (6-6)
holds for all (Wi )Q , or (6-7) holds for all (Wi )Q .

We claim that Q also satisfies condition (ii) of Lemma 5.3. Indeed, assume that
Wi � W j . Now if ki 6= k j , then Lki > Qki acts trivially on W j , but Z(Qki )= Zki

acts nontrivially by scalars on Wi . In the case ki = k j , we may assume that
Ki ≥

∏
s>1 Ls , and so Wi and W j afford the L1-characters ϕ, ϕ′ ∈ {ϕ1, . . . , ϕ6},

lying above different characters λ, λ′ of Z1. Now Z(Q1)= Z1 acts on Wi and W j

by scalars but via different characters λ, λ′, so we are done.

(b) Suppose we are in the case of (6-7) and, moreover, G1=StabG(V1) interchanges
the two classes 5A= x L1 and 5B= (x2)L1 of elements of order 5 of L1=61·PSL3(4).
Certainly, we can choose x ∈A5<Q1. Since N1G+=G1, we can find some element
g ∈ N1 that interchanges the classes 5A and 5B. In this case g also interchanges
the characters α = 3a and β = 3b of A5, but fixes W1 and the central character
λ ∈ {λ1, . . . , λ6} of Z1. It follows that {A1, . . . , Bt } forms a single N -orbit, and so
by Lemma 5.3 the p′-group N acts irreducibly on V , and we are done.

(c) From now on we may assume that we are not in the case considered in (b). We
claim that {A1, . . . , At } and {B1, . . . , Bt } are two distinct N -orbits. Assume the
contrary. Then by the construction of Ai and B j there must be some h ∈ N such
that B1 ∼= Ah

1 . This is clearly impossible in the case of (6-6). In the case of (6-7),
h ∈G1 and furthermore h fuses the two classes of elements of order 5 in A5. Hence
h ∈ G1 fuses the classes 5A and 5B of L1, contrary to our assumption.

Now we can apply Lemma 5.3 to see that VN = A⊕ B and so

M⊇ End(A)⊕End(B) (6-8)

by the Artin–Wedderburn theorem. We also decompose End(V ) = E1 ⊕ E2 as
G+-modules, and note that the Q-modules

E1 :=

t⊕
i=1

End(Vi )∼= e2
t⊕

i=1

W ∗i ⊗Wi ,

E2 :=
⊕

1≤i 6= j≤t

Hom(Vi , V j )∼= e2
⊕

1≤i 6= j≤t

W ∗i ⊗W j

share no common composition factor. Indeed, the p′-group Z(G+)= Z1∗· · ·∗Zn ≤

Z(Q) acts trivially on E1 and nontrivially by scalars on each W ∗i ⊗W j when i 6= j .
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Moreover, if ki 6= k j , say Ki ≥
∏

s 6=1 Ls and K j ≥
∏

s 6=2 Ls , then W ∗i ⊗W j

and W ∗j ⊗Wi are irreducible over L1× L2 (and are acted on trivially by
∏

s>2 Ls),
with nontrivial central characters ν−1

1 ⊗ ν2 and ν1 ⊗ ν
−1
2 over Z1 ∗ Z2, where

ν1, ν2 ∈ {λ1, . . . , λ6} have order 6. If Wi � W j but ki = k j , say ki = k j = 1, then
Wi and W j afford the L1-characters ϕ 6= ϕ′ lying above different characters λ 6= λ′

of Z1. We distinguish different scenarios for λ and λ′:

(c1) λ and λ′ coincide at O2(Z1) (then they must be different at O3(Z1), and in fact
λ′ = λ−1). Here, W ∗i ⊗W j and W ∗j ⊗Wi are reducible over L1 (and are acted on
trivially by

∏
s>1 Ls), with distinct nontrivial central characters λ−2 and λ2 over Z1.

Furthermore, the L1-character of W ∗i ⊗ W j is γ3 + δ3, where γ3 ∈ IBr(L1) has
degree 15, δ3 ∈ IBr(L1) has degree 21, and

(γ3)A5 = 3a+ 3b+ 4a+ 5a, (δ3)A5 = 2 · 1a+ 4a+ 3 · 5a. (6-9)

(c2) λ and λ′ coincide at O3(Z1) (then they must be different at O2(Z1)). Here,
W ∗i ⊗W j and W ∗j ⊗Wi again are reducible over L1 (and are acted on trivially
by
∏

s>1 Ls), with the same nontrivial central character λ−1λ′ over Z1. Further-
more, the L1-character of W ∗i ⊗W j is γ2+ δ2, where γ2 ∈ IBr(L1) has degree 10,
δ2 ∈ IBr(L1) has degree 26, and

(γ2)A5 = 1a+ 4a+ 5a, (δ2)A5 = 1a+ 3a+ 3b+ 4a+ 3 · 5a. (6-10)

Here we have used the fact that the character of W ∗i ⊗W j takes value (±2)2 = 4
at involutions in A5.

(c3) λ and λ′ differ at both O2(Z1) and O3(Z1). Here, W ∗i ⊗W j and W ∗j ⊗Wi are
irreducible over L1 (and are acted on trivially by

∏
s>1 Ls), with distinct nontrivial

central characters λ−1λ′ and λ(λ′)−1 over Z1. Furthermore, the L1-character of
W ∗i ⊗W j is γ6, where γ6 ∈ IBr(L1) has degree 36 and

(γ6)A5 = 2 · 1a+ 3a+ 3b+ 2 · 4a+ 4 · 5a. (6-11)

(d) According to (6-8), M contains the subspace A := End(C1) ⊕ End(D1) of
End(V1), which affords the character e2(α2

+ β2) of A5 < Q1 (and is acted on
trivially by Z1). Note that the L1-character of End(W1) is ϕiϕi = 1L1 +ψ , where
ψ ∈ IBr(L1) of degree 35 and

ψA5 = 1a+ 3a+ 3b+ 2 · 4a+ 4 · 5a.

On the other hand, the A5-character of the complement to A in End(V1) is

e2(α+β)2− e2(α2
+β2)= 2e2αβ,
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which is 2e2
· 5a in the case of (6-6) and 2e2(4a + 5a) in the case of (6-7); in

particular, it does not contain 1a. It follows by the observation right after (6-8) and
Lemma 5.5 that M⊇ End(V1) and so M⊇ E1.

(e) By (6-8), M contains the subspace Bi j := Hom(Ci ,C j )⊕ Hom(Di , D j ) of
Ei j := Hom(Vi , V j ) whenever i 6= j (recall that (Ci )Q ∼= eAi and (Di )Q ∼= eBi ).
We distinguish two cases according to whether ki and k j are equal or not.

First suppose that ki 6= k j , say ki = 1 and k j = 2. Then Ei j affords the L1× L2-
character e2θ1⊗ θ2 (where θi ∈ IBr(L i ) has degree 6) and is acted on trivially by∏

s>2 Ls . Now the Q1× Q2-character of the complement to Bi j in Hom(Vi , V j )

when restricted to the subgroup A5×A5 is

e2(α1+β1)⊗ (α2+β2)− e2(α1⊗α2+β1⊗β2)= e2(α1⊗β2+β1⊗α2)

(where α1, β1 play the role of α and β for the first factor A5 and similarly for α2, β2).
Also, the restriction of θ1⊗θ2 to A5×A5 always contains an irreducible constituent
distinct from α1⊗β2 and β1⊗α2, namely β1⊗β2.

Assume now that ki = k j = 1. Then the A5-character of the complement to Bi j

in Ei j is
e2(α+β)2− e2(α2

+β2)= 2e2αβ,

which is 2e2
· 5a in the case of (6-6) and 2e2(4a+ 5a) in the case of (6-7). On the

other hand, according to (6-9)–(6-11), the restriction to A5 of each of the irreducible
constituents γ and δ of W ∗i ⊗W j always contains either 1a or 3a.

