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We prove several lifting theorems for morphisms of tropical curves. We interpret
the obstruction to lifting a finite harmonic morphism of augmented metric graphs
to a morphism of algebraic curves as the nonvanishing of certain Hurwitz numbers,
and we give various conditions under which this obstruction does vanish. In
particular, we show that any finite harmonic morphism of (nonaugmented) metric
graphs lifts. We also give various applications of these results. For example, we
show that linear equivalence of divisors on a tropical curve C coincides with
the equivalence relation generated by declaring that the fibers of every finite
harmonic morphism from C to the tropical projective line are equivalent. We
study liftability of metrized complexes equipped with a finite group action, and
use this to classify all augmented metric graphs arising as the tropicalization of a
hyperelliptic curve. We prove that there exists a d-gonal tropical curve that does
not lift to a d-gonal algebraic curve.

This article is the second in a series of two.

Throughout this paper, unless explicitly stated otherwise, K denotes a complete
algebraically closed nonarchimedean field with nontrivial valuation val : K →
R∪ {∞}. Its valuation ring is denoted R, its maximal ideal is mR , and the residue
field is k = R/mR . We denote the value group of K by 3= val(K×)⊂ R.

1. Introduction

This article is the second in a series of two. The first, entitled Lifting harmonic
morphisms I: metrized complexes and Berkovich skeleta, will be cited as [ABBR1];
references of the form “Theorem I.1.1” will refer to Theorem 1.1 in [ABBR1].

We are grateful to Andrew Obus for a number of useful comments based on a careful reading of the
first arXiv version of this manuscript. We thank Ye Luo for allowing us to include Example 5.13.
M.B. was partially supported by NSF grant DMS-1201473. E.B. was partially supported by the
ANR-09-BLAN-0039-01.
MSC2010: primary 14G22; secondary 14T05, 11G20.
Keywords: tropical lifting, skeleton, Berkovich space, analytic curve, harmonic morphism, Hurwitz

number, metrized complex.

267

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2015.9-2
http://dx.doi.org/10.2140/ant.2015.9.267


268 Omid Amini, Matthew Baker, Erwan Brugallé and Joseph Rabinoff

1.1. The basic motivation behind the investigations in this paper is to understand
the relationship between tropical and algebraic curves. A fundamental problem
along these lines is to understand which morphisms between tropical curves arise
as tropicalizations1 of morphisms of algebraic curves. More precisely, we are
interested in the following question:

(Q) Given a curve X with tropicalization C , can we classify the branched covers
of X in terms of (a suitable notion of) branched covers of C?

In addition to this lifting problem for morphisms of tropical curves, we also study
questions such as “Which tropical curves arise as tropicalizations of hyperelliptic
curves?”. This naturally leads us to study group actions on tropical curves and how
notions such as gonality change under tropicalization.

In this paper we will consider three different kinds of “tropical” objects which one
can associate to a smooth, proper, connected algebraic curve X/K , each depending
on the choice of a triangulation of X . Roughly speaking, a triangulation (X, V ∪D)
of X (with respect to a finite set of punctures D ⊂ X (K )) is a finite set V of points
in the Berkovich analytification X an of X whose removal partitions X an into open
balls and finitely many open annuli (with the punctures belonging to distinct open
balls). Triangulations of (X, D) are naturally in one-to-one correspondence with
semistable models X of (X, D); see Section I.5. The skeleton of a triangulated
curve is the dual graph of the special fiber Xk of the corresponding semistable
model, with infinite rays for the punctures, equipped with its canonical metric.

To any triangulated curve, one may associate the three following “tropical”
objects, at each step adding some additional structure:

(1) a metric graph 0: this is the skeleton of the triangulated curve (X, V ∪ D);

(2) an augmented metric graph (0, g), i.e., a metric graph 0 enhanced with a
genus function g : 0→ Z≥0 which is nonzero only at finitely many points:
this is the above metric graph together with the function g satisfying g(p)= 0
for p 6∈ V and g(p)= genus(C p) for p ∈ V , where C p is the (normalization
of the) irreducible component of Xk corresponding to p;

(3) a metrized complex of curves C, i.e., an augmented metric graph 0 equipped
with a vertex set V and a punctured algebraic curve over k of genus g(p) for
each point p ∈ V , with the punctures in bijection with the tangent directions

1In the present paper tropicalization is defined via Berkovich’s theory of analytic spaces (see
also [Payne 2009; Baker et al. 2012; Chambert-Loir and Ducros 2012]). Another framework for
tropicalization has been proposed by Kontsevich and Soibelman [2001] and Mikhalkin (see for
example [Mikhalkin 2006]), where the link between tropical geometry and complex algebraic geometry
is provided by real one-parameter families of complex varieties. For some conjectural relations
between the two approaches see [Kontsevich and Soibelman 2001; 2006].
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to p in 0: this is the above metric graph, together with the curves C p for p ∈ V
and punctures given by the singular points of Xk .

An (augmented) metric graph or metrized complex of curves arising from a
triangulated curve by the above procedure is said to be liftable. If (X, V ∪ D) and
(X, V ′∪D′) are triangulations of the same curve X , with D′⊂ D and V ′⊂ V , then
the corresponding metric graphs are related by a so-called tropical modification.
Tropical modifications generate an equivalence relation on the set of (augmented)
metric graphs, and an equivalence class for this relation is called an (augmented)
tropical curve. The (augmented) tropicalization of a K -curve X is by definition the
(augmented) tropical curve C corresponding to any triangulation of X . Tropical
curves and augmented tropical curves can be thought of as “purely combinatorial”
objects, whereas metrized complexes are a mixture of combinatorial objects (which
one thinks of as living over the value group 3 of K ) and algebrogeometric objects
over the residue field k of K .

There is a natural notion of finite harmonic morphism between metric graphs
which induces a natural notion of tropical morphism between tropical curves. There
is a corresponding notion of tropical morphism for augmented tropical curves,
where in addition to the harmonicity condition one imposes a “Riemann–Hurwitz
condition” that the ramification divisor is effective. There is also a natural notion of
finite harmonic morphism for metrized complexes of curves. Each kind of object
(metric graphs, tropical curves, augmented tropical curves, metrized complexes)
forms a category with respect to the corresponding notion of morphism. The
construction of an (augmented) tropical curve C (resp. metrized complex C) out of
a K -curve X (resp. triangulated K -curve (X, V ∪D)) is functorial, in the sense that
a finite morphism of curves induces in a natural way a tropical morphism C ′→ C
(resp. a finite harmonic morphism C′→ C).

1.2. Our original question (Q) now breaks up into two separate questions:

(Q1) Which finite harmonic morphisms C′ → C of metrized complexes can be
lifted to finite morphisms of triangulated curves (with a prespecified lift X
of C)?

(Q2) Which tropical morphisms between augmented tropical curves can be lifted
to finite harmonic morphisms of metrized complexes?

One can also forget the augmentation function g :0→Z≥0 and ask the following
variant of (Q2):

(Q2′) Which tropical morphisms between tropical curves can be lifted to finite
harmonic morphisms of metrized complexes?

A consequence of the results of [ABBR1] is that the answer to question (Q1) is
essentially “all”, so the situation here is rather satisfactory; there is no obstruction to
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lifting a finite harmonic morphism C′ → C to a branched cover of X , at least
assuming everywhere tame ramification when k has characteristic p > 0. In
particular, if char(k) = 0 then there are no tameness issues, and we have the
following result:

Theorem. Assume char(k) = 0 and let ϕ : 6′ → 6 be a finite harmonic mor-
phism of 3-metrized complexes of k-curves. Then there exists a finite morphism of
triangulated punctured curves lifting ϕ.

This follows immediately from Proposition I.7.15 and Theorem I.3.24. We stress
that the genus and degree are automatically preserved by such lifts.

Essentially by definition, (Q2) reduces to an existence problem for ramified cov-
erings ϕp′ : C ′p′→ C p of a given degree with some prescribed ramification profiles.
Hence the answer to (Q2) is intimately linked with the question of nonvanishing
of Hurwitz numbers. See Proposition 3.3. In particular, one can easily construct
tropical morphisms between augmented tropical curves which cannot be promoted
to a finite harmonic morphism of metrized complexes (and hence cannot be lifted
to a finite morphism of smooth proper curves over K ). The simplest example of
such a tropical morphism is depicted in Figure 1, and corresponds to the classical
fact that, although it would not violate the Riemann–Hurwitz formula, there is no
degree-four map of smooth proper connected curves over C having ramification
profile {(2, 2), (2, 2), (3, 1)}; this is a consequence of the (easy part of the) Riemann
existence theorem (see Example 3.4 below for more details).

Understanding when Hurwitz numbers vanish remains mysterious in general,
so at present there is no satisfying “combinatorial” answer to question (Q2), in
which we require that the genus of the objects in question be preserved by our lifts.

2
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1
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p

Figure 1. A tropical morphism of degree four which cannot be
promoted to a degree-four morphism of metrized complexes of
curves. The labels on the edges are the “expansion factors” of the
harmonic morphism. See Definition I.2.4.
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However, if we drop the latter condition, i.e., if we consider instead question (Q2′),
we will see that the answer to (Q2′) is also “all” (see Theorem 3.11):

Theorem. Any finite harmonic morphism ϕ : 0′→ 0 of 3-metric graphs is liftable
if char(k)= 0.

1.3. Applications. We prove a number of additional results which supplement and
provide applications of the above results. Some of these results are as follows.

1.3.1. Tame group actions. Let C be a metrized complex and let H be a finite
subgroup of Aut(C). We say the action of H on C is tame if for any vertex p
of 0, the stabilizer group Hp acts freely on a dense open subset of C p, and for
any point x of C p, the stabilizer subgroup Hx of H is cyclic of the form Z/dZ for
some integer d, with (d, p) = 1 if char(k) = p > 0 (see Remark 4.6 for further
explanation of this condition). It follows from Theorem I.7.4 (in its strong form, i.e.,
using the calculation of the automorphism group of a lift) that we can lift C together
with a tame action of H if and only if the quotient C/H exists in the category of
metrized complexes. We characterize when such a quotient exists in Theorem 4.9,
of which the following result is a special case:

Theorem. Suppose that the action of H is tame and has no isolated fixed points
on the underlying metric graph of C. Then there exists a smooth, proper, and
geometrically connected algebraic K -curve X lifting C which is equipped with an
action of H commuting with the tropicalization map.

In the presence of isolated fixed points, there are additional hypotheses on the
action of H to be liftable to a K -curve. As a concrete example, we prove the follow-
ing characterization of all augmented tropical curves arising as the tropicalization
of a hyperelliptic K -curve (see Corollary 4.15):

Theorem. Let 0 be an augmented metric graph of genus g ≥ 2 having no infinite
vertices or degree one vertices of genus zero. Then there is a smooth proper
hyperelliptic curve X over K of genus g having 0 as its minimal skeleton if and
only if (a) there exists an involution s on 0 such that s fixes all the points p ∈ 0
with g(p) > 0 and the quotient 0/s is a metric tree, and (b) for every p ∈ 0 the
number of bridge edges adjacent to p is at most 2g(p)+ 2.

1.3.2. Gonality of tropical curves. The tropical projective line is the augmented
tropical curve TP1 represented by any tree with genus function identically zero.
See Example 2.15. An augmented tropical curve C is called d-gonal if there exists
a tropical morphism of degree d from C to TP1. By Corollary I.4.28, the gonality
of an augmented tropical curve is always a lower bound for the gonality of any
lift to a smooth proper curve over K . (See Remark 5.3 for a discussion of the
various notions of gonality of tropical curves existing in the literature.) We prove
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in Section 5 that none of the lower bounds provided by tropical ranks and gonality
are sharp. For example:

Theorem. (1) There exists an augmented tropical curve C of gonality 4 such that
the gonality of any lifting of C is at least 5.

(2) There exists an effective divisor D on a tropical curve C such that D has
tropical rank equal to one, but any effective lifting of D has rank 0.

The construction in (1) uses the vanishing of the degree-four Hurwitz number
H 4

0,0((2, 2), (2, 2), (3, 1)). In fact, we prove in Theorem 5.4 a much stronger
statement: we exhibit an augmented (nonmetric) graph G such that none of the
augmented tropical curves with G as underlying augmented graph can be lifted to
a 4-gonal K -curve. This means that there is a finite graph with stable gonality 4 (in
the sense of [Cornelissen et al. 2014]) which is not the (augmented) dual graph of
any 4-gonal curve X/K .

The proof of (2) is based on our lifting results and an explicit example, due to
Luo (see Example 5.13), of a degree three and rank one base-point free divisor
D on a tropical curve C which does not appear as the fiber of any degree-three
tropical morphism from C to TP1.

1.3.3. Linear equivalence of divisors. When the target curve has genus zero, we
investigate in (3.16) a variant of question (Q2′) in which the genus of the source curve
may be prescribed, at the cost of losing control over the degree of the morphism.
As an application, we show in Theorem 4.3 that linear equivalence of divisors on a
tropical curve C coincides with the equivalence relation generated by declaring that
the fibers of every tropical morphism from C to the tropical projective line TP1

are equivalent:

Theorem. Let 0 be a metric graph. Linear equivalence of divisors on 0 is the
additive equivalence relation generated by (the retraction to 0 of ) fibers of fi-
nite harmonic morphisms from a tropical modification of 0 to a metric graph of
genus zero.

1.4. Organization of the paper. The paper is organized as follows. Precise defi-
nitions of tropical modifications and tropical curves are given in Section 2, along
with various kinds of morphisms between these objects. In that section we also
use results from [ABBR1] to define tropicalizations of morphisms of curves, and
provide a number of examples. Lifting results for (augmented) metric graphs and
tropical curves are proved in Section 3. Section 4 contains applications of our lifting
results. For example, lifting results for metrized complexes equipped with a finite
group action are discussed in (4.5). In (4.5) we also give a complete classification
of all hyperelliptic augmented tropical curves which can be realized as the minimal
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skeleton of a hyperelliptic curve. Finally, in Section 5 we study tropical rank and
gonality and related lifting questions.

1.5. Related work. The definition of effective harmonic morphisms of augmented
metric graphs that we use is the same as in [Bertrand et al. 2011]. The closely
related, but slightly different, notion of an “indexed harmonic morphism” between
weighted graphs was considered in [Caporaso 2014]. The indexed pseudohar-
monic (resp. harmonic) morphisms in [ibid.] are closely related to harmonic (resp.
effective harmonic) morphisms in our sense when the vertex sets are fixed (see
Definition I.2.4), and nondegenerate morphisms in the sense of [ibid.] correspond
to finite morphisms in our sense. One notable difference is that in [ibid.] only the
combinatorial type of the metric graphs are fixed; the choice of positive indices in
an indexed pseudoharmonic morphism determines the length of the edges in the
source graph once the edge lengths in the target are fixed.

