Algebra & Number Theory

Volume 9 2015 _{No. 2}

Semiample invertible sheaves with semipositive continuous hermitian metrics

Atsushi Moriwaki

Semiample invertible sheaves with semipositive continuous hermitian metrics

Atsushi Moriwaki

Let (L, h) be a pair of a semiample invertible sheaf and a semipositive continuous hermitian metric on a proper algebraic variety over \mathbb{C} . In this paper, we prove that (L, h) is semiample metrized, answering a generalization of a question of S. Zhang.

Introduction

Let *X* be a proper algebraic variety over \mathbb{C} . Let *L* be an invertible sheaf on *X*, and let *h* be a continuous hermitian metric of *L*. We say that (L, h) is *semiample metrized* if, for any $\epsilon > 0$, there is n > 0 such that, for any $x \in X(\mathbb{C})$, we can find $l \in H^0(X, L^{\otimes n}) \setminus \{0\}$ with

$$\sup\{h^{\otimes n}(l,l)(w) \mid w \in X(\mathbb{C})\} \le e^{\epsilon n} h^{\otimes n}(l,l)(x).$$

Shouwu Zhang proposed the following question:

Question 0.1 [Zhang 1995, Question 3.6]. If L is ample and h is smooth and semipositive, does it follow that (L, h) is semiample metrized?

Theorem 3.5 of the same reference gives an affirmative answer in the case where X is smooth over \mathbb{C} . The purpose of this paper is to give an answer for a generalization of the above question. First of all, we fix some notation: We say that L is *semiample* if there is a positive integer n_0 such that $L^{\otimes n_0}$ is generated by global sections. Moreover, h is said to be *semipositive* (or we say that (L, h) is semipositive) if, for any point $x \in X(\mathbb{C})$ and a local basis s of L on a neighborhood of x, $-\log h(s, s)$ is plurisubharmonic around x (for the definition of plurisubharmonicity on a singular variety, see Section 1). Note that h is not necessarily smooth. By using the recent work of Coman, Guedj and Zeriahi [Coman et al. 2013], we have the following answer:

Theorem 0.2. If L is semiample and h is continuous and semipositive, then (L, h) is semiample metrized.

MSC2010: primary 14C20; secondary 32U05, 14G40. *Keywords:* semiample metrized, semipositive.

1. Plurisubharmonic functions on singular complex analytic spaces

Let T be a reduced complex analytic space. An upper-semicontinuous function

$$\varphi: T \to \mathbb{R} \cup \{-\infty\}$$

is said to be *plurisubharmonic* if $\varphi \not\equiv -\infty$ and, for each $x \in T$, there is an analytic closed embedding $\iota_x : U_x \hookrightarrow W_x$ of an open neighborhood U_x of x into an open set W_x of \mathbb{C}^{n_x} together with a plurisubharmonic function Φ_x on W_x such that $\varphi|_{U_x} = \iota_x^*(\Phi_x)$. For an analytic map $f : T' \to T$ of reduced complex analytic spaces and a plurisubharmonic function φ on T, it is easy to see that $\varphi \circ f$ is either identically $-\infty$ or plurisubharmonic on T'. By [Fornæss and Narasimhan 1980, Theorem 5.3.1], an upper-semicontinuous function $\varphi : T \to \mathbb{R} \cup \{-\infty\}$ is plurisubharmonic if and only if, for any analytic map $\varrho : \mathbb{D} \to T, \varphi \circ \varrho$ is either identically $-\infty$ or subharmonic on \mathbb{D} , where $\mathbb{D} := \{z \in \mathbb{C} \mid |z| < 1\}$. Moreover, if T is compact and φ is plurisubharmonic on T, then φ is locally constant.