Now assume that M 6= End(V ). Working modulo E1⊂M, we see that M⊇B :=⊕
i 6= j Bi j has a nonzero complement in E2 =

⊕
i 6= j Ei j . But the above analysis

shows that any G+-composition factor of E2 contains a Q-irreducible constituent
which is not a Q-constituent of the complement to B in E2, a contradiction. �

Proof of Theorem 1.2. (a) First we consider the case where k is algebraically
closed. Assume that G+ is p-solvable. Then G is also p-solvable. Furthermore,
dim V/ dim W divides |G/G+| by [Navarro 1998, Theorem 8.30], and so p - dim V .
So we are done by Lemma 5.1. So we may now assume that G+ is not p-solvable,
p > dim W > 1, and apply Theorem 2.4 to G. Then the statement follows from
Theorem 4.5 in the case that G+ is a central product of quasisimple groups of
Lie type in characteristic p (if in addition p> 3), and from the results of Sections 5
and 6 in the remaining cases.

Suppose that p = 3 and G+ = L1 ∗ · · · ∗ Ln is a central product of quasisimple
groups of Lie type in characteristic p (with Z(L i ) a p′-group for each i ; see
Theorem 2.4(iii)). Write VG+ = e

⊕t
i=1 Wi as usual. It is well known that the only

quasisimple groups of Lie type in characteristic p that have a faithful representation
of degree 2 over k are SL2(pa). Since dim W = 2, we must have that L j ∼= SL2(q)
for a power q > 3 of 3 for all j (as the G+-modules Wi are G-conjugate); moreover,
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for each i , there is a unique ki such that L j acts nontrivially on Wi precisely
when j = ki . Note that L i contains a unique conjugacy class of cyclic subgroups
Ti of order Cq−1. It is straightforward to check that the restrictions of all Brauer
characters ϕ ∈ IBrp(L i ) of degree 2 to Qi :=NL i (Ti ) are all irreducible and pairwise
distinct. Letting Q := Q1 ∗ · · · ∗ Qn and arguing as in case (b1) of the proof of
Theorem 5.7, we see that Q satisfies all the hypotheses of Lemma 5.2, whence
we are done.

(b) Now we consider the general case. We will view G as a subgroup of GL(V ) and
let M := 〈g : g ∈ G semisimple〉k as usual. Since the kG-module V is absolutely
irreducible, the kG-module V := V ⊗k k is irreducible, and the condition d < p
implies that the dimension of any irreducible G+-submodule in V is also less than p.
By the previous case, M⊗k k = End(V ). It follows that dimk M = (dim V )2 and
so M= End(V ).

�

7. Extensions and self-extensions, I: Generalities

First we record a convenient criterion about self-extensions in blocks of cyclic defect:

Lemma 7.1. Suppose that G is a finite group and that V is an irreducible FpG-
representation that belongs to a block of cyclic defect. Then Ext1G(V, V ) 6= 0 if and
only if V admits at least two nonisomorphic lifts to characteristic 0. In this case,
dim Ext1G(V, V )= 1.

Proof. Let B denote the block of V . If B has defect 0, V is projective and lifts
uniquely to characteristic 0. Otherwise, B is a Brauer tree algebra. Note that
Ext1G(V, V ) 6= 0 if and only if V embeds as subrepresentation of P(V )/V . The
Brauer tree shows that this happens if and only if either (i) B has an exceptional
vertex and V is the unique edge incident with it, or (ii) B does not have an exceptional
vertex and V is the unique edge of the tree. In (i), each exceptional representation
in B lifts V , in (ii) both ordinary representations in B lift V , and it is clear that
V has at most one lift in all other cases. To verify the final claim, note that
Hom(V,P(V )/V ) ∼= Ext1G(V, V ), and that in a Brauer tree algebra V occurs at
most once in soc(P(V )/V ). �

In fact, as pointed out to us by V. Paskunas, one direction of Lemma 7.1 holds
for any finite group G: if Ext1G(V, V )= 0 then V has at most one characteristic-0
lift. Indeed, if V has no self-extension, we may first realize all characteristic-0 lifts
over some finite extension E of Qp, as well as V over the residue field of E. Then
the universal deformation ring R of V over the ring OE is a quotient of OE. But then
|HomOE-alg(R,OE)| ≤ 1, i.e., V has at most one characteristic-0 lift.

We will frequently use the following simple observations:
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Lemma 7.2. Let V be a finite-dimensional vector space over k and G ≤ GL(V )
a finite absolutely irreducible subgroup. Write V |G+ = e

⊕t
i=1 Wi , where the G+-

modules Wi are absolutely irreducible and pairwise nonisomorphic. Suppose that
Ext1G+(Wi ,W j )= 0 for all i, j . Then Ext1G(V, V )= 0.

Proof. Since G+ contains a Sylow p-subgroup of G, Ext1G(V, V ) embeds in

Ext1G+(VG+, VG+)=Ext1G+
(

e
t⊕

i=1

Wi , e
t⊕

i=1

Wi

)
∼=e2

⊕
i, j

Ext1G+(Wi ,W j )=0. �

Lemma 7.3. Let N be a normal subgroup of a finite group X and let A and B be
finite-dimensional k(X/N )-modules. Consider Ext1X (A, B), where we inflate A and
B to k X-modules.

(i) If Ext1X (A, B)= 0, then Ext1X/N (A, B)= 0.

(ii) If Ext1X/N (A, B)= 0 and O p(N )= N , then Ext1X (A, B)= 0.

Proof. (i) is trivial. For (ii), let V be any extension of the k X -module A by the k X -
module B, and let 8 : X→GL(V ) denote the corresponding representation. Since
N acts trivially on A and B, we see that8(N ) is a p-group. But O p(N )= N ; hence
8(N )= 1, i.e., N acts trivially on V . Now, V ∼= A⊕ B as Ext1X/N (A, B)= 0. �

Next we recall Holt’s inequality in cohomology [1980]:

Lemma 7.4. Let G be a finite group, N C G, and let V be a finite-dimensional
kG-module. Then for any integer m ≥ 0 we have

dim H m(G, V )≤
m∑

j=0

dim H j (G/N , H m− j (N , V )).

From now on we again assume that k is algebraically closed.

Corollary 7.5. Let G = G1×G2 be a direct product of finite groups and let Vi be
a nontrivial irreducible kGi -module for i = 1, 2.

(i) If we view V1⊗ V2 as a kG-module, then H 1(G, V1⊗ V2)= 0.

(ii) If we inflate V1 and V2 to kG-modules, then Ext1G(V1, V2)= 0.

Proof. For (i), applying Lemma 7.4 to N := G1 we get

dim H 1(G, V )≤ dim H 0(G2, H 1(G1, V ))+ dim H 1(G2, H 0(G1, V )).

Now the G1-module V is a direct sum of dim V2 copies of V1 and V1 is nontrivial
irreducible, whence H 0(G1, V ) = 0. Next, H 1(G1, V ) ∼= H 1(G1, V1) ⊗ V2 as
G2-modules, with G2 acting trivially on the first tensor factor. It follows that

H 0(G2, H 1(G1, V ))∼= H 1(G1, V1)⊗ H 0(G2, V2)= 0
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as V2 is nontrivial irreducible, and so we are done.
Part (ii) follows from (i) since Ext1G(V1, V2) ∼= H 1(G, V ∗1 ⊗ V2) and V ∗1 is a

nontrivial absolutely irreducible kG1-module. �

Corollary 7.6. Let the finite group H be a central product of quasisimple subgroups
H = H1 ∗ · · · ∗ Hn , where Z(Hi ) is a p′-group for all i . For i = 1, 2, let Wi be
a nontrivial irreducible k H-module such that the action of H on Wi induces a
quasisimple subgroup of GL(Wi ). Suppose that the kernels of the actions of H on
W1 and on W2 are different. Then Ext1H (W1,W2)= 0.

Proof. View H as a quotient of L := H1× · · ·× Hn by a central p′-subgroup and
inflate Wi to a kL-module. Next, write Wi =W i

1 ⊗ · · ·⊗W i
n for some absolutely

irreducible k H j -module W i
j , 1 ≤ i ≤ 2, 1 ≤ j ≤ n. Since H j is quasisimple, if

dim W i
j = 1 then H j acts trivially on Wi . On the other hand, if dim W i

j > 1, then H j

induces a quasisimple subgroup of GL(W i
j ). Hence, the condition that the action

of H on Wi induces a quasisimple subgroup of GL(Wi ) implies that dim W i
j > 1

for exactly one index j = ki , whence the kernel of L on Wi is

H1× · · ·× Hki−1×CHki
(W i

ki
)× Hki+1× · · ·× Hn.

