

Adequate groups of low degree

Robert Guralnick, Florian Herzig and Pham Huu Tiep

The notion of adequate subgroups was introduced by Jack Thorne. It is a weakening of the notion of big subgroups used in generalizations of the Taylor-Wiles method for proving the automorphy of certain Galois representations. Using this idea, Thorne was able to strengthen many automorphy lifting theorems. It was shown by Guralnick, Herzig, Taylor, and Thorne that if the dimension is small compared to the characteristic, then all absolutely irreducible representations are adequate. Here we extend that result by showing that, in almost all cases, absolutely irreducible $k G$-modules in characteristic p whose irreducible G^{+}summands have dimension less than p (where G^{+}denotes the subgroup of G generated by all p-elements of G) are adequate.

1. Introduction 78
2. Linear groups of low degree 81
3. Weak adequacy for $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ 85
4. Weak adequacy for Chevalley groups 89
5. Weak adequacy in cross-characteristic 98
6. Weak adequacy for special linear groups 114
7. Extensions and self-extensions, I: Generalities 127
8. Indecomposable representations of $\mathrm{SL}_{2}(q)$ 131
9. Finite groups with indecomposable modules of small dimension 133
10. Extensions and self-extensions, II 140
References 144
[^0]
1. Introduction

Throughout the paper, let k be a field of characteristic p and let V be a finitedimensional vector space over k. Let $\rho: G \rightarrow \mathrm{GL}(V)$ be an absolutely irreducible representation. Thorne [2012] called (G, V) adequate if the following conditions hold (we rephrase the conditions slightly by combining two of the properties into one):
(i) p does not divide $\operatorname{dim} V$.
(ii) $\operatorname{Ext}_{G}^{1}(V, V)=0$.
(iii) $\operatorname{End}(V)$ is spanned by the elements $\rho(g)$ with $\rho(g)$ semisimple.

We remark that recently Thorne has shown that one can relax condition (i) above (see [Thorne 2015, Corollary 7.3] and [Guralnick et al. 2014, §1]).

If G is a finite group of order prime to p, then it is well known that (G, V) is adequate. In this case, condition (iii) is often referred to as Burnside's lemma. It is a trivial consequence of the Artin-Wedderburn theorem. Also, (G, V) is adequate if G is a connected algebraic group over $k=\bar{k}$ and V is a rational irreducible $k G$-module; see [Guralnick 2012a, Theorem 1.2].

The adequacy conditions are a generalization to higher dimension of the conditions used by Wiles and Taylor in studying the automorphic lifts of certain 2-dimensional Galois representations, and they are a weakening of the previously introduced bigness condition [Clozel et al. 2008]. Thorne [2012] strengthened the existing automorphy lifting theorems for n-dimensional Galois representations assuming the weaker adequacy hypotheses. We refer the reader to [Thorne 2012] for more references and details.

The following theorem was proved in [Guralnick et al. 2012, Theorem 9]:
Theorem 1.1. Let k be a field of characteristic p and G a finite group. Let V be an absolutely irreducible faithful $k G$-module. Let G^{+}denote the subgroup generated by the p-elements of G. If $\operatorname{dim} W \leq(p-3) / 2$ for an absolutely irreducible $k G^{+}$submodule W of V, then (G, V) is adequate.

The example $G=\mathrm{SL}_{2}(p)$ with V irreducible of dimension $(p-1) / 2$ shows that the previous theorem is the best possible. However, the counterexamples are rare. Our first goal is to prove a similar theorem under the assumption that $\operatorname{dim} W<p$. We show that almost always (G, V) is adequate; see Corollary 1.4. Indeed, we show that the spanning condition always holds under the weaker hypothesis. We show that there are only a handful of examples where $\operatorname{Ext}_{G}^{1}(V, V) \neq 0$. See Theorems 1.2 and 1.3 for more precise statements.

Theorem 1.1 was crucial in several recent applications of automorphy lifting theorems, such as [Barnet-Lamb et al. 2014; Calegari 2012; Dieulefait 2014]. In fact, the main two technical hypotheses in the most recent automorphy lifting theorems
are potential diagonalizability (a condition in p-adic Hodge theory) and adequacy of the residual image [Dieulefait and Gee 2012]. Since some important applications of automorphy lifting theorems [Breuil et al. 2001; Khare and Wintenberger 2009; Dieulefait 2014] require working with primes p that are small relative to the dimension of the Galois representation, we expect that our results will be useful in obtaining further arithmetic applications of automorphy lifting theorems. (Note that adequacy of 2-dimensional linear groups has been analyzed in Appendix A of [Barnet-Lamb et al. 2013].)

An outgrowth of our results leads us to prove an analogue of [Guralnick 1999] and answer a question of Serre on complete reducibility of finite subgroups of orthogonal and symplectic groups of small degree. This is done in the sequel [Guralnick et al. 2014], where we essentially classify indecomposable modules in characteristic p of dimension less than $2 p-2$. We also extend adequacy results to the case of linear groups of degree p and generalize the asymptotic result [Guralnick 2012a, Theorem 1.2] to disconnected algebraic groups \mathscr{G} (with $p \nmid\left[\mathscr{G}: \mathscr{G}^{0}\right]$), allowing at the same time that p divides the dimension of the \mathscr{g}-module.

Note that if the kernel of ρ has order prime to p, then there is no harm in passing to the quotient. So we will generally assume that either ρ is faithful or more generally has kernel of order prime to p. Also, note that the dimensions of cohomology groups and the dimension of the span of the semisimple elements in G in $\operatorname{End}(V)$ do not change under extension of scalars. Hence, most of the time we will work over an algebraically closed field k.

Following [Guralnick 2012b], we say that the representation $\rho: G \rightarrow \mathrm{GL}(V)$, or the pair (G, V), is weakly adequate if $\operatorname{End}(V)$ is spanned by the elements $\rho(g)$ with $\rho(g)$ semisimple.

Our main results are the following:
Theorem 1.2. Let k be a field of characteristic p and G a finite group. Let V be an absolutely irreducible faithful $k G$-module. Let G^{+}denote the subgroup generated by the p-elements of G. If $p>\operatorname{dim} W$ for an irreducible $k G^{+}$-submodule W of V, then (G, V) is weakly adequate.
Theorem 1.3. Let $k=\bar{k}$ be a field of characteristic p and G a finite group. Let V be an irreducible faithful $k G$-module. Let G^{+}denote the subgroup generated by the p-elements of G. Suppose that $p>d:=\operatorname{dim} W$ for an irreducible $k G^{+}$-submodule W of V, and let $H<\operatorname{GL}(W)$ be induced by the action of G^{+}on W. Then one of the following holds:
(a) p is a Fermat prime, $d=p-1, G^{+}$is solvable (and so G is p-solvable), and $H / \boldsymbol{O}_{p^{\prime}}(H)=C_{p}$.
(b) $H^{1}(G, k)=0$. Furthermore, either $\operatorname{Ext}_{G}^{1}(V, V)=0$, or one of the following holds:
(i) $H=\mathrm{PSL}_{2}(p)$ or $\mathrm{SL}_{2}(p)$, and $d=(p \pm 1) / 2$.
(ii) $H=\mathrm{SL}_{2}(p) \times \mathrm{SL}_{2}\left(p^{a}\right)$ (modulo a central subgroup), $d=p-1$, and W is a tensor product of $a(p-1) / 2$-dimensional $\mathrm{SL}_{2}(p)$-module and a 2-dimensional $\mathrm{SL}_{2}\left(p^{a}\right)$-module.
(iii) $p=(q+1) / 2, d=p-1$, and $H \cong \mathrm{SL}_{2}(q)$.
(iv) $p=2^{f}+1$ is a Fermat prime, $d=p-2$, and $H \cong \operatorname{SL}_{2}\left(2^{f}\right)$.
(v) $(H, p, d)=\left(3 \mathrm{~A}_{6}, 5,3\right)$ and $\left(2 \mathrm{~A}_{7}, 7,4\right)$.
(vi) $(H, p, d)=\left(\mathrm{SL}_{2}\left(3^{a}\right), 3,2\right)$ and $a \geq 2$.

Theorems 1.2 and 1.3 immediately imply:
Corollary 1.4. Let k be a field of characteristic p and G a finite group. Let V be an absolutely irreducible faithful $k G$-module, and let G^{+}denote the subgroup generated by the p-elements of G. Suppose that the dimension of any irreducible $k G^{+}$-submodule in V is less than p. Let W be an irreducible $\bar{k} G^{+}$-submodule of $V \otimes_{k} \bar{k}$. Then (G, V) is adequate, unless the group $H<\mathrm{GL}(W)$ induced by the action of G^{+}on W is as described in one of the exceptional cases (a), (b)(i)-(vi) listed in Theorem 1.3.

Corollary 1.5. Let k be a field of characteristic p and G a finite group. Let V be an absolutely irreducible faithful $k G$-module, and let G^{+}denote the subgroup generated by the p-elements of G. Suppose that the dimension d of any irreducible $k G^{+}$-submodule in V is less than $p-3$. Let W be an irreducible $\bar{k} G^{+}$-submodule of $V \otimes_{k} \bar{k}$. Then (G, V) is adequate, unless $d=(p \pm 1) / 2$ and the group $\bar{H}<\operatorname{PGL}(W)$ induced by the action of G^{+}on W is $\mathrm{PSL}_{2}(p)$.

One should emphasize that, in all the aforementioned results, the dimension bound $\operatorname{dim} W<p$ is imposed only on an irreducible G^{+}-summand of V. In general, G / G^{+}can be an arbitrary p^{\prime}-group, and likewise, $\operatorname{dim} V / \operatorname{dim} W$ can be arbitrarily large. So a major portion of the proofs, especially for Theorem 1.2, is spent establishing the results under these more general hypotheses.

This paper is organized as follows. In Section 2, based on results of [Blau and Zhang 1993], we describe the structure of (non-p-solvable) finite linear groups $G<\mathrm{GL}(V)$ such that the dimension of irreducible G^{+}-summands in V is less than p; see Theorem 2.4. Sections 3 and 4 are devoted to establish weak adequacy for Chevalley groups in characteristic p. In Sections 5 and 6, we prove adequacy for the remaining families of finite groups occurring in Theorem 2.4 and complete the proof of Theorem 1.2. In Section 7, we collect various facts concerning extensions and self-extensions of simple modules. The main result of Section 8, Proposition 8.2, classifies self-dual indecomposable $\mathrm{SL}_{2}(q)$-modules for $p \mid q$. In Section 9, we describe the structure of finite groups G possessing a reducible indecomposable module of dimension $\leq 2 p-3$ (Proposition 9.7). Theorem 1.3 and Corollary 1.4 are proved in Section 10.

Notation. If V is a $k G$-module and $X \leq G$ is a subgroup, then V_{X} denotes the restriction of V to X. The containments $X \subset Y$ (for sets) and $X<Y$ (for groups) are strict. Fix a prime p and an algebraically closed field k of characteristic p. Then for any finite group $G, \operatorname{IBr}_{p}(G)$ is the set of isomorphism classes of irreducible $k G$-representations (or their Brauer characters, depending on the context), $\mathfrak{d}_{p}(G)$ denotes the smallest degree of the nontrivial $\varphi \in \operatorname{IBr}_{p}(G)$, and $B_{0}(G)$ denotes the principal p-block of G. Sometimes we use $\mathbb{1}$ to denote the principal representation. $\boldsymbol{O}_{p}(G)$ is the largest normal p-subgroup of $G, \boldsymbol{O}^{p}(G)$ is the smallest normal subgroup N of G subject to G / N being a p-group, and similarly for $\boldsymbol{O}_{p^{\prime}}(G)$ and $\boldsymbol{O}^{p^{\prime}}(G)=G^{+}$. Furthermore, the Fitting subgroup $F(G)$ is the largest nilpotent normal subgroup of G, and $E(G)$ is the product of all subnormal quasisimple subgroups of G, so that $F^{*}(G)=F(G) E(G)$ is the generalized Fitting subgroup of G. Given a finite-dimensional $k G$-representation $\Phi: G \rightarrow \mathrm{GL}(V)$, we denote by \mathcal{M} the k-span

$$
\langle\Phi(g): \Phi(g) \text { semisimple }\rangle_{k} .
$$

If M is a finite-length module over a ring R, then define $\operatorname{soc}_{i}(M)$ by $\operatorname{soc}_{0}(M)=0$ and $\operatorname{soc}_{j}(M) / \operatorname{soc}_{j-1}(M)=\operatorname{soc}\left(M / \operatorname{soc}_{j-1}(M)\right)$. If $M=\operatorname{soc}_{j}(M)$ with j minimal, we say that j is the socle length of M.

2. Linear groups of low degree

First we describe the structure of absolutely irreducible non- p-solvable linear groups of low degree, relying on the main result of [Blau and Zhang 1993]:

Theorem 2.1. Let W be a faithful, absolutely irreducible $k H$-module for a finite group H with $\boldsymbol{O}^{p^{\prime}}(H)=H$. Suppose that $1<\operatorname{dim} W<p$. Then one of the following cases holds, where $P \in \operatorname{Syl}_{p}(H)$:
(a) p is a Fermat prime, $|P|=p, H=\boldsymbol{O}_{p^{\prime}}(H) P$ is solvable, $\operatorname{dim} W=p-1$, and $\boldsymbol{O}_{p^{\prime}}(H)$ is absolutely irreducible on W.
(b) $|P|=p, \operatorname{dim} W=p-1$, and one of the following conditions holds:
(b1) $(H, p)=\left(\mathrm{SU}_{n}(q),\left(q^{n}+1\right) /(q+1)\right),\left(\operatorname{Sp}_{2 n}(q),\left(q^{n}+1\right) / 2\right),\left(2 \mathrm{~A}_{7}, 5\right)$, ($3 J_{3}, 19$), or ($2 R u, 29$).
(b2) $p=7$ and $H=61 \cdot \mathrm{PSL}_{3}(4), 6_{1} \cdot \mathrm{PSU}_{4}(3), 2 J_{2}, 3 \mathrm{~A}_{7}$, or $6 \mathrm{~A}_{7}$.
(b3) $p=11$ and $H=M_{11}, 2 M_{12}$, or $2 M_{22}$.
(b4) $p=13$ and $H=6 \cdot$ Suz or $2 \mathrm{G}_{2}(4)$.
(c) $|P|=p, \operatorname{dim} W=p-2$, and $(H, p)=\left(\operatorname{PSL}_{n}(q),\left(q^{n}-1\right) /(q-1)\right),\left(\mathrm{A}_{p}, p\right)$, $\left(3 \mathrm{~A}_{6}, 5\right),\left(3 \mathrm{~A}_{7}, 5\right),\left(M_{11}, 11\right)$, or $\left(M_{23}, 23\right)$.
(d) $(H, p, \operatorname{dim} W)=\left(2 \mathrm{~A}_{7}, 7,4\right),\left(J_{1}, 11,7\right)$.
(e) Extraspecial case: $|P|=p=2^{n}+1 \geq 5, \operatorname{dim} W=2^{n}, \boldsymbol{O}_{p^{\prime}}(H)=R \boldsymbol{Z}(H)$, $R=[P, R] \mathbf{Z}(R) \in \operatorname{Syl}_{2}\left(\boldsymbol{O}_{p^{\prime}}(H)\right),[P, R]$ is an extraspecial 2-group of order $2^{1+2 n}$, and $V_{[P, R]}$ is absolutely irreducible. Furthermore, $S:=H / \boldsymbol{O}_{p^{\prime}}(H)$ is simple nonabelian, and either $S=\operatorname{Sp}_{2 a}\left(2^{b}\right)^{\prime}$ or $\Omega_{2 a}^{-}\left(2^{b}\right)^{\prime}$ with $a b=n$ or $S=\operatorname{PSL}_{2}(17)$ and $p=17$.
(f) Lie (p) case: $H / \mathbf{Z}(H)$ is a direct product of simple groups of Lie type in characteristic p.

Furthermore, in the cases (b)-(d), H is quasisimple with $\mathbf{Z}(H)$ a p^{\prime}-group.
Proof. We apply Theorem A of [Blau and Zhang 1993] and arrive at one of the possibilities (a)-(j) listed there. Note that possibility (j) is restated as our case (f), and possibilities (f)-(i) do not occur since H is absolutely irreducible. Possibility (a) does not arise either since $\operatorname{dim} W>1$, and possibility (b) is restated as our case (a). Next, in the case of possibility (c), either we are back to our case (a), or else we are in case (e), where the simplicity of S follows from the assumption that $H=\boldsymbol{O}^{p^{\prime}}(H)$. (Also, $S \not \approx \Omega_{2 a}^{+}\left(2^{b}\right)$ since $|S|_{p}=|P|=p$.)

In the remaining cases (d), (e), and (g) of [Blau and Zhang 1993, Theorem A], we have that $H / \mathbf{Z}(H)=S$ is a simple nonabelian group, and $\mathbf{Z}(H)$ is a cyclic p^{\prime}-group by Schur's lemma. Hence, $H^{(\infty)}$ is a perfect normal subgroup of p^{\prime}-index in $H=\boldsymbol{O}^{p^{\prime}}(H)$. It follows that $H=H^{(\infty)}$ and so it is quasisimple. Also, the possibilities for $(S, \operatorname{dim} W, p)$ are listed. Using

- [Guralnick and Tiep 1999] if $S=\operatorname{PSL}_{n}(q)$,
- [Guralnick et al. 2002] if $S=\operatorname{PSU}_{n}(q)$ or $\operatorname{PSp}_{2 n}(q)$,
- [Guralnick and Tiep 2005, Lemma 6.1] if $S=\mathrm{A}_{p}$ and $p \geq 17$, and
- [Jansen et al. 1995] for the other simple groups,
we arrive at cases (b)-(d).
Next we prove some technical lemmas in the spirit of [Blau and Zhang 1993, Lemma 3.10].

Lemma 2.2. Let G be a finite group with normal subgroups K_{1} and K_{2} such that $K_{1} \cap K_{2} \leq \boldsymbol{O}_{p^{\prime}}(G)$. For any finite group X, let \bar{X} denote $X / \boldsymbol{O}_{p^{\prime}}(X)$. Suppose that $\overline{G / K_{1}} \cong \prod_{i \in I} M_{i}$ and $\overline{G / K_{2}} \cong \prod_{j \in J} N_{j}$ are direct products of simple nonabelian groups. Then there are some sets $I^{\prime} \subseteq I$ and $J^{\prime} \subseteq J$ such that

$$
\bar{G} \cong \prod_{i \in I^{\prime}} M_{i} \times \prod_{j \in J^{\prime}} N_{j} .
$$

Proof. For $i=1$, 2, let $K_{i} \leq H_{i} \triangleleft G$ be such that $H_{i} / K_{i}=\boldsymbol{O}_{p^{\prime}}\left(G / K_{i}\right)$. Then

$$
G / H_{1} \cong \prod_{i \in I} M_{i}, \quad G / H_{2} \cong \prod_{j \in J} N_{j} .
$$

By [Blau and Zhang 1993, Lemma 3.9], there are sets $I^{\prime} \subseteq I$ and $J^{\prime} \subseteq J$ such that

$$
G /\left(H_{1} \cap H_{2}\right) \cong \prod_{i \in I^{\prime}} M_{i} \times \prod_{j \in J^{\prime}} N_{j} .
$$

It remains to show that $H_{1} \cap H_{2}=\boldsymbol{O}_{p^{\prime}}(G)$. Certainly, $H_{1} \cap H_{2} \geq \boldsymbol{O}_{p^{\prime}}(G)$. Conversely,

$$
\left(H_{1} \cap K_{2}\right) /\left(K_{1} \cap K_{2}\right) \hookrightarrow H_{1} / K_{1}, \quad\left(H_{1} \cap H_{2}\right) /\left(H_{1} \cap K_{2}\right) \hookrightarrow H_{2} / K_{2},
$$

and $K_{1} \cap K_{2} \leq \boldsymbol{O}_{p^{\prime}}(G)$. It follows that $H_{1} \cap H_{2}$ is a p^{\prime}-group.
Lemma 2.3. Let G be a finite group with a faithful $k G$-module V. Suppose that $V=W_{1} \oplus \cdots \oplus W_{t}$ is a direct sum of $k G$-submodules, and let $H_{i} \leq \mathrm{GL}\left(W_{i}\right)$ be the linear group induced by the action of G on W_{i}. Suppose that $S_{i}:=H_{i} / \boldsymbol{O}_{p^{\prime}}\left(H_{i}\right)$ is a simple nonabelian group for each i. Then there is a subset $J \subseteq\{1,2, \ldots, t\}$ such that

$$
G / \boldsymbol{O}_{p^{\prime}}(G) \cong \prod_{j \in J} S_{j}
$$

In particular, if $\boldsymbol{O}_{p^{\prime}}\left(H_{i}\right)=1$ for all i, then $G \cong \prod_{j \in J} S_{j}$.
Proof. We proceed by induction on t. The induction base $t=1$ is obvious. For the induction step, let K_{i} denote the kernel of the action of G on W_{i}, so that $H_{i}=G / K_{i}$. The faithfulness of V implies that $\bigcap_{i=1}^{t} K_{i}=1$. Adopt the bar notation \bar{X} of Lemma 2.2. By the assumption, $\overline{G / K_{1}} \cong S_{1}$. Next, observe that $L:=\bigcap_{i=2}^{t} K_{i}$ is the kernel of the action of G on $V^{\prime}:=W_{2} \oplus \cdots \oplus W_{t}$, and the action of G / L on W_{i} induces H_{i} for all $i \geq 2$. Applying the induction hypothesis to G / L acting on V^{\prime}, we see that $\overline{G / L} \cong \prod_{j \in J^{\prime}} S_{j}$ for some $J^{\prime} \subseteq\{2,3, \ldots, t\}$. Also, $K_{1} \cap L=1$. Hence we can apply Lemma 2.2 to get $\bar{G} \cong \prod_{j \in J} S_{j}$ for some $J \subseteq\{1,2,3, \ldots, t\}$.

Finally, if $\boldsymbol{O}_{p^{\prime}}\left(H_{i}\right)=1$ for all i, then the action of $\boldsymbol{O}_{p^{\prime}}(G)$ on W_{i} induces a normal p^{\prime}-subgroup of H_{i} for all i, whence $\boldsymbol{O}_{p^{\prime}}(G) \leq \bigcap_{i=1}^{t} K_{i}=1$, and we are done.
Theorem 2.4. Let V be a finite-dimensional vector space over an algebraically closed field k of characteristic p and $G<\mathrm{GL}(V)$ a finite irreducible subgroup. Suppose that an irreducible G^{+}-submodule W of V has dimension $<p$ and G^{+}is not solvable. Then G^{+}is perfect and has no composition factor isomorphic to C_{p}; in particular, $H^{1}(G, k)=0$. Furthermore, if H is the image of G^{+}in $\mathrm{GL}(W)$, then one of the following statements holds:
(i) One of the cases (b)-(d) of Theorem 2.1 holds for H, and $G^{+} / \mathbf{Z}\left(G^{+}\right)=$ $S_{1} \times \cdots \times S_{n} \cong S^{n}$ is a direct product of n copies of the simple nonabelian group $S=H / \mathbf{Z}(H)$. Here, G permutes these n direct factors S_{1}, \ldots, S_{n} transitively. Furthermore, $G^{+}=L_{1} * \cdots * L_{n}$ is a central product of quasisimple groups L_{i}, each being a central cover of S, and the action of G^{+}on each irreducible G^{+}submodule W_{i} of W induces a quasisimple subgroup of $\mathrm{GL}\left(W_{i}\right)$. Finally, if H is
the full covering group of S or if $H=S$, then

$$
G^{+}=L_{1} \times L_{2} \times \cdots \times L_{n} \cong H^{n}
$$

(ii) Case (e) of Theorem 2.1 holds for H. Furthermore, $\boldsymbol{O}_{p^{\prime}}\left(G^{+}\right)$is irreducible on any irreducible G^{+}-submodule W_{i} of V, and $G^{+} / \boldsymbol{O}_{p^{\prime}}\left(G^{+}\right) \cong S^{m}$ is a direct product of $m \geq 1$ copies of the simple nonabelian group S listed in case (e) of Theorem 2.1.
(iii) Case (f) of Theorem 2.1 holds for H, and $G^{+}=L_{1} * \cdots * L_{n}$ is a central product of quasisimple groups L_{i} of Lie type in characteristic p with $\boldsymbol{Z}\left(L_{i}\right)$ a p^{\prime}-group.

Proof. (a) By Clifford's theorem, $V_{G^{+}} \cong e \sum_{i=1}^{t} W_{i}$ for some $e, t \geq 1$, and $\left\{W_{1}, \ldots, W_{t}\right\}$ is a full set of representatives of isomorphism classes of G-conjugates of $W \cong W_{1}$. Let $\Phi_{i}: G^{+} \rightarrow \operatorname{GL}\left(W_{i}\right)$ denote the corresponding representation, and let $K_{i}:=\operatorname{Ker}\left(\Phi_{i}\right)$, so that $G^{+} / K_{i} \cong H$ for all i, where we denote by H the subgroup of $\operatorname{GL}(W)$ induced by the action of G^{+}on W. The faithfulness of the action of G on V implies that $\bigcap_{i=1}^{t} K_{i}=1$. In particular, G^{+}injects into $\prod_{i=1}^{t}\left(G^{+} / K_{i}\right) \cong H^{t}$. Hence case (a) of Theorem 2.1 is impossible since G^{+}is not solvable. In case (f) of Theorem 2.1, an argument similar to the proof of Lemma 2.3 shows that $G^{+} / \boldsymbol{Z}\left(G^{+}\right)=S_{1} \times \cdots \times S_{n}$ is a direct product of simple groups S_{i} of Lie type in characteristic p. Since $G^{+}=\boldsymbol{O}^{p^{\prime}}\left(G^{+}\right)$and $\boldsymbol{O}_{p}\left(G^{+}\right) \leq \boldsymbol{O}_{p}(G)=1$, it then follows that G^{+}equals $L_{1} * \cdots * L_{n}$, a central product of quasisimple groups L_{i} of Lie type in characteristic p with $\boldsymbol{Z}\left(L_{i}\right)$ a p^{\prime}-group (just take L_{i} to be a perfect inverse image of S_{i} in G^{+}), i.e., (iii) holds. In the remaining cases (b)-(e) of Theorem 2.1, $H / \boldsymbol{O}_{p^{\prime}}(H) \cong S$, where S is a nonabelian simple group described in Theorem 2.1(b)-(e). By Lemma 2.3, $G^{+} / \boldsymbol{O}_{p^{\prime}}\left(G^{+}\right) \cong S^{n}$, a direct product of $n \geq 1$ copies of S. Thus in all cases, G^{+}has no composition factor isomorphic to C_{p} and $\boldsymbol{Z}\left(G^{+}\right) \leq \boldsymbol{O}_{p^{\prime}}\left(G^{+}\right)$. Furthermore, $G^{+}=\left(G^{+}\right)^{(\infty)} \boldsymbol{O}_{p^{\prime}}\left(G^{+}\right)$and so $\left(G^{+}\right)^{(\infty)}$ is a normal subgroup of p^{\prime}-index in $G^{+}=\boldsymbol{O}^{p^{\prime}}\left(G^{+}\right)$, whence G^{+}is perfect. Thus the first claim of Theorem 2.4 holds in all cases.
(b) Suppose next that we are in the cases (b)-(d) of Theorem 2.1. Then H is quasisimple and $\boldsymbol{Z}(H)$ is a p^{\prime}-group; in particular, $\boldsymbol{O}_{p^{\prime}}(H)=\boldsymbol{Z}(H)$ and $H / \boldsymbol{Z}(H)=S$. Note that $\Phi_{i}\left(\boldsymbol{O}_{p^{\prime}}\left(G^{+}\right)\right)$is a normal p^{\prime}-subgroup of $H_{i}=\Phi_{i}\left(G^{+}\right) \cong H$, whence $\Phi_{i}\left(\boldsymbol{O}_{p^{\prime}}\left(G^{+}\right)\right) \leq \boldsymbol{Z}\left(H_{i}\right)$. Thus, for any $z \in \boldsymbol{O}_{p^{\prime}}\left(G^{+}\right)$and any $g \in G^{+},[z, g]$ acts trivially on each W_{i} and so $[z, g] \in \bigcap_{i=1}^{t} K_{i}=1$, i.e., $z \in \boldsymbol{Z}\left(G^{+}\right)$. We have shown that $\boldsymbol{O}_{p^{\prime}}\left(G^{+}\right)=\boldsymbol{Z}\left(G^{+}\right)=$: Z.

Now we can write $G^{+} / Z=S_{1} \times \cdots \times S_{n}$ with $S_{i} \cong S$. Let M_{i} denote the full inverse image of S_{i} in G^{+}and let $L_{i}:=M_{i}^{(\infty)}$. Then $M_{i}=L_{i} Z, L_{i} /\left(L_{i} \cap Z\right) \cong$ $M_{i} / Z \cong S$, and so L_{i} is quasisimple and a central cover of S. Next, for $i \neq j$ we have $\left[L_{i}, L_{j}\right] \leq Z$ and so, since L_{i} is perfect,

$$
\left[L_{i}, L_{j}\right]=\left[\left[L_{i}, L_{i}\right], L_{j}\right]=1
$$

by the three subgroups lemma. It follows that $M:=L_{1} L_{2} \cdots L_{n}$ is a central product of the L_{i}. But $G^{+}=M Z$ and G^{+}is perfect, so $G^{+}=M$.

The remaining claims in (i) are obvious if $t=1$, so we will now assume that $t>1$. First we show that G acts transitively on $\left\{S_{1}, \ldots, S_{n}\right\}$. Relabeling the W_{i} suitably we may assume that $K_{1} Z / Z \geq \prod_{i \neq 1} S_{i}$ and $K_{2} Z / Z \geq \prod_{i \neq 2} S_{i}$. But $G^{+} / K_{j}=\Phi_{j}\left(G^{+}\right)$is quasisimple, so in fact $K_{j} Z / Z=\prod_{i \neq j} S_{i}$ for $j=1,2$. By Clifford's theorem, $W_{2}=W_{1}^{g}$ for some $g \in G$. Now g sends K_{1} to K_{2}, and so it sends S_{1} to S_{2}, as desired. If furthermore $H=S$, then $\boldsymbol{O}_{p^{\prime}}(H)=1$, whence $G^{+}=S_{1} \times \cdots \times S_{n} \cong H^{n}$ by Lemma 2.3. Consider the opposite situation: H is the full covering group of S. Again relabeling the W_{i} suitably and arguing as above, we may assume that $K_{1} Z / Z=\prod_{i \neq 1} S_{i}$. In this case, $K_{1} Z \geq L_{i}$ for $i \geq 2$, whence $L_{i}=\left[L_{i}, L_{i}\right] \leq\left[K_{1} Z, K_{1} Z\right] \leq K_{1}$ and $K_{1} \geq L_{2} L_{3} \cdots L_{n}$. It also follows that $G^{+}=K_{1} L_{1}$ and so $L_{1} /\left(K_{1} \cap L_{1}\right) \cong G^{+} / K_{1} \cong H$. Recall that L_{1} is perfect and $L_{1} /\left(L_{1} \cap Z\right) \cong S$, i.e., L_{1} is a central extension of the simple group S. But H is the full covering group of S, so $\left|L_{1}\right| \leq|H|$. It follows that $L_{1} \cap K_{1}=1$ and $L_{1} \cong H$; in particular, $L_{1} \cap \prod_{j \neq 1} L_{j}=1$. Similarly, $L_{i} \cong H$ and $L_{i} \cap \prod_{j \neq i} L_{j}=1$ for all i. Thus $G^{+}=L_{1} \times \cdots \times L_{n} \cong H^{n}$.
(c) Assume now that we are in case (e) of Theorem 2.1. Then $P_{i}:=\Phi_{i}\left(\boldsymbol{O}_{p^{\prime}}\left(G^{+}\right)\right)$ is again a normal p^{\prime}-subgroup of H_{i}, and so $P_{i} \leq \boldsymbol{O}_{p^{\prime}}\left(H_{i}\right)$. On the other hand, H_{i} / P_{i} is a quotient of $G^{+} / \boldsymbol{O}_{p^{\prime}}\left(G^{+}\right) \cong S^{n}$, whence all composition factors of H_{i} / P_{i} are isomorphic to S. Since $H_{i} / \boldsymbol{O}_{p^{\prime}}\left(H_{i}\right) \cong S$, we conclude that $P_{i}=\boldsymbol{O}_{p^{\prime}}\left(H_{i}\right)$; in particular, $\boldsymbol{O}_{p^{\prime}}\left(G^{+}\right)$is irreducible on W_{i}.

3. Weak adequacy for $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$

Proposition 3.1. Any nontrivial irreducible representation V of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ over $\overline{\mathbb{F}}_{p}$ is weakly adequate except when $\operatorname{dim} V=p$ and $p \leq 3$.
Remark 3.2. When $p \leq 3$ the p^{\prime}-elements of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ generate a normal subgroup of index p. If moreover $\operatorname{dim} V=p$ then this subgroup does not act irreducibly; hence V cannot be weakly adequate.

The rest of the section is devoted to proving Proposition 3.1. Note that $p>2$. In the following we write $V=L(a)$ with $0<a \leq p-1$. If $a \leq(p-3) / 2$ then the argument of [Guralnick et al. 2012, Theorem 9] applies. (Let $\mathscr{T} \subset \mathrm{SL}_{2}$ denote the diagonal maximal torus. Then distinct weights of $\mathscr{T}_{/ \mathbb{F}_{p}}$ on $L(a)$ restrict distinctly to $\mathscr{T}\left(\mathbb{F}_{p}\right)$, and End V is semisimple by [Serre 1994] with p-restricted highest weights.) We will assume from now on that $a \geq(p-1) / 2$.
Lemma 3.3. Suppose that $(p-1) / 2 \leq a \leq p-1$. Then

$$
\operatorname{head}_{\mathrm{SL}_{2}}(L(a) \otimes L(a)) \cong \bigoplus_{i=0}^{(p-1) / 2} L(2 i)
$$

Moreover, if $a \neq p-1$, head $_{\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)}(L(a) \otimes L(a))=\operatorname{head}_{\mathrm{SL}_{2}}(L(a) \otimes L(a))$, whereas if $a=p-1$,

$$
\operatorname{head}_{\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)}(L(a) \otimes L(a)) \cong \bigoplus_{i=0}^{(p-1) / 2} L(2 i) \oplus L(p-1)
$$

Proof. By [Doty and Henke 2005, Lemmas 1.1, 1.3], we see that for SL_{2},

$$
\begin{equation*}
L(a) \otimes L(a) \cong \bigoplus_{i=0}^{p-2-a} L(2 i) \oplus \bigoplus_{i=p-1-a}^{(p-3) / 2} T(2 p-2-2 i) \oplus L(p-1) \tag{3-1}
\end{equation*}
$$

where the tilting module $T(2 p-2-r)$ for $0 \leq r \leq p-2$ is uniserial of the form $(L(r)|L(2 p-2-r)| L(r))$. This proves the first part of the lemma. As is pointed out in Lemma 1.1 of [Doty and Henke 2005], $T(2 p-2-r) \cong Q(r)$ for $0 \leq r \leq p-2$, which implies that $\left.T(2 p-2-r)\right|_{\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)}$ is projective. See also [Jantzen 2003, §2.7].

Noting that $\left.L(2 p-2-r)\right|_{\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)} \cong L(p-1-r) \oplus L(p-3-r)$ and using that $L(p-1)$ is the only irreducible projective $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$-module, it follows that

$$
\left.T(2 p-2-r)\right|_{\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)} \cong \begin{cases}U(r) & \text { if } 0<r \leq p-2 \tag{3-2}\\ U(0) \oplus L(p-1) & \text { if } r=0\end{cases}
$$

where $U(i)$ denotes the projective cover of $L(i)$. The claim follows.
In the following, we will think of $V \cong L(a)$ as the space of homogeneous polynomials in X, Y of degree a.
Lemma 3.4. $(\text { End } V)^{u} \cong \bigoplus_{k=0}^{a} \overline{\mathbb{F}}_{p} \cdot(X(\partial / \partial Y))^{k}$, where $थ=\binom{1 *}{1} \subset \mathrm{SL}_{2}$.
Proof. The torus $\mathscr{T}=\left({ }^{*}{ }_{*}\right) \subset \mathrm{SL}_{2}$ acts on $(\text { End } V)^{\mathscr{U}}$, and, for $\lambda \in X(\mathscr{T})$,

$$
\begin{equation*}
\operatorname{Hom}_{\mathscr{T}}\left(\lambda,(\text { End } V)^{\mathscr{U}}\right) \cong \operatorname{Hom}_{\mathrm{SL}_{2}}(V(\lambda), \text { End } V) \tag{3-3}
\end{equation*}
$$

So it follows from (3-1) that $\operatorname{dim}(\text { End } V)^{थ}=a+1$. (Namely, $\lambda=0,2, \ldots, 2 a$ each work once.) A simple calculation shows that $X(\partial / \partial Y)$ is U-invariant; hence, so are $(X(\partial / \partial Y))^{k},(0 \leq k \leq a)$, which are clearly nonzero. Since $(X(\partial / \partial Y))^{k}$ has weight $2 k$, they are linearly independent.

By Lemma 3.4 and (3-1), for $0 \leq k \leq a$, the SL_{2}-representation generated by $(X(\partial / \partial Y))^{k}$ is $V(2 k) \subset \operatorname{End}(V)$.

Lemma 3.5. The weight-0 subspace in $V(2 k) \subset$ End V is the line spanned by

$$
\Delta_{k}:=\sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i}^{2} X^{i} Y^{k-i}\left(\frac{\partial}{\partial X}\right)^{i}\left(\frac{\partial}{\partial Y}\right)^{k-i} \quad(0 \leq k \leq a)
$$

Proof. We compute the weight-0 part of $\binom{1}{-1} \cdot(X(\partial / \partial Y))^{k}$. Take $f \in \overline{\mathbb{F}}_{p}[X, Y]$ homogeneous of degree a. Under $\left(\begin{array}{cc}1 \\ -1 & 1\end{array}\right) \cdot(X(\partial / \partial Y))^{k}$ the element f is sent to

$$
\begin{aligned}
\left(\left(\begin{array}{cc}
1 & \\
-1 & 1
\end{array}\right) \cdot\left(X \frac{\partial}{\partial Y}\right)^{k}\right) & f(X+Y, Y) \\
& =\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)\left[X^{k} \sum_{i=0}^{k}\binom{k}{i}\left(\left(\frac{\partial}{\partial X}\right)^{i}\left(\frac{\partial}{\partial Y}\right)^{k-i} f\right)(X+Y, Y)\right] \\
& =(X-Y)^{k} \sum_{i=0}^{k}\binom{k}{i}\left(\frac{\partial}{\partial X}\right)^{i}\left(\frac{\partial}{\partial Y}\right)^{k-i} f
\end{aligned}
$$

The weight-0 part is the part that does not change the monomial degree, so it is Δ_{k}. Finally, note that $\Delta_{k} \neq 0$ as $\Delta_{k}\left(X^{a}\right) \neq 0$.