Let ω be a smooth (1, 1)-form on T, that is, in the same way as in the definition of plurisubharmonic functions, ω is a smooth (1, 1)-form on the regular part of Tand, for each $x \in T$, there is an analytic closed embedding $\iota_x : U_x \hookrightarrow W_x$ of an open neighborhood U_x of x into an open set W_x of \mathbb{C}^{n_x} together with a smooth (1, 1)-form Ω_x on W_x such that $\omega|_{U_x} = \iota_x^*(\Omega_x)$. We assume that ω is locally given by $dd^c(u)$ for some smooth function u on a neighborhood of x. Let ϕ be a *quasiplurisubharmonic function* on T; that is, for each $x \in T$, ϕ can be locally written as the sum of a smooth function and a plurisubharmonic function around x. We say that ϕ is ω -plurisubharmonic if there is an open covering $T = \bigcup_{\lambda} U_{\lambda}$, together with a smooth function u_{λ} on U_{λ} for each λ , such that $\omega|_{U_{\lambda}} = dd^c(u_{\lambda})$ and $\phi|_{U_{\lambda}} + u_{\lambda}$ is plurisubharmonic on U_{λ} . The condition for ω -plurisubharmonicity is often denoted by $dd^c([\phi]) + \omega \ge 0$.

Here we consider the following lemma:

Lemma 1.1. Let $f : X \to Y$ be a surjective and proper morphism of algebraic varieties over \mathbb{C} . Let φ be a real-valued function on $Y(\mathbb{C})$.

- (1) φ is continuous if and only if $\varphi \circ f$ is continuous.
- (2) Assume that φ is continuous. Then φ is plurisubharmonic if and only if $\varphi \circ f$ is plurisubharmonic.

Proof. (1) It is sufficient to see that if $\varphi \circ f$ is continuous, then φ is continuous. Otherwise, there are $y \in Y(\mathbb{C})$, $\epsilon_0 > 0$ and a sequence $\{y_n\}$ on $Y(\mathbb{C})$ such that $\lim_{n\to\infty} y_n = y$ and $|\varphi(y_n) - \varphi(y)| \ge \epsilon_0$ for all n. We choose $x_n \in X(\mathbb{C})$ such that $f(x_n) = y_n$. As $f : X \to Y$ is proper, we can find a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x := \lim_{i\to\infty} x_{n_i}$ exists in $X(\mathbb{C})$. Note that

$$f(x) = \lim_{i \to \infty} f(x_{n_i}) = \lim_{i \to \infty} y_{n_i} = y,$$

so that, as $\varphi \circ f$ is continuous,

$$\varphi(y) = (\varphi \circ f)(x) = \lim_{i \to \infty} (\varphi \circ f)(x_{n_i}) = \lim_{i \to \infty} \varphi(f(x_{n_i})) = \lim_{i \to \infty} \varphi(y_{n_i})$$

which is a contradiction, so that φ is continuous.

(2) We need to check that if $\varphi \circ f$ is plurisubharmonic, then φ is plurisubharmonic. By using Chow's lemma, we may assume that $f: X \to Y$ is projective. Moreover, since the assertion is local with respect to *Y*, we may further assume that there is a closed embedding $\iota: X \hookrightarrow Y \times \mathbb{P}^N$ such that $p \circ \iota = f$, where $p: Y \times \mathbb{P}^n \to Y$ is the projection to the first factor. The remaining proof is same as the last part of the proof of [Demailly 1985, Theorem 1.7]. Let $g: (\mathbb{D}, 0) \to (Y, y)$ be a germ of an analytic map. By the theorem of Fornæss and Narasimhan, it is sufficient to show that $\varphi \circ g$ is subharmonic. Clearly we may assume that g is given by the normalization of a 1-dimensional irreducible germ (C, y) in (Y, y). Using hyperplanes in \mathbb{P}^N , we can find $x \in X$ and a 1-dimensional irreducible germ (C', x) in (X, x) such that (C', x) lies over (C, y). Let $g': (\mathbb{D}, 0) \to (X, x)$ be the germ of an analytic map given by the normalization of (C', x). Then we have an analytic map $\sigma : (\mathbb{D}, 0) \to (\mathbb{D}, 0)$ with $g \circ \sigma = f \circ g'$:

$$\begin{array}{ccc} (\mathbb{D},0) & \xrightarrow{g'} & (X,x) \\ \sigma & & & \downarrow f \\ (\mathbb{D},0) & \xrightarrow{g} & (Y,y) \end{array}$$