Note that the hypothesis on Hi imply that
∏

j 6=k1, k2
H j has no nontrivial p-quotient.

Hence, by Lemma 7.3 there is no loss in taking the quotient of L by
∏

j 6=k1, k2
H j .

If k1 6= k2, then we are reduced to the case where L = Hk1×Hk2 , W1 is a nontrivial
Hk1-module inflated to L and W2 is a nontrivial Hk2-module inflated to L , whence
we are done by Corollary 7.5(ii). Suppose now that k1 = k2, say k1 = k2 = 1
for brevity. Then we are reduced to the case where L = H1 and K1 6= K2, with
Ki = CH1(W

i
1) ≤ Z(H1). By Schur’s lemma, Z(H1) acts on Wi by scalars and

semisimply, via a linear character λi . Since K1 6= K2, we see that λ1 6= λ2. It
follows (by considering Z(H1)-blocks, or by considering λi -eigenspaces for Z(H1)

in any extension of W1 by W2) that Ext1L(W1,W2)= 0. �

More generally, we record the following consequence of the Künneth formula:

Lemma 7.7 [Benson 1998, 3.5.6]. Let H be a finite group. Assume that H is a
central product of subgroups Hi for 1≤ i ≤ t and that Z(H) is a p′-group. Let X
and Y be irreducible k H-modules. Write X = X1⊗· · ·⊗ X t and Y = Y1⊗· · ·⊗Yt ,
where X i and Yi are irreducible k Hi -modules.

(i) If X i � Yi for at least two i , then Ext1H (X, Y )= 0.

(ii) If X1 � Y1 but X i ∼= Yi for i > 1, then Ext1H (X, Y )∼= Ext1H1
(X1, Y1).

(iii) If X i ∼= Yi for all i , then Ext1H (X, Y )∼=
⊕

i Ext1Hi
(X i , Yi ).

We continue with several general remarks:
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Lemma 7.8. Let V be a kG-module of finite length.

(i) Suppose that X is a composition factor of V such that V has no indecomposable
subquotient of length 2 with X as a composition factor. Then V ∼= X ⊕M for
some submodule M ⊂ X.

(ii) Suppose that Ext1G(X, Y )= 0 for any two composition factors X , Y of V . Then
V is semisimple.

Proof. (i) We will assume that V � X . Let U be a submodule of V of smallest
length that has X as a composition factor. First we show that U ∼= X . If not, then U
has a composition series U =U0 >U1 > · · ·>Um = 0 for some m ≥ 2. Note that
U/U1∼= X , as otherwise X would be a composition factor of U1⊂U , contradicting
the choice of U . Now U/U2 is a subquotient of length 2 of V with X as a quotient.
By the hypothesis, U/U2 =U ′/U2⊕U ′′/U2 with U ′/U2 ∼= X and U ′′ ⊃U2, again
contradicting the choice of U .

Now let M be a submodule of V of largest length such that M ∩U = 0. In
particular, V/M ⊇ (M +U )/M ∼= X . Assume furthermore that V 6= M +U . Then
we can find a submodule V ′ ⊆ V such that V ′/(M +U ) is simple. Again, V ′/M
is a subquotient of length 2 of V with X as a submodule. So by the hypothesis,
V ′/M = (M +U )/M ⊕ N/M for some submodule N ⊆ V containing M properly.
But then

N ∩U = (N ∩ (M +U ))∩U = M ∩U = 0,

contrary to the choice of M . Thus V = M ⊕U is decomposable.

(ii) Induction on the length of V . If V is not simple, then by (i) we have V ∼=V ′⊕V ′′

for some nonzero submodules V ′ and V ′′. Now apply the induction hypothesis to
V ′ and V ′′. �

Lemma 7.9. Let V be a kG-module. Suppose that U is a composition factor of V
of multiplicity 1 and that U occurs both in soc V and head V . Then V ∼=U ⊕M for
some submodule M ⊂ V .

Proof. Let U1∼=U be a submodule of V . Since U occurs in head V , there is M ⊂ V
such that V/M ∼= U . Now if M ⊇ U1, then U would have multiplicity ≥ 2 in V .
Hence V =U1⊕M . �

Lemma 7.10. Let V be a kG-module of finite length. Suppose the set of isomor-
phism classes of composition factors of V is a disjoint union X∪Y of nonempty
subsets such that, for any U ∈X and W ∈Y, there is no indecomposable subquotient
of length 2 of V with composition factors U and W . Then V is decomposable.

Proof. Let X and Y denote the largest submodules of V with all composition
factors belonging to X and Y, respectively. By definition, X ∩ Y = 0. We claim
that V = X ⊕ Y . If not, we can find a submodule Z ⊃ X ⊕ Y of V such that
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U := Z/(X⊕Y ) is a simple G-module. Suppose for instance that U ∈X. Applying
Lemma 7.8(i) to the G-module Z/X and its composition factor U , we see that
Z/X ∼= U ⊕ Y . This implies that Z contains a submodule T with T/X ∼= U ,
contradicting the choice of X .

Now X, Y 6= 0 as X,Y 6=∅. It follows that V is decomposable. �

Lemma 7.11. Let V be an indecomposable kG-module.

(i) If the G+-module VG+ admits a composition factor L of dimension 1, then all
composition factors of VG+ belong to B0(G+).

(ii) Suppose a normal p′-subgroup N of G acts by scalars on a composition factor
L of the G-module V . Then N acts by scalars on V . If in addition V is faithful
then N ≤ Z(G).

Proof. (i) Since G+ = O p′(G+), it must act trivially on L . Let X (resp. Y ) denote
the largest submodule of the G+-module V with all composition factors belonging
(resp. not belonging) to B0(G+). By their definition and the definition of G+-
blocks, V = X ⊕ Y . Note that both X and Y are G-stable as G+CG. Since V is
indecomposable, we see that Y = 0 and V = X .

(ii) Note that N acts completely reducibly on V and G permutes the N -homogeneous
components of V . Since V is indecomposable, it follows that this action is transitive,
whence all composition factors of the N -module V are G-conjugate. But, among
them, the (unique) linear composition factor of L N is certainly G-invariant. Hence
this is the unique composition factor of VN , and so N acts by scalars on V . �

8. Indecomposable representations of SL2(q)

We first prove a lemma:

Lemma 8.1. Suppose that S, T are irreducible SL2(Fq)-representations over Fp

with q = pn , n ≥ 2, and E is a nonsplit extension of T by S. Then dim E ≥ p and
S � T . Moreover, if dim S = dim T then dim E ≥ (p2

− 1)/2.

Proof. This is immediate from Corollary 4.5(a) in [Andersen et al. 1983]. �

Proposition 8.2. Suppose that V is a reducible, self-dual, indecomposable repre-
sentation of SL2(Fq) over Fp, where q = pn . If dim V < 2p− 2, then q = p and
one of the following holds:

(i) dim V = p and V ∼= P(1).

(ii) dim V = p+ 1 and V is the unique nonsplit self-extension of L((p− 1)/2).

(iii) dim V = p− 1 and V is the unique nonsplit self-extension of L((p− 3)/2).

Conversely, all the listed cases give rise to examples.
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Proof. Note that p > 2.

(a) Suppose first that q= p. If V is projective, then since dim V < 2p, we must have
V ∼=P(1), which is uniserial of shape (L(0) | L(p−3) | L(0)) and of dimension p.
(See for example [Alperin 1986].) If V is nonprojective, then, as SL2(p) has a
cyclic Sylow p-subgroup, V is one of the “standard modules” described in [Janusz
1969, §5]. As V is self-dual, the standard modules are described by paths in the
Brauer tree as in [Janusz 1969, (5.2)(b)] with P0 = Q = Pk+1. By inspecting the
Brauer trees of SL2(p) (see, e.g., [Alperin 1986]) and using that dim V < 2p− 2,
we deduce moreover that k = 1 above, obtaining the modules in (ii), (iii).

In case (i), it is obvious that the module is self-dual since it is P(1). In cases (ii)
and (iii) the uniqueness of the isomorphism class of the extension implies that it is
self-dual.

