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Let W be a complex reflection group. We prove that there is a maximal finite-
dimensional quotient of the Hecke algebra Hq.W / of W , and that the dimension
of this quotient coincides with jW j. This is a weak version of a 1998 Broué–
Malle–Rouquier conjecture. The proof is based on the categories O for rational
Cherednik algebras.

1. Introduction

Let W be a complex reflection group. Recall that such groups are fully classified;
see [Shephard and Todd 1954]. In this context, one can also define the braid
group BW . Namely, let h denote the reflection representation of W . Inside h, one
considers the open subset of regular points hreg WD fx 2 h jWx D f1gg, so that W is
the Galois group of the cover hreg� hreg=W . By definition, the braid group BW

is the fundamental group �1.h
reg=W /.

If W is a Coxeter group, one considers a flat deformation of CW , called a Hecke
algebra. These algebras are of importance in representation theory (e.g., that of
finite groups of Lie type) and beyond (e.g., in knot theory). One can define Hecke
algebras for complex reflection groups as well. In the general case, this was done
in [Broué et al. 1998, Section 4C]. To recall the definition, we need some more
notation. Namely, let H denote the set of reflection hyperplanes for W . For � 2 H,
let W� denote the pointwise stabilizer of �; this is a cyclic group. Set `� WD jW� j.
The group BW is generated by elements T� , � 2H, where, roughly speaking, T� is
the rotation around � by 2�=`� ; see [loc. cit., Section 2]. Now, pick independent
variables u�;i , i D 0; 1; : : : ; `� � 1 with u�;i D u� 0;i for W -conjugate �; � 0. Set
u WD .u�;i /. By definition ([loc. cit., Definition 4.21]), the Hecke algebra Hu.W /

is the quotient of ZŒu˙1�BW by the relations

`��1Y
iD0

.T� �u�;i /D 0:
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Broué, Malle and Rouquier [Broué et al. 1998, Section 4C] conjectured that Hu.W /

is a free ZŒu˙1�-module generated by jW j elements. Currently, the proof is missing
in the case of several exceptional complex reflection groups. In this paper, we are
going to prove a weaker version of this conjecture.

First of all, we are dealing with specializations to C. For a collection of nonzero
complex numbers .q�;i /, where � 2 H=W and i 2 f0; 1; : : : ; `� � 1g, consider
the C-algebra Hq.W /, the specialization of Hu.W / with u�;i 7! q�;i . Note that
replacing the collection q�;i with .˛�q�;i / for ˛� 2C�, we get isomorphic algebras;
see, e.g., [Rouquier 2008, Section 3.3.3]. So the number of parameters actually
equals jS=W j, where S denotes the set of complex reflections in W . Note that
if q�;j D exp.2�

p
�1j=`�/ for all � and j , we just have Hq.W / D CW . In

general, however, it is even unclear whether the algebra Hq.W / is finite-dimensional
or not. In a way, the infinite dimension is the only obstruction to the equality
dim Hq.W /D jW j. More precisely, we have the following theorem, which is the
main result of this paper:

Theorem 1.1. There is a minimal two-sided ideal I �Hq.W / such that Hq.W /=I

is finite-dimensional. Moreover, we have dim Hq.W /=I D jW j.

Other results towards the Broué–Malle–Rouquier conjecture were known before;
see [Marin 2014] for a review. One advantage of our approach is that it is fully
conceptual and does not involve any case-by-case arguments.

The key idea of the proof is to use categories O for rational Cherednik algebras
Hc.W /, introduced in [Ginzburg et al. 2003]. By definition, the algebra Hc.W / is
the subalgebra in the skew-group algebra D.hreg/#W generated by CŒh�;CW and
the so-called Dunkl operators Da; a 2 h. These are differential operators with first-
order poles along the reflection hyperplanes � . We have a triangular decomposition
Hc.W / D CŒh�˝ CW ˝ S.h/ that allows to define the category O. This is the
category of all Hc.W /-modules that are finitely generated over CŒh� and have a
locally nilpotent action of h� S.h/.

Let us pick M 2 O. Its restriction to hreg is a W -equivariant local system on hreg.
So the fiber Mx carries a monodromy representation of BW . It was shown in
[Ginzburg et al. 2003] that the CBW -action on Mx factors though a certain quotient
of Hq.W / that has dimension jW j. We will show that every finite-dimensional
Hq.W /-module can be represented in the form Mx for some M 2 O.