Now suppose that $0 \leq k \leq(p-1) / 2$. By the SL_{2}-invariant trace pairing on End V, the element $\Delta_{k} \in \operatorname{soc}_{\mathrm{SL}_{2}}($ End $V)$ induces an element $\delta_{k} \in\left(\operatorname{head}_{\mathrm{SL}_{2}}(\operatorname{End} V)\right)^{*}$ that is zero on all irreducible constituents of head SL_{2} (End V) except for $L(2 k)$. Let $\pi_{\ell} \in$ End $V(0 \leq \ell \leq a)$ denote the projection $X^{i} Y^{a-i} \mapsto \delta_{i \ell} X^{i} Y^{a-i}$.

Lemma 3.6. If $0 \leq k \leq(p-1) / 2$, then $\delta_{k}\left(\pi_{\ell}\right)$ is a polynomial in ℓ of degree exactly k.
Proof. Note that $\delta_{k}\left(\pi_{\ell}\right)=\operatorname{tr}\left(\pi_{\ell} \circ \Delta_{k}\right)$ is the eigenvalue of Δ_{k} on $X^{\ell} Y^{a-\ell}$, and hence equals
$\sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i}^{2} \ell(\ell-1) \cdots(\ell-i+1)(a-\ell)(a-\ell-1) \cdots(a-\ell-k+i+1)$.
This is a polynomial in ℓ of degree at most k. The coefficient of ℓ^{k} is $\sum_{i=0}^{k}\binom{k}{i}^{2}=$ $\binom{2 k}{k} \not \equiv 0(\bmod p)$, as $k<p / 2$.

Let us denote this polynomial by $p_{k}(z) \in \mathbb{F}_{p}[z]$.
Proof of Proposition 3.1. Recall that $(p-1) / 2 \leq a \leq p-1$. Let \mathcal{M} denote the span of the image of the p^{\prime}-elements in End V, and let M denote the image of \mathcal{M} in $\operatorname{head}_{\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)}($ End $V)$. Since \mathcal{M} is $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$-stable, it suffices to show that $M=\operatorname{head}_{\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)}($ End $V)$.
(a) Suppose that $a<p-1$. By Lemma 3.3, $\operatorname{head}_{\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)}($ End $V) \cong \bigoplus_{i=0}^{(p-1) / 2} L(2 i)$. Suppose that M does not contain $L(2 k)$ for some $0 \leq k \leq(p-1) / 2$. Then δ_{k} annihilates the image of all p^{\prime}-elements. The images of the diagonal elements of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ in $\operatorname{End}(V)$ span the subspace with basis

$$
\pi_{i}\left(a-\frac{p-3}{2} \leq i \leq \frac{p-3}{2}\right) \quad \pi_{i}+\pi_{i+\frac{p-1}{2}}\left(0 \leq i \leq a-\frac{p-1}{2}\right)
$$

Hence

$$
\begin{align*}
p_{k}(i) & =0 \quad\left(a-\frac{p-3}{2} \leq i \leq \frac{p-3}{2}\right), \tag{3-4}\\
p_{k}(i)+p_{k}\left(i+\frac{p-1}{2}\right) & =0 \quad\left(0 \leq i \leq a-\frac{p-1}{2}\right) .
\end{align*}
$$

Now repeat the same argument with a nonsplit Cartan subgroup. After a linear change of variables $(X, Y) \mapsto\left(X^{\prime}, Y^{\prime}\right)$ over $\mathbb{F}_{p^{2}}$, this subgroup acts as

$$
\left\{\left(\begin{array}{cc}
x & \\
& x^{p}
\end{array}\right): x \in \mathbb{F}_{p^{2}}^{\times}, x^{p+1}=1\right\} .
$$

In this new basis of V we have corresponding elements $\Delta_{k}^{\prime}, \delta_{k}^{\prime}, \pi_{\ell}^{\prime}$. However, p_{k} is unchanged, as it is given by the explicit formula in the proof of Lemma 3.6. We thus get

$$
\begin{align*}
p_{k}(i) & =0 \quad\left(a-\frac{p-1}{2} \leq i \leq \frac{p-1}{2}\right), \\
p_{k}(i)+p_{k}\left(i+\frac{p+1}{2}\right) & =0 \quad\left(0 \leq i \leq a-\frac{p+1}{2}\right) . \tag{3-5}
\end{align*}
$$

From (3-4) and (3-5) we get that $p_{k}(\ell)=0$ for all $0 \leq \ell \leq a$. This contradicts the fact that $\operatorname{deg} p_{k}=k \leq(p-1) / 2 \leq a$.
(b) Suppose that $a=p-1$, so that $p \geq 5$ by our assumption. By Lemma 3.3, $\operatorname{head}_{\text {SL }_{2}\left(\mathbb{F}_{p}\right)}($ End $V) \cong \bigoplus_{i=0}^{(p-1) / 2} L(2 i) \oplus L(p-1)$.
(b1) Suppose that M does not contain $L(2 k)$ for some $k \leq(p-3) / 2$. Then δ_{k} and δ_{k}^{\prime} annihilate the image of all p^{\prime}-elements, so by an argument analogous to the one in (a) we get

$$
\begin{align*}
p_{k}(i)+p_{k}\left(i+\frac{p-1}{2}\right) & =0 \quad\left(0<i<\frac{p-1}{2}\right), \\
p_{k}(0)+p_{k}\left(\frac{p-1}{2}\right)+p_{k}(p-1) & =0 ; \tag{3-6}\\
p_{k}(i)+p_{k}\left(i+\frac{p+1}{2}\right) & =0 \quad\left(0 \leq i \leq \frac{p-3}{2}\right), \tag{3-7}\\
p_{k}\left(\frac{p-1}{2}\right) & =0 .
\end{align*}
$$

Then $p_{k}(z+1)-p_{k}(z)$ is a polynomial of degree $k-1<(p-1) / 2$ with zeroes at $z=0,1, \ldots,(p-5) / 2$ and $z=(p+1) / 2,(p+3) / 2, \ldots, p-2$. As $p-3 \geq(p-1) / 2$, it follows that $p_{k}(z+1) \equiv p_{k}(z)$; hence by (3-7) we get $p_{k}(\ell)=0$ for all $0 \leq \ell \leq p-1$, contradicting the fact that p_{k} has degree $0 \leq k<p$.
(b2) Suppose that M does not contain $L(p-1)^{\oplus 2}$. Note first that the second copy of $L(p-1) \subset \operatorname{End}(V)$ is contained in the Weyl module $V(2 p-2) \hookrightarrow T(2 p-2)$. Using (3-2) we have $\left.V(2 p-2)\right|_{\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)} \cong L(p-1) \oplus M$, where $0 \rightarrow L(0) \rightarrow M \rightarrow$ $L(p-3) \rightarrow 0$ is nonsplit. It follows using (3-3) that $V(2 p-2)^{u\left(F_{p}\right)}=V(2 p-2)^{\text {थu }}$ (both are two-dimensional). Hence there is a $U\left(\mathbb{F}_{p}\right)$-fixed vector in the second copy of $L(p-1)$ of the form $v:=(X(\partial / \partial Y))^{p-1}+c$ for some $c \in \overline{\mathbb{F}}_{p}$. We first compute c. Note that if V is an $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$-representation over $\overline{\mathbb{F}}_{p}$ and $v \neq 0$ is fixed by the Borel subgroup $B:=\binom{* *}{*} \subset \mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$, then v generates the p-dimensional irreducible representation of $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ if and only if

$$
\sum_{\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right) /\left({ }^{* *}{ }_{*}^{*}\right)} g v=0 \Longleftrightarrow \sum_{u \in \mathbb{F}_{p}}\left(\begin{array}{cc}
1 \\
-u & 1
\end{array}\right) v+\binom{-1}{1} v=0 .
$$

As in Lemma 3.5,

$$
\left(\begin{array}{cc}
1 & \\
-u & 1
\end{array}\right) \cdot\left(X \frac{\partial}{\partial Y}\right)^{p-1}=(X-u Y)^{p-1} \sum_{i=0}^{p-1}(-u)^{i}\left(\frac{\partial}{\partial X}\right)^{i}\left(\frac{\partial}{\partial Y}\right)^{p-1-i} ;
$$

hence

$$
\sum_{u \in \mathbb{F}_{p}}\left(\begin{array}{cc}
1 & (\\
-u & 1
\end{array}\right) \cdot\left[\left(X \frac{\partial}{\partial Y}\right)^{p-1}+c\right]=-\left[\Delta_{p-1}+Y^{p-1} \cdot\left(\frac{\partial}{\partial X}\right)^{p-1}\right] .
$$

Since

$$
\left(1^{-1}\right) \cdot\left[\left(X \frac{\partial}{\partial Y}\right)^{p-1}+c\right]=\left(Y \frac{\partial}{\partial X}\right)^{p-1}+c,
$$

we deduce that $c=-1$.
Consider the annihilator $M^{\perp} \subset \operatorname{soc}_{\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)}($ End $V)$ of M under the trace pairing. By assumption, $N:=M^{\perp} \cap L(p-1)^{\oplus 2} \neq 0$. Let $\psi \in N^{B}-\{0\}$, so that by the previous paragraph we can write $\psi=\lambda(X(\partial / \partial Y))^{(p-1) / 2}+\mu\left((X(\partial / \partial Y))^{p-1}-1\right)$ for some $(\lambda, \mu) \in \overline{\mathbb{F}}_{p}^{2}-\{0\}$. As $\psi \in M^{\perp}$, we get by a simple calculation that $0=\operatorname{tr}\left(\left({ }_{\alpha}^{\alpha}{ }_{\alpha^{-1}}\right) \circ \psi\right)=-\mu$ for any $\alpha \in \mathbb{F}_{p}^{\times}-\{ \pm 1\} \neq \varnothing$. Thus we may assume that $\psi=(X(\partial / \partial Y))^{(p-1) / 2}$. As the $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$-subrepresentation of $\operatorname{End}(V)$ generated by ψ is the unique SL_{2}-subrepresentation $L(p-1) \subset \operatorname{End}(V)$, we see that N contains Δ_{k} and Δ_{k}^{\prime} for $k=(p-1) / 2$, so δ_{k} and δ_{k}^{\prime} annihilate M. Now the argument of (b1) gives a contradiction.

4. Weak adequacy for Chevalley groups

Lemma 4.1. Suppose $\left(X, \Phi, X^{\vee}, \Phi^{\vee}\right)$ is a reduced based root datum with Φ irreducible.
(a) If Φ is not of type A_{1}, then

$$
2 \alpha_{0}^{\vee} \leq \sum_{\alpha \in \Phi_{+}} \alpha^{\vee}
$$

where α_{0}^{\vee} is the highest coroot.
(b) If Φ is not of type $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$, or B_{2}, then

$$
4 \beta_{0}^{\vee} \leq \sum_{\alpha \in \Phi_{+}} \alpha^{\vee}
$$

where β_{0}^{\vee} is the highest short coroot.
Proof. (a) Let $\left\{\alpha_{i}: i=1, \ldots, r\right\}$ denote the simple roots. Then $\left\langle\alpha_{0}^{\vee}, \alpha_{i}\right\rangle \geq 0$ for all i and $\left\langle\alpha_{0}^{\vee}, \alpha_{j}\right\rangle>0$ for some j. Since $\alpha_{0}^{\vee} \neq \alpha_{j}^{\vee}$ (as Φ is not of type A_{1}), $\beta^{\vee}:=\alpha_{0}^{\vee}-\alpha_{j}^{\vee} \in \Phi^{\vee}$. Since $\alpha_{0}^{\vee}=\alpha_{j}^{\vee}+\beta^{\vee}$ it follows that $\beta^{\vee}>0$. Also, $\alpha_{j}^{\vee} \neq \beta^{\vee}$, as Φ is reduced. Hence

$$
2 \alpha_{0}^{\vee}=\alpha_{0}^{\vee}+\alpha_{j}^{\vee}+\beta^{\vee} \leq \sum_{\alpha \in \Phi_{+}} \alpha^{\vee}
$$

(b) We pass to the dual root system to simplify notation. We want to show that

$$
4 \beta_{0} \leq \sum_{\alpha \in \Phi_{+}} \alpha
$$

where β_{0} is the highest short root. It suffices to express β_{0} as sum of positive roots in three nontrivial ways that do not overlap (similarly as in the proof of (a)). If Φ is not simply laced, we only need two nontrivial ways because we can also use that $\beta_{0}<\alpha_{0}$, where α_{0} is the highest root.

In the following we use Bourbaki notation:

- Type $\mathrm{A}_{n-1}(n \geq 5)$:

$$
\beta_{0}=\varepsilon_{1}-\varepsilon_{n}=\left(\varepsilon_{1}-\varepsilon_{i}\right)+\left(\varepsilon_{i}-\varepsilon_{n}\right) \quad(1<i<n)
$$

- Type $\mathrm{B}_{n}(n \geq 3)$:

$$
\beta_{0}=\varepsilon_{1}=\left(\varepsilon_{1}-\varepsilon_{i}\right)+\varepsilon_{i} \quad(1<i \leq n)
$$

If $n=3$, we also use $\beta_{0}<\alpha_{0}=\varepsilon_{1}+\varepsilon_{2}$.

- Type $\mathrm{C}_{n}(n \geq 3)$:
$\beta_{0}=\varepsilon_{1}+\varepsilon_{2}=\left(\varepsilon_{1}-\varepsilon_{i}\right)+\left(\varepsilon_{2}+\varepsilon_{i}\right)=\left(\varepsilon_{1}+\varepsilon_{i}\right)+\left(\varepsilon_{2}-\varepsilon_{i}\right) \quad(2<i \leq n)$.
If $n=3$, we also use $\beta_{0}<\alpha_{0}=2 \varepsilon_{1}$.
- Type $\mathrm{D}_{n}(n \geq 4)$:
$\beta_{0}=\varepsilon_{1}+\varepsilon_{2}=\left(\varepsilon_{1}-\varepsilon_{i}\right)+\left(\varepsilon_{2}+\varepsilon_{i}\right)=\left(\varepsilon_{1}+\varepsilon_{i}\right)+\left(\varepsilon_{2}-\varepsilon_{i}\right) \quad(2<i \leq n)$.
- Type E_{6} :

$$
\beta_{0}=\frac{1}{2}\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}-\varepsilon_{6}-\varepsilon_{7}+\varepsilon_{8}\right)
$$

Note that $\beta_{0}-\left(\varepsilon_{i}+\varepsilon_{j}\right)$ and $\varepsilon_{i}+\varepsilon_{j}$ are positive $(1 \leq i<j \leq 5)$.

- Type E_{7} :
$\beta_{0}=\varepsilon_{8}-\varepsilon_{7}=\frac{1}{2}\left(\varepsilon_{8}-\varepsilon_{7}+\varepsilon_{6}+\sum_{i=1}^{5}(-1)^{v(i)} \varepsilon_{i}\right)+\frac{1}{2}\left(\varepsilon_{8}-\varepsilon_{7}-\varepsilon_{6}-\sum_{i=1}^{5}(-1)^{v(i)} \varepsilon_{i}\right)$,
where $\sum_{i=1}^{5} v(i)$ is odd.
- Type E_{8} :

$$
\beta_{0}=\varepsilon_{7}+\varepsilon_{8}=\left(-\varepsilon_{i}+\varepsilon_{7}\right)+\left(\varepsilon_{i}+\varepsilon_{8}\right) \quad(1 \leq i<7)
$$

- Type F_{4} :

$$
\beta_{0}=\varepsilon_{1}=\left(\varepsilon_{1}-\varepsilon_{i}\right)+\varepsilon_{i} \quad(1<i \leq 4)
$$

- Type G_{2} :

$$
\beta_{0}=2 \alpha_{1}+\alpha_{2}=\alpha_{1}+\left(\alpha_{1}+\alpha_{2}\right) \beta_{0}<3 \alpha_{1}+\alpha_{2} \beta_{0}<\alpha_{0}=3 \alpha_{1}+2 \alpha_{2}
$$

We now prove variants of several results in [Guralnick et al. 2012].
Lemma 4.2. Suppose that \mathcal{G} is a connected, simply connected, semisimple algebraic group over $\overline{\mathbb{F}}_{p}$ and $\Theta: \mathscr{G} \rightarrow \mathrm{GL}(V)$ a semisimple finite-dimensional representation. Let $\mathscr{G}>\mathscr{B}>\mathscr{T}$ denote a Borel subgroup and a maximal torus, and suppose that
for any irreducible component V^{\prime} of V and for any two distinct weights μ_{1}, μ_{2} of \mathscr{T} on V^{\prime}, we have $\mu_{1}-\mu_{2} \notin p X(\mathscr{T})$.

Then there exist connected, simply connected, semisimple algebraic subgroups \mathscr{I} and \mathscr{F} of \mathscr{G} such that $\mathscr{G}=\mathscr{I} \times \mathscr{F}, \Theta(\mathscr{F})=1$, and Θ induces a central isogeny of \mathscr{I} onto its image, which is a semisimple algebraic group. Moreover, assumption (4-1) holds if for all irreducible constituents V^{\prime} of V the highest weight of V^{\prime} is p-restricted and either
(i) $\operatorname{dim} V^{\prime}<p$, or
(ii) $\operatorname{dim} V^{\prime} \leq p$ and either $p \neq 2$ or \mathscr{G} has no SL_{2}-factor.

Proof. Write $V=\bigoplus V_{i}$ with V_{i} irreducible and $\mathscr{G}_{=}=\prod_{s \in S} \mathscr{G}_{s}$ with each \mathscr{G}_{s} almost simple. The last sentence of the proof of Lemma 4 in [Guralnick et al. 2012] together with (4-1) show that the conclusion of that lemma holds for $\Theta_{i}: \mathscr{G} \rightarrow \mathrm{GL}\left(V_{i}\right)$ for all i. Hence there exists $S_{i} \subset S$ such that $\operatorname{ker} \Theta_{i}=\prod_{s \in S_{i}} \varphi_{s} \times Z_{i}$, where Z_{i} is a central subgroup of $\prod_{s \notin S_{i}} \mathscr{S}_{s}$ (maybe nonreduced). Then $\operatorname{ker} \Theta=\bigcap \operatorname{ker} \Theta_{i}=$ $\prod_{s \in \cap s_{i}} \mathscr{G}_{s} \times Z$, where Z is a central subgroup of $\prod_{s \notin \cap s_{i}} \mathscr{S}_{s}$. So we can take $\mathscr{I}=$ $\prod_{s \notin \cap s_{i}} \mathscr{G}_{s}$ and $\mathscr{F}=\prod_{s \in \cap S_{i}} \mathscr{S}_{s}$.

To prove the last part, we may suppose that V is irreducible. So $V \cong \bigotimes_{s \in S} V_{s}$, where V_{s} is an irreducible \mathscr{G}_{s}-representation. It is easy to see that if (4-1) fails, then it fails for $\varphi_{s} \rightarrow \mathrm{GL}\left(V_{s}\right)$ for some $s \in S$, so we may assume that $\varphi_{\mathcal{G}}$ is almost simple.
(a) First suppose that $\mathscr{G} \cong \mathrm{SL}_{2}$. The highest weight of V is $\binom{x}{x^{-1}} \mapsto x^{a}$, for some $0 \leq a \leq p-1$, and $a \neq p-1$ if $p=2$. Therefore the weights of ad V are $\binom{x}{x^{-1}} \mapsto x^{b}$, where $b \in\{-2 a,-2 a+2, \ldots, 2 a-2,2 a\}$. It follows that (4-1) holds because $b \equiv 0(\bmod p)$ implies that $b=0$.
(b) Next suppose that $\mathscr{G} \neq \mathrm{SL}_{2}$. Let λ denote the highest weight of V; it is p-restricted by assumption. By Lemma 4.1(a) and Jantzen's inequality [1997, Lemma 1.2] we get

$$
\left|\left\langle\mu, \beta^{\vee}\right\rangle\right| \leq\left\langle\lambda, \alpha_{0}^{\vee}\right\rangle \leq \frac{1}{2}\left\langle\lambda, \sum_{\alpha>0} \alpha^{\vee}\right\rangle<\frac{1}{2} \operatorname{dim} V \leq \frac{p}{2}
$$

for all weights μ of V and all roots β. Hence $\left|\left\langle\mu_{1}-\mu_{2}, \beta^{\vee}\right\rangle\right|<p$ for all root β and all weights μ_{i} of V, so (4-1) holds.

Lemma 4.3. Suppose that $\mathscr{G}_{\mathcal{G}} \leq \Pi \mathrm{GL}\left(W_{i}\right)$ is a connected reductive group over $\overline{\mathbb{F}}_{p}$, where for all i the representation W_{i} is irreducible with p-restricted highest weight and has dimension $\leq p$. Let \mathscr{T} be a maximal torus and \mathscr{U} the unipotent radical of a Borel subgroup of \mathscr{G} that contains \mathcal{T}. Let $V=\bigoplus W_{i}$.
(i) The maps \exp and \log induce inverse isomorphisms of varieties between Lie $\because \leq \operatorname{End}(V)$ and $\vartheta \leq \mathrm{GL}(V)$.
(ii) For any positive root α we have $\exp \left(\operatorname{Lie} U_{\alpha}\right)=U_{\alpha}$.
(iii) The map exp : Lie $\cup \rightarrow \mathcal{U}$ depends only on \mathscr{G} and \mathcal{U}, but not on V, W_{i}, or the representation $\varphi \hookrightarrow \mathrm{GL}(V)$.
(iv) If θ is an automorphism of \mathscr{G} that preserves \mathscr{T} and \mathscr{U}, then we have a commutative diagram

Proof. The proof is the same as that of [Guralnick et al. 2012, Lemma 5], where there was an extra assumption on the μ_{i}. The assumption on the weights μ_{i} is only used to prove that $X_{\alpha, n}$ acts trivially on $V=\bigoplus W_{i}$ for all $n \geq p$. Fix any i. It is enough to show that $X_{\alpha, n}$ acts trivially on W_{i} for all $n \geq p$. So it is enough to show that W_{i} cannot have two weights λ and $\lambda+n \alpha(\alpha \in \Phi, n \geq p)$. As $\operatorname{dim} W_{i} \leq p$, it follows from [Jantzen 1997] that the weights of W_{i} are the same as those of the irreducible characteristic-0 representation of the same highest weight. But in characteristic 0 it is known that if λ and $\lambda+n \alpha$ are weights of an irreducible representation, then so are $\lambda, \lambda+\alpha, \lambda+2 \alpha, \ldots, \lambda+n \alpha$, so $\operatorname{dim} W_{i}>n \geq p$, contradicting the assumption.

Proposition 4.4. Let $p>3$ be prime. Suppose that V is a finite-dimensional vector space over $\overline{\mathbb{F}}_{p}$ and that $G \leq \mathrm{GL}(V)$ is a finite subgroup that acts semisimply on V. Let $G^{+} \leq G$ be the subgroup generated by p-elements of G. Then V is a semisimple G^{+}-module. Let $d \geq 1$ be the maximal dimension of an irreducible G^{+}-submodule of V. Suppose that $p>d$ and that G^{+}is a central product of quasisimple Chevalley groups in characteristic p. Then there exists an algebraic group $\mathscr{G}_{\text {over }} \mathbb{F}_{p}$ and a semisimple representation $\Theta: \mathscr{G}_{/ \mathbb{F}_{p}} \rightarrow \mathrm{GL}(V)$ with the following properties:
(i) The connected component \mathscr{G}^{0} is semisimple simply connected.
(ii) $\mathscr{G} \cong \mathscr{G}^{0} \rtimes H$, where H is a finite group of order prime to p.
(iii) $\Theta\left(\mathscr{G}_{(}\left(\mathbb{F}_{p}\right)\right)=G$.
(iv) $\operatorname{ker}(\Theta) \cap \mathscr{G}^{0}\left(\mathbb{F}_{p}\right)$ is central in $\varphi^{0}\left(\mathbb{F}_{p}\right)$.

Moreover, any highest weight of $\mathscr{G}_{/ \mathbb{F}_{p}}^{0}$ on V is p-restricted. Also, G does not have any composition factor of order p.

Proof. The proof is essentially identical to the proof of [Guralnick et al. 2012, Proposition 7]. We do not get $\left\langle\lambda, \alpha^{\vee}\right\rangle<(p-1) / 2$ in Step 2, but this was only used to apply Lemmas 4 and 5 in [Guralnick et al. 2012]. By Lemmas 4.2 and 4.3 above one can bypass this assumption, as we now explain. Both times Lemma 4 in [Guralnick et al. 2012] is applied, condition (ii) in Lemma 4.2 holds. In Step 4 we can apply Lemma 4.3 instead of Lemma 5 in [Guralnick et al. 2012] because $\overline{\mathscr{I}}$ acts irreducibly on W_{i} and its highest weight is p-restricted (as $\mathscr{I} \rightarrow \overline{\mathscr{I}}$ is a central isogeny). Similarly we can avoid Lemma 5 in [Guralnick et al. 2012] in Step 5 , noting that the highest weights of V^{\prime} are Galois-conjugate to the highest weights of V and recalling that $\psi_{/ \mathbb{F}_{p}}$ is a central isogeny onto its image. Finally, note that (iv) follows by construction.

Theorem 4.5. Suppose that $p>3, V$ is a finite-dimensional vector space over $\overline{\mathbb{F}}_{p}$, and $G \leq \mathrm{GL}(V)$ is a finite subgroup that acts irreducibly on V. Let $G^{+} \leq G$ be the subgroup generated by p-elements of G. Let $d \geq 1$ be the maximal dimension of an irreducible G^{+}-submodule of V. Suppose that $p>d$ and that G^{+}is a central product of quasisimple Chevalley groups in characteristic p. Then the set of p^{\prime}-elements of G spans ad V as an $\overline{\mathbb{F}}_{p}$-vector space.
Remark 4.6. Theorem 4.5 generalizes [Guralnick et al. 2012, Theorem 9]. We take the opportunity to point out a small gap in the last paragraph of the proof of that theorem. In the notation there, it is implicitly assumed that (i) $r\left(T\left(\mathbb{F}_{l}\right)\right) \subset r(H)$, so that the span of $r(H)$ equals the span of $r\left(T\left(\overline{\mathbb{F}}_{l}\right) H\right)$, and (ii) H normalizes the pair (B, T). Both assumptions are satisfied provided that when we apply [Guralnick et al. 2012, Proposition 7] in the proof of Theorem 9 there, we take $r, G=G^{0} \rtimes H$, B, T, \ldots as constructed in the proof of that proposition.
Proof. Without loss of generality $d>1$. Let $\Theta: \mathscr{G}_{/ \mathbb{F}_{p}} \rightarrow \mathrm{GL}(V)$ be as in Proposition 4.4. Then $V=\bigoplus W_{i}$, where W_{i} is an irreducible $\mathscr{G}_{\mid \mathbb{F}_{p}}^{0}$-subrepresentation with p-restricted highest weight. Write $\mathscr{G}_{/ \mathbb{F}_{p}}^{0} \cong \mathscr{G}_{1} \times \cdots \times \mathscr{G}_{r}$, where \mathscr{G}_{i} is almost simple over \bar{F}_{p}. Let $\mathscr{G}^{0}>\mathscr{B}>\mathscr{T}$ denote a Borel subgroup and a maximal torus, and let Φ denote the roots of $\varphi_{/ \mathbb{F}_{p}}^{0}$ with respect to $\mathscr{T}_{/ \mathbb{F}_{p}}$.
(a) We consider the case where one of the W_{i} (equivalently any) is tensor-decomposable as a $\mathscr{G}_{/ \mathbb{F}_{p}}^{0}$-representation. Note that $W_{i} \cong X_{i 1} \boxtimes \cdots \boxtimes X_{i r}$, where $X_{i j}$ is an irreducible $\mathscr{\varphi}_{j}$-representation with p-restricted highest weight. Since $\operatorname{dim} X_{i j} \leq p-1$, its highest weight lies in the lowest alcove [Jantzen 1997; Serre 1994]; hence $X_{i j}$ is tensor-indecomposable (as the highest weight is in the lowest alcove, we are reduced to the characteristic-0 case, where this is well known). Hence our assumption implies that $X_{i j} \not \equiv \mathbb{1}$ for at least two values of j. Hence $\operatorname{dim} X_{i j} \leq(p-1) / 2$ for all i, j. Therefore $X_{i k}^{*} \otimes X_{j k}$ is a semisimple φ_{k}-representation by [Serre 1994], so End V is a semisimple $\mathscr{G}_{/ \mathbb{F}_{F}}^{0}$-representation. Moreover, all its highest weights are p-restricted: this follows exactly as in Step 2 of the proof of [Guralnick et al. 2012, Proposition 7] (use that $\left.\operatorname{dim} X_{i j} \leq(p-1) / 2\right)$. Hence any $\mathscr{G}^{0}\left(\mathbb{F}_{p}\right)$-submodule of End V is a $\varphi^{0}\left(\overline{\mathbb{F}}_{p}\right)$-submodule.

Furthermore, arguing as in Step 2 of the proof of [Guralnick et al. 2012, Proposition 7] for each φ_{k}, we deduce that for all weights μ of the maximal torus $\mathscr{T}_{/ \overline{\mathbb{F}}_{p}}$ on V we have $\left|\left\langle\mu, \alpha^{\vee}\right\rangle\right|<(p-1) / 2$ for all $\alpha \in \Phi$. We conclude as in the last paragraph of the proof of [Guralnick et al. 2012, Theorem 9].
(b) We consider the case when $\mathscr{G}_{/ \mathbb{F}_{p}}^{0}$ has no factors of type $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$, or B_{2}. We claim $\left|\left\langle\mu, \alpha^{\vee}\right\rangle\right|<(p-1) / 4$ for all weights μ of $\mathscr{T}_{/ \mathbb{F}_{p}}$ on V and for all short coroots $\alpha^{\vee} \in \Phi^{\vee}$. It suffices to show that $\left\langle\lambda, \beta_{0}^{\vee}\right\rangle<(p-1) / 4$ for all highest weights λ of $\mathscr{T}_{/ \overline{\mathbb{F}}_{p}}$ on V and all highest short coroots β_{0}^{\vee} (one for each component of $\mathscr{G}_{/ \mathbb{F}_{p}}^{0}$). So it is enough to show that if φ^{\prime} is an almost simple, simply connected group over
$\overline{\mathbb{F}}_{p}$, not of type $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$, or B_{2}, then $\left\langle\lambda, \beta_{0}^{\vee}\right\rangle<(p-1) / 4$ for all p-restricted weights λ of \mathscr{G}^{\prime} such that $\operatorname{dim} L(\lambda)<p$, where β_{0}^{\vee} is the highest short coroot of \mathscr{G}^{\prime}. But this follows from Lemma 4.1(b) and Jantzen's inequality, and this proves the claim.

Since the short coroots span $X_{*}\left(\mathscr{T}_{/ \bar{F}_{p}}\right) \otimes \mathbb{Q}$ over \mathbb{Q}, Lemma 3 of [Guralnick et al. 2012] plus the claim show that distinct weights of $\mathscr{T}_{/ \mathbb{F}_{p}}$ on End V (and V) remain distinct on $\mathscr{T}\left(\mathbb{F}_{p}\right)$. Then [Guralnick 2012a, Lemma 1.1] shows that any $\mathscr{G}^{0}\left(\mathbb{F}_{p}\right)$-subrepresentation of End V is $\varphi^{0}\left(\overline{\mathbb{F}}_{p}\right)$-stable, so we can conclude as in the last paragraph of the proof of Theorem 9 in [Guralnick et al. 2012].
(c) If neither (a) nor (b) apply, then the W_{i} are tensor-indecomposable; in particular, the almost simple factors of $\varphi_{/ \mathbb{F}_{p}}^{0}$ are pairwise isomorphic. (Write $\varphi^{0} \cong \prod_{i}$, where the subgroups \mathscr{H}_{i} are almost simple over \mathbb{F}_{p}. Note that, for each $i, \varphi^{0}\left(\mathbb{F}_{p}\right)$ acts irreducibly on W_{i} with all but one $\mathscr{H}_{j}\left(\mathbb{F}_{p}\right)$ acting trivially. As $\mathscr{G}\left(\mathbb{F}_{p}\right)$ is irreducible on V and, by Proposition 4.4(iv), the subgroups $\mathscr{H}_{i}\left(\mathbb{F}_{p}\right)$ are pairwise isomorphic and, as $p>3$, so are the \mathscr{H}_{i}.) Hence $\mathscr{G}_{/ \mathbb{F}_{p}}^{0} \cong \mathrm{SL}_{2}^{n}, \mathrm{SL}_{3}^{n}, \mathrm{SL}_{4}^{n}$, or Sp_{4}^{n} for some $n \geq 1$.
(d) We consider the case where $\mathscr{G}_{/ / \mathbb{F}_{p}}^{0} \cong \mathrm{SL}_{3}^{n}, \mathrm{SL}_{4}^{n}$, or Sp_{4}^{n}. We claim that for all weights μ of $\mathscr{T}_{/ \mathbb{F}_{p}}$ on V and for all $\alpha^{p} \in \Phi$,

$$
\begin{equation*}
\left|\left\langle\mu, \alpha^{\vee}\right\rangle\right|<\frac{1}{2}(p-1) . \tag{4-2}
\end{equation*}
$$

To see this, note that $\left|\left\langle\mu, \alpha^{\vee}\right\rangle\right| \leq\left\langle\lambda, \alpha_{0}^{\vee}\right\rangle$ for some highest weight λ of V and some highest coroot α_{0}^{\vee}. Applying Lemma 4.1(a) to the component Φ_{j} of Φ such that $\alpha_{0}^{\vee} \in \Phi_{j}^{\vee}$ and using Jantzen's inequality, we get

$$
\left\langle\lambda, \alpha_{0}^{\vee}\right\rangle \leq \frac{1}{2} \sum_{\Phi_{j,+}}\left\langle\lambda, \alpha^{\vee}\right\rangle<\frac{1}{2}(p-1) .
$$

By Lemma 3 in [Guralnick et al. 2012], (4-2) shows that distinct weights of $\mathscr{T}_{/ \mathbb{F}_{p}}$ on V remain distinct on $\mathscr{T}\left(\mathbb{F}_{p}\right)$. As usual, it thus suffices to show that End V is a semisimple $\mathscr{G}_{/ \mathbb{F}_{p}}^{0}$-module with p-restricted highest weights. We can argue independently for each ${ }^{p}$ factor of $\mathscr{G}_{/ \mathbb{F}_{p}}^{0}$, so it will suffice to show that if X, Y are nontrivial irreducible \mathscr{G}^{\prime}-representations which are conjugate by $\operatorname{Aut}\left(\mathscr{G}^{\prime}\right)$ (with $\mathscr{G}^{\prime}=\mathrm{SL}_{3}, \mathrm{SL}_{4}$, or Sp_{4}) with p-restricted highest weights $\lambda, \lambda^{\prime}$ of dimension less than p, then $X \otimes Y$ is semisimple with p-restricted highest weights. By [Jantzen 1997; Serre 1994], λ and λ^{\prime} lie in the lowest alcove, so ch $L(\lambda)$ and $\operatorname{ch} L\left(\lambda^{\prime}\right)$ are given by Weyl's character formula.

In the following, note that $\left\langle\lambda, \beta_{0}^{\vee}\right\rangle=\left\langle\lambda^{\prime}, \beta_{0}^{\vee}\right\rangle$.

If $\mathscr{G}^{\prime} \cong \mathrm{SL}_{4}$, write $\lambda=r \varpi_{1}+s \varpi_{2}+t \varpi_{3}(r, s, t \geq 0)$, where ϖ_{i} is the i-th fundamental weight. Then

$$
\begin{aligned}
p-1 & \geq \operatorname{dim} L(\lambda)=\frac{[(r+1)(s+1)(t+1)][(r+s+2)(s+t+2)](r+s+t+3)}{2 \cdot 2 \cdot 3} \\
& \geq \frac{(r+s+t+1)(r+s+t+2)(r+s+t+3)}{2 \cdot 3}
\end{aligned}
$$

If $\left\langle\lambda, \beta_{0}^{\vee}\right\rangle=r+s+t \geq(p-1) / 4$, then

$$
p-1 \geq \frac{\frac{p+3}{4} \cdot \frac{p+7}{4} \cdot \frac{p+11}{4}}{6}
$$

Equivalently, $(p-5)\left[(p+13)^{2}-292\right] \leq 0$, i.e., $p=5$. In this case, equality holds throughout so $\lambda=\varpi_{1}$ or ϖ_{3}. The maximal weight of $X \otimes Y$, namely $2 \varpi_{1}$ or $\varpi_{1}+\varpi_{3}$ or $2 \varpi_{3}$, lies in the closure of the lowest alcove. Then $X \otimes Y$ is semisimple by the linkage principle (or just [Jantzen 2003, Proposition II.4.13]) and it has p-restricted highest weights. If $\left\langle\lambda, \beta_{0}^{\vee}\right\rangle<(p-1) / 4$ the argument in (b) goes through instead.

If $\mathscr{G}^{\prime} \cong \mathrm{Sp}_{4}$, write $\lambda=r \varpi_{1}+s \varpi_{2}$ with $r, s \geq 0\left(\right.$ type $\left.\mathrm{B}_{2}\right)$. Then

$$
\begin{aligned}
p-1 & \geq \operatorname{dim} L(\lambda)=\frac{[(r+1)(s+1)](r+s+2)(2 r+s+3)}{6} \\
& \geq \frac{(r+s+1)(r+s+2)(r+s+3)}{6}
\end{aligned}
$$

If $\left\langle\lambda, \beta_{0}^{\vee}\right\rangle=r+s \geq(p-1) / 4$, then $p=5$ as above and $\lambda=\varpi_{2}$. Again, $X \otimes Y$ has maximal weight $2 \omega_{2}$ lying in the closure of the lowest alcove; hence $X \otimes Y$ is semisimple with p-restricted highest weights. If $\left\langle\lambda, \beta_{0}^{\vee}\right\rangle<(p-1) / 4$ we are done as in (b).

If $\mathscr{G}^{\prime} \cong \mathrm{SL}_{3}$, write $\lambda=r \varpi_{1}+s \varpi_{2}(r, s \geq 0)$. If $r+s \geq(p-1) / 2$, then

$$
\begin{aligned}
p-1 & \geq \operatorname{dim} L(\lambda)=\frac{[(r+1)(s+1)](r+s+2)}{2} \\
& \geq \frac{(r+s+1)(r+s+2)}{2} \geq \frac{\frac{p+1}{2} \cdot \frac{p+3}{2}}{2} .
\end{aligned}
$$

Equivalently $(p-2)^{2}+7 \leq 0$, which is impossible. Hence $r+s \leq(p-3) / 2$, which implies that the maximal weight of $X \otimes Y$ lies in the lowest alcove. So $X \otimes Y$ is semisimple with p-restricted highest weights.
(e) We consider the case where $\mathscr{C}_{/ / \mathbb{F}_{p}}^{0} \cong \mathrm{SL}_{2}^{n}$ and each W_{i} is tensor-indecomposable as a $\mathscr{G}_{/ \mathbb{F}_{p}}^{0}$-representation. Here, $\mathscr{G}^{0}\left(\mathbb{F}_{p}\right) \cong \operatorname{SL}_{2}\left(\mathbb{F}_{q}\right)^{m}$, where $\left[\mathbb{F}_{q}: \mathbb{F}_{p}\right] \cdot m=n$. Also, V is irreducible, each W_{i} is tensor-indecomposable, and SL_{2} has no outer automorphism. It follows that $V \cong\left[\bigoplus_{i=1}^{\ell} V_{i}\right]^{\oplus k}$ as $\varphi_{/ \mathbb{F}_{p}}^{0}$-representations, where each V_{i} is of
the form $\mathbb{1} \boxtimes \cdots \boxtimes V_{0} \boxtimes \cdots \boxtimes \mathbb{1}$ (precisely one factor is V_{0}), the V_{i} are pairwise nonisomorphic, and V_{0} is an irreducible SL_{2}-representation such that $1<\operatorname{dim} V_{0}<p$ with p-restricted highest weight.
(e1) We claim that the span of the p^{\prime}-elements of $\mathscr{G}^{0}\left(\mathbb{F}_{p}\right)$ in End V contains the span of $\mathscr{T}\left(\overline{\mathbb{F}}_{p}\right)$ in End V.