Tropical modifications and the “up-to-tropical-modification” point of view were
introduced by Mikhalkin [2006].

In (5.1) we propose a definition for the stable gonality of a graph which coincides
with the one used in the preprint [Cornelissen et al. 2014]. A slightly different
notion of gonality for graphs was introduced in [Caporaso 2014]. We also define
the gonality of an augmented tropical curve, which strikes us as a more natural and
perhaps more useful notion than the stable gonality of a graph (where the lengths of
the edges in the source and target metric graphs are not prespecified). We emphasize
the importance of considering the dual graph of the special fiber of a semistable
model of a smooth proper K -curve as an (augmented) metric graph and not just as
a (vertex-weighted) graph. Keeping track of the natural edge lengths allows us to
avoid pathological examples like Example 2.18 in [ibid.] of a 3-gonal graph which
is not divisorally 3-gonal.

The question of lifting effective harmonic morphisms of metric graphs also occurs
naturally (in a related but different archimedean framework) when one considers
degenerating families of complex algebraic dynamical systems; see for example
[DeMarco and McMullen 2008, Theorems 1.2 and 7.1], where the authors prove
a lifting theorem for polynomial-like endomorphisms of (locally finite) simplicial
trees which has applications to studying dynamical compactifications of the moduli
space of degree-d polynomial maps. Our Theorem 3.15 was inspired by the results
of DeMarco and McMullen.

2. Algebraic and tropical curves

In this section we introduce tropical curves and morphisms between them. We use
the results of [ABBR1] to define functorial “intrinsic tropicalizations” of algebraic
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curves. We will freely use the definitions and notations in Section I.2. We reproduce
some of them here for the convenience of the reader.

2.1. Metric graphs. A 3-metric graph is a metric graph whose edge lengths be-
long to3. The length of an embedded segment e in a metric graph 0 is denoted `(e).
The set of tangent directions at a point p of 0 is denoted Tp(0). To a harmonic
morphism ϕ : 0′→ 0 of metric graphs are associated its degree degϕ, its degree
at a point dp′(ϕ), the degree of ϕ along an edge (also called the expansion factor)
de′(ϕ), the directional derivative of ϕ along a tangent direction at a vertex dv′(ϕ),
and the induced map on tangent spaces dϕ(p′) when dp′(ϕ) 6= 0.

The group of divisors on a metric graph 0 is denoted Div(0). A harmonic
morphism of metric graphs ϕ : 0′ → 0 gives rise to pushforward and pullback
homomorphisms ϕ∗ : Div(0′)→ Div(0) and ϕ∗ : Div(0)→ Div(0′) defined by

ϕ∗(p)=
∑

p′ 7→p

dp′(ϕ) (p′) and ϕ∗(p′)= (ϕ(p′))

and extended linearly. It is clear that for D ∈ Div(0) we have deg(ϕ∗(D)) =
degϕ · deg D and deg(ϕ∗(D))= deg D.

2.2. Augmented metric graphs. An augmented metric graph 0 has a genus func-
tion g : 0→ Z≥0. We say that 0 is totally degenerate provided that g is identically
zero. The genus of 0 is

g(0)= h1(0)+
∑
p∈0

g(p),

where h1(0) is the first Betti number of 0. If g(0) = 0 then we say that 0 is
rational. The canonical divisor of an augmented metric graph 0 is

K0 =

∑
p∈0

(val(p)+ 2g(p)− 2) (p).

The degree of K0 is deg K0 = 2g(0)− 2.
Let ϕ : 0′ → 0 be a harmonic morphism of augmented metric graphs. The

ramification divisor of ϕ is the divisor R =
∑

Rp′(p′), where for p′ ∈ 0′,

Rp′ = dp′(ϕ) · (2− 2g(ϕ(p′)))− (2− 2g(p′))−
∑

v′∈Tp′ (0
′)

(dv′(ϕ)− 1).

We have the Riemann–Hurwitz formula

K0′ = ϕ
∗(K0)+ R.

We say that ϕ is generically étale if R is supported on the set of infinite vertices
of 0 and is étale if R = 0.
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2.3. Effective harmonic morphisms. The following Riemann–Hurwitz condition
will be used in formulating lifting problems for harmonic morphisms of augmented
metric graphs. Given a vertex p′∈V (0′)with dp′(ϕ) 6=0, we define the ramification
degree of ϕ at p′ to be

rp′ = Rp′ − #{v′ ∈ Tp′(0
′) : dv′(ϕ)= 0}.

Clearly rp′ ≤ Rp′ , with rp′ = Rp′ if and only if dv′(ϕ) > 0 for any v′ ∈ Tp′(0
′),

i.e., the distinction between ramification divisors and ramification degrees only
makes sense for nonfinite harmonic morphisms. Our motivation not to restrict
ourselves to finite harmonic morphisms is that nonfinite harmonic morphisms show
up naturally in many practical situations.

Definition 2.4. A harmonic morphism of augmented 3-metric graphs ϕ : 0′→ 0

is said to be effective if rp′ ≥ 0 for every finite vertex p′ of 0′ with dp′(ϕ) 6= 0.

The significance of the number rp′ is given in Remark 2.7. In particular, only
effective harmonic morphisms of augmented metric graphs have a chance to be
liftable to a harmonic morphism of metrized complexes of curves, and possibly to
a morphism of triangulated punctured K -curves. See Remark 2.10.

Note that a generically étale morphism of augmented metric graphs is effective.

Example 2.5. Consider the harmonic morphisms of graphs ϕ : 0′→ 0 represented
in Figure 2. We use the following conventions in our pictures: black dots represent
vertices of 0′ and 0; we label an edge with its degree if and only if the degree is
different from 0 and 1; we do not specify the lengths of edges of 0′ and 0.

The morphisms in Figure 2(a,b,c) are effective provided that all the target graphs
are totally degenerate. Suppose that all 1-valent vertices are infinite vertices in
Figure 2(d,e), and that g(p)= 0 in Figure 2(e) and g(p)= 1 in Figure 2(e). Then
rp′ = 2g(p′)− 1 and rp′i = 2g(p′i )− 2, so the morphism depicted in Figure 2(d)
is effective if and only if g(p′) ≥ 1, and the morphism depicted in Figure 2(e) is
effective if and only if both vertices p′1 and p′2 have genus at least one.

The morphism in Figure 1 is effective when both graphs are totally degenerate.

2.6. Metrized complexes of curves. Metrized complexes of curves and harmonic
morphisms between them are defined in (I.2.16). We recall some of the definitions
here. A 3-metrized complex of k-curves C is the data of an underlying augmented
3-metric graph 0 with a distinguished vertex set, and for each finite vertex p ∈ 0 a
smooth proper connected k-curve C p of genus g(p), called the residue curve, and an
injective reduction map redp : Tp(0) ↪→ C p(k). A harmonic morphism ϕ : C′→ C

is a harmonic morphism of underlying augmented metric graphs ϕ : 0′ → 0,
taking finite vertices of 0′ to finite vertices of 0, along with a finite morphism
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Figure 2. Examples of harmonic morphisms of augmented metric graphs.

ϕ : C p′→ Cϕ(p′) for every finite vertex p′ of 0′ such that dp′(ϕ) 6= 0, satisfying the
following compatibility conditions:

(1) For every finite vertex p′ ∈ V (0′) and every tangent direction v′ ∈ Tp′(0
′) with

dv′(ϕ)> 0, we have ϕp′(redp′(v
′))= redϕ(p′)(dϕ(p′)(v′)), and the ramification

degree of ϕp′ at redp′(v
′) is equal to dv′(ϕ).

(2) For every finite vertex p′ ∈ V (0′) with dp′(ϕ) > 0, every tangent direction
v ∈ Tϕ(p′)(0), and every point x ′ ∈ ϕ−1

p′ (redϕ(p′)(v)) ⊂ C ′p′(k), there exists
v′ ∈ Tp′(0

′) such that redp′(v
′)= x ′.

(3) For every finite vertex p′ ∈ V (0′) with dp′(ϕ) > 0 we have dp′(ϕ)= degϕp′ .

Let ϕ : C′→ C be a finite harmonic morphism of metrized complexes of curves.
We say that ϕ is a tame harmonic morphism if ϕp′ is tamely ramified for all finite
vertices p′ ∈ 0′. We call ϕ a tame covering if in addition it is a generically étale
finite morphism of augmented metric graphs.

Remark 2.7. It follows from the Riemann–Hurwitz formula applied to the maps
ϕp′ :C ′p′→Cϕ(p′) that a harmonic morphism of metrized complexes of curves gives
rise to an effective harmonic morphism of augmented metric graphs when each ϕp′

is a separable morphism of curves; the integer rp′ is then the sum of ramification
indices over all ramification points of ϕp′ not contained in redp′(Tp′(0

′)). In
particular, tame harmonic morphisms of metrized complexes of curves give rise to
effective harmonic morphisms of augmented metric graphs.

2.8. Triangulated punctured curves and skeleta. Let X be a smooth, connected,
proper algebraic K -curve and let D ⊂ X (K ) be a finite set of punctures. Recall
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from Definitions I.3.8 and I.3.9 that a semistable vertex set of (X, D) is a finite set V
of type-2 points of X an such that X an

\ (V ∪ D) is a disjoint union of open balls
and finitely many once-punctured open balls and open annuli. If V is a semistable
vertex set of (X, D), then (X, V ∪D) is called a triangulated punctured curve. The
semistable vertex sets of (X, D) are in bijective correspondence with the semistable
R-models of (X, D).

To a triangulated punctured curve (X, V ∪ D) one associates a canonical 3-
metrized complex of curves 6(X, V ∪ D) called its skeleton. The genus of the
underlying augmented metric graph 0 is equal to the genus g(X) of X . There is a
canonical closed embedding 0 ↪→ X an and a retraction map τ : X an

→ 0.
A finite morphism of triangulated punctured K -curves ϕ : (X ′, V ′ ∪ D′) →

(X, V ∪ D) consists of a finite morphism ϕ : X ′ → X such that ϕ−1(V ) = V ′,
ϕ−1(D) = D′ and ϕ−1(6(X, V ∪ D)) = 6(X ′, V ′ ∪ D′) as sets. Here we restate
Corollary I.4.28:

Proposition. Let ϕ : (X ′, V ′ ∪ D′)→ (X, V ∪ D) be a finite morphism of triangu-
lated punctured curves. Then ϕ naturally induces a finite harmonic morphism of
3-metrized complexes of curves

6(X ′, V ′ ∪ D′)−→6(X, V ∪ D).

Definition 2.9. A finite harmonic morphism ϕ : 0′→ 0 of metrized complexes
of curves (resp. augmented metric graphs, metric graphs) is said to be liftable
provided that there exists a finite morphism of triangulated punctured K -curves
ϕ : (X ′, V ′ ∪ D′)→ (X, V ∪ D) and an isomorphism of ϕ with the induced finite
harmonic morphism of skeleta6(X ′, V ′∪D′)→6(X, V ∪D) (resp. of augmented
metric graphs underlying the skeleta, of metric graphs underlying the skeleta).

Remark 2.10. Among all finite harmonic morphisms of augmented metric graphs,
only the effective ones have a chance to be liftable to a tame finite morphism of
triangulated punctured K -curves. Since the induced morphism of skeleta is a finite
harmonic morphism of metrized complexes of curves, this follows from Remark 2.7.

2.11. Tropical modifications and tropical curves. Here we introduce an equiv-
alence relation among metric graphs; an equivalence class for this relation will be
called a tropical curve.

Definition 2.12. An elementary tropical modification of a 3-metric graph 00 is
a 3-metric graph 0 = [0,+∞]∪00 obtained from 00 by attaching the segment
[0,+∞] to 00 in such a way that 0 ∈ [0,+∞] gets identified with a finite 3-point
p ∈ 00. If 00 is augmented, then 0 naturally inherits a genus function from 00 by
declaring that every point of (0,+∞] has genus zero.
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τ

τ

(a) (b)

Figure 3. Two tropical modifications.

An (augmented) 3-metric graph 0 obtained from an (augmented) 3-metric
graph 00 by a finite sequence of elementary tropical modifications is called a
tropical modification of 00.

If 0 is a tropical modification of 00, then there is a natural retraction map
τ : 0→ 00 which is the identity on 00 and contracts each connected component of
0 \00 to the unique point in 00 lying in the topological closure of that component.
The map τ is a (nonfinite) harmonic morphism of (augmented) metric graphs.

Example 2.13. We depict an elementary tropical modification in Figure 3(a), and a
tropical modification which is a sequence of two elementary tropical modifications
in Figure 3(b).

Tropical modifications generate an equivalence relation ∼ on the set of (aug-
mented) 3-metric graphs.

Definition 2.14. A 3-tropical curve (resp. an augmented 3-tropical curve) is an
equivalence class of 3-metric graphs (resp. augmented 3-metric graphs) with
respect to ∼.

In other words, a 3-tropical curve is a 3-metric graph considered up to tropical
modifications and their inverses (and similarly for augmented tropical curves). By
abuse of terminology, we will often refer to a tropical curve in terms of one of its
metric graph representatives.

Example 2.15. There exists a unique rational (augmented) tropical curve, which
we denote by TP1. Any rational (augmented) metric graph whose 1-valent vertices
are all infinite is obtained by a sequence of tropical modifications from the metric
graph consisting of a unique finite vertex (of genus zero).

Example 2.16. Let 00 be a3-metric graph, p ∈00 a finite3-point, and l ∈3\{0}.
We can construct a new 3-metric graph 0 by attaching the segment [0, l] to 00 via
the identification of 0 ∈ [0, l] with p. Then 00 and 0 represent the same tropical
curve, since the elementary tropical modification of 00 at p and the elementary trop-
ical modification of 0 at the right-hand endpoint of [0, l] are the same metric graph.
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Definition 2.17. Let 0 and 0′ be representatives of 3-tropical curves C and C ′,
respectively, and assume we are given a harmonic morphism of 3-metric graphs
ϕ : 0′→ 0.

An elementary tropical modification of ϕ is a harmonic morphism ϕ1 : 0
′

1→ 01

of 3-metric graphs, where τ : 01 → 0 is an elementary tropical modification,
τ ′ : 0′1→ 0′ is a tropical modification, and such that ϕ ◦ τ ′ = τ ◦ϕ1.