Changing a variable of $(\mathbb{D}, 0)$, we may assume that σ is given by $\sigma(z) = z^m$ for some positive integer *m*. Then $\varphi \circ g \circ \sigma$ is subharmonic because $\varphi \circ f$ is plurisubharmonic. Therefore, as σ is étale over the outside of 0, $\varphi \circ g$ is subharmonic on the outside of 0, and hence $\varphi \circ g$ is subharmonic on $(\mathbb{D}, 0)$ by the removability of singularities of subharmonic functions.

2. Descent of a semipositive continuous hermitian metric

Here, we consider a descent problem of a semipositive continuous hermitian metric.

Theorem 2.1. Let $f : X \to Y$ be a surjective and proper morphism of algebraic varieties over \mathbb{C} with $f_*\mathbb{O}_X = \mathbb{O}_Y$. Let L be an invertible sheaf on Y. If h' is a semipositive continuous hermitian metric of $f^*(L)$, then there is a semipositive continuous hermitian metric h of L such that $h' = f^*(h)$.

Proof. Let h_0 be a continuous hermitian metric of L on Y. There is a continuous function ϕ on $X(\mathbb{C})$ such that $h' = \exp(\phi) f^*(h_0)$. Let F be a subvariety of X such that F is an irreducible component of a fiber of $f : X \to Y$. Then, as

$$(f^*(L), h')|_F \simeq (\mathbb{O}_F, \exp(\phi|_F))_F$$

we can see that $-\phi|_F$ is plurisubharmonic, so that $\phi|_F$ is constant. Therefore, for any point $y \in Y(\mathbb{C})$, $\phi|_{\mu^{-1}(y)}$ is constant because $\mu^{-1}(y)$ is connected, and hence there is a function ψ on $Y(\mathbb{C})$ such that $\psi \circ f = \phi$. By Lemma 1.1(1), ψ is continuous, so that, if we set $h := \exp(\psi)h_0$, then h is continuous on $Y(\mathbb{C})$ and $h' = f^*(h)$.

Finally, let us see that *h* is semipositive. As this is a local question on *Y*, we may assume that there is a local basis *s* of *L* over *Y*. If we set $\varphi = -\log h(s, s)$, then $\varphi \circ f$ is plurisubharmonic because *h'* is semipositive. Therefore, by Lemma 1.1(2), φ is plurisubharmonic, as required

3. The proof of Theorem 0.2

In the case where X is smooth over \mathbb{C} , L is ample and h is smooth, this theorem was proved by Zhang [1995, Theorem 3.5]. First we assume that L is ample. Then there are a positive integer n_0 and a closed embedding $X \hookrightarrow \mathbb{P}^N$ such that $\mathbb{O}_{\mathbb{P}^N}(1)|_X \simeq L^{\otimes n_0}$. Let h_{FS} be the Fubini–Study metric of $\mathbb{O}_{\mathbb{P}^n}(1)$. Let ϕ be the continuous function on $X(\mathbb{C})$ given by $h^{\otimes n_0} = \exp(-\phi)h_{\text{FS}}|_X$. We set $\omega = c_1(\mathbb{O}_{\mathbb{P}^N}(1), h_{\text{FS}})$. Then ϕ is $(\omega|_X)$ -plurisubharmonic. Therefore, by [Coman et al. 2013, Corollary C], there is a sequence $\{\varphi_i\}$ of smooth functions on $\mathbb{P}^N(\mathbb{C})$ with the following properties:

- (1) φ_i is ω -plurisubharmonic for all *i*.
- (2) $\varphi_i \ge \varphi_{i+1}$ for all *i*.
- (3) For $x \in X(\mathbb{C})$, $\lim_{i \to \infty} \varphi_i(x) = \phi(x)$.