If $q>p$, note from the description of V_{i} above that distinct weights of $\mathscr{T}_{/ \mathbb{F}_{p}}$ on V remain distinct on $\mathscr{T}\left(\mathbb{F}_{p}\right)$. Hence the span of $\mathscr{T}\left(\mathbb{F}_{p}\right)$ in End V equals the span of $\mathscr{T}\left(\overline{\mathbb{F}}_{p}\right)$ in End V.

If $q=p$, we will show that the p^{\prime}-elements of $\mathscr{G}^{0}\left(\mathbb{F}_{p}\right)$ span the same subspace of End V as does all of $\mathscr{G}^{0}\left(\mathbb{F}_{p}\right)$. First, from Proposition 4.4(iv), we deduce that $\ell=n$. As the V_{i} are distinct and irreducible $\mathscr{G}_{/ / \overline{\mathbb{F}}_{p}}^{0}$-representations, by the Artin-Wedderburn theorem we need to show that the $p^{\prime \prime}$-elements in $\mathscr{G}^{0}\left(\mathbb{F}_{p}\right)$ span $\prod_{i=1}^{n} \operatorname{End}\left(V_{i}\right)$, or equivalently its $\mathscr{G}^{0}\left(\mathbb{F}_{p}\right)$-head. (Note that the span of the p^{\prime} elements is $\mathscr{G}^{0}\left(\mathbb{F}_{p}\right)$-stable.) By Lemma 3.3, we see that the n representations $\operatorname{head}_{\varphi^{0}\left(\mathbb{F}_{p}\right)}\left(\operatorname{End}\left(V_{i}\right)\right)$ have no $\mathscr{G}^{0}\left(\mathbb{F}_{p}\right)$-irreducible constituent in common except for the trivial direct summand of scalar matrices in $\operatorname{End}\left(V_{i}\right)$. By Proposition 3.1, the image of the p^{\prime}-elements span $\operatorname{End}\left(V_{i}\right)$ for any i. Hence it suffices to show that the image of the p^{\prime}-elements under the map

$$
\begin{aligned}
\mathscr{G}^{0}\left(\mathbb{F}_{p}\right) & \rightarrow \overline{\mathbb{F}}_{p}^{n} \\
g & \mapsto\left(\operatorname{tr}\left(\left.g\right|_{V_{i}}\right)\right)_{i=1}^{n}
\end{aligned}
$$

spans \mathbb{F}_{p}^{n}. Note that as $1<\operatorname{dim} V_{0}<p$, the split torus $\left({ }^{*}{ }_{*}\right)<\operatorname{SL}_{2}\left(\mathbb{F}_{p}\right)$ has a nontrivial eigenvalue χ on V_{0} with multiplicity 1 or 2 . Given $1 \leq i \leq n$, there exists an element in $\mathbb{F}_{p}\left[\mathscr{T}\left(\mathbb{F}_{p}\right)\right]$ that projects onto the $1 \otimes \cdots \otimes \chi \otimes \cdots \otimes 1$ eigenspace in any $\mathscr{T}\left(\mathbb{F}_{p}\right)$-representation, so as $p>2$ it has nonzero trace on V_{i} but is zero on $\bigoplus_{j \neq i} V_{j}$. This proves the claim.
(e2) We claim that $\operatorname{head}_{\mathscr{G}_{/ \mathbb{F}_{p}}}($ End $V)=\operatorname{head}_{\mathscr{G}^{0}\left(\mathbb{F}_{p}\right)}($ End $V)$, and moreover that any highest weight of this representation is p-restricted.

If $d \leq(p+1) / 2$, then by [Serre 1994] End V is a semisimple $\mathscr{G}_{1 / \mathbb{F}_{p}}^{0}$-module and clearly any highest weight of End V is p-restricted. The claim follows.

If $d \geq(p+3) / 2$, note that head is compatible with direct sums, so we can consider each $V_{i}^{*} \otimes V_{j}$ separately. If $i \neq j$, then $V_{i}^{*} \otimes V_{j}$ is irreducible with p-restricted highest weight. If $i=j$, from Lemma 3.3 we get

$$
\operatorname{head}_{\mathrm{SL}_{2}}\left(V_{0}^{*} \otimes V_{0}\right) \cong L(0) \oplus L(2) \oplus \cdots \oplus L(p-1)
$$

In particular, any highest weight of $\operatorname{head}_{G_{/ \mathbb{F}_{p}}^{0}}\left(V_{i}^{*} \otimes V_{i}\right)$ is p-restricted. By Lemma 3.3, showing

$$
\operatorname{head}_{\mathscr{G}_{/ \mathbb{F}_{p}}^{0}}\left(V_{i}^{*} \otimes V_{i}\right)=\operatorname{head}_{G^{0}\left(\mathbb{F}_{p}\right)}\left(V_{i}^{*} \otimes V_{i}\right)
$$

is equivalent (after a Frobenius twist) to showing that

$$
\operatorname{head}_{\mathrm{SL}_{2}}(T(2 p-2-2 j))=\operatorname{head}_{\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)}(T(2 p-2-2 j))
$$

for $0 \leq j \leq(p-3) / 2$. If $q=p$ this follows from Lemma 3.3, as $d<p$. This in turn implies the statement for $q>p$, as any irreducible SL_{2}-constituent of $T(2 p-2-2 j)$ restricts irreducibly to $\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$ if $q>p$ and semisimply to $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$. This proves the claim.
(e3) Now, let \mathcal{M} denote the span of the images of the p^{\prime}-elements of $\varphi_{(}\left(\mathbb{F}_{p}\right)$ in head $\mathscr{C g}_{\left(\mathbb{F}_{p}\right)}(\operatorname{End}(V))$. Note that \mathcal{M} is a $\varphi^{0}\left(\mathbb{F}_{p}\right)$-subrepresentation. To prove weak adequacy, it suffices to show that $\mathcal{M}=\operatorname{head}_{\mathcal{G O}_{(}\left(\mathbb{F}_{p}\right)}(\operatorname{End}(V))$. By (e2) we have that $\operatorname{head}_{\mathcal{G}_{\mid / \mathbb{F}_{p}^{0}}}(\operatorname{End}(V))=\operatorname{head}_{\mathcal{G}_{0}\left(\mathbb{F}_{p}\right)}(\operatorname{End}(V))$ and that distinct irreducible $\mathscr{G}_{/ \mathbb{F}_{p}}^{0}$-sub-
 tations. Hence, any $\mathscr{G}^{0}\left(\mathbb{F}_{p}\right)$-subrepresentation of head $\mathscr{G}_{\mathscr{C}_{/ \mathbb{F}_{p}}}(\operatorname{End}(V))$ is $\mathscr{G}^{0}\left(\overline{\mathbb{F}}_{p}\right)$-stable. By (e1), we know that \mathcal{M} contains the span of the image of $\mathscr{T}\left(\overline{\mathbb{F}}_{p}\right) \cdot H$. Therefore, by Lemma 8 in [Guralnick et al. 2012], \mathcal{M} contains the span of the image of $\mathscr{G}\left(\overline{\mathbb{F}}_{p}\right)$. But the latter span equals $\operatorname{head}_{\mathcal{G}_{\bar{F}_{p}}^{0}}(\operatorname{End}(V))$ by the Artin-Wedderburn theorem.

5. Weak adequacy in cross-characteristic

Recall that, given a finite-dimensional absolutely irreducible representation $\Phi: G \rightarrow$ $\mathrm{GL}(V)$, the pair (G, V) is called weakly adequate if $\operatorname{End}(V)$ equals

$$
\mathcal{M}:=\langle\Phi(g) \in \Phi(G): \Phi(g) \text { semisimple }\rangle_{k} .
$$

Assume $k=\bar{k}$ has characteristic p. First, we recall:
Lemma 5.1 [Guralnick 2012b, Lemma 2.3]. If $G<\operatorname{GL}(V)$ is p-solvable and $p \nmid \operatorname{dim} V$, then (G, V) is weakly adequate.

In general, a key tool to prove weak adequacy is provided by the following criterion:
Lemma 5.2. Let V be a finite-dimensional vector space over k and $G \leq \operatorname{GL}(V) a$ finite irreducible subgroup. Write $\left.V\right|_{G^{+}}=e \sum_{i=1}^{t} W_{i}$, where the G^{+}-modules W_{i} are irreducible and pairwise nonisomorphic. Suppose there is a subgroup $Q \leq G^{+}$ such that
(i) $\left\{Q^{g}: g \in G\right\}=\left\{Q^{x}: x \in G^{+}\right\}$, and
(ii) the Q-modules W_{i} are irreducible and pairwise nonisomorphic,
then $N_{G}(Q)$ is an irreducible subgroup of $\mathrm{GL}(V)$. If, furthermore,
(iii) $N_{G^{+}}(Q)$ is a p^{\prime}-group,
then (G, V) is weakly adequate.

Proof. The condition (i) is equivalent to the equality $G=N G^{+}$, where $N:=N_{G}(Q)$. Since G / G^{+}is a p^{\prime}-group, this implies that N is a p^{\prime}-group if $N_{G^{+}}(Q)$ is a p^{\prime} group. By the Artin-Wedderburn theorem, it therefore suffices to show that N is irreducible on V.

Set $V_{i}=e W_{i}$ so that $V=\bigoplus_{i=1}^{m} V_{i}, G_{1}:=I_{G}\left(W_{1}\right)=\operatorname{Stab}_{G}\left(V_{1}\right)$ the inertia group of the G^{+}-module W_{1} in G, and $N_{1}:=N \cap G_{1}$. Then we have that $G_{1}=N_{1} G^{+}$and $\left[N: N_{1}\right]=\left[G: G_{1}\right]=t$. Trivially, the condition (ii) implies that the N^{+}-modules $W_{i}(1 \leq i \leq t)$, are irreducible and pairwise nonisomorphic, where we set $N^{+}:=$ $\boldsymbol{N}_{G^{+}}(Q)$. It now follows that $N_{1}=I_{N}\left(W_{1}\right)$, the inertia group of the N^{+}-module W_{1} in N; moreover, N acts transitively on $\left\{V_{1}, \ldots, V_{t}\right\}$, and $\left.V\right|_{N}=\operatorname{Ind}_{N_{1}}^{N}\left(\left.V_{1}\right|_{N_{1}}\right)$. By the Clifford correspondence, it suffices to show that the N_{1}-module V_{1} is irreducible.

Let Φ denote the corresponding representation of G_{1} on V_{1} and let Ψ denote the corresponding representation of G^{+}on W_{1}. By [Navarro 1998, Theorem 8.14], there is a projective representation Ψ_{1} of G_{1} such that

$$
\Psi_{1}(n)=\Psi(n), \quad \Psi_{1}(x n)=\Psi_{1}(x) \Psi_{1}(n), \quad \Psi_{1}(n x)=\Psi_{1}(n) \Psi_{1}(x)
$$

for all $n \in G^{+}$and $x \in G_{1}$. Let α denote the factor set on G_{1} / G^{+}induced by Ψ_{1}. By [Navarro 1998, Theorem 8.16], there is an e-dimensional projective representation Θ of G_{1} / G^{+}with factor set α^{-1} such that $\Phi(g)=\Theta(g) \otimes \Psi_{1}(g)$ for all $g \in G_{1}$. (Here and in what follows, we will write $\Theta(g)$ instead of $\Theta\left(g G^{+}\right)$.) Since Φ is irreducible, Θ is irreducible.

Observe that N_{1} / N^{+}is canonically isomorphic to G_{1} / G^{+}. Restricting to N_{1}, we then have that $\Phi(g)=\Theta(g) \otimes \Psi_{1}(g)$ for all $g \in N_{1}, \Psi_{1}(n)=\Psi(n)$ for all $n \in N^{+},\left(\Psi_{1}\right)_{N_{1}}$ is a projective representation of N_{1} with factor set α, and $\Theta_{N_{1} / N^{+}}$ is a projective representation of N_{1} / N^{+}with factor set α^{-1}. Furthermore, $\Theta_{N_{1} / N^{+}}$ is irreducible. It follows by [Navarro 1998, Theorem 8.18] that $\Phi_{N_{1}}$ is irreducible, as stated.

In certain cases we will also need the following modification of Lemma 5.2:
Lemma 5.3. Let V be a finite-dimensional vector space over k and $G \leq \mathrm{GL}(V) a$ finite irreducible subgroup. Write $\left.V\right|_{G^{+}}=e \sum_{i=1}^{t} W_{i}$, where the $G^{+}{ }^{\text {-modules }} W_{i}$ are irreducible and pairwise nonisomorphic. Suppose there is a subgroup $Q \leq G^{+}$ with the following properties:
(i) $\left\{Q^{g}: g \in G\right\}=\left\{Q^{x}: x \in G^{+}\right\}$.
(ii) $W_{i} \cong A_{i} \oplus B_{i}$ as Q-modules, where all the $2 t Q$-modules A_{i} and B_{j} are irreducible and pairwise nonisomorphic.

If $\left\{A_{1}, \ldots, A_{t}\right\}$ and $\left\{B_{1}, \ldots, B_{t}\right\}$ are two disjoint N-orbits on $\operatorname{IBr}(Q)$ for $N:=$ $N_{G}(Q)$, then we have that $V_{N} \cong A \oplus B$ as N-modules, where A and B are irreducible, $A_{Q} \cong e\left(\bigoplus_{i=1}^{t} A_{i}\right)$, and $B_{Q} \cong e\left(\bigoplus_{i=1}^{t} B_{i}\right)$. On the other hand, if $\left\{A_{1}, B_{1}, \ldots, A_{t}, B_{t}\right\}$ forms a single N-orbit, then N is irreducible on V.

Proof. Again, the condition (i) implies that $G=N G^{+}$. Adopt the notation G_{1}, $N_{1}, N^{+}, \Phi, \Psi, \Psi_{1}, \alpha$ of the proof of Lemma 5.2. As shown there, there is an irreducible e-dimensional projective representation Θ of G_{1} / G^{+}with factor set α^{-1} such that $\Phi(g)=\Theta(g) \otimes \Psi_{1}(g)$ for all $g \in G_{1}$. Also, N_{1} / N^{+}is canonically isomorphic to G_{1} / G^{+}. According to (ii), $\left(W_{i}\right)_{Q} \cong A_{i} \oplus B_{i}$, with $A_{i} \nsupseteq B_{i}$. Hence we can decompose $\left(V_{i}\right)_{Q}=C_{i} \oplus D_{i}$, where $\left(C_{i}\right)_{Q} \cong e A_{i}$ and $\left(D_{i}\right)_{Q} \cong e B_{i}$, and define $A:=\bigoplus_{i=1}^{t} C_{i}, B:=\bigoplus_{i=1}^{t} D_{i}$.
(a) First we consider the case where $\left\{A_{1}, \ldots, A_{t}\right\}$ and $\left\{B_{1}, \ldots, B_{t}\right\}$ are two disjoint N-orbits. Then, for any $x \in N$, every composition factor of the Q-module $x A$ is of the form A_{j} for some j, and every composition factor of B is of the form $B_{j^{\prime}}$ for some j^{\prime}. Hence we conclude that $x A=A$, and similarly $x B=B$. Thus A and B are N-modules. Certainly, N permutes C_{1}, \ldots, C_{t} transitively and N_{1} fixes C_{1}. But $t=\left[N: N_{1}\right]$; hence $N_{1}=\operatorname{Stab}_{N}\left(C_{1}\right)$ and $A=\operatorname{Ind}_{N_{1}}^{N}\left(C_{1}\right)$. Since $\left(C_{i}\right)_{Q}=e A_{i}$ and the Q-modules A_{i} are pairwise nonisomorphic, we also see that $N_{1}=I_{N}\left(A_{1}\right)$. Similarly, $N_{1}=I_{N}\left(B_{1}\right)$ and $B=\operatorname{Ind}_{N_{1}}^{N}\left(D_{1}\right)$. Therefore, by the Clifford correspondence, it suffices to prove that the N_{1}-modules C_{1} and D_{1} are irreducible.

Recall the decompositions $\left(W_{1}\right)_{Q}=A_{1} \oplus B_{1}$ and $\Phi(g)=\Theta(g) \otimes \Psi_{1}(g)$ for all $g \in G_{1}$. Without loss, we may assume that the representation Ψ of G^{+}on W_{1} is written with respect to some basis $\left(v_{1}, \ldots, v_{a+b}\right)$ which is the union of a basis $\left(v_{1}, \ldots, v_{a}\right)$ of A_{1} and a basis $\left(v_{a+1}, \ldots, v_{a+b}\right)$ of B_{1}. Since $\Phi(g)=\Theta(g) \otimes \Psi_{1}(g)$ for all $g \in G_{1}$ acting on V_{1}, we can also choose a basis

$$
\left\{u_{i} \otimes v_{j}: 1 \leq i \leq e, 1 \leq j \leq a+b\right\}
$$

of V_{1} such that $\Theta(g)$ is written with respect to $\left\{u_{1}, \ldots, u_{e}\right\}$ and $\Psi_{1}(g)$ is written with respect to $\left\{v_{1}, \ldots, v_{a+b}\right\}$. For any $x \in N_{1}$, writing $\Theta(x)=\left(\theta_{i^{\prime} i}\right)$ and $\Psi_{1}(x)=\left(\psi_{j^{\prime} j}\right)$, we then have that

$$
\Phi(x)\left(u_{i} \otimes v_{j}\right)=\sum_{i^{\prime}, j^{\prime}} \theta_{i^{\prime} i} \psi_{j^{\prime} j} u_{i^{\prime}} \otimes v_{j^{\prime}}
$$

Recall we are also assuming that the Q-modules A_{1} and B_{1} are not N-conjugate. Therefore, $\Phi(x)$ fixes each of
$C_{1}=\left\langle u_{i} \otimes v_{j}: 1 \leq i \leq e, 1 \leq j \leq a\right\rangle_{k}, \quad D_{1}=\left\langle u_{i} \otimes v_{j}: 1 \leq i \leq e, a+1 \leq j \leq a+b\right\rangle_{k}$.
In particular, $\theta_{i^{\prime} i} \psi_{j^{\prime} j}=0$ whenever $j^{\prime}>a$ and $j \leq a$. Now if $\psi_{j^{\prime} j} \neq 0$ for some $j \leq a$ and some $j^{\prime}>a$, we must have $\theta_{i^{\prime} i}=0$ for all i, i^{\prime}, i.e., $\Theta(x)=0$, a contradiction. Similarly, $\psi_{j^{\prime} j}=0$ whenever $j>a$ and $j^{\prime} \leq a$. Therefore, we can write

$$
\begin{equation*}
\Psi_{1}(x)=\operatorname{diag}\left(\Psi_{1 A}(x), \Psi_{1 B}(x)\right) \tag{5-1}
\end{equation*}
$$

in the chosen basis $\left\{v_{1}, \ldots, v_{a+b}\right\}$. It also follows that $\Psi(y)$ fixes each of A_{1} and B_{1} for all $y \in N^{+}$, i.e., A_{1} and B_{1} are irreducible N^{+}-modules.

Now, $\Psi_{1}(x) \Psi_{1}(y)=\alpha(x, y) \Psi_{1}(x y)$ for any $x, y \in N_{1}$. Together with (5-1) this implies that

$$
\Psi_{1 A}(x) \Psi_{1 A}(y)=\alpha(x, y) \Psi_{1 A}(x y), \quad \Psi_{1 B}(x) \Psi_{1 B}(y)=\alpha(x, y) \Psi_{1 B}(x y),
$$

i.e., both $\Psi_{1 A}$ and $\Psi_{1 B}$ are projective representations of N_{1} with factor set α. Since $\Psi_{1}(x)=\Psi(x)$ for all $x \in N^{+}$and (5-1) certainly holds for $x \in N^{+}$, we also see that $\Psi_{1 A}$ extends the representation of N^{+}on A_{1}, and similarly $\Psi_{1 B}$ extends the representation of N^{+}on B_{1}. By [Navarro 1998, Theorem 8.18], the formulae

$$
\Phi_{A}(g):=\Theta(g) \otimes \Psi_{1 A}(g), \quad \Phi_{B}(g):=\Theta(g) \otimes \Psi_{1 B}(g)
$$

for $g \in N_{1}$ define irreducible (linear) representations of N_{1} of dimension ea and $e b$ (acting on C_{1} and D_{1}, respectively), and so we are done.
(b) Next we consider the case N acts transitively on $\left\{A_{1}, \ldots, B_{t}\right\}$. In this case, $N_{1}^{\mathrm{o}}:=I_{N}\left(A_{1}\right)$ has index $2 t$ in N and is contained in N_{1}. Note that there is some $g \in N$ such that $B_{1}^{g} \cong A_{1}$ as Q-modules. Certainly, such g must belong to N_{1}, and also g interchanges C_{1} and D_{1}. Applying the arguments of (a) to g, we see that $\Psi_{1}(g)$ interchanges A_{1} and B_{1}. It follows that $\left(\Psi_{1}\right)_{N_{1}}$ is irreducible. In turn, this implies by [Navarro 1998, Theorem 8.18] that $\Phi_{N_{1}}$ is irreducible, i.e., N_{1} is irreducible on V_{1}. But [$N_{1}: N_{1}^{\circ}$] $=2$ and $V_{1}=C_{1} \oplus D_{1}$ as N_{1}°-modules. Hence C_{1} is an irreducible N_{1}°-module. Since $N_{1}^{\circ}=I_{N}\left(A_{1}\right)$ and C_{1} is the A_{1}-isotypic component for Q on V, we conclude by Clifford's theorem that N is irreducible on V.

Lemma 5.4. Let V be a finite-dimensional vector space over k and $G \leq \operatorname{GL}(V) a$ finite irreducible subgroup. Write $\left.V\right|_{G^{+}}=e \sum_{i=1}^{t} W_{i}$, where the G^{+}-modules W_{i} are irreducible and pairwise nonisomorphic. Suppose there is a subgroup $Q \leq G^{+}$ with the following properties:
(a) $\left\{Q^{g}: g \in G\right\}=\left\{Q^{x}: x \in G^{+}\right\}$.
(b) $\left(W_{i}\right)_{Q} \cong A_{i} \oplus B_{i 1} \oplus \cdots \oplus B_{i s}$, where $a:=\operatorname{dim} A_{i} \neq \operatorname{dim} B_{i l}$ for all $1 \leq i \leq t$ and all $1 \leq l \leq s$, the Q-modules $A_{i}, B_{i l}$ are irreducible, and the Q-modules $A_{i}(1 \leq i \leq t)$ are pairwise nonisomorphic.

Then the following statements hold:
(i) Denoting $N:=N_{G}(Q)$, we have that $V_{N} \cong A \oplus B$ as N-modules, where A is irreducible, $A_{Q} \cong e\left(\bigoplus_{i=1}^{t} A_{i}\right)$ and $B_{Q} \cong e\left(\bigoplus_{i, l} B_{i l}\right)$.
(ii) Assume that N is a p^{\prime}-subgroup, G^{+}is perfect, and that, whenever $i \neq j$, no G^{+}-composition factor of $W_{i}^{*} \otimes W_{j}$ is trivial. If all G^{+}-composition factors of $\operatorname{End}(V) / \mathcal{M}$ (if there are any) are trivial, then in fact $\mathcal{M}=\operatorname{End}(V)$.

Proof. (i) follows from same proof as Lemma 5.3. For (ii), note that since G^{+}is perfect it must act trivially on $\mathscr{E} / \operatorname{End}(V)$, i.e., $\mathcal{M} \supseteq\left[\operatorname{End}(V), G^{+}\right]$. It follows that

$$
\begin{equation*}
\mathcal{M} \supseteq\left[\mathscr{E}_{1 i}, G^{+}\right] \tag{5-2}
\end{equation*}
$$

for $\mathscr{E}_{1 i}:=\operatorname{End}\left(V_{i}\right)$. On the other hand, $\operatorname{Hom}\left(V_{i}, V_{j}\right)=\left[\operatorname{Hom}\left(V_{i}, V_{j}\right), G^{+}\right]$, and so

$$
\mathcal{M} \supseteq \bigoplus_{1 \leq i \neq j \leq t} \operatorname{Hom}\left(V_{i}, V_{j}\right) .
$$

It suffices to show that $\mathcal{M} \supseteq \mathscr{E}_{11}$ (and so by symmetry $\mathcal{M} \supseteq \mathscr{E}_{1 i}$ for all i).
Applying the Artin-Wedderburn theorem to N, we see that

$$
\begin{equation*}
\mathcal{M} \supset \operatorname{End}(A) \supseteq \operatorname{End}\left(C_{1}\right), \tag{5-3}
\end{equation*}
$$

where $\left(C_{1}\right)_{Q} \cong e A_{1}$. Also, as in the proof of Lemma 5.3, we can write

$$
V_{1}=U \otimes W_{1}, \quad C_{1}=U \otimes A_{1},
$$

such that U affords a projective representation Θ of $G_{1} / G^{+} \cong N_{1} / N^{+}, W_{1}$ affords a projective representation Ψ_{1} of G_{1} that extends the representation Ψ of G^{+}on W_{1}, and $\Phi(g)=\Theta(g) \otimes \Psi_{1}(g)$ for the representation Φ of G_{1} on V_{1}.

Note that the subspace $\operatorname{End}\left(W_{1}\right)^{\circ}$ consisting of all transformations with trace 0 is a G^{+}-submodule X of codimension 1 of $\operatorname{End}\left(W_{1}\right)$. Next, as a G^{+}-module,

$$
\mathscr{E}_{11}=\operatorname{End}\left(V_{1}\right) \cong \operatorname{End}(U) \otimes \operatorname{End}\left(W_{1}\right) \cong e^{2} \operatorname{End}\left(W_{1}\right) .
$$

So we see that $\mathscr{E}_{11}^{+}:=\operatorname{End}(U) \otimes \operatorname{End}\left(W_{1}\right)^{\circ}$ is a submodule of codimension e^{2} in \mathscr{E}_{11}, and all G^{+}-composition factors of $\mathscr{E}_{11} / \mathscr{E}_{11}^{+}$are trivial. Since G^{+}is perfect, it follows that $\mathscr{E}_{11}^{+} \supseteq\left[\mathscr{E}_{11}, G^{+}\right]$. But

$$
\begin{aligned}
\operatorname{dim} \operatorname{Hom}_{k G^{+}}\left(\mathscr{E}_{11}, k\right) & =e^{2} \operatorname{dim}_{\operatorname{Hom}_{k G^{+}}\left(\operatorname{End}\left(W_{1}\right), k\right)} \\
& =e^{2} \operatorname{dim} \operatorname{Hom}_{k G^{+}}\left(W_{1}, W_{1}\right)=e^{2} .
\end{aligned}
$$

Hence, $\mathscr{E}_{11}^{+}=\left[\mathscr{E}_{11}, G^{+}\right]$, and so by (5-2) we have that

$$
\mathcal{M} \supset \mathscr{E}_{11}^{+}=\operatorname{End}(U) \otimes \operatorname{End}\left(W_{1}\right)^{\circ} .
$$

On the other hand, by (5-3) we also have that

$$
\mathcal{M} \supset \operatorname{End}\left(C_{1}\right)=\operatorname{End}(U) \otimes \operatorname{End}\left(A_{1}\right) .
$$

Obviously, $\operatorname{End}\left(W_{1}\right)^{\circ}+\operatorname{End}\left(A_{1}\right)=\operatorname{End}\left(W_{1}\right)\left(\operatorname{as} \operatorname{End}\left(A_{1}\right)\right.$ contains elements with nonzero trace). Hence we conclude that $\mathcal{M} \supseteq \mathscr{E}_{11}$, as stated.

We also record the following trivial observation:
Lemma 5.5. Let E be a $k G$-module of finite length with submodules X and M. Suppose that $N \leq G$ and that the N-modules X and E / X share no common composition factor (up to isomorphism). Suppose that the multiplicity of each composition factor C of X is at most its multiplicity as a composition factor of M (for instance, X is a subquotient of M). Then $M \supseteq X$.

Proof. The hypothesis implies that the N-modules X and E / M have no common composition factor. On the other hand, $X /(M \cap X) \cong(X+M) / M \subseteq E / M$ as N-modules. It follows that $X=M \cap X$, as stated.

Proposition 5.6. Let (G, V) be as in the extraspecial case (ii) of Theorem 2.4. Then (G, V) is weakly adequate.
Proof. Decompose $V_{G^{+}}=e \sum_{i=1}^{t} W_{i}$ as in Lemma 5.2. Recall by Theorem 2.4(ii) that $R:=\boldsymbol{O}_{p^{\prime}}\left(G^{+}\right) \triangleleft G$ acts irreducibly on each W_{i}. First we show that if $i \neq j$ then the R-modules W_{i} and W_{j} are nonisomorphic. Assume the contrary: $W_{i} \cong W_{j}$ as R-modules. Then the G^{+}-modules W_{i} and W_{j} are two extensions to $G^{+} \triangleright R$ of the R-module W_{i}. By [Navarro 1998, Corollary 8.20], $W_{j} \cong W_{i} \otimes U$ (as G^{+}modules) for some one-dimensional G^{+} / R-module U. But G^{+} / R is perfect by Theorem 2.4(ii). It follows that U is the trivial module and $W_{i} \cong W_{j}$ as G^{+}-modules, a contradiction.

For future use, we also show that the G^{+}-module W_{i} has a unique complex lift. Indeed, the existence of a complex lift χ of W_{i} was established in [Blau and Zhang 1993, Theorem B]. Suppose that χ^{\prime} is another complex lift. Then both χ and χ^{\prime} are extensions of $\alpha:=\chi_{R}$, and α is irreducible since R is irreducible on W_{i}. Then, again by [Navarro 1998, Corollary 8.20], $\chi^{\prime}=\chi \lambda$ for some linear character λ of G^{+} / R, and so $\lambda=1_{G^{+} / R}$ as G^{+} / R is perfect. Thus $\chi^{\prime}=\chi$.

Now we write $G^{+} / R=S_{1} \times \cdots \times S_{n}$ with $S_{i} \cong S$ as in Theorem 2.4(ii). We will define the subgroup $Q>R$ of G^{+}with

$$
Q / R=Q_{1} \times \cdots \times Q_{n}
$$

as follows. If $p=17$ and $S=\mathrm{PSL}_{2}$ (17), then Q_{i} is a dihedral subgroup of order 16 . If $S=\Omega_{2 a}^{-}\left(2^{b}\right)^{\prime}$ with $a b=n$ (and $a \geq 2$ as S is simple nonabelian), then Q_{i} is chosen to be the first parabolic subgroup (which is the normalizer of an isotropic 1 -space in the natural module $\mathbb{F}_{2 b}^{2 a}$, of index $\left(2^{n}+1\right)\left(2^{n-b}-1\right) /\left(2^{b}-1\right)$. If $S=\operatorname{Sp}_{4}(2)^{\prime} \cong \mathrm{A}_{6}$, choose $Q_{i} \cong 3^{2}: 4$, of order 36. If $S=\operatorname{Sp}_{4}\left(2^{b}\right)$ with $b \geq 2$, we fix a prime divisor r of b and choose $Q_{i} \cong \operatorname{Sp}_{4}\left(2^{b / r}\right)$. For $S=\operatorname{Sp}_{2 a}\left(2^{b}\right)$ with $a \geq 3$, we choose Q_{i} to be the first parabolic subgroup (which is the normalizer of a 1 -space in the natural module $\mathbb{F}_{2^{b}}^{2 a}$, of index $2^{2 n}-1$). In all cases, our choice of Q_{i} ensures that the p^{\prime}-subgroup Q_{i} is a maximal subgroup of S_{i} and, moreover, that the S_{i}-conjugacy class of Q_{i} is $\operatorname{Aut}\left(S_{i}\right)$-invariant. In particular, $\boldsymbol{N}_{G^{+}}(Q)=Q$. Also note that any
$g \in G$ normalizes R and permutes the simple factors S_{i} of G^{+} / R; in fact, its action on G^{+} / R belongs to $\operatorname{Aut}\left(S^{n}\right)=\operatorname{Aut}(S) \imath \mathrm{S}_{n}$. It follows that Q satisfies conditions (i) and (iii) of Lemma 5.2. Since $W_{i} \not \equiv W_{j}$ as R-modules for $i \neq j, W_{i} \nsupseteq W_{j}$ as Q-modules as well. Hence we are done by Lemma 5.2.
Theorem 5.7. Suppose (G, V) is as in case (i) of Theorem 2.4. Then (G, V) is weakly adequate unless one of the following possibilities occurs for the group $H<\mathrm{GL}(W)$ induced by the action of G^{+}on any irreducible G^{+}-submodule W of V :
(i) $p=\left(q^{n}-1\right) /(q-1)$, with $n \geq 3$ a prime, and $H \cong \operatorname{PSL}_{n}(q)$.
(ii) $(p, H, \operatorname{dim} W)=\left(5,2 \mathrm{~A}_{7}, 4\right),\left(7,6 \cdot \cdot \mathrm{PSL}_{3}(4), 6\right),\left(11,2 M_{12}, 10\right)$, or $\left(19,3 J_{3}, 18\right)$.

Proof. (a) Arguing as in part (b) of the proof of Theorem 2.4 (and using its notation), we see that for each i there is some k_{i} such that the kernel K_{i} of the action of G^{+} on W_{i} contains $\prod_{j \neq k_{i}} L_{j}$, and so G^{+}acts on W_{i} as $H_{i}=L_{k_{i}} /\left(L_{k_{i}} \cap K_{i}\right)$. We aim to define a subgroup $Q>\boldsymbol{Z}\left(G^{+}\right)$of G^{+}such that

$$
Q=Q_{1} * Q_{2} * \cdots * Q_{n}
$$

where $Q_{i} / \boldsymbol{Z}\left(L_{i}\right) \leq L_{i} / \boldsymbol{Z}\left(L_{i}\right)=: S_{i} \cong S$ and Q satisfies the conditions of Lemma 5.2. In fact, we will find Q_{i} so that the p^{\prime}-subgroup $Q_{i} / Z\left(L_{i}\right)$ is a maximal subgroup of S_{i} and, moreover, the S_{i}-conjugacy class of $Q_{i} / \boldsymbol{Z}\left(L_{i}\right)$ is $\operatorname{Aut}\left(S_{i}\right)$-invariant. To this end, we first find Q_{1}; then for each $i>1$, we can fix an element $g_{i} \in$ G conjugating S_{1} to S_{i} and choose $Q_{i}=Q_{1}^{g_{i}}$. Since G fixes G^{+}and $\boldsymbol{Z}\left(G^{+}\right)$ and induces a subgroup of $\operatorname{Aut}(S)$ 々 S_{n} while acting on $G^{+} / \boldsymbol{Z}\left(G^{+}\right) \cong S^{n}$, it follows that Q satisfies conditions (i) and (iii) of Lemma 5.2. Moreover, in the cases where

$$
\begin{equation*}
G^{+}=L_{1} \times \cdots \times L_{n} \cong H^{n} \tag{5-4}
\end{equation*}
$$

then we can also write $Q=Q_{1} \times \cdots \times Q_{n}$, which simplifies some parts of the arguments.
(b1) Suppose first that we are in the case (b1) of Theorem 2.1. Assume that $(H, p)=\left(\operatorname{Sp}_{2 n}(q),\left(q^{n}+1\right) / 2\right)$. Here H is the full cover of S, so (5-4) holds. Then we choose Q_{i} to be the last parabolic subgroup of $\operatorname{Sp}_{2 n}(q)$ (which is the stabilizer of a maximal totally isotropic subspace in the natural module $\mathbb{F}_{q}^{2 n}$). Then $Q_{i} / \boldsymbol{Z}\left(L_{i}\right)$ is a maximal p^{\prime}-subgroup of S_{i} and, moreover, the S_{i}-conjugacy class of $Q_{i} / \boldsymbol{Z}\left(L_{i}\right)$ is $\operatorname{Aut}\left(S_{i}\right)$-invariant. By [Guralnick et al. 2002, Theorem 2.1], the H-module W is one of the two Weil modules of dimension $\left(q^{n}-1\right) / 2$ of $H \cong$ $\mathrm{Sp}_{2 n}(q)$. Furthermore, by [Guralnick et al. 2002, Lemma 7.2], the restrictions of these two Weil modules of L_{i} to Q_{i} are irreducible and nonisomorphic. It follows that if $W_{i} \nexists W_{j}$ as G^{+}-modules and $K_{i}=K_{j}$, then $W_{i} \nexists W_{j}$ as Q modules. On the other hand, if $K_{i} \neq K_{j}$, then $k_{i} \neq k_{j}$ (otherwise we would have $K_{i}=K_{j}=\prod_{a \neq k_{i}} L_{a}$ since $L_{k_{i}}$ acts faithfully on V_{i}, whence $K_{i} \cap Q \neq K_{j} \cap Q$
and so $W_{i} \not \not W_{j}$ as Q-modules. Thus condition (ii) of Lemma 5.2 holds as well, and so we are done.

Consider the case $(H, p)=(2 R u, 29)$. Then H is the full cover of S and so (5-4) holds. Choose Q_{i} to be a unique (up to L_{i}-conjugacy) maximal subgroup of type $\left(2 \times \mathrm{PSU}_{3}(5)\right): 2$ of L_{i}; see [Conway et al. 1985]. Note that L_{i} has a unique conjugacy class $3 A$ of elements of order 3. By using [Jansen et al. 1995] and [Conway et al. 1985], and comparing the character values at this class $3 A$, we see that L_{i} has two irreducible p-Brauer characters φ_{1}, φ_{2}, of degree 28 , and their restrictions to Q_{i} yield the same irreducible character of Q_{i}. Now, if $K_{i} \neq K_{j}$, then $k_{i} \neq k_{j}$ (as W is a faithful $k H$-module), whence $K_{i} \cap Q \neq K_{j} \cap Q$ and so $W_{i} \neq W_{j}$ as Q-modules. Suppose that $K_{i}=K_{j}$. By Clifford's theorem, there is some $g \in G$ such that $W_{j}=W_{i}^{g}$ as G^{+}-modules, and so as L_{i}-modules as well. In this case, g induces an automorphism of $L_{i}=2 R u$. But all automorphisms of $R u$ are inner [Conway et al. 1985], so W_{i} and W_{j} afford the same Brauer L_{i}-character, whence $W_{i} \cong W_{j}$ as G^{+}-modules. Thus condition (ii) of Lemma 5.2 holds as well, and so we are done.

