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LetX be an isotropic Grassmannian of typeB , C , orD. In this paper we calculate
K-theoretic Pieri-type triple intersection numbers for X : that is, the sheaf Euler
characteristic of the triple intersection of two arbitrary Schubert varieties and a
special Schubert variety in general position. We do this by determining explicit
equations for the projected Richardson variety corresponding to the two arbitrary
Schubert varieties, and show that it is a complete intersection in projective space.
The K-theoretic Pieri coefficients are alternating sums of these triple intersection
numbers, and we hope they will lead to positive Pieri formulas for isotropic
Grassmannians.
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1. Introduction

When studying the ordinary cohomology of an (isotropic) Grassmannian, a triple
intersection number refers to the number of intersection points of three Schubert vari-
eties in general position. By convention, this number is zero when the triple intersec-
tion has positive dimension. Algebraically this number is given as the pushforward
of the product of three Schubert classes to the cohomology ring of a single point.
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Given three Schubert varieties in general position, let Z denote their scheme-
theoretic triple intersection. The corresponding K-theoretic triple intersection
number is the sheaf Euler characteristic of Z; that is, the pushforward of the
product of the three Schubert classes to the Grothendieck ring of a point. We denote
this number by �.Z/. If Z is finite, then, just as in cohomology, �.Z/ is equal
to the number of points in Z (since these finitely many points are reduced, by
Kleiman’s transversality theorem [1974]). If Z has positive dimension however,
then �.Z/ can be a nonzero (and possibly negative) integer.

In either setting, the triple intersection numbers determine the structure constants
for multiplication with respect to the Schubert basis. These structure constants are
known as Littlewood–Richardson coefficients, and in ordinary cohomology they
are equal to triple intersection numbers. In K-theory however, the Littlewood–
Richardson coefficients are alternating sums of triple intersection numbers.

An arbitrary Schubert class can be written as an integer polynomial in certain
special Schubert classes, which (in cohomology) are closely related to the Chern
classes of the tautological quotient bundle on the Grassmannian in question. A triple
intersection number is said to be of Pieri-type if one of the three Schubert classes
is a special Schubert class. Similarly, a Pieri coefficient refers to a Littlewood–
Richardson coefficient occurring in the product of an arbitrary Schubert class and a
special Schubert class.

In this paper, we determine K-theoretic Pieri-type triple intersection numbers for
all isotropic Grassmannians of types B , C , andD. Our results generalize [Buch and
Ravikumar 2012], in which similar calculations are carried out for the cominuscule
Grassmannians, that is, for the type-A Grassmannian Gr.m;CN /, the maximal
odd orthogonal Grassmannian OG.m;C2mC1/, and the Lagrangian Grassmannian
LG.m;C2m/.

1A. Methods and results. Let ! be a skew-symmetric or symmetric nondegenerate
bilinear form on CN , where N � 2. Fix a basis e1; : : : ; eN for CN that is isotropic
in the sense that

!.ei ; ej /D ıiCj;NC1 for 1� i � j �N:

Note that if ! is symmetric, then !.ei ; ej /D ıiCj;NC1 for all i and j in the integer
interval Œ1; N �. If ! is skew-symmetric (which can only happen when N is even),
then !.ei ; ej /D�ıiCj;NC1 for i > j .

For any subspace†�CN , we define†? WDfw2CN W !.v;w/D0 for all v2†g.
We say † is isotropic if †�†?. Given a positive integer m�N=2, the isotropic
Grassmannian IG!.m;CN / is defined as

IG!.m;CN / WD f† 2 Gr.m;CN / W†�†?g: (1)
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This projective variety parametrizes isotropic m-planes in CN . It is said to have
Lie-type C when ! is skew-symmetric (in which case N is even), Lie-type B when
! is symmetric and N is odd, and Lie-type D when ! is symmetric and N is even.

In order to define Schubert varieties in X WD IG!.m;CN /, we must fix some
flags on CN . We define the standard flag E� on CN by Ej WD he1; : : : ; ej i, the
span of the first j basis vectors. In types B and C , we define the opposite flag
E

op
� by Eop

j WD heNC1�j ; : : : ; eN i, the span of the last j basis vectors. A more
complicated type-D definition is given in Section 3.

Given † 2X , the Schubert symbol of † relative to E�,

s.†/ WD fc 2 Œ1; N � W†\Ec ©†\Ec�1g;

records the steps c in E� at which the intersection †\Ec jumps dimension. Note
that the set s.†/ has cardinality m, and that if c 2 s.†/ then N C 1� c 62 s.†/,
since † is isotropic. In general, a subset P � Œ1; N � of cardinality m is a Schubert
symbol1 if c C d ¤ N C 1 for any c; d 2 P . We let �.X/ denote the set of all
Schubert symbols for X .

Given a Schubert symbol P , we define the Schubert variety XP WDXP .E�/ to be
the closure in X of the Schubert cell XıP .E�/ WD f† 2X W s.†/D P g. We say XP
is a Schubert variety relative to the flag E�. We also define the opposite Schubert
variety XP to be the unique Schubert variety relative to the opposite flag Eop

� that
intersects XP at a single point. For the special Schubert varieties, we adopt an
additional indexing convention, writing X.r/ to denote the special Schubert variety
of codimension r in X . Given Schubert symbols P and T , we write T � P if
XT � XP . The resulting partial order on the set of Schubert symbols, known as
the Bruhat order, is described combinatorially in Sections 2 and 3.

The transverse intersection of two Schubert varieties is known as a Richardson
variety. Associated to Schubert symbols P and T we have a Richardson variety
YP;T WDXP \X

T , which is nonempty if and only if T �P . Since ŒOXP
� � ŒOXT �D

ŒOYP;T
� (see, e.g., [Brion 2005]), the K-theoretic Pieri-type triple intersection

numbers can be written

�.ŒOYP;T
� � ŒOX.r/

�/; (2)

where � W K.X/! Z is the sheaf Euler characteristic map. These numbers are
nonzero only when T � P .

We can reinterpret this triple intersection number by means of the following inci-
dence relation, which consists of the two-step isotropic flag variety IF!.1;m;CN /
whose natural projections we denote by  (to the Grassmannian IG!.1;CN /) and

1Schubert symbols are sometimes known as jump sequences, and in [Buch et al. 2009] they are
referred to as index sets.
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� (to the Grassmannian IG!.m;CN /).

IF!.1;m;CN /

IG!.m;CN /

IG!.1;CN /� PN�1

�

 

In particular, we make use of the projected Richardson variety  .��1.YP;T //�
PN�1, which is the (projectivization of the) union of allm-planes in the Richardson
variety YP;T . Projected Richardson varieties like  .��1.YP;T // have a number of
nice geometric properties. He and Lam [2011] relate these varieties to the K-theory
of affine Grassmannians, and it has been proved by Billey and Coskun [2012], and
by Knutson, Lam, and Speyer [Knutson et al. 2014], that they are Cohen–Macaulay
with rational singularities and that the projection map is cohomologically trivial, in
the sense that  �ŒO��1.YP;T /

�D ŒO .��1.YP;T //
�. By this last fact, along with the

projection formula, the calculation of the triple intersection number (2) amounts to
showing that  .��1.YP;T // is a complete intersection in PN�1 and determining
the equations that define it.

A description of the projected Richardson variety  .��1.YP;T // is carried out
in [Buch et al. 2009], but in the special case that the Schubert symbols P and T
satisfy a relation P ! T . Roughly speaking, this relation signifies that T shows up
in some cohomological Pieri product involving P . The relation P ! T requires
that T � P , and T � P is a more general condition. We note that for P 6! T ,
the K-theoretic triple intersection numbers �.ŒOYP;T

� � ŒOX.r/
�/ need not vanish

(in contrast to the cohomological triple intersection numbers), and are therefore
essential ingredients for the K-theoretic Pieri coefficients.

When X is a Grassmannian of Lie type B or C , Buch, Kresch, and Tamvakis
[Buch et al. 2009] define a complete intersection ZP;T � PN�1 for Schubert
symbols T � P , and prove that the projected Richardson variety  .��1.YP;T //
is contained in it. They attempt to extend the definition of ZP;T to the type-D
Grassmannian, but use an erroneous definition of Schubert varieties, resulting in a
definition of ZP;T that only makes sense in the special case that P ! T .

The first result of this paper, presented in Section 4, is to provide a corrected
definition of ZP;T in the general setting that T � P , and to show that it is a
complete intersection of linear and quadratic hypersurfaces. This process involves
new combinatorics of Schubert symbols, such as the notion of an exceptional cut.

The second result, presented in Section 5, is that  .��1.YP;T //�ZP;T for any
Schubert symbols T � P in a Grassmannian of Lie-type B , C , or D. This result
generalizes [Buch et al. 2009, Lemma 5.1], in which this statement is proved in
types B and C only.
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The third result, presented in Section 6, is that given a type-B , C , or D Grass-
mannian and arbitrary Schubert symbols T � P , we have ZP;T �  .��1.YP;T //.
We prove this result by constructing a smaller Richardson variety contained in YP;T
that projects surjectively onto ZP;T .

Combining these results, we arrive at the main theorem of this paper:

Theorem 1.1. Let X be a Grassmannian of Lie-type B , C , or D. For any Schubert
symbols T � P , we have ZP;T D  .��1.YP;T //.

By Theorem 1.1, we know exactly which equations define the projected Richard-
son variety in all three Lie types. These equations allow for a pleasant calculation
of the triple intersection numbers, which we carry out in Section 8. In Section 9,
we describe how K-theoretic Pieri coefficients are calculated as alternating sums of
these triple intersection numbers. Taken together, the results of this paper complete
the story of Pieri-type triple intersection numbers for Grassmannians. We hope this
approach will soon lead to a positive Pieri formula.

2. Preliminaries 1: types B and C

2A. Schubert symbols. Let X WD IG!.m;CN / be a Grassmannian of type C or
B , where N WD 2n or N WD 2nC 1, depending on whether X is of type C or B
respectively. In the former case, we will also denote X by SG.m; 2n/ and refer
to it as a symplectic Grassmannian. In the latter case, we will also denote X by
OG.m; 2nC 1/ and refer to it as an odd orthogonal Grassmannian. Recall that for
Schubert symbols T and P in �.X/, the relation T � P signifies that XT �XP .
This partial order on the set of Schubert symbols has a simple combinatorial
description.

Given Schubert symbols T Dft1< � � �< tmg and P Dfp1< � � �<pmg, we write
T � P whenever ti � pi for 1� i �m. By [Buch et al. 2009, Proposition 4.1] we
have the following lemma:

Lemma 2.1. ProvidedX is of Lie-typeB or C , we have T �P if and only if T �P .

For any Schubert symbol P 2�.X/, let P D fc 2 Œ1; N � WN C 1� c 2 P g and
ŒP �DP [P . Also let jP j denote the codimension of the Schubert variety XP in X .

For each Schubert symbol P , there is a unique dual symbol P_ with the property
that for any Schubert symbol T , XP .E�/\XT .E

op
� / is equal to a single point if

and only if T DP_. The opposite Schubert symbol XP defined in the introduction
is therefore equal to XP_.E

op
� /. The following lemma, from [Buch et al. 2009,

Proposition 4.2], gives a simple description the dual symbol P_:

Lemma 2.2. Provided X is of Lie-type B or C , we have P_ D P for all Schubert
symbols P 2�.X/.



686 Vijay Ravikumar

2B. Richardson diagrams. It is a well-known fact (following from Borel’s fixed-
point theorem [1956]) that T � P if and only if XP \ XT is nonempty. This
variety YP;T WD XP \ X

T is connected, and hence reduced and irreducible by
Kleiman’s transversality theorem [1974] (see also [Richardson 1992]). It is known
as a Richardson variety.

Given Schubert symbols T � P , we define the Richardson diagram D.P; T /D

f.j; c/ W tj � c � pj g, which we represent as an m�N matrix with a � for every
entry in D.P; T / and zeros elsewhere. We say a matrix .ai;j / has shape D.P; T /
if its dimensions are m�N and aj;c D 0 for all .j; c/ 62D.P; T /. Given a matrix
of shape D.P; T / whose row vectors are independent and orthogonal, its rowspace
will be an element of YP;T .

Example 2.3. Any rank-m matrix of shape D.P;P / will have rowspace †P WD
hep1

; : : : ; epm
i, which is the only element of YP;P .

Example 2.4. Suppose P D f2; 3; 4; 10g and T D f1; 2; 4; 6g in SG.4; 10/. Sup-
pose .ai;j / is a rank-m matrix of shape D.P; T /. The rowspace of .ai;j / will
be in YP;T if and only if a1;1a4;10C a1;2a4;9 D 0, a2;2a4;9C a2;3a4;8 D 0, and
a4;7 D 0. We leave it to the reader to write down explicit entries satisfying these
equations. The diagram D.P; T / is0BB@

� � 0 0 0 0 0 0 0 0

0 � � 0 0 0 0 0 0 0

0 0 0 � 0 0 0 0 0 0

0 0 0 0 0 � � � � �

1CCA :
Given a Schubert symbol P Dfp1; : : : ; pmg, let p0D 0 and pmC1DNC1. We

won’t consider these as actual elements in the Schubert symbol P , but the notation
will be useful. Define a visible cut through D.P; T / to be any integer c 2 Œ0; N �
such that no row of D.P; T / contains stars in both column c and column cC1; i.e.,
such that pi � c < tiC1 for some i . We will consider cD 0 and cDN to be visible
cuts. Define an apparent cut to be any integer c 2 Œ0; N � such that c or N � c is a
visible cut. In types B and C we define a cut in D.P; T / to be synonymous with
an apparent cut. Let CP;T be the set of cuts in D.P; T /.