Since *X* is compact and ϕ is continuous, (3) implies that the sequence $\{\varphi_i\}$ converges to ϕ uniformly on $X(\mathbb{C})$. We choose *i* such that $|\phi(x) - \varphi_i(x)| \le \epsilon n_0/2$ for all $x \in X$. We set $h_i = \exp(-\varphi_i)h_{\text{FS}}$. Then h_i is a semipositive smooth hermitian metric of $\mathbb{O}_{\mathbb{P}^N}(1)$. Therefore, there is a positive integer n_1 such that, for $x \in \mathbb{P}^N(\mathbb{C})$, we can find $l \in H^0(\mathbb{P}^N, \mathbb{O}_{\mathbb{P}^N}(n_1)) \setminus \{0\}$ with

$$\sup\{h_i^{\otimes n_1}(l,l)(w) \mid w \in \mathbb{P}^N(\mathbb{C})\} \le e^{n_1(\epsilon n_0/2)} h_i^{\otimes n_1}(l,l)(x).$$

In particular, if $x \in X(\mathbb{C})$, then $l(x) \neq 0$ (so that $l|_X \neq 0$) and

$$\sup\{h_i^{\otimes n_1}(l,l)(w) \mid w \in X(\mathbb{C})\} \le e^{\epsilon n_0 n_1/2} h_i^{\otimes n_1}(l,l)(x).$$

Note that

$$h^{\otimes n_0} e^{-\epsilon n_0/2} \le h_i \le h^{\otimes n_0} \tag{3-1}$$

on $X(\mathbb{C})$, because $h_i = h^{\otimes n_0} \exp(\phi - \varphi_i)$ and $-\epsilon n_0/2 \le \phi - \varphi_i \le 0$ on $X(\mathbb{C})$. Therefore,

$$\sup\{h^{\otimes n_0n_1}(l,l)(w) \mid w \in X(\mathbb{C})\}e^{-n_0n_1\epsilon/2} \le \sup\{h_i^{\otimes n_1}(l,l)(w) \mid w \in X(\mathbb{C})\}$$

and

$$h_i^{\otimes n_1}(l,l)(x) \le h^{\otimes n_0 n_1}(l,l)(x),$$

and hence

$$\sup\{h^{\otimes n_0 n_1}(l,l)(w) \mid w \in X(\mathbb{C})\} \le e^{n_1 n_0 \epsilon} h^{\otimes n_0 n_1}(l,l)(x)$$

as required.

In general, as *L* is semiample, there are a positive integer n_2 , a projective algebraic variety *Y* over \mathbb{C} , a morphism $f: X \to Y$ and an ample invertible sheaf *A* on *Y* such that $f_*\mathbb{O}_X = \mathbb{O}_Y$ and $f^*(A) \simeq L^{\otimes n_2}$. Thus, by Theorem 2.1, there is a semipositive continuous hermitian metric *k* of *A* such that $(f^*(A), f^*(k)) \simeq (L^{\otimes n_2}, h^{\otimes n_2})$. Therefore, the assertion of the theorem follows from the previous observation.

4. A variant of Theorem 0.2

The following theorem is a consequence of Theorem 0.2 together with the arguments in [Zhang 1995, Theorem 3.3]. However, we can give a direct proof using ideas in the proof of Theorem 0.2.

Theorem 4.1. Let X be a projective algebraic variety over \mathbb{C} . Let L be an ample invertible sheaf on X and let h be a semipositive continuous hermitian metric of L. Let us fix a reduced subscheme Y of X, $l \in H^0(Y, L|_Y)$ and a positive number ϵ . Then, for the given X, L, h, Y, l and ϵ , there is a positive integer n_1 such that, for all $n \ge n_1$, we can find $l' \in H^0(X, L^{\otimes n})$ with $l'|_Y = l^{\otimes n}$ and

$$\sup\{h^{\otimes n}(l',l')(w) \mid w \in X(\mathbb{C})\} \le e^{n\epsilon} \sup\{h(l,l)(w) \mid w \in Y(\mathbb{C})\}^n$$