(b) Now suppose that q > p. We need to show that no such V exists. (In fact we
will show this holds even under the weaker bound dim V < 2p.) Pick an irreducible
subrepresentation L(λ) of V , where λ=

∑n−1
i=0 piλi , 0≤ λi ≤ p− 1. Then V has

a subquotient isomorphic to a nonsplit extension 0→ L(λ)→ E → L(µ)→ 0,
where µ=

∑n−1
i=0 piµi , 0≤µi ≤ p−1. By Lemma 8.1 we know that λ 6=µ; hence

2 dim L(λ)+ dim L(µ) < 2p. By Corollary 4.5(a) in [Andersen et al. 1983] we
deduce that, up to a cyclic relabeling of the indices, λ= λ0+ p, µ= p−2−λ0, and
µ>(2p−3)/3≥1. In particular, µ uniquely determines λ. Hence, if soc V contains
two nonisomorphic irreducible representations, then V admits indecomposable
subrepresentations of length two that intersect in zero, so dim V ≥2p by Lemma 8.1.
Therefore, soc V ∼= L(λ)⊕r for some r ≥ 1.

Suppose first that r ≥ 2. We claim that soc2 V/ soc V ∼= L(µ)⊕s for some
0≤ µ < pn and some s ≥ 1. (Here soci M is the increasing filtration determined
by soc0 M = 0 and soci M/ soci−1 M = soc(M/ soci−1 M). Note that the socle
filtration is compatible with subobjects.) Note that any constituent of soc2 V/ soc V
extends L(λ), and hence by above it is uniquely determined, unless n = 2 and
λ0 = 1. In the latter case, the constituents can be L(µ′), L(µ′′), where µ′ = p− 3,
µ′′ = p(p − 3). But only one of them can occur since dim L(λ)+ dim L(µ′)+
dim L(µ′′)= 2p, and this proves the claim. Note that L(µ) can occur only once in
V by Lemma 8.1; in particular, s = 1. We claim that dim Ext1(L(µ), L(λ))≥ r ≥ 2.
Otherwise, soc2 V is decomposable, so we obtain a splitting π : soc2 V → L(λ)⊂
soc V . But Ext1(V/ soc2 V, L(λ)) = 0, so we can extend π to a splitting of V ,
a contradiction. Hence dim Ext1(L(µ), L(λ)) ≥ 2 and by Corollary 4.5(b) in
[Andersen et al. 1983] we deduce that n = 2 and λi , µi ∈ {(p− 3)/2, (p− 1)/2}
for all i . (Note that we can get all four combinations with λi +µi = p− 2, unlike
what is claimed in that corollary.) This contradicts that |{λi , µi : 0≤ i ≤ n−1}| ≥ 3
(by above).
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Suppose that r = 1, so soc V is irreducible. Note that soc3 V = V by Lemma 8.1,
as each constituent in a socle layer extends at least one constituent of the previous so-
cle layer. As soc V is irreducible, V embeds in the projective indecomposable mod-
ule Un(λ) whose socle is L(λ). We have V ⊂ soc3 Un(λ). Note that λi < p− 1 for
all i , as dim V < 2p. By Lemma 8.1, L(λ) does not occur in soc2 Un(λ)/ soc Un(λ).
Also, L(λ) occurs precisely n times in soc3 Un(λ)/ soc2 Un(λ). (Theorems 4.3
and 3.7 in [Andersen et al. 1983] imply that this is the case, unless n = 2 and
λi ∈ {(p− 3)/2, (p− 1)/2} for all i . But by above λi < (p− 3)/3≤ (p− 3)/2 for
some i .) Let Mi = L(λ0)⊗ L(λ1)

(p)
⊗ · · ·⊗ Q1(λi )

(pi )
⊗ · · ·⊗ L(λn−1)

(pn−1) and
M :=M0+· · ·+Mn−1⊂Un(λ) in the notation of [Andersen et al. 1983, §3]. Note by
Theorems 4.3 and 3.7 in [Andersen et al. 1983] that soc2 Un(λ)⊂ M ⊂ soc3 Un(λ)

and that M/ soc2 Un(λ)∼= L(λ)⊕n . Therefore V ⊂ M , so
V

L(λ)
⊂

M
L(λ)

=
M0

L(λ)
⊕ · · ·⊕

Mn−1

L(λ)
.

As head(Mi/L(λ))∼= L(λ), there exists i such that V/L(λ) surjects onto Mi/L(λ).
Thus dim V ≥ dim Mi ≥ 2p.

�

9. Finite groups with indecomposable modules of small dimension

Throughout this section, we assume that k = k̄ is a field of characteristic p > 3. We
want to describe the structure of finite groups G that admit reducible indecomposable
modules of dimension ≤ 2p− 2. The next results essentially reduce us to the case
of quasisimple groups.

Lemma 9.1. Let G be a finite group, p > 3, and V be a faithful kG-module of
dimension < 2p. Suppose that Op(G) = 1 and Op′(G) ≤ Z(G). Then F(G) =
Op′(G)= Z(G), F∗(G)= E(G)Z(G), and G+= E(G) is either trivial or a central
product of quasisimple groups of order divisible by p. In particular, G has no
composition factor isomorphic to C p, and so H 1(G, k)= 0.

Proof. (a) Since Op(G) = 1, Z := Z(G) ≤ F(G) ≤ Op′(G). It follows that
F(G)= Z = Op′(G), and F∗(G)= E(G)Z . If moreover E(G)= 1, then

Z = F(G)= F∗(G)≥ CG(F∗(G))= G,

whence G is an abelian p′-group, and G+ = 1= E(G).

(b) Assume now that E(G) > 1 and write E(G)= L1 ∗ · · · ∗ L t , a central product
of t ≥ 1 quasisimple subgroups. Since Op′(E(G))≤ Op′(G)= Z , p | |L i | for all i .

Next we show that NG(L i )/CG(L i )L i is a p′-group for all i . Indeed, note that
the L i -module V admits a nontrivial composition factor U of dimension < 2p.
Otherwise it has a composition series with all composition factors being trivial,
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whence L i acts on V as a p-group. Since V is faithful and L i is quasisimple,
this is a contradiction. So we can apply Theorem 2.1 and [Guralnick et al. 2014,
Theorem 2.1] to the image of L i in GL(U ). In particular, denoting Si := L i/Z(L i ),
one can check that Out Si is a p′-group, unless it is a simple group of Lie type in
characteristic p. In the former case we are done since NG(L i )/CG(L i )L i ↪→Out Si .
Consider the latter case. Observe that Z(L i )≤ Z(E(G))≤ F(G) is a p′-group. So
we may replace L i by its simply connected isogenous version GF , where F :G→G

is a Steinberg endomorphism on a simple simply connected algebraic group G in
characteristic p. If moreover p divides |NG(L i )/CG(L i )L i |, then NG(L i ) induces
an outer automorphism σ of L i of order p. As p > 3, this can happen only when σ
is a field automorphism. More precisely, L i is defined over a field Fpbp (for some
b ≥ 1), where Fpbp is the smallest splitting field for L i [Kleidman and Liebeck
1990, Proposition 5.4.4] and σ is induced by the field automorphism x 7→ x pb

.
Since dim U ≥ 2 > (dim V )/p, U must be σ -invariant. In turn, this implies by
[Kleidman and Liebeck 1990, Proposition 5.4.2] that U and its (pb)-th Frobenius
twist are isomorphic. In this case, the proofs of Proposition 5.4.6 and Remark 5.4.7
of [Kleidman and Liebeck 1990] show that dim U ≥ 2p > 2p, a contradiction.

(c) Recall that CG(E(G))=CG(F∗(G))≤ F∗(G)= E(G)Z , whence CG(E(G))=
Z . Also, G acts via conjugation on the set {L1, . . . , L t }, with kernel (say) N .
We claim that p - |G/N |. If not, then we may assume that some p-element
g ∈ G permutes L1, . . . , L p cyclically. Arguing as in (b), we see that L1 acts
nontrivially on some composition factor U of the E(G)-module V , and we can
write U = U1 ⊗ · · · ⊗ Ut , where Ui ∈ IBrp(L i ). If U is not g-invariant, then
dim V ≥ p(dim U )≥ 2p, a contradiction. Hence U is g-invariant. It follows that
2≤ dim U1 = · · · = dim Up and so dim U ≥ 2p > 2p, again a contradiction.