An integer c is a zero column of D.P; T / if pj < c < tjC1 for some j , since in
this case column c of D.P; T / has no stars. An entry .j; c/ in D.P; T / is a lone
star if either

(i) c 2 T and c is a cut in D.P; T /, or

(ii) c 2 P and c � 1 is a cut in D.P; T /.

The simplest example of a lone star occurs when tj D pj D c for some j . In this
case row j and column c of D.P; T / each contain a single star at .j; c/. We define
the set LP;T � Œ1; N � to be the set of integers c such that either
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(i) c is a zero column in D.P; T /, or

(ii) there exists a lone star in column N C 1� c.

Finally, we define the set

QP;T WD

�
Œ0; n�\CP;T if X is of type C ,
.Œ0; n�\CP;T /[fnC 1g if X is of type B .

Example 2.5. Continuing with Example 2.4, the set of cuts CP;T is equal to
f0; 3; 4; 5; 6; 7; 10g. Of these, 0, 3, 4, 5, and 10 are visible cuts. Furthermore, 5 is a
zero column, .3; 4/ is a lone star, LP;T D f5; 7g, and QP;T D f0; 3; 4; 5g.

In types B and C , lone stars take a particularly simple form. Namely:

Proposition 2.6. Let X be an isotropic Grassmannian of Lie-type B or C . Suppose
.j; c/ is a lone star inD.P; T /. If cD tj and tj is an apparent cut, or if cD pj and
pj � 1 is an apparent cut, then either N C 1� c is a zero column or tj D pj D c.

Proof. Suppose c D tj is an apparent cut in D.P; T /, and that N C 1� c is not a
zero column. Since N C 1� c is not in T and not a zero-column, it follows that
N � c is not a visible cut. But then c must be a visible cut, so c D pj . A similar
argument holds if we start by assuming c D pj . �

Since zero columns are flanked by cuts, we have the following immediate result:

Corollary 2.7. In types B and C , if c 2 LP;T then c and c � 1 are both cuts.

2C. The projected Richardson variety. We now define a subvariety of PN�1

that will play a key role in the calculation of triple intersection numbers. Let
x1; : : : ; xN 2 .C

N /� be the dual basis to the isotropic basis e1; : : : ; eN 2 CN .
Let f0 D 0, and for 1 � c � n let fc D x1xN C � � � C xcxNC1�c . For exam-
ple, f1 D x1xN and f2 D x1xN C x2xN�1. In addition, if X is type B , let
fnC1 D x1x2nC1C � � �C xnxnC2C

1
2
x2nC1. Given Schubert symbols T � P , let

ZP;T � PN�1 denote the subvariety defined by the vanishing of the polynomials
ffc jc2QP;T g[fxc jc2LP;T g. We note that, in the type-B case,ZP;T must satisfy
the equation fnC1D 0 and hence lie in OG.1; 2nC1/, the quadric hypersurface of
isotropic lines in P2n.

In fact, ZP;T is a complete intersection in PN�1 cut out by the polynomials:

(a) fd �fc D xcC1xN�cC� � �CxdxNC1�d if c and d are consecutive elements
of QP;T such that d � c � 2.

(b) xc if c 2 LP;T .

We will prove this fact for all three Lie types in Proposition 4.15.
Recall that we have projections � and  from the flag variety IF!.1;m;CN / to

X and IG!.1;CN /, respectively. The variety ��1.YP;T / is a Richardson variety in
IG!.1;m;CN /, and its image  .��1.YP;T // is known as a projected Richardson
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variety. We shall prove that the projected Richardson variety  .��1.YP;T // is in
fact equal to ZP;T . One inclusion is straightforward:

Lemma 2.8. Given Schubert symbols T � P for a Grassmannian X of Lie-type B
or C , we have  .��1.YP;T //�ZP;T .

A proof of Lemma 2.8 can be found in [Buch et al. 2009, Lemma 5.1]. This
proof is correct for types B and C , but does not go through in type D due to an
erroneous definition of the Bruhat order. We supply a corrected proof for all three
Lie types in Section 5.

Example 2.9. Continuing with Example 2.5, suppose M is a matrix with shape
D.P; T / and independent, isotropic row vectors. Note that any vector in the
rowspace of M must satisfy the quadratic equation x1x10C x2x9C x3x8 D 0 and
the linear equations x5 D 0 and x7 D 0, which are precisely the equations defining
ZP;T . By Lemma 2.8, any vector contained in an m-plane † 2 YP;T satisfies these
equations.

3. Preliminaries 2: typeD

Consider C2nC2, endowed with a nondegenerate symmetric bilinear form. Let
X WD OG.m; 2nC 2/ denote the even orthogonal Grassmannian of isotropic m-
planes in C2nC2, where 1�m� nC1. In this section we describe the Bruhat order
for even orthogonal Grassmannians, which is more complicated than in types B
and C . We note that definition (1) implies that OG.nC 1; 2nC 2/ is disconnected.
Although we won’t go into it here, this fact can help to give a geometric intuition
behind the Bruhat order on even orthogonal Grassmannians (see [Ravikumar 2013,
Chapter 5] for a detailed description).

For any Schubert symbol P 2�.X/, let P D fc 2 Œ1; 2nC 2� W 2nC 3� c 2 P g
and ŒP �DP [P . As before, let jP j denote the codimension of the Schubert variety
XP in X . We define t.P / 2 f0; 1; 2g as follows. If nC 1 2 ŒP �, then we let t.P /
be congruent mod 2 to the number of elements in Œ1; nC 1� nP . In other words, if
#.Œ1; nC1�nP / is even then t.P /D 0, and if #.Œ1; nC1�nP / is odd then t.P /D 1.
Finally, if fnC 1; nC 2g\P D∅, we set t.P /D 2.2

Proposition 3.1 [Buch et al. 2013, Proposition A.2]. Given Schubert symbols P
and T in �.OG.m; 2nC 2//, we have T � P if and only if

(i) T � P , and

(ii) if there exists c 2 Œ1; n� such that ŒcC 1; nC 1�� ŒP �\ ŒT � and #P \ Œ1; c�D
#T \ Œ1; c�, then we have t.P /D t.T /.

2t.P / differs slightly from the function type.P / in [Buch et al. 2013]. Namely, type.P / �
t.P /C 1 .mod 3/.
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By Proposition 3.1, the type-D Bruhat order is not simply the � ordering. The
following example illustrates the difference.

Example 3.2. The � partial order is shown below for the Schubert symbols on
OG.2;C6/, which are colored by type. Notice that there are six “missing” edges,
which would have occurred had we used the (incorrect) � ordering.

f1; 2g

f1; 4g

f1; 3g

f2; 4g

f1; 5g

f2; 3g

f3; 5g

f2; 6g

f4; 5g

f3; 6g

f4; 6g

f5; 6g

We define the opposite flag Eop
� by Eop

j D he2nC3�j ; : : : ; e2nC2i for j ¤ nC1
and

E
op
nC1 D

�
henC2; enC3; : : : ; e2nC2i if n is odd;
henC1; enC3; : : : ; e2nC2i if n is even:

This definition guarantees that E� and Eop
� lie in the same connected component of

the variety of complete isotropic flags on C2nC2 (endowed with a nondegenerate
symmetric bilinear form), which is disconnected.

Let � be the permutation of f1; : : : ; 2nC2g that interchanges nC1 and nC2 and
leaves all other numbers fixed. Given a type-D Schubert symbol P Dfp1; : : : ; pmg,
let �.P /Df�.p1/; : : : ; �.pm/g. From [Buch et al. 2009, p. 43], we have the following
description of the dual symbol P_:

Lemma 3.3. Given a Schubert symbol P 2�.OG.m; 2nC 2//, we have

P_ D

�
P when n is odd;
�.P / when n is even:

If the type-D definitions of opposite flags and dual Schubert symbols appear
confusing, the following observation may offer some relief:

Observation 3.4. Let X WD IG!.m;N / be a Grassmannian of type B , C , or D.
For any Schubert symbol P , we have

XıP_.E
op
�
/D f† 2 IG W†\ hepi

; : : : ; eN i©†\ hepiC1; : : : ; eN ig:
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Observation 3.4 is obvious unless we are working in OG.m; 2nC 2/ and n is
even. We illustrate that case in the following example:

Example 3.5. Consider OG.1; 6/, and let P D f4g. Then P_ D f4g, Eop
3 D

he3; e5; e6i, and Eop
4 D he3; e4; e5; e6i. By definition,

XıP_.E
op
�
/D f† 2 IG W†\Eop

4 ©†\E
op
3 g;

which is equal to the set of points in P5 of the form h.0; 0; 0; 1;�;�/i, in agreement
with Observation 3.4.

By Observation 3.4, any element of the Schubert cell XıP_.E
op
� / is the rowspace

of an isotropic m�N matrix .ai;j / with ai;pi
D 1 for 1 � i � m and ai;j D 0

for j < pi .

Example 3.6. Consider OG.3; 10/, and let P D f1; 4; 5g. In this case, P_ D
f5; 7; 10g. We can write any element of XıP_.E

op
� / as the rowspace of a matrix of

the form 0@1 � � � � � � � � �0 0 0 1 � � � � � �

0 0 0 0 1 0 � � � �

1A :
Thus XT_.E

op
� / D X

T for any Schubert symbol T , since XT \XT_.E
op
� / is

a single point. We define the Richardson variety YP;T WD XP \XT . As before,
YP;T ¤ ∅ if and only if T � P . We define the Richardson diagram D.P; T / WD

f.j; c/ W tj � c � pj g for any Schubert symbols T � P . This definition holds when
T 6� P , but in this case there cannot exist a matrix of shape D.P; T / whose row
vectors are independent and orthogonal (a fact we shall prove in Proposition 4.12).

Example 3.7. There are no matrices .ai;j / of shape D.f2; 5; 7; 8g; f1; 3; 4; 6g/
whose rows span an element of OG.4; 10/, because the isotropic relations on the
entries are inconsistent:0BB@

a1;1 a1;2 0 0 0 0 0 0 0 0

0 0 a2;3 a2;4 a2;5 0 0 0 0 0

0 0 0 a3;4 a3;5 a3;6 a3;7 0 0 0

0 0 0 0 0 a4;6 a4;7 a4;8 0 0

1CCA :
We leave it to the reader to verify this fact, as well as the fact that f1; 3; 4; 6g �
f2; 5; 7; 8g in type D.

4. Result 1: defining ZP;T in typeD

Let X WD OG.m; 2nC 2/ be a type-D Grassmannian, let N WD 2nC 2, and let
T � P be Schubert symbols in �.X/. Visible cuts, apparent cuts, lone stars, and
zero columns in D.P; T / are defined exactly as in types B and C . Similarly, CP;T
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continues to denote the set of all cuts in D.P; T /, and LP;T continues to denote the
set of integers c 2 Œ1; 2nC2� such that either c is a zero column or column 2nC3�c
contains a lone star. However, in order to define the subvariety ZP;T � P2nC1, we
must define a new type of cut in D.P; T /.

4A. Exceptional cuts. If for some i we have piDnC2� tiC1 or tiDnC1�pi�1,
we let nC 1 be a cut in D.P; T /, which we will refer to as an exceptional center
cut. This cut will induce a lone star in column nC 2 or nC 1 respectively.

Example 4.1. P D f2; 4g and T D f1; 2g in OG.2; 6/. D.P; T / is shown below,
and has an exceptional center cut. As a result, .2; 4/ is a lone star, and 3 2 LP;T .�

� � 0 0 0 0

0 � � � 0 0

�
:

There are additional exceptional cuts inD.P; T /. Let c2 Œ1; n� be a cut candidate
if ŒcC 1; nC 1�� ŒP �\ ŒT � and #.T \ Œ1; c�/ = #.P \ Œ1; c�/C 1. If t.T /¤ t.P /,
then c and N C 1� c will also be cuts in D.P; T / for each cut candidate c. We’ll
refer to these as exceptional cuts as well. We give several examples of diagrams
with exceptional cuts, as the definition is somewhat complicated.

Example 4.2. P D f3; 6g and T D f2; 3g in OG.2; 6/. D.P; T / is shown below,
and CD f0; 1; 2; 3; 4; 5; 6g. Of these, 2, 3 (the center cut), and 4 are exceptional
cuts. .1; 2/; .1; 3/, and .2; 3/ are all lone stars, and LP;T D f1; 4; 5g.�

0 � � 0 0 0

0 0 � � � �

�
:

Example 4.3. P D f3; 4; 7g and T D f1; 3; 4g in OG.3; 8/. D.P; T / is shown
below, and CDf0; 1; 2; 3; 4; 5; 6; 7; 8g. Of these, 2, 3, 4 (the center cut), 5, and 6 are
exceptional cuts. By finding all the lone stars, one can check that LP;T Df2; 5; 6; 8g.0@� � � 0 0 0 0 0

0 0 � � 0 0 0 0

0 0 0 � � � � 0

1A :
Example 4.4. P D f4; 6; 8g and T D f1; 3; 5g in OG.3; 8/. D.P; T / is shown
below, and CD f0; 2; 6; 8g. Of these, 2 and 6 are exceptional cuts, and LP;T D∅.0@� � � � 0 0 0 0

0 0 � � � � 0 0

0 0 0 0 � � � �

1A :
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Example 4.5. P D f4; 5; 8; 9g and T D f1; 3; 4; 6g in OG.4; 10/. D.P; T / is
shown below, and C D f0; 1; 2; 8; 9; 10g. Of these, 2 and 8 are exceptional cuts,
and LP;T D f2; 10g. 0BB@

� � � � 0 0 0 0 0 0

0 0 � � � 0 0 0 0 0

0 0 0 � � � � � 0 0

0 0 0 0 0 � � � � 0

1CCA :
We relate certain features of the Richardson diagram D.P; T / to the type-D

Bruhat order and to the existence of exceptional cuts.