A tropical modification of ϕ is a finite sequence of elementary tropical modifica-
tions of ϕ.

Two harmonic morphisms ϕ1 and ϕ2 of 3-metric graphs are said to be tropically
equivalent if there exists a harmonic morphism which is a tropical modification of
both ϕ1 and ϕ2.

A tropical morphism of tropical curves ϕ : C ′→ C is a harmonic morphism
of 3-metric graphs between some representatives of C ′ and C , considered up to
(the equivalence relation generated by) tropical equivalence, and which has a finite
representative.

One makes similar definitions for morphisms of augmented tropical curves, with
the additional condition that all harmonic morphisms should be effective.

Note that it might happen that two nonequivalent morphisms of augmented metric
graphs represent the same tropical morphisms of nonaugmented tropical curves.

Remark 2.18. The collection of 3-metric graphs (resp. augmented 3-metric
graphs), together with harmonic morphisms (resp. effective harmonic morphisms)
between them, forms a category. Except for the condition of having a finite
representative, one could try to think of tropical curves, together with tropical
morphisms between them, as the localization of this category with respect to
tropical modifications. However, there are some technical problems which arise
when one tries to make this rigorous (at least if we demand that the localized
category admit a calculus of fractions): as we will see in Example 2.19, tropical
equivalence is not a transitive relation between morphisms of 3-metric graphs.
On the other hand, the restriction of tropical equivalence of morphisms (resp. of
augmented morphisms) to the collection of finite morphisms (resp. of generically
étale morphisms) is transitive (and hence an equivalence relation). This is one reason
why we include the condition that ϕ has a finite representative in our definition
of a morphism of tropical curves; another reason is that all morphisms of tropical
curves which arise from algebraic geometry automatically satisfy this condition.
See (2.21).

Example 2.19. The morphism of (totally degenerate augmented) metric graphs
depicted in Figure 2(b) (resp. 4(b)) is an elementary tropical modification of the
one depicted in 4(a) (resp. 2(b)).
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Figure 4. Figure 4(b) is an elementary tropical modification of
Figure 4(a), and Figures 4(c) and (d) are elementary tropical modi-
fications of Figure 4(e).

3
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3

3 ϕ1

3

2

2
ϕ2

3

ϕ

(a) (b) (c)

Figure 5. Figures 5(a) and (b) are elementary tropical modifica-
tions of Figure 5(c).

The tropical morphisms ϕ1 and ϕ2 of totally degenerate augmented tropical
curves depicted in Figure 4(c) and (d) are both elementary tropical modifications of
the morphism ϕ depicted in Figure 4(e).

The tropical morphisms ϕ1 and ϕ2 depicted in Figure 5(a) and (b) are both
elementary tropical modifications of the morphism ϕ depicted in Figure 5(c).

On the other hand, the harmonic morphism ϕ : 0′→ 0 depicted in Figure 2(c)
with d = 1 is not tropically equivalent to any finite morphism: since ϕ has degree
one, the cycle of the source graph will be contracted to a point by any harmonic
morphism of metric graphs tropically equivalent to ϕ. In particular, ϕ does not give
rise to a tropical morphism.
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As mentioned above, tropical equivalence is not transitive among morphisms
of metric graphs (resp. of augmented metric graphs). For example, the two mor-
phisms ϕ1 and ϕ2 depicted in Figure 4(c) and (d) are not tropically equivalent
as augmented morphisms: since Rp′ = 0 in Figure 4(c), any edge appearing in a
tropical modification of ϕ1 will have degree one.

Note that the preceding harmonic morphisms ϕ1 and ϕ2 are tropically equivalent
as morphisms of metric graphs (i.e., forgetting the genus function). However,
tropical equivalence is not transitive for tropical morphisms either, for essentially
the same reason: the two tropical morphisms ϕ1 and ϕ2 depicted in Figure 5(a)
and (b) are not tropically equivalent.

Nevertheless, the restriction of tropical equivalence of morphisms to the set of
finite morphisms (resp. generically étale morphisms) is an equivalence relation.
Hence a tropical morphism (resp. an augmented tropical morphism) can also be
thought of as an equivalence class of finite harmonic morphisms (resp. generically
étale morphisms). In particular, there exists a natural composition rule for tropical
morphisms (resp. augmented tropical morphisms), turning tropical curves (resp.
augmented tropical curves) equipped with tropical morphisms into a category.

Remark 2.20. In the definition of a tropical morphism of augmented tropical curves,
in addition to the condition of being a harmonic morphism and the “up to tropical
modifications” considerations, we imposed two rather strong conditions, namely be-
ing effective and having a finite representative. We already saw in Example 2.19 that
the finiteness condition is nontrivial. The effectiveness condition is also nontrivial:
for example, the harmonic morphism ϕ : 0′→ 0 of totally degenerate augmented
metric graphs depicted in Figure 2(c) with d = 2 is not tropically equivalent to any
finite effective morphism of totally degenerate augmented metric graphs. Indeed,
for any tropical modification of ϕ which is effective, at most two edges adjacent
to p′ can have degree two; since 0′ already has two such edges for ϕ, any tropical
modification of ϕ which is finite and effective will contract the cycle of 0′ to a point.

We refer to [Brugallé and Mikhalkin ≥ 2015] for a general definition of a tropical
morphism ϕ : C→ X from an augmented tropical curve to a nonsingular tropical
variety, including Definition 2.17 as a particular case.

2.21. Algebraic and tropical curves. Restating Lemma I.3.15 and Remark I.3.16,
we have:

Proposition. Let (X, V ∪D) be a triangulated punctured K -curve. Let D′⊂ X (K )
be a finite set and let V ′ be a semistable vertex set of (X, D′), so (X, V ′ ∪ D′)
is another triangulated punctured K -curve with underlying curve X. Then the
augmented metric graphs underlying 6(X, V ′ ∪ D′) and 6(X, V ∪ D) represent
the same tropical curve.
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This proposition implies that one can associate a canonical (augmented) tropical
curve to any smooth proper connected K -curve X . This association is functorial by
Corollary I.4.26:

Proposition. Let ϕ : X ′ → X be a finite morphism of smooth proper connected
K -curves, let D ⊂ X (K ) be a finite set, and let D′ = ϕ−1(D). Then there exist
semistable vertex sets V, V ′ of (X, D) and (X ′, D′), respectively, such that ϕ
induces a finite morphism of triangulated punctured curves ϕ : (X ′, V ′ ∪ D′)→
(X, V ∪D). In particular, ϕ induces a finite harmonic morphism on suitable choices
of skeleta.

Again we emphasize that a tropical morphism of tropical curves functorially
induced by a finite morphism of algebraic curves is effective and has a finite
representative.

Definition 2.22. We say that a tropical morphism of tropical curves ϕ : C ′→ C is
liftable provided that there exists a finite morphism of smooth proper connected
K -curves ϕ : X ′→ X functorially inducing ϕ on skeleta in the above sense.

We will also make use in the text of the notion of tropical modifications of
metrized complexes of curves.

Definition 2.23. Let C0 be a 3-metrized complex of k-curves.

• A refinement of C0 is any3-metrized complex of k-curves C obtained from C0

by adding a finite set of 3-points S of C0 \V (C0) to the set V (C0) of vertices
of C0 (see Definition I.2.17), setting C p = P1

k for all p ∈ S, and defining the
map redp by choosing any two distinct closed points of C p.

• An elementary tropical modification of C0 is a 3-metrized complex of k-
curves C obtained from C0 by an elementary tropical modification of the
underlying metric graph at a vertex p of C, with the map redp extended to e by
choosing any closed point of C p not in the image of the reduction map for C0.

• Any metrized complex of curves C obtained from a metrized complex of
curves C0 by a finite sequence of refinements and elementary tropical modifi-
cations is called a tropical modification of C0.

3. Lifting harmonic morphisms of metric graphs
to morphisms of metrized complexes

There is an obvious forgetful functor which sends metrized complexes of curves
to (augmented) metric graphs, and harmonic morphisms of metrized complexes
to harmonic morphisms of (augmented) metric graphs. A harmonic morphism of
(augmented) metric graphs is said to be liftable to a harmonic morphism of metrized
complexes of k-curves if it lies in the image of the forgetful functor.
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We proved in Theorem I.7.7 that every tame covering of metrized complexes of
curves can be lifted to a tame covering of algebraic curves. In this section we study
the problem of lifting harmonic morphisms of (augmented) metric graphs to finite
morphisms of metrized complexes (and thus to tame coverings of proper smooth
curves, thanks to Proposition I.7.15).

3.1. Lifting finite augmented morphisms. Recall that k is an algebraically closed
field of characteristic p ≥ 0. A finite harmonic morphism ϕ of (augmented) metric
graphs is called a tame harmonic morphism if either p = 0 or all the local degrees
of ϕ along edges are prime to p. Lifting of tame harmonic morphisms of augmented
metric graphs to tame harmonic morphisms of metrized complexes of k-curves is
equivalent to the existence of tamely ramified covers of k-curves of given genus
with some given prescribed ramification profile.

3.1.1. A partition µ of an integer d is a multiset of natural numbers d1, . . . , dl ≥ 1
with

∑
i di = d . The integer l, called the length of µ, will be denoted by l(µ).

Let g′, g ≥ 0 and d > 0 be integers, and let M = {µ1, . . . , µs} be a collection of
s partitions of d . Assume that the integer R defined by

R := d(2− 2g)+ 2g′− 2− sd +
s∑

i=1

l(µi ) (3.1.2)

is nonnegative. Denote by Ad
g′,g(µ1, . . . , µs) the set of all tame coverings ϕ :C ′→C

of smooth proper curves over k, with the following properties:

(i) The curves C and C ′ are irreducible of genus g and g′, respectively.

(ii) The degree of ϕ is equal to d.

(iii) The branch locus of ϕ contains (at least) s distinct points x1, . . . , xs ∈ C , and
the ramification profile of ϕ at the points ϕ−1(xi ) is given by µi , for 1≤ i ≤ s.

As we will explain now, the lifting problem for morphisms of augmented metric
graphs to morphisms of metrized complexes over a field k reduces to the emptiness
or nonemptiness of certain sets Ad

g′,g(µ1, . . . , µs). This latter problem is quite
subtle, and no complete satisfactory answer is yet known (see also (3.3.1)). In some
simple cases, however, one can ensure that Ad

g′,g(µ1, . . . , µs) is nonempty. For
example, if all the partitions µi are trivial (i.e., they each consist of d 1’s), then
Ad

g′,g(µ1, . . . , µs) is nonempty. Here is another simple example.

Example 3.2. For an integer d that is prime to the characteristic p of k, the set
Ad

0,0((d), (d)) is nonempty since it contains the map z 7→ zd . This is in fact the
only map in Ad

0,0((d), (d)) up to the action of the group PGL(2, k) on the target
curve and P1-isomorphisms of coverings.
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3.2.1. Let ϕ : 0′→ 0 be a finite harmonic morphism of augmented metric graphs.
Using the definition of a harmonic morphism, one can associate to any point p′

of 0′ a collection µ1(p′), . . . , µs(p′) of s partitions of the integer dp′(ϕ), where
s = val(ϕ(p′)), as follows: if Tϕ(p)(0) = {v1, . . . , vs} denotes all the tangent
directions to 0 at ϕ(p′), then µi (p′) is the partition of dp′(ϕ) which consists of the
various local degrees of ϕ in all tangent directions v′ ∈ Tp′(0

′) mapping to vi .

The next proposition is an immediate consequence of the various definitions
involved once we note that, by Example 3.2, there are only finitely points p′ ∈ 0′

for which the question of nonemptiness of the sets A
dp′ (ϕ)

g(p′),g(ϕ(p′)) arises. It provides
a “numerical criterion” for a tame harmonic morphism of augmented metric graphs
to be liftable to a tame harmonic morphism of metrized complexes of curves.

Proposition 3.3. Let ϕ : 0′ → 0 be a tame harmonic morphism of augmented
metric graphs. Then ϕ can be lifted to a tame harmonic morphism of metrized
complexes over k if and only if for every point p′ in 0′, the set

A
dp′ (ϕ)

g(p′),g(ϕ(p′))(µ1(p′), . . . , µval(ϕ(p′))(p′))

is nonempty.

3.3.1. In characteristic zero, the lifting problem for finite augmented morphisms
of metric graphs can be further reduced to a vanishing question for certain Hurwitz
numbers.

Fix an irreducible smooth proper curve C of genus g over k, and let x1, . . . , xs ,
y1, . . . , yR be a set of distinct points on C . The Hurwitz set Hd

g′,g(µ1, . . . , µs) is
the set of C-isomorphism classes of all coverings in Ad

g′,g(µ1, . . . , µs) satisfying
(i), (ii) and (iii) in (3.1.1) for the curve C and the points x1, . . . , xs that we have
fixed, and which in addition satisfy:

(iv) The integer R is given by (3.1.2), and for each 1 ≤ i ≤ R, ϕ has a unique
simple ramification point y′i lying above yi .

Note that, by this condition, the branch locus of ϕ consists precisely of the points
xi , y j . The Hurwitz number H d

g′,g(µ1, . . . , µs) is defined as

H d
g′,g(µ1, . . . , µs) :=

∑
ϕ∈Hd

g′,g(µ1,...,µs)

1
|AutC(ϕ)|

,

and does not depend on the choice of C and the closed points x1, . . . , xs, y1, . . . , yR

in C .

Example 3.4. It is known (see for example [Edmonds et al. 1984]) that

H 2
g,0 =

1
2 , H 3

g,0((3), . . . (3)) > 0, H 4
0,0((2, 2), (2, 2), (3, 1))= 0.
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For the reader’s convenience, and since we will use it several times in the sequel,
we sketch a proof of the fact that H 4

0,0((2, 2), (2, 2), (3, 1))= 0. By the Riemann–
Hurwitz formula and the Riemann existence theorem, H 4

0,0((2, 2), (2, 2), (3, 1)) 6= 0
if and only if there exist elements σ1, σ2, σ3 in the symmetric group S4 having
cycle decompositions of type (2, 2), (2, 2), (3, 1), respectively, such that σ1σ2σ3= 1
and such that the σi generate a transitive subgroup of S4. However, elementary
group theory shows that the product σ1σ2 cannot be of type (3, 1) (the transitivity
condition does not intervene here). For a proof which works in any characteristic,
see Lemma 5.10 below.