Next assume that $(H, p)=\left(\mathrm{SU}_{n}(q),\left(q^{n}+1\right) /(q+1)\right)$; in particular $n \geq 3$ is odd. Since H is simple, (5-4) holds. Then we choose Q_{i} to be the last parabolic subgroup of $\mathrm{SU}_{n}(q)$ (which is the stabilizer of a maximal totally isotropic subspace in the natural module $\mathbb{F}_{q^{2}}^{n}$). Then the p^{\prime}-subgroup Q_{i} is a maximal subgroup of S_{i} and the S_{i}-conjugacy class of Q_{i} is $\operatorname{Aut}\left(S_{i}\right)$-invariant. Next, if $n \geq 5$ then by [Guralnick et al. 2002, Theorem 2.7], $\operatorname{PSU}_{n}(q)$ has a unique irreducible module over k of dimension $p-1=\left(q^{n}-q\right) /(q+1)$, which is again a Weil module. Furthermore, Lemmas 12.5 and 12.6 of [Guralnick et al. 2002] show that the restriction of this Weil module of L_{i} to Q_{i} is irreducible. The same conclusions hold in the case $n=3$ by Theorem 4.2 and the proof of Remark 3.3 of [Geck 1990]. It follows that if $W_{i} \not \neq W_{j}$ as G^{+}-modules, then $K_{i} \neq K_{j}, k_{i} \neq k_{j}$ (as W is a faithful $k H$-module), whence $K_{i} \cap Q \neq K_{j} \cap Q$ and so $W_{i} \neq W_{j}$ as Q-modules. Thus condition (ii) of Lemma 5.2 holds, and so we are done again.

Note that we have listed the cases $(p, H)=\left(5,2 \mathrm{~A}_{7}\right)$ and $\left(19,3 J_{3}\right)$ as possible exceptions in (ii).
(b2) Suppose now that we are in the case (b2) of Theorem 2.1; in particular, $p=7$ and $\operatorname{dim} W=6$. Assume first that $S=\mathrm{A}_{7}$. The arguments in the cases $L_{i} \cong 3 \mathrm{~A}_{7}$ and $6 \mathrm{~A}_{7}$ are the same, so we assume $L_{i} \cong 6 \mathrm{~A}_{7}$. Then we choose $Q_{i} / Z\left(L_{i}\right)$ to be a unique (up to L_{i}-conjugacy) maximal subgroup of type A_{6}. Restricting the faithful reducible complex characters of degree 4 of $2 \mathrm{~A}_{7}$ and 6 of $3 \mathrm{~A}_{7}$ [Conway et al. 1985] to Q_{i} (and comparing character values at elements of order 3), we see that $Q_{i} \cong 6 \mathrm{~A}_{6}$. Now, using [Jansen et al. 1995], one can check that L_{i} has six irreducible p-Brauer characters of degree 6 , and their restrictions to Q_{i} are irreducible and distinct. Now we can argue as in the case of $\mathrm{Sp}_{2 n}(q)$.

Assume now that $H=2 J_{2}$, and so (5-4) holds. Choose $Q_{i} / \boldsymbol{Z}\left(L_{i}\right)$ to be a unique (up to L_{i}-conjugacy) maximal subgroup of type $3 \cdot \mathrm{PGL}_{2}(9)$ (see [Conway et al. 1985]). Also, using [Jansen et al. 1995], one can check that L_{i} has two irreducible p-Brauer characters of degree 6 , and their restrictions to Q_{i} are irreducible and distinct. Now we can argue as in the case of $\operatorname{Sp}_{2 n}(q)$.

Suppose that $H=6_{1} \cdot \mathrm{PSU}_{4}(3)$. We will prove weak adequacy of (G, V) in two steps. First, we choose $M_{i} / \boldsymbol{Z}\left(L_{i}\right)$ to be a unique (up to S_{i}-conjugacy) maximal subgroup of type $T \cong \mathrm{SU}_{3}$ (3) of S_{i} (see [Conway et al. 1985]). Since T has trivial Schur multiplier, we have that $M_{i} \cong Z_{i} \times T$, where $Z_{i}:=\boldsymbol{Z}\left(L_{i}\right)$. According to [Jansen et al. 1995], L_{i} has two irreducible p-Brauer characters of degree 6 , which have different central characters. It follows that their restrictions to M_{i} are irreducible and distinct. Setting

$$
M:=M_{1} * \cdots * M_{n},
$$

we conclude by Lemma 5.2 that $N:=N_{G}(M)$ is irreducible on V; furthermore, $N / M \cong G / G^{+}$is a p^{\prime}-group. But note that M is not a p^{\prime}-group. Now, at the second step, we note that $M \triangleleft N$ and $N^{+}:=\boldsymbol{O}^{p^{\prime}}(N)=\boldsymbol{O}^{p^{\prime}}(M) \cong T^{n}$, and, moreover, each irreducible N^{+}-submodule in V has dimension 6 . Also, recall that $T=\mathrm{SU}_{3}(3)$ and $p=7$. So we are done by applying the result of the case of $\operatorname{PSU}_{n}(q)$.
(b3) Consider the case (b3) of Theorem 2.1 ; in particular, $p=11$ and $\operatorname{dim} W=10$. Putting the possibility $H=2 M_{12}$ as a possible exception in (ii), we may assume that $H=M_{11}$ or $2 M_{22}$. Then we choose $Q_{i} / Z\left(L_{i}\right)$ to be a unique (up to $S_{i^{-}}$ conjugacy) maximal subgroup of type $M_{10} \cong \mathrm{~A}_{6} \cdot 2_{3}$ or PSL_{3} (4), respectively, of S_{i} (see [Conway et al. 1985]). In the former case, H is simple and so (5-4) holds. In the latter case, since $H_{j} \cong 2 M_{22}$, we see that the cyclic group $\boldsymbol{Z}\left(L_{i}\right) \triangleleft G^{+}$must act as a central subgroup of order 1 or 2 of H_{j} on each W_{j}. Hence the faithfulness of G on V implies that $L_{i} \cong 2 M_{22}$. Since $\mathrm{PSL}_{3}(4)$ has no nontrivial representation of degree 10 , we must have that $Q_{i} \cong 2 \cdot \mathrm{PSL}_{3}(4)$ is quasisimple in this case. Now, using [Jansen et al. 1995], one can check that L_{i} has two irreducible p-Brauer characters of degree 10 , and their restrictions to Q_{i} are irreducible and distinct. Hence we can argue as in the case of $\operatorname{Sp}_{2 n}(q)$.
(b4) Suppose we are in the case (b4) of Theorem 2.1; in particular, $p=13$ and $\operatorname{dim} W=12$. Since H is the full cover of S, (5-4) holds. Then we may choose $Q_{i} / \boldsymbol{Z}\left(L_{i}\right)$ to be a unique (up to S_{i}-conjugacy) maximal subgroup of type $J_{2}: 2$ or $\mathrm{SL}_{3}(4): 2_{3}$, respectively, of S_{i} (see [Conway et al. 1985]). Since J_{2} has no nontrivial representation of degree 12 , in the former case we must have that $Q_{i} \cong\left(C_{3} \times 2 J_{2}\right) \cdot C_{2}$, where $C_{3}=\boldsymbol{O}_{3}\left(\boldsymbol{Z}\left(L_{i}\right)\right)$ and the C_{2} induces an outer automorphism of J_{2}. Also, according to [Breuer et al.], L_{i} has precisely two irreducible p-Brauer characters of degree 12 , which differ at the central elements of order 3 . Using [Jansen et al.

1995], we can now check that the restrictions of these two characters to Q_{i} are irreducible and distinct, and then finish as in the case of $\mathrm{Sp}_{2 n}(q)$. In the latter case of $L_{i}=2 \mathrm{G}_{2}(4)$, since $\mathrm{SL}_{3}(4)$ has no nontrivial representation of degree 12 we must have that $Q_{i} \cong\left(6 \cdot \mathrm{PSL}_{3}(4)\right) \cdot 2_{3}$. Now, using [Jansen et al. 1995], one can check that L_{i} has a unique irreducible p-Brauer character of degree 12, and its restriction to Q_{i} is irreducible. Hence we can argue as in the case of $\operatorname{PSU}_{n}(q)$.
(c) Now we consider case (c) of Theorem 2.1; in particular, $\operatorname{dim} W=p-2$. Assume that $H=\mathrm{A}_{p}$ with $p \geq 5$. Since H is simple, (5-4) holds. Choosing $Q_{i} \cong \mathrm{~A}_{p-1}$, we see that the p^{\prime}-subgroup Q_{i} is a maximal subgroup of S_{i} and that the S_{i}-conjugacy class of Q_{i} is $\operatorname{Aut}\left(S_{i}\right)$-invariant. Also, using [Guralnick and Tiep 2005, Lemma 6.1] for $p \geq 17$ and [Jansen et al. 1995] for $p \leq 13$, we see that H has a unique irreducible $k H$-module of dimension $p-2$, and the restriction of this module to A_{p-1} is irreducible. Now we can argue as in the case of $\mathrm{PSU}_{n}(q)$.

Next suppose that $(H, p)=\left(\mathrm{SL}_{2}(q), q+1\right)$; in particular, p is a Fermat prime and H is simple so (5-4) holds. Choosing $Q_{i}<\mathrm{SL}_{2}(q)$ to be a Borel subgroup (of index p), we see that Q_{i} is a maximal p^{\prime}-subgroup of S_{i} and that the S_{i}-conjugacy class of Q_{i} is $\operatorname{Aut}\left(S_{i}\right)$-invariant. Also, using [Burkhardt 1976], one can check that H has a unique irreducible $k H$-module of dimension $p-2$, and the restriction of this module to Q_{i} is irreducible. Now argue as above.

Suppose that $p=5$ and $H=3 \mathrm{~A}_{6}$ or $3 \mathrm{~A}_{7}$. First we note that $L_{i} \cong 3 \mathrm{~A}_{s}$ with $s=6$ or $s=7$ respectively. If not, then $L_{i} \cong 6 \mathrm{~A}_{s}$, but then, since $H_{j} \cong 3 \mathrm{~A}_{s}, \boldsymbol{O}_{2}\left(\boldsymbol{Z}\left(L_{i}\right)\right)$ must act trivially on all W_{i}, contradicting the faithfulness of G on V. Now we choose Q_{i} to be the normalizer of a Sylow 3-subgroup in L_{i}, of order 108. It is straightforward to check that $\boldsymbol{N}_{S_{i}}\left(Q_{i} / \mathbf{Z}\left(L_{i}\right)\right)=Q_{i} / \mathbf{Z}\left(L_{i}\right)$ and that the S_{i}-conjugacy class of Q_{i} is Aut $\left(S_{i}\right)$-invariant. Also, using [Jansen et al. 1995], one can check that H has two irreducible 5-Brauer characters of degree $p-2$, and the restrictions of them to Q_{i} are irreducible and distinct. Now we can argue as in the case of $\mathrm{Sp}_{2 n}(q)$.

Suppose that $(p, H)=\left(11, M_{11}\right)$ or $\left(23, M_{23}\right)$. Again (5-4) holds as H is simple. Choosing Q_{i} to be $M_{10} \cong \mathrm{~A}_{6} \cdot 2_{3}$ (in the notation of [Conway et al. 1985]) or M_{22}, respectively, we have that Q_{i} is a unique maximal subgroup of L_{i} of the given p^{\prime}-order up to L_{i}-conjugacy. Furthermore, L_{i} has a unique irreducible $k H$-module of dimension $p-2$, and the restriction of this module to Q_{i} is irreducible. Now argue as in the case of $\mathrm{PSU}_{n}(q)$.
(d) Finally, we consider case (d) of Theorem 2.1: $(p, H)=\left(11, J_{1}\right)$ or $\left(7,2 \mathrm{~A}_{7}\right)$. Then we choose $Q_{i} / \mathbf{Z}\left(L_{i}\right)$ to be a unique (up to S_{i}-conjugacy) maximal subgroup of type $2^{3}: 7: 3$ or A_{6}, respectively (see [Conway et al. 1985]). In the former case, H is simple, and so (5-4) holds. In the latter case, note that L_{i} is $2 \mathrm{~A}_{7}$. If not, then $L_{i} \cong 6 \mathrm{~A}_{7}$, but then, since $H_{j} \cong 2 \mathrm{~A}_{7}, \boldsymbol{O}_{3}\left(\boldsymbol{Z}\left(L_{i}\right)\right)$ must act trivially on all W_{i}, contradicting the faithfulness of G on V. It then follows that $Q_{i} \cong 2 \mathrm{~A}_{6}$ (as any

4-dimensional $k \mathrm{~A}_{6}$-representation is trivial). Now, using [Jansen et al. 1995] one can check that H has a unique irreducible p-Brauer character of given degree, and its restriction to Q_{i} is irreducible. Now we can argue as in the case of $\operatorname{PSU}_{n}(q)$.

Next we use Lemma 5.3 to handle three exceptions listed in Theorem 5.7:
Proposition 5.8. In the case $(p, H, \operatorname{dim} W)=\left(19,3 J_{3}, 18\right)$ of (ii) of Theorem 5.7, (G, V) is weakly adequate.

Proof. Since H is the full cover of S, we have $G^{+}=L_{1} \times \cdots \times L_{n} \cong H^{n}$. Since H acts faithfully on W, for each i there is some k_{i} such that the kernel K_{i} of the action of G^{+}on W_{i} is precisely $\prod_{j \neq k_{i}} L_{j}$. We define a subgroup Q of G^{+}such that

$$
Q=Q_{1} \times \cdots \times Q_{n},
$$

where $Q_{i} / \mathbf{Z}\left(L_{i}\right) \cong \mathrm{SL}_{2}(16): 2$ is a maximal subgroup of $S_{i}=L_{i} / \mathbf{Z}\left(L_{i}\right) \cong J_{3}$. Since $\mathrm{SL}_{2}(16)$ has a trivial Schur multiplier and $\boldsymbol{Z}\left(L_{i}\right) \leq \boldsymbol{Z}\left(Q_{i}\right)$, we have that $Q_{i} \cong 3 \times\left(\mathrm{SL}_{2}(16): 2\right)$. Furthermore, the S_{i}-conjugacy class of Q_{i} is $\operatorname{Aut}\left(S_{i}\right)$ invariant. Hence Q satisfies the condition (i) of Lemma 5.3.

Using [GAP 2004], one can check that L_{i} has exactly four irreducible 19-Brauer characters $\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}$ of degree 18 , and $\left(\varphi_{j}\right) Q_{i}=\alpha_{j}+\beta_{j}$, with α_{j} of degree 1 with kernel $\left[Q_{i}, Q_{i}\right], \beta_{j}$ of degree 17, and the β_{j} are all distinct. Now we show that Q fulfills the condition (ii) of Lemma 5.3. Suppose that $W_{i} \not \not \equiv W_{j}$ as G^{+}-modules. Then Q acts coprimely on W_{i}, with character $\tilde{\alpha}_{i}+\tilde{\beta}_{i}$, where $\tilde{\alpha}_{i}$ has degree 1 and $\tilde{\beta}_{i}$ has degree 17. If $k_{i} \neq k_{j}$, then $\tilde{\alpha}_{i}$ and $\tilde{\alpha}_{j}$ have different kernels and so are distinct, and likewise $\tilde{\beta}_{i}$ and $\tilde{\beta}_{j}$ are distinct. Suppose now that $k_{i}=k_{j}$. Then, because of the condition $W_{i} \not \not W_{j}$, we may assume that W_{i} and W_{j} both have kernel $K:=L_{2} \times \cdots \times L_{n}$, and afford L_{1}-characters φ_{k} and φ_{l} with $1 \leq k \neq l \leq 4$. Since the G-module V is irreducible, we have $W_{i} \nsubseteq W_{j} \cong W_{i}^{g}$ for some $g \in G$ which stabilizes K and $G^{+} / K \cong L_{1}$ but does not induce an inner automorphism of L_{1}. The latter condition implies that g interchanges the two classes of elements of order 5 and inverts the central element of order 3 of L_{1} [Conway et al. 1985]. The same is true for Q_{1}. It follows that $\alpha_{k} \neq \alpha_{l}, \beta_{k} \neq \beta_{l}$, and so

$$
\tilde{\alpha}_{i} \neq \tilde{\alpha}_{j}, \quad \tilde{\beta}_{i} \neq \tilde{\beta}_{j},
$$

as claimed.
By Lemma 5.3, $V \cong A \oplus B$ as a module over the p^{\prime}-group $N:=N_{G}(Q)$, where the N-modules A and B are irreducible of dimension e and $17 e$, respectively. Hence, by the Artin-Wedderburn theorem applied to N,

$$
\mathcal{M}:=\langle\Phi(g): g \in G, g \text { semisimple }\rangle_{k}
$$

contains $\mathscr{A}:=\operatorname{End}(A) \oplus \operatorname{End}(B)=\left(A^{*} \otimes A\right) \oplus\left(B^{*} \otimes B\right)$ (if Φ denotes the representation of G on V). As in Lemma 5.3 and its proof, write $A=\bigoplus_{i=1}^{t} C_{i}=$ $e\left(\bigoplus_{i=1}^{t} A_{i}\right)$ and $B=\bigoplus_{i=1}^{t} D_{i}=e\left(\bigoplus_{i=1}^{t} B_{i}\right)$ as Q-modules, where A_{i} affords $\tilde{\alpha}_{i}$ and B_{i} affords $\tilde{\beta}_{i}$. Hence, the complement to \mathscr{A} in $\operatorname{End}(V)$ affords the Q-character

$$
\Delta:=e^{2} \sum_{i, j=1}^{t}\left(\tilde{\alpha}_{i} \overline{\tilde{\beta}_{j}}+\tilde{\beta}_{i} \overline{\tilde{\alpha}_{j}}\right)
$$

In particular, all irreducible constituents of $\Delta_{[Q, Q]}$ are of degree 17. The same must be true for the quotient $\operatorname{End}(V) / M$.

As a G^{+}-module,

$$
\operatorname{End}(V)=\bigoplus_{i, j=1}^{t}\left(V_{i}^{*} \otimes V_{j}\right) \cong e^{2}\left(\bigoplus_{i, j=1}^{t} W_{i}^{*} \otimes W_{j}\right)
$$

Observe that the G^{+}-module $W_{i}^{*} \otimes W_{j}$ is irreducible of dimension 324 if $k_{i} \neq k_{j}$. Assume that $k_{i}=k_{j}$, say $k_{i}=k_{j}=1$. Using [GAP 2004] one can check that no irreducible constituent of $\varphi_{k} \overline{\varphi_{l}}$ for $1 \leq k, l \leq 4$ can consist of only irreducible characters of degree 17 while restricted to the subgroup $\mathrm{SL}_{2}(16)$ of $L_{1}=3 J_{3}$. It follows that no irreducible constituent of the G^{+}-module $\operatorname{End}(V)$ can consist of only irreducible constituents of dimension 17 while restricted to $[Q, Q]$. Hence $\mathcal{M}=\operatorname{End}(V)$.
Proposition 5.9. In the case $(p, H, \operatorname{dim} W)=\left(11,2 M_{12}, 10\right)$ of (ii) of Theorem 5.7, (G, V) is weakly adequate.
Proof. As H is the full cover of S, we have that $G^{+}=L_{1} \times \cdots \times L_{n} \cong H^{n}$. Since H acts faithfully on W, for each i there is some k_{i} such that the kernel K_{i} of the action of G^{+}on W_{i} is precisely $\prod_{j \neq k_{i}} L_{j}$. We define a subgroup Q of G^{+}such that

$$
Q=Q_{1} \times \cdots \times Q_{n},
$$

where $Q_{i} / \mathbf{Z}\left(L_{i}\right) \cong 2_{+}^{1+4} \cdot \mathrm{~S}_{3}$ is a maximal subgroup of $S_{i}=L_{i} / \mathbf{Z}\left(L_{i}\right) \cong M_{12}$. Note that the S_{i}-conjugacy class of Q_{i} is $\operatorname{Aut}\left(S_{i}\right)$-invariant. Hence Q satisfies condition (i) of Lemma 5.3.

Using [GAP 2004], one can check that L_{i} has exactly two irreducible 11-Brauer characters φ_{1}, φ_{2} of degree 10 , and $\left(\varphi_{j}\right)_{Q_{i}}=\alpha+\beta_{j}$, with α of degree $4, \beta_{j}$ of degree 6 , and $\beta_{1} \neq \beta_{2}$. Furthermore, $Z_{i}:=\boldsymbol{Z}\left(Q_{i}\right) \cong C_{2}^{2}$, and

$$
\begin{equation*}
\alpha_{Z_{i}}=4 \lambda, \quad\left(\beta_{j}\right)_{Z_{i}}=6 \mu, \tag{5-5}
\end{equation*}
$$

where λ and μ are the two linear characters of Z_{i} that are faithful on $\boldsymbol{Z}\left(L_{i}\right)<Z_{i}$. In particular,

$$
\begin{equation*}
\left(\alpha \beta_{j}\right)_{Z_{i}}=24 v \tag{5-6}
\end{equation*}
$$

with $\nu:=\lambda \mu \neq 1_{Z_{i}}$.

Now we show that Q fulfills condition (ii) of Lemma 5.3. Suppose that $W_{i} \not \approx W_{j}$ as G^{+}-modules. Then Q acts on W_{i}, with character $\tilde{\alpha}_{i}+\tilde{\beta}_{i}$, where $\tilde{\alpha}_{i}(1)=4$ and $\tilde{\beta}_{i}(1)=6$. If $k_{i} \neq k_{j}$, then $\tilde{\alpha}_{i}$ and $\tilde{\alpha}_{j}$ have different kernels and so are distinct, and likewise $\tilde{\beta}_{i}$ and $\tilde{\beta}_{j}$ are distinct. In particular, in this case $W_{i}^{*} \otimes W_{j}$ is also irreducible. Suppose now that $k_{i}=k_{j}$. Then, we may assume that W_{i} and W_{j} both have kernel $K:=L_{2} \times \cdots \times L_{n}$, and afford L_{1}-characters φ_{k} and φ_{l} with $1 \leq k, l \leq 2$. Since the G-module V is irreducible, we have $W_{j} \cong W_{i}^{g}$ for some $g \in G$ which stabilizes K, and $G^{+} / K \cong L_{1}$. But φ_{k} is $\operatorname{Aut}\left(L_{1}\right)$-invariant [Jansen et al. 1995], whence $l=k$, i.e., $W_{j} \cong W_{i}$, a contradiction.

By Lemma 5.3, $V \cong A \oplus B$ as a module over the p^{\prime}-group $N:=N_{G}(Q)$, where the N-modules A and B are irreducible of dimensions $4 e$ and $6 e$, respectively. Hence, by the Artin-Wedderburn theorem applied to N,

$$
\mathcal{M}:=\langle\Phi(g): g \in G, g \text { semisimple }\rangle_{k}
$$

contains $\mathscr{A}:=\operatorname{End}(A) \oplus \operatorname{End}(B)=\left(A^{*} \otimes A\right) \oplus\left(B^{*} \otimes B\right)$ (if Φ denotes the representation of G on V). As in Lemma 5.3 and its proof, write $A=\bigoplus_{i=1}^{t} C_{i}=$ $e\left(\bigoplus_{i=1}^{t} A_{i}\right)$ and $B=\bigoplus_{i=1}^{t} D_{i}=e\left(\bigoplus_{i=1}^{t} B_{i}\right)$ as Q-modules, where A_{i} affords $\tilde{\alpha}_{i}$ and B_{i} affords $\tilde{\beta}_{i}$. Hence, the complement to \mathscr{A} in $\operatorname{End}(V)$ affords the Q-character

$$
\Delta:=e^{2} \sum_{i, j=1}^{t}\left(\tilde{\alpha}_{i} \overline{\tilde{\beta}_{j}}+\tilde{\beta}_{i} \overline{\tilde{\alpha}_{j}}\right) .
$$

Together with (5-5) and (5-6), this implies that the restriction of any irreducible constituents of Δ to $\boldsymbol{Z}(Q)=Z_{1} \times \cdots \times Z_{n}$ does not contain $1_{Z(Q)}$. Thus $\boldsymbol{Z}(Q)$ acts fixed-point-freely on the quotient $\operatorname{End}(V) / \mathcal{M}$. Furthermore, the Q-character of this quotient does not contain $\tilde{\beta}_{i} \tilde{\beta}_{j}$ (as an irreducible constituent of degree 36) for any $i \neq j$.

As a G^{+}-module,

$$
\operatorname{End}(V)=\bigoplus_{i, j=1}^{t}\left(V_{i}^{*} \otimes V_{j}\right) \cong e^{2}\left(\bigoplus_{i, j=1}^{t} W_{i}^{*} \otimes W_{j}\right) .
$$

Now, if $i \neq j$ then the G^{+}-module $W_{i}^{*} \otimes W_{j}$ is irreducible and its Brauer character, while restricted to Q, contains $\tilde{\beta}_{i} \tilde{\beta}_{j}$. On the other hand, the Brauer character of $W_{i}^{*} \otimes W_{i}$ is the direct sum of $1_{G^{+}}$and another irreducible character of degree 99 (as one can check using [GAP 2004]), whose restriction to $\boldsymbol{Z}(Q)$ contains $1_{\boldsymbol{Z}(Q)}$ (which can be seen from (5-5)). Hence we conclude that $\mathcal{M}=\operatorname{End}(V)$.
Lemma 5.10. Let $\operatorname{char}(k)=5$ and let W be a faithful irreducible $k\left(2 \mathrm{~S}_{7}\right)$-module of dimension 8 , with corresponding representation Θ. Decompose $W_{L}=W_{1} \oplus W_{2}$ as L modules for $L=2 \mathrm{~A}_{7}$. Then there is a 5^{\prime}-element $z \in 2 \mathrm{~S}_{7} \backslash L$ and a set $\mathscr{L} \subset L$ such that
(i) x and $x z$ are 5^{\prime}-elements for all $x \in \mathscr{H}$, and
(ii) $\langle\Theta(x): x \in \mathscr{X}\rangle_{k}=\operatorname{End}\left(W_{1}\right) \oplus \operatorname{End}\left(W_{2}\right)$.

Proof. Using [Wilson et al.] and [GAP 2004], K. Lux verified that one can find an element $h \in 2 \mathrm{~S}_{7} \backslash L$ (of order 12) and a set $\mathscr{X} \subset L$ satisfying condition (i) such that $\langle\Theta(x z): x \in \mathscr{X}\rangle_{k}$ has dimension 32. Since $\Theta(z) \in \mathrm{GL}(W)$, it follows that $\langle\Theta(x): x \in \mathscr{X}\rangle_{k}$ is a subspace of dimension 32 in $\operatorname{End}\left(W_{1}\right) \oplus \operatorname{End}\left(W_{2}\right)$. Since the latter also has dimension 32, we are done.

Proposition 5.11. In the case $(p, H, \operatorname{dim} W)=\left(5,2 \mathrm{~A}_{7}, 4\right)$ of (ii) of Theorem 5.7, (G, V) is weakly adequate.

Proof. (a) Recall that $G^{+}=L_{1} * \cdots * L_{n}$, and for each i there is some k_{i} such that the kernel K_{i} of G^{+}contains $\prod_{j \neq k_{i}} L_{j}$. By relabeling the W_{i}, we may assume that $k_{1}=1$. Now, L_{1} acts on each W_{j} either trivially or as the group $H_{j} \cong 2 \mathrm{~A}_{7}$. It follows that $\boldsymbol{O}_{3}\left(\boldsymbol{Z}\left(L_{1}\right)\right)$ acts trivially on each W_{j} and so by faithfulness $\boldsymbol{O}_{3}\left(\boldsymbol{Z}\left(L_{1}\right)\right)=1$, yielding $L_{1} \cong 2 \mathrm{~A}_{7}$. On the other hand, $L_{1} /\left(K_{1} \cap L_{1}\right)=H_{1} \cong 2 \mathrm{~A}_{7}$, whence $K_{1} \cap L_{1}=1, K_{1}=\prod_{j \neq 1} L_{j}$. This is true for all i, so we have shown that

$$
G^{+}=L_{1} \times L_{2} \times \cdots \times L_{n} \cong H^{n} .
$$

Certainly, G permutes the n components L_{i}, and this action is transitive by Theorem 2.4(i). Setting $J_{1}:=N_{G}\left(L_{1}\right)$, one sees that $G_{1}=I_{G}\left(W_{1}\right)=\operatorname{Stab}_{G}\left(V_{1}\right)$ is contained in J_{1} (as it fixes $K_{1}=\prod_{j>1} L_{j}$). Fix a decomposition $G=\bigcup_{i=1}^{t} g_{i} J_{1}$ with $g_{1}=1$ and $L_{i}=L_{1}^{g_{i}}=g_{i} L_{1} g_{i}^{-1}$, and choose a subgroup $Q_{1}<L_{1}$ such that $Q_{1} / \mathbf{Z}\left(L_{1}\right) \cong \operatorname{PSL}_{2}(7)$. Since involutions in A_{7} lift to elements of order 4 in L_{1}, we see that $Q_{1} \cong \mathrm{SL}_{2}(7)$. Now we define

$$
Q=Q_{1} \times Q_{1}^{g_{2}} \times \cdots \times Q_{1}^{g_{n}}<G^{+} .
$$

Note that $N_{G^{+}}(Q)=Q$ and so $N:=N_{G}(Q)$ is a p^{\prime}-group. Also, L_{1} has exactly two irreducible 5-Brauer characters φ_{1}, φ_{2} of degree 4 , restricting irreducibly and distinctly to Q_{1}.
(b) Consider the case where $k_{i} \neq k_{j}$ whenever $i \neq j$, i.e., $J_{1}=G_{1}$ and $t=n$. We claim that Q satisfies the conditions of Lemma 5.2. Indeed, the condition $k_{i} \neq k_{j}$ implies that the Q-modules W_{i} and W_{j} are irreducible and nonisomorphic for $i \neq j$. Next, for any $x \in J_{1}$, since x fixes W_{1} (up to isomorphism), x fixes the character φ of the L_{1}-module W_{1} and so x cannot fuse the two classes $7 A$ and $7 B$ of elements of order 7 in L_{1}, whence x can induce only an inner automorphism of L_{1}. It follows that $Q_{1}^{x}=Q_{1}^{t}$ for some $t \in L_{1}$. Now we consider any $g \in G$. Then, for each i we can find j and $x_{i} \in J_{1}$ such that $g g_{i}=g_{j} x_{i}$. By the previous observation, there is some $t_{i} \in L_{1}$ such that $Q_{1}^{x_{i}}=Q_{1}^{t_{i}}$. Hence, setting $y_{i}=g_{j} t_{i} g_{j}^{-1} \in L_{j}$, we have that

$$
Q_{1}^{g g_{i}}=Q_{1}^{g_{j} x_{i}}=g_{j} x_{i} Q_{1} x_{i}^{-1} g_{j}^{-1}=g_{j} t_{i} Q_{1} t_{i}^{-1} g_{j}^{-1}=y_{i} g_{j} Q_{1} g_{j}^{-1} y_{i}^{-1}=\left(Q_{1}^{g_{j}}\right)^{y_{i}} .
$$

It follows that $Q^{g}=Q^{y}$ with $y=\prod_{i} y_{i} \in G^{+}$, i.e., Q fulfills condition (i) of Lemma 5.2. Now we can conclude by Lemma 5.2 that N is irreducible on V and so we are done.
(c) From now on we assume that, say, $k_{1}=k_{2}$. Then W_{1} and W_{2} are nonisomorphic modules over $G^{+} / K_{1}=L_{1}$. So we may assume that W_{i} affords the L_{1}-character φ_{i} for $i=1,2$. Note that any $x \in J_{1}$ sends W_{1} to another irreducible G^{+}-module with the same kernel K_{1}, and so $\varphi_{1}^{x} \in\left\{\varphi_{1}, \varphi_{2}\right\}$. The irreducibility of G on V implies by Clifford's theorem that the induced action of J_{1} on $\left\{\varphi_{1}, \varphi_{2}\right\}$ is transitive, with kernel G_{1}. We have shown that $\left[J_{1}: G_{1}\right]=2$ and $t=2 n$. We will label $g_{i}\left(W_{1}\right)$ as $W_{2 i-1}$ and $g_{i}\left(W_{2}\right)$ as $W_{2 i}$. We also have that $W_{2} \cong W_{1}^{h}$ for all $h \in J_{1} \backslash G_{1}$. Comparing the kernels and the characters of Q on W_{i}, we see that the Q-modules W_{i} are all irreducible and pairwise nonisomorphic. Let

$$
\begin{aligned}
& \mathscr{E}_{1}:=\bigoplus_{i=1}^{t} \operatorname{End}\left(V_{i}\right)=\bigoplus_{i=1}^{n} \mathscr{A}_{i}, \quad \mathscr{A}_{i}:=\operatorname{End}\left(V_{2 i-1}\right) \oplus \operatorname{End}\left(V_{2 i}\right), \\
& \mathscr{E}_{21}:=\bigoplus_{i=1}^{n} \mathscr{B}_{i}, \\
& \mathscr{E}_{22}:=\bigoplus_{\substack{1 \leq i \neq j \leq 2 n \\
\{i, j\} \neq\{2 a-1,2 a\}}} \operatorname{Hom}\left(V_{i}, V_{j}\right)
\end{aligned}
$$

so that $\operatorname{End}(V)=\mathscr{E}_{1} \oplus \mathscr{E}_{21} \oplus \mathscr{E}_{22}$. Note that the G^{+}-composition factors of \mathscr{E}_{21} are all of dimensions 6 and 10 , whereas the G^{+}-composition factors of \mathscr{E}_{1} are either trivial or of dimension 15, as one can check using [Jansen et al. 1995]. Furthermore, the G^{+}-composition factors of \mathscr{E}_{22} are all of dimension 16. In particular, no G^{+}composition factor of $\operatorname{Hom}\left(W_{i}, W_{j}\right)$ is trivial when $i \neq j$. Similarly, whenever $i \neq j$, the only common G^{+}-composition factor shared by \mathscr{A}_{i} and \mathscr{A}_{j} is k, and \mathscr{B}_{i} and \mathscr{B}_{j} share no common G^{+}-composition factor.
(d) Here we show that $\mathscr{A}_{i} \oplus \mathscr{B}_{i}$ is a subquotient of \mathcal{M}. To this end, note that J_{1} acts irreducibly on $V_{1} \oplus V_{2}$. There is no loss in replacing G by the image of J_{1} in $\operatorname{End}\left(V_{1} \oplus V_{2}\right)$ and V by $V_{1} \oplus V_{2}$. In doing so, we also get that $n=1, G^{+}=L_{1}$, $\left[G: G_{1}\right]=2, K_{1}=1$, and $G_{1}=C * L_{1}$, where $C:=\boldsymbol{C}_{G}\left(L_{1}\right)$ is a 5^{\prime}-group. So for $i=1,2$ we can write $V_{i}=U_{i} \otimes W_{i}$ as G_{1}-modules, where U_{i} is an irreducible $k C$ module with corresponding representation Λ_{i}. Hence for the representation Φ_{i} of G_{1} on V_{i}, we have $\Phi_{i}=\Lambda_{i} \otimes \Theta_{i}$, where Θ_{i} is the representation of L_{1} on W_{i}. Finally, for the representation Φ of G on $V=V_{1} \oplus V_{2}$, we have $\Phi(g)=\operatorname{diag}\left(\Phi_{1}(g), \Phi_{2}(g)\right)$ whenever $g \in G_{1}$.