Lemma 4.6. For any Schubert symbol P , the following conditions are equivalent:

(1) ŒcC 1; nC 1�� ŒP �.

(2) #.ŒcC 1;N � c�\P /D nC 1� c.

Proof. Note that nC 1� c D #.ŒcC 1; nC 1�/. Because P is an isotropic Schubert
symbol, there can be at most nC 1 � c elements in Œc C 1;N � c� \ P . Since
ŒcC 1; nC 1�� ŒP �, there are at least that many. �
Lemma 4.7. Given Schubert symbols T � P such that ŒcC 1; nC 1�� ŒT �\ ŒP �,
we have

#.Œ1; c�\T /� #.Œ1; c�\P /D #.ŒN C 1� c;N �\P /� #.ŒN C 1� c;N �\T /:

Proof. By Lemma 4.6, #.ŒcC 1;N � c�\P /D #.ŒcC 1;N � c�\T /D nC 1� c.
It follows that

#.Œ1; c�\P /C #.ŒN C 1� c;N �\P /

Dm� .nC 1� c/

D #.Œ1; c�\T /C #.ŒN C 1� c;N �\T /: �

Lemma 4.7 says that whenever ŒcC 1; nC 1�� ŒT �\ ŒP �, the number of rows
crossing from column c to column cC1 of D.P; T / is equal to the number of rows
crossing from column N � c to column N C 1� c of D.P; T /. We therefore have
the following corollary:

Corollary 4.8. Given c 2 Œ1; n�, suppose ŒcC1; nC1�� ŒT �\ŒP � and t.P /¤ t.T /

for Schubert symbols T � P .

(1) The first four of the following statements are equivalent, and any of them implies
the last:

� #.Œ1; c�\T /D #.Œ1; c�\P /.

� #.ŒN � cC 1;N �\T /D #.ŒN � cC 1;N �\P /.

� c is a visible cut in D.P; T /.
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� N � c is a visible cut in D.P; T /.

� T � P .

(2) The following statements are equivalent:

� c and N � c are exceptional cuts in D.P; T /.

� #.Œ1; c�\T /D #.Œ1; c�\P /C 1.

� #.ŒN � cC 1;N �\P /D #.ŒN � cC 1;N �\T /C 1.

� D.P; T / has exactly one row crossing from column c to column cC 1.

� D.P; T / has exactly one row crossing from columnN �c to columnN �cC1.

We finish this section by proving that several important properties of Richardson
diagrams carry over to the type-D case. In particular, we extend Corollary 2.7 to
type D, and then prove in Corollary 4.13 that .P [T /\LP;T D∅ (a fact that is
obvious in types B and C ). Once these facts are established, we will be ready to
define ZP;T .

First we observe that, for any T � P , D.P; T / and D.T ;P / have the same cut
candidates, by Lemma 4.7. It follows that:

Observation 4.9. 180ı rotation of the diagram D.P; T / preserves all cuts, includ-
ing exceptional cuts. In other words, CP;T D CT ;P .

We can now prove the type-D version of Corollary 2.7:

Proposition 4.10. In type D, if c 2 LP;T , then c and c � 1 are both in CP;T .

Proof. If c is a zero column then the result is clear. Otherwise, it must be the case
that .i; N C 1� c/ is a lone star for some i . By Observation 4.9, we can assume
without loss of generality that N C 1� c � nC 1.

Case 1: N C 1� c D ti and ti is a cut in D.P; T /. We claim that ti � 1 must be
a cut as well. If ti D pi , then pi�1 < ti , and we are done. Thus, we only need to
consider the case that ti is an exceptional cut in D.P; T /.

If ti �1 is not a visible cut, then pi�1 � ti . In fact, if ti D nC1, then pi�1D ti ,
since that is the only way the exceptional center cut can arise. On the other hand, if
ti ¤ nC 1, then, since #.Œ1; ti �\T /D #.Œ1; ti �\P /C 1, row i of D.P; T / is the
only row crossing the exceptional cut ti . In this case too we must have pi�1 D ti .

We therefore have ti 2 ŒT � \ ŒP �. Furthermore, since row i � 1 is the only
row crossing from column ti � 1 to column ti , we have #.Œ1; ti � 1� \ T / D
#.Œ1; ti � 1�\P /C 1. Thus ti � 1 is also an exceptional cut in D.P; T /.

Case 2: N C1�cD pi and pi �1 is a cut inD.P; T /. We claim that pi must be a
cut as well. As before, we can assume that pi � 1 is an exceptional cut in D.P; T /.

If pi is not a visible cut, then tiC1 � pi . In fact, we must have tiC1 D pi , since
row i is the only row crossing the exceptional cut pi � 1.
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� � � � �

d N C 1� d

� � � � �

� � � � �

d N C 1� d

� � � � �

Figure 1. Conflicting lone stars in D.P; T / in Proposition 4.12.

If pi D nC 1, then, since tiC1 D pi , the diagram D.P; T / has the exceptional
center cut nC 1, and we are done.

If pi ¤ nC 1, then, since tiC1 D pi , row i C 1 must be the only row crossing
from column pi to column pi C 1. Hence, #.Œ1; pi �\ T / D #.Œ1; pi �\ P /C 1.
Thus pi is also an exceptional cut in D.P; T /. �

Given Schubert symbols T � P in �.OG.m; 2nC 2// such that t.T /¤ t.P /,
we define a critical window in D.P; T / to be an interval ŒcC 1;N � c� such that c
and N � c are visible cuts in D.P; T /, and ŒcC 1; nC 1�� ŒT �\ ŒP �.

Lemma 4.11. Given Schubert symbols T < P in �.OG.m; 2nC 2//, we have
T ˜ P if and only if a critical window exists in D.P; T /.

Proof. If T ˜P , then t.P /¤ t.T / and there exists c2 Œ1; n� such that ŒcC1; nC1��
ŒT �\ ŒP � and #Œ1; c�\P D #Œ1; c�\ T . By Corollary 4.8, both c and N � c are
visible cuts in D.P; T /, and hence ŒcC 1;N � c� is a critical window. Conversely,
if D.P; T / has a critical window, then it is clear that T ˜ P . �

The fact that .P [T /\LP;T D∅ follows easily from the next proposition:

Proposition 4.12. Given T < P in OG.m; 2nC 2/, T ˜ P if and only if there
exists an integer d 2 Œ1; N � such that D.P; T / has lone stars in columns d and
N C 1� d .

Proof. Suppose columns d and N C 1�d of D.P; T / both contain lone stars, and
assume d � nC1. If d D ti for some i , then N C1�d Dpj for some j , as shown
in the left side of Figure 1. It follows that ti ¤ pi , so ti must be an exceptional
cut in D.P; T /. Thus Œti C 1; nC 1� � ŒT �\ ŒP � and t.T /¤ t.P /. Furthermore,
row i must be the only row crossing from column ti to column ti C 1, and hence
pi�1< ti , implying that ti�1 is a visible cut. Therefore, Œti ; pj � is a critical window
in D.P; T /. On the other hand, if d D pi for some i , then N C 1� d D tj for
some j , as shown in the right side of Figure 1. In this case, pi � 1 must be an
exceptional cut, pi must be a visible cut, and Œpi C 1; ti � 1� must be a critical
window in D.P; T /. By Lemma 4.11, it follows that T � P .
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On the other hand, if T � P , then by Lemma 4.11 there exists a critical window
ŒcC 1;N � c� in D.P; T /. We claim that there exists a (possibly smaller) critical
window of the form Œti ; pj � for some i and j . To see why, note that if ŒcC1;N �c�
does not have the form Œti ; pj �, then either cC 1 D ti D pi or N � c D tj D pj .
Either way, ŒcC2;N �c�1� is a smaller critical window. However, this process of
shrinking can’t continue indefinitely. In particular, if ŒcC1;N �c�D ŒnC1; nC2�,
then the fact that ŒnC 1; nC 2� is a critical window implies that ti D nC 1 and
pi D nC 2 for some i .

Finally, note that whenever Œti ; pj � is a critical window in D.P; T / it must be
the case that ti and pj � 1 are exceptional cuts. Thus .i; ti / and .j; pj / are lone
stars and ti Cpj DN C 1, completing the proof. �

Corollary 4.13. Given T � P , we have .P [T /\LP;T D∅.

Proof. Suppose c 2 .P [ T /\LP;T . Since c is not a zero column, there exists
a lone star in column N C 1� c of D.P; T /. By Proposition 4.10, c and c � 1
are both cuts in D.P; T /. But then column c contains a lone star as well, since
c 2 .P [T /, contradicting Proposition 4.12. �

4B. A complete intersection. The quadratic equation characterizing isotropic vec-
tors in C2nC2 is f DnC1 WD x1xN C � � � C xnC1xnC2 D 0. We once again let
QP;T D .Œ0; n� \ C/ [ fn C 1g. We let ZP;T � P2nC1 denote the subvariety
cut out by the familiar polynomials ffc j c 2 QP;T g [ fxc j c 2 LP;T g, where we
let fnC1 D f DnC1.

It is not immediately obvious that ZP;T is a complete intersection in PN�1, or
even that it is an irreducible subvariety. To prove these facts, we need the following
lemma, which we prove in all three Lie types:

Lemma 4.14. Given Schubert symbols T � P for a Grassmannian X of Lie-type
B , C , or D, if c � 1 and c are both in QP;T , then c 2 LP;T or N C 1� c 2 LP;T .

Proof. If we are working in type B , and c D nC 1, then nC 1 must be a zero
column, and hence be in LP;T . Otherwise, we can assume that c �bN=2c. If either
c or N C 1� c is a zero column in D.P; T / then we are done, so assume neither
column is empty.

Note that if c � 1 is an exceptional cut, then c 2 ŒT �\ ŒP �. Otherwise, either
c� 1 or N C 1� c is a visible cut in D.P; T /, and hence c 2 T or N C 1� c 2 P
respectively, since neither c nor N C 1� c is a zero column in D.P; T /.

In all of these cases c 2 ŒT �[ ŒP �. Therefore .j; c/ or .j;N C 1� c/ is a lone
star for some j . It follows that N C 1� c or c is in LP;T . �

We can now prove that ZP;T is a complete intersection in types B , C , and D.
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Proposition 4.15. Given Schubert symbols T � P for a Grassmannian X of Lie-
type B , C , or D, the variety ZP;T is a complete intersection in PN�1 cut out by
the following polynomials:

(a) fd �fc D xcC1xN�cC� � �CxdxNC1�d , if c and d are consecutive elements
of QP;T such that d � c � 2.

(b) xc , if c 2 LP;T .

Proof. Let IP;T � CŒx1; : : : ; xN � be the ideal generated by the polynomials of
types (a) and (b) mentioned in the statement of this proposition. Note that each of
these polynomials is irreducible, and that by Corollary 2.7 and Proposition 4.10 no
variable xi appears in multiple generators.

It follows that CŒx1; : : : ; xN �=IP;T is a tensor product over C of finitely many
integral domains. Since C is algebraically closed, CŒx1; : : : ; xN �=IP;T must itself be
an integral domain, by [Springer 2009, Lemma 1.5.2]. Hence IP;T is a prime ideal.

Let I 0P;T be the ideal generated by the polynomials used to define ZP;T : namely,
ffc j c 2QP;T g[fxc j c 2LP;T g. Note that each of the generators of IP;T is a linear
combination of these defining polynomials, and is therefore contained in I 0P;T .

On the other hand, note that whenever d � 1 and d are elements of QP;T , the
polynomial fd �fd�1D xdxNC1�d is contained in IP;T , by Lemma 4.14. Thus if
c<d are any consecutive elements of QP;T , then fd�fc 2IP;T . Now, supposing fc
is one of the quadratic polynomials defining ZP;T , let f0D c0 < c1 < � � �< cs D cg
be the complete list of cuts between 0 and c. It follows that fc D fc � f0 D

.fcs
� fcs�1

/C .fcs�1
� fcs�2

/C � � � C .fc1
� fc0

/ 2 IP;T , and therefore that
I 0P;T � IP;T .

We have shown that I 0P;T D IP;T , and hence that ZP;T is the zero set of a prime
ideal. It follows that the polynomials used to define IP;T also cut out ZP;T as a
complete intersection in PN�1. �

5. Result 2:  .��1.YP;T //�ZP;T

Let X WD OG.m; 2nC 2/ and N WD 2nC 2. We would like to show that any
vector lying in any subspace † 2 YP;T satisfies the equations defining ZP;T . The
equations involving exceptional cuts are the most difficult to verify, so we’ll address
them first.