The assumption dim Hq.W /D jW j is actually important for the representation
theory of Hc.W /. Theorem 1.1 should make it possible to remove this assumption,
but we are not going to elaborate on that.

The paper is organized as follows: In Section 2 we gather various generalities
on the rational Cherednik algebras and their categories O. Then in Section 3 we
prove the main theorem.
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2. Generalities

2A. Rational Cherednik algebras. Rational Cherednik algebras were introduced
by Etingof and Ginzburg [2002]. In this subsection we recall their definition.

Let W be a complex reflection group and h be its reflection representation. We
denote the subset of W consisting of complex reflections by S . For s 2 S , pick an
eigenvector ˛s 2 h

� for s with eigenvalue �s ¤ 1. We fix a W -invariant function
c W S ! C. Using this function, for a 2 h, we can define the Dunkl operator
Da 2D.h

reg/#W by

Da D @aC

X
s2S

2c.s/

1��s

h˛s; ai

˛s
.s� 1/:

The rational Cherednik algebra Hc.W / is the subalgebra in D.hreg/#W generated
by CŒh�;CW and the Dunkl operators Da; a 2 h. Alternatively, one can present
Hc.W / by generators and relations: Hc.W / is the quotient of T .h˚ h�/#W by
the relations

Œx;x0�D Œy;y0�D0; Œy;x�Dhy;xi�
X
s2S

c.s/h˛s;yih˛
_
s ;xis; x;x02h�; y;y02h:

Here, we write ˛_s for the eigenvector of s in h with eigenvalue ��1
s and h˛_s ; ˛siD2.

To get from the second definition to the first one, we use the homomorphism
Hc.W /! D.hreg/#W given by x 7! x;w 7! w; y 7! Dy . Set ı WD

Q
s2S ˛

`s
s ,

where `s stands for the order of s (note that this is slightly different from the usual
definition). This is aW -invariant element, and the operator ad ı WHc.W /!Hc.W /

is locally nilpotent, so the localization Hc.W /Œı
�1� is defined. The homomorphism

Hc.W /!D.hreg/#W extends to an isomorphism Hc.W /Œı
�1� �!� D.hreg/#W .

The algebra Hc.W / admits a triangular decomposition: a natural map S.h�/˝
CW ˝S.h/!Hc.W / is an isomorphism. Also Hc.W / is graded with deg x D 1,
degw D 0, degy D�1, x 2 h�, w 2W , and y 2 h. We call this grading the Euler
grading. It is inner: it is given by the eigenvalues of adh, where

hD

nX
iD1

xiyi C
n

2
�

X
s2S

2c.s/

1��s
s: (2-1)

Now let us discuss base change for Hc.W /. Let U be an affine algebraic
variety equipped with an étale map U ! h=W . Then CŒU �˝CŒh�W Hc.W / has
a natural algebra structure; it is a subalgebra in D.U �h=W hreg/#W generated
by CŒU �˝CŒh=W � CŒh�;CW and the Dunkl operators. Similarly, if U is a Stein
complex analytic manifold (again equipped with an étale map U ! h=W ), then
CanŒU �˝CŒh=W �Hc.W / is an algebra. Here and below CanŒU � denotes the algebra
of analytic functions on U .
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2B. Category O and KZ functor. The category O for Hc.W / was defined in
[Ginzburg et al. 2003]. By definition, it consists of all Hc.W /-modules M that are
finitely generated over S.h�/D CŒh� and where the action of h is locally nilpotent.
Equivalently, O consists of all Hc.W /-modules M that are finitely generated over
CŒh� and that can be graded. This category O will be denoted by Oc.W /.