Recall the element $z \in 2 \mathrm{~S}_{7}$ and the set $\mathscr{X} \subset L_{1}$ constructed in Lemma 5.10. Now we fix a 5^{\prime}-element $h \in G \backslash G_{1}$ such that h induces the same action on $L_{1} / \mathbf{Z}\left(L_{1}\right) \cong \mathrm{A}_{7}$
as the action of z on A_{7}. It follows that for all elements $x \in \mathscr{X}$ and for all $u \in C$, $u x$ and $u x h$ are 5^{\prime}-elements, whence \mathcal{M} contains the subspaces

$$
\mathscr{C}:=\langle\Phi(u x): u \in C, x \in \mathscr{X}\rangle_{k}, \quad \mathscr{C} \Phi(h):=\{v \Phi(h): v \in \mathscr{C}\} .
$$

We also have that $\Theta_{2} \cong \Theta_{1}^{h}=\Theta_{1}^{2}$. Setting $\Theta(x)=\operatorname{diag}\left(\Theta_{1}(x), \Theta_{2}(x)\right)$ for $x \in \mathscr{X}$, we have by the construction of \mathscr{X} that

$$
\langle\Theta(x): x \in \mathscr{X}\rangle_{k}=\operatorname{End}\left(W_{1}\right) \oplus \operatorname{End}\left(W_{2}\right) .
$$

Thus, for $X \in \operatorname{End}\left(W_{1}\right)$, we can write the element $\operatorname{diag}(X, 0)$ of $\operatorname{End}\left(W_{1}\right) \oplus \operatorname{End}\left(W_{2}\right)$ as $\operatorname{diag}(X, 0)=\sum_{x \in \mathscr{X}} a_{x} \Theta(x)$ for some $a_{x} \in k$; i.e.,

$$
\sum_{x \in \mathscr{X}} a_{x} \Theta_{1}(x)=X, \quad \sum_{x \in \mathscr{R}} a_{x} \Theta_{2}(x)=0 .
$$

On the other hand, applying the Artin-Wedderburn theorem to the representation Λ_{i} of the 5^{\prime}-group C on U_{i}, we have that

$$
\left\langle\Lambda_{i}(u): u \in C\right\rangle_{k}=\operatorname{End}\left(U_{i}\right) .
$$

In particular, any $Y \in \operatorname{End}\left(U_{1}\right)$ can be written as $Y=\sum_{u \in C} b_{u} \Lambda_{1}(u)$ for some $b_{u} \in k$. It follows that the element $\operatorname{diag}(Y \otimes X, 0)$ of

$$
\operatorname{End}\left(U_{1}\right) \otimes \operatorname{End}\left(W_{1}\right) \cong \operatorname{End}\left(U_{1} \otimes W_{1}\right)=\operatorname{End}\left(V_{1}\right) \hookrightarrow \operatorname{End}(V)
$$

can be written as
$\operatorname{diag}\left(\sum_{u \in C, x \in \mathscr{\mathscr { R }}} b_{u} a_{x} \Lambda_{1}(u) \otimes \Theta_{1}(x), \sum_{u \in C, x \in \mathscr{X}} b_{u} a_{x} \Lambda_{2}(u) \otimes \Theta_{2}(x)\right)$

$$
=\sum_{u \in C, x \in \mathscr{H}} a_{x} b_{u} \cdot \operatorname{diag}\left(\Phi_{1}(u x), \Phi_{2}(u x)\right)=\sum_{u \in C, x \in \mathscr{\mathscr { C }}} a_{x} b_{u} \Phi(u x),
$$

and so it belongs to \mathscr{C}. Thus $\mathscr{C} \supseteq \operatorname{End}\left(V_{1}\right)$, and similarly $\mathscr{C} \supseteq \operatorname{End}\left(V_{2}\right)$. Since G_{1} stabilizes each of V_{1} and V_{2}, we then have that

$$
\mathscr{C}=\operatorname{End}\left(V_{1}\right) \oplus \operatorname{End}\left(V_{2}\right)=\mathscr{A}_{1} .
$$

But $\Phi(h)$ interchanges V_{1} and V_{2}. It follows that \mathcal{M} also contains

$$
\mathscr{C} \Phi(h)=\operatorname{Hom}\left(V_{1}, V_{2}\right) \oplus \operatorname{Hom}\left(V_{2}, V_{1}\right)=\mathscr{B}_{1},
$$

as stated.
(e) Next we show that \mathscr{E}_{22} is a subquotient of \mathcal{M}. Choose $R_{i} \cong 2 \times(7: 3)<L_{i}$, the normalizer of some Sylow 7 -subgroup of L_{i}. Note that $N_{L_{i}}\left(R_{i}\right)=R_{i}$ and

$$
\begin{equation*}
\left(\varphi_{j}\right)_{R_{1}}=\alpha_{j}+\beta, \tag{5-7}
\end{equation*}
$$

where $\alpha_{j}, \beta \in \operatorname{Irr}\left(R_{1}\right)$ are of degree 3 and 1 , respectively, and $\alpha_{1} \neq \alpha_{2}$. Defining

$$
R=R_{1} \times R_{2} \times \cdots \times R_{n}<G^{+},
$$

we see that R satisfies the conditions of Lemma 5.4. Hence the subspace $A=$ $e\left(\bigoplus_{i=1}^{t} A_{i}\right)$ defined in Lemma 5.4 (with A_{1} affording the R_{1}-character α_{1}) is irreducible over the p^{\prime}-group $N_{G}(R)$. By the Artin-Wedderburn theorem applied to $N_{G}(R)$ acting on $V=A \oplus B, \mathcal{M}$ contains

$$
\operatorname{End}(A) \supset \mathscr{D}:=\bigoplus_{\substack{1 \leq i \neq j \leq 2 n \\\{i, j\} \neq\{2 a-1,2 a\}}} \operatorname{Hom}\left(e A_{i}, e A_{j}\right) .
$$

As noted previously, each summand $\operatorname{Hom}\left(V_{i}, V_{j}\right)$ in \mathscr{E}_{22} is acted on trivially by $\prod_{s \neq k_{i}, k_{j}} L_{s}$, and affords the $L_{k_{i}} \times L_{k_{j}}$-character $\varphi \otimes \varphi^{\prime}$, where $\varphi, \varphi^{\prime} \in\left\{\varphi_{1}, \varphi_{2}\right\}$. Working modulo $\mathscr{E}_{1} \oplus \mathscr{E}_{21}$ and using this observation and (5-7), we then see that all irreducible constituents of the R-character of the complement to \mathscr{D} in \mathscr{E}_{22} are of the form $\gamma_{1} \otimes \gamma_{2} \otimes \cdots \otimes \gamma_{n}$, where $\gamma_{i} \in \operatorname{Irr}\left(R_{i}\right)$ and all but at most one of them have degree 1 (and the remaining, if any, is some α_{j} of degree 3). The same is true for the complement to \mathcal{M} in \mathscr{E}_{22} (again modulo $\mathscr{E}_{1} \oplus \mathscr{E}_{21}$). On the other hand, (5-7) and the aforementioned observation imply that the R-character of the G^{+}-composition factor $\operatorname{Hom}\left(W_{i}, W_{j}\right)$ contains an irreducible R-character of degree 9 (namely, an $R_{k_{i}} \times R_{k_{j}}$-character of the form $\alpha \otimes \alpha^{\prime}$, with $\alpha, \alpha^{\prime} \in\left\{\alpha_{1}, \alpha_{2}\right\}$). It follows that \mathscr{E}_{22} is a subquotient of \mathcal{M}.
(f) The results of (d) and (e), together with the remarks made at the end of (c), imply that all G^{+}-composition factors of $\operatorname{End}(V) / \mathcal{M}$ (if any) are trivial. Hence by Lemma 5.4 we conclude that $\mathcal{M}=\operatorname{End}(V)$.

6. Weak adequacy for special linear groups

The exception (i) in Theorem 5.7 requires much more effort to resolve. We begin by setting up some notation. Let $n \geq 3$ and let q be a prime power such that $p=\left(q^{n}-1\right) /(q-1)$. In particular, n is a prime, $q=q_{0}^{f}$ for some prime q_{0} and some odd $f, \operatorname{gcd}(n, q-1)=1$ and so $\mathrm{PSL}_{n}(q)=\mathrm{SL}_{n}(q)=: S$ and $G_{n}:=\mathrm{GL}_{n}(q)=$ $S \times \boldsymbol{Z}\left(G_{n}\right)$. Consider the natural module

$$
\mathcal{N}=\mathbb{F}_{q}^{n}=\left\langle e_{1}, \ldots, e_{n}\right\rangle_{\mathbb{F}_{q}}
$$

for G_{n}, and let

$$
Q=R L=\operatorname{Stab}_{S}\left(\left\langle e_{2}, \ldots, e_{n}\right\rangle_{\mathbb{F}_{q}}\right),
$$

where R is elementary abelian of order q^{n-1} and $L \cong \mathrm{GL}_{n-1}(q)$. Note that Q is a p^{\prime}-group. It is well known (see [Guralnick and Tiep 1999, Theorem 1.1]) that $G_{n} / \mathbf{Z}\left(G_{n}\right)$ has a unique irreducible p-Brauer character δ of degree $p-2$, where
$\delta(x)=\rho(x)-2$ for all p^{\prime}-elements $x \in G_{n}$, if we denote by ρ the permutation character of G_{n} acting on the set Ω of 1 -spaces of \mathcal{N}. Let \mathscr{D} denote a $k G_{n}$-module affording δ.

Lemma 6.1. In the above notation, $\delta_{Q}=\alpha+\beta$, where $\alpha \in \operatorname{Irr}(Q)$ has degree $q^{n-1}-1, \beta \in \operatorname{Irr}(Q)$ has degree $\left(q^{n-1}-q\right) /(q-1)$, and

$$
\alpha_{R}=\sum_{1_{R} \neq \lambda \in \operatorname{Irr}(R)} \lambda, \quad \beta_{R}=\beta(1) 1_{R} .
$$

Proof. Note that all nontrivial elements in R are L-conjugate to a fixed transvection $t \in R$, and $\delta(t)=\rho(t)-2=\left(q^{n-1}-q\right) /(q-1)-1$. It follows that

$$
\delta_{R}=\sum_{1_{R} \neq \lambda \in \operatorname{Irr}(R)} \lambda+\frac{q^{n-1}-q}{q-1} \cdot 1_{R}
$$

Next, Q acts doubly transitively on the 1 -spaces of $\left\langle e_{2}, \ldots, e_{n}\right\rangle_{\mathbb{F}_{q}}$, with kernel containing R and with character $\beta+1_{Q}$, where $\beta \in \operatorname{Irr}(Q)$ of degree $\left(q^{n-1}-q\right) /(q-1)$. Hence β is an irreducible constituent of δ, and the statement follows.

In the subsequent treatment of $\mathrm{SL}_{n}(q)$, it is convenient to adopt the labeling of irreducible $\mathbb{C} G_{n}$-modules as given in [James 1986], which uses Harish-Chandra induction, denoted \circ. Each such module is labeled as $S\left(s_{1}, \lambda_{1}\right) \circ \cdots \circ S\left(s_{m}, \lambda_{m}\right)$, where $s_{i} \in \overline{\mathbb{F}}_{q}^{\times}$has degree $d_{i}\left(\right.$ over $\left.\mathbb{F}_{q}\right), \lambda_{i}$ is a partition of k_{i}, and $\sum_{i=1}^{m} k_{i} d_{i}=n$ [James 1986; Kleshchev and Tiep 2009]. Similarly, irreducible $k G_{n}$-modules are labeled as $D\left(s_{1}, \lambda_{1}\right) \circ \cdots \circ D\left(s_{m}, \lambda_{m}\right)$, with some extra conditions including s_{i} being a p^{\prime}-element. For $\lambda \vdash n$, let $\chi^{\lambda}=S(1, \lambda)$ denote the unipotent character of $\mathrm{GL}_{n}(q)$ labeled by λ. We set the convention that $\chi^{(n-2,2)}=0$ for $n=3$. Also, note that $1_{G_{n}}=\chi^{(n)}$ and $\rho=1_{G_{n}}+\chi^{(n-1,1)}$ (see, e.g., [Guralnick and Tiep 1999, Lemma 5.1]). We next establish the following result, which holds for arbitrary $\mathrm{GL}_{n}(q)$ with $n \geq 3$ and which is interesting in its own right:
Lemma 6.2. In the above notation, we have the following decomposition of ρ^{2} into irreducible constituents over $G_{n}=\mathrm{GL}_{n}(q)$:

$$
\rho^{2}=2 \chi^{(n)}+4 \chi^{(n-1,1)}+\chi^{(n-2,2)}+2 \chi^{\left(n-2,1^{2}\right)}+\sum_{\substack{a \in \mathbb{F}_{q}^{\times} \\ a^{2}=1 \neq a}} S\left(a,\left(1^{2}\right)\right) \circ S(1,(n-2))
$$

$$
+\sum_{\substack{a \in \overline{\mathrm{~F}}_{q}^{\times} \\ a^{q-1}=1 \neq a^{2}}} S(a,(1)) \circ S\left(a^{-1},(1)\right) \circ S(1,(n-2))
$$

$$
+\sum_{\substack{a \in \overline{\mathbb{F}}_{q} \times \\ b^{q+1}=1 \neq b^{2}}} S(b,(1)) \circ S(1,(n-2)) .
$$

Proof. Recall that ρ is the permutation character of G_{n} acting on Ω and also on the diagonal $\{(x, x): x \in \Omega\}$ of $\Omega \times \Omega$, whereas ρ^{2} is the permutation character of G_{n} acting on $\Omega \times \Omega$. Letting $H_{n}:=\operatorname{Stab}_{G_{n}}\left(\left\langle e_{1}\right\rangle_{F_{q}},\left\langle e_{2}\right\rangle_{\mathbb{F}_{q}}\right)$, we then see that

$$
\rho^{2}=\rho+\operatorname{Ind}_{H_{n}}^{G_{n}}\left(1_{H_{n}}\right) .
$$

Notice that $\operatorname{Ind}_{H_{n}}^{G_{n}}\left(1_{H_{n}}\right)$ is just the Harish-Chandra induction of the character $\operatorname{Ind}_{H_{2}}^{G_{2}}\left(1_{H_{2}}\right) \otimes 1_{G_{n-2}}$ of the Levi subgroup $G_{2} \times G_{n-2}$ of the parabolic subgroup

$$
P:=\operatorname{Stab}_{G_{n}}\left(\left\langle e_{1}, e_{2}\right\rangle_{\mathbb{F}_{q}}\right)
$$

of G_{n}, i.e.,

$$
\begin{equation*}
\operatorname{Ind}_{H_{n}}^{G_{n}}\left(1_{H_{n}}\right)=\operatorname{Ind}_{H_{2}}^{G_{2}}\left(1_{H_{2}}\right) \circ 1_{G_{n-2}} . \tag{6-1}
\end{equation*}
$$

Consider the case of odd q. Then, according to the proof of [Navarro and Tiep 2010, Proposition 5.5],

$$
\operatorname{Ind}_{H_{2}}^{G_{2}}\left(1_{H_{2}}\right)=S(1,(2))+2 S\left(1,\left(1^{2}\right)\right)+S\left(-1,\left(1^{2}\right)\right)
$$

$$
\begin{equation*}
+a \sum_{\substack{a \in \overline{\mathbb{F}}_{q}^{\times} \\ a^{q}-1}} S(a,(1)) \circ a^{2}<\left(a^{-1},(1)\right)+\sum_{\substack{a \in \overline{\mathbb{F}}_{q} \times \\ b^{q+1}=1 \neq b^{2}}} S(b,(1)) . \tag{6-2}
\end{equation*}
$$

Next, by [Guralnick and Tiep 1999, Lemma 5.1] we have

$$
\begin{align*}
S(1,(2)) \circ S(1,(n-2)) & =\operatorname{Ind}_{P}^{G_{n}}\left(1_{P}\right)=\chi^{(n)}+\chi^{(n-1,1)}+\chi^{(n-2,2)}, \tag{6-3}\\
S(1,(1)) \circ S(1,(1)) \circ S(1,(n-2)) & =\chi^{(n)}+2 \chi^{(n-1,1)}+\chi^{(n-2,2)}+\chi^{\left(n-2,1^{2}\right)} . \tag{6-4}
\end{align*}
$$

Since $S(1,(1)) \circ S(1,(1))=S(1,(2))+S\left(1,\left(1^{2}\right)\right)$, the statement follows from (6-1)-(6-4) and properties of the Harish-Chandra induction in G_{n} (see [James 1986]).

The case q is even can be proved similarly, using

$$
\begin{aligned}
\operatorname{Ind}_{H_{2}}^{G_{2}}\left(1_{H_{2}}\right)=S(1,(2))+2 S\left(1,\left(1^{2}\right)\right)+ & \sum_{\substack{a \in \overline{\mathbb{F}}_{q}^{\times} \\
a^{q-1}=1 \neq a^{2}}} S(a,(1)) \circ S\left(a^{-1},(1)\right) \\
& +\sum_{\substack{a \in \overline{\mathbb{F}}_{q}^{\times} \\
b^{q+1}=1 \neq b^{2}}} S(b,(1))
\end{aligned}
$$

instead of (6-2).
Lemma 6.3. In the above notation, if $p=\left(q^{n}-1\right) /(q-1)$, we have the following decomposition of δ^{2} into irreducible constituents over $S=\operatorname{SL}_{n}(q)$:

$$
\begin{aligned}
\delta^{2}= & 2 D(1,(n))+2 D(1,(n-1,1))+D(1,(n-2,2))+2 D\left(1,\left(n-2,1^{2}\right)\right) \\
& +\sum_{\substack{a \in \mathbb{F}_{q}^{\times} \\
a^{2}=1 \neq a}} D\left(a,\left(1^{2}\right)\right) \circ D(1,(n-2)) \\
& +\sum_{\substack{a \in \overline{\mathbb{F}}_{q}^{\times} \\
a^{q-1}=1 \neq a^{2}}} D(a,(1)) \circ D\left(a^{-1},(1)\right) \circ D(1,(n-2)) \\
& +\sum_{\substack{b \in \overline{\mathbb{F}}_{q}^{\times} \\
b^{q+1}=1 \neq b^{2}}} D(b,(1)) \circ D(1,(n-2)) .
\end{aligned}
$$

In particular, if there is a composition factor U of the $k S$-module $\mathscr{D} \otimes \mathscr{D}$ with $U^{R}=0$, then $n=3$ and U affords the Brauer character $D\left(1,\left(1^{3}\right)\right)$. Furthermore, the only composition factors of $\mathscr{D} \otimes \mathscr{D}$ that are not of p-defect zero are the ones with Brauer character $1_{S}=D(1,(n)), \delta=D(1,(n-1,1))$, and $D\left(1,\left(n-2,1^{2}\right)\right)$.

Proof. Let us denote by χ° the restriction of any character χ of G_{n} to the set of p^{\prime}-elements of G_{n}. Then

$$
\delta^{2}=\left(\rho^{\circ}-2 \cdot 1_{G_{n}}\right)^{2}=\left(\rho^{\circ}\right)^{2}-4\left(\chi^{(n-1,1)}\right)^{\circ}
$$

and we can apply Lemma 6.2. Since $p=\left(q^{n}-1\right) /(q-1)$ (or more generally, if p is a primitive prime divisor of $q^{n}-1$), all complex characters in the decomposition for ρ^{2} in Lemma 6.2 are of p-defect 0 , except for $\chi^{(n)}, \chi^{(n-1,1)}$, and $\chi^{\left(n-2,1^{2}\right)}$. Furthermore, $\left(\chi^{\left(n-2,1^{2}\right)}\right)^{\circ}=D(1,(n-1,1))+D\left(1,\left(n-2,1^{2}\right)\right)$ [Guralnick and Tiep 1999, Proposition 3.1 and §4]; in particular,

$$
D\left(1,\left(n-2,1^{2}\right)\right)(1)=\frac{\left(q^{n}-q\right)\left(q^{n}-2 q^{2}+1\right)}{(q-1)\left(q^{2}-1\right)}+1
$$

Since $G_{n}=S \times \boldsymbol{Z}\left(G_{n}\right)$, we arrive at the desired decomposition of δ^{2}. Also, the degree of any irreducible constituent ψ of δ^{2} listed above is not divisible by $|R|-1=q^{n-1}-1$, unless $n=3$ and $\psi=D\left(1,\left(1^{3}\right)\right)$, whence ψ_{R} must contain 1_{R} since L acts transitively on $\operatorname{Irr}(R) \backslash\left\{1_{R}\right\}$. In the exceptional case, ψ_{R} does not contain 1_{R}, as one can see by direct computation (or by using [Kleshchev and Tiep 2010, Theorem 5.4]).

Corollary 6.4. Assume that $p=\left(q^{n}-1\right) /(q-1)$ and $n \geq 5$. Then $S=\operatorname{SL}_{n}(q)$ is weakly adequate on \mathscr{D}.

Proof. By Lemma 6.1 and the Artin-Wedderburn theorem applied to Q, \mathcal{M} contains the subspace $\mathscr{A}:=(A \otimes A) \oplus(B \otimes B)$ of $\mathscr{D} \otimes \mathscr{D}=\operatorname{End}(\mathscr{D})$, with A affording α and B affording β. Thus, the complement to \mathscr{A} in $\operatorname{End}(V)$ affords the Q-character $\Delta:=2 \alpha \beta$. It follows by Lemma 6.1 that Δ_{R} does not contain 1_{R}, whence R does
not have any nonzero fixed point while acting on this complement. The same must be true for the quotient $\operatorname{End}(V) / \mathcal{M}$, which is a semisimple Q-module. Since $n>3$, by Lemma 6.3 this can happen only when $\mathcal{M}=\operatorname{End}(V)$.

Next we will extend the result of Corollary 6.4 to the case $n=3$.
Proposition 6.5. Assume that $p=\left(q^{3}-1\right) /(q-1)$. Then $S=\mathrm{SL}_{3}(q)$ is weakly adequate on \mathscr{D}.

Proof. Note that δ is invariant under the graph automorphism τ of S, which interchanges the two conjugacy classes of the maximal parabolic subgroup

$$
Q=R L=\operatorname{Stab}_{S}(\vartheta)=\operatorname{Stab}_{S}\left(\left\langle e_{1}, e_{2}\right\rangle_{\mathbb{F}_{q}}\right)
$$

and its opposite

$$
Q^{\sharp}=R^{\sharp} L^{\sharp}=\operatorname{Stab}_{S}\left(\left\langle e_{1}\right\rangle_{\mathbb{F}_{q}}\right) .
$$

Hence Lemma 6.1 also applies to Q^{\sharp}. To simplify the notation, we will drop the subscript \mathbb{F}_{q} in various spans $\langle\cdot\rangle_{\mathbb{F}_{q}}$ in this proof.

First we will construct the Q-submodules \mathscr{A}, \mathscr{B} affording the character α and β in \mathscr{D}. Clearly, R has $q+1$ fixed points in $\mathbb{P} थ$ and one orbit of length q^{2},

$$
\mathcal{O}:=\left\{\left\langle e_{3}+y\right\rangle: y \in \mathscr{U}\right\},
$$

on $\Omega=\mathbb{P} \mathcal{N}$. Denoting $\mathscr{I}:=\left\langle\sum_{\omega \in \mathbb{P} \mathcal{N}} \omega\right\rangle_{k}$, we can now decompose $\mathscr{D}=\mathscr{A} \oplus \mathscr{B}$ as Q-modules, where

$$
\begin{aligned}
& \mathscr{A}:=[\mathscr{D}, R]=\left(\left\{\sum_{y \in \mathscr{U}} a_{y}\left\langle e_{3}+y\right\rangle: a_{y} \in k, \sum_{y \in \mathscr{U}} a_{y}=0\right\} \oplus \mathscr{I}\right) / \mathscr{I}, \\
& \mathscr{B}:=\boldsymbol{C}_{\mathscr{D}}(R)=\left(\left\{\sum_{\omega \in \mathbb{P} \mathscr{U}} b_{\omega} \omega: b_{\omega} \in k, \sum_{\omega \in \mathbb{P} \mathscr{U}} b_{\omega}=0\right\} \oplus \mathscr{I}\right) / \mathscr{I} .
\end{aligned}
$$

Next, R^{\sharp} has 1 fixed point $\left\langle e_{1}\right\rangle$ and $q+1$ orbits of length q,

$$
\mathcal{O}_{\infty}:=\mathbb{P} \cup \backslash\left\{\left\langle e_{1}\right\rangle\right\}, \quad \mathcal{O}_{c}:=\left\{\left\langle e_{3}+c e_{2}+d e_{1}\right\rangle: d \in \mathbb{F}_{q}\right\}, c \in \mathbb{F}_{q},
$$

on $\mathbb{P} \mathcal{N}$. Then we can again decompose $\mathscr{D}=\mathscr{Q ^ { \sharp }} \oplus \mathscr{B}^{\sharp}$ as Q^{\sharp}-modules, where $\mathscr{A} \mathscr{A}^{\sharp}=\left[\mathscr{D}, R^{\sharp}\right]$ and $\mathscr{B}^{\sharp}=\boldsymbol{C}_{\mathscr{D}}\left(R^{\sharp}\right)$. Note that $\mathbb{O}=\mathbb{P} \mathcal{N} \backslash \mathbb{P} \cup=\bigcup_{c \in \mathbb{F}_{q}} \mathbb{O}_{c}$. Hence, the $q(q-1)$ vectors

$$
v_{c, d}=\left\langle e_{3}+c e_{2}+d e_{1}\right\rangle-\left\langle e_{3}+c e_{2}\right\rangle, \quad c \in \mathbb{F}_{q}, d \in \mathbb{F}_{q}^{\times}
$$

belong to $\mathscr{A} \cap \mathscr{A}^{\sharp}$, and similarly the $q-1$ vectors

$$
u_{a}=\left\langle e_{2}+a e_{1}\right\rangle-\left\langle e_{2}\right\rangle, \quad a \in \mathbb{E}_{q}^{\times}
$$

belong to $\mathscr{B} \cap \mathscr{A}^{\sharp}$, and they are linearly independent. Thus

$$
u_{a} \otimes v_{c, d} \in\left(\mathscr{A}^{\sharp} \otimes \mathscr{A}^{\sharp}\right) \cap(\mathscr{B} \otimes \mathscr{A}) \quad \text { and } \quad v_{c, d} \otimes u_{a} \in\left(\mathscr{A}^{\sharp} \otimes \mathscr{A}^{\sharp}\right) \cap(\mathscr{A} \otimes \mathscr{B}),
$$

and so both $\left(\mathscr{A}^{\sharp} \otimes \mathscr{A}^{\sharp}\right) \cap(\mathscr{B} \otimes \mathscr{A})$ and $\left(\mathscr{A}^{\sharp} \otimes \mathscr{A}^{\sharp}\right) \cap(\mathscr{A} \otimes \mathscr{B})$ have dimension at least $q(q-1)^{2}$. As a consequence,

$$
\begin{equation*}
\operatorname{dim}\left(\left(\mathscr{A}^{\sharp} \otimes \mathscr{A}^{\sharp}\right) \cap(\mathscr{A} \otimes \mathscr{B} \oplus \mathscr{B} \otimes \mathscr{A})\right) \geq 2 q(q-1)^{2} \tag{6-5}
\end{equation*}
$$

Since \mathscr{D} is self-dual, it supports a nondegenerate S-invariant symmetric bilinear form (\cdot, \cdot), with respect to which \mathscr{A} and \mathscr{B} are orthogonal, as are \mathscr{A}^{\sharp} and \mathscr{B}^{\sharp}. As usual, we can now identify $\mathscr{D} \otimes \mathscr{D}$ with End(D) by sending $u \otimes v \in \mathscr{D} \otimes \mathscr{D}$ to

$$
f_{u, v}: x \mapsto(x, u) v
$$

for all $x \in \mathscr{D}$. Furthermore, in the proof of Corollary 6.4, we have already mentioned that \mathcal{M} contains the subspaces $\operatorname{End}(\mathscr{A}) \oplus \operatorname{End}(\mathscr{P})$ (arguing with Q) and $\operatorname{End}\left(\mathscr{A}^{\sharp}\right)$ (arguing with Q^{\sharp}). It now follows from (6-5) that

$$
\operatorname{dim}\left(\operatorname{End}\left(\mathscr{A}^{\sharp}\right) \cap(\operatorname{Hom}(\mathscr{A}, \mathscr{B}) \oplus \operatorname{Hom}(\mathscr{B}, \mathscr{A}))\right) \geq 2 q(q-1)^{2} .
$$

Hence for $q \geq 5$ we have that

$$
\begin{aligned}
\operatorname{dim} \operatorname{End}(\mathscr{D})-\operatorname{dim} \mathcal{M} & \leq\left(q^{2}+q-1\right)^{2}-\left(q^{2}-1\right)^{2}-q^{2}-2 q(q-1)^{2} \\
& =4 q(q-1)<(q-1)\left(q^{2}-1\right)=\operatorname{dim} D\left(1,\left(1^{3}\right)\right)
\end{aligned}
$$

On the other hand, Lemma 6.3 and the proof of Corollary 6.4 show that the only S-composition factor of $\operatorname{End}(\mathscr{D}) / \mathcal{M}$ (if any) is $D\left(1,\left(1^{3}\right)\right)$. Hence, we conclude that $\mathcal{M}=\operatorname{End}(V)$ if $q \geq 5$. Since $p=\left(q^{3}-1\right) /(q-1)$, in the remaining cases we have $q=2,3$. The case $q=2$ is already handled before as $S \cong \mathrm{PSL}_{2}(7)$, and the case $q=3$ has been checked with a computer by F. Lübeck.

Now we can prove the weak adequacy of G on V in the case the G^{+}-module is homogeneous.
Proposition 6.6. Assume that $t=1$, i.e., the G^{+}-module V is homogeneous in the case $(p, H, \operatorname{dim} W)=\left(\left(q^{n}-1\right) /(q-1), \mathrm{SL}_{n}(q), p-2\right)$ of Theorem 5.7. Then (G, V) is weakly adequate.
Proof. Since $\left.V\right|_{G^{+}}=e W$, by Theorem 2.4 we have that $G^{+}=S=\operatorname{SL}_{n}(q)$. Recall that $\operatorname{gcd}(n, q-1)=1$ and $q=q_{0}^{f}$, where q_{0} is a prime and f is odd; in particular, Out $S \cong C_{2 f}$ is cyclic. It follows that $L:=C \times S \triangleleft G=\langle L, \tau\rangle$ for some $\tau \in G$, and $C:=\boldsymbol{C}_{G}(S)$ is a p^{\prime}-group. Let Ψ denote the corresponding representation of S on W and Φ denote the corresponding representation of G on V. Then, by Corollary 6.4 and Proposition 6.5, we have that

$$
\langle\Psi(y): y \in S, y \text { semisimple }\rangle_{k}=\operatorname{End}(W)
$$

First we consider the case where V_{L} is irreducible. Then $V \cong U \otimes W$, where U is an irreducible $k C$-module and C acts trivially on W. Let Θ denote the corresponding representation of C on U. By the Artin-Wedderburn theorem, $\langle\Theta(x): x \in C\rangle_{k}=\operatorname{End}(U)$. Since $\Phi(x y)=\Theta(x) \otimes \Psi(y)$ for $x \in C, y \in S$, and since C is a p^{\prime}-group, we conclude that \mathcal{M} contains $X \otimes Y$ for all $X \in \operatorname{End}(U)$ and $Y \in \operatorname{End}(W)$, i.e., $\mathcal{M}=\operatorname{End}(V)$.

Assume now that V_{L} is reducible. Note that V_{L} is semisimple and multiplicityfree, as G / L is cyclic. Since W is τ-invariant, it follows that

$$
V_{L}=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{s} \cong\left(U_{1} \oplus U_{2} \oplus \cdots \oplus U_{s}\right) \otimes W
$$

where $V_{i}=U_{i} \otimes W$ for some pairwise nonisomorphic irreducible $k C$-modules $U_{1}, \ldots, U_{s},\langle\tau\rangle$ acts transitively on the set of isomorphism classes of U_{1}, \ldots, U_{s}, C acts trivially on W as before, and $\Phi(\tau)$ permutes the summands V_{1}, \ldots, V_{s} transitively. Let Θ_{i} denote the corresponding representation of C on U_{i}, and let Θ denote the corresponding representation of C on $U:=U_{1} \oplus \cdots \oplus U_{s}$. Since $U_{i} \nsupseteq U_{j}$ for $i \neq j$, by the Artin-Wedderburn theorem, $\langle\Theta(x): x \in C\rangle_{k}=\operatorname{End}\left(U_{1}\right) \oplus \cdots \oplus \operatorname{End}\left(U_{s}\right)$. It follows as above that \mathcal{M} contains $X \otimes Y$ for all $Y \in \operatorname{End}(W)$ and all $X \in \operatorname{End}\left(U_{i}\right)$ (viewing X as an element of $\operatorname{End}(U)$ by letting it act as zero on U_{j} for all $j \neq i$). In other words, \mathcal{M} contains the subspace $\operatorname{End}\left(V_{1}\right) \oplus \cdots \oplus \operatorname{End}\left(V_{s}\right)$ of $\operatorname{End}(V)$.

It remains to show that \mathcal{M} contains $\operatorname{Hom}\left(V_{i}, V_{j}\right)$ for any $i \neq j$. Since $\Phi(\tau)$ permutes the summands V_{1}, \ldots, V_{s} transitively, we can find $\sigma \in\langle\tau\rangle \backslash C S$ such that $\Phi(\sigma)$ sends V_{i} to V_{j} and such that σ induces a nontrivial outer automorphism of S. Observe that the condition $p=\left(q^{n}-1\right) /(q-1)$ implies that all elements in the coset $S \sigma$ are p^{\prime}-elements. (Indeed, assume that $x \sigma$ has order divisible by p for some $x \in S$. Then some p^{\prime}-power g of $x \sigma$ is a p-element in S. It follows that σ preserves the conjugacy class g^{S}, which is impossible by inspecting the eigenvalues of g.) So all elements in $L \sigma$ are p^{\prime}-elements. Hence \mathcal{M} also contains the subspace

$$
\mathscr{A}:=\langle\Phi(h \sigma): h \in L\rangle_{k}=\langle\Phi(h): h \in L\rangle_{k} \cdot \Phi(\sigma) .
$$

Again, by the Artin-Wedderburn theorem,

$$
\langle\Phi(h): h \in L\rangle_{k}=\operatorname{End}\left(V_{1}\right) \oplus \cdots \oplus \operatorname{End}\left(V_{s}\right)
$$

Since $\Phi(\sigma)$ sends V_{i} (isomorphically) to V_{j}, we conclude that

$$
\mathscr{A} \supset \operatorname{End}\left(V_{j}, V_{j}\right) \Phi(\sigma)=\operatorname{Hom}\left(V_{i}, V_{j}\right),
$$

and so $\mathcal{M}=\operatorname{End}(V)$.
Next we consider the subgroup

$$
Q^{\prime}=R^{\prime} L^{\prime}=\operatorname{Stab}_{S}\left(\left\langle e_{n}\right\rangle_{\mathbb{F}_{q}},\left\langle e_{2}, \ldots, e_{n}\right\rangle_{\mathbb{F}_{q}}\right)
$$

where R^{\prime} is a q_{0}-group of special type of order $q^{2 n-3}$ and $L^{\prime} \cong \mathrm{GL}_{n-2}(q) \times \mathrm{GL}_{1}(q)$. Note that the graph automorphism $x \mapsto^{t} x^{-1}$ of S sends Q^{\prime} to $\left(Q^{\prime}\right)^{g}$, where $g \in S$ sends e_{1} to e_{n}, e_{n} to $-e_{1}$, and fixes all other e_{i}. Since the S-conjugacy class of the p^{\prime}-group Q^{\prime} is fixed by all field automorphisms, it is $\operatorname{Aut}(S)$-invariant. Also, Q^{\prime} is just the normalizer in S of the root subgroup $Z^{\prime}:=\boldsymbol{Z}\left(R^{\prime}\right)=\left[R^{\prime}, R^{\prime}\right]$ (of order q), whence $N_{S}\left(Q^{\prime}\right)=Q^{\prime}$.

Lemma 6.7. In the above notation, $\delta_{Q^{\prime}}=\alpha^{\prime}+\beta_{1}^{\prime}+\beta_{2}^{\prime}+\gamma^{\prime}+1_{Q^{\prime}}$, where $\alpha^{\prime} \in \operatorname{Irr}\left(Q^{\prime}\right)$ has degree $q^{n-2}(q-1), \beta_{1}^{\prime}, \beta_{2}^{\prime} \in \operatorname{Irr}\left(Q^{\prime}\right)$ have degree $q^{n-2}-1, \gamma^{\prime} \in \operatorname{Irr}\left(Q^{\prime}\right)$ has degree $\left(q^{n-2}-q\right) /(q-1)$ if $n>3$ and is zero if $n=3$, and

$$
\alpha_{Z^{\prime}}^{\prime}=q^{n-2} \sum_{1_{Z^{\prime}} \neq \lambda \in \operatorname{Irr}\left(Z^{\prime}\right)} \lambda, \quad Z^{\prime} \leq \operatorname{Ker}\left(\beta_{1}^{\prime}\right) \cap \operatorname{Ker}\left(\beta_{2}^{\prime}\right) \cap \operatorname{Ker}\left(\gamma^{\prime}\right)
$$

Proof. Note that all nontrivial elements in Z^{\prime} are L^{\prime}-conjugate to a fixed transvection $t \in Z^{\prime}$, and $\delta(t)=\rho(t)-2=\left(q^{n-1}-q\right) /(q-1)-1$. It follows that

$$
\delta_{Z^{\prime}}=q^{n-2} \sum_{1_{R^{\prime}} \neq \lambda \in \operatorname{Irr}\left(Z^{\prime}\right)} \lambda+\left(2\left(q^{n-2}-1\right)+\frac{q^{n-2}-q}{q-1}+1\right) \cdot 1_{Z^{\prime}}
$$

Since R^{\prime} is of special type, it also follows that [\mathscr{D}, Z^{\prime}] gives rise to an irreducible Q^{\prime}-module of dimension $q^{n-2}(q-1)$, with character α^{\prime}. Now we can write $R^{\prime} / Z^{\prime}=\left(R_{1}^{\prime} / Z^{\prime}\right) \times\left(R_{2}^{\prime} / Z^{\prime}\right)$ as a direct product of two L^{\prime}-invariant subgroups. Next, Q^{\prime} acts on the subset Ω^{\prime} of Ω consisting of all 1 -spaces of $\left\langle e_{2}, \ldots, e_{n}\right\rangle_{\mathbb{F}_{q}}$ (with kernel containing R_{1}^{\prime}), with two orbits. Arguing as in the proof of Lemma 6.1, we see that this permutation action affords the Q^{\prime}-character $\beta_{2}^{\prime}+\gamma^{\prime}+2 \cdot 1_{Q^{\prime}}$, where the irreducible characters β_{2}^{\prime} and γ^{\prime} (if $n>3 ; \gamma^{\prime}=0$ if $n=3$) have the indicated degrees. In general, Q^{\prime} has three orbits on Ω, whence $1_{Q^{\prime}}$ enters $\delta_{Q^{\prime}}$. Also, note that t has an S-conjugate $t^{\prime} \in R_{1}^{\prime} \backslash Z^{\prime}$ and $\alpha^{\prime}\left(t^{\prime}\right)=0$. So if we set

$$
\beta_{1}^{\prime}(1):=\delta_{Q^{\prime}}-\left(\alpha^{\prime}+\beta_{2}^{\prime}+\gamma^{\prime}+1_{Q^{\prime}}\right)
$$

then we see that $\beta_{1}^{\prime}=\beta_{1}^{\prime}(t)=q^{n-2}-1$ and $\beta_{1}^{\prime}\left(t^{\prime}\right)=-1$. Since L^{\prime} acts transitively on the nontrivial elements of $R_{1}^{\prime} / Z^{\prime}$, we conclude by Clifford's theorem that $\beta_{1}^{\prime} \in \operatorname{Irr}\left(Q^{\prime}\right)$.

As mentioned above, $S=\operatorname{SL}_{n}(q)$ has a unique irreducible $k S$-module \mathscr{D} of dimension $p-2$. It follows by Theorem 2.4 that in the situation (i) of Theorem 5.7,

$$
G^{+}=S_{1} \times \cdots \times S_{t}
$$

with $S_{i} \cong S$, and G^{+}acts on W_{i} with kernel $K_{i}:=\prod_{j \neq i} S_{j}$. Now, as G^{+}-modules, we have that

$$
\mathscr{E}:=\operatorname{End}(V) \cong \bigoplus_{1 \leq i, j \leq t} V_{i}^{*} \otimes V_{j} \cong e^{2} \bigoplus_{1 \leq i, j \leq t} W_{i}^{*} \otimes W_{j}
$$

where $V_{i}^{*} \otimes V_{i} \cong \operatorname{End}\left(V_{i}\right)$ is acted on trivially by K_{i}, whereas $W_{i}^{*} \otimes W_{j}$ is an irreducible $k G^{+}$-module with kernel $K_{i} \cap K_{j}$ for $i \neq j$. It follows that the two G^{+}-submodules

$$
\mathscr{E}_{1}:=\bigoplus_{1 \leq i \leq t} V_{i}^{*} \otimes V_{i}, \quad \mathscr{C}_{2}:=\bigoplus_{1 \leq i \neq j \leq t} V_{i}^{*} \otimes V_{j}
$$

of $\operatorname{End}(V)$ share no common composition factor.
Now we can prove the main result of this section:
Theorem 6.8. Suppose we are in the case (i) of Theorem 5.7, i.e., $(p, H, \operatorname{dim} W)=$ $\left(\left(q^{n}-1\right) /(q-1), \mathrm{SL}_{n}(q), p-2\right)$. Then (G, V) is weakly adequate.