Now N/E(G)Z embeds in
∏t

i=1 Out L i . Furthermore, the projection of N into
Out L i induces a subgroup of NG(L i )/CG(L i )L i , which is a p′-group by (b). It
follows that N/E(G)Z is a p′-group, and so G+ = E(G). The last statement
also follows. �

The next result on H 1 follows from standard results on H 1 — see [Guralnick
et al. 2007, Lemma 5.2] and the main result of [Guralnick 1999].

Lemma 9.2. Let G be a finite group and let V be a faithful irreducible kG-module.
Assume that H 1(G, V ) 6= 0. Then Op′(G) = Op(G) = 1, E(G) = L1 × · · · × L t

and VE(G) = W1 ⊕ · · · ⊕ Wt , where the L i are isomorphic nonabelian simple
groups of order divisible by p, Wi is an irreducible kL i -module, and L j , j 6= i acts
trivially on Wi . Moreover, dim H 1(G, V )≤ dim H 1(L1,W1), dim Wi ≥ p− 2 and
dim V ≥ t (p− 2). In particular, if G is not almost simple, then either dim V =
2p− 4, 2p− 2 or dim V ≥ 2p, or (p, dim V )= (5, 9).
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Lemma 9.3. Let V be a faithful indecomposable kG-module with two composition
factors V1, V2. Assume that Op(G)= 1 and dim V ≤ 2p− 2. If J := Op′(G+)�
Z(G+), then:

(i) p = 2a
+ 1 is a Fermat prime.

(ii) dim V1 = dim V2 = p− 1.

(iii) J/Z(J ) is elementary abelian of order 22a .

(iv) H 1(G+, k) 6= 0.

Proof. Since Ext1G(V1, V2) ↪→Ext1G+(V1, V2), there are irreducible G+-submodules
Wi of Vi for i = 1, 2 such that Ext1G+(W1,W2) 6= 0. Assume that J acts by scalars
on at least one of the Wi . Then, by Lemma 7.11(ii), J acts by scalars on both
W1 and W2. If W ′1 is any G+-composition factor of V1, then W ′1 is G-conjugate
to W1. But J CG, so we see that J acts by scalars on W ′1. Thus J acts by scalars
on all G+-composition factors of V1, and similarly for V2. Consider a basis of V
consistent with a G+-composition series of V , and any x ∈ J and y ∈ G+. Then
[x, y] acts as the identity transformation on each G+-composition factor in this
series, and so it is represented by an upper unitriangular matrix in the chosen basis.
The same is true for any element in [J,G+]CG. Since V is faithful, we see that
[J,G+] ≤ Op(G)= 1 and so J ≤ Z(G+), a contradiction.

Thus J cannot act by scalars on any Wi . Let 8i denote the representation of G+

on Wi . Then H :=8i (G+) < GL(Wi ) has no nontrivial p′-quotient, and contains
a nonscalar normal p′-subgroup 8i (J ). Applying Theorem 2.1 and also [Blau
and Zhang 1993, Theorem A] to H , we conclude that p = 2a

+ 1 is a Fermat
prime, dim Wi = p− 1, and Q := Op′(H) acts irreducibly on Wi . Furthermore,
Z(Q) = Z(H), and H/Q acts irreducibly on Q/Z(Q), an elementary abelian 2-
group of order 22a . Now8i (J ) is a normal p′-subgroup of H that is not contained in
Z(Q). It follows that8i (J )Z(Q)= Q, Z(8i (J ))=8i (J )∩Z(Q), J is irreducible
on Wi , and 8i (J )/Z(8i (J ))∼= Q/Z(Q) is elementary abelian of order 22a . Since
dim V ≤ 2p− 2, it also follows that Wi = Vi .

Letting A := V ∗1 ⊗V2, we then see that A= [J, A]⊕CA(J ) as J -modules. Next,

0 6= Ext1G(V1, V2)∼= H 1(G, A)∼= H 1(G,CA(J )),

since H 1(G, [J, A]) = 0 by the inflation restriction sequence. It follows that
CA(J ) 6= 0. But J is irreducible on both V1 and V2, so we must have that
dim CA(J ) = 1 and V1 ∼= V2 as J -modules. Since G+ acts trivially on any
1-dimensional module, it follows that H 1(G+, k) 6= 0. Since W1 ∼= W2 as J -
modules and V is a faithful semisimple J -module, we also see that Ker(81)∩ J =
Ker(82)∩ J = 1. Thus 8i is faithful on J , and so J/Z(J ) is elementary abelian
of order 22a . �
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Lemma 9.4. Let V be a faithful indecomposable kG-module with two composition
factors V1, V2 of dimension > 1, p > 3, and Op(G)= 1.

(i) Assume that Op′(G+) ≤ Z(G+), and either dim V < 2p − 2 or dim V1 =

dim V2 = p − 1. If G+ is not quasisimple, then G+ = L1 ∗ L2 is a central
product of two quasisimple groups, dim V1 = dim V2 = p − 1 and, up to
relabeling the L i , one of the following holds:

(a) Vi= Ai⊗B as G+-modules, where Ai ∈ IBrp(L1) is of dimension (p−1)/2
and B ∈ IBrp(L2) is of dimension 2; furthermore, Ext1L1

(A1, A2) 6= 0.
(b) Vi = (Ai ⊗ k) ⊕ (k ⊗ Bi ) as G+-modules, where Ai ∈ IBrp(L1) has

dimension (p− 1)/2, and some g ∈ G interchanges L1 with L2 and Ai

with Bi . Furthermore, Ext1L1
(A1, A2) 6= 0.

(ii) If dim V < 2p− 2, then G+ is quasisimple.

Proof. (i) By Lemma 9.1 applied to G+, G+= (G+)+= E(G+)= L1∗L2∗· · ·∗L t ,
a central product of t quasisimple groups. Suppose t > 1. Since Ext1G(V1, V2) ↪→

Ext1G+(V1, V2), there are irreducible G+-submodules Wi of Vi for i = 1, 2 such
that Ext1G+(W1,W2) 6= 0. Write Wi =Wi1⊗· · ·⊗Wi t , where Wi j is an irreducible
L j -module. By Lemma 7.7, we may assume that W1 j ∼= W2 j for j = 2, . . . , t ,
and either Ext1L1

(W11,W21) 6= 0, or W11 ∼= W21 and Ext1L j
(W1 j ,W2 j ) 6= 0 for

some j . Interchanging L1 and L j in the latter case, we can always assume that
Ext1L1

(W11,W21) 6= 0. By [Guralnick 1999, Theorem A], we then have

dim W11+ dim W21 ≥ p− 1> 2. (9-1)

Now if W1 j is nontrivial for some j ≥ 2, say W12 � k, then

dim V ≥ dim W1+ dim W2 ≥ 2(dim W11+ dim W21)= 2p− 2.

It follows that Vi = Wi = Wi1 ⊗ Wi2 ⊗ k ⊗ · · · ⊗ k, dim Wi1 = (p − 1)/2, and
dim Wi2 = 2. Furthermore, t = 2 as V is faithful, and we arrive at (a).

We may now assume that W1 j ∼=W2 j ∼= k for all j>1. Suppose that G normalizes
L1. Since every G+-composition factor of V1 is G-conjugate to W1, it follows that
L2 acts trivially on all composition factors of V1. The same is true for V2. As L2 is
quasisimple, we see that L2 acts trivially on V , contrary to the faithfulness of V .
Thus there must be some g ∈ G conjugating L1 to L j for some j > 1, say Lg

1 = L2.
By (9-1) we may assume that W11 � k. Then g(W1) � W1, as L2 acts trivially
on W1 but not on g(W1). Thus (V1)G+ has at least two distinct simple summands
W1 and g(W1). If furthermore W21 � k, then (V2)G+ also has at least two distinct
simple summands W2 and g(W2), and so

dim V ≥ 2(dim W1+ dim W2)= 2(dim W11+ dim W21)≥ 2p− 2.



Adequate groups of low degree 137

In this case, we must have that Vi = Wi ⊕ g(Wi ), dim Wi = (p− 1)/2, and t = 2
as V is faithful, and we arrive at (b).

Consider the case W21 ∼= k. Now (9-1) implies that dim W1 = dim W11 ≥ p− 2,
whence dim V1 ≥ 2p−4. On the other hand, dim V2 ≥ 2. It follows that 2p−4= 2,
again a contradiction.