All Hurwitz numbers can be theoretically computed, for example using the
Frobenius formula (see [Lando and Zvonkin 2004, Theorem A.1.9]). Nevertheless,
the problem of understanding their vanishing is wide open. The above example
shows that Hurwitz numbers in degree at most three are all positive, which is not
the case in degree four. Some families of (non)vanishing Hurwitz numbers are
known (see Example 3.5). However, in general one has to explicitly compute
a given Hurwitz number to decide if this latter vanishes or not. We refer the
reader to [Edmonds et al. 1984; Pervova and Petronio 2006; 2008], along with the
references therein, for an account of what is known about this subject. We will
use the vanishing of H 4

0,0((2, 2), (2, 2), (3, 1)) in Section 5 to construct a 4-gonal
augmented graph (see Section 5 for the definition) which cannot be lifted to any
4-gonal proper smooth algebraic curve over K .

Example 3.5. Some partial results are known concerning the (non)vanishing of
Hurwitz numbers. For example, it is known that double Hurwitz numbers (i.e.,
when s = 2) are all positive (this can be seen for example from the presentation of
the cut-join equation given in [Cavalieri et al. 2010]), as well as all the Hurwitz
numbers H d

g′,g(µ1, . . . , µs) when g ≥ 1 and R ≥ 0 [Husemoller 1962; Edmonds
et al. 1984]. On the other hand, it is proved in [Pervova and Petronio 2008] that

H d
0,0
(
(d − 2, 2), (2, . . . , 2), (1

2 d + 1, 1, . . . , 1)
)
= 0 for all d ≥ 4 even.

Example 3.6. As another example of nonvanishing Hurwitz numbers, one has
H d ′

0,0(µ1, . . . , µs, (d ′)) > 0 for all integers d ′ ≥ 1 when the integer R defined
in (3.1.2) is zero (i.e., if the combinatorial Riemann–Hurwitz formula holds);
see [Edmonds et al. 1984, Proposition 5.2] or [DeMarco and McMullen 2008,
Proposition 7.2].

The nonemptiness of Ad
g′,g(µ1, . . . , µs) can be reduced to the nonemptiness of

the Hurwitz set Hd
g′,g(µ1, . . . , µs).

Lemma 3.7. Suppose that k has characteristic zero. Then Ad
g′,g(µ1, . . . , µs) is

nonempty if and only if H d
g′,g(µ1, . . . , µs) 6= 0.
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Proof. Since Hd
g′,g(µ1, . . . , µs) is a subset of Ad

g′,g(µ1, . . . , µs), obviously we only
need to prove that if Ad

g′,g(µ1, . . . , µs) 6=∅, then the Hurwitz set is also nonempty.
Let ϕ : C ′→ C be an element of Ad

g′,g(µ1, . . . , µs), branched over xi ∈ C with
ramification profile µi for i = 1, . . . , s, and let z1, . . . , zt be all the other points in
the branch locus of ϕ. Denote by νi the ramification profile of ϕ above the point zi .
Fix a closed point ? of C \ {x1, . . . , xs, z1, . . . , zt }. The étale fundamental group
π1(C \{x1, . . . , xs, z1, . . . , zt }, ?) is the profinite completion of the group generated
by a system of generators a1, b1, . . . , ag, bg, c1, . . . , cs+t satisfying the relation

[a1, b1] · · · [ag, bg]c1 · · · cs+t = 1,

where [a, b]=aba−1b−1 (see [SGA 1 1971]). In addition, the data of ϕ is equivalent
to the data of a surjective morphism ρ from π1(C \ {x1, . . . , xs, z1, . . . , zt }, ?) to a
transitive subgroup of the symmetric group Sd of degree d such that the partition
µi (resp. νi ) of d corresponds to the lengths of the cyclic permutations in the
decomposition of ρ(ci ) (resp. ρ(cs+i )) in Sd into products of cycles, for 1≤ i ≤ s
(resp. 1≤ i ≤ t). By the Riemann–Hurwitz formula, we have R =

∑t
i=1(d− l(νi )).

Now note that each ρ(cs+i ) can be written as a product of d−l(νi ) transpositions
τ 1

i , . . . , τ
d−l(νi )
i in Sd , i.e., ρ(cs+i )= τ

1
i . . . τ

d−l(νi )
i . Rename the set of R distinct

points y1, . . . , yR of C \ {x1, . . . , xs, ?} as z1
i , . . . , zd−l(νi )

i for 1≤ i ≤ t .
The étale fundamental group π1(C\{x1, . . . , xs, z1

1, . . . , zd−l(ν1)
1 , . . . , zd−l(νt )

t }, ?)

has, as a profinite group, a system of generators a1, b1, . . . , ag, bg, c1, . . . , cs ,
c1

s+1, . . . , cd−l(ν1)
s+1 , . . . , cd−l(νt )

s+t verifying the relation

[a1, b1] · · · [ag, bg]c1 · · · csc1
s+1 · · · c

d−l(ν1)
s+1 · · · c1

s+t · · · c
d−l(νt )
s+t = 1,

and admits a surjective morphism toSd which coincides with ρ on a1,b1, . . . , ag,bg,
and which sends c j

s+i to τ j
i for each 1≤ i≤ t and 1≤ j≤d−l(νi ). The corresponding

cover C ′′→ C obviously belongs to Ad
g′,g(µ1, . . . , µs) and in addition has simple

ramification profile (2) above each yi , i.e., it verifies condition (iv) above. This
shows that Hd

g′,g(µ1, . . . , µs) is nonempty. �

Corollary 3.8. Suppose that k has characteristic zero. Let ϕ : 0′→ 0 be a finite
morphism of augmented metric graphs, and let C be a metrized complex over k
lifting 0. There exists a lifting of ϕ to a finite harmonic morphism of metrized
complexes C′→C over k (and thus to a morphism of smooth proper curves over K )
if and only if ∏

p′∈V (0′)

H
dp′ (ϕ)

g(p′),g(ϕ(p′))(µ1(p′), . . . , µval(ϕ(p′))) 6= 0.

In particular, if ϕ is effective and g(p) ≥ 1 for all the points of valency at least
three in 0, then ϕ lifts to a finite harmonic morphism of metrized complexes over k.
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Remark 3.9. If k has positive characteristic p> d , then Ad
g′,g(µ1, . . . , µs) has the

same cardinality as in characteristic zero. (This follows from [SGA 1 1971], which
provides an isomorphism between the tame fundamental group in positive charac-
teristic p and the prime-to-p part of the étale fundamental group in characteristic
zero.) In particular, Lemma 3.7 also holds under the assumption that p > d .

3.10. Lifting finite harmonic morphisms. Now we turn to the lifting problem
for finite morphisms of nonaugmented metric graphs to morphisms of metrized
complexes of k-curves. In this case there are no obstructions to the existence of
such a lift.

Theorem 3.11. Let ϕ : 0′→ 0 be a tame harmonic morphism of metric graphs,
and suppose that 0 is augmented. There exists an enrichment of 0′ to an augmented
metric graph (0′, g′) such that ϕ : (0′, g′) → (0, g) lifts to a tame harmonic
morphism of metrized complexes of curves over k (and thus to a morphism of
smooth proper curves over K ).

Theorem 3.11 is an immediate consequence of Proposition 3.3 and the following
theorem. (For the statement, we say that a partition µ of d is tame if either
char(k)= 0 or all the integers appearing in µ are prime to p.)

Theorem 3.12. Let g ≥ 0, d ≥ 2, s ≥ 1 be integers. Let µ1, . . . , µs be a collection
of s tame partitions of d. Then there exists a sufficiently large nonnegative integer g′

such that Ad
g′,g(µ1, . . . , µs) is nonempty.

Proof. We first give a simple proof which works in characteristic zero, and more
generally, in the case of a tame monodromy group. The proof in characteristic
p > 0 is based on our lifting theorem and a deformation argument.

Suppose first that the characteristic of k is zero. By Lemma 3.7, we need to show
that for large enough g′ the set Hd

g′,g(µ1, . . . , µs) is nonempty.
If g ≥ 1, for any large enough g′ giving R ≥ 0, we have Hd

g′,g(µ1, . . . , µs) 6=

∅ [Husemoller 1962]. So suppose g = 0. Consider s + R + 1 distinct points
x1, . . . , xs, z1, . . . , zR, ? in C . The étale fundamental group

π1(R) := π1(C \ {x1, . . . , xs, z1, . . . , zR}, ?)

has, as a profinite group, a system of generators c1, . . . , cs, cs+1, . . . , cs+R verifying
the relation

c1 · · · cr cs+1 · · · cs+R = 1.

It will be enough to show that for a large enough R, there exists a surjective
morphism ρ from π1(R) to Sd so that ρ(cs+i ) is a transposition for any i=1, . . . , R,
and that for any i = 1, . . . , s, the partition of d given by the lengths of the cyclic
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permutations in the decomposition of ρ(ci ) is equal to µi . In this case, the genus g′

of the corresponding cover C ′ of C in Hd
g′,0(µ1, . . . , µs) will be given by

g′ = 1− d + 1
2

[
sd + R−

s∑
i=1

l(µi )
]
.

Consider an arbitrary map ρ from {c1, . . . , cs} to Sd verifying the ramifica-
tion profile condition for ρ(c1), . . . , ρ(cr ). Choose a system of d transpositions
τ1, . . . , τd generating Sd , and consider a set of transpositions τd+1, . . . , τR such that

ρ(c1) · · · ρ(cs) τ1 · · · τd = τR · · · τd+1 .

This proves Theorem 3.12 when k has characteristic zero.

Consider now the case of a base field k of positive characteristic p> 0. Note that
since the prime-to-p part of the tame fundamental group has the same representation
as in the case of characteristic zero, the group theoretic method we used in the
previous case can be applied if the monodromy group is tame, i.e., has size prime
to p. However, in general it is impossible to impose such a condition on the
monodromy group. For example in the case when p divides d, the size of the
monodromy group is always divisible by p.

We first describe how to reduce the proof of Theorem 3.12 to the case s = 1 and
g = 0. Suppose that for each µi , 1≤ i ≤ s, there exists a large enough gi such that
Ad

gi ,0(µi ) is nonempty, and consider a tame cover ϕi : Ci → P1
k in Agi ,0(µi ) such

that the ramification profile over 0 ∈ P1 is given by µi , and choose two regular
points xi , yi ∈ P1 (i.e., xi , yi are outside the branch locus of ϕi ). Choose also a
smooth proper curve C0 of genus g which admits a tame cover ϕ0 : C ′0→ C0 of
degree d from a smooth proper curve C ′0 of large enough genus g′0. (The existence
of such a cover can be deduced by a similar trick as that discussed at the end of the
proof below and depicted in Figure 7.) Let y0 ∈ C0 be a regular point of ϕ0.

Let C0 be the metrized complex over k whose underlying metric graph is [0,+∞],
with one finite vertex v0 and one infinite vertex v∞, equipped with the metric induced
by R, and with Cv0 = C0 and redv0({v0, v∞})= y0. Denote by C the modification
of C0 obtained by taking a refinement at r distinct points 0< v1 < · · ·< vs <∞,
as depicted in Figure 6, and by setting Cvi = P1 and redvi ({vi , vi−1}) = xi and
redvi ({vi , vi+1})= yi (here vs+1= v∞), and by adding an infinite edge ei to each vi ,
and defining redvi (ei ) = 0 ∈ P1. Denote by 0 the underlying metric graph of C.
See Figure 6.

Define now the metric graph Bs,d as the chain of s banana graphs of size d:
Bs,d has s+1 finite vertices u0, . . . , us and u′1, . . . , u′d infinite vertices adjacent to us

such that ui is connected to ui+1 with d edges of length `0({vi+1−vi }). We denote
by B̃s,d the tropical modification of Br,d at u1, . . . , us , obtained by adding l(µi )
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v0

u0 u1 u2 u3

v1 v2 v3

B̃s,d

0

us

vs v∞

u′1

u′d

Figure 6. Construction of the graph B̃s,d used in the proof of Theorem 3.12.

infinite edges to ui . Eventually we turn B̃s,d into a metrized complex Cs,d over k
by setting Cui = Ci , and defining redui on the d edges between ui and ui+1 by a
bijection to the d points in ϕ−1

i (yi ), redui on the edges between ui and ui−1 by a
bijection to the d points in ϕ−1

i (xi ), and redui on the l(µi ) infinite edges adjacent
to ui by a bijection to the l(µi ) points in ϕ−1

i (0).
Obviously, there exists a degree-d tame morphism ϕ : Cs,d → C of curve

complexes over k which sends ui to vi , and has degrees given by integers in µi

above the infinite edge of 0 adjacent to vi , for i = 1, . . . , s, and ϕui = ϕi (see
Figure 6). According to Proposition I.7.15, the map ϕ lifts to a tame morphism
of smooth proper curves ϕK : X → X ′ over K the completion of the algebraic
closure of k[[t]]. The map ϕK has partial ramification profile µ1, . . . , µs . To deduce
now the nonemptiness of Ad

g′,g(µ1, . . . , µs), we note that there exists a subring R
of K , finitely presented over k, such that the map ϕK descends to a finite morphism
ϕR : X→ X′ between smooth proper curves over Spec(R). In addition, over a
nonempty open subset U of Spec(R), ϕR specializes to a tame cover with the
same ramification profile as ϕK . Since U contains a k-rational point, we infer the
existence of a large enough g′ such that Ad

g′,g(µ1, . . . , µs) 6=∅.

We are thus led to consider the case where s = 1, g = 0, µ = (d1, d2, . . . , dl)

with
∑

i di = d, d1, . . . , dt > 1 and dt+1 = · · · = dl = 1. Figure 7 shows that, just
as in the previous reduction, one can reduce to the case where s = 1 and µ1 = {d}
with (d, p)= 1. (Note that in Figure 7(a) the degree of the morphism at some of
the middle vertices is two; Figure 7(b) is arranged so that the degrees are all odd.)
But this is just nonemptiness of A0,0((d)) (see Example 3.2). �

Remark 3.13. As the above proof shows, when k has characteristic zero one can get
an explicit upper bound on the least positive integer g′ with Hd

g′,0(µ1, . . . , µs) 6=∅.
Indeed, the permutation ρ(c1) · · · ρ(cs)τ1 · · · τd can be written as the product of
d+

∑s
i=1(d− l(µi )) transpositions. So without loss of generality we have R−d =

d+
∑s

i=1(d− l(µi )), which means that one can take g′ to be 1+
∑r

i=1(d− l(µi )).



290 Omid Amini, Matthew Baker, Erwan Brugallé and Joseph Rabinoff

�
�
�
�
�

�
�
�
�
�

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

1

1

d1 > 1

d2 > 1

d3 > 1

dt > 1

�
�
�
�
�

�
�
�
�
�

1

1

d1 > 2

d2 > 2

d3 > 2

dt > 2

(a) (b)

Figure 7. (a) Reduction in the case p 6= 2 (in this example, d1= 4,
d2 = 4, d3 = 3 and dt = 2). (b) Reduction in the case p = 2.