Proof. In the case where X is smooth over \mathbb{C} and h is smooth and positive, the assertion of the theorem follows from [Zhang 1995, Theorem 2.2], in which Y is actually assumed to be a subvariety of X. However, the proof works well under the assumption that Y is a reduced subscheme. First of all, let us see the theorem in the case where X is smooth over \mathbb{C} and h is smooth and semipositive. As L is ample, there is a positive smooth hermitian metric t of L with $t \leq h$. Let us choose a positive integer m such that $e^{-\epsilon/2} \leq (t/h)^{1/m} \leq 1$ on $X(\mathbb{C})$. If we set $t_m = h^{1-1/m}t^{1/m}$, then t_m is smooth and positive, so that, for a sufficiently large integer n, there is $l' \in H^0(X, L^{\otimes n})$ such that $l'|_Y = l^{\otimes n}$ and

$$\sup\{t_m^{\otimes n}(l',l')(w) \mid w \in X(\mathbb{C})\} \le e^{n\epsilon/2} \sup\{t_m(l,l)(w) \mid w \in Y(\mathbb{C})\}^n$$

and hence the assertion follows because $e^{-\epsilon/2}h \le t_m \le h$ on $X(\mathbb{C})$.

For a general case, we use the same symbols n_0 , $X \hookrightarrow \mathbb{P}^N$, h_{FS} , ϕ , ω and $\{\varphi_i\}$ as in the proof of Theorem 0.2. Clearly we may assume that $l \neq 0$. Since *L* is ample, if a_0 is a sufficiently large integer, then, for each $j = 0, \ldots, n_0 - 1$, there is

 $l_{j} \in H^{0}(X, L^{\otimes n_{0}a_{0}+j}) \text{ with } l_{j}|_{Y} = l^{\otimes n_{0}a_{0}+j}. \text{ Let us fix a positive number } A \text{ such that}$ $\sup\{h^{\otimes n_{0}a_{0}+j}(l_{j}, l_{j})(w) \mid w \in X(\mathbb{C})\} \le e^{A} \sup\{h(l, l)(w) \mid w \in Y(\mathbb{C})\}^{n_{0}a_{0}+j}$ (4-1)

for $j = 0, ..., n_0 - 1$. We choose *i* with $|\phi(x) - \varphi_i(x)| \le \epsilon n_0/2$ for all $x \in X$, and we set $h_i = \exp(-\varphi_i)h_{\text{FS}}$. As h_i is smooth and semipositive, for the given \mathbb{P}^N , $\mathbb{O}_{\mathbb{P}^N}(1)$, $h_i, Y, l^{\otimes n_0}$ (as an element of $H^0(Y, \mathbb{O}_{\mathbb{P}^N}(1)|_Y)$) and $n_0\epsilon/4$, there is a positive integer a_1 such that the assertion of the theorem holds for all $a \ge a_1$. We put

$$n_1 := n_0 \max\left\{a_1 + a_0 + 1, \ \frac{4A}{n_0\epsilon} - 3a_0 + 1\right\}.$$

Let *n* be an integer with $n \ge n_1$. If we set $n = n_0(a + a_0) + j$ $(0 \le j \le n_0 - 1)$, then

$$a \ge a_1$$
 and $a \ge \frac{4A}{n_0\epsilon} - 4a_0$

so that we can find $l'' \in H^0(\mathbb{P}^N, \mathbb{O}_{\mathbb{P}^N}(a))$ with $l''|_Y = l^{\otimes n_0 a}$ and

$$\sup\{h_i^{\otimes a}(l'', l'')(w) \mid w \in \mathbb{P}^N(\mathbb{C})\} \le e^{a(n_0 \epsilon/4)} \sup\{h_i(l^{\otimes n_0}, l^{\otimes n_0})(w) \mid w \in Y(\mathbb{C})\}^a,$$