Let Y ıP;T DX
ı
P .E�/\X

ı
T_.E

op
� /. It is a dense open subset of YP;T (see [Richard-

son 1992]), so we can restrict our attention to  .��1.Y ıP;T //:

Proposition 5.1. Consider Schubert symbols T � P for OG.m; 2n C 2/, and
suppose c 2 Œ1; n� is an exceptional cut in D.P; T /. Then fc.w/ D 0 for all
w 2  .��1.Y ıP;T //.
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Proof. Since c is exceptional, we know ŒcC1; nC1�� ŒT �\ ŒP �, #P \ Œ1; c�C1D
#T \ Œ1; c�, and t.P /¤ t.T /.

Let `D nC 1� c, and let E.c/ DEN�c=Ec , which we identify with the span
hecC1; : : : ; eN�ci. Finally, let ˛ D #P \ Œ1; c�.

Suppose † is an element of Y ıP;T . Since † 2 XıP , we have dim.†\Ec/D ˛.
Similarly, since † 2 XıT_.E

op
� /, we have dim.†\Eop

c /Dm� .˛C `C 1/. Fur-
thermore, dim.†\EN�c/D ˛C ` and dim.†\Eop

N�c/Dm� .˛C 1/. Finally,
we know that

dim.†\E.c//D dim.†\EN�c \E
op
N�c/

� dim.†\EN�c/C dim.†\Eop
N�c/�m

D .˛C `/C .m� .˛C 1//�m

D `� 1:

Therefore we can choose vectors u1 through um spanning † such that

ui 2Ec D he1; : : : ; eci for 1� i � ˛;

ui 2E
.c/
D hecC1; : : : ; eN�ci for ˛C 2� i � ˛C `;

ui 2E
op
c D heN�cC1; : : : ; eN i for ˛C `C 2� i �m:

In other words, † can be represented as the rowspace of a matrix with the
following shape (in the sense that all the entries outside the horizontal arrows
are zero):

0BBBBBBBBBBBBBBBBBBBB@

 ��� u1 ���!
:::

 ��� u˛ ���!

 ���������������� u˛C1 ������������������!

 �� u˛C2 ��!
:::

 �� u˛C` ��!

 ���������������� u˛C`C1 ����������������!

 �� u˛C`C2 ��!
:::

„ ƒ‚ …
c

„ ƒ‚ …
2`

„ ƒ‚ …
c

 ��� um ���!

1CCCCCCCCCCCCCCCCCCCCA

:
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Furthermore, since dim.†\EN�c/D˛C`, we can assume without loss of gener-
ality that u˛C1 2EN�c . The matrix with rowspace † then has the following shape:0BBBBBBBBBBBBBBBBBBBB@

 ��� u1 ���!
:::

 ��� u˛ ���!

 ��������� u˛C1 ���������!

 �� u˛C2 ��!
:::

 �� u˛C` ��!

 ���������������� u˛C`C1 ����������������!

 �� u˛C`C2 ��!
:::

„ ƒ‚ …
c

„ ƒ‚ …
2`

„ ƒ‚ …
c

 ��� um ���!

1CCCCCCCCCCCCCCCCCCCCA

:

We shall now consider two cases, corresponding to whether or not u˛C1 is
contained in Eop

N�c :

Case 1: u˛C1 2E
op
N�c . The matrix with rowspace † then has the following shape:0BBBBBBBBBBBBBBBBBBBB@

 ��� u1 ���!
:::

 ��� u˛ ���!

 �� u˛C1 ��!

 �� u˛C2 ��!
:::

 �� u˛C` ��!

 ���������������� u˛C`C1 ����������������!

 �� u˛C`C2 ��!
:::

„ ƒ‚ …
c

„ ƒ‚ …
2`

„ ƒ‚ …
c

 ��� um ���!

1CCCCCCCCCCCCCCCCCCCCA

:

Note that for 1 � ˇ � ˛C `, we have uˇ;j D 0 for any N C 1� c � j � N .
Thus for 1� ˇ � ˛C ` we have

u˛C`C1;1 �uˇ;N C � � �Cu˛C`C1;c �uˇ;NC1�c D 0;

where ui;j is the j -th coordinate of ui .
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Because † is isotropic, we have !.u˛C`C1;uˇ / D 0 for all 1 � ˇ � m. In
particular, for ˛C `C 2� ˇ �m, we then have

u˛C`C1;1 �uˇ;N C � � �Cu˛C`C1;c �uˇ;NC1�c D 0:

Finally, let v be the orthogonal projection of u˛C`C1 onto E.c/. The span of
u˛C1; : : : ;u˛C`C1 is a maximal isotropic subspace of E.c/, so v must be contained
in that span. In particular, v is itself an isotropic vector. Thus

u˛C`C1;1 �u˛C`C1;N C � � �Cu˛C`C1;c �u˛C`C1;NC1�c D 0:

It follows that fc.w/D 0 for any vector w in †.

Case 2: u˛C1 62 E
op
N�c . Since dim.†\Eop

N�c/ D m� .˛C 1/, we may assume
u˛C`C1 2 E

op
N�c , after possibly adding a linear combination of u1; : : : ;u˛C1.

Hence there exists a matrix with rowspace † of the shape0BBBBBBBBBBBBBBBBBBBB@

 ��� u1 ���!
:::

 ��� u˛ ���!

 ��������� u˛C1 ���������!

 �� u˛C2 ��!
:::

 �� u˛C` ��!

 ��������� u˛C`C1 ���������!

 �� u˛C`C2 ��!
:::

„ ƒ‚ …
c

„ ƒ‚ …
2`

„ ƒ‚ …
c

 ��� um ���!

1CCCCCCCCCCCCCCCCCCCCA

:

Let � WCN !CN be the orthogonal projection on to E.c/. Notice that �.ui /D 0
for i � ˛ and i � ˛C `C 2. Define vi D �.u˛Ci / for i 2 Œ1; `C 1�. Note that
vi D u˛Ci for i 2 Œ2; `�, but

v1 D .0; : : : ; 0; u˛C1;cC1; : : : ; u˛C1;N�c ; 0; : : : ; 0/;

v`C1 D .0; : : : ; 0; u˛C`C1;cC1; : : : ; u˛C`C1;N�c ; 0; : : : ; 0/;

where ui;j is the j -th coordinate of ui .
Let

†0 D hv2; : : : ; v`i;

†1 D hv1; : : : ; v`i;

†2 D hv2; : : : ; v`C1i:
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Both †1 and †2 are elements of OG.`; E.c//, and both contain †0. It is a well-
known fact that there are exactly two isotropic `-planes containing a given isotropic
.`� 1/-plane [Fulton and Harris 1991, §23.3]. In particular, there are exactly two
elements of OG.`; E.c// that contain †0, so it remains to verify that †1 and †2
are indeed the same element. It is here that the types of P and T become relevant.

Namely, let

P .c/ WD fp� c W p 2 P \ ŒcC 1;N � c�g;

T .c/ WD ft � c W t 2 T \ ŒcC 1;N � c�g

be Schubert symbols for OG.`; E.c//ŠOG.`; 2`/. Note that whenever a subspace
ƒ is contained in an intersection of Schubert cells XıR and XıS_ in OG.`; 2`/, it
must be the case that S �R and hence that t.ƒ/D t.R/D t.S/. In particular, †1 2
Xı
P .c/ � OG.`; 2`/ by the definition of Xı

P .c/ , so it follows that t.†1/D t.P .c//.
Similarly, †2 2XıT .c/;_ � OG.`; 2`/ by Observation 3.4, and so t.†2/D t.T .c//.

We claim that t.P /D t.T / if and only if t.P .c//¤ t.T .c//. To see why, note that

#.Œ1; nC 1� nP /D #.Œ1; `� nP .c//C .c �˛/;

#.Œ1; nC 1� nT /D #.Œ1; `� nT .c//C .c � .˛C 1//:

Thus t.P /C t.T /� t.P .c//C t.T .c//C 1 .mod 2/.
Since we know that t.P /¤ t.T /, we can conclude that †1D†2. It follows that

v`C1 2†1. But†1 is isotropic, and therefore !.v1; v`C1/D 0. Thus, for allw2†,
the polynomial xcC1xN�c C � � �C xnC1xnC2 vanishes, and hence fc.w/D 0. �

Having addressed exceptional cuts, we can now prove a generalization of
Lemma 2.8 for a Grassmannian X of type B , C , or D:

Proposition 5.2. Given Schubert symbols T � P in �.X/, where X is a Grass-
mannian of type B , C , or D, the projected Richardson variety  .��1.YP;T // is
contained in ZP;T .

Proof. Fix † 2 YP;T and wD .w1; : : : ; wN / 2†. Suppose c 2 QP;T . We will first
show that fc.w/D 0.

If c (orN �c) is a visible cut, then there exists j 2 Œ1;m� such that pj � c < tjC1
(or pj �N � c < tjC1).

Let W1 D he1; : : : ; epj
i and W2 D hepjC1; : : : ; eN i. Since CN D W1 ˚W2,

there exists a unique decomposition w D w1 Cw2 with wi 2 Wi . Namely, we
have w1 D .w1; : : : ; wpj

; 0; : : : ; 0/ and w2 D .0; : : : ; 0; wpjC1; : : : ; wN /. Note
that, since wi D 0 for pj < i < tjC1, we have w2 D .0; : : : ; 0; wtjC1

; : : : ; wN /,
and hence fc.w/D .w1;w2/.
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Since †2 YP;T , dim.†\W1/� j and dim.†\W2/�m�j . We can therefore
write †D .†\W1/˚ .†\W2/, and decompose w as the sum of vectors in these
subspaces. Since there is only one such decomposition, we must have w1 2†\W1
and w2 2†\W2. Since † isotropic, fc.w/D .w1;w2/D 0.

If c D nC 1 (implying we are working in type B or D), then fc D fnC1, the
inherent quadratic equation, which vanishes on all isotropic vectors.

Lastly, if c is exceptional, then fc.w/D 0 by Proposition 5.1.
We have shown that the projected Richardson variety  .��1.YP;T // lies in the

zero set of the polynomial fc for any element c 2 QP;T . In particular, it satisfies
all the quadratic equations defining ZP;T .

We must now show that  .��1.YP;T // satisfies the linear equation xc D 0 for
any c 2LP;T . Suppose c 2 Œ1; N � is a zero column of D.P; T /, and let † continue
to denote an arbitrary element of YP;T . Let j D maxfi 2 Œ1;m� W pi < cg, and
note that tjC1 > c. This time let W1 D he1; : : : ; ec�1i and W2 D hecC1; : : : ; eN i.
Thus, dim.†\W1/ � j and dim.†\W2/ � m� j , so † �W1˚W2, which is
the hyperplane defined by xc D 0.

Finally, suppose column d 2 Œ1; N � contains a lone star. In other words, d D pj
or d D tj for some j , and d � 1 and d are both cuts in D.P; T /. Let c D
min.d;N C 1 � d/, which is in Œ1; dN=2e�. Both c � 1 and c are also cuts in
D.P; T /, so the set  .��1.YP;T // must lie in the zero set of the polynomial
fc � fc�1 D xcxNC1�c D xdxNC1�d . However, since  .��1.YP;T // is irre-
ducible (by [Richardson 1992]), it must lie in xd D 0 or xNC1�d D 0 (or both).

Consider any subspace ƒ in the dense subset XıP .E�/ \ X
ı
T_.E

op
� / � YP;T .

Since d 2 P [T , it is impossible that xd D 0 on all vectors in ƒ. Therefore, the
equation xNC1�d D 0 must be satisfied by  .��1.YP;T //. �

6. Result 3: ZP;T � .��1.YP;T //

Let X WD IG!.m;CN / be a Grassmannian of type B , C , or D. Given Schubert
symbols P and T in �.X/, we write P ! T whenever

(i) T � P ;

(ii) pi � tiC1 for all i , unless pi D nC 2 and tiC1 D nC 1 in type D; and

(iii) if pi D tiC1, then pi is not a cut in D.P; T /.

When pi > tiC1, we say D.P; T / has a 2�2 square. Thus, the second condition
says that D.P; T / has no 2� 2 squares, except that a single 2� 2 square in the
central columns is permitted in type D. When pi D tiC1 for some i and pi 2CP;T ,
then .i C 1; tiC1/ is a lone star in D.P; T / (in fact, so is .i; pi /), and hence
NC1�pi 2LP;T . If we are working in typeB or C , thenNC1�pi must be a zero
column, which yields the equivalent definition of P !T given in [Buch et al. 2009].
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If we are working in type D, then there are other possibilities involving excep-
tional cuts. For example, if pi D tiC1 2 fnC 1; nC 2g, then nC 1 will be an
exceptional cut, causing both .i; pi / and .i C 1; tiC1/ to be lone stars. It follows
that, when P ! T , the diagram D.P; T / cannot have exactly three stars in the
central columns nC 1 and nC 2, which yields the alternative type-D definition of
P ! T given in [Buch et al. 2009, §5.2].

The relation P ! T is important because it characterizes precisely when the
map  W ��1.YP;T /!ZP;T is a birational isomorphism. In particular, [Buch et al.
2009, Proposition 5.1] says the following:

Proposition 6.1. Given a Grassmannian X of Lie-type B , C , or D, the map
 W ��1.YP;T /! ZP;T is a birational isomorphism if and only if the Schubert
symbols P and T satisfy the relation P ! T .