Proof. (a) Consider the subgroup

$$
Q^{\prime t}=Q^{\prime} \times \cdots \times Q^{\prime}=Q_{1}^{\prime} \times \cdots \times Q_{t}^{\prime}<S_{1} \times \cdots \times S_{t}
$$

of G^{+}. By Lemma 6.7 and the discussion preceding it, $Q^{\prime t}$ satisfies the hypotheses of Lemma 5.4 , with A_{i} affording the Q^{\prime}-character α^{\prime}, and $N_{G}\left(Q^{\prime t}\right)$ is a p^{\prime}-group. Note that $A_{i} \not \neq A_{j}$ for $i \neq j$ since $K_{i} \cap Q^{\prime t} \neq K_{j} \cap Q^{\prime t}$. Also, the summands A and B of the $Q^{\prime t}$-module V constructed in Lemma 6.7 have no common composition factor and A is irreducible. Hence,

$$
\mathcal{M} \supseteq \operatorname{End}(A) \supset e^{2} \bigoplus_{1 \leq i \neq j \leq t} A_{i}^{*} \otimes A_{j}=: \mathscr{A}
$$

by the Artin-Wedderburn theorem. Note that $\mathscr{A} \subset \mathscr{E}_{2}$. Furthermore, if Δ is the $Q^{\prime t}$-character of the complement of \mathscr{A} in \mathscr{E}_{2}, then, by Lemma 6.7, each irreducible constituent of Δ, when restricted to

$$
Z^{\prime t}=Z^{\prime} \times \cdots \times Z^{\prime}=Z_{1}^{\prime} \times \cdots \times Z_{t}^{\prime},
$$

is trivial on (at least) all but one Z_{i}^{\prime}. The same is true for the G^{+}-module $\mathscr{E} /\left(\mathscr{E}_{1}+\mathcal{M}\right)$. On the other hand, as mentioned above, all G^{+}-composition factors of $\mathscr{E} / \mathscr{E}_{1} \cong \mathscr{E}_{2}$ are of the form $W_{i}^{*} \otimes W_{j}$ with $i \neq j$. The Brauer character of any such $W_{i}^{*} \otimes W_{j}$, being restricted to $S_{i} \times S_{j}$, is $\delta \otimes \delta$, and so it contains the $Q_{i}^{\prime} \times Q_{j}^{\prime}$-irreducible constituent $\alpha^{\prime} \otimes \alpha^{\prime}$ which is nontrivial at both Z_{i}^{\prime} and Z_{j}^{\prime} by Lemma 6.7. It follows that $\mathscr{E}_{1}+\mathcal{M}=\mathscr{E}$, i.e., \mathcal{M} surjects onto \mathscr{E}_{2}. Applying Lemma 5.5 to the subgroup $G^{+} \leq G$, we conclude that $\mathcal{M} \supseteq \mathscr{E}_{2}$.
(b) We already mentioned that the G^{+}-modules $\mathscr{E}_{1}=\bigoplus_{i=1}^{t} \mathscr{E}_{1 i}$ and \mathscr{E}_{2} share no common composition factor; in particular, k is not a composition factor of \mathscr{E}_{2}. Furthermore, since $\prod_{j \neq i} S_{j}$ acts trivially on V_{i}, we see that for distinct $i \neq j$ the only common G^{+}-composition factor that $\mathscr{E}_{1 i}$ and $\mathscr{E}_{1 j}$ can share is the principal character $1_{G^{+}}$. Recall that $\mathscr{E}_{1 i} \cong \mathscr{D} \otimes \mathscr{D}$ as S_{i}-modules. The irreducibility of G on V implies that $G_{i}:=\operatorname{Stab}_{G}\left(V_{i}\right)$ acts irreducibly on V_{i}, and certainly $G^{+} \triangleleft G_{i}$ acts
homogeneously on V_{i}. By Proposition 6.6 applied to $G_{i}, \mathscr{E}_{1 i}$ is a subquotient of \mathcal{M}. We have therefore shown that all nontrivial G^{+}-composition factors of $\mathscr{E}=\operatorname{End}(V)$ also occur in \mathcal{M} with the same multiplicity, and so all the composition factors of the G^{+}-module $\mathscr{E} / \mathcal{M}$ (if any) are trivial. Applying Lemma 5.4 to the subgroup $Q^{\prime t}<G^{+}$, we conclude that $\mathcal{M}=\mathscr{E}$.

Finally we can prove:
Theorem 6.9. Suppose (G, V) is as in the case (i) of Theorem 2.4. Then (G, V) is weakly adequate.

Proof. In view of Theorems 5.7, 6.8, and Propositions 5.8, 5.9, 5.11, we need to handle the case $(p, H, \operatorname{dim} W)=\left(7,6 \cdot \mathrm{PSL}_{3}(4), 6\right)$. In this case, L_{i} acts on each W_{j} either trivially or as $H_{j} \cong 6 \cdot \mathrm{PSL}_{3}$ (4). It follows by the faithfulness of G on V that $\boldsymbol{Z}\left(L_{i}\right)$ has exponent 6 , and so L_{i} is (isomorphic to) either $X:=(2 \times 2) \cdot 3 \cdot \mathrm{PSL}_{3}(4)$ or a quotient $6 \cdot \mathrm{PSL}_{3}(4)$ of X. We can also find k_{i} such that the kernel K_{i} of $G^{+}=$ $L_{1} * \cdots * L_{n}$ acting on W_{i} contains $\prod_{j \neq k_{i}} L_{j}$. Without loss we may assume $k_{1}=1$.
(a) We claim that L_{1} contains a subgroup $Q_{1}=Z_{1} \times \mathrm{A}_{5}$, whose conjugacy class is $\operatorname{Aut}\left(L_{1}\right)$-invariant (with $Z_{1}:=\boldsymbol{Z}\left(L_{1}\right)$). For this purpose, without loss of generality we may assume that $L_{1} \cong X$. We consider a Levi subgroup $C_{3} \times \mathrm{SL}_{2}(4) \cong C_{3} \times \mathrm{A}_{5}$ of $\mathrm{SL}_{3}(4)$ which acts semisimply on the natural module \mathbb{F}_{4}^{3}. Then its conjugacy class in $\mathrm{SL}_{3}(4)$ is fixed by all the outer automorphisms of $\mathrm{SL}_{3}(4)$. Consider a faithful representation $\Lambda: X \rightarrow \mathrm{GL}_{18}(\mathbb{C})$ which is the sum of three irreducible representations, on which X acts with different kernels $\cong C_{2}$, and let Y be the full inverse image of A_{5} in X. Note that involutions in $\mathrm{PSL}_{3}(4)$ lift to involutions in $6 \cdot \mathrm{PSL}_{3}(4)$, whereas involutions in A_{5} lift to elements of order 4 in $2 \cdot \mathrm{~A}_{5}$ [Conway et al. 1985]. It follows that $\Lambda(x)$ has order 2 for the inverse image $x \in X$ of any involution in A_{5}, and so $|x|=2$. Hence $Y \cong(2 \times 2) \times \mathrm{A}_{5}$, and the claim follows.

Defining $Q_{i}<L_{i}$ similarly, we see that

$$
Q=Q_{1} * Q_{2} * \cdots * Q_{n}
$$

satisfies condition (i) of Lemma 5.3. Since Q_{1} is self-normalizing in L_{1}, we see that $\boldsymbol{N}_{G^{+}}(Q)=Q$ and that $N:=\boldsymbol{N}_{G}(Q)$ is a p^{\prime}-group.

We will now inflate Brauer characters of L_{1} acting on W_{1} to X and then replace L_{1} by X. According to [Jansen et al. 1995], L_{1} has exactly six irreducible 7-Brauer characters φ_{s} of degree $6,1 \leq s \leq 6$, lying above the six distinct characters λ_{s} of Z_{1} (with kernels the three distinct central subgroups of order 2), and $\left(\varphi_{s}\right) Q_{1}=\lambda_{s} \otimes(\alpha+\beta)$, where $\alpha \neq \beta \in \operatorname{Irr}\left(\mathrm{A}_{5}\right)$, and either

$$
\begin{equation*}
\{\alpha, \beta\}=\{1 a, 5 a\} \tag{6-6}
\end{equation*}
$$

or

$$
\begin{equation*}
\{\alpha, \beta\}=\{3 a, 3 b\}, \tag{6-7}
\end{equation*}
$$

depending on whether φ_{s} takes value 2 or -2 on involutions in A_{5}. (Here we adopt the notation that $\operatorname{Irr}\left(\mathrm{A}_{5}\right)=\{1 a, 3 a, 3 b, 4 a, 5 a\}$.) In either case, we have that $\left(W_{1}\right)_{Q}=A_{1} \oplus B_{1}$, where the Q-modules A_{1} and B_{1} are irreducible and nonisomorphic. As shown in the proof of Lemma 5.2, $N G^{+}=G$ and $N_{1} G^{+}=G_{1}:=\operatorname{Stab}_{G}\left(V_{1}\right)$ for $N_{1}:=N_{G_{1}}(Q)$. So we fix a decomposition $G=\bigcup_{i=1}^{t} g_{i} G_{1}$ with $g_{i} \in N, g_{1}=1$, and define $A_{i}:=g_{i}\left(A_{1}\right) \subset W_{i}$ and $B_{i}:=g_{i}\left(B_{1}\right) \subset W_{i}$. In particular, either (6-6) holds for all $\left(W_{i}\right)_{Q}$, or (6-7) holds for all $\left(W_{i}\right)_{Q}$.

We claim that Q also satisfies condition (ii) of Lemma 5.3. Indeed, assume that $W_{i} \nsupseteq W_{j}$. Now if $k_{i} \neq k_{j}$, then $L_{k_{i}}>Q_{k_{i}}$ acts trivially on W_{j}, but $\boldsymbol{Z}\left(Q_{k_{i}}\right)=Z_{k_{i}}$ acts nontrivially by scalars on W_{i}. In the case $k_{i}=k_{j}$, we may assume that $K_{i} \geq \prod_{s>1} L_{s}$, and so W_{i} and W_{j} afford the L_{1}-characters $\varphi, \varphi^{\prime} \in\left\{\varphi_{1}, \ldots, \varphi_{6}\right\}$, lying above different characters $\lambda, \lambda^{\prime}$ of Z_{1}. Now $\boldsymbol{Z}\left(Q_{1}\right)=Z_{1}$ acts on W_{i} and W_{j} by scalars but via different characters $\lambda, \lambda^{\prime}$, so we are done.
(b) Suppose we are in the case of (6-7) and, moreover, $G_{1}=\operatorname{Stab}_{G}\left(V_{1}\right)$ interchanges the two classes $5 A=x^{L_{1}}$ and $5 B=\left(x^{2}\right)^{L_{1}}$ of elements of order 5 of $L_{1}=6_{1} \cdot \mathrm{PSL}_{3}$ (4). Certainly, we can choose $x \in \mathrm{~A}_{5}<Q_{1}$. Since $N_{1} G^{+}=G_{1}$, we can find some element $g \in N_{1}$ that interchanges the classes $5 A$ and $5 B$. In this case g also interchanges the characters $\alpha=3 a$ and $\beta=3 b$ of A_{5}, but fixes W_{1} and the central character $\lambda \in\left\{\lambda_{1}, \ldots, \lambda_{6}\right\}$ of Z_{1}. It follows that $\left\{A_{1}, \ldots, B_{t}\right\}$ forms a single N-orbit, and so by Lemma 5.3 the p^{\prime}-group N acts irreducibly on V, and we are done.
(c) From now on we may assume that we are not in the case considered in (b). We claim that $\left\{A_{1}, \ldots, A_{t}\right\}$ and $\left\{B_{1}, \ldots, B_{t}\right\}$ are two distinct N-orbits. Assume the contrary. Then by the construction of A_{i} and B_{j} there must be some $h \in N$ such that $B_{1} \cong A_{1}^{h}$. This is clearly impossible in the case of (6-6). In the case of (6-7), $h \in G_{1}$ and furthermore h fuses the two classes of elements of order 5 in A_{5}. Hence $h \in G_{1}$ fuses the classes $5 A$ and $5 B$ of L_{1}, contrary to our assumption.

Now we can apply Lemma 5.3 to see that $V_{N}=A \oplus B$ and so

$$
\begin{equation*}
\mathcal{M} \supseteq \operatorname{End}(A) \oplus \operatorname{End}(B) \tag{6-8}
\end{equation*}
$$

by the Artin-Wedderburn theorem. We also decompose $\operatorname{End}(V)=\mathscr{E}_{1} \oplus \mathscr{E}_{2}$ as G^{+}-modules, and note that the Q-modules

$$
\begin{aligned}
& \mathscr{E}_{1}:=\bigoplus_{i=1}^{t} \operatorname{End}\left(V_{i}\right) \cong e^{2} \bigoplus_{i=1}^{t} W_{i}^{*} \otimes W_{i} \\
& \mathscr{E}_{2}:=\bigoplus_{1 \leq i \neq j \leq t} \operatorname{Hom}\left(V_{i}, V_{j}\right) \cong e^{2} \bigoplus_{1 \leq i \neq j \leq t} W_{i}^{*} \otimes W_{j}
\end{aligned}
$$

share no common composition factor. Indeed, the p^{\prime}-group $\boldsymbol{Z}\left(G^{+}\right)=Z_{1} * \cdots * Z_{n} \leq$ $\boldsymbol{Z}(Q)$ acts trivially on \mathscr{E}_{1} and nontrivially by scalars on each $W_{i}^{*} \otimes W_{j}$ when $i \neq j$.

Moreover, if $k_{i} \neq k_{j}$, say $K_{i} \geq \prod_{s \neq 1} L_{s}$ and $K_{j} \geq \prod_{s \neq 2} L_{s}$, then $W_{i}^{*} \otimes W_{j}$ and $W_{j}^{*} \otimes W_{i}$ are irreducible over $L_{1} \times L_{2}$ (and are acted on trivially by $\prod_{s>2} L_{s}$), with nontrivial central characters $v_{1}^{-1} \otimes \nu_{2}$ and $\nu_{1} \otimes v_{2}^{-1}$ over $Z_{1} * Z_{2}$, where $\nu_{1}, \nu_{2} \in\left\{\lambda_{1}, \ldots, \lambda_{6}\right\}$ have order 6 . If $W_{i} \not \not W_{j}$ but $k_{i}=k_{j}$, say $k_{i}=k_{j}=1$, then W_{i} and W_{j} afford the L_{1}-characters $\varphi \neq \varphi^{\prime}$ lying above different characters $\lambda \neq \lambda^{\prime}$ of Z_{1}. We distinguish different scenarios for λ and λ^{\prime} :
(c1) λ and λ^{\prime} coincide at $\boldsymbol{O}_{2}\left(Z_{1}\right)$ (then they must be different at $\boldsymbol{O}_{3}\left(Z_{1}\right)$, and in fact $\lambda^{\prime}=\lambda^{-1}$). Here, $W_{i}^{*} \otimes W_{j}$ and $W_{j}^{*} \otimes W_{i}$ are reducible over L_{1} (and are acted on trivially by $\prod_{s>1} L_{s}$), with distinct nontrivial central characters λ^{-2} and λ^{2} over Z_{1}. Furthermore, the L_{1}-character of $W_{i}^{*} \otimes W_{j}$ is $\gamma_{3}+\delta_{3}$, where $\gamma_{3} \in \operatorname{IBr}\left(L_{1}\right)$ has degree $15, \delta_{3} \in \operatorname{IBr}\left(L_{1}\right)$ has degree 21, and

$$
\begin{equation*}
\left(\gamma_{3}\right)_{\mathrm{A}_{5}}=3 a+3 b+4 a+5 a, \quad\left(\delta_{3}\right)_{\mathrm{A}_{5}}=2 \cdot 1 a+4 a+3 \cdot 5 a . \tag{6-9}
\end{equation*}
$$

(c2) λ and λ^{\prime} coincide at $\boldsymbol{O}_{3}\left(Z_{1}\right)$ (then they must be different at $\boldsymbol{O}_{2}\left(Z_{1}\right)$). Here, $W_{i}^{*} \otimes W_{j}$ and $W_{j}^{*} \otimes W_{i}$ again are reducible over L_{1} (and are acted on trivially by $\prod_{s>1} L_{s}$), with the same nontrivial central character $\lambda^{-1} \lambda^{\prime}$ over Z_{1}. Furthermore, the L_{1}-character of $W_{i}^{*} \otimes W_{j}$ is $\gamma_{2}+\delta_{2}$, where $\gamma_{2} \in \operatorname{IBr}\left(L_{1}\right)$ has degree 10 , $\delta_{2} \in \operatorname{IBr}\left(L_{1}\right)$ has degree 26 , and

$$
\begin{equation*}
\left(\gamma_{2}\right)_{\mathrm{A}_{5}}=1 a+4 a+5 a, \quad\left(\delta_{2}\right)_{\mathrm{A}_{5}}=1 a+3 a+3 b+4 a+3 \cdot 5 a . \tag{6-10}
\end{equation*}
$$

Here we have used the fact that the character of $W_{i}^{*} \otimes W_{j}$ takes value $(\pm 2)^{2}=4$ at involutions in A_{5}.
(c3) λ and λ^{\prime} differ at both $\boldsymbol{O}_{2}\left(Z_{1}\right)$ and $\boldsymbol{O}_{3}\left(Z_{1}\right)$. Here, $W_{i}^{*} \otimes W_{j}$ and $W_{j}^{*} \otimes W_{i}$ are irreducible over L_{1} (and are acted on trivially by $\prod_{s>1} L_{s}$), with distinct nontrivial central characters $\lambda^{-1} \lambda^{\prime}$ and $\lambda\left(\lambda^{\prime}\right)^{-1}$ over Z_{1}. Furthermore, the L_{1}-character of $W_{i}^{*} \otimes W_{j}$ is γ_{6}, where $\gamma_{6} \in \operatorname{IBr}\left(L_{1}\right)$ has degree 36 and

$$
\begin{equation*}
\left(\gamma_{6}\right)_{\mathrm{A}_{5}}=2 \cdot 1 a+3 a+3 b+2 \cdot 4 a+4 \cdot 5 a . \tag{6-11}
\end{equation*}
$$

(d) According to (6-8), \mathcal{M} contains the subspace $\mathscr{A}:=\operatorname{End}\left(C_{1}\right) \oplus \operatorname{End}\left(D_{1}\right)$ of $\operatorname{End}\left(V_{1}\right)$, which affords the character $e^{2}\left(\alpha^{2}+\beta^{2}\right)$ of $\mathrm{A}_{5}<Q_{1}$ (and is acted on trivially by Z_{1}). Note that the L_{1}-character of $\operatorname{End}\left(W_{1}\right)$ is $\varphi_{i} \bar{\varphi}_{i}=1_{L_{1}}+\psi$, where $\psi \in \operatorname{IBr}\left(L_{1}\right)$ of degree 35 and

$$
\psi_{\mathrm{A}_{5}}=1 a+3 a+3 b+2 \cdot 4 a+4 \cdot 5 a .
$$

On the other hand, the A_{5}-character of the complement to \mathscr{A} in $\operatorname{End}\left(V_{1}\right)$ is

$$
e^{2}(\alpha+\beta)^{2}-e^{2}\left(\alpha^{2}+\beta^{2}\right)=2 e^{2} \alpha \beta,
$$

which is $2 e^{2} \cdot 5 a$ in the case of (6-6) and $2 e^{2}(4 a+5 a)$ in the case of (6-7); in particular, it does not contain $1 a$. It follows by the observation right after (6-8) and Lemma 5.5 that $\mathcal{M} \supseteq \operatorname{End}\left(V_{1}\right)$ and so $\mathcal{M} \supseteq \mathscr{E}_{1}$.
(e) By (6-8), \mathcal{M} contains the subspace $\mathscr{B}_{i j}:=\operatorname{Hom}\left(C_{i}, C_{j}\right) \oplus \operatorname{Hom}\left(D_{i}, D_{j}\right)$ of $\mathscr{E}_{i j}:=\operatorname{Hom}\left(V_{i}, V_{j}\right)$ whenever $i \neq j$ (recall that $\left(C_{i}\right)_{Q} \cong e A_{i}$ and $\left.\left(D_{i}\right)_{Q} \cong e B_{i}\right)$. We distinguish two cases according to whether k_{i} and k_{j} are equal or not.

First suppose that $k_{i} \neq k_{j}$, say $k_{i}=1$ and $k_{j}=2$. Then $\mathscr{E}_{i j}$ affords the $L_{1} \times L_{2}-$ character $e^{2} \bar{\theta}_{1} \otimes \theta_{2}$ (where $\theta_{i} \in \operatorname{IBr}\left(L_{i}\right)$ has degree 6) and is acted on trivially by $\prod_{s>2} L_{s}$. Now the $Q_{1} \times Q_{2}$-character of the complement to $\mathscr{B}_{i j}$ in $\operatorname{Hom}\left(V_{i}, V_{j}\right)$ when restricted to the subgroup $A_{5} \times A_{5}$ is

$$
e^{2}\left(\alpha_{1}+\beta_{1}\right) \otimes\left(\alpha_{2}+\beta_{2}\right)-e^{2}\left(\alpha_{1} \otimes \alpha_{2}+\beta_{1} \otimes \beta_{2}\right)=e^{2}\left(\alpha_{1} \otimes \beta_{2}+\beta_{1} \otimes \alpha_{2}\right)
$$

(where α_{1}, β_{1} play the role of α and β for the first factor A_{5} and similarly for α_{2}, β_{2}). Also, the restriction of $\bar{\theta}_{1} \otimes \theta_{2}$ to $\mathrm{A}_{5} \times \mathrm{A}_{5}$ always contains an irreducible constituent distinct from $\alpha_{1} \otimes \beta_{2}$ and $\beta_{1} \otimes \alpha_{2}$, namely $\beta_{1} \otimes \beta_{2}$.

Assume now that $k_{i}=k_{j}=1$. Then the A_{5}-character of the complement to $\mathscr{B}_{i j}$ in $\mathscr{E}_{i j}$ is

$$
e^{2}(\alpha+\beta)^{2}-e^{2}\left(\alpha^{2}+\beta^{2}\right)=2 e^{2} \alpha \beta,
$$

which is $2 e^{2} \cdot 5 a$ in the case of (6-6) and $2 e^{2}(4 a+5 a)$ in the case of (6-7). On the other hand, according to (6-9)-(6-11), the restriction to A_{5} of each of the irreducible constituents γ and δ of $W_{i}^{*} \otimes W_{j}$ always contains either $1 a$ or $3 a$.

Now assume that $\mathcal{M} \neq \operatorname{End}(V)$. Working modulo $\mathscr{E}_{1} \subset \mathcal{M}$, we see that $\mathcal{M} \supseteq \mathscr{B}:=$ $\bigoplus_{i \neq j} \mathscr{B}_{i j}$ has a nonzero complement in $\mathscr{E}_{2}=\bigoplus_{i \neq j} \mathscr{E}_{i j}$. But the above analysis shows that any G^{+}-composition factor of \mathscr{E}_{2} contains a Q-irreducible constituent which is not a Q-constituent of the complement to \mathscr{B} in \mathscr{E}_{2}, a contradiction.
Proof of Theorem 1.2. (a) First we consider the case where k is algebraically closed. Assume that G^{+}is p-solvable. Then G is also p-solvable. Furthermore, $\operatorname{dim} V / \operatorname{dim} W$ divides $\left|G / G^{+}\right|$by [Navarro 1998, Theorem 8.30], and so $p \nmid \operatorname{dim} V$. So we are done by Lemma 5.1. So we may now assume that G^{+}is not p-solvable, $p>\operatorname{dim} W>1$, and apply Theorem 2.4 to G. Then the statement follows from Theorem 4.5 in the case that G^{+}is a central product of quasisimple groups of Lie type in characteristic p (if in addition $p>3$), and from the results of Sections 5 and 6 in the remaining cases.

Suppose that $p=3$ and $G^{+}=L_{1} * \cdots * L_{n}$ is a central product of quasisimple groups of Lie type in characteristic p (with $\boldsymbol{Z}\left(L_{i}\right)$ a p^{\prime}-group for each i; see Theorem 2.4(iii)). Write $V_{G^{+}}=e \bigoplus_{i=1}^{t} W_{i}$ as usual. It is well known that the only quasisimple groups of Lie type in characteristic p that have a faithful representation of degree 2 over k are $\mathrm{SL}_{2}\left(p^{a}\right)$. Since $\operatorname{dim} W=2$, we must have that $L_{j} \cong \mathrm{SL}_{2}(q)$ for a power $q>3$ of 3 for all j (as the G^{+}-modules W_{i} are G-conjugate); moreover,
for each i, there is a unique k_{i} such that L_{j} acts nontrivially on W_{i} precisely when $j=k_{i}$. Note that L_{i} contains a unique conjugacy class of cyclic subgroups T_{i} of order C_{q-1}. It is straightforward to check that the restrictions of all Brauer characters $\varphi \in \operatorname{IBr}_{p}\left(L_{i}\right)$ of degree 2 to $Q_{i}:=N_{L_{i}}\left(T_{i}\right)$ are all irreducible and pairwise distinct. Letting $Q:=Q_{1} * \cdots * Q_{n}$ and arguing as in case (b1) of the proof of Theorem 5.7, we see that Q satisfies all the hypotheses of Lemma 5.2, whence we are done.
(b) Now we consider the general case. We will view G as a subgroup of $\mathrm{GL}(V)$ and let $\mathcal{M}:=\langle g: g \in G \text { semisimple }\rangle_{k}$ as usual. Since the $k G$-module V is absolutely irreducible, the $\bar{k} G$-module $\bar{V}:=V \otimes_{k} \bar{k}$ is irreducible, and the condition $d<p$ implies that the dimension of any irreducible G^{+}-submodule in \bar{V} is also less than p. By the previous case, $\mathcal{M} \otimes_{k} \bar{k}=\operatorname{End}(\bar{V})$. It follows that $\operatorname{dim}_{k} \mathcal{M}=(\operatorname{dim} V)^{2}$ and so $M=\operatorname{End}(V)$.

7. Extensions and self-extensions, I: Generalities

First we record a convenient criterion about self-extensions in blocks of cyclic defect:
Lemma 7.1. Suppose that G is a finite group and that V is an irreducible $\overline{\mathbb{F}}_{p} G$ representation that belongs to a block of cyclic defect. Then $\operatorname{Ext}_{G}^{1}(V, V) \neq 0$ if and only if V admits at least two nonisomorphic lifts to characteristic 0 . In this case, $\operatorname{dim} \operatorname{Ext}_{G}^{1}(V, V)=1$.

Proof. Let B denote the block of V. If B has defect $0, V$ is projective and lifts uniquely to characteristic 0 . Otherwise, B is a Brauer tree algebra. Note that $\operatorname{Ext}_{G}^{1}(V, V) \neq 0$ if and only if V embeds as subrepresentation of $\mathscr{P}(V) / V$. The Brauer tree shows that this happens if and only if either (i) B has an exceptional vertex and V is the unique edge incident with it, or (ii) B does not have an exceptional vertex and V is the unique edge of the tree. In (i), each exceptional representation in B lifts V, in (ii) both ordinary representations in B lift V, and it is clear that V has at most one lift in all other cases. To verify the final claim, note that $\operatorname{Hom}(V, \mathscr{P}(V) / V) \cong \operatorname{Ext}_{G}^{1}(V, V)$, and that in a Brauer tree algebra V occurs at most once in $\operatorname{soc}(\mathscr{P}(V) / V)$.

In fact, as pointed out to us by V. Paskunas, one direction of Lemma 7.1 holds for any finite group G : if $\operatorname{Ext}_{G}^{1}(V, V)=0$ then V has at most one characteristic-0 lift. Indeed, if V has no self-extension, we may first realize all characteristic-0 lifts over some finite extension \mathbb{E} of \mathbb{Q}_{p}, as well as V over the residue field of \mathbb{E}. Then the universal deformation ring R of V over the ring $\mathcal{O}_{\mathbb{E}}$ is a quotient of $\mathcal{O}_{\mathbb{E}}$. But then $\left|\operatorname{Hom}_{\mathscr{O}_{\mathbb{E}}-a l g}\left(R, \mathscr{O}_{\mathbb{E}}\right)\right| \leq 1$, i.e., V has at most one characteristic-0 lift.

We will frequently use the following simple observations:

Lemma 7.2. Let V be a finite-dimensional vector space over k and $G \leq \mathrm{GL}(V)$ a finite absolutely irreducible subgroup. Write $\left.V\right|_{G^{+}}=e \bigoplus_{i=1}^{t} W_{i}$, where the G^{+} modules W_{i} are absolutely irreducible and pairwise nonisomorphic. Suppose that $\operatorname{Ext}_{G^{+}}^{1}\left(W_{i}, W_{j}\right)=0$ for all i, j. Then $\operatorname{Ext}_{G}^{1}(V, V)=0$.
Proof. Since G^{+}contains a Sylow p-subgroup of $G, \operatorname{Ext}_{G}^{1}(V, V)$ embeds in

$$
\operatorname{Ext}_{G^{+}}^{1}\left(V_{G^{+}}, V_{G^{+}}\right)=\operatorname{Ext}_{G^{+}}^{1}\left(e \bigoplus_{i=1}^{t} W_{i}, e \bigoplus_{i=1}^{t} W_{i}\right) \cong e^{2} \bigoplus_{i, j} \operatorname{Ext}_{G^{+}}^{1}\left(W_{i}, W_{j}\right)=0
$$

Lemma 7.3. Let N be a normal subgroup of a finite group X and let A and B be finite-dimensional $k(X / N)$-modules. Consider $\operatorname{Ext}_{X}^{1}(A, B)$, where we inflate A and B to $k X$-modules.
(i) If $\operatorname{Ext}_{X}^{1}(A, B)=0$, then $\operatorname{Ext}_{X / N}^{1}(A, B)=0$.
(ii) If $\operatorname{Ext}_{X / N}^{1}(A, B)=0$ and $\boldsymbol{O}^{p}(N)=N$, then $\operatorname{Ext}_{X}^{1}(A, B)=0$.

Proof. (i) is trivial. For (ii), let V be any extension of the $k X$-module A by the $k X$ module B, and let $\Phi: X \rightarrow \mathrm{GL}(V)$ denote the corresponding representation. Since N acts trivially on A and B, we see that $\Phi(N)$ is a p-group. But $\boldsymbol{O}^{p}(N)=N$; hence $\Phi(N)=1$, i.e., N acts trivially on V. Now, $V \cong A \oplus B$ as $\operatorname{Ext}_{X / N}^{1}(A, B)=0$. \square

Next we recall Holt's inequality in cohomology [1980]:
Lemma 7.4. Let G be a finite group, $N \triangleleft G$, and let V be a finite-dimensional $k G$-module. Then for any integer $m \geq 0$ we have

$$
\operatorname{dim} H^{m}(G, V) \leq \sum_{j=0}^{m} \operatorname{dim} H^{j}\left(G / N, H^{m-j}(N, V)\right)
$$

From now on we again assume that k is algebraically closed.
Corollary 7.5. Let $G=G_{1} \times G_{2}$ be a direct product of finite groups and let V_{i} be a nontrivial irreducible $k G_{i}$-module for $i=1,2$.
(i) If we view $V_{1} \otimes V_{2}$ as a $k G$-module, then $H^{1}\left(G, V_{1} \otimes V_{2}\right)=0$.
(ii) If we inflate V_{1} and V_{2} to $k G$-modules, then $\operatorname{Ext}_{G}^{1}\left(V_{1}, V_{2}\right)=0$.

Proof. For (i), applying Lemma 7.4 to $N:=G_{1}$ we get

$$
\operatorname{dim} H^{1}(G, V) \leq \operatorname{dim} H^{0}\left(G_{2}, H^{1}\left(G_{1}, V\right)\right)+\operatorname{dim} H^{1}\left(G_{2}, H^{0}\left(G_{1}, V\right)\right)
$$

Now the G_{1}-module V is a direct sum of $\operatorname{dim} V_{2}$ copies of V_{1} and V_{1} is nontrivial irreducible, whence $H^{0}\left(G_{1}, V\right)=0$. Next, $H^{1}\left(G_{1}, V\right) \cong H^{1}\left(G_{1}, V_{1}\right) \otimes V_{2}$ as G_{2}-modules, with G_{2} acting trivially on the first tensor factor. It follows that

$$
H^{0}\left(G_{2}, H^{1}\left(G_{1}, V\right)\right) \cong H^{1}\left(G_{1}, V_{1}\right) \otimes H^{0}\left(G_{2}, V_{2}\right)=0
$$

as V_{2} is nontrivial irreducible, and so we are done.
Part (ii) follows from (i) since $\operatorname{Ext}_{G}^{1}\left(V_{1}, V_{2}\right) \cong H^{1}\left(G, V_{1}^{*} \otimes V_{2}\right)$ and V_{1}^{*} is a nontrivial absolutely irreducible $k G_{1}$-module.

Corollary 7.6. Let the finite group H be a central product of quasisimple subgroups $H=H_{1} * \cdots * H_{n}$, where $\mathbf{Z}\left(H_{i}\right)$ is a p^{\prime}-group for all i. For $i=1,2$, let W_{i} be a nontrivial irreducible $k H$-module such that the action of H on W_{i} induces a quasisimple subgroup of $\mathrm{GL}\left(W_{i}\right)$. Suppose that the kernels of the actions of H on W_{1} and on W_{2} are different. Then $\operatorname{Ext}_{H}^{1}\left(W_{1}, W_{2}\right)=0$.

Proof. View H as a quotient of $L:=H_{1} \times \cdots \times H_{n}$ by a central p^{\prime}-subgroup and inflate W_{i} to a $k L$-module. Next, write $W_{i}=W_{1}^{i} \otimes \cdots \otimes W_{n}^{i}$ for some absolutely irreducible $k H_{j}$-module $W_{j}^{i}, 1 \leq i \leq 2,1 \leq j \leq n$. Since H_{j} is quasisimple, if $\operatorname{dim} W_{j}^{i}=1$ then H_{j} acts trivially on W_{i}. On the other hand, if $\operatorname{dim} W_{j}^{i}>1$, then H_{j} induces a quasisimple subgroup of GL $\left(W_{j}^{i}\right)$. Hence, the condition that the action of H on W_{i} induces a quasisimple subgroup of $\operatorname{GL}\left(W_{i}\right)$ implies that $\operatorname{dim} W_{j}^{i}>1$ for exactly one index $j=k_{i}$, whence the kernel of L on W_{i} is

$$
H_{1} \times \cdots \times H_{k_{i}-1} \times \boldsymbol{C}_{H_{k_{i}}}\left(W_{k_{i}}^{i}\right) \times H_{k_{i}+1} \times \cdots \times H_{n} .
$$

Note that the hypothesis on H_{i} imply that $\prod_{j \neq k_{1}, k_{2}} H_{j}$ has no nontrivial p-quotient. Hence, by Lemma 7.3 there is no loss in taking the quotient of L by $\prod_{j \neq k_{1}, k_{2}} H_{j}$. If $k_{1} \neq k_{2}$, then we are reduced to the case where $L=H_{k_{1}} \times H_{k_{2}}, W_{1}$ is a nontrivial $H_{k_{1}}$-module inflated to L and W_{2} is a nontrivial $H_{k_{2}}$-module inflated to L, whence we are done by Corollary 7.5(ii). Suppose now that $k_{1}=k_{2}$, say $k_{1}=k_{2}=1$ for brevity. Then we are reduced to the case where $L=H_{1}$ and $K_{1} \neq K_{2}$, with $K_{i}=\boldsymbol{C}_{H_{1}}\left(W_{1}^{i}\right) \leq \boldsymbol{Z}\left(H_{1}\right)$. By Schur's lemma, $\boldsymbol{Z}\left(H_{1}\right)$ acts on W_{i} by scalars and semisimply, via a linear character λ_{i}. Since $K_{1} \neq K_{2}$, we see that $\lambda_{1} \neq \lambda_{2}$. It follows (by considering $\boldsymbol{Z}\left(H_{1}\right)$-blocks, or by considering λ_{i}-eigenspaces for $\boldsymbol{Z}\left(H_{1}\right)$ in any extension of W_{1} by W_{2}) that $\operatorname{Ext}_{L}^{1}\left(W_{1}, W_{2}\right)=0$.

More generally, we record the following consequence of the Künneth formula:
Lemma 7.7 [Benson 1998, 3.5.6]. Let H be a finite group. Assume that H is a central product of subgroups H_{i} for $1 \leq i \leq t$ and that $\mathbf{Z}(H)$ is a p^{\prime}-group. Let X and Y be irreducible $k H$-modules. Write $X=X_{1} \otimes \cdots \otimes X_{t}$ and $Y=Y_{1} \otimes \cdots \otimes Y_{t}$, where X_{i} and Y_{i} are irreducible $k H_{i}$-modules.
(i) If $X_{i} \not \neq Y_{i}$ for at least two i, then $\operatorname{Ext}_{H}^{1}(X, Y)=0$.
(ii) If $X_{1} \nsupseteq Y_{1}$ but $X_{i} \cong Y_{i}$ for $i>1$, then $\operatorname{Ext}_{H}^{1}(X, Y) \cong \operatorname{Ext}_{H_{1}}^{1}\left(X_{1}, Y_{1}\right)$.
(iii) If $X_{i} \cong Y_{i}$ for all i, then $\operatorname{Ext}_{H}^{1}(X, Y) \cong \bigoplus_{i} \operatorname{Ext}_{H_{i}}^{1}\left(X_{i}, Y_{i}\right)$.

We continue with several general remarks:

Lemma 7.8. Let V be a $k G$-module of finite length.
(i) Suppose that X is a composition factor of V such that V has no indecomposable subquotient of length 2 with X as a composition factor. Then $V \cong X \oplus M$ for some submodule $M \subset X$.
(ii) Suppose that $\operatorname{Ext}_{G}^{1}(X, Y)=0$ for any two composition factors X, Y of V. Then V is semisimple.

Proof. (i) We will assume that $V \nsupseteq X$. Let U be a submodule of V of smallest length that has X as a composition factor. First we show that $U \cong X$. If not, then U has a composition series $U=U_{0}>U_{1}>\cdots>U_{m}=0$ for some $m \geq 2$. Note that $U / U_{1} \cong X$, as otherwise X would be a composition factor of $U_{1} \subset U$, contradicting the choice of U. Now U / U_{2} is a subquotient of length 2 of V with X as a quotient. By the hypothesis, $U / U_{2}=U^{\prime} / U_{2} \oplus U^{\prime \prime} / U_{2}$ with $U^{\prime} / U_{2} \cong X$ and $U^{\prime \prime} \supset U_{2}$, again contradicting the choice of U.

Now let M be a submodule of V of largest length such that $M \cap U=0$. In particular, $V / M \supseteq(M+U) / M \cong X$. Assume furthermore that $V \neq M+U$. Then we can find a submodule $V^{\prime} \subseteq V$ such that $V^{\prime} /(M+U)$ is simple. Again, V^{\prime} / M is a subquotient of length 2 of V with X as a submodule. So by the hypothesis, $V^{\prime} / M=(M+U) / M \oplus N / M$ for some submodule $N \subseteq V$ containing M properly. But then

$$
N \cap U=(N \cap(M+U)) \cap U=M \cap U=0,
$$

contrary to the choice of M. Thus $V=M \oplus U$ is decomposable.
(ii) Induction on the length of V. If V is not simple, then by (i) we have $V \cong V^{\prime} \oplus V^{\prime \prime}$ for some nonzero submodules V^{\prime} and $V^{\prime \prime}$. Now apply the induction hypothesis to V^{\prime} and $V^{\prime \prime}$.

Lemma 7.9. Let V be a $k G$-module. Suppose that U is a composition factor of V of multiplicity 1 and that U occurs both in $\operatorname{soc} V$ and head V. Then $V \cong U \oplus M$ for some submodule $M \subset V$.

Proof. Let $U_{1} \cong U$ be a submodule of V. Since U occurs in head V, there is $M \subset V$ such that $V / M \cong U$. Now if $M \supseteq U_{1}$, then U would have multiplicity ≥ 2 in V. Hence $V=U_{1} \oplus M$.