(ii) By Lemma 9.3, Op′(G+)≤ Z(G+). Hence we are done by (i). �

Lemma 9.5. Let H be a quasisimple finite group of Lie type in characteristic p> 3.
Assume that V1, V2 ∈ IBrp(H) satisfy dim V1+ dim V2 < 2p.

(i) If H � SL2(q), PSL2(q), then Ext1H (V1, V2) = 0. In particular, there is no
reducible indecomposable kG-module with G+ ∼= H and dim V < 2p.

(ii) Suppose H ∼= SL2(q) or PSL2(q), Ext1H (V1, V2) 6= 0, and dim V1 = dim V2.
Then q = p and V1 = L((p− 3)/2) or L((p− 1)/2).

Proof. (i) Note that Z(H) is a p′-group as p > 3. Hence, we can replace H by the
fixed-point subgroup GF for some Steinberg endomorphism F : G→ G on some
simple simply connected algebraic group G defined over a field of characteristic
p (see Lemma 7.3). Hence, if H � Sp2n(5), the result follows by [McNinch
1999, Theorem 1.1]. In the exceptional case H = Sp2n(5), we have p = 5 and
so we are only considering modules of dimension at most 9. If n ≥ 3, then
dim V1+ dim V2 > 10 unless at least one of the Vi is trivial and the other is either
trivial or the natural module of dimension 2n, and in both cases Ext1H (V1, V2)=0. If
n= 2, one just computes that all the relevant Ext1H (V1, V2) are trivial (done by Lux).

Suppose now that V is a reducible indecomposable kG-module with G+ ∼= H
and dim V < 2p. By Lemma 7.8(ii), there are composition factors V1, V2 of V such
that Ext1G(V1, V2) 6= 0. It then follows that Ext1H (W1,W2) 6= 0 for some simple
H -summands Wi of Vi for i = 1, 2 and dim W1+ dim W2 < 2p, a contradiction.

(ii) Again we can replace H by SL2(q). The statement then follows from Lemma 8.1
when q > p, and from [Andersen et al. 1983] if q = p. �

There are a considerable number of examples of nonsplit extensions (V1|V2)

with G+ nonquasisimple and dim V1+dim V2 = 2p−2. For example, suppose that
G=SL2(p)×SL2(p) and V1= L(1)⊗L(a) and V2= L(1)⊗L(p−a−3). Then by
[Andersen et al. 1983] and Lemma 7.7, Ext1G(V1, V2) 6= 0. For our adequacy results,
we do need to consider the case where dim V1 = dim V2 = p− 1 in more detail:

Lemma 9.6. Let V be a faithful indecomposable kG-module with two composition
factors V1, V2, both of dimension p− 1. Assume that p > 3 and Op(G)= 1. Then
one of the following holds:

(i) Op′(G+)� Z(G+) and Lemma 9.3 applies.

(ii) G+ is quasisimple.
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(iii) G+ = SL2(p) × SL2(pa) (modulo some central subgroup) and one of the
following holds:

(a) V1 ∼= V2 ∼= L((p− 3)/2)⊗ L(1)(p
b) as G+-modules (for some 0≤ b < a).

(b) a = 1 and V1 ∼= V2 ∼= X ⊕ Y , where G+ acts as a quasisimple group on
X, Y and dim X = dim Y = (p− 1)/2 (so X, Y ∼= L((p− 3)/2) for the
copy of SL2(p) acting nontrivially on X or Y ).

Proof. Assume that neither (i) nor (ii) holds. Then by Lemma 9.4(i), E(G+) =
G+ = L1 ∗ L2 is a central product of two quasisimple groups, and either (a) or (b)
of Lemma 9.4(i) occurs. In either case, we see that L1 admits an indecomposable
module W of length 2 with composition factors A1 and A2, both of dimension
(p− 1)/2. By [Blau and Zhang 1993, Theorem A] applied to W , L1 is of Lie type
in characteristic p. Also, Z(L1) ≤ Z(G+) ≤ Op′(G) is a p′-group. Hence L1 ∼=

SL2(p) (modulo a central subgroup) by Lemma 9.5 and A1 ∼= A2 ∼= L((p− 3)/2).
In particular, L2 ∼= SL2(p) in case (b), and (iii)(b) holds. In the case of (a),
B ∈ IBrp(L2) has dimension 2. Since p > 3, by Theorem 2.1 we conclude that L2

is of Lie type in characteristic p, and in fact that L2 ∼= SL2(pa) (modulo a central
subgroup) and B ∼= L(1)(p

b) for some a ≥ 1 and 0≤ b < a. Thus (iii)(a) holds. �

Proposition 9.7. Let p > 3 and let G be a finite group with a faithful, reducible,
indecomposable kG-module V of dimension ≤ 2p− 3. Suppose in addition that
Op(G) = 1. Then G+ = E(G+), G has no composition factor isomorphic to C p,
and one of the following holds:

(i) G+ is quasisimple.

(ii) G+ is a central product of two quasisimple groups and dim V = 2p − 3.
Furthermore, V has one composition factor of dimension 1, and either one of
dimension 2p− 4 or two of dimension p− 2. In either case, V � V ∗.

Proof. (a) Note that Op(G+) ≤ Op(G)= 1. Next we show that J := Op′(G+) ≤
Z(G+). As in the proof of Lemma 9.3, it suffices to show that J acts by scalars
on every G+-composition factor of V . So assume that there is a G+-composition
factor X of V on which J does not act by scalars. Again as in the proof of
Lemma 9.3, we see by Theorem 2.1 that dim X ≥ p− 1. Since dim V ≤ 2p− 3,
it follows that X is a G+-composition factor of multiplicity 1, and, moreover, J
acts by scalars on any other G+-composition factor Y of V . Also, X extends to
a G-composition factor (of multiplicity 1) of V . Now, by Lemma 7.8(i), there is
an indecomposable subquotient of length 2 of V with G-composition factors X
and T � X . In particular, by symmetry we may assume that 0 6= Ext1G(X, T ) ↪→
Ext1G+(X, T ), and so Ext1G+(X, Y ) 6= 0 for some simple G+-summand Y of T . But
this is impossible by Lemma 7.11(ii) (as J acts by scalars on Y but not on X ).
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Applying Lemma 9.1 to G+, we see that

G+ = (G+)+ = E(G+)= L1 ∗ · · · ∗ L t ,

a central product of t quasisimple subgroups. Note that t ≥ 1 as otherwise G is
a p′-group and so V does not exist. Furthermore, G has no composition factors
isomorphic to C p.

(b) Assume now that t ≥ 2. Suppose in addition that , for every composition factor
Vi of V , at most one of the components L j of G+ acts nontrivially on Vi . For
1≤ j ≤ t , let X j denote the set of isomorphism classes of composition factors Vi of
V on which L j acts nontrivially. Also let X0 denote the set of isomorphism classes
of composition factors Vi of V on which G+ acts trivially. By the faithfulness of V ,
X j 6=∅ for j > 0. Consider for instance X ∈ X1. By Lemma 7.8(i), there is some
X ′ ∈ X j (for some j) and some indecomposable subquotient W of length 2 of V
with composition factors X , X ′. Note that the p-radical of the group induced by
the action of G on W is trivial, as C p is not a composition factor of G. Applying
Lemma 9.4(ii) to W , we see that j = 0 or 1. Moreover, if for all X ∈ X1 there is
no such W with X ′ ∈ X0, then Lemma 7.10 applied to

(
X := X1,Y :=

⋃
i 6=1 Xi

)
implies that V is decomposable, a contradiction. Thus for some X ∈ X1, such a W
exists with X ′ ∈X0. Note that in this case dim X ≥ p−2. Indeed, G+ acts trivially
on X ′, and by symmetry we may assume that

0< dim Ext1G(X
′, X)≤ dim Ext1G+(X

′, X).

Therefore, for some simple summand X1 of the G+-module X we have that
0 6= Ext1G+(k, X1) ∼= H 1(G+, X1). Note that C p is not a composition factor of
G+, so by Lemma 7.3 we may assume here that G+ acts faithfully on X1. Applying
Lemma 9.2 to G+, we get dim X ≥ dim X1 ≥ p− 2.