A more detailed proof of Proposition 6.1 can be found in [Ravikumar 2013, §8].
In this section, we prove the following proposition:

Proposition 6.2. Given Schubert symbols T � P for a Grassmannian X of type B ,
C , or D, there exists a Schubert symbol zP such that

(1) T � zP � P ,

(2) Z zP;T DZP;T , and

(3) zP ! T .

We prove Proposition 6.2 by explicitly constructing the Schubert symbol zP . An
immediate consequence is that, for any T � P in �.X/, the Richardson variety
YP;T must contain a smaller Richardson variety Y zP;T such that  W ��1.Y zP;T /!
Z zP;T D ZP;T is a birational isomorphism (by Proposition 6.1). It follows that
ZP;T � .�

�1.YP;T //. By combining this observation with Proposition 5.2, which
states that ZP;T �  .��1.YP;T //, we have a proof of Theorem 1.1. We mention
that Proposition 6.2 is not the only way to prove that ZP;T �  .��1.YP;T //. For
example, instead of “lowering” P we could “raise” T . In fact, the construction we
give for zP does precisely that when carried out on the rotated diagram D.T ;P /.

6A. Constructing a “smaller” Schubert symbol P 0. Given Schubert symbols
T � P , define the set P 0 D fp01; : : : ; p

0
mg as follows:

If pi < tiC1, then

p0i D pi : (})

On the other hand, if pi � tiC1 and tiC1� 1 62 CP;T , then

p0i D tiC1: (|)
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Finally, if pi � tiC1 and tiC1� 1 2 CP;T , then

p0i Dmaxfc 2 Œti ; tiC1� 1� j c 62 LP;T g: (~)

Note that since ti cannot be in LP;T , the set fc 2 Œti ; tiC1 � 1� j c 62 LP;T g is
nonempty. Thus p0i is well-defined.

The next property of P 0 follows from its construction and Corollary 4.13:

Observation 6.3. For any 1� i �m, p0i 62 LP;T .

Proof. If p0i is defined by case (}) or case (|), then p0i 2P[T , so by Corollary 4.13
it is not in LP;T . If it is defined by case (~), then by its construction it cannot be
in LP;T . �

We also have the next observation, which follows directly from the construction
of P 0:

Observation 6.4. If p0i is produced by case (}) or case (~) of the previous
construction, then Œp0i ; tiC1 � 1� � CP;T . Furthermore, if p0i < tiC1 � 1, then
Œp0i C 1; tiC1� 1�� LP;T .

Lemma 6.5. P 0 is a Schubert symbol.

Proof. We will first show that p0i < p
0
iC1 for 1� i �m�1. By our construction of

P 0, we have p0i � tiC1 � p
0
iC1 for each i . Thus we only need to consider the case

that p0iC1 D tiC1. If p0iC1 D tiC1, then p0iC1 follows case (}) or case (~), so, by
Observation 6.4, tiC1 2 CP;T . But then .i C 1; tiC1/ is a lone star in D.P; T /, so
tiC1� 1 2 CP;T as well (by Corollary 2.7). Thus p0i follows case (}) or case (~),
and we have p0i < tiC1. It follows that p0i < p

0
iC1 for all 1 � i � m� 1, and in

particular that P 0 consists of m distinct integers.
We still have to check that P 0 satisfies the isotropic condition. Suppose on the

contrary that p0i Cp
0
j DN C 1 for some i and j in Œ1;m�. By Observation 6.4, if

p0i is not a cut in D.P; T /, then p0i D tiC1. Similarly, if p0j is not a cut in D.P; T /,
then p0j D tjC1.

We therefore have three possible cases to consider, each of which results in a
contradiction:

Case 1: Both p0i and p0j are cuts in D.P; T /. In this case N �p0j D p
0
i � 1 is also

a cut, and by Lemma 4.14 either p0i or p0j is in LP;T . But neither p0i nor p0j can be
in LP;T , by Observation 6.3.

Case 2: Exactly one of fp0i ; p
0
j g is a cut in D.P; T /. We will assume without loss

of generality that p0j is a cut in D.P; T /. We then have p0i � 1 2 CP;T , as in the
previous case, implying that p0i cannot follow case (|). However, since p0i 62 CP;T ,
Observation 6.4 implies that p0i does follow case (|), a contradiction.
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Case 3: Neither p0i nor p0j is a cut inD.P; T /. In this case, p0i D tiC1 and p0j D tjC1.
But tiC1C tjC1 ¤N C 1, since T is a Schubert symbol, so once again we arrive
at a contradiction. �

6B. Types B and C . If X is a Grassmannian of type B or C , we set zP WD P 0

in order to prove Proposition 6.2. The type-D case of Proposition 6.2 will be
addressed in Section 6C.

Since T �P if and only if T �P , it is clear by our construction that ti � Qpi �pi
for 1� i �m, and hence T � zP �P . Thus zP satisfies Proposition 6.2(1). We will
need the following lemma to verify the remaining conditions:

Lemma 6.6. The diagrams D.P; T / and D. zP ; T / have the same cuts.

Proof. Given an integer c 2 Œ1; N �, if pi � c < tiC1, then Qpi D pi � c < tiC1.
Therefore CP;T � C zP;T . On the other hand, if Qpi < tiC1, then Qpi is defined by
(}) or (~). We then have Œ Qpi ; tiC1 � 1� � CP;T , by Observation 6.4. Therefore
CP;T � C zP;T . �

Proof of Proposition 6.2. We show that zP satisfies conditions (2) and (3).

zP satisfies (2) .ZP;T D Z zP;T /: By Lemma 6.6, the diagrams D.P; T / and
D. zP ; T / have the same cuts. We still have to prove that LP;T D L zP;T . Suppose
c 2LP;T . Then, by Proposition 2.6, either pi D ti DN C1�c for some i or c is a
zero column of D.P; T /. If pi D ti DN C1� c for some i , then pi < tiC1, so Qpi
must follow case (}) of the construction. Thus Qpi D ti DN C 1� c, so c 2 L zP;T .
On the other hand, if c is a zero column in D.P; T /, then pi < c < tiC1 for some
i . Once again we have Qpi D pi , so c is a zero column in D. zP ; T /, and therefore
an element of L zP;T .

Now suppose c 2L zP;T . If Qpi < c < tiC1 for some i , then Qpi satisfies (}) or (~).
Either way, we must have c 2 LP;T . On the other hand, if .i; N C 1� c/ is a lone
star in D. zP ; T / for some i , then Qpi D ti DN C 1� c. Thus, Qpi 2 C zP;T D CP;T .
In this case .i; ti / is a lone star in D.P; T /, and c 2 LP;T .

zP satisfies (3) . zP ! T /: Since Qpi � tiC1 for 1� i �m�1, the diagram D. zP ; T /

has no 2�2 squares. If Qpi D tiC1 for some i , then tiC1�1 is not a cut in D.P; T /.
By Lemma 6.6 it is also not a cut in D. zP ; T /, so column N C 1� Qpi cannot be a
zero column in D. zP ; T /. �

6C. TypeD. LetX WDOG.m; 2nC2/ be a type-D Grassmannian, letN WD2nC2,
and let T � P be Schubert symbols in �.X/. Unfortunately the Schubert symbol
P 0 constructed in Section 6A fails to satisfy the conditions of Proposition 6.2, as
the following example illustrates:
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Example 6.7. Consider OG.2; 6/, and let T Df1; 3g and P Df5; 6g. The projected
Richardson varietyZP;T is the quadric hypersurface of P5 consisting of all isotropic
lines in C6. Since P 0 D f3; 6g and the variety ZP 0;T satisfies the additional linear
equation x4D 0, we have ZP;T ¤ZP 0;T . Furthermore, P 0 6! T , since p1D t2D 3
is a cut in D.P 0; T /— the exceptional center cut�

� � � 0 0 0

0 0 � � � �

�
:

We therefore define the set zP D f Qp1; : : : ; Qpmg as follows:
If pi < tiC1, then

Qpi D pi : (?)

On the other hand, if pi � tiC1 and tiC1� 1 62 C, then

Qpi D

�
tiC1 if tiC1 62 fnC 1; nC 2g;
N C 1� tiC1 if tiC1 2 fnC 1; nC 2g:

(�)

Finally, if pi � tiC1 and tiC1� 1 2 C, then

Qpi Dmaxfc 2 Œti ; tiC1� 1� j c 62 Lg: (�)

Note that since ti cannot be in L, the set fc 2 Œti ; tiC1� 1� j c 62Lg is nonempty.
Thus Qpi is well-defined.

Recall that � is the permutation of f1; : : : ; 2nC 2g that interchanges nC 1 and
nC 2 and leaves all other numbers fixed. We make the following observation:

Observation 6.8. zP is equal to �P 0 or P 0. Moreover, zP D �P 0 if and only if there
exists an element Qpi defined by case (�) and tiC1 2 fnC 1; nC 2g.

Given a type-D Schubert symbol R, the set �R is also a Schubert symbol, since
the isotropic condition is preserved. We therefore have the following corollary:

Corollary 6.9. zP is a Schubert symbol.

The following observations are exact restatements of Observations 6.3 and 6.4
for type D. We give a brief proof of the first, whereas the second follows directly
from the construction of zP .

Observation 6.10. For any 1� i �m, Qpi 62 LP;T .

Proof. If Qpi is defined by case (?), or if it is defined by case (�) and tiC1 62
fnC1; nC2g, then Qpi 2P [T . By Corollary 4.13, it is not in LP;T . If it is defined
by case (�), then by its construction it cannot be in LP;T .

Finally, suppose Qpi is defined by case (�) and tiC1 2 fnC 1; nC 2g. If Qpi D
N C 1� tiC1 2 LP;T , then tiC1� 1 2 CP;T , contradicting the assumption that Qpi
is defined by case (�). �
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Figure 2. Center columns of D. zP ; T / in Lemma 6.12.

Observation 6.11. If Qpi is produced by case (?) or case (�) of the previous
construction, then Œ Qpi ; tiC1 � 1� � CP;T . Furthermore, if Qpi < tiC1 � 1, then
Œ Qpi C 1; tiC1� 1�� LP;T .

We will now proceed to prove that T � P , zP ! T , ZP;T DZ zP;T , and zP � P ,
in that order. We begin with an important lemma:

Lemma 6.12. If nC 1 2 ŒT �\ Œ zP �, then t.T /D t. zP /.

Proof. Suppose Qpi 2 fnC 1; nC 2g for some i and tj 2 fnC 1; nC 2g for some j .
Since Qpk� tk>nC2 for all k>j , we have i�j . Furthermore, Qpk�1� tk<nC1

for all k < j , so i � j � 1. Thus we either have i D j or i C 1D j .

Case 1: i D j . We claim that ti D Qpi 2 fnC1; nC2g. Suppose on the contrary that
ti D nC1 and Qpi D nC2. Since tiC1¤ nC1, Qpi is not defined by (�). Therefore,
by Observation 6.11, Qpi 2 CP;T . It follows that both n and nC 2 are in QP;T , so,
by Lemma 4.14, either nC 1 or nC 2 is in LP;T . But neither ti nor Qpi can be in
LP;T , by Corollary 4.13 and Observation 6.10. To avoid this contradiction, we
must have ti D Qpi 2 fnC 1; nC 2g. Thus, nC 1 is a visible cut in D. zP ; T /, and
#.Œ1; nC 1�\T /D #.Œ1; nC 1�\ zP /. In other words, t.T /D t. zP /.

Case 2: iC1D j . If Qpi D tiC1, then Qpi is defined by (�) and tiC1 62 fnC1; nC2g.
Hence Qpi 62 fnC1; nC2g, a contradiction. It follows that Qpi ¤ tiC1. If Qpi D nC1
and tiC1 D nC2, then nC1 is a visible cut in D. zP ; T /, as seen on the left side of
Figure 2. On the other hand, if Qpi D nC 2 and tiC1 D nC 1, as seen on the right
side, then #.Œ1; nC1�\T /D #.Œ1; nC1�\ zP /C2, so once again t.T /D t. zP /. �

Lemma 6.12 says that ft. zP /; t.T /g ¤ f0; 1g. Since we also know that T � zP by
construction, we have the following immediate corollaries:

Corollary 6.13. T � zP .

Proof. The condition that ft. zP /; t.T /g D f0; 1g is necessary for T ˜ zP . �
Corollary 6.13 says that zP satisfies the first half of condition (1) of Proposition 6.2.

We prove the second half in Proposition 6.21.

Corollary 6.14. The diagramD. zP ; T / has no exceptional cuts, except possibly the
center cut nC 1.
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Proof. The condition that ft. zP /; t.T /g D f0; 1g is necessary for the existence of an
exceptional cut other than the center cut. �

In fact, any noncentral exceptional cut in D.P; T / becomes a visible cut in
D. zP ; T /. However, we will only need this fact in the special case that the excep-
tional cut is less than nC 1:

Lemma 6.15. If 1� c � n is an exceptional cut in D.P; T /, then c is a visible cut
in D. zP ; T /.

Proof. Since c is an exceptional cut in D.P; T /, we have that #.Œ1; c� \ T / D
#.Œ1; c�\P /C 1. In other words, there exists exactly one integer i 2 Œ1;m� such
that ti � c < pi .

Since row i is the only row crossing from column c to column cC 1, we must
have cC1� tiC1. Furthermore, since nC1 2 ŒT �, we must have tiC1 � nC2. We
will show that Qpi � c, and hence that c is a visible cut in D. zP ; T /. We divide the
rest of our argument into two cases:

Case 1: cC 1D tiC1. Since c 2 CP;T , Qpi is defined by (�), it follows that Qpi � c.