For g ≥ 1, Hg′,g is nonempty as soon as R is nonnegative, which means in this case
that one can take g′ to be 1+ (g− 1)d + 1

2

∑
i (d − l(µi )).

3.14. Lifting polynomial-like harmonic morphisms of trees. There is a special
case of Theorem 3.12 in which one does not need to increase the genus of the source
curve. To state the result, we say (following [DeMarco and McMullen 2008]) that
a degree-d finite harmonic morphism ϕ : T ′→ T of metric trees is polynomial-like
if there exists an infinite vertex of T ′ with local degree equal to d .

Theorem 3.15. Assume that the residue characteristic of K is zero or bigger than d.
Let ϕ : T ′→ T be a generically étale polynomial-like harmonic morphism of metric
trees. Then there exists a degree-d polynomial map ϕ : P1

→ P1 over K lifting ϕ.

Proof. It suffices to prove that ϕ can be extended to a degree-d harmonic morphism
of genus-zero metrized complexes of curves. By Theorem I.7.7, Proposition 3.3,
and Remark 3.9, this reduces to showing that the Hurwitz numbers given by the
ramification profiles around each finite vertex of T ′ are all nonzero. Fix an infinite
vertex∞ of T ′ with local degree d . Then it is easy to see that, for any such vertex v′,
the local degree of ϕ at v′ is equal to the local degree of ϕ in the tangent direction
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corresponding to the unique path from v′ to∞. (This is analogous to [DeMarco
and McMullen 2008, Lemma 2.3].) The result now follows from Example 3.6. �

3.16. Lifting of harmonic morphisms when the base has genus zero. We now
consider the special case where 0 has genus zero and present more refined lifting re-
sults in this case. As explained in (2.11), a given harmonic morphism of (augmented)
metric graphs does not necessarily have a tropical modification which is finite. We
present below a weakened notion of finiteness of a harmonic morphism, and prove
that any harmonic morphism from an (augmented) metric graph to an (augmented)
rational metric graph satisfies this weak finiteness property. We discuss in Section 4
some consequences concerning linear equivalence of divisors on metric graphs.

Definition 3.17. A harmonic morphism ϕ : 0 → T from an augmented metric
graph 0 to a metric tree T is said to admit a weak resolution if there exists a tropical
modification τ : 0̃→ 0 and an augmented harmonic morphism ϕ̃ : 0̃→ T such
that the restriction ϕ̃|0 is equal to ϕ, and some tropical modification of ϕ̃ is finite.

In other words, the morphism ϕ has a weak resolution if it can be extended,
up to increasing the degree of ϕ using the modification τ , to a tropical morphism
ϕ̃ : 0̃→ T .

Example 3.18. The harmonic morphism depicted in Figure 2(c) with d = 1 can
be weakly resolved by the harmonic morphisms depicted in Figures 4(b) and 2(b).
Another example of a weak resolution is depicted in Figure 8.

Definition 3.19. Let ϕ : 0→ T be a harmonic morphism from a metric graph 0 to
a metric tree T . A point p ∈ 0 is regular if ϕ is nonconstant on all neighborhoods
of p.

The contracted set of ϕ, denoted by E(ϕ), is the set of all nonregular points of ϕ.
A contracted component of ϕ is a connected component of E(ϕ).

2

2

2

(a) (b)

Figure 8. (a) A harmonic morphism not tropically equivalent to
any finite harmonic morphism. (b) A weak resolution of the mor-
phism in Figure 8(a).
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The next proposition, together with Proposition I.7.15, allows us to conclude
that any harmonic morphism from an augmented metric graph to a metric tree can
be realized, up to weak resolutions, as the induced morphism on skeleta of a finite
morphism of triangulated punctured curves. Recall that 3= val(K×) is divisible
since K is algebraically closed.

Proposition 3.20 (weak resolution of contractions). Let ϕ : 0→ T be a harmonic
morphism of degree d from a metric graph 0 to a metric tree T .

(1) There exist tropical modifications τ : 0̃→ 0 and τ ′ : T̃ → T , and a harmonic
morphism of metric graphs (of degree d̃ ≥ d) ϕ̃ : 0̃→ T̃ , such that ϕ̃|0\E(ϕ)=ϕ,
where E(ϕ) is the contracted part of 0.

(2) Suppose in addition that 0 is augmented, and if p > 0 that all the nonzero
degrees of ϕ along tangent directions at 0 are prime to p. Then there exist
tropical modifications of 0, T , and ϕ as above such that ϕ̃ is tame and, in
addition, there exists a tame harmonic morphism of metrized complexes of
k-curves with ϕ̃ as the underlying finite harmonic morphism of augmented
metric graphs.

Proof. Up to tropical modifications, we may assume that all 1-valent vertices of T
are infinite vertices.

The proof of (1) goes by giving an algorithm to exhibit a weak resolution
of ϕ. Note that this algorithm does not produce the weak resolutions presented in
Example 3.18, since in these cases we could find simpler ones.

Let V (0) be any vertex set of 0 with no loop edge. We denote by d the degree
of ϕ, and by α the number of nonregular vertices of ϕ. Given v a finite nonregular
vertex of 0, we consider the tropical modification τv : 0̃v→0 such that (0̃v\0)∪{v}
is isomorphic to T as a metric graph. Considering all those modifications for all
nonregular vertices of ϕ, we obtain a modification τ : 0̃→ 0. We can naturally
extend ϕ to a harmonic morphism ϕ̃ : 0̃→ T of degree d + α such that ϕ̃|0 = ϕ
and all degrees of ϕ̃ on edges not in 0 are equal to 1 (see Figure 9(a) in the case of
the harmonic morphism depicted in Figure 2(c) with d = 1).

By construction, any contracted component of ϕ̃ is an open edge of 0, and this
can be easily resolved. Indeed, if e is a finite contracted edge of ϕ̃, we do the
following (see Figure 9(b)):

• consider the tropical modification τT : T̃ → T of T at ϕ̃(e); denote by e1 the
new end of T̃ ;

• consider the composition τe : 0̃e→ 0̃ of two elementary tropical modifications
of 0̃ at the middle of the edge e; denote by e2 and e3 the two new infinite
edges of 0̃e, and by e4 and e5 the two new finite edges of 0̃e;
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• subdivide e1 into a finite edge e0
1 of length equal to the lengths of e4 and e5,

and an infinite edge e∞1 ;

• consider the morphism of metric graphs ϕ̃e : 0̃e→ T̃ defined by

– ϕ̃e|0̃\{e2,e3,e4,e5}
= ϕ̃,

– ϕ̃e(e2)= ϕ̃e(e3)= e∞1 , and ϕ̃e(e4)= ϕ̃e(e5)= e0
1,

– dei (ϕ̃e)= 1 for i = 2, 3, 4, 5;

• extend ϕ̃e to a harmonic morphism of metric graphs ψe : 0
′
→ T̃ , where 0′ is

a modification of 0̃e at regular vertices in ϕ̃−1
e (ϕ̃(e)), with all degrees of ϕ̃ on

edges not in 0̃e equal to 1.

We resolve in the same way a contracted infinite end of 0̃. By applying this process
to all contracted edges of ϕ̃, we end up with a finite harmonic morphism of metric
graphs which is a tropical modification of ϕ̃.

Note that in the proof of (1) we increased some of the local degrees by one, but
we could have increased these local degrees by any amount by inserting an arbitrary
number of copies of T in the construction of 0̃. Based on this remark, the proof of (2)
now follows the same steps as the proof of (1), using in addition the following claim:

Claim. Let g′ ≥ 0 and d, s > 0 be integers. Let µ1, . . . , µs be a collection of s
tame partitions of d . Then there exist arbitrarily large nonnegative integers d ′ such
that Ad ′

g′,0(µ
′

1, . . . , µ
′
s) is nonempty, where µ′i is the partition of d ′ obtained by

adding a sequence of d ′− d numbers 1 to each partition µi .

Figure 10, Figure 7(a), our resolution procedure, and the argument used for the
positive characteristic case of the proof of Theorem 3.12 reduce the proof of the
claim to the case s = 1 and µ1 = {d} with (d, p) = 1. But in this case, for any
g′ ≥ 0, by the group theoretic method we used in the proof of Theorem 3.12, there
exists a (tame) covering of P1 by a curve of genus g′ having (tame) monodromy
group the cyclic group Z/dZ, and with the property that the ramification profile

(a) (b)

Figure 9. The harmonic morphisms (a) ϕ̃, and (b) ψe in the case
of Figure 2(c) with d = 1.
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Figure 10. Reduction to the case s = 1 in the proof of (2) in
Proposition 3.20. Degrees on (infinite) edges related to µi are exactly
the integers appearing in µi . All the other degrees are one. Degrees
over each infinite edge consist of aµi and precisely (s−1)d numbers 1.

above the point 1 of P1 is given by µ= {d}. This finishes the proof of the claim,
and the proposition follows. �

4. Applications

4.1. Linear equivalence of divisors. A (tropical) rational function on a metric
graph 0 is a continuous piecewise affine function F : 0→ R with integer slopes.
If F is a rational function on 0, div(F) is the divisor on 0 whose coefficient at a
point x of 0 is given by

∑
v∈Tx

dvF , where the sum is over all tangent directions
to 0 at x and dvF is the outgoing slope of F at x in the direction v. Two divisors
D and D′ on a metric graph 0 are called linearly equivalent if there exists a rational
function F on 0 such that D− D′ = div(F), in which case we write D ∼ D′. For
a divisor D on 0, the complete linear system of D, denoted |D|, is the set of all
effective divisors E linearly equivalent to D. The rank of a divisor D ∈ Div(0) is
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defined to be
r0(D) := min

E : E≥0
|D−E |=∅

deg E − 1.

Let ϕ : 0 → T be a finite harmonic morphism from 0 to a metric tree T of
degree d. For any point x ∈ T , the (local degree of ϕ at the points of the) fiber
ϕ−1(x) defines a divisor of degree d in Div(0) that we denote by Dx(ϕ). We have

Dx(ϕ) :=
∑

y∈ϕ−1(x)

dy(ϕ)(y),

where dy(ϕ) denotes the local degree of ϕ at y.

Proposition 4.2. Let ϕ : 0→ T be a finite harmonic morphism of degree d from 0

to a metric tree. Then for any two points x1 and x2 in T , we have Dx1(ϕ)∼ Dx2(ϕ)

in 0. Moreover, for every x ∈ T the rank of the divisor Dx(ϕ) is at least one.

Proof. Since T is connected, we may assume that x1 and x2 are sufficiently close;
more precisely, we can suppose that x2 lies on the same edge as x1 with respect
to some model G for 0. Removing the open segment (x1, x2) from T leaves
two connected components Tx1 and Tx2 which contain x1 and x2, respectively.
Identifying the segment [x1, x2] with the interval [0, `] by a linear map (where
` = `([x1, x2]) denotes the length in T of the segment [x1, x2]) gives a rational
function F : 0→ [0, `] by sending ϕ−1(Tx1) and ϕ−1(Tx2) to 0 and `, respectively.
It is easy to verify that Dx1(ϕ)− Dx2(ϕ)= div(F), which establishes the first part.

The second part follows from the first, since y belongs to the support of the
divisor Dϕ(y)(ϕ)∼ Dx(ϕ) for all y ∈ 0, which shows that r0(Dx(ϕ))≥ 1. �

By Theorem 3.11, any finite morphism ϕ : 0→ T can be lifted to a morphism
ϕ : X → P1 of smooth proper curves, possibly with g(X) > g(0). This shows
that any effective divisor on 0 which appears as a fiber of a finite morphism to a
metric tree can be lifted to a divisor of rank at least one on a smooth proper curve
of possibly higher genus.

We are now going to show that the (additive) equivalence relation generated
by fibers of “tropicalization” of finite morphisms X→ P1 coincides with tropical
linear equivalence of divisors. To give a more precise statement, let 0 be a metric
graph with first Betti number h1(0), and consider the family of all smooth proper
curves of genus h1(0) over K which admit a semistable vertex set V and a finite
set of K -points D such that the metric graph 6(X, V ∪ D) is a modification of 0.
Given such a curve X and a finite morphism ϕ : X→ P1, there is a corresponding
finite harmonic morphism ϕ : 6(X, V ∪ D)→ T from a modification of 0 to a
metric tree T . Two effective divisors D0 and D1 on 0 are called strongly effectively
linearly equivalent if there exists a morphism ϕ :6(X, V ∪ D)→ T as above such
that D0 = τ∗(Dx0(ϕ)) and D1 = τ∗(Dx1(ϕ)) for two points x0 and x1 in T . Here
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τ∗ : Div(6(X, V ∪ D))→ Div(0) is the extension by linearity of the retraction
map τ :6(X, V ∪ D)→ 0. The equivalence relation on the abelian group Div(0)
generated by this relation is called effective linear equivalence of divisors. In other
words, two divisors D0 and D1 on 0 are effectively linearly equivalent if and only
if there exists an effective divisor E on 0 such that D0+E and D1+E are strongly
effectively linearly equivalent. This can be summarized as follows: D0 and D1

on 0 are effectively linearly equivalent if and only if there exists a lifting of 0 to a
smooth proper curve X/K of genus h1(0), and a finite morphism ϕ : X→P1 such
that τ∗(ϕ−1(0))= D0+ E and τ∗(ϕ−1(∞))= D1+ E for some effective divisor E ,
where τ∗ is the natural retraction map from Div(X) to Div(0).

Theorem 4.3. The two notions of linear equivalence and effective linear equiva-
lence of divisors on a metric graph 0 coincide. As a consequence, linear equivalence
of divisors is the additive equivalence relation generated by (the retraction to 0 of )
fibers of finite harmonic morphisms from a tropical modification of 0 to a metric
graph of genus zero.

Proof. Consider two divisors D0 and D1 which are effectively linearly equivalent.
There exists an effective divisor E and a finite harmonic morphism ϕ : 0̃→ T ,
from a tropical modification of 0 to a metric tree, such that D0 + E = Dx0(ϕ)

and D1 + E = Dx1(ϕ) for two points x0, x1 ∈ T . By Proposition 4.2 we have
D0+ E ∼ D1+ E , which implies that D0 and D1 are linearly equivalent in 0̃, and
hence in 0.