Lemma 7.10. Let V be a $k G$-module of finite length. Suppose the set of isomorphism classes of composition factors of V is a disjoint union $\mathscr{X} \cup \mathscr{Y}$ of nonempty subsets such that, for any $U \in \mathscr{X}$ and $W \in \mathscr{Y}$, there is no indecomposable subquotient of length 2 of V with composition factors U and W. Then V is decomposable.

Proof. Let X and Y denote the largest submodules of V with all composition factors belonging to \mathscr{X} and \mathscr{Y}, respectively. By definition, $X \cap Y=0$. We claim that $V=X \oplus Y$. If not, we can find a submodule $Z \supset X \oplus Y$ of V such that
$U:=Z /(X \oplus Y)$ is a simple G-module. Suppose for instance that $U \in \mathscr{X}$. Applying Lemma 7.8(i) to the G-module Z / X and its composition factor U, we see that $Z / X \cong U \oplus Y$. This implies that Z contains a submodule T with $T / X \cong U$, contradicting the choice of X.

Now $X, Y \neq 0$ as $\mathscr{X}, \mathscr{Y} \neq \varnothing$. It follows that V is decomposable.
Lemma 7.11. Let V be an indecomposable $k G$-module.
(i) If the G^{+}-module $V_{G^{+}}$admits a composition factor L of dimension 1, then all composition factors of $V_{G^{+}}$belong to $B_{0}\left(G^{+}\right)$.
(ii) Suppose a normal p^{\prime}-subgroup N of G acts by scalars on a composition factor L of the G-module V. Then N acts by scalars on V. If in addition V is faithful then $N \leq \boldsymbol{Z}(G)$.

Proof. (i) Since $G^{+}=\boldsymbol{O}^{p^{\prime}}\left(G^{+}\right)$, it must act trivially on L. Let X (resp. Y) denote the largest submodule of the G^{+}-module V with all composition factors belonging (resp. not belonging) to $B_{0}\left(G^{+}\right)$. By their definition and the definition of $G^{+}-$ blocks, $V=X \oplus Y$. Note that both X and Y are G-stable as $G^{+} \triangleleft G$. Since V is indecomposable, we see that $Y=0$ and $V=X$.
(ii) Note that N acts completely reducibly on V and G permutes the N-homogeneous components of V. Since V is indecomposable, it follows that this action is transitive, whence all composition factors of the N-module V are G-conjugate. But, among them, the (unique) linear composition factor of L_{N} is certainly G-invariant. Hence this is the unique composition factor of V_{N}, and so N acts by scalars on V.

8. Indecomposable representations of $\mathrm{SL}_{2}(q)$

We first prove a lemma:
Lemma 8.1. Suppose that S, T are irreducible $\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$-representations over $\overline{\mathbb{F}}_{p}$ with $q=p^{n}, n \geq 2$, and E is a nonsplit extension of T by S. Then $\operatorname{dim} E \geq p$ and $S \nsubseteq T$. Moreover, if $\operatorname{dim} S=\operatorname{dim} T$ then $\operatorname{dim} E \geq\left(p^{2}-1\right) / 2$.

Proof. This is immediate from Corollary 4.5(a) in [Andersen et al. 1983].
Proposition 8.2. Suppose that V is a reducible, self-dual, indecomposable representation of $\operatorname{SL}_{2}\left(\mathbb{F}_{q}\right)$ over $\overline{\mathbb{F}}_{p}$, where $q=p^{n}$. If $\operatorname{dim} V<2 p-2$, then $q=p$ and one of the following holds:
(i) $\operatorname{dim} V=p$ and $V \cong \mathscr{P}(\mathbb{1})$.
(ii) $\operatorname{dim} V=p+1$ and V is the unique nonsplit self-extension of $L((p-1) / 2)$.
(iii) $\operatorname{dim} V=p-1$ and V is the unique nonsplit self-extension of $L((p-3) / 2)$.

Conversely, all the listed cases give rise to examples.

Proof. Note that $p>2$.
(a) Suppose first that $q=p$. If V is projective, then since $\operatorname{dim} V<2 p$, we must have $V \cong \mathscr{P}(\mathbb{1})$, which is uniserial of shape $(L(0)|L(p-3)| L(0))$ and of dimension p. (See for example [Alperin 1986].) If V is nonprojective, then, as $\mathrm{SL}_{2}(p)$ has a cyclic Sylow p-subgroup, V is one of the "standard modules" described in [Janusz 1969, §5]. As V is self-dual, the standard modules are described by paths in the Brauer tree as in [Janusz 1969, (5.2)(b)] with $P_{0}=Q=P_{k+1}$. By inspecting the Brauer trees of $\mathrm{SL}_{2}(p)$ (see, e.g., [Alperin 1986]) and using that $\operatorname{dim} V<2 p-2$, we deduce moreover that $k=1$ above, obtaining the modules in (ii), (iii).

In case (i), it is obvious that the module is self-dual since it is $\mathscr{P}(\mathbb{1})$. In cases (ii) and (iii) the uniqueness of the isomorphism class of the extension implies that it is self-dual.
(b) Now suppose that $q>p$. We need to show that no such V exists. (In fact we will show this holds even under the weaker bound $\operatorname{dim} V<2 p$.) Pick an irreducible subrepresentation $L(\lambda)$ of V, where $\lambda=\sum_{i=0}^{n-1} p^{i} \lambda_{i}, 0 \leq \lambda_{i} \leq p-1$. Then V has a subquotient isomorphic to a nonsplit extension $0 \rightarrow L(\lambda) \rightarrow E \rightarrow L(\mu) \rightarrow 0$, where $\mu=\sum_{i=0}^{n-1} p^{i} \mu_{i}, 0 \leq \mu_{i} \leq p-1$. By Lemma 8.1 we know that $\lambda \neq \mu$; hence $2 \operatorname{dim} L(\lambda)+\operatorname{dim} L(\mu)<2 p$. By Corollary 4.5(a) in [Andersen et al. 1983] we deduce that, up to a cyclic relabeling of the indices, $\lambda=\lambda_{0}+p, \mu=p-2-\lambda_{0}$, and $\mu>(2 p-3) / 3 \geq 1$. In particular, μ uniquely determines λ. Hence, if soc V contains two nonisomorphic irreducible representations, then V admits indecomposable subrepresentations of length two that intersect in zero, so $\operatorname{dim} V \geq 2 p$ by Lemma 8.1. Therefore, soc $V \cong L(\lambda)^{\oplus r}$ for some $r \geq 1$.

Suppose first that $r \geq 2$. We claim that $\operatorname{soc}_{2} V / \operatorname{soc} V \cong L(\mu)^{\oplus s}$ for some $0 \leq \mu<p^{n}$ and some $s \geq 1$. (Here $\operatorname{soc}_{i} M$ is the increasing filtration determined by $\operatorname{soc}_{0} M=0$ and $\operatorname{soc}_{i} M / \operatorname{soc}_{i-1} M=\operatorname{soc}\left(M / \operatorname{soc}_{i-1} M\right)$. Note that the socle filtration is compatible with subobjects.) Note that any constituent of $\operatorname{soc}_{2} V / \operatorname{soc} V$ extends $L(\lambda)$, and hence by above it is uniquely determined, unless $n=2$ and $\lambda_{0}=1$. In the latter case, the constituents can be $L\left(\mu^{\prime}\right), L\left(\mu^{\prime \prime}\right)$, where $\mu^{\prime}=p-3$, $\mu^{\prime \prime}=p(p-3)$. But only one of them can occur since $\operatorname{dim} L(\lambda)+\operatorname{dim} L\left(\mu^{\prime}\right)+$ $\operatorname{dim} L\left(\mu^{\prime \prime}\right)=2 p$, and this proves the claim. Note that $L(\mu)$ can occur only once in V by Lemma 8.1; in particular, $s=1$. We claim that $\operatorname{dim} \operatorname{Ext}^{1}(L(\mu), L(\lambda)) \geq r \geq 2$. Otherwise, $\operatorname{soc}_{2} V$ is decomposable, so we obtain a splitting $\pi: \operatorname{soc}_{2} V \rightarrow L(\lambda) \subset$ $\operatorname{soc} V$. But $\operatorname{Ext}^{1}\left(V / \operatorname{soc}_{2} V, L(\lambda)\right)=0$, so we can extend π to a splitting of V, a contradiction. Hence $\operatorname{dim} \operatorname{Ext}^{1}(L(\mu), L(\lambda)) \geq 2$ and by Corollary $4.5(\mathrm{~b})$ in [Andersen et al. 1983] we deduce that $n=2$ and $\lambda_{i}, \mu_{i} \in\{(p-3) / 2,(p-1) / 2\}$ for all i. (Note that we can get all four combinations with $\lambda_{i}+\mu_{i}=p-2$, unlike what is claimed in that corollary.) This contradicts that $\left|\left\{\lambda_{i}, \mu_{i}: 0 \leq i \leq n-1\right\}\right| \geq 3$ (by above).

Suppose that $r=1$, so soc V is irreducible. Note that $\operatorname{soc}_{3} V=V$ by Lemma 8.1, as each constituent in a socle layer extends at least one constituent of the previous socle layer. As soc V is irreducible, V embeds in the projective indecomposable module $U_{n}(\lambda)$ whose socle is $L(\lambda)$. We have $V \subset \operatorname{soc}_{3} U_{n}(\lambda)$. Note that $\lambda_{i}<p-1$ for all i, as $\operatorname{dim} V<2 p$. By Lemma $8.1, L(\lambda)$ does not occur in $\operatorname{soc}_{2} U_{n}(\lambda) / \operatorname{soc} U_{n}(\lambda)$. Also, $L(\lambda)$ occurs precisely n times in $\operatorname{soc}_{3} U_{n}(\lambda) / \operatorname{soc}_{2} U_{n}(\lambda)$. (Theorems 4.3 and 3.7 in [Andersen et al. 1983] imply that this is the case, unless $n=2$ and $\lambda_{i} \in\{(p-3) / 2,(p-1) / 2\}$ for all i. But by above $\lambda_{i}<(p-3) / 3 \leq(p-3) / 2$ for some i.) Let $M_{i}=L\left(\lambda_{0}\right) \otimes L\left(\lambda_{1}\right)^{(p)} \otimes \cdots \otimes Q_{1}\left(\lambda_{i}\right)^{\left(p^{i}\right)} \otimes \cdots \otimes L\left(\lambda_{n-1}\right)^{\left(p^{n-1}\right)}$ and $M:=M_{0}+\cdots+M_{n-1} \subset U_{n}(\lambda)$ in the notation of [Andersen et al. 1983, §3]. Note by Theorems 4.3 and 3.7 in [Andersen et al. 1983] that $\operatorname{soc}_{2} U_{n}(\lambda) \subset M \subset \operatorname{soc}_{3} U_{n}(\lambda)$ and that $M / \operatorname{soc}_{2} U_{n}(\lambda) \cong L(\lambda)^{\oplus n}$. Therefore $V \subset M$, so

$$
\frac{V}{L(\lambda)} \subset \frac{M}{L(\lambda)}=\frac{M_{0}}{L(\lambda)} \oplus \cdots \oplus \frac{M_{n-1}}{L(\lambda)}
$$

As head $\left(M_{i} / L(\lambda)\right) \cong L(\lambda)$, there exists i such that $V / L(\lambda)$ surjects onto $M_{i} / L(\lambda)$. Thus $\operatorname{dim} V \geq \operatorname{dim} M_{i} \geq 2 p$.

9. Finite groups with indecomposable modules of small dimension

Throughout this section, we assume that $k=\bar{k}$ is a field of characteristic $p>3$. We want to describe the structure of finite groups G that admit reducible indecomposable modules of dimension $\leq 2 p-2$. The next results essentially reduce us to the case of quasisimple groups.

Lemma 9.1. Let G be a finite group, $p>3$, and V be a faithful $k G$-module of dimension $<2 p$. Suppose that $\boldsymbol{O}_{p}(G)=1$ and $\boldsymbol{O}_{p^{\prime}}(G) \leq \boldsymbol{Z}(G)$. Then $F(G)=$ $\boldsymbol{O}_{p^{\prime}}(G)=\boldsymbol{Z}(G), F^{*}(G)=E(G) \boldsymbol{Z}(G)$, and $G^{+}=E(G)$ is either trivial or a central product of quasisimple groups of order divisible by p. In particular, G has no composition factor isomorphic to C_{p}, and so $H^{1}(G, k)=0$.
Proof. (a) Since $\boldsymbol{O}_{p}(G)=1, Z:=\boldsymbol{Z}(G) \leq F(G) \leq \boldsymbol{O}_{p^{\prime}}(G)$. It follows that $F(G)=Z=\boldsymbol{O}_{p^{\prime}}(G)$, and $F^{*}(G)=E(G) Z$. If moreover $E(G)=1$, then

$$
Z=F(G)=F^{*}(G) \geq C_{G}\left(F^{*}(G)\right)=G
$$

whence G is an abelian p^{\prime}-group, and $G^{+}=1=E(G)$.
(b) Assume now that $E(G)>1$ and write $E(G)=L_{1} * \cdots * L_{t}$, a central product of $t \geq 1$ quasisimple subgroups. Since $\boldsymbol{O}_{p^{\prime}}(E(G)) \leq \boldsymbol{O}_{p^{\prime}}(G)=Z, p| | L_{i} \mid$ for all i.

Next we show that $\boldsymbol{N}_{G}\left(L_{i}\right) / \boldsymbol{C}_{G}\left(L_{i}\right) L_{i}$ is a p^{\prime}-group for all i. Indeed, note that the L_{i}-module V admits a nontrivial composition factor U of dimension $<2 p$. Otherwise it has a composition series with all composition factors being trivial,
whence L_{i} acts on V as a p-group. Since V is faithful and L_{i} is quasisimple, this is a contradiction. So we can apply Theorem 2.1 and [Guralnick et al. 2014, Theorem 2.1] to the image of L_{i} in GL(U). In particular, denoting $S_{i}:=L_{i} / \boldsymbol{Z}\left(L_{i}\right)$, one can check that Out S_{i} is a p^{\prime}-group, unless it is a simple group of Lie type in characteristic p. In the former case we are done since $\boldsymbol{N}_{G}\left(L_{i}\right) / \boldsymbol{C}_{G}\left(L_{i}\right) L_{i} \hookrightarrow$ Out S_{i}. Consider the latter case. Observe that $\boldsymbol{Z}\left(L_{i}\right) \leq \boldsymbol{Z}(E(G)) \leq F(G)$ is a p^{\prime}-group. So we may replace L_{i} by its simply connected isogenous version $\mathscr{G} F$, where $F: \mathscr{G} \rightarrow \mathscr{G}$ is a Steinberg endomorphism on a simple simply connected algebraic group \mathscr{G} in characteristic p. If moreover p divides $\left|\boldsymbol{N}_{G}\left(L_{i}\right) / \boldsymbol{C}_{G}\left(L_{i}\right) L_{i}\right|$, then $\boldsymbol{N}_{G}\left(L_{i}\right)$ induces an outer automorphism σ of L_{i} of order p. As $p>3$, this can happen only when σ is a field automorphism. More precisely, L_{i} is defined over a field $\mathbb{F}_{p^{b p}}$ (for some $b \geq 1$), where $\mathbb{F}_{p^{b p}}$ is the smallest splitting field for L_{i} [Kleidman and Liebeck 1990, Proposition 5.4.4] and σ is induced by the field automorphism $x \mapsto x^{p^{b}}$. Since $\operatorname{dim} U \geq 2>(\operatorname{dim} V) / p, U$ must be σ-invariant. In turn, this implies by [Kleidman and Liebeck 1990, Proposition 5.4.2] that U and its (p^{b})-th Frobenius twist are isomorphic. In this case, the proofs of Proposition 5.4.6 and Remark 5.4.7 of [Kleidman and Liebeck 1990] show that $\operatorname{dim} U \geq 2^{p}>2 p$, a contradiction.
(c) Recall that $\boldsymbol{C}_{G}(E(G))=\boldsymbol{C}_{G}\left(F^{*}(G)\right) \leq F^{*}(G)=E(G) Z$, whence $\boldsymbol{C}_{G}(E(G))=$ Z. Also, G acts via conjugation on the set $\left\{L_{1}, \ldots, L_{t}\right\}$, with kernel (say) N. We claim that $p \nmid|G / N|$. If not, then we may assume that some p-element $g \in G$ permutes L_{1}, \ldots, L_{p} cyclically. Arguing as in (b), we see that L_{1} acts nontrivially on some composition factor U of the $E(G)$-module V, and we can write $U=U_{1} \otimes \cdots \otimes U_{t}$, where $U_{i} \in \operatorname{IBr}_{p}\left(L_{i}\right)$. If U is not g-invariant, then $\operatorname{dim} V \geq p(\operatorname{dim} U) \geq 2 p$, a contradiction. Hence U is g-invariant. It follows that $2 \leq \operatorname{dim} U_{1}=\cdots=\operatorname{dim} U_{p}$ and so $\operatorname{dim} U \geq 2^{p}>2 p$, again a contradiction.

Now $N / E(G) Z$ embeds in $\prod_{i=1}^{t}$ Out L_{i}. Furthermore, the projection of N into Out L_{i} induces a subgroup of $\boldsymbol{N}_{G}\left(L_{i}\right) / \boldsymbol{C}_{G}\left(L_{i}\right) L_{i}$, which is a p^{\prime}-group by (b). It follows that $N / E(G) Z$ is a p^{\prime}-group, and so $G^{+}=E(G)$. The last statement also follows.

The next result on H^{1} follows from standard results on H^{1} - see [Guralnick et al. 2007, Lemma 5.2] and the main result of [Guralnick 1999].

Lemma 9.2. Let G be a finite group and let V be a faithful irreducible $k G$-module. Assume that $H^{1}(G, V) \neq 0$. Then $\boldsymbol{O}_{p^{\prime}}(G)=\boldsymbol{O}_{p}(G)=1, E(G)=L_{1} \times \cdots \times L_{t}$ and $V_{E(G)}=W_{1} \oplus \cdots \oplus W_{t}$, where the L_{i} are isomorphic nonabelian simple groups of order divisible by p, W_{i} is an irreducible $k L_{i}$-module, and $L_{j}, j \neq i$ acts trivially on W_{i}. Moreover, $\operatorname{dim} H^{1}(G, V) \leq \operatorname{dim} H^{1}\left(L_{1}, W_{1}\right), \operatorname{dim} W_{i} \geq p-2$ and $\operatorname{dim} V \geq t(p-2)$. In particular, if G is not almost simple, then either $\operatorname{dim} V=$ $2 p-4,2 p-2$ or $\operatorname{dim} V \geq 2 p$, or $(p, \operatorname{dim} V)=(5,9)$.

Lemma 9.3. Let V be a faithful indecomposable $k G$-module with two composition factors V_{1}, V_{2}. Assume that $\boldsymbol{O}_{p}(G)=1$ and $\operatorname{dim} V \leq 2 p-2$. If $J:=\boldsymbol{O}_{p^{\prime}}\left(G^{+}\right) \not 又$ $\boldsymbol{Z}\left(G^{+}\right)$, then:
(i) $p=2^{a}+1$ is a Fermat prime.
(ii) $\operatorname{dim} V_{1}=\operatorname{dim} V_{2}=p-1$.
(iii) $J / \mathbf{Z}(J)$ is elementary abelian of order $2^{2 a}$.
(iv) $H^{1}\left(G^{+}, k\right) \neq 0$.

Proof. Since $\operatorname{Ext}_{G}^{1}\left(V_{1}, V_{2}\right) \hookrightarrow \operatorname{Ext}_{G^{+}}^{1}\left(V_{1}, V_{2}\right)$, there are irreducible G^{+}-submodules W_{i} of V_{i} for $i=1,2$ such that $\operatorname{Ext}_{G^{+}}^{1}\left(W_{1}, W_{2}\right) \neq 0$. Assume that J acts by scalars on at least one of the W_{i}. Then, by Lemma 7.11(ii), J acts by scalars on both W_{1} and W_{2}. If W_{1}^{\prime} is any G^{+}-composition factor of V_{1}, then W_{1}^{\prime} is G-conjugate to W_{1}. But $J \triangleleft G$, so we see that J acts by scalars on W_{1}^{\prime}. Thus J acts by scalars on all G^{+}-composition factors of V_{1}, and similarly for V_{2}. Consider a basis of V consistent with a G^{+}-composition series of V, and any $x \in J$ and $y \in G^{+}$. Then $[x, y]$ acts as the identity transformation on each G^{+}-composition factor in this series, and so it is represented by an upper unitriangular matrix in the chosen basis. The same is true for any element in $\left[J, G^{+}\right] \triangleleft G$. Since V is faithful, we see that $\left[J, G^{+}\right] \leq \boldsymbol{O}_{p}(G)=1$ and so $J \leq \boldsymbol{Z}\left(G^{+}\right)$, a contradiction.

Thus J cannot act by scalars on any W_{i}. Let Φ_{i} denote the representation of G^{+} on W_{i}. Then $H:=\Phi_{i}\left(G^{+}\right)<\operatorname{GL}\left(W_{i}\right)$ has no nontrivial p^{\prime}-quotient, and contains a nonscalar normal p^{\prime}-subgroup $\Phi_{i}(J)$. Applying Theorem 2.1 and also [Blau and Zhang 1993, Theorem A] to H, we conclude that $p=2^{a}+1$ is a Fermat prime, $\operatorname{dim} W_{i}=p-1$, and $Q:=\boldsymbol{O}_{p^{\prime}}(H)$ acts irreducibly on W_{i}. Furthermore, $\boldsymbol{Z}(Q)=\boldsymbol{Z}(H)$, and H / Q acts irreducibly on $Q / \boldsymbol{Z}(Q)$, an elementary abelian 2group of order $2^{2 a}$. Now $\Phi_{i}(J)$ is a normal p^{\prime}-subgroup of H that is not contained in $\boldsymbol{Z}(Q)$. It follows that $\Phi_{i}(J) \boldsymbol{Z}(Q)=Q, \boldsymbol{Z}\left(\Phi_{i}(J)\right)=\Phi_{i}(J) \cap \boldsymbol{Z}(Q), J$ is irreducible on W_{i}, and $\Phi_{i}(J) / \boldsymbol{Z}\left(\Phi_{i}(J)\right) \cong Q / \boldsymbol{Z}(Q)$ is elementary abelian of order $2^{2 a}$. Since $\operatorname{dim} V \leq 2 p-2$, it also follows that $W_{i}=V_{i}$.

Letting $A:=V_{1}^{*} \otimes V_{2}$, we then see that $A=[J, A] \oplus \boldsymbol{C}_{A}(J)$ as J-modules. Next,

$$
0 \neq \operatorname{Ext}_{G}^{1}\left(V_{1}, V_{2}\right) \cong H^{1}(G, A) \cong H^{1}\left(G, \boldsymbol{C}_{A}(J)\right),
$$

since $H^{1}(G,[J, A])=0$ by the inflation restriction sequence. It follows that $\boldsymbol{C}_{A}(J) \neq 0$. But J is irreducible on both V_{1} and V_{2}, so we must have that $\operatorname{dim} \boldsymbol{C}_{A}(J)=1$ and $V_{1} \cong V_{2}$ as J-modules. Since G^{+}acts trivially on any 1 -dimensional module, it follows that $H^{1}\left(G^{+}, k\right) \neq 0$. Since $W_{1} \cong W_{2}$ as J modules and V is a faithful semisimple J-module, we also see that $\operatorname{Ker}\left(\Phi_{1}\right) \cap J=$ $\operatorname{Ker}\left(\Phi_{2}\right) \cap J=1$. Thus Φ_{i} is faithful on J, and so $J / \mathbf{Z}(J)$ is elementary abelian of order $2^{2 a}$.

Lemma 9.4. Let V be a faithful indecomposable $k G$-module with two composition factors V_{1}, V_{2} of dimension $>1, p>3$, and $\boldsymbol{O}_{p}(G)=1$.
(i) Assume that $\boldsymbol{O}_{p^{\prime}}\left(G^{+}\right) \leq \boldsymbol{Z}\left(G^{+}\right)$, and either $\operatorname{dim} V<2 p-2$ or $\operatorname{dim} V_{1}=$ $\operatorname{dim} V_{2}=p-1$. If G^{+}is not quasisimple, then $G^{+}=L_{1} * L_{2}$ is a central product of two quasisimple groups, $\operatorname{dim} V_{1}=\operatorname{dim} V_{2}=p-1$ and, up to relabeling the L_{i}, one of the following holds:
(a) $V_{i}=A_{i} \otimes B$ as G^{+}-modules, where $A_{i} \in \operatorname{IBr}_{p}\left(L_{1}\right)$ is of dimension $(p-1) / 2$ and $B \in \operatorname{IBr}_{p}\left(L_{2}\right)$ is of dimension 2; furthermore, $\operatorname{Ext}_{L_{1}}^{1}\left(A_{1}, A_{2}\right) \neq 0$.
(b) $V_{i}=\left(A_{i} \otimes k\right) \oplus\left(k \otimes B_{i}\right)$ as G^{+}-modules, where $A_{i} \in \operatorname{IBr}_{p}\left(L_{1}\right)$ has dimension $(p-1) / 2$, and some $g \in G$ interchanges L_{1} with L_{2} and A_{i} with B_{i}. Furthermore, $\operatorname{Ext}_{L_{1}}^{1}\left(A_{1}, A_{2}\right) \neq 0$.
(ii) If $\operatorname{dim} V<2 p-2$, then G^{+}is quasisimple.

Proof. (i) By Lemma 9.1 applied to $G^{+}, G^{+}=\left(G^{+}\right)^{+}=E\left(G^{+}\right)=L_{1} * L_{2} * \cdots * L_{t}$, a central product of t quasisimple groups. Suppose $t>1$. Since $\operatorname{Ext}_{G}^{1}\left(V_{1}, V_{2}\right) \hookrightarrow$ $\operatorname{Ext}_{G^{+}}^{1}\left(V_{1}, V_{2}\right)$, there are irreducible G^{+}-submodules W_{i} of V_{i} for $i=1,2$ such that $\operatorname{Ext}_{G^{+}}^{1}\left(W_{1}, W_{2}\right) \neq 0$. Write $W_{i}=W_{i 1} \otimes \cdots \otimes W_{i t}$, where $W_{i j}$ is an irreducible L_{j}-module. By Lemma 7.7, we may assume that $W_{1 j} \cong W_{2 j}$ for $j=2, \ldots, t$, and either $\operatorname{Ext}_{L_{1}}^{1}\left(W_{11}, W_{21}\right) \neq 0$, or $W_{11} \cong W_{21}$ and $\operatorname{Ext}_{L_{j}}^{1}\left(W_{1 j}, W_{2 j}\right) \neq 0$ for some j. Interchanging L_{1} and L_{j} in the latter case, we can always assume that $\operatorname{Ext}_{L_{1}}^{1}\left(W_{11}, W_{21}\right) \neq 0$. By [Guralnick 1999, Theorem A], we then have

$$
\begin{equation*}
\operatorname{dim} W_{11}+\operatorname{dim} W_{21} \geq p-1>2 . \tag{9-1}
\end{equation*}
$$

Now if $W_{1 j}$ is nontrivial for some $j \geq 2$, say $W_{12} \not \nexists k$, then

$$
\operatorname{dim} V \geq \operatorname{dim} W_{1}+\operatorname{dim} W_{2} \geq 2\left(\operatorname{dim} W_{11}+\operatorname{dim} W_{21}\right)=2 p-2 .
$$

It follows that $V_{i}=W_{i}=W_{i 1} \otimes W_{i 2} \otimes k \otimes \cdots \otimes k, \operatorname{dim} W_{i 1}=(p-1) / 2$, and $\operatorname{dim} W_{i 2}=2$. Furthermore, $t=2$ as V is faithful, and we arrive at (a).

We may now assume that $W_{1 j} \cong W_{2 j} \cong k$ for all $j>1$. Suppose that G normalizes L_{1}. Since every G^{+}-composition factor of V_{1} is G-conjugate to W_{1}, it follows that L_{2} acts trivially on all composition factors of V_{1}. The same is true for V_{2}. As L_{2} is quasisimple, we see that L_{2} acts trivially on V, contrary to the faithfulness of V. Thus there must be some $g \in G$ conjugating L_{1} to L_{j} for some $j>1$, say $L_{1}^{g}=L_{2}$. By (9-1) we may assume that $W_{11} \not \not k$. Then $g\left(W_{1}\right) \not \equiv W_{1}$, as L_{2} acts trivially on W_{1} but not on $g\left(W_{1}\right)$. Thus $\left(V_{1}\right)_{G^{+}}$has at least two distinct simple summands W_{1} and $g\left(W_{1}\right)$. If furthermore $W_{21} \not \neq k$, then $\left(V_{2}\right)_{G^{+}}$also has at least two distinct simple summands W_{2} and $g\left(W_{2}\right)$, and so

$$
\operatorname{dim} V \geq 2\left(\operatorname{dim} W_{1}+\operatorname{dim} W_{2}\right)=2\left(\operatorname{dim} W_{11}+\operatorname{dim} W_{21}\right) \geq 2 p-2 .
$$

In this case, we must have that $V_{i}=W_{i} \oplus g\left(W_{i}\right), \operatorname{dim} W_{i}=(p-1) / 2$, and $t=2$ as V is faithful, and we arrive at (b).

Consider the case $W_{21} \cong k$. Now (9-1) implies that $\operatorname{dim} W_{1}=\operatorname{dim} W_{11} \geq p-2$, whence $\operatorname{dim} V_{1} \geq 2 p-4$. On the other hand, $\operatorname{dim} V_{2} \geq 2$. It follows that $2 p-4=2$, again a contradiction.
(ii) By Lemma 9.3, $\boldsymbol{O}_{p^{\prime}}\left(G^{+}\right) \leq \boldsymbol{Z}\left(G^{+}\right)$. Hence we are done by (i).

Lemma 9.5. Let H be a quasisimple finite group of Lie type in characteristic $p>3$. Assume that $V_{1}, V_{2} \in \operatorname{IBr}_{p}(H)$ satisfy $\operatorname{dim} V_{1}+\operatorname{dim} V_{2}<2 p$.
(i) If $H \not \equiv \operatorname{SL}_{2}(q), \operatorname{PSL}_{2}(q)$, then $\operatorname{Ext}_{H}^{1}\left(V_{1}, V_{2}\right)=0$. In particular, there is no reducible indecomposable $k G$-module with $G^{+} \cong H$ and $\operatorname{dim} V<2 p$.
(ii) Suppose $H \cong \operatorname{SL}_{2}(q)$ or $\operatorname{PSL}_{2}(q), \operatorname{Ext}_{H}^{1}\left(V_{1}, V_{2}\right) \neq 0$, and $\operatorname{dim} V_{1}=\operatorname{dim} V_{2}$. Then $q=p$ and $V_{1}=L((p-3) / 2)$ or $L((p-1) / 2)$.

Proof. (i) Note that $\boldsymbol{Z}(H)$ is a p^{\prime}-group as $p>3$. Hence, we can replace H by the fixed-point subgroup \mathscr{G}^{F} for some Steinberg endomorphism $F: \mathscr{G} \rightarrow \mathscr{G}$ on some simple simply connected algebraic group \mathscr{G} defined over a field of characteristic p (see Lemma 7.3). Hence, if $H \nsubseteq \mathrm{Sp}_{2 n}(5)$, the result follows by [McNinch 1999, Theorem 1.1]. In the exceptional case $H=\operatorname{Sp}_{2 n}(5)$, we have $p=5$ and so we are only considering modules of dimension at most 9 . If $n \geq 3$, then $\operatorname{dim} V_{1}+\operatorname{dim} V_{2}>10$ unless at least one of the V_{i} is trivial and the other is either trivial or the natural module of dimension $2 n$, and in both cases $\operatorname{Ext}_{H}^{1}\left(V_{1}, V_{2}\right)=0$. If $n=2$, one just computes that all the relevant $\operatorname{Ext}_{H}^{1}\left(V_{1}, V_{2}\right)$ are trivial (done by Lux).

Suppose now that V is a reducible indecomposable $k G$-module with $G^{+} \cong H$ and $\operatorname{dim} V<2 p$. By Lemma 7.8(ii), there are composition factors V_{1}, V_{2} of V such that $\operatorname{Ext}_{G}^{1}\left(V_{1}, V_{2}\right) \neq 0$. It then follows that $\operatorname{Ext}_{H}^{1}\left(W_{1}, W_{2}\right) \neq 0$ for some simple H-summands W_{i} of V_{i} for $i=1,2$ and $\operatorname{dim} W_{1}+\operatorname{dim} W_{2}<2 p$, a contradiction.
(ii) Again we can replace H by $\mathrm{SL}_{2}(q)$. The statement then follows from Lemma 8.1 when $q>p$, and from [Andersen et al. 1983] if $q=p$.

There are a considerable number of examples of nonsplit extensions $\left(V_{1} \mid V_{2}\right)$ with G^{+}nonquasisimple and $\operatorname{dim} V_{1}+\operatorname{dim} V_{2}=2 p-2$. For example, suppose that $G=\mathrm{SL}_{2}(p) \times \mathrm{SL}_{2}(p)$ and $V_{1}=L(1) \otimes L(a)$ and $V_{2}=L(1) \otimes L(p-a-3)$. Then by [Andersen et al. 1983] and Lemma 7.7, $\operatorname{Ext}_{G}^{1}\left(V_{1}, V_{2}\right) \neq 0$. For our adequacy results, we do need to consider the case where $\operatorname{dim} V_{1}=\operatorname{dim} V_{2}=p-1$ in more detail:
Lemma 9.6. Let V be a faithful indecomposable $k G$-module with two composition factors V_{1}, V_{2}, both of dimension $p-1$. Assume that $p>3$ and $\boldsymbol{O}_{p}(G)=1$. Then one of the following holds:
(i) $\boldsymbol{O}_{p^{\prime}}\left(G^{+}\right) \nsubseteq \boldsymbol{Z}\left(G^{+}\right)$and Lemma 9.3 applies.
(ii) G^{+}is quasisimple.
(iii) $G^{+}=\mathrm{SL}_{2}(p) \times \mathrm{SL}_{2}\left(p^{a}\right)$ (modulo some central subgroup) and one of the following holds:
(a) $V_{1} \cong V_{2} \cong L((p-3) / 2) \otimes L(1)^{\left(p^{b}\right)}$ as G^{+}-modules (for some $\left.0 \leq b<a\right)$.
(b) $a=1$ and $V_{1} \cong V_{2} \cong X \oplus Y$, where G^{+}acts as a quasisimple group on X, Y and $\operatorname{dim} X=\operatorname{dim} Y=(p-1) / 2($ so $X, Y \cong L((p-3) / 2)$ for the copy of $\mathrm{SL}_{2}(p)$ acting nontrivially on X or $\left.Y\right)$.

Proof. Assume that neither (i) nor (ii) holds. Then by Lemma 9.4(i), $E\left(G^{+}\right)=$ $G^{+}=L_{1} * L_{2}$ is a central product of two quasisimple groups, and either (a) or (b) of Lemma 9.4(i) occurs. In either case, we see that L_{1} admits an indecomposable module W of length 2 with composition factors A_{1} and A_{2}, both of dimension $(p-1) / 2$. By [Blau and Zhang 1993, Theorem A] applied to W, L_{1} is of Lie type in characteristic p. Also, $\boldsymbol{Z}\left(L_{1}\right) \leq \boldsymbol{Z}\left(G^{+}\right) \leq \boldsymbol{O}_{p^{\prime}}(G)$ is a p^{\prime}-group. Hence $L_{1} \cong$ $\mathrm{SL}_{2}(p)$ (modulo a central subgroup) by Lemma 9.5 and $A_{1} \cong A_{2} \cong L((p-3) / 2$). In particular, $L_{2} \cong \operatorname{SL}_{2}(p)$ in case (b), and (iii)(b) holds. In the case of (a), $B \in \operatorname{IBr}_{p}\left(L_{2}\right)$ has dimension 2. Since $p>3$, by Theorem 2.1 we conclude that L_{2} is of Lie type in characteristic p, and in fact that $L_{2} \cong \mathrm{SL}_{2}\left(p^{a}\right)$ (modulo a central subgroup) and $B \cong L(1)^{\left(p^{b}\right)}$ for some $a \geq 1$ and $0 \leq b<a$. Thus (iii)(a) holds. \square

Proposition 9.7. Let $p>3$ and let G be a finite group with a faithful, reducible, indecomposable $k G$-module V of dimension $\leq 2 p-3$. Suppose in addition that $\boldsymbol{O}_{p}(G)=1$. Then $G^{+}=E\left(G^{+}\right), G$ has no composition factor isomorphic to C_{p}, and one of the following holds:
(i) G^{+}is quasisimple.
(ii) G^{+}is a central product of two quasisimple groups and $\operatorname{dim} V=2 p-3$. Furthermore, V has one composition factor of dimension 1 , and either one of dimension $2 p-4$ or two of dimension $p-2$. In either case, $V \not \equiv V^{*}$.

Proof. (a) Note that $\boldsymbol{O}_{p}\left(G^{+}\right) \leq \boldsymbol{O}_{p}(G)=1$. Next we show that $J:=\boldsymbol{O}_{p^{\prime}}\left(G^{+}\right) \leq$ $\boldsymbol{Z}\left(G^{+}\right)$. As in the proof of Lemma 9.3, it suffices to show that J acts by scalars on every G^{+}-composition factor of V. So assume that there is a G^{+}-composition factor X of V on which J does not act by scalars. Again as in the proof of Lemma 9.3, we see by Theorem 2.1 that $\operatorname{dim} X \geq p-1$. Since $\operatorname{dim} V \leq 2 p-3$, it follows that X is a G^{+}-composition factor of multiplicity 1 , and, moreover, J acts by scalars on any other G^{+}-composition factor Y of V. Also, X extends to a G-composition factor (of multiplicity 1) of V. Now, by Lemma 7.8(i), there is an indecomposable subquotient of length 2 of V with G-composition factors X and $T \not \equiv X$. In particular, by symmetry we may assume that $0 \neq \operatorname{Ext}_{G}^{1}(X, T) \hookrightarrow$ $\operatorname{Ext}_{G^{+}}^{1}(X, T)$, and so $\operatorname{Ext}_{G^{+}}^{1}(X, Y) \neq 0$ for some simple G^{+}-summand Y of T. But this is impossible by Lemma 7.11 (ii) (as J acts by scalars on Y but not on X).