Case 2: cC 1 < tiC1 � nC 2. We claim that pi � tiC1. To see why, suppose for
the sake of contradiction that pi < tiC1. Then pi is a visible cut in D.P; T /, and
#.Œ1; pi �\T /D #.Œ1; pi �\P /. If pi <nC1, then since ŒpiC1; nC1�� ŒP �\ ŒT �
and t.T /¤ t.P / (which follow from the fact that c is an exceptional cut), we have
T ˜ P , a contradiction. If pi D nC 1, then #.Œ1; nC 1�\T /D #.Œ1; nC 1�\P /,
so t.P /D t.T /, contradicting the assumption that c is an exceptional cut. Finally,
if pi > nC 1, then tiC1 > nC 2, contradicting the assumption that nC 1 2 ŒT �. It
follows that pi � tiC1, as claimed.

Now note that any d 2 ŒcC 1; tiC1� 1� must be an exceptional cut in D.P; T /,
since #.Œ1; d �\T /D #.Œ1; d �\P /C1 (in particular row i is the only row crossing
from column d to column d C 1). Furthermore, for each d 2 Œc C 1; tiC1 � 1�,
we have N C 1 � d 2 T , since d 62 T and Œc C 1; nC 1� 2 ŒT �. It follows that
column N C1�d contains a lone star in D.P; T /, and hence that d 2LP;T . Since
ŒcC 1; tiC1� 1�� LP;T , it follows that Qpi is defined by (�) and that Qpi � c. �

The following proposition will also be needed:

Proposition 6.16. CP;T [fnC 1g D C zP;T [fnC 1g.

Proof. By Corollary 6.14, there are no exceptional cuts in D. zP ; T /. If c is a visible
cut in D. zP ; T /, then Qpi � c < tiC1 for some 1 � i �m� 1. If Qpi is defined, by
(?) or (�), then, by Observation 6.11, c 2 CP;T . Otherwise Qpi is defined by (�) and
Qpi D c D nC 1. Since all visible cuts in C zP;T are contained in CP;T [ fnC 1g,

the same is true for apparent cuts. It follows that C zP;T � CP;T [fnC 1g.
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On the other hand, if pi < tiC1 then Qpi D pi < tiC1. Thus any visible cut
c 2 CP;T is also contained in C zP;T . If c < nC 1 is an exceptional cut in D.P; T /,
then, by Lemma 6.15, c 2 C zP;T . It follows that CP;T � C zP;T [fnC 1g. �

We can now prove that zP satisfies condition (3) of Proposition 6.2.

Proposition 6.17. zP ! T .

Proof. By Corollary 6.13, T � zP . The construction of zP ensures that Qpi is never
greater than tiC1 except possibly when tiC1 D nC 1 and Qpi D nC 2. Furthermore,
if Qpi D tiC1, then tiC1� 1 is not a cut in D.P; T /. Therefore tiC1 cannot be a cut
in D.P; T / either, since that would make .i C 1; tiC1/ a lone star in D.P; T / and
hence make tiC1� 1 a cut in D.P; T /, by Proposition 4.10. It follows that tiC1 is
not a cut in D. zP ; T /, by Proposition 6.16. �

We will now show that ZP;T DZ zP;T by examining the diagrams D.P; T / and
D. zP ; T /. Recall that the quadratic equations definingZP;T are entirely determined
by CP;T , the set of cuts in the D.P; T /.

Notice that CP;T is not equal to C zP;T in general, because our construction of zP
adds the center cut nC1 whenever pi > tiC1 D nC2. By Proposition 6.16, that is
the only change in the cut set, and the addition of the center cut does not alter the
equations in these cases.

In fact, by Proposition 6.16,ZP;T andZ zP;T satisfy the same quadratic equations:
namely, ffc j c 2 .CP;T \ Œ1; n�/[fnC 1gg. The following proposition shows that
they satisfy the same linear equations as well:

Proposition 6.18. LP;T D L zP;T .

Proof. Suppose c 2 L zP;T . If c is a zero column in D. zP ; T /, then Qpi < c < tiC1
for some i . Whether Qpi satisfies (?) or (�), we then have c 2 LP;T .

If c is not a zero column in the diagram, then column N C 1� c contains a lone
star in D. zP ; T /. If neither N C 1� c nor N � c are exceptional cuts in D. zP ; T /
then we must have ti D Qpi D N C 1 � c for some i , by Proposition 2.6. Thus
ti 2 C zP;T , and hence, by Proposition 6.16, ti 2 CP;T . It follows that .i; ti / is a
lone star in D.P; T / and c 2 LP;T . On the other hand, if either N C 1 � c or
N � c is an exceptional cut in D.P; T / then, by Corollary 6.14, nC 1 must be that
exceptional cut. It follows that c 2 fnC 1; nC 2g. Since c 2L zP;T , we have that n
and nC 2 are in C zP;T , and hence in CP;T by Proposition 6.16. By Lemma 4.14,
either nC 1 or nC 2 (that is, either c or N C 1� c) must be in LP;T . But column
N C1� c contains a lone star in D. zP ; T /, and hence N C1� c 2 T [ zP . Thus by
Corollary 4.13 and Observation 6.10, it is impossible for N C 1� c to be in LP;T .
Therefore c 2 LP;T . It follows that L zP;T � LP;T .

On the other hand, if c 2 LP;T , then c � 1 and c are both cuts in D.P; T /. By
Proposition 6.16, they are both cuts in D. zP ; T / as well, and therefore either c or
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N C 1� c is in L zP;T by Lemma 4.14. If N C 1� c 2 L zP;T , then we have shown
that N C 1� c 2 LP;T as well. In that case, by Corollary 4.13, D.P; T / does not
have a lone star in column N C 1� c, so c must be a zero column in D.P; T /. In
other words pi < c < tiC1 for some i . But then Qpi D pi , so c is a zero column in
D. zP ; T / as well. �

We have condition (2) of Proposition 6.2 as an immediate corollary:

Corollary 6.19. ZP;T DZ zP;T .

Finally, we prove that zP � P , and hence that the Richardson variety Y zP;T
is indeed contained in YP;T . Our proof will require the following somewhat
technical lemma:

Lemma 6.20. Suppose t.T /¤ t.P /, and that there exists an integer 1� c � n such
that c 62 ŒT � and ŒcC 1; nC 1�� ŒP �\ ŒT �\ Œ zP �. Then c 62 ŒP �\ Œ zP �.

Proof. Suppose for the sake of contradiction that c 2 ŒP �\ Œ zP �. We divide our
argument into four cases.

Case 1: c 2 zP and N C 1� c 2 P . In this case, Qpi D c for some i 2 Œ1;m� and
pj DN C 1� c for some j 2 Œ1;m�.

Since c 62 T , Qpi is defined by (?) or (�). Hence Qpi 2 CP;T by Observation 6.11.
Since pj � 1 D N � Qpi is also a cut in D.P; T /, it follows that .j; pj / is a lone
star in D.P; T /, and therefore that Qpi 2 LP;T , contradicting Observation 6.10.

Case 2: c 2 P and N C 1� c 2 zP . In this case, pi D c for some i 2 Œ1;m� and
Qpj DN C 1� c for some j 2 Œ1;m�.

Since N C 1 � c 62 T , Qpj is defined by (?) or (�). Hence Qpj 2 CP;T by
Observation 6.11. Since pi � 1 D N � Qpj is also a cut in D.P; T /, it follows
that .i; pi / is a lone star in D.P; T /, and therefore that Qpj 2 LP;T , contradicting
Observation 6.10.

Case 3: c 2 zP \P . In this case, pi D c for some i .
Let ` WD n C 1 � c. Since Œc C 1; n C 1� � ŒP �, Lemma 4.6 tells us that

ŒpiC1; piC`�� ŒcC1;N � c�. We will show that QpiC1 < cC1 and that QpiC`C1 >
N�c, contradicting the assumption that ŒcC1; nC1�� zP and hence the assumption
that #.ŒcC 1;N � c�\ zP /D ` (by Lemma 4.6), since in this case there can be at
most `� 1 elements of zP contained in the interval ŒcC 1;N � c�.

We will first show that QpiC1 < c C 1. Since c 2 zP , it must be the case that
Qpj D c for some j � i . We will show that j D i C 1.

Note that if pi D Qpi < tiC1 then #.Œ1; c�\T /D #.Œ1; c�\P /, and hence T ˜P
(since t.T /¤ t.P /), contradicting the assumption that T � P .

Also note that if pi D Qpi D tiC1, then tiC1 D c, contradicting the assumption
that c 62 ŒT �.
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Therefore, Qpj D c for some j > i . Furthermore, Qpj is defined by (�) since
c < tjC1, and hence Qpj 2 CP;T .

However, neither c nor N �c is a visible cut in D.P; T /, since that would imply
T ˜ P by Corollary 4.8. It follows that c is an exceptional cut in D.P; T /.

Since c is an exceptional cut, and since pi D c, row i C 1 must be the only
row crossing from column c to column cC 1, by Corollary 4.8. In other words
tiC1 < c < piC1 and tiC2 > c. Thus j D i C 1 and QpiC1 D Qpj D c < cC 1.

It remains to show that QpiC`C1 >N � c.
Since ŒcC 1; nC 1�� ŒT �, and since tiC1 < c < tiC2, Lemma 4.6 tells us that

ŒtiC2; tiC`C1�� ŒcC1;N �c�. Furthermore, row iC`C1 must cross from column
N � c to column N � cC 1, since N � cC 1� piC`C1.

In fact, tiC`C1 <N � cC 1 < piC`C1, since piC`C1 ¤N � cC 1 (due to the
fact that c 2 P ). Therefore N � cC1 is not a visible cut in D.P; T /. It is not even
an apparent cut, since ti < c D pi . Finally, N C 1� c is not an exceptional cut,
since c 62 ŒT �. Thus N C 1� c 62 CP;T .

Note that tiC`C2 >N �cC1. Thus, if QpiC`C1 is defined by (�), then QpiC`C1 >
N � cC1. Furthermore, if QpiC`C1 is defined by (?) or (�), then since N C1� c 62
CP;T and tiC`C2 >N � cC 1, we must again have QpiC`C1 >N � cC 1.

Case 4: N C 1� c 2 zP \P . As in the previous case, let ` WD nC 1� c. We have
pj D N C 1� c for some j . Since ŒcC 1; nC 1�� ŒP �, we have Œpj�`; pj�1��
ŒcC 1;N � c� by Corollary 4.8. We will show that Qpj >N � c and Qpj�` < cC 1,
contradicting the assumption ŒcC 1; nC 1�� Œ zP �.

We will first show that Qpj >N � c. Suppose for the sake of contradiction that
Qpk D N C 1� c for some k > j . Then, since N C 1� c 62 T , Qpk is defined by

(?) or (�), and is therefore a cut in D.P; T / by Observation 6.11. Since c 62 ŒT �, it
follows that Qpk is not an exceptional cut. Since tk � Qpk D pj < pk , it follows that
Qpk is not a visible cut either.

But Qpk is a cut, and hence c � 1 must be a visible cut in D.P; T /. Since c 62 T ,
c must be a zero column inD.P; T /. But then c is a visible cut, so by Corollary 4.8
T ˜P , a contradiction. It follows that kD j , and hence that Qpj DNC1�c >N�c.

It remains to show that Qpj�` < cC 1. Since pj D Qpj D N C 1� c, and since
N C 1� c 62 T , it must be the case that Qpj is defined by (?), and therefore that pj
is a visible cut in D.P; T /. It follows that row j is the only row crossing from
column N � c to column N � cC 1, and hence that c and N � c are exceptional
cuts in D.P; T / by Corollary 4.8.

By Lemma 6.15, c is a visible cut in D. zP ; T /. It follows that Qpj�` � c,
since tj�` � c. �

We can now prove that zP satisfies the latter half of condition (1) of Proposition 6.2.

Proposition 6.21. zP � P .
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Proof. Note that zP �P by construction. Assuming zP <P , suppose zP ˜P for the
sake of contradiction. It follows that t. zP /¤ t.P /, and that there exists an integer
c 2 Œ1; n� such that ŒcC 1; nC 1�� Œ zP �\ ŒP � and #.Œ1; c�\ zP /D #.Œ1; c�\P /.

Case 1: nC1 62 ŒT �. Since nC12 Œ zP �, we have Qpi 2fnC1; nC2g for some i . Since
nC 1 62 ŒT �, Qpi must be defined by (?) or (�). By Observation 6.11, Qpi 2 CP;T . If
Qpi D nC1, this means nC12CP;T . If Qpi D nC2, then also we have nC12CP;T .

To see why, note that both n and nC1 are in QP;T , so by Lemma 4.14 either nC1
or nC 2 is in LP;T .

If nC1 is an exceptional center cut inD.P; T /, then pj DnC2<tjC1 for some j ,
since nC1 62 ŒT �. In this case, Qpj D pj D nC2, and hence nC1 is a visible cut in
D.P; zP /. On the other hand, if nC 1 is a visible cut in D.P; T /, then it must be a
visible cut in D.P; zP / as well. It follows that #.Œ1; nC1�\P /D #.Œ1; nC1�\ zP /.
In other words t.P /D t. zP /, a contradiction.