To prove the other direction, it will be enough to show that if D is linearly
equivalent to zero, then there exists an effective divisor E such that D+ E and E
are fibers of a finite harmonic morphism ϕ from a modification of 0 to a metric
tree T , and such that ϕ can be lifted to a morphism X→ P1.

By assumption, there exists a rational function f : 0→ R∪ {±∞} such that
D+div( f )=0. We claim that there is a tropical modification 0̃ of0 together with an
extension of f to a (not necessarily finite) harmonic morphism ϕ0 : 0̃→R∪{±∞}.
The tropical modification 0̃ is obtained from 0 by choosing a vertex set which
contains all the points in the support of D, adding an infinite edge to any finite
vertex in 0 with ordv( f ) 6= 0, and extending f as an affine linear function of
slope − ordv( f ) along this infinite edge. It is clear that the resulting map ϕ0

is harmonic.
Consider now the retraction map τ : 0̃→ 0, and note that for the two divisors

D±∞(ϕ0), we have τ∗(D±∞(ϕ0)) = D±, where D+ and D− denote the positive
and negative parts of D, respectively. By Proposition 3.20, there exist tropical
modifications 0 of 0̃ and T of R∪ {±∞} such that ϕ0 extends to a finite harmonic
morphism ϕ : 0→ T which can be lifted to a finite morphism X → P1. If we
denote (again) the retraction map 0→ 0 by τ , then τ∗

(
D±∞(ϕ)

)
= D±+ E0 for
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Figure 11. Illustration of the distinction between effective linear
equivalence and strongly effective linear equivalence of divisors
in Example 4.4. (a) K0 = (p)+ (q). (b) An effective lift of 2(t).
(c) A noneffective lift of K0.

some effective divisor E0 in 0. Setting E = D−+ E0, the divisors D+ E and E
are strongly effectively linearly equivalent, and the theorem follows. �

Example 4.4. Here is an example which illustrates the distinction between the
notions of (effective) linear equivalence and strongly effective linear equivalence of
divisors, as introduced above.

Let 0 be the metric graph depicted in Figure 11(a), with arbitrary lengths, and
K0 = (p)+ (q) the canonical divisor on 0.

We claim that K0 is not the specialization of any effective divisor of degree two
representing the canonical class of a smooth proper curve of genus two over K .
More precisely, we claim that for any triangulated punctured curve (X, V ∪ D)
over K such that 6(X, V ∪D) is a tropical modification of 0, and for any effective
divisor D in Div(X)with K0=τ∗(D), we must have rX (D)=0. (Here τ∗ denotes the
specialization map from Div(X) to Div(0) and rX (D)= dimK (H 0(X,O(D)))−1.)
Indeed, otherwise there would exist a degree-two finite harmonic morphism π :

0̃→ T from some tropical modification of 0 to a metric tree with the property that
π(p)= π(q). Restricting such a harmonic morphism to the preimage in 0̃ of the
loop containing p would imply, by Proposition 4.2, that the divisor (p) has rank one
in a genus-one metric graph, which is impossible. On the other hand, Figure 11(b)
shows that the divisor 2(t)∼ (p)+ (q) can be lifted to an effective representative of
the canonical class K X , where t is the middle point of the loop edge with vertex q .
This shows that the two linearly equivalent divisors D0 = (p)+ (q) and D1 = 2(t)
are not strongly effectively linearly equivalent.

However, D0 and D1 are effectively linearly equivalent. Indeed, adding E = (p)
to D0 and D1, respectively, gives the two divisors 2(p)+ (q) and 2(t)+ (p) which
are retractions of fibers of a degree 3 finite harmonic morphism from a tropical
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modification of 0 to a tree, as shown in Figure 11(c). Consequently, D0+ (p) and
D1+ (p) can be lifted to linearly equivalent effective divisors on a smooth proper
curve X .

Note also that Figure 11(c) shows that since (p1)+ (p2)+ (q)− (p3) can be
lifted to a noneffective representative of the canonical class K X , there exists a
noneffective divisor D in the canonical class K X of X such that τ∗(D)= (p)+ (q).

4.5. Tame actions and quotients. Let C be a metrized complex of k-curves,
and denote by 0 the underlying metric graph of C. An automorphism of C is a
(degree-one) finite harmonic morphism of metrized complexes h : C→ C which
has an inverse. The group of automorphisms of C is denoted by Aut(C).

Let H be a finite subgroup of Aut(C). The action of H on C is generically free
if for any vertex v of 0, the inertia (stabilizer) group Hv acts freely on an open
subset of Cv . A finite subgroup H of Aut(C) is called tame if the action of H on C

is generically free and all the inertia subgroups Hx for x belonging to some Cv are
cyclic of the form Z/dZ for some positive integer d, with (d, p)= 1 if p > 0. In
this case we say that the action of H on C is tame.

Remark 4.6. The stabilizer condition in the definition of tame actions is equivalent
to requiring the cover Cv → Cv/Hv be tame, where Hv is the stabilizer of the
vertex v. To see that this latter condition implies that all the stabilizers of points
on Cv are cyclic, consider a uniformizer π at a point x , and consider the map
Hx → k× which sends an element h ∈ Hx to h(π)/π . This is independent of the
choice of the uniformizer, and embeds Hx in the subgroup of roots of unity in k×,
from which the assertion follows. The other direction is clear from the definition.
Note that, more generally, one has a filtration of Hv with higher ramification groups
Hv ⊇ H0 = Hx ⊇ H1 ⊇ H2 ⊇ · · · , the quotient H0/H1 is a finite cyclic group of
order prime to the characteristic p, and Hi/Hi+1 are all p-groups. In the case of
tame actions, H1 is trivial.

In this section, we characterize tame group actions H on C which lift to an action
of H on some smooth proper curve X/K lifting C. The main problem to consider
is whether there exists a refinement C̃ of C and an extension of the action of H
to C̃ such that the quotient C̃/H can be defined, and such that the projection map
π : C̃→ C̃/H is a tame harmonic morphism. The lifting of the action of H to a
smooth proper curve X as above will then be a consequence of our lifting theorem.

4.7. Let H be a tame group of automorphisms of a metrized complex C. Let
WH = WH (C) be the set of all w ∈ 0 lying in the middle of an edge e such that
there is an element h ∈ H having w as an isolated fixed point. Denote by Hw the
stabilizer of w ∈ WH . It is easy to see that Hw consists of all elements h of H
which restrict on e either to the identity or to the symmetry with center w. In
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particular, if h|e 6= id, then h permutes the two vertices p and q adjacent to e. For
w ∈ WH , the inertia group Hredp(e) = Hredq (e)

∼= Z/deZ (for some integer de) is a
normal subgroup of index two in Hw:

0−→ Hredp(e) −→ Hw −→ Z/2Z−→ 0.

We make the following assumption on the groups Hw:

Definition 4.8. A tame group of automorphisms H of a metrized complex C satisfies
the dihedral condition provided that, for all w ∈ WH , the stabilizer group Hw is
isomorphic to the dihedral group generated by two elements σ and ζ with the
relations

σ 2
= 1, ζ d

= 1 and σζσ = ζ−1

for some integer d , such that Hredp(e) = 〈ζ 〉.

The dihedral condition means that the above short exact sequence splits, and the
action of Z/2Z∼= {±1} on Hredp(e) is given by h→ h±1 for h ∈ Hredp(e).

We can now formulate our main theorem on lifting tame group actions:

Theorem 4.9. Let H be a finite group with a tame action on a metrized complex C.

(1) If WH 6= ∅, then the dihedral condition and char(k) 6= 2 are the necessary
and sufficient conditions for the existence of a refinement C̃ of C such that the
action of H on C extends to a tame action on C̃ such that WH (C̃)=∅.2

(2) If WH = ∅, then the quotient C/H exists in the category of metrized com-
plexes. In addition, the action of H on C can be lifted to an action of H on a
triangulated punctured K -curve (X, V ∪D) such that 6(X, V ∪D0)∼=C with
D0 ⊂ D, the action of H on X \D is étale, and the inertia group Hx for x ∈ D
coincides with the inertia group Hτ(x) of the point τ(x) ∈6(X, V ∪ D0)= C.

Proof. Suppose that WH 6=∅, that the dihedral condition holds, and that char(k) 6= 2.
Fix an orientation of the edges of 0, and for an oriented edge e, denote by p0 and p∞
the two vertices of 0 which form the tail and the head of e, respectively. Let w be a
point lying in the middle of an oriented edge e= (p0, p∞) of 0 which is an isolated
fixed point of some elements of H . Take the refinement C̃ of C obtained by adding
all such points w to the vertex set of 0 and by setting Cw = P1

k , rede({w, p0})= 0
and red({w, p∞})=∞. To see that the action of H on C extends to C̃, first note
that one can define a generically free action of Hw on P1

k (equivalently, one can
embed Hw in Aut(P1

k)) in a way compatible with the action of Hw on 0, i.e., such
that all the elements of Hredp0 (e) = Hredp∞ (e) fix the two points 0 and∞ of P1

k , and
such that the other elements of Hw permute the two points 0,∞∈ P1

k . Indeed, the

2See [Raynaud 1999, §2.3] for a related discussion, including remarks on the situation in charac-
teristic 2.
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dihedral condition is the necessary and sufficient condition for the existence of such
an action. Under this condition and upon a choice of a de = |Hredp0 (e)|-th root of
unity ζde ∈ k, and upon the choice of the point 1 ∈ P1

k as a fixed point of σ , the
actions of the two generators σ and ζ of Hw on P1 are given by σ(z) = 1/z and
ζ(z)= ζde z, respectively.

Fix once and for all a d-th root of unity ζd ∈ k for each positive integer d
(with (d, p) = 1 in the case p > 0). Given h ∈ H , we extend the action of h
on C to an action on C̃ in the following way. Let w ∈ WH (C) and let e be the
edge containing w, with the orientation chosen above. If h(w) 6= w, we define
hw : Cw→ Ch(w) by hw = idP1 if h is compatible with the orientations of e and
h(e), and we set hw(z)= z−1 otherwise. If h ∈ Hw, we define the action of h on Cw
as above. This defines a generically free action of H on C̃. The inertia groups of
the points 0,∞ and ±1 in Cw are Z/deZ, Z/deZ and Z/2Z, respectively. Since
p 6= 2, this shows that the action of H on C̃ is tame. By construction we have
WH (C̃)=∅.

Working backward, one recovers the necessity of the dihedral condition and
char(k) 6= 2. Indeed, any C̃ satisfying the conditions of the theorem must contain
each w ∈WH (C) as a vertex. Since Hw acts on P1

k in the manner described above,
it must be a dihedral group; since its action on Cw has stabilizers of order ±2, we
must have char(k) 6= 2.

Now we assume that the action of H on C is tame and that no element of H
has an isolated fixed point in the middle of an edge. We will define the quotient
metrized complex C/H . The metric graph underlying C/H is the quotient graph
0/H equipped with the following metric: given an edge e of 0 of length ` and
stabilizer He, we define the length of its projection in 0/H to be ` · |He|. The
projection map 0→ 0/H is a tame finite harmonic morphism.

For any vertex p of 0, the k-curve associated to its image in C/H is C p/Hp.
The marked points of C p/Hp are the different orbits of the marked points of C p,
and are naturally in bijection with the edges of 0/H adjacent to the projection
of p. The projection map C→ C/H is a tame harmonic morphism of metrized
complexes.

To see the second part, let C′ be the (tropical) modification of C obtained as
follows: for any closed point x ∈C p with a nontrivial inertia group and which is not
the reduction redp(e) of any edge e adjacent to p, consider the elementary tropical
modification of C at x . Extend the action of H to a tame action on C′ by defining
hx : ex → eh(x) to be affine with slope one for any such point. Let π : C′→ C′/H
be the projection map. Let (X ′, V ′ ∪ D′) be a triangulated punctured K -curve such
that C(X ′, V ′ ∪ D′)∼= C′/H . By Theorem I.7.4, the tame harmonic morphism π

lifts to a morphism of triangulated punctured K -curves (X, V ∪D)→ (X ′, V ′∪D′).
By Remark I.7.5, we have an injection ι : AutX ′(X) ↪→ AutC′/H (C

′). By the
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construction given in the proof of Theorem I.7.4, it is easy to see that every h ∈ H
lies in the image of ι, and thus H ⊂ AutX ′(X). The last part follows formally
from the definition of the modification C′ and the choice of X as the lifting of
π : C′→ C′/H . �

Remark 4.10. (Compare with Remark 4.6.) If the characteristic of k is positive, the
lifting of the action of a finite group on a metrized complexes cannot be guaranteed
in general without further assumptions. Indeed, even in the smooth case, i.e., where
the metrized complex consists of a single vertex v and a single curve Cv , there are
obstructions to the lifting [Oort 1987; Sekiguchi et al. 1989; Green and Matignon
1998; Bertin and Mézard 2000], e.g., due to the fact that the automorphism group of
a smooth proper curve in positive characteristic does not respect the Hurwitz upper
bound 84(g−1). However, Pop’s proof [2014] of the Oort conjecture, based on the
results of Obus and Wewer [2014], shows that in the smooth case the action can be
lifted under the assumption that the stabilizers of points are all cyclic. A natural
question is then to see whether our theorem can be extended by only requiring all
the stabilizers of points to be cyclic (without the tameness assumption).

4.11. Characterization of liftable hyperelliptic augmented metric graphs. Let
0 be an augmented metric graph and denote by r# the weighted rank function on
divisors introduced in [Amini and Caporaso 2013]. Recall that this is the rank
function on the nonaugmented metric graph 0# obtained from 0 by attaching g(p)
cycles, called virtual cycles, of (arbitrary) positive lengths to each p ∈ 0 with
g(p) > 0. We say that an augmented metric graph 0 is hyperelliptic if g(0) ≥ 2
and there exists a divisor D in 0 of degree two such that r#

0(D)= 1. An augmented
metric graph is said to be minimal if it contains neither infinite vertices nor 1-valent
vertices of genus zero. Every augmented metric graph 0 is tropically equivalent to
a minimal augmented metric graph 0′, which is furthermore unique if g(0) ≥ 2.
Since the tropical rank and weighted rank functions are invariant under tropical
modifications, an augmented metric graph 0 is hyperelliptic if and only if 0′ is.
Hence we restrict in this section to the case of minimal augmented metric graphs.