Applying Lemma 9.1 to G^{+}, we see that

$$
G^{+}=\left(G^{+}\right)^{+}=E\left(G^{+}\right)=L_{1} * \cdots * L_{t}
$$

a central product of t quasisimple subgroups. Note that $t \geq 1$ as otherwise G is a p^{\prime}-group and so V does not exist. Furthermore, G has no composition factors isomorphic to C_{p}.
(b) Assume now that $t \geq 2$. Suppose in addition that, for every composition factor V_{i} of V, at most one of the components L_{j} of G^{+}acts nontrivially on V_{i}. For $1 \leq j \leq t$, let \mathscr{X}_{j} denote the set of isomorphism classes of composition factors V_{i} of V on which L_{j} acts nontrivially. Also let \mathscr{X}_{0} denote the set of isomorphism classes of composition factors V_{i} of V on which G^{+}acts trivially. By the faithfulness of V, $\mathscr{X}_{j} \neq \varnothing$ for $j>0$. Consider for instance $X \in \mathscr{X}_{1}$. By Lemma 7.8(i), there is some $X^{\prime} \in \mathscr{X}_{j}$ (for some j) and some indecomposable subquotient W of length 2 of V with composition factors X, X^{\prime}. Note that the p-radical of the group induced by the action of G on W is trivial, as C_{p} is not a composition factor of G. Applying Lemma 9.4(ii) to W, we see that $j=0$ or 1 . Moreover, if for all $X \in \mathscr{X}_{1}$ there is no such W with $X^{\prime} \in \mathscr{X}_{0}$, then Lemma 7.10 applied to $\left(\mathscr{X}:=\mathscr{X}_{1}, \mathscr{Y}:=\bigcup_{i \neq 1} \mathscr{X}_{i}\right)$ implies that V is decomposable, a contradiction. Thus for some $X \in \mathscr{X}_{1}$, such a W exists with $X^{\prime} \in \mathscr{X}_{0}$. Note that in this case $\operatorname{dim} X \geq p-2$. Indeed, G^{+}acts trivially on X^{\prime}, and by symmetry we may assume that

$$
0<\operatorname{dim} \operatorname{Ext}_{G}^{1}\left(X^{\prime}, X\right) \leq \operatorname{dim} \operatorname{Ext}_{G^{+}}^{1}\left(X^{\prime}, X\right)
$$

Therefore, for some simple summand X_{1} of the G^{+}-module X we have that $0 \neq \operatorname{Ext}_{G^{+}}^{1}\left(k, X_{1}\right) \cong H^{1}\left(G^{+}, X_{1}\right)$. Note that C_{p} is not a composition factor of G^{+}, so by Lemma 7.3 we may assume here that G^{+}acts faithfully on X_{1}. Applying Lemma 9.2 to G^{+}, we get $\operatorname{dim} X \geq \operatorname{dim} X_{1} \geq p-2$.

Similarly, for some $Y \in \mathscr{X}_{2}$, we get an indecomposable subquotient T of length 2 of V with composition factors Y and $Y^{\prime} \in \mathscr{X}_{0}$, and moreover $\operatorname{dim} Y \geq p-2$. Since $\operatorname{dim} V \leq 2 p-3$ and $\mathscr{X}_{0} \ni X^{\prime}, Y^{\prime}$, we conclude that $\operatorname{dim} V=2 p-3, \operatorname{dim} X=$ $\operatorname{dim} Y=p-2, t=2$, and $X^{\prime} \cong Y^{\prime}$ has dimension 1. Suppose in addition that $V \cong V^{*}$. Observe that $X^{*} \nsupseteq Y, X^{\prime}$, so $X \cong X^{*}$. Similarly, Y and X^{\prime} are self-dual. Thus all three composition factors of V have multiplicity 1 each and are self-dual. At least one of them occurs in $\operatorname{soc} V$, and then also in head V by duality. It follows by Lemma 7.9 that V is decomposable, a contradiction. Thus we arrive at (ii).
(c) Finally, we consider the case where at least two of the L_{i} act nontrivially on some composition factor V_{i} of V. By Lemma 7.8(i), there is some indecomposable subquotient W of length 2 of V with composition factors V_{i} and V_{j}. By Lemma 9.4(ii) applied to $W, \operatorname{dim} V_{j}=1$. In turn this implies by Lemma 9.2 that $\operatorname{dim} V_{i} \geq 2 p-4$. Since $\operatorname{dim} V \leq 2 p-3$, we must have that $\operatorname{dim} V_{i}=2 p-4, V=W, t=2$ and
$\operatorname{dim} V=2 p-3$. Applying Lemma 7.9 and using the indecomposability of V as above, we see that $V \not \not V^{*}$, and again arrive at (ii).

10. Extensions and self-extensions, II

Let q be any odd prime power. It is well known (see, e.g., [Tiep and Zalesskii 1997] and [Guralnick et al. 2002]) that the finite symplectic group $\mathrm{Sp}_{2 n}(q)$ has two complex irreducible Weil characters ξ_{1}, ξ_{2} of degree $\left(q^{n}+1\right) / 2$, and two such characters η_{1}, η_{2} of degree $\left(q^{n}-1\right) / 2$, whose reductions modulo any odd prime $p \nmid q$ are absolutely irreducible and distinct and are called (p-modular) Weil characters of $\operatorname{Sp}_{2 n}(q)$.

Lemma 10.1. Let q be an odd prime power and p an odd prime divisor of $q^{n}+1$ which does not divide $\prod_{i=1}^{2 n-1}\left(q^{i}-1\right)$. Let $S:=\mathrm{Sp}_{2 n}(q)$ and let W_{1} and W_{2} denote the irreducible $k S$-modules affording the two irreducible p-modular Weil characters of S of degree $\left(q^{n}-1\right) / 2$. Then for $1 \leq i, j \leq 2$ we have that $\operatorname{Ext}_{S}^{1}\left(W_{i}, W_{j}\right)=0$, unless $i \neq j$ and $n=1$, in which case $\operatorname{dim}\left(\operatorname{Ext}_{S}^{1}\left(W_{i}, W_{j}\right)\right)=1$.

Proof. The conditions on (n, q) imply that $(n, q) \neq(1,3)$. In this case, [Tiep and Zalesskii 1996, Theorem 1.1] implies that each W_{i} has a unique complex lift (a complex module affording some η_{i}). Also, the Sylow p-subgroups of S are cyclic of order $\left(q^{n}+1\right)_{p}$. Hence $\operatorname{Ext}_{S}^{1}\left(W_{i}, W_{i}\right)=0$ by Lemma 7.1.

Note that an involutory diagonal automorphism σ of S fuses η_{1} with η_{2} and W_{1} with W_{2}. Consider the semidirect product $H:=S \rtimes\langle\sigma\rangle$ and the irreducible $k H$-module $V:=\operatorname{Ind}_{S}^{H}\left(W_{1}\right)$ of dimension $q^{n}-1$. Certainly, $\operatorname{Ind}_{S}^{H}\left(\eta_{1}\right)$ is a complex lift of V.

Assume that $n>1$. Now if $(n, q) \neq(2,3)$, then by [Tiep and Zalesskii 1996, Theorem 5.2], S has exactly five irreducible complex characters of degree $\leq\left(q^{n}-1\right)$: $1_{S}, \eta_{1}, \eta_{2}, \xi_{1}$, and ξ_{2}. When $(n, q)=(2,3)$, there is one extra complex character of degree 6 [Conway et al. 1985]. It follows that if χ is any complex lift of V, then $\chi_{S}=\eta_{1}+\eta_{2}$. Since σ fuses η_{1} and η_{2}, we see that $\chi=\operatorname{Ind}_{S}^{H}\left(\eta_{1}\right)$. Thus V has a unique complex lift, and so by Lemma 7.1 and Frobenius reciprocity we have

$$
\begin{aligned}
0 & =\operatorname{Ext}_{H}^{1}(V, V)=\operatorname{Ext}_{H}^{1}\left(\operatorname{Ind}_{S}^{H}\left(W_{1}\right), V\right) \cong \operatorname{Ext}_{S}^{1}\left(W_{1}, V_{S}\right) \\
& \cong \operatorname{Ext}_{S}^{1}\left(W_{1}, W_{1}\right) \oplus \operatorname{Ext}_{S}^{1}\left(W_{1}, W_{2}\right) .
\end{aligned}
$$

In particular, $\operatorname{Ext}_{S}^{1}\left(W_{1}, W_{2}\right)=0$.
Next suppose that $n=1$. Inspecting the character table of $\mathrm{SL}_{2}(q)$ as given in [Digne and Michel 1991, Table 2], we see that S has a σ-invariant complex irreducible character χ of degree $q-1$ such that the restriction of χ to p^{\prime}-elements of S is the Brauer character of V_{S}. Since H / S is cyclic and generated by σ, it follows that χ extends to a complex irreducible character $\tilde{\chi}$ of H. Now $\tilde{\chi} \neq \operatorname{Ind}_{S}^{H}\left(\eta_{1}\right)$ (since the latter is reducible over S), but both of them are complex lifts of V (by Clifford's
theorem). Applying Lemma 7.1 and Frobenius reciprocity as above, we see that $\operatorname{dim} \operatorname{Ext}_{H}^{1}(V, V)=\operatorname{dim} \operatorname{Ext}_{S}^{1}\left(W_{1}, W_{2}\right)=1$.
Lemma 10.2. Let H be a quasisimple group with $\mathbf{Z}(H)$ a p^{\prime}-group. Let W and W^{\prime} be absolutely irreducible $k H$-modules in characteristic p of dimension d, where (H, p, d) is one of the following triples:

$$
\left(2 \mathrm{~A}_{7}, 5,4\right), \quad\left(3 J_{3}, 19,18\right), \quad(2 R u, 29,28), \quad\left(6_{1} \cdot \mathrm{PSL}_{3}(4), 7,6\right),
$$

$\left(6_{1} \cdot \mathrm{PSU}_{4}(3), 7,6\right), \quad\left(2 J_{2}, 7,6\right), \quad\left(3 \mathrm{~A}_{7}, 7,6\right),\left(6 \mathrm{~A}_{7}, 7,6\right),\left(M_{11}, 11,10\right)$, $\left(2 M_{12}, 11,10\right),\left(2 M_{22}, 11,10\right),(6 S u z, 13,12),\left(2 \mathrm{G}_{2}(4), 13,12\right),\left(3 \mathrm{~A}_{6}, 5,3\right)$, $\left(3 \mathrm{~A}_{7}, 5,3\right), \quad\left(M_{11}, 11,9\right),\left(M_{23}, 23,21\right),\left(2 \mathrm{~A}_{7}, 7,4\right),\left(J_{1}, 11,7\right)$.

If $\mathbf{Z}(H)$ acts the same way on W and W^{\prime}, assume in addition that there is an automorphism of H which sends W to W^{\prime}. Then $\operatorname{Ext}_{H}^{1}\left(W, W^{\prime}\right)=0$, with the following two exceptions: $(H, p, d)=\left(3 \mathrm{~A}_{6}, 5,3\right)$ and $\left(2 \mathrm{~A}_{7}, 7,4\right)$, where $\operatorname{dim} \operatorname{Ext}_{H}^{1}(W, W)=1$.
Proof. Note that the Sylow p-subgroups of H have order p. Hence, in the case $W \cong W^{\prime}$ we can apply Lemma 7.1; in particular, we arrive at the two exceptions listed above. This argument settles the cases of $\left(M_{11}, 11,9\right),\left(M_{23}, 23,21\right),\left(J_{1}, 11,7\right)$, and ($2 \mathrm{G}_{2}(4), 13,12$).

If $W \not \equiv W^{\prime}$ and $\boldsymbol{Z}(H)$ acts differently on W and W^{\prime}, then we also get that $\operatorname{Ext}_{H}^{1}\left(W, W^{\prime}\right)=0$ since $\boldsymbol{Z}(H)$ is a central p^{\prime}-group. So it remains to consider the case where $W \not \nexists W^{\prime}$ and $\boldsymbol{Z}(H)$ acts the same way on both of them. Suppose in addition that there is an involutory automorphism σ of H that swaps W and W^{\prime} and that the module $\operatorname{Ind}_{H}^{J}(W)$ of $J:=H \rtimes\langle\sigma\rangle$ has at most one complex lift. Then we can apply Lemma 7.1 to J as in the proof of Lemma 10.1 to conclude that $\operatorname{Ext}^{1}\left(W, W^{\prime}\right)=0$. These arguments are used to handle the cases of $\left(2 \mathrm{~A}_{7}, 5,4\right),\left(3 \mathrm{~A}_{7}, 5,3\right),\left(3 \mathrm{~A}_{7}, 7,6\right),\left(2 J_{2}, 7,6\right),(6 S u z, 13,12),\left(6 \cdot \mathrm{PSL}_{3}(4), 7,6\right)$, and ($\left.6_{1} \cdot \mathrm{PSU}_{4}(3), 7,6\right)$.

In the six remaining cases of $\left(6 \mathrm{~A}_{7}, 7,6\right),\left(3 J_{3}, 19,18\right),(2 R u, 29,28),\left(M_{11}, 11,10\right)$, $\left(2 M_{12}, 11,10\right)$, and $\left(2 M_{22}, 11,10\right)$, we note (using [Jansen et al. 1995] or [GAP 2004]) that the nonisomorphic H-modules W and W^{\prime} with the same action of $\boldsymbol{Z}(H)$ are not $\operatorname{Aut}(H)$-conjugate.

Corollary 10.3. Suppose that $q>3$ is an odd prime power such that $p=(q+1) / 2$ prime. Then there is a finite absolutely irreducible linear group $G<\mathrm{GL}(V)=$ $\mathrm{GL}_{q-1}(k)$ of degree $q-1$ over k such that $G^{+} \cong \mathrm{SL}_{2}(q)$, all irreducible G^{+}submodules in V are Weil modules of dimension $(q-1) / 2$, and $\operatorname{dim} \operatorname{Ext}_{G}^{1}(V, V)=1$. In particular, (G, V) is not adequate.

Proof. Our conditions on p, q imply that $q \equiv 1(\bmod 4)$. Now we can just appeal to the proof of Lemma 10.1 , taking $H=\mathrm{GU}_{2}(q) / C$, where C is the unique subgroup of order $(q+1) / 2$ in $\boldsymbol{Z}\left(\operatorname{GU}_{2}(q)\right)$.

Proposition 10.4. Suppose (G, V) is as in the extraspecial case (ii) of Theorem 2.4. Then $\operatorname{Ext}_{G}^{1}(V, V)=0$.

Proof. Write $\left.V\right|_{G^{+}}=e \sum_{i=1}^{t} W_{i}$ as usual and let K_{i} be the kernel of the action of G^{+} on W_{i}. By Lemma 7.2, it suffices to show that $\operatorname{Ext}_{G^{+}}^{1}\left(W_{i}, W_{j}\right)=0$ for all i, j. Recall that $R:=\boldsymbol{O}_{p^{\prime}}\left(G^{+}\right)$acts irreducibly on W_{i}. By Theorem $2.4, K_{i}$ has no composition factor $\cong C_{p}$, whence $\operatorname{Ext}_{G^{+}}^{1}\left(W_{i}, W_{i}\right)=\operatorname{Ext}_{G^{+} / K_{i}}^{1}\left(W_{i}, W_{i}\right)$ by Lemma 7.3(ii). Next, G^{+} / K_{i} has cyclic Sylow p-subgroups (of order p) by Theorem 2.1(e), and we have shown in the proof of Proposition 5.6 that the G^{+} / K_{i}-module W_{i} has a unique complex lift. Hence $\operatorname{Ext}_{G^{+} / K_{i}}^{1}\left(W_{i}, W_{i}\right)=0$ by Lemma 7.1.

Suppose now that $i \neq j$ and let M be any extension of the G^{+}-module W_{i} by the G^{+}-module W_{j}. Recall that the R-modules W_{i} and W_{j} are irreducible and nonisomorphic, as shown in the proof of Proposition 5.6. But R is a p^{\prime}-group, so by Maschke's theorem $M=M_{1} \oplus M_{2}$ with $M_{i} \cong W_{i}$ as R-modules. Now for any $g \in G^{+}, g\left(M_{i}\right) \cong\left(W_{i}\right)^{g} \cong W_{i}$ as R-modules, and so $g\left(M_{i}\right)=M_{i}$. Thus $M=M_{1} \oplus M_{2}$ as a G^{+}-module. We have shown that $\operatorname{Ext}_{G^{+}}^{1}\left(W_{i}, W_{j}\right)=0$.

Proposition 10.5. Suppose that (G, V) is as in case (i) of Theorem 2.4. Then $\operatorname{Ext}_{G}^{1}(V, V)=0$, unless one of the following possibilities occurs for the group $H<\mathrm{GL}(W)$ induced by the action of G^{+}on any irreducible G^{+}-submodule W of V :
(i) $p=(q+1) / 2, \operatorname{dim} W=p-1$, and $H \cong \mathrm{SL}_{2}(q)$.
(ii) $p=2^{f}+1$ is a Fermat prime, $\operatorname{dim} W=p-2$, and $H \cong \mathrm{SL}_{2}\left(2^{f}\right)$.
(iii) $(H, p, d)=\left(3 \mathrm{~A}_{6}, 5,3\right)$ and $\left(2 \mathrm{~A}_{7}, 7,4\right)$.

Proof. Write $\left.V\right|_{G^{+}}=e \sum_{i=1}^{t} W_{i}$ as usual and let K_{i} be the kernel of the action of G^{+}on W_{i}. By Lemma 7.2, it suffices to show that $\operatorname{Ext}_{G^{+}}^{1}\left(W_{i}, W_{j}\right)=0$ for all i, j. Note that neither G^{+}nor K_{i} can have C_{p} as a composition factor, according to Theorem 2.4. Furthermore, if $K_{i} \neq K_{j}$ then we are done by Corollary 7.6. So we may assume that $K_{i}=K_{j}$ and then by Lemma 7.3 replace G^{+}by $H=G^{+} / K_{i}=G^{+} / K_{j}$. Now we will go over the possibilities for (H, W_{i}) listed in Theorem 2.1(b)-(d).

Suppose we are in the case (b1) of Theorem 2.1. Assume first that $(p, H)=$ $\left(\left(q^{n}+1\right) / 2, \mathrm{Sp}_{2 n}(q)\right)$. It is well known (see [Guralnick et al. 2002, Theorem 2.1]) that H has exactly two irreducible modules of dimension $\left(q^{n}-1\right) / 2$, namely the two Weil modules of that dimension. Hence we can apply Lemma 10.1 and arrive at the exception (i).

Next, assume that $(p, H)=\left(\left(q^{n}+1\right) /(q+1), \operatorname{PSU}_{n}(q)\right)$; in particular, $n \geq 3$ is odd. Applying [Guralnick et al. 2002, Theorem 2.7 and Proposition 11.3], we see that there is a unique irreducible $k H$-module of dimension $p-1=\left(q^{n}-q\right) /(q+1)$, and, furthermore, that this module has a unique complex lift. Hence we are done by Lemma 7.1.

Suppose now that we are in the case (c) of Theorem 2.1. If $H=\mathrm{A}_{p}$, then using [Guralnick and Tiep 2005, Lemma 6.1] for $p \geq 17$ and [Conway et al. 1985] for $p \leq 13$, we see that H has a unique irreducible $k H$-module of dimension $p-2$, and, furthermore, that this module has no complex lift unless $p=5$, whence we are done by Lemma 7.1. Note that the exception $p=5$ is recorded in (ii) (with $f=2$).

Next, assume that $(p, H)=\left(\left(q^{n}-1\right) /(q-1), \operatorname{PSL}_{n}(q)\right)$. If $n=2$, then $p=$ $q+1=2^{f}+1$ is a Fermat prime, in which case $H=\mathrm{SL}_{2}\left(2^{f}\right)$ has a unique irreducible $k H$-module W of dimension $p-2$, with 2^{f-1} complex lifts, whence $\operatorname{dim} \operatorname{Ext}_{H}^{1}(W, W)=1$ by Lemma 7.1. This exception is recorded in (ii). If $n \geq 3$, then by [Guralnick and Tiep 1999, Theorem 1.1], H has a unique irreducible $k H$ module W of dimension $p-2$ with no complex lifts, whence $\operatorname{dim} \operatorname{Ext}_{H}^{1}(W, W)=0$ by Lemma 7.1.

It remains to consider the 19 cases listed in Lemma 10.2. Furthermore, by Corollary 7.6 , we need only consider the case where G^{+}acts on W_{i} and W_{j} with the same kernel. Since G^{+}has no composition factor isomorphic to C_{p}, by Lemma 7.3(ii) we may view W_{i} and W_{j} as modules over the same quasisimple group H, with the same kernel. The irreducibility of G on V further implies that $W_{j} \cong W_{i}^{g}$ for some $g \in G$, whence the H-modules W_{i} and W_{j} are $\operatorname{Aut}(H)$-conjugate. Now we are done by applying Lemma 10.2.

Corollary 10.6. Suppose that $p=2^{f}+1$ is a Fermat prime. Then there is a finite absolutely irreducible linear group $G<\mathrm{GL}(V)=\mathrm{GL}_{p-2}(k)$ of degree $p-2$ over k such that $G=G^{+} \cong \mathrm{SL}_{2}\left(2^{f}\right)$ and $\operatorname{dim} \operatorname{Ext}_{G}^{1}(V, V)=1$. In particular, (G, V) is not adequate.
Proof. See the proof of Proposition 10.5 and the exception (ii) listed therein.
Proof of Theorem 1.3. (a) Assume first that G is not p-solvable. Then G^{+}has no composition factor isomorphic to C_{p}, and $H^{1}(G, k)=0$ by Theorem 2.4. By Lemma 7.2, we need to verify that $\operatorname{Ext}_{G^{+}}^{1}\left(W_{i}, W_{j}\right)=0$ for any two simple G^{+}submodules W_{i} and W_{j} of V, of dimension $1<d<p$. Suppose for instance that $\operatorname{Ext}_{G^{+}}^{1}\left(W_{1}, W_{2}\right) \neq 0$.

Suppose in addition that $p>3$. Then the perfect group G^{+}admits a reducible indecomposable module U with two composition factors W_{1} and W_{2}, of dimension $2 d$, say with kernel K. Since G^{+}has no composition factor isomorphic to C_{p}, $\boldsymbol{O}_{p}(X)=1$ for the group $X:=G^{+} / K$ induced by the action of G^{+}on U. Suppose that X is not quasisimple. By Proposition 9.7, we have $d=p-1$. Then by Lemma 9.6, either we arrive at the exception (b)(ii) listed in Theorem 1.3, or else Lemma 9.3 applies. In the latter case, we see that $H^{1}(X, k) \neq 0$, whence X and G^{+}admit C_{p} as a composition factor, a contradiction. Thus X is quasisimple and $\boldsymbol{Z}(X)$ is a p^{\prime}-group. If X is of Lie type in characteristic $p>3$, then we must have $d=(p \pm 1) / 2$ and arrive (using Lemma 9.5) at the exception (b)(i). Otherwise
we are in the case (i) of Theorem 2.4, and so by Proposition 10.5 we arrive at the exceptions (b)(iii)-(v).
(b) Now we consider the case where $p=3$ and G is not p-solvable. Then the perfect group G^{+}acts nontrivially on W_{1} and W_{2}, which are of dimension 2. Applying Theorem 2.4, we see that $G^{+}=L_{1} * \cdots * L_{n}$ is a central product of quasisimple groups; moreover, for all j we have that $L_{j}=\mathrm{SL}_{2}(q)$ with $q=3^{a}>3$ or $q=5$. Also, for each i, there is a unique k_{i} such that L_{j} acts nontrivially on W_{i} precisely when $j=k_{i}$. Since $\operatorname{Ext}_{X}^{1}(k, k)=0$ for any perfect group X, by Lemma 7.7 we may assume that $k_{1}=k_{2}=1$ and $\operatorname{Ext}_{L_{1}}^{1}\left(W_{1}, W_{2}\right) \neq 0$. If $q=5$, then the case (b)(iii) holds. Otherwise we arrive at (b)(vi) -indeed, $\operatorname{Ext}_{L_{1}}^{1}\left(L\left(3^{a-2}\right), L\left(3^{a-1}\right)\right) \neq 0$ by [Andersen et al. 1983, Corollary 4.5].
(c) We may now assume that G^{+}is p-solvable (and so is G). In particular, the subgroup $H<\mathrm{GL}\left(W_{i}\right)$ induced by the action of G^{+}on W_{i} is p-solvable, whence p is a Fermat prime, and $H=\boldsymbol{O}_{p^{\prime}}(H) P$ with $P \cong C_{p}$. Since G^{+}projects onto H, G^{+}also has C_{p} as a composition factor, and so $H^{1}\left(G^{+}, k\right) \neq 0$; in particular, $\operatorname{Ext}_{G^{+}}^{1}(V, V) \neq 0$. We arrive at the exception (a) of Theorem 1.3.

Proof of Corollary 1.4. Suppose that (G, V) is not adequate, and let $\bar{V}:=V \otimes_{k} \bar{k}$. By the assumptions, $\operatorname{dim} W<p$. Since $\operatorname{dim} \bar{V} / \operatorname{dim} W$ divides $\left|G / G^{+}\right|$by [Navarro 1998, Theorem 8.30], $p \nmid \operatorname{dim}_{\bar{k}} \bar{V}=\operatorname{dim}_{k} V$. Next, (G, V) is weakly adequate by Theorem 1.2. It follows that $\operatorname{Ext}_{G}^{1}(V, V) \neq 0$ and so $\operatorname{Ext}_{G}^{1}(\bar{V}, \bar{V}) \neq 0$. Now we can apply Theorem 1.3.

References

[Alperin 1986] J. L. Alperin, Local representation theory, Cambridge Studies in Advanced Mathematics 11, Cambridge University Press, 1986. MR 87i:20002 Zbl 0593.20003
[Andersen et al. 1983] H. H. Andersen, J. Jørgensen, and P. Landrock, "The projective indecomposable modules of SL(2, p^{n})", Proc. London Math. Soc. (3) 46:1 (1983), 38-52. MR 84f:20044 Zbl 0503.20013
[Barnet-Lamb et al. 2013] T. Barnet-Lamb, T. Gee, and D. Geraghty, "Serre weights for rank two unitary groups", Math. Ann. 356:4 (2013), 1551-1598. MR 3072811 Zbl 06194417
[Barnet-Lamb et al. 2014] T. Barnet-Lamb, T. Gee, D. Geraghty, and R. Taylor, "Potential automorphy and change of weight", Ann. of Math. (2) 179:2 (2014), 501-609. MR 3152941 Zbl 06284344
[Benson 1998] D. J. Benson, Representations and cohomology, I: Basic representation theory of finite groups and associative algebras, 2nd ed., Cambridge Studies in Advanced Mathematics 30, Cambridge University Press, 1998. MR 99f:20001a Zbl 0908.20001
[Blau and Zhang 1993] H. I. Blau and J. P. Zhang, "Linear groups of small degree over fields of finite characteristic", J. Algebra 159:2 (1993), 358-386. MR 94i:20082 Zbl 0857.20029
[Breuer et al.] T. Breuer et al., "Decomposition matrices", database, http://www.math.rwth-aachen.de/ homes/MOC/decomposition/.
[Breuil et al. 2001] C. Breuil, B. Conrad, F. Diamond, and R. Taylor, "On the modularity of elliptic curves over \mathbb{Q} : wild 3-adic exercises", J. Amer. Math. Soc. 14:4 (2001), 843-939. MR 2002d:11058 Zbl 0982.11033
[Burkhardt 1976] R. Burkhardt, "Die Zerlegungsmatrizen der Gruppen PSL(2, p ${ }^{f}$)", J. Algebra 40:1 (1976), 75-96. MR 58 \#864 Zbl 0334.20008
[Calegari 2012] F. Calegari, "Even Galois representations and the Fontaine-Mazur conjecture, II", J. Amer. Math. Soc. 25:2 (2012), 533-554. MR 2869026 Zbl 1282.11051
[Clozel et al. 2008] L. Clozel, M. Harris, and R. Taylor, "Automorphy for some l-adic lifts of automorphic mod l Galois representations", Publ. Math. Inst. Hautes Études Sci. 108 (2008), 1-181. MR 2010j:11082 Zbl 1169.11020
[Conway et al. 1985] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups, Oxford University Press, Eynsham, 1985. MR 88g:20025 Zbl 0568.20001
[Dieulefait 2014] L. Dieulefait, "Automorphy of Symm 5 (GL(2)) and base change", preprint, 2014. To appear in J. Math. Pures Appl. arXiv 1208.3946
[Dieulefait and Gee 2012] L. Dieulefait and T. Gee, "Automorphy lifting for small l ", Appendix B to [Dieulefait 2014], 2012. arXiv 1209.5105
[Digne and Michel 1991] F. Digne and J. Michel, Representations of finite groups of Lie type, London Mathematical Society Student Texts 21, Cambridge University Press, 1991. MR 92g:20063 Zbl 0815.20014
[Doty and Henke 2005] S. Doty and A. Henke, "Decomposition of tensor products of modular irreducibles for $\mathrm{SL}_{2} "$, Q. J. Math. 56:2 (2005), 189-207. MR 2005m:20107 Zbl 1108.20043
[GAP 2004] GAP - Groups, Algorithms, and Programming, Version 4.4, The GAP Group, 2004, http://www.gap-system.org.
[Geck 1990] M. Geck, "Irreducible Brauer characters of the 3-dimensional special unitary groups in nondefining characteristic", Comm. Algebra 18:2 (1990), 563-584. MR 91b:20016 Zbl 0696.20011
[Guralnick 1999] R. M. Guralnick, "Small representations are completely reducible", J. Algebra 220:2 (1999), 531-541. MR 2000m:20018 Zbl 0941.20001
[Guralnick 2012a] R. Guralnick, "Adequacy of representations of finite groups of Lie type", Appendix A to [Dieulefait 2014], 2012. arXiv 1208.4128
[Guralnick 2012b] R. Guralnick, "Adequate subgroups, II", Bull. Math. Sci. 2:1 (2012), 193-203. MR 2942677 Zbl 06073629
[Guralnick and Tiep 1999] R. M. Guralnick and P. H. Tiep, "Low-dimensional representations of special linear groups in cross characteristics", Proc. London Math. Soc. (3) 78:1 (1999), 116-138. MR 2000a:20016 Zbl 0974.20014
[Guralnick and Tiep 2005] R. M. Guralnick and P. H. Tiep, "The non-coprime $k(G V)$ problem", J. Algebra 293:1 (2005), 185-242. MR 2006g:20018 Zbl 1083.20006
[Guralnick et al. 2002] R. M. Guralnick, K. Magaard, J. Saxl, and P. H. Tiep, "Cross characteristic representations of symplectic and unitary groups", J. Algebra 257:2 (2002), 291-347. MR 2004b:20022 Zbl 1025.20002
[Guralnick et al. 2007] R. Guralnick, W. M. Kantor, M. Kassabov, and A. Lubotzky, "Presentations of finite simple groups: profinite and cohomological approaches", Groups Geom. Dyn. 1:4 (2007), 469-523. MR 2008j:20089 Zbl 1135.20024
[Guralnick et al. 2012] R. Guralnick, F. Herzig, R. Taylor, and J. Thorne, "Adequate subgroups", Appendix to [Thorne 2012], 2012.
[Guralnick et al. 2014] R. Guralnick, F. Herzig, and P. H. Tiep, "Adequate subgroups and indecomposable modules", preprint, 2014. To appear in J. Europ. Math. Soc. arXiv 1405.0043
[Holt 1980] D. F. Holt, "Exact sequences in cohomology and an application", J. Pure Appl. Algebra 18:2 (1980), 143-147. MR 82h:20063 Zbl 0439.18016
[James 1986] G. James, "The irreducible representations of the finite general linear groups", Proc. London Math. Soc. (3) 52:2 (1986), 236-268. MR 87h:20028 Zbl 0587.20022
[Jansen et al. 1995] C. Jansen, K. Lux, R. Parker, and R. Wilson, An atlas of Brauer characters, London Mathematical Society Monographs. New Series 11, Oxford University Press, New York, 1995. MR 96k:20016 Zbl 0831.20001
[Jantzen 1997] J. C. Jantzen, "Low-dimensional representations of reductive groups are semisimple", pp. 255-266 in Algebraic groups and Lie groups, edited by G. Lehrer et al., Austral. Math. Soc. Lect. Ser. 9, Cambridge University Press, 1997. MR 99g:20079 Zbl 0877.20029
[Jantzen 2003] J. C. Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs 107, American Mathematical Society, Providence, RI, 2003. MR 2004h:20061 Zbl 1034.20041
[Janusz 1969] G. J. Janusz, "Indecomposable modules for finite groups", Ann. of Math. 89 (1969), 209-241. MR 39 \#5622 Zbl 0197.02302
[Khare and Wintenberger 2009] C. Khare and J.-P. Wintenberger, "Serre's modularity conjecture, I", Invent. Math. 178:3 (2009), 485-504. MR 2010k:11087 Zbl 05636295
[Kleidman and Liebeck 1990] P. Kleidman and M. Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series 129, Cambridge University Press, 1990. MR 91g:20001 Zbl 0697.20004
[Kleshchev and Tiep 2009] A. S. Kleshchev and P. H. Tiep, "Representations of finite special linear groups in non-defining characteristic", Adv. Math. 220:2 (2009), 478-504. MR 2009j:20022 Zbl 1165.20009
[Kleshchev and Tiep 2010] A. S. Kleshchev and P. H. Tiep, "Representations of the general linear groups which are irreducible over subgroups", Amer. J. Math. 132 (2010), 425-473. MR 2011k:20091 Zbl 1211.20017
[McNinch 1999] G. J. McNinch, "Semisimple modules for finite groups of Lie type", J. London Math. Soc. 60:3 (1999), 771-792. MR 2001k:20096 Zbl 0961.20014
[Navarro 1998] G. Navarro, Characters and blocks of finite groups, London Mathematical Society Lecture Note Series 250, Cambridge University Press, 1998. MR 2000a:20018 Zbl 0903.20004
[Navarro and Tiep 2010] G. Navarro and P. H. Tiep, "Degrees of rational characters of finite groups", Adv. Math. 224:3 (2010), 1121-1142. MR 2011h:20015 Zbl 1200.20006
[Serre 1994] J.-P. Serre, "Sur la semi-simplicité des produits tensoriels de représentations de groupes", Invent. Math. 116:1-3 (1994), 513-530. MR 94m:20091 Zbl 0816.20014
[Thorne 2012] J. Thorne, "On the automorphy of l-adic Galois representations with small residual image", J. Inst. Math. Jussieu 11:4 (2012), 855-920. MR 2979825 Zbl 1269.11054
[Thorne 2015] J. Thorne, "A 2-adic automorphy lifting theorem for unitary groups over CM fields", preprint, 2015, http://math.harvard.edu/~thorne/p_equals_2.pdf.
[Tiep and Zalesskii 1996] P. H. Tiep and A. E. Zalesskii, "Minimal characters of the finite classical groups", Comm. Algebra 24:6 (1996), 2093-2167. MR 97f:20018 Zbl 0901.20031
[Tiep and Zalesskii 1997] P. H. Tiep and A. E. Zalesskii, "Some characterizations of the Weil representations of the symplectic and unitary groups", J. Algebra 192:1 (1997), 130-165. MR 99d:20074 Zbl 0877.20030
[Wilson et al.] R. A. Wilson, P. Walsh, J. Tripp, I. Suleiman, R. A. Parker, S. P. Norton, S. Nickerson, S. Linton, J. Bray, and R. Abbott, "ATLAS of finite group representations", online database, http:// brauer.maths.qmul.ac.uk/Atlas/v3.

Communicated by Barry Mazur
Received 2014-04-13 Accepted 2014-12-14
guralnic@usc.edu Department of Mathematics, University of Southern California, 3620 South Vermont Ave, Los Angeles, CA 90089-2532, United States
herzig@math.toronto.edu Department of Mathematics, University of Toronto, 40 Saint George Street, Room 6290, Toronto, ON M5S 2E4, Canada
tiep@math.arizona.edu Department of Mathematics, University of Arizona, 617 North Santa Rita Avenue, Tucson, AZ 85721-0089, United States

Algebra \& Number Theory

msp.org/ant

EDITORS

MANAGING Editor
Bjorn Poonen
Massachusetts Institute of Technology
Cambridge, USA

Editorial Board Chair
David Eisenbud
University of California
Berkeley, USA

Board of Editors

Georgia Benkart	University of Wisconsin, Madison, USA	Shigefumi Mori	RIMS, Kyoto University, Japan
Dave Benson	University of Aberdeen, Scotland	Raman Parimala	Emory University, USA
Richard E. Borcherds	University of California, Berkeley, USA	Jonathan Pila	University of Oxford, UK
John H. Coates	University of Cambridge, UK	Anand Pillay	University of Notre Dame, USA
J-L. Colliot-Thélène	CNRS, Université Paris-Sud, France	Victor Reiner	University of Minnesota, USA
Brian D. Conrad	University of Michigan, USA	Peter Sarnak	Princeton University, USA
Hélène Esnault	Freie Universität Berlin, Germany	Joseph H. Silverman	Brown University, USA
Hubert Flenner	Ruhr-Universität, Germany	Michael Singer	North Carolina State University, USA
Edward Frenkel	University of California, Berkeley, USA	Vasudevan Srinivas	Tata Inst. of Fund. Research, India
Andrew Granville	Université de Montréal, Canada	J. Toby Stafford	University of Michigan, USA
Joseph Gubeladze	San Francisco State University, USA	Richard Taylor	Harvard University, USA
Roger Heath-Brown	Oxford University, UK	Ravi Vakil	Stanford University, USA
Craig Huneke	University of Virginia, USA	Michel van den Bergh	Hasselt University, Belgium
János Kollár	Princeton University, USA	Marie-France Vignéras	Université Paris VII, France
Yuri Manin	Northwestern University, USA	Kei-Ichi Watanabe	Nihon University, Japan
Barry Mazur	Harvard University, USA	Efim Zelmanov	University of California, San Diego, USA
Philippe Michel	École Polytechnique Fédérale de Lausanne	Shou-Wu Zhang	Princeton University, USA
Susan Montgomery	University of Southern California, USA		

PRODUCTION

production@msp.org
Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.
The subscription price for 2015 is US $\$ 255 /$ year for the electronic version, and $\$ 440 /$ year ($+\$ 55$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscribers address should be sent to MSP.
Algebra \& Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLow ${ }^{\circledR}$ from MSP.

PUBLISHED BY

- mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/
© 2015 Mathematical Sciences Publishers

Algebra \& Number Theory

Volume 9 No. 12015
On Previdi's delooping conjecture for K-theory 1
Sho Saito
Surpassing the ratios conjecture in the 1-level density of Dirichlet L-functions 13
Daniel Fiorilli and Steven J. Miller
Eisenstein Hecke algebras and conjectures in Iwasawa theory 53
Preston Wake
Adequate groups of low degree 77
Robert Guralnick, Florian Herzig and Pham Huu Tiep
Random matrices, the Cohen-Lenstra heuristics, and roots of unity 149
Derek Garton
Local Beilinson-Tate operators 173
Amnon Yekutieli
Categories of abelian varieties over finite fields, I: Abelian varieties over \mathbb{F}_{p} 225
Tommaso Giorgio Centeleghe and Jakob Stix

[^0]: Guralnick was partially supported by NSF DMS-1001962, DMS-1302886, and the Simons Foundation Fellowship 224965. He also thanks the Institute for Advanced Study for its support. Herzig was partially supported by a Sloan Fellowship and an NSERC grant. Tiep was partially supported by NSF DMS-1201374 and the Simons Foundation Fellowship 305247. We thank the referee for careful reading of the paper, and Frank Lübeck and Klaus Lux for help with several computations.
 MSC2010: primary 20C20; secondary 11F80.
 Keywords: Artin-Wedderburn theorem, irreducible representations, automorphic representations, Galois representations, adequate representations.