Case 2: nC 1 2 ŒT �. Since nC 1 2 ŒT �\ Œ zP �, Lemma 6.12 implies t.T /D t. zP /.
Since we are assuming t. zP /¤ t.P /, this means t.T /¤ t.P /. We can therefore
invoke Lemma 6.20 n� c times to deduce that ŒcC 1; nC 1�� ŒT �.

We divide the remainder of the proof into three subcases, depending on the
number of rows crossing from column c to column cC 1 of D.P; T /.

Case 2a: #.Œ1; c�\ T / D #.Œ1; c�\P /. Since t.T / ¤ t.P / and Œc C 1; nC 1� �
ŒT �\ ŒP �, we have T � P , a contradiction.

Case 2b: #.Œ1; c�\ T / D #.Œ1; c�\ P /C 1. In other words there is exactly one
integer i such that ti � c < pi . Furthermore, c is an exceptional cut in D.P; T /,
since ŒcC1; nC1�� ŒT � and t.T /¤ t.P /. Therefore, by Lemma 6.15, c is a visible
cut in D. zP ; T /. This means Qpi � c < tiC1. But c < pi , so we have Qpi � c < pi ,
contradicting the assumption that #.Œ1; c�\ zP /D #.Œ1; c�\P /.

Case 2c: #.Œ1; c� \ T / � #.Œ1; c� \ P /C 2. Let i be the smallest integer such
that ti � c < pi . Note that tiC1 � c < piC1. Since Qpi � tiC1 � c, it follows that
#.Œ1; c�\ zP /> #.Œ1; c�\P /, again contradicting the assumption that #.Œ1; c�\ zP /D
#.Œ1; c�\P /. �

Combining Propositions 6.17 and 6.21, and Corollaries 6.13 and 6.19, we see
that the Schubert symbol zP satisfies all three conditions of Proposition 6.2. By the
discussion at the beginning of Section 6, this completes the proof of Theorem 1.1.

7. The Grothendieck ring

In this section we summarize some facts about K-theory which will be used in
Sections 8 and 9. Further details can be found in [Fulton 1998] or [Brion 2005].

Given an algebraic variety X , let K0.X/ denote the Grothendieck ring of alge-
braic vector bundles on X . Let K0.X/ denote the Grothendieck group of coherent
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OX -modules, which is a module overK0.X/. Both the ring structure ofK0.X/ and
the module structure of K0.X/ are defined by tensor products. A closed subvariety
Z �X has a Grothendieck class ŒOZ � 2K0.X/ defined by its structure sheaf. If X
is nonsingular, the map K0.X/!K0.X/ sending a vector bundle to its sheaf of
sections is an isomorphism, and we write K.X/ WDK0.X/ŠK0.X/, which we
refer to as the Grothendieck ring of X .

A morphism of varieties f W X ! Y defines a pullback ring homomorphism
f � W K0.Y /! K0.X/ by pullback of vector bundles. If f is proper, then there
exists a pushforward group homomorphism f� W K0.X/! K0.Y /. Both these
maps are functorial with respect to composition of morphisms. The projection
formula says that f� is a K0-module homomorphism, in the sense that

f�.f
�A �B/DA �f�B; (3)

where A 2K0.Y / and B 2K0.X/. If X is a complete variety, then the sheaf Euler
characteristic map �X WK.X/!K.point/D Z is defined to be the pushforward
along the morphism X ! point.

We need the following well-known fact (see, e.g., [Buch and Ravikumar 2012,
Lemma 2.2]).

Lemma 7.1. Let X be a nonsingular variety, and let Y and Z be closed varieties
of X with Cohen–Macaulay singularities. Assume that each component of Y \Z
has dimension dim.Y /C dim.Z/� dim.X/. Then Y \Z is Cohen–Macaulay and
ŒOY � � ŒOZ �D ŒOY\Z � in K.X/.

Finally we recall some facts about theK-theory of the projective space PN�1. Let
h2K.PN�1/ be the class of a hyperplane. Then hj is the class of a codimension-j
linear subvariety, 2h� h2 is the class of a quadric hypersurface, and K.PN�1/D
ZŒh�=.hN /. The sheaf Euler characteristic �PN�1 WK.PN�1/! Z is determined
by hj 7! 1 for 1� j < N .

8. Computing triple intersection numbers

Let X WD IG!.m;CN / be a Grassmannian of type B , C , or D. In this section, we
calculate the K-theoretic Pieri-type triple intersection numbers

�X .ŒOXP
� � ŒOXT � � ŒOX.r/

�/; (4)

where T � P are Schubert symbols in �.X/ and X.r/ �X is a special Schubert
variety, which we will define shortly for each type of Grassmannian. Our technique
relies on the projection formula to move our calculation to theK-theory of projective
space. A similar technique was used for the type-A Grassmannian in [Buch and
Ravikumar 2012].
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Recall the projections � and  from IF WD IF!.1;m;CN / to X and Z WD
IG!.1;CN / respectively. Since the K-theoretic pushforward is functorial with
respect to composition, the following diagram commutes:

K.IF/

K.X/

K.Z/

Z

��

 �

�IF

�X

�Z

Lemma 8.1. Let X WD IG!.m;CN / be a Grassmannian of type B , C , or D. Sup-
pose there exists a Schubert varietyW �Z WD IG!.1;CN / such that �. �1.W //D
X.r/. We then have

�X .ŒOXP
� � ŒOXT � � ŒOX.r/

�/D �Z.ŒOZP;T
� � ŒOW �/ (5)

for any Schubert symbols T � P .

Proof. Since ��1.XP / and ��1.XT / are opposite Schubert varieties in IF, it
follows that ��1.YP;T / is a Richardson variety in IF (see, e.g., [Brion 2005]). By
[Knutson et al. 2014, Theorem 4.5] or [Billey and Coskun 2012, Theorem 3.3],
the projection  W ��1.YP;T /!ZP;T is cohomologically trivial, in the sense that
 �ŒO��1.YP;T /

�D ŒOZP;T
�. Since � is flat, it follows that

 ��
�ŒOYP;T

�D ŒOZP;T
� 2K.Z/:

Similarly, � W  �1.W /!X.r/ is cohomologically trivial and � is flat, so we have

�� 
�ŒOW �D ŒOX.r/

� 2K.X/:

It is known that all Schubert varieties have rational singularities [Mehta and Srinivas
1987]. Therefore by Lemma 7.1 and two applications of the projection formula,
we have

�X .ŒOXP
� � ŒOXT � � ŒOX.r/

�/D �X .ŒOYP;T
� ��� 

�ŒOW �/

D �IF.�
�ŒOYP;T

� � �ŒOW �/

D �Z. ��
�ŒOYP;T

� � ŒOW �/

D �Z.ŒOZP;T
� � ŒOW �/: �

By Lemma 8.1, the projected Richardson variety ZP;T assumes a crucial role
in the calculation of (4). Let q be the number of quadratic equations and let l be
the number of linear equations defining ZP;T as a complete intersection in PN�1

(from Sections 2 and 4 we know that q D #fc 2 QP;T W c > 0 and c � 1 62 QP;T g
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and l D #LP;T ). We now calculate (4) when X has Lie-type C , B , or D, in that
order, finally presenting a unified treatment in Corollary 8.7.

8A. Type C . Let X D SG.m; 2n/. Note that SG.1; 2n/, the image of  , is equal
to P2n�1. The codimension-r special Schubert variety X.r/ is defined for 1� r �
2n�m by

X.r/ WD f† 2X W dim.†\E2n�m�rC1/� 1g

In other words, X.r/ D �. �1.W //, where W WD P.E2n�m�rC1/. Note that W
is a linear subvariety of P2n�1 and therefore a Schubert variety.

Proposition 8.2. Let X WD SG.m; 2n/. Given T �P in�.X/ and 1� r � 2n�m,
we have

�X .ŒOXP
� � ŒOXT � � ŒOX.r/

�/D

2n�m�r�l�qX
jD0

�q
j

�
.�1/j .2/q�j ;

where we define
�
q
j

�
to be zero for j > q.

Proof. The triple intersection number is equal to �P2n�1.ŒOZP;T
� � ŒOW �/, by

Lemma 8.1. Since ZP;T is a complete intersection defined by l linear and q
quadratic polynomials, we have ŒOZP;T

�D hlhq.2�h/q . Since ŒOW �D hm�1Cr ,
it follows that

ŒOZP;T
� � ŒOW �D h

mCrClCq�1.2� h/q

D

2n�m�r�l�qX
jD0

hmCrClCq�1
�q
j

�
.�h/j .2/q�j ;

where we define
�
q
j

�
to be zero for j > q. Taking sheaf Euler characteristic yields

the desired triple intersection formula. �

8B. TypeB. LetX WDOG.m; 2nC1/. LetQ WDOG.1; 2nC1/ denote the quadric
hypersurface of isotropic lines in P2n, with inclusion � WQ ,! P2n.

We describe the Schubert varieties relative to E� for the odd-dimensional quadric
Q. For 0 � j � 2n � 1 there is exactly one codimension-j Schubert variety
Q.j / �Q, defined by

Q.j / D

�
P.E2nC1�j /\Q if 0� j � n� 1;
P.E2n�j / if n� j � 2n� 1:

The Schubert varieties Q.j / have a straightforward Bruhat ordering:

Q.2n�1/ Q.2n�2/ Q.n/ Q.n�1/ Q.1/ Q.0/ DQ.

P.E1/ P.E2/ P.En/

P.EnC2/\Q P.E2n/\Q

� � � � � � � � � � � � �
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We mention some facts about the Schubert classes in K.Q/ (see [Buch and
Samuel 2014] for details). For 0� j � n� 1, we have ŒOQ.j /

�D ��.hj /. Pushfor-
wards of Schubert classes are given by

��ŒOQ.j /
�D

�
hj .2h� h2/ for 0� j � n� 1;
hjC1 for n� j � 2n� 1:

Returning to the type-B Grassmannian X , the codimension-r special Schubert
variety X.r/ is defined by

X.r/ D f† 2X W P.†/\Q.mC1�r/ ¤∅g

for 1� r � 2n�m. In other words, X.r/ D �. �1.Q.mC1�r///.
We now rewrite the type-B triple intersection number as the sheaf Euler char-

acteristic of a K.P2n/ class. The final step of computing Euler characteristic is
exactly the same as in Proposition 8.2, and is postponed to the unified formula in
Corollary 8.7.

Proposition 8.3. LetX WDOG.m; 2nC1/. For T �P in�.X/ and 1� r �2n�m,
we have

�X .ŒOXP
� � ŒOXT � � ŒOX.r/

�/

D

8<:
�P2n.hmCrClCq�1.2� h/q/ if r � n�m;
�P2n.hmCrClCq�1.2� h/q�1/ if r > n�m and q > 0;
�P2n.hmCrCl�1/D 0 if r > n�m and q D 0:

Proof. By Lemma 8.1, we must simplify �Q.ŒOZP;T
� � ŒOQ.m�1Cr/

�/. In certain
situations we can use the projection formula along � to do this.

Situation 1: Suppose r � n�m. In this case, m� 1C r � n� 1. It follows that
the inclusion �.Q.m�1Cr// is a complete intersection in P2n cut out by m� 1C r
linear equations and the single quadratic equation defining Q. Thus, ŒOQ.m�1Cr/

�D

��.hm�1Cr/. Using the projection formula, we have

�Q.ŒOZP;T
� � ŒOQ.m�1Cr/

�/D �Q.ŒOZP;T
� � ��.hm�1Cr//

D �P2n.ŒOZP;T
� � hm�1Cr/

D �P2n.hlCqCmCr�1.2� h/q/:

Situation 2: Suppose q, the number of quadratic equations defining ZP;T , is
greater than zero. By ignoring one of the quadratic equations defining ZP;T , we
define a larger subvariety Z0 � P2n such that ZP;T D Z0 \Q. It follows that
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ŒOZP;T
�D ��ŒOZ0 �, so by the projection formula we have

�Q.ŒOZP;T
� � ŒOQ.m�1Cr/

�/

D �Q.�
�ŒOZ0 � � ŒOQ.m�1Cr/

�/

D �P2n.ŒOZ0 � � ��ŒOQ.m�1Cr/
�/

D

�
�P2n.hlhq�1.2� h/q�1 � hm�1Cr.2h� h2// if r � n�m;
�P2n.hlhq�1.2� h/q�1 � hmCr/ if r > n�m;

D

�
�P2n.hlCqCmCr�1.2� h/q/ if r � n�m;
�P2n.hlCqCmCr�1.2� h/q�1/ if r > n�m:

Note that these situations are not mutually exclusive, and that when r � n�m and
q > 0 both methods agree.

Situation 3: Suppose r > n�m and qD 0. In this case, both ZP;T and Q.m�1Cr/
can be thought of as linear subvarieties of P2n that are contained in Q. Note that
��ŒOZP;T

�D hl and ��ŒOQ.m�1Cr/
�D hmCr , but that

��.ŒOZP;T
� � ŒOQ.m�1Cr/

�/D hmCrCl�1;

since one of these linear equations is redundant in the intersection of generic
translates of ZP;T and Q.m�1Cr/. However, the integer mC r C l � 1 is at least
2nC 1, and therefore the Grothendieck class hmCrCl�1 2K.P2n/ vanishes. �

8C. Type D. Let X WD OG.m; 2n C 2/. Let Q WD OG.1; 2n C 1/ denote the
quadric hypersurface of isotropic lines in P2nC1 with inclusion � WQ ,! P2nC1.
We describe the Schubert varieties relative to E� for the even-dimensional quadric
Q. Let zEnC1 D he1; : : : ; en; enC2i.