Let us proceed to the KZ functor introduced in [loc. cit., Section 5]. Pick
M 2 Oc.W /. Then MŒı�1� is a W -equivariant local system on D.hreg/ with
regular singularities. The category of such local systems is equivalent to the
category BW -modfin of finite-dimensional BW -modules; to a local system M 0 one
assigns its fiber (or, more precisely, the fiber of its descent to hreg=W ) equipped
with the monodromy representation. It turns out that the monodromy representation
associated to MŒı�1� factors through Hq.W / [loc. cit., Section 5.3], where the
parameter q is computed as follows: For a reflection hyperplane � , set

h�;i D
1

`�

X
s2W�nf1g

2c.s/

�s � 1
��i

s ; (2-2)

q�;i D exp.2�
p
�1.h�;j C j=`H //: (2-3)

So we get an exact functor KZ W Oc.W /!Hq.W /-modfin. This functor is given by
HomOc.W /.PKZ; �/, where PKZ is a projective object such that dim EndOc.W /.PKZ/

is equal to jW j, equipped with a homomorphism Hq.W /! EndOc.W /.PKZ/
opp.

The proof of [loc. cit., Theorem 5.15] shows that this homomorphism is surjective.
Theorem 1.1 will follow if we show that the functor KZ is essentially surjective.

2C. Isomorphisms of étale lifts. Here we are going to recall some results of
[Bezrukavnikov and Etingof 2009] regarding isomorphisms of completions.

Let W 0 � W be a parabolic subgroup, i.e., the stabilizer of a point in h. Set
hreg�W 0

WD fb 2 h jWb �W
0g. The complement of hreg�W 0

in h is the union of the
hyperplanes ker˛s for s 62W 0. So hreg�W 0

is a principal open subset of h. Note that
the natural morphism hreg�W 0

=W 0! h=W is étale (and hreg�W 0

=W 0 is precisely
the unramified locus of h=W 0! h=W ).

Consider the spaceHc.W /reg�W 0 WDCŒhreg�W 0

�W
0

˝CŒh�W Hc.W /. As was men-
tioned in the end of Section 2A,Hc.W /reg�W 0 is actually an algebra. Bezrukavnikov
and Etingof [2009, Section 3.3] essentially found an alternative description of this
algebra. Namely, consider the Cherednik algebra Hc.W

0; h/ defined for the pair
W 0; h; it decomposes into the tensor product Hc.W

0; h/ D D.hW 0

/˝Hc.W
0/

(here we abuse notation and write c for the restriction of c to S \W 0; D.hW 0

/

stands for the algebra of differential operators on hW 0

). Then consider its localization
Hc.W

0; h/reg�W 0 WD CŒhreg�W 0

�W
0

˝CŒh�W 0 Hc.W
0; h/. Then, following [loc. cit.,

Section 3.2], we can form the centralizer algebra Z.W;W 0;Hc.W
0; h/reg�W 0/. Re-

call that, by definition, for an algebra A equipped with a homomorphism CW 0!A,
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one defines the centralizer algebra Z.W;W 0; A/ as the endomorphism algebra of
the right A-module MapW 0.W;A/Dff WW !A j f .w0w/Dw0f .w/g. Choosing
representatives of the left W 0-cosets in W , we get an identification Z.W;W 0; A/Š
MatjW=W 0j.A/. The algebra A can be recovered from Z.W;W 0; A/ as follows:
Consider the element e.W 0/2Z.W;W 0; A/ given by e.W 0/f .u/Df .u/ if u2W 0

and 0 otherwise. Then e.W 0/Z.W;W 0; A/e.W 0/ is naturally identified with A.
The following is essentially [loc. cit., Theorem 3.2] (there, the authors considered

completions instead of étale lifts, but the proof works in our situation as well).

Lemma 2.1. There is a unique isomorphism

� WHc.W /reg�W 0 �!� Z.W;W 0;Hc.W
0; h/reg�W 0/ (2-4)

such that the following hold for any f 2MapW 0.W;A/ and any u 2W :

Œ�.g/f �.u/D gf .u/; g 2 CŒhreg�W 0

�W
0

;

Œ�.˛/f �.u/D .u˛/f .u/; ˛ 2 h�;

Œ�.w/f �.u/D f .uw/; w 2W;

Œ�.a/f �.u/D .ua/f .u/C
X

s2SnW 0

2c.s/

1��s

h˛s; uai

˛s
.f .su/�f .u//; a 2 h:

Note that the algebras in (2-4) come equipped with C�-actions by algebra
automorphisms. For example, the action of Hc.W /reg�W 0 comes from the action
on Hc.W / induced from the Euler grading and the action on hreg�W 0

=W 0 induced
from the scaling action (t:x D t�1x) on h. The isomorphism � is C�-equivariant.