The following proposition is a refinement of a result from [Chan 2013] on vertex-
weighted metric graphs (itself a strengthening of results from [Baker and Norine
2009]):

Proposition 4.12. For a minimal augmented metric graph 0 of genus at least two,
the following assertions are equivalent:

(1) 0 is hyperelliptic;

(2) There exists an involution s on 0 such that:

(a) s fixes all the points p ∈ 0 with g(p) > 0;
(b) the quotient 0/s is a metric tree;
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(3) There exists an effective finite harmonic morphism of degree two ϕ : 0→ T
from 0 to a metric tree T such that the local degree at any point p ∈ 0 with
g(p) > 0 is two.

Furthermore, if the involution s exists, then it is unique.

Proof. The implication (2)⇒ (3) is obtained by taking T = 0/s and letting ϕ be
the natural quotient map.

To prove (3)⇒ (1), we observe that a finite harmonic morphism of degree two
ϕ :0→ T with local degree two at each vertex p with g(p)> 0 naturally extends to
an effective finite harmonic morphism of degree two from a tropical modification 0′

of 0# to a tropical modification T ′ of T as follows: 0′ is obtained by modifying 0#

once at the midpoint of each of its virtual cycles, and T ′ is obtained by modifying T
precisely g(p) times at each point ϕ(p) with g(p)> 0. The map ϕ extends uniquely
to an effective finite degree-two harmonic morphism ϕ′ : 0′→ T ′, since ϕ has local
degree two at p whenever g(p) > 0. By Proposition 4.2, the linearly equivalent
degree-two divisors Dx(ϕ

′) have rank one in 0′ as x varies over all points of T ′,
which shows that 0 is hyperelliptic.

It remains to prove (1)⇒ (2). A bridge edge of 0 is an edge e such that 0 \ e
is not connected. Let 0′ be the augmented metric graph obtained by removing
all bridge edges from 0. Since 0 is minimal, any connected component of 0′

has positive genus. In particular, the involution s, if it exists, has to restrict to
an involution on each such connected component. This implies that s has to fix
pointwise any bridge edge. Hence we may now assume without loss of generality
that 0 has no bridge edge. In this case s has the following simple definition: for
any point p ∈ 0, since r0#(D) = 1 and 0 is two-edge connected, there exists a
unique point q = s(p) such that D ∼ (p)+ (q). This also proves that the involution
is unique. �

From now until the end of the section we assume that char(k) 6= 2. An involution
on a metrized complex C is a finite harmonic morphism s : C→ C with s2

= idC.
An involution is called tame if the action of the group generated by 〈s〉 ∼= Z/2Z

on C is tame.
If X/K is a (smooth proper) hyperelliptic curve, then the augmented metric

graph 0 associated to stable model of X is hyperelliptic. Indeed, if sX is an
involution on X , then the quotient map X → X/s tropicalizes to an effective
tropical morphism ϕ : 0 → T of degree two. The condition that ϕ has local
degree 2 at each point p with g(p) > 0 comes from the fact that any nonconstant
algebraic map from a positive genus curve to P1 has degree at least two. The next
theorem, combined with Proposition 4.12, provides a complete characterization of
hyperelliptic augmented metric graphs which can be realized as the skeleton of a
hyperelliptic curve over K .



Lifting harmonic morphisms II: Tropical curves and metrized complexes 303

p

κ petals

Figure 12. This graph can be lifted to a hyperelliptic curve of
genus g if and only if 2g(p)≥ κ − 2. See Example 4.14.

Theorem 4.13. Let 0 be a minimal hyperelliptic augmented metric graph, and
let s : 0→ 0 be the involution given by Proposition 4.12(2). Then the following
assertions are equivalent:

(1) There exists a hyperelliptic smooth proper curve X over K and an involution
sX : X→ X such that 0 is the minimal skeleton of X , and s coincides with the
reduction of sX to 0.

(2) For every p ∈ 0 we have

2g(p)≥ κ(p)− 2,

where κ(p) denotes the number of tangent directions at p which are fixed by s.

Proof. Consider the finite harmonic morphism π : 0 → 0/s. We note that the
tangent directions at p which are fixed by s are exactly those along which π has local
degree two. Thus the condition 2g(p)≥ κ(p)− 2 is equivalent to the ramification
index Rp being nonnegative: see Section 2. This proves (1)⇒ (2).

To prove (2)⇒ (1), we use Proposition I.7.15 and Theorem 4.9. According to
these results, it suffices to prove that the involution s : 0→ 0 lifts to an involution
s :C→C for some metrized complex C with underlying augmented metric graph 0
such that C/s has genus zero. The existence of such a lift follows from the obser-
vation that Hurwitz numbers of degree two are all positive (see Example 3.4). �

Example 4.14. Let 0 be the augmented metric graph of genus g depicted in
Figure 12 with arbitrary positive lengths. It is clearly hyperelliptic, and since
the involution s restricts to the identity on each bridge edge, it fixes all tangent
directions at p. Then one can lift 0 as a hyperelliptic curve of genus g if and only if
2g(p)≥ κ − 2. In particular, if g(p)= 0 then this metric graph cannot be realized
as the skeleton of a hyperelliptic curve as soon as κ ≥ 3.

Since the hyperelliptic involution is unique for both curves and minimal aug-
mented metric graphs, and since the tangent directions fixed by the hyperelliptic
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involution on an augmented metric graph correspond to bridge edges, we can
reformulate Theorem 4.13 as follows, obtaining a metric strengthening of [Caporaso
2014, Theorem 4.8]:

Corollary 4.15. Let 0 be a minimal augmented metric graph of genus g ≥ 2. Then
there is a smooth proper hyperelliptic curve X over K of genus g having 0 as its
minimal skeleton if and only if 0 is hyperelliptic and for every p ∈ 0 the number of
bridge edges adjacent to p is at most 2g(p)+ 2.

5. Gonality and rank

A fundamental (if vaguely formulated) question in tropical geometry is the following:
if X is an algebraic variety and TX is a tropicalization of X (whatever it means),
which properties of X can be read off from TX? In this section, we discuss more pre-
cisely (for curves) the relation between the classical and tropical notions of gonality,
and of the rank of a divisor. It is not difficult to prove that the gonality of a tropical
curve (resp. the rank of a tropical divisor) provides a lower bound for the gonality
(resp. an upper bound for the rank) of any lift (this is a consequence, for example, of
Corollary I.4.28). Here we address the question of sharpness for these inequalities:

(1) Can a d-gonal (augmented or nonaugmented) tropical curve C always be lifted
to a d-gonal algebraic curve?

(2) Can a divisor D on an (augmented or nonaugmented) tropical curve C always
be lifted to divisor of the same rank on an algebraic curve lifting C?

It follows immediately from Theorem 3.11 that the answer to Question (1) is
yes if C is not augmented, i.e., if we are allowed to arbitrarily increase the genus
of finitely many points in C . On the other hand, we prove in this section that
the answer to Question (1) in the case when C is augmented, and the answer to
Question (2) in both cases, is no.

We refer to [Baker and Norine 2007; Mikhalkin and Zharkov 2008; Amini and
Caporaso 2013; Amini and Baker 2014] for the basic definitions concerning ranks
of divisors on metric graphs, augmented metric graphs, and metrized complexes
of curves.

5.1. Gonality of augmented graphs versus gonality of algebraic curves. An
augmented tropical curve C is said to have an augmented (nonmetric) graph G as its
combinatorial type if C admits a representative whose underlying augmented graph
is G. Given an augmented graph G, we denote by M(G) the set of all augmented
metric graphs which define a tropical curve C with combinatorial type G. In other
words, M(G) consists of all augmented metric graphs which can be obtained by a
finite sequence of tropical modifications (and their inverses) from an augmented
metric graph 0 with underlying augmented graph G. When no confusion is possible,
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we identify an (augmented) tropical curve with any of its representatives as an
(augmented) metric graph: in what follows, we deliberately write C ∈M(G) for
a tropical curve C with combinatorial type G. Note that the spaces M(G) appear
naturally in the stratification of the moduli space of tropical curves of genus g(G);
see for example [Caporaso 2014].

Definition 5.2. An augmented tropical curve C is called d-gonal if there exists a
tropical morphism C→ TP1 of degree d .

An augmented graph G is called stably d-gonal if there exists a d-gonal aug-
mented tropical curve C whose combinatorial type is G.

In other words, an augmented graph G is stably d-gonal if and only if there is
an augmented metric graph 0 ∈M(G) which admits an effective finite harmonic
morphism of degree d to a metric tree.

Remark 5.3. Our definition of the stable gonality of a graph is equivalent to the one
given in [Cornelissen et al. 2014]. See Appendix A of that reference for a detailed
discussion of the relationship between stable gonality and other tropical or graph-
theoretic notions of gonality in the literature, e.g., Caporaso’s definition [2014].

In this section we prove the following theorem, which is an immediate conse-
quence of Corollary I.4.28 and Propositions 5.5 and 5.6 below.

Theorem 5.4. There exists an augmented stably d-gonal graph G such that for any
augmented metric graph 0 ∈M(G) and any smooth proper connected K -curve X
lifting 0, the gonality of X is strictly larger than d.

Let G27 be the graph depicted in Figure 13, which we promote to a totally
degenerate augmented graph by taking the genus function to be identically zero.
Note that g(G27)= 27, and that G27 \ {p} has three connected components, which
we denote by A1, A2 and A3 according to Figure 13.

Given an element 0 ∈M(G27) and a tropical morphism ϕ : C→ TP1 from the
tropical curve represented by 0 to TP1, we denote by ϕi the restriction of ϕ to (the
metric subgraph in 0 which corresponds to) Ai , and by ϕp the restriction of ϕ to a
small neighborhood of the point p.

Proposition 5.5. The graph G27 depicted in Figure 13 is stably 4-gonal.

Proof. We need to show the existence of a suitable tropical curve C with combinato-
rial type G27 which admits a tropical morphism of degree four to TP1. For a suitable
choice of edge lengths on G27, we get an element 0 ∈M(G27) such that there exists
a harmonic morphism from 0 to a star-shaped genus-zero augmented metric graph
with three infinite edges, which has restrictions ϕ1, ϕ2, ϕ3, ϕv to A1, A2, A3 and
a small neighborhood of p, respectively, given as in Figure 14. We claim that ϕ
induces a tropical morphism, i.e., that there exists a tropical modification of ϕ which
is finite and effective.



306 Omid Amini, Matthew Baker, Erwan Brugallé and Joseph Rabinoff

A1 A2

A3

p

Figure 13. The graph G27.
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(a) ϕv (b) ϕ1 = ϕ2 (c) ϕ3

Figure 14. A tropical morphism of degree four.

Note that each of the morphisms ϕ1 and ϕ2 contains a fiber of genus five, while
the morphism ϕ3 has two different fibers of genus one. All the other fibers of
ϕ1, ϕ2 and ϕ3 are either finite or connected of genus zero. We depict in Figure 15
a few patterns which show how to resolve contractions of ϕ, turning ϕ into an
augmented tropical morphism. Figure 15(a) shows how to resolve a contracted
segment (resolving contracted fibers of genus zero). Figure 15(b) shows how to
resolve a contracted cycle (resolving the contracted cycles in ϕ3 and the middle
contracted cycle in ϕ1 and ϕ2): the idea is to reduce to the case of a contracted
segment, in which case one can use the resolution given in Figure 15(a) to finish.
And finally, Figure 15(c) shows how to resolve the two contracted double-cycles
in ϕ1 and ϕ2 by reducing to the case already treated in Figure 15(b). Note that
performing these tropical modifications imposes conditions on the length of the
contracted edges in 0, e.g., in Figure 15(b), the two edges adjacent to the contracted
cycle should have the same length. Nevertheless, by appropriately choosing the
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2

2 2

(a) (b) (c)

Figure 15. Patterns to resolve contractions in the harmonic mor-
phisms ϕ1, ϕ2 and ϕ3. (a) Resolution in one step. (b) Resolution in
two steps (combined with case (a)). (c) Resolution in three steps
(combined with case (b)).

edge lengths, we get the existence of a metric graph 0 ∈M(G27) which admits a
finite morphism of degree four to a metric tree. It is easily seen that this morphism
is effective; thus we get a tropical curve C with combinatorial type G27 and a
tropical morphism of degree four to TP1, finishing the proof of the proposition. �

To conclude the proof of Theorem 5.4, we now show the following:

Proposition 5.6. There is no metrized complex of k-curves with underlying aug-
mented metric graph in M(G27) and admitting a finite morphism of degree four to a
metrized complex of k-curves of genus zero.

We emphasize that the statement holds for any (algebraically closed) field k. The
proof of Proposition 5.6 relies on some technical lemmas that we state now.

We first recall a formula given in [Amini and Baker 2014] for the rank of divisors
on a metric graph 0=01∨02 which is obtained as a wedge sum of two metric graphs
01 and 02. Recall that, given two metric graphs 01 and 02 and distinguished points
t1 ∈ 01 and t2 ∈ 02, the wedge sum or direct sum of (0i , ti ), denoted 0 = 01 ∨02,
is the metric graph obtained by identifying the points t1 and t2 in the disjoint union
of 01 and 02. Denoting by t ∈ 0 the image of t1 and t2 in 0, one refers to t ∈ 0
as a cut-vertex and to 0 = 01 ∨ 02 as the decomposition corresponding to the
cut-vertex t . (By abuse of notation, we will use t to denote both t1 in 01 and t2
in 02.) There is an addition map Div(01)⊕Div(02)→ Div(0) which sends a pair
of divisors D1 and D2 in Div(01) and Div(02) to the divisor D1+D2 on 0 defined
by pointwise addition of the coefficients in D1 and D2.

Let D1 ∈ Div(01) and D2 ∈ Div(02). For any nonnegative m, define η01,D1(m)
as the minimum integer h such that r01(D1+ h(t1))= m. Then

r0(D)=min
m≥0
{m+ r02(D2− η01,D1(m)(t2))} (5.6.1)
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Figure 16. (a) A metric graph 0 in M(A1)=M(A2). (b) A metric
graph 0 in M(A3).

(see [ibid.] for details).

In what follows, (5.6.1) will be applied to a metric graph 0 ∈M(A1)=M(A2)

(see Figure 16(a) and Lemma 5.7), to a metric graph0∈M(A3) (see Figure 16(b) and
Lemma 5.9), and to 027 ∈M(G27) with cut-vertex p in the proof of Proposition 5.6.

Lemma 5.7. Let0 be a metric graph in M(A1)=M(A2) as depicted in Figure 16(a).
For any nonnegative integers a ≤ 3 and b ≤ 1, the divisors a(p) + b(q) and
b(p)+ a(q) have rank zero in 0.

Proof. By symmetry, it is enough to prove the lemma for the divisor D= 3(p)+(q).
Consider the decomposition 0 = 0p ∨0q associated to the cut-vertex t in 0, where
0p and 0q denote the closure in 0 of the two connected components of 0 \ {t}
which contain the points p and q , respectively.