which implies that

$$\sup\{h^{\otimes n_0 a}(l'', l'')(w) \mid w \in X(\mathbb{C})\} \le e^{(3/4)n_0 a\epsilon} \sup\{h(l, l)(w) \mid w \in Y(\mathbb{C})\}^{n_0 a},$$
(4-2)

because of (3-1). Here we set $l' = l'' \otimes l_j$. Then, $l'|_Y = l^{\otimes n}$ and, using (4-1) and (4-2), we have

$$\begin{aligned} \sup\{h^{\otimes n}(l',l')(w) \mid w \in X(\mathbb{C})\} \\ &\leq \sup\{h^{\otimes n_0 a}(l'',l'')(w) \mid w \in X(\mathbb{C})\} \sup\{h^{\otimes n_0 a_0+j}(l_j,l_j)(w) \mid w \in X(\mathbb{C})\} \\ &\leq e^{(3/4)n_0 a \epsilon + A} \sup\{h(l,l)(w) \mid w \in Y(\mathbb{C})\}^n, \end{aligned}$$

which implies the assertion because $(3/4)n_0a\epsilon + A \le \epsilon n$.

5. Arithmetic application

 \square

As an application of Theorem 0.2, we have the following generalization of the arithmetic Nakai–Moishezon criterion (see [Zhang 1995, Corollary 4.8]).

Corollary 5.1. Let \mathscr{X} be a projective and flat integral scheme over \mathbb{Z} . Let \mathscr{L} be an invertible sheaf on \mathscr{X} such that \mathscr{L} is nef on every fiber of $\mathscr{X} \to \mathbb{Z}$. Let h be an F_{∞} -invariant semipositive continuous hermitian metric of \mathscr{L} , where F_{∞} is the complex conjugation map $\mathscr{X}(\mathbb{C}) \to \mathscr{X}(\mathbb{C})$. If $\widehat{\deg}(\widehat{c}_1((\mathscr{L}, h)|_{\mathscr{W}})^{\dim \mathscr{W}}) > 0$ for all horizontal integral subschemes \mathscr{Y} of \mathscr{X} , then, for an F_{∞} -invariant continuous hermitian invertible sheaf (\mathscr{M}, k) on $\mathscr{X}, H^0(\mathscr{X}, \mathscr{L}^{\otimes n} \otimes \mathscr{M})$ has a basis consisting of strictly small sections for a sufficiently large integer n. *Proof.* Let *X* be the generic fiber of $\mathscr{X} \to \text{Spec}(\mathbb{Z})$ and let *Y* be a subvariety of *X*. Let \mathscr{Y} be the Zariski closure of *Y* in \mathscr{X} . As

$$\widehat{\operatorname{deg}}(\widehat{c}_1((\mathscr{L},h)|_{\mathscr{Y}})^{\dim \mathscr{Y}}) > 0,$$

 $(\mathscr{L}, h)|_{\mathscr{Y}}$ is big by [Moriwaki 2012, Theorem 6.6.1], so that $H^{0}(\mathscr{Y}, \mathscr{L}^{\otimes n_{0}}|_{\mathscr{Y}}) \setminus \{0\}$ has a strictly small section for a sufficiently large integer n_{0} . Moreover, if we set $L = \mathscr{L}|_{X}$, then $L|_{Y}$ is big, and hence $\deg(L^{\dim Y} \cdot Y) > 0$ because L is nef. Therefore, L is ample by the Nakai–Moishezon criterion for ampleness. In particular, by Theorem 0.2, h is semiample metrized. Thus the assertion follows from the arguments in [Zhang 1995, Theorem 4.2].

Acknowledgements

I would like to thank Professor Zhang and the referee for their comments and suggestions.