Similarly, for some Y ∈X2, we get an indecomposable subquotient T of length 2
of V with composition factors Y and Y ′ ∈ X0, and moreover dim Y ≥ p− 2. Since
dim V ≤ 2p − 3 and X0 3 X ′, Y ′, we conclude that dim V = 2p − 3, dim X =
dim Y = p − 2, t = 2, and X ′ ∼= Y ′ has dimension 1. Suppose in addition that
V ∼= V ∗. Observe that X∗ � Y, X ′, so X ∼= X∗. Similarly, Y and X ′ are self-dual.
Thus all three composition factors of V have multiplicity 1 each and are self-dual.
At least one of them occurs in soc V , and then also in head V by duality. It follows
by Lemma 7.9 that V is decomposable, a contradiction. Thus we arrive at (ii).

(c) Finally, we consider the case where at least two of the L i act nontrivially on some
composition factor Vi of V . By Lemma 7.8(i), there is some indecomposable sub-
quotient W of length 2 of V with composition factors Vi and V j . By Lemma 9.4(ii)
applied to W , dim V j = 1. In turn this implies by Lemma 9.2 that dim Vi ≥ 2p− 4.
Since dim V ≤ 2p − 3, we must have that dim Vi = 2p − 4, V = W , t = 2 and
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dim V = 2p− 3. Applying Lemma 7.9 and using the indecomposability of V as
above, we see that V � V ∗, and again arrive at (ii). �

10. Extensions and self-extensions, II

Let q be any odd prime power. It is well known (see, e.g., [Tiep and Zalesskii 1997]
and [Guralnick et al. 2002]) that the finite symplectic group Sp2n(q) has two complex
irreducible Weil characters ξ1, ξ2 of degree (qn

+1)/2, and two such characters η1, η2

of degree (qn
− 1)/2, whose reductions modulo any odd prime p - q are absolutely

irreducible and distinct and are called (p-modular) Weil characters of Sp2n(q).

Lemma 10.1. Let q be an odd prime power and p an odd prime divisor of qn
+ 1

which does not divide
∏2n−1

i=1 (q
i
− 1). Let S := Sp2n(q) and let W1 and W2 denote

the irreducible kS-modules affording the two irreducible p-modular Weil characters
of S of degree (qn

− 1)/2. Then for 1 ≤ i, j ≤ 2 we have that Ext1S(Wi ,W j ) = 0,
unless i 6= j and n = 1, in which case dim(Ext1S(Wi ,W j ))= 1.

Proof. The conditions on (n, q) imply that (n, q) 6= (1, 3). In this case, [Tiep and
Zalesskii 1996, Theorem 1.1] implies that each Wi has a unique complex lift (a
complex module affording some ηi ). Also, the Sylow p-subgroups of S are cyclic
of order (qn

+ 1)p. Hence Ext1S(Wi ,Wi )= 0 by Lemma 7.1.
Note that an involutory diagonal automorphism σ of S fuses η1 with η2 and

W1 with W2. Consider the semidirect product H := S o 〈σ 〉 and the irreducible
k H -module V := IndH

S (W1) of dimension qn
−1. Certainly, IndH

S (η1) is a complex
lift of V .

Assume that n > 1. Now if (n, q) 6= (2, 3), then by [Tiep and Zalesskii 1996,
Theorem 5.2], S has exactly five irreducible complex characters of degree≤ (qn

−1):
1S , η1, η2, ξ1, and ξ2. When (n, q)= (2, 3), there is one extra complex character of
degree 6 [Conway et al. 1985]. It follows that if χ is any complex lift of V , then
χS = η1+ η2. Since σ fuses η1 and η2, we see that χ = IndH

S (η1). Thus V has a
unique complex lift, and so by Lemma 7.1 and Frobenius reciprocity we have

0= Ext1H (V, V )= Ext1H (IndH
S (W1), V )∼= Ext1S(W1, VS)

∼= Ext1S(W1,W1)⊕Ext1S(W1,W2).

In particular, Ext1S(W1,W2)= 0.
Next suppose that n = 1. Inspecting the character table of SL2(q) as given

in [Digne and Michel 1991, Table 2], we see that S has a σ -invariant complex
irreducible character χ of degree q−1 such that the restriction of χ to p′-elements of
S is the Brauer character of VS . Since H/S is cyclic and generated by σ , it follows
that χ extends to a complex irreducible character χ̃ of H . Now χ̃ 6= IndH

S (η1) (since
the latter is reducible over S), but both of them are complex lifts of V (by Clifford’s
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theorem). Applying Lemma 7.1 and Frobenius reciprocity as above, we see that
dim Ext1H (V, V )= dim Ext1S(W1,W2)= 1. �

Lemma 10.2. Let H be a quasisimple group with Z(H) a p′-group. Let W and W ′

be absolutely irreducible k H-modules in characteristic p of dimension d, where
(H, p, d) is one of the following triples:

(2A7, 5, 4), (3J3, 19, 18), (2Ru, 29, 28), (61 ·PSL3(4), 7, 6),

(61 ·PSU4(3), 7, 6), (2J2, 7, 6), (3A7, 7, 6), (6A7, 7, 6), (M11, 11, 10),

(2M12, 11, 10), (2M22, 11, 10), (6Suz, 13, 12), (2G2(4), 13, 12), (3A6, 5, 3),

(3A7, 5, 3), (M11, 11, 9), (M23, 23, 21), (2A7, 7, 4), (J1, 11, 7).

If Z(H) acts the same way on W and W ′, assume in addition that there is an auto-
morphism of H which sends W to W ′. Then Ext1H (W,W ′)= 0, with the following
two exceptions: (H, p, d)=(3A6, 5, 3) and (2A7, 7, 4), where dim Ext1H (W,W )=1.

Proof. Note that the Sylow p-subgroups of H have order p. Hence, in the case
W ∼=W ′ we can apply Lemma 7.1; in particular, we arrive at the two exceptions listed
above. This argument settles the cases of (M11, 11, 9), (M23, 23, 21), (J1, 11, 7),
and (2G2(4), 13, 12).

If W � W ′ and Z(H) acts differently on W and W ′, then we also get that
Ext1H (W,W ′) = 0 since Z(H) is a central p′-group. So it remains to consider
the case where W � W ′ and Z(H) acts the same way on both of them. Suppose
in addition that there is an involutory automorphism σ of H that swaps W and
W ′ and that the module IndJ

H (W ) of J := H o 〈σ 〉 has at most one complex
lift. Then we can apply Lemma 7.1 to J as in the proof of Lemma 10.1 to con-
clude that Ext1(W,W ′) = 0. These arguments are used to handle the cases of
(2A7, 5, 4), (3A7, 5, 3), (3A7, 7, 6), (2J2, 7, 6), (6Suz, 13, 12), (61 ·PSL3(4), 7, 6),
and (61 ·PSU4(3), 7, 6).

In the six remaining cases of (6A7,7,6), (3J3,19,18), (2Ru,29,28), (M11,11,10),
(2M12, 11, 10), and (2M22, 11, 10), we note (using [Jansen et al. 1995] or [GAP
2004]) that the nonisomorphic H -modules W and W ′ with the same action of Z(H)
are not Aut(H)-conjugate. �

Corollary 10.3. Suppose that q > 3 is an odd prime power such that p= (q+1)/2
prime. Then there is a finite absolutely irreducible linear group G < GL(V ) =
GLq−1(k) of degree q − 1 over k such that G+ ∼= SL2(q), all irreducible G+-
submodules in V are Weil modules of dimension (q−1)/2, and dim Ext1G(V, V )= 1.
In particular, (G, V ) is not adequate.

Proof. Our conditions on p, q imply that q ≡ 1 (mod 4). Now we can just appeal to
the proof of Lemma 10.1, taking H =GU2(q)/C , where C is the unique subgroup
of order (q + 1)/2 in Z(GU2(q)). �
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Proposition 10.4. Suppose (G, V ) is as in the extraspecial case (ii) of Theorem 2.4.
Then Ext1G(V, V )= 0.