The quadric Q has two Schubert varieties of codimension n, defined by

Q.n/ WD P.EnC1/ and zQ.n/ WD P. zEnC1/:

For j ¤ n, there is a single codimension-j Schubert variety, defined by

Q.j / D

�
P.E2nC2�j /\Q if 0� j � n� 1;
P.E2nC1�j / if nC 1� j � 2n:

The Schubert varieties in Q have the following Bruhat order:

Q.2n/ Q.2n�1/ Q.nC1/

Q.n/

zQ.n/

Q.n�1/ Q.1/ Q.0/ DQ

P.E1/ P.E2/ P.En/
P.EnC1/

P. zEnC1/
P.EnC3/\Q

P.E2nC1/\Q

� � � � � �

�

�

�

�

� � � � � �
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We mention some facts about the Grothendieck ring K.Q/, which can be found
in [Buch and Samuel 2014, pp. 17–18]. As in type B , we have ŒOQ.j /

�D ��.hj / for
0� j � n�1. Pushforwards of Schubert classes are the same as in type B , the only
addition being that ��ŒOQ.n/

�D ��ŒO zQ.n/
�D hnC1. The products of codimension-n

classes with one another depend on the parity of n, in the sense that

ŒOQ.n/
�2 D ŒO zQ.n/

�2 D

�
ŒOQ.2n/

�D ŒOpoint� if n is even,
0 if n is odd;

whereas

ŒOQ.n/
� � ŒO zQ.n/

�D

�
0 if n is even;
ŒOQ.2n/

�D ŒOpoint� if n is odd:

The maximal even orthogonal Grassmannian OG.nC 1; 2nC 2/ has two con-
nected components. For any † 2 OG.nC 1; 2nC 2/, let t.†/ 2 f0; 1g to be the
codimension mod 2 of † \ EnC1 in EnC1. If L � Q and L0 � Q are linear
subvarieties of codimension n in Q, then the affine cones ƒ.L/ and ƒ.L0/ are
elements of OG.nC 1; 2nC 2/. The K.Q/ classes ŒOL� and ŒOL0 � are equal if and
only if ƒ.L/ and ƒ.L0/ are in the same SO.2nC 2/-orbit, which is the case if and
only if t.ƒ.L//D t.ƒ.L0//. For any codimension-n linear subvariety L�Q, we
let t.ŒOL�/ WD t.ƒ.L//. It is easy to check that t.ŒOQ.n/

�/D 0 and t.ŒO zQ.n/
�/D 1.

Hence, for A and B in fŒOQ.n/
�; ŒO zQ.n/

�g, we have

A �BD ..t.A/C t.B/CnC 1/ .mod 2//ŒOQ.2n/
�;

where mod 2 means “remainder mod 2”: the coefficient is 1 if t.A/C t.B/CnC1

is odd, and 0 otherwise.
The following lemma describes t.ŒOZP;T

�/ whenever ZP;T has codimension n
in Q. The lemma is adapted from the definition of the function h.P; T / in [Buch
et al. 2009, §5.2].

Lemma 8.4. IfZP;T is a linear subvariety of codimension n in the quadricQ, then
t.ZP;T /� jS jC jS

0jCnC 1 .mod 2/, where

S D fi 2 Œ1; nC 1� W tj � i � pj for some j g;

S 0 D fp 2 P W p � nC 2 and 2nC 3�p 2 Sg:

Proof. Let ƒ.ZP;T / � C2nC2 be the affine cone over ZP;T � P2nC1. Note that
jS j is the number of c 2 Œ1; nC 1� such that c is not a zero column in D.P; T /,
and that jS 0j is the number of nonzero columns c 2 Œ1; nC 1� such that column
N C 1� c of D.P; T / contains a lone star. It follows that jS j � jS 0j is the number
of c 2 Œ1; nC 1� such that ec 2ƒ.ZP;T /, and hence that nC 1� .jS j � jS 0j/ is the
codimension of ƒ.ZP;T /\EnC1 in EnC1. �
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We give an example in which t.ŒOZP;T
�/ affects a product in K.Q/ (which is in

fact a triple intersection number).

Example 8.5. Consider OG.2; 8/, and let P D f1; 4g and T D f1; 2g. In this case
t.ŒOZP;T

�/D 0. It follows that ŒOZP;T
��ŒOQ.n/

�D .0C0C3C1 mod 2/ŒOQ.2n/
�D 0

and ŒOZP;T
� � ŒO zQ.n/

�D .0C 1C 3C 1 mod 2/ŒOQ.2n/
�D ŒOQ.2n/

�.

Returning to the even orthogonal Grassmannian X , the codimension-r special
Schubert variety X.r/ is defined by X.r/ WD f† 2X W P.†/\Q.m�1Cr/ ¤∅g for
1� r � 2nC1�m. As in the quadric case, there is an additional special Schubert va-
riety3 of codimension k WDn�mC1, defined by zX.k/ WDf†2X WP.†/\ zQ.n/¤∅g.
ThusX.r/D�. �1.Q.m�1Cr/// for 1� r�2nC1�m and zX.k/D�. �1. zQ.n///.

Consider the triple intersection number corresponding toXP ,XT , and a codimen-
sion-r special Schubert variety. By Lemma 8.1, this equals �Q.ŒOZP;T

� �A/, where
A is the corresponding codimension-.m� 1C r/ special Schubert class in K.Q/.
We now translate this expression to the sheaf Euler characteristic of a K.P2nC1/
class. The final step of computing Euler characteristic is postponed to the unified
formula in Corollary 8.7.

Proposition 8.6. LetX WDOG.m; 2nC2/, and let A be a codimension-.m�1Cr/
Schubert class in K.Q/. Define ı 2 f0; 1g by

ı �

�
t.A/CjS jC jS 0j .mod 2/ if r D k; q D 0; and l D nC 1;
1 .mod 2/ otherwise.

We then have

�Q.ŒOZP;T
� �A/D

8<:
�P2nC1.hmCrClCq�1.2� h/q/ if r < k;
�P2nC1.hmCrClCq�1.2� h/q�1/ if r � k and q > 0;
�P2nC1.ı � hmCrCl�1/ if r � k and q D 0:

Proof. The proof is exactly as in type B , except in the case r � k and q D 0. In
this case, ZP;T is a linear subvariety of Q of codimension at least n. If r > k
or if ZP;T has codimension greater than n, then ŒOZP;T

� � A D 0 (in this case
hmCrCl�1 2 K.P2nC1/ is also zero, since r > n�mC 1 or l > nC 1). We can
therefore assume ŒOZP;T

� and A are both in fŒOQ.n/
�; ŒO zQ.n/

�g. By Lemma 8.4, it
follows that

�Q.ŒOZP;T
� �A/D t.ŒOZP;T

�/C t.A/CnC 1 .mod 2/

D jS jC jS 0jC t.A/ .mod 2/:

This number agrees with �P2nC1.ı �hmCrCl�1/, since mC rC l �1D 2nC1. �

3 We note that our definition of the codimension-k special Schubert varieties differs slightly from
the definition in [Buch et al. 2009, §3.2], in which X.k/ and zX.k/ are switched when n is odd.
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8D. A general formula. Propositions 8.2, 8.3, and 8.6 are summarized concisely
in the following formulation of the triple intersection number, which holds for
isotropic Grassmannians of all types:

Corollary 8.7. LetX WD IG!.m;N / be an isotropic Grassmannian, whereN D 2n
in type C , N D 2nC 1 in type B , and N D 2nC 2 in type D. Let k D n�m
in types B and C and let k D n � m C 1 in type D. Given 1 � r � n C k,
suppose A 2 K.IG!.1;N // is a Schubert class of codimension .m� 1C r/, so
that �� �A 2K.X/ is a special Schubert class of codimension r . Given T � P
in �.X/, let l and q be the numbers of linear and quadratic equations defining
ZP;T as a complete intersection, and let S and S 0 be the sets defined in Lemma 8.4.
Define the integers l 0, q0, �, and ı as follows:

q0 D

�
q� 1 if X is orthogonal and q > 0;
q otherwise,

l 0 D

�
l CmC r if X is orthogonal, q > 0; and r � k;
l CmC r � 1 otherwise,

�D

�
t.A/CjS jC jS 0j if X is type D, q D 0, and r D k;
1 otherwise,

ı D

�
0 if � is even,
1 if � is odd:

We then have

�X .ŒOXP
� � ŒOXT � ��� 

�A/D �PN�1.ıhl
0

.2h� h2/q
0

/

D ı �

N�1�l 0�q0X
jD0

�q0
j

�
.�1/j .2/q

0�j ;

where we define
�
q0

j

�
to be zero for j > q0.

9. Computing Pieri coefficients

Let X be an isotropic Grassmannian of type B , C , or D. Given Schubert symbols
P and Q and a special Schubert class ŒOX.r/

�, the K-theoretic structure constant
N
Q
P;r.X/ is the coefficient of ŒOXQ

� in the Pieri product ŒOXP
� � ŒOX.r/

�. In this
section, we compute N

Q
P;r.X/ as an alternating sum of triple intersection numbers

�X .ŒOXP
��ŒOXT ��ŒOX.r/

�/, where T ranges over a certain subset of Schubert symbols
(if X is type D, the special Schubert class ŒO zX.k/

� can be substituted in order to
calculate the additional Pieri coefficients zNQP;r.X/).
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Given Schubert symbols Q and P , the Möbius function �.Q;P / is defined by

�.Q;P /D

8<:
1 if QD P;
�
P
Q�T�P �.Q; T / if Q � P;

0 otherwise:

For each Q 2�.X/, we define a class O�Q 2K.X/ by

O�Q WD
X

T2�.X/

�.Q; T /ŒOXT �:

Lemma 9.1. The class O�Q is the K-theoretic dual to OQ, in the sense that

�X .ŒOXP
� �O�Q/D ıP;Q:

Proof. Given Schubert symbols T � P , the Richardson variety YP;T is rational
[Deodhar 1985] with rational singularities [Brion 2002]. By [Griffiths and Harris
1978, p. 494] it follows that

�X .ŒOXP
� � ŒOXT �/D

�
1 if T � P;
0 otherwise:

If Q � P , then we have

�X .ŒOXP
� �O�Q/D

X
T2�.X/

�.Q; T /�X .ŒOXP
� � ŒOXT �/

D

X
T�P

�.Q; T /

D

X
Q�T�P

�.Q; T /C�.Q;P /D 0:

If Q � P , then for any T �Q we have T � P . Thus, ŒOXP
� � ŒOXT �D 0 for every

Schubert class ŒOXT � that has nonzero coefficient in O�Q. Finally, if P DQ then
�X .ŒOXQ

� �O�Q/D �X .ŒOXQ
� � ŒOXQ �/D 1. �

Since �.Q; T /D 0 for Q � T and ŒOXP
� � ŒOXT �D 0 for T � P , we have the

following corollary:

Corollary 9.2. N
Q
P;r.X/D

X
Q�T�P

�.Q; T /�X .ŒOXP
� � ŒOXT � � ŒOX.r/

�/.

It is known that �.Q; T / 2 f0; .�1/jQj�jT jg for any Schubert symbols Q and T
[Björner and Brenti 2005, Corollary 2.7.10]. In [Ravikumar 2013, Appendix A] a
conjectured criterion is stated for when �.Q; T / vanishes. We hope Corollary 9.2
will lead to a Pieri formula for N

Q
P;r.X/ with manifestly alternating signs, in the

sense that .�1/jQj�jP j�rN
Q
P;r.X/D 1 (see [Brion 2002] for a proof of this fact).
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9A. A global rule. We briefly describe how to determine K-theoretic dual classes,
and hence Pieri coefficients, without a “local” rule, but rather using the global data
of the entire Bruhat order. This method requires us to invert an L�L matrix, where
L is the number of Schubert symbols in �.X/, and allows for relatively efficient
computation of N

Q
P;r.X/.

Let fP1; : : : ; PLg be the set of Schubert symbols for X . Let Oi WD ŒOXPi
� and

Oi WD ŒOXPi �. The sets fO1; : : : ;OLg and fO1; : : : ;OLg are both additive bases
for K.X/.

We will use the following four L�L matrices:

(1) Let M WD .mij / be the intersection matrix for X , where

mij D

�
1 if Pj � Pi ;
0 otherwise:

(2) Let C.r/ WD .cij / be the Pieri coefficient matrix for X , where

Oi �O.r/ D cijOj :

(3) Let T.r/ WD .tij / be the triple intersection matrix for X , where

tij D �X .Oi �O
j
�O.r//:

(4) Let D WDM�1 be the matrix of duals on X .

Let dj denote the j -th column vector of D, and let Odj WD
PL
kD1 dkjOk .

Observation 9.3. The element Odj is dual to Oj in the sense that

�X .Oi �Odj /D ıi;j :

Proof. �X .Oi �Odj /Dmi �d
j , where mi is the i -th row of M . �

Observation 9.4. The matrixD transforms triple intersection numbers into Pieri
coefficients, via the relation

T.r/ �D D C.r/:

Proof.
LX
kD1

tikdkj D

LX
kD1

�X .dkjOi �O
k
�O.r//D �X .Oi �Odj �O.r//D cij : �
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