We can further restrict � to some analytic submanifolds or formal subschemes of
hreg�W 0

=W 0. Choose a little disk Y � hreg�W 0

\hW 0

and also a little diskD around
0 in hW 0=W 0, where hW 0 denotes the uniqueW 0-stable complement to hW 0

in h. We
set yY WD Y �D; this is an open submanifold in hreg�W 0

=W 0, in .hreg�W 0

\hW 0

/�

hW 0=W 0 or in h=W (under the natural morphism hreg�W 0

=W 0! h=W ).
So we get an isomorphism

�Y W CanŒ yY �˝CŒh=W �Hc.W / �!
� Z.W;W 0;CanŒ yY �˝CŒh=W 0�Hc.W

0; h//: (2-5)

Note that this isomorphism is compatible with the Euler derivations.
We can restrict even further. Pick a point b 2 Y , and consider the completion

CŒh=W �^b of CŒh=W � with respect to the maximal ideal defined by b. Then �Y

induces

�b W CŒh=W �
^b ˝CŒh=W �Hc.W /

�!� Z.W;W 0;CŒh=W 0�^b ˝CŒh=W 0�Hc.W
0; h//: (2-6)

This isomorphism was originally constructed in [Bezrukavnikov and Etingof 2009].
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3. Proof of the main theorem

3A. Scheme of the proof. Let V be a finite-dimensional Hq.W /-module and let
N denote the corresponding W -equivariant D-module on hreg. Our goal is to show
that there is an M 2 Oc.W / such that MŒı�1�ŠN . This consists of two steps:

(I) Set hsr WD fb 2W j dim hWb > dim h�1g. This is an open subset that coincides
with

S
�2H hreg�W� ; the codimension of its complement is bigger than 1. We

will see that there is an Ohsr=W -coherent Ohsr=W ˝CŒh�W Hc.W /-module zN
whose restriction to hreg=W is isomorphic to N and that carries a locally finite
derivation compatible with the Euler derivation of Hc.W /.

(II) We will see that zN is a vector bundle. From here we will deduce that the
global sections of zN are finitely generated and hence lie in Oc.W /. Then we
take M WD �. zN/.

Let us elaborate on how we are going to achieve (I). First, in Section 3B we will
check that the Euler vector field acts on N locally finitely. This will eventually
prove that zN comes equipped with a locally finite derivation that is compatible with
the Euler one on Hc.W /.

Now let us explain how we produce zN ; this is done in Section 3C. TakeW 0DW�

and let yY have the same meaning as in Section 2C. Set yY � WD yY nY . ConsiderN� WD

e.W 0/.CanŒ yY
��˝CŒhreg=W �N/. This is a vector bundle on yY � with a meromorphic

connection that has pole of order 1 on Y (since N� is obtained by restricting an
algebraic vector bundle e.W 0/���N , where �� is a natural morphism h=W�!h=W ,
it makes sense to speak about sections of N� with poles on Y ; here and below
�� denotes the projection h=W� ! h=W ). Our first step will be to see that
N� is obtained by restricting a CanŒ yY �˝CŒh=W � Hc.W /-module M� . Then we
will see that Œe.W 0/���N�\M� (the intersection of subspaces in N� ) is finitely
generated over CŒhreg�W 0

=W 0�. We will get zN , roughly speaking, by taking the
intersection of N and ���N \M� over all possible � .1

3B. Locally finite derivation. Our goal here is to show that the Euler vector field
acts on N locally finitely. Recall that N is a local system on hreg=W with regular
singularities. Our claim is a consequence of the following general result.

Lemma 3.1. Let X be the complement to a C�-stable divisor in Cd , and let N be a
local system with regular singularities on X . Then the Euler vector field eu acts on
N locally finitely, meaning that every n 2N is included into a finite-dimensional
eu-stable subspace.

1After this paper was written, I learned from Etingof that most of the proof is already contained in
some form in [Wilcox 2011]. Lemmas 5.7 and 5.8 there are similar to what is done in Section 3C,
while the main result of Section 3D has a somewhat easier proof in [Wilcox 2011, Lemma 3.6].
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This claim should be standard, but we provide the proof for the sake of com-
pleteness. For a different proof, see [Wilcox 2011, Lemma 3.2].

Proof. If N 0 �N is a D.X/-submodule and eu acts locally finitely on N=N 0 and
N 0, then the same is true for N . So it is enough to assume that N (and hence V ) is
irreducible. Consider the element � 2 �1.X/ given by the loop exp.2�

p
�1t/x0,

t 2 Œ0; 1�, where x0 denotes the base point. The element � is central and hence
has to act on V by a scalar. Under the Riemann–Hilbert correspondence, this
translates to the claim that N is twisted equivariant with respect to the C�-action.
This implies our claim. �

3C. Extension to codimension 1. We start by constructing M� .
Set yY � WD Y �D�D yY nY . Consider the category Locrs. yY ; Y / of meromorphic

local system on yY � with regular singularities on Y (so an object in Locrs. yY ; Y /

comes equipped with a lattice over the ring of meromorphic differential operators
on yY �, and a morphism in the category is supposed to preserve such lattices).
The category Locrs. yY ; Y / is equivalent to the category CŒT˙1�-mod of finite-
dimensional CŒT˙1�-modules via taking the monodromy representation, because
�1. yY

�/D �1.D
�/D Z (here we use the regular singularities condition). Under

the equivalence CŒT˙1�-modŠ Locrs. yY ; Y /, the KZ functor becomes

Oc.W
0/! Locrs. yY ; Y /; M 7! CanŒ yY

��˝CŒhW 0 =W 0�M

(with meromorphic lattice CanŒ yY �Œ�
�1�˝CŒhW 0 =W 0�M , where � denotes a coordinate

on hW 0=W 0). The right adjoint KZ� sends N 0 2 Locrs. yY ; Y / to the subspace of N 0

of all meromorphic elements annihilated by the vector fields on Y and lying in the
generalized eigenspace for hW 0 �Hc.W

0/ with eigenvalue 0.
Now we can produce a CŒ yY �˝CŒh=W 0�Hc.W

0; h/-module M� 2 Oc.W
0; yY /. Set

N� D e.W
0/.CanŒ yY

��˝CŒhreg=W �N/. This is an object in Locrs. yY ; Y /. Note that,
under the equivalence Locrs. yY ; Y /Š CŒT˙1�-mod, we have N� 2Hq.W

0/-mod.
Now set

M� WD CanŒ yY �˝CŒhW 0 =W 0� KZ�.N�/: (3-1)

Note that the description of KZ�.N�/�N� implies that it is stable under the
Euler vector field on N� . So M� �N� is also stable under the Euler vector field.

Let zN� WD M� \ e.W
0/���N (the intersection is taken inside N� ). This is a

submodule in the CŒhreg�W 0

�W
0

˝CŒh=W 0� Hc.W
0/-module e.W 0/���N which is

stable under the Euler vector field.

Lemma 3.2. The module zN� is finitely generated over CŒhreg�W 0

�W
0

and satisfies
zN� Œ�

�1�D e.W 0/���N , where � is a coordinate on hW 0=W 0 Š C.
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Proof. Note that the epimorphism Hq.W
0/!EndOc.W 0/.PKZ/

opp is an isomorphism.
Let Nmer

� � N� denote the meromorphic lattice. Then M� is contained in Nmer
�

and is a CanŒ yY �-lattice there. Indeed, it is enough to show this fiberwise (i.e.,
at any point of Y ), where this is clear (to prove that M� is a lattice we use the
observation that N� is the image ofM� under the KZ functor). For any other lattice
M 0, we have �dM 0 � M� � �

�dM 0 for some d > 0. So it is enough to show
that e.W 0/���N \M

0 is finitely generated for some lattice M 0. Let us construct
such an M 0.

As a CŒhreg=W �-module, N is projective and hence is a direct summand in a free
module, say CŒhreg=W �˚r . So Nmer

� is a direct summand in CanŒ yY �Œ�
�1�˚r . The

intersection M 0 WDNmer
� \CanŒ yY �

˚r (inside CanŒ yY �Œ�
�1�˚r ) is clearly a lattice in

Nmer
� . Further, the intersection M 0\ e.W 0/���N coincides with

e.W 0/���N \CŒhreg�W 0

=W 0�˚r ;

and hence is finitely generated (and clearly is a lattice in e.W 0/���N ). �

Now we are ready to define a module zN over Ohsr=W ˝CŒh=W � Hc.W /. Abus-
ing notation, we will write zN� for the corresponding (under the equivalence)
CŒhreg�W�=W� �˝CŒh=W �Hc.W /-module. The restriction of zN� to ��1

� .hreg=W /

coincides with ���N by construction. Let �� W hreg�W� ,! h be the inclusion and
�� W h

reg�W� � hreg�W�=W� be the quotient morphism. Also let � W h! h=W

denote the quotient morphism and � W hreg ,! hsr the inclusion. Note that, by the
construction, ������ zN� � ���

�N (recall that we view N as a coherent sheaf on
hreg=W ). The intersection yN WD

T
� ����

�
�
zN� is a coherent sheaf on hsr because

of Lemma 3.2 and the equality hsr D
S

� hreg�W� . The intersection is stable
under the Euler vector field because all the zN� are. Also yN is W -stable; this is
because w��� zN� D ��w�

zNw� . Now set zN WD ��. yN/
W D �� yN \ �

0
�N (where

�0 W hsr=W ,! h=W denotes the inclusion). This is a coherent sheaf on hsr=W ,
stable under the Euler vector field on �0�N . It remains to show that zN � �0�N is
stable under Hc.W /. But this follows from the equality

zN D �0�N \
\
�

���
zN� ; (3-2)

where now we view �� as a morphism hreg�W 0

=W 0 ! hsr=W . Equation (3-2)
follows from the observation that zN� D ���.�

�
�
zN�/

W� and � D �� ı�� . Since
all sheaves in the right-hand side of (3-2) are stable under Hc.W /, we see that zN
is stable as well. It follows from the construction that zN jhreg=W ŠN .

3D. Global sections.

Lemma 3.3. The sheaf zN is a vector bundle on hsr=W .
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Proof. The proof is inspired by [Etingof et al. 2013, Section 3.2]. We need to show
that zN is maximal Cohen–Macaulay when viewed as a coherent sheaf on hsr=W .
Let Z denote the non-CM locus of zN in hsr=W and let d be the codimension of
Z in hsr=W . Pick an open C�-stable affine subvariety U of hsr=W that intersects
Z (or, more precisely, an irreducible component of maximal dimension in Z).
Consider H i

U\Z.U;
zN/ for i < d . As in [Etingof et al. 2013, Section 3.2], all

these groups are CŒU �˝CŒh=W �Hc.W /-modules, finitely generated over CŒU � (this
follows from [SGA 2 1968, Exposé VIII, Corollary 2.3] using equivalence of (ii)
and (iii) there; note that the depth used in (ii) coincides with the codimension
thanks to the choice of Z). Moreover, by the choice of Z, one of these modules is
nonzero, as in [Etingof et al. 2013, Section 3.2]. The support of R WDH i

U\Z.U;
zN/

is contained in Z \U .
Pick b 2 h lying over the support of R. Recall the isomorphism �b WHc.W /

^b Š

Z.W;W 0;Hc.W
0; h/^b /, where we take W 0 to be Wb . So we get a nonzero

Hc.W
0; h/^b -module e.W 0/�b�.R

^b /. This module is finitely generated over
CŒh�^b . So it is of the form CŒhW 0 �^b ˝R

^0

0 for R0 2 Oc.W
0/. It follows that

d D 1 and that R D �Z\U .U; zN/. But, by construction, �.U; zN/ is embedded
into �.U \ hreg=W;N / and so �.U; zN/ has no torsion CŒU �-submodules. We get
a contradiction, showing that zN is Cohen–Macaulay. Since zN is torsion-free, we
see that it is maximal Cohen–Macaulay, and hence is a vector bundle. �

Now we can use [SGA 2 1968, Exposé VIII, Corollary 2.3(iv)] (applied to an
extension of zN to a coherent sheaf on h=W ) to see that M WD �.hsr=W; zN/ is
finitely generated over CŒh�W . Let us show that the Hc.W /-module M lies in
Oc.W /. By construction, M carries a locally finite derivation compatible with the
derivation ad h of Hc.W /. It follows that M is gradable and hence lies in O. Also,
by construction, MŒı�1�DN . This completes the proof.
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