Proof. Write V |G+= e
∑t

i=1 Wi as usual and let Ki be the kernel of the action of G+

on Wi . By Lemma 7.2, it suffices to show that Ext1G+(Wi ,W j )=0 for all i, j . Recall
that R := Op′(G+) acts irreducibly on Wi . By Theorem 2.4, Ki has no composition
factor ∼= C p, whence Ext1G+(Wi ,Wi )= Ext1G+/Ki

(Wi ,Wi ) by Lemma 7.3(ii). Next,
G+/Ki has cyclic Sylow p-subgroups (of order p) by Theorem 2.1(e), and we have
shown in the proof of Proposition 5.6 that the G+/Ki -module Wi has a unique
complex lift. Hence Ext1G+/Ki

(Wi ,Wi )= 0 by Lemma 7.1.
Suppose now that i 6= j and let M be any extension of the G+-module Wi by

the G+-module W j . Recall that the R-modules Wi and W j are irreducible and
nonisomorphic, as shown in the proof of Proposition 5.6. But R is a p′-group,
so by Maschke’s theorem M = M1 ⊕ M2 with Mi ∼= Wi as R-modules. Now
for any g ∈ G+, g(Mi ) ∼= (Wi )

g ∼= Wi as R-modules, and so g(Mi ) = Mi . Thus
M = M1⊕M2 as a G+-module. We have shown that Ext1G+(Wi ,W j )= 0. �

Proposition 10.5. Suppose that (G, V ) is as in case (i) of Theorem 2.4. Then
Ext1G(V, V ) = 0, unless one of the following possibilities occurs for the group
H <GL(W ) induced by the action of G+ on any irreducible G+-submodule W of V :

(i) p = (q + 1)/2, dim W = p− 1, and H ∼= SL2(q).

(ii) p = 2 f
+ 1 is a Fermat prime, dim W = p− 2, and H ∼= SL2(2 f ).

(iii) (H, p, d)= (3A6, 5, 3) and (2A7, 7, 4).

Proof. Write V |G+ = e
∑t

i=1 Wi as usual and let Ki be the kernel of the action of
G+ on Wi . By Lemma 7.2, it suffices to show that Ext1G+(Wi ,W j )= 0 for all i, j .
Note that neither G+ nor Ki can have C p as a composition factor, according to
Theorem 2.4. Furthermore, if Ki 6=K j then we are done by Corollary 7.6. So we may
assume that Ki = K j and then by Lemma 7.3 replace G+ by H =G+/Ki =G+/K j .
Now we will go over the possibilities for (H,Wi ) listed in Theorem 2.1(b)–(d).

Suppose we are in the case (b1) of Theorem 2.1. Assume first that (p, H) =
((qn
+ 1)/2,Sp2n(q)). It is well known (see [Guralnick et al. 2002, Theorem 2.1])

that H has exactly two irreducible modules of dimension (qn
− 1)/2, namely the

two Weil modules of that dimension. Hence we can apply Lemma 10.1 and arrive
at the exception (i).

Next, assume that (p, H)= ((qn
+ 1)/(q+ 1),PSUn(q)); in particular, n ≥ 3 is

odd. Applying [Guralnick et al. 2002, Theorem 2.7 and Proposition 11.3], we see
that there is a unique irreducible k H -module of dimension p−1= (qn

−q)/(q+1),
and, furthermore, that this module has a unique complex lift. Hence we are done
by Lemma 7.1.
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Suppose now that we are in the case (c) of Theorem 2.1. If H = Ap, then using
[Guralnick and Tiep 2005, Lemma 6.1] for p ≥ 17 and [Conway et al. 1985] for
p ≤ 13, we see that H has a unique irreducible k H -module of dimension p− 2,
and, furthermore, that this module has no complex lift unless p= 5, whence we are
done by Lemma 7.1. Note that the exception p = 5 is recorded in (ii) (with f = 2).

Next, assume that (p, H) = ((qn
− 1)/(q − 1),PSLn(q)). If n = 2, then p =

q + 1 = 2 f
+ 1 is a Fermat prime, in which case H = SL2(2 f ) has a unique

irreducible k H -module W of dimension p− 2, with 2 f−1 complex lifts, whence
dim Ext1H (W,W )= 1 by Lemma 7.1. This exception is recorded in (ii). If n ≥ 3,
then by [Guralnick and Tiep 1999, Theorem 1.1], H has a unique irreducible k H -
module W of dimension p−2 with no complex lifts, whence dim Ext1H (W,W )= 0
by Lemma 7.1.

It remains to consider the 19 cases listed in Lemma 10.2. Furthermore, by
Corollary 7.6, we need only consider the case where G+ acts on Wi and W j

with the same kernel. Since G+ has no composition factor isomorphic to C p, by
Lemma 7.3(ii) we may view Wi and W j as modules over the same quasisimple group
H , with the same kernel. The irreducibility of G on V further implies that W j ∼=W g

i
for some g ∈ G, whence the H -modules Wi and W j are Aut(H)-conjugate. Now
we are done by applying Lemma 10.2. �

Corollary 10.6. Suppose that p = 2 f
+ 1 is a Fermat prime. Then there is a finite

absolutely irreducible linear group G <GL(V )=GLp−2(k) of degree p−2 over k
such that G = G+ ∼= SL2(2 f ) and dim Ext1G(V, V ) = 1. In particular, (G, V ) is
not adequate.

Proof. See the proof of Proposition 10.5 and the exception (ii) listed therein. �

Proof of Theorem 1.3. (a) Assume first that G is not p-solvable. Then G+ has
no composition factor isomorphic to C p, and H 1(G, k)= 0 by Theorem 2.4. By
Lemma 7.2, we need to verify that Ext1G+(Wi ,W j ) = 0 for any two simple G+-
submodules Wi and W j of V , of dimension 1< d < p. Suppose for instance that
Ext1G+(W1,W2) 6= 0.

Suppose in addition that p > 3. Then the perfect group G+ admits a reducible
indecomposable module U with two composition factors W1 and W2, of dimension
2d, say with kernel K . Since G+ has no composition factor isomorphic to C p,
Op(X)= 1 for the group X := G+/K induced by the action of G+ on U . Suppose
that X is not quasisimple. By Proposition 9.7, we have d = p − 1. Then by
Lemma 9.6, either we arrive at the exception (b)(ii) listed in Theorem 1.3, or else
Lemma 9.3 applies. In the latter case, we see that H 1(X, k) 6= 0, whence X and
G+ admit C p as a composition factor, a contradiction. Thus X is quasisimple and
Z(X) is a p′-group. If X is of Lie type in characteristic p > 3, then we must have
d = (p± 1)/2 and arrive (using Lemma 9.5) at the exception (b)(i). Otherwise
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we are in the case (i) of Theorem 2.4, and so by Proposition 10.5 we arrive at the
exceptions (b)(iii)–(v).

(b) Now we consider the case where p= 3 and G is not p-solvable. Then the perfect
group G+ acts nontrivially on W1 and W2, which are of dimension 2. Applying
Theorem 2.4, we see that G+ = L1 ∗ · · · ∗ Ln is a central product of quasisimple
groups; moreover, for all j we have that L j = SL2(q) with q = 3a > 3 or q = 5.
Also, for each i , there is a unique ki such that L j acts nontrivially on Wi precisely
when j = ki . Since Ext1X (k, k)= 0 for any perfect group X , by Lemma 7.7 we may
assume that k1 = k2 = 1 and Ext1L1

(W1,W2) 6= 0. If q = 5, then the case (b)(iii)
holds. Otherwise we arrive at (b)(vi) — indeed, Ext1L1

(L(3a−2), L(3a−1)) 6= 0 by
[Andersen et al. 1983, Corollary 4.5].

(c) We may now assume that G+ is p-solvable (and so is G). In particular, the
subgroup H < GL(Wi ) induced by the action of G+ on Wi is p-solvable, whence
p is a Fermat prime, and H = Op′(H)P with P ∼= C p. Since G+ projects onto H ,
G+ also has C p as a composition factor, and so H 1(G+, k) 6= 0; in particular,
Ext1G+(V, V ) 6= 0. We arrive at the exception (a) of Theorem 1.3. �

Proof of Corollary 1.4. Suppose that (G, V ) is not adequate, and let V := V ⊗k k.
By the assumptions, dim W < p. Since dim V / dim W divides |G/G+| by [Navarro
1998, Theorem 8.30], p - dimk V = dimk V . Next, (G, V ) is weakly adequate by
Theorem 1.2. It follows that Ext1G(V, V ) 6= 0 and so Ext1G(V , V ) 6= 0. Now we can
apply Theorem 1.3. �
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