References

- [Coman et al. 2013] D. Coman, V. Guedj, and A. Zeriahi, "Extension of plurisubharmonic functions with growth control", *J. Reine Angew. Math.* **676** (2013), 33–49. MR 3028754 Zbl 1269.32018
- [Demailly 1985] J.-P. Demailly, *Mesures de Monge–Ampère et caractérisation géométrique des variétés algébriques affines*, Mém. Soc. Math. France (N.S.) **19**, 1985. MR 87g:32030 Zbl 0579.32012

[Fornæss and Narasimhan 1980] J. E. Fornæss and R. Narasimhan, "The Levi problem on complex spaces with singularities", *Math. Ann.* **248**:1 (1980), 47–72. MR 81f:32020 Zbl 0411.32011

[Moriwaki 2012] A. Moriwaki, "Zariski decompositions on arithmetic surfaces", *Publ. Res. Inst. Math. Sci.* **48**:4 (2012), 799–898. MR 2999543 Zbl 1281.14017

[Zhang 1995] S. Zhang, "Positive line bundles on arithmetic varieties", J. Amer. Math. Soc. 8:1 (1995), 187–221. MR 95c:14020 Zbl 0861.14018

Communicated by Shou-Wu Zhang Received 2014-11-09 Revised 2015-01-01 Accepted 2015-02-16

moriwaki@math.kyoto-u.ac.jp

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan

Algebra & Number Theory

msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen Massachusetts Institute of Technology Cambridge, USA EDITORIAL BOARD CHAIR David Eisenbud University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart	University of Wisconsin, Madison, USA	Shigefumi Mori	RIMS, Kyoto University, Japan
Dave Benson	University of Aberdeen, Scotland	Raman Parimala	Emory University, USA
Richard E. Borcherds	University of California, Berkeley, USA	Jonathan Pila	University of Oxford, UK
John H. Coates	University of Cambridge, UK	Anand Pillay	University of Notre Dame, USA
J-L. Colliot-Thélène	CNRS, Université Paris-Sud, France	Victor Reiner	University of Minnesota, USA
Brian D. Conrad	University of Michigan, USA	Peter Sarnak	Princeton University, USA
Hélène Esnault	Freie Universität Berlin, Germany	Joseph H. Silverman	Brown University, USA
Hubert Flenner	Ruhr-Universität, Germany	Michael Singer	North Carolina State University, USA
Edward Frenkel	University of California, Berkeley, USA	Vasudevan Srinivas	Tata Inst. of Fund. Research, India
Andrew Granville	Université de Montréal, Canada	J. Toby Stafford	University of Michigan, USA
Joseph Gubeladze	San Francisco State University, USA	Richard Taylor	Harvard University, USA
Roger Heath-Brown	Oxford University, UK	Ravi Vakil	Stanford University, USA
Craig Huneke	University of Virginia, USA	Michel van den Bergh	Hasselt University, Belgium
János Kollár	Princeton University, USA	Marie-France Vignéras	Université Paris VII, France
Yuri Manin	Northwestern University, USA	Kei-Ichi Watanabe	Nihon University, Japan
Barry Mazur	Harvard University, USA	Efim Zelmanov	University of California, San Diego, USA
Philippe Michel	École Polytechnique Fédérale de Lausan	ne Shou-Wu Zhang	Princeton University, USA
Susan Montgomery	University of Southern California, USA		

PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2015 is US \$255/year for the electronic version, and \$440/year (+\$55, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscribers address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY mathematical sciences publishers nonprofit scientific publishing

http://msp.org/ © 2015 Mathematical Sciences Publishers

Algebra & Number Theory

Volume 9 No. 2 2015

Lifting harmonic morphisms II: Tropical curves and metrized complexes OMID AMINI, MATTHEW BAKER, ERWAN BRUGALLÉ and JOSEPH RABINOFF	267
Noncommutative Hilbert modular symbols IVAN HOROZOV	317
<i>p</i> -adic Hodge theory in rigid analytic families REBECCA BELLOVIN	371
Semistable periods of finite slope families RUOCHUAN LIU	435
The Picard rank conjecture for the Hurwitz spaces of degree up to five ANAND DEOPURKAR and ANAND PATEL	459
Finite-dimensional quotients of Hecke algebras IVAN LOSEV	493
Semiample invertible sheaves with semipositive continuous hermitian metrics ATSUSHI MORIWAKI	503