We claim that η0q ,(q)(1)= 3. Assume for the moment that this is true. Then by
(5.6.1), we have

0≤ r0(3(p)+ (q))≤ 1+ r0p(3(p)− 3(t)).

By Lemma 5.8 below, in 0p we have r0p(3(p)− 3(t))=−1. We thus infer that
r0(3(p)+ (q))= 0.

It remains to prove that η0q ,(q)(1)= 3. In other words, we need to show that in 0q

we have r0q (2(t)+ (q))= 0. For this, consider the decomposition 0q = 0
t
q ∨0

q
q

corresponding to the cut-vertex s in 0q , where 0t
q and 0q

q denote the components
which contain t and q, respectively. We claim that η0t

q ,2(t)(1) = 1. Assuming
the claim, we have 0 ≤ r0q (2(t)+ (q)) ≤ 1+ r0q

q
((q)− (s)) = 0 (since q and s

are not linearly equivalent in 0q
q ; see Lemma 5.8). So it remains to prove that

η0t
q ,2(t)(1)= 1. This is equivalent to r0t

q
(2(t))= 0, which is obviously the case. �

Lemma 5.8. Let 0 be any metric graph in M(G3), where G3 is the totally degen-
erate graph depicted in Figure 17(a). Then the two divisors 3(p) and 3(t) are not
linearly equivalent in 0.

Proof. By symmetry we can assume that the length of the edge {u, p} is less than
or equal to the length of the edge {t, w}. Then there exists a point t ′ in the segment
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Figure 17. (a) The divisor 3(p)− 3(t) is not rationally equivalent
to zero. (b) 3(p)− 3(t)∼ 3(u)− 3(t ′).

[t, w] so that 3(p)− 3(t) ∼ 3(u)− 3(t ′)— see Figure 17(b) — and we are led to
prove that D = 3(u)− 3(t ′) is not linearly equivalent to zero. Consider the unique
t ′-reduced divisor Dt ′ linearly equivalent to D in 0 (see, e.g., [Amini 2013; Baker
and Norine 2007] for the definition and basic properties of reduced divisors). It will
be enough to show that Dt ′ 6= 0. Three cases can occur, depending on the lengths
`z, `w and `t ′ in 0 of the edges {u, z}, {u, w} and the segment {u, t ′}, respectively:

• If `z = min{`z, `u, `t ′}, then there are two points w′ and t ′′ on the segments
{u, w} and {u, t ′}, respectively, such that Dt ′ = (z)+ (w′)+ (t ′′)− 3(t ′).

• If `u = min{`z, `u, `t ′}, then there are two points z′ and t ′′ on the segments
{u, z} and {u, t ′}, respectively, such that Dt ′ = (z′)+ (w)+ (t ′′)− 3(t ′).

• If `t ′ = min{`z, `u, `t ′}, then there are two points z′ and w′ on the segments
{u, z} and {u, w}, respectively, such that Dt ′ = (z′)+ (w′)− 2(t ′).

In all the three cases, we have Dt ′ 6= 0, which shows that D cannot be equivalent to
zero in 0. �

Lemma 5.9. Let 0 ∈ M(A3) be a metric graph as depicted in Figure 16(b). For
any a, b ≤ 2, the divisor a(p)+ b(q) has rank zero on 0.

Proof. The arguments are similar to the ones used in the proof of Lemma 5.7. Con-
sider the cut-vertex t in 0 and denote by 0p and 0q the corresponding components
containing p and q, respectively. We claim that η0q ,2(q)(1) = 2. This obviously
implies the lemma. Indeed, r0p(2(p)− 2(t)) = −1 (which can be verified by an
analogue of Lemma 5.8 in 0p), and thus (5.6.1) implies that r0(2(p)+ 2(q)) ≤
1+ r0p(2(p)− 2(t))= 0.

To show that η0q ,2(q)(1)= 2, it will be enough to show that r0q (2(q)+ (t))= 0.
This can be done in exactly the same way by considering the other cut-vertex s
adjacent to t in 0q . �
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Lemma 5.10. Let x1, x2 and x3 be distinct points in P1(k). Then there does not
exist a morphism f : P1

→ P1 of degree four branched over x1, x2 and x3 and
having ramification profile (2, 2), (2, 2) and (3, 1) at these three points.

Proof. Suppose that such a rational map f :P1
→P1 exists. The monodromy group

of f is a subgroup of S4, so its cardinality is of the form 2a3b. In particular, if
the characteristic of k is neither 2 nor 3, then f has a tame monodromy group and
the nonexistence of f then comes from the fact that H 4

0,0((2, 2), (2, 2), (3, 1))= 0
(see Example 3.4).

Hence it remains to check the lemma for char(k) = 2, 3. Note that the same
technique we use in this case works in any characteristic, but the computations are
a bit more tedious in characteristic different from 2 and 3.

Up to the action of GL(2, k) on P1 via automorphisms, we may assume that
x1 = 0, x2 =∞ and x3 = 1, and that

f (X)= a
X2(X + 1)2

(X + b)2

with a 6= 0 and b 6= 0,−1. Hence the condition on the ramification profile of x3

translates as
aX2(X + 1)2− (X + b)2 = c(X − d)3(X − e)

with c 6= 0, d 6= 0,−1, b and e 6= 0,−1, b, d . Looking at the coefficients of the two
polynomials, we obtain the five equations

(E1) : a = c, (E2) : ec =−2a− 3cd, (E3) : a− 1= 3cd(d + e),

(E4) : 2b = cd2(d + 3e), (E5) : −b2
= cd3e.

If k has characteristic 2, then (E2) becomes ec = cd , which contradicts the fact
that e 6= d .

If k has characteristic 3, then these five equations become

(E1) : a= c, (E2) : ec= a, (E3) : a= 1, (E4) : −b= cd3, (E5) : −b2
= cd3e.

Equations (E1), (E2), (E3) imply a = c = e = 1. Then (E4) and (E5) become
−b = d3

=−b2; hence b = 1= e, which contradicts our assumptions. �

We can now give the promised proof of Proposition 5.6.

Proof of Proposition 5.6. Suppose that there exists a metrized complex of k-
curves C27 of genus 27 with underlying augmented metric graph 027 in M(G27),
and admitting a finite harmonic morphism of metrized complexes of degree four
ϕ :C27→T, for T of genus zero with underlying metric tree denoted by T . Without
loss of generality, we may assume that T has no infinite vertex q ∈ V∞(T ) such
that any infinite edge e′ adjacent to an infinite vertex q ′ ∈ ϕ−1(q) has de′(ϕ)= 1.
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We are going to prove below that the local degree at p is 4. Assuming that this
is the case, we show how the proposition follows. Denote by 01, 02 and 03 the
three components of 027 \{p} which contain A1, A2 and A3, respectively. Since the
degree of ϕ at p is four, we have ϕ−1(ϕ(p))= {p}. Therefore, by the connectivity
of 0i , the images of 0i under ϕ are pairwise disjoint in T . This shows that for x
sufficiently close to ϕ(p) in T , the support of the divisor Dx(ϕ) lives entirely in
one of the 0i for i ∈ {1, 2, 3}. Choose xi sufficiently close to ϕ(p) such that the
support of Dxi (ϕ) is contained in 0i . Applying Proposition 4.2, we see that each
divisor Dxi (ϕ) has rank one in 0i . Now, according to Lemma 5.7, the degree-four
divisor Dx1(ϕ) (resp. Dx2(ϕ)) must be of the form 2(a)+2(b) for two points a and
b sufficiently close to p and lying on the two different branches of 01 (resp. 02)
adjacent to p. Similarly, by Lemma 5.9, the divisor Dx3(ϕ) has to be of the form
3(a) + (b) for two points a and b sufficiently close to p and lying on the two
different branches of 03 adjacent to p. This shows that the map ϕp, the restriction
of ϕ to a sufficiently small neighborhood of p in 027, coincides with the map
depicted in Figure14(a). The proposition now follows from Lemma 5.10.

It remains to prove that dp(ϕ) = 4. We first claim that ϕ maps one of the
components0i , for i=1, 2, 3, onto a connected component of T \{ϕ(p)}. Otherwise,
for the sake of contradiction, suppose that ϕ−1(ϕ(p)) consists of p and one point pi

in each of the components 0i for i = 1, 2, 3. Then ϕ has local degree one at each
of the points pi . By Proposition 4.2, Dϕ(p)(ϕ)= (p)+ (p1)+ (p2)+ (p3) has rank
one in 0. By (5.6.1) applied to the cut-vertex p in 027, we infer that the divisor
(p)+ (pi ) has rank one in the metric graph 0i , the closure of 0i in 027. In other
words, the metric graphs 0i are hyperelliptic, which is clearly not the case. This
gives a contradiction and the claim follows.

Summarizing, there must exist at least one 0i such that ϕ maps 0i onto one of
the connected components of T \ {ϕ(p)}. Reasoning again as in the first part of the
proof, it follows from Proposition 4.2 and Lemmas 5.7 and 5.9 that the restriction
of ϕ to 0i has degree four, which implies that dp(ϕ)= 4. �

5.11. Lifting divisors of given rank. First, recall that to a smooth proper curve X
over K together with a semistable vertex set V and a subset D0 of X (K ) compatible
with V , we can naturally associate a metrized complex of curves C=6(X, V ∪D0)

with underlying augmented metric graph 0. As in [Amini and Baker 2014], there
are natural specialization maps on divisors, which we denote for simplicity by the
same letter τ∗:

τ∗ : Div(X)−→ Div(C) and τ∗ : Div(C)−→ Div(0).

Since this discussion is pointless in the case of rational curves, we may assume
that X (equivalently, C or the augmented metric graph 0) has positive genus. We will
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also assume that 0 does not have any infinite vertices, i.e., that D0 is empty, which
does not lead to any real loss of generality and which makes various statements
easier to write down and understand. We may also assume without loss of generality
that V is a strongly semistable vertex set of X .

According to the specialization inequality [Baker 2008; Amini and Caporaso
2013; Amini and Baker 2014]), for any divisor D in Div(X) one has

rX (D)≤ rC(τ∗(D))≤ r#
0(τ∗(D))≤ r0(τ∗(D)), (5.11.1)

where rX , rC and r0 denote rank of divisors on X , C and (unaugmented) 0, re-
spectively, and r#

0 denotes the weighted rank in the augmented metric graph (0, g)
(see (4.11)).

We spend the rest of this section discussing the sharpness of the inequalities
appearing in (5.11.1).

Definition 5.12. Let C be a metrized complex of curves whose underlying metric
graph 0 has no infinite leaves, and let D be a 3-rational divisor in Div3(C). A
lifting of the pair (C,D) consists of a triple (X, V ; DX ) where X is a smooth proper
curve over K , V is a strongly semistable vertex set for which C=6(X, V ), and
DX is a divisor in Div(X) with D∼ τ∗(DX ). We say that the inequality rX ≤ rC is
sharp if for any metrized complex of curves C and any divisor D ∈ Div(C), there
exists a lifting (X, V ; DX ) of (C,D) such that rX (DX )= rC(D).

We can define in a similar way what it means to lift a divisor on an (augmented)
metric graph to a divisor on a metrized complex of curves or to a smooth proper
curve over K , and what it means for the corresponding specialization inequalities
to be sharp.

It is easy to see that the inequality r#
0 ≤ r0 is not sharp (see [Amini and Baker

2014] for a precise formula relating the two rank functions).
The following example is due to Ye Luo (unpublished); we thank him for his

permission to include it here. Together with Corollary I.4.28, it implies that the
inequality rX ≤ r0 is not sharp.

Example 5.13 (Luo). Let 0 be a metric graph in M(G7), where G7 is the graph
of genus seven depicted in Figure 18(a), such that all edge lengths in 0 are equal,
and let D = (p)+ (q)+ (s) ∈ Div(0). Then r0(D) = 1, but there does not exist
any finite harmonic morphism of metric graphs ϕ : 0′→ T of degree three to a
metric tree for any 0′ ∈M(G7). In particular, this shows that the stable gonality of
an augmented graph can be greater than its divisorial gonality.

We briefly sketch a proof. Suppose that such a finite harmonic morphism ϕ :

0′→T exists. Since 0′ is not hyperelliptic, one easily verifies that Dϕ(p)(ϕ)=3(p),
Dϕ(q)(ϕ)=3(q), and Dϕ(s)(ϕ)=3(s). This shows the existence of a finite morphism
ϕ′ :0′1→ T ′ of degree three to a metric tree T ′, where 0′1 is depicted in Figure 18(b),
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Figure 18. (a) The graph G7. (b) The metric graph 0′1 ⊂ 0
′.

so that Dϕ′(p)(ϕ
′)= 3(p), Dϕ′(q)(ϕ

′)= 3(q) and Dϕ(s)(ϕ
′)= 3(s). But it is easy to

verify by hand that such a morphism ϕ′ does not exist.

Proposition 5.14. Neither of the inequalities rX ≤ rC and rC ≤ r#
0 is sharp.

Proof. To show the nonsharpness of the inequality rX ≤ rC, let C be a metrized
complex of curves whose underlying metric graph 0 belongs to the family depicted
in Figure 12, with first Betti number κ , and whose genus function is positive at
each vertex. Consider the divisor Dd = d(p)⊕d(x) in C for a closed point x in C p

and d a positive integer. If d is sufficiently large compared to the genera of the
vertices, then rC(Dd) ≥ 1. If the pair (C,Dd) lifted to a triple (X, V ; DX ) with
τ∗(DX )∼ Dd , then there would exist a finite harmonic morphism ϕ : C̃→ T from
a modification of C to a metrized complex of curves of genus zero. But this would
imply the existence of a degree-d morphism ϕp : C p→ P1 such that the image of
redp (on edges adjacent to p in 0) is contained in the set of critical values of ϕp.
By the Riemann–Hurwitz formula, this is impossible for κ large enough compared
to d .

To show the nonsharpness of the inequality rC ≤ r#, let again (0, g) be an
augmented metric graph with underlying graph depicted in Figure 12 with κ ≥ 3
and 2 ≤ 2g(p) < κ − 2, and let D = 2(p). One easily computes that r#

0(D) = 1.
An algebraic curve of genus g(p)≥ 1 contains at most 2g(p)+ 2 distinct points p
such that 2(p) is in a given linear system of degree two, which implies that (0, g)
cannot be lifted to a hyperelliptic metrized complex of curves. This shows that the
inequality rC ≤ r#

0 is not sharp